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Abstract
We introduce a method for proving bounds on the SoS rank based on Boolean Function Analysis
and Approximation Theory. We apply our technique to improve upon existing results, thus making
progress towards answering several open questions.

We consider two questions by Laurent. First, finding what is the SoS rank of the linear
representation of the set with no integral points. We prove that the SoS rank is between d n

2 e and
d n

2 +
√
n log 2n e. Second, proving the bounds on the SoS rank for the instance of the Min Knapsack

problem. We show that the SoS rank is at least Ω(
√
n) and at most d n+4d

√
n e

2 e. Finally, we consider
the question by Bienstock regarding the instance of the Set Cover problem. For this problem we
prove the SoS rank lower bound of Ω(

√
n).
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1 Introduction

A boolean hypercube optimization problem is a (constrained) polynomial optimization problem
in n-variables, where the set of feasible points is restricted to a subset of an n-dimensional
hypercube. This family of problems lies at the heart of theoretical computer science. However,
solving general optimization problem over boolean hypercube is NP-hard, since the class
contains, e.g., the Independent Set problem.

One of the most successful approaches for constructing theoretically efficient algorithms
for this family of problems is the Sum of Squares (SoS) algorithm [23, 41, 43, 51]. For a wide
variety of combinatorial optimization problems it provides the best available algorithms [1,
20, 5, 24, 36]. Recently, SoS has also been applied to problems in robust estimation [26],
dictionary learning [3, 49] and tensor completion and decomposition [4, 25, 45].
Other applications can be found in [5, 7, 12, 13, 17, 18, 24, 38, 39, 46]; see also the surveys [14,
33, 35].

On the other hand it is known that the SoS algorithm admits certain weaknesses. For
example, a Ω(n) degree SoS certificate is needed to detect a simple integrality argument for
some instance of the Knapsack problem as shoved by Grigoriev in [21], see also [22, 28, 34].
Further weaknesses of SoS for Knapsack problems were proved in [11, 31]. Some lower
bounds on the effectiveness of the SoS have been shown for CSP problems [27, 52] and for
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the planted clique problem [2, 40]. Finally, degree Ω(
√
n) SoS was proved to have problems

scheduling unit size jobs on a single machine to minimize the number of late jobs, see [30].
The problem is solvable in polynomial time using the Moore-Hodgson algorithm.

Proving SoS lower bounds is not an easy task. In most of the results, the lower bound is
proved on the Lasserre relaxation side, by explicitly giving a pseudoexpectation operator that
maps polynomials of certain degree to real numbers, such that the corresponding moment
matrix for variables and localizing matrices for constraints are Positive Semi-definite (PSD).
Both finding a suitable pseudoexpectation and proving PSDness might be very difficult.

In this paper we follow the less common approach of working on a dual side, the SoS
certificate of nonnegativity. This approach does not require finding a pseudoexpectation
operator and proving PSDness of the matrices, which we find very convenient. We prove
lower bounds by exploiting the properties of boolean functions and by using the results
from approximation theory, especially the theory of approximating boolean functions, see
e.g. [44, 50, 53]. This, in our case, directly implies the existence/non-existence of the SoS
certificate. To the best of our knowledge there are not that many SoS lower bounds using
this approach, see e.g. [37].

On an intuitive level our approach might be explained in the following way. Imagine
one wants to write a degree d SoS certificate for some function f that is nonnegative over
a subset of the boolean hypercube. Consider a vertex x of the hypercube, where f(x) < 0.
Note that in order to successfully write a certificate one has to use the constraint g, that
made the point x infeasible, and multiply it by some SoS polynomial s of degree at most 2d.
Moreover, the values f(x) and g(x) give some lower bound on the value of s(x). Ideally, we
would like s to take value zero on other vertices of the hypercube, this is the case for degree
n certificates. However, the lower the degree d, the more other vertices of the hypercube are
”affected” by the value of s(x).

This simple observation is strong enough to provide the best known SoS ranks for the
following problems:

For B ≥ 2. The Empty Integral Hull (EIH) problem is a feasibility problem of
the form

EIH = {0, 1}n ∩ {x ∈ [0, 1]n |
∑

i∈[n]\I

xi +
∑
i∈I

(1− xi) ≥
1
B

for all I ⊆ [n]} (1.1)

For B = 2, a long list of results for the performance of the lift and project methods for
EIH problem is known. In [33], Laurent shows that the Sherali-Adams rank is n. They
then conjecture the SoS rank of EIH is n− 1. Moreover, the rank is also equal to n for the
Lovász-Schrijver N+ operator (with positive semidefiniteness) [19], the Lovász-Schrijver N+
operator strengthen with Chvátal cuts [15], and the N+ operator combined with Gomory
mixed integer cuts (equivalent to disjunctive cuts) [16]. Recently, in [29], the conjecture was
disproved, and it was shown that the SoS rank of EIH is between Ω(

√
n) and n− Ω(n1/3).

In this paper we prove the following result:

I Theorem 1. For B = 2, the SoS rank of EIH problem is between dn2 e and d
n
2 +
√
n log 2n e.

In this paper we also prove lower and upper bounds on the SoS rank for any B ≥ 2, see
Theorem 12 and Lemma 13.

The second considered problem is the instance of the Min Knapsack (MK) problem.
For P ≥ 2, the problem is defined as:

MK: min
∑
i∈[n]

xi s.t.
∑
i∈[n]

xi ≥
1
P

(1.2)

x ∈ {0, 1}n
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For P = 2 the problem was previously considered by Cook and Dash [15]. They proved that
the Lovasz-Schrijver hierarchy rank is n. For the Sherali-Adams hierarchy Laurent in [33]
proved that the rank is also equal to n and raised the open question to find the rank for the
SoS hierarchy. For n = 2 they also proved that the SoS rank is 2, but whether or not this
happens for general n was left open. In [30] the possibility that the Lasserre/SoS rank is n
for n ≥ 3 is ruled out. Finally, in [28], a SoS rank lower bound of t = Ω(log1−ε n), for ε > 0,
was presented. In this paper we prove the following result:

I Theorem 2. For P = 2, the SoS rank of the MK problem is between Ω(
√
n) and dn+4d

√
ne

2 e.

Moreover, we prove a SoS rank lower bound for any P ≥ 2 of the value Ω(
√
n+
√
n logP ),

see Lemma 14.
The third problem we consider is the instance of the Set Cover (SC) problem:

SC: min
∑
i∈[n]

xi s.t.
∑

i∈[n]\{j}

xi ≥ 1 ∀j ∈ [n] (1.3)

x ∈ {0, 1}n

This instance was considered in [8], where an open question was raised asking what is the
rank of this polytope, conjecturing that the SoS rank is at least n/4, based on numerical
experiments. In [29], the conjecture was supported by proving that the rank is at least
log1−δ(n) for any δ > 0. Finally, the instance can be seen as the Min Knapsack instance
with Knapsack Cover inequalities, see [29]. In this paper we prove the following result:

I Theorem 3. The SoS rank of the SC problem is at least Ω(
√
n).

2 Preliminaries

For any n ∈ N we denote [n] = {1, . . . , n}. Let R[x] = R[x1, . . . , xn] be the ring of n-variate
real polynomials. Furthermore, let G be the set of polynomials

G := {g0 := 1, g1, . . . , gm : gi ∈ R[x] for all i ∈ [m]}.

For a given set G, the corresponding semialgebraic set is defined as

G+ := {x ∈ Rn | g(x) ≥ 0 for all g ∈ G} ⊆ Rn.

Moreover, for any given semialgebraic set G+ ⊆ Rn, let K(G+) be the set of nonnegative
polynomials over the set G+

K(G+) := {f ∈ R[x] | f(x) ≥ 0 for all x ∈ G+}.

For a given f ∈ R[x] and a set G we define the corresponding constrained polynomial
optimization problem (CPOP)

f∗ := min{f(x) | x ∈ G+} = max{λ ∈ R | f − λ ∈ K(G+)}. (2.1)

and the constrained polynomial feasibility problem (CPFP), which consists in testing whether
the corresponding set G+ is empty or not, see e.g., [9].

Since the problems CPOP and CPFP are NP-hard in general it is desirable to find a
proper subset that is a good inner approximation of K(G+) such that the corresponding
program is computationally tractable.

ICALP 2019



79:4 Sum-Of-Squares Bounds via Boolean Function Analysis

SoS method

The SoS method approximates the cone K(G+) by using the set of sum of square polynomials.
Let SOS := {s | s =

∑k
i=1 f

2
i , f ∈ R[x], k ∈ N∗} be the set of (finite) sum of square

polynomials (SoS). Let

ΣGn,d :=
{∑m

i=1 sigi | si ∈ SOS, gi ∈ G, deg(si) ≤ 2d, for all i ∈ [m] and deg(s0) ≤ 2
⌈

2d+deg(G)
2

⌉}
,

where deg(G) = max{deg(g) | g ∈ G}. The degree d SoS certificate for f being nonnegative
over G+ is f ∈ ΣGn,d. The degree d SoS program for CPOP takes the form:

fdSOS := max{λ ∈ R | f − λ ∈ ΣGn,d}; (2.2)

and for CPFP it consists in testing whether or not −1 ∈ ΣGn,d and, if so, implying that the
set G+ is empty.

SoS method over the boolean hypercube

In this paper we consider optimization over the boolean hypercube H := {0, 1}n. We assume
that G is such that G+ ⊆ H. We fix the following notation. Let H+ and H− be G+ and H\G+,
respectively. For I ∈ [n], let xI ∈ Rn be the characteristic vector of set I such that (xI)i = 1
if i ∈ I and 0 otherwise. Moreover, for any f ∈ R[x], let H−(f) := {x ∈ H | f(x) < 0} and
H+(f) := {x ∈ H | f(x) ≥ 0}.

Throughout the paper we assume that G is always of the form

G := {g0 := 1, g1, . . . , gm,±(x2
1 − x1), . . . ,±(x2

n − xn) : gi ∈ R[x] for all i ∈ [m]}.

In this case solving a degree d SoS program can be done via Semi-definite Program (SDP)
of size O(

∑d
k=0

(
n
k

)
). Moreover, it is known that degree n SoS program is exact meaning

that for CPOP we have fnSOS = f∗ and for CPFP we have −1 ∈ Σn,n if and only if the set
G+ is empty, see e.g. [6, 32, 33]. A very useful result was recently proved in [48] giving an
upper bound on the degree of the SoS certificate for every degree r unconstrained boolean
hypercube optimization problem:

I Theorem 4 ([48]). Every n-variate polynomial of degree r, nonnegative over the uncon-
strained boolean hypercube has a degree dn+r−1

2 e SoS certificate.

Now we give the following definition.

I Definition 5. The SoS rank for a CPOP (CPFP) is the smallest degree d such that the
degree d SoS program is exact.

That is why the SoS rank for EIH problem is the smallest degree d such that there exist SoS
polynomials sI , for all I ⊆ [n] of degree at most 2d and s0 of degree at most 2d + 2 such
that: −1 = s0 +

∑
I⊆[n] sI(x)

(∑
i∈[n]\I xi +

∑
j∈I(1− xj)− 1/B

)
.

Analogously, the SoS rank for the MK problem is the smallest d such that there exist
SoS polynomials s1 of degree at most 2d and s0 of degree at most 2d + 2 such that:∑
i∈[n] xi − 1 = s0 + s1

(∑
i∈[n] xi − 1/P

)
.

Finally, the SoS rank for the SC problem is the smallest degree d such that there exist
SoS polynomials s1, . . . , sn of degree at most 2d and s0 of degree at most 2d+ 2 such that:∑
i∈[n] xi − 2 = s0 +

∑
j∈[n] sj(x)

(∑
j 6=i∈[n] xi − 1

)
.
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3 Analysis of boolean functions

In this section we show some properties of boolean functions.
The first one is a very intuitive statement saying that the lower degree SoS boolean

function we consider, the less of the total mass of the values is in one particular point.
The second one is the special case of results in [44, 50, 53] giving a lower bound on the

degree of a real polynomial that approximates the NOR boolean function in `∞-norm.

I Lemma 6. For every function f : {0, 1}n → R of degree at most d and every subset J ⊆ [n]
the following holds:∑

S⊆[n]

f2(xS) ≥ 2n∑d
i=0
(
n
i

)f2(xJ).

Moreover, for every J ⊆ [n] there exists a degree d polynomial such that the above inequality
is satisfied with equality.

Proof. We will use some elementary Fourier analysis of boolean functions (see e.g. [42, Ch. 1]).
For the sake of following an established notation we analyze the function h : {±1}n → R
instead of f : {0, 1}n → R using the bijective transformation f(x) = h(w), for w = 1− 2x.
Clearly this transformation preserves the degree of the function.

Let wI ∈ Rn be the characteristic vector of set I ⊆ [n] such that (wI)i = −1 if i ∈ I and
1 otherwise. The Fourier expansion of the function h takes the following form:

h(w) =
∑
I⊆[n]
|I|≤d

ĥ(I)
∏
i∈I

wi,

where ĥ(I) it the Fourier coefficient of the monomial
∏
i∈I wi. Let g : {±1}n → R be such

that g := h2. Thus g(w) =
(∑

I⊆[n]
|I|≤d

ĥ(I)
∏
i∈I wi

)2

and its Fourier expansion is of the form:

g(w) =
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
+

∑
I 6=K⊆[n]
|I|,|K|≤d

ĥ(I)ĥ(K)
∏

i∈I4K

wi, (3.1)

since all monomials squared evaluate to 1 over the {±1}n boolean hypercube.
By [42, Fact 1.12] and Equation 3.1 we know that

ĝ(∅) = E
w∼{±1}n

g(w) = 2−n
∑
I⊆[n]

g(wI) =
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
(3.2)

Without loss of generality, we assume that the set J in the statement of the Theorem is the
empty set. Thus:

g(w∅) =
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
+

∑
I 6=K⊆[n]
|I|,|K|≤d

ĥ(I)ĥ(K). (3.3)

Now, we show that among all boolean functions normalized to have expected value over
{±1}n boolean hypercube equal to

∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
the function g := h2, such that all Fourier

ICALP 2019
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coefficients of h are the same, takes the largest value on the point w∅. Indeed, consider a
function g evaluated at point w∅. The RHS of Equation 3.3 satisfies:

∑
I,K⊆[n]
|I|,|K|≤d

ĥ(I)ĥ(K) ≤ 1
2

∑
I,K⊆[n]
|I|,|K|≤d

(
ĥ2(I) + ĥ2(K)

)
=

d∑
i=0

(
n

i

) ∑
I⊆[n]
|I|≤d

ĥ2(I)

and the equality holds when all Fourier coefficients of h are the same.
Finally, we show that for the function g = h2, such that all Fourier coefficients of h are

the same, the Theorem holds. Assume w.l.o.g. that for every I ⊆ [n], ĥ(I) = 1. Then we get

h2(w∅) = g(w∅) =
(

d∑
i=0

(
n

i

))2

and
∑
I⊆[n]

h2(wI) = 2n
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
= 2n

d∑
i=0

(
n

i

)
.

thus the first part of the statement follows.
Note, that, for J = ∅, the above proof gives an explicit construction of a degree d

polynomial that satisfies the inequality in the statement of Lemma 6 with equality. In an
analogous way one can construct a function for other sets J ⊆ [n], thus the second part of
the claim follows. J

Clearly a similar statement holds for functions being a sum of squares of boolean functions.

I Corollary 3.1. For every function s =
∑
i h

2
i such that for every i, hi : {0, 1}n → R is of

degree at most d and every subset J ⊆ [n] the following holds:∑
S⊆[n]

s(xS) ≥ 2n∑d
i=0
(
n
i

)s(xJ).

Now we present the second result in [44, 50, 53]. We start with the following definitions.
A boolean function f : {0, 1}n → R is symmetric if f(x) = fi ∈ R for every x ∈ {0, 1}n

such that |x| = i. A polynomial p : Rn → R approximates a symmetric boolean function f in
`∞-norm within an error c, if |f(x)− p(x)| ≤ c for every x ∈ {0, 1}n. A symmetric boolean
function f := {0, 1}n → {0, 1} is a NOR function if it satisfies f(0, . . . , 0) = 1 and f(x) = 0
for every other x ∈ {0, 1}n.

Now we present the result proved in [44, 50, 53].

I Theorem 7 ( [44, 50, 53]). For every constant 2−n ≤ c < 1/2 the minimum degree of a
real polynomial that approximates a NOR boolean function in `∞-norm within en error c is
Θ(
√
n+

√
n log 1/c).

3.1 Application to the SoS certificates
In this section, we apply Theorem 4, Corollary 3.1 and Theorem 7 to provide lower and upper
bounds on the SoS rank for some family of problems. We start with the following definition.

I Definition 8. A polynomial f is called a Single Vertex Cutting (SVC) constraint if there
exists only one x ∈ {0, 1}n such that f(x) < 0. A set G is SVC if all functions g1, . . . , gm ∈ G
are SVC and every x ∈ {0, 1}n is cut by at most one g ∈ G. A problem is SVC if its
corresponding set G is SVC.

Note that all three problems considered in this paper are SVC Problems.
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I Theorem 9. Consider an SVC system G. For some f ∈ R[x], assume that H−(f) = H−,
thus |H−(f)| = m. For every xJ ∈ H−(f) let gJ ∈ G be such that gJ(xJ) < 0, gJ is unique.

There is no degree d certificate for f over system G, if for every cJ ≥ 1, for every J such
that xJ ∈ H−(f), the following holds

∑
xJ∈H+(f)

f(xJ)+
∑

xJ∈H−(f)

f(xJ)(1−cJ) <
(

2n∑d
k=0

(
n
k

) − 1
) ∑
xI∈H−(f)

cI
f(xI)
gI(xI)

· min
xJ∈H
J 6=I

gI(xJ)

Proof. Assume, there exists a SoS certificate for f of degree d over G, then

f(x) = s0 +
∑

xJ∈H−
sJ(x)gJ(x), for every x ∈ {0, 1}n,

for sJ , being SoS of degree at most 2d, and s0 being SoS of degree at most 2
⌈

2d+deg(G)
2

⌉
.

Consider xJ ∈ H−(f). Since gJ is the only constraint from G that is negative on this point
we get that

sJ(xJ) ≥ f(xJ)
gJ(xJ)

Let cJ ≥ 1 be such that sJ(xJ) = cJ · f(xJ )
gJ (xJ ) , we obtain:

f(xJ) = s0(xJ)︸ ︷︷ ︸
≥0

+ sJ(xJ)gJ(xJ)︸ ︷︷ ︸
=cJf(xJ )

+
∑

xI∈H−
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

.

By summing up over all points in H−(f) we get:∑
xJ∈H−(f)

f(xJ) =
∑

xJ∈H−(f)

s0(xJ)

︸ ︷︷ ︸
≥0

+
∑

xJ∈H−(f)

sJ(xJ)gJ(xJ)

︸ ︷︷ ︸
=
∑

xJ∈H−(f)
cJf(xJ )

+
∑

xJ∈H−(f)

∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

thus

∑
xJ∈H−(f)

f(xJ)(1− cJ) =
∑

xJ∈H−(f)

s0(xJ) +
∑

xJ∈H−(f)

 ∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

 .

Finally, we have

∑
xJ∈H+(f)

f(xJ) +
∑

xJ∈H−(f)

f(xJ)(1− cJ) =
∑
xJ∈H

s0(xJ) +
∑
xJ∈H

 ∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

 ,

where

∑
xJ∈H

 ∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

 ≥ ∑
xI∈H−

( 2n∑d
k=0

(
n
k

) − 1
)
sI(xI)

min
xJ∈H
J 6=I

gI(xJ)


and the last inequality follows by Corollary 3.1. Since,

∑
xJ∈H s0(xJ) ≥ 0 and sI(xI) =

cI · f(xI )
gI (xI ) , the claim follows. J

ICALP 2019
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I Theorem 10. If every SoS certificate of f over system G of the form f = s0 +
∑m
i=1 sigi,

is such that the polynomial s(x) :=
∑m
i=1 si(x) necessarily has to take at least value 1 − c

for x = (0, 0, . . . . , 0) and at most value c, for every other x ∈ {0, 1}n, for some constant
2−n ≤ c < 1/2, then the degree of the certificate is at least Ω

(√
n+

√
n log 1/c

)
.

Proof. Assume by contradiction that there exists a SoS certificate of degree smaller than
Ω
(√

n+
√
n log 1/c

)
. Note that s is a real polynomial that approximates the NOR function

in `∞-norm within the constant error c. Since s is of degree smaller than Ω
(√

n+
√
n log 1/c

)
it contradicts Theorem 7. J

Finally, we show an argument for an upper bounds on the SoS rank.

I Lemma 11. Let f be of degree at most d+ 1 and let gi for i ∈ [m] be linear. If there exist
SoS polynomials si, . . . , sm of degree at most d such that

f(x) ≥
m∑
i=1

si(x)gi(x), for every x ∈ {0, 1}n,

then there exists a SoS certificate for f of degree dn+d
2 e.

Proof. Note that f(x)−
∑m
i=1 si(x)gi(x) ≥ 0, for every x ∈ {0, 1}n. By Theorem 4 and the

fact that we consider gi linear, for i ∈ [m], we get that there exists a SoS polynomial s0 of
degree at most dn+(d+1)−1

2 e such that: f(x)−
∑m
i=1 si(x)gi(x) = s0. J

4 Application to the EIH problem

In this section we show how to use the results presented in Section 3.1 to derive lower and
upper bounds on the SoS rank for the Empty Integral Hull problem.

4.1 SoS rank lower bounds
In this section we prove a lower bounds on the SoS rank for the Empty Integral Hull problem.

I Theorem 12. The SoS rank for the Empty Integral Hull problem parametrized by constant
B, is greater or equal the minimum d, which satisfies:

B

B − 1 ≥
2n∑d
k=0

(
n
k

) .
Proof. We directly apply Theorem 9. We want to prove that for f(x) = −1 there is no
SoS certificate of degree d, for d such that B

B−1 <
2n∑d

k=0 (n
k) . Following the notation from

Theorem 9 note that for every gI ∈ G, the smallest nonnegative value over the hypercube
{0, 1}n of gI is 1− 1/B. By Theorem 9 there is no degree d SoS certificate for f = −1, if for
every cI ≥ 1, I ⊆ [n], the following is satisfied:

(−1)
∑
I⊆[n]

(1− cI) <
(

2n∑d
k=0

(
n
k

) − 1
) ∑
I⊆[n]

cI
−1
− 1
B

·
(

1− 1
B

)
.

Let c = 1/2n
∑
I⊆[n] cI . The above is satisfied if

c− 1
c

<

(
2n∑d
k=0

(
n
k

) − 1
)

(B − 1) .

Since c ≥ 1, we have c−1
c < 1 and the above inequality holds if 1

B−1 <

(
2n∑d

k=0 (n
k) − 1

)
. J
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We get the following corollary.

I Corollary 4.1. The SoS rank for the EIH problem with B = 2, is at least dn/2e.

Proof. By Theorem 12 the SoS rank of the EIH for B = 2 is greater or equal to the minimum
d that satisfies: 2 ≥ 2n∑d

k=0 (n
k) . which holds for d ≥ dn/2e. J

One can apply Theorem 12 to easily reprove the result from [31], saying that for B = 2n+1

the SoS rank is at least n.

I Corollary 4.2. For B = 2n+1 the EIH problem has the SoS rank n.

4.2 SoS rank upper bounds
In this section we prove an upper bound on the SoS rank for the Empty Integral Hull problem.

I Lemma 13. The SoS rank for the Empty Integral Hull problem parametrized by the constant
B, is less or equal the minimum d, that satisfies

Bn

Bn− 1 >
2n∑d
k=0

(
n
k

) .
Proof. We follow the notation and reasoning from Theorem 9. Let cI ≥ 1, for I ⊆ [n] be
large enough constants, whose value is specified later.

Our goal is to construct a SoS certificate for f = −1 using the SoS polynomials of
degree at most 2d, for d given in the statement of this lemma. In our construction we
take s0 = 0 and consider sJ , for J ⊆ [n], to be 2n polynomials squared, each of which
constructed as in Lemma 6, such that for every I, J ⊆ [n] we have

∑
K⊆[n] sI(xK)gI(xK) =∑

K⊆[n] sJ(xK)gJ(xK).
We want to prove that there exists a certificate of the form

−1 = f(xJ) = sJ(xJ)gJ(xJ)︸ ︷︷ ︸
=cJf(xJ )=−cJ

+
∑
xI∈H
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

, for every J ⊆ [n], (4.1)

where, for every J ⊆ [n], by the construction of the polynomial sJ , we know that:

(
2n∑d

k=0 (n
k) − 1

)
sJ(xJ)

min
xI∈H
I 6=J

gJ(xI)︸ ︷︷ ︸
=1−1/B

 ≤
∑
xI∈H
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

≤
(

2n∑d

k=0 (n
k) − 1

)
sJ(xJ)

max
xI∈H
I 6=J

gJ(xI)︸ ︷︷ ︸
=n−1/B

 .

Let

∑
xI∈H
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

= α

(
1− 1

B

)(
2n∑d
k=0

(
n
k

) − 1
)
sJ(xJ), for every J ⊆ [n],

for some 1 ≤ α ≤ n−1/B
1−1/B . Since sJ(xJ) = cJ · f(xJ)/gJ(xJ) = cJ · −1

−1/B = cJ · B, thus
satisfying Equation 4.1 requires:

cJ − 1
cJ

= α

(
2n∑d
k=0

(
n
k

) − 1
)

(B − 1) , for every J ⊆ [n].
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Now, put all cJ equal and note that cJ can be chosen arbitrarily, so there exists SoS certificate
of degree d if we can satisfy,

α

(
2n∑d
k=0

(
n
k

) − 1
)

(B − 1) < 1.

which holds if

n− 1/B
1− 1/B (B − 1)

(
2n∑d
k=0

(
n
k

) − 1
)

= (Bn− 1)
(

2n∑d
k=0

(
n
k

) − 1
)
< 1.

Finally, the above is satisfied if 2n∑d

k=0 (n
k) <

Bn
Bn−1 . J

For B = 2 we get the following corollary.

I Corollary 4.3. The SoS rank for the EIH problem for B = 2 is at most d n2 +
√
n log 2n e.

Proof. By Lemma 13 we know that the SoS rank is smaller or equal to the smallest d
that satisfies

2n∑d
k=0

(
n
k

) < 2n
2n− 1 .

Since 2n =
∑d
k=0

(
n
k

)
+
∑n
k=d+1

(
n
k

)
we get the requirement∑n

k=d+1
(
n
k

)
2n −

∑n
k=d+1

(
n
k

) < 2n
2n− 1 − 1

and finally
n∑

k=d+1

(
n

k

)
<

2n

2n.

By the standard Chernoff bound, see e.g. [10], for d > n/2 we know that
∑n
k=d+1

(
n
k

)
=∑n−d−1

k=0
(
n
k

)
≤ 2n exp −(2d+2−n)2

4n . Thus for d > 1
2
(
n− 2 + 2

√
n log 2n

)
there exists a SoS

certificate for EIH problem for B = 2. J

5 Application to the MK problem

In this section we prove SoS rank lower and upper bounds for the MK problem.

5.1 SoS rank lower bound
We start with presenting the lower bound for the MK Problem.

I Lemma 14. The SoS rank lower bound for the MK problem for is at least Ω(
√
n+
√
n logP ).

Proof. By contradiction, assume there exists a SoS certificate of degree smaller than Ω(
√
n+√

n logP ) for the function
∑n
i=1 xi − 1, namely

n∑
i=1

xi − 1 = s0(x) + s1(x)
(

x∑
i=1

xi −
1
P

)
, for every x ∈ {0, 1}n.
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for s0 and s1 SoS of degree smaller than Ω(
√
n +
√
n logP ). Since s0(x) ≥ 0, for every

x ∈ {0, 1}n, we know that

s1(0, . . . , 0) ≥ −1
− 1
P

= P and s1(x) ≤
∑n
i=1 xi − 1∑x
i=1 xi −

1
P

≤ 1 for every other x ∈ {0, 1}n.

This implies the existence of the function s(x) = s(x)/P of degree smaller than Ω(
√
n +√

n logP ) that approximates the NOR function within `∞-norm within the error 1/P which
contradicts Theorem 10. J

A direct application of Lemma 14 gives the following corollary:

I Corollary 5.1. The SoS rank lower bound for MK problem for P = 2 is at least Ω(
√
n).

5.2 SoS rank upper bounds
In this section we prove an upper bound on the SoS rank for the MK problem for P = 2.
We start with proving the following Lemma.

I Lemma 15. For every n ∈ N there exists a function f : {0, 1}n → R of degree 2d
√
n e

such that f(0, . . . , 0) ≥ 2, f(x) = 0 for every x ∈ {0, 1}n such that |x| = 1 and for every
other x ∈ {0, 1}n the function takes the value |f(x)| ≤ 1.

Proof. Our construction provides a symmetric polynomial thus in the following we construct
a univariate polynomial g : R→ R such that f(x1, . . . , xn) := g(

∑n
i=1 xi) satisfies the claimed

properties. We start with presenting steps for constructing polynomial g.
Step 1: Consider a Chebyshev polynomial Td(x) : [−1, 1] → [−1, 1] of degree d = 2d

√
n e.

Prove that the smallest root (left-most one) appears before point x = −1 + 1/n.
Step 2: Shift and spread the polynomial Td(x) such that the domain is [0, n], namely consider

T
′

d(x) = Td(2x/n− 1). Note that the smallest zero of T ′d appears before point x = 1/2.
Step 3: Extend the domain of T ′d(x) to be [−1/2, n] and then prove that T ′d(−1/2) =

Td(−1− 1/n) takes the absolute value at least 2.
Step 4: Consider a polynomial T ′′d obtained from shifting the polynomial T ′d to the right

such that the smallest zero is exactly at point x = 1. Note that g := T
′′

d satisfies all the
required properties.

It remains to prove the claims from Step 1 and 3. Let us start with the claim from Step 1.
It is known that Chebyshev polynomial of degree d, Td(x), has zeros at points cos

( 2j−1
d

π
2
)

for j = 1, . . . , d see e.g. [47][Equation 1.17], thus smallest zero is at the point cos
(
π − π

2d
)
.

We consider d = 2d
√
n e, thus it is sufficient to prove that cos

(
π − π

4
√
n

)
+ 1 − 1

n ≤ 0 for
every n ∈ R+. To do so, consider the function

h(z) = cos
(
π − π

4z

)
+ 1− 1

z2

and note that h(z) is increasing in z for z ∈ R+. Indeed the derivative of h(z) is equal to

h
′
(z) = 2

z3 −
π

4z2 sin
(
π − π

4z

)
=

8− πz sin
(
π
4z
)

4z3 .

Since, for all z ∈ R+, sin z ≤ z, it is enough to show that 8− πz π4z ≥ 0, which is clearly the
case. Next we show that limz→∞ h(z) = 0. Indeed, by the algebraic limit theorem

lim
z→∞

(
cos
(
π − π

4z

)
+ 1− 1

z2

)
= lim
z→∞

cos
(
π − π

4z

)
− lim
z→∞

1
z2 + 1 = 0.
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It remains to prove the claim from Step 3. To do so, we use the characterization of
Chebyshev polynomial given in [47, Equation 1.12]:

Td(x) = 1
2

((
x−

√
x2 − 1

)d
+
(√

x2 − 1 + x
)d)

.

For d = 2d
√
ne and x = −1− 1/n we get:

T2d
√
ne

(
−1− 1

n

)
≥ 1

2


−1− 1

n
−

√(
−1− 1

n

)2
− 1

2d
√
n e


≥ 1
2

((
−1−

√
2√
n

)2
√
n
)

where 1
2

((
−1−

√
2√
n

)2
√
n
)

is increasing in n and for n = 1 takes value bigger than 2. J

Finally, we prove the SoS rank upper bound for the MK problem for P = 2.

I Lemma 16. The SoS rank for the MK for P = 2 is at most d = dn+4d
√
ne

2 e.

Proof. We show that there exist a SoS certificate of degree d = dn+4d
√
ne

2 e for the function∑m
i=1 xi − 1. Consider the polynomial f of degree 2d

√
ne constructed in Lemma 15. Take

s1 = f2 and note that
∑n
i=1 xi − 1 − 0.8f2(x) (

∑m
i=1 xi − 1/2) ≥ 0 for every x ∈ {0, 1}n,

since (0.8 · 2)2 > 2 and 0.82 < 2/3. Applying Theorem 4 we get that there exists a SoS
certificate for

∑n
i=1−1 of degree d = dn+4d

√
ne

2 e. J

6 Application to the SC problem

In the last section we prove the SoS rank lower bound for the SC problem.

I Lemma 17. The SoS rank for the SC problem is at least Ω(
√
n).

Proof. By contradiction, assume there exists a SoS certificate of degree smaller than Ω(
√
n)

for the function
∑n
i=1 xi − 2, namely:

∑n
i=1 xi − 2 = s0(x) +

∑n
j=1 sj(x)

(∑n
i=1
i 6=j

xi − 1
)
.

We follow the idea in the proof of Lemma 14. Let s(x) =
∑n
i=1 si(x) and take k = bn/3c.

For every j ∈ [n] and x ∈ {0, 1}n such that |x| ≥ 3 we know that
∑n
i=1
i6=j

xi − 1 ≥
∑n
i=1 xi − 2.

Thus, note that for every ` ∈ [k] and for every x ∈ {0, 1}n such that |x| = 3` we have:

s(0, . . . , 0) ≥ 2 and s(x) ≤ 1, for every x ∈ {0, 1}n, s.t. |x| = 3`, for ` ∈ [k].

Now consider a symmetric function s over k-dimensional boolean hypercube {0, 1}k, s :=
{0, 1}k → R that takes the values:

s(z) :=
(
n

3`

)−1 ∑
x∈{0,1}n

|x|=3`

s(x), for every z ∈ {0, 1}k, |z| = `.

Clearly, deg(s) is at most deg(s) and note that it holds:

s(0, . . . , 0) ≥ 2 and s(z) ≤ 1 for every other z ∈ {0, 1}k

and the function s(z)/3 is of degrees smaller than Ω(
√
n) and approximates the NOR function

in `∞-norm within the error 1/3, which contradicts Theorem 10. J
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