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Abstract
We study the following separation problem: Given a collection of colored objects in the plane,
compute a shortest “fence” F , i.e., a union of curves of minimum total length, that separates every
two objects of different colors. Two objects are separated if F contains a simple closed curve that has
one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC
k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to
the well-studied multicut problem on graphs. We first give an O(n4 log3 n)-time algorithm that
computes an optimal fence for the case where the input consists of polygons of two colors and n
corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we
give a (2− 4/3k)-approximation algorithm.
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1 Introduction

Problem Definition. We are given k pairwise interior-disjoint, not necessarily connected,
sets B1, B2, . . . , Bk in the plane. We want to find a covering of the plane R2 = B̄1∪B̄2∪· · ·∪B̄k

such that the sets B̄i are closed and interior-disjoint, Bi ⊆ B̄i and the total length of the
boundary F =

⋃k
i=1 ∂B̄i between the different sets B̄i is minimized.

EA
T

C
S

© Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, and Günter Rote;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2734-4690
mailto:miab@di.ku.dk
mailto:panos.giannopoulos@city.ac.uk
mailto:m.loffler@uu.nl
https://orcid.org/0000-0002-0351-5945
mailto:rote@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.ICALP.2019.9
https://arxiv.org/abs/1902.04045
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Geometric Multicut

Figure 1 An instance of GEOMETRIC 3-CUT and an optimal fence in black. The fence contains
a cycle that does not touch any object. The grey fence shows how the cycle can be shrunk without
changing the total length of the fence.

We think of the k sets Bi as having k different colors and each set Bi as a union of simple
geometric objects like circular disks and simple polygons. An example is shown in Figure 1.
We call B̄i the territory of color i. The “fence” F is the set of points that separates the
territories. (Alternatively, F is the set of points belonging to more than one territory.) As
we can see, a territory can have more than one connected component.

An alternative view of the problem concentrates on the fence: A fence is defined as a
union of curves F such that each connected component of R2 \ F intersects at most one set
Bi. An interior-disjoint covering as defined above gives, by definition, such a fence. Likewise,
a fence F induces such a covering, by assigning each connected component of R2 \ F to an
appropriate territory B̄i. The total length of a fence F is also called the cost of F and is
denoted as |F |.

In our paper, we will focus on the case where the input consists of simple polygons (with
disjoint interiors). We refer to this problem as GEOMETRIC k-CUT. Each input polygon
is called an object. We use n to denote the total number of corners of the input polygons,
counted with multiplicity.

Even in this simple setting, the problem poses both geometric and combinatorial difficulties.
A set Bi can consist of disconnected pieces, and the combinatorial challenge is to choose
which of the pieces should be grouped into the same component of B̄i. The geometric task
is to construct a network of curves that surrounds the given groups of objects and thus
separates the groups from each other. For k = 2 colors, optimal fences consist of geodesic
curves around obstacles, which are well understood. As soon as the number k of colors
exceeds 2, the geometry becomes more complicated, and the problem acquires traits of the
geometric Steiner tree problem, as shown by the example in Figure 1.

The problem of enclosing a set of objects by a shortest system of fences has been considered
with a single set B1 by Abrahamsen et al. [1]. The task is to “enclose” the components of
B1 by a shortest system of fences. This can be formulated as a special case of our problem
with k = 2 colors: We add an additional set B2, far away from B1 and large enough so
that it is never optimal to enclose B2. Thus, we have to enclose all components of B1 and
separate them from the unbounded region. In this setting, there will be no nested fences.
Abrahamsen et al. gave an algorithm with running time O(n polylog n) for the case where
the input consists of n unit disks.
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Applications. Besides being a natural problem in its own right, the geometric multicut
problem may well find applications in image processing and computer vision. As we describe
in Section 3, a problem closely related to the case k = 2 has been studied from the perspective
of image segmentation. Simplified slightly, we are given a picture with some pixels known to
be black or white, and we have to choose colors for the remaining pixels so as to minimize the
boundary between black and white regions. The problem for k > 2 is equally well-motivated
in this context, although we have not found any explicit references to it (perhaps because of
the NP-hardness that we will prove in this case).

Our Results. In Section 3, we show how to solve the case with k = 2 colors in time
O(n4 log3 n). The algorithm works by reducing the problem to the multiple-source multiple-
sink maximum flow problem in a planar graph. In Section 4, we show that already the case
with k = 3 colors is NP-hard by a reduction from PLANAR POSITIVE 1-IN-3-SAT.

In Section 5, we discuss approximation algorithms. We first compare the optimal fence
FA consisting of line segments between corners of input polygons to the unrestricted optimal
fence F ∗. We show that |FA| ≤ 4/3 · |F ∗|. After applying a (3/2 − 1/k)-approximation
algorithm for the k-terminal multiway cut problem [6], we obtain a polynomial-time (2− 4

3k )-
approximation algorithm for GEOMETRIC k-CUT (Theorem 11).

Due to restricted space, many details and proofs have been removed and can be found in
the full version [2].

2 Structure of Optimal Fences

I Lemma 1. An optimal fence F ∗ is a union of (not necessarily disjoint) closed curves,
disjoint from the interior of the objects. Furthermore, F ∗ is the union of straight line segments
of positive length. Consider two non-collinear line segments `1, `2 ⊂ F ∗ with a common
endpoint p. If p is not a corner of an object, then exactly three line segments meet at p and
form angles of 2π/3.

Proof. It is clear that an optimal fence F ∗ never enters the interior of an object.
We next show that F ∗ is the union of a set of closed curves. Suppose not. Let F ′ ⊂ F ∗

be the union of all closed curves contained in F ∗ and let π be a connected component in
F ∗ \ F ′. Then π is the (not necessarily disjoint) union of a set of open curves, which do not
contribute to the separation of any objects. Hence, F ∗ \ π is a fence of smaller length than
F ∗, so F ∗ is not optimal.

In a similar way, one can consider the union L of all line segments of positive length
contained in F ∗, and if F ∗ \L is non-empty, a curve π in F ∗ \L can be replaced by a shortest
path homotopic to it, which consists of a sequence of line segments. (See the proof of Lemma
13 in the full version.)

The last claimed property is shared with the Euclidean Steiner minimal tree on a set of
points in the plane, and it can be proved in the same easy way by local optimality arguments,
see for example Gilbert and Pollak [10]. J

As it can be seen in Figure 1, optimal fences may contain cycles that do not touch any
object. As is also indicated in the figure, such a cycle can be shrunk until it eventually hits
an object and is eliminated. This does not increase the length, so there is always an optimal
fence with no cycle disjoint from all objects. See the full version for the details.

ICALP 2019
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Figure 2 Left: The arrangement A induced by an instance of GEOMETRIC 2-CUT with two
green and two red objects. The edges of the dual graph G are blue. Right: The optimal solution.

3 The Bicolored Case

In this section we consider the case of k = 2 different colors. Let N be the set of all corners of
the objects. A line segment is said to be free if it is disjoint from the interior of every object.
A vertex v of an optimal fence cannot have degree 3 or more unless v ∈ N , as otherwise two
of the regions meeting at v would be part of the same territory and could be merged, thus
reducing the length. We therefore get the following consequence of Lemma 1.

I Lemma 2. An optimal fence consists of free line segments with endpoints in N . J

Let S be the set of all free segments with endpoints in N . S includes all edges of the
objects. Let A be the arrangement induced by S, see Figure 2. Consider an optimal fence
F ∗ and the associated territories B̄1 and B̄2. Lemma 2 implies that F ∗ is contained in A.
Thus, each cell of A belongs entirely either to B̄1 or B̄2. The objects are cells of A whose
classification (i.e., membership of B̄1 versus B̄2) is fixed. In order to find F ∗, we need to
select the territory that each of the other cells belongs to. Since |S| = O(n2), A has size
O(|S|2) = O(n4) and can be computed in O(|A|) = O(n4) time [7]. For simplicity, we stick
with the worst-case bounds. In practice, set S can be pruned by observing that the edges of
an optimal fence must be bitangents that touch the objects in a certain way, because the
curves of the fence are locally shortest.

Finding an optimal fence amounts to minimizing the boundary between B̄1 and B̄2. This
can be formulated as a minimum-cut problem in the dual graph G(V,E) of the arrangement
A. There is a node in V for each cell and a weighted edge in E for each pair of adjacent cells:
the weight of the edge is the length of the cells’ common boundary. Let S1, S2 ⊂ V be the
sets of cells that contain the objects of B1, B2, respectively. We need to find the minimum
cut that separates S1 from S2. This can be obtained by finding the maximum flow in G from
the sources S1 to the sinks S2, where the capacities are the weights. As G is a planar graph,
we can use the algorithm by Borradaile et al. [5] with running time O(|V | log3 |V |). The
running time has since then been improved to O( |V | log3 |V |

log2 log |V | ) [9]. As |V | = O(|S|2) = O(n4),
we obtain the following theorem.

I Theorem 3. GEOMETRIC 2-CUT can be solved in time O( n4 log3 n
log2 log n

), where n is the total
number of corners of the objects.
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A similar algorithm has been described before in a slightly different context: image
segmentation [11], see also [5]. Here, we have a rectangular grid of pixels, each having a given
gray-scale value. Some pixels are known to be either black or white. The remaining pixels
have to be assigned either the black or the white color. Each pixel has edges to its (at most
four) neighbors. The weights of these edges can be chosen in such a way that the minimum
cut problem corresponds to minimizing a cost function consisting of two parts: One part,
the data component, has a term for each pixel, and it measures the discrepancy between the
gray-value of the pixel and the assigned value. The other part, the smoothing component,
penalizes neighboring pixels with similar gray-values that are assigned different colors.

4 Hardness of the Tricolored Case

We show how to construct an instance I of GEOMETRIC 3-CUT from an instance Φ of
PLANAR POSITIVE 1-IN-3-SAT. For ease of presentation, we first describe the reduction
geometrically, allowing irrational coordinates. We prove that if Φ is satisfiable, then I has a
fence of cost M∗, whereas if Φ is not satisfiable, then the cost is at least M∗ + 1/50. We
then argue that the corners can be slightly moved to make a new instance I ′ with rational
coordinates while still being able to distinguish whether Φ is satisfiable or not, based on the
cost of an optimal fence.

In order to make the proof as simple as possible, we introduce a new specialized problem
COLORED TRIGRID POSITIVE 1-IN-3-SAT in the following.

4.1 Auxiliary NP-complete problems
I Definition 4. In the POSITIVE 1-IN-3-SAT problem, we are given a collection Φ of
clauses containing exactly three distinct variables (none of which are negated). The problem
is to decide whether there exists an assignment of truth values to the variables of Φ such that
exactly one variable in each clause is true.

I Definition 5. In the TRIGRID POSITIVE 1-IN-3-SAT problem, we are given an instance
Φ of POSITIVE 1-IN-3-SAT together with a planar embedding of an associated graph G(Φ)
with the following properties:

G(Φ) is a subgraph of a regular triangular grid,
for each variable x, there is a simple cycle vx,
for each clause C = {x, y, z}, there is a path cC and three vertical paths `C

x , `
C
y , `

C
z with

one endpoint at a vertex of cC and one at a vertex of each of vx, vy, vz,
except for the described incidences, no edges share a vertex,
all vertices have degree 2 or 3,
any two adjacent edges form an angle of π or 2π/3,
the number of vertices is bounded by a quadratic function of the size of Φ.

The problem is to decide whether Φ has a satisfying assignment (see Definition 4).

Mulzer and Rote [13] showed that another problem, PLANAR POSITIVE 1-IN-3-SAT,
is NP-complete, which is similar but uses a slightly different embedding with axis-parallel
segments. It trivially follows that TRIGRID POSITIVE 1-IN-3-SAT is also NP-complete,
see Figure 3.

Consider an instance (Φ, G(Φ)) of TRIGRID POSITIVE 1-IN-3-SAT. There are some
vertices of degree three on the cycles vx corresponding to each variable x in Φ, and these we
denote as branch vertices of G(Φ). There is also one vertex of degree three on the path cC

corresponding to each clause C in Φ, which we denote as a clause vertex. Except for branch
and clause vertices, at most two edges meet at each vertex.

ICALP 2019
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vx1
vx2 vx3 vx4 vx5

cC1

cC2

cC3

vx1 vx2
vx3 vx4

vx5

cC1

cC2

cC3

Figure 3 Left: An instance of PLANAR POSITIVE 1-IN-3-SAT for the formula Φ = C1∧C2∧C3

for C1 = x1 ∨ x3 ∨ x5, C2 = x1 ∨ x2 ∨ x3, and C3 = x2 ∨ x4 ∨ x5. Right: A corresponding instance of
TRIGRID POSITIVE 1-IN-3-SAT. Clause vertices are drawn as dots and branch vertices as boxes.

Let C be the set of all clause vertices (considered as geometric points). Removing C from
G(Φ) (considered as a subset of R2) splits G(Φ) into one connected component Ex for each
variable x of Φ. The idea of our reduction to GEOMETRIC 3-CUT is to build a channel on
top of Ex for each variable x. The channel has constant width 1/2 and contains Ex in the
center. The channel contains small inner objects and is bounded by larger outer objects of
another color. There will be two equally good ways to separate the inner and outer objects,
namely taking an individual fence around each inner object and taking long fences along the
boundaries of the channel that enclose as many inner objects as possible. As it will turn out,
any other way of separating the inner from the outer objects will require more fence. These
two optimal fences play the roles of x being true and false, respectively.

At the clause vertices where three regions Ex, Ey, Ez meet, we make a clause gadget that
connects the three channels corresponding to x, y, z. The objects in the clause gadget can be
separated using the least amount of fence if and only if one of the channels is in the state
corresponding to true and the other two are in the false state. Therefore, this corresponds to
the clause in Φ being satisfied.

In order to make this idea work, we first assign every edge of G(Φ) an inner and an
outer color among {red, green,blue}. These will be used as the colors of the inner and outer
objects of the channel later on. We require the following of the coloring:
1. The inner and outer colors of any edge are distinct.
2. Any two adjacent collinear edges have the same inner or outer color.
3. Any two adjacent edges that meet at an angle of 2π/3 at a non-clause vertex have the

same inner and the same outer color.
4. The inner colors of the three edges meeting at a clause vertex are red, green, blue in

clockwise order, while the outer colors of the same edges are blue, red, green, respectively.
We now introduce the problem COLORED TRIGRID POSITIVE 1-IN-3-SAT, which we
will reduce to GEOMETRIC 3-CUT, see Figure 4. The problem is NP-complete, as shown
in the full version.

I Definition 6. In COLORED TRIGRID POSITIVE 1-IN-3-SAT, we are given an instance
(Φ, G(Φ)) of TRIGRID POSITIVE 1-IN-3-SAT together with a coloring of the edges of G(Φ)
satisfying the above requirements. We want to decide whether Φ has a satisfying assignment.

4.2 Building a GEOMETRIC 3-SAT instance from tiles
Consider an instance (Φ, G(Φ)) of COLORED TRIGRID POSITIVE 1-IN-3-SAT that we
will reduce to GEOMETRIC 3-CUT. We make the construction using hexagonal tiles of six
different types, namely straight, inner color change, outer color change, bend, branch, and
clause tiles. Each tile is a regular hexagon with side length 1/

√
3 and hence has width 1.

The tiles are rotated such that they have two horizontal edges.
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Figure 4 An instance of COLORED TRIGRID POSITIVE 1-IN-3-SAT based on the instance
from Figure 3.

The tiles are placed so that each tile is centered at a vertex p of G(Φ). Let Gp be the part
of G(Φ) within distance 1/2 from p (recall that each edge of G(Φ) has length 1). Figure 5
shows the tiles and how they are placed according to the shape and colors of Gp.

In order to define the outer objects of a tile, we consider the straight skeleton offset [3, 4]
of Gp at distance 1/4. With the exception of the bend tile, this offset is the same as the
Euclidean offset. By the outer and inner region, we mean the region of the tile outside,
resp. inside, this offset. The outer objects cover the outer region, and every point is colored
with the outer color of a closest edge in Gp. The inner region is empty except for the inner
objects described in each case below. We suppose that p = (0, 0).

The straight tile. If two collinear edges meet at p with the same inner and outer color, we
use a straight tile. Suppose in this and the following two cases that Gp is the vertical line
segment from (0,−1/2) to (0, 1/2) – tiles for edges of other slopes are obtained by rotation
of the ones described here. There are four axis-parallel squares of the inner color of Gp with
side length 1/8 centered at (±(1/4−1/16),±1/4). This size is chosen so their total perimeter
is 2, which is the length of the common boundary of the inner and outer regions.

The inner color change tile. If two collinear edges meet at p with different inner colors, we
use an inner color change tile. There are again four squares colored in the inner color of the
closest point in Gp. There are also four smaller axis-parallel squares with side length 1/28
centered at (±(1/4− 1/56),±1/56), likewise colored in the inner color of the closest point in
Gp. The size of these small squares is chosen so that they can be individually enclosed using
fences of total length 14 · 1/28 = 1/2, which is the width of the inner region.

The outer color change tile. If two collinear edges meet at p with different outer colors,
we use an outer color change tile. There are four axis-parallel squares of the inner color of
Gp with side length 3/32. Their centers are (±(1/4− 3/64),±1/4). The size of these squares
is chosen so that their total perimeter is 2− 1/2 = 3/2.

The bend tile. If two non-collinear edges meet at p, we use a bend tile. Consider the case
where Gp is the vertical line segment from p to (0, 1/2) and the segment of length 1/2 from p

with direction (cosπ/6,− sin π/6). The other cases are obtained by a suitable rotation of this

ICALP 2019
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straight inner color change outer color change

bend branch clause

Figure 5 Different kinds of tiles used in the reduction to GEOMETRIC 3-CUT. The dashed
colored segments show Gp and the inner and outer color of Gp. The tiles are colored accordingly.
The points in the clause tile are defined so that ‖ab‖ = ‖a′b′‖ = 6/25 = 0.24 and ‖bc‖ = ‖b′c‖ =
1/4 = 0.25. Point c has coordinates (x, x/

√
3), where x = 13

√
3

200 + 3/16−
√
−459+3900

√
3

400 is a solution
to 10000x2 + (−1300

√
3− 3750)x+ 507 = 0. The remaining points in the tile are given by rotations

by angles 2π/3 and 4π/3 around p.

tile. There is an axis parallel square of side length x = 6+
√

3
72 with center (−(1/4− x/2), 1/4)

and another with side length y = 6−
√

3
48 centered at (1/4− y/2, 3/8). The tile is symmetric

with respect to the angular bisector b of Gp, and so the reflections of the described squares
with respect to b are also inner objects. Note that there are two outer objects, one of which,
O, has a concave corner q with exterior angle 2π/3. We place a parallelogram with side
length x, a corner at q, and two edges contained in the edges of O incident at q. It is easy to
verify that the common boundary of the inner and outer regions has a total length of 2; the
inner objects are chosen such that their total perimeter is also 2.

The branch tile. If p is a branch vertex, we use the branch tile. There are two cases: Gp

either contains the vertical segment from p to (0, 1/2) or that from p to (0,−1/2). We specify
the tile in the first case – the other can be obtained by a rotation of π. There are axis-parallel
squares of side length y = 6−

√
3

48 centered at (±(1/4− y/2), 3/8) and their rotations around p
by angles 2π/3 and 4π/3. The common boundary of the inner and outer regions has a total
length of 6−

√
3

2 , and the total perimeter of the inner objects is also 6−
√

3
2 .

The clause tile. If p is a clause vertex, we use the clause tile (defined in Figure 5). The
other clause tiles are given by rotations of the described tile by angles kπ/3 for k = 1, . . . , 5.
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Ex

Ey

Ez

Ex

Ey

Ez

Ex

Ey

Ez

Figure 6 The optimal solutions to each type of tile. The edges in Gp are shown in dashed grey.
We denote the left solution of each of the first five types of tiles as the outer solution and the other
as the inner solution. For the clause tile, we define the solution as the z-outer, x-outer, and y-outer
solution in order from left to right, respectively.

4.3 Solving the tiles

Let an instance I of GEOMETRIC 3-SAT be given together with an associated fence F .
Consider the restriction of I to a convex polygon P and the part of the fence F ∩ P inside
P . Note that F ∩ P consists of (not necessarily disjoint) closed curves and open curves
with endpoints on the boundary ∂P , such that no two objects in P of different color can
be connected by a path π ⊂ P unless π intersects F . (An open curve is a subset of a larger
closed curve of F that continues outside P .) We say that a set of closed and open curves in
P with that property is a solution to I ∩ P . In the following, we analyze the solutions to the
tiles defined in Section 4.2 in order to characterize the solutions of minimum cost. We say
that two closed curves (disjoint from the interiors of the objects) are homotopic if one can be
continuously deformed into the other without entering the interiors of the objects. Two open
curves with endpoints on the boundary of the tile are homotopic if they are subsets of two
homotopic closed curves (that extend outside the tile).

The following lemma characterizes the optimal solutions to each type of tile. The
statement is that if a solution is not too much more expensive than the solutions shown in
Figure 6, then it will contain curves homotopic to each curve in one of the solutions in the
figure. The proof is deferred to the full version.

ICALP 2019



9:10 Geometric Multicut

I Lemma 7. Figure 6 shows optimal solutions to each kind of tile. The cost in each case is:
Straight tile: 2. Inner color change tile: 5/2. Outer color change tile:

(
2√
3 −

1
2

)
+ 2 ≈ 2.65.

Bend tile: 2. Branch tile: 6−
√

3
2 ≈ 2.13. Clause tile: ≈ 3.51 (the exact value is complicated

due to the coordinates and of no use).
If the cost of a solution F to a tile T exceeds the optimum by less than 1/50, then F is

homotopic to one of the optimal solutions F∗ of T in the following sense: For each curve π∗
in F∗, there is a curve π in F homotopic to π∗. If π is closed, the distance from any point
on π to the closest point on π∗ is less than

√
(1/8 + 1/100)2 − (1/8)2 < 0.06. If π is open

and π∗ has an endpoint f∗, there is a corresponding endpoint f of π with ‖f∗f‖ < 1/10.

I Theorem 8. The problem GEOMETRIC 3-CUT is NP-hard.

Proof. Let an instance (Φ, G(Φ)) of COLORED TRIGRID POSITIVE 1-IN-3-SAT be given
and construct the tiles on top of G(Φ) as described. Let T be the set of tiles and A the area
that the tiles cover (i.e., A is a union of the hexagons). We will cover any holes in A with
completely red tiles, and place red tiles all the way along the exterior boundary of A. Let
R be the set of these added red tiles and let I be the resulting instance of GEOMETRIC
3-CUT. It is now trivial how to place the fences in I everywhere except in the interior of A.

Consider a fence F to the obtained instance with cost M . Let M∗ be the sum of the cost
of an optimal solution to each tile in T plus the cost of the fence that must be placed along
the boundaries of the added red tiles in R. We claim that if Φ is satisfiable, then a solution
realizing the minimum M∗ exists. Furthermore, if M < M∗ + 1/50, then Φ is satisfiable.

Suppose that Φ is satisfiable and fix a satisfying assignment. Consider a clause tile where
Ex, Ey, and Ez meet. Now, we choose the v-outer state, where v ∈ {x, y, z} is the variable
that is satisfied. For each non-clause tile that covers a part of Ew for a variable w of Φ, we
choose the outer state if w is true and the inner otherwise. It is now easy to see that the
curves form a fence of the desired cost.

On the other hand, suppose that M < M∗ + 1/50. It follows that in each tile in T , the
cost exceeds the optimum by at most 1/50. Hence, the solution in each tile is homotopic
to one of the optimal states as described in Lemma 7. We now claim that the states of all
tiles representing one variable must agree on either the inner or outer state. Consider two
adjacent tiles where one is in the inner state. There are open curves with endpoints on the
shared edge of the two tiles with a distance of more than 1/2− 2 · 1/10 = 3/10. The other
tile cannot be in the outer state, because then there would have to be an extra open curve of
length at least 3/10 to connect those endpoints. It follows that the other tile must also be in
the inner state. Thus, both tiles are either in the inner or in the outer state, as desired.

We now describe how to obtain a satisfying assignment of Φ. Consider a clause tile where
Ex, Ey, and Ez meet and suppose the tile is in the x-outer state. It follows from the above
that each tile covering Ex is in the outer state or, in the case of the clause tile, in the x-outer
state. Similarly, each non-clause tile covering only Ey (resp. Ez) is in the inner state and
each clause tile covering a part of Ey (resp. Ez) is not in the y-outer (resp. z-outer) state.
We now set x to true and y and z to false and do similarly with the other clause tiles, and it
follows that we get a solution to Φ.

The proof that we can avoid the use of irrational corners is deferred to the full version.
The basic idea is as follows. For each object O with corner v with an irrational coordinate,
we choose a substitute v′ ∈ O with rational coordinates such that ‖vv′‖ < 1/50

4n and such that
v′ only requires polynomially many bits to represent. This results in a modified instance I ′,
and we prove that I ′ has a solution of cost M ′ := d100M∗e

100 if and only if Φ is satisfiable. J
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5 Approximation

The approach for k = 2 from Section 3 does not extend to k ≥ 3 because Lemma 2 does
not apply: The arrangement A (formed by the free segments between the corners N of the
input objects) is no longer guaranteed to contain an optimal fence, see Figure 1. However,
we can still search for an approximate solution in A: We show that the optimal fence FA
contained in A has a cost which is at most 4/3 times higher than the true optimal fence F ?

(Theorem 9). In the full version, we construct a corresponding lower-bound example with
|FA| > 1.15 · |F ?|.

The graph-theoretic problem that we then have to solve in the weighted dual graph
G = (V,E) of A is the colored multiterminal cut problem: We have terminals of k ≥ 3
different colors and want to make a cut that separates every pair of terminals of different
colors. This problem is NP-hard, but we can use approximation algorithms, see Section 5.1.

I Theorem 9. |FA| ≤ 4/3 · |F ?|.

Proof. From Section 2, we know that after cutting an optimal fence F ? at all points of N ,
the remaining components are Steiner minimal trees with leaves in N and internal Steiner
vertices of degree 3, where three segments make angles of 2π/3.

Consider such a Steiner tree T (Figure 7a). Since T is embedded in the plane, the leaves
can be enumerated in cyclic order as v1, . . . , vm. We will replace T by a connected system T̄

of fences that connects the same set of leaves v1, . . . , vm, but contains only segments from the
arrangement A. Furthermore, we prove that the total length of T̄ is bounded as |T̄ | ≤ 4

3 |T |.
Thus, carrying out this replacement for every Steiner tree leads to the fence FA of the desired
cost. If T consists of a single segment, we define T̄ to be the same segment, in which case
trivially |T̄ | ≤ 4

3 |T |. Assume therefore that T has at least one Steiner vertex.
Let Tij be the path in T from vi to vj . For each pair {i, j}, we define the path T̄ij as the

shortest path with the properties that

a) T̄ij has endpoints vi and vj , and
b) T̄ij is homotopic to Tij : this means that Tij can be continuously deformed into T̄ij while

keeping the endpoints fixed at vi and vj , without entering the interiors of the objects.
It is clear that
c) T̄ij is contained in the arrangement A, and
d) T̄ij is at most as long as Tij .

We will construct T̄ as the union of paths T̄ij that are specified by a certain set S of leaf
pairs {i, j}, and we will show that its total length is bounded |T̄ | ≤ 4

3 |T |. The fact that FA
is a valid fence is ensured by our choice of the set S, which we will now discuss.

If we overlay all paths Tij for {i, j} ∈ S, we get a multigraph T̃ , which has the same
vertices as T and uses the edges of T , some of them multiple times. We require these
three properties:
1. Every edge of T is used once or twice in T̃ .
2. Every Steiner vertex of T has even degree (4 or 6) in T̃ . (By contrast, the degree in T is

always 3.)
3. Any two paths Tij and Ti′j′ that have a point of T in common must cross in the following

sense: If we assume, by relabeling if necessary, that i < j and i′ < j′, then i ≤ i′ ≤ j ≤ j′
or i′ ≤ i ≤ j′ ≤ j.

ICALP 2019



9:12 Geometric Multicut
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Figure 7 (a) a single Steiner tree T with 5 terminals v1, . . . , v5, part of a larger fence system F ?.
Steiner vertices are white, leaves are black. (b) The transformed graph T̄ , formed as the union of
three shortest homotopic paths T̄15, T̄24, and T̄35.

The last property is important to ensure that T̄ is connected.
As we prove in the full version, Properties 1 and 3 imply that for any two leaves vi and

vj (where the pair {i, j} is not necessarily in S), the set T̄ contains a path from vi to vj that
is homotopic to the path Tij . This means that after replacing T by T̄ in F ?, we get a system
of fences F ′ that encloses and separates the same objects as F ?, and thus we have indeed
produced a valid fence.

To bound the length of T̄ , we bound each path T̄ij , {i, j} ∈ S, by the corresponding
path Tij in T . This upper estimate is simply the total length of T plus the length of the
duplicated edges of T .

Our first task is to construct the multigraph T̃ . By Property 1, this boils down to selecting
which edges of T to duplicate. In order to fulfill Property 2, we require that the degree of
every inner vertex of T̃ becomes even. (We show later that this is sufficient to ensure that
the edges of T̃ can be partitioned into paths Tij subject to Property 3.)

I Lemma 10. The edges that should be duplicated can be chosen such that their total length
is at most |T |/3.

Proof. For a particular tree, the optimum can be computed easily by dynamic programming,
as follows. We root T at some arbitrary leaf. Consider a subtree U rooted at some vertex u
of T such that u has one child v in U . We define U1 and U2 as the cost of the optimal set of
duplicated edges in U , under the constraint that the multiplicity of the edge uv in T̃ is 1
and 2, respectively.

By induction, we will establish that

2U1 + U2 ≤ |U |. (1)

This gives min{U1, U2} ≤ |U |/3 and proves the lemma, since this also holds for U = T . In
the base case U has only one edge. Then U1 = 0 and U2 = ‖uv‖ = |U |, and (1) holds.

If U is larger, v has degree 3, and two subtrees L and R are attached there. If uv is not
duplicated, then exactly one of the other edges incident to v has to be duplicated in order
for v to get even degree in T̃ . On the other hand, if uv is duplicated, then either both or
none of the other edges should be duplicated. Hence, we can compute U1 and U2 by the
following recursion:

U1 = min{L1 +R2, L2 +R1} (2)
U2 = min{L1 +R1, L2 +R2}+ ‖uv‖ (3)
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We therefore get

U1 ≤ L2 +R1 (4)
U1 ≤ L1 +R2 (5)

from (2) and

U2 ≤ L1 +R1 + ‖uv‖ (6)

from (3).
Adding inequalities (4–6) and using the inductive hypothesis (1) for L and R gives

2U1 + U2 ≤ 2L1 + L2 + 2R1 +R2 + ‖uv‖ ≤ |L|+ |R|+ ‖uv‖ = |U |. J

We now have a multigraph T̃ where every internal vertex has even degree. It follows that
the edges of T̃ can be partitioned into leaf-to-leaf paths, much like when creating an Eulerian
tour in a graph where all vertices have even degree.

We still need to satisfy Property 3. Whenever two paths P1 and P2 violate this property,
we repair this by swapping parts of the paths, without changing the number of remaining
violating pairs, as follows: The paths P1 and P2 must have a common vertex, and thus also
a common edge uv, because the maximum degree in T is 3. Orient P1 and P2 so that they
use this edge in the direction uv, and cut them at v into P1 = Q1 ·R1 and P2 = Q2 ·R2. We
now make a cross-over at v, forming the new paths Q1 ·R2 and Q2 ·R1. These new paths
satisfy Property 3. To check that we did not create any new violations, we observe that, by
Property 1, no other path can use the edge uv, because the capacity of 2 is already taken
by P1 and P2. Thus, all other paths can either interact with Q1 and Q2, or with R1 and
R2. Thus, swapping the parts of P1 and P2 in the other half of the tree T does not affect
Property 3.

We have thus established Theorem 9. J

5.1 Finding a good fence in A

The problem of finding a small cut in a planar graph G = (V,E) that separates k different
classes T1, . . . , Tk ⊂ V of terminals was mentioned as a suggestion for future work by
Dahlhaus et al. [8], but we have not found any subsequent work on that except for the case
k = 2 [5]. We can, however, reduce the problem to the multiway cut problem in general
graphs (also known as the multiterminal cut problem): For each class Ti, we add an “apex
vertex” ti which is connected to all vertices in Ti by edges of infinite weight. We then ask
for the cut of minimum total weight that separates each pair ti, tj . Dahlhaus et al. gave a
(2− 2/k)-approximation algorithm for the problem. In our setup, the running time will be
O(kn8 logn). The approximation ratio was since then improved to 3/2− 1/k by Călinescu
et al. [6]. Finally, a randomized algorithm with approximation factor 1.3438 was given by
Karger et al. [12], who also gave the best known bounds for various specific values of k.
Together with Theorem 9, we obtain the following result.

I Theorem 11. There is a randomized 4/3 · 1.3438-approximation algorithm and a determ-
inistic (2− 4

3k )-approximation algorithm for GEOMETRIC k-CUT, each of which runs in
polynomial time.

ICALP 2019
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6 Concluding Remarks

We have initiated the study of the geometric multicut problem. As our NP-hardness
reduction does not imply APX-hardness, an interesting open question is whether there exists
a (1 + ε)-approximation algorithm for any ε > 0.

There are other versions of the problem that could also be interesting to study. For
example, apart from considering shortest paths in the plane, much attention has also been
paid to minimum-link paths, i.e., paths connecting two points and consisting of a minimum
number of line segments. The analogous problem in our setup is likewise interesting: Compute
a simplest possible fence, i.e., one that is the union of as few line segments as possible. The
fence can be required to be disjoint from the object interiors, or it can be allowed to pass
through the objects, leading to two different problems.
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