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Abstract
We examine connections between combinatorial notions that arise in machine learning and topological
notions in cubical/simplicial geometry. These connections enable to export results from geometry
to machine learning. Our first main result is based on a geometric construction by H. Tracy Hall
(2004) of a partial shelling of the cross-polytope which can not be extended. We use it to derive
a maximum class of VC dimension 3 that has no corners. This refutes several previous works in
machine learning from the past 11 years. In particular, it implies that the previous constructions of
optimal unlabeled compression schemes for maximum classes are erroneous.

On the positive side we present a new construction of an optimal unlabeled compression scheme
for maximum classes. We leave as open whether our unlabeled compression scheme extends to ample
(a.k.a. lopsided or extremal) classes, which represent a natural and far-reaching generalization of
maximum classes. Towards resolving this question, we provide a geometric characterization in terms
of unique sink orientations of the 1-skeletons of associated cubical complexes.
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1 Introduction

The Sauer-Shelah-Perles Lemma [28, 30, 32] is arguably the most basic fact in VC theory; it
asserts that any class C ⊆ {0, 1}n satisfies |C| ≤

(
n
≤d
)
, where d = VC-dim(C). A beautiful

generalization of Sauer-Shelah-Perles’s inequality asserts that |C| ≤ |X(C)|, where X(C) is
the family of subsets that are shattered by C.1 The latter inequality is a part of the Sandwich
Lemma [1, 4, 7, 23], which also provides a lower bound for |C| (and thus “sandwiches” |C|)
in terms of the number of its strongly shattered subsets (see Section 2). A class C is called
maximum/ample if the Sauer-Shelah-Perles/Sandwich upper bounds are tight (respectively).
Every maximum class is ample, but not vice versa.

Maximum classes were studied mostly in discrete geometry and machine learning, e.g. [34,
11, 9, 10, 14]. The history of ample classes is more interesting as they were discovered
independently by several works in disparate contexts [1, 15, 4, 19, 3, 7, 35]. Consequently,
they received different names such as lopsided classes [15], extremal classes [4, 19], and ample
classes [3, 7]. Lawrence [15] was the first to define them for the investigation of the possible
sign patterns realized by points of a convex set of Rd. Interestingly, Lawrence’s definition of
these classes does not use the notion of shattering nor the Sandwich Lemma. In this context,
these classes were discovered by Bollobás and Radcliffe [4] and Bandelt et al. [3], and the
equivalence between the two definitions appears in [3]. Ample classes admit a multitude of
combinatorial and geometric characterizations [3, 4, 15] and comprise many natural examples
arising from discrete geometry, combinatorics, graph theory, and geometry of groups [3, 15].

Main Results

Corner Peelings. A corner in an ample class C is any concept c ∈ C that belongs to a unique
maximal cube of C (equivalently, c is a corner if C\{c} is also ample, see Claim 6). A sequence
of corner removals leading to a single concept is called a corner peeling. Wiedemann [35] and
independently Chepoi (unpublished, 1996) asked whether every ample class has a corner. The
machine learning community studied this question independently in the context of sample
compression schemes for maximum classes: Rubinstein and Rubinstein [25] showed that
corner peelings lead to optimal unlabeled sample compression schemes (USCS).

In Theorem 9 we refute this conjecture. The crux of the proof is an equivalence between
corner peelings and partial shellings of the cross-polytope. This equivalence translates the
question whether corners always exist to the question whether partial shellings can always
be extended. The latter was an open question in Ziegler’s book on polytopes [38], and was
resolved in H. Tracy Hall’s PhD thesis where she presented an interesting counterexample [13].
The ample class resulting from Hall’s construction yields a maximum class without corners.

Sample Compression. Sample compression is a powerful technique to derive generalization
bounds in statistical learning. Littlestone and Warmuth [16] introduced it and asked if every
class of VC-dimension d <∞ has a sample compression scheme of a finite size. This question
was later precised by Floyd and Warmuth [10, 33] to whether a sample compression scheme
of size O(d) exists. The first question was recently resolved by [21] who exhibited an exp(d)
sample compression. The second question however remains one of the oldest open problems
in machine learning (for more background we refer the reader to [20] and the books [29, 36]).

1 Note that this inequality indeed implies the Sauer-Shelah-Perles Lemma, since |X(C)| ≤
(

n
≤d

)
.
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Rubinstein and Rubinstein [25, Theorem 16] showed that the existence of a corner
peeling for a maximum class C implies a representation map for C (see Section 3 for a
definition), which is known to yield an optimal unlabeled sample compression scheme of
size VC-dim(C) [14].2 They claim, using an interesting topological approach, that maximum
classes admit corner peelings. Unfortunately, our Theorem 9 shows that this does not hold.

While our Theorem 9 rules out the program of deriving representation maps from corner
peelings, in Theorem 10 we provide an alternative derivation of representation maps for
maximum classes and therefore also of an unlabeled sample compression scheme for them.

Sample Compression and Unique Sink Orientations. We next turn to construction of
representation maps for ample classes. In Theorem 15 we present geometric characterizations
of such maps via unique sink orientations: an orientation of the edges of a cube B is a unique
sink orientation (USO) if any subcube B′ ⊆ B has a unique sink. Szabó and Welzl [31]
showed that any USO of B leads to a representation map for B. We extend this bijection
to ample classes C by proving that representation maps are equivalent to orientations o
of C such that (i) o is a USO on each subcube B ⊆ C, and (ii) for each c ∈ C the edges
outgoing from c belong to a subcube B ⊆ C. We further show that any ample class admits
orientations satisfying each one of those conditions. However, the question whether all ample
classes admit representation maps remains open.

Implications on Previous Works. Our Theorem 9 establishes the existence of maximum
classes without any corners, thus countering several previous results in machine learning:

Rubinstein and Rubinstein [25, Theorem 32] showed that any maximum class can be repre-
sented by a simple arrangement of piecewise-linear hyperplanes. In [25, Theorem 39], they
claim that sweeping such an arrangement leads to a corner peeling of the corresponding
maximum class. This is unfortunately false, as witnessed by Theorem 9.
Kuzmin and Warmuth [14] constructed unlabeled sample compression schemes for maxi-
mum classes based on the presumed uniqueness of a certain matching (their Theorem 10).
This theorem is wrong as it implies the existence of corners. However their conclusion is
correct: in our Theorem 10 we show that such unlabeled compression schemes exist.
Theorem 3 by Samei, Yang, and Zilles [27] is built on a generalization of Theorem 10
from [14] to the multiclass case which is also incorrect.
Theorem 26 by Doliwa et al. [6] uses the result by [25] to show that the Recursive Teaching
Dimension (RTD) of maximum classes equals to their VC dimension. However the VC
dimension 3 maximum class from Theorem 9 has RTD at least 4. It remains open whether
the RTD of every maximum class C is bounded by O(VC-dim(C)).

Organization. Section 2 presents the main definitions and notations. Section 3 reviews
characterizations of ample/maximum classes and presents characteristic examples. Section 4
demonstrates the existence of the maximum class CH without corners. Section 5 establishes
the existence of representation maps for maximum classes. Section 6 establishes a bijection
between representation maps and unique sink orientations for ample classes. Due to space
limitations, some proofs are omitted and can be found in the full version of this paper [5].

2 Pálvölgyi and Tardos [24] recently exhibited a (non-ample) class C with no USCS of size VC-dim(C).
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2 Preliminaries

A concept class C is a set of subsets (concepts) of a finite ground set U which is called
the domain of C and denoted dom(C). We sometimes treat the concepts as characteristic
functions rather than subsets. The support (or dimension set) supp(C) of C is the set
{x ∈ U : x ∈ c′ \ c′′ for some c′, c′′ ∈ C}. C∗ := 2U \ C is the complement of C. The
restriction of C on Y ⊆ U is the class C|Y = {c ∩ Y : c ∈ C} whose domain is Y . We use
CY as shorthand for C|(U \ Y ); in particular, we write Cx for C{x}, and cx for c|(U \ {x})
for c ∈ C (note that cx ∈ Cx). A class B ⊆ 2U is a cube if there exists Y ⊆ U such that
B|Y = 2Y and BY contains a single concept (denoted by tag(B)). Note that supp(B) = Y

and therefore we say that B is a Y -cube; |Y | is called the dimension dim(B) of B. Two
cubes B,B′ with the same support are called parallel cubes. A cube B is maximal if there is
no cube B′ such that B ( B′.

Let Qn denote the n-dimensional cube where n = |U |; c, c′ ∈ Qn are called adjacent if the
symmetric difference c∆c′ is of size 1. The 1-inclusion graph of C is the subgraph G(C) of
Qn induced by the vertex-set C when the concepts of C are identified with the corresponding
vertices ofQn. Any cube B ⊆ C is called a cube of C. The cube complex of C is the setQ(C) =
{B : B is a cube of C}. The dimension of Q(C) is dim(Q(C)) := maxB∈Q(C) dim(B). A
concept c ∈ C is called a corner of C if c belongs to a unique maximal cube of C. The
reduction CY of C to Y ⊆ U is the class CY := {tag(B) : B ∈ Q(C) and supp(B) = Y }
whose domain is U \ Y . When x ∈ U we denote C{x} by Cx and call it the x-hyperplane of
C. Note that a concept c belongs to Cx if and only if c and c ∪ {x} both belong to C. The
union of all cubes of C having x in their support is called the carrier of Cx and is denoted
by Nx(C). If c ∈ Nx(C), we also denote c|U \ {x} by cx (note that cx ∈ Cx).

A class C is connected if the graph G(C) is connected. Let dG(C)(c, c′) denote the
distance between c and c′ in G(C). Note that dQn

(c, c′) =: d(c, c′) coincides with the
Hamming distance |c∆c′|. Let B(c, c′) = {t ⊆ U : d(c, t) + d(t, c′) = d(c, c′)} be the interval
between c and c′ in Qn. A class C is called isometric if d(c, c′) = dG(C)(c, c′) for any c, c′ ∈ C
and weakly isometric if d(c, c′) = dG(C)(c, c′) if d(c, c′) ≤ 2. Any path connecting two
concepts tag(B) and tag(B′) of CY inside CY can be lifted to a path of Y -cubes connecting
B and B′ in C; such a path of cubes is called a gallery.

A class C shatters Y ⊆ U if C|Y = 2Y . C strongly shatters Y if C contains a Y -
cube. Let X(C), X(C) denote the simplicial complexes X(C) = {Y : C shatters Y },
X(C) = {Y : C strongly shatters Y }. Note that X(C) ⊆ X(C). The VC-dimension
VC-dim(C) of C is the size of a largest set C shatters. The Sandwich Lemma asserts that
|X(C)| ≤ |C| ≤ |X(C)|.

A labeled sample is a set s = {(x1, y1), . . . , (xm, ym)}, where xi ∈ U and yi ∈ {0, 1}.
An unlabeled sample is a set {x1, . . . , xm}, where xi ∈ U . Given a labeled sample s =
{(x1, y1), . . . , (xm, ym)}, the unlabeled sample {x1, . . . , xm} is the domain of s and is denoted
by dom(s). A sample s is realizable by a concept c : U → {0, 1} if c(xi) = yi for every i, and
s is realizable by a concept class C if it is realizable by some c ∈ C.

A sample compression scheme for a concept class C is best viewed as a protocol between
a compressor and a reconstructor. The compressor gets a realizable sample s from which it
picks a small subsample s′. The compressor sends s′ to the reconstructor. Based on s′, the
reconstructor outputs a concept c that needs to be consistent with the entire input sample s.
A sample compression scheme has size k if for every realizable input sample s the size of the
compressed subsample s′ is at most k. An unlabeled (sample) compression scheme (USCS) is
a sample compression scheme in which the compressed subsample s′ is unlabeled. So, the
compressor removes the labels before sending the subsample to the reconstructor.
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3 Ample and Maximum Classes

We briefly review the main characterizations and basic geometric examples of ample and
maximum classes. The next theorem summarizes the main characterizations of ample classes:

I Theorem 1 ([3, 4, 15]). The following are equivalent for a class C: (1) C is ample; (2)
C∗ is ample; (3) X(C) = X(C); (4) |X(C)| = |C|; (5) |X(C)| = |C|; (6) C ∩ B is ample
for any cube B; (7) (CY )Z = (CZ)Y for all partitions U = Y ·∪ Z; (8) for all partitions
U = Y ·∪ Z, either Y ∈ X(C) or Z ∈ X(C∗).

Condition (3) leads to a simple definition of ampleness: C is ample if whenever Y ⊆ U
is shattered by C, then there is a Y -subcube of C. Thus, if C is ample we will write
X(C) instead of X(C) = X(C). A representation map for an ample class C is a bijection
r : C → X(C) satisfying the non-clashing condition: c|(r(c)∪ r(c′)) 6= c′|(r(c)∪ r(c′)), for all
c, c′ ∈ C, c 6= c′. We continue with metric and recursive characterizations of ample classes:

I Theorem 2 ([3]). The following are equivalent for a class C: (1) C is ample; (2) CY is
connected for all Y ⊆ U ; (3) CY is isometric for all Y ⊆ U ; (4) C is isometric, and both Cx
and Cx are ample for all x ∈ U ; (5) C is connected and all hyperplanes Cx are ample.

I Corollary 3. Two maximal cubes of an ample class C have different supports.

Indeed, if B and B′ are two d-cubes with the same support, by Theorem 2(2) B and B′
can be connected in C by a gallery, and thus B is contained in a d+ 1-cube. Therefore, B
and B′ cannot be maximal.

The Sandwich Lemma and Theorem 1(5) imply that maximum classes are ample. Basic
examples of maximum classes are concept classes derived from hyperplane arrangements
in Rn, ball arrangements in Rn, and unions of n intervals in R. The following theorem
summarizes some characterizations of maximum classes provided in [11, 9, 10, 34]:

I Theorem 4. The following are equivalent for a class C: (1) C is maximum; (2) CY is
maximum for all Y ⊆ U ; (3) Cx and Cx are maximum for all x ∈ U ; (4) C∗ is maximum.

We continue with some important geometric examples of ample classes.

1. Simplicial Complexes. Every simplicial complex S (viewed as a set system closed under
taking subsets) is ample since X(S) = X(S).

2. Realizable Ample Classes. Let K ⊆ Rn be a convex set. Let C(K) := {sign(v) : v ∈
K, vi 6= 0 ∀i ≤ n}, where sign(v) ∈ {±1}n is the sign pattern of v. Lawrence [15] showed
that C(K) is ample, and called ample classes representable in this manner realizable.

3. Median Classes. A class C is called median if for every three concepts c1, c2, c3 of C
their median m(c1, c2, c3) := (c1 ∩ c2)∪ (c1 ∩ c3)∪ (c2 ∩ c3) also belongs to C. Median classes
are ample by [3, Proposition 2]. Due to their relationships with other discrete structures,
median classes are one of the most important examples of ample classes. Median classes
are equivalent to finite median graphs (a well-studied class in metric graph theory, see [2]),
to CAT(0) cube complexes, i.e., cube complexes of global nonpositive curvature (central
objects in geometric group theory, see [12, 26]), and to the domains of event structures (a
basic model in concurrency theory [22, 37]).

ICALP 2019
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4. Convex Geometries and Conditional Antimatroids. Let C be a class such that (i)
∅ ∈ C and (ii) c, c′ ∈ C implies that c ∩ c′ ∈ C. Call x ∈ c ∈ C extremal if c \ {x} ∈ C. We
say that c ∈ C is generated by s ⊆ c if c is the smallest member of C containing s. A class
C satisfying (i) and (ii) with the additional property that every member c of C is generated
by its extremal points is called a conditional antimatroid [3, Section 3]. If U ∈ C, then we
obtain the well-known structure of a convex geometry (called also an antimatroid) [8]. By [3,
Proposition 1], conditional antimatroids C are ample since X(C) coincides with the sets of
extremal points and X(C) coincides with the set of all minimal generating sets of sets from
C. Convex geometries comprise many examples from geometry, ordered sets, and graphs; see
the foundational paper [8]. For example, a realizable convex geometry is a convex geometry
C ⊆ U such that U can be realized as a set of Rn and c ∈ C if and only if c is the intersection
of a convex set of Rn with U .

4 Corner Peelings and Partial Shellings

In this section, we prove that corner peelings of ample classes are equivalent to isometric
orderings of C as well as to partial shellings of the cross-polytope. This equivalence, combined
with a result by Hall [13] yields a maximum class with VC dimension 3 without corners
(Theorem 9 below). Let C< := (c1, . . . , cm) be an ordering of the concepts in C. For any
1 ≤ i ≤ m, let Ci := {c1, . . . , ci} denote the i’th level set. The ordering C< is called:

an ample ordering if every level set Ci is ample;
a corner peeling if every ci is a corner of Ci;
an isometric ordering if every level set Ci is isometric;
a weakly isometric ordering if every level set Ci is weakly isometric.

I Proposition 5. The following are equivalent for an ordering C< of an isometric class C:
(1) C< is ample; (2) C< is a corner peeling; (3) C< is isometric; (4) C< is weakly isometric.

Proof. Clearly, (3)⇒(4). Conversely, suppose C< is weakly isometric but one of its levels is
not isometric. Hence, there exists i < j such that any shortest (ci, cj)-path in C contains
some ck with k > j. Additionally, assume that ci, cj minimizes the distance d(ci, cj) among
all such pairs. Since Cj is weakly isometric, necessarily d(ci, cj) ≥ 3. Let cr be the first
concept among {cj+1, . . . , cm} lying in B(ci, cj) ∩ C. If d(ci, cr) ≥ 3 or d(cr, cj) ≥ 3 (say
the first), then one can replace ci, cj by ci, cr, which contradicts the choice of ci, cj . Thus,
d(ci, cr), d(cr, cj) ≤ 2, and at least one of them equals 2 (say d(ci, cr) = 2). Now, weak
isometricity implies that ci and cr have a common neighbor c` with ` < max{i, r} = r.
If ` < j then c`, cj contradicts the minimality of ci, cj , and if j < ` < r then c` contradicts
the minimality of cr. This shows (4)⇒(3).

If ci is a corner of Ci, then any two neighbors of ci in Ci have a second common neighbor
in Ci, and therefore dG(Ci−1) is the restriction of dG(Ci) on Ci−1. Since Cm = C is isometric,
this proves (2)⇒(3). We now prove (3)⇒(1)⇒(2) using the next lemma. For t /∈ C, let
F [t] be the smallest cube of Qn containing t and all neighbors of t in G(C). Note that the
dimension of F [t] is the number of neighbors of t in G(C).

B Claim 6. Let C be ample. Then: (i) If t /∈ C then F [t] ⊆ C ∪ {t}. (ii) If c is a corner
of C then C \ {c} is ample. (iii) If t /∈ C and C ′ := C ∪ {t} is isometric then C ′ is ample
and t is a corner of C ′.
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Proof. Item (i): Suppose F [t] \ C 6= {t}. Pick s 6= t that is closest to t in F [t] \ C (with
respect to the Hamming distance of Qn). Then t and s are not adjacent (by the definition
of F [t]). By the choice of s, B(s, t) \ {s, t} ⊆ C, i.e., B(s, t) ∩ C∗ = {t, s}, contrary to the
ampleness of C∗.

Item (ii): If c ∈ C is a corner then there is a unique maximal cube F ⊆ C containing it.
Combined with Corollary 3, this implies that X(C \ {c}) = X(C) \ {supp(F )}. Next, since
|C| = |X(C)|, we get that |C \ {c}| = |X(C \ {c})|, and by Theorem 1 C \ {c} is ample.

Item (iii): To prove that C ′ is ample, we use Theorem 2(2). First note that by
item (i), F [t] ⊆ C ′. Let F ′ 6= F ′′ be parallel cubes of C ′. If t /∈ F ′ ∪ F ′′, then a gallery
connecting F ′ and F ′′ in C is a gallery in C ′. So, assume t ∈ F ′. If F ′ is a proper face of
F [t], then F ′ is parallel to a face F of F [t] not containing t. Since F ′ and F are connected in
F [t] by a gallery and F and F ′′ are connected in C by a gallery, we obtain a gallery between
F ′ and F ′′ in C ′. Finally, let F ′ = F [t]. In this case, we assert that F ′′ does not exist.
Otherwise, let π be the parallelism map between F ′ and F ′′ (π maps each concept in F ′ to its
unique closest concept in F ′′). Note that for any r ∈ F ′: d(t, π(t)) = d(r, π(r)) = d(F ′, F ′′).
Since C ′ is isometric, t and π(t) can be connected in C ′ by a path P of length d(t, π(t)).
Let s be the neighbor of t in P . Since s ∈ C it follows that s ∈ F [t] = F ′. So, s is a concept
in F ′ that is closer to π(t) than t; this contradicts that d(t, t′′) = d(F ′, F ′′). C

To show (1)⇒(2), let C< be an ample order of C. We assert that each ci is a corner of Ci.
Indeed, since Ci−1 is ample and ci /∈ Ci−1, by Item (i) in Claim 6 the cube F [ci], defined
with respect to Ci−1, is included in Ci. Thus, ci belongs to a unique maximal cube F [ci] of
Ci, i.e., ci is a corner of Ci. To prove (3)⇒(1), let C< be isometric. The ampleness of each
Ci follows by induction from Item (iii) of Claim 6. J

A concept class C is dismantlable if it admits an ordering satisfying any of the equivalent
conditions (1)-(4) in Proposition 5. Isometric orderings of Qn are closely related to shellings
of its dual, the cross-polytope On (which we define next). Define ±U := {±x1, . . . ,±xn}; so,
|±U | = 2n, and we call −xi,+xi antipodal. The n-dimensional cross-polytope is the pure
simplicial complex of dimension n whose facets are all σ ⊆ ±U that contain exactly one
element in each antipodal pair. Thus, On has 2n facets and each facet σ of On corresponds
to a vertex c of Qn (+xi ∈ σ if and only if xi ∈ c). Observe that xi ∈ c′∆c′′ if and only if
{+xi,−xi} ⊆ σ′∆σ′′ where σ′ correspond to c′ and σ′′ corresponds to c′′.

Let X be a pure simplicial complex (PSC) of dimension d, i.e., a simplicial complex in
which all facets have size d. Two facets σ, σ′ are adjacent if |σ∆σ′| = 2. A shelling of X is an
ordering σ1, . . . , σp of all of its facets such that 2σj

⋂
(
⋃
i<j 2σi) is a PSC of dimension d− 1

for every j ≤ p [38, Lecture 8]. A partial shelling is an ordering of some facets that satisfies
the above condition. Note that σ1, . . . , σm is a partial shelling if and only if for every i < j

there exists k < j such that σi ∩ σj ⊆ σk ∩ σj , and σk ∩ σj is a facet of both σj and σk. X is
extendably shellable if every partial shelling can be extended to a shelling. We next establish
a relationship between partial shellings and isometric orderings.

I Proposition 7. Every partial shelling of the cross-polytope On defines an isometric ordering
of the corresponding vertices of the cube Qn. Conversely, if C is an isometric class of Qn,
then any isometric ordering of C defines a partial shelling of On.

Proof. Let σ1, . . . , σm be a partial shelling of On and c1, . . . , cm be the ordering of the
corresponding vertices of Qn. We need to prove that each level set Cj = {c1, . . . , cj} is
isometric. It suffices to show that for every i < j there is k < j such that d(ck, cj) = 1
and ck ∈ B(ci, cj). Equivalently, that |σk∆σj | = 2 and σi ∩ σj ⊆ σk ⊆ σi ∪ σj : since

ICALP 2019
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σ1, . . . , σm is a partial shelling, there is a facet σk with k < j such that |σk ∩ σj | = n − 1
and σi ∩ σj ⊆ σk ∩ σj . We claim that σk is the desired facet. It remains to show that (i)
|σj∆σk| = 2 and (ii) σk ⊆ σi∪σj . Item (i) follows since |σj | = |σk| = n, and |σk∩σj | = n−1.
For Item (ii), let σj \ σk = {+x} and σk \ σj = {−x}. We need to show that −x ∈ σi, or
equivalently that +x /∈ σi. The latter follows since +x ∈ σj \ σk and σj ∩ σi ⊆ σk.

Conversely, let c1, . . . , cm be an isometric ordering and σ1, . . . , σm be the ordering of the
corresponding facets of On. We assert that this is a partial shelling. Let i < j. It suffices to
exhibit k < j such that |σk ∩ σj | = n− 1 and σi ∩ σj ⊆ σk ∩ σj . Since Cj is isometric, cj has
a neighbor ck ∈ B(ci, cj) ∩ Cj . Since d(cj , ck) = 1 it follows that |σk ∩ σj | = n − 1. Since
ck ∈ B(ci, cj) it follows that σi ∩ σj ⊂ σk ⊂ σi ∪ σj and hence that σi ∩ σj ⊆ σk ∩ σj . J

I Corollary 8. If all ample classes are dismantlable, then On is extendably shellable.

Proof. Let σ1, . . . , σm be a partial shelling of On and let C = {c1, . . . , cm} be the corre-
sponding vertices of Qn. By Proposition 7, the level sets are isometric, thus C is ample
by Proposition 5. The complement C∗ is also ample, thus dismantlable. Thus C∗ contains
a concept t such that C∗ \ {t} is ample. Consequently, C ′ := C ∪ {t} is ample. Let τ be
the facet of On corresponding to t. Since c1, . . . , cm, t is an isometric ordering of C ′, by
Proposition 7, σ1, . . . , σm, τ is a partial shelling of On. J

It was asked in [38] if any cross-polytope On is extendably shellable. In the PhD thesis
of H. Tracy Hall from 2004, a nice counterexample to this question is given [13]. Hall’s
counterexample arises from the 299 regions of an arrangement of 12 pseudo-hyperplanes.
These regions are encoded as facets of the cross-polytope O12 and it is shown in [13] that the
subcomplex of O12 consisting of all other facets admits a shelling which cannot be extended.
By the proof of Corollary 8, the ample concept class CH defined by those 299 simplices does
not have any corner.3 A counting shows that CH is a maximum class of VC-dimension 3.
This completes the proof of our first main result:

I Theorem 9. There exists a maximum class CH of VC-dimension 3 without any corner.

However, conditional antimatroids and 2-dimensional ample classes are dismantlable. The
2-dimensional case was proved in [25, Theorem 34] for maximum classes and in [18] for ample
classes. The proof for conditional antimatroids appears in the full version of this paper [5], as
well as a different proof for the 2-dimensional case that is based on a local characterization
of convex sets of ample classes.

5 Representation Maps for Maximum Classes

In this section, we prove that maximum classes admit representation maps and therefore
by [14, Lemma 1], they admit optimal unlabeled compression schemes.

I Theorem 10. Any maximum class C ⊆ 2U of VC-dimension d admits a representation
map, and consequently, an unlabeled compression scheme of size d.

The crux of the proof of Theorem 10 is the following proposition. Let C be a d-dimensional
maximum class and let D ⊆ C be a (d−1)-dimensional maximum subclass. A missed simplex
for the pair (C,D) is a simplex σ ∈ X(C) \X(D). Note that any missed simplex has size d.

3 For the interested reader, a file containing the 299 concepts of CH represented as elements of {0, 1}12 is
available at https://arxiv.org/src/1812.02099/anc/CH.txt.

https://arxiv.org/src/1812.02099/anc/CH.txt
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An incomplete cube Q for (C,D) is a cube of C such that supp(Q) is a missed simplex. For
any incomplete cube Q with σ = supp(Q), C|σ and D|σ are maximum classes of dimensions
d and d − 1, respectively. Since |σ| = d, we have |C|σ| =

(
d
≤d
)

=
(

d
≤d−1

)
+ 1 = |D|σ| + 1.

Since Q|σ = C|σ, there exists a unique concept c ∈ Q such that c|σ /∈ D|σ. We denote c
by s(Q), and call c the source of Q. In fact, the source map is a bijection between missed
simplices for (C,D) and concepts of C \D:

I Proposition 11. Each c ∈ C \ D is the source of a unique incomplete cube. Moreover,
if r′ : D → X(D) is a representation map for D and r : C → X(C) extends r′ by setting
r(c) = supp(s−1(c)) for each c ∈ C \D, then r is a representation map for C.
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Figure 1 Illustrating the proof of Theorem 10 (when x = 5): to construct a representation map
for C, we inductively construct a representation map rx for Cx, extend it to a representation map
rx for Cx using Proposition 11 with D = Cx, and finally extend it to a representation map r for C.
The representation maps rx, rx, and r are defined by the orientation as in Theorem 15 and by the
coordinates of the underlined bits.

Proof of Theorem 10. Following the general idea of [14], we derive a representation map
for C by induction on |U |. For the induction step (see Fig. 1), pick x ∈ U and consider
the maximum classes Cx and Cx ⊂ Cx with domain U \ {x}. By induction, Cx has a
representation map rx. Use Proposition 11 to extend rx to a representation map rx of Cx.
Define a map r on C as follows:
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r(c) = rx(cx) if cx /∈ Cx or x /∈ c,
r(c) = rx(cx) ∪ {x} if cx ∈ Cx and x ∈ c.

It is easy to verify that r is non-clashing: indeed, if c′ 6= c′′ ∈ C satisfy c′x 6= c′′x then
c′x|rx(c′x) ∪ rx(c′′x) 6= c′′x|rx(c′x) ∪ rx(c′′x). Since rx(c′x) ⊆ r(c′), rx(c′′x) ⊆ r(c′′), it follows that
also c′, c′′ disagree on r(c′) ∪ r(c′′). Else, c′x = c′′x ∈ Cx and c′(x) 6= c′′(x). In this case,
x ∈ r(c′) ∪ r(c′′) and therefore c′, c′′ disagree on r(c′) ∪ r(c′′).

It remains to show that r is a bijection between C and X(C) =
(
U
≤d
)
. It is easy to verify

that r is injective. So, it remains to show that |r(c)| ≤ d, for every c ∈ C. This is clear when
cx /∈ Cx or x /∈ c. If cx ∈ Cx and x ∈ c, then r(c) = rx(cx) ∪ {x} and |rx(cx)| ≤ d− 1 (since
Cx is (d− 1)-dimensional). Hence, |r(c)| ≤ d as required, concluding the proof. J

Proof of Proposition 11. Call a maximal cube of C a chamber and a facet of a chamber a
panel (a σ′-panel if its support is σ′). Any σ′-panel in C satisfies |σ′| = d− 1 and σ′ ∈ X(D).
Recall that a gallery between two parallel cubes Q′, Q′′ (say, two σ′-cubes) is any simple path
of σ′-cubes (Q0 := Q′, Q1, . . . , Qk := Q′′), where Qi ∪Qi+1 is a d-cube. By Theorem 2(3),
any two parallel cubes of C are connected by a gallery in C. Since D is a maximum class,
any panel of C is parallel to a panel that is a maximal cube of D. Also for any maximal
simplex σ′ ∈ X(D), the class Cσ′ is a maximum class of dimension 1 and Dσ′ is a maximum
class of dimension 0 (single concept). Thus Cσ′ is a tree (e.g. [11, Lemma 7]) which contains
the unique concept c ∈ Dσ′ . We call c the root of Cσ′ and denote the σ′-panel P such that
Pσ
′ = c by P (σ′).

B Claim 12. Let Q be an incomplete cube for (C,D) with source s and support σ, and let
x, y ∈ U such that x /∈ σ and y ∈ σ. Then, the following holds:
(i) Qx is an incomplete cube for (Cx, Dx) whose source is sx.
(ii) Qy is an incomplete cube for (Cy, Dy) whose source is sy.

Proof. Item (i): Cx and Dx are maximum classes on U \ {x} of VC-dimensions d and d− 1,
and supp(Qx) = σ. Therefore, Qx is an incomplete cube for (Cx, Dx). By definition, s is the
unique concept c ∈ Q such that c|σ /∈ D|σ. Since x /∈ σ, D|σ = Dx|σ and sx is the unique
concept c of Qx so that c|σ /∈ Dx|σ, i.e., sx is the source of Qx.

Item (ii): Cy and Dy are maximum classes on U \ {y} of VC-dimensions d − 1 and
d− 2. Since y ∈ supp(Q), dim(Qy) = d− 1 and Qy is an incomplete cube for (Cy, Dy). Let
σ′ = σ \ {y}. It remains to show that sy|σ′ /∈ Dy|σ′. Indeed, otherwise both extensions of sy
in σ, namely s, s∆{y}, are in D|σ which contradicts that s = s(Q). C

Next we prove that each concept of C\D is the source of a unique incomplete cube. Assume
the contrary and let (C,D) be a counterexample minimizing the size of U . First, if a concept
c ∈ C \D is the source of two incomplete cubes Q1, Q2, then dom(C) = supp(Q1) ·∪supp(Q2).
Indeed, let σ1 = supp(Q1) and σ2 = supp(Q2). By Claim 12(i) and minimality of (C,D),
dom(C) = σ1 ∪ σ2. By Claim 12(ii) and minimality of (C,D), σ1 ∩ σ2 = ∅. Indeed, if there
exists x in σ1∩σ2, cx is the source of the incomplete cubes Qx1 and Qx2 for (Cx, Dx), contrary
to minimality of (C,D).

Next we assert that any c ∈ C \D is the source of at most 2 incomplete cubes. Indeed,
let c be the source of incomplete cubes Q1, Q2, Q3. Then dom(C) = supp(Q1) ·∪ supp(Q2),
i.e., supp(Q2) = dom(C) \ supp(Q1). For similar reasons, supp(Q3) = dom(C) \ supp(Q1) =
supp(Q2). Thus, by Corollary 3, Q2 = Q3.

B Claim 13. Let c′, c′′ ∈ C \D be neighbors and let c′∆c′′ = {x}. Then, c′ is the source of
2 incomplete cubes if and only if c′′ is the source of 0 incomplete cubes. Consequently, every
connected component in G(C \D) either contains only concepts c with |s−1(c)| ∈ {0, 2}, or
only concepts c with |s−1(c)| = 1.
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Proof. By minimality of (C,D), (c′)x = (c′′)x is the source of a unique incomplete cube
for (Cx, Dx) and c′x = c′′x is the source of a unique incomplete cube for (Cx, Dx). Let
Q1 be the incomplete cube for (C,D) such that (c′)x is the source of Qx1 . Let Q2 be the
incomplete cube for (C,D) such that c′x is the source of (Q2)x. By Claim 12, items (i) and
(ii), both s(Q1), s(Q2) are in {c′, c′′}. Consequently, c′ is the source of 2 incomplete cubes
(Q1 and Q2) if and only if c′′ is the source of 0 incomplete cubes. C

Pick c ∈ C \D that is the source of two incomplete cubes for (C,D) and an incomplete
cube Q such that c = s(Q). Let σ = supp(Q), x ∈ σ, and σ′ = σ \ {x}. The concept c
belongs to a unique σ′-panel P . Let L = (P0 = P (σ′), P1, . . . , Pm−1, Pm = P ) be the unique
gallery between the root P (σ′) of the tree Cσ and P . For i = 1, . . . ,m, denote the chamber
Pi−1 ∪ Pi by Qi. Since Pi ∩D and Qi ∩D are ample for i ≥ 0, and Pi is not contained in D
for i > 0, it follows that the complements Pi \D and Qi \D are nonempty ample classes.
Hence Pi \D and Qi \D induce nonempty connected subgraphs of G(C \D). Therefore, it
follows that c and each concept c′ ∈ Qi \D are connected in G(C \D) by a path for i > 0,
and by Claim 13 it follows that

For every i > 0, each c′ ∈ Qi \D is the source of either 0 or 2 incomplete cubes. (5.1)

Consider the chamber Q1 = P0 ∪ P1 and its source s = s(Q1). By the definition of the
source, necessarily s ∈ P1 and s /∈ D. Therefore, Equation (5.1) implies that there must exist
another cube Q′ such that s = s(Q′). Let s′ be the neighbor of s in P0 = P (σ′); note that s′ ∈
D. Since supp(Q1)∩ supp(Q′) = ∅, it follows that s| supp(Q′) = s′| supp(Q′) ∈ D| supp(Q′),
contradicting that s = s(Q′). This establishes the first assertion of Proposition 11.

We prove now that the map r defined in Proposition 11 is a representation map for C.
It is easy to verify that it is a bijection between C and X(C), so it remain to establish the
non-clashing property: c|(r(c) ∪ r(c′)) 6= c′|(r(c) ∪ r(c′)) for all distinct pairs c, c′ ∈ C. This
holds when c, c′ ∈ D because r′ is a representation map. Next, if c ∈ C \ D and c′ ∈ D,
this holds because c|r(c) /∈ D|r(c) by the properties of s. Thus, it remains to show that
every distinct c, c′ ∈ C \D satisfy c|(supp(Q) ∪ supp(Q′)) 6= c′|(supp(Q) ∪ supp(Q′)), where
Q = s−1(c), Q′ = s−1(c′). Assume towards contradiction that this does not hold and consider
a counterexample with minimal domain size |U |. By minimality, supp(Q′) ∪ supp(Q) = U

(or else (Cx, Dx), for some x /∈ supp(Q′) ∪ supp(Q) would be a smaller counterexample).
Therefore, since c, c′ are distinct, there must be x ∈ U = supp(Q′)∪supp(Q) such that c(x) 6=
c′(x), which is a contradiction. This ends the proof of Proposition 11. J

6 Representation Maps for Ample Classes

In this section, we provide combinatorial and geometric characterizations of representation
maps of ample classes (which lead to optimal unlabeled compression schemes).

I Theorem 14. For an ample class C and a map r : C → X(C), (i)-(iii) are equivalent:
(i) r is a representation map;
(ii) c′|r(c′)∆r(c′′) 6= c′′|r(c′)∆r(c′′) for all c′, c′′ ∈ C, c′ 6= c′′;
(iii) r is a bijection and for every realizable sample s of C, there is a unique c ∈ C that is

consistent with s and r(c) ⊆ dom(s).

This theorem implies that for any representation map r : C → X(C) and any x-edge cc′,
r(c)∆r(c′) = {x}. Hence, r defines an orientation or of G(C): an x-edge cc′ is oriented from
c to c′ iff x ∈ r(c) \ r(c′). Moreover, as a corollary of Theorem 14, we can show that:
(C1) for any c ∈ C, all outgoing neighbors of c belong to a cube of C;
(C2) or is a USO on each cube of C.
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An orientation o of the edges of G(C) is a unique sink orientation (USO) if o satisfies
(C1) and (C2). The out-map ro of an orientation o associates to each c ∈ C the coordinate
set of the edges outgoing from c. We continue with a characterization of representation maps
of ample classes as out-maps of USOs, extending a similar result of Szabó and Welzl [31] for
cubes. This characterization is “local-to-global”, since (C1) and (C2) are conditions on the
stars St(c) of all concepts c ∈ C (St(c) is the set of all faces of the cubes containing c).

I Theorem 15. For an ample class C and a map r : C → 2U , (i)-(iii) are equivalent:
(i) r is a representation map;
(ii) r is the out-map of a USO;
(iii) r(c) ∈ X(C) for any c ∈ C and or satisfies (C2).

Proof. The implication (i)⇒(ii) is a consequence of Theorem 14. Now, we prove (ii)⇒(i).
Clearly, property (C1) implies that r(c) ∈ X(C) for any c ∈ C, whence r is a map from
C to X(C). Let C be an ample class of smallest size admitting a non-representation
map r : C → X(C) satisfying (C1) and (C2). Hence there exist u0, v0 ∈ C such that
u0|(r(u0)∆r(v0)) = v0|(r(u0)∆r(v0)), i.e., (u0∆v0) ∩ (r(u0)∆r(v0)) = ∅; (u0, v0) is called a
clashing pair.

B Claim 16. If (u0, v0) is a clashing pair, then C = C ∩B(u0, v0) and r(u0) = r(v0) = ∅.

Proof. Since C ∩B(u0, v0) is ample and (u0∆v0) ∩ (r(u0)∆r(v0)) = ∅, (u0, v0) is a clashing
pair for C∩B(u0, v0) and the restriction rB of r to supp(B(u0, v0)). Since rB and C∩B(u0, v0)
satisfy (C1) and (C2), by minimality of C, C = C ∩B(u0, v0). Moreover, if r(u0) 6= r(v0),
then there is x ∈ r(u0)∆r(v0) and x ∈ u0∆v0, contradicting that (u0, v0) is a clashing pair.

Suppose r(u0) 6= ∅ and pick x ∈ r(u0) = r(v0). Consider the carrier Nx(C) of Cx. Note
that r(u0) ⊆ supp(Nx(C)). Indeed, let y ∈ r(u0). By (C1), u0 belongs to an {x, y}-square of
C, whence y ∈ supp(Nx(C)). Analogously, r(v0) ⊆ supp(Nx(C)), thus (u0, v0) is a clashing
pair for Nx(C) and the restriction of r to Nx(C). Nx(C) is ample as the product of Cx by
an x-edge. By minimality of C, C = Nx(C). Define rx : Cx 7→ X(Cx) by

rx(c) = r(c) \ {x} if x ∈ r(c),
rx(c) = r(cx) \ {x} otherwise.

Consequently, for an x-edge of C between c and cx, rx(c) is the label of the origin of this edge
minus x; we call rx the x-out-map of r. We assert that rx satisfies (C1) and (C2). Condition
(C1) is trivial because it holds for cubes of C. To establish condition (C2), suppose that
there exists a cube B′ of Cx and u′, v′ ∈ B′ such that rx(u′)∩ supp(B′) = rx(v′)∩ supp(B′).
The cube B := B′ × {x} is included in C since B′ is a cube of Cx. Then among the
four pairs (u′, v′), (u′, v′x), (u′x, v′), (u′x, v′x) of B one can select a pair (u, v) such that
r(u) = rx(u′) ∪ {x} = rx(v′) ∪ {x} = r(v), a contradiction with condition (C2) for C and r.
This shows that rx satisfies (C1) and (C2). Recall that x ∈ r(u0) = r(v0), suppose wlog that
x ∈ v0\u0, and let u′0 = u0 and v′0 = v0\{x}. Then rx(u′0) = r(u0)\{x} = r(v0)\{x} = rx(v′0),
and consequently (u′0, v′0) is a clashing pair for the restriction of r on Cx ∩B(u′0, v′0). Since
Cx ∩B(u′0, v′0) is ample and smaller than C, this contradicts the minimality of C. C

B Claim 17. C is a cube minus a vertex.

Proof. By (C2), C is not a cube. If C is not a cube minus a vertex, since the complement
C∗ = 2U \ C is also ample (thus G(C∗) is connected), G(C∗) contains an x-edge ww′ with
x /∈ w and x ∈ w′. Consider Cx and define the map rx : Cx 7→ X(Cx) by

rx(c) = r(c) if c ∈ C and x /∈ r(c),
rx(c) = r(cx) otherwise.
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Hence rx(c \ {x}) = r(c) for each c ∈ C with x /∈ r(c). We call rx the x-in-map of r; rx
satisfies (C1), because r satisfies (C1). Suppose that rx violates (C2). Then there exists a
cube B′ of Cx and u′, v′ ∈ B′ such that (u′∆v′)∩(rx(u′)∆rx(v′)) = ∅. Let u ∈ {u′, u′x} such
that r(u) = r(u′) and let v ∈ {v′, v′x} such that r(v) = r(v′). The restriction C ′x of the ample
class C ′ := C ∩B(u, v) is the cube B′. Since w,w′ /∈ C and ww′ is an x-edge, w /∈ C ′x. Thus
there exists y ∈ supp(C) such that C ′ and the edge ww′ of C∗ belong to different y-half-spaces
C− = {c ∈ C : y /∈ c} and C+ = {c ∈ C : y ∈ c} of the cube 2U . Since y ∈ supp(C), the
half-space containing ww′ also contains a concept of C. Hence, C ′ is a proper ample subset
of C. Since u ⊆ u′ ∪ {x}, v ⊆ v′ ∪ {x}, x /∈ r(u) = rx(u′), x /∈ r(v) = rx(v′), we deduce that
u ∩ (r(u)∆r(v)) = u′ ∩ (rx(u′)∆rx(v′)) and v′ ∩ (rx(u′)∆rx(v′)) = v ∩ (r(u)∆r(v)). Since
(u′∆v′)∩ (rx(u′)∆rx(v′)) = ∅, (u, v) is a clashing pair for the restriction of r on C ′, contrary
to the minimality of C. Hence by minimality of C, rx is a representation map for Cx.

Consider a clashing pair (u0, v0) for C and r, and let u′0 = u0 \ {x} and v′0 = v0 \ {x}.
Observe that rx(u′0) = r(u0) = r(v0) = rx(v′0) = ∅. Since rx is a representation map for Cx,
necessarily u′0 = v′0. Consequently, u0∆v0 = {x}, i.e., u0v0 is an x-edge of G(C). This is
impossible since C satisfies (C2). Therefore, C is necessarily a cube minus a vertex. C

Now, we complete the proof of the implication (ii)⇒(i). By Claim 16, r(u0) = r(v0) = ∅.
By condition (C1), r(c) 6= U for any c ∈ C. Thus there exists a set s ∈ X(C) = 2U \ {U,∅}
such that s 6= r(c) for any c ∈ C. Every s-cube B of C contains a source p(B) for orB

(i.e.,
s ⊆ r(p(B))). For each s-cube B of C, let t(B) = r(p(B)) \ s. Notice that ∅ ( t(B) ( U \ s
since s ( r(p(B)) ( U . Consequently, there are 2|U |−|s| − 2 choices for t(B) and since C
is a cube minus one vertex by Claim 17, there are 2|U |−|s| − 1 s-cubes in C. Consequently,
there exist two s-cubes B,B′ such that t(B) = t(B′). Thus ∅ ( s ( r(p(B)) = r(p(B′)) and
(p(B), p(B′)) is a clashing pair for C and r, contradicting Claim 16.

The implication (ii)⇒(iii) is trivial. To prove (iii)⇒(ii), we show by induction on |U |
that a map r : C → X(C) satisfying (C2) also satisfies (C1). For any x ∈ U , let rx denote
the x-out-map defined in Claim 16. Recall that if cc′ is an x-edge directed from c to c′,
then x ∈ r(c) and rx maps cx = (c′)x ∈ Cx to r(c) \ {x} ∈ X(Cx). Thus rx maps Cx to
X(Cx). Moreover, each cube Bx of Cx is contained in a unique cube B of C such that
supp(B) = supp(Bx) ∪ {x}. If there exist cx1 , cx2 ∈ Bx such that rx(cx1) = r(cx2), then there
exist c1, c2 ∈ B such that r(c1) = rx(cx1) ∪ {x} = rx(cx2) ∪ {x} = r(c2), contradicting (C2).
Consequently, orx

satisfies (C2). By induction hypothesis, orx
satisfies (C1) for any x ∈ U .

For any concept c ∈ C, pick x ∈ r(c). Since rx satisfies (C1), cx belongs to a σ′-cube
in Cx with σ′ = rx(cx) = r(c) \ {x}. This implies that c belongs to a σ-cube in C with
σ = σ′ ∪ {x} = r(c). Thus or satisfies (C1), concluding the proof of Theorem 15. J

We conclude with some remarks regarding Theorems 14 and 15. First, corner peelings
correspond exactly to acyclic USOs. Second, given a representation map for C one can derive
representations maps for intersections of C with cubes, reductions CY , and restrictions CY .
Third, there exist a bijection r′ : C → X(C) satisfying (C1) and an injection r′′ : C → 2U
satisfying (C2). Nevertheless, we were not able to find a map satisfying (C1) and (C2). It is
surprising that, while each d-cube has at least dΩ(2d) USOs [17], it is so difficult to find a
single USO for ample classes. One can try to find such maps by extending the approach for
maximum classes: given ample classes C and D with D ⊂ C, a representation map r for C
is called D-entering if all edges cd with c ∈ C \D and d ∈ D are directed by or from c to d.
The representation map defined in Proposition 11 is D-entering. Given x ∈ dom(C), suppose
that rx is a Cx-entering representation map for Cx. We can extend the orientation orx to an
orientation o of G(C) as follows. Each x-edge cc′ of G(C) is directed arbitrarily, while each
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other edge cc′ is directed as the edge cxc′x is directed by orx . Since orx satisfies (C1), (C2)
and rx is Cx-entering, o also satisfies (C1), (C2), thus the map ro is a representation map
for C. So, ample classes would admit representation maps, if for any ample classes D ⊆ C,
any representation map r′ of D extends to a D-entering representation map r of C.
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