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Abstract
The min-cost matching problem suffers from being very sensitive to small changes of the input. Even
in a simple setting, e.g., when the costs come from the metric on the line, adding two nodes to the
input might change the optimal solution completely. On the other hand, one expects that small
changes in the input should incur only small changes on the constructed solutions, measured as the
number of modified edges. We introduce a two-stage model where we study the trade-off between
quality and robustness of solutions. In the first stage we are given a set of nodes in a metric space
and we must compute a perfect matching. In the second stage 2k new nodes appear and we must
adapt the solution to a perfect matching for the new instance.

We say that an algorithm is (α, β)-robust if the solutions constructed in both stages are α-
approximate with respect to min-cost perfect matchings, and if the number of edges deleted from
the first stage matching is at most βk. Hence, α measures the quality of the algorithm and β its
robustness. In this setting we aim to balance both measures by deriving algorithms for constant α and
β. We show that there exists an algorithm that is (3, 1)-robust for any metric if one knows the number
2k of arriving nodes in advance. For the case that k is unknown the situation is significantly more
involved. We study this setting under the metric on the line and devise a (10, 2)-robust algorithm
that constructs a solution with a recursive structure that carefully balances cost and redundancy.
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1 Introduction

Weighted matching is one of the founding problems in combinatorial optimization, playing
an important role in the settling of the area. The work by Edmonds [8] on this problem
greatly influenced the role of polyhedral theory on algorithm design [23]. On the other
hand, the problem found applications in several domains [1, 2, 6, 22, 26]. In particular
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Figure 1 Example instance on the line. Vertices in Stage 1 are depicted by light grey dots and
second stage arrivals are indicated as dark grey crosses. First and second state optimum are depicted
by solid and dotted edges, respectively. The arrival of two new vertices leads to a significant drop in
the cost of the optimum.

routing problems are an important area of application, and its procedures often appeared as
subroutines of other important algorithms, the most notable being Christofides’ algorithm [5]
for the traveling salesperson problem (TSP).

An important aspect of devising solution methods for optimization problems is studying
the sensitivity of the solution towards small changes in the input. This sensitivity analysis
has a long history and plays an important role in practice [10]. Min-cost matching is a
problem that has particularly sensitive optimal solutions. Assume for example that nodes
lie on the real line at points ` and `+ 1− ε for some 0 < ε < 1 and all ` ∈ {1, . . . , n}, see
Figure 1. The min-cost matching, for costs equal the distance on the line, is simply the
edges {`, `+ 1− ε}. However, even under a minor modification of the input, e.g., if two new
nodes appear at points 1− ε and n+ 1, the optimal solution changes all of its edges, and
furthermore the cost decreases by a Θ(1/ε) factor. Rearranging many edges in an existing
solution is often undesirable and may incur large costs, for example in an application context
where the matching edges imply physical connections or binding commitments between
nodes. A natural question in this context is whether we can avoid such a large number
of rearrangements by constructing a robust solution that is only slightly more expensive.
In other words, we are interested in studying the trade-off between robustness and the
cost of solutions.

We consider a two-stage robust model with recourse. Assume we are given an underlying
metric space (X , c). The input for the first stage is a complete graph G1 whose node set
V (G1) is a finite, even subset of X . The cost of an edge {v, w} is given by the corresponding
cost c(v, w) in the metric space1. In a second stage we get an extended complete graph G2
containing all nodes in V (G1) plus 2k additional nodes. As before, costs of edges in G2 are
given by the underlying metric. In the first stage we must create a perfect matching M1 for
G1. In the second stage, after G2 is revealed, we must adapt our solution by constructing
a new perfect matching M2 for G2, called the second stage reply. We say that a solution
M1 is two-stage (α, β)-robust if for any instantiation of the second stage there exists a
solution M2 such that two conditions hold. First, the total cost of edges in Mi must satisfy
c(Mi) ≤ α · c(Oi) for i ∈ {1, 2}, where Oi denotes a min-cost perfect matching in Gi. Second,
it must hold that |M1 \M2| ≤ βk. An algorithm is two-stage (α, β)-robust if, given G1
and c, it returns a two-stage (α, β)-robust matching and, given the set of new arrivals, a
corresponding second stage reply. We refer to α as the competitive factor and β as the
recourse factor of the algorithm. Our main goal is to balance cost and recourse, and thus we
aim to obtain algorithms where α and β are constants.

Our model is closely related to an online model with recourse. Consider a graph whose
nodes are revealed online two by two. Our objective is to maintain a perfect matching at all
times. As above, irrevocable decisions do not allow for constant competitive factors. This
suggests a model where in each iteration we are allowed to modify a constant number of edges.

1 Graphs with arbitrary cost functions do not allow for (O(1), O(1))-robust matchings in general, e.g.,
consider a variant of the example in Figure 1 in which all omitted edges have infinite cost.
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An online algorithm that maintains an α-approximation at all time while deleting at most β
edges per iteration can be easily transformed into a two-stage (α, β)-robust algorithm. Given
an instance of the two-stage model, we choose an arbitrary order for the nodes available in the
first stage and create M1 by following the updates proposed by an online algorithm. Then,
we repeat the procedure for the arrivals in Stage 2. Thus, our two-stage model is also the first
necessary step for understanding this more involved online model. Megow et al. [20] study a
similar online model for minimum spanning trees and the TSP in metric graphs. After giving
a (1 + ε)-competitive algorithm with recourse factor 1

ε log( 1
ε ) for the former problem, they

are able to derive a (2 + ε)-competitive algorithm with constant recourse factor for the latter
problem by combining their results with a modified version of the well-known double-tree
algorithm. An algorithm for the online variant of our proposed model together with the
aforementioned results, would give rise to an online variant of Christofide’s algorithm which
can yield an improved competitiveness factor for the considered online TSP.

Our Results and Techniques. We distinguish two variants of the model. In the k-known
case we assume that in Stage 1 we already know the number of new nodes 2k that will arrive
in Stage 2. For this case we present a simple two-stage (3, 1)-robust algorithm.

I Theorem 1. Let (X , c) be a metric space, V1 ⊆ X with |V1| even, and G1 be the complete
graph on V1. For k ∈ N known in advance, there is a perfect matching M1 in G1 that is
two-stage (3, 1)-robust for 2k arrivals. Such a matching and corresponding second stage reply
can be computed in time poly(|V1|, k).

The example in Figure 1 illustrates a worst case scenario for the strategy of choosing O1
as the first stage matching for k = 1. The reason for this is that the nodes arriving in Stage 2
induce a path in O1∆O2 that incurs a significant drop in the optimal cost. Our algorithm is
designed towards preparing for such bad scenarios. To this end, we define the notion of gain
for a path P with respect to a matching X as follows:

gainX(P ) := c(P ∩X)− c(P \X).

In Stage 1, our algorithm chooses k edge-disjoint O1-alternating paths of maximum total
gain with respect to O1. For each such path P we modify O1 by removing P ∩O1 and adding
(P \O1) ∪ {e(P )}, where e(P ) is the edge that connects the endpoints of P . Our choice of
paths of maximum gain implies that P ∩O1 is larger than P \O1. Therefore we can bound
the cost of the solution in the first stage against that of O1 and also infer that most of its
costs is concentrated on the edges e(P ). For the second stage we construct a solution for the
new instance by removing the k edges of the form e(P ) and adding new edges on top of the
remaining solution. The algorithm is described in detail in Section 2.

For the case where k is unknown the situation is considerably more involved as a first
stage solution must work for any number of arriving nodes simultaneously. In this setting we
restrict our study to the real line and give an algorithm that is two-stage (10, 2)-robust.

I Theorem 2. Let X = R and c = | · |, V1 ⊆ X with |V1| even, and let G1 be the complete
graph on V1. Then there is a perfect matching M1 in G1 that is two-stage (10, 2)-robust.
Such a matching, as well as the second stage reply, can be computed in time poly(|V1|, k).

The first stage solution M is constructed iteratively, starting from the optimal solution.
We will choose a path P greedily such that it maximizes gainM (P ) among all alternating
paths that are heavy, i.e., the cost of P ∩M is a factor 2 more expensive than the cost of
P \M . Then M is modified by augmenting along P and adding edge e(P ), which we fix to

ICALP 2019
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be in the final solution. We iterate until M only consists of fixed edges. As we are on the line,
each path P corresponds to an interval and we can show that the constructed solution form
a laminar family. Furthermore, our choice of heavy paths implies that their lengths satisfy
an exponential decay property. This allows us to bound cost of the first stage solution. For
the second stage, we observe that the symmetric difference O1∆O2 induces a set of intervals
on the line. For each such an interval, we remove on average at most two edges from the first
stage matching and repair the solution with an optimal matching for the exposed vertices.
A careful choice of the removed edges, together with the greedy construction of the first
stage solution, enables us to bound the cost of the resulting second stage solution within a
constant factor of the optimum. See Sections 3 and 4 for a detailed description of this case.

Related Work. Intense research has been done on several variants of the online bipartite
matching problem [17, 16, 18, 4, 21]. In this setting we are given a known set of servers while
a set of clients arrive online. In the online bipartite metric matching problem servers and
clients correspond to points from a metric space. Upon arrival, each client must be matched
to a server irrevocably, at cost equal to their distance. For general metric spaces, there is
a tight bound of (2n− 1) on the competitiveness factor of deterministic online algorithms,
where n is the number of servers [18, 16]. Recently, Raghvendra presented a deterministic
algorithm [24] with the same competitiveness factor, that in addition is O(log(n))-competitive
in the random arrival model. Also, its analysis can be parameterized for any metric space
depending on the length of a TSP tour and its diameter [21]. For the special case of the
metric on the line, Raghvendra [25] recently refined the analysis of the competitive ratio
to O(log(n)). This gives a deterministic algorithm that matches the previously best known
bound by Gupta and Lewi [15], which was attained by a randomized algorithm. As the lower
bound of 9.001 [9] could not be improved for 20 years, the question whether there exists a
constant competitive algorithm for the line remains open.

The online matching with recourse problem considers an unweighted bipartite graph. Upon
arrival, a client has to be matched to a server and can be reallocated later. The task is to
minimize the number of reallocations under the condition that a maximum matching is always
maintained. The problem was introduced by Grove, Kao and Krishnan [11]. Chaudhuri et
al. [4] showed that for the random arrival model a simple greedy algorithm uses O(n log(n))
reallocations with high probability and proved that this analysis is tight. Recently, Bernstein,
Holm and Rotenberg [3] showed that the greedy algorithm needs O(n log2 n) allocations in
the adversarial model, leaving a small gap to the lower bound of O(n logn). Gupta, Kumar
and Stein [14] consider a related problem where servers can be matched to more than one
client, aiming to minimize the maximum number of clients that are assigned to a server.
They achieve a constant competitive factor server while doing in total O(n) reassignments.

Online min-cost problems with reassignments have been studied in other contexts. For
example in the online Steiner tree problem with recourse a set of points on a metric space
arrive online. We must maintain Steiner trees of low cost by performing at most a constant
(amortized) number of edge changes per iteration. While the pure online setting with no
reassignment only allows for Ω(log(n)) competitive factors, just one edge deletion per iteration
is enough to obtain a constant competitive algorithm [12]; see also [13, 20].

The concept of recoverable robustness is also related to our setting [19]. In this context
the perfect matching problem on unweighted graphs was considered by Dourado et. al. [7].
They seek to find perfect matchings which, after the failure of some edges, can be recovered
to a perfect matching by making only a small number of modifications. They establish
computational hardness results for the question whether a given graph admits a robust
recoverable perfect matching.
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2 Known Number of Arrivals

In this section, we consider the setting where k (number of arrival pairs in Stage 2) is already
known in Stage 1. Let G1 be the complete graph given in Stage 1 (with edge costs c induced
by an arbitrary metric) and let O1 be a min-cost perfect matching in G1. Without loss of
generality assume that |O1| > 2k, as otherwise, we can remove all edges of M1 in Stage 2.

Algorithm 1.1 works as follows:
(i) Let P1, . . . , Pk be edge-disjoint, O1-alternating paths maximizing

∑k
i=1 gainO1(Pi).

(ii) Set M := O1∆P1∆ . . .∆Pk.
(iii) Return M1 := M ∪ {e(Pi) : i ∈ [k]}.

It is easy to see that each path Pi starts and ends with an edge from O1 and gainO1(Pi) ≥ 0.
As a consequence, M1 is a perfect matching and

c(M) = c(O1)−
∑k

i=1 gainO1(Pi) ≤ c(O1).

Using c(e(Pi)) ≤ c(Pi) and
⋃k

i=1 Pi = O1∆M ⊆ O1 ∪M we obtain

c(M1) ≤ c(M) +
∑k

i=1 c(Pi) ≤ c(M) + c(M) + c(O1) ≤ 3 · c(O1).

Now consider the arrival of 2k new vertices, resulting in the graph G2 with min-cost
matching O2. Note that O2∆M is a U -join, where U is the union of the endpoints of the
paths P1, . . . , Pk and the 2k newly arrived vertices.

Algorithm 1.2 works as follows:
(i) Let P ′1, . . . , P ′2k be the 2k maximal paths from O2∆M .
(ii) Return M2 := M ∪ {e(P ′i ) : i ∈ [2k]}.

Note that O1∆O2 consists of k alternating paths R1, . . . , Rk, from which we remove
the starting and ending O2-edge. Then these paths would have been a feasible choice
for P1, . . . , Pk, implying that the total gain of the Ri’s is at most that of the Pi’s. We
conclude that

c(M) = c(O1)−
∑k

i=1 gainO1(Pi) ≤ c(O1)−
∑k

i=1 gainO1(Ri) ≤ c(O2).

Applying
⋃2k

i=1 P
′
i ⊆ O2∆M ⊆ O2 ∪M , we obtain

c(M2) ≤ c(M) +
∑2k

i=1 c(P ′i ) ≤ c(M) + c(M) + c(O2) ≤ 3 · c(O2).

As |M1 \M2| ≤ |M1 \M | = k, we conclude that M1 is indeed two-stage (3, 1)-robust.
We remark that M is always a min-cost matching of cardinality |V (G1)| − 2k in G1.

Thus, alternatively to Algorithm 1.1, we can compute a min-cost matching of cardinality
|V (G1)| − 2k and match uncovered nodes at minimum cost. Finding M directly as well as
finding gain-maximizing paths as described in Algorithm 1.1 can be done efficiently by solving
a min-cost T -join problem in an extension of G1. This concludes our proof of Theorem 1.

3 Unknown Number of Arrivals – Stage 1

In this section, we consider the case that the underlying metric corresponds to the real line.
This implies that there is a Hamiltonian path L in G1 such that c(v, w) = c(L[v, w]) for
all v, w ∈ V (G1), where L[v, w] is the subpath of L between nodes v and w. We will refer
to L as the line and call the subpaths of L intervals. The restriction to the metric on the
line results in a uniquely defined min-cost perfect matching O1 with a special structure. All
proofs omitted due to space constraints can be found in the appendix of the full version.

ICALP 2019
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c1 c3 c3 c1 c1c2 c2
[. . . ] [. . . ] [. . . ]

Figure 2 For fixed α, β ∈ O(1), we construct an instance for which Algorithm 1.1 is not (α, β)-
robust for any k ∈ O(1). G1 is constructed such that O1 contains β + 1 edges of size c1 and β3 + β2

of size c3 that are equally distributed between c1-edges. The distance between any two consecutive
edges in O1 is c2. Values c1, c2, c3 are chosen depending on α, guaranteeing c1 � β3c2 � β6c3.
Algorithm 1.1 with k ≥ β + 1 chooses M1 = O1. Now, assume there are two arrivals at the extremes
of the line: while the optimal costs in the second stage decrease heavily to c(O2) ∈ Θ(β3c2), only β
deletions are allowed within M1. As a result, there does not exist a feasible second stage reply. Now,
consider Algorithm 1.1 with k ≤ β. Then, M1 contains more than β2 + β edges of size c2. If in the
second stage 2(β + 1) nodes arrive right next to the endpoints of c1-edges, the optimal costs drop to
Θ(β3c3) while only β2 + β deletions are allowed. Again, no feasible second stage reply exists.

I Lemma 3. O1 is the unique perfect matching contained in L.

When the number of arrivals is not known in the first stage, the approach for constructing
the first stage matching introduced in Section 2 does not suffice anymore. Figure 2 illustrates
a class of instances for which Algorithm 1.1 cannot achieve (O(1), O(1))-robustness, no matter
how we choose k. For a matching M , define g(M) := maxe∈L |{{v, w} ∈ M : e ∈ L[v, w]}|.
Informally speaking, g(M) captures the maximal number of times a part of the line is
traversed by edges in M . The example in Figure 2 can be generalized to show that we cannot
restrict ourselves to constructing matchings M1 such that g(M1) is bounded by a constant.

In view of the example in Figure 2, we adapt the approach from Section 2 as follows.
Instead of creating a fixed number of paths, our algorithm now iteratively and greedily selects
a path P of maximum gain with respect to a dynamically changing matching X (initially
X = O1). In order to bound the total cost incurred by adding edges of the form e(P ), we
only consider paths P for which X ∩ P contributes a significant part to the total cost of P .

I Definition 4. Let X,P ⊆ E(G1).
1. We say that P is X-heavy if c(P ∩X) ≥ 2 · c(P \X).
2. We say that P is X-light if c(P ∩X) ≤ 1

2 · c(P \X).

Algorithm 2.1 works as follows:
(i) Set M1 := ∅ and X := O1.
(ii) While X 6= ∅: Let P be an X-heavy X-alternating path maximizing gainX(P ) and

update M1 ←M1 ∪ {e(P )} and X ← X∆P .
(iii) Return M1.

Note that in each iteration, the path P starts and ends with an edge from X as it is
gain-maximizing (if P ended with an edge that is not in X, we could simply remove that
edge and obtain a path of higher gain). Therefore it is easy to see that X ∪M1 is always a
perfect matching, and in each iteration the cardinality of X decreases by 1.

Now number the iterations of the while loop in Algorithm 2.1 from 1 to n. Let X(i) be
the state of X at the beginning of iteration i. Let P (i) be the path chosen in iteration i and
let e(i) = e(P (i)) be the corresponding edge added to M . The central result in this section is
Lemma 7, in which we show that the paths P (i) form a laminar family of intervals on the line.

Within the proof we will make use of observations stated in Lemmas 5 and 6. For
convenience, we define the projection ψ(e) := L[v, w] that maps an edge e = {v, w} ∈ E(G1)
to the corresponding subpath L[v, w].
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P (i)
P (j)

Figure 3 A minimal example of a situation in which Lemma 7 would be violated. There are two
iterations i < j with paths P (i) (depicted in blue) and P (j) (depicted in red) such that X ∩ P (j)

was not modified between iteration i and iteration j. Then, extending the blue path P (i) with the
rightmost edge yields an X(i)-heavy path with higher gain than P (i), a contradiction.

I Lemma 5. Let X ⊆ E(G1).
1. Let A,B ⊆ E(G1) be two X-heavy (X-light, respectively) sets with A ∩ B = ∅. Then

A ∪B is X-heavy (X-light, respectively).
2. Let A,B ⊆ E(G1) with B ⊆ A. If A is X-heavy and gainX(B) < 0, then A \ B is

X-heavy. If A is X-light and gainX(B) > 0, then A \B is X-light.

I Lemma 6. Let X ⊆ L be a matching.
1. Let P be an X-heavy X-alternating path maximizing gainX(P ). If X covers all vertices

in V (ψ(P )), then P = ψ(P ).
2. Let I ⊆ L be an interval. Then there is an X-alternating path P such that c(P ∩X) =

c(X ∩ I) and c(P \X) = c(I \X).

I Lemma 7.
1. X(i), P (i) ⊆ L for all i ∈ [n].
2. For all i, j ∈ [n] with i < j, either P (i) ∩ P (j) = ∅ or P (j) ⊂ P (i).

Proof. We say a pair (i, j) with i < j is violating if ψ(P (i)) ∩ ψ(P (j)) 6= ∅ and ψ(P (j)) \
ψ(P (i)) 6= ∅. We will show that no violating pair exists. This proves the lemma as the
following claim asserts.

B Claim. If P (j) 6= ψ(P (j)), then there is a violating pair (i′, j′) with i′ < j′ ≤ j.

Proof. Let j′ be minimal with P (j′) 6= ψ(P (j′)). Note that minimality of j′ implies that
X(j′) = O1∆P (1)∆ . . .∆P (j′−1) ⊆ L. Then Lemma 6 implies that there must be a vertex
v ∈ V (ψ(P (j′))) not covered by X(j′). Because X(j′) covers exactly those vertices not covered
by {e(i′) : i′ < j′}, there must be an i′ < j′ such that v is an endpoint of P (i′). The vertex v
cannot be an endpoint of P (j′), because v is exposed in X(j′) and P (j′) starts and ends with
edges from X(j′). This implies that (i′, j′) is a violating pair. C

Now let us assume there are no violating pairs. Then P (i) = ψ(P (i)) ⊆ L for all i ∈ [n]
by the claim, which also implies X(i) ⊆ L. This implies the lemma as, in this situation, the
condition for violating pairs coincides with the condition in point 2 of the lemma.

By contradiction assume there is a violating pair. Choose j such that j is minimal among
all possible choices of violating pairs. Then choose i such that it is maximal for that j among
all violating pairs.

Note that the claim implies that P (i), X(i), X(j) ⊆ L. Furthermore, our choice of i and
j implies that ψ(P (j′)) ∩ ψ(P (j)) = ∅ for all j′ with i < j′ < j, as otherwise (i, j′) or (j′, j)
would be a violating pair. In particular, P (j′) ∩ P (j) = ∅ for all j′ with i < j′ < j and thus

X(j) ∩ P (j) = X(i+1) ∩ P (j) = (X(i)∆P (i)) ∩ P (j). (1)

Now consider I1 := ψ(P (j)) ∩ P (i) and I2 := ψ(P (j)) \ P (i), both of which are non-empty
since (i, j) is a violating pair. Then (1) implies X(j)∩ I1 = I1 \X(i) and I1 \X(j) = X(i)∩ I1.
We conclude that gainX(j)(I1) = − gainX(i)(I1) ≤ 0, as I1 is a prefix of the gain-maximizing
path P (i) (see the appendix of the full version for a formal proof).

ICALP 2019
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Figure 4 a) Illustration of the matching created by an example execution of Algorithm 2.1.
Edges added to M1 in an iteration from WH are depicted by blue solid lines and edges created in an
iteration from WL are illustrated by red dotted lines. b) Illustration of the corresponding tree. For
every tree-node i ∈W , grey edges indicate X(i) and an arc illustrates the edge connecting the end
nodes of P (i). c) Illustration of example assignment of requests to iterations (defined in Section 4).
Requests R,R′, R′′ ∈ R are assigned such that R,R′′ ∈ R(0) and R′ ∈ R(2). R̄ ∈ R̄(0) is a gap
between two requests associated with tree-node 0.

Therefore I2 = ψ(P (j)) \ I1 is X(j)-heavy by Lemma 5. But then I2 is also X(i)-heavy
because (1) implies X(j) ∩ I2 = X(i) ∩ I2. Hence I ′ := P (i) ∪ I2 is X(i)-heavy by Lemma 5
and further

gainX(i)(I ′) = gainX(i)(P (i)) + gainX(j)(I2) > gainX(i)(P (i)),

because gainX(j)(I2) ≥ 1
3c(I2). By Lemma 6 there is an X(i)-heavy, X(i)-alternating path

with higher gain than P (i), a contradiction. J

Tree structure. Lemma 7 induces a tree structure on the paths selected by Algorithm 2.1.
We define the directed tree T = (W,A) as follows. We let W := {0, . . . n} and define
P (0) := L. For i, j ∈W we add the arc (i, j) to A if P (j) ⊂ P (i) and there is no i′ ∈W with
P (j) ⊂ P (i′) ⊂ P (i). It is easy to see that T is an out-tree with root 0. We let T [i] be the
unique 0-i-path in T . We define the set of children of i ∈W by ch(i) := {j ∈W : (i, j) ∈ A}.
Furthermore, let WH := {i ∈W : |T [i]| is odd} and WL := {i ∈W : |T [i]| is even} be the set
of heavy and light nodes in the tree, respectively. These names are justified by the following
lemma. See Figure 4 a)-b) for an illustration.

I Lemma 8. If i ∈ WH, then P (i) ∩X(i) = P (i) ∩O1 and, in particular, P (i) is O1-heavy.
If i ∈WL \ {0}, then P (i) ∩X(i) = P (i) \O1 and, in particular, P (i) is O1-light.

Proof. Let i ∈W \ {0}. From Lemma 7 we know that for every iteration i′ ∈W \ {0} with
i′ < i it holds that either P (i) ∩ P (i′) = ∅ or P (i) ⊂ P (i′). In the first case it holds that
P (i)∩X(i′+1) = P (i)∩X(i′), in the latter case it holds that P (i)∩X(i′+1) = P (i)∩(P (i)∆X(i′)).
Moreover, it is easy to see that i′ < i and P (i) ⊂ P (i′) holds if and only if i′ ∈ V (T [i]) \ {0, i}.
If i ∈ WH, this implies that there exist an even number of iterations i′ < i for which
P (i) ⊂ P (i′) holds. Hence, we obtain

P (i) ∩X(i) = P (i) ∩ (P (i)∆ . . .∆P (i)︸ ︷︷ ︸
evenly often

∆O1) = P (i) ∩O1.

If i ∈WL, this implies that there exist an odd number of iterations i′ < i for which P (i) ⊂ P (i′)

holds. Hence, we can deduce that

P (i) ∩X(i) = P (i) ∩ (P (i)∆ . . .∆P (i)︸ ︷︷ ︸
oddly often

∆O1) = P (i) \O1. J
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The fact that nested paths are alternatingly O1-heavy and O1-light implies an exponential
decay property. As a consequence we can bound the cost of M1.

I Lemma 9. Let i ∈W \ {0}. Then
∑

j∈ch(i) c(P (j)) ≤ 1
2 · c(P

(i)).

Proof. Let i ∈W \ {0}. Then∑
j∈ch(i)c(P (j)) ≤ 3

2
∑

j∈ch(i) c(P (j) ∩X(j)) ≤ 3
2c(P

(i) \X(i)) ≤ 1
2c(P

(i)),

where the first inequality follows from the fact that P (j) is X(j)-heavy; the second inequality
follows from the fact that P (j) ∩ X(j) ⊆ P (i) \ X(i) for j ∈ ch(i) and the fact that the
intervals P (j) for all children are disjoint; the last inequality follows from the fact that P (i)

is X(i)-heavy. J

I Lemma 10. c(M1) ≤ 3c(O1).

Proof. Note that c(M1) =
∑n

i=1 c(e(i)) =
∑

i∈W\{0} c(P (i)). For ` ∈ N, let

W` := {i ∈W : |T [i]| = `}.

Observe that Lemma 9 implies that
∑

i∈W`
c(P (i)) ≤

( 1
2
)`−1∑

i∈W1
c(P (i)) for all ` ∈ N.

Furthermore
∑

i∈W1
c(P (i)) ≤ 3

2c(O1), because W1 ⊆WH. Hence

c(M1) =
∞∑

`=1

∑
i∈W`

c(P (i)) ≤
∞∑

`=1

(
1
2

)`−1 ∑
i∈W1

c(P (i)) = 2 · 3
2c(O1). J

4 Unknown Number of Arrivals – Stage 2

We now discuss how to react to the arrival of 2k additional vertices. We let O2 be the
min-cost perfect matching in the resulting graph G2 and define

R := {P : P is a maximal path in (O1∆O2) ∩ L}.

We call the elements of R requests. An important consequence of our restriction to the
metric space on the line is that |R| ≤ k (in fact, each of the k maximal paths of O1∆O2 is
contained in L after removing its first and last edge).

I Lemma 11. |R| ≤ k and each R ∈ R starts and ends with an edge of O1.

For simplification of the analysis we make the following assumptions on the structure of
the request set.

I Assumption A. For all i ∈ WL and all R ∈ R, either P (i) ∩ R = ∅ or P (i) ⊆ R, or
R ⊆ P (i).

I Assumption B. For all j ∈WH, if
⋃

R∈RR∩P (j) 6= ∅, then the first and last edge of P (j)

are in
⋃

R∈RR.

In the appendix of the full version we prove formally that these are without loss of
generality. For intuition, we give a short sketch of the proof. Assume we are confronted
with a set of requests R that violates at least one of the assumptions. Based on R, we
can construct a modified set of requests R′ complying with the assumptions and fulfilling
two properties: First, gainO1(

⋃
R∈R′ R) > gainO1(

⋃
R∈RR), i.e., R′ induces smaller second
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stage optimal costs than R and secondly, |R′| ≤ |R|, i.e., R′ allows for at most as many
modifications as R does. As a consequence, if we run our proposed second stage algorithm
for R′ and construct M2 accordingly, the analysis of the approximation and recourse factor
carry over from the analysis of R′ to the actual set of requests R. Hence, we can assume
w.l.o.g. that R fulfills the assumptions.

From the set of requests R, we will determine a subset of at most 2k edges that we delete
from M1. To this end, we assign each request to a light node in WL as follows. For R ∈ R
we define iR := max{i ∈WL : R ⊆ P (i)}, i.e., P (iR) is the inclusionwise minimal interval of
a light node containing R. For i ∈WL, let

R(i) :=
{
R ∈ R : iR = i

}
.

Furthermore, we also keep track of the gaps between the requests in R(i) as follows. For
i ∈WL, let

R̄(i) :=
{
R̄ ⊆ P (i) : R̄ is a maximal path in P (i) \

⋃
R∈R(i)R and

R̄ ⊆ P (j) for some j ∈ ch(i)
}
.

Note that R′ ∩R′′ = ∅ for all R′, R′′ ∈ R(i) ∪ R̄(i), i ∈WL. However, R̄ ∈ R̄(i) may contain
a request R ∈ R(j) from descendants j of i. See Figure 4 c) for an illustration of the
assignment.

For i ∈ WL, let WH(i) := ch(i) and WL(i) := {i′ ∈ W : i′ ∈ ch(j) for some j ∈ WH(i)}.
Note that WH(i) ⊆WH and WL(i) ⊆WL. Before we can state the algorithm for computing
the second stage reply, we need one final lemma.

I Lemma 12. Let i ∈ WL. For every R ∈ R(i), there is a j ∈ WH(i) with P (j) ∩ R 6= ∅.
For every R̄ ∈ R̄(i), there is an i′ ∈WL(i) with P (i′) ∩R 6= ∅.

We are now ready to state the algorithm. We first describe and discuss a simplified
version, which yields an approximation guarantee of 19. At the end of the paper, we discuss
how to slightly adapt the algorithm so as to obtain the factor of 10 given in Theorem 2.

Algorithm 2.2 works as follows:
(i) Create the matching M ′ by removing the following edges from M1 for each i ∈WL:

1. The edge e(i) if i 6= 0 and R(i) 6= ∅.
2. For each R ∈ R(i) the edge e(j∗R) where j∗R := min{j ∈WH(i) : P (j) ∩R 6= ∅}.
3. For each R̄ ∈ R̄(i) the edge e(i∗

R̄
) where i∗

R̄
:= min{i′ ∈WL(i) : P (i′) ∩R 6= ∅}.

(ii) Let M ′′ be a min-cost matching on all vertices not covered by M ′ in G2.
(iii) Return M2 := M ′ ∪M ′′.

Let Z be indices of the edges removed in step (i). It is not hard to see that |R̄(i)| ≤
|R(i)| − 1 for each i ∈WL and therefore |Z| ≤ 2k, bounding the recourse of Algorithm 2.2 as
intended.

I Lemma 13. |Z| ≤ 2k.

Now let Y := W \ (Z ∪ {0}) be the nodes corresponding to edges that have not been
removed and

Ȳ := {i ∈ Y : T [i] \ {0, i} ⊆ Z}

the nodes that correspond to maximal intervals that have not been removed.
The following lemma is a consequence of the exponential decay property. It shows that

in order to establish a bound on the cost of M2, it is enough to bound the cost of all paths
P (i) for i ∈ Ȳ .
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e(iR)

e(j∗R)

RA(R) A(R)

Figure 5 Illustration of the proof of Lemma 15. The solid dark grey lines depict edges in O1 ∩R.
At the time when Algorithm 2.1 constructed P (j∗R), no other child interval of iR intersecting with R
was present. Thus X(j∗R) ∩R = X(iR+1) ∩R = O1 ∩R. If A(R) was O1-heavy, then P (j∗R) ∪A(R)
would be an O1-heavy path of higher O1-gain than P (j∗R), contradicting the greedy construction.

I Lemma 14. c(M2) ≤ c(O2) + 3
∑

i∈Ȳ c(P (i)).

It remains to bound the cost of the paths associated with the tree nodes in Ȳ . We
establish a charging scheme by partitioning the line into three areas A,B,C:

1. For R ∈ R, let A(R) := R \ P (j∗R). We define A :=
⋃

R∈RA(R).
2. For i ∈WL and R̄ ∈ R̄(i), let B(R̄) := R̄ \

⋃
i′∈WL(i)∩Z P

(i′).
We define B :=

⋃
R̄∈R̄B(R̄).

3. We define C := L \ (A ∪B).

Consider a set A(R) for some R ∈ R. Recall that iR is the index of the smallest light
interval constructed by Algorithm 2.1 containing R and that j∗R is the first child interval
of iR created by Algorithm 2.1 that intersects R. From the choice of j∗R and the greedy
construction of P (j∗R) as a path of maximum X(j∗R)-gain we can conclude that A(R) is not
O1-heavy; see Figure 5 for an illustration. Therefore c(A(R) \O1) > 1

3c(A(R)). Note that
O2 ∩A(R) = A(R) \O1, because A(R) ⊆ R. Hence we obtain the following lemma.

I Lemma 15. Let R ∈ R. Then 1
3c(A(R)) ≤ c(O2 ∩A(R)).

A similar argument implies the same bound for all sets of the type B(R̄) for some R̄ ∈ R̄(i)
and i ∈WL.

I Lemma 16. Let R̄ ∈ R̄. Then 1
3c(B(R̄)) ≤ c(O2 ∩B(R̄)).

Furthermore, one can show that the sets of the form A(R) and B(R̄) and the set C form
a partition of L (see the appendix of the full version). We define x : L→ R+ by

x(e) :=


1
3 if e ∈ A ∪B
1 if e ∈ C ∩O2

0 if e ∈ C \O2

and obtain the following lemma as a consequence of Lemmas 15 and 16.

I Lemma 17.
∑

e∈L c(e)x(e) ≤ c(O2 ∩ L).

We are now able to bound the cost of each path P (i) for i ∈ Ȳ against its local budget∑
e∈P (i) c(e)x(e). We consider the cases where i ∈ Ȳ corresponds to a heavy and light edge

in Lemma 18 and Lemma 19, respectively.

I Lemma 18. Let j ∈ Ȳ ∩WH. Then c(P (j)) ≤ 6
∑

e∈P (j) c(e)x(e).
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Proof. We first show that each request intersecting with P (j) is either contained in a child
interval of j or the edges in P (j) intersecting with the request are covered by A.

B Claim. Let R ∈ R with R ∩ P (j) 6= ∅. Then R ∩ P (j) ⊆ A(R) or R ⊆ P (i′) for some
i′ ∈ ch(j).

Proof. Assume R 6⊆ P (i′) for any i′ ∈ ch(j). In particular, this implies that iR /∈ desc(j). Let
i be the parent node of j in T . We first exclude the possibility that iR is an ancestor of i.
Indeed, if this was the case then R 6⊆ P (i) and thus by Assumption A, P (i) ⊆ R. But then
P (i) can neither contain other request intervals, nor can it intersect any non-request intervals.
Therefore R(i) = ∅ and i 6= i∗

R̄
for all R̄ ∈

⋃
i′∈WL

R̄(i′). Therefore, i /∈ Z, a contradiction to
j ∈ Ȳ . This implies that iR = i. Further note that j ∈ Ȳ implies j 6= j∗R for all R ∈ R, as
otherwise, j would have been tagged for removal. We conclude that j∗R ∈ ch(i) \ {j} and
thus R ∩ P (j) ⊆ R \ P (j∗R) = A(R), as P (j) and P (j∗R) are disjoint. C

Let Q :=
⋃

i′∈ch(j) P
(i′). Consider e ∈ P (j) ∩ O1. Note that the claim implies that if

e /∈ A ∪Q, then e ∈ O2. We conclude that (P (j) ∩O1) \Q ⊆ A ∪B ∪ (C ∩O2). Further, a
variant of Lemma 9 implies that c(P (j) ∩O1) ≤ 4

3c((P
(j) ∩O1) \Q) (see appendix of the full

version for details). We obtain

c(P (j)) ≤ 3
2c(P

(j) ∩O1) ≤ 2c((P (j) ∩O1) \Q) ≤ 6
∑

e∈P (j) c(e)x(e),

where the first inequality follow from the fact that P (j) is O1-heavy and the last inequality
follows from the fact that x(e) ≥ 1/3 for every e ∈ A∪B∪(C∩O2). This proves the lemma. J

I Lemma 19. Let i ∈ Ȳ ∩WL. Then c(P (i)) ≤ 3
∑

e∈P (i) c(e)x(e).

The proof of Lemma 19 is given in the appendix of the full version. We state a short
proof sketch for intuition. Let i ∈ Ȳ ∩WL. Due to the removal of light edges with associated
requests and Assumption A, we know that P (i) either does not intersect with any request or
P (i) is completely covered by a request. In the former case one can show that P (i) is included
in B and hence the lemma holds. In the latter case, P (i) is either included in A and hence
the lemma holds or it is included in C in which case the lemma holds since P (i) is O1-light.

As a consequence, we can now show a first constant factor bound. Because the paths P (i)

for i ∈ Ȳ are pairwise disjoint, Lemmas 17 to 19 imply
∑

i∈Ȳ c(P (i)) ≤ 6c(O2). Plugging
this into Lemma 14 we obtain

c(M2) ≤ c(O2) + 3
∑

i∈Ȳ c(P (i)) ≤ 19c(O2).

Improvement of approximation factor. We can improve the approximation factor from
19 to 10 by a slight modification of the set of edges removed in Stage 2. To this end, note
that the factor for the bound given in Lemma 18 is greater than the one given in Lemma 19.
Indeed, the only reason for the weaker bound is that edges in Ȳ ∩WH can have descendants
with associated requests. Excluding this case improves the factor within the bound of the
lemma from 6 to 3. We formalize this in the following lemma.

I Lemma 20. Let j ∈ Ȳ ∩WH such that ch(j) ∩ Z = ∅. Then c(P (j)) ≤ 3
∑

e∈P (j) c(e)x(e).

We now modify Algorithm 2.2 as follows: Compute the set Z of edges tagged for removal
by Algorithm 2.2. Now construct the set Z ′ by defining

H̄ := {j ∈WH \ Z : ch(j) ∩ Z 6= ∅} and Z ′ := (Z ∪ H̄) \
⋃

j∈H̄ ch(j).



J. Matuschke, U. Schmidt-Kraepelin and J. Verschae 82:13

Now execute step 2 of Algorithm 2.2 with Z ′ instead of Z, i.e., remove the edges with
indices in Z ′ and connect the unmatched vertices by a min-cost matching. It is easy to see
that |Z ′| ≤ |Z| and therefore the recourse factor is still bounded by 2. For analyzing the
approximation factor, we define Y ′ := W \ (Z ′ ∪ {0}) the nodes corresponding to edges that
have not been removed and Ȳ ′ := {i ∈ Y : T [i] \ {0, i} ⊆ Z ′} in analogy to the original
analysis. It is easy to see that ch(j) ∩ Z = ∅ for every j ∈ Ȳ ′ ∩WH = Ȳ \ H̄ and hence
c(P (j)) ≤ 3

∑
e∈P (j) c(e)x(e) by Lemma 20. Furthermore, if i ∈ Ȳ ′ ∩WL then either i ∈ Ȳ

and c(P (i)) ≤ 3
∑

e∈P (i) c(e)x(e) by Lemma 19, or i ∈ ch(j) for some j ∈ Ȳ \ Ȳ ′ = H̄. Note
that Lemmas 9 and 18 imply∑

j∈H̄

∑
i∈ch(j) c(P (i)) ≤ 1

2
∑

j∈H̄ c(P (j)) ≤ 3
∑

j∈H̄

∑
e∈P (j) c(e)x(e).

We thus obtain
∑

i∈Ȳ ′ c(P (i)) ≤ 3c(O2) and hence for the modified algorithm it holds that

c(M2) ≤ c(O2) + 3
∑

i∈Ȳ ′ c(P (i)) ≤ 10c(O2).
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