
Optimal Short Cycle Decomposition in Almost
Linear Time
Merav Parter
Weizmann IS, Rehovot, Israel
http://www.weizmann.ac.il/math/parter/home

Eylon Yogev
Technion, Haifa, Israel
https://www.eylonyogev.com/about

Abstract
Short cycle decomposition is an edge partitioning of an unweighted graph into edge-disjoint short
cycles, plus a small number of extra edges not in any cycle. This notion was introduced by Chu
et al. [FOCS’18] as a fundamental tool for graph sparsification and sketching. Clearly, it is most
desirable to have a fast algorithm for partitioning the edges into as short as possible cycles, while
omitting few edges.

The most naïve procedure for such decomposition runs in time O(m · n) and partitions the edges
into O(logn)-length edge-disjoint cycles plus at most 2n edges. Chu et al. improved the running
time considerably to m1+o(1), while increasing both the length of the cycles and the number of
omitted edges by a factor of no(1). Even more recently, Liu-Sachdeva-Yu [SODA’19] showed that for
every constant δ ∈ (0, 1] there is an O(m · nδ)-time algorithm that provides, w.h.p., cycles of length
O(logn)1/δ and O(n) extra edges.

In this paper, we significantly improve upon these bounds. We first show an m1+o(1)-time
deterministic algorithm for computing nearly optimal cycle decomposition, i.e., with cycle length
O(log2 n) and an extra subset of O(n logn) edges not in any cycle. This algorithm is based on a
reduction to low-congestion cycle covers, introduced by the authors in [SODA’19].

We also provide a simple deterministic algorithm that computes edge-disjoint cycles of length 21/ε

with n1+ε · 21/ε extra edges, for every ε ∈ (0, 1]. Combining this with Liu-Sachdeva-Yu [SODA’19]
gives a linear time randomized algorithm for computing cycles of length poly(logn) and O(n) extra
edges, for every n-vertex graphs with n1+1/δ edges for some constant δ.

These decomposition algorithms lead to improvements in all the algorithmic applications of Chu
et al. as well as to new distributed constructions.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Cycle decomposition, low-congestion cycle cover, graph sparsification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.89

Category Track A: Algorithms, Complexity and Games

Funding Merav Parter : The Israel Science Foundation grant no. 2084/18
Eylon Yogev: The European Union’s Horizon 2020 research and innovation program under grant
agreement No. 742754.

1 Introduction

Short cycle decomposition introduced by Chu et al. [3] is a partitioning of the graph edges
into edge-disjoint short cycles and a small subset of extra edges that are not in any cycle.

I Definition 1 (Short Cycle Decomposition). An (m̂, L)-short cycle decomposition of an
unweighted undirected graph G is a collection of edge-disjoint cycles in G, each of length at
most L, such that at most m̂ edges of G are not covered by these cycles.

EA
T

C
S

© Merav Parter and Eylon Yogev;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 89; pp. 89:1–89:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.weizmann.ac.il/math/parter/home
https://www.eylonyogev.com/about
https://doi.org/10.4230/LIPIcs.ICALP.2019.89
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

89:2 Optimal Short Cycle Decomposition in Almost Linear Time

In their recent paper, Chu et al. [3] demonstrated the power of short cycle decomposition
as a fundamental tool for a number of problems in graph sparsification. This includes the
construction of degree preserving sparsifiers, resistance sparsifiers, graphical spectral sketches,
approximation of the Laplacian’s determinant and more. Chu et al. [3] showed that the
efficiency of this long list of problems is determined by the time complexity, the cycle length,
and the number of uncovered edges of the short cycle decomposition routine in hand. Clearly,
it is most desirable to compute fast a decomposition into the shortest possible edge-disjoint
cycles, while omitting as few as possible edges.

As they have observed, there is a naïve short cycle decomposition which runs in time
O(mn) (where n is the number of vertices in the graph, and m is the number of edges),
and outputs an optimal1 decomposition: cycle length of O(logn) and O(n) extra edges. In
their key algorithmic result, [3] significantly improved this time complexity by presenting an
almost-linear time algorithm2 which decomposes G into edge-disjoint cycles of length no(1),
and an extra number of n1+o(1) edges. Thus, the improvement in the time complexity came
with the cost of increasing both the cycle length as well as the number of left-over edges by
a multiplicative factor of no(1). Improving the efficiency of the short cycle decomposition
was stated in [3] as a highly motivated target, as it immediately leads to a large sequence of
algorithmic consequences:

“Critically, any improvement to our short-cycle decomposition algorithm will achieve
an improvement in all of our results.”

Very recently, Liu, Sachdeva and Yu [8] provided the first improvement for the problem,
by presenting an O(m · nδ)-time algorithm that decomposes G into edge-disjoint cycles of
length O(logn)1/δ and an extra subset of O(n) edges, for any constant δ ∈ (0, 1]. This
simplifies and improves the decomposition algorithm of [3] in terms of all parameters, but
still leaves the following fundamental question open:

Is there an optimal cycle decompositios in almost linear time?

In this paper, we answer this question in the affirmative and present an m1+o(1)-time
algorithm for decomposing the graph into edge-disjoint cycles of length O(log2 n), and an
extra number of O(n logn) edges.

I Theorem 2 (Nearly Optimal Decomposition in Almost-Linear Time). There is an almost-
linear time algorithm for computing a cycle decomposition with cycle length of O(log2 n), and
O(n logn) extra edges.

We also have a much simpler algorithm that achieves the same quality of cycle decom-
position3 as by [3], only in Õ(m) time. An additional benefit of this algorithm is that it is
deterministic.

I Theorem 3 (Longer Cycles in Linear Time). For every n-vertex graph G = (V,E) with m
edges, one can compute in Õ(m) time, a decomposition with cycle length no(1) and n1+o(1)

extra edges.

1 Optimality in this context is up to poly-logarithmic terms.
2 A graph algorithm is almost-linear if runs in time m1+o(1).
3 In fact, the quality here is slightly better, as the no(1) factor (in the cycle length and number of

uncovered edges) is 2
√

logn and in [3] et al. it is 2(logn)3/4
.

M. Parter and E. Yogev 89:3

The latter provides an improvement for approximating the determinant of the Laplacian.
We can also combine with the algorithm of [8] to obtain a randomized decomposition that is
optimal (up to log-n factors) in all three complexity measures: time, length and number of
leftover edges provided that the graph is sufficiently dense.

I Theorem 4 (Optimal Decomposition for Dense Graphs). For every constant δ ∈ (0, 1], there
exists a randomized algorithm that computes in time Õ(m) + n1+1.1δ a collection of edges
disjoint cycles of length O(logn)1/δ and at most O(n) leftover edges.

Table 1 provides a summary of our results in comparison to [3, 8]. Our algorithms
are based on independent ideas compared to [3, 8], which are related to the concept of
low-congestion cycle covers.

Table 1 Summary of our results.

Cycle Length #Uncovered Edges Time Type
Chu et al.

[3] no(1) n1+o(1) m1+o(1) Randomized

Liu-Sachdeva-Yu
[8]

O(logn)1/δ−1

for constant δ ≤ 1 O(n) O(mnδ) Randomized

This Work O(log2 n) O(n logn) m1+o(1) Deterministic

This Work O(logn)1/δ

for constant δ ≤ 1 O(n) m+ n1+1.1δ Randomized

This Work no(1) n1+o(1) m+ n1+o(1) Deterministic

1.1 Low-Congestion Cycle Covers
A cycle cover of a graph G is a collection of cycles such that each edge of G appears in at
least one of the cycles. Cycle covers were introduced by Itai and Rodeh [6] in 1978 with
the objective to cover all edges of a bridgeless4 graph with cycles of minimum total length.
Motivated by applications to distributed computation, [11] recently introduced5 the notion
of low-congestion cycle covers: a collection of cycles that are both short, nearly edge-disjoint
and covering all edges.

I Definition 5 (Low-Congestion Cycle Cover). A (d, c)-cycle cover of a graph G is a cycle
collection that covers all edges in G. Each cycle has length at most d, and each edge
participates in at least one cycle and at most c cycles.

Low-congestion cycle covers provide the basic communication backbone in different
settings of resilient distributed computation such as Byzantine fault model and secure
computation [11, 10]. Whereas a-priori it is not clear that cycles of short length and small
overlap exist, our main result in [11] shows that one can enjoy a dilation of O(D logn) while
incurring only a poly-logarithmic congestion, where D is the diameter of the graph.

Comparison to Short Cycle Decomposition. Low-congestion covers bare some similarity
to short cycle decomposition but differs from it in two main aspects. The first aspect
follows from the definition: Low-congestion covers allow a small overlap between the cycles,

4 A graph G is bridgeless, if any single edge removal keeps the graph connected.
5 In an independent manner to the notion of short cycle decomposition.

ICALP 2019

89:4 Optimal Short Cycle Decomposition in Almost Linear Time

but require covering all edges. On the other hand, short cycle decomposition insists on
edge-disjoint cycles, i.e., with no-overlap, but allows omitting a subset of leftover edges that
are not in any cycle. The second difference concerns the algorithmic focus. In low-congestion
covers, the main goal was in showing that optimal covers which are both short and with
small overlap exist. Computation time was not the primary concern, and in fact, the first
step in the construction in [11] used the naïve decomposition algorithm (that runs in time
O(m · n)) to reduce the number of uncovered edges into 2n. In contrast, for short cycle
decomposition, it is easy to obtain the optimal decomposition in O(m · n) time, and hence
the primary algorithmic focus is computation time.

1.2 Improved Graph Sparsification Algorithms via Short Cycles
Spectral sparsifiers introduced by Spielman and Teng [13] are sparse (weighted) subgraphs
that approximately preserve the Laplacian quadratic form of the graph. Recall that the
Laplacian, LG, of an undirected weighted graph G = (V,EG, wG) is the unique symmetric
V × V matrix such that for all x ∈ R|V |, it holds that

xTLGx =
∑

(u,v)∈EG

wG(u, v) · (xu − xv)2 .

For ε < 1, a graph H = (V,EH , wH) is an ε-sparsifier for G if

∀x ∈ Rn, xTLGx ∈ (1± ε)xTLHx .

Batson, Spielman and Srivastava [2] presented a construction of spectral sparsifiers with
O(n/ε2) edges, which is tight. In the last years, related graph structures have been defined,
which are weaker than spectral sparsifiers, and thus potentially sparser. The recent work
of Chu et al. [3] used short cycle decomposition to derive new existential results on the
sparsity of sparsifiers and spectral sketches. As the time complexity and the quality of their
algorithms depend on the efficiency of the decomposition, our decomposition algorithm leads
to immediate improvements for all the algorithmic results from [3].

Graphic ε-Spectral Sketch and Resistance Sparsifiers. A spectral sketch [1] is a data
structure for a graph G that given a query vector x ∈ Rn returns w.h.p. a (1+ε) approximation
for the quadratic form xTLGx. A data structure that works w.h.p. for all x ∈ {±1}n requires
n/ε2 space. However, Jambulapati and Sidford [7] showed that when requiring the high
probability guarantee for a fixed unknown vector, the size of the data structure can be
made Õ(n/ε). In the same manner, one can define the graphic spectral sketch of G to be a
sparse graph H satisfying xTLGx ∈ (1± ε)xTLHx for a fixed unknown vector x with high
probability. Chu et al. showed that graphical spectral sketches with Õ(n/ε) edges exist.

Resistance sparsifiers are sparse subgraphs that preserve the effective resistance6 of
all vertex pairs up to a multiplicative factor of (1 + ε). This notion was introduced by
Dinitz-Krauthgamer-Wagner [4] who conjectured that resistance sparsifiers with Õ(n/ε)
edges always exist. The conjecture was indeed resolved by [3] using the tool of short cycle
decomposition. By combining Theorem 2 with [3, Theorem 6.1] we get:

6 The effective resistance between a pair u, v is the difference in the voltage between u, v when the graph
is an electrical network, with every edge e of weight we has a resistor of resistance 1/we and 1 unit of
current is sent from u to v.

M. Parter and E. Yogev 89:5

I Theorem 6 (Graphic Spectral Sketches and Resistance Sparsifiers). One can compute an
ε-resistance sparsifier H and a graphical spectral sketch H ′ with Õ(n/ε) edges in time m1+o(1).
Alternatively, these algorithms can be tuned to run in Õ(m) time while producing such graphs
H,H ′ with n1+o(1)/ε edges.

These two results should be compared with (i) the O(m ·nΘ(1))-time algorithm of [8] that
gives sparsifiers with Õ(n/ε) edges; and (ii) the m1+o(1)-time algorithms of [3, 8] that give
sparsifiers with n1+o(1)/ε edges. Hence, we provide the first almost-linear time algorithm
for optimal size sparsifiers with Õ(n/ε) edges, and the first near linear time algorithm7 for
almost-linear size sparsifiers with Õ(n1+o(1)/ε) edges.

Degree Preserving Sparsifiers and Sparsifiers for Eulerian Directed Graphs. Short cycle
decompositions are useful for providing spectral sparsifiers that preserve additional key
properties in the original graphs. Degree preserving sparsifier is a spectral sparsifier H
for a graph G which preserves (exactly) the weighted degree of each vertex v ∈ V . To get
an intuition for the usefulness of edge-disjoint cycles in this context, imagine G to be an
unweighted union of edge-disjoint cycles of even length. A degree preserving sparsifier H that
contains half of the edges in G, can be obtained by the following correlated sampling: For
each cycle, with probability 1/2 add to H the odd edges with weight 2, and with probability
1/2 add to H the even edges with weight 2. It is easy to see that every vertex v has exactly
the same weighted degree in H as in G, and the number of edges in G was cut by half. By
combining Theorem 3.3 of Chu et al. [3] with Theorem 2, we get:

I Theorem 7 (Optimal Degree Preserving Sparsifiers in Almost Linear Time). There exists
an algorithm that runs in time m1+o(1) and constructs a degree-preserving ε-sparsifier of G
with Õ(n/ε2) edges, with high probability. Alternatively, an n1+o(1)/ε2-size degree-preserving
sparsifier can be computed in Õ(m) time.

A similar approach has been taken in Chu et al. [3] to construct a sparsification of Eulerian
directed graphs. By plugging Theorem 2 in Theorem 5.1 of [3], we get:

I Theorem 8 (Sparsification of Eulerian Directed Graphs). There exists an algorithm A that
given an Eulerian directed graph −→G with polynomial bounded edge weights returns an Eulerian
directed graph −→H such that either: (i) −→H has Õ(n/ε2) edges and A has time complexity
m1+o(1), or (ii) −→H has n1+o(1)/ε2 edges and A has time complexity Õ(m).

Estimation of the Effective Resistance and the Determinant of the Laplacian. Finally,
we show how incorporating our improved construction of resistance sparsifiers can yield a
faster approximation of the determinant of the graph Laplacian with the last row and column
removed. In particular, this yields the first linear time algorithm for sufficiently dense graphs.
Recall that by Theorem 6, given a graph G with m edges, we can compute in time Õ(m),
a resistance sparsifier H with n1+o(1)/ε edges, with high probability. By applying [3, Thm.
3.8] on H, we get:

I Theorem 9 (Faster Approximation of Effective Resistance). Given an undirected graph G
with m edges, one can compute with high probability an ε-approximations to the effective
resistances between a given set of t vertex pairs in time Õ(m) + (n+ t)no(1)ε−1.5.

7 A graph algorithm is near linear if it runs in O(m · poly(logn)) time.

ICALP 2019

89:6 Optimal Short Cycle Decomposition in Almost Linear Time

Hence, for t = o(m1−o(1) · ε1.5), we obtain a linear time algorithm for approximating
the effective resistance. As observed in [3], the running time bottleneck of the determinant
estimation algorithm for Laplacians by Durfee et al. [5] is the estimation of the effective
resistance of O(n1.5) pairs with an error of ε = n−0.25. Plugging our improved Theorem 9 in
Lemma B.1 of [3] yields:

I Corollary 10 (Faster Approx. of Laplacian’s Determinant). Given a graph Laplacian L
and any error 0 < ε < 1/2, one can compute an 1 ± ε estimate to det(L−n)8 in time
Õ(m) + n15/8+o(1) · ε−7/4, thus in linear time for sufficiently dense graphs.

1.3 Distributed Implementation
Our centralized construction has the benefit of naturally being implemented in the standard
CONGEST model of distributed computing. As in the centralized setting, the decomposition
is based on constructing low-congestion cycle covers. We show:

I Lemma 11 (Distributed Low-Congestion Covers). There exists a distributed algorithm that
given n-vertex graph G = (V,E) constructs a (d, c) cycle cover within O(d · c) rounds for
d, c = 2O(

√
logn).

The proof appears in the full version of the paper. This improves upon the linear time
algorithm of [11, 10]. By combining this algorithm with Luby-MIS algorithm [9], we get:

I Theorem 12 (Distributed Short Cycle Decomposition). There exists an 2O(
√

logn)-round
distributed algorithm that given n-vertex graph G = (V,E) decomposes G into edge-disjoint
cycles of length 2O(

√
logn) plus O(n logn) extra edges.

One might hope that using this distributed construction of cycle decomposition we would
get a distributed algorithm for all the above application. Unfortunately, in the distributed
setting, to this point, we do not have an efficient algorithm that approximates (even up to a
constant factor) the effective resistance of all edges9 in G. This is the only missing piece for
obtaining the above mentioned algorithmic applications of the short cycle decomposition in
a distributed setting.

Comparison to the work of Chu et al. [3] and Liu-Sachdeva-Yu [8]. We first observe
that in [8], the number of leftover edges is O(n), whereas in our case it is O(n logn). By
applying the algorithm of [8] on these last O(n logn) edges, for any constant δ ∈ (0, 1),
we can compute an O(n, (logn)1/δ−1)-decomposition in time O(n1+δ logn+m1+1/ log logn),
which considerably improves upon the time complexity of O(m · nδ) of [8]. Since we consider
log-n factors to be negligible in this work (i.e., the size of the sparsifiers is Ω(n logn) in any
case), we omit this step.

Fixing the number of leftover edges to Õ(n), then [8] computes cycles of length
O(logn)1/δ−1 in time 2O(1/δ) · nδ · m. In comparison, our algorithm computes cycles of
length 21/δ ·O(logn) in roughly the same time 2O(1/δ) · nδ ·m. For example, when taking
δ = 1/ log logn, both algorithms have roughly the same time complexity, but our algorithm
produces cycles of length O(poly logn) and their algorithm has cycle length O(logn)log logn.

From an algorithmic point of view, both our algorithm and the algorithm of [8] use low-
diameter decomposition10. This allows one to restrict attention to O(logn)-diameter graphs.

8 the determinant of L with the last row and column removed
9 In the output of such an algorithm we want each edge (u, v) to obtain a constant approximation for the
effective resistance between u and v in G.

10We use a neighborhood covers which are close variant of low-diameter decomposition.

M. Parter and E. Yogev 89:7

The approach of [8] contracts each of the components of the low-diameter decomposition
and recursively computes vertex-disjoint short cycles on the contracted graph. The diameter
of each super-node is O(logn), when lifting the contracted cycles back to edges in G the
length of the cycles increases exponentially with the number of recursive layers. In particular,
halving within 1/δ recursive calls the length of the cycles becomes O(logn)1/δ−1. Our
approach is quite different. We also decompose trees into smaller components, but instead of
contracting these components we use their internal edges carefully in our cycles. By enjoying
the internal edges inside each cycle, the length of the cycles increases by a factor of at most
2 in each level of the recursion, thus after 1/δ recursion levels, the length of the cycle is 21/δ.

2 Longer Edge-Disjoint Cycles in Nearly Linear Time

We begin by describing a deterministic algorithm for computing cycle decomposition of the
same quality as that of Chu et al. [3], but in nearly linear time Õ(m). In particular, the
cycle length will be bounded by 2

√
logn and at most 2

√
logn · n edges will be left uncovered.

Note that the recent randomized algorithm of [8] achieves such cycles in almost linear time
m · nO(log logn/

√
logn) · 2

√
logn/ log logn. We can also reduce the number of leftover edges to

O(n), by running the algorithm of [8] on the remaining subset of n1+o(1) leftover edges.
However, note that in any case, the efficiency of the algorithmic applications for these cycles
depends on m̂+nL where m̂ is the number of leftover edges and L is the largest cycle length.

I Theorem 13. For every ε ∈ (0, 1], there exists an Õ(m)-time algorithm that computes
an (m̂, L) short cycle decomposition with m̂ = 1/ε · 21/ε · n1+O(ε) and L = 2O(1/ε). Setting
ε = 1/

√
logn, gives m̂ = 2O(

√
logn) · n and L = 2O(

√
logn).

Thm. 4 follows immediately: Set ε = 1/ log logn in Theorem 13, yeilding cycles of length
O(logn) and n1+o(1) leftover edges. Then, using the randomized algorithm of [8] on this
remaining subgraph with some constant δ ∈ (0, 1], covers the remaining edges with cycles of
length O(logn)1/δ with time complexity of n1+1.1δ. In addition, Thm. 3 follows by plugging
ε = 1/

√
logn in Theorem 13.

Throughout, a block is a subset of vertices with a bounded size. The algorithm is recursive
and has ` = d1/εe levels of recursion. During each recursion level, some virtual edges Ẽ will
be added to the set of edges E′ that we wish to cover by cycles (initially E′ = E). Informally
speaking, whenever the algorithm adds a virtual edge between two nodes u and v, it implies
that the algorithm has already computed a u-v walk denoted by W ((u, v)), and the virtual
edge (u, v) indicates the need for computing another u-v walk so that we will end up with a
cycle. In other words, adding a virtual edge means that we defer the closure of the cycle to
future iterations. We also maintain a leftover subgraph H, and in certain cases, we give up
on completing the cycles of the virtual edges, and add their walk edges to this subgraph.

We now describe Alg. FasterLongerCycles. The algorithm is recursive and has O(1/ε) levels
of recursion. Initially, let E′ = E(G). The preliminary walk collection is W = {e | e ∈ G},
the cycle collection C′ is empty. In addition, we have a subgraph H ← ∅ that will contain
the edges that are not covered by cycles.

In each independent level i ≥ 1 of the recursion, we are given a block B, and a subset of
edges E′ with both endpoints in B. In addition, we are given a set of current walks W for
the edges in E′, a current cycle collection C′, and a leftover subgraph H.

Block Partitioning. First the algorithm partitions B into k = nε balanced blocks B1, . . . , Bk
each with Θ(|B|/nε) vertices.

ICALP 2019

89:8 Optimal Short Cycle Decomposition in Almost Linear Time

Taking care of edges between blocks. Our goal is to replace edges between blocks, to edges
inside blocks. For block Ba, we do as follows for every v ∈ Ba and every b ∈ {a+ 1, . . . , k}.
Define by Na,b(v) = {u ∈ Bb | (u, v) ∈ E′} to be the E′-neighbors of v in Bb. If Na,b(v) is
odd, we will omit from it at most one vertex u, in order to make it even. The edge (u, v)
of the omitted vertex u is omitted from E′, and its walk W ((u, v)) is added to the leftover
subgraph H.

From now on, we can assume that the set Na,b(v) is even. We then (arbitrarily) match
the vertices in Na,b(v) into pairs 〈x, y〉. Each matched pair 〈x, y〉 is handled as follows:
Case (1): The set E′ already contains an (x, y) edge. If E′ already contains an edge

(x, y) (this edge might be virtual), we define a cycle C = W ((v, x)) ◦W ((x, y)) ◦W ((y, v))
and add it to the cycle collection C′. In addition, we omit the edges (v, x), (x, y) and
(y, v) from E′, and omit their walks from W.

Case (2): The set E′ does not contain an (x, y) edge. In this case, we add a virtual edge
(x, y) to E′, as well as a walk W ((x, y)) = W ((x, v)) ◦W ((v, y)) to W. This completes
the description of the ith recursion level. The algorithm then recurses on each of the
blocks B1, . . . , Bk. See Fig. 1 for pseudocode. Finally, as in Alg. PartialCycleCover, the
cycles of C′ might re-visit the same vertex, and hence in the final cleanup phase, the
algorithm traverses each of the cycles in C′ and simplify them.

Algorithm FasterLongerCycles(B,E′,W, C′, H).
Level i of the Recursion (for non-singleton block B):
1. Decompose B into k = nε blocks B1, . . . , Bk each with |B|/k vertices.
2. For every block Ba and every vertex v ∈ Ba, do the following for every b > a:

a. Let Na,b(v) = {u ∈ Bb | (u, v) ∈ E′}
b. If |Na,b(v)| is odd:

Omit an arbitrary u from Na,b(v).
Omit the walk W ((u, v)) from W and the edge (u, v) from E′.
Add W ((u, v)) to H.

c. Match the vertices in Na,b(v) into pairs 〈x, y〉 (in an arbitrary manner).
d. For each matched pair 〈x, y〉 do:

If (x, y) ∈ E′:
Add the cycle W ((v, x)) ◦W ((x, y)) ◦W ((y, v)) to C′.
Remove the edges (v, x), (x, y), (y, v) from E′, and their walks from W.

Otherwise:
Add a virtual edge (x, y) to E′, and add to W the x-y walk:

W ((x, y)) = W ((x, v)) ◦W ((v, y)).

3. For every a ∈ {1, . . . , k} do:
Let E′a be the edges in E′ with both endpoints in Ba.
Let Wa = {W (e) ∈ W | e ∈ E′a}.
Apply FasterLongerCycles(Ba, E′a,Wa, C′, H).

Figure 1 Description of no(1)-length cycle decomposition in Õ(m) time.

Analysis. Let Ei,Wi be the union of the E′,W sets over all the recursion calls in level i.

M. Parter and E. Yogev 89:9

B Claim 14 (Cycle Length). (a) All walks added in level i have length ≤ 2i; (b) All cycles
added in level i have length ≤ 2i+1.

Proof. Consider the first level for the base of the induction. Let B1, . . . , Bk be the first level
blocks. Fix a pair of blocks Ba, Bb for a < b, and v ∈ Ba. Let 〈x, y〉 be a matched pair in
Na,b(v). First, assume that when considering 〈x, y〉, the current edge set E′ does not contain
(x, y). In such a case, we add an x-y walk W ((x, y)) = (x, v) ◦ (v, x) of length 2 as required.
Otherwise, E′ already contains the edge (x, y) and by the explanation above, |W ((x, y))| ≤ 2.
In such a case, we add a cycle C = (v, x) ◦W ((x, y)) ◦ (y, v) which has length at most 4
as required.

Assume that the claim holds up to level i− 1, and consider level i. Using the induction
assumption, we can apply the same argument for the induction base and get that either: (1)
we add an x-y walkW ((x, y)) = W ((x, v))◦W ((v, y)). Note that by definition (x, v) and (y, v)
are edges between blocks in level i+ 1. Thus if these edges are virtual, they must have been
added in level i−1 (since all virtual edges added in level i connect vertices in the same (i+1)-
level blocks). We have by induction assumption that |W ((x, v))|, |W ((v, y))| ≤ 2i−1. Thus
|(W ((x, y))| ≤ 2i. (2) Otherwise, if E′ already contained the edge (x, y) when considering
this matched pair, the algorithm adds a cycle C = W ((v, x)) ◦W ((x, y)) ◦W ((y, v)). Note
that the edge (x, y) could potentially be added in level-i (since it is inside an (i+ 1)-level
block). Thus |W ((x, y))| ≤ 2i (by the previous case), and |W ((x, v))|, |W ((v, y))| ≤ 2i−1.
Overall, |C| ≤ 2i+1. The claim follows. C

Since the algorithm has ` = O(1/ε) levels, overall all cycles have length 2O(1/ε) as required.
Missing proofs appear in the full version of the paper.

B Claim 15. [Number of Uncovered Edges] |E(H)| = 1/ε · 21/ε · n1+O(ε).

Proof. We bound the number of edges added to the leftover subgraph H due to a fixed vertex
v. Since the blocks are vertex-disjoint at every recursion level, a vertex belongs to at most
O(1/ε) blocks: at most one block, in each level in the recursion tree (once a vertex becomes
a singleton block, we stop sub-dividing it). Consider level i, and let Bv be the unique block
containing v. Recall that in this level, the input edge set Ei contains only edges whose both
endpoints are in the same i-level block.

Now, the algorithm subdivides Bv into nε disjoint blocks: B1, . . . , Bk. W.l.o.g., let B1
be the block containing the vertex v. For every other block Bj for j ∈ {2, . . . , k}, we omit
at most one edge ej ∈ Ei and add a walk W (ej) to H. By Claim 14, every walk W (ej)
is of length at most 2O(1/ε). Therefore, there is a total of k · 2O(1/ε) edges on the walks
W (e1), . . . ,W (ek) that are added to H when considering v. Summing over all the vertices,
and over all O(1/ε) recursion levels, we get that |H| = 1/ε · 21/ε · n1+O(ε). C

Finally, we show that all the edges that are not in H are covered by the cycles in C.

B Claim 16 (Cover). Every edge is either in H or covered by the cycles in C.

Proof. We claim by induction on i, that every edge e ∈ G \H, either has a walk W (e′) such
that e′ ∈ Ei and e ∈W (e′), or that e is covered by a cycle in C. The base of the induction
holds vacuously. Assume it holds for i− 1 and consider level i. It remains to take care for
edges e ∈ G such that (i) there exists e′ ∈ Ei−1 satisfying that e ∈W (e′) and (ii) e′ /∈ Ei. To
see this observe that if (i) does not hold, then the statement holds by induction assumption.
If (i) holds but (ii) does not hold, then e ∈W (e′) for an e′ ∈ Ei and the statement holds.

Consider then such an edge e that satisfies the above two conditions. Since e′ was omitted
from Ei in phase i− 1, it implies that e′ = (u, v) was an edge between two i-level (brother)
blocks Ba and Bb. W.l.o.g., u ∈ Ba and v ∈ Bb. We first observe that if u has an odd

ICALP 2019

89:10 Optimal Short Cycle Decomposition in Almost Linear Time

number of edges in Ei with a second endpoint of Bb, then the unique edges e′′ omitted from
consideration cannot be e′. This holds since when omitting e′′, we add W (e′′) to H. Since
e ∈W (e′) but e /∈ H, it must hold that e′ 6= e′′. From now on, we know that e′ was matched
to another u-edge (u, v′). In this case either an v-v′ walk W (ê) for ê = (v, v′) is added to
the walk collection, or that a cycle containing W (e′) is added to C. In either case, since
e ∈W (e′), it is indeed covered by either the walks or the cycles in level-i. C

Setting ε = 1/
√

logn, yields cycles of length 2
√

logn and at most |H| = 2O(
√

logn) · n edges.
All other edges not in H are covered by a cycle.

Edge-Disjoint Cycles. We prove (1) every edge belongs to at most one walk in Wi for
every i, and (2) cycles are made by gluing a disjoint set of walks. Claim (1) can be shown
by induction on the set of walks Wi. The base of the induction holds vacuously. Assume
that it holds up to i and consider the walks added in level i. The walks are formed one
by one, where walks of level i formed by gluing together walks in Wi. Whenever a walk
W (e) = W (e′)◦W (e′′) is formed, the walksW (e′),W (e′′) are omitted from the walk collection
and would not be considered again. The claim follows by combining with the induction
assumption. To see (2) observe that whenever we form a cycle, all its walks are omitted from
the walk collection. The proof follows from the fact that all walks are edge-disjoint.

Time Complexity. We claim that each all recursion calls of level i can be implemented in
O(m) time, for every i = 1, . . . , `. We claim that all operations are linear in m. We keep the
block ID of each vertex v (the maximum vertex ID in its block) in each level i ≥ 1. Then
by traversing over the edges in Ei, we can compute the edges Ea,b between each pair of
bothering blocks Ba, Bb in level i. We traverse the edges in Ea,b for each vertex v in Ba. All
operations of gluing walks due to an addition of virtual edges are linear in the length of the
walks. Since all walks are edge-disjoint, we touch each edge e ∈ E at most O(1) many times
in each phase.

3 Shorter Cycles in Almost Linear Time

We next turn to consider the high-level idea of our main algorithm which computes a decom-
position with almost optimal quality in almost-linear time. Thus establishing Theorem 2.
Specifically, here the cycle length will be bounded by O(log2 n), and we will omit at most
O(n logn) edges. Note that the simple algorithm described above omits 21/ε · n1+ε edges
which is at least 2

√
lognn for any value of ε.

One option to improve this bound is by setting ε = 1/ log logn to get cycles of length
O(logn), while omitting n1+o(1) edges. Then by applying the algorithm of [8] on the remaining
edges with δ = 1/c for some constant c we get an algorithm for covering all but O(n) edges
with polylog(n) length cycles in total time m+ n1+δ. Since δ is constant, this algorithm is
not an almost linear algorithm for graphs with m = n1+o(1) edges. Therefore, in order to
obtain a truely almost linear algorithm that that omits Õ(n) edges, runs in time m1+o(1)

and produces cycles of length polylog(n), we must come up with some new ideas.
Our alternative algorithm is recursive and has O(1/ε) recursion levels. It is also based on

a balanced partitioning into blocks, only that the blocks in this context are more involved.
Instead of computing edge-disjoint cycles directly, we compute short cycles that have a small
amount of overlap. This notion is captured by low-congestion cycle cover defined as follows.

M. Parter and E. Yogev 89:11

Key Task:

Input: Parameter ε ∈ (0, 1), an n-vertex graph G of diameter O(logn) with m edges,
and a BFS tree T ⊆ G.
Goal: Cover all non-tree edges with cycles of length at most d = O(21/ε · logn), such
that each edge appears on at most c = 1/ε · nO(ε) cycles. That is, compute a (d, c)
cycle cover for the non tree edges.

Figure 2 The key sub-problem for short cycle decomposition.

For a bridgeless graph G = (V,E), a (d, c) cycle cover is a collection of cycles of length
at most d, such that each edge in G appears on at least one cycle and on at most c
cycles11. Intuitively, if each edge appears on few cycles, then one can greedily pick a subset
of edge-disjoint cycles which covers a large enough fraction of the edges, and then repeat
again (after removing all edges that are currently covered). Moreover, we also show that
computing the decomposition boils down into an even easier variant of the low-congestion
cycle cover problem.

Note that the key task considers all graphs of diameter O(logn), whereas in our case
the input graph G might have a large diameter. To add more insult to the injury, the
low-congestion cover computation is computed repeatedly on the subset of yet uncovered
edges (i.e., by the current subset of edge-disjoint cycles). Thus, even if the original input
graph has a small diameter, already in its second application, the input graph to the algorithm
might not be even connected. In the full version, we show how to settle down this mystery
using the notion of neighborhood covers. From now on, we focus on the key task.

Solving the Key Task. Given a tree T and an ε ∈ (0, 1], our goal now is to cover all non-tree
edges E \ T with cycles of length at most d = 21/ε ·O(logn), such that each edge appears on
at most c = 1/ε · nε cycles.

The algorithm is recursive with ` = O(1/ε) recursion levels. In each independent level
i ∈ {1, . . . , `} of the recursion, we are given a subtree T ′ and a collection of at most m/nε·(i−1)

edges E′ with both endpoints in T ′ that should be covered. Some of the edges in E′ (in
level i ≥ 2) might be virtual, and in such a case it implies that the algorithm has already
computed a partial cycle (i.e., a walk) that covers them. We are also given a set of walks W
that contains a walk W (e) for each e ∈ E′. Initially, T ′ is simply T , E′ contains all edges
in E(G) \ T that we want to cover, and W = {e : e ∈ G} contains the trivial walks for
each edge.

Step (1): Balanced Block Partitioning. The first step of the algorithm is to partition
T ′ into k = Θ(nε) edge-disjoint subtrees T1, . . . , Tk that are balanced with respect to their
degrees in E′. We call such balanced subtrees blocks. Any vertex whose degree in E′ is too
high defines a singleton block.

As in the previous algorithm, we will distinguish between two types of E′-edges: edges
inside a block and edges between blocks. We next describe how to replace edges between
blocks with virtual edges that are inside a block, in a way that covering the virtual edges by

11Our constructions do not require the graph to be bridgeless, it covers edges by cycles provided that
such a cycle exists.

ICALP 2019

89:12 Optimal Short Cycle Decomposition in Almost Linear Time

cycles will, later on, be translated back to a covering of the original inter-block edges. Unlike
the previous algorithm, here we do not have the privilege to throw away edges to leftover
subgraphs. Thus, we will have to make sure that all virtual edges are eventually completed
into a cycle.

Step (2): Handling Edges Between Blocks. Let Ea,b be all the edges in E′ with one
endpoint in Ta and the other in Tb. Our goal now is the following: we want to find a matching
of the edges in Ea,b in a way such that if e = (x, y) and e′ = (x′, y′) where x, x′ ∈ Ta and
y, y′ ∈ Tb are matched then there is a path π(x, x′) in Ta such that these paths for all pairs
are edge disjoint. Then, we add the virtual edge (y, y′) ∈ Tb × Tb and remove e and e′.
Furthermore, we maintain the set of walks W connecting the endpoints of each virtual edge
ê = (y, y′) where W (ê) = e ◦ π(x, x′) ◦ e′.

Intuitively, the addition of a virtual edge (y, y′) indicates to the algorithm that a cycle
covering the edges e and e′ is “under construction”: there is currently an y-y′ walk which
will become a cycle when covering the virtual edge (y, y′). Importantly, all the virtual edges
are internal to Tb and thus will be covered recursively by a path inside Tb. This path, along
with W (e) will complete the cycle. This procedure is applied for each pair of subtrees Ta, Tb
separately, eventually converting all inter-block edges to internal block edges. Then, we apply
the algorithm recursively on each block.

Notice that when the algorithm is applied recursively, then the inter-block edges e, e′
might be virtual. Thus, we define the walks as follows. Initially, we set W (e) = e for all edges
of the graph and let W = {W (e), e ∈ E′}. Then, we update W (ê) = W (e) ◦ π(x, x′) ◦W (e′).
That is, if e is a virtual edge then instead of adding it to the path we added its path W (e)
that contain “real” edges of the graph. This, of course, makes the walk longer and we bound
their length later on.

We are left to describe how the matching is performed. As long as there is a vertex x in
either Ta or Tb that is adjacent to at least two edges Ea,b, then we can match these two edges.
That is, in this case, we have that x = x′ and thus the path π(x, x′) = x is the trivial path
and is, of course, edge-disjoint from any other path. Thus, we can now assume that each
vertex in Ta and Tb is adjacent to at most one edge in Ea,b. Note in the previous algorithm,
when we got to a point that a vertex in a block is incident to one vertex in another block, we
simply got rid of this edge by adding it to the leftover subgraph H. Here, we do not have
this option, as we really need to cover all non-tree edges. This is exactly the point where
congestion kicks in: covering all edges will come with the cost of producing cycles with some
overlap, rather than edge-disjoint cycles as in the previous algorithm.

Let Ma,b ⊂ Ta be all the vertices in Ti that are adjacent to an endpoint of an edge in
Ea,b. If |Ma,b| is odd, then we omit a single vertex y from this set, and cover the edge (x, y)
by adding the “fundamental” cycle C = W ((x, y)) ◦ π(x, y, T) to the cycle collection12.

From now on, we assume that Ma,b is even, and each y ∈ Ma,b is incident to a unique
edge in Ea,b to be covered. The key tool used in this context is the following lemma:

B Fact 17. [12] Given a tree T and an even subset of marked vertices M ⊆ V (T), one
can compute a matching the vertices of M into pairs such that the collection of tree paths
π(x, y, T) over all the matched pairs are edge-disjoint.

We apply Algorithm DisjointMatching to the instance Ta,Ma,b. The output of this algorithm
is a matching of the marked vertices Ma,b into pairs 〈xi, yi〉, along with a collection of
edge-disjoint paths in Ta connecting the matched pairs. The matched vertices naturally

12 If e is an edge in G it is indeed a fundamental cycle.

M. Parter and E. Yogev 89:13

define the matching between the remaining edges, along with edge-disjoint paths. This
completes the high-level description of level i, while omitting some minor technical subtleties.

Why It Works. We give an overview of the analysis of this algorithm.

1. Cycle lengths: Let di be the maximum length of all walks at the beginning of level
i of the recursion. In level i, the walks W (ê) = W (e) ◦ π(x, x′) ◦W (e′) contain two
(i − 1)-level walks and a tree segment. Since the depth of the tree is O(logn), we
get di+1 ≤ 2di + O(logn). Solving for i = O(1/ε), gives the desired cycle length of
2O(1/ε) · logn.

2. Congestion: We first consider the congestion added when creating walks via the routing
edge-disjoint matching algorithm. We claim that in every recursion level, the congestion
on the tree edges is increased by (at most) an additive term of nε. The non-tree edges,
in contrast, will belong to exactly one cycle (using a similar argument to the previous
algorithm).
The congestion argument works by induction as well. Assume by induction that every
tree edge e appears at most ci−1 many times on all walks computed up to level i. In
level i, every walk is of the form: W (ê) = W (e) ◦ π(x, x′) ◦W (e′). That is, it has a tree
segment π(x, x′) and two segments of an (i− 1)-level walks. Since each (i− 1)-level walk
is added to at most one i-level walk (due to the matching step), the total congestion on
the non-tree part of the i-level walks is kept the same. The increase in the congestion is
then due to the tree segment π(x, x′). Recall that this tree segment is the outcome of
applying the routing disjoint algorithm in some block Ta. For each application of this
algorithm in Ta w.r.t to the edges of a fixed block Tb, the tree segments are disjoint.
However, since the algorithm is applied in Ta for nε many times – per other block Tb, the
total congestion on its tree edges is nε. Overall, we get that ci ≤ ci−1 + nε. Solving for
i = O(1/ε), gives the desired bound.
Finally, we bound the congestion due to the fundamental cycles. Recall that whenever
the number of edges between blocks Ta and Tb is odd, we cover a single edge with its
fundamental cycle. Let T ′ be an i-level block and T1, . . . , Tk be its children. The tree
segment of the fundamental cycle of each edge between Ta and Tb is contained in T ′.
Since T ′ has k = O(nε) children, the tree edge appears on n2ε cycles. Next, observe
that since the blocks of each level are edge-disjoint, an edge appears on O(1/ε) many
blocks over all, thus the total congestion added due to the fundamental cycles of the child
components is 1/εn2ε.

3. Time Complexity: In each phase, for each of the blocks Ta we have k = O(nε) applications
of the routing disjoint matching algorithm. This algorithm can be implemented in linear
time. Since the blocks are edge-disjoint, overall it takes k ·

∑
aO(|Ta|) = m·nε. Computing

the walks defined by these matching outcome can be done in linear time in the total
length of all i-level walks. Since each tree edge appears at most nε times on this walks
(in each recursion level), the total length of the walks is O(m+ nε · n). Summing overall
O(1/ε) recursion levels gives the desired bound. The pseudocode of the algorithm appears,
illustrations, the complete analysis and the distributed implementation all appear in the
full version of the paper.

ICALP 2019

89:14 Optimal Short Cycle Decomposition in Almost Linear Time

References
1 Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P Woodruff, and Qin

Zhang. On sketching quadratic forms. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 311–319. ACM, 2016.

2 Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
Journal on Computing, 41(6):1704–1721, 2012.

3 Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle
Decompositions. In 59th Annual Symposium on Foundations of Computer Science, FOCS.
IEEE Computer Society, 2018.

4 Michael Dinitz, Robert Krauthgamer, and Tal Wagner. Towards Resistance Sparsifiers. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, pages 738–755, 2015.

5 David Durfee, John Peebles, Richard Peng, and Anup B Rao. Determinant-preserving
sparsification of SDDM matrices with applications to counting and sampling spanning trees.
In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages
926–937. IEEE, 2017.

6 Alon Itai and Michael Rodeh. Covering a graph by circuits. In International Colloquium on
Automata, Languages, and Programming, pages 289–299. Springer, 1978.

7 Arun Jambulapati and Aaron Sidford. Efficient n/ε Spectral Sketches for the Laplacian and
its Pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2487–2503. SIAM, 2018.

8 Yang P. Liu, Sushant Sachdeva, and Zejun Yu. Short Cycles via Low-Diameter Decompositions.
SODA, 2019.

9 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
journal on computing, 15(4):1036–1053, 1986.

10 Merav Parter and Eylon Yogev. Distributed Computing Made Secure: A Graph Theoreric
Approach. SODA, 2019.

11 Merav Parter and Eylon Yogev. Low Congestion Cycle Covers and Their Applications. SODA,
2019.

12 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
13 Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90. ACM, 2004.

	Introduction
	Low-Congestion Cycle Covers
	Improved Graph Sparsification Algorithms via Short Cycles
	Distributed Implementation

	Longer Edge-Disjoint Cycles in Nearly Linear Time
	Shorter Cycles in Almost Linear Time

