
Amplification with One NP Oracle Query
Thomas Watson
University of Memphis, Memphis, TN, USA
Thomas.Watson@memphis.edu

Abstract
We provide a complete picture of the extent to which amplification of success probability is possible
for randomized algorithms having access to one NP oracle query, in the settings of two-sided,
one-sided, and zero-sided error. We generalize this picture to amplifying one-query algorithms with
q-query algorithms, and we show our inclusions are tight for relativizing techniques.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Amplification, NP, oracle, query

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.96

Category Track A: Algorithms, Complexity and Games

Related Version The full version of the paper is available at https://eccc.weizmann.ac.il/
report/2018/058/.

Funding Supported by NSF grant CCF-1657377.

1 Introduction

Amplification of the success probability of randomized algorithms is a ubiquitous tool in
complexity theory. We investigate amplification for randomized reductions to NP-complete
problems, which can be modeled as randomized algorithms with the ability to make queries
to an NP oracle. The usual amplification strategy involves running multiple independent
trials, which would also increase the number of NP oracle queries, so this does not generally
work if we restrict the number of queries. We study, and essentially completely answer, the
following question:

If a language is solvable with success probability p by a randomized polynomial-time
algorithm with access to one NP oracle query, what is the highest success probability
achievable with one query (or q > 1 many queries) to an NP oracle?

The question makes sense for two-sided error (BPPNP[1]), one-sided error (RPNP[1]), and
zero-sided error (ZPPNP[1]), and it was mentioned in [2] as “an interesting problem worthy of
further investigation.” Partial results for zero-sided error were shown in [3]. The question is
also relevant to the extensive literature on bounded NP queries (the boolean hierarchy); e.g.,
ZPPNP[1] shows up frequently in the context of the “two queries problem” [4], which was the
main application area of the results from [3].

Our first contribution characterizes the best amplification achievable by relativizing
techniques in the two-sided error setting. In general, the best strategy for amplifying plain
randomized algorithms is to take the majority vote of q independent trials, which in our
setting would naively involve q NP oracle queries. One may suspect this majority vote
strategy is optimal for us. We show this intuition is a red herring; it is possible to do better
by “combining” NP oracle queries across different trials. As an extreme example, consider
the special case of randomized mapping reductions to NP problems. These are equivalent
to Arthur–Merlin games (AM), for which amplification is possible by running independent

EA
T

C
S

© Thomas Watson;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 96; pp. 96:1–96:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.96
https://eccc.weizmann.ac.il/report/2018/058/
https://eccc.weizmann.ac.il/report/2018/058/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

96:2 Amplification with One NP Oracle Query

trials and simply having Merlin’s message consist of certificates for a majority of the trials.
However, if we allow one NP oracle query, but do not necessarily output the same bit the
oracle returns, then combining queries is less straightforward, and it turns out amplification
is only possible to a limited extent.

Our main take-home message is that starting with success probability greater than
1
2 + 1

2 ·
1
k+1 , where k is an integer, we can get arbitrarily close to 1

2 + 1
2 ·

1
k success probability

while still using one NP query; using q nonadaptive queries, roughly a factor q improvement
over this is possible.

We give precise definitions in Section 2, but we now clarify our notation before stating
the theorem. For ε ∈ (0, 1] (the advantage), BPPNP[1]

ε is the set of all languages solvable by
a randomized polynomial-time algorithm that may make one query to an NP oracle and
produces the correct output with probability ≥ 1

2 + 1
2ε on each input. For convenience, we

define BPPNP[1]
>ε by requiring that for some constant c there exists such an algorithm with

advantage ≥ ε+ n−c, and we define BPPNP[1]
ε> by requiring that for every constant d there

exists such an algorithm with advantage ≥ ε − 2−nd ; the reason for these conventions is
just that they naturally arise in the proofs (e.g., standard majority amplification implies
BPP>0 = BPP1>). We make similar definitions for BPPNP‖[q] but allowing q nonadaptive NP
oracle queries. Allowing q adaptive NP queries is equivalent to allowing 2q − 1 nonadaptive
NP queries [1].

I Theorem 1 (Two-sided error). For integers 1 ≤ q ≤ k:
If q is odd:

BPPNP[1]
>1/(k+1) ⊆ BPPNP‖[q]

q/k> and BPPNP[1]
1/k 6⊆ BPPNP‖[q]

>q/k relative to an oracle.

If q, k are even:

BPPNP[1]
>1/(k+1) ⊆ BPPNP‖[q]

q/k> and BPPNP[1]
1/(k−1) 6⊆ BPPNP‖[q]

>q/k relative to an oracle.

The word “oracle” has two meanings here. Besides the bounded NP oracle queries of
central interest, “relative to an oracle” means there exists a language such that the separation
holds when all computations (the randomized algorithm and the NP verifier) can make
polynomially many adaptive queries to an oracle for that language. In particular, in the
context of our relativized separations, randomized algorithms have access to two oracles.
The separations in Theorem 1 are tight since the inclusions relativize. This implies that
using “black-box simulation” techniques, it is not possible to significantly improve any of
our inclusions.

If we start with advantage > 1
k+1 where k is an integer, Theorem 1 tells us the best

advantage achievable with q nonadaptive NP queries using relativizing techniques: if k is
even we can amplify to essentially q

k ; if k is odd we can amplify to essentially q
k if q is odd,

and q
k+1 if q is even. (Theorem 1 does not explicitly mention the case where q is even and

k is odd, but in this case the best inclusion and separation are obtained by applying the
theorem to the even integer k + 1.)

A subtle issue is whether “q/k>” in the inclusion subscripts can be improved to “q/k”;
e.g., it remains open to show that BPPNP[1]

>1/3 ⊆ BPPNP[1]
1/2 or that BPPNP[1]

>1/3 6⊆ BPPNP[1]
1/2 relative

to an oracle.
The proof of Theorem 1 appears in Section 3. No such nontrivial inclusion was known

before; for relativized separations, the case q = 1, k = 2 was shown in [7].

Zero-sided error algorithms must output the correct bit with probability at least some
ε ∈ (0, 1] and output ⊥ (plead ignorance) with the remaining probability. We define the
advantage (the subscript of ZPPNP‖[q]) to be this ε.

T. Watson 96:3

[3] proved that ZPPNP[1]
>0 ⊆ ZPPNP[1]

1/4 and ZPPNP[1]
>1/2 ⊆ ZPPNP[1]

1> ,1 and left it unresolved
what happens between advantages 1

4 and 1
2 . We settle this decade-old open problem:

amplification is possible between 1
4 and 1

3 and between 1
3 and 1

2 .

I Theorem 2 (Zero-sided error). For integers 1 ≤ q ≤ k ≤ 4:
If k = 4: ZPPNP[1]

>0 ⊆ ZPPNP‖[q]
q/k> .

If k ≤ 3: ZPPNP[1]
>1/(k+1) ⊆ ZPPNP‖[q]

q/k> .

If q = 1: ZPPNP[1]
1/k 6⊆ ZPPNP‖[q]

>q/k relative to an oracle.
Moreover, the “q/k>” in the inclusion subscripts can be improved to “q/k” if q < k ≥ 3.

The proof of Theorem 2 appears in Section 4. The “moreover” part uses a trick described in
[3] for getting a tiny boost in the advantage. Like the situation with BPPNP[1], it remains open
to show that ZPPNP[1]

>1/3 ⊆ ZPPNP[1]
1/2 or that ZPPNP[1]

>1/3 6⊆ ZPPNP[1]
1/2 relative to an oracle. There is

no reason to consider k > 4 in Theorem 2, since then ZPPNP[1]
>1/(k+1) ⊆ ZPPNP[1]

>0 ⊆ ZPPNP‖[q]
q/4> .

We conjecture that the third bullet in Theorem 2 also holds for q > 1 (i.e., the relativized
separations ZPPNP[1]

1/4 6⊆ ZPPNP‖[2]
>2/4 and ZPPNP[1]

1/4 6⊆ ZPPNP‖[3]
>3/4 and ZPPNP[1]

1/3 6⊆ ZPPNP‖[2]
>2/3).

This remains open, though we are aware of how to prove that ZPPNP[1]
1/4 6⊆ ZPPNP‖[2]

>3/4 . Anyway,
q = 1 is the most natural case, and we provide a complete proof for it.

One-sided error algorithms must always output 0 if the answer is 0, and must output
1 with probability at least some ε ∈ (0, 1] if the answer is 1. We define the advantage (the
subscript of RPNP‖[q]) to be this ε. The proof of Theorem 3 appears in the full version of this
paper [6] and is relatively straightforward.

I Theorem 3 (One-sided error).
RPNP[1]

>1/2 ⊆ RPNP[1]
1> .

RPNP[1]
>0 ⊆ RPNP[1]

1/2 ∩ RPNP‖[2]
1> and RPNP[1]

1/2 6⊆ RPNP[1]
>1/2 relative to an oracle.

Finally, we point out that none of the inclusions in this paper can be strengthened to
yield advantage exactly 1 via relativizing techniques, since BPP ⊆ ZPPNP[1]

>1/2 relativizes [2]
but BPP 6⊆ PNP relative to an oracle [folklore].

2 Definitions

We formally define the relevant complexity classes in Section 2.1 and their decision tree
analogues (which are used for relativized separations) in Section 2.2.

2.1 Time complexity
We think of a randomized algorithm M as taking a uniformly random string s ∈ {0, 1}r (for
some number of coins r that depends on the input length); we let Ms(x) denote M running
on input x with outcome s.

For ε ∈ (0, 1] (the advantage) and integer q ≥ 1, language L is in BPPNP‖[q]
ε iff there is a

polynomial-time randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a
language L′ ∈ NP such that the following hold.

1 [7] gave an alternative proof of the latter but with only 1− 1
poly , rather than 1− 1

exp , success probability.

ICALP 2019

96:4 Amplification with One NP Oracle Query

Syntax: The computation ofMs(x) produces a tuple of query strings (z1, . . . , zq) and a truth
table out : {0, 1}q → {0, 1}; the output is then out(L′(z1), . . . , L′(zq)).

Correctness: The output is L(x) with probability ≥ 1
2 + 1

2ε.

RPNP‖[q]
ε is defined similarly except for correctness, we require the output is always 0 if

L(x) = 0, and is 1 with probability ≥ ε if L(x) = 1. ZPPNP‖[q]
ε is defined similarly except

out : {0, 1}q → {0, 1,⊥} and for correctness, we require the output is always L(x) or ⊥, and
is L(x) with probability ≥ ε.

For C ∈
{

BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, we define

C>ε =
⋃

constants c
Cε+n−c and Cε> =

⋂
constants d

C
ε−2−nd .

When q = 1 we may drop the ‖ from the superscripts.

2.2 Decision tree complexity
We think of a randomized decision tree T as the uniform distribution over a multiset of
corresponding deterministic decision trees Ts indexed by s ∈ {0, 1}r; we denote this as
T ∼

{
Ts : s ∈ {0, 1}r

}
. In this setting, “query” actually has two meanings for us: a decision

tree makes queries to individual input bits, then it forms an NP-type (DNF) oracle query.
We define a BPPNP‖[q]

ε -type decision tree T for f : {0, 1}n → {0, 1} on input x as follows.
Syntax: T ∼

{
Ts : s ∈ {0, 1}r

}
where each Ts makes queries to the bits of x until

it reaches a leaf, which is labeled with a tuple of DNFs (ϕ1, . . . , ϕq) and a function
out : {0, 1}q → {0, 1}; the output is then out(ϕ1(x), . . . , ϕq(x)).

Correctness: The output is f(x) with probability ≥ 1
2 + 1

2ε.
Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at a

leaf.
An RPNP‖[q]

ε -type decision tree is defined similarly except for correctness we require the output
is always 0 if f(x) = 0, and is 1 with probability ≥ ε if f(x) = 1. A ZPPNP‖[q]

ε -type decision
tree is defined similarly except out : {0, 1}q → {0, 1,⊥} and for correctness, we require the
output is always f(x) or ⊥, and is f(x) with probability ≥ ε.

We follow the convention of overloading complexity class names as decision tree complexity
measures: for C ∈

{
BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, Cdt

ε (f) denotes the minimum cost of any
Cε-type decision tree for a partial function f , and Cdt

ε also denotes the class of all families of
f ’s with Cdt

ε (f) ≤ polylog(n), and we define

Cdt
>ε =

⋃
constants c

Cdt
ε+log−c n and Cdt

ε> =
⋂

constants d
Cdt
ε−n−d .

3 Two-sided error

To prove Theorem 1, we first restate it in a more convenient form.
I Theorem 1 (Two-sided error, restated). For integers 1 ≤ q ≤ k:
(i) If k, q are odd: BPPNP[1]

>1/(k+1) ⊆ BPPNP‖[q]
q/k> .

(ii) If k is even: BPPNP[1]
>1/(k+1) ⊆ BPPNP‖[q]

q/k> .

(iii) If q, k are even: BPPNP[1]
1/(k−1) 6⊆ BPPNP‖[q]

>q/k relative to an oracle.

(iv) If q is odd: BPPNP[1]
1/k 6⊆ BPPNP‖[q]

>q/k relative to an oracle.
We prove the inclusions (i) and (ii) in Section 3.1 and the separations (iii) and (iv) in
Section 3.2.

T. Watson 96:5

3.1 Inclusions

We prove the q = 1 case of (i) in Section 3.1.1 and the q = 1 case of (ii) in Section 3.1.2
(together these show that BPPNP[1]

>1/(k+1) ⊆ BPPNP[1]
1/k> for all integers k ≥ 1), then we generalize

to the q > 1 case of (i) in Section 3.1.3 and the q > 1 case of (ii) in the full version [6].
The techniques from [3] for the zero-sided error setting are not particularly helpful for the
two-sided error setting, so we develop the ideas from scratch.

We now describe the common setup. For some constant c we have L ∈ BPPNP[1]
1/(k+1)+n−c ,

witnessed by a polynomial-time randomized algorithm M (taking input x and coin tosses
s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary constant d, we wish to show
L ∈ BPPNP‖[q]

q/k−2−nd .

Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent
strings s1, . . . , sm ∈ {0, 1}r, so with probability ≥ 1− 2−nd−1, the sequence is good in the
sense that on input x, M still has advantage strictly greater than 1

k+1 when its coin tosses
are chosen uniformly from the multiset {s1, . . . , sm}. Then we design a polynomial-time
randomized algorithm which, given a good sequence, outputs L(x) with advantage ≥ q

k after
making q nonadaptive NP oracle queries. Hence, over the random s1, . . . , sm and the other
randomness of our algorithm,

P[output is L(x)] ≥ P
[
output is L(x)

∣∣ s1, . . . , sm is good
]
− P[s1, . . . , sm is bad]

≥
(1

2 + 1
2 ·

q
k

)
− 2−nd−1 = 1

2 + 1
2
(
q
k − 2−nd)

.

Henceforth fix a good sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the
query string and truth table produced byMsh(x) (so the output is outh(L′(zh))). We assume
w.l.o.g. that each outh is nonconstant, and is hence either identity or negation. Henceforth
assume that identity is at least as common as negation among out 1, . . . , outm; the proof is
completely analogous if negation is more common.

Taking probabilities over a uniformly random h ∈ [m], we make the following definitions.

α = 1
2P[outh = id] β = 1

2P[outh = neg]
a = P

[
outh = id, L′(zh) = 1

]
− α b = P

[
outh = neg, L′(zh) = 1

]
− β

The key observation is now

(a+ α) + (β − b)
= P

[
outh = id, output = 1

]
+
(
P[outh = neg]− P

[
outh = neg, output = 0

])
= P

[
outh = id, output = 1

]
+ P

[
outh = neg, output = 1

]
= P[output = 1]

and thus, defining ∆ = 1
2 ·

1
k+1 , we have

a− b = (a+ α) + (β − b)− 1
2 = P[output = 1]− 1

2

{
> ∆ if L(x) = 1
< −∆ if L(x) = 0

because of M ’s advantage w.r.t. a good sequence s1, . . . , sm.
This figure shows an example of how these values may fall on the number line if L(x) = 1:

ICALP 2019

96:6 Amplification with One NP Oracle Query

a

b0

>∆

P[outh = id, output = 1] P[outh = id, output = 0]

P[outh = neg, output = 0] P[outh = neg, output = 1]

−α

−β

α

β

The following summarizes the key properties so far.

α ≥ β a ∈ [−α, α] a− b > ∆ if L(x) = 1
α+ β = 1

2 b ∈ [−β, β] b− a > ∆ if L(x) = 0

Also, for any real p, testing whether a ≥ p can be expressed as an NP oracle query: a witness
consists of a list of witnesses for L′(zh) = 1 for at least (p+ α)m many h’s with outh = id.
Similarly, testing whether b ≥ p can be expressed as an NP oracle query.

3.1.1 Proof of (i): q = 1
For i ∈ [k] define γi = (i − k+1

2)∆. We have β − γk ≤ ∆ and γ1 − (−β) ≤ ∆ since
β ≤ 1

4 =
(
(k + 1)− k+1

2
)
∆. This figure shows an example with k = 7:

γ1

γ2

γ3

γ4

γ5

γ6

γ7

≤∆ ≤∆
−α

−β

α

β

Our algorithm now picks one of these k possibilities uniformly at random:2

for some odd i ∈ [k]: output 1 iff a ≥ γi,
for some even i ∈ [k]: output 0 iff b ≥ γi.

First suppose L(x) = 1. We have a > γ1 since a− b > ∆ and b ≥ −β and γ1− (−β) ≤ ∆.
Consider the greatest odd j ∈ [k] such that a ≥ γj ; thus a ≥ γi for j+1

2 many odd i’s
(1, 3, . . . , j). If j < k then b < γj+1 since a − b > ∆ and a < γj+2; thus b < γi for at least
k−j

2 many even i’s (j + 1, j + 3, . . . , k − 1). Hence the probability of outputting 1 is at least
1
k

(
j+1

2 + k−j
2
)

= 1
2 + 1

2 ·
1
k .

Now suppose L(x) = 0. We have a < γk since b − a > ∆ and b ≤ β and β − γk ≤ ∆.
Consider the least odd j ∈ [k] such that a < γj ; thus a < γi for k−j+2

2 many odd i’s
(j, j + 2, . . . , k). If j > 1 then b > γj−1 since b − a > ∆ and a ≥ γj−2; thus b ≥ γi for at
least j−1

2 many even i’s (2, 4, . . . , j − 1). Hence the probability of outputting 0 is at least
1
k

(
k−j+2

2 + j−1
2
)

= 1
2 + 1

2 ·
1
k .

2 Of course, if k is not a power of 2 and we insist on using uniform coin flips as our only source of
randomness, then we must incur a tiny error since it is not possible to exactly sample i ∈ [k] uniformly.
We sweep this pedantic issue under the rug throughout the paper.

T. Watson 96:7

That concludes the formal proof, but here is an intuitive way to visualize what is
happening: Call γi for odd i “upper marks,” and call γi for even i “lower marks,” and assume
for convenience all lower marks are in (−β, β). Suppose L(x) = 1 and b = −β so a > γ1;
then at least one upper mark is left of a and all k−1

2 lower marks are right of b, resulting
in k+1

2 of the algorithm’s possibilities outputting 1. Now as we continuously sweep a and
b to the right, keeping a− b fixed, a passes each upper mark before b passes the preceding
lower mark, so at all times at least k+1

2 of the possibilities output 1. Suppose L(x) = 0 and
b = β so a < γk; then at least one upper mark is right of a and all k−1

2 lower marks are left
of b, resulting in k+1

2 of the algorithm’s possibilities outputting 0. Now as we continuously
sweep a and b to the left, keeping b− a fixed, a passes each upper mark before b passes the
succeeding lower mark, so at all times at least k+1

2 of the possibilities output 0.

3.1.2 Proof of (ii): q = 1
For i ∈ [k] define ζi = −β + i∆ and ηi = −α + i∆. Note that α − ζk = ∆ (so ζ1, . . . , ζk
divide the interval [−β, α] into k + 1 subintervals each of length ∆) and β − ηk = ∆ (so
η1, . . . , ηk divide the interval [−α, β] into k + 1 subintervals each of length ∆). This figure
shows an example with k = 6:

ζ1

ζ2

ζ3

ζ4

ζ5

ζ6η1

η2

η3

η4

η5

η6−α

−β

α

β

Our algorithm now picks one of these 2k possibilities uniformly at random:
for some odd i ∈ [k]: output 1 iff a ≥ ζi,
for some even i ∈ [k]: output 0 iff b ≥ ζi,
for some even i ∈ [k]: output 1 iff a ≥ ηi,
for some odd i ∈ [k]: output 0 iff b ≥ ηi.

First suppose L(x) = 1. We have a > ζ1 since a − b > ∆ and b ≥ −β. Consider the
greatest odd j ∈ [k] such that a ≥ ζj ; thus a ≥ ζi for j+1

2 many odd i’s (1, 3, . . . , j). We
have b < ζj+1 since a− b > ∆ and either a < ζj+2 (if j < k − 1) or a ≤ α and α− ζk = ∆
(if j = k − 1); thus b < ζi for at least k−j+1

2 many even i’s (j + 1, j + 3, . . . , k). Consider
the greatest even j′ ∈ [k] such that a ≥ ηj′ , or let j′ = 0 if it does not exist; thus a ≥ ηi

for j′

2 many even i’s (2, 4, . . . , j′). If j′ < k then b < ηj′+1 since a − b > ∆ and a < ηj′+2;
thus b < ηi for at least k−j′

2 many odd i’s (j′ + 1, j′ + 3, . . . , k − 1). Hence the probability of
outputting 1 is at least 1

2k
(
j+1

2 + k−j+1
2 + j′

2 + k−j′
2
)

= 1
2 + 1

2 ·
1
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < ζj , or let j = k + 1
if it does not exist; thus a < ζi for k−j+1

2 many odd i’s (j, j + 2, . . . , k − 1). If j > 1
then b > ζj−1 since b − a > ∆ and a ≥ ζj−2; thus b ≥ ζi for at least j−1

2 many even i’s
(2, 4, . . . , j − 1). We have a < ηk since b− a > ∆ and b ≤ β and β − ηk = ∆. Consider the
least even j′ ∈ [k] such that a < ηj′ ; thus a < ηi for k−j′+2

2 many even i’s (j′, j′ + 2, . . . , k).
We have b > ηj′−1 since b − a > ∆ and either a ≥ ηj′−2 (if j′ > 2) or a ≥ −α (if j′ = 2);
thus b ≥ ηi for at least j′

2 many odd i’s (1, 3, . . . , j′− 1). Hence the probability of outputting
0 is at least 1

2k
(
k−j+1

2 + j−1
2 + k−j′+2

2 + j′

2
)

= 1
2 + 1

2 ·
1
k .

ICALP 2019

96:8 Amplification with One NP Oracle Query

That concludes the formal proof, but here is an intuitive way to visualize what is
happening: Call ζi for odd i and ηi for even i “upper marks,” and call ζi for even i and ηi for
odd i “lower marks,” and assume for convenience all lower marks are in (−β, β). Suppose
L(x) = 1 and b = −β so a > ζ1; then at least one upper mark is left of a and all k lower
marks are right of b, resulting in k + 1 of the algorithm’s possibilities outputting 1. Now as
we continuously sweep a and b to the right, keeping a− b fixed, a passes each upper mark
(ζi or ηi) before b passes the corresponding preceding lower mark (ζi−1 or ηi−1 respectively),
so at all times at least k + 1 of the possibilities output 1. Suppose L(x) = 0 and b = β so
a < ηk; then at least one upper mark is right of a and all k lower marks are left of b, resulting
in k + 1 of the algorithm’s possibilities outputting 0. Now as we continuously sweep a and
b to the left, keeping b − a fixed, a passes each upper mark (ζi or ηi) before b passes the
corresponding succeeding lower mark (ζi+1 or ηi+1 respectively), so at all times at least k+ 1
of the possibilities output 0.

3.1.3 Proof of (i): q > 1

For i ∈ [k] define Ii as the set of q successive integers starting with i and wrapping
around to 1 when k is exceeded: Ii = {i, i + 1, . . . , i + q − 1} if i ≤ k − q + 1, and
Ii = {i, i+1, . . . , k, 1, 2, . . . , i+q−1−k} if i > k−q+1. Define i →= min(odd i′ ∈ Ii)−k−1
and i

→
= min(even i′ ∈ Ii)−k−1; the −k−1 is a simple way to ensure i →, i

→
< min(i′ ∈ Ii).

Since k, q are odd, the sorted order of Ii ∪{i →, i
→
} alternates between odd and even numbers.

Our algorithm picks i ∈ [k] uniformly at random and for each i′ ∈ Ii does an oracle query
to see whether a ≥ γi′ if i′ is odd, or whether b ≥ γi′ if i′ is even. Consider the greatest odd
i] ∈ Ii such that a ≥ γi] , or let i] = i →if it does not exist. Consider the greatest even i[∈ Ii
such that b ≥ γi[, or let i[= i

→
if it does not exist. Our algorithm outputs 1 if i] > i[, or 0

if i[> i].
First suppose L(x) = 1. Consider the greatest odd j ∈ [k] such that a ≥ γj (which exists

since a > γ1). We have i] > i[if one of the following mutually exclusive events holds:

(1) j ∈ Ii, since then i] = j and i[≤ j − 1 (since b < γj+1 if j < k);
(2) i is odd and i ≤ j − q − 1, since then i] = i+ q − 1 and trivially i[≤ i+ q − 2;
(3) i is even and j + 1 ≤ i ≤ j − q − 1 + k, since then either:

i ≤ k − q, in which case i] = i →> i
→
= i[, or

i = k − q + 2, in which case i] = 1 and i[= i
→
< 1, or

i ≥ k − q + 4, in which case i] = i+ q − 1− k and i[≤ i+ q − 2− k.

There are q many type-(1) i’s. If j > q then there are j−q
2 many type-(2) i’s (1, 3, . . . , j−q−1)

and k−j
2 many type-(3) i’s (j+ 1, j+ 3, . . . , k− 1). If j ≤ q then there are k−q

2 many type-(3)
i’s (j + 1, j + 3, . . . , j − q− 1 + k). Either way, i] > i[holds for at least q+ k−q

2 = k+q
2 many

i’s, and hence the probability of outputting 1 is at least 1
k ·

k+q
2 = 1

2 + 1
2 ·

q
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < γj (which exists
since a < γk). As a special case, if j = 1 then i] = i →and so i[> i] if i

→
> i →, which

happens for k+q
2 many i’s (1, 3, . . . , k − q + 1 and k − q + 2, k − q + 3, . . . , k). Now assume

j > 1. We have i[> i] if one of the following mutually exclusive events holds:

(1) j − 1 ∈ Ii, since then i] ≤ j − 2 and i[≥ j − 1 (since b > γj−1 if j > 1);
(2) i is even and i ≤ j − q − 2, since then i] = i+ q − 2 and i[= i+ q − 1;
(3) i is odd and j ≤ i ≤ j − q − 2 + k, since then either:

i ≤ k − q + 1, in which case i] = i →< i
→
≤ i[, or

i ≥ k − q + 3, in which case i] = i+ q − 2− k and i[≥ i+ q − 1− k.

T. Watson 96:9

There are q many type-(1) i’s. If j > q then there are j−q−2
2 many type-(2) i’s (2, 4, . . . , j −

q−2) and k−j+2
2 many type-(3) i’s (j, j+2, . . . , k). If j ≤ q then there are k−q

2 many type-(3)
i’s (j, j + 2, . . . , j − q − 2 + k). Either way, i[> i] holds for at least q + k−q

2 = k+q
2 many i’s,

and hence the probability of outputting 0 is at least 1
k ·

k+q
2 = 1

2 + 1
2 ·

q
k .

3.2 Separations
The relativized separations follow routinely [5] from the corresponding decision tree complexity
separations:
(iii) If q, k are even: BPPNP[1]dt

1/(k−1) 6⊆ BPPNP‖[q]dt
>q/k .

(iv) If q is odd: BPPNP[1]dt
1/k 6⊆ BPPNP‖[q]dt

>q/k .

We prove (iii) in Section 3.2.1 and (iv) in the full version [6]; the arguments are similar
in structure. Our proof of (iv) also works if q is even, but in that case the result is subsumed
by (iii). The case q = 1, k = 2 of (iii) was proven in [7], but our proof is somewhat different
even specialized to that case.

Let wt(·) refer to Hamming weight. Henceforth fix the constants q and k, and assume
q < k since otherwise there is nothing to prove.

3.2.1 Proof of (iii)
Define the partial function f : {0, 1}n → {0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2×
{0, 1}n/2, such that

f(x, y) =
{

1 if wt(x) = wt(y) + 1 ≤ k
2

0 if wt(x) = wt(y) ≤ k
2 − 1

.

I Lemma 4. BPPNP[1]dt
1/(k−1)(f) ≤ k

2 .

I Lemma 5. BPPNP‖[q]dt
q/k+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant c.

Proof of Lemma 4. Given (x, y), pick one of these k− 1 possibilities uniformly at random:
for some i ∈ [k2]: output 1 iff wt(x) ≥ i,
for some i ∈ [k2 − 1]: output 0 iff wt(y) ≥ i.

The decision tree does not directly query any bits of (x, y), and the DNF has width i ≤ k
2

(it is the or over all i-subsets of either x’s bits or y’s bits, of the and of those bits), so
the cost is k

2 . If f(x, y) = 1 with wt(x) = j and wt(y) = j − 1, then the probability of
outputting 1 is j+((k/2−1)−(j−1))

k−1 = 1
2 + 1

2 ·
1

k−1 since conditioned on picking x, the output is 1
iff i ≤ j, and conditioned on picking y, the output is 1 iff i ≥ j. Similarly, if f(x, y) = 0 with
wt(x) = wt(y) = j, then the probability of outputting 1 is j+((k/2−1)−j)

k−1 = 1
2 −

1
2 ·

1
k−1 . J

Proof of Lemma 5. It suffices to show that for some distribution on valid inputs (x, y) to f ,
every cost-o(δn) PNP‖[q]-type decision tree T has advantage < q

k +δ over a random input. Let
T (x, y) denote the output produced after T receives the answers to its DNF queries. Let u be
the leaf reached after seeing only 0’s, and say u is labeled with DNFs (ϕ1, . . . , ϕq) and function
out : {0, 1}q → {0, 1} (so if (x, y) leads to u then T (x, y) = out(ϕ1(x, y), . . . , ϕq(x, y))).

We generate the distribution on valid inputs (x, y) as follows. Let v0 = w0 ∈ {0, 1}n/2

be the all-0 string, and for i = 1, . . . , k2 obtain vi by flipping a uniformly random 0 of vi−1

ICALP 2019

96:10 Amplification with One NP Oracle Query

to a 1, and for i = 1, . . . , k2 − 1 obtain wi by flipping a uniformly random 0 of wi−1 to a 1.
Pick a uniformly random j ∈ [k2], and then let (x, y) be either the 1-input (vj , wj−1) or the
0-input (vj−1, wj−1) with probability 1

2 each.
Let v denote (v0, . . . , vk/2) and w denote (w0, . . . , wk/2−1), and call (v, w) good iff:
for each j ∈ [k2]: both inputs (vj , wj−1) and (vj−1, wj−1) lead to u, and
for each j ∈ [k2] and each i ∈ [q]: ϕi(vj , wj−1) ≥ ϕi(vj−1, wj−1) ≥ ϕi(vj−1, wj−2)

(the latter inequality is only required if j > 1).

We claim that
(1) P[(v, w) is bad] < δ

2 , and
(2) P

[
T (x, y) = f(x, y)

∣∣ (v, w) is good
]
≤ 1

2 + 1
2 ·

q
k ,

from which it follows that

P[T (x, y) = f(x, y)] ≤ P
[
T (x, y) = f(x, y)

∣∣ (v, w) is good
]
+P[(v, w) is bad] < 1

2 + 1
2 (qk+δ).

We argue claim (1). Since the path to u queries o(δn) locations, with probability
≥ 1−o(kδ) > 1− δ

4 each of the 1’s placed throughout v and w avoids these locations, in which
case the first bullet holds in the definition of good. Fixing j and i in the second bullet, if we
condition on ϕi(vj−1, wj−1) = 1 and choose an arbitrary term of ϕi that accepts (vj−1, wj−1),
then since the term has width o(δn), with probability ≥ 1 − o(δ) the 1 that is placed to
obtain vj from vj−1 avoids this term, in which case the term continues to accept (vj , wj−1)
and so ϕi(vj , wj−1) = 1. Thus P

[
ϕi(vj , wj−1) ≥ ϕi(vj−1, wj−1)

]
≥ P

[
ϕi(vj , wj−1) =

1
∣∣ϕi(vj−1, wj−1) = 1

]
≥ 1− o(δ). Similarly, P

[
ϕi(vj−1, wj−1) ≥ ϕi(vj−1, wj−2)

]
≥ 1− o(δ).

A union bound over j and i shows that the second bullet holds with probability ≥ 1−o(kqδ) >
1− δ

4 , so finally the two bullets hold simultaneously with probability > 1− δ
2 .

We argue claim (2). Condition on any particular good (v, w). We abbreviate the q-tuple
(ϕ1(x, y), . . . , ϕq(x, y)) as ϕ(x, y) ∈ {0, 1}q. Consider the sequence of k inputs (v0, w0),
(v1, w0), (v1, w1), (v2, w1), . . . (like climbing a ladder but placing both feet on each rung).
Each of these possibilities for (x, y) leads to u and thus T (x, y) = out(ϕ(x, y)). Also,
the corresponding sequence of ϕ(x, y)’s is monotonically nondecreasing in each of the q
coordinates. Thus the sequence of inputs can be partitioned into segments of lengths say
`0, `1, . . . , `q (which sum to k) such that for the first `0 (x, y)’s in the sequence, ϕ(x, y) has
weight 0 (hence T (x, y) is the same), and for the next `1 (x, y)’s in the sequence, ϕ(x, y) is the
same weight-1 string (hence T (x, y) is the same), and so on. Since each segment alternates
between 0-inputs and 1-inputs of f , we have T (x, y) = f(x, y) for at most

⌈
`i

2
⌉
≤ `i+1

2 inputs
in the ith segment.

Thus, out of the k possibilities for (x, y) given (v, w), at most
∑q
i=0

`i+1
2 = k

2 + q+1
2 are such

that T (x, y) = f(x, y). This implies that P
[
T (x, y) = f(x, y)

∣∣ (v, w) is good
]
≤ 1

2 + 1
2 ·

q+1
k ,

which is almost what we want. This issue can be fixed by observing that since k is even and
q + 1 (the number of segments) is odd, at least one segment must have even length, in which
case

⌈
`i

2
⌉

= `i

2 . Thus, out of the k possibilities for (x, y) given (v, w), T (x, y) = f(x, y) holds
for at most k

2 + q
2 of them, which gives (2). J

4 Zero-sided error

We now prove Theorem 2, restated here for convenience.

I Theorem 2 (Zero-sided error, restated). For integers 1 ≤ q ≤ k ≤ 4:
(i) If k = 4: ZPPNP[1]

>0 ⊆ ZPPNP‖[q]
q/k> .

T. Watson 96:11

(ii) If k ≤ 3: ZPPNP[1]
>1/(k+1) ⊆ ZPPNP‖[q]

q/k> .

(iii) ZPPNP[1]
1/k 6⊆ ZPPNP[1]

>1/k relative to an oracle.
Moreover, the “q/k>” in the inclusion subscripts can be improved to “q/k” if q < k ≥ 3.

We prove the inclusions (i) and (ii) in Section 4.1 and the separations (iii) in the full version
[6].

4.1 Inclusions
Straightforwardly generalizing the proof of ZPPNP[1]

>0 ⊆ ZPPNP[1]
1/4 in [3] yields (i), but we take

a different tack by showing in Section 4.1.1 that (i) follows directly from Theorem 3. We
prove (ii) from first principles in Section 4.1.2; our proof for the case k = 1 is equivalent to
the one in [3], but we include it for completeness.

4.1.1 Proof of (i)

Let L ∈ ZPPNP[1]
>0 ⊆ RPNP[1]

>0 . By Theorem 3 and closure of ZPPNP[1]
>0 under complement,

L ∈ RPNP[1]
1/2 by some algorithm M1, L ∈ RPNP‖[2]

1> by some algorithm M2,

L ∈ RPNP[1]
1/2 by some algorithm M 1, L ∈ RPNP‖[2]

1> by some algorithm M 2.

We let each of these four M -algorithms refer to the entire computation, including the NP
oracle queries, which we elide for convenience. (Note that M i does not mean “complement
of M i” – it is a different algorithm.) We assume M2 and M 2 have advantage ≥ 1− 2−nd for
an arbitrary constant d. Furthermore, we assume all four algorithms have been modified to
output ⊥ instead of 0, and M 1 and M 2 have been modified to output 0 instead of 1.
If q = 1: L ∈ ZPPNP[1]

1/4 by running M1 or M 1 with probability 1
2 each.

If q = 2: L ∈ ZPPNP‖[2]
1/2 by runningM1 andM 1, and if one of them outputs a bit, outputting

that bit or ⊥ otherwise.
If q = 4: L ∈ ZPPNP‖[4]

1> by runningM2 andM 2, and if one of them outputs a bit, outputting
that bit or ⊥ otherwise.

If q = 3: L ∈ ZPPNP‖[3]
3/4> by running M1 and M 2 with probability 1

2 , or M
2 and M 1 with

probability 1
2 , and if one of them outputs a bit, outputting that bit or ⊥ otherwise. This

falls slightly short of our promise of showing L ∈ ZPPNP‖[3]
3/4 , but that can be fixed by

noting that the proof of Theorem 3 actually shows that M1 and M 1 can have advantage
≥ 1

2 + 2−ne for some constant e depending on L. Then taking d ≥ e ensures we get
advantage ≥ 1

2
(1

2 + 2−ne)+ 1
2
(
1− 2−nd) ≥ 3

4 .

4.1.2 Proof of (ii)

We just prove ZPPNP[1]
>1/(k+1) ⊆ ZPPNP‖[q]

q/k> ; the “moreover” part follows by exactly the same
trick (due to [3]) for strengthening RPNP[1]

>0 ⊆ RPNP[1]
1/2> to RPNP[1]

>0 ⊆ RPNP[1]
1/2 , which we describe

in the full version [6].
For some constant c we have L ∈ ZPPNP[1]

1/(k+1)+n−c , witnessed by a polynomial-time
randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a language
L′ ∈ NP. For an arbitrary constant d, we wish to show L ∈ ZPPNP‖[q]

q/k−2−nd .

ICALP 2019

96:12 Amplification with One NP Oracle Query

Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent
strings s1, . . . , sm ∈ {0, 1}r, so with probability ≥ 1− 2−nd , the sequence is good in the sense
that on input x,M still has advantage strictly greater than 1

k+1 when its coin tosses are chosen
uniformly from the multiset {s1, . . . , sm}. Then we design a polynomial-time randomized
algorithm which, given a good sequence, outputs L(x) with probability ≥ q

k after making q
nonadaptive NP oracle queries, and which has zero-sided error for all sequences (good and
bad). Hence, over the random s1, . . . , sm and the other randomness of our algorithm,

P[output is L(x)] ≥ P
[
output is L(x)

∣∣ s1, . . . , sm is good
]
− P[s1, . . . , sm is bad] ≥ q

k
− 2−nd

.

Henceforth fix a good sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the query
string and truth table produced by Msh(x) (so the output is outh(L′(zh))). We assume
w.l.o.g. that outh is nonconstant. If there is an h such that outh ∈ {id, neg}, then our
algorithm simply uses the NP oracle to evaluate L′(zh) and then outputs outh(L′(zh)) = L(x).
Otherwise, each outh is one of the four functions outab (for ab ∈ {0, 1}2) that maps a to b
and 1− a to ⊥:

out00 out01 out10 out11

0 0 1 ⊥ ⊥
1 ⊥ ⊥ 0 1

For each ab ∈ {0, 1}2 consider the “ab” query:

∃h : outh = outab and L′(zh) = a ?

If a = 1 then the “ab” query can be expressed as an NP oracle query: a witness consists of
an h with outh = outab and a witness for L′(zh) = 1. If a = 0 then the “ab” query can be
expressed as a coNP oracle query: a nonexistence witness consists of a witness for L′(zh) = 1
for each h such that outh = outab. We say the “ab” query returns yes iff it indicates the
existence of such an h (i.e., the NP oracle returns the bit a). If the “ab” query returns yes,
we can safely output b since there exists an h such that outh(L′(zh)) = outab(a) = b = L(x).

Our algorithm is:
1. Identify a set P ⊆ {0, 1}2 of size k for which there is guaranteed to exist an ab ∈ P such

that the “ab” query would return yes.
2. Pick a uniformly random Q ⊆ P of size q.
3. For each ab ∈ Q do the “ab” query and output b if it returns yes.
4. Finally output ⊥ if all queries returned no.
This outputs L(x) with probability ≥ q

k . We just need to prove that we can indeed find such
a P in step 1. Let H = {h ∈ [m] : Msh outputs L(x)} (so by assumption, |H| > m

k+1) and
Hab = {h ∈ [m] : outh = outab}. Note that the “ab” query would return yes iff H ∩Hab 6= ∅,
and that H ⊆ H0b ∪H1b for b = L(x).
If k = 3: Let P contain all ab’s except the one with the smallest Hab (which has size ≤ m

4),
breaking ties arbitrarily. Then H ∩Hab 6= ∅ for at least one ab ∈ P assuming |H| > m

4 .
If k = 2: If |H00 ∪H10| ≤ m

3 then L(x) = 1 assuming |H| > m
3 , so we can let P = {01, 11}.

Similarly, if |H01 ∪H11| ≤ m
3 then we can let P = {00, 10}. Otherwise, the smaller of

H00, H10 has size ≤ m
3 , and the smaller of H01, H11 has size ≤ m

3 , so we can let P contain
the two ab’s corresponding to the larger of H00, H10 and the larger of H01, H11, breaking
ties arbitrarily.

If k = 1: If |H00 ∪H10| ≤ m
2 then L(x) = 1 assuming |H| > m

2 , and furthermore the smaller
of H01, H11 has size ≤ m

2 , so we can let P contain the ab corresponding to the larger of
H01, H11. Similarly, if |H01 ∪H11| < m

2 then we can let P contain the ab corresponding
to the larger of H00, H10.

T. Watson 96:13

References
1 Richard Beigel. Bounded Queries to SAT and the Boolean Hierarchy. Theoretical Computer

Science, 84(2):199–223, 1991. doi:10.1016/0304-3975(91)90160-4.
2 Jin-Yi Cai and Venkatesan Chakaravarthy. On Zero Error Algorithms Having Oracle Access

to One Query. Journal of Combinatorial Optimization, 11(2):189–202, 2006. doi:10.1007/
s10878-006-7130-0.

3 Richard Chang and Suresh Purini. Amplifying ZPPSAT[1] and the Two Queries Problem. In
Proceedings of the 23rd Conference on Computational Complexity (CCC), pages 41–52. IEEE,
2008. doi:10.1109/CCC.2008.32.

4 Rahul Tripathi. The 1-Versus-2 Queries Problem Revisited. Theory of Computing Systems,
46(2):193–221, 2010. doi:10.1007/s00224-008-9126-x.

5 Nikolai Vereshchagin. Relativizability in Complexity Theory. In Provability, Complexity,
Grammars, volume 192 of AMS Translations, Series 2, pages 87–172. American Mathematical
Society, 1999.

6 Thomas Watson. Amplification with One NP Oracle Query. Technical Report TR18-058,
Electronic Colloquium on Computational Complexity (ECCC), 2018. URL: https://eccc.
weizmann.ac.il/report/2018/058/.

7 Thomas Watson. A ZPPNP[1] Lifting Theorem. In Proceedings of the 36th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 59:1–59:16. Schloss
Dagstuhl, 2019. doi:10.4230/LIPIcs.STACS.2019.59.

ICALP 2019

http://dx.doi.org/10.1016/0304-3975(91)90160-4
http://dx.doi.org/10.1007/s10878-006-7130-0
http://dx.doi.org/10.1007/s10878-006-7130-0
http://dx.doi.org/10.1109/CCC.2008.32
http://dx.doi.org/10.1007/s00224-008-9126-x
https://eccc.weizmann.ac.il/report/2018/058/
https://eccc.weizmann.ac.il/report/2018/058/
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.59

	Introduction
	Definitions
	Time complexity
	Decision tree complexity

	Two-sided error
	Inclusions
	Proof of (i): q=1
	Proof of (ii): q=1
	Proof of (i): q>1

	Separations
	Proof of (iii)

	Zero-sided error
	Inclusions
	Proof of (i)
	Proof of (ii)

