
A Simple Gap-Producing Reduction for the
Parameterized Set Cover Problem
Bingkai Lin
National Institute of Informatics, Tokyo, Japan
Nanjing University, Nanjing, China
lin@nii.ac.jp

Abstract
Given an n-vertex bipartite graph I = (S,U,E), the goal of set cover problem is to find a minimum
sized subset of S such that every vertex in U is adjacent to some vertex of this subset. It is NP-hard
to approximate set cover to within a (1− o(1)) lnn factor [14]. If we use the size of the optimum
solution k as the parameter, then it can be solved in nk+o(1) time [16]. A natural question is: can
we approximate set cover to within an o(lnn) factor in nk−ε time?

In a recent breakthrough result[24], Karthik, Laekhanukit and Manurangsi showed that assuming
the Strong Exponential Time Hypothesis (SETH), for any computable function f , no f(k) ·nk−ε-time
algorithm can approximate set cover to a factor below (logn)

1
poly(k,e(ε)) for some function e.

This paper presents a simple gap-producing reduction which, given a set cover instance I =
(S,U,E) and two integers k < h ≤ (1− o(1)) k

√
log |S|/ log log |S|, outputs a new set cover instance

I ′ = (S,U ′, E′) with |U ′| = |U |h
k

|S|O(1) in |U |h
k

· |S|O(1) time such that
if I has a k-sized solution, then so does I ′;
if I has no k-sized solution, then every solution of I ′ must contain at least h vertices.

Setting h = (1 − o(1)) k
√

log |S|/ log log |S|, we show that assuming SETH, for any computable
function f , no f(k) · nk−ε-time algorithm can distinguish between a set cover instance with k-sized
solution and one whose minimum solution size is at least (1− o(1)) · k

√
logn

log logn . This improves the
result in [24].

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases set cover, FPT inapproximability, gap-producing reduction, (n, k)-universal
set

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.81

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/1902.03702

Funding This work was supported in part by the National Key R&D Program of
China 2018YFB1003202 and JSPS KAKENHI Grant Number JP18H05291.

Acknowledgements The author wishes to thank the anonymous referees for their detailed comments.

1 Introduction

We consider the set cover problem (SetCover): given an n-vertex bipartite graph I =
(S,U,E), where U is the underlying universe set and S represents the set family, find a
minimum sized subset C of S such that every vertex of U is adjacent to some vertex of C.
We use S(I), U(I) and opt(I) to denote the sets S, U and the minimum size of the solution
of I respectively. A vertex u ∈ U is covered by a subset C ⊆ S if u is adjacent to some
vertex of C. The set cover problem is NP-hard [23]. Unless P = NP , we do not expect to
solve it in polynomial time. One way to handle NP-hard problems is to use approximation
algorithms. An algorithm of SetCover achieves an r-approximation if for every input
instance I, it returns a subset C of S(I) such that C covers U(I) and |C| ≤ r · opt(I). The
polynomial time approximability of SetCover is well-understood: the greedy algorithm can
output a solution of size at most opt(I) · (1 + lnn) [10, 21, 28, 34, 35] and it was shown that

EA
T

C
S

© Bingkai Lin;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 81; pp. 81:1–81:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3444-6380
mailto:lin@nii.ac.jp
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
https://arxiv.org/abs/1902.03702
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

no polynomial time algorithm can achieve an approximation factor within (1 − o(1)) lnn
unless P = NP [4, 14, 17, 29, 32]. On the other hand, if we take the optimum solution size
k = opt(I) as a parameter, then the simple brute-force searching algorithm can solve this
problem in nk+1 time. Assuming the exponential time hypothesis (ETH) [19, 20], i.e., 3-SAT
on n variables cannot be solved in 2o(n) time, there is no no(k) time algorithm for SetCover.
Under the strong exponential time hypothesis (SETH) [19, 20], which claims that for any
ε ∈ (0, 1) there exists a d ≥ 3 such that d-SAT on n variables cannot be solved in 2(1−ε)n

time, we can further rule out nk−ε-time algorithm for set cover for any ε > 0 [31]. It is quite
natural to ask [11]:

Is there any o(lnn)-approximation algorithm for the parameterized set cover problem (or
dominating set problem) with running time nk−ε?

Exponential time approximation algorithms for the unparameterised version of set cover
problem were studied in [7, 13]. It was shown that for any ratio r, there is a (1 + ln r)-
approximation algorithm for SetCover with running time 2n/rnO(1). No nk−ε time al-
gorithm for SetCover achieving an approximation ratio in o(lnn) is known in literature. On
the other hand, proving inapproximability for a parameterized problem is not an easy task. In
fact, even the constant FPT-approximability, i.e., the existence of f(k) ·nO(1)-time algorithm
for any computable function f (henceforth referred to as FPT-algorithm) with constant
approximation, has been open for many years [30]. Lacking techniques like PCP-theorem [5],
many results on the parameterized inapproximability of set cover problem had to use strong
conjectures [6, 8] to create a gap in the first place. It is of great interest to develop techniques
to prove hardness of approximation for parameterized problems only using hypothesis such
as SETH, ETH or even weaker assumptions like W[1] 6= FPT or W[2] 6= FPT [15, 18]
from the parameterized complexity theory. The success of this quest might extend the
arsenal of methods for proving hardness of approximation and lead to PCP-like theorems for
Fine-Grained Complexity [3].

The first constant FPT-inapproximability result for parameterized SetCover based on
W[1] 6= FPT was given by [9] using the one-sided gap of Biclique from [26]. In fact, [9]
deals with dominating set problem, which is essentially the same as SetCover. Recently,
Karthik, Laekhanukit and Manurangsi [24] significantly improved the FPT-inapproximation
factor to (logn)1/kO(1) under the hypothesis W[1] 6= FPT . They also rule out the existence
of (logn)1/kO(1) -approximation algorithm with running time f(k) · no(k) for any computable
function f , assuming ETH, and the existence of (logn)

1
(k+e(ε))O(1) -approximation algorithms

with running time f(k)·nk−ε, assuming SETH. Their approach is to first establish a (logn)
1

Ω(k)

gap for MaxCover, then reduce MaxCover to SetCover and obtain a (logn)
1

Ω(k2) -gap.
This paper presents a new technique which allows us to design simple reductions improving
the inapproximation factor to (1 − ε) · k

√
logn

log logn . The reduction in [8] can get the ratio
(logn)Ω(1/k) but it has to assume Gap-ETH.

I Theorem 1. Assuming SETH, for every ε, δ ∈ (0, 1), sufficiently large k1 and computable
function f : N→ N, there is no f(k) ·Nk−ε time algorithm that can, given an N -vertex set
cover instance I, distinguish between

opt(I) ≤ k,

opt(I) > 1
1+δ

(
logN

log logN

) 1
k .

1 We need large k to get the 1
1+δ

(logN
log logN

) 1
k gap for small δ. If we want to obtain an Θ

(
k

√
logN

log logN

)
gap, then our reduction works for all k ≥ 2.

B. Lin 81:3

I Theorem 2. Assuming ETH, there is a constant ε ∈ (0, 1) such that for every δ ∈ (0, 1)
and computable function f : N→ N, no f(k) ·N εk time algorithm that can, given an N -vertex
set cover instance I , distinguish between

opt(I) ≤ k,

opt(I) > 1
1+δ ·

(
logN

log logN

) 1
k .

Behind these results is a reduction which, given an integer k, an n-vertex set cover instance
I and an integer h ≤ O(logn/ log logn), produces an nO(1) · (|U(I)|)O(hk)-vertex instance I ′
in nO(1) · |U(I)|O(hk) time such that if opt(I) ≤ k then opt(I ′) ≤ k, otherwise opt(I ′) > h.
Therefore, to prove the h-factor parameterized inapproximability of SetCover, it suffices
to show the hardness of SetCover when the input instances have nO(1/hk)-size universe
set. Note that the standard reduction for the SETH-hardness of set cover parameterized by
the solution size k produces instances I with |U(I)| = O(k log |S(I)|). With our reduction,
this immediately yields the above theorems. Let us not fail to mention that the results of
[24] also imply the hardness of SetCover with logarithmic sized universe set assuming
the k-SUM hypothesis and W[1] 6= FPT hypothesis respectively. Similarly, we can obtain
the corresponding inapproximability for set cover based on each of these hypotheses as
well. In particular, using a simple trick, we can even rule out (logN)1/ε(k)-approximation
FPT-algorithm of set cover for any unbounded computable function ε under W[1] 6= FPT .

I Theorem 3. Assuming k-SUM hypothesis for any δ, ε ∈ (0, 1), sufficiently large k and
computable function f : N→ N, there is no f(k) ·Ndk/2e−ε time algorithm that can, given
an N -vertex set cover instance I, distinguish between

opt(I) ≤ k,

opt(I) > 1
1+δ

(
logN

log logN

) 1
k .

I Theorem 4. Assuming W[1] 6= FPT , for and computable function f : N → N and
unbounded computable function ε : N→ N, there is no f(k) ·NO(1)-time algorithm that can,
given an N -vertex set cover instance I, distinguish between

opt(I) ≤ k,
opt(I) > logN1/ε(k).

Technique contribution. The main technique contribution of this paper is to introduce a
gadget that can be used to design gap-producing reductions from the set cover problem to its
approximation version and provide a construction of this gadget using (n, k)-universal sets.
Compared to the reductions in [24], the gap amplification step in this paper is independent
of the starting assumptions. This simplifies the proof for showing the inapproximability
of the set cover problem. In particular, the inapproximability result in [24] assuming
SETH needs some heavy machinery like AG codes to create the gap, while our reduction is
completely elementary.

In addition to it simplicity, an important feature of our reduction is that it can be
computed by constant depth circuits. Combining this observation with Rossman’s Ω(nk/4)
size lower bound for constant depth circuits detecting k-clique [33], Wenxin Lai [25] showed
that there is no constant-depth circuits of size f(k)no(

√
k) that can distinguish between a set

cover instance with solution size at most k and one whose minimum solution size is at least
(logn/log logn)1/(k2).

Another advantage of our reduction is that it can give hardness approximation result from
assumptions that the distributed PCP technique cannot. If we assume that k-set-cover with
large universe set, say |U | = n1/h(k)k , has no nk−ε-time algorithm, then our reduction gives

ICALP 2019

81:4 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

h(k) factor hardness of approximation k-set-cover in nk−ε time. This cannot be achieved by
the distributed PCP technique used in [24] due to known lower bounds in communication
complexity of set disjointness.

The gap-gadget we introduce in this paper is similar to the bipartite graphs with threshold
property in [26, 27]. Such kind of gadgets may have further applications in proving hardness
of approximation for other parameterized problems.

2 Preliminaries

For n, k ∈ N, an (n, k)-universal set is a set of binary strings with length n, such that the
restriction to any k indices contains all the 2k possible binary configurations.

I Lemma 5. [See Sections 10.5 and 10.6 of [22]] For k2k ≤
√
n, (n, k)-universal sets of size

n can be computed in O(n3) time.

Hypotheses. Below is a list of hardness hypotheses we will use in this paper.
W[1] 6= FPT : for any computable function f : N → N, no algorithm can, given an
n-vertex graph G and an integer k, decide if G contains a k-clique in f(k) · nO(1) time.
W[2] 6= FPT : for any computable function f : N→ N, there is no algorithm which, given
an n-vertex set cover instance I and an integer k, decides if opt(I) ≤ k in f(k) ·nO(1) time.
Exponential Time Hypothesis (ETH)[19, 20]: there exists a δ ∈ (0, 1) such that 3-SAT
on n variables cannot be solved in O(2δn) time.
Strong Exponential Time Hypothesis (SETH)[19, 20] for any ε ∈ (0, 1) there exists d ≥ 3
such that d-SAT on n variables cannot be solved in O(2(1−ε)n) time.
k-SUM hypothesis (k-SUM) [1]: for every k ≥ 2 and ε > 0, no O(ndk/2e−ε) time algorithm
can, given k sets S1, . . . , Sk each with n integers in [−n2k, n2k], decide if there are k
integers x1 ∈ S1, . . . , xk ∈ Sk such that

∑
i∈[k] xi = 0.

We refer the reader to [18, 15] for more information about the parameterized complexity
hypotheses. Using the Sparsification lemma [20], we can assume that the instances of 3-SAT
in ETH have Cn clauses for some constant C and the instances of d-SAT in SETH have
Cd,εn clauses where Cd,ε depends on d and ε.

3 Reductions

We start with the definition of (k, n,m, `, h)-gap-gadgets. In Lemma 7, we show how to
use theses gadgets to create an (h/k)-gap for the set cover problem. Lemma 10 gives a
polynomial time construction of gap-gadgets with h ≤ O(logn/ log logn) and ` = hk. Since
for every input instance I = (U, S,E) of set cover, our reduction runs in time |S|O(1)|U |`. If
|U | = Ω(n), we can not afford such running time. Our next step is to prove the hardness of
set cover with U = f(k) · (logn)O(1) based on each of the aforementioned hypotheses.

I Definition 6 ((k, n,m, `, h)-Gap-Gadget). A (k, n,m, `, h)-Gap-Gadget is a bipartite graph
T = (A,B,E) satisfying the following conditions.
(G1) A is partitioned into (A1, A2, . . . , Am). For every i ∈ [m], |Ai| = `.
(G2) B is partitioned into (B1, B2, . . . , Bk). For every j ∈ [k], |Bj | = n.
(G3) For all b1 ∈ B1, b2 ∈ B2, . . . bk ∈ Bk, there exist a1 ∈ A1, . . . , am ∈ Am such that for

all i ∈ [m] and j ∈ [k], ai is adjacent to bj.
(G4) For all X ⊆ B and a1 ∈ A1, . . . , am ∈ Am, if every ai has at least k + 1 neighbors in

X, then |X| > h.

B. Lin 81:5

To use this gadget, given a set cover instance I = (S,U,E), we will identify the set B
with the set S. Then we construct a new set cover instance I ′ = (S′, U ′, E′) with S′ = S

such that
(?) for any subset X of S′ that can cover U ′, there must exist a vertex ai ∈ Ai for every

i ∈ m witnessing that X contains a solution of I, i.e., there exists C ⊆ X that can cover
U in the instance I and all the vertices of C are adjacent to ai in the gap-gadget.

It is easy to check the correctness of this reduction:
If there is a k-vertex set X that can cover U , then by (G3) we can pick ai ∈ Ai for all

i ∈ [m] such that ai is adjacent to all vertices in X. This means that X is also a solution of I ′.
If opt(I) > k, then no matter how we pick ai ∈ Ai, each ai must have k + 1 neighbors in

X. This implies that X > h by (G4).
To achieve (?), we will use the idea of hypercube set system from Feige’s work [17] (which

is also used in [24, 8]). For each i ∈ [m], we construct a set UAi . Each element in UAi can
be regarded as a function f : Ai → U . In the new set cover instance, f is covered by s ∈ S if
there exists ai ∈ Ai such that ai is adjacent to s in the gap-gadget and f(ai) is covered by s
in I. More details can be found in the proof of the following lemma.

I Lemma 7. There is an algorithm which, given an integer k, an instance I = (S,U,E)
of SetCover, where S = S1 ∪ S2 . . . ∪ Sk and |Si| = n for all i ∈ [k], and a (k, n,m, `, h)-
Gap-Gadget, outputs a set cover instance I ′ = (S′, U ′, E′) with S′ = S and U ′ = m|U |` in
|U |` · nO(1) time such that

if there exist s1 ∈ S1, . . . , sk ∈ Sk that can cover U , then opt(I ′) ≤ k;
if opt(I) > k, then opt(I ′) > h.

Proof. Let T = (A,B,ET) be the (k, n,m, `, h)-Gap-Gadget. Without loss of generality,
assume that for all i ∈ [k] Bi = Si. The new instance I ′ = (S′, U ′, E′) is defined as follows.

S′ = S.
U ′ = (

⋃
i∈[m] U

Ai).
For all s ∈ S′ and f ∈ UAi where i ∈ [m], E′ contains {s, f} if there exists an a ∈ Ai
such that
(E’1) {s, f(a)} ∈ E,
(E’2) {a, s} ∈ ET .

Completeness. If opt(I) ≤ k, then there exist s1 ∈ S1, . . . , sk ∈ S that can cover the whole
set U . We will show that for every f ∈ U ′, f is covered by some vertex in {s1, s2, · · · , sk}.
Firstly, by (G3), there exist a1 ∈ A1, . . . , am ∈ Am such that aisj ∈ ET for all i ∈ [m] and
j ∈ [k]. Assume that f ∈ UAi for some i ∈ [m]. Observe that f(ai) ∈ U must be covered
by some sj with j ∈ [k], i.e., {sj , f(ai)} ∈ E. Since {ai, sj} ∈ ET and {sj , f(ai)} ∈ E,
according to the definition of E′, we must have {sj , f} ∈ E′.

Soundness. Suppose opt(I) > k. Let X ⊆ S′ be a set covering U ′. For every a ∈ A, let
NT (a) be the set of neighbors of a in T . We have the following claim.

B Claim 8. For every i ∈ [m] there exists ai ∈ Ai such that |NT (ai) ∩X| ≥ k + 1.

Proof. Suppose there exists an i ∈ [m] such that for all a ∈ Ai, |NT (a) ∩ X| ≤ k. Since
opt(I) > k, every solution of I has size at least k + 1. It follows that for every a ∈ Ai, there
exists some ua ∈ U such that ua is not covered by NT (a) ∩X in the set cover instance I.
Define a function f ∈ UAi such that f(a) = ua for every a ∈ Ai. We claim that f is not
covered by X. Otherwise, suppose there exists an s ∈ X that can cover f . According to the
definition of E′, there must exists an a ∈ Ai such that (E’1) and (E’2) hold. However, if

ICALP 2019

81:6 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

s ∈ NT (a) ∩X, then {s, f(a)} = {s, ua} /∈ E. On the other hand, if s /∈ NT (a) ∩X, then
{a, s} /∈ ET . In both cases, we obtain contradictions. C

By Claim 8, we can pick ai ∈ Ai for each i ∈ [m] such that every ai has at least k + 1
neighbors in X. By the property of Gap-Gadget, |X| > h. J

I Remark 9. Recall that the greedy algorithm can approximate the set cover problem within a
(1+ln |U |)-approximation ratio. If one could construct a gap-gadget for parameters satisfying

k(1 + ln |U ′|) = k(1 + ` ln |U |+ lnm) < h,

then applying the greedy algorithm on input I ′ could decide whether opt(I) = k in |U |` ·nO(1)

time.
It is well known that given a CNF formula φ on n variables, one can construct a set cover

instance I = (S,U,E) with |U | = O(n) and |S| = Θ(k2n/k) in 2O(n/k) time such that φ is
satisfiable if and only if opt(I) = k. This implies that, assuming ETH there is no algorithm
that can construct (k, |S|,m, `, h)-gap-gadgets with k(1 + `ln|U |+ lnm) < h and |U |` ≤ 2o(n)

in 2o(n) time.

3.1 Construction of Gap-Gadgets
In [27], a similar gadget is used to prove the parameterized complexity of k-Biclique. One
would wonder if the randomized construction from [27] can be used to construct the gap-
gadget in this paper. Informally, the gadget in [27] is a bipartite random graph T = (A,B,E)
satisfying the following properties with high probability:
(T1) a k-vertex set in B has m = nΘ(1/k) common neighbors;
(T2) any (k + 1)-vertex set in B has at most O(k2) common neighbors.
It is not hard to show that if Y ⊆ A is an m-vertex set and every vertex in Y has at least
k + 1 neighbors in X ⊆ B, then |X| ≥ k+1

√
|Y |
O(k2) by (T2) and the pigeonhole principle. We

may partition the vertex set A into m parts. Each part contains n1−Θ(1/k) vertices. This
gives us a gap-gadget with large gap h = k+1

√
m

O(k2) and ` = n1−Θ(1/k). Unfortunately, such
gadget does not suit our purpose. We need a gap-gadget with ` ≤ logn/ log logn. In this
section, we provide a construction using universal sets.

I Lemma 10. There is an algorithm that can, for every k, h, n ∈ N with k log logn ≤ logn
and h ≤ logn

(2+ε) log logn , compute a (k, n, n log h, hk, h)-Gap-Gadget in O(n4) time.

Proof. Let m = n log h and K = h log h. Note that (logm)/2 = (logn + log log h)/2 ≥
(2 + ε)h log h/2 ≥ log h + log log h + h log h = logK + K, i.e., K2K ≤

√
m. By Lemma 5,

an (m,K)-universal set S = {s1, s2, . . . , sm} can be constructed in O(m3) ≤ O(n4) time.
Partition every s ∈ S into n = m

logh blocks so that each block has length log h. Interpret the
values of blocks as integers in [h]. We obtain an m× n matrix M by setting the value Mr,c

equal to the value of the c-th block of sr. The matrix M satisfies the following conditions.
(M1) For all r ∈ [m] and c ∈ [n], Mr,c ∈ [h].
(M2) For any set C ⊆ [n] with |C| ≤ h, there exists a row r ∈ [m] such that |{Mr,c : c ∈

C}| = |C|.
Condition (M1) is obvious. To see why (M2) holds, for each C ⊆ [n] with |C| ≤ h, let C ′ be
the set of indices corresponding to the blocks in C. Note that |C ′| = |C| log h ≤ h log h = K.
By the property of (m,K)-universal set, there exists an sr ∈ S such that each block in C
takes distinct value. It follows that |{Mr,c : c ∈ C}| = |C|.

B. Lin 81:7

For each i ∈ [m], let

Ai = {(a1, a2, . . . , ak) : for all j ∈ [k], aj ∈ [h]}.

Note that |Ai| = hk. For each j ∈ [k], let Bj = [n]. Let T = (A,B,E) be a bipartite graph
with

A =
⋃
i∈[m]Ai.

B =
⋃
j∈[k]Bj .

E = {{~a, b} : ~a ∈ Ai, b ∈ Bj and Mi,b = ~a[j] for all j ∈ [k]}.
We will show that T is an (k, n,m, hk, h)-gap-gadget. Obviously, T satisfies (G1) and (G2).

T satisfies (G3). For any b1 ∈ B1, b2 ∈ B2, . . . , bk ∈ Bk. We define ~ai ∈ Ai by setting

~ai = (Mi,b1 ,Mi,b2 , . . . ,Mi,bk).

It is routine to check that {~ai, bj} ∈ E for all i ∈ [m] and j ∈ [k].

T satisfies (G4). Let X ⊆ B and ~a1 ∈ A1,~a2 ∈ A2, . . . ,~am ∈ Am. Suppose for every
i ∈ [m], ~ai has at least k + 1 neighbors in X and |X| ≤ h. By (M2), there exists an
r ∈ [m] such that |{Mr,c : c ∈ X}| = |X|. Since ~ar has at least k + 1 neighbors in X,
there exists an j ∈ [k] such that ~ar has two neighbors b, b′ in X ∩Bj . According to the
definition of E, we must have

Mr,b = Mr,b′ = ~ar[j].

This contradicts the fact that |{Mr,c : c ∈ X}| = |X|. J

The construction above produces gap-gadgets with ` = hk. Note that the parameter h is
related to the inapproximation factor we will get for the set cover problem and the running
time of our reduction is nO(1)|U |`. We want to set h as large as possible while keeping the
running time of reduction in f(k) · nO(1). Assuming |U | = g(k) · (logn)O(1), the best we can
achieve is h = (logn/ log logn)1/k.

On the probabilistic construction. A natural question is, can we construct gap-gadgets
with better parameters h and `, say ` = h = o(logn), using the probabilistic method?

Consider the probability space of bipartite random graphs on the vertex sets A = A1∪A2∪
· · ·∪Am and B = B1∪B2∪· · ·Bk, where |Ai| = ` and |Bj | = n. Let p be the edge probability.
Each bipartite graph T on A ∪B has probability Pr[T] = p|E(T)|(1− p)|A|·|B|−|E(T)|. Fix k
vertices b1, b2, . . . , bk in B. Let Xgood be the random variable that for every bipartite graph
T , Xgood(T) is the number of complete bipartite subgraphs of T which contains exactly one
vertex in each Ai and the k vertices b1, b2, . . . , bk in B. Let Xbad be the random variable that
for every bipartite graph T , Xbad(T) is the number of subgraphs of T with h vertices in B
and one vertex in each Ai such that each vertex in Ai has at least k + 1 neighbors in B. We
want to set the edge probability p so that Pr[Xbad(T) ≥ 1] + Pr[Xgood(T) = 0] ≤ 1− n−c for
some constant c > 0. One way to bound Pr[Xbad(T) ≥ 1] above is to use Markov’s inequality,
which gives us Pr[Xbad(T) ≥ 1] ≤ E[Xbad]. So we might assume that E[Xbad] < 1. On
the other hand, we have E[Xgood] ≥ Pr[Xgood(T) ≥ 1] ≥ n−c. Note that expectations of
these two random variables are E[Xgood] = `mpkm and E[Xbad] = `m

(
n
h

)
p(k+1)m(h

k+1
)m. We

deduce that

m log `+mk log p > −c logn

ICALP 2019

81:8 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

and

m log `+ h logn+m(k + 1) log p+m(k + 1) log h < 0.

Thus

c logn
mk

+ log `
k

>
log `

(k + 1) + h logn
m(k + 1) + log h. (1)

We might choose m large enough so that the terms c logn
mk and h logn

m(k+1) in (1) become relatively
small. In order to make (1) hold, we have to set ` ≥ hO(k2). This does not give us better
(k, n,m, `, h)-gap-gadgets.

3.2 Proofs of Theorem 1 and Theorem 2

I Lemma 11. There is an algorithm, which given k ∈ N, δ > 0 with (1 + 1/k3)1/k ≤
(1+δ)/(1+δ/2) and (1+δ/2)k ≥ 2k4 and a SAT instance φ with n variables and Cn clauses,
where n is much larger than k and C, outputs an integer N ≤ 2n/k+n/k3 and a set cover
instance I satisfying the following conditions in 25n/k time.
|S(I)|+ |U(I)| ≤ N .
If φ is satisfiable, then opt(I) ≤ k.

If φ is not satisfiable, then opt(I) > 1
1+δ ·

k

√
logN

log logN .

Proof. Let k be a positive integer and φ be a CNF with n variables and Cn clauses. We first
construct a set cover instance I ′ = (S′, U ′, E′) as follows. Partition the variable set into k
parts, each having at most dn/ke variables. For each i ∈ [k], let Si be the set of assignments
to the i-th part. Let S′ = S1 ∪ · · · ∪ Sk. Let U ′ be the set consisting of all the clauses of φ
and k additional nodes u1, u2, . . . , uk. For every i ∈ [k] and assignment s ∈ Si, we add an
edge between s and ui. If the assignment s ∈ S′ satisfies a clause u ∈ U ′, we also add an
edge between u and s. The set cover instance I ′ has the following properties.

If φ is satisfiable, then opt(I ′) = k. Moreover, there exist k vertices s1 ∈ S1, · · · , sk ∈ Sk
that can cover the whole set U ′.
If φ is not satisfiable, then opt(I ′) > k.
|U ′| = k + Cn.
|S′| ≤ k2n/k.

Let M = k2n/k ≥ |S| and N = M1+1/k3 ≤ 2n/k+n/k3 . Note that logM/ log logM ≥
n/(k logn) ≥ k. Applying Lemma 10 with k ← k, n←M , `← logM

(1+δ/2)k log logM , h← 1
1+δ/2 ·

k

√
logM

log logM and m ← M log h ≤ M log logM , we obtain a gap-gadget T in O(M4 ≤ 25n/k)
time. Using Lemma 7 on I ′ and T , we obtain our target set cover instance I = (S,U,E)
satisfying the following properties.

If φ is a yes-instance, then opt(I) ≤ k.
If φ is a no-instance, then opt(I) > 1

1+δ/2 ·
k
√

logM/ log logM . Using (1 + 1/k3)1/k ≤
(1 + δ)/(1 + δ/2), we get opt(I) > 1

1+δ ·
k
√

logN/ log logN .

|S| = |S| ≤ k2n/k.

|U | ≤M log logM · |U |
logM

(1+δ/2)k log logM = M log logM · (k + Cn)
logM

(1+δ/2)k log logM .

B. Lin 81:9

The number of vertices in I is

|S(I)|+ |U(I)| ≤M +M log logM · (k + Cn)
logM

(1+δ/2)k log logM

≤M +M log logM · (2Ck logM)
logM

(1+δ/2)k log logM

≤M +M log logM · (logM)
2 log logM

(1+δ/2)k log logM (using logM ≥ 2Ck for large n)

≤M +M log logM ·M
2

(1+δ/2)k

≤M +M log logM ·M1/k4
(using (1 + δ/2)k ≥ 2k4)

≤M1+1/k3
(using M1/k3

≥ 1 +M1/k4
log logM for large n)

= N. J

Now we are ready to prove Theorem 1. Suppose for some computable function f , there is
an f(k) ·Nk−ε-time algorithm that can, for every N -vertex set cover instance I and every
integer k, distinguish between opt(I) ≤ k and opt(I) ≥ 1

1+δ ·
k

√
logN

log logN . For every δ ∈ (0, 1),
choose k ∈ N large enough so that (1 + 1/k3)1/k ≤ (1 + δ)/(1 + δ/2) and (1 + δ/2)k ≥ 2k4

hold. Let ε′ = 1− ε/k + 1/k2, by SETH, there exists an integer d such that d-SAT with n
variables cannot be solved in 2n(1−ε′)-time. Given an instance φ of d-SAT with n variables
and m clauses. By the sparsification lemma [20], we can assume that m = Cd,ε′ · n for
some constant Cd,ε′ depending on d and ε′. Without loss of generality, assume that n is
much larger than k. Applying Lemma 11 on φ and k, we obtain a set cover instance I with
N ≤ 2n/k+n/k3 vertices in time 25n/k ≤ 2εn for k ≥ 5/ε. Then we use the approximation
algorithm to decide if opt(I) ≤ k or opt(I) ≥ 1

1+δ ·
k

√
logN

log logN . Thus we can solve d-SAT
in time 2εn + f(k) ·Nk−ε ≤ 2εn + f(k) · 2(n/k+n/k3)(k−ε) ≤ 2n(1−ε/k+1/k2) = 2n(1−ε′), which
contradicts SETH.

Theorem 2 can be proved similarly. By ETH, there exists ε > 0 such that 3-SAT on n
variables cannot be solved in 2εn time. Let ε′ = ε/2. For every 3-SAT instance φ with n
variable and Cn clause, where n is much larger than k, apply Lemma 11 to obtain a set cover
instance I with N = 2n/k+n/k3 vertices in 25n/k ≤ 2ε′n time. If there is an f(k) ·N ε′k-time
algorithm that can distinguish between opt(I) ≤ k and opt(I) > 1

1+δ ·
k

√
logN

log logN , then we
can decide whether φ is satisfiable in time 2ε′n + f(k) · 2(n/k+n/k3)·ε′k ≤ 2εn.

3.3 Proof of Theorem 3
We use a lemma in [2] to reduce k-SUM to k-VECTOR-SUM over small numbers. Then we
present a reduction from k-VECTOR-SUM to set cover.

I Lemma 12 (Lemma 3.1 of [2]). Let k, p, d, s,M ∈ N satisfy k < p, pd ≥ kM + 1, and
s = (k + 1)d−1. There is a collection of mappings f1, . . . , fs : [0,M]× [0, kM]→ [−kp, kp]d,
each computable in time O(poly logM + kd), such that for all numbers x1, . . . , xk ∈ [0,M]
and targets t ∈ [0, kM],

k∑
j=1

xj = t⇔ ∃i ∈ [s] such that
k∑
j=1

fi(xj , t) = ~0.

I Lemma 13. There is an algorithm which, given k sets S1, S2, . . . , Sk where Si is a set
of n vectors in [−f(k), f(k)]g(k) logn for some computable functions f and g, outputs a set
cover instance I = (S,U,E) with |U | ≤ k(2f(k))k−1

g(k) logn and S = S1 ∪ S2 ∪ . . . ∪ Sk in
k(2f(k))k−1

g(k)nO(1)-time such that

ICALP 2019

81:10 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

(i) if there exist ~x1 ∈ S1, . . . , ~xk ∈ Sk such that
∑
i∈[k] ~xi = ~0, then {~x1, . . . , ~xk} covers U ;

(ii) if the sum of any k vectors ~x1 ∈ S1, . . . ~xk ∈ Sk is not zero, then opt(I) > k.

Proof. Let D = {(d1, . . . , dk) ∈ [−f(k), f(k)]k :
∑
i∈[k] di = 0}. Note that |D| ≤ (2f(k))k−1.

Suppose D = {~a1, . . . ,~a|D|}. For every j ∈ [g(k) logn], let Uj = [k]|D|. We define the target
set cover instance I = (S,U,E) as follows.

S = S1 ∪ · · · ∪ Sk.
U =

⋃
i∈[g(k) logn] Ui.

For every ~x ∈ Si and every ~u ∈ Uj , we add an edge {~x, ~u} into E if there exists ` ∈ [|D|]
such that ~u[`] = i and ~x[j] = ~a`[i].

Completeness. Suppose there exist ~x1 ∈ S1, . . . , ~xk ∈ Sk such that
∑
i∈[k] ~xi = ~0. Then for

all j ∈ [g(k) logn] we have ~x1[j] + ~x2[j] + . . .+ ~xk[j] = 0, i.e.,

(~x1[j], ~x2[j], . . . , ~xk[j]) = ~a` ∈ D for some ` ∈ [|D|]. (2)

For all ~u ∈ Uj , let i = ~u[`] ∈ [k]. Then by (2), ~xi[j] = ~a`[i]. It follows that {~xi, ~u} ∈ E.

Soundness. Suppose the sum of any k vectors in S1 ∪ · · · ∪ Sk is not zero. Let X be a
subset of S with |X| ≤ k, we need to show that X does not cover U . Firstly, we note
that if X ∩ Si = ∅ for some i ∈ [k], then the vector ~u = (i, i, . . . , i) ∈ [k]|D| is not covered
by any vector in X. Now assume that X = {~x1, ~x2, . . . , ~xk} and ~xi ∈ Si for all i ∈ [k].
Since

∑
i∈[k] ~xi 6= ~0, there exists a j ∈ [g(k) logn] such that∑

i∈[k]

~xi[j] 6= 0.

We deduce that

(~x1[j], ~x2[j], . . . , ~xk[j]) /∈ D.

In other word, for all ` ∈ [|D|], there exists an i` ∈ [k] such that

~xi` [j] 6= ~a`[i`]. (3)

Define a vector ~u ∈ Uj such that for all ` ∈ [|D|],

~u[`] = i`. (4)

Suppose ~u is covered by xi ∈ X, then by the definition, there exists ` ∈ [|D|] such that
i = ~u[`] = i` and ~xi` [j] = ~a`[i`], which contradicts (3) and (4). J

Proof of Theorem 3. Given k sets S1, . . . , Sk of integers in [−n2k, n2k]. Let p = k4kc+1 ,
M = 2n2k and d = logn/kc. Without loss of generality, assume that k is large and n is much
larger than k, we have pd = k4k logn ≥ n4k ≥ 2kn2k + 1. On the other hand, for any ε > 0,
we can pick c such that s = (k+ 1)d = nlog(k+1)/kc ≤ nε/4. Applying Lemma 12, we obtain a
collection of mappings f1, . . . , fs : [0,M]× [0, kM]→ [−kp, kp]d in O(poly logM + kd) time
such that

there exist x1 ∈ S1, . . . , xk ∈ Sk with
∑
j∈[k] xj = 0 if and only if there exist i ∈ [s] such

that
∑
j∈[k] fi(xj + n2k, kn2k) = ~0.

Using Lemma 10, we construct a (k, n,O(n log logn), logn
(1+δ/2)k log logn ,

1
(1+δ/2) · (

logn
log logn)1/k)-

gap-gadget T for some small δ > 0. For every i ∈ [s], and j ∈ [k], let Sij = {fi(x+n2k, kn2k) :
x ∈ Sj}. Applying Lemma 7 to Si1, Si2, . . . , Sik and T , we obtain a set cover instance Ii with
S(Ii) = Si1 ∪ Si2 . . . Sik and |U(Ii)| ≤ n log logn · (g(k) logn)

logn
(1+δ/2)k log logn ≤ n1+1/k3 . The set

cover instances I1, . . . , Is satisfy the following properties.

B. Lin 81:11

If there exist x1 ∈ S1, . . . , xk ∈ Sk with
∑
j∈[k] xj = 0, then there exist i ∈ [s] and

y1 = fi(x1 + n2k, n2k) ∈ Si1 . . . yk = fi(xk + n2k, n2k) ∈ Sik such that y1, . . . , yk cover
U(Ii).
If there are no x1 ∈ S1, . . . , xk ∈ Sk with

∑
j∈[k] xj = 0, then for all i ∈ [s], opt(Ii) >

1
1+δ/2 ·

(
logn

log logn

)1/k
.

Let N = n1+1/k2 . We have

|S(Ii)|+ |U(Ii)| ≤ kn+ n1+1/k3
≤ N,

f(k) ·Ndk/2e−ε ≤ ndk/2e−ε+1/k,

and

1
(1 + δ)

(
logN

log logN

)1/k
≤ 1

(1 + δ/2)

(
logn

log logn

)1/k
.

For every i ∈ [s], we apply the f(k) · Ndk/2e−ε-time algorithm to decide if opt(Ii) ≤ k

or opt(Ii) > 1
1+δ · (logN/ log logN)1/k. If for some i ∈ [s], it found that opt(Ii) ≤ k,

then we know that the input instance of k-SUM is a yes-instance. The running time is
O(poly logM + kd) + f(k) ·Ndk/2e−ε ≤ O(poly logM + kd) + s · ndk/2e−ε+1/k ≤ ndk/2e−ε/2

for large k. J

3.4 Proof of Theorem 4

Firstly, we give a reduction from Clique to SetCover which produces instances with
logarithmic sized universe set. The main idea of this reduction is due to Karthik et al. [24].

I Lemma 14. There is an nO(1)-time algorithm which, given an integer k, an n-vertex graph
G with V (G) = V1 ∪V2 ∪ · · · ∪Vk such that G[Vi] is an independent set for all i ∈ [k], outputs
a set cover instance I = (S,U,E) with |U | = kO(1) logn and S = E(G) =

⋃
{i,j}∈([k]

2) S{i,j},
where each S{i,j} is the set of edges between Vi and Vj, such that
(i) if G contains a k-clique, then opt(I) ≤

(
k
2
)
. Moreover, there exists a

(
k
2
)
-sized subset of

S, which contains exactly one vertex from each S{i,j} ({i, j} ∈
([k]

2
)
), that can cover U ;

(ii) if G contains no k-clique, then opt(I) >
(
k
2
)
.

Proof. We will construct a set cover instance I such that if G has a k-clique, then we
can select its

(
k
2
)
edges to cover the whole universe set. For every v ∈ V (G), denote by

encode(v) ∈ {0, 1}logn the binary string representation of v. For every ` ∈ [logn], the `th
bit of encode(v) is encode(v)[`]. For every i ∈ [k], let σi : [k] \ {i} → [k − 1] be an arbitrary
bijection. Our target set cover instance I = (S,U,E) is defined as follows.

S = E(G) =
⋃
{i,j}∈([k]

2) S{i,j}, where S{i,j} = {{vi, vj} : vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈
E(G)}.
U = [k]× [k − 1]{0,1} × [logn].
For s = {vi, vj} ∈ S and u = (i, f, `) ∈ U we add {s, u} into E if

vi ∈ Vi, vj ∈ Vj and f(encode(vi)[`]) = σi(j).

The set cover instance I satisfies the following conditions.

ICALP 2019

81:12 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

If G contains a k-clique, then there exists a
(
k
2
)
-sized subset of S which contains exactly one

vertex from each S{i,j} ({i, j} ∈
([k]

2
)
) that can cover U . Suppose that v1 ∈ V1, . . . , vk ∈ Vk

induce a k-clique. Let X = {{vi, vj} : {i, j} ∈
([k]

2
)
}. We will show that X covers the

whole set U . For any (i, f, `) ∈ U , let b = encode(vi)[`]. Since f(b) ∈ [k − 1], there must
exist a j ∈ [k] \ {i} such that σi(j) = f(b). By the definition of E, {vi, vj} is adjacent to
(i, f, `) .
If G does not contain a k-clique, then opt(I) >

(
k
2
)
. Let X ⊆ S be a set such that

|X| ≤
(
k
2
)
and X covers U .

For each {i, j} ∈
([k]

2
)
, define

X{i,j} = {{vi, vj} : vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈ X}.

We claim that for every {i, j} ∈
([k]

2
)
, |X{i,j}| > 0. Otherwise let f(0) = f(1) = σi(j) and

consider the vertex (i, f, 1) ∈ U . According to the definition of E, if a vertex {v, u} ∈ S
covers (i, f, 1), then either v or u must be in Vi. Let us assume v ∈ Vi and u ∈ Vj′ for
some j′ ∈ [k] \ {i}. We must have f(encode(vi)[1]) = σi(j′). However, if j 6= j′, then
f(0) = f(1) = σi(j) 6= σi(j′).
Since

(
k
2
)
≥ |X| =

∑
{i,j}∈([k]

2) |X{i,j}| and |X{i,j}| > 0, we conclude that |X{i,j}| = 1 for

all {i, j} ∈
([k]

2
)
.

For every i ∈ [k] and distinct j, j′ ∈ [k]\{i}, let {{v, vj}} = X{i,j} and {{v′, vj′}} = Xi,j′ ,
where v, v′ ∈ Vi, we claim that v = v′. Otherwise, since v 6= v′ there exists ` ∈ [logn] such
that encode(v)[`] 6= encode(v′)[`]. Now consider a function f with f(encode(v′)[`]) =
σi(j) and f(encode(v)[`]) = σi(j′). The vertex (i, f, `) must be covered by some {x, y}
with x ∈ Vi and y ∈ Vh such that σi(h) = f(encode(v)[`]) ∈ {σi(j), σi(j′)}. We
must have y ∈ Vj or y ∈ Vj′ . Since |X{i,j}| = |X{i,j′}| = 1, we deduce that either
{x, y} = {v, vj} or {x, y} = {v′, vj′}. However, if {x, y} = {v, vj}, we must have
σi(j) = f(encode(v)[`]) = σi(j′) 6= σi(j), a contradiction. Similarly, if {x, y} = {v′, vj′},
then σi(j′) = f(encode(v′)[`]) = σi(j) 6= σi(j′). We conclude that the vertex (i, f, `) can
not be covered by X.
Now we have for every i ∈ [k], there exists a vi ∈ Vi such that

{vi} =
⋂

j∈[k]\{i},e∈X{i,j}

e.

Obviously, for every {i, j} ∈
([k]

2
)
, {{vi, vj}} = X{i,j}. This implies that {v1, v2, . . . , vk}

is a k-clique in G. J

Proof of Theorem 4. Given an n-vertex graph G and a positive integer k, we invoke
Lemma 14 to obtain a set cover instance I = (S,U,E) with |S| = |E(G)| and |U | ≤
k3 logn satisfying (i) and (ii). Let m = |S|. Then we use Lemma 10 to construct a
(
(
k
2
)
,m, nO(1), logm

log logm ,
logm

log logm
1/(k2))-gap-gadget T inmO(1) = nO(1) time. Applying Lemma 7

on I and T , we finally obtain our target set cover instance I ′ = (S′, U ′, E′) with the following
properties:

if G has a k-clique, then opt(I ′) =
(
k
2
)
,

if G has no k-clique, then opt(I ′) >
(

logm
log logm

)1/(k2),
|S′| = |E(G)| = m,
|U ′| = (k3 logn)logm/ log logm = m1+o(1).

B. Lin 81:13

Let N = |U ′| + |S′|. We have N = nO(1). Since ε is an unbounded computable function,
there is a computable function g : N→ N such that k′ = g(k) >

(
k
2
)
and ε(k′) >

(
k
2
)
. When

n is large enough,

logm
log logm

1/(k2)
≥ logN
O(log logN)

1/(k2)
≥ (logN)1/ε(k′).

Any f(k′) ·NO(1) time algorithm that can distinguish between opt(I ′) ≤ k′ and opt(I ′) >
(logN)

1
ε(k′) can be used to decide if an input graph G has k-clique in f(g(k))nO(1) time. J

4 Conclusion

We have improved the hardness approximation factor for the parameterized set cover problem
using a simple reduction. Our result shows that in order to prove inapproximability of
parameterized set cover, it suffices to prove the hardness of set cover problem with small
universe set. A natural question is:

Is there any algorithm that can, given an n-vertex set cover instance I and an integer k,
outputs a new instance I ′ and an integer k′ in f(k) ·nO(1) time for some computable function
f : N→ N such that

k′ = g(k) for some computable function g : N→ N,
opt(I) ≤ k if and only if opt(I ′) ≤ k′,
|U(I ′)| ≤ h(k) · (log |S(I ′)|)O(1) for some computable function h : N→ N.

A positive answer to the above question would imply that SetCover parameterized
by the optimum solution size has no (logn)1/ε(k)-approximation FPT algorithm assuming
W[2] 6= FPT . Of course, if we just want a ρ-factor hardness of approximation, then it suffices
to have |U(I ′)| ≤ h(k)|S(I ′)|O(1/ρk). Note that using Dynamic Programming, SetCover
can be solved in 2|U(I)|(|U(I)|+ |S(I)|)O(1) time [12]. We do not expect to reduce the size of
universe set below o(k logn) under ETH.

Our hardness result is far from matching the (1+lnn) approximation ratio of the greedy al-
gorithm in polynomial time. Could it be the case that there exists a (lnn)1/ρ(k)-approximation
algorithm for SetCover with running time nk−ε? What is the best approximation ratio we
can achieve for parameterized set cover in nk−ε time?

References
1 Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In

International Colloquium on Automata, Languages, and Programming, pages 1–12. Springer,
2013.

2 Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In European
Symposium on Algorithms, pages 1–12. Springer, 2014.

3 Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP theorems for hardness
of approximation in P. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on, pages 25–36. IEEE, 2017.

4 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms (TALG), 2(2):153–177, 2006.

5 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM (JACM),
45(3):501–555, 1998.

ICALP 2019

81:14 A Simple Gap-Producing Reduction for the Parameterized Set Cover Problem

6 E. Bonnet, B. Escoffier, E. Kim, and V. Th. Paschos. On Subexponential and FPT-Time
Inapproximability. In Parameterized and Exact Computation - 8th International Symposium,
IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers, pages
54–65, 2013.

7 Nicolas Bourgeois, Bruno Escoffier, and Vangelis Paschos. Efficient approximation of MIN
SET COVER by “low-complexity" exponential algorithms, 2008.

8 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-inapproximability: Clique,
dominating set, and more. In Foundations of Computer Science (FOCS), 2017 IEEE 58th
Annual Symposium on, pages 743–754. IEEE, 2017.

9 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating
set problem. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 505–514. IEEE, 2016.

10 V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations,
4(3):233–235, 1979.

11 Marek Cygan, Fedor V. Fomin, Danny Hermelin, and Magnus Wahlström. Randomization in
Parameterized Complexity (Dagstuhl Seminar 17041). Dagstuhl Reports, 7(1):103–128, 2017.

12 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4(8).
Springer, 2015.

13 Marek Cygan, Łukasz Kowalik, and Mateusz Wykurz. Exponential-time approximation of
weighted set cover. Information Processing Letters, 109(16):957–961, 2009.

14 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 624–633,
2014.

15 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
16 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and

dominating set. Theoretical Computer Science, 326(1-3):57–67, 2004.
17 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),

45(4):634–652, 1998.
18 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
19 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of

Computer and System Sciences, 62:367–375, 2001.
20 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
21 D. S. Johnson. Approximation Algorithms for Combinatorial Problems. Journal of Computer

and System Sciences, 9(3):256–278, 1974.
22 Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer Science

& Business Media, 2011.
23 R. M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a symposium on

the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York., pages 85–103, 1972.

24 CS Karthik, Bundit Laekhanukit, and Pasin Manurangsi. On the Parameterized Complexity
of Approximating Dominating Set. In STOC, 2018.

25 Wenxing Lai. The Inapproximability of k-DominatingSet for Parameterized AC0 Circuits. In
Frontiers in Algorithmics - 13th International Workshop, FAW 2019, Sanya, China, April 29 -
May 3, 2019, Proceedings, pages 133–143, 2019.

26 Bingkai Lin. The Parameterized Complexity of k-Biclique. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 605–615, 2015.

27 Bingkai Lin. The Parameterized Complexity of the k-Biclique Problem. J. ACM, 65(5):34:1–
34:23, 2018.

B. Lin 81:15

28 L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13(4):383–390, 1975.

29 C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization Problems.
Journal of the ACM, 41(5):960–981, 1994.

30 D. Marx. Parameterized Complexity and Approximation Algorithms. The Computer Journal,
51(1):60–78, 2008.

31 Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1065–1075.
SIAM, 2010.

32 R. Raz and S. Safra. A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant
Error-Probability PCP Characterization of NP. In Proceedings of the 29th Annual ACM
Symposium on the Theory of Computing, STOC 1997, El Paso, Texas, USA, May 4-6, 1997,
pages 475–484, 1997.

33 Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 721–730. ACM, 2008.

34 P. Slavík. A Tight Analysis of the Greedy Algorithm for Set Cover. Journal of Algorithms,
25(2):237–254, 1997.

35 S. K. Stein. Two Combinatorial Covering Theorems. Journal of Combinatorial Theory, Series
A, 16(3):391–397, 1974.

ICALP 2019

	Introduction
	Preliminaries
	Reductions
	Construction of Gap-Gadgets
	Proofs of Theorem 1 and Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Conclusion

