
NPM-BUNDLE: Non-Preemptive Multitask
Scheduling for Jobs with BUNDLE-Based
Thread-Level Scheduling
Corey Tessler
Wayne State University, Detroit, Michigan, USA
corey.tessler@wayne.edu

Nathan Fisher
Wayne State University, Detroit, Michigan, USA
fishern@wayne.edu

Abstract
The BUNDLE and BUNDLEP scheduling algorithms are cache-cognizant thread-level scheduling algorithms
and associated worst case execution time and cache overhead (WCETO) techniques for hard real-time
multi-threaded tasks. The BUNDLE-based approaches utilize the inter-thread cache benefit to reduce
WCETO values for jobs. Currently, the BUNDLE-based approaches are limited to scheduling a single
task. This work aims to expand the applicability of BUNDLE-based scheduling to multiple task
multi-threaded task sets.

BUNDLE-based scheduling leverages knowledge of potential cache conflicts to selectively preempt
one thread in favor of another from the same job. This thread-level preemption is a requirement for
the run-time behavior and WCETO calculation to receive the benefit of BUNDLE-based approaches.
This work proposes scheduling BUNDLE-based jobs non-preemptively according to the earliest deadline
first (EDF) policy. Jobs are forbidden from preempting one another, while threads within a job are
allowed to preempt other threads.

An accompanying schedulability test is provided, named Threads Per Job (tpj). tpj is a
novel schedulability test, input is a task set specification which may be transformed (under certain
restrictions); dividing threads among tasks in an effort to find a feasible task set. Enhanced by
the flexibility to transform task sets and taking advantage of the inter-thread cache benefit, the
evaluation shows tpj scheduling task sets fully preemptive EDF cannot.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases Scheduling algorithms, Cache Memory, Multi-threading, Static Analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.15

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.2

Funding The research presented in this paper was supported by the National Science Foundation
under Grant Nos. CNS-1618185 and IIS-1724227.

1 Introduction

Hard real-time multi-threaded task systems which incorporate cache memory, must account
for the variation in execution time and cache related preemption delays found in single-
threaded task systems. For multi-threaded task systems, the complexity of cache interactions
is increased due to thread-level cache interference and preemptions. Worst-case execution
time (WCET) and schedulability analysis of hard real-time multi-threaded tasks commonly
treat threads independently [21] or utilize cache management techniques [33] to limit the
cache interference.

Analysis techniques focusing on independent treatment or limiting of cache interference
exclude the possible benefit of caches. Multi-threaded tasks may benefit from caches. By
virtue of sharing the same address space one thread of a task may cache values on behalf of

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Corey Tessler and Nathan Fisher;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:corey.tessler@wayne.edu
mailto:fishern@wayne.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.15
https://dx.doi.org/10.4230/DARTS.5.1.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

another reducing the total execution time to complete both. This positive effect is referred
to as the inter-thread cache benefit [26].

Currently, only the BUNDLE [26] and BUNDLEP [27] analysis techniques and cache congnizant
thread-level scheduling algorithms incorporate the inter-thread cache benefit into WCET
and schedulability analysis. These BUNDLE-based approaches are currently limited to a single
multi-threaded task. The primary focus of this work is to provide a scheduling algorithm and
schedulability test for multi-threaded task sets with multiple tasks, where individual jobs
utilize BUNDLE-based scheduling. As the first scheduling algorithm to incorporate BUNDLE-
based thread-level scheduling, a non-preemptive algorithm was chosen to avoid necessary
modifications to BUNDLE and BUNDLEP. Non-preemptive EDF was selected as the task-level
scheduler, as the proposed schedulability test presented in Section 4 is based upon Baruah’s
limited-preemption for EDF [6] algorithm.

An additional consideration is made for alternative approaches and the unforeseen benefits
to schedulability of thread-level schedulers of non-preemptive multi-threaded jobs. If the
WCET of jobs can be expressed as a strictly increasing discrete concave function of the
number of threads per job, the schedulability test developed for this work applies without
modification to the BUNDLE-based approaches or non-preemptive EDF scheduling.

In the following sections, the key contributions are:
1. A model of hard real-time multi-threaded tasks which is compatible with existing single-

threaded models, where tasks sets may be transformed through division of threads.
2. A schedulability test named Threads Per Job (tpj) that provides a schedulability result

and transformed feasible task set if the specified task set could not be scheduled non-
preemptively.

3. Proof of tpj’s optimality with respect to non-preemptive multi-threaded feasibility.
4. An improvement to Baruah’s [6] non-preemptive chunk algorithm, increasing chunk sizes.
5. An evaluation of over 500,000 task sets, comparing the schedulability ratio of tpj to those

of non-preemptive and (limited) preemptive EDF, with an accompanying implementation
available for download [28].

These contributions are presented following the related research of Section 2. Section 3
introduces the proposed model, application of non-preemptive EDF scheduling for thread-
level schedulers, and the requirements of task transformation. Section 4 introduces then
improves upon the non-preemptive chunk algorithm [6], followed by the tpj schedulability
algorithm and proof of feasibility. Section 5 compares the schedulability ratio of tpj to other
non-preemptive and preemptive scheduling algorithms, before concluding with Section 6.

2 Discussion of Related Research

Single-Threaded Tasks. The challenge of dealing with the non-uniformity of execution times
in real-time systems due to cache misses or hits has received considerable attention [34, 30].
In particular, much of the prior real-time systems work on understanding caches vis-à-vis
scheduling has focused upon the contention in the cache due to tasks preempting each other.
Roughly speaking, a large majority of this research can be classified into two categories:
cache-related preemption delay (CRPD) analysis and deferred/limited-preemption scheduling.
The goal of CRPD analysis is to bound the number of cache blocks of a task that need to be
reloaded due to evictions caused by a preempting task. The foundation of CRPD analysis is
the development of techniques for counting and bounding the number of blocks affected by
preemption; this is achieved by categorizing a task’s cache blocks into sets of useful cache
blocks (UCBs) or evicting cache block (ECBs) [17, 31]. The size of these sets can be used as

C. Tessler and N. Fisher 15:3

an upper bound on the cache cost of a preemption. Subsequent research based upon this
UCB and ECB categorization has refined these sets and incorporated the CRPD analysis
into schedulability analysis [1, 2, 3, 20, 24, 25]. However, please note that these CRPD
approaches only quantify the cache effect of preemption into existing scheduling approaches
and do not change any scheduling decision based upon the knowledge of preemption.

In limited/deferred-preemption scheduling, a higher-priority task may preempt a lower-
priority task only when some condition is satisfied. The overall effect of deferring or limiting
preemptions is to reduce the number of times a task may be preempted during its execution.
The hope is that by limiting the number of preemptions this will lead to a decrease in the
execution time of job due to the cache overhead of preemption. Different conditions for
deferring preemptions have been considered. The fixed preemption-point approach [11] selects
specific locations in a task code that are most appropriate for the program but preserve the
system schedulability. The preemption-threshold scheduling approach [32] sets a threshold
that only task with higher-priority than this threshold may preempt a currently-executing
lower priority task. The floating preemption-point model [6, 19] computes the maximum time
duration that a lower-priority task may delay the preemption of a higher-priority task. Each
of the deferred preemption approaches have been shown to limit the number of preemptions
but do not incorporate the CRPD overhead cost in its decision on how to defer preemption.

More recently, a line of research has emerged to combine the aspects of CRPD analysis
and limited/deferred preemption scheduling by explicitly placing preemption points in the
code to minimize CRPD effects. Early heuristics were proposed by Simonson and Patel [23]
and Lee et al. [17]. Bril et al. [10] integrated CRPD analysis into preemption-threshold
scheduling. Bertogna et al. [8] provide a more formal approach for optimally determining
preemptions in programs that can be represented by linear control flowgraphs given the
CRPD overhead of each preemption and a bound on the maximum non-preemption region [6].
Later work, extended this to more general control flowgraphs [22] or more precise CRPD
characterizations of the preemption costs [14]. However, all of this aforementioned research
assumes each task is single-threaded. The techniques proposed in this paper extend the
CRPD and limited preemption concepts to scheduling multi-threaded tasks by combining
and extending the limited-preemption scheduling results of Baruah [6] to the cache-cognizant
thread-level scheduling algorithms that minimize cache contention between threads called
BUNDLE [26] and BUNDLEP [27].

Multi-Threaded Tasks. Cache interference amplifies the variation in execution times of
multi-threaded task sets. Threads of the same task share cache locations, with the potential
to increase misses and hits depending on the order of execution of threads. This variability
is an addition to the variation already present when considering CRPD with other tasks.

There are few works we are aware which directly address the inter-thread variability
due to caches in multi-threaded task sets. The approaches focus on isolating execution or
managing cache behavior. Memory-Centric Scheduling [4] isolates contentious execution by
scheduling tasks according to their cache behavior. To create such isolation, tasks must be
PREM-compliant [21], with distinct load and execution phases. Cache management utilize
techniques that limit the contention in the cache, such as coloring and blocking found in [33].
These approaches come at a cost of modified or restricted executable objects, reduced cache
sizes, or additional cache misses of blocked lines. Yet, with these limitations, the inter-thread
variability is not accounted for within multi-threaded tasks.

BUNDLE [26] and BUNDLEP [27] address inter-thread variability due to cache interactions.
These BUNDLE-based approaches analyze executable object coupled with a cache-cognizant
thread-level scheduling algorithm without the added detriment of modified (or restricted)

ECRTS 2019

15:4 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

objects, or cache management penalties. We are not aware of any other technique that
addresses inter-thread variability, with the execption of Calandrino’s [13] limited cache spread.
However, the results of [13] are strictly empirical.

3 Model

To permit non-preemptive jobs that utilize thread-level schedulers, a new model is proposed
in this work. The set of n multi-threaded tasks is given by τ = {τ0, τ1, ..., τn−1}. Each job
of a task τi = (pi, di,mi, ci : N 7→ R+) has a minimum inter-arrival time of pi and relative
deadline di. For every job release of τi, a positive integer mi identical threads are released.
Each thread of τi executes over the same object oi on the shared processor. An object is a
set of executable machine instructions, mapping to one set of in memory addresses, such
that all threads execute the same instruction from the same address. All threads share the
same deadline as their job. The worst-case execution time (WCET) of τi is a function of the
number of threads per job, ci(mi).

Scheduling and schedulability analysis proposed in this work relies upon a relationship
between the number of threads scheduled per multi-threaded job and the WCET of the
job executed non-preemptively. To clarify, the scheduling mechanism proposed in this
work precludes preemptions between jobs of different tasks. For threads within a job of a
task, a thread-level scheduler may execute threads preemptively. Figure 1a illustrates the
scheduling behavior.

In Figure 1a, at t = 1 a job of τ2 is released. The job of τ2 cannot be preempted by the
job of τ1 released at t = 5. During the execution of τ2, the two threads (given distinct colors)
may preempt one another according to the thread-level scheduler, at t = 8 for instance.
Thread-level scheduling and preemption decisions are not prescribed by this work. The
thread-level scheduling policies of τ1 and τ2 are independent of the non-preemptive task-level
scheduling of non-preemptive EDF used in this work.

Thread-level scheduling algorithms must be characterized by a WCET function ci(mi)
for mi threads per job and ci(mi) must be strictly increasing discrete and concave (detailed
in Subsection 3.2). Thread-level schedulers that produce concave ci(mi) functions establish
a relationship between the execution requirements of a task and the number of threads,
where the requirement for one job of mi threads is less than mi jobs of one thread. For
BUNDLE-based schedulers, concavity is the result of the inter-thread cache benefit, where
ci(m)− ci(m− 1) ≥ ci(m+ 1)− ci(m); it is this relationship the proposed scheduling beha-
vior and analysis seek to exploit.

Not all tasks and thread-level schedulers will produce concave WCET functions. For a
task τi with a convex WCET function (where there is no benefit in grouping threads together),
the mi threads of τi may be replaced with mi single-threaded tasks. These single-threaded
have vacuously concave WCET functions by virtue of executing no more than one thread.

(a) Scheduling Behavior. (b) Schedulability and Transformable Task Sets.

Figure 1 Scheduling and Schedulability of the Proposed Model.

C. Tessler and N. Fisher 15:5

The task set τ provided by the system designer to schedulability analysis is referred
to as the task set specification. Commonly [5, 18, 6, 8, 11, 12], task set specifications are
immutable in hard-real time models. The number of tasks, their WCET time, period, and
deadline are provided by the system designer, not to be changed. Schedulability analysis
determines if the task set specification is feasible. In this work, task sets are transformable
(obeying some restrictions).

Transformation of a task set exploits the concavity of execution requirements, redistrib-
uting the threads of individual tasks to multiple tasks. A greater number of threads per
job reduces the WCET of a task but increases the non-preemptive execution requirement.
Conversely, a fewer number of threads per task increases the total WCET for all tasks
while decreasing the non-preemptive execution requirement. Schedulability analysis in this
non-preemptive setting encompasses the search for a distribution of the fixed number threads
from the task set specification to a variable number of tasks, resolving the tension between a
greater number of tasks and a greater number of threads per task to find a feasible task set.

Under the proposed model, schedulability analysis is a process that begins by considering
the current task set named the anterior task set τ̂ . If the set is schedulable, the set is
unmodified and processing ceases with a positive result. If the task set τ̂ cannot be scheduled
as described, the task set is transformed into a posterior task set τ , and processed again
as an anterior set. Processing ceases with a negative result when there are no available
transformations of τ̂ .

Figure 1b illustrates the schedulability analysis process. Division is the transformative
operation of the process and is described in Subsection 3.1. The figure highlights the ability
of a single task set to be both anterior and posterior to different sets during processing.
To aid in explanation, properties of a task may be referred to in terms of the set the task
was transformed from and to. By example, if the number of threads assigned to τi in the
anterior set τ̂ is reduced by one in the posterior task set τ , the posterior threads of τi may
be written as mi = m̂i − 1.

As a process, schedulability analysis of the specified task set serves two purposes under
this model. The first, is to determine if there exists a posterior task set which is feasible.
Second, to produce the feasible posterior task set if one exists. It is the feasible posterior task
set τ found by schedulability analysis that is then deployed on the target architecture. From
the system designer’s perspective, each task τi ∈ τ of the specified task set is a request to
execute mi threads of the object oi with shared periods pi and deadlines di for any posterior
task set τ . A task set specification is flexible, for one object there may be multiple tasks
with variable numbers of threads per job. However, the specified mi of a task is a ceiling on
any mi of a posterior task.

3.1 Dividing and Task Parts
A task set may be transformed by dividing tasks of the set. Dividing a task reduces the
number of threads executed by each job, splitting the anterior task into two or more tasks in
the posterior set.

I Definition 1 (Task Division). In the anterior task set τ̂ , a task τi = (pi, di, ci(mi)) may be
divided into two (or more) posterior tasks τj and τk with three restrictions: 1.) the periods
of τj and τk are equal to the period of τi 2.) the relative deadlines of τj and τk are equal to
the deadline of τi 3.) the sum of threads of τj and τk are equal to τi 4.) the objects of τi, τj ,
and τk are equal. Enumerated, the restrictions are:

1. pi = pj = pk

2. di = dj = pk

3. mi = mj + mk

4. oi = oj = ok

ECRTS 2019

15:6 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

I Definition 2 (Partial Tasks). When an anterior task τi is divided into τj and τk posterior
tasks, τj and τk are referred to as partial tasks or parts of τi.

I Definition 3 (Partial Task Set). For convenience, the set of posterior tasks of τi is denoted
Φi and called the partial task set of τi, where mi =

∑
τk∈Φi

mk.

3.2 Worst-Case Execution Time Function Growth
Motivation for the task model and schedulability analysis process proposed in this work
stems from the inter-thread cache benefit of BUNDLE-based scheduling [26, 27]. The previous
works [26, 27] are limited to a single task; this work extends the method (non-preemptively)
to multiple tasks. Schedulability analysis for BUNDLE-based scheduling algorithms produce,
for each task τi, a worst-case execution time combined with cache overhead (WCETO)
function ci(m) in terms of m the number of threads per job scheduled in a cache-cognizant
manner. For tasks that benefit from BUNDLE-based scheduling and analysis, ci(m) is a strictly
increasing discrete concave function. Tasks that do not are made vacuously concave by
restricting jobs to release one thread.

In the WCETO analysis of BUNDLE and BUNDLEP, threads are assigned to paths through
the conflict-free region graph of the executable object which maximize their contribution
to ci(mi) . When considering the addition of a thread mi + 1, only the greatest increase in
ci(mi) is permitted. Subsequently, the addition of thread mi + 2 must increase ci(mi) by
less than or equal to the increase from mi + 1 or the increase of mi + 1 would not have been
maximal. Therefore, for any ma < mb < mc the point (mb, ci(mb)) lies above the straight
line described by (ma, ci(ma)) and (mc, ci(mc)) – subsequently, ci(mi) is concave.

A consequence of ci(m)’s strictly increasing discrete concavity is a limit on the increase
of the WCET as the number of threads increases. This property is referred to as the concave
restricted growth (concave growth for brevity) of ci(m) and is leveraged in Sections 4 and 5.

I Property 1 (Concavity Restriction on WCET Growth). For a strictly increasing discrete
concave WCET function ci(m):

∀m ∈ N+ | ci(m)− ci(m− 1) ≥ ci(m+ 1)− ci(m) (1)

It then follows for mx ≥ my > 0

ci(mx + 1)− ci(mx) ≤ ci(mx)− ci(mx − 1)
≤ ci(mx − 1)− ci(mx − 2)
...

≤ ci(my)− ci(my + 1)
≤ ci(my)− ci(my − 1)

A WCET function ci(m) that obeys Property 1, will produce a value for ci(m+ 1) threads
which is greater than ci(m). The difference between ci(m+ 1) and ci(m) must be less than
or equal to the difference of ci(m) and ci(m− 1). As the number of threads increase, ci(m)
increases at a decreasing (or stable) rate.

For the purposes of comparison and evaluation in Section 5, an upper bound on the
growth of ci(m) is called the growth factor Fi of τi. Growth factors relate the WCET of one
thread ci(1) to the WCET of an arbitrary number of threads ci(m) for m > 0. A growth
factor Fi ∈ (0, 1], for a task τi, is a real number that satisfies Equation 2.

I Definition 4 (Growth Factor for τi).

∀m | ci(m) ≤ ci(1) + (m− 1) · F · ci(1) (2)

C. Tessler and N. Fisher 15:7

For an F satisfying Equation 2, the pessimistic upper bound provides a linear function
that can be rearranged to find an upper bound on the WCET of one thread in terms of
m threads. The result is Equation 3, which will be used in the evaluation Section 5 when
constructing task sets. Note, since m ∈ N each increase of m increases ci(m) by F · ci(1).

ci(m) = ci(1) + (m− 1) · F · ci(1) (3)

4 Non-Preemptive EDF Schedulability

Preemptive earliest deadline first (EDF) schedulability analysis for sporadic task sets has
been well studied [18, 5, 15]. In the fully preemptive setting for which the algorithm is
optimal, the overhead of a large number of preemptions may be a detriment to schedulability.
Baruah [6] addresses this concern with an algorithm for calculating the non-preemptive chunk
size qi of each task τi ∈ τ . The non-preemptive chunk size qi guarantees that task τi may
execute up to qi time units non-preemptively without introducing a deadline miss for any
task in τ scheduled by preemptive EDF.

Section 4.3 introduces the non-preemptive feasibility algorithm Thread Per Job (tpj) based
upon the non-preemptive chunks algorithm from [6]. tpj differs from the non-preemptive
chunks algorithm by requiring the non-preemptive chunk size qi of each task τi to be greater
than or equal to its WCET: ci(mi) ≤ qi. As such, all jobs can be scheduled non-preemptively
without fear of a deadline miss. To clearly convey tpj, a description of the non-preemptive
chunks algorithm and its dependencies is provided in the immediate subsection. Subsection 4.2
describes, by example, the available improvements to the non-preemptive chunks algorithm [6].
Subsection 4.4 defines and proves tpj’s optimality.

4.1 Non-Preemptive Chunks
The non-preemptive chunks algorithm depends on the demand bound function, EDF feasibility,
ordering of absolute deadlines, and slack for the task set τ . Ordered absolute deadlines are
given by {D1, D2, ...} with Dn < Dn+1 for all n, where each task τi ∈ τ contributes deadlines
D = k · pi + di for k ∈ Z+.

For a sporadic task τi the demand bound function for a task dbf(τi,t) is an upper bound
on the amount of execution requirement generated from jobs released by τi over t units of
time. The demand bound function is presented as Equation 4 as dbf(τi,t) modified from [5]
to suit the task set model used in this work.

I Definition 5 (Demand Bound Function for a Task τi and Interval t).

dbf(τi,t) = max
(

0,
(⌊

t− di
pi

⌋
+ 1
)
· ci(mi)

)
(4)

When necessary for brevity, Equation 5 will be used to represent the sum of demand of
all tasks over an interval of length t.

I Definition 6 (Demand Bound Function for the Task Set τ and Interval t).

dbf(τ ,t) =
∑
τi∈τ

dbf(τi,t) (5)

Slack of the task set τ at deadline Dk is given by Equation 6. Intuitively, slack is the
minimum time the processor will be idle over an interval. It is the difference between the
demand over the interval and the length of the interval.

ECRTS 2019

15:8 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

I Definition 7 (Slack at Deadline Dk).

slack(Dk) = min
j≤k

(
Dj −

∑
τi∈τ

dbf(τi,Dk)
)

(6)

For EDF, feasibility is determined by examining increasing time intervals and calculating
the demand and supply. If demand exceeds supply, the system is infeasible. Equation 7
provides a formal definition of feasibility for the task set τ .

I Definition 8 (EDF Feasibility Demand Bound Test).

∀t ≥ 0,
(∑
τi∈τ

dbf(τi,t)
)
≤ t (7)

In [6], the number of time instants tested by Equation 7 is limited to the values of the
ordered set of absolute deadlines {D1, D2, ...}. The ordered set of absolute deadlines is an
infinite set, impractical for feasibility test. There is an upper bound on the value of all time
instants (absolute deadlines) that must be tested and is denoted T ∗(τ). Taken from [15], T ∗(τ)
is given by Equation 8 below. Among all tasks the largest deadline is dmax = maxτj∈τ (dj).
Utilization of τj is defined as Uj = cj(mj)

pj
. Among all tasks, the greatest difference of period

and deadline is given by ∆max = maxτi∈τ (pi − di). The hyper-period of all tasks (the least
common multiple of all relative deadlines) is given by P .

I Definition 9 (Feasibility Test Bound t for τ).

T ∗(τ) = min
(
P,max

(
dmax,

1
1− U ·∆max ·

n−1∑
i=0

Ui

))
(8)

The non-preemptive chunks algorithm from [6] is presented (with additional details) as
pseudocode in Algorithm 1 and named np-chunks. In addition to determining if the task set
is schedulable under EDF, the algorithm produces a non-preemptive chunk size qj for each
task τj ∈ τ . Jobs of τj may execute up to qj time units non-preemptively without negatively
impacting schedulability. This setting, where a task τj may execute non-preemptively for
some period of time qj is referred to as limited-preemption.

Algorithm 1 Non-Preemptive Chunks (np-chunks).
1: slack(D1) ← D1 −

∑
τi∈τ dbf(τi,D1)

2: for τj ∈ {τi ∈ τ | (di = D1)} do
3: qj ← cj(mj)
4: end for
5: for k ∈ {D2, D3, ..., } do
6: if Dk > T ∗(τ) then
7: return feasible
8: end if
9: slack(Dk) ← min

(
slack(Dk−1), Dk −

∑
τi∈τ dbf(τi,Dk)

)
10: if slack(Dk) < 0 then
11: return infeasible
12: end if
13: for τj ∈ {τi ∈ τ | (di = Dk)} do
14: qj ← slack(Dk)
15: end for
16: end for

C. Tessler and N. Fisher 15:9

For a detailed description of np-chunks refer to [6]. To summarize, np-chunks begins
by seeding the slack of the smallest interval D1 and the non-preemptive chunk size of
tasks with the smallest relative deadline equal to their WCET. During each iteration of
Dk ∈ {D2, D3, ..., }, the slack for the interval Dk is calculated as the minimum of the current
slack and the previous slack value. If there is less than zero slack, the system is infeasible. If
the slack is zero or greater, each task with relative deadline equal to the current interval size
is assigned the available slack as the task’s non-preemptive chunk size. A task τj is assigned
a non-preemptive chunk once, before assignment qj = ∅ afterwards qj 6= ∅. If the interval
being examined Dk exceeds T ∗(τ), the task set must be schedulable.

4.2 Improving the Non-Preemptive Chunk Size
From the description of np-chunks in [6], there is an opportunity to improve the available
slack for each of the k deadlines considered. Alogrithm 1 is pessimistic in the amount of
available slack at any deadline Dk. To illustrate, consider the task set and intermediate
values described by Table 1.

Table 1 Example Task Set τ = {τ0, τ1, τ2}.

i pi di mi ci(mi)
τ0 4 2 1 1
τ1 3 3 1 1
τ2 3 3 1 1

P Dk τj : dj = Dk dbf(τ ,Di) slack(Di) qj

12
D1 = 2 τ0 1 1 1

D2 = 3 τ1 3 0 0
τ2 3 0 0

There are three tasks in the task set of Table 1, with utilization of approximately 0.92.
For τ0, initialization assigns a non-preemptive chunk of q0 = 1 time units. By observation,
after release τ0 may be delayed from execution by at most one time unit or it will miss its
deadline. Consequently, the non-preemptive chunk size available to τ1 and τ2 is 1. As such
np-chunks would be expected to find q0 = 1, q1 = 1, q2 = 1.

Note, it is not possible for τ0 to be blocked for 1 or more time units if both τ1 and τ2
execute non-preemptively for 1 time unit each. If τ0 is blocked for less than 1 time unit
by τ1, then τ0 will be the highest priority task when τ1 completes (similarly for τ2). It is
impossible for τ0 to be blocked 1 time unit or more by τ1 or τ2, τ0 would have to be released
at the same time instant as τ1 or τ2 and τ1 or τ2 would have to execute before τ0, since the
relative deadline of τ0 is less than the other two, limited-preemption EDF executes τ0: the
task with earliest absolute deadline.

For τ0, q0 is calculated as expected q0 = c0(m0) = 1, by Lines 2-4 of Algorithm 1. However,
τ1 has a non-preemptive chunk size of q1 = 0. The reason is Line 9, where slack(D2) is
calculated which includes the execution demand of τ1 and τ2. Slack is an upper bound on the
non-preemptive chunk size assigned to a task (in this case τ1). Giving a task the available
slack permits the task to execute longer, delaying higher priority jobs from executing in the
interval by delaying them for as much time as there is slack.

By example in Table 1, the available slack for τ1 is determined from the interval of length
D2 = 3. The execution requirement of τ1 and τ2 is included in dbf(τ ,3) because d1 = d2 = 3.
Thus slack(D2) is zero. Since τ1’s execution requirement is already included, it cannot
further interfere over the interval D2. Furthermore, τ1 must have executed some portion
without being preempted or the system would not be schedulable. Inclusion of τ1’s execution
requirement within the interval over which slack is calculated for is pessimistic with respect
to the non-preemptive chunk q1 in this specific example, and qj in general.

In the pseudocode implementation of np-chunks adopted from [6], Line 9 calculates
the non-preemptive chunk size according Equation 9 (Equation 7 of Theorem 1 in [6]).

ECRTS 2019

15:10 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Comparing Line 9 of Algorithm 1 to Equation 9 a mismatch between the algorithm and the
infeasibility test is illuminated.

I Definition 10 (Infeasibility Test, Equation 7, from [6]).

∃τj ∈ τ , t ∈ [0, dj) | t < qj +
n−1∑
i=0
i 6=j

dbf(τi,t) (9)

If the condition of Equation 9 is satisfied for a task set τ , the task set is unschedulable
given a limited-preemption task set with assigned non-preemptive chunks q. The interval
considered in the demand of Equation 9 is over [0, dj). The demand used in Algorithm 1 to
calculate qj is over the interval [0, dj]. Extending the interval to include dj introduces the
pessimism identified by the example and is not required by Equation 9.

Table 1 illustrates the pessimism of np-chunks found in [6]. The example uses the
notation of assigning non-preemptive chunks to individual tasks from [6]. A later work [7]
uses a different notation, assigning non-preemptive chunks to interval lengths for the remaining
execution of a job. The conceptual pessimism of including demand for tasks with deadline
equal to the current interval (described by Table 1) is also found in [7].

4.3 Threads per Job (TPJ) Scheduling Algorithm
In this work, the np-chunks algorithm is modified for several purposes. First, the unnecessary
pessimism is removed from chunk calculations. Second, the schedulability test is adapted to
the model used herein. Lastly, when a given assignment of tasks and threads are infeasible,
tasks are divided (when possible) to fit into their chunks. The division process is repeated
until the task set is feasible, or no possible divisions remain and the task set is reported as
infeasible. The algorithm is named the Threads Per Job (tpj) scheduling algorithm.

A full description of tpj is presented at the end of this subsection. To reach the complete
description, an intermediate algorithm named Bigger Non-Preemptive Chunks (bnc) is
presented as pseudocode in Algorithm 2. bnc removes the pessimism described in Section 4.2.
The algorithm takes advantage of a property of the demand function dbf(τ ,t) noted in [6].

I Property 2 (Demand Change). Demand for a task does not change for values of t
that do not equal an absolute deadline. In terms of the set of ordered absolute deadlines,
dbf(τ ,Di−1) = dbf(τ ,Di−ε), for 0 < ε ≤ (Di −Di−1).

Algorithm 2 Bigger Non-Preemptive Chunks (bnc).
1: slack(D0) ←∞
2: for k ∈ {D1, D2, D3, ..., } do
3: if Dk > T ∗(τ) then
4: return feasible
5: end if
6: slack(Dk) ← min

(
slack(Dk−1), Dk −

∑
τi∈τ dbf(τi,Dk)

)
7: if slack(Dk) < 0 then
8: return infeasible
9: end if
10: for τj ∈ {τi ∈ τ | (di = Dk)} do
11: qj ← min(cj(mj), slack(Dk−1))
12: end for
13: end for

C. Tessler and N. Fisher 15:11

Line 11 of Algorithm 2 implements the improvement of bnc over np-chunks. The
non-preemptive chunk qj of task τj is taken from the slack of the previous interval Dk−1 or
the task’s WCET cj(mj), whichever is smaller. The algorithm verifies the condition set by
Equation 9, selecting the correct interval length by Property 2, which precludes the inclusion
of τj ’s execution requirement in the interval (and other tasks with deadline Dk).

Algorithm 3 Threads-Per-Job (tpj).
1: slack(D0) ←∞
2: for k ∈ {D1, D2, D3, ..., } do
3: if Dk > T ∗(τ) then
4: return feasible
5: end if
6: for τ̂j ∈ {τi ∈ τ | (di = Dk)} do
7: if slack(Dk−1) < ĉj(1) then
8: return infeasible
9: end if
10: Φj ← {τ̂j}
11: if slack(Dk−1) < ĉj(m̂j) then . Jobs must be divided
12: Φj ← divide(τ̂j,slack(Dk−1))
13: τ ← τ \ τ̂j . Anterior task τ̂j is represented by Φj
14: τ ← τ ∪ Φj . Partial tasks include all threads of τ̂j
15: end if
16: for τj ∈ Φj do
17: qj ← cj(mj)
18: end for
19: end for
20: slack(Dk) ← min

(
slack(Dk−1), Dk −

∑
τi∈τ dbf(τi,Dk)

)
21: if slack(Dk) < 0 then
22: return infeasible
23: end if
24: end for

The Threads per Job scheduling Algorithm 3, is a modification of bnc from limited-
preemption EDF (EDF-LP) scheduling to non-preemptive EDF (EDF-NP). Input to the
schedulability test is a task set specification τ , if tpj returns a feasibile result there exists a
posterior task set which can be scheduled by non-preemptive EDF and the posterior task
set is returned as τ . An infeasible result indicates that tpj could not guarantee τ would be
schedulable by EDF-NP for any posterior task set. Since non-preemptive EDF is not optimal
with respect to feasibility [12], tpj is a sufficient test but cannot be necessary.

Algorithm 3 (tpj) modifies bnc, the modifications are limited to Lines 6-19. An additional
benefit of bnc removing the pessimism of each qj , is that each qj can be calculated without
consideration of the current task τj and the demand at Dk. Chunk values depend on the
demand of Dk−1 instead. This permits an efficient implementation of tpj by moving the
slack calculation of the current interval to the end of each iteration. Otherwise, if slack were
calculated earlier in each iteration, the changes to demand resulting from Lines 6-19 would
force the demand and slack of Dk to be recalculated.

The first notable change to bnc is introduced on Line 7, comparing the available slack to
the WCET of a single thread of τ̂j . If there is insufficient slack to execute just one thread of
τ̂j to completion, the task cannot be executed non-preemptively for any number of threads
and the task set is infeasible non-preemptively.

ECRTS 2019

15:12 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Lines 11-15 introduce several subtle changes. For clarity, it is simpler to discuss the
negative case (slack(Dk−1) ≥ ĉj(m̂j)) before the positive. When there is sufficient slack
for m̂j threads to execute without preemption, τ̂j is given its full WCET (ĉj(m̂j)) as its
non-preemptive chunk. In other words, no division of τ̂j is required and the posterior task
set τ is unchanged (with respect to τ̂j). Lines 11-15 are avoided, the algorithm progresses to
the next task such that di = Dk.

However, in the positive case on Line 11 (when slack(Dk−1) < ĉj(m̂j)), m̂j threads of
τ̂j cannot feasibly execute without being preempted. Therefore, τ̂j must be divided. The
divide procedure creates a partial task Φj set of τ̂j , such that all tasks τp ∈ Φj will complete
within the available slack cp(mp) ≤ Dk−1. The posterior task set τ has τ̂j removed, and is
replaced by the partial set Φj maintaining the specified number of threads for τ̂j .

For any task τ̂j , the task is transformed into a partial task set Φj and assigned a non-
preemptive chunk only once in the iteration where the absolute deadline Dk is equal to the
relative deadline of the task: Dk = d̂j . Since tasks of τ are evaluated in strictly increasing
absolute deadline order, the impact on demand and non-preemptive chunk sizes of processing
τ̂j exclusively impacts demand for larger intervals D` > Dk and non-preemptive chunk sizes
for tasks τ` ∈ τ with greater relative deadlines d` > d̂k.

I Property 3 (Divisions of τ̂j Exclusively Impacts Interval of Length t ≥ d̂j). Division of τ̂j
into the partial set Φj, and replacing τ̂j in τ with Φj will impact demand exclusively for
intervals of length Dk ≥ d̂j , slack of absolute deadlines Dk > d̂j and therefore non-preemptive
chunk values q` for tasks τ` ∈ τ with relative deadlines d` ≥ Dk

By definition of dbf(τ̂j,t), no task of Φj or τ̂j can impact the task set τ demand dbf(τ ,t)
when t < dj. Thus replacing τ̂j in τ , only affects the demand of intervals with length d̂j or
greater. Slack over the interval Dk is calculated from exclusively shorter intervals. Since the
demand of the current interval Dk does not influence the slack at Dk, replacing τ̂j in τ only
affects the slack of intervals with length greater than Dk. Non-preemptive chunk sizes are
assigned based on the available slack, and only those assigned for an interval of length greater
than Dk can be affected by replacing τ̂j in τ .

Algorithm 4 divide.
1: procedure divide(τ̂j , q)
2: Φj ← {}
3: m← argmax

m∈Z+
(ĉi(m) ≤ q)

4: r ← m̂j

5: while r > 0 do
6: mp ← min(r,m)
7: τp ← (p̂j , d̂j ,mp, ĉj) . Posterior task, same period, deadline, WCET function.
8: Φj ← Φj ∪ τp
9: r ← r −mp

10: end while
11: return Φj
12: end procedure

On Line 12 of the tpj Algorithm 3, the task τ̂j is divided into Φj by the divide procedure.
Pseudocode of divide is given by Algorithm 4. The number of tasks in Φj are determined by
the maximum number of threads m of τ̂j that can execute non-preemptively within q time
units. Each task τk ∈ Φj is assigned m threads of τ̂j or however many remain, whichever is
less. The result is that each task set has the following properties.

C. Tessler and N. Fisher 15:13

I Property 4 (Partial Task Sets Returned from divide). The partial task set Φj of an anterior
task τ̂ for a specific q value (and related maximum threads assigned per job m such that
cj(m) ≤ q) contains posterior tasks where:
1. The exact number of posterior tasks is |Φj | = d m̂j

m e
2. Exactly b m̂j

m c tasks of Φj are assigned m threads per job.
3. There is at most one task τg ∈ Φj with exactly mg = m̂j mod m threads.

4.4 Non-Preemptive Feasibility of TPJ and DIVIDE
The divide Algorithm 4 creates a partial task set Φj for an anterior task τ̂j , assigning as
many threads to each task in Φj as possible. Upon returning Φj to tpj, τ̂j is replaced in
the task set τ . Algorithm 4 is one method of dividing of τ̂j which tpj could employ when
creating the posterior task set τ . This section justifies divide’s method by demonstrating
the effect on schedulability and optimality of tpj.

This section’s ultimate objective is to clearly convey Theorem 5; concluding that tpj is
optimal with respect to task-level non-preemptive multi-threaded feasibility. The theorems
that precede Theorem 5 establish minimal demand and WCET sums for partial sets created
by divide necessary to illustrate tpj’s optimality.

Non-preemptive EDF scheduling of jobs of multiple threads ordered by a thread-level
scheduler (such as BUNDLE or BUNDLEP) allows preemptions between threads of the same
job but precludes preemptions between jobs. Each task benefits from the advantages of
thread-level scheduling by the exclusive use of the processor and shared resources. Since task
set specifications may be divided, a specification is feasible when threads of the specification
τ̂ may be assigned to tasks such that the posterior task set τ is feasible by EDF-NP.

I Definition 11 (npm-feasible). A task set specification τ̂ is task-level non-preemptive multi-
threaded feasible (npm-feasible) if there exists a posterior task set τ of τ̂ such that all
multi-threaded jobs scheduled by EDF-NP will always meet their deadlines.

For the theorems that follow, unless necessary to discriminate between anterior and
posterior tasks, the anterior task τ̂i will be written τi. The sum of the demand of the partial
tasks of τi for an interval of length t is

∑
τk∈Φi

dbf(τk,t).

I Theorem 1 (Minimal Demand of Partial Task Sets Over All Intervals). For a partial task
set Φi of an anterior task τi with mi threads, minimizing

∑
τk∈Φi

dbf(τk,di) minimizes∑
τk∈Φi

dbf(τk,t) for all t ≥ 0.

Proof. Provided into two parts, when t < di and t ≥ di. The first portion is a simple direct
argument. The second portion is by contradiction.

Part 1 : When t < di, 0 =
∑
τk∈Φi

dbf(τk,t). By definition of the demand bound function
(Equation 4) the execution requirement of a task is zero before the first possible deadline. All
tasks τk ∈ Φi share the same relative deadlines dk = di and absolute deadlines because pk = pi.
These follow from the definition of division (Definition 1) and partial tasks (Definition 2).
Since t < di, dbf(τk,t) = 0 for all τk ∈ Φi. Therefore,

∑
τk∈Φi

dbf(τk,t) will be minimal
(exactly zero) when t < di, regardless of

∑
τk∈Φi

dbf(τk,di).
Part 2 : When t ≥ di, assume

∑
τk∈Φi

dbf(τk,di) is minimal and
∑
τk∈Φi

dbf(τk,t) is not
minimal. Since all partial tasks τk ∈ Φi share absolute deadlines (as described in Part 1),
demand for each task dbf(τk,t) increases only for values of t that equal absolute deadlines.
Furthermore, the execution requirement of every τk increases exactly by ck(mk) for each

ECRTS 2019

15:14 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

absolute deadline of τi = {D1, D2, ...}:

dbf(τk,D1) = 1 · ck(mk)
dbf(τk,D2) = 2 · ck(mk)

...

dbf(τk,Dz) = z · ck(mk)

Utilizing Property 2, for t ≥ di and Dz, where Dz is the greatest absolute deadline of τi
less than or equal to t (Dz ≤ t):∑

τk∈Φi

dbf(τk,t) =
∑
τk∈Φi

z · dbf(τk,di) = z ·
∑
τk∈Φi

dbf(τk,di)

Because z depends on t (and is completely independent of the division of the partial task
set), if

∑
τk∈Φi

dbf(τk,t) were not minimal then
∑
τk∈Φi

dbf(τk,di) could not be minimal,
contradicting the assumption.

Combining Parts 1 and 2, when the demand for the partial tasks of τi is minimized for the
interval di, the demand of partial tasks of τi is minimized for all intervals of length t ≥ 0. J

I Corollary 2 (Minimal WCET Sum of Φi Minimizes Demand Over the Interval di). The
demand of Φi over the interval di is minimized when the sum of WCET of Φi is minimized.

Proof. Following directly from Theorem 1, where the demand over the interval di of each
task τk ∈ Φi is given by dbf(τk,di) = 1 · ck(mk) = ck(mk). Then,∑

τk∈Φi

dbf(τk,di) =
∑
τk∈Φi

ck(mk)

Thus, minimizing
∑
τk∈Φi

ck(mk) minimizes
∑
τk∈Φi

dbf(τk,di) J

I Corollary 3 (Minimal WCET Sum of Φi Minimizes Demand Over all Intervals t ≥ 0). The
demand of Φi over alls interval t ≥ 0 is minimized when the sum of WCET of Φi is minimized.

Proof. Following directly from Theorem 1 and Corollary 2. J

I Definition 12 (Assumptions of Theorem 4). For the following theorem, there are several
assumptions that must be upheld for the result to be valid. These assumptions are consequences
of the non-preemptive setting and requirements of the task set specification.

1. All tasks τi must be characterized by strictly increasing discrete concave WCET function
ci(mi).

2. Any task τi ∈ τ where ci(mi) > qi is not schedulable non-preemptively. Consequently, no
assignment of mi may cause ci(mi) > qi or the task set is infeasible.

3. The greatest number of threads assigned to a task τi such that ci(mi) ≤ qi is named
m = argmax

m∈Z+
(ci(m) ≤ qi).

I Theorem 4 (Minimal Sum of WCET of Φi for any q by divide). For an anterior task τ̂i
and non-preemptive chunk size q, divide will produce a partial task set Φi with minimum
WCET sum among all possible partial task sets of τ̂i.

C. Tessler and N. Fisher 15:15

Proof. To illustrate a contradiction, assume Φi returned from divide does not have the
minimal WCET sum for a specific q and task τ̂i. There must exist a partial task set Φk of τ̂i
that differs, ie. Φi 6= Φk and∑

τk∈Φk

ck(mk) <
∑
τj∈Φi

cj(mj)

By Property 4 of partial tasks created by divide, Φi will have at most one task with less
than m threads assigned to it. For Φk to differ, it must have at least two tasks with less
than m threads assigned to them. Call these two tasks with less than m threads τx, τy ∈ Φk.
Select τx as the task with the greater number of threads mx ≥ my.

Consider the impact on
∑
τk∈Φk

ck(mk) of moving one thread of τy to τx, as the operation
of adding the difference of WCET values for cx(mx + 1) and cy(my − 1) to the sum.(∑

τk∈Φk

ck(mk)
)
− cx(mx) + cx(mx + 1)− cy(my) + cy(my − 1)

=
(∑
τk∈Φk

ck(mk)
)

+ (cx(mx + 1)− cx(mx))− (cy(my)− cy(my − 1))

By the concave growth Property 1 and virtue of my ≤ mx, the quantity
(cx(mx + 1)− cx(mx)) is less than or equal to (cy(my)− cy(my − 1)) so the difference must
be less than or equal to zero. Therefore:(∑

τk∈Φk

ck(mk)
)

+ (cx(mx + 1)− cx(mx))− (cy(my)− cy(my − 1)) ≤
∑
τk∈Φk

ck(mk)

The WCET sum of Φk can be reduced by moving one thread of τy to τx. When mx = m

no more threads may be assigned to τx or the system will be infeasible by Definition 12.
While there are two (or more) tasks of τx, τy ∈ Φk with fewer than m threads assigned,
moving one thread from τy to τx will reduce the WCET sum. By repeatedly moving tasks to
reduce the WCET sum, Φk will satisfy all aspects of Property 4 of partial task sets created by
divide, ie. Φi = Φk after all moves have been completed. This contradicts the assumption
that Φi 6= Φk and the relationship of their WCET sums, therefor Φi is minimal. J

I Theorem 5 (tpj is Optimal with Respect to npm-feasibility). For a task set specification τ̂ ,
tpj returns feasible if and only if there exists an npm-feasible posterior task set τ of τ̂ .

Proof. Forward Direction (tpj returns feasible for τ̂ =⇒ ∃ a posterior task set τ | τ is
npm-feasible): The tpj algorithm returned a posterior task set τ where the infeasibility
condition (Equation 9) is never satisfied across intervals of length 0 ≤ t ≤ T ∗(τ) and every job
of τi ∈ τ executes non-preemptively for ci(mi) ≤ qi time units. Therefore, τ is npm-feasible.

Reverse Direction (∃ a posterior task set τ | τ is npm-feasible =⇒ tpj returns feasible
for τ̂): For the purpose of demonstrating a contradiction, assume tpj returns infeasible for
an npm-feasible task set τ̂ . Name the absolute deadline which tpj returned infeasibility for
Dx from the set ordered deadlines {D1, D2, ...} and the task which generated Dx, τ̂x. Name
the set of tasks with relative deadlines smaller than d̂x, τ̄ .

For any task τk ∈ τ̄ and partial task set Φk of τk included in the posterior set τ , the
number of tasks and threads assigned to each Φk cannot be affected by τ̂x due to d̂x > dk
and Property 3. The combined set of posterior tasks of τ̄ in τ is denoted τ̇ = ∪τk∈τ̄Φk.

There are two cases where tpj will return infeasible for τ̂ , on Line 8 and Line 22. Both
illustrate a contradiction with the respect to demand.

ECRTS 2019

15:16 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Line 8: If tpj returns infeasible for τ̂ on Line 8 there is insufficient slack qx to execute
any one-thread job of τ̂x non-preemptively. Since slack is inversely related to demand, the
demand of τ̇ is too great to allow any thread of τx as part of a feasible task set.

Line 22: If tpj returns infeasible for τ̂ on Line 22, there is insufficient supply for Φx (the
set of partial tasks of τ̂x). By Corollary 2 and Theorem 4 the demand of Φx is minimal over
all intervals for the available slack qx. Due to Property 3 only tasks with shorter relative
deadlines i.e. τ̇ , can impact the demand of Φx by affecting qx. In this case, the demand of τ̇
is too great for the demand of Φx to be included as part of a feasible task set.

By assumption τ̂ is npm-feasible, the infeasibility conditions on Lines 8 and 22 of tpj
indicate the demand of τ̇ is too great. However, tpj adds each partial set Φk to τ̇ in increasing
deadline order. By Property 3, every Φk added to τ̇ exclusively impacts the demand of larger
deadlines. Every Φk increases the demand of τ̇ minimally starting with D1, maximizing the
slack available for partial task sets with greater deadlines; thus the demand of τ̇ is minimal
and cannot be reduced. For τ̂ to be npm-feasible, there must be another partial task set that
reduces τ̇ ’s demand, which is a direct contradiction. Therefore, tpj must return feasible. J

5 Evaluation

Evaluation [28] of tpj and the non-preemptive multi-threaded task model presented in this
work focuses on the schedulability ratio of synthetic task sets and a case study based upon the
evaluation of BUNDLEP [29]. The ratio of task set specifications deemed schedulable by tpj
for EDF-NP will be compared to np-chunks in both limited and fully preemptive settings
for EDF. What follows is a description of the parameters to task set specification generation,
the prescribed evaluation metrics, and analysis of the results.

5.1 Generating Task Sets
A specified task set τ is generated with four parameters, M the total number of threads
of execution, U the target utilization, a maximum growth factor F, and m the maximum
number of threads per task. The number of threads M may be one of {3, 5, 7, 10, 25, 50, 100}
with dependent m values of {2, 2, 3, 4, 8, 16, 32}. Utilization varies from [0.1, 0.9] and the
growth factor varies from [0.1, 0.9] independently by increments of 0.1.

Each task τi ∈ τ is assigned mi threads from a random uniform integer distribution over
[1,m], such that the sum of all threads is equal to M =

∑
τi∈τ mi. A task’s period pi is from

a uniform integer distribution over [10, 1000]. Utilization ui of each task τi is calculated
using the UUniFast(n,U) [9] algorithm, where n = |τ |.

A task’s WCET is assigned for mi threads, ci(mi) = dpi · Uie. Tasks are given a growth
factor Fi in a uniform real distribution over [0.1,F]. The remaining mi − 1 WCET values
are determined by substituting Fi into Equation 3. The relative deadline of τi, di is taken
from a uniform integer distribution over [max(ci(mi), pi/2), 1000].

For each combination of (M,m,U,F), 1000 task sets specifications are generated. Table 2
summarizes the parameters of task set generation. The smaller values ofM are taken from [7]
and the dependent m values were selected to avoid one task consuming more than half of
the threads in the task set specification (where possible).

Table 2 Task Set Generation Parameters.

U [0.1, 0.9]
F [0.1, 0.9]

M {3, 5, 7, 10, 25, 50, 100}
m {2, 2, 3, 4, 8, 16, 32}

C. Tessler and N. Fisher 15:17

5.1.1 Applicability of Parameters
To avoid favoring tpj, the task set generation parameters m and F were carefully selected.
For the threads per task m, a large m favors tpj. Therefore, no single task my be assigned
more than half the total threads: m ≤ bM2 c (except for M = 3).

The growth factor F is informed by previous results for BUNDLEP [29]. In [29], multi-
threaded tasks are constructed from the Mälardalen WCET benchmarks [16]. Task analysis
in [29] yields growth factors below 0.1 for several benchmarks. A lower bound (0.1) on F
greater than observed values is pessimistic, resulting in less favorable results for tpj.

5.2 Case Study
BUNDLEP’s evaluation covers 18 benchmarks for distinct architecture configurations. An
architecture configuration includes the block reload time (BRT), cycles per instruction (CPI),
and number of cache lines. One of the least favorable in terms of the analytical benefit of
BUNDLEP is a BRT of 100, CPI of one, and 32 cache lines. From this configuration, the WCET
values and growth factors were extracted, growth factors ranging in the range [0.08, 3.02].1

From these results of BUNDLEP 1000 task sets with 18 tasks (one per benchmark) and a
total 100 threads were generated per utilization target. The utilization target ranged from
0.1 to 1.0 increments of 0.1. Threads were assigned to each task τi from a distribution over
mi ∈ [2, 8]. Each tasks utilization, period, and deadline, ci(mi) were assigned using the same
method as synthetic tasks. The WCET values for fewer threads 1 ≤ k < mi, were scaled such
that the value of ci(k)/ci(mi) remained constant after the ci(mi) = dpi · Uie assignment.

5.3 Evaluation Metrics
tpj is compared with the np-chunks schedulability test in non-preemptive (EDF-NP) and
preemptive (EDF-P) settings. The focus of the evaluation is on the non-preemptive setting.
The preemptive setting serves as a comparison to alternative scheduling strategies and the
theoretical best case. For EDF-P, preemptions incur no penalty, CRPD or otherwise. In
this highly advantageous setting for EDF-P, tpj can still produce feasible non-preemptive
task sets np-chunks deems infeasible in a preemptive setting!

To compare schedulability tests, each task set specification τ̂ is provided to tpj without
modification under EDF-NP scheduling. tpj will transform the task set producing a posterior
task set τ if a feasible one exists. A task set specification τ̂ cannot be provided directly to
np-chunks, since np-chunks has no concept of threads per job.

To be suitable for analysis by np-chunks, a task set specification τ̂ is transformed into
two posterior task sets. The first task set, τ1 represents single-threaded tasks by including
all threads of τ̂ as individual tasks. The second task set, τm represents the tasks of τ̂ as
indivisible, executing all specified threads without preemption per job. Each task in τm

benefits from the thread-level scheduler but does not expose the threaded nature of the task
to the scheduling algorithm. This is achieved by modifying an anterior task τ̂j with m̂j > 1
and ĉj(m̂j) to a posterior task τj with mj = 1 and cj(1) = ĉj(m̂j).

The np-chunks schedulability test will produce results for τ1 and τm in both preemptive
and non-preemptive settings. For non-preemptive schedulability analysis, each task τi ∈ τ1

or τm must have a non-preemptive chunk size qi ≥ ci(mi). When evaluating preemptive EDF
schedulability for τ1 and τm, the results are labeled EDF-P:1 and EDF-P:M respectively.
When evaluating non-preemptive EDF schedulability, the results are labeled EDF-NP:1 and

1 Due to length restrictions the full listing of WECT and growth factors are omitted.

ECRTS 2019

15:18 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Table 3 Schedulability Test Combinations.

Test Task Set EDF-NP EDF-P

tpj τ̂ EDF-TPJ -

np-chunks τ1 EDF-NP:1 EDF-P:1
τm EDF-NP:M EDF-P:M

EDF-NP:M. Schedulability results for tpj under EDF-NP scheduling are labeled EDF-TPJ.
Table 3 gives a synopsis of the schedulability tests. Schedulability ratios for each of the
combinations are calculated for every (M,m,U,F) configuration.

It must be noted that EDF-P:M is an unrealistic schedulability test. It serves only as a
theoretical limit to the benefits of concave growth. Concave growth is a result of scheduling
threads of the same job without preemption by another job with a BUNDLE-based thread-level
scheduler. However, current BUNDLE implementations require that an executing task cannot
be preempted by a different task. Such a preemption would destroy the cache benefits and
analysis of BUNDLE scheduling. Analysis of EDF-P:M assumes preemptions between jobs are
allowed and have zero cost. It is included as a reference for tpj’s performance, as a ceiling
for what is theoretically possible given ideal (but likely impossible) conditions.

As a consequence of transforming multi-threaded task set specifications τ̂ to single-
threaded task sets τ1, some single threaded task sets may not be feasible. One reason for
a task set τ1 to become infeasible is the utilization exceeding one, while τm and τ̂ have
utilization less than one. In this setting, EDF-TPJ is capable of scheduling task sets that
preemptive EDF cannot.

For a task set specification configuration (M,m,U,F), call S the set of all task set
specifications τ̂ generated for the configuration. Call s the set of τ1 task sets transformed
from τ̂ ∈ S such that τ1 has utilization greater than one. The set stpj is the subset of s
deemed feasible by the tpj schedulability test. That is, stpj is the set of all tasks tpj could
schedule, yet EDF-P:1 could not (even) when CRPD values are zero.

5.4 Results

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(a) BUNDLEP Case Study.

Schedulability Ratio for EDF-TPJ
EDF-P:1

EDF-P:M
EDF-TPJ

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) EDF-TPJ Summary.

Figure 2 Case Study and EDF-TPJ Summary Results.

Schedulability ratios from the BUNDLEP case study are given in Figure 2a. For the
target architecture and 18 benchmarks, EDF-TPJ consistently outperforms the other non-
preemptive algorithms. For preemptive EDF-P:1 (with zero cost preemptions), EDF-TPJ
has higher schedulability ratios for the majority of target utilization values. EDF-TPJ’s

C. Tessler and N. Fisher 15:19

comparative performance increases with the target utilization. This case study demonstrates
the benefit of tpj to non-preemptive and (potentially) preemptive approaches.

Figures 2b, 3a, and 3b, summarize the results for the synthetic task sets varied by the
utilization and growth factor. Within each graph, the schedulability ratios provided by
EDF-P:1 and EDF-P:M serve as references. The difference between EDF-P:1 and the subject
of the graph illustrate the benefit of preemptive scheduling. Inclusion of EDF-PM highlights
the theoretical limit of concave growth to schedulability.

Schedulability Ratio for EDF-NP:1
EDF-P:1

EDF-P:M
EDF-NP:1

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a) EDF-NP:1 Summary.

Schedulability Ratio for EDF-NP:M
EDF-P:1

EDF-P:M
EDF-NP:M

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) EDF-NP:M Summary.

Figure 3 EDF-NP:1 and EDF-NP:M Summary.

Including EDF-P:1 and EDF-P:M in each of the summary graphs eases the comparison
between EDF-NP:1, EDF-NP:M, and EDF-TPJ. Comparing EDF-NP:1 (3a) to EDF-NP:M
(3b), illustrates the benefits of the model and scheduling mechanism. EDF-NP:M has a
consistently higher schedulability ratio for all utilizations and growth factors. EDF-TPJ (2b)
outperforms EDF-NP:M, with higher schedulability ratios for all utilizations and growth
factors due to the ability to transform task sets. EDF-TPJ performs best among the non-
preemptive tests across all configurations. Additionally, EDF-TPJ is able to schedule task
sets deemed infeasible for EDF-P:1.

Table 4 summarizes the infeasible utilization findings for the synthetic tasks. For moderate
and larger values of M(≥ 25), the number of infeasible by utilization task sets dominate
the specifications. For 25, 50, and 100 total threads, the infeasible by utilization comprise
44, 59, and 74 percent of the task sets respectively, with EDF-TPJ finding 25, 34, and 45
percent feasible. This illustrates the large potential of the proposed model, in conjunction
with concave growth WCET functions of thread-level schedulers (e.g. BUNDLE and BUNDLEP).

Table 4 U > 1 Feasibility.

(M,m) (3, 2) (5, 2) (7, 3) (10, 4) (25, 8) (50, 16) (100, 32) Total
|S| 81000 81000 81000 81000 81000 81000 81000 567000
|s| 3131 4973 11744 18689 36565 49147 59412 183661

|stpj| 465 291 1437 3065 9426 16912 25832 57428

There are two noteworthy trends within the schedulability results. The simpler of
the two is the relationship between utilization and schedulability ratio for a fixed growth
factor. Figure 4a illustrates the trend common among M ≤ 10 total threads. The trend
for preemptive and non-preemptive schedulability tests when utilization increases is for
the schedulability ratio to decrease. However, EDF-TPJ always outperforms the other
non-preemptive tests.

ECRTS 2019

15:20 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 10,m ≤ 4, F = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(a) (M,m,U,F) = (10, 4, ∗, 0.5).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 7,m ≤ 3, U = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(b) (M,m,U,F) = (7, 3, 0.5, ∗).

Figure 4 M ≤ 10 Performance.

The second trend is slightly more complex. Figure 4b was selected for the smallest M
and U values with visually distinct plots per schedulability test. The growth factor and the
schedulability ratio are correlated. As the growth factor increases, so does the schedulability
ratio. This is due to the utilization being held constant. When the growth factor is small,
the WCET of the first thread of each task is larger. Larger WCET values are harder to
schedule non-preemptively.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 25,m ≤ 8, U = 0.7)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 25,m ≤ 8, F = 0.9)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

Figure 5 M > 10 EDF-TPJ Performance Above EDF-P:1.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 100,m ≤ 32, F = 0.4)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 100,m ≤ 32, U = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

Figure 6 M = 100 EDF-TPJ Performance.

As M increases beyond 10 total threads, the number of infeasible by utilization task sets
s grows. This contributes to the schedulability ratio of EDF-TPJ surpassing EDF-P:1 for
threshold utilization and growth factor values. For M = 25, the threshold of utilization is
between [0.6, 0.7] shown in Figure 5.

C. Tessler and N. Fisher 15:21

For M = 100 and F ≤ 0.4, EDF-TPJ outperforms EDF-P:1. Figure 6 highlights the
advantage of EDF-TPJ compared to EDF-P:1 by virtue of concave growth. It also highlights
the benefit of dividing tasks, as the performance of EDF-NP:M is always below EDF-TPJ.

The comparative performance of EDF-TPJ is at its lowest for M < 10 threads and
U > .4 utilization. In these ranges EDF-TPJ maintains the highest schedulability ratio
among the non-preemptive methods, but the ratio is closer to EDF-NP:M or EDF-NP:1 than
EDF-P:1. This suggests, the decrease in EDF-TPJ’s performance is more likely due to the
non-preemptive setting combined with larger WCET values for individual threads.

6 Conclusion

Motivation for this work stemmed from BUNDLE-based thread-level schedulers limitation of a
single task and single job. The primary goal was to create a multi-task scheduling technique
and schedulability test for those BUNDLE-based thread-level schedulers which leverages without
decreasing the inter-thread cache benefit.

In addition to achieving the primary goal, the scheduling technique and schedulability
test developed for the multi-task BUNDLE-based scheduler can be applied to any thread
level scheduler with strictly increasing discrete concave WCET functions. This allows any
compatible thread-level scheduling technique to benefit from the tpj approach developed in
this work. As a non-preemptive multi-threaded schedulability test tpj is optimal with respect
to npm-feasibility, always producing a feasible task set if one is schedulable by EDF-NP.

For future work, the primary focus is upon a fully or limited preemption scheduling
algorithm that permits the inter-thread cache benefit of BUNDLE-based schedulers and other
schedulers characterized by concave growth to retain their thread-level scheduling benefits.

References
1 S. Altmeyer, R. Davis, and C. Maiza. Improved cache related pre-emption delay aware response

time analysis for fixed priority pre-emptive systems. Real Time Systems, 48(5), 2012.
2 S. Altmeyer, R. I. Davis, and C. Maiza. Cache Related Pre-emption Delay Aware Response

Time Analysis for Fixed Priority Pre-emptive Systems. In IEEE Real-Time Systems Symposium,
pages 261–271, November 2011. doi:10.1109/RTSS.2011.31.

3 Sebastian Altmeyer and Claire Maiza Burguière. Cache-related Preemption Delay via Useful
Cache Blocks: Survey and Redefinition. Journal of Systems Architecture, 57(7):707–719,
August 2011. doi:10.1016/j.sysarc.2010.08.006.

4 S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-Aware Scheduling of Multicore Task
Sets for Real-Time Systems. In IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 300–309, August 2012. doi:10.1109/RTCSA.2012.
48.

5 S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In [1990] Proceedings 11th Real-Time Systems Symposium, pages
182–190, December 1990. doi:10.1109/REAL.1990.128746.

6 Sanjoy Baruah. The limited-preemption uniprocessor scheduling of sporadic task systems. In
17th Euromicro Conference on Real-Time Systems (ECRTS’05), pages 137–144, July 2005.
doi:10.1109/ECRTS.2005.32.

7 M. Bertogna and S. Baruah. Limited Preemption EDF Scheduling of Sporadic Task Systems.
IEEE Transactions on Industrial Informatics, 6(4):579–591, November 2010. doi:10.1109/
TII.2010.2049654.

8 M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo. Optimal Selection
of Preemption Points to Minimize Preemption Overhead. In Proceedings of the Euromicro
Conference on Real-Time Systems, pages 217–227, July 2011. doi:10.1109/ECRTS.2011.28.

ECRTS 2019

http://dx.doi.org/10.1109/RTSS.2011.31
http://dx.doi.org/10.1016/j.sysarc.2010.08.006
http://dx.doi.org/10.1109/RTCSA.2012.48
http://dx.doi.org/10.1109/RTCSA.2012.48
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/ECRTS.2005.32
http://dx.doi.org/10.1109/TII.2010.2049654
http://dx.doi.org/10.1109/TII.2010.2049654
http://dx.doi.org/10.1109/ECRTS.2011.28

15:22 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

9 E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In Proceedings. 16th
Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004., pages 196–203, July 2004.
doi:10.1109/EMRTS.2004.1311021.

10 R. Bril, S. Altmeyer, M. van den Heuvel, R. Davis, and M. Behnam. Fixed priority scheduling
with pre-emption thresholds and cache-related pre-emption delays: integrated analysis and
evaluation. Real-Time Systems, 53(4):403–466, July 2017.

11 A. Burns. Advances in Real-Time Systems, chapter Preemptive priority-based scheduling: an
appropriate engineering approach, pages 225–248. Prentice Hall, Inc., 1995.

12 Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Springer Publishing Company, Incorporated, 3rd edition, 2011.

13 John Michael Calandrino. On the Design and Implementation of a Cache-aware Soft Real-time
Scheduler for Multicore Platforms. PhD thesis, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, 2009.

14 J. Cavicchio, C. Tessler, and N. Fisher. Minimizing Cache Overhead via Loaded Cache Blocks
and Preemption Placement. In Proceedings of the Euromicro Conference on Real-Time Systems,
2015.

15 Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and Non-Preemptive Real-
Time UniProcessor Scheduling. Research Report RR-2966, INRIA, 1996. Projet REFLECS.
URL: https://hal.inria.fr/inria-00073732.

16 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks: Past, Present And Future. In International Workshop on Worst-Case Execution
Time Analysis, volume 15, pages 136–146, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

17 C.-G. Lee, J. Hahn, S.L. Min, R. Ha, S. Hong, C.Y. Park, M. Lee, and C.S. Kim. Analysis of
cache-related preemption delay in fixed-priority preemptive scheduling. IEEE Transactions on
Computers, 47(6):700–713, 1998.

18 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. J. ACM, 20(1):46–61, January 1973. doi:10.1145/321738.321743.

19 J. M. Marinho, V. Nelis, S.M. Petters, and I. Puaut. An Improved Preemption Delay Upper
Bound for Floating Non-preemptive Region. In Proceedings of IEEE International Symposium
on Industrial Embedded Systems, 2012.

20 H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate Estimation of Cache Related Preemption
Delay. In Proceedings of IEEE/ACM/IFIP International Conference on Hardware/ Software
Codesign and Systems Synthesis (CODES), 2003.

21 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A Predictable
Execution Model for COTS-Based Embedded Systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 269–279, April 2011. doi:10.1109/RTAS.2011.
33.

22 B. Peng, N. Fisher, and M. Bertogna. Explicit Preemption Placement for Real-Time Conditional
Code. In Proceedings of Euromicro Conference on Real-Time Systems, 2014.

23 J. Simonson and J.H. Patel. Use of preferred preemption points in cache based real-time
systems. In Proceedings of IEEE International Computer Performance and Dependability
Symposium, 1995.

24 J. Staschulat and R. Ernst. Scalable Precision Cache Analysis for Real-Time Software. ACM
Transactions on Embedded Computing Systems (TECS), 6(4), September 2005.

25 Y. Tan and V. Mooney. Integrated intra- and inter-task cache analysis for preemptive multi-
tasking real-time systems. In Proceedings of International Workshop on Software and Compilers
for Embedded Systems (SCOPES), 2004.

26 C. Tessler and N. Fisher. BUNDLE: Real-Time Multi-threaded Scheduling to Reduce Cache
Contention. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 279–290, November
2016. doi:10.1109/RTSS.2016.035.

http://dx.doi.org/10.1109/EMRTS.2004.1311021
https://hal.inria.fr/inria-00073732
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1109/RTSS.2016.035

C. Tessler and N. Fisher 15:23

27 C. Tessler and N. Fisher. BUNDLEP: Prioritizing Conflict Free Regions in Multi-threaded
Programs to Improve Cache Reuse. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 325–337, December 2018. doi:10.1109/RTSS.2018.00048.

28 Corey Tessler. NPM-BUNDLE Artifacts, 2019. URL: http://www.cs.wayne.edu/~fh3227/
npm-bundle/.

29 Corey Tessler and Nathan Fisher. BUNDLEP: prioritizing conflict free regions in multi-
threaded programs to improve cache reuse - extended results and technical report. CoRR,
abs/1805.12041, 2018. arXiv:1805.12041.

30 Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and Precise WCET
Prediction by Separated Cache and Path Analyses. Real-Time Systems, 18(2):157–179, May
2000. doi:10.1023/A:1008141130870.

31 H. Tomiyama and N. D. Dutt. Program Path Analysis to Bound Cache-Related Preemption
Delay in Preemptive Real-Time Systems. In Proceedings of the Eighth International Workshop
on Hardware/Software Codesign (CODES), 2000.

32 Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In
Proceedings of the International Conference on Real Time Computing Systems and Applications,
1999.

33 B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making Shared Caches More
Predictable on Multicore Platforms. In Euromicro Conference on Real-Time Systems, pages
157–167, July 2013. doi:10.1109/ECRTS.2013.26.

34 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-case
Execution-time Problem – Overview of Methods and Survey of Tools. ACM Trans. Embed.
Comput. Syst., 7(3):36:1–36:53, May 2008. doi:10.1145/1347375.1347389.

ECRTS 2019

http://dx.doi.org/10.1109/RTSS.2018.00048
http://www.cs.wayne.edu/~fh3227/npm-bundle/
http://www.cs.wayne.edu/~fh3227/npm-bundle/
http://arxiv.org/abs/1805.12041
http://dx.doi.org/10.1023/A:1008141130870
http://dx.doi.org/10.1109/ECRTS.2013.26
http://dx.doi.org/10.1145/1347375.1347389

	Introduction
	Discussion of Related Research
	Model
	Dividing and Task Parts
	Worst-Case Execution Time Function Growth

	Non-Preemptive EDF Schedulability
	Non-Preemptive Chunks
	Improving the Non-Preemptive Chunk Size
	Threads per Job (TPJ) Scheduling Algorithm
	Non-Preemptive Feasibility of TPJ and DIVIDE

	Evaluation
	Generating Task Sets
	Applicability of Parameters

	Case Study
	Evaluation Metrics
	Results

	Conclusion

