Estimating the Frequency of a Clustered Signal

Xue Chen
Northwestern University, Evanston, IL, USA
xue.chen1@northwestern.edu
Eric Price
The University of Texas at Austin, USA
ecprice@cs.utexas.edu

Abstract

We consider the problem of locating a signal whose frequencies are "off grid" and clustered in a narrow band. Given noisy sample access to a function $g(t)$ with Fourier spectrum in a narrow range [$f_{0}-\Delta, f_{0}+\Delta$], how accurately is it possible to identify f_{0} ? We present generic conditions on g that allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions for k-Fourier-sparse signals that imply recovery of f_{0} to within $\Delta+\widetilde{O}\left(k^{3}\right)$ from samples on $[-1,1]$. This improves upon the best previous bound of $O\left(\Delta+\widetilde{O}\left(k^{5}\right)\right)^{1.5}$. We also show that no algorithm can do better than $\Delta+\widetilde{O}\left(k^{2}\right)$.

In the process we provide a new $\widetilde{O}\left(k^{3}\right)$ bound on the ratio between the maximum and average value of continuous k-Fourier-sparse signals, which has independent application.

2012 ACM Subject Classification Theory of computation \rightarrow Design and analysis of algorithms; Theory of computation \rightarrow Streaming, sublinear and near linear time algorithms

Keywords and phrases sublinear algorithms, Fourier transform
Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.36
Category Track A: Algorithms, Complexity and Games
Related Version A full version of the paper is available at https://arxiv.org/abs/1904.13043.
Funding Xue Chen: Supported by research funding from Northwestern University. Part of this work was done while the author was in the University of Texas at Austin supported by NSF Grant CCF-1526952 and a Simons Investigator Award (\#409864, David Zuckerman).
Eric Price: Supported in part by NSF Award CCF-1751040 (CAREER).
Acknowledgements We thank Daniel Kane and Zhao Song for many helpful discussions. We also thank the anonymous referee for the detailed feedback and comments.

1 Introduction

A natural question, dating at least to the work of Prony in 1795 , is to estimate a signal from samples, assuming the signal has a k-sparse Fourier representation, i.e., that the signal is a sum of k complex exponentials: $g(t)=\sum_{j=1}^{k} v_{j} e^{2 \pi \mathbf{i} f_{j} t}$ for some set of frequencies f_{j} and coefficients v_{j}.

If the frequencies are located on a discrete grid (giving a sparse discrete Fourier transform), then a long line of work has studied efficient algorithms for recovering the signal (e.g., $[11,7,1,8,9,10])$. If the frequencies are not on a grid, then Prony's method from 1795 [14] or matrix pencil [3] can still identify them in the absence of noise. With noise, however, one cannot robustly recover frequencies that are too close together: if one listens to a signal for the interval $[-T, T]$ then any two frequencies θ and $\theta+\varepsilon / T$ will be $O(\varepsilon)$-close to each other, and so cannot be distinguished with noise. As shown in [12], this nonrobustness grows exponentially in k. On the other hand, [12] also showed that recovery with polynomially

© Xue Chen and Eric Price;
licensed under Creative Commons License CC-BY
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi; Article No. 36; pp. 36:1-36:13
small noise is possible if all the frequencies have separation $1 / 2 T$, and [13] showed that a constant fraction of noise is tolerable with separation $\log ^{O(1)}(F T) / T$, where F is the bandlimit of the signal.

So what is possible for arbitrary Fourier-sparse signals, without any assumption of frequency separation? One cannot hope to identify the frequencies exactly, but one can still estimate the signal itself. If two frequencies are similar enough to be indistinguishable over the sampled interval, we do not need to distinguish them. In [4], this led to an algorithm for an arbitrary k-Fourier-sparse signal that used poly $(k, \log (F T))$ samples to estimate it with only a constant factor increase in the noise. However, this polynomial is fairly poor.

Since prior work could handle the case of well-separated frequencies, a key challenge in [4] is the setting with all the frequencies in a narrow cluster. Formally, consider the following subproblem: if all the frequencies f_{i} of the signal lie in a narrow band $\left[f_{0}-\Delta, f_{0}+\Delta\right]$, how accurately can we estimate f_{0} ? Note that while we would like an efficient algorithm that takes a small number of samples, the key question is information theoretic. And we can ask this question more generally: if the signal is not k-sparse, but still has all its frequencies in a narrow band, can we locate that band?

- Question 1. Let $g(t)$ be a signal with Fourier transform supported on $\left[f_{0}-\Delta, f_{0}+\Delta\right]$, for some $f_{0} \in[-F, F]$. Suppose that we can sample from $y(t)=g(t)+\eta(t)$ at points in $[-T, T]$, where $\eta(t)$ could be any ℓ_{2} bounded noise on $[-T, T]$ with

$$
\underset{t \in[-T, T]}{\mathbb{E}}\left[|\eta(t)|^{2}\right] \leq \varepsilon \underset{t \in[-T, T]}{\mathbb{E}}\left[|g(t)|^{2}\right]
$$

for a small constant ε. Under what conditions on g can we estimate f_{0}, and how accurately?
One might expect to be able to estimate f_{0} to $\pm\left(\Delta+O\left(\frac{1}{T}\right)\right)$ for all functions g; after all, g is just a combination of individual frequencies, each of which points to some frequency in the right range, and each individual frequency in isolation can be estimated to within $\pm O\left(\frac{1}{T}\right)$ in the presence of noise. Unfortunately, this intuition is false.

To see this, consider the family of k-sparse Fourier functions with $f_{j}=\varepsilon j$, i.e.,

$$
\operatorname{span}\left(e^{2 \pi \mathbf{i}(j \varepsilon) t} \mid j \in[k]\right)
$$

By sending $\varepsilon \rightarrow 0$ and taking a Taylor expansion, this family can get arbitrarily close to any degree $k-1$ polynomial, on any interval $\left[-T^{\prime}, T^{\prime}\right]$. Thus, to solve the question, one would also need to solve it when $g(t)$ is a polynomial even for arbitrarily small Δ.

There are two ways in which $g(t)$ being a degree d polynomial can lead to trouble. The first is that $g(t)$ could itself be a Taylor expansion of $e^{\pi \mathbf{i} f t}$. If $d \gtrsim f T$, this Taylor approximation will be quite accurate on $[-T, T]$; with the noise η, the observed signal can equal $e^{\pi \mathbf{i} f t}$. Thus the algorithm has to output f, which can be $\Theta(d / T)$ far from the "true" answer $f_{0}=0$.

The second way in which $g(t)$ can lead to trouble is by removing most of the signal energy. If $g(t)$ is the (slightly shifted) Chebyshev polynomial $g(t)=T_{d}\left(t / T+O\left(\frac{\log ^{2} d}{d^{2}}\right)\right)$, then $|g(t)| \leq 1$ for $t \leq\left(1-O\left(\frac{\log ^{2} d}{d^{2}}\right)\right) T$, while $g(t) \geq d$ for $t \geq\left(1-O\left(\frac{\log ^{2} d}{d^{2}}\right)\right) T$. That is to say, the majority of the ℓ_{2} energy of g can lie in the final $O\left(\frac{\log ^{2} d}{d^{2}}\right)$ fraction of the interval. In such a case, a small constant noise level η can make samples outside that $T \cdot \widetilde{O}\left(1 / d^{2}\right)$ size region equal to zero, and hence completely uninformative; and samples in that region still have to tolerate noise. This leads to an "effective" interval size of $T^{\prime}=T \cdot \widetilde{O}\left(\frac{1}{d^{2}}\right)$, leading to accuracy $O\left(1 / T^{\prime}\right)=\widetilde{O}\left(d^{2}\right) / T$.

X. Chen and E. Price

Our main result is that, in a sense, these two types of difficulties are the only ones that arise. We can measure the second type of difficulty by looking at how much larger the maximum value of g is than its average:

$$
R:=\frac{\sup _{t \in[-T, T]}|g(t)|^{2}}{\mathbb{E}_{t \in[-T, T]}|g(t)|^{2}}
$$

We can measure the former by observing that while a polynomial may approximate a complex exponential on a bounded region, as $t \rightarrow \infty$ the polynomial will blow up. In particular, we take the S such that

$$
|g(t)|^{2} \leq \operatorname{poly}(R) \cdot \underset{t \in[-T, T]}{\mathbb{E}}\left[|g(t)|^{2}\right] \cdot\left|\frac{t}{T}\right|^{S}
$$

for all $|t| \geq T$. We show that if R and S are bounded, one can estimate f_{0} to within $\Delta+\widetilde{O}(R+S) / T$, which is almost tight from the above discussion of polynomials. Moreover, the time and number of samples required are fairly efficient:

- Theorem 2. Given any $T>0, F>0, \Delta>0, R$, and $S>0$, let $g(t)$ be a signal with the following properties:

1. $\operatorname{supp}(\widehat{g}) \subseteq\left[f_{0}-\Delta, f_{0}+\Delta\right]$ where $f_{0} \in[-F, F]$.
2. $\sup _{t \in[-T, T]}\left[|g(t)|^{2}\right] \leq R \cdot \underset{t \in[-T, T]}{\mathbb{E}}\left[|g(t)|^{2}\right]$.
3. $|g(t)|^{2}$ grows as at most $\operatorname{poly}(R) \cdot \underset{t \in[-T, T]}{\mathbb{E}}\left[|g(t)|^{2}\right] \cdot\left|\frac{t}{T}\right|^{S}$ for $t \notin[-T, T]$.

Let $y(t)=g(t)+\eta(t)$ be the observable signal on $[-T, T]$, where $\underset{t \in[-T, T]}{\mathbb{E}}\left[|\eta(t)|^{2}\right] \leq \epsilon$. $\underset{t \in[-T, T]}{\mathbb{E}}\left[|g(t)|^{2}\right]$ for a sufficiently small constant ϵ. For $\Delta^{\prime}=\Delta+\frac{\widetilde{O}(R+S)}{T}$ and any $\delta>0$, there exists an efficient algorithm that takes $O\left(R \log \frac{F}{\Delta^{\prime} \cdot \delta}\right)$ samples from $y(t)$ and outputs \widetilde{f} satisfying $\left|f_{0}-\widetilde{f}\right| \leq O\left(\Delta^{\prime}\right)$ with probability at least $1-\delta$.

Application to sparse Fourier transforms. Specializing to k-Fourier-sparse signals, we give bounds on R and S for this family. Since (as described above) this family can approximate degree- $(k-1)$ polynomials, we know that $R \gtrsim k^{2}$ and $S \gtrsim k$; we show that $R \lesssim k^{3} \log ^{2} k$ and $S \lesssim k^{2} \log k$. Thus, whenever R is between k^{2} and $\widetilde{O}\left(k^{3}\right)$, we can identify k-Fourier-sparse signals to within $\Delta+\widetilde{O}(R) / T$. This is an improvement over the results in [4] in several ways.

Formally, for a given sparsity level k, we consider signals in

$$
\mathcal{F}:=\left\{g(t)=\sum_{j=1}^{k} v_{j} e^{2 \pi i f_{j} t} \mid f_{j} \in[-F, F]\right\} .
$$

- Theorem 3. For any k and T,

$$
\begin{equation*}
R:=\sup _{g \in \mathcal{F}} \frac{\sup _{x \in[-T, T]}|g(x)|^{2}}{\underset{x \in[-T, T]}{\mathbb{E}}\left[|g(x)|^{2}\right]}=O\left(k^{3} \log ^{2} k\right) \tag{1}
\end{equation*}
$$

It was previously known that $R \lesssim k^{4} \log ^{3} k$ [4], and this fact was used in [2]. (Thus, our improved bound on R immediately implies an improvement in Theorem 8 of [2], from $s_{\mu, \varepsilon}^{5} \log ^{3} s_{\mu, \varepsilon}$ to $s_{\mu, \varepsilon}^{4} \log ^{2} s_{\mu, \varepsilon}$.)

Next we bound the growth $S=\widetilde{O}\left(k^{2}\right)$ for any $|t| \geq T$.

- Theorem 4. There exists $S=O\left(k^{2} \log k\right)$ such that for any $|t|>T$ and $g(t)=\sum_{j=1}^{k} v_{j}$. $e^{2 \pi i f_{j} t},|g(t)|^{2} \leq \operatorname{poly}(k) \cdot \underset{x \in[-T, T]}{\mathbb{E}}\left[|g(x)|^{2}\right] \cdot\left|\frac{t}{T}\right|^{S}$.

This is analogous to Theorem 5.5 of [4], which proves a bound of $(k t)^{k}$ rather than $t^{\widetilde{O}\left(k^{2}\right)}$. These bounds are incomparable, but the $t^{\widetilde{O}\left(k^{2}\right)}$ bound is actually more useful for this problem: what really matters is showing that $g(t)$ is not too large just outside the interval. Theorem 4 gives the "correct" polynomial dependence at $t=\left(1+1 / k^{2}\right) T$.

We can now apply Theorem 2 to get an efficient algorithm to recover the center of a cluster of k frequencies within accuracy $\tilde{O}(R)$.

- Theorem 5. Given F, T, and k, let R be the ratio between the maximum and average value of continuous k-Fourier-sparse signals defined in (1). Given Δ, let $g(t)$ be a k-Fourier-sparse signal centered around $f_{0}: g(t)=\sum_{i \in[k]} v_{i} \cdot e^{2 \pi \mathbf{i} f_{i} t}$ where each $f_{i} \in\left[f_{0}-\Delta, f_{0}+\Delta\right]$ and $y(t)=$ $g(t)+\eta(t)$ be the observable signal on $[-T, T]$, where $\underset{t \in[-T, T]}{\mathbb{E}}\left[|\eta(t)|^{2}\right] \leq \epsilon \cdot \underset{t \in[-T, T]}{\mathbb{E}}\left[|g(t)|^{2}\right]$ for a sufficiently small constant ϵ.

For any $\delta>0$, there exist $\Delta^{\prime}=\Delta+\frac{\tilde{O}(R)}{T}$ and an efficient algorithm that takes $O\left(k \log ^{2} k \log \frac{F}{\Delta^{\prime} \cdot \delta}\right)$ samples from $y(t)$ and outputs \widetilde{f} satisfying $\left|f_{0}-\widetilde{f}\right| \leq O\left(\Delta^{\prime}\right)$ with probability at least $1-\delta$.

Note that the sample complexity here is $\widetilde{O}(k) \operatorname{not} \widetilde{O}(R)$. This is because, based on the structure of the problem, we can use a nonuniform sampling procedure that performs better. Otherwise this theorem is just Theorem 2 applied to the R and S from Theorems 3 and 4.

Theorem 5 is a direct improvement on Theorem 7.5 of [4], which for $T=1$ could estimate to within $O\left(\Delta+\widetilde{O}\left(k^{5}\right)\right)^{1.5}$ accuracy and used poly (k) samples. In particular, in addition to improving the additive poly (k) term, our result avoids a multiplicative increase in the bandwidth Δ of g.

The main technical lemma in proving Theorems 2 and 5 is a filter function H with a compact supported Fourier transform \widehat{H} that simulates a box function on $[-T, T]$ for any g satisfying the conditions in Theorem 2.

- Lemma 6. Given any T, S, and R, there exists a filter function H with $|\operatorname{supp}(\widehat{H})| \leq$ $\frac{\tilde{O}(R+S)}{T}$ such that for any $g(t)$ satisfying the second and third conditions in Theorem 2,

1. H is close to a box function on $[-T, T]: \int_{-T}^{T}|g(t) \cdot H(t)|^{2} \mathrm{~d} t \geq 0.9 \int_{-T}^{T}|g(t)|^{2} \mathrm{~d} t$.
2. The tail of $H(t) \cdot g(t)$ is small: $\int_{-T}^{T}|g(t) \cdot H(t)|^{2} \mathrm{~d} t \geq 0.95 \int_{-\infty}^{\infty}|g(t) \cdot H(t)|^{2} \mathrm{~d} t$.

Organization. We introduce some notation and tools in Section 2. Then we provide a technical overview in Section 3. We show our filter function and prove Lemma 6 in Section 4. Next we present the algorithm about frequency estimation of Theorem 2 in Section 5. Finally we prove the results about sparse Fourier transform - Theorem 3 and Theorem 4 in Section 6.

2 Preliminaries

In the rest of this work, we fix the observation interval to be $[-1,1]$ and define

$$
\begin{equation*}
\|g\|_{2}=\left(\underset{x \sim[-1,1]}{\mathbb{E}}|g(x)|^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

because we could rescale $[-T, T]$ to $[-1,1]$ and $[-F, F]$ to $[-F T, F T]$.

X. Chen and E. Price

We first review several facts about the Fourier transform. The Fourier transform $\widehat{g}(f)$ of an integrable function $g: \mathbb{R} \rightarrow \mathbb{C}$ is

$$
\widehat{g}(f)=\int_{-\infty}^{+\infty} g(t) e^{-2 \pi i f t} \mathrm{~d} t \text { for any real } f
$$

We use $g \cdot h$ to denote the pointwise dot product $g(t) \cdot h(t)$ and g^{k} to denote $\underbrace{g(t) \cdots g(t)}_{k}$. Similarly, we use $g * h$ to denote the convolution of g and $h: \int_{-\infty}^{+\infty} g(x) \cdot h(t-x) \mathrm{d} x$. In this work, we always set $g^{* k}$ as the convolution $\underbrace{g(t) * \cdots * g(t)}_{k}$. Notice that $\operatorname{supp}(g \cdot h)=\operatorname{supp}(g) \cap \operatorname{supp}(h)$ and $\operatorname{supp}(g * h)=\operatorname{supp}(g)+\operatorname{supp}(h)$.

We define the box function and its Fourier transform sinc function as follows. Given a width $s>0$, the box function $\operatorname{rect}_{s}(t)=1 / s$ iff $|t| \leq s / 2$; and its Fourier transform is $\operatorname{sinc}(s f)=\frac{\sin (\pi f s)}{\pi f s}$ for any f.

We state the Chernoff bound for random sampling [6].

- Lemma 7. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent random variables in $[0, R]$ with expectation 1. For any $\varepsilon<1 / 2$ and $n \gtrsim \frac{R}{\epsilon^{2}}, X=\frac{\sum_{i=1}^{n} X_{i}}{n}$ with expectation 1 satisfies

$$
\operatorname{Pr}[|X-1| \geq \varepsilon] \leq 2 \exp \left(-\frac{\varepsilon^{2}}{3} \cdot \frac{n}{R}\right)
$$

3 Proof Overview

We first outline the proofs of Lemma 6 and Theorem 2. Then we show the proof sketch of $R=\tilde{O}\left(k^{3}\right)$ and $S=\tilde{O}\left(k^{2}\right)$ of k-Fourier-sparse signals.

The filter functions $(\boldsymbol{H}, \widehat{\boldsymbol{H}})$ in Lemma 6. Ideally, to satisfy the two claims in Lemma 6, we could set $H(t)$ to be the box function $2 \operatorname{rect}_{2}(t)$ on $[-1,1]$. However, by the uncertainty principle, it is impossible to make its Fourier transform \widehat{H} compact using such an $H(t)$. Hence our construction of (H, \widehat{H}) is in the inverse direction: we build $\widehat{H}(f)$ by box functions and $H(t)$ by the Fourier transform of box functions - the sinc function. In the rest of this discussion, we focus on using the sinc function to prove Lemma 6 given the properties of g in Theorem 2.

We first notice that any H with the following two properties is effective in Lemma 6 for g satisfying $|g(t)|^{2} \leq R \cdot\|g\|_{2}^{2}$ for any $|t| \leq 1$ and $|g(t)|^{2} \leq \operatorname{poly}(R)\|g\|_{2}^{2} \cdot|t|^{S}$ for $|t|>1$:

1. $H(t)=1 \pm 0.01$ for any $t \in\left[-1+\frac{1}{C \cdot R}, 1-\frac{1}{C \cdot R}\right]$ of a large constant C. This shows

$$
\int_{-1}^{1}|H(t) \cdot g(t)|^{2} \mathrm{~d} t \geq 0.99^{2} \int_{-1+\frac{1}{C \cdot R}}^{1-\frac{1}{C \cdot R}}|g(t)|^{2} \mathrm{~d} t
$$

Because $|g(t)|^{2} \leq R \cdot\|g\|_{2}^{2}$ for any $t \in[-1,1] \backslash\left[-1+\frac{1}{C \cdot R}, 1-\frac{1}{C \cdot R}\right]$, the constant on the R.H.S. is at least $0.99^{2} \cdot\left(1-\frac{1}{C}\right) \geq 0.9$, which implies the first claim of Lemma 6 .
2. $H(t)$ declines to $\frac{1}{\operatorname{poly}(R) \cdot t^{2 S}}$ for any $|t|>1$. This shows

$$
\int_{1}^{\infty}|H(t) \cdot g(t)|^{2} \mathrm{~d} t \leq 0.01 \int_{-1}^{1}|g(t)|^{2} \mathrm{~d} t
$$

which implies the second claim.

For ease of exposition, we start with $S=0$. We plan to design a filter $H_{0}(t)$ with compact $\widehat{H_{0}}$ dropping from 0.99 at $t=1-\frac{1}{C \cdot R}$ to $\frac{1}{\operatorname{poly}(R)}$ at $t=1$ in a small range $\frac{1}{C R}$ using the sinc function. To apply the sinc function, we notice that

$$
\operatorname{sinc}(C R \cdot t)^{O(\log R)}=\left(\frac{\sin (\pi C R \cdot t)}{\pi C R \cdot t}\right)^{O(\log R)}
$$

decays from 1 at $t=0$ to $1 / \operatorname{poly}(R)$ at $t=\frac{1}{C \cdot R}$, which matches the dropping of $H_{0}(t)$ from $t=1-\frac{1}{C \cdot R}$ to $t=1$.

Then, to make $H(t) \approx 1$ for any $|t| \leq 1-\frac{1}{C \cdot R}$, let us consider a convolution of $\operatorname{rect}_{1}(t)$ and $\operatorname{sinc}(C R \cdot t)^{O(\log R)}$. Because most of the mass of the latter is in $\left[-\frac{1}{C R}, \frac{1}{C R}\right]$, this convolution keeps almost the same value in $\left[-\frac{1}{2}+\frac{1}{C R}, \frac{1}{2}-\frac{1}{C R}\right]$ and drops down to $1 / \operatorname{poly}(R)$ at $t=\frac{1}{2}+\frac{1}{C R}$. At the same time, it will keep the compactness of $\widehat{H_{0}}$ since it corresponds to the dot product on the Fourier domain. By normalizing and scaling, this gives the desired $\left(H_{0}, \widehat{H_{0}}\right)$ for $S=0$.

Next we describe the construction of $S>0$. The high level idea is to consider the decays of $H(t)$ in $\log _{2} S+O(1)$ segments rather than one segment of $S=0$:

$$
\left(1-\frac{1}{C R}, 1\right],\left(1,1+\frac{1}{S}\right],\left(1+\frac{1}{S}, 1+\frac{2}{S}\right], \ldots,\left(1+\frac{2^{j}}{S}, 1+\frac{2^{j+1}}{S}\right], \ldots,\left(1+\frac{S / 2}{S}, 2\right],(2,+\infty)
$$

For each segment, we provide a power of sinc functions matching its decay in $H(t)$ like the construction of H_{0} on $\left(1-\frac{1}{C R}, 1\right]$. The final construction is the convolution of the dot product of all sinc powers and a box function, which appears in Section 4.

The Algorithm of Theorem 2. Now we show how to estimate f_{0} given the observable signal $y=g+\eta$ where $\operatorname{supp}(\widehat{g}) \subseteq\left[f_{0}-\Delta, f_{0}+\Delta\right]$ and $\|\eta\|_{2}^{2} \leq \varepsilon\|g\|_{2}^{2}$ (with ℓ_{2} norm taken over $[-T, T]$ defined in (2)). We instead consider $y_{H}(t)=y(t) \cdot H(t)$ with the filter function (H, \widehat{H}) from Lemma 6 and the corresponding dot products $g_{H}=g \cdot H$ and $\eta_{H}=\eta \cdot H$. The starting point is that for a sufficiently small β, we expect

$$
y_{H}(t+\beta) \approx e^{2 \pi i f_{0} \beta} \cdot y_{H}(t)
$$

because y_{H} has Fourier spectrum concentrated around f_{0}. This does not hold for all t, but it does hold on average:

$$
\begin{equation*}
\int_{-1}^{1}\left|y_{H}(t+\beta)-e^{2 \pi i f_{0} \beta} \cdot y_{H}(t)\right|^{2} \mathrm{~d} t \lesssim \varepsilon \cdot \int_{-1}^{1}\left|y_{H}(t)\right|^{2} \mathrm{~d} t \tag{3}
\end{equation*}
$$

This is because we can use Parseval's identity to replace these integrals by an integral over Fourier domain - Parseval's identity would apply if the integrals were from $-\infty$ to ∞, but because of the filter function H, relatively little mass in y_{H} lies outside $[-1,1]$. Then, the Fourier transform of the term inside the left square is $e^{2 \pi i f \beta} \widehat{y_{H}}(f)-e^{2 \pi i f_{0} \beta} \cdot \widehat{y_{H}}(f)$. Note that $\widehat{y_{H}}=\widehat{g_{H}}+\widehat{\eta_{H}}$ has most of its ℓ_{2} mass in $\operatorname{supp}\left(g_{H}\right) \subseteq\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]$ for $\Delta^{\prime}=\Delta+|\operatorname{supp}(\widehat{H})|$, and every such frequency shrinks in the left by a factor $\left|e^{2 \pi i f \beta}-e^{2 \pi i f_{0} \beta}\right|=O\left(\beta \Delta^{\prime}\right)$. Thus, for $\beta \ll 1 / \Delta^{\prime}$, (3) holds.

To learn f_{0} through $e^{2 \pi i f_{0} \beta}$, we design a sampling procedure to output α satisfying

$$
\left|y_{H}(\alpha+\beta)-e^{2 \pi i f_{0} \beta} y_{H}(\alpha)\right| \leq 0.3 \cdot y_{H}(\alpha) \text { with probability more than half. }
$$

Even though the above discussion shows the left hand side is smaller than the R.H.S. on average, a uniformly random $\alpha \sim[-1,1]$ may not satisfy it with good probability: $\left|y_{H}(\alpha)\right| \geq\left\|y_{H}\right\|_{2}$ may be only true for $1 / R$ fraction of $\alpha \in[-1,1]$, while the corruption by

X. Chen and E. Price

adversarial noise η has $\|\eta\|_{2}^{2} \gtrsim \varepsilon\left\|y_{H}\right\|_{2}^{2}$ for a constant $\varepsilon \gg 1 / R$. At the same time, even for many points $\alpha_{1}, \ldots, \alpha_{m}$ where some of them satisfy the above inequality, it is infeasible to verify such an α_{i} given f_{0} is unknown. We provide a solution by adopting the importance sampling: for $m=O(R)$ random samples $\alpha_{1}, \ldots, \alpha_{m} \in[-1,1]$, we output α with probability proportional to the weight $\left|y_{H}\left(\alpha_{i}\right)\right|^{2}$.

We prove the correctness of this sampling procedure in Lemma 11 in Section 5.
Finally, learning $e^{2 \pi \mathbf{i} f_{0} \beta}$ is not enough to learn f_{0} : because of the noise, we only learn $e^{2 \pi \mathbf{i} f_{0} \beta}$ to within a constant ε, which gives f_{0} to within $\pm O(\varepsilon / \beta)$; and because of the different branches of the complex logarithm, this is only up to integer multiples of $1 / \beta$. Therefore to fully learn f_{0}, we repeat the sampling procedure at logarithmically many different scales of β, from $\beta=1 / 2 F$ to $\beta=\frac{\Theta(1)}{\Delta^{\prime}}$.
\boldsymbol{k}-Fourier-sparse signals. Finally, we show $R=\widetilde{O}\left(k^{3}\right)$ and $S=\widetilde{O}\left(k^{2}\right)$ such that for any $g(t)=\sum_{j=1}^{k} v_{j} \cdot e^{2 \pi i f_{j} t}-$ not necessarily one with the f_{j} clustered together -

$$
\frac{\sup _{t \in[-1,1]}|g(t)|^{2}}{\|g\|_{2}^{2}} \leq R \text { and }|g(t)|^{2} \leq \operatorname{poly}(R) \cdot\|g\|_{2}^{2} \cdot|t|^{S}
$$

We first review the previous argument of $R=\widetilde{O}\left(k^{4}\right)$ [4]. The key point is to show for some $d=\widetilde{O}\left(k^{2}\right)$ that $g(1)$ is a linear combination of $g(1-\theta), \ldots, g(1-d \cdot \theta)$ using bounded integer coefficients $c_{1}, \ldots, c_{d}=O(1)$ for any $\theta \leq \frac{2}{d}$. Then

$$
\begin{equation*}
g(1)=\sum_{j \in[d]} c_{j} \cdot g(1-j \cdot \theta) \text { implies }|g(1)|^{2} \leq\left(\sum_{j \in[d]}\left|c_{j}\right|^{2}\right) \cdot\left(\sum_{j \in[d]}|g(1-j \cdot \theta)|^{2}\right) . \tag{4}
\end{equation*}
$$

If we think of $g(1)$ as the supremum and $g(1-j \cdot \theta)$ as the average $\|g\|_{2}$ - which we can formally do up to logarithmic factors by averaging over θ - this shows $|g(1)|^{2} \leq \widetilde{O}\left(d^{2}\right)\|g\|_{2}^{2}$. One natural idea to improve it is to use a smaller value d and a shorter linear combination [5]. However, $d=\tilde{\Omega}\left(k^{2}\right)$ for such a combination when g is approximately the degree $k-1$ Chebyshev polynomial. In this work, we use a geometric sequence to control $c_{\tilde{j}}$ such that $\sum_{j}\left|c_{j}\right|^{2}=O(d / k)$ instead of $O(d)$, which provides an improvement of a factor $\widetilde{O}(k)$ on R.

Then we bound $S=\widetilde{O}\left(k^{2}\right)$ for $g(t)$ at $|t|>1$. The intuition is that given (4) holds for any $g(t)$ in terms of $g(t-\theta), \ldots, g(t-d \cdot \theta)$ with $\theta=\frac{2}{d}$, it implies $|g(t)|^{2} \leq \operatorname{poly}(k) \cdot\|g\|_{2}^{2} \cdot e^{(t-1) \cdot O(d)}$ for $t>1$. Combining this with an alternate bound $|g(t)|^{2} \leq \operatorname{poly}(k) \cdot\|g\|_{2}^{2} \cdot(k \cdot t)^{O(k)}$ for $t>1+1 / k$, it completes the proof of Theorem 4 about S.

Finally we notice that we could improve the sample complexity in Theorem 5 to $\widetilde{O}(k) \log \frac{F}{\Delta^{\prime}}$ using a biased distribution [5] to generate α. These results about k-Fourier-sparse signals appear in Section 6.

4 Our Filter Function

The main result is an explicit filter function H with compact support \widehat{H} that is close to the box function on $[-1,1]$ for any g satisfying the conditions in Theorem 2.

We show our filter function as follows.

- Definition 8. Given R, the growth rate S and an even constant C, we define the filter function

$$
H(t)=s_{0} \cdot\left(\operatorname{sinc}(C R \cdot t)^{C \log R} \cdot \operatorname{sinc}(C \cdot S \cdot t)^{C} \cdot \operatorname{sinc}\left(\frac{C \cdot S}{2} \cdot t\right)^{2 C} \cdots \operatorname{sinc}(C \cdot t)^{C \cdot S}\right) * \operatorname{rect}_{2}(t)
$$

where $s_{0} \in \mathbb{R}^{+}$is a parameter to normalize $H(0)=1$. On the other hand, its Fourier transform is

$$
\widehat{H}(f)=s_{0} \cdot\left(\operatorname{rect}_{C R}(f)^{* C \log R} * \operatorname{rect}_{C \cdot S}(f)^{* C} * \operatorname{rect}_{\frac{c \cdot S}{2}}(f)^{* 2 C} * \cdots * \operatorname{rect}_{C}(f)^{* C S}\right) \cdot \operatorname{sinc}(2 t)
$$

whose support size is $O(C R \cdot C \log R+C S \cdot C+\cdots+C \cdot C \cdot S)=O(R \log R+S \log S)$.
We prove Lemma 6 using $H(\alpha x)$ with a large constant C and a scale parameter $\alpha=$ $\frac{1}{2}+\frac{1.2}{\pi C R}$. For convenience, we state the full version of Lemma 6 for $T=1$ as follows.

- Theorem 9. Let $R, S>0$, let C be a large even constant, and define $\alpha=\left(\frac{1}{2}+\frac{1.2}{\pi C R}\right)$. Consider any function g satisfying the following two conditions:

1. $\sup _{t \in[-1,1]}|g(t)|^{2} \leq R \cdot\|g\|_{2}^{2}$
2. And $|g(t)|^{2} \leq \operatorname{poly}(R) \cdot\|g\|_{2}^{2} \cdot|t|^{S}$ for $t \notin[-1,1]$,

Then the filter function $H(\alpha x)$ is such that $H(\alpha x) \cdot g(x)$ satisfies

1. $\int_{-1}^{1}|g(x) \cdot H(\alpha x)|^{2} \mathrm{~d} x \geq 0.9 \int_{-1}^{1}|g(x)|^{2} \mathrm{~d} x$.
2. $\int_{-1}^{1}|g(x) \cdot H(\alpha x)|^{2} \mathrm{~d} x \geq 0.95 \int_{-\infty}^{\infty}|g(x) \cdot H(\alpha x)|^{2} \mathrm{~d} x$.
3. $|H(x)| \leq 1.01$ for any x.

Due to the space constraint, we defer the proof of Theorem 9 to the full version.

5 Frequency Estimation

We show the algorithm for frequency estimation and prove Theorem 2 in this section. We fix $T=1$ and use the definition $\|h\|_{2}^{2}=\underset{x \sim[-1,1]}{\mathbb{E}}\left[|h(x)|^{2}\right]$ to restate the theorem.

- Theorem 10. Given any $F>0, \Delta>0, R$, and $S>0$, let $g(t)$ be a signal with the following properties:

1. $\operatorname{supp}(\widehat{g}) \subseteq\left[f_{0}-\Delta, f_{0}+\Delta\right]$ where $f_{0} \in[-F, F]$.
2. $\sup \left[|g(t)|^{2}\right] \leq R \cdot\|g\|_{2}^{2}$.
$t \in[-1,1]$
3. $|g(t)|^{2}$ grows as at most $\operatorname{poly}(R) \cdot\|g\|_{2}^{2} \cdot|t|^{S}$ for $t \notin[-1,1]$.

Let $y(t)=g(t)+\eta(t)$ be the observable signal on $[-1,1]$, where $\|\eta\|_{2}^{2} \leq \epsilon \cdot\|g\|_{2}^{2}$ for a sufficiently small constant ϵ. For $\Delta^{\prime}=\Delta+\widetilde{O}(R+S)$ and any δ, there exists an efficient algorithm that takes $O\left(R \log \frac{F}{\Delta^{\prime} \cdot \delta}\right)$ samples from $y(t)$ and outputs \widetilde{f} satisfying $\left|f_{0}-\widetilde{f}\right| \leq O\left(\Delta^{\prime}\right)$ with probability at least $1-\delta$.

For convenience, we set $h_{H}(t)=h(t) \cdot H(\alpha t)$ for any signal $h(t)$ with the filter function H defined in Theorem 9 such that $y_{H}(t)=y(t) \cdot H(\alpha t)$.

Given the observation $y(t)$ with most Fourier mass concentrated around f_{0}, the main technical result in this section is an estimation of $e^{2 \pi \mathbf{i} \beta f_{0}}$ through $y_{H}(\alpha) e^{2 \pi i f_{0} \beta} \approx y_{H}(\alpha+\beta)$.

- Lemma 11. Given parameters F, R, S, and Δ, let g be a signal satisfying the three conditions in Theorem 2 for some $f_{0} \in[-F, F]$ and $\Delta^{\prime}=\Delta+O(R \log R+S \log S)$.

Let $y(t)=g(t)+\eta(t)$ be the observable signal on $[-1,1]$ where the noise $\|\eta\|_{2}^{2} \leq \epsilon\|g\|_{2}^{2}$ for a sufficiently small constant ϵ. There exist a constant γ and an algorithm such that for any $\beta \leq \frac{\gamma}{\Delta^{\prime}}$, it takes $O(R)$ samples to output α satisfying $\left|y_{H}(\alpha) e^{2 \pi i f_{0} \beta}-y_{H}(\alpha+\beta)\right| \leq 0.3\left|y_{H}(\alpha)\right|$ with probability at least 0.6.

We show our algorithm in Algorithm 1. We finish the proof of Theorem 5 here and defer the proof of Lemma 11 to Section 5.1.

```
Algorithm 1 Obtain one good \(\alpha\).
    procedure ObtainOneGoodSample \((R, y(t))\)
        Let \(m=C \cdot R\) for a large constant \(C\).
        Take \(m\) random samples \(x_{1}, \cdots, x_{m}\) uniform in \([-1,1]\).
        Query \(y\left(x_{i}\right)\) and compute \(y_{H}\left(x_{i}\right)=y\left(x_{i}\right) \cdot H\left(x_{i}\right)\) for each \(i\).
        Set a distribution \(D_{m}\) proportional to \(\left|y_{H}\left(x_{i}\right)\right|^{2}\), i.e., \(D_{m}\left(x_{i}\right)=\frac{\left|y_{H}\left(x_{i}\right)\right|^{2}}{\sum_{j=1}^{m}\left|y_{H}\left(x_{j}\right)\right|^{2}}\).
        Output \(\alpha \sim D_{m}\).
    end procedure
```

Proof of Theorem 10. From Lemma 11, $\frac{y_{H}(\alpha+\beta)}{y_{H}(\alpha)}$ gives a good estimation of $e^{2 \pi i f_{0} \beta}$ with probability 0.6 for any $\beta \leq \frac{\gamma}{\Delta^{\prime}}$. We use the frequency search algorithm of Lemma 7.3 in [4] with the sampling procedure in Lemma 11. Because the algorithm in [4] uses the sampling procedure $O\left(\log \frac{F}{\Delta^{\prime} \cdot \delta}\right)$ times to return a frequency \widetilde{f} satisfying $\left|\widetilde{f}-f_{0}\right| \leq \Delta^{\prime}$ with prob. at least $1-\delta$, the sample complexity is $O\left(R \cdot \log \frac{F}{\Delta^{\prime} \cdot \delta}\right)$.

5.1 Proof of Lemma 11

For $y_{H}(x)=g_{H}(x)+\eta_{H}(x)$, we have the following concentration lemma for estimation $g_{H}(x)$. \triangleright Claim 12. Given any g satisfying the three conditions in Theorem 2 and any ε and δ, there exists $m=O\left(R \log \frac{1}{\delta} / \varepsilon^{2}\right)$ such that for m random samples $x_{1}, \ldots, x_{m} \sim[-1,1]$, with probability $1-\delta$,

$$
\frac{\sum_{i=1}^{m}\left|g_{H}\left(x_{i}\right)\right|^{2}}{m} \in[1-\varepsilon, 1+\varepsilon] \cdot \underset{x \sim[-1,1]}{\mathbb{E}}\left[\left|g_{H}(x)\right|^{2}\right]
$$

Proof. Notice that $\left.\frac{\sup _{x \sim[-1,1]}^{\mathbb{E}}\left[\left|g_{H}(x)\right|^{2}\right]}{x \sim-1,1]} \leq\left. 2 R(x)\right|^{2}\right]$. From the Chernoff bound in Lemma 7, $m=$ $O\left(R \log \frac{1}{\delta} / \varepsilon^{2}\right)$ suffices to estimate $\left\|g_{H}\right\|_{2}^{2}$.

Next we consider the effect of noise $\eta_{H}\left(x_{i}\right)$ and $y_{H}\left(x_{i}\right)$.
\triangleright Claim 13. With probability 0.9 over m random samples in $[-1,1], \sum_{i=1}^{m}\left|y_{H}\left(x_{i}\right)\right|^{2} / m \geq$ $0.8\|g\|_{2}^{2}$.
Proof. From Theorem 9, $\left\|g_{H}\right\|_{2}^{2} \geq 0.95\|g\|_{2}^{2}$. Thus Claim 12 implies $\sum_{i=1}^{m}\left|g_{H}\left(x_{i}\right)\right|^{2} / m \geq$ $0.98 \cdot 0.95\|g\|_{2}^{2}$ for $m=O(R)$ with probability 0.99 .

At the same time, because $\mathbb{E}\left[\sum_{i=1}^{m}\left|\eta_{H}\left(x_{i}\right)\right|^{2} / m\right]=\left\|\eta_{H}\right\|_{2}^{2}, \sum_{i=1}^{m}\left|\eta_{H}\left(x_{i}\right)\right|^{2} / m \leq 14\left\|\eta_{H}\right\|_{2}^{2}$ with probability at least $1-\frac{1}{14}$ from the Markov inequality. This is also less than 14 . $1.02^{2}\|\eta\|_{2}^{2} \leq 15 \epsilon\|g\|_{2}^{2}$ from the upper bound on $H(t)$.

We have

$$
\frac{1}{m} \sum_{i=1}^{m}\left|y_{H}\left(x_{i}\right)\right|^{2} \geq \frac{1}{m} \sum_{i=1}^{m}\left(\left|g_{H}\left(x_{i}\right)\right|^{2}-2\left|g_{H}\left(x_{i}\right)\right| \cdot\left|\eta_{H}\left(x_{i}\right)\right|+\left|\eta_{H}\left(x_{i}\right)\right|^{2}\right)
$$

By the Cauchy-Schwartz inequality, the cross term $\sum_{i=1}^{m}\left|g_{H}\left(x_{i}\right)\right| \cdot\left|\eta_{H}\left(x_{i}\right)\right| \leq$ $\left(\sum_{i=1}^{m}\left|g_{H}\left(x_{i}\right)\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{i=1}^{m}\left|\eta_{H}\left(x_{i}\right)\right|^{2}\right)^{1 / 2}$. From all discussion above,

$$
\frac{1}{m} \sum_{i=1}^{m}\left|y_{H}\left(x_{i}\right)\right|^{2} \geq(0.93-2 \sqrt{0.93 \cdot 15 \epsilon})\|g\|_{2}^{2}
$$

When ε is a small constant, it is at least $0.8 \cdot\|g\|_{2}^{2}$.

We set $z(t)=y_{H}(t) \cdot e^{2 \pi i f_{0} \beta}-y_{H}(t+\beta)$ for convenience and bound it as follows.
\triangleright Claim 14. Given any small constant $\gamma, \Delta^{\prime}=\Delta+\operatorname{supp}(H)$, and $z(t)=y_{H}(t) \cdot e^{2 \pi i f_{0} \beta}-$ $y_{H}(t+\beta)$ for $\beta \leq \frac{\gamma}{\Delta^{\prime}},\|z\|_{2}^{2} \lesssim\left(\gamma^{2}+\epsilon\right)\|g\|_{2}^{2}$.

Proof. Notice that $y_{H}=g_{H}+\eta_{H}$ where $\operatorname{supp}\left(\widehat{g_{H}}\right) \in\left[f_{0}-\Delta, f_{0}+\Delta\right]$ such that

$$
\int_{f \notin\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]}|\widehat{y}(f)|^{2} \mathrm{~d} f \leq \int_{-\infty}^{\infty}\left|\widehat{\eta_{H}}(f)\right|^{2} \mathrm{~d} f=\int_{-\infty}^{\infty}\left|\eta_{H}(t)\right|^{2} \mathrm{~d} t \leq 1.02^{2} \epsilon \int_{-1}^{1}|g(t)|^{2} \mathrm{~d} t
$$

We bound $\|z\|_{2}^{2}$ through

$$
\begin{aligned}
\int_{-1}^{1}|z(t)|^{2} \mathrm{~d} t \leq \int_{-\infty}^{\infty}|z(t)|^{2} \mathrm{~d} t & =\int_{-\infty}^{\infty}|\widehat{z}(f)|^{2} \mathrm{~d} f \\
& =\int_{f_{0}-\Delta^{\prime}}^{f_{0}+\Delta^{\prime}}|\widehat{z}(f)|^{2} \mathrm{~d} f+\int_{f \notin\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]}|\widehat{z}(f)|^{2} \mathrm{~d} f
\end{aligned}
$$

Therefore we write

$$
\begin{aligned}
\int_{f_{0}-\Delta^{\prime}}^{f_{0}+\Delta^{\prime}}|\widehat{z}(f)|^{2} \mathrm{~d} f & =\int_{f_{0}-\Delta^{\prime}}^{f_{0}+\Delta^{\prime}}\left|\widehat{y_{H}}(f) \cdot e^{2 \pi i f_{0} \beta}-\widehat{y_{H}}(f) \cdot e^{2 \pi i f \beta}\right|^{2} \mathrm{~d} f \\
& \leq \int_{f_{0}-\Delta^{\prime}}^{f_{0}+\Delta^{\prime}}\left|\widehat{y_{H}}(f)\right|^{2} \cdot\left|e^{2 \pi i f_{0} \beta}-e^{2 \pi i f \beta}\right|^{2} \mathrm{~d} f
\end{aligned}
$$

Because $f \in\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]$ and $\beta \leq \frac{\gamma}{\Delta^{\prime}},\left|e^{2 \pi i f_{0} \beta}-e^{2 \pi i f \beta}\right| \leq 4 \pi \gamma$. So

$$
\int_{f_{0}-\Delta^{\prime}}^{f_{0}+\Delta^{\prime}}|\widehat{z}(f)|^{2} \mathrm{~d} f \lesssim \gamma^{2} \int_{-\infty}^{+\infty}\left|\widehat{y_{H}}(f)\right|^{2} \mathrm{~d} f=\gamma^{2} \int_{-\infty}^{+\infty}\left|y_{H}(t)\right|^{2} \mathrm{~d} t \lesssim \gamma^{2}(1+2 \epsilon) \int_{-1}^{1}|g(t)|^{2} \mathrm{~d} t .
$$

On the other hand,

$$
\begin{aligned}
\int_{f \notin\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]}|\widehat{z}(f)|^{2} \mathrm{~d} f & =\int_{f \notin\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]}\left|\widehat{y_{H}}(f) \cdot e^{2 \pi i f_{0} \beta}-\widehat{y_{H}}(f) \cdot e^{2 \pi i f \beta}\right|^{2} \mathrm{~d} f \\
& \leq 4 \int_{f \notin\left[f_{0}-\Delta^{\prime}, f_{0}+\Delta^{\prime}\right]}\left|\widehat{y_{H}}(f)\right|^{2} \mathrm{~d} f \\
& \leq 4 \int_{-\infty}^{+\infty}\left|\widehat{\eta_{H}}(f)\right|^{2} \mathrm{~d} f=4 \int_{-\infty}^{+\infty}\left|\widehat{\eta_{H}}(t)\right|^{2} \mathrm{~d} t
\end{aligned}
$$

which is less than $5 \epsilon \int_{-1}^{1}|g(t)|^{2} \mathrm{~d} t$.
From all discussion above, $\int_{-1}^{1}|z(t)|^{2} \mathrm{~d} t \lesssim\left(\gamma^{2}+\epsilon\right) \int_{-1}^{1}|g(t)|^{2} \mathrm{~d} t$.
For sufficiently small γ and ε, by Markov inequality, we have the following corollary.

- Corollary 15. For sufficiently small constants γ and ϵ, with probability 0.9 over m random samples in $[-1,1], \sum_{i=1}^{m}\left|z\left(x_{i}\right)\right|^{2} \leq 0.01\|g\|_{2}^{2}$.

Finally we finish the proof of Lemma 11.
Proof of Lemma 11. We assume Claim 13 and Corollary 15 hold in this proof, i.e.,

$$
\sum_{i=1}^{m}\left|y_{H}\left(x_{i}\right)\right|^{2} / m \geq 0.8\|g\|_{2}^{2} \text { and } \sum_{i=1}^{m}\left|z\left(x_{i}\right)\right|^{2} / m \leq 0.01\|g\|_{2}^{2} .
$$

For a random sample $\alpha \sim D_{m}$, we bound
$\underset{\alpha \sim D_{m}}{\mathbb{E}}\left[\frac{\left|y_{H}(\alpha) e^{2 \pi i f_{0} \beta}-y_{H}(\alpha+\beta)\right|^{2}}{\left|y_{H}(\alpha)\right|^{2}}\right]=\underset{\alpha \sim D_{m}}{\mathbb{E}}\left[\frac{|z(\alpha)|^{2}}{\left|y_{H}(\alpha)\right|^{2}}\right]=\sum_{i=1}^{m} \frac{\left|z\left(x_{i}\right)\right|^{2}}{\left|y_{H}\left(x_{i}\right)\right|^{2}} \cdot \frac{\left|y_{H}\left(x_{i}\right)\right|^{2}}{\sum_{j=1}^{m}\left|y_{H}\left(x_{j}\right)\right|^{2}}$.
This is $\frac{\sum_{i=1}^{m}\left|z\left(x_{i}\right)\right|^{2}}{\sum_{j=1}^{m}\left|y_{H}\left(x_{j}\right)\right|^{2}} \leq \frac{0.01}{0.8}$. Thus with probability $0.8, \frac{\left|y_{H}(\alpha) e^{2 \pi i f_{0} \beta}-y_{H}(\alpha+\beta)\right|^{2}}{\left|y_{H}(\alpha)\right|^{2}}$ is less than $0.05 / 0.8 \leq 0.09$. From all discussion above, $\frac{\left|y_{H}(\alpha) e^{2 \pi i f_{0} \beta}-y_{H}(\alpha+\beta)\right|}{\left|y_{H}(\alpha)\right|} \leq 0.3$ with probability 0.6 .

6 Bounds on Fourier-sparse Signals

We consider $g(t)=\sum_{j=1}^{k} v_{j} e^{2 \pi i f_{j} t}$ where each $f_{j} \in\left[f_{0}-\Delta, f_{0}+\Delta\right]$ in this section. The main result is to prove $R=\tilde{O}\left(k^{3}\right)$ and $S=\tilde{O}\left(k^{2}\right)$ for k arbitrary real frequencies. We restate Theorem 5 after fixing $T=1$.

- Theorem 16. Given F, Δ, and k, let $g(t)$ be a k-Fourier-sparse signal centered around $f_{0} \in[-F, F]: g(t)=\sum_{i \in[k]} v_{i} \cdot e^{2 \pi \mathbf{i} f_{i} t}$ where $f_{i} \in\left[f_{0}-\Delta, f_{0}+\Delta\right]$ and $y(t)=g(t)+\eta(t)$ be the observable signal on $[-1,1]$, where $\|\eta\|_{2}^{2} \leq \epsilon \cdot\|g\|_{2}^{2}$ for a sufficiently small constant ϵ.

For any $\delta>0$, there exist $\Delta^{\prime}=\Delta+\tilde{O}(R)$ and an efficient algorithm that takes $O\left(k \log ^{2} k \log \frac{F}{\Delta^{\prime} \cdot \delta}\right)$ samples from $y(t)$ and outputs \widetilde{f} satisfying $\left|f_{0}-\widetilde{f}\right| \leq O\left(\Delta^{\prime}\right)$ with probability at least $1-\delta$.

The main improvement is a biased distribution that saves the sample complexity from $O(R) \cdot \log \frac{F}{\Delta^{\prime} \cdot \delta}$ to $\widetilde{O}(k) \cdot \log \frac{F}{\Delta^{\prime} \cdot \delta}$.

We provide the main technical lemma here and defer the proofs of Theorem 3, 4, and 16 to the full version.

- Theorem 17. Given z_{1}, \ldots, z_{k} with $\left|z_{1}\right|=\left|z_{2}\right|=\cdots=\left|z_{k}\right|=1$, there exists a degree $d=O\left(k^{2} \log k\right)$ polynomial $P(z)=\sum_{j=0}^{d} c(j) \cdot z^{j}$ satisfying

1. $P\left(z_{i}\right)=0$ for each $i \in[k]$.
2. Coefficients $c(0)=\Omega(1), c(j)=O(1)$ and $\sum_{j=1}^{d}|c(j)|^{2}=O(k) \cdot|c(0)|^{2}$.

- Corollary 18. Given any $g(t)=\sum_{j=1}^{k} v_{j} e^{2 \pi i f_{j} t}$ and $\theta>0$, there exist $d=O\left(k^{2} \log k\right)$ and a sequence of coefficients $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ such that

1. $\alpha_{j}=O(1)$ for any $j=1, \ldots, d$.
2. For any x (not necessarily in $[-1,1]$), $g(x)=\sum_{j=1}^{d} \alpha_{j} \cdot g(x-j \theta)$.

Proof. Given θ, we set $z_{i}=e^{-2 \pi i f_{j} \theta}$ and apply Theorem 17 to obtain coefficients $c(0), \ldots, c(d)$. Then we set $\alpha_{j}=-c(j) / c(0)$. It is straightforward to verify the second property because of

$$
e^{2 \pi i f_{j} x}-\sum_{j} \alpha_{j} \cdot e^{2 \pi i f_{j}(x-j \theta)}=0
$$

The proof of Theorem 17 requires the following bound on the coefficients of residual polynomials, which is stated as Lemma 5.3 in [4].

- Lemma 19. Given z_{1}, \ldots, z_{k}, for any integer n, let $r_{n, k}(z)=\sum_{i=0}^{k-1} r_{n, k}^{(i)} \cdot z^{i}$ denote the residual polynomial of $r_{n, k} \equiv z^{n} \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)$. Then each coefficient in $r_{n, k}$ is bounded: $\left|r_{n, k}^{(i)}\right| \leq\binom{ k-1}{i} \cdot\binom{n}{k-1}$ for $n \geq k$ and $\left|r_{n, k}^{(i)}\right| \leq\binom{ k-1}{i} \cdot\binom{|n|+k-1}{k-1}$ for $n<0$.

We finish the proof of Theorem 17 here.
Proof. Let C_{0} be a large constant and $d=5 \cdot k^{2} \log k$. We use \mathcal{P} to denote the following subset of polynomials with bounded coefficients:

$$
\left\{\sum_{j=0}^{d} \alpha_{j} \cdot 2^{-j / k} \cdot z^{j} \mid \alpha_{0}, \ldots, \alpha_{d} \in\left[-C_{0}, C_{0}\right] \cap \mathbb{Z}\right\}
$$

For each polynomial $P(z) \in \mathcal{P}$, we rewrite $P(z) \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)$ as

$$
\sum_{j=0}^{d} \alpha_{j} \cdot 2^{-j / k} \cdot\left(z^{j} \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)\right)=\sum_{i=0}^{k-1}\left(\sum_{j=0}^{d} \alpha_{j} \cdot 2^{-j / k} \cdot r_{n, k}^{(i)}\right) z^{i}
$$

The coefficient $\sum_{j=0}^{d} \alpha_{j} \cdot 2^{-j / k} \cdot r_{n, k}^{(i)}$ is bounded by

$$
\sum_{j=0}^{d} C_{0} \cdot 2^{-j / k} \cdot 2^{k} j^{k-1} \leq d \cdot C_{0} \cdot 2^{k} \cdot d^{k} \leq d^{2 k}
$$

Then we apply the pigeonhole principle on the $\left(2 C_{0}+1\right)^{d}$ polynomials in \mathcal{P} after module $\prod_{j=1}^{d}\left(z-z_{j}\right)$: there exist $m>\left(2 C_{0}+1\right)^{0.9 d}$ polynomials P_{1}, \ldots, P_{m} such that each coefficient of $\left(P_{i}-P_{j}\right) \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)$ is $d^{-2 k}$ small from the counting

$$
\frac{\left(2 C_{0}+1\right)^{d}}{\left(d^{2 k} / 4 d^{-2 k}\right)^{k}}>\left(2 C_{0}+1\right)^{0.9 d}
$$

Because $m>\left(2 C_{0}+1\right)^{0.9 d}$, there exists $j_{1} \in[m]$ and $j_{2} \in[m] \backslash\left\{j_{1}\right\}$ such that the lowest monomial z^{l} with different coefficients in $P_{j_{1}}$ and $P_{j_{2}}$ satisfies $l \leq 0.1 d$. Eventually we set

$$
P(z)=z^{-l} \cdot\left(P_{j_{1}}(z)-P_{j_{2}}(z)\right)-\left(z^{-l} \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)\right) \cdot\left(P_{j_{1}}(z)-P_{j_{2}}(z) \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)\right)
$$

to satisfy the first property $P\left(z_{1}\right)=P\left(z_{2}\right)=\cdots=P\left(z_{k}\right)=0$. We prove the second property in the rest of this proof.

We bound every coefficient in $\left(z^{-l} \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)\right) \cdot\left(P_{j_{1}}(z)-P_{j_{2}}(z) \bmod \prod_{j=1}^{k}(z-\right.$ $\left.z_{j}\right)$) by
$k \cdot$ max-coefficient $\left(z^{-l} \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)\right) \cdot \max -\operatorname{coefficient}\left(P_{j_{1}}(z)-P_{j_{2}}(z) \bmod \prod_{j=1}^{k}\left(z-z_{j}\right)\right)$,
which is less than $k \cdot 2^{k}(l+k)^{k-1} \cdot d^{-2 k} \leq d \cdot 2^{k} d^{k-1} \cdot d^{-2 k} \leq d^{-0.5 k}$ from Lemma 19 and the above discussion.

On the other hand, the constant coefficient in $z^{-l} \cdot\left(P_{j_{1}}(z)-P_{j_{2}}(z)\right)$ is at least $2^{-l / k} \geq$ $2^{-0.1 d / k}=k^{-0.5 k}$ because z^{l} is the smallest monomial with different coefficients in $P_{j_{1}}$ and $P_{j_{2}}$ from \mathcal{P}. Thus the constant coefficient $|C(0)|^{2}$ of $P(z)$ is at least $0.5 \cdot 2^{-2 l / k}$.

Next we upper bound the sum of the rest of the coefficients $\sum_{j=1}^{d}|C(j)|^{2}$ by

$$
\sum_{j=1}^{d}\left(2 C_{0} \cdot 2^{-(l+j) / k}+d^{-0.5 k}\right)^{2} \leq 2 \cdot 4 C_{0}^{2} \sum_{j=1}^{d} 2^{-2(l+j) / k}+2 \cdot \sum_{j=1}^{d} d^{-0.5 k \cdot 2} \lesssim k \cdot 2^{-2 l / k}
$$

which demonstrates the second property after normalizing $C(0)$ to 1 .

1 A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding. FOCS, 44:146-159, 2003.
2 Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir Zandieh. A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms. In Proceedings of the 51st annual ACM symposium on Theory of computing (STOC 2019), 2019. arXiv:1812.08723.
3 Y. Bresler and A. Macovski. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(5):1081-1089, October 1986. doi:10.1109/TASSP.1986.1164949.
4 Xue Chen, Daniel M. Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation without a frequency gap. In Foundations of Computer Science(FOCS), 2016 IEEE 57th Annual Symposium on, 2016. arXiv:1609.01361.
5 Xue Chen and Eric Price. Active Regression via Linear-Sample Sparsification. In the 32nd Annual Conference on Learning Theory (COLT 2019), 2019.
6 Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, 23:493-507, 1952.
7 Anna C Gilbert, Sudipto Guha, Piotr Indyk, S Muthukrishnan, and Martin Strauss. Nearoptimal sparse Fourier representations via sampling. In Proceedings of the thirty-fourth annual ACM symposium on Theory of computing, pages 152-161. ACM, 2002.
8 Anna C Gilbert, S Muthukrishnan, and Martin Strauss. Improved time bounds for nearoptimal sparse Fourier representations. In Optics \mathcal{E} Photonics 2005, pages 59141A-59141A. International Society for Optics and Photonics, 2005.
9 Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algorithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1183-1194. SIAM, 2012.
10 Piotr Indyk and Michael Kapralov. Sample-Optimal Fourier Sampling in Any Constant Dimension. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 514-523. IEEE, 2014.
11 Y. Mansour. Randomized Interpolation and Approximation of Sparse Polynomials. ICALP, 1992.

12 Ankur Moitra. The threshold for super-resolution via extremal functions. In STOC, 2015.
13 Eric Price and Zhao Song. A Robust Sparse Fourier Transform in the Continuous Setting. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 583-600. IEEE, 2015.
14 R Prony. Essai experimental et analytique. J. de l'Ecole Polytechnique, 1795.

