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Abstract
We consider the problem of locating a signal whose frequencies are “off grid” and clustered in a
narrow band. Given noisy sample access to a function g(t) with Fourier spectrum in a narrow range
[f0−∆, f0 + ∆], how accurately is it possible to identify f0? We present generic conditions on g that
allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions
for k-Fourier-sparse signals that imply recovery of f0 to within ∆ + Õ(k3) from samples on [−1, 1].
This improves upon the best previous bound of O

(
∆ + Õ(k5)

)1.5. We also show that no algorithm
can do better than ∆ + Õ(k2).

In the process we provide a new Õ(k3) bound on the ratio between the maximum and average
value of continuous k-Fourier-sparse signals, which has independent application.
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1 Introduction

A natural question, dating at least to the work of Prony in 1795, is to estimate a signal from
samples, assuming the signal has a k-sparse Fourier representation, i.e., that the signal is
a sum of k complex exponentials: g(t) =

∑k
j=1 vje

2πifjt for some set of frequencies fj and
coefficients vj .

If the frequencies are located on a discrete grid (giving a sparse discrete Fourier transform),
then a long line of work has studied efficient algorithms for recovering the signal (e.g.,
[11, 7, 1, 8, 9, 10]). If the frequencies are not on a grid, then Prony’s method from 1795 [14]
or matrix pencil [3] can still identify them in the absence of noise. With noise, however, one
cannot robustly recover frequencies that are too close together: if one listens to a signal
for the interval [−T, T ] then any two frequencies θ and θ + ε/T will be O(ε)-close to each
other, and so cannot be distinguished with noise. As shown in [12], this nonrobustness grows
exponentially in k. On the other hand, [12] also showed that recovery with polynomially
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36:2 Estimating the Frequency of a Clustered Signal

small noise is possible if all the frequencies have separation 1/2T , and [13] showed that
a constant fraction of noise is tolerable with separation logO(1)(FT )/T , where F is the
bandlimit of the signal.

So what is possible for arbitrary Fourier-sparse signals, without any assumption of
frequency separation? One cannot hope to identify the frequencies exactly, but one can still
estimate the signal itself. If two frequencies are similar enough to be indistinguishable over
the sampled interval, we do not need to distinguish them. In [4], this led to an algorithm for
an arbitrary k-Fourier-sparse signal that used poly(k, log(FT )) samples to estimate it with
only a constant factor increase in the noise. However, this polynomial is fairly poor.

Since prior work could handle the case of well-separated frequencies, a key challenge in [4]
is the setting with all the frequencies in a narrow cluster. Formally, consider the following
subproblem: if all the frequencies fi of the signal lie in a narrow band [f0 −∆, f0 + ∆], how
accurately can we estimate f0? Note that while we would like an efficient algorithm that
takes a small number of samples, the key question is information theoretic. And we can ask
this question more generally: if the signal is not k-sparse, but still has all its frequencies in a
narrow band, can we locate that band?

I Question 1. Let g(t) be a signal with Fourier transform supported on [f0−∆, f0 + ∆], for
some f0 ∈ [−F, F ]. Suppose that we can sample from y(t) = g(t) + η(t) at points in [−T, T ],
where η(t) could be any `2 bounded noise on [−T, T ] with

E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε E

t∈[−T,T ]

[
|g(t)|2

]
for a small constant ε. Under what conditions on g can we estimate f0, and how accurately?

One might expect to be able to estimate f0 to ±(∆ +O( 1
T )) for all functions g; after all,

g is just a combination of individual frequencies, each of which points to some frequency in
the right range, and each individual frequency in isolation can be estimated to within ±O( 1

T )
in the presence of noise. Unfortunately, this intuition is false.

To see this, consider the family of k-sparse Fourier functions with fj = εj, i.e.,

span(e2πi(jε)t | j ∈ [k]).

By sending ε→ 0 and taking a Taylor expansion, this family can get arbitrarily close to any
degree k − 1 polynomial, on any interval [−T ′, T ′]. Thus, to solve the question, one would
also need to solve it when g(t) is a polynomial even for arbitrarily small ∆.

There are two ways in which g(t) being a degree d polynomial can lead to trouble. The first
is that g(t) could itself be a Taylor expansion of eπift. If d & fT , this Taylor approximation
will be quite accurate on [−T, T ]; with the noise η, the observed signal can equal eπift. Thus
the algorithm has to output f , which can be Θ(d/T ) far from the “true” answer f0 = 0.

The second way in which g(t) can lead to trouble is by removing most of the signal
energy. If g(t) is the (slightly shifted) Chebyshev polynomial g(t) = Td

(
t/T + O( log2 d

d2 )
)
,

then |g(t)| ≤ 1 for t ≤
(
1−O( log2 d

d2 )
)
T , while g(t) ≥ d for t ≥

(
1−O( log2 d

d2 )
)
T . That is to

say, the majority of the `2 energy of g can lie in the final O( log2 d
d2 ) fraction of the interval.

In such a case, a small constant noise level η can make samples outside that T · Õ(1/d2) size
region equal to zero, and hence completely uninformative; and samples in that region still
have to tolerate noise. This leads to an “effective” interval size of T ′ = T · Õ( 1

d2 ), leading to
accuracy O(1/T ′) = Õ(d2)/T .
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Our main result is that, in a sense, these two types of difficulties are the only ones that
arise. We can measure the second type of difficulty by looking at how much larger the
maximum value of g is than its average:

R :=
supt∈[−T,T ] |g(t)|2

Et∈[−T,T ] |g(t)|2 .

We can measure the former by observing that while a polynomial may approximate a complex
exponential on a bounded region, as t→∞ the polynomial will blow up. In particular, we
take the S such that

|g(t)|2 ≤ poly(R) · E
t∈[−T,T ]

[
|g(t)|2

]
· | t
T
|S

for all |t| ≥ T . We show that if R and S are bounded, one can estimate f0 to within
∆ + Õ(R + S)/T , which is almost tight from the above discussion of polynomials. Moreover,
the time and number of samples required are fairly efficient:

I Theorem 2. Given any T > 0, F > 0,∆ > 0, R, and S > 0, let g(t) be a signal with the
following properties:
1. supp(ĝ) ⊆ [f0 −∆, f0 + ∆] where f0 ∈ [−F, F ].
2. sup

t∈[−T,T ]

[
|g(t)|2

]
≤ R · E

t∈[−T,T ]

[
|g(t)|2

]
.

3. |g(t)|2 grows as at most poly(R) · E
t∈[−T,T ]

[
|g(t)|2

]
· | tT |

S for t /∈ [−T, T ].

Let y(t) = g(t) + η(t) be the observable signal on [−T, T ], where E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε ·

E
t∈[−T,T ]

[
|g(t)|2

]
for a sufficiently small constant ε. For ∆′ = ∆ + Õ(R+S)

T and any δ > 0,

there exists an efficient algorithm that takes O(R log F
∆′·δ ) samples from y(t) and outputs f̃

satisfying |f0 − f̃ | ≤ O(∆′) with probability at least 1− δ.

Application to sparse Fourier transforms. Specializing to k-Fourier-sparse signals, we give
bounds on R and S for this family. Since (as described above) this family can approximate
degree-(k−1) polynomials, we know that R & k2 and S & k; we show that R . k3 log2 k and
S . k2 log k. Thus, whenever R is between k2 and Õ(k3), we can identify k-Fourier-sparse
signals to within ∆ + Õ(R)/T . This is an improvement over the results in [4] in several ways.

Formally, for a given sparsity level k, we consider signals in

F :=

g(t) =
k∑
j=1

vje
2πifjt

∣∣∣∣fj ∈ [−F, F ]

 .

I Theorem 3. For any k and T ,

R := sup
g∈F

sup
x∈[−T,T ]

|g(x)|2

E
x∈[−T,T ]

[|g(x)|2] = O(k3 log2 k). (1)

It was previously known that R . k4 log3 k [4], and this fact was used in [2]. (Thus,
our improved bound on R immediately implies an improvement in Theorem 8 of [2], from
s5
µ,ε log3 sµ,ε to s4

µ,ε log2 sµ,ε.)
Next we bound the growth S = Õ(k2) for any |t| ≥ T .

ICALP 2019



36:4 Estimating the Frequency of a Clustered Signal

I Theorem 4. There exists S = O(k2 log k) such that for any |t| > T and g(t) =
∑k
j=1 vj ·

e2πifjt, |g(t)|2 ≤ poly(k) · E
x∈[−T,T ]

[|g(x)|2] · | tT |
S.

This is analogous to Theorem 5.5 of [4], which proves a bound of (kt)k rather than tÕ(k2).
These bounds are incomparable, but the tÕ(k2) bound is actually more useful for this problem:
what really matters is showing that g(t) is not too large just outside the interval. Theorem 4
gives the “correct” polynomial dependence at t = (1 + 1/k2)T .

We can now apply Theorem 2 to get an efficient algorithm to recover the center of a
cluster of k frequencies within accuracy Õ(R).

I Theorem 5. Given F, T, and k, let R be the ratio between the maximum and average value
of continuous k-Fourier-sparse signals defined in (1). Given ∆, let g(t) be a k-Fourier-sparse
signal centered around f0: g(t) =

∑
i∈[k] vi ·e2πifit where each fi ∈ [f0−∆, f0 +∆] and y(t) =

g(t) + η(t) be the observable signal on [−T, T ], where E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε · E

t∈[−T,T ]

[
|g(t)|2

]
for a sufficiently small constant ε.

For any δ > 0, there exist ∆′ = ∆ + Õ(R)
T and an efficient algorithm that takes

O(k log2 k log F
∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with proba-

bility at least 1− δ.

Note that the sample complexity here is Õ(k) not Õ(R). This is because, based on the
structure of the problem, we can use a nonuniform sampling procedure that performs better.
Otherwise this theorem is just Theorem 2 applied to the R and S from Theorems 3 and 4.

Theorem 5 is a direct improvement on Theorem 7.5 of [4], which for T = 1 could estimate
to within O

(
∆ + Õ(k5)

)1.5
accuracy and used poly(k) samples. In particular, in addition

to improving the additive poly(k) term, our result avoids a multiplicative increase in the
bandwidth ∆ of g.

The main technical lemma in proving Theorems 2 and 5 is a filter function H with a
compact supported Fourier transform Ĥ that simulates a box function on [−T, T ] for any g
satisfying the conditions in Theorem 2.

I Lemma 6. Given any T , S, and R, there exists a filter function H with
∣∣supp(Ĥ)

∣∣ ≤
Õ(R+S)

T such that for any g(t) satisfying the second and third conditions in Theorem 2,
1. H is close to a box function on [−T, T ]:

∫ T
−T |g(t) ·H(t)|2dt ≥ 0.9

∫ T
−T |g(t)|2dt.

2. The tail of H(t) · g(t) is small:
∫ T
−T |g(t) ·H(t)|2dt ≥ 0.95

∫∞
−∞ |g(t) ·H(t)|2dt.

Organization. We introduce some notation and tools in Section 2. Then we provide a
technical overview in Section 3. We show our filter function and prove Lemma 6 in Section 4.
Next we present the algorithm about frequency estimation of Theorem 2 in Section 5. Finally
we prove the results about sparse Fourier transform – Theorem 3 and Theorem 4 in Section 6.

2 Preliminaries

In the rest of this work, we fix the observation interval to be [−1, 1] and define

‖g‖2 =
(

E
x∼[−1,1]

|g(x)|2
)1/2

, (2)

because we could rescale [−T, T ] to [−1, 1] and [−F, F ] to [−FT, FT ].
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We first review several facts about the Fourier transform. The Fourier transform ĝ(f) of
an integrable function g : R→ C is

ĝ(f) =
∫ +∞

−∞
g(t)e−2πiftdt for any real f.

We use g · h to denote the pointwise dot product g(t) · h(t) and gk to denote g(t) · · · g(t)︸ ︷︷ ︸
k

.

Similarly, we use g∗h to denote the convolution of g and h:
∫ +∞
−∞ g(x)·h(t−x)dx. In this work,

we always set g∗k as the convolution g(t) ∗ · · · ∗ g(t)︸ ︷︷ ︸
k

. Notice that supp(g·h) = supp(g)∩supp(h)

and supp(g ∗ h) = supp(g) + supp(h).
We define the box function and its Fourier transform sinc function as follows. Given

a width s > 0, the box function rects(t) = 1/s iff |t| ≤ s/2; and its Fourier transform is
sinc(sf) = sin(πfs)

πfs for any f .
We state the Chernoff bound for random sampling [6].

I Lemma 7. Let X1, X2, · · · , Xn be independent random variables in [0, R] with expectation
1. For any ε < 1/2 and n & R

ε2 , X =
∑n

i=1
Xi

n with expectation 1 satisfies

Pr[|X − 1| ≥ ε] ≤ 2 exp(−ε
2

3 ·
n

R
).

3 Proof Overview

We first outline the proofs of Lemma 6 and Theorem 2. Then we show the proof sketch of
R = Õ(k3) and S = Õ(k2) of k-Fourier-sparse signals.

The filter functions (H, Ĥ) in Lemma 6. Ideally, to satisfy the two claims in Lemma 6,
we could set H(t) to be the box function 2 rect2(t) on [−1, 1]. However, by the uncertainty
principle, it is impossible to make its Fourier transform Ĥ compact using such an H(t).
Hence our construction of (H, Ĥ) is in the inverse direction: we build Ĥ(f) by box functions
and H(t) by the Fourier transform of box functions – the sinc function. In the rest of this
discussion, we focus on using the sinc function to prove Lemma 6 given the properties of g in
Theorem 2.

We first notice that any H with the following two properties is effective in Lemma 6 for
g satisfying |g(t)|2 ≤ R · ‖g‖22 for any |t| ≤ 1 and |g(t)|2 ≤ poly(R)‖g‖22 · |t|S for |t| > 1:
1. H(t) = 1± 0.01 for any t ∈ [−1 + 1

C·R , 1−
1

C·R ] of a large constant C. This shows∫ 1

−1
|H(t) · g(t)|2dt ≥ 0.992

∫ 1− 1
C·R

−1+ 1
C·R

|g(t)|2dt.

Because |g(t)|2 ≤ R · ‖g‖22 for any t ∈ [−1, 1] \ [−1 + 1
C·R , 1−

1
C·R ], the constant on the

R.H.S. is at least 0.992 · (1− 1
C ) ≥ 0.9, which implies the first claim of Lemma 6.

2. H(t) declines to 1
poly(R)·t2S for any |t| > 1. This shows∫ ∞

1
|H(t) · g(t)|2dt ≤ 0.01

∫ 1

−1
|g(t)|2dt,

which implies the second claim.

ICALP 2019



36:6 Estimating the Frequency of a Clustered Signal

For ease of exposition, we start with S = 0. We plan to design a filter H0(t) with compact
Ĥ0 dropping from 0.99 at t = 1− 1

C·R to 1
poly(R) at t = 1 in a small range 1

CR using the sinc
function. To apply the sinc function, we notice that

sinc(CR · t)O(logR) =
(

sin(πCR · t)
πCR · t

)O(logR)

decays from 1 at t = 0 to 1/poly(R) at t = 1
C·R , which matches the dropping of H0(t) from

t = 1− 1
C·R to t = 1.

Then, to make H(t) ≈ 1 for any |t| ≤ 1− 1
C·R , let us consider a convolution of rect1(t) and

sinc(CR · t)O(logR). Because most of the mass of the latter is in [− 1
CR ,

1
CR ], this convolution

keeps almost the same value in [− 1
2 + 1

CR ,
1
2−

1
CR ] and drops down to 1/poly(R) at t = 1

2 + 1
CR .

At the same time, it will keep the compactness of Ĥ0 since it corresponds to the dot product
on the Fourier domain. By normalizing and scaling, this gives the desired (H0, Ĥ0) for S = 0.

Next we describe the construction of S > 0. The high level idea is to consider the decays
of H(t) in log2 S +O(1) segments rather than one segment of S = 0:

(1− 1
CR

, 1], (1, 1 + 1
S

], (1 + 1
S
, 1 + 2

S
], . . . , (1 + 2j

S
, 1 + 2j+1

S
], . . . , (1 + S/2

S
, 2], (2,+∞).

For each segment, we provide a power of sinc functions matching its decay in H(t) like
the construction of H0 on (1− 1

CR , 1]. The final construction is the convolution of the dot
product of all sinc powers and a box function, which appears in Section 4.

The Algorithm of Theorem 2. Now we show how to estimate f0 given the observable
signal y = g + η where supp(ĝ) ⊆ [f0 −∆, f0 + ∆] and ‖η‖22 ≤ ε‖g‖22 (with `2 norm taken
over [−T, T ] defined in (2)). We instead consider yH(t) = y(t) ·H(t) with the filter function
(H, Ĥ) from Lemma 6 and the corresponding dot products gH = g ·H and ηH = η ·H. The
starting point is that for a sufficiently small β, we expect

yH(t+ β) ≈ e2πif0β · yH(t)

because yH has Fourier spectrum concentrated around f0. This does not hold for all t, but
it does hold on average:∫ 1

−1
|yH(t+ β)− e2πif0β · yH(t)|2dt . ε ·

∫ 1

−1
|yH(t)|2dt. (3)

This is because we can use Parseval’s identity to replace these integrals by an integral over
Fourier domain – Parseval’s identity would apply if the integrals were from −∞ to ∞, but
because of the filter function H, relatively little mass in yH lies outside [−1, 1]. Then, the
Fourier transform of the term inside the left square is e2πifβ ·ŷH(f)−e2πif0β ·ŷH(f). Note that
ŷH = ĝH + η̂H has most of its `2 mass in supp(gH) ⊆ [f0−∆′, f0 +∆′] for ∆′ = ∆+ |supp(Ĥ)|,
and every such frequency shrinks in the left by a factor |e2πifβ − e2πif0β | = O(β∆′). Thus,
for β � 1/∆′, (3) holds.

To learn f0 through e2πif0β , we design a sampling procedure to output α satisfying

|yH(α+ β)− e2πif0βyH(α)| ≤ 0.3 · yH(α) with probability more than half .

Even though the above discussion shows the left hand side is smaller than the R.H.S.
on average, a uniformly random α ∼ [−1, 1] may not satisfy it with good probability:
|yH(α)| ≥ ‖yH‖2 may be only true for 1/R fraction of α ∈ [−1, 1], while the corruption by
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adversarial noise η has ‖η‖22 & ε‖yH‖22 for a constant ε� 1/R. At the same time, even for
many points α1, . . . , αm where some of them satisfy the above inequality, it is infeasible to
verify such an αi given f0 is unknown. We provide a solution by adopting the importance
sampling: for m = O(R) random samples α1, . . . , αm ∈ [−1, 1], we output α with probability
proportional to the weight |yH(αi)|2.

We prove the correctness of this sampling procedure in Lemma 11 in Section 5.
Finally, learning e2πif0β is not enough to learn f0: because of the noise, we only learn

e2πif0β to within a constant ε, which gives f0 to within ±O(ε/β); and because of the different
branches of the complex logarithm, this is only up to integer multiples of 1/β. Therefore to
fully learn f0, we repeat the sampling procedure at logarithmically many different scales of
β, from β = 1/2F to β = Θ(1)

∆′ .

k-Fourier-sparse signals. Finally, we show R = Õ(k3) and S = Õ(k2) such that for any
g(t) =

∑k
j=1 vj · e2πifjt – not necessarily one with the fj clustered together –

sup
t∈[−1,1]

|g(t)|2

‖g‖22
≤ R and |g(t)|2 ≤ poly(R) · ‖g‖22 · |t|S .

We first review the previous argument of R = Õ(k4) [4]. The key point is to show for
some d = Õ(k2) that g(1) is a linear combination of g(1− θ), . . . , g(1− d · θ) using bounded
integer coefficients c1, . . . , cd = O(1) for any θ ≤ 2

d . Then

g(1) =
∑
j∈[d]

cj · g(1− j · θ) implies |g(1)|2 ≤ (
∑
j∈[d]

|cj |2) · (
∑
j∈[d]

|g(1− j · θ)|2). (4)

If we think of g(1) as the supremum and g(1− j · θ) as the average ‖g‖2 – which we can
formally do up to logarithmic factors by averaging over θ – this shows |g(1)|2 ≤ Õ(d2)‖g‖22.
One natural idea to improve it is to use a smaller value d and a shorter linear combination
[5]. However, d = Ω̃(k2) for such a combination when g is approximately the degree k − 1
Chebyshev polynomial. In this work, we use a geometric sequence to control cj such that∑
j |cj |2 = O(d/k) instead of O(d), which provides an improvement of a factor Õ(k) on R.
Then we bound S = Õ(k2) for g(t) at |t| > 1. The intuition is that given (4) holds for any

g(t) in terms of g(t−θ), . . . , g(t−d·θ) with θ = 2
d , it implies |g(t)|2 ≤ poly(k)·‖g‖22 ·e(t−1)·O(d)

for t > 1. Combining this with an alternate bound |g(t)|2 ≤ poly(k) · ‖g‖22 · (k · t)O(k) for
t > 1 + 1/k, it completes the proof of Theorem 4 about S.

Finally we notice that we could improve the sample complexity in Theorem 5 to Õ(k) log F
∆′

using a biased distribution [5] to generate α. These results about k-Fourier-sparse signals
appear in Section 6.

4 Our Filter Function

The main result is an explicit filter function H with compact support Ĥ that is close to the
box function on [−1, 1] for any g satisfying the conditions in Theorem 2.

We show our filter function as follows.

I Definition 8. Given R, the growth rate S and an even constant C, we define the filter
function

H(t) = s0 ·
(

sinc(CR · t)C log R · sinc
(
C · S · t

)C · sinc
(C · S

2 · t
)2C · · · sinc

(
C · t

)C·S
)
∗ rect2(t)

ICALP 2019



36:8 Estimating the Frequency of a Clustered Signal

where s0 ∈ R+ is a parameter to normalize H(0) = 1. On the other hand, its Fourier
transform is

Ĥ(f) = s0 ·
(

rectCR(f)∗C logR ∗ rectC·S(f)∗C ∗ rectC·S
2

(f)∗2C ∗ · · · ∗ rectC(f)∗CS
)
·sinc(2t),

whose support size is O(CR · C logR+ CS · C + · · ·+ C · C · S) = O(R logR+ S logS).

We prove Lemma 6 using H(αx) with a large constant C and a scale parameter α =
1
2 + 1.2

πCR . For convenience, we state the full version of Lemma 6 for T = 1 as follows.

I Theorem 9. Let R,S > 0, let C be a large even constant, and define α = ( 1
2 + 1.2

πCR ).
Consider any function g satisfying the following two conditions:
1. sup

t∈[−1,1]
|g(t)|2 ≤ R · ‖g‖22

2. And |g(t)|2 ≤ poly(R) · ‖g‖22 · |t|S for t /∈ [−1, 1],
Then the filter function H

(
αx
)
is such that H

(
αx
)
· g(x) satisfies

1.
∫ 1
−1 |g(x) ·H

(
αx
)
|2dx ≥ 0.9

∫ 1
−1 |g(x)|2dx.

2.
∫ 1
−1 |g(x) ·H

(
αx
)
|2dx ≥ 0.95

∫∞
−∞ |g(x) ·H

(
αx
)
|2dx.

3. |H(x)| ≤ 1.01 for any x.

Due to the space constraint, we defer the proof of Theorem 9 to the full version.

5 Frequency Estimation

We show the algorithm for frequency estimation and prove Theorem 2 in this section. We fix
T = 1 and use the definition ‖h‖22 = E

x∼[−1,1]
[|h(x)|2] to restate the theorem.

I Theorem 10. Given any F > 0,∆ > 0, R, and S > 0, let g(t) be a signal with the following
properties:
1. supp(ĝ) ⊆ [f0 −∆, f0 + ∆] where f0 ∈ [−F, F ].
2. sup

t∈[−1,1]

[
|g(t)|2

]
≤ R · ‖g‖22.

3. |g(t)|2 grows as at most poly(R) · ‖g‖22 · |t|S for t /∈ [−1, 1].
Let y(t) = g(t)+η(t) be the observable signal on [−1, 1], where ‖η‖22 ≤ ε·‖g‖22 for a sufficiently
small constant ε. For ∆′ = ∆ + Õ(R + S) and any δ, there exists an efficient algorithm
that takes O(R log F

∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with
probability at least 1− δ.

For convenience, we set hH(t) = h(t) ·H(αt) for any signal h(t) with the filter function
H defined in Theorem 9 such that yH(t) = y(t) ·H(αt).

Given the observation y(t) with most Fourier mass concentrated around f0, the main
technical result in this section is an estimation of e2πiβf0 through yH(α)e2πif0β ≈ yH(α+ β).

I Lemma 11. Given parameters F,R, S, and ∆, let g be a signal satisfying the three
conditions in Theorem 2 for some f0 ∈ [−F, F ] and ∆′ = ∆ +O(R logR+ S logS).

Let y(t) = g(t) + η(t) be the observable signal on [−1, 1] where the noise ‖η‖22 ≤ ε‖g‖22 for
a sufficiently small constant ε. There exist a constant γ and an algorithm such that for any
β ≤ γ

∆′ , it takes O(R) samples to output α satisfying |yH(α)e2πif0β−yH(α+β)| ≤ 0.3|yH(α)|
with probability at least 0.6.

We show our algorithm in Algorithm 1. We finish the proof of Theorem 5 here and defer
the proof of Lemma 11 to Section 5.1.
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Algorithm 1 Obtain one good α.
1: procedure ObtainOneGoodSample(R, y(t))
2: Let m = C ·R for a large constant C.
3: Take m random samples x1, · · · , xm uniform in [−1, 1].
4: Query y(xi) and compute yH(xi) = y(xi) ·H(xi) for each i.
5: Set a distribution Dm proportional to |yH(xi)|2, i.e., Dm(xi) = |yH(xi)|2∑m

j=1
|yH(xj)|2

.

6: Output α ∼ Dm.
7: end procedure

Proof of Theorem 10. From Lemma 11, yH(α+β)
yH(α) gives a good estimation of e2πif0β with

probability 0.6 for any β ≤ γ
∆′ . We use the frequency search algorithm of Lemma 7.3 in [4]

with the sampling procedure in Lemma 11. Because the algorithm in [4] uses the sampling
procedure O(log F

∆′·δ ) times to return a frequency f̃ satisfying |f̃ − f0| ≤ ∆′ with prob. at
least 1− δ, the sample complexity is O(R · log F

∆′·δ ). J

5.1 Proof of Lemma 11
For yH(x) = gH(x)+ηH(x), we have the following concentration lemma for estimation gH(x).

B Claim 12. Given any g satisfying the three conditions in Theorem 2 and any ε and δ,
there exists m = O(R log 1

δ /ε
2) such that for m random samples x1, . . . , xm ∼ [−1, 1], with

probability 1− δ,∑m
i=1 |gH(xi)|2

m
∈ [1− ε, 1 + ε] · E

x∼[−1,1]
[|gH(x)|2].

Proof. Notice that
sup

x∼[−1,1]
[|gH(x)|2]

E
x∼[−1,1]

[|gH(x)|2] ≤ 2R. From the Chernoff bound in Lemma 7, m =

O(R log 1
δ /ε

2) suffices to estimate ‖gH‖22. C

Next we consider the effect of noise ηH(xi) and yH(xi).

B Claim 13. With probability 0.9 over m random samples in [−1, 1],
∑m
i=1 |yH(xi)|2/m ≥

0.8‖g‖22.

Proof. From Theorem 9, ‖gH‖22 ≥ 0.95‖g‖22. Thus Claim 12 implies
∑m
i=1 |gH(xi)|2/m ≥

0.98 · 0.95‖g‖22 for m = O(R) with probability 0.99.
At the same time, because E[

∑m
i=1 |ηH(xi)|2/m] = ‖ηH‖22,

∑m
i=1 |ηH(xi)|2/m ≤ 14‖ηH‖22

with probability at least 1 − 1
14 from the Markov inequality. This is also less than 14 ·

1.022‖η‖22 ≤ 15ε‖g‖22 from the upper bound on H(t).
We have

1
m

m∑
i=1
|yH(xi)|2 ≥

1
m

m∑
i=1

(
|gH(xi)|2 − 2|gH(xi)| · |ηH(xi)|+ |ηH(xi)|2

)
.

By the Cauchy-Schwartz inequality, the cross term
∑m
i=1 |gH(xi)| · |ηH(xi)| ≤

(
∑m
i=1 |gH(xi)|2)1/2 · (

∑m
i=1 |ηH(xi)|2)1/2. From all discussion above,

1
m

m∑
i=1
|yH(xi)|2 ≥

(
0.93− 2

√
0.93 · 15ε

)
‖g‖22.

When ε is a small constant, it is at least 0.8 · ‖g‖22. C
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We set z(t) = yH(t) · e2πif0β − yH(t+ β) for convenience and bound it as follows.

B Claim 14. Given any small constant γ, ∆′ = ∆ + supp(H), and z(t) = yH(t) · e2πif0β −
yH(t+ β) for β ≤ γ

∆′ , ‖z‖
2
2 . (γ2 + ε)‖g‖22.

Proof. Notice that yH = gH + ηH where supp(ĝH) ∈ [f0 −∆, f0 + ∆] such that∫
f /∈[f0−∆′,f0+∆′]

|ŷ(f)|2df ≤
∫ ∞
−∞
|η̂H(f)|2df =

∫ ∞
−∞
|ηH(t)|2dt ≤ 1.022ε

∫ 1

−1
|g(t)|2dt.

We bound ‖z‖22 through∫ 1

−1
|z(t)|2dt ≤

∫ ∞
−∞
|z(t)|2dt =

∫ ∞
−∞
|ẑ(f)|2df

=
∫ f0+∆′

f0−∆′
|ẑ(f)|2df +

∫
f /∈[f0−∆′,f0+∆′]

|ẑ(f)|2df.

Therefore we write∫ f0+∆′

f0−∆′
|ẑ(f)|2df =

∫ f0+∆′

f0−∆′
|ŷH(f) · e2πif0β − ŷH(f) · e2πifβ |2df

≤
∫ f0+∆′

f0−∆′
|ŷH(f)|2 · |e2πif0β − e2πifβ |2df.

Because f ∈ [f0 −∆′, f0 + ∆′] and β ≤ γ
∆′ , |e

2πif0β − e2πifβ | ≤ 4πγ. So∫ f0+∆′

f0−∆′
|ẑ(f)|2df . γ2

∫ +∞

−∞
|ŷH(f)|2df = γ2

∫ +∞

−∞
|yH(t)|2dt . γ2(1 + 2ε)

∫ 1

−1
|g(t)|2dt.

On the other hand,∫
f /∈[f0−∆′,f0+∆′]

|ẑ(f)|2df =
∫
f /∈[f0−∆′,f0+∆′]

|ŷH(f) · e2πif0β − ŷH(f) · e2πifβ |2df

≤ 4
∫
f /∈[f0−∆′,f0+∆′]

|ŷH(f)|2df

≤ 4
∫ +∞

−∞
|η̂H(f)|2df = 4

∫ +∞

−∞
|η̂H(t)|2dt

which is less than 5ε
∫ 1
−1 |g(t)|2dt.

From all discussion above,
∫ 1
−1 |z(t)|

2dt . (γ2 + ε)
∫ 1
−1 |g(t)|2dt. C

For sufficiently small γ and ε, by Markov inequality, we have the following corollary.

I Corollary 15. For sufficiently small constants γ and ε, with probability 0.9 over m random
samples in [−1, 1],

∑m
i=1 |z(xi)|2 ≤ 0.01‖g‖22.

Finally we finish the proof of Lemma 11.

Proof of Lemma 11. We assume Claim 13 and Corollary 15 hold in this proof, i.e.,
m∑
i=1
|yH(xi)|2/m ≥ 0.8‖g‖22 and

m∑
i=1
|z(xi)|2/m ≤ 0.01‖g‖22.
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For a random sample α ∼ Dm, we bound

E
α∼Dm

[
|yH(α)e2πif0β − yH(α+ β)|2

|yH(α)|2

]
= E
α∼Dm

[
|z(α)|2

|yH(α)|2

]
=

m∑
i=1

|z(xi)|2

|yH(xi)|2
· |yH(xi)|2∑m

j=1 |yH(xj)|2
.

This is
∑m

i=1
|z(xi)|2∑m

j=1
|yH(xj)|2

≤ 0.01
0.8 . Thus with probability 0.8, |yH(α)e2πif0β−yH(α+β)|2

|yH(α)|2 is less than

0.05/0.8 ≤ 0.09. From all discussion above, |yH(α)e2πif0β−yH(α+β)|
|yH(α)| ≤ 0.3 with probability 0.6.

J

6 Bounds on Fourier-sparse Signals

We consider g(t) =
∑k
j=1 vje

2πifjt where each fj ∈ [f0−∆, f0 + ∆] in this section. The main
result is to prove R = Õ(k3) and S = Õ(k2) for k arbitrary real frequencies. We restate
Theorem 5 after fixing T = 1.

I Theorem 16. Given F,∆, and k, let g(t) be a k-Fourier-sparse signal centered around
f0 ∈ [−F, F ]: g(t) =

∑
i∈[k] vi · e2πifit where fi ∈ [f0 −∆, f0 + ∆] and y(t) = g(t) + η(t) be

the observable signal on [−1, 1], where ‖η‖22 ≤ ε · ‖g‖22 for a sufficiently small constant ε.
For any δ > 0, there exist ∆′ = ∆ + Õ(R) and an efficient algorithm that takes

O(k log2 k log F
∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with proba-

bility at least 1− δ.

The main improvement is a biased distribution that saves the sample complexity from
O(R) · log F

∆′·δ to Õ(k) · log F
∆′·δ .

We provide the main technical lemma here and defer the proofs of Theorem 3, 4, and 16
to the full version.

I Theorem 17. Given z1, . . . , zk with |z1| = |z2| = · · · = |zk| = 1, there exists a degree
d = O(k2 log k) polynomial P (z) =

∑d
j=0 c(j) · zj satisfying

1. P (zi) = 0 for each i ∈ [k].
2. Coefficients c(0) = Ω(1), c(j) = O(1) and

∑d
j=1 |c(j)|2 = O(k) · |c(0)|2.

I Corollary 18. Given any g(t) =
∑k
j=1 vje

2πifjt and θ > 0, there exist d = O(k2 log k) and
a sequence of coefficients (α1, . . . , αd) such that
1. αj = O(1) for any j = 1, . . . , d.
2. For any x (not necessarily in [−1, 1]), g(x) =

∑d
j=1 αj · g(x− jθ).

Proof. Given θ, we set zi = e−2πifjθ and apply Theorem 17 to obtain coefficients
c(0), . . . , c(d). Then we set αj = −c(j)/c(0). It is straightforward to verify the second
property because of

e2πifjx −
∑
j

αj · e2πifj(x−jθ) = 0. J

The proof of Theorem 17 requires the following bound on the coefficients of residual
polynomials, which is stated as Lemma 5.3 in [4].

I Lemma 19. Given z1, . . . , zk, for any integer n, let rn,k(z) =
∑k−1
i=0 r

(i)
n,k · zi denote the

residual polynomial of rn,k ≡ zn mod
∏k
j=1(z−zj). Then each coefficient in rn,k is bounded:

|r(i)
n,k| ≤

(
k−1
i

)
·
(
n
k−1
)
for n ≥ k and |r(i)

n,k| ≤
(
k−1
i

)
·
(|n|+k−1

k−1
)
for n < 0.
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We finish the proof of Theorem 17 here.

Proof. Let C0 be a large constant and d = 5 · k2 log k. We use P to denote the following
subset of polynomials with bounded coefficients:

d∑
j=0

αj · 2−j/k · zj
∣∣∣∣α0, . . . , αd ∈ [−C0, C0] ∩ Z

 .

For each polynomial P (z) ∈ P, we rewrite P (z) mod
∏k
j=1(z − zj) as

d∑
j=0

αj · 2−j/k ·

zj mod
k∏
j=1

(z − zj)

 =
k−1∑
i=0

 d∑
j=0

αj · 2−j/k · r(i)
n,k

 zi.

The coefficient
∑d
j=0 αj · 2−j/k · r

(i)
n,k is bounded by

d∑
j=0

C0 · 2−j/k · 2kjk−1 ≤ d · C0 · 2k · dk ≤ d2k.

Then we apply the pigeonhole principle on the (2C0 + 1)d polynomials in P after module∏d
j=1(z−zj): there exist m > (2C0 +1)0.9d polynomials P1, . . . , Pm such that each coefficient

of (Pi − Pj) mod
∏k
j=1(z − zj) is d−2k small from the counting

(2C0 + 1)d

(d2k/4d−2k)k > (2C0 + 1)0.9d.

Because m > (2C0 + 1)0.9d, there exists j1 ∈ [m] and j2 ∈ [m] \ {j1} such that the lowest
monomial zl with different coefficients in Pj1 and Pj2 satisfies l ≤ 0.1d. Eventually we set

P (z) = z−l·
(
Pj1(z)−Pj2(z)

)
−
(
z−l mod

k∏
j=1

(z−zj)
)
·
(
Pj1(z)−Pj2(z) mod

k∏
j=1

(z−zj)
)

to satisfy the first property P (z1) = P (z2) = · · · = P (zk) = 0. We prove the second property
in the rest of this proof.

We bound every coefficient in
(
z−l mod

∏k
j=1(z−zj)

)
·
(
Pj1(z)−Pj2(z) mod

∏k
j=1(z−

zj)
)
by

k ·max-coefficient
(

z−l mod
k∏

j=1

(z−zj)
)
·max-coefficient

(
Pj1 (z)−Pj2 (z) mod

k∏
j=1

(z−zj)
)

,

which is less than k · 2k(l + k)k−1 · d−2k ≤ d · 2kdk−1 · d−2k ≤ d−0.5k from Lemma 19 and
the above discussion.

On the other hand, the constant coefficient in z−l ·
(
Pj1(z)− Pj2(z)

)
is at least 2−l/k ≥

2−0.1d/k = k−0.5k because zl is the smallest monomial with different coefficients in Pj1 and
Pj2 from P. Thus the constant coefficient |C(0)|2 of P (z) is at least 0.5 · 2−2l/k.

Next we upper bound the sum of the rest of the coefficients
∑d
j=1 |C(j)|2 by

d∑
j=1

(2C0 · 2−(l+j)/k + d−0.5k)2 ≤ 2 · 4C2
0

d∑
j=1

2−2(l+j)/k + 2 ·
d∑
j=1

d−0.5k·2 . k · 2−2l/k,

which demonstrates the second property after normalizing C(0) to 1. J
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