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Abstract
Prior work has shown that the global earliest-deadline-first (GEDF) scheduler is soft real-time
(SRT)-optimal for sporadic task systems in a variety of contexts, meaning that bounded deadline
tardiness can be guaranteed under it for any task system that does not cause platform overutilization.
However, one particularly compelling context has remained elusive: multiprocessor platforms in
which tasks have affinity masks that determine the processors where they may execute. Actual
GEDF implementations, such as the SCHED_DEADLINE class in Linux, have dealt with this unresolved
question by foregoing SRT guarantees once affinity masks are set. This unresolved question, as it
pertains to SCHED_DEADLINE, was included by Peter Zijlstra in a list of important open problems
affecting Linux in his keynote talk at ECRTS 2017. In this paper, this question is resolved along
with another open problem that at first blush seems unrelated but actually is. Specifically, both
problems are closed by establishing two results. First, a proof strategy used previously to establish
GEDF tardiness bounds that are exponential in size on heterogeneous uniform multiprocessors
is generalized to show that polynomial bounds exist on a wider class of platforms. Second, both
uniform multiprocessors and identical multiprocessors with affinities are shown to be within this
class. These results yield the first polynomial GEDF tardiness bounds for the uniform case and the
first such bounds of any kind for the identical-with-affinities case.
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1 Introduction

The global earliest-deadline-first (GEDF) scheduler has received considerable prior attention.
One attractive property of GEDF is that its use ensures guaranteed bounded deadline
tardiness on certain multiprocessor platform types for any sporadic task system that does
not cause platform overutilization [5, 9]. In this sense, GEDF is considered an optimal soft
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real-time (SRT) scheduler. This SRT-optimality is significant enough to warrant mention in
the documentation of SCHED_DEADLINE [2], Linux’s implementation of GEDF. A practical
use by SCHED_DEADLINE of this optimality is the ability to perform online admission control.

A major caveat of GEDF’s SRT-optimality is that it was originally proven only for
processors with identical speeds [5]. Processor models that break this assumption, called
heterogeneous multiprocessors, tend to fundamentally break the proof techniques applied to
the identical model. Only one prior work [9] has succeeded in extending the SRT-optimality
of GEDF to a multiprocessor model with heterogeneity, namely the uniform model, which
allows speed differences among processors. This work required years of thought and several
new proof techniques but only yielded tardiness bounds that are exponential in size.

Affinity masks. Heterogeneity is also introduced by the usage of affinity masks. A task’s
affinity mask (typically a bit vector) indicates the processors upon which it may execute.
Affinity masks are useful for preventing excessive task migrations and can be used to take
better advantage of cache hierarchies. Also, global, clustered, and partitioned scheduling can
all be expressed using affinity masks.

Affinity masks introduce heterogeneity by removing the symmetry among processors. An
important property used to prove the SRT-optimality of GEDF without affinities is that the
existence of an idle processor is a sufficient condition for a pending task to begin executing.
With this property, showing that a task of interest makes progress merely requires showing
that some processor becomes idle in a bounded amount of time. With affinity masks, this
proof strategy does not work. In particular, this strategy’s use would require showing that a
processor allowed by the considered task’s affinity mask becomes idle, and doing so over the
entire space of arbitrary affinity masks leads to a case explosion.

This difficulty has left unresolved the question of whether GEDF retains its SRT-optimality
with the introduction of affinity masks. This unresolved question has rendered systems
that support both GEDF and affinity masks incomplete. For example, in the case of
SCHED_DEADLINE, either admission control is disabled or affinity masks are forbidden alto-
gether. This specific gap between theory and implementation was mentioned by Peter Zijlstra
[10] in a keynote talk at ECRTS 2017 and by Luca Abeni [1] at RTSS 2017.

Contributions. In this paper, we close the open problem of whether GEDF retains its
SRT-optimality on identical multiprocessors with affinities by showing that it does, provided
the GEDF implementation maintains a certain task-migration property. We also establish
the first ever polynomial tardiness bounds for GEDF on uniform multiprocessors. While
these two platform models (uniform and identical with affinities) may seem unrelated to each
other, we shall see that they are.

These results hinge on three proof innovations. First, we introduce a layer of abstraction
between the processor models we consider and the tardiness analysis. This abstraction layer
is a property we call “HP-LAG,” which we prove is satisfied by GEDF on the models we
consider for all sporadic task systems that do not cause platform overutilization.1 This
strategy allows us to reason about tardiness without regard for specifics concerning the
underlying platform, and as a result, we are able to avoid the aforementioned case explosion.

Second, for the statement made in the prior paragraph concerning GEDF to be valid, the
definition of GEDF itself must be tailored for the specific platform type under consideration.
Prior work [9] has shown how to do so for the case of a uniform platform, and we show here

1 The concept of “overutilization” is more nuanced on uniform platforms and platforms with affinities
than on identical platforms with no affinities.
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how to do so for an identical platform with affinities by specifying rules that GEDF must
adhere to in this case. These rules specify when and how tasks must be migrated as scheduling
decisions are made. Now that these rules are known, actual implementations of GEDF on
systems that support affinity masks should be designed to uphold them. Unfortunately, as
we discuss in App. C, available online [7], the current SCHED_DEADLINE implementation does
not do so, so a refinement of it is needed if affinity masks are to be used alongside admission
control. In App. A, also available online [7], we present an algorithm that implements our
GEDF scheduling rules for affinity masks with lower time complexity than SCHED_DEADLINE,
given some preprocessing.

The last innovation is our improved tardiness analysis with less pessimism than prior work,
particularly with respect to uniform multiprocessor platforms. This required maintaining an
exponential number of invariants relative to prior work.

Organization. In the rest of this paper, we cover needed background and define the import-
ant concept of Lag, which is widely used in tardiness analysis (Sec. 2), list some general Lag
properties that are predicated upon tasks being periodic and executing for their worst-case re-
quirements (Sec. 3), define HP-LAG and present our tardiness analysis for HP-LAG-compliant
schedulers using said properties (Sec. 4), show that GEDF (if implemented appropriately) is
HP-LAG-compliant on both uniform multiprocessors (Sec. 5) and identical multiprocessors
with affinities (Sec. 6), show that our results extend to sporadic tasks that may execute for
less than their worst-case requirements (Sec. 7), explain why these results cannot be easily
extended to more general models (Sec. 8), and conclude (Sec. 9).

2 Background

We consider the problem of scheduling n implicit-deadline sporadic tasks τ = {τ1, . . . , τn} on
a multiprocessor π = {π1, . . . , πm} with m processors. We consider time to be continuous.
Each task τi releases a sequence of jobs with a minimum separation of Ti time units between
releases; Ti is called τi’s period. The jth released job of τi is denoted Ji,j , and its release
time is denoted ri,j . When this separation between the jobs of each task τi is exactly Ti, the
system is called periodic. With the assumption of implicit deadlines, the deadline of a job of
τi is exactly Ti time units after its release; the deadline of job Ji,j is denoted di,j = ri,j + Ti.
The amount of work that is needed to complete a job of τi is bounded by τi’s worst-case
execution requirement (WCER) Ci, the largest of which among the tasks in τ we denote as
Cmax. Note that Ci is typically called the worst-case execution time in the literature. This
is because much of the literature assumes that processors complete one unit of execution in
one unit of time. This assumption does not hold for some of the hardware platform models
we consider in this work (see Sec. 2.1). τi’s utilization is defined as ui = Ci/Ti. We let umin
be the smallest utilization among the tasks in τ . For any τ ′ ⊆ τ , we let Uτ ′ denote

∑
τi∈τ ′ ui.

A job is pending at time t if it has been released but has not completed. Likewise, a task is
pending at t if any of its jobs are pending at t. A job is ready at t if it is the earliest released
pending job from its task.

I Definition 1. If task τi is pending at time t, then we define its release time at t, denoted
ri(t), and its deadline at t, denoted di(t), as the release time and deadline, respectively, of
its ready job at time t. If τi is not pending at t, then we define di(t) =∞.

If a job has a deadline at time td and completes at time tc, then its tardiness is defined as
max(0, tc − td). The tardiness of a task is the supremum of the tardiness of any of its jobs.
If this value is finite, then we say that the task has bounded tardiness.

ECRTS 2019
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In the real-time literature, both hard real-time (HRT) and soft real-time (SRT) systems
are considered. While SRT can be defined in different ways, we adopt the following definitions.
A task set τ is HRT-schedulable (resp., SRT-schedulable) under a given scheduling algorithm
if each task in τ has 0 (resp., bounded) tardiness in any schedule for τ generated by that
algorithm. A task set τ is HRT-feasible (resp., SRT-feasible) if it is HRT-schedulable (resp.,
SRT-schedulable) under some scheduling algorithm. A scheduler is HRT-optimal (resp.,
SRT-optimal) if it can schedule any HRT-feasible (resp., SRT-feasible) system.

2.1 Multiprocessor Platform Models
There exist several multiprocessor platform models in the literature that differ by how
execution speeds are allowed to vary. We formalize execution speeds as follows. Hereafter, we
let A(S, τi, t, t′) denote the cumulative execution allocated to jobs of task τi in the schedule
S in the time interval (t, t′).

I Definition 2. A time interval (t, t′) is a continuous scheduling interval if the assignment
of tasks to processors at t is maintained throughout (t, t′).

I Definition 3. Suppose task τi executes on processor πj over the continuous scheduling
interval (t, t′) in schedule S. If the speed of τi on πj is s, then A(S, τi, t, t′) = s(t′ − t).

In order of increasing generality, the platform models of relevance to us are as follows.
1. Identical. All tasks execute with speed 1.0 on all processors.
2. Uniform. Speeds may vary by processor, but not by task. Any task on processor πi

executes with speed si, which may differ from 1.0.
3. Unrelated. Speeds may vary by processor and by task. Task τi executes on processor πj

with speed si,j .

In addition to these models, the migration scheme can be one of two types.
1. Global. A task can be scheduled on any processor.
2. Affinity. A task can only be scheduled on a specific set of processors as defined by its

affinity mask. We let αi ⊆ π denote the set of processors allowed by τi’s affinity mask.

Note that global, clustered, and partitioned scheduling can all be defined using affinity
masks. We separate global scheduling as a separate case because some later proofs focus
on it exclusively. From this point on, global scheduling is assumed unless the -Aff suffix is
appended. For example, Identical and Identical-Aff refer to an identical multiprocessor under
global and affinity scheduling, respectively. Note that Unrelated generalizes not only Identical
and Uniform, but also affinity scheduling, as πj /∈ αi can be represented by letting si,j = 0.
Hence, all combinations of platform and migration scheme are generalized by Unrelated.

GEDF has been proven to be SRT-optimal under Identical, but no prior work has
generalized this to Identical-Aff. GEDF’s SRT-optimality has been generalized to Uniform [9],
but with exponential tardiness bounds. In this work, we establish the SRT-optimality of
GEDF with polynomial tardiness under both Uniform and Identical-Aff.

The SRT-optimality of GEDF under Uniform-Aff and Unrelated are difficult or impossible
to prove using the techniques of this work. We describe why in Sec. 8.

We will later show that the typical GEDF scheduling rules under Identical may be
insufficient to achieve SRT-optimality under the more general models. As such, we will later
define extended GEDF scheduling rules for Identical-Aff and Uniform, respectively (our rules
for Uniform are actually from [9]).
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The standard gedf scheduler under Identical is:
IG-GEDF: At every time instant, if more than m tasks are pending, then the m pending tasks

with the earliest deadlines are scheduled; otherwise, all pending tasks are scheduled.

The prefix “IG” denotes that this rule applies under Identical with global scheduling.
We will keep this notation when extending GEDF, denoting the extended GEDF rules for
Identical-Aff and Uniform as IA-GEDF and UG-GEDF, respectively. Under all GEDF variants
we consider, we assume deadline ties are broken in some arbitrary but consistent way (e.g.,
by task index). For any time instant t, for tasks τi and τj , we let di(t) ≺ dj(t) denote that
either di(t) < dj(t) holds or di(t) = dj(t) holds with the tie broken in τi’s favor. As we shall
see, IA-GEDF and UG-GEDF reduce to IG-GEDF when the underlying processor model is
Identical (note that both Uniform and Identical-Aff generalize Identical).

2.2 Lag
As in [5], our analysis is based on the concept of Lag. Lag compares the execution of a task
in a “real” schedule R to its allocation in an “ideal” schedule I.

I Definition 4. A non-fluid schedule is a schedule such that at any time instant t, there
exists some δ > 0 such that (t, t+ δ) is a continuous scheduling interval.

Implementable schedulers are non-fluid.

I Definition 5. We let R denote a non-fluid schedule produced under a considered scheduling
algorithm and multiprocessor platform.

I Definition 6. We let I denote a schedule that executes task τi on processor πi of speed ui.

Notice that I is defined with respect to a Uniform multiprocessor consisting of n processors
π1, ..., πn with speeds u1, ..., un, respectively, and not the actual platform π.

Under the implicit-deadline sporadic task model, every job executes in I from its release
until its completion without interference from other jobs or tasks (different tasks run on
different processors). If a job’s execution requirement is smaller than the WCER of its task,
then the job completes in the ideal schedule before its deadline; otherwise, it completes
exactly at its deadline. Thus, in I, at most one job from every task is ever scheduled.

We are now ready to formally define Lag.

I Definition 7. For a single task τi, Lagi(t) = A(I, τi, 0, t)− A(R, τi, 0, t). For the subset
τ ′ ⊆ τ , LAG(τ ′, t) =

∑
τi∈τ ′

Lagi(t).

3 General Lag Properties

In [9], Yang and Anderson showed how to generalize IG-GEDF to obtain a variant, which we
denote as UG-GEDF, that is SRT-optimal under Uniform. Yang and Anderson’s proof relied
on several properties of Lag that we make use of in this work. We repeat these properties
and proofs verbatim from [9], with minor wording changes. However, unlike [9], where these
properties were considered in the context of Uniform, we consider them in the context of
Unrelated. Because Unrelated generalizes all the models in Sec. 2.1, these Lag properties
apply to all the models considered in this work.

ECRTS 2019
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Lemmas 10–12 rely on the following assumptions, which we henceforth assume until
stated otherwise.

Every task is periodic. (P)
Every job Ji,j has an execution requirement equal to Ci (the worst case for τi). (W)

So as to leave no doubt that the properties considered in this section hold under Unrelated,
we begin by listing all of the model-related concepts the proofs below will use:

the task-system parameters Ci, Ti, ui, ri(t), and di(t);
Lag and LAG, as defined in Def. 7;
the fact that I continuously executes task τi with speed ui, which follows from (P) and
(W), hence the need for these assumptions

[9] showed that removing (P) and (W) cannot cause greater tardiness in UG-GEDF under
Uniform. We will show the same for IA-GEDF under Identical-Aff later in Sec. 7.

I Lemma 8 (Property 1 of [9]). ∀τ ′ ⊆ τ : LAG(τ ′, t) is a continuous function of t.

Proof. By definition, A(S, τi, t, t′) is a continuous function in t and t′. By Def. 7, LAG(τ ′, t) =∑
τi∈τ ′

Lagτi
(t) =

∑
τi∈τ ′

(A(I, τi, 0, t) − A(R, τi, 0, t)). Because LAG(τ ′, t) is a finite sum of

continuous functions in t, it is continuous in t. J

I Lemma 9 (Lemma 1 of [9]). Lagi(t) > 0⇒ τi has a pending job at t.

Proof. We prove the lemma by contradiction. Suppose that Lagi(t) > 0 holds but τi is not
pending at t in R. Then, all jobs of τi released before or at t have completed by t. Let
W denote the total execution requirement of such jobs such that W = A(R, τi, 0, t). In
I, only released jobs can be scheduled and will not execute for more than their execution
requirement. Thus, A(I, τi, 0, t) ≤W holds as well. Therefore, by Def. 7, we have Lagi(t) =
A(I, τi, 0, t)−A(R, τi, 0, t) ≤ 0, a contradiction. J

I Lemma 10 (Lemma 2 of [9]). If task τi is pending at time t in R, then

t− Lagi(t)
ui

< di(t) ≤ t−
Lagi(t)
ui

+ Ti. (1)

Proof. Let ei(t) denote the remaining execution requirement for the ready job Ji,j of τi at
time t. Because this job is ready, it must not be complete, hence

0 < ei(t) ≤ Ci. (2)

All jobs of τi prior to Ji,j must have been completed by time t. Let E denote the total
execution requirement of these jobs. Then,

A(R, τi, 0, t) = E + Ci − ei(t). (3)

In I, all prior jobs of τi have completed by ri(t). Within (ri(t), t), I continuously executes
τi on a processor with speed ui. Thus,

A(I, τi, 0, t) = E + (t− ri(t))ui. (4)
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Given these facts, an expression for Lagi(t) can be derived as follows.

Lagi(t) = {by Def. 7}
A(I, τi, 0, t)−A(R, τi, 0, t)

= {by (3) and (4)}
(t− ri(t))ui − (Ci − ei(t))

= {because di(t) = ri(t) + Ti}
(t− di(t) + Ti)ui − (Ci − ei(t))

= {because uiTi = Ci}
(t− di(t))ui + ei(t)

By (2) and the above expression, we have

(t− di(t))ui < Lagi(t) ≤ (t− di(t))ui + Ci, (5)

which (using Ti = Ci/ui) can be rearranged to obtain (1). J

I Corollary 11 (Corollary 1 of [9]). If for some L > 0 we have ∀t, Lagi(t) ≤ L, then the
tardiness of task τi does not exceed L/ui.

Proof. We prove the corollary by contradiction. Suppose that

Lagi(t) ≤ L (6)

holds but τi has tardiness exceeding L/ui. Then, there exists a job Ji,j that is pending at
time t ≥ di,j where

t− di,j > L/ui. (7)

Because Ji,j is pending at t, τi’s ready job cannot have been released later than Ji,j . Thus,
di(t) ≤ di,j . Therefore,

t− di(t) ≥ t− di,j
> {by (7)}
L/ui

≥ {by (6)}
Lagi(t)/ui.

Rearrangement yields t− Lagi(t)/ui > di(t), which contradicts Lemma 10. J

I Lemma 12 (Lemma 4 of [9]). If a task τi has a pending job at t and for a task τj we have

1
uj

Lagj(t) + Tmax ≤
1
ui

Lagi(t), (8)

then di(t) < dj(t).

ECRTS 2019
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Proof. Assume τj is pending at t, as otherwise dj(t) =∞, and we trivially have di(t) < dj(t).

di(t) ≤ {by Lemma 10}

t− Lagi(t)
ui

+ Ti

≤ {by (8)}

t−
Lagj(t)
uj

− Tmax + Ti

≤ {because − Tmax + Ti ≤ 0}

t−
Lagj(t)
uj

< {by Lemma 10}
dj(t) J

As a reminder, we are considering the properties in this section in the context of Unrelated.
This means these properties apply to all of our considered models.

4 Tardiness Bounds for HP-LAG-Compliant Schedulers

In this paper, we consider two Identical generalizations: Uniform and Identical-Aff. In order
to prove GEDF’s SRT-optimality under these different processor models, we provide an
abstraction layer called HP-LAG. Informally, HP-LAG states that the LAG of any subset of
tasks τ ′ with the earliest deadlines is temporarily non-increasing.
HP-LAG: For any time instant t, if τ ′ ⊆ τ is a set of pending tasks such that ∀τh ∈ τ ′ and

∀τ` ∈ τ/τ ′ we have dh(t) < d`(t), then ∃δ > 0 such that ∀t′ ∈ (t, t+δ) : LAG(τ ′, t) ≥
LAG(τ ′, t′).

I Definition 13. We say that a scheduler is HP-LAG-compliant under a given platform if
HP-LAG holds for any feasible task system τ under said platform model.

In this section, we show that every HP-LAG-compliant scheduler ensures bounded
tardiness under its considered platform model. We do this by extending the approach of [9]
by maintaining as invariants bounds on the LAG of every task subset; in [9], only a linear
(with respect to m) number of invariants is instead maintained. The LAG bound we define
for any subset of tasks τ ′ ⊆ τ is

β(τ ′) = Tmax
2umin

Uτ ′ (2Uτ − Uτ ′) . (9)

We will prove by contradiction that ∀τ ′ ⊆ τ ∀t : LAG(τ ′, t) ≤ β(τ ′) holds for any
HP-LAG-compliant scheduler. We continue to consider all properties in the context of
Unrelated. Thus, Lemmas 16, 17, 18, and 19 below hold for any scheduler that is HP-LAG-
compliant under any processor model that Unrelated generalizes. We begin by defining a set
of time instants that must exist if our LAG bounds are violated.

I Definition 14. We call a time instant t invalid if ∃τ ′ ⊆ τ such that ∀δ > 0 ∃t′ ∈ (t, t+ δ) :
LAG(τ ′, t′) > β(τ ′). τ ′ is called an attestant set of the invalid instant t.

Note that for any invalid instant, ∅ is never an attestant set because for any time instant t
we have LAG(∅, t) = 0 and β(∅) = 0.
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I Definition 15. If at least one invalid time instant exists, then we call the first2 such instant
a boundary instant, denoted tb. We let τ b denote an arbitrary attestant set of tb. We call
any task from τ b a boundary task.

Because tb is the first invalid instant, we can prove specific bounds on Lag values at tb.

I Lemma 16. For the boundary instant tb, the following three expressions hold.

∀τ ′ ⊆ τ : LAG(τ ′, tb) ≤ β(τ ′) (10)
LAG(τ b, tb) = β(τ b) (11)

∀δ > 0 ∃t′ ∈ (tb, tb + δ) : LAG(τ b, t′) > β(τ b) (12)

Proof. We prove (10) by contradiction. If for some τ ′ ⊆ τ , LAG(τ ′, tb) > β(τ ′), then, by
Lemma 8 (continuity of LAG(τ ′, t)), ∃δ > 0 ∀t′ ∈ (tb − δ, tb) : LAG(τ ′, t′) > β(τ ′). Thus,
time instant tb − δ is invalid with attestant set τ ′, which contradicts Def. 15.

By Defs. 14 and 15, ∀δ > 0 ∃t′ ∈ (tb, tb + δ) : LAG(τ b, t′) > β(τ b). By Lemma 8
(continuity of LAG(τ b, t)), we have LAG(τ b, tb) ≥ β(τ b). By (10), LAG(τ b, tb) ≤ β(τ b), so
(11) holds.

(12) follows from Defs. 14 and 15. J

I Lemma 17. For any boundary task τi at tb, Lagi(tb) ≥
Tmax
2umin

(2uiUτ − 2uiUτb + u2
i ).

Proof.

Lagi(tb) = {by Def. 7}
LAG(τ b, tb)− LAG(τ b/{τi}, tb)

≥ {by (11), LAG(τ b, tb) = β(τ b), and by (10), LAG(τ b/{τi}, tb) ≤ β(τ b/{τi})}
β(τ b)− β(τ b/{τi})

= {by (9)}
Tmax
2umin

[Uτb (2Uτ − Uτb)]− Tmax
2umin

[
Uτb/{τi}

(
2Uτ − Uτb/{τi}

)]
= {by the definition of Uτb/{τi}}

Tmax
2umin

[Uτb (2Uτ − Uτb)]− Tmax
2umin

[(Uτb − ui) (2Uτ − Uτb + ui)]

= {rearranging}
Tmax
2umin

(2uiUτ − 2uiUτb + u2
i ) J

Note that the Lag lower bound from Lemma 17 is strictly positive, because Uτ ≥ Uτb .
Thus, by Lemma 9, any boundary task τi is pending at tb. This proves the following lemma.

I Lemma 18. At the boundary time instant tb, every boundary task has a pending job.

As shown next, similar reasoning as in Lemma 17 can be used to upper bound the Lag
of non-boundary tasks. This allows us to establish a relationship between the deadlines of
boundary and non-boundary tasks.

2 It can be shown that the infimum of all invalid instants is itself an invalid instant. Hence, the first
invalid instant, tb, is well-defined.

ECRTS 2019
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I Lemma 19. At time instant tb, every boundary task has an earlier deadline than any
non-boundary task (i.e., from τ/τ b).

Proof. For any non-boundary task τj ∈ τ/τ b, we have the following.

Lagj(tb) = {by Def. 7}

LAG(τ b ∪ {τj}, tb)− LAG(τ b, tb)

≤ {by (10), LAG(τ b ∪ {τj}, tb) ≤ β(τ b ∪ {τj}), and by (11), LAG(τ b, tb) = β(τ b)}

β(τ b ∪ {τj})− β(τ b)
= {by (9)}

Tmax
2umin

[
Uτb∪{τj }

(
2Uτ − Uτb∪{τj }

)]
− Tmax

2umin
[Uτb (2Uτ − Uτb )]

= {by the definition of Uτb∪{τj }}
Tmax
2umin

[(Uτb + uj) (2Uτ − Uτb − uj))]−
Tmax
2umin

[Uτb (2Uτ − Uτb )]

= {rearranging}
Tmax
2umin

(2ujUτ − 2ujUτb − u2
j ) (13)

To conclude the proof, we show that the Lag of a boundary task τi ∈ τ b and the Lag of a
non-boundary task τj ∈ τ/τ b together satisfy the requirement specified in Lemma 12.

1
uj

Lagj(tb) + Tmax ≤ {by (13)}

1
uj

Tmax
2umin

(2ujUτ − 2ujUτb − u2
j ) + Tmax

= {factor in 1/uj and out 1/ui from 2ujUτ − 2ujUτb}
1
ui

Tmax
2umin

(2uiUτ − 2uiUτb) + Tmax

(
1− uj

2umin

)
≤ {2umin − uj = umin + (umin − uj) ≤ umin ≤ ui}

1
ui

Tmax
2umin

(2uiUτ − 2uiUτb) + Tmax
1
ui

(
u2
i

2umin

)
≤ {by Lemma 17}

Lagi(tb) (14)

By Lemma 18, a boundary task τi is pending, and by Lemma 12, its deadline is earlier
than task τj ∈ τ/τ b (if τj has no pending job, then dj(t) =∞ by Def. 1) at time tb. J

I Theorem 20. If a scheduler is HP-LAG-compliant under its considered platform, then for
any feasible task system τ , the tardiness of task τi ∈ τ is at most

Tmax
2umin

(2Uτ − ui). (15)

Proof. If there exists at least one invalid instant, we can define the boundary time instant
tb with an attestant set τ b. By Lemma 19, tasks in τ b have earlier deadlines than any task
in τ/τ b. Thus, by HP-LAG with τ ′ = τ b,

∃δ > 0 ∀t ∈ (tb, tb + δ) : LAG(τ b, tb) ≥ LAG(τ b, t). (16)
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However, by Lemma 16,

∀δ > 0 ∃t ∈ (tb, tb + δ) : LAG(τ b, t) > β(τ b) = LAG(τ b, tb),

which contradicts (16). Because the existence of tb leads to a contradiction, there is no first
invalid instant, and hence there are no invalid time instants. Thus, by Def. 14,

∀τ ′ ⊆ τ ∀t ≥ 0 ∃δ > 0 ∀t′ ∈ (t, t+ δ) : LAG(τ ′, t′) ≤ β(τ ′).

By Lemma 8, it follows that

∀τ ′ ⊆ τ ∀t ≥ 0 : LAG(τ ′, t) ≤ β(τ ′). (17)

Hence, for any task τi and any time instant t,

Lagi(t) = {by Def. 7}
LAG({τi}, t)

≤ {by (17) with τ ′ = {τi}}
β({τi})

= {by (9)}
Tmax
2umin

ui(2Uτ − ui).

Thus, by Corollary 11, task τi has maximum tardiness at most Tmax
2umin

(2Uτ − ui). J

The theorem above is proved under the context of Unrelated. Thus, the theorem holds
for HP-LAG-compliant schedulers under Uniform and Identical-Aff because these models are
special cases of Unrelated. In Secs. 5 and 6, we demonstrate that the GEDF generalizations
discussed in this work are HP-LAG-compliant.

5 GEDF Tardiness Bounds under the Uniform Model

In this section, we show that UG-GEDF, the generalization of IG-GEDF under Uniform in
[9], is HP-LAG-compliant. This result enables us to apply Theorem 20 to obtain tardiness
bounds for UG-GEDF that are superior to those in [9].

5.1 Refining GEDF for the Uniform Model

IG-GEDF is not SRT-optimal under Uniform. Consider a single-task system τ = {τ1} with
C1 = 1 and T1 = 2 (hence u1 = 0.5) running on π = {π1, π2} with s1 = 1 and s2 = 0.1. This
system is clearly feasible if τ1 always executes on the faster processor π1. Under IG-GEDF,
however, it is legal for τ1 to be continuously scheduled on the slower processor π2. This
would lead to unbounded tardiness, as π2’s speed is lower than τ1’s utilization.

Such counterexamples led Yang and Anderson to define UG-GEDF as below. For the
remainder of this section, we assume that processors are indexed by decreasing speed.
UG-GEDF: At any time instant, the ready job of the pending task with the kth earliest deadline

is scheduled on πk for k ∈ [1,m].
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5.2 HP-LAG-Compliance for UG-GEDF
To prove HP-LAG-compliance, we reference the feasibility condition under Uniform, which
references the following definition.

I Definition 21. Let Sk =
k∑
i=1

si for k ≤ m.

When tasks are indexed by decreasing utilization, the feasibility condition is as follows [6, 9].

∀k ≤ m :
k∑
i=i

ui ≤ Sk (18)

Uτ ≤ Sm (19)

In terms of subsets of tasks, this condition is equivalent to

∀τ ′ ⊆ τ : Uτ ′ ≤ Smin(|τ ′|,m). (20)

I Lemma 22. UG-GEDF is HP-LAG-compliant under Uniform.

Proof. By Def. 13, we need only consider the case that task system τ is feasible under
Uniform. Let τ ′ ⊆ τ be any subset as defined in HP-LAG for any time instant t. HP-LAG
states that the tasks in τ ′ have earlier deadlines at time t than any tasks outside of τ ′. Under
UG-GEDF, tasks from τ ′ occupy the min(|τ ′|,m) fastest processors. Because UG-GEDF is a
non-fluid scheduler (see Def. 4), for any time instant t, for some δ > 0 we have that (t, t+ δ)
is a continuous scheduling interval (see Def. 2). For any t′ ∈ (t, t+ δ),

LAG(τ ′, t′) ={by Def. 7}

LAG(τ ′, t) +
∑
τi∈τ ′

A(I, τi, t, t′)−
∑
τi∈τ ′

A(R, τi, t, t′)

= {by Defs. 3 and 6}

LAG(τ ′, t) +
∑
τi∈τ ′

ui(t′ − t)−
∑
τi∈τ ′

A(R, τi, t, t′)

= {tasks from τ ′ occupy processors with speeds s1, ..., smin(|τ ′|,m)}

LAG(τ ′, t) +
∑
τi∈τ ′

ui(t′ − t)−
min(|τ ′|,m)∑

i=1
si(t′ − t)

= {by Def. 21}

LAG(τ ′, t) +
∑
τi∈τ ′

ui(t′ − t)− Smin(|τ ′|,m) · (t′ − t)

= LAG(τ ′, t) + (t′ − t)
[
Uτ ′ − Smin(|τ ′|,m)

]
≤ {t′ > t by definition and Uτ ′ ≤ Smin(|τ ′|,m) by (20)}

LAG(τ ′, t).

Therefore, UG-GEDF is HP-LAG-compliant. J

Because we have proven in Lemma 22 that UG-GEDF is HP-LAG-compliant, we have
the following corollary of Theorem 20.

I Corollary 23. Under UG-GEDF on a Uniform multiprocessor executing a feasible task
system, the tardiness of any task τi is at most (15).
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π1 π2

τ1 τ2 τ3

G{τ1}

Figure 1 Affinity graph (AG) example.

We assumed without loss of generality that tasks (processors) are indexed by decreasing
utilizations (speeds) to make stating UG-GEDF and the Uniform feasibility condition simpler.
We no longer keep these assumptions in the following sections.

6 GEDF Tardiness Bounds under the Identical Model with Affinities

In this section, we generalize the IG-GEDF scheduling rules under the context of Identical-
Aff. We show that the resulting scheduling policy, IA-GEDF, is HP-LAG-compliant. Thus,
Theorem 20 ensures bounded tardiness because Identical-Aff is a special case of Unrelated.

Under Identical-Aff, all processors have speed equal to 1.0. As in [8], we use in our analysis
the concept of an affinity graph.

I Definition 24. An affinity graph (AG) Gτ of a task system τ on platform π with affinity
masks is a undirected bipartite graph containing one vertex for each task and each processor.
An edge exists between τi and πj if and only if πj ∈ αi. For any τ ′ ⊆ τ , we let Gτ ′ denote
the subgraph of Gτ containing only the vertices that correspond to the tasks in τ ′ and the
processors in the union of their affinity masks.

I Example 25. An example Gτ for the task system τ = {τ1, τ2, τ3} on π = {π1, π2} with
α1 = {π1, π2} and α2 = α3 = {π2} is given in Fig. 1. The same figure also shows G{τ1}.

6.1 Refining GEDF for the Identical Model with Affinities
Unlike under Identical or Uniform, it is not always possible to schedule the m tasks with the
earliest deadlines under Identical-Aff. Consider the example in Fig. 1 with two processors
and three tasks. If all tasks are pending at a time instant t and the deadlines are such that
d2(t) < d3(t) < d1(t) holds, then the tasks with the earliest deadlines, τ2 and τ3, cannot be
simultaneously scheduled because they share a single processor.

The choice of processor assignments can also leave a processor idle, i.e., with no job to
execute. Consider again Fig. 1 with the assumption that only τ1 is pending and is assigned to
π2. Suppose that τ2 at time instant t releases a job such that d1(t) < d2(t). Under IG-GEDF,
a lower-priority task such as τ2 would be scheduled on π1, but affinity-mask restrictions
disallow this. Because d1(t) < d2(t), τ1 has higher priority, and τ2 is not scheduled, leaving
processor π1 idle. However, forcing τ1 to migrate to π1 is a more efficient use of processor
capacity in this example. The problem here is that the availability of processors for different
tasks under affinity scheduling is not symmetrical.

Under IG-GEDF, a preemption only affects the preempting and preempted tasks and a
single processor. We define IA-GEDF to extend this preemption rule to avoid unnecessary
idleness. To formally specify IA-GEDF, we require several graph-theory definitions.

I Definition 26. A matching of a graph G with edge set E is an edge set M ⊆ E such that
no two edges in M share a common vertex. A vertex is matched if it is an endpoint of one
of the edges in the matching; otherwise, the vertex is unmatched.
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π1 π2 π3 π4

τ1 τ2 τ3 τ4

π1 π2 π3 π4

τ1 τ2 τ3 τ4

π1 π2 π3 π4

τ1 τ2 τ3 τ4

Ex.
33:

casca
de over (τ2,π2,τ1 ,π1)

Ex. 32: cascade over (τ2,π3,τ3,π4)
assuming d2(t)≺d4(t)

πj τi

πj τi

matched
vertices

unmatched
vertices

Legend

affinity

matching

Figure 2 Two examples of a scheduling cascade.

I Example 27. An example matching can be found in the left graph of Fig. 2. We have the
matching M = {(τ1, π2), (τ3, π3), (τ4, π4)}, with vertices π1 and τ2 being unmatched.

Observe that any assignment of tasks to processors at runtime that obeys the tasks’
affinity masks defines a matching of Gτ (and vice versa). While the concept of a matching
can be applied to any graph, we restrict attention to only AGs and their subgraphs.

I Definition 28. An alternating path p of a matching in a graph is a path that begins with
an unmatched “task” vertex, has edges that alternately are in the matching and not in the
matching, and ends with a “processor” vertex. An augmenting path p of a matching is an
alternating path that ends with an unmatched vertex.

I Example 29. In the left graph of Fig. 2, (τ2, π3, τ3, π4) is an alternating path that is not
an augmenting path for the given matching, and (τ2,π2,τ1,π1) is an augmenting path.

Observe that an alternating path must have an odd number of edges because its first and
last vertices are task and processor vertices, respectively. The following lemma establishes a
relationship between augmenting and alternating paths.

I Lemma 30. Consider a matching M for Gτ and τ ′ ⊆ τ . Let M ′ denote the set of edges
of M that are present in Gτ ′ . Then, M ′ is a matching in Gτ ′ . Furthermore, if p is an
augmenting path of the matching M ′ in Gτ ′ , then p is an alternating path of M in Gτ .

Proof. By Def. 26, no two edges in M share a common vertex. This does not change when
removing edges and vertices from Gτ and edges from M , through which we get Gτ ′ and M ′,
respectively. Thus, M ′ is also a matching in Gτ ′ .

Let the first vertex of p (as mentioned in the lemma statement) be task τi. By Def. 28, τi
is unmatched in Gτ ′ . By Def. 24, Gτ ′ contains τi and all the processors in its affinity mask.
Hence, all edges from τi that are in Gτ are also in Gτ ′ . Thus, τi is also unmatched in Gτ .

By definition, M ′ contains all the edges in M that are also in Gτ ′ . Hence, an edge of Gτ ′

is in M ′ if and only if it is also in M , which applies to all edges of p because it is contained
in Gτ ′ . Because an augmenting path is a special case of an alternating path, edges of p are
alternately in and not in M ′, and hence, alternately in and not in M . This fact and the fact
that the first vertex of p, task τi, is unmatched in M make p an alternating path in Gτ . J
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Algorithm 1: The scheduling cascade algorithm.
Input :Matching M of the AG Gτ at time t;
Alternating path p = (τi1 , πj1 , τi2 , πj2 , . . . , τik , πjk

) such that if τ` exists such that
(τ`, πjk

) ∈M , then di1(t) ≺ d`(t)
1 if πjk

is matched in M then
2 τ` ← πjk

’s matched task;
3 Remove edge (τ`, πjk

) from M ;
4 for r ∈ [1, k − 1] do
5 Remove edge (τir+1 , πjr

) from M ;
6 for r ∈ [1, k] do
7 Add edge (τir , πjr

) to M ;
8 return

We now have sufficient terminology to define a generalized notion of a preemption that
occurs under Identical-Aff and that we call a scheduling cascade. Informally, in a scheduling
cascade, an unscheduled task is scheduled by making an idle processor busy or by unscheduling
a different task, perhaps on a different processor, with a later deadline. Note that this may
require several migrations.

I Definition 31. A scheduling cascade at time t via the alternating path p in Gτ changes
the task-to-processor assignments (i.e., the matching M at t in Gτ ) via Alg. 1.

We can write p = (τi1 , πj1 , τi2 , πj2 , . . . , τik , πjk
) for some k ≥ 1 and task (resp., processor)

indicies i1, i2, . . . , ik (resp., j1, j2, . . . , jk) because the first vertex of p is a task by Def. 28.
Because p is alternating, ∀r ∈ [1, k − 1] : (τir+1 , πjr

) ∈M and ∀r ∈ [1, k] : (τir , πjr
) /∈M .

Note that M remains a matching after a scheduling cascade. All tasks and processors
in p are unmatched prior to line 6 and each iteration of line 7 matches a distinct task and
processor from the other iterations.

I Example 32. Consider the lower scheduling cascade in Fig. 2. In the scheduling cascade,
we have τi1 = τ2 and πjk

= π4. Because π4 is matched to task τ4, we have τ` = τ4. Thus,
the condition di1(t) ≺ d`(t) becomes d2(t) ≺ d4(t) in this example, and we remove edge
(τ4, π4) from the matching (line 3). Of the edges in the alternating path, we remove edge
(τ3, π3) (line 5) and add edges (τ2, π3) and (τ3, π4) (line 7). This results in a new matching,
as indicated in Fig. 2.

I Example 33. Consider the higher scheduling cascade in Fig. 2. In the scheduling cascade,
we have τi1 = τ2 and πjk

= π1. We do not execute line 3 because π1 is unmatched. Of the
edges in the alternating path, we remove edge (τ1, π2) (line 5) and add edges (τ2, π2) and
(τ1, π1) (line 7). This results in a new matching, as indicated in Fig. 2.

The net result of a scheduling cascade is that task τi1 that was not scheduled prior to the
scheduling cascade is now scheduled, and task τ` (if it exists) with later deadline than τi1
is now not scheduled. All other tasks that were scheduled in matching M continue to be
scheduled after the scheduling cascade, though the other tasks in p have migrated.

To define our GEDF scheduling policy with affinity masks, we define the task-to-processor
assignments at scheduling events, i.e., job releases or job completions, and assume these
assignments hold between scheduling events.
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IA-GEDF: At every scheduling event, task-to-processor assignments are made such that after-
wards no scheduling cascade is possible. These assignments do not change until the
next scheduling event.

One might assume that a simpler scheduling policy may be sufficient, but issues arise
when weaker scheduling rules are used. For example, SCHED_DEADLINE under Identical-Aff is
not HP-LAG-compliant. These details can be found in App. C, available online [7].

Because we do not explicitly specify the task-to-processor assignments, there may exist
multiple assignments that satisfy IA-GEDF at every scheduling event. Note that every
scheduling cascade either schedules an additional task or replaces a scheduled task with an
unscheduled task with an earlier deadline. Thus, the total number of possible scheduling
cascades per scheduling event is finite. To show IA-GEDF is possible to implement, we
created an O(mn) algorithm that computes task-to-processor assignments at every scheduling
event that obeys IA-GEDF. With offline preprocessing, the time complexity is reduced to
O(m+ logn) per scheduling event. The algorithm and preprocessing details are available in
App. A, available online [7]. In App. C, also available online [7], we show that SCHED_DEADLINE
under Identical-Aff has higher time complexity per scheduling event.

Note that a preemption in IG-GEDF can be interpreted as a scheduling cascade with an
alternating path of a single edge. Thus, IA-GEDF reduces to IG-GEDF under Identical.

6.2 HP-LAG-Compliance for IA-GEDF

Here we consider only feasible task systems τ because HP-LAG-compliance is defined only
for such systems. Exact feasibility conditions under Identical-Aff were established in [8], but
in our reasoning about IA-GEDF’s HP-LAG-compliance, we only use a necessary condition
for a feasible task system, provided in Lemma 35.

I Definition 34. A matching M of a graph G is a maximal matching if |M | ≥ |M ′| for any
matching M ′ of G, where |M | denotes the number of edges of the matching M .

I Lemma 35. If a task system τ is feasible under Identical-Aff, then for any task subset
τ ′ ⊆ τ , a maximal matching M ′ under Gτ ′ has |M ′| ≥ Uτ ′ edges.

Proof. Suppose otherwise that τ is feasible and there exists τ ′ such that a maximal matching
M ′ under Gτ ′ has |M ′| edges with |M ′| < Uτ ′ . Because M ′ is maximal, the tasks of τ ′ are
scheduled on at most |M ′| processors at any time instant, and hence, for any schedule R
and time instant t,

∑
τi∈τ ′

A(R, τi, 0, t) ≤ |M ′|t. Hence, by Defs. 3, 6, 7, and the definition

of Uτ ′ , we have LAG(τ ′, t) =
∑
τi∈τ ′

A(I, τi, 0, t)−
∑
τi∈τ ′

A(R, τi, 0, t) ≥ Uτ ′t− |M ′|t. Because

Uτ ′ > |M ′|, Uτ ′t−|M ′|t→∞ as t→∞. Thus, LAG(τ ′, t) is unbounded under any schedule
R, making τ ′ unfeasible, which contradicts the asumption that τ is feasible. J

We use Berge’s Theorem to prove that IA-GEDF is HP-LAG-compliant. Berge’s definition
of an augmenting path reduces to Def. 28 in the context of an AG and its subgraphs.

I Theorem 36 (Theorem 1 of [3], Berge’s Theorem). A matching M of a graph G is maximal
if and only if there is no augmenting path for M and G.
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π1 π2 π3 π4

τ1 τ2 τ3 τ4 τ5

Gτ ′

Figure 3 An example graph Gτ ′ for the proof of Lemma 37. Solid gray edges represent the
task-to-processor assignments prior to a scheduling cascade and dashed edges represent affinity.

I Lemma 37. IA-GEDF is HP-LAG-compliant under Identical-Aff.

Proof. We use Fig. 3 to illustrate the key steps of the proof. Consider a matching M in Gτ
defined by the IA-GEDF task-to-processor assignments at time t. Let τ ′ be as defined in
HP-LAG at time t (τ ′ = {τ1, τ2, τ3} in Fig. 3). Consider a matching M ′ in Gτ ′ defined by
the assignments of tasks in τ ′ to processors (M ′ = {(τ1, π1), (τ3, π2)}).

We will first show that M ′ is maximal in Gτ ′ . Suppose otherwise that M ′ is not
maximal in Gτ ′ . Then, by Theorem 36, there exists an augmenting path p for M ′ in Gτ ′

(p = (τ2, π2, τ3, π3)). By Lemma 30, p is an alternating path for M in Gτ .
Consider the task τh that is represented by the first vertex of p (τ2), and the processor

πj that is represented by the last vertex of p (π3). If there is a task τ` that is scheduled
on πj (τ4 on π3), then τh ∈ τ ′ and τ` ∈ τ/τ ′ because p is an augmenting path in Gτ ′ . By
the definition of τ ′ in HP-LAG, we have dh(t) < d`(t) (d2(t) < d4(t)). Thus, because we
have satisfied the input requirements of Alg. 1, we can perform a scheduling cascade via p
at time t (remove (τ4, π3) and (τ3, π2) and add (τ3, π3) and (τ2, π2) to the matching), which
contradicts our definition of IA-GEDF. Hence, M ′ is maximal.

Because IA-GEDF produces a non-fluid schedule (Def. 4), the interval (t, t+ δ) must be
a continuous scheduling interval for some δ > 0. Thus, for all t′ ∈ (t, t+ δ),

LAG(τ ′, t′) ={by Def. 7}

LAG(τ ′, t) +
∑
τi∈τ ′

A(I, τi, t, t′)−
∑
τi∈τ ′

A(R, τi, t, t′)

= {by Defs. 3 and 6}

LAG(τ ′, t) +
∑
τi∈τ ′

(t′ − t)ui −
∑
τi∈τ ′

A(R, τi, t, t′)

= {the number of processors scheduling tasks of τ ′ is |M ′|}

LAG(τ ′, t) +
∑
τi∈τ ′

(t′ − t)ui − (t′ − t)|M ′|

= {
∑
τi∈τ ′

ui = Uτ ′}

LAG(τ ′, t) + (t′ − t)(Uτ ′ − |M ′|)
≤ {t < t′ and by Lemma 35, Uτ ′ ≤ |M ′|}

LAG(τ ′, t).

Therefore, IA-GEDF is HP-LAG-compliant. J

Applying Theorem 20 yields the following.

I Corollary 38. Under IA-GEDF on a Identical-Aff multiprocessor executing a feasible task
system, the tardiness of any task τi is at most (15).
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(a) Affinity graph.
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(b) IA-GEDF schedule with (W).
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Figure 4 An example task system where removing assumption (W) only causes jobs to complete
earlier. When the completion times in the two schedules differ for a job, a dashed gray marker in 4c
indicates its original completion time in 4b. Every task has (C, T ) = (2, 3).

7 Extending to the Sporadic Task Model

As in [9], we made assumptions (P) and (W). It was proven in Theorems 3 and 4 of [9]
that any tardiness bounds derived for UG-GEDF under Uniform assuming (P) and (W)
hold without these assumptions. Thus, Corollary 23, which establishes tardiness bounds for
UG-GEDF under Uniform, applies to sporadic tasks.

It remains to show that these assumptions can be removed from Corollary 38, which
pertains to IA-GEDF on Identical-Aff. We use reasoning similar to [9] to show this, though
some details are changed due to the different scheduler and platform. Due to space constraints,
we present a proof sketch and provide the formal proofs in App. B, available online [7].

Removing assumption (W). The intuition here is that reducing the execution requirement
of a job cannot cause jobs to complete later. Consider Figs. 4b and 4c, which show two
schedules under IA-GEDF for two periodic instances of the task system defined in Fig. 4a. In
Fig. 4b, assumption (W) is true, while in Fig. 4c, job J1,1 completes with 1.0 less execution
unit than τ1’s WCER of 2.0. As a result, jobs J2,2 and J3,1 complete earlier in Fig. 4c than in
Fig. 4b, while all other jobs complete at the same time in both schedules (the two schedules
converge at time t = 6). Thus, reducing the execution time of a job did not increase tardiness
for any other job. We prove in App. B, available online [7], that this is always the case. By
applying this fact inductively, it follows that tardiness bounds derived assuming (W) hold in
systems without (W) under IA-GEDF on Identical-Aff.

Removing assumption (P). In order to remove (P), we use the varying-period periodic
(VPP) task model, defined in [9]. A VPP task τVi of task set τV is defined through its
utilization uVi . Every job JVi,j has its own WCER CVi,j . maxj CVi,j is denoted as CVi . Unlike
the sporadic task model, each VPP task τVi releases its first job JVi,1 at time t = 0. Afterwards,
each job Ji,j+1 is released exactly TVi,j = CVi,j/u

V
i time units after the release of JVi,j for j ≥ 1.

CVi /u
V
i is denoted as TVi .

It was shown in App. A of [9] that sporadic task systems are special cases of VPP task
systems. For example, in Fig. 5, the first timeline represents a sporadic release of jobs by
some task τi and the second timeline represents a VPP release of jobs by a VPP task τVi
with ui = uVi and Ci = CVi . When the separation between jobs of τi is greater than Ti,
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Figure 5 Transformation of a sporadic task to a VPP task.

arbitrarily small VPP jobs with an execution requirement of 0.0 are inserted between the
gap in releases, thereby making the second timeline a valid VPP release sequence. Thus, the
sporadic release of jobs is also a VPP release of jobs.

Because sporadic task systems are special cases of VPP task systems, our proof obligation
is to show that our tardiness bounds apply under the VPP model. The tardiness bounds
under IA-GEDF depend only on properties of HP-LAG schedulers, which in turn depend
only on the properties in Sec. 3. The fact that these properties hold under the VPP model
with assumption (W) (with some reinterpretation of parameters, e.g., substituting ui with
uVi and Ci with CVi,j in proofs) was shown in App. A of [9]. Hence, because removing (W)
does not increase tardiness, Corollary 38 holds with VPP task systems (substituting Cmax
with maxi CVi in (15)). If the VPP task system is also a sporadic system, as in Fig. 5, then
maxi CVi = maxi Ci = Cmax. Thus, the tardiness bound in Corollary 38 for sporadic tasks is
exactly as written in (15).

8 Problems with Extending to the Uniform Model with Affinities

Of the models listed in Sec. 2.1, we have not addressed Uniform-Aff and Unrelated. In this
section, we explain why extending our proof techniques to these models is difficult. The
exact proof strategy used in this work cannot be directly applied to the more general models
in Sec. 2.1 because HP-LAG may not hold.

I Theorem 39. No non-fluid scheduler always satisfies HP-LAG under Uniform-Aff.

Proof. We prove the theorem by constructing a feasible task system, deadline ordering, and
Uniform-Aff platform for which no scheduler satisfies HP-LAG. Consider the task system
τ = {τ1, τ2} with (C1, T1) = (3, 2) and (C2, T2) = (4, 4). Then, u1 = 1.5 and u2 = 1. τ runs
on two processors π = {π1, π2} with s1 = 2 and s2 = 1. Gτ is illustrated in Fig. 6a.

We know this system is feasible from the schedule in Fig. 6b, which contains a timeline for
each task that describes what processor, if any, schedules the task at any time instant. The
schedule repeats every four time units. This schedule provides six units of execution to τ1 and
four units of execution to τ2 every four time units. Because the schedule provides execution
to each task at a long-run rate equal to its utilization (6/4 = 3/2 = u1 and 4/4 = u2), both
tasks have bounded tardiness.

Let the deadline ordering at some time instant t be d1(t) < d2(t) (e.g., t = 0). Suppose
some non-fluid scheduling algorithm is HP-LAG-compliant at t. By Def. 4, we have that
(t, t + δ) is a continuous scheduling interval for some δ > 0. Note that τ ′ as defined in
HP-LAG for this task system may be either {τ1} or {τ1, τ2} at time t. HP-LAG states for
these two task subsets that ∀t′ ∈ (t, t+ δ):

LAG({τ1}, t′) ≤ LAG({τ1}, t) (21)
LAG({τ1, τ2}, t′) ≤ LAG({τ1, τ2}, t) (22)

ECRTS 2019
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Figure 6 Task system considered in the proof of Theorem 39.

We show that τ1 must execute on π1 over (t, t+ δ) by contradiction. Consider otherwise
that there exists a time instant in (t, t+ δ) where τ1 executes on π2. Because (t, t+ δ) is a
continuous scheduling interval, by Def. 2, τ1 executes on π2 for all t′ ∈ (t, t+ δ). Thus,

LAG({τ1}, t′) = {by Def. 7}
LAG({τ1}, t) +A(I, τ1, t, t

′)−A(R, τ1, t, t
′)

= {by Defs. 3 and 6}
LAG({τ1}, t) + u1(t′ − t)−A(R, τ1, t, t

′)
= {by Def. 3 and the assumption that τ1 is scheduled on π2}

LAG({τ1}, t) + u1(t′ − t)− s2(t′ − t)
= {u1 = 1.5 and s2 = 1}

LAG({τ1}, t) + 0.5(t′ − t)
> {t′ − t > 0 by definition}

LAG({τ1}, t),

which contradicts (21). A similar contradiction arises when τ1 is not executing for any instant
in (t, t+ δ), so any HP-LAG compliant scheduler must schedule τ1 on π1 during (t, t+ δ).
Scheduling τ1 on π1 means τ2 is not scheduled over this interval, because π1 is the only
processor in τ2’s affinity mask.

Consider the LAG of {τ1, τ2} for all t′ ∈ (t, t+ δ) given that τ1 executes on π1 and τ2 is
not executing over this interval. Through reasoning similar to that above, we can conclude
LAG({τ1, τ2}, t′) = LAG({τ1, τ2}, t) + 0.5(t′ − t) > LAG({τ1, τ2}, t), which contradicts
(22). Because no non-fluid scheduler can simultaneously satisfy (21) and (22), no non-fluid
scheduler can satisfy HP-LAG for this feasible task system. J

9 Conclusion

We have derived the first ever GEDF tardiness bounds that are polynomial in the number
of processors under Uniform. We have also derived for the first time generalized GEDF
scheduling rules that are provably SRT-optimal under Identical-Aff. This result shows that
the open problem mentioned by Peter Zijlstra and Luca Abeni can be resolved by altering
SCHED_DEADLINE to be HP-LAG-compliant. In App. A, available online [7], we have provided
an algorithm that implements our generalized GEDF scheduling rules with lower time
complexity per scheduling event than SCHED_DEADLINE, given some preprocessing.
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Note that the proofs in Sec. 4 only require that the values of β satisfy certain linear
constraints. Thus, lower β values than ours can be derived using linear programming (though
the constraint set grows exponentially with the task count). This suggests that the properties
in Sec. 3 are sufficient to derive tighter analytical tardiness bounds than ours.

In future work, we will investigate dynamic task systems, where tasks may enter or exit
the system and affinity masks may change at runtime. The interaction of affinity masks
with dynamic task systems is particularly relevant to SCHED_DEADLINE, as admission control
with affinity masks is currently broken. We plan to investigate what restrictions must be
placed on these dynamics to avoid compromising bounded tardiness, as done in prior work [4]
on GEDF without affinity masks. We are also interested in how overhead accounting and
non-preemptive sections might be handled as well as how algorithms that satisfy IA-GEDF
might be constructed with lower time complexity than in App. A.

The SRT-optimality of GEDF on more general platforms also remains an open problem.
We have shown via a counterexample that HP-LAG, a property that applies to both Uniform
and Identical-Aff individually, does not hold when the models are combined. It is unknown
whether a weaker version of HP-LAG exists that applies to the more general processor models
while still being sufficient to bound tardiness. If not, these open problems may require new
proof techniques.
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