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Abstract
This paper considers scheduling on identical machines. The scheduling objective considered in
this paper generalizes most scheduling minimization problems. In the problem, there are n jobs
and each job j is associated with a monotonically increasing function gj . The goal is to design a
schedule that minimizes

∑
j∈[n] gj(Cj) where Cj is the completion time of job j in the schedule.

An O(1)-approximation is known for the single machine case. On multiple machines, this paper
shows that if the scheduler is required to be either non-migratory or non-preemptive then any
algorithm has an unbounded approximation ratio. Using preemption and migration, this paper gives
a O(log log nP )-approximation on multiple machines, the first result on multiple machines. These
results imply the first non-trivial positive results for several special cases of the problem considered,
such as throughput minimization and tardiness.

Natural linear programs known for the problem have a poor integrality gap. The results are
obtained by strengthening a natural linear program for the problem with a set of covering inequalities
we call job cover inequalities. This linear program is rounded to an integral solution by building on
quasi-uniform sampling and rounding techniques.
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1 Introduction

A common optimization challenge is scheduling a set of n jobs on m identical machines
to optimize the quality of service delivered to the jobs. The quality of service objective
could be: a delay based objective, such as minimizing the average waiting time; a fairness
objective ensuring resources are shared fairly between jobs, such as the `2-norm of the waiting
time; or a real-time objective such as ensuring a small number of jobs are not completed by
their deadline.

Scheduling Model. This paper develops an algorithm that has strong guarantees for most
reasonable objectives. This work considers the identical machines setting where all jobs are
available at the same time. Each job j has a processing time pj . The job can be processed
on m identical machines where the processing time of the job is the same on all machines.
This work assumes that preemption and migration are allowed. That is jobs can be stopped
and resumed at a later time, possibly on a different machine.
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86:2 Scheduling to Approximate Minimization Objectives

This paper initiates the study of the general scheduling problem (GSP) on identical
machines. In this problem, each job j has a function gj(t) : R+ → R+. The value of gj(t)
specifies the cost of completing job j at time t. The goal is to design an algorithm that
completes each job j at time Cj to minimize

∑
j∈[n] gj(Cj). No assumptions on the functions

are made except that they are positive and non-decreasing, so there never is an incentive
to have a job wait longer to be completed. Note that each job has its own, individual, cost
function. In several systems, it is the case that jobs can be associated with distinct cost
functions [15, 16, 17].

The problem generalizes many scheduling objectives. Examples include the following. In
the following descriptions, each job j has a positive weight wj denoting its priority.

Weighted Completion Time: A job’s cost is its weight multiplied by its completion
time. The completion time is how long the job waits in the system and this objective
focuses on minimizing the priority scaled average waiting time. This objective is captured
by setting gj(t) = wj · t.
Weighted kth Norm of Completion Time: This objective focuses on minimizing
k

√∑
j∈[n] wjC

k
j or, by removing the outer kth root,

∑
j∈[n] wjC

k
j . This objective is

captured by setting gj(t) = wj · tk. This is used to enforce fairness in the schedule and
typically k ∈ {2, 3}.
Weighted Throughput Minimization: The goal is to minimize the weighted number
of jobs that miss their deadline. Each job j has a deadline dj . Setting gj(t) = 0 for t ≤ dj
and wj otherwise gives this objective.
Weighted Tardiness: Each job has no cost if completed before its deadline and otherwise
the job pays its weighted waiting time after is deadline. Each job has a deadline dj and
weight wj . This objective is obtained by setting gj(t) = 0 for t ≤ dj and wj(t − dj)
otherwise.
Exponential Completion Time: In this objective a job’s cost grows exponentially
with its completion time. The objective is captured by setting gj(t) = wj · exp(t).

These problems have been challenging to understand. The problem considered is NP-Hard,
even on a single machine and the cost functions are piecewise linear [10]. It is known that
Smith’s rule is optimal for minimizing the total weighted completion time [21]. Bansal and
Pruhs in a breakthrough result introduced a O(1)-approximation algorithm for the general
scheduling problem on a single machine [2]. Cheung et al. improved this to show a (4 + ε)
approximation [6, 7, 18]. Antoniadis et al. gave a quasi-polynomial time approximation
scheme on a single machine [1, 11].

The next step in this line of work is to generalize these techniques to multiple machine
environments, but there is a clear barrier when generalizing past approaches to multiple
machines. Prior work introduced a strong linear program that uses a polynomial number of
knapsack cover inequalities. See [3] for details on knapsack cover inequalities. The inequalities
in [2, 7, 18] are weak in multiple machine environments and result in linear programs with
an unbounded integrality gap.

An open question is if there exists a linear program with a small integrality gap for
multiple machines. Further, are there good approximation algorithms for the GSP on
multiple machines.

Results. This paper studies the GSP in the identical machine environment. The paper
shows the following theorem. The technical contributions that result in this theorem are the
derivation of valid strong linear program inequalities that are used to strengthen a natural
linear program relaxation of the problem and an iterative rounding technique that builds on
quasi-uniform sampling [22].



B. Moseley 86:3

I Theorem 1. There is a randomized algorithm that achieves a O(log lognP ) approximation
in expectation and runs in expected polynomial time for the GSP on multiple identical
machines with preemption and migration where P is the ratio of the maximum to minimum
job size.

A natural question is if preemption and migration are necessary for an algorithm to
have a good approximation ratio. This paper shows that they are by establishing that any
scheduler required to be non-preemptive or non-migratory has an unbounded approximation
ratio unless P = NP . The proof is omitted

I Theorem 2. The approximation ratio of any algorithm for GSP is unbounded unless
P=NP if either the algorithm is required to be non-migratory or non-preemptive on m

identical machines.

Overview of Technical Contributions. The main result is enabled by a set of strengthening
inequalities added to a natural linear program (LP) for the problem. The paper calls these
inequalities, job cover inequalities. See Section 4. These inequalities are needed because
without them the LP introduced in this paper has an unbounded integrality gap even if all
jobs arrive at the same time on a single machine1. Other natural LP relaxations, such as a
time indexed LP, also have an unbounded gap even on a single machine [2, 7].

Prior work on a single machine also used a set of covering inequalities to strengthen a
linear program. These inequalities consider every interval I and the set of jobs that arrive
during the interval SI . A constraint states that the total processing time of jobs in SI that
are completed after I ends must be greater than the total processing time of jobs in SI minus
the length of I [2, 7]. This is a covering constraint ensuring that the jobs arriving during I
that complete during I have total size at most the length of I. These covering constraints
are strengthened using knapsack cover inequalities. If such constraints are satisfied integrally
then the Earliest-Deadline-First algorithm can be used to construct a schedule of the same
cost as the LP.

A natural idea to extend this to identical machines is to use the same constraint, but the
total work completed after I ends must be greater than the size of jobs in SI minus m times
the length of I. This generalization takes into account that each machine can be busy during
I. Then the natural next step is to use knapsack cover inequalities to strengthen this new set
of constraints. Unfortunately, it is easy to show such inequalities are insufficient and result
in an LP with a large integrality gap. There are several issues and they are all rooted in the
fact that this does not take into account that a job can only be processed on one machine at
any point in time. To overcome this shortcoming, this paper considers covering constraints
used to strengthen a minimum cut constraint arises from a natural bipartite flow problem.

This paper proceeds by first reducing the scheduling problem to the problem of finding
completion times for each of the jobs, without committing to a schedule. Once a feasible set
of completion times is discovered, the scheduling of jobs can easily be obtained by solving
a bipartite flow problem. See Section 3 for details. Feasible solutions to the bipartite flow
problem have a one-to-one correspondence to the original scheduling problem. We note that
the reduction to this flow problem is a well-known scheduling technique.

The bipartite graph in the flow problem is used to derive the job cover inequalities. First
an LP is written based on the flow problem. To ensure a feasible flow is possible, a set of
constraints is added that ensure the minimum cut in the graph is sufficiently large. Then this

1 Without strengthening inequalities and when jobs arrive at the same time on a single machine the LP
introduced in this paper can be reduced to an LP used in prior work where the gap is known [2, 7]
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86:4 Scheduling to Approximate Minimization Objectives

set of covering constraints are strengthened. While these inequalities are used to strengthen
constraints that arise from a flow graph, they are different than previously studied flow
cover inequalities [19, 20, 14]. The key to defining the improved constraints is leveraging the
structure of the minimum cuts in the bipartite graph resulting from the scheduling problem.

The algorithm solves the strong LP and rounds the solution. The idea is to use iterative
randomized rounding, but this results in a large approximation ratio. We remark that
standard randomized rounding techniques can be used to obtain a O(logn) approximation
by over sampling variables by a O(logn) factor and then union bounding over constraints to
show they are satisfied with high probability. However, there are issues with reducing the
approximation ratio below this factor; the most challenging is showing that the constraints
are satisfied if variables are sampled by a smaller factor, which is what would be needed to
reduce the approximation ratio.

Instead, the algorithm uses an iterative scheme to round the solution. In each iteration,
the algorithm over samples variables by a small factor and modifies the linear program. The
modification ensures that (1) in expectation no variable, over all iterations, is sampled by
more than a O(log lognP ) factor than how much it is selected by the optimal LP solution
and (2) the relaxation remains feasible. The scheme builds on techniques of quasi-uniform
sampling [4, 22] and quasi-uniform iterative rounding [12].

Other Related Work

Single Machine. It is known the Smith’s rule is optimal for minimizing the total weighted
completion time [21]. The tardiness problem has been challenging to understand. Lawer [13]
gave a polynomial approximation scheme if jobs have unit size. Before the work on the GSP
in the single machine environment, the previously best known approximation for arbitrary
sized jobs was a (n− 1)-approximation [5]. For the GSP a (4 + ε)-approximation is known
[6] and a quasi-polynomial time approximation scheme has been established [1].

Identical Machines. Smith’s rule is optimal for minimizing the total weighted completion
time [21]. It is not difficult to see that there is an optimal algorithm for makespan2 if jobs can
be preempted and migrated across machines. An PTAS is known if migration is disallowed
[9]. As far as the author is aware, there are no non-trivial results known for exponential
completion time and tardiness on multiple machines.

2 Preliminaries

In the general scheduling problem (GSP), there is a set J of n jobs. Each job i has integer
processing time pi. Let P denote the maximum job size and assume the minumum job size is
one. The jobs are to be scheduled on a set M of m identical machines that can schedule one
job at any point in time. It is assumed that time is slotted and job i must be scheduled for
pi time units over all machines. Jobs can be preempted and migrated across machines. Jobs
cannot be scheduled on more than one machine simultaneously. Every job i is associated
with a function gi : R+ → R+ where gi(t) specifies the cost of completing job i at time t.
Without loss of generality, assume that gi(0) = 0 for all jobs i. The only assumption on
gi(t) is that it is a non-negative non-decreasing function. Under a given schedule, job i is
completed at time Ci. The goal is for the scheduler to minimize

∑
i∈J gi(Ci). Note that it

can be assumed that all jobs are completed by time nP .

2 Makespan is equivalent to minimizing the maximum completion.
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Figure 1 The graph G. A job i needs to assign pi units of flow (processing time) to machines
before Ci. Machines can process up to m units at each time.

3 Scheduling Jobs with Deadlines

This section shows that if the completion times of the jobs are fixed then there is a method
to determine how to schedule the jobs at or before their completion times or determine if
such a schedule is not possible. Notice that if such a schedule is feasible then this ensures
the objective is either the same or smaller in the computed schedule than if all jobs are
completed at exactly their given completion times. Let job i have a given completion time
Ci. The completion time Ci is interpreted as job i’s deadline.

The method to construct a schedule for the jobs is to setup a flow problem. Setting up a
flow graph to determine if a set of jobs can be feasibly scheduled is a standard scheduling
technique (e.g. [8]), but is presented here so that later this graph can be used in a linear
program formulation. Consider creating a bipartite flow graph G = ({s, d}∪A∪B,E) where
A contains a node ai for every job i and B contains a node bt for every time step t. There is
additionally a source s with an outgoing edge to each node ai in A with capacity pi. There
is a sink node d that has an incoming edge from each node in B with capacity m. Finally
there is an edge from ai ∈ A to bt ∈ B of capacity 1 if and only if t ≤ Ci. See Figure 1.

A set of completion times are feasible if and only if there is a feasible flow in this network
of value

∑
i∈[n] pi. This is because a job can be scheduled for a unit at each time during

[0, Ci] and must be scheduled for pi units total. Further, every time step can schedule up
to m jobs.

There are two messages to takeaway from this. One is that the problem can be solved by
only knowing completion times for the jobs. The other is that this flow graph can be used
to determine if a set of completion times can be associated with a valid schedule. A set of
completion times are said to be valid if there is a schedule that completes each job only
earlier than the given completion time.

The following theorem follows from the construction of G.

I Theorem 3. A set of completion times is valid if and only if there is a feasible maximum
flow of value

∑n
i=1 pi in the flow graph G.

Given a set of valid completion times, one can construct a feasible schedule using the flow
graph. That is, an assignment of jobs to machine at each time step. Unfortunately, the graph
has size Ω(nP ) and could be exponential in size. Recall that P is the ratio of the maximum to
minimum job size. There is a polynomial time algorithm that constructs a feasible schedule
in time polynomial in n and logW given a set of valid completion times. Here W denotes
the maximum value of gj(t) for t ≤ nP . This algorithm is omitted due to space. It can be
obtained by rounding possible completion times to geometrically increasing times.

ICALP 2019



86:6 Scheduling to Approximate Minimization Objectives

4 Strengthened Linear Program with Job Cover Inequalities

Consider the following natural integer program. The constraints in the program come from
the flow graph of the prior section. Let xj,t be 1 if job j is not completed at time t and 0
otherwise.3 This implies that xj,t is continuously 1 for t less than j’s completion time and
then 0 for times t thereafter in an integer solution. Let T be the set of all time slots and J
the set of all jobs. By assuming gj(0) = 0 for all j, the objective function is a telescoping
summation for each job j whose value will be gj(t) if t is the last time j is not fully processed.
The first set of constraints says that if job j is completed at time t−1 then it is also completed
at time t. The second set of constraints are more involved. One can think of the latest time
t that xj,t = 1 as being the completion time of j. Given this, the constraint says that every
cut in the flow network from Section 3 has value at least

∑
i∈J pi. This is a valid constraint

by Theorem 3 and the maximum-flow minimum-cut theorem. Note that J ′ corresponds to
jobs whose nodes are on the side of the cut with the source s. Similarly, T ′ corresponds to
time steps whose nodes are on the side of the cut with the sink d.

min
∑
j∈J

∑
t∈T

xj,t(gj(t)− gj(t− 1)) (1)

s.t. xj,t ≤ xj,t−1 ∀j ∈ J, t ∈ T (2)∑
j∈J\J′

pj +
∑
j∈J′

∑
t∈T ′

xj,t +
∑

t∈T\T ′
m ≥

∑
j∈J

pj ∀J ′ ⊆ J, T ′ ⊆ T (3)

xj,t ∈ {0, 1} ∀j ∈ J, t ∈ T

The goal is to derive a set of valid strengthening inequalities for the IP (1). These
inequalities are used to strengthen the minimum cut constraints. These inequalities are
needed because without them the LP has an unbounded integrality gap even if all jobs arrive
at the same time on a single machine [7]. Other natural LP relaxations, such as a time
indexed LP also have an unbounded gap even on a single machine.

We can derive a set of strengthening inequalities for this linear program that replace the
set of constraints (3). The proof establishing validity of the following constraints is omitted
due to space. The strengthening focuses on the constraints in (3) for J ′ = J . In the end,
the derived constraints are strictly stronger than the above and one need not consider the
other sets J ′.

Fix J ′ = J and consider the constraints
∑
j∈J

∑
t∈T ′ xj,t +

∑
t∈T\T ′ m ≥

∑
j∈J pj for

all T ′ ⊆ T . For a job j and a collection of time steps T ′ let E(T ′, j) be the set of up to
min{pj ,

∑
i∈J pi −m|T \ T ′|} earliest time steps in T ′. The full analysis first shows that

we can strengthen this to∑
j∈J

∑
t∈E(j,T ′)

xj,t +
∑

t∈T\T ′
m ≥

∑
j∈J

pj for all T ′ ⊆ T.

Notice the first summation now only considers time steps in E(T ′, j) for each job j.
The proof further improves these inequalities by taking inspiration from knapsack cover

inequalities. Let D be a vector where Dj is a time corresponding to job j. Intuitively, Dj

is a lower bound on the completion time for job j. The constraints below say that even
if all jobs j are set to have completion times at least Dj then the constraints should still
be satisfied.

3 Note that this is not the standard time indexed LP where the variables represent the amount j is
processed at time t.
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Fix T ′ ⊆ T and a vector D of completion times for every job. Consider the constraint
for T ′ in the above set of inequalities. If job j is given a completion time of at least
Dj then j will contribute at least

∑
t∈[0,Dj ]∩E(T ′,j) 1 to the left side of the inequality. Let

V (T ′, D) =
∑
i∈J pi−

∑
t∈T\T ′ m−

∑
j∈J

∑
t∈[0,Dj ]∩E(T ′,j) 1. Let E(T ′, D, j) be the earliest

V (T ′, D) time steps in E(T ′, j) later than Dj . The new constraints are as follows. These are
the job cover inequalities.∑

j∈J

∑
t∈E(T ′,D,j)

xj,t ≥ V (T ′, D) ∀T ′ ⊆ T, ∀D,V (T ′, D) > 0 (4)

The validity of these inequalities is not difficult to show, but technical. Notice that the
number of inequalities is large. We can somewhat reduce the number of constraints as follows.
It can be established that any integer solution satisfies all the constraints in (4) if and only
if the following are satisfied. The proof is omitted.∑

j∈J

∑
t∈E(T ′,D,j)

xj,t ≥ V (T ′, D) ∀b ∈ [0,∞], T ′ = [b,∞],∀D,V (T ′, D) > 0 (5)

These constraints state that if the subset of constraints in (4) are satisfied for any D and
all sets T ′ that consist of a continuous set of time steps from some time b to time ∞ then all
of the constraints in (4) are satisfied (for any T ′). Due to this, we will only need to use the
constraints in (5) that restricts the sets T ′.

The constraints (3) in the IP are replaced by the constraints in (5). Throughout the
paper these constraints are discussed and it is said that a fixed constraint is defined by the
set T ′ = [b,∞] and a vector D.

Note on Solving the LP. The IP is relaxed to a LP. The LP is solved and then subsequently
rounded to an integer solution. There are an exponential number of constraints. To solve the
LP, the ellipsoid method is used. The author does not know of an efficient separation oracle
for the set of constraints in (4). The reduced set of constraints in (5) are the only constraints
needed for the analysis. For this set of constraints, an efficient dynamic programming
algorithm can be used as a separation oracle. The separation oracle has been omitted due to
space constraints.

5 The Rounding Algorithm

In this section the algorithm for rounding a fractional LP solution to an integral solution is
described. Recall in Section 3 it was shown how to assign jobs to machines and time slots if
a valid set of completion times have been established. The remaining goal is to design an
algorithm that rounds a fractional LP solution to an integral solution, giving the completion
times for the jobs.

The algorithm takes as input a fractional solution to the LP x′. The input solution
is for the LP given in the previous section with constraints (3) replaced with the derived
constraints (5). The algorithm rounds the x′ solution to an integral solution x∗. If this
solution is feasible, then the algorithm terminates. Otherwise x∗ is modified to obtain a new
feasible fractional solution x̃∗ that the algorithm recurses on.

Informal Algorithm Description and Intuition. The algorithm runs in phases. During a
phase the algorithm finds a completion time for each job. The completion times are pushed
back to later times in each phase. In a fixed phase the algorithm runs a randomized rounding

ICALP 2019



86:8 Scheduling to Approximate Minimization Objectives

procedure to sample completion times for the jobs. Roughly, each completion time will be
over sampled by a Θ(log lognP ) factor over the fractional part of the LP. After sampling an
integer solution x∗ is created and variables are set corresponding to the sampled completion
times of the jobs. Some of the constraints in the LP will be satisfied. These constraints
will always remain satisfied because each job’s completion time is only pushed back to a
later time in subsequent iterations. The algorithm needs to satisfy the remaining constraints,
which it does by recursing on a fractional LP solution x̃∗ to make completion times later.
The fractional solution x̃∗ is constructed by increasing variables in the integral solution x∗.

In each iteration, the cost of the sampling is bounded by a Θ(log lognP ) factor more
than the fractional portion of the linear program objective in expectation. Ideally, one can
use standard iterative rounding for the recursion. However, naive approaches could have
large cost as it is difficult to bound the number of times the algorithm recurses and therefore
difficult to bound how many times a variable in the LP is sampled. A standard approach
will result in a Θ(lognP ) approximation.

The idea is to only include some fractional variables in the linear program solution that
the algorithm recurses on. The variables that are included can be slightly larger than their
original value. The essential properties are that (1) the linear program is feasible and (2)
each fractional variable is set to 0 with constant probability. Using (2) it will be shown that
the expected value of each variable drops by a constant (e.g. 1

2 ) factor of its value at the
beginning of the iteration. If this is established, then the probability a completion time is
sampled decreases geometrically over the phases and we can bound the algorithm’s objective
by the cost of the sampling in the first phase, a Θ(log lognP ) factor within the original LP
object in expectation.

The recursion will determine fractional variables to set to satisfy all constraints. One
can think of the fractional variables as fractional completion times for the jobs. The
idea is to associate each constraint with a set of fractional completion times that are critical
for satisfying the constraint in the solution x′. This will not be all completion times used
to satisfy the constraint, but an essential subset of them. By slightly increasing the linear
program variables in the integral solution x∗ to get a solution x̃∗ it is the case that only the
critical completion times are needed to satisfy their corresponding unsatisfied constraints.

If a constraint is unsatisfied, then the solution x̃∗ will set positive fractional values for
all completion times critical for this constraint to satisfy it. The analysis will show that
each fractional completion time is 0 (not increased) in x̃∗ with constant probability. For a
completion time to be 0 in the recursion we need to ensure all constraints are satisfied where
the completion time is critical by the integer solution x∗. Unfortunately, a completion time
could be critical for many constraints. Due to this, it is insufficient to show each constraint
is satisfied with good probability and then union bound over all constraints.

Fix a fractional completion time. The proof establishes that with good probability every
constraint that the completion time is critical for is satisfied in x∗. This ensures that the the
completion is 0 with constant probability. This will be used to show that the expected value
of a fractional variable in the LP decreases geometrically over the iterations. A completion
time is over-sampled by at most a Θ(log lognP ) factor as compared to the original LP
solution in expectation over all iterations. The cost is as if only one iteration of uniform
sampling occurred. This is similar to the analysis approach used in quasi-uniform sampling
[22] and rounding [12].



B. Moseley 86:9

5.1 Formal Algorithm Description
The ith phase of the algorithm is the following. The algorithm recurses on the following
until all constraints are satisfied. Let the input to the first phase be x, the optimal fractional
solution to the LP. The algorithm utilizes randomized rounding parameterized by c ≤ 1. The
value of c will be set to be 1

Θ(log lognP ) .

Phase i of the Algorithm. The algorithm first uses randomized rounding. Let x′ be
a feasible fractional solution to the LP at ith phase of the algorithm. For each job j,
the algorithm chooses a value αj ∈ [0, 1] uniformly at random and independently. Let
Cj,α be the latest time t where x′j,t ≥ cαj . Let β′j be the latest time t where x′j,t = 1.
Let LP′int =

∑
j gj(β′j) be the total integral cost of the LP solution x′ and let LP′frac =∑

j∈J
∑
t>β′

j
x′j,t(gj(t)− gj(t− 1)) be the total fractional cost of the LP solution x′.

The algorithm modifies the LP solution x′ to get a new (possibly infeasible) solution x∗.
This is further modified to get a feasible solution x̃∗ that the algorithm recurses on. The
algorithm sets x∗j,t = 1 for all j and t where t ≤ Cj,α and 0 otherwise. If all constraints are
satisfied in the LP, then the algorithm sets C∗j = Cj,α and returns this set of completion
times as the final solution. If not, then the algorithm further modifies x∗ as described below
and recurses on phase i+ 1. Let x∗ denote the current integral solution and x̃∗ a fractional
solution resulting from the following modification to x∗.

Consider any constraint in (5) defined by a set of time steps T ′ and a vector of completion
times D′ that is not satisfied by x∗. Assume D′ is chosen so that D′j ≥ Cj,α for all j. We
only need to consider these constraints because xj,t = 1 for t ≤ Cj,α. Recall that we may
assume T ′ contains a continuous set of time steps beginning with some time tT ′ and going to
∞. The algorithm identifies a set of pairs of jobs and completion times that are fractionally
chosen in x′ that are “critical” for satisfying this constraint. Intuitively, we will need to
include these same fractional completion times in x̃∗.

Let JT ′,D′ be the set of jobs j where
∑
t∈E(T ′,D′,j) x

′
j,t > 0. These are jobs used to satisfy

the constraint in x′. The following two sets of jobs can be thought of as not critical for
the constraint.

1. Order the jobs j in JT ′,D′ as 1, 2, 3, . . . |JT ′,D′ | in decreasing order of D′j . Let
MT ′,D′ ⊆ JT ′,D′ be the smallest prefix of jobs 1, 2, . . . k from this order such that∑k
j=1

∑
t∈E(T ′,D′,j) x

′
j,t ≥ 1

10V (T ′, D′).
2. Order the jobs j in JT ′,D′ as 1, 2, 3, . . . , |JT ′,D′ | in increasing order of D′j . Let

LT ′,D′ ⊆ JT ′,D′ be the smallest prefix of jobs 1, 2, . . . k in this order such that∑k
j=1

∑
t∈E(T ′,D′,j) x

′
j,t ≥ 1

10V (T ′, D′).

We will say that the jobs in JT ′,D′ = JT ′,D′ \ (LT ′,D′ ∪MT ′,D′) are critical for satisfying
the constraint T ′, D′. Let J ∗ = {j | ∃T ′D′ s.t. the constraint for T ′ and D′ is unsatisfied in
x∗ and j ∈ JT ′,D′}. This is the set of all critical jobs for constraints that are not satisfied
by x∗.

For each job j ∈ J ∗ set x̃∗j,t′ to be 10x′j,t′ for all t′ ≥ Cj,α. Note that if c < 1
10 and

Cj,α ≤ t′ it is the case that x̃∗j,t′ ≤ c ≤ 1/10, so x̃∗ is in [0, 1] as desired. After performing all
updates, recurse.

Terminating Condition. The above description states that the algorithm terminates when
all constraints are satisfied by the integer solution x∗. The analysis will show that this occurs
in polynomial time in expectation.
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6 Bounding the Cost and Feasibility of the Algorithm

In this section, the correctness of the algorithm is established and the total cost of the
algorithm is bounded as well as the running time. The analysis has several intermediate
goals. One is to show that the resulting solution x̃∗ is feasible. Another is to show that
the increase in cost of the randomized rounding is bounded by the cost of the fractional
part of the LP in one iteration. The final goal is showing that the expected value of the
objective for the fractional part of the LP solution decreases significantly in each iteration.
After establishing these facts Theorem 3 will prove the main theorem.

Feasibility of the Algorithm. We now establish that x̃∗ is feasible for the LP. This ensures
the algorithm constructs a feasible solution. The proof is omitted due to space. The proof
follows by the fact that each unsatisfied constraint is associated with variables in the solution
x′ which are within a constraint multiplicative factor of satisfying the constraint. In the
recursion, these variables are included in x̃∗ with their fractional valuesincreased by a factor
10 over x′ ensuring their corresponding constraint is satisfied.

I Lemma 4. In any iteration of the algorithm, if x′ is a feasible LP solution then the
algorithm constructs a feasible solution x̃∗ at the end of the iteration for any c ≤ 1/10.

Bounding the Cost and Running Time of the Algorithm. This section bounds the cost of
the LP solution x̃∗ and the running time of the algorithm. First the cost of the randomized
rounding is bounded. This bounds the cost of the intermediate integral solution x∗. The
following lemma shows that the expected cost increase of the LP solution x∗ over x′ is bounded
by 1

cLP′frac. Recall that x∗ is the solution obtained by only the randomized rounding part of
the algorithm and it is a possibly infeasible integer solution. After this lemma, the cost of
the solution x̃∗ is bounded. This is the solution the algorithm recurses on. Combining the
cost over the entire algorithm is bounded.

The following lemma bounds the cost of the solution x∗. The proof is omitted. The proof
follows by a standard analysis of randomized rounding.

I Lemma 5. The total expected different in cost of x∗ and x′ is at most 1
cLP′frac. That is,

E[
∑
j∈J

∑
t(x∗j,t − x′j,t)(gj(t)− gj(t− 1))] ≤ 1

c

∑
j∈J

∑
t LP′frac.

Let LP∗frac :=
∑
j∈J

∑
t>Cj,α

x̃∗j,t(gj(t) − gj(t − 1)) be the fractional cost of x̃∗ and
LP∗int =

∑
j∈J g(Cj,α) be the integral cost. Note that LP∗int is precisely the objective of the

integral solution x∗. The key to bounding the cost of the algorithm is to show that the
fractional cost of the LP solution decreases by a constant factor in each iteration. This is
stated in the following lemma. The proof is deferred due to space. This lemma is the most
interesting part of the analysis and the proof is presented in Section 6.1.

I Lemma 6. In any iteration of the algorithm, E[LP∗frac] ≤ 1
4LP′frac.

Using this lemma, the total cost of the algorithm can be bounded.

I Lemma 7. Let OPT be the optimal feasible objective to the LP. It is the case that the
algorithm’s total cost is at most 2

cOPT in expectation.

Proof. Let LPi
frac denote the fractional part of the objective in the LP solution at the

beginning of the ith iteration of the algorithm. Note that LP1
frac ≤ OPT. Inductively,

Lemma 6 gives that E[LPi
frac] ≤ 1

4iOPT.
Lemma 5 ensures that the integral portion of the LP objective increases by at most 1

cLPi
frac

in each iteration. Thus the total cost can be bounded by 1
c

∑∞
i=1

1
4iOPT ≤ 2

cOPT. J
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The following proposition bounds the run time of the algorithm and the proof is omitted.
This follows because the previous lemma will ensure the variables in the LP converge to 0
after O(lognP ) iterations.

I Proposition 8. The algorithm runs in polynomial time in expectation.

Lemma 7 bounds the objective of the algorithm. Lemma 4 ensures that the algorithm
constructs a feasible solution. Finally, Propostion 8 shows the algorithm runs in polynomial
time. Together, this proves the main result, Theorem 1.

6.1 Proof of Lemma 6: Expected Decrease in the Fractional Objective
This section proves Lemma 6 for a fixed iteration of the algorithm. Fix a job j and the
fractional solution x′ that is input to the rounding algorithm in this iteration. The goal
is to show that the probability that j is in J ∗ is small and therefore the algorithm only
includes integral variables x̃∗j,t for job j when it recurses. In particular, the goal is to show
the following lemma. In the following, n and P are assumed to be sufficiently large.

I Lemma 9. Fix any job j∗. With probability at most 2
log2 nP

≤ 1/40 it is the case that there
is a constraint T ′, D′ unsatisfied by x∗ and j∗ ∈ JT ′,D′ when c ≤ 1

1000 log lognP .

This lemma implies Lemma 6.

Proof of Lemma 6. Fix any job j and an iteration of the algorithm. If there is a constraint
T ′, D′ unsatisfied, j ∈ JT ′,D′ , x′j,t is fractional, t ≥ Cj,α and t ∈ E(T ′, D′, j) then the
algorithm sets x̃∗j,t to be 10x′j,t.

This event increases the cost of x̃∗ by at most 10
∑
t>Cj,α

x′j,t(gj(t) − gj(t − 1)) and it
happens for some T ′, D′ with probability at most 1/40. The total expected cost LP∗frac is at
most the following.

10
∑
j∈J

∑
t>Cj,α

x′j,t(gj(t)− gj(t− 1)) Pr[∃T ′, D′| j ∈ JT ′,D′ and constraint T ′, D′ unsatisfied by x∗]

≤ 10
∑
j∈J

∑
t>Cj,α

x′j,t(gj(t)− gj(t− 1)) 1
40 ≤

1
4

∑
j∈J

∑
t>Cj,α

x′j,t(gj(t)− gj(t− 1)) [Lemma 9]

Thus, the expected cost of LP∗frac decreases by a factor 1/4 over LP′frac. J

The remaining goal of this section is to prove Lemma 9. The proof begins by observing
that since the solution x∗ is integral if a constraint T ′ and D′ is satisfied for a particular set
D′ then the constraints for T ′ and all sets D′′ are satisfied. This will allow us to focus on
constraints for one special set D′. The proof is omitted.

I Proposition 10. Let tT ′ be some time step and T ′ = [tT ′ ,∞]. Let D′ be set such that D′j
is the latest time t where x′j,t ≥ c for all jobs j. If the constraint for T ′ and D′ is satisfied in
the solution x∗ then all constraints for T ′ and any set D′′ are satisfied in the soultion x∗.

For the remainder of the proof, fix D′ to be as described in the prior lemma. Now we
establish some basic propositions on which jobs contribute to a constraint. This will be useful
for identifying critical jobs. Note that the two propositions below are different depending on
the ordering of the times considered. The proofs are omitted.
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I Proposition 11. Fix any job j and two sets T = [tT ,∞] and T ′ = [tT ′ ,∞] where D′j ≤
tT < tT ′ . For any fractional LP solution x satisfying constraints (2) if V (T,D′) ≥ 1

2V (T ′, D′)
then it is the case that

∑
t∈E(T ′,D′,j) xj,t ≤ 2

∑
t∈E(T,D′,j) xj,t.

I Proposition 12. Fix any job j and two sets T = [tT ,∞] and T ′ = [tT ′ ,∞] and D′j > tT >

tT ′ . For any fractional LP solution x satisfying constraints (2) if V (T,D′) ≥ 1
2V (T ′, D′)

then
∑
t∈E(T ′,D′,j) xj,t ≤ 2

∑
t∈E(T,D′,j) xj,t.

The next lemma establishes that for any fixed constraint T ′ and D′, it is the case that
the constraint is satisfied with good probability in the integral solution x∗. Further, the
constraint is satisfied if only the jobs in MT ′,D′ (or LT ′,D′) are considered in the summation
in the left hand side of the constraint. Due to space, the proof is ommited.

I Lemma 13. Fix any T ′ = [tT ′ ,∞] and let the vector D′ contain the time D′j that is the
latest time t where x′j,t ≥ c for all jobs j. With probability at least 1− 1

log10 nP
it is the case that∑

j∈LT ′,D”

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′) and

∑
j∈MT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′)

when c ≤ 1
1000 log lognP .

Fix any job j∗. Group constraints into two classes for job j∗. The first class are those
constraints T ′ = [tT ′ ,∞] where tT ′ > D′j∗ and the second class are the remaining constraints.
It will be shown separately for both groups of constraints that they are all unsatisfied with
small probability.

In the following lemma, the first class of constraints are considered. This lemma heavily
relies on Proposition 11.

I Lemma 14. Fix any job j∗. With probability at most 1/ log2 nP it is the case that
there exists a constraint T ′, D′′ unsatisfied by x∗, j∗ ∈ JT ′,D′′ and tT ′ > D′j∗ when c ≤

1
1000 log lognP .

Proof. Fix any job j∗. Let D′ be set such that D′j is the latest time t where x′j,t ≥ c for all
jobs j. The proof will establish that with probability greater 1− 1

log2 nP
it is the case that

the constraints for D′ and any T ′ = [tT ′ ,∞] with tT ′ > D′j∗ are satisfied by x∗. Applying
Proposition 10 this implies that x∗ satisfies the same allowing for any constraint D′′, proving
the lemma.

Geometrically group constraints based on the value of V (T ′, D′). Let Ck contain the
set T ′ = [tT ′ ,∞] if j∗ ∈ JT ′,D′ , 2k ≤ V (T ′, D′) < 2k+1 and tT ′ > D′j∗ for any integer
0 ≤ k ≤ lognP .

Fix k and the set T ′ ∈ Ck such that tT ′ is as late as possible. Let LT ′,D′ be as
described in the algorithm definition. We will establish that if

∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥

10V (T ′, D′) then all constraints V (T ′′, D′) for any T ′′ ∈ Ck are satisfied. Once this is
established, this will complete the proof as follows. We apply Lemma 13 stating that∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′) occurs with probability at least 1− 1

log10 nP
. By

union bounding for all lognP values for k the lemma follows.
Say that

∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′). Consider any set T ′′ ∈ Ck. By

definition of the set LT ′,D′ it is the case that D′j ≤ D′j∗ for all j ∈ LT ′,D′ . Hence, D′j ≤
D′j∗ ≤ tT ′′ ≤ tT ′ . Thus, Proposition 11 and the geometric grouping of constraints gives that∑
j∈LT ′,D′

∑
t∈E(T ′′,D′,j) x

∗
j,t ≥ 1

2
∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 5V (T ′, D′) ≥ V (T ′′, D′).

Thus the constraint for T ′′ and D′ is satisfied, proving the lemma. J

Similar to the previous lemma, in the following lemma it is shown that all of the
second class of constraints are satisfied with good probability. This lemma heavily relies on
Proposition 12. This proof is similar to the prior lemma and is omitted.
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I Lemma 15. Fix any job j∗. With probability at most 1/ log2 nP it is the case that there
exists a constraint T ′, D′′ unsatisfied by x∗, j∗ ∈ JT ′,D′ and tT ′ < D′j∗ when c ≤ 1

1000 log lognP .

For sufficiently large n and P , a union bound and Lemmas 14 and 15 prove Lemma 9.

7 Conclusion

This paper introduced a new set of strong inequalities for scheduling problems on multiple
identical machines. Using these inequalities, the paper showed an iterative algorithm that
rounds a fractional LP solution to an integral solution which achieves an O(log lognP )
approximation for most reasonable scheduling minimization problems.

An open question is if there are algorithms with an O(1) approximation ratio for GSP
on identical machines. It is also of interest to determine if the inequalities introduced can
be extended to other bipartite assignment problems. Can these inequalities be extended to
more general environments, such as the related machines or restricted assignment settings?
Could a similar analysis be used when jobs arrive over time? These cases introduce new
technical hurdles, but O(1) approximation algorithms could be possible by leveraging the
given constraints and assuming preemption and migration are allowed.4 For example, if
jobs arrive over time then a generalization of the LP with the strengthened constraints
can be derived. However, the rounding becomes challenging because there appears to be
no reduction showing only a polynomial number of time sets T ′ need to be considered in
the set of constraints, like was established in this paper. Due to this, it is challenging
to show all exponential number of constraints based on sets of times are satisfied by the
rounding algorithm.
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