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Abstract
Given a set system (X,R) with VC-dimension d, the celebrated result of Haussler and Welzl (1987)
showed that there exists an ε-net for (X,R) of size O

(
d
ε

log 1
ε

)
. Furthermore, the algorithm is

simple: just take a uniform random sample from X! However, for many geometric set systems this
bound is sub-optimal and since then, there has been much work presenting improved bounds and
algorithms tailored to specific geometric set systems.

In this paper, we consider the following natural algorithm to compute an ε-net: start with an
initial random sample N . Iteratively, as long as N is not an ε-net for R, pick any unhit set S ∈ R
(say, given by an Oracle), and add O(1) randomly chosen points from S to N .

We prove that the above algorithm computes, in expectation, ε-nets of asymptotically optimal
size for all known cases of geometric set systems. Furthermore, it makes O

(
1
ε

)
calls to the Oracle.

In particular, this implies that computing optimal-sized ε-nets are as easy as computing an unhit set
in the given set system.
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1 Introduction

Let X be a set of n base elements, and R a collection of m sets over X. Given a parameter
ε > 0, an ε-net for (X,R) is a set N ⊆ X such that for all S ∈ R with |S| ≥ εn, we have
N ∩ S 6= ∅.

The notion of ε-nets has been heavily studied across several disciplines, including discrete
and computational geometry, machine learning, statistics, convex geometry and randomized
algorithms. We refer the reader to the books [3, 7, 14, 16, 20] as well as recent surveys [19, 21].

For general set systems (X,R), it is easy to see that there exists an ε-net of size
O
( 1
ε log |R|

)
. For more constrained set systems – for example, those arising in geometric

configurations – one can show the existence of ε-nets of considerably smaller size. This was
realized in the 1980s with the seminal work of Clarkson [8] and Haussler-Welzl [11]. In
particular, when the VC-dimension of (X,R), denoted by VC-dim(R), is at most d, then there
exist ε-nets of size O

(
d
ε log 1

ε

)
– of size independent of |X| or |R|. Furthermore, to construct

a net of this expected size, the algorithm is simple: just take a uniform random sample.
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Haussler-Welzl Net-Finder Algorithm.

Input: base elements X, a set system R on X, a parameter ε > 0.

N : pick each x ∈ X independently with probability Θ
(

d
ε|X| log 1

ε

)
.

return N .

It has been observed over the past 30 years that improvements to the Clarkson and
Haussler-Welzl bounds are possible for a variety of geometric set systems – e.g., O( 1

ε )-sized
nets exist for subsets induced by disks in the plane, half-spaces in R2 and R3, subsets induced
by pseudo-disks, dual set systems of linear union complexity and so on. More recently, the
work of Varadarajan [23], Aronov et al. [4] and Chan et al. [6] has settled the question
on sizes of ε-nets for many basic geometric set systems precisely in terms of their so-called
shallow-cell complexity – in particular, there exist ε-nets of size O

( 1
ε logϕR

(
O
( 1
ε

)
, O (1)

))
.

A set system (X,R) has shallow-cell complexity ϕR(·, ·) if for any Y ⊆ X, the number
of subsets in R|Y of size at most l is |Y | · ϕR (|Y |, l) (here R|Y = {S ∩ Y : S ∈ R} is the
projection of the set system R on Y ). Bounds for ϕR (·, ·) has been well-studied and by now
we know asymptotically optimal bounds for the basic geometric set systems (see [19]).

However, all the above algorithms for constructing ε-nets either have efficient implement-
ations but then only work for very specific set systems (e.g., near-linear time algorithm for
disks in R2 [5], half-spaces in R3 [15]), or are inefficient if they work for general set systems.
Consider these algorithms from recent work:
1. Chan et al. [6] construction gives optimal-sized nets as a function of the shallow-cell

complexity of the set system; however the algorithm is inefficient. It has to enumerate
over each set of R – there can be Ω(nd) such sets for some constant d – to compute a
representative of each set of R. Furthermore, it needs to have access to all the sets of R
at the beginning to be able to compute these representatives.

2. Aronov et al. [4] and Varadarajan [23] algorithms can be implemented to work efficiently,
but they work for special cases of set systems (so-called dual set systems induced by
geometric objects in the plane) and further also need certain spatial decompositions (for
the complement of the union) which are specific to the types of geometric objects.

3. Mustafa et al. [18] also give general bounds in terms of the shallow-cell complexity of
a set system. However, the algorithm needs to first select a special maximal subset of
R called a packing. This packing can have large size, and furthermore, computing this
packing is inefficient, taking Ω(n2) time.

2 Our Result

Our main insight is that the cause of inefficiency – the careful construction of sets needed for
the “alterations” – can be avoided altogether. By extending the ideas present in the work in
1. and 3. above, we present a simple algorithm that
a) computes an ε-net of expected size matching the current-best bounds for known geometric

set systems, and
b) avoids any pre-computation, hierarchical subdivisions, representation-computation, or

partitioning.

Here is our algorithm – as it turns out, a slight addition of the Haussler-Welzl Net-
Finder Algorithm.
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General Net-Finder Algorithm.

Input: base elements X, a set system R on X, a parameter ε > 0.

N : pick each x ∈ X independently with probability p to be fixed later (Section 3).

while there exists a set S ∈ R, |S| ≥ ε|X|, not hit by N do
update N by adding O(1) uniformly chosen elements of S to N .

return N

Oracle. In order to separate the set system-specific implementation details from the net
algorithm, we will assume the existence of an Oracle that can return an unhit set in our
set system with respect to the current candidate net N . We refer the reader to Chazelle [7]
for details on oracle-based bounds for sampling in geometric set systems. For geometric set
systems, the existence of efficient implementation of such oracles follow from the extensive
work on range searching, reporting and emptiness data-structures (see [1]). For example, for
the case where X is a set of points in R2 and the sets are induced by disks, the oracle can be
implemented to run in overall time O(n · polylog(n)) using standard techniques (e.g., see [5]).

We refer the reader to Agarwal-Pan [2] for details on data-structures for several other
geometric set systems.

Our main theorem:

I Theorem 1. General Net-Finder Algorithm computes an ε-net of expected optimal
size for ε-nets for the following set systems:
1. O

( 1
ε logϕR

(
O
(
d
ε

)
, O(d)

)
+ d

ε

)
: abstract set systems as a function of their shallow-cell

complexity ϕR(·, ·) (we will assume that ϕR(·, ·) is non-decreasing in both arguments) and
VC-dimension d,

2. O
( 1
ε

)
: half-spaces in R2, half-spaces in R3, pseudo-disks and disks in R2, dual systems

of linear union complexity,
3. O

( 1
ε log log 1

ε

)
: axis-parallel rectangles in R2,

4. O
(

log(ε·κR(1/ε))
ε

)
: dual set systems as a function of their union complexity κR (·),

5. O
(
d
ε log 1

ε

)
: set systems of VC-dimension at most d, half-spaces in Rd.

See [19, Table 47.4.1] for the complete list of known bounds, all of which are produced by
our algorithm.

Furthermore, it makes expected O( 1
ε ) calls to the Oracle.

I Remark 1. For example, all the bounds presented in the work of Varadarajan [23], Clarkson
and Varadarajan [10], Pyrga-Ray [22], Chan et al. [6], Aronov et al. [4], Mustafa et al. [18]
are achieved by our General Net-Finder Algorithm.

I Remark 2. We note here that the unhit set S returned by the Oracle at each step need
not be random – it can be any unhit set. The expectation is over the choice of the initial
random sample as well as the O(1) random points picked from S. The specific choice of S is
irrelevant.

I Remark 3. In particular, Theorem 1 shows that computing an ε-net of optimal size is as
easy/hard – within a multiplicative factor of 1

ε – as computing one set unhit by N ⊆ X in a
set system (X,R).

ICALP 2019
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I Remark 4. This work is an example of the phenomenon where the “complexity” is moved
from the algorithm to its analysis. Thus while our analysis uses specific combinatorial
and geometric structures, the algorithm itself becomes very simple and oblivious to these
structures (e.g., see [24]).

Lastly, we observe that for the case of set systems with linear-sized ε-nets, it is not even
necessary to take an initial random sample. The algorithm simplifies even further to:

Special Net-Finder Algorithm.

Input: base elements X, a set system R on X, a parameter ε > 0.

N = ∅.
while there exists a set S ∈ R, |S| ≥ ε|X|, not hit by N do

update N by adding O(1) uniformly chosen elements of S to N .

return N .

Our second theorem is the following.

I Theorem 2. If the shallow-cell complexity of R satisfies ϕR(n, k) = O (kc), then Special
Net-Finder Algorithm computes an ε-net of expected size O

( 1
ε

)
. In particular, it computes

a O
( 1
ε

)
-sized net for the set systems induced by half-spaces in R2, half-spaces in R3, pseudo-

disks and disks in R2, and dual systems of linear union complexity.
Furthermore it makes expected O( 1

ε ) calls to the Oracle.

Organization. In Section 3 we prove some key structural lemmas about the random process
common to both the above algorithms. Then in Section 4 we give the proof of Theorem 1,
and in Section 5 the proof of Theorem 2.

3 Key Lemmas

We first re-state our main method, General Net-Finder Algorithm, more precisely by
filling in the exact constant values and probabilities that will be then used in the proofs.

Let (X,R) be the given set system with VC-dim(R) ≤ d, and shallow-cell complexity
ϕR(·, ·).

General Net-Finder Algorithm.

Input: (X,R) with VC-dim(R) ≤ d and shallow-cell complexity ϕR(·, ·), parameter
ε > 0.

β, γ, ca are absolute constants (explicitly fixed later).

N0 : pick x ∈ X i.i.d. with prob. ca·
(

1(
3
4−

β
2

)
ε|X|

log

(
d3ϕR

(
4d
βε
, 24d
β

)2
)

+ d(
3
4−

β
2

)
ε|X|

log 1(
3
4−

β
2

))
N = N0.
while there exists a set S ∈ R, |S| ≥ ε|X|, not hit by N do

NS : pick each x ∈ S independently with probability ca·
(

1
γ|S| log 2 + d

γ|S| log 1
γ

)
.

N = N ∪NS .

return N .
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For the Special Net-Finder Algorithm, simply omit the initial random sample, and
start with N = N0 = ∅.

The proof of our main result builds on the technique in [18]. There the packing lemma
was used to construct a maximal packing. The new insight in this paper is that through the
use of two-level packings, it is not necessary to even know or construct maximal packings (the
computational bottleneck earlier). The algorithm is blind to the specific packing; however
the analysis amortizes the cost of adding new points to a second-level packing constructed
from the sets of the first packing. This is the key new idea, enabling us to bound the total
number of points added after the initial random sample.

For the proof of our two main theorems, we will need the following results.

I Theorem A (Epsilon-net Theorem [11, 12]). Let (X,R) be a set system, d ∈ N+ a positive
integer such that VC-dim(R) ≤ d, and ε ∈ [0, 1] a given real parameter. Then there exists an
absolute constant ca > 0 such that a random sample N constructed by picking each point of
X independently with probability

ca ·

(
1

ε|X|
log 1

γ
+ d

ε|X|
log 1

ε

)
.

is an ε-net for R with probability at least 1− γ.

Given (X,R), a (k, δ)-packing of R is a subset P ⊆ R such that i) for all S ∈ P we have
|S| ≤ k, and ii) for all S, S′ ∈ P we have |∆(S, S′)| ≥ δ. Here ∆(A,B) = (A \B) ∪ (B \A)
is the symmetric difference of A and B.

I Theorem B (Shallow Packing Lemma [17]). Let (X,P) be a (k, δ)-packing on n elements,
for integers k, δ > 0. If VC-dim(P) ≤ d and P has shallow-cell complexity ϕ(·, ·), then
|P| ≤ 24dn

δ · ϕ
( 4dn
δ , 12dk

δ

)
.

In the proof below, we assume that each set S considered by the algorithm has size
[εn, 2εn]. Then we will show that, in expectation, O( 1

ε ) additional points are added after the
initial random sample N0. The general case – where the sets S considered by the algorithm
can have any size greater than εn – follows directly: we group the sets considered by the
algorithm by their sizes – all sets of size [2iεn, 2i+1εn] go into the same group i. So the
algorithm can be seen as constructing different nets, a ε′-net where ε′ = 2iε, for group
i, simultaneously. The proof below shows that for each group i, the expected number of
elements added is O

( 1
ε′

)
= O

( 1
2iε
)
. Then summing up gives a geometric series, with the

overall bound of O
( 1
ε

)
points added over all groups. The initial random sample N0 can be

thought of as a different sample for each group, with the total size over all groups again
forming a geometric series which sums up to the stated bound.

Let β, γ be two positive reals whose value will be fixed later, with the property that
γ ≤ 1

4 and 0 ≤ β + γ ≤ 1.
Fix any maximal (2εn, βεn)-packing P of R consisting of sets of size at least εn; say the

packing consists of the sets

P =
{
P 1, . . . , Pm

}
, where m ≤ 24dn

βεn
ϕR

(
4dn
βεn

,
24dεn
βεn

)
= O

(
d

βε
· ϕR

(
4d
βε
,

24d
β

))
(by Theorem B).

Say the Net-Finder Algorithm (both general and special) continues for t steps, and adds
additional points of X to N for each of the sets S1, . . . , St, namely the points NS1 , . . . , NSt .

ICALP 2019
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As P is a maximal (2εn, βεn)-packing of R and εn ≤ |Si| ≤ 2εn for each i = 1, . . . , t, it must
be that for each Si, there exists an index j ∈ [m] with |∆(Si, P j)| < βεn (note that it is
possible that P j = Si). Assign Si to the set P j (pick an arbitrary one if there are several
such possibilities).

For each j ∈ [m], let nj be the number of sets of {S1, . . . , St} assigned to P j ∈ P, and
denote them by

Sj = 〈Sj1, . . . , Sjnj 〉, listed in the order considered by the Net-Finder Algorithm.

Note that
∑m
j=1 nj = t, and furthermore,

for every j ∈ [m], i ∈ [nj ], we have |∆(Sji , P
j)| < βεn. (1)

B Claim 3. For each j ∈ [m] and i ∈ [nj ], we have

|P j ∩ Sji | >
|P j |+ |Sji | − βεn

2 .

Proof. For each i ∈ [nj ], we have

|P j |+ |Sji | = |P
j \ Sji |+ |S

j
i \ P

j |+ 2|P j ∩ Sji | < βεn+ 2|P j ∩ Sji |, (2)

where the last inequality follows from (1). Re-arranging the terms above gives the required
statement. C

For each j ∈ [m], define

S ′j =
{
S ∈ Sj : NS turns out to be a γ-net for the set system (S,R|S)

}
.

B Claim 4. For any j ∈ [m],

|S ′j | =

O
(

d
3
2−β−γ

· ϕR
(

4d
3
2−β−γ

, 12d
3
2−β−γ

))
if β + γ ≥ 1

2 ,

O(1) otherwise.

Proof. Let n′j = |S ′j |. By re-labeling the sets of Sj , we can assume that S ′j = 〈Sj1, . . . , S
j
n′
j
〉,

again listed here in the order that they were considered by the Net-Finder Algorithm.
Consider the set system T ′j = 〈T j1 , . . . , T

j
n′
j
〉 over the base set P j , where T ji = Sji ∩ P j .

Consider two distinct indices k, l ∈ [n′j ] with k < l. The set NSj
k
was added to N in the

algorithm before the set Sjl was considered. In particular, as NSj
k
is a γ-net for

(
Sjk,R|Sj

k

)
(by the definition of S ′j), it must be that the set Sjl was not hit by the γ-net for

(
Sjk,R|Sj

k

)
and so |Sjk ∩ S

j
l | < γ · |Sjk|. In particular, this implies that

|T jk ∩ T
j
l | = |S

j
k ∩ S

j
l ∩ P

j | ≤ |Sjk ∩ S
j
l | < γ · |Sjk|. (3)
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Thus we have

|∆(T jk , T
j
l )| = |T jk |+ |T

j
l | − 2|T jk ∩ T

j
l | (4)

= |Sjk ∩ P
j |+ |Sjl ∩ P

j | − 2|T jk ∩ T
j
l |

>
|P j |+ |Sjk| − βεn

2 +
|P j |+ |Sjl | − βεn

2 − 2|T jk ∩ T
j
l | (by Claim 3)

>
|P j |+ |Sjk| − βεn

2 +
|P j |+ |Sjl | − βεn

2 − 2 · γ · |Sjk| (by Inequality (3))

= |P j | − βεn+
|Sjl |

2 +
(1

2 − 2γ
)
|Sjk|

≥ |P j | − β|P j |+ |P
j |/2
2 +

(1
2 − 2γ

) |P j |
2 (as εn ≤ |P j |, |Sjk|, |S

j
l | ≤ 2εn, γ ≤ 1

4 )

=
(3

2 − β − γ
)
· |P j |. (5)

There are two cases to consider here:
β + γ < 1

2 . In this case, Inequality (5) implies that |∆(T jk , T
j
l )| > |P j |, which cannot

happen as both T jk and T jl are subsets of P j . Thus S ′j must consist of at most one set,
and we’re done.
β + γ ≥ 1

2 . In this case, the sets of T ′j form a
(
|P j |,

( 3
2 − β − γ

)
· |P j |

)
-packing over the

elements of P j . Thus by Theorem B, we have

|S ′j | = |T ′j | = O

(
d

3
2 − β − γ

· ϕR
(

4d
3
2 − β − γ

,
12d

3
2 − β − γ

))
. C

I Lemma 5.

E
[
|Sj |

]
=

O
(

d
3
2−β−γ

· ϕR
(

4d
3
2−β−γ

, 12d
3
2−β−γ

))
if β + γ ≥ 1

2 ,

O(1) otherwise.

Further, the above bound holds for any choice of N0.

Proof. We prove this bound for any choice of N0, relying, in the following analysis, only on
the sets NS that were added iteratively. Note that there may be complicated dependencies
among the sets of Sj . For example, a set Sjl may only exist in Sj because of the choice of the
random sample for some earlier set Sjk, k < l. However, for a fixed S ∈ R, the probability of
the random sample NS being a γ-net for the set system (S,R|S) is independent of earlier
iterations, and occurs with probability at least 1

2 by Theorem A. Recalling that |S ′j | is the
number of sets of Sj for which the random sample succeeds to be a γ-net, we have

E
[
|S ′j |

]
=
∑
S∈Sj

Pr [NS is a γ-net for (S,R|S)] ≥ |S
j |

2 .

On the other hand, Claim 4 upper-bounds |S ′j | and thus E[|S ′j |]. Putting them together
implies the lemma. J

4 Proof of Theorem 1

We first give the key theorem from which we will then derive all the bounds promised in
Theorem 1. We continue to use the notations and definitions defined earlier.

ICALP 2019
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I Theorem 6. Let (X,R) be a set system with shallow-cell complexity ϕR(·, ·) and VC-
dimension at most d. Then the General Net-Finder Algorithm returns an ε-net of
expected size O

( 1
ε logϕR

(
O
(
d
ε

)
, O (d)

)
+ d

ε

)
. Furthermore, it makes expected O

( 1
ε

)
calls to

the Oracle.

Proof. Clearly the algorithm only stops when N is an ε-net. Thus it remains to bound the
expected size and the expected running time.

Consider an index j ∈ [m]. By Claim 3, we have that for any i ∈ [nj ],

|P j ∩ Sji | >
|P j |+ |Sji | − βεn

2 ≥ |P
j |+ |P j |/2− β|P j |

2 =
(

3
4 −

β

2

)
· |P j |,

recalling that β ≤ 1. Thus if N0 is a
(

3
4 −

β
2

)
-net for

(
P j ,R|P j

)
, then any S ∈ Sj would be

hit by N0 and so it must be that Sj = ∅. By Theorem A, for a fixed index j, N0 fails to be

a
(

3
4 −

β
2

)
-net for

(
P j ,R|P j

)
with probability O

(
1

d3ϕR( 4d
βε ,

24d
β )2

)
.

At each iteration, for a set S ∈ R not hit by N , we add

E [|NS |] = |S| · ca ·
(

1
γ|S|

log 2 + d

γ|S|
log 1

γ

)
= O

(
d

γ
log 1

γ

)
new points to N . Thus the points added to N over all iterations are

E

[
t∑
i=1

|NSi |

]
= O

(
d

γ
log 1

γ

)
·E[t] = O

(
d

γ
log 1

γ

)
·E

[
m∑
j=1

|Sj |

]

= O

(
d

γ
log 1

γ

)
·
m∑
j=1

Pr
[
N0 is not a

(3
4 −

β

2

)
-net for (P j ,R|P j )

]
·

E
[
|Sj |
∣∣N0 is not a

(3
4 −

β

2

)
-net for (P j ,R|P j )

]
= O

(
d

γ
log 1

γ

)
·m ·O

(
1

d3ϕR
(

4d
βε ,

12d
β/2

)2

)
·O
(

d
3
2 − β − γ

· ϕR

(
4d

3
2 − β − γ

,
12d

3
2 − β − γ

))
.

As 3
2 − β − γ ≥

1
2 ≥ max

{
βε, β2

}
for ε ≤ 0.5 and by the assumption that ϕR(·, ·) is non-decreasing in the

first and second arguments,

≤ O

(
1

γ
(

3
2 − β − γ

) log 1
γ

)
·m ·O

(
1

dϕR
(

4d
βε ,

24d
β

))

= O

(
1

γ
(

3
2 − β − γ

) log 1
γ

)
·O
(
d

βε
· ϕR

(4d
βε
,

24d
β

))
·O

(
1

dϕR
(

4d
βε ,

24d
β

))

= O

(
1

γ
(

3
2 − β − γ

) log 1
γ

)
·O
( 1
βε

)
.

For the initial set N0, we have

E [|N0|] = O

 1(
3
4 −

β
2

)
ε

log
(
dϕR

(
4d
βε
,

24d
β

))
+ d(

3
4 −

β
2

)
ε

log 1(
3
4 −

β
2

)
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Putting everything together, we get

E [|N |] = E [|N0|] + E
[

t∑
i=1
|NSt |

]

= O

 1(
3
4 −

β
2

)
ε

log
(
dϕR

(
4d
βε
,

24d
β

))
+ d(

3
4 −

β
2

)
ε

log 1(
3
4 −

β
2

)


+O

(
1

γ
( 3

2 − β − γ
) log 1

γ

)
·O
(

1
βε

)
.

We can set γ to be any small-enough constant, say γ = 1
100 , and set β = 3

4 . Thus we get

E [|N |] = O

(
1
ε

log
(
dϕR

(
4d
βε
,

24d
β

))
+ d

ε

)
= O

(
1
ε

logϕR
(
O

(
d

ε

)
, O (d)

)
+ d

ε

)
. J

I Theorem 1. General Net-Finder Algorithm computes an ε-net of expected optimal
size for ε-nets for the following set systems:
1. O

( 1
ε logϕR

(
O
(
d
ε

)
, O(d)

)
+ d

ε

)
: abstract set systems as a function of their shallow-cell

complexity ϕR(·, ·) (we will assume that ϕR(·, ·) is non-decreasing in both arguments) and
VC-dimension d,

2. O
( 1
ε

)
: half-spaces in R2, half-spaces in R3, pseudo-disks and disks in R2, dual systems

of linear union complexity,
3. O

( 1
ε log log 1

ε

)
: axis-parallel rectangles in R2,

4. O
(

log(ε·κR(1/ε))
ε

)
: dual set systems as a function of their union complexity κR (·),

5. O
(
d
ε log 1

ε

)
: set systems of VC-dimension at most d, half-spaces in Rd.

See [19, Table 47.4.1] for the complete list of known bounds, all of which are produced by
our algorithm.

Furthermore, it makes expected O( 1
ε ) calls to the Oracle.

Proof. All except one required bound follows directly from Theorem 6; we refer the reader
to the survey [19]. Briefly, for the case of halfspaces in R2, R3, disks and pseudo-disks in
R2, we have ϕ(n, k) = O (kc), for a constant c (by the bound on (≤ k)-sets [9]) and so
the algorithm returns ε-nets of size O( 1

ε ). For the case of half-spaces in Rd and balls in
Rd−1, d ≥ 4, we have ϕ(n, k) = nbd/2c−1kdd/2e and so the algorithm returns ε-nets of size
O
(
d
ε log 1

ε

)
. Similarly the bounds follow for the dual set systems as a function of their union

complexity.
The exception is the bound of O

( 1
ε log log 1

ε

)
for the primal system induced by axis-

parallel rectangles in the plane. Here we use a result of Aronov et al. [4] which shows that
given a set X of n points in the plane, and R the set system induced on X by all axis-parallel
rectangles, there exists another set system R′ on X with the following property:
1) For each set R ∈ R of size at least εn induced by an axis-parallel rectangle in the plane,

there exists a set f(R) ∈ R′ also induced by an axis-parallel rectangle in the plane, with
f(R) ⊆ R and further |f(R)| ≥ |R|2 .

2) The shallow-cell complexity of R′ is small – ϕR′(n, k) = O
(
logn · k3).

Now General Net-Finder Algorithm takes a O(1)-sized uniform random sample from a
currently unhit set ofR, say R. But then by property 1) above, it takes a O(1)/2-sized uniform
random sample from f(R). From property 2) above, we have ϕR′(n, k) = O

(
logn · k3) and

so Theorem 6 implies a bound of O
( 1
ε log log 1

ε

)
. J

ICALP 2019
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5 Proof of Theorem 2

All the known bounds of O
( 1
ε

)
for set systems follow because for such a system R, we

have ϕR(n, k) = kc for some constant c. Thus Theorem 2 can be deduced from the
following theorem.

I Theorem 7. Let (X,R) be a set system with shallow-cell complexity ϕ(n, k) = O (kc) for
some absolute constant c. Then the Special Net-Finder Algorithm returns an ε-net of
expected size O

( 1
ε

)
.

Proof. Clearly the algorithm only stops when N is an ε-net. Thus it remains to bound the
expected size and the expected running time.

At each iteration, for a set S ∈ R not hit by N , we add

E [|NS |] = |S| · ca ·
(

1
γ|S|

log 2 + d

γ|S|
log 1

γ

)
= O

(
d

γ
log 1

γ

)
new points to N . Thus the points added to N over all iterations are

E

[
t∑
i=1

|NSi |

]
= O

(
d

γ
log 1

γ

)
·E[t] = O

(
d

γ
log 1

γ

)
·E

[
m∑
j=1

|Sj |

]

= O

(
d

γ
log 1

γ

)
·m ·O

(
d

3
2 − β − γ

· ϕR

(
4d

3
2 − β − γ

,
12d

3
2 − β − γ

))
= O

(
d

γ
log 1

γ

)
·O
(
d

βε
· ϕR

(
4d
βε
,

24d
β

))
·O
(

d
3
2 − β − γ

· ϕR

(
4d

3
2 − β − γ

,
12d

3
2 − β − γ

))
Using γ = 1

100 , β = 3
4 , c is an absolute constant, and d = O (c) since ϕR(n, k) = O(kc),

= O (d) ·O
(
d

ε
· dc
)
·O (d · dc) = O

(1
ε

)
. J

I Theorem 2. If the shallow-cell complexity of R satisfies ϕR(n, k) = O (kc), then Special
Net-Finder Algorithm computes an ε-net of expected size O

( 1
ε

)
. In particular, it computes

a O
( 1
ε

)
-sized net for the set systems induced by half-spaces in R2, half-spaces in R3, pseudo-

disks and disks in R2, and dual systems of linear union complexity.
Furthermore it makes expected O( 1

ε ) calls to the Oracle.

Proof. For each of these specific cases, we have ϕR (n, k) = O(kc) for some constant c, and
thus Theorem 7 implies the bounds. J

6 Conclusion

Some final remarks:

The algorithms, as they are stated, need the bound on the shallow-cell complexity (in
fact, in the case of rectangles, even a finer decomposition bound) to set the initial sample
size. However, by a standard exponential search trick, one can start with an initial guess
of O(1) for N0, run the algorithm for O

( 1
ε

)
iterations and if the resulting set is not an

ε-net, re-run the algorithm with a doubled initial sample size. This incurs an additional
O
(
log 1

ε

)
penalty in the running time.
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Our algorithm, unlike earlier work, is adaptive: after the initial random sample, further
additional points are added incrementally, and each additional set of O(1) points that
are added takes into account the previously added points.
There has been recent work towards new algorithmic approaches for sketches and samples
that work well in practice [13]. We leave for future work the experimental evaluation of
our algorithm and comparison with earlier approaches, both in efficiency and whether
the adaptive nature of our algorithm leads to improved size bounds in practice.
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