
Implementation of Memory Centric Scheduling for
COTS Multi-Core Real-Time Systems
Juan M. Rivas1

PARTS Research Centre, Université libre de Bruxelles, Brussels, Belgium
jrivasco@ulb.ac.be

Joël Goossens
PARTS Research Centre, Université libre de Bruxelles, Brussels, Belgium
joel.goossens@ulb.ac.be

Xavier Poczekajlo
PARTS Research Centre, Université libre de Bruxelles, Brussels, Belgium
xavier.poczekajlo@ulb.ac.be

Antonio Paolillo
HIPPEROS S.A., Louvain-la-Neuve, Belgium
antonio.paolillo@hipperos.com

Abstract
The demands for high performance computing with a low cost and low power consumption are
driving a transition towards multi-core processors in many consumer and industrial applications.
However, the adoption of multi-core processors in the domain of real-time systems faces a series
of challenges that has been the focus of great research intensity during the last decade. These
challenges arise in great part from the non real-time nature of the hardware arbiters that schedule
the access to shared resources, such as the main memory. One solution proposed in the literature is
called Memory Centric Scheduling, which defines a separate software scheduler for the sections of the
tasks that will access the main memory, hence circumventing the low level unpredictable hardware
arbiters. Several Memory Centric schedulers and associated theoretical analyses have been proposed,
but as far as we know, no actual implementation of the required OS-level underpinnings to support
dynamic event-driven Memory Centric Scheduling has been presented before. In this paper we aim
to fill this gap, targeting cache based COTS multi-core systems. We will confirm via measurements
the main theoretical benefits of Memory Centric Scheduling (e.g. task isolation). Furthermore, we
will describe an effective schedulability analysis using concepts from distributed systems.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases real-time, multi-core, memory centric, predictability, implementation, rtos

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.7

Funding Juan M. Rivas: This research was funded by Wallonia Region (Belgium) BEWARE grant
PARTITA (1610375).

1 Introduction

Advancements in the manufacturing process of integrated electronics, in addition to the sheer
size of the general computing market, are increasingly widening the offer and lowering the
costs of commercial off-the-shelf (COTS) multi-core processors. While these commercial
processors are generally designed with average performance in mind, their wide availability
and low cost are pushing their adoption into real-time applications where a different set of
requirements such as predictability and worst-case guarantees are needed.

1 Corresponding author

© Juan Maria Rivas, Joël Goossens, Xavier Poczekajlo, and Antonio Paolillo;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jrivasco@ulb.ac.be
mailto:joel.goossens@ulb.ac.be
mailto:xavier.poczekajlo@ulb.ac.be
mailto:antonio.paolillo@hipperos.com
https://doi.org/10.4230/LIPIcs.ECRTS.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Implementation of Memory Centric Scheduling

The main challenge of considering COTS multi-core processors for real-time applications
can be found in the way some resources are shared between the cores. For instance, the access
to the shared main memory is usually scheduled by hardware arbiters that are generally
not designed with real-time or predictability considerations in mind. In essence, all the
jobs concurrently accessing the shared memory can interfere with each other, thus adding
delays to the execution time that are potentially large and very difficult to tightly bound.
This interference can be compounded by other inter-dependent sources such as the shared
cache: a task could evict a cache line of another task in a different core, which could produce
further accesses to the shared memory and interferences down the line. In conclusion, in a
multi-core processor the execution time of any task can be affected by any other concurrent
task, regardless of priorities or criticalities. This leads to two main problems: (1) the task
execution times are inflated due to interferences from other cores, and (2), the worst-case
execution time (WCET) estimations tend to be greatly inflated due to the difficulty to predict
these inter-core interferences.

This mismatch between the predictability requirements needed in real-time systems
and the performance characteristics of available multi-core processors has triggered an
intense research effort in the real-time community during the last decade [17]. One line
of research proposes additional layers of software and associated mathematical analyses to
add predictability to the commercial multi-core platforms. An example of such approach
is based on the new task model called the PRedictable Execution Model (PREM) [31].
With PREM, each task code is explicitly divided into coarse grained phases that will access
the shared memory (memory phases) and phases that will operate exclusively on cached
data and instructions (execution phases). Typically, the memory phases are composed of
prefetch or load instructions that copy into the cache the data and instructions needed by a
subsequent execution phase, or by write-back instructions to copy updated data from the
cache to the main memory.

Leveraging the PREM model, a new type of scheduling scheme called Memory Centric [38]
defines high level schedulers for the memory phases with the aim to limit or avoid concurrent
memory phases. This way, the contention in the shared memory subsystem can be solved by
software, avoiding relying on the low level unpredictable arbiters. Several previous works
have proposed different variations of Memory Centric schedulers, a selection of which will be
briefly discussed in Section 2. Notwithstanding this body of work, and as far as we know,
all these proposals are either theoretical works or implementations relying on static or time
triggered scheduling.

The main objective of this paper is to complement those previous approaches, by im-
plementing dynamic Memory Centric Scheduling in an actual Real-time Operating System
(RTOS). While the basic ideas to sustain our implementation do not depend on any particular
RTOS, we choose to target HIPPEROS [28]. HIPPEROS is built from the ground-up to
support multi-core processors and employs an asymmetric master-slave architecture in which
the schedulers run on a dedicated core, called the master core. By exploiting this architecture
the overheads of executing the schedulers are concentrated in the master core, while the slave
cores can execute tasks with a baremetal level of overheads.

To tease the outcome of this paper, Figure 1 shows the execution times of a periodic task
during a span of 40 seconds. From 0 to 10 seconds the task runs alone in the system, and
then a new task is added to a new core every 10 seconds (each core has at most one task).
The blue line (contention) shows how the execution time of the task increases any time a
new task is added, indicating that it is being affected by interferences from other cores. The
orange line (labelled as “this paper”) shows the execution times of the same task, but using
the implementation we provide in this paper. We can see that now the task execution time
remains constant, thus achieving a level of isolation from other tasks.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:3

0 10 20 30 40
time (s)

900

1000

1100

1200

ex
ec

ut
io

n
tim

e
(u

s)

contention
this paper

Figure 1 Execution times of a task with different number of competing tasks.

Contributions of this paper

Implementation of dynamic Memory Centric Scheduling in HIPPEROS. This
includes a kernel-level scheduler and a user-level API. We target fixed task priority and
preemptive memory phases, that can be dynamically invoked either synchronously or
asynchronously.
An evaluation study to confirm with measurements the theoretical benefits of Memory
Centric Scheduling, namely an execution free of interferences in the main memory.
A schedulability analysis defined by exploiting the similarities between the task model
used in Memory Centric Scheduling and the distributed task model [36]. We compare
the analytical results with actual measurements.

The paper is organized as follows: Section 2 provides more background on works related
to handling interferences in the main memory of multi-core systems, with a focus on Memory
Centric Scheduling, and a brief introduction to the HIPPEROS RTOS main relevant features.
Section 3 presents a description of the system model and general hardware characteristic
assumptions adopted throughout the paper. Section 4 presents our implementation of Memory
Centric Scheduling in HIPPEROS. Section 5 describes our schedulability analysis based
on distributed systems. Section 6 shows the results of the extensive evaluation performed.
Finally, Section 7 provides the main conclusions we have reached in this work, and hints at
some general research paths that we could follow in the future.

2 Background and Related Work

In this section we will contextualize this paper in relation to other similar previous works,
focusing on approaches that tackle the problem of handling the interferences in the main
memory. In Section 2.1 we will briefly describe the basic elements of Memory Centric
Scheduling, also providing a selection of papers that develop it. Section 2.2 is dedicated
to discuss other approaches similar to Memory Centric Scheduling. Finally, Section 2.3
provides a description of the main relevant characteristics of the RTOS we target in this
paper, HIPPEROS.

2.1 Memory Centric Scheduling
In the context of this paper we define Memory Centric Scheduling (MCS) as a scheduling
framework of real-time tasks that complies with the following characteristics:
(a) The tasks follow a PREM’like model [31]: tasks have two possible coarse grained states

or phases: memory phases (M-Phases) in which the task will access the shared main
memory; and execution phases (E-Phases) in which the task operates on cached data
and instructions with no access to the shared memory.

ECRTS 2019

7:4 Implementation of Memory Centric Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ1 M E M E M

τ2 M E M E M

Figure 2 Simple example of Memory Centric Scheduling with two tasks.

(b) There exists a system wide scheduler for the memory phases (memory phases scheduler,
MPS) that dynamically decides which memory phase can execute, hence effectively
controlling the access to the shared memory.

If the MPS limits the number of concurrent memory phases to 1, the low level non real-
time hardware arbiters that control the access to the shared memory are effectively bypassed,
avoiding any unpredictable interference delays they could produce. Figure 2 shows an example
of MCS with 2 tasks, in which each task executes in a different core, memory phases and
execution phases are labeled with M and E respectively, and vertical arrows indicate the
task activation. Note that at any time there is at most one memory phase executing.

Memory Centric Scheduling was first introduced by Yao et al [38], proposing a TDMA
schedule for the memory phases. That paper also introduces the concept of memory promotion,
by which the memory phases are given a higher priority than the execution phases to seek a
better schedulability. The work in [9] studies with simulations different partitioned scheduling
policies for MCS, and reaches the conclusion that non-preemptive least-laxity first memory
phases is the best approach. The papers [3, 22] propose static schedules of the memory and
execution phases. MCS with global scheduling has also been studied [2, 39].

The authors of [37] propose a mechanism to hide the latencies of the memory phases by
executing them as background DMA transfers. This initial work targets single-core systems,
but is later extended for multi-core systems in [4]. These two papers assume special hardware
such as double ported scratchpad memories, or a cache based system that supports DMA
transfers from the main memory to the cache. The paper [35] presents an integration of
MCS in an RTOS, relying on scratchpad memory and implementing the memory phases with
DMA transfers scheduled with TDMA.

In this paper we provide an actual implementation of Memory Centric Scheduling in
an RTOS (HIPPEROS), where the memory phases can be dynamically invoked. We will
also describe latency hiding techniques that do not rely on special hardware. Additionally
we will adapt existing analysis techniques for real-time distributed systems, and compare it
with our measurements.

2.2 Alternative approaches
Memory bandwidth regulators are usually mentioned as an alternative to MCS. This approach
assigns per-core memory bandwidth reservation budgets that do not overload the memory
bus. Therefore, each core can run with a guaranteed memory bandwidth, independently on
the number of other active cores. A clear advantage of this approach is that it is transparent
to the tasks, i.e., no task modifications are needed. On the other hand, with MCS, once a
task is granted access to the memory, it can enjoy full access to its bandwidth.

Examples of this approach implemented in software are MEMGUARD [42] or the Multi-
Resource Server [10]. A challenge of these techniques is to find an optimal budget assignment
per core. A framework called Single Core Equivalence [20] proposes a static and even budget

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:5

assignment, which is complemented by a mechanism to lock in cache the most frequently
used pages [19], and a tool called PALLOC [41] that allocates pages to specific memory
banks to allow a certain level of parallelism in the main memory. Subsequent works allow
uneven memory bandwidth budget allocations [21, 40, 1, 8]. Recently ARM presented the
Memory Partitioning and Monitoring (MPAM) feature in the Armv8.4-A specification [7],
which allows to partition the memory bandwidth among different system components.

2.3 Multi-core real-time operating system: HIPPEROS RTOS

HIPPEROS [33] is a multi-core real-time operating system targeting high performance and
safety-critical applications running on embedded systems.

The HIPPEROS kernel is a micro-kernel written to natively support multi-core and
parallel systems. The kernel software architecture is distributed and asymmetric. This means
that, when entering kernel mode, different cores are running different kernel code. In this
case, only one core has a different code path than the others, and it is called the master core.
The master core is responsible of the heavy kernel operations such as scheduling, memory
management and task states. The other cores are the slave cores and have a lighter kernel
mode of operations. The rationale behind that asymmetric design is that the master core,
being dedicated to heavy management operations, is freeing the slave cores of that burden,
letting them focus on user-mode task execution with few interferences. The master core can
orchestrate task context switches remotely on the slave cores through inter-core interrupts.
When a slave core requires to invoke the scheduler (for example when a task is completed
and exits), it can do so by calling a remote system call, triggering an inter-core interrupt to
the master core which is in turn effectively calling the scheduler module. The slave core waits
the system call response from the master core by spinning the task in user-mode, making it
easy to preempt the task when executing a context switch ordered by the master core.

This software architecture has the following advantages.
For a kernel developer perspective, the design and the code base is much easier to write
and maintain. It avoids having to lock every single structure which is shared among cores
in a symmetric kernel design.
As slave cores do not directly interact with each other but only with the master core,
the asymmetric design has the effect of reducing peak contention on spinlocks when cores
are trying to acquire them. In fact, the only spinlocks required are to implement the
communication mechanisms between slaves and master to trigger the remote system call
procedure and the context switches. Less contention allows for an improved scalability
(in the worst case) when increasing the number of cores.
The asymmetric design naturally partitions the data among cores, automatically making
a better use of private caches. As the state of the system regarding tasks and scheduling
is only maintained by the master core, this data must not be shared among cores and
can stay in the private caches of the master core, allowing for both a faster execution of
the master core kernel path and less cache misses on the slave side.

The concept of an asymmetric kernel for multi-core real-time systems was previously
studied and validated in prior work [12]. Regarding HIPPEROS, it has been the target
of previous contributions, such as its own parallel micro-kernel design [28], power-aware
real-time scheduling [30], mixed-criticality scheduling [29] and hardware acceleration for
embedded image processing applications [34, 16]. In this paper, the HIPPEROS RTOS is
used to showcase an in-kernel implementation of the Memory Centric Scheduling approach.

ECRTS 2019

7:6 Implementation of Memory Centric Scheduling

3 System Model

3.1 Hardware Assumptions
We consider a typical commercial off-the-shelf (COTS) multi-core processor, composed of
M identical cores with one or more levels of cache connected to the main memory via a
shared memory bus. We assume that the last-level cache (LLC) is shared among the cores
and employs a write-back policy: an LLC miss produces a share memory access to load
a cache line, and possibly another memory bus access to write-back an evicted LLC line.
Therefore we can establish that accesses to the shared bus only occur during LLC misses.
We also assume that the shared LLC cache can serve concurrent hits from several cores with
negligible interference delays. We will see in Section 6 that this assumption holds in our
measurements. Additionally, we consider that only the cores can trigger a memory bus access
(e.g. no peripheral DMA transfers are allowed). Figure 3 depicts a typical COTS multi-core
processor, with 4 cores, private L1 caches and shared L2 cache.

3.2 Task Model
The cores execute a set of N preemptive sporadic tasks Γ = τ1, ..., τN . In this paper we
consider fixed task priorities (FTP) partitioned scheduling. We use a modified PREM task
model that, in addition to the Execution Phases, defines two types of memory phases, called
Prefetch Phases and Write-Back Phases. These phases operate in the following manner:

1. Prefetch Phase (P-Phase): tasks start with a memory phase called Prefetch Phase that
prefetches (i.e. copies) the necessary data and instructions from the main memory to the
cache.

2. Execution Phase (E-Phase): the task operates on data and instructions cached during
the previous phase. As a result, no accesses to the main memory are triggered during
this phase.

3. Write-back Phase (W-Phase): this is a memory phase that executes after an E-Phase to
copy any updated data from the cache to the main memory. Additionally, the W-Phase
also flushes all the previously prefetched cache lines, so any subsequent P-Phase could
start with a known clean state.

For a predictable execution, cache lines prefetched during a P-Phase should only be evicted
in a controlled manner during a W-Phase. Otherwise, any cache line that is inadvertently
evicted could later trigger main memory accesses during the E-Phases, thus breaking the
assumptions of the PREM model. Accidental cache line evictions can be produced by the
task to itself (self-eviction), by other tasks in the same core (intra-core eviction) or from
a different core (inter-core eviction). In this paper we propose to evade intra-core and

Core 0 Core 1 Core 2 Core 3
L1 L1 L1 L1

L2

Main Memory

Memory bus

Figure 3 Simplified diagram of a typical commercial quad-core processor with 2 levels of cache.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:7

inter-core evictions by assigning each task a partition of the shared cache. Cache partitioning
is a commonly used solution that has been extensively studied [11, 23, 6]. Formally, we
define Ai as the set of shared cache partitions assigned to τi, and BAi the total size of the
cache partitions assigned to τi. In this paper we assume that the cache partition mapping
is performed offline. Section 4.4 provides more details about how we implemented cache
partitioning for our particular platform.

Regarding the problem of self-evictions, in the context of this paper we can establish
that they occur when the size of the data/instructions prefetched in a P-Phase exceeds the
size of the cache partition assigned to the task. To handle this situation, we allow tasks to
have several sequential batches of P-E-W phases, each one targeting a different portion of
the memory with a size up to the size of the task cache partition. Formally, we define Bi as
the memory requirement of τi, that is, the total size of data and instructions that τi needs
to execute. If the memory requirement is larger than the task cache partition (Bi > BAi),
the task must invoke several P-E-W phases to cover its memory requirement. We call each
P-E-W phase triplet a Section.

We define Si,j as the j-th Section of task τi. Additionally, Pi,j , Ei,j and Wi,j are the
P-Phase, E-Phase and W-Phase in section Si,j , respectively. To avoid self-evictions, each
Section operates on data/instructions with a size up to BAi. Thus, the number of Sections
needed by task τi is at least d Bi

BAi
e. Furthermore, we assume that the memory requirements

of the tasks are fully available at task release, and that they can be partitioned. An example
of a PREM task with two Sections is shown in Figure 4.

In this paper we target fixed priority scheduling of the memory phases. Accordingly, the
tasks have two fixed priority values: its fixed task priority (with a core local scope) and its
fixed memory phase priority (with a global scope). In HIPPEROS the task priority can be
defined by an external configuration file, or by using the standard API’s such as OpenMP
or pthreads. To set the memory phase priority we have implemented a new system call
(memphase_priority_set).

In single-core systems, the worst-case execution time (WCET) of a task is usually defined
as an upper bound of its execution time when it runs alone in its core. This definition cannot
be maintained in multi-core systems due to inter-core interference delays [17]. Accordingly,
in this paper we define the WCET of task τi as an upper bound of its execution time when
it is running alone in its core, and a known set of tasks are running in other cores. Similarly,
we define the worst-case response time (WCRT) of τi as an upper bound of its execution
time when it runs with a known set of tasks, in the same core and others. Thus, the WCRT
includes the WCET of the task, and possible scheduling delays due to tasks in the same core.

This paper will define the system calls to start memory phases, but is not concerned
about how to generate the code of the tasks, or how to determine the memory addresses to
prefetch. We assume that the memory phases are either defined manually, or using some
automatic tool [31, 18].

τi Pi,1 Ei,1 Wi,1 Pi,2 Ei,2 Wi,2

S1,1 S1,2

Figure 4 PREM task τi with 2 sections.

ECRTS 2019

7:8 Implementation of Memory Centric Scheduling

4 Implementation of Memory Centric Scheduling

In this section we describe the main contribution of this paper, which is a full implementation
of Memory Centric Scheduling in an RTOS. In the next subsection we first lay-out the goals
and intended behavior which will later shape the implementation.

4.1 Overview and Goals
We identify that an implementation of Memory Centric Scheduling is composed of two main
interconnected components: (1) a scheduler for the memory phases and (2) an API for tasks
to invoke the start and end of memory phases.

An initial approximation could understand a memory phase as a critical region protected
by a mutex located in shared memory, in which the mutex lock and unlock functions would
signal the start and end of the memory phases. While this approach can indeed assure that
only one memory phase is executing at a time, it restricts their behavior to be non-preemptive.
Consequently, any task could be temporarily blocked while requesting the start of a memory
phase, independently of any priority assignment.

We propose an architecture similar to that of a mutex but with a preemptive nature
to avoid those blocking times. Also, the memory phases are scheduled according to their
fixed priorities and only one memory phase is allowed to execute at a time. By removing
the interference in the shared memory and cache, and prioritizing the memory phases, the
target of our implementation is that the response time of any task would only depend on
the number of higher priority tasks executing in the same core, and the number of higher
priority memory phases system-wide.

It is worth noting that the underlying hardware platform could force the use of non-
preemptive memory phases. For example, the cache controller could not support performing
a write-back cache operation (e.g. clean or invalidate) while a previous cache operation
has yet not finished. This would not allow a W-Phase to preempt another W-Phase. For
such situations we support non preemptive memory phases, which can however co-exist
with preemptive ones.

In the next subsections we explain the implementation in more detail. Section 4.2 deals
with the kernel-level memory phase scheduler and system calls to start and end a memory
phase, while Section 4.3 presents the user level API that uses those system calls to request
prefetch and write-back phases. In Section 4.4 we will describe how to use existing techniques
to analyze our task model.

4.2 Kernel-level: memory phases scheduler (MPS)
As we described in the previous subsection, to implement the memory phases scheduler
(MPS) we get inspiration from how mutexes operate, aiming to implement a mechanism that
acts like a “preemptive critical region”.

The two main components of the MPS are the system calls to invoke the start and end of
a memory phase, called memphase_start and memphase_end, respectively. To illustrate how
they operate we present a simple example with two tasks, τ1 and τ2, in which the memory
phases of τ1 have a higher priority to those of τ2. Additionally, each task is mapped to a
different core, and a third core handles the scheduler and MPS (HIPPEROS master core).
Figure 5 shows the timeline of their execution, with a focus on the memory phase invoked by

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:9

0 1 2 3 4 5 6 7 8 9

τ1 M E

τ2 M M E

memphase start

memphase end

Figure 5 Simple example of scheduling of memory phases and needed system calls.

�1
Core 1

Master Core

Core 2

MPS Scheduler

�2

Kernel

memphase_start block

block
��2

�1
Core 1

Master Core

Core 2

MPS Scheduler

�2

Kernel

memphase_start

�1
Core 1

Master Core

Core 2

MPS Scheduler

�2

Kernel

memphase_end unblock

unblock
��2

t = 0 t = 1 t = 3a) b) c)

Figure 6 System calls to schedule the simple example of memory phases.

τ1, while Figure 6 shows the different system calls involved and the interaction between the
master core and the slave cores. It is worth noting that the master core is still available to
execute user tasks.

First, at t = 0, τ2 requests the start of a memory phase with memphase_start, which
is immediately granted by the MPS as no other memory phase is executing at that time
(Figure 6a). At this point the MPS stores τ2 in its internal task queue that keeps track on
the tasks that have a pending memory phase, ordered according to their priorities. Note
that in this context, the MPS grants access to τ2 by just letting it continue its execution. At
t = 1, τ1 requests the start of a memory phase (Figure 6b). At this time the MPS decides to
grant access to τ1 since its memory phase has a higher priority than the memory phase of
τ2. Accordingly, the MPS requests the system scheduler to block the execution of τ2. At
t = 2, τ1 signals the end of its memory phase with the system call memphase_end (Figure 6c),
which prompts the MPS to unblock τ2 to let it finish its memory phase.

The pseudocode shown in Listing 1 describes the system call memphase_start. The
variable “caller” is a pointer to the task requesting the memory phase, while “owner” is a
pointer to the task currently executing a memory phase. Basically, the system call always
add to the queue the “caller”, and blocks the task with the lowest priority memory phase
between “caller” and “owner”, updating the “owner” when necessary. If “owner” is non
preemptive, the “caller” is always blocked.

Similarly, Listing 2 shows a pseudocode describing memphase_end. When called, this func-
tion unblocks the next highest priority memory phase (if any), and assign it as the new “owner”.

4.3 User level API
The previous sub-section presented the mechanisms to invoke and schedule memory phases.
It is important to note that, in our implementation, the kernel is not concerned about
the contents of the memory phases, or even if they access the main memory or not. We

ECRTS 2019

7:10 Implementation of Memory Centric Scheduling

Listing 1 memphase_start pseudocode.
1 memphase_start (nonpreemptive)
2 caller = getCaller ()
3 owner = getFirst (queue)
4 if (nonpreemptive)
5 setnonpreemptive (owner)
6 insert (caller , queue)
7 if owner != NULL
8 if nonpreemptivemp (owner)
9 block(caller)

10 else if memprio (caller) > memprio (owner)
11 block(owner)
12 else
13 block(caller)

Listing 2 memphase_end pseudocode.
1 memphase_end ()
2 caller = getCaller ()
3 removeFirst (caller , queue)
4 owner = getFirst (queue)
5 if owner != NULL
6 unblock (owner)

provide the semantics of a memory phase in user-space, by creating functions that employ
the memphase_start and memphase_end system calls to protect prefetch and write-back
instructions, defining prefetch and write-back phases respectively.

Two variants of this user-space API are implemented:
Synchronous memory phases (S-MP) (Section 4.3.1).
Asynchronous memory phases (A-MP) (Section 4.3.2).

4.3.1 Synchronous Memory Phases (S-MP)
Synchronous Memory Phases (S-MP) are memory phases that are actively executed by the
tasks that request them. To illustrate S-MP, Figure 7 shows an example with three tasks
τ1, τ2, τ3 in decreasing order of fixed memory phase priority, with each task executing in a
dedicated core, and τ1 released one time instant after τ2 and τ3. For simplicity, the labels
for the phases do not show the sub-indices. We can see that the tasks follow the sequence
P-Phase → E-Phase → W-Phase, each one executed by the requesting task in its core. In
the figure we can also see that the MPS decides at each time to schedule the highest priority
memory phase, preempting memory phases when necessary.

We implement two functions to request the start of Prefetch and Write-back phases,
called h_memphase_prefetch and h_memphase_writeback respectively. A simplified version
of their code is presented in Listing 3 and 4, respectively. We can see that these functions use

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

τ1 P E W P E W

τ2 P P E W P E W

τ3 P E W

Figure 7 Taskset scheduled with synchronous memory phases (S-MP).

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:11

Listing 3 memphase_prefetch simplified code.
1 void h_memphase_prefetch (void *addr , size_t bytes) {
2 memphase_start ();
3 prefetch (addr , bytes);
4 memphase_end ();
5 }

Listing 4 memphase_writeback simplified code.
1 void h_memphase_writeback (void *addr , size_t bytes) {
2 memphase_start ();
3 writeback (addr , bytes);
4 memphase_end ();
5 }

the memory phase start and end system calls to protect the call to a prefetch or write-back
function. The only requisite of the prefetch function is that they result in data/instructions
copied to the task cache partition or private cache, while the write-back function must be able
to copy the updated data into the shared memory and leave the cache partition in a clean
state. These requirements represent basic functionalities that are commonly implemented
in any commercial processor. Implementation details for our particular platform will be
provided in Section 4.4.

In this initial version of the implementation we only target the prefetch and write-back
of data (i.e. not instructions). The evaluation section will show how this limitation provides
good results. Additionally, the current API is limited to contiguous memory prefetches and
write-backs (i.e. defined by base address + memory size).

4.3.2 Asynchronous Memory Phases (A-MP)
An Asynchronous Memory Phase (A-MP) is a memory phase that is executed by a dedicated
worker in the background, which we call the Memory Phase Worker (MPW). Crucially, the
main benefit of A-MP is that the execution times of these background memory phases do not
contribute to the execution times of the requesting tasks. It is worth noting that, contrary
to previous proposals for background memory phases [37, 4], our implementation does not
rely on any special hardware like scratchpad memories or support for DMA transfers from
memory to cache, so it can be accomplished in a wider spectrum of available processors.

A-MP requires that the task cache partitions must be divided into two sub-partitions,
which we call the A and B sub-partitions. Formally, given a task τi, we define AA

i and AB
i

as its two sub-partitions, with Ai = AA
i ∪ AB

i . The basic idea behind A-MP is that while
an E-Phase is working on data from a given sub-partition, background memory phases are
preparing the other sub-partition. By switching the executing sub-partition, we can effectively
hide the execution times of the memory phases while continuously executing E-Phases. We
extend the names of the phases to indicate in which sub-partition they are operating, e.g. PA,
EA and WA express a P, E and W Phases operating on sub-partition A, respectively.

The MPW is implemented as a task which just executes memory phases on behalf of
other tasks, therefore it must have access to the same address space as the requesting
tasks. If all the tasks share the same address space (e.g. single-page table), a single MPW is
enough. Otherwise, each task must spawn its own MPW thread. Following the philosophy of
HIPPEROS, by default we map the MPW(s) to the master core. As a result, if A-MP is used,
the overheads due to the execution of the memory phases are localized in the master core.

ECRTS 2019

7:12 Implementation of Memory Centric Scheduling

Listing 5 A-MP API.
void h_memphase_init_a (void);
h_mp_request_t h_memphase_prefetch_a (void *addr , size_t bytes , u32 part);
h_mp_request_t h_memphase_writeback_a (void *addr , size_t bytes , u32 part);
bool h_memphase_finished_a (h_mp_request_t * request);
void h_cache_set_partition (u32 partition);
void h_cache_revert_partition (void);

Kernel

MPS

Scheduler

MPW

Master Core
h_memphase_prefetch

prefetch, �2, B, 0x1FF, 200000
prefetch, �3, B, 0x000, 200000
prefetch, �1, B, 0x1A0, 200000�1

Core 1

h_memphase_prefetch_a(0x1A0, 200000, B)

Figure 8 Elements involved in A-MP.

Listing 5 shows the functions implemented to use A-MP. Before it can be used, the
MPW must be initialized by using the API function h_memphase_init_a, after which it
remains waiting for memory phase requests. A memory phase request is stored in a data
type called h_mp_request_t which has 4 elements: type (i.e. prefetch or write-back), data
memory address and size, and the cache sub-partition to use (A or B). Tasks can request
an A-MP by using functions h_memphase_prefetch_a and h_memphase_writeback_a for P
and W Phases respectively, which return a h_mp_request_t data structure. The parameters
of these request functions are the memory address region of data to prefetch/writeback (addr
and bytes), and which task cache sub-partition to target (part). Tasks can determine if an
A-MP has finished by using the function h_memphase_finished_a.

Once a request is received by the MPW, it is stored in an internal FIFO queue. The
MPW serves these requests by performing S-MP’s. Figure 8 illustrates an example of how
the A-MP requests operate, in which we can see that the MPW queue is filled with prefetch
requests, which are served by requesting an S-MP with function h_memphase_prefetch.

It is important to note that the MPW is just another task executing in the system, and
as such it has its own cache partition assignment. Accordingly, when it performs a memory
phase on behalf of another task, it must temporarily change its own cache partition to the
appropriate A or B sub-partition of the requesting task. This way the S-MP performed by
the MPW will operate on the correct cache partition. Once the request has been served,
the MPW cache partition returns to its default value. We implement two functions to
dynamically set the task cache partition: h_cache_set_partition to set a specific partition,
and h_cache_revert_partition to return to the default task partition. Details on how this
dynamic cache partition mapping is implemented are detailed in Section 4.4.

It is worth mentioning that since the A-MP are just S-MP executed by the MPW, both
S-MP and A-MP can coexist in the same system without further modifications. In our
implementation we give the MPW memory phases the lowest priority, so they do not interfere
with other tasks S-MP requests. Additionally, the MPW task itself has the highest priority,
so any other task mapped in the master core would not preempt it and delay the execution
of other tasks A-MP’s.

To illustrate the benefits of A-MP, Figure 9 shows the same task-set as Figure 7, with
the difference that now the tasks use A-MP. In the example, the tasks start by invoking an
S-MP to prefetch the initial batch of data to sub-partition A of each task. This request is
synchronous because the cache partitions start with a clean state, so there is no benefit in
requesting an A-MP prefetch and wait for it to finish.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

MPW PB
2 P

B
3 P

B
1 WA

2 P
A
2 W

A
1 P

A
1 W

A
3 WB

2 P
B
2 W

B
1 P

B
1 W

B
3 WA

2W
A
1 WB

2W
B
1

τ1 PA EA EB EA EB

τ2 PA EA EB EA EB

τ3 PA EA EB

Figure 9 Task-set scheduled with asynchronous memory phases (A-MP).

If we now focus on τ1, we can see that it starts its first execution phase EA at t = 2. At
that moment, the task also requests an A-MP prefetch for its sub-partition B (PB

1), which is
served by the MPW at t = 5. By the time EA finished, that prefetch request has already
finished so EB can start without delay (t = 8). In general, we can see that while a task is
executing an E-Phase on a partition, the MPW is preparing the other sub-partition with the
pertinent write-back and prefetch phases, which allows a continuous execution of E-Phases.
As a result, the execution time of the tasks is just composed of the execution time of its
E-Phases plus an initial synchronous P-Phase. It is worth noting that with A-MP, the phases
operate on half the data size compared to S-MP, as they operate on a sub-partition.

In conclusion, A-MP has the potential to drastically reduce the execution times of the
tasks, at the expense of adding workload in the master core. In practice, the master core only
remains available for non real-time tasks, or real-time tasks with big slack times. Furthermore,
it is trivial to see that the benefits of A-MP can only be realized if the E-Phases are long
enough to completely cover the execution time-span of the background memory phases.

4.4 Implementation Details
We implemented the Memory Centric Scheduling elements described in Section 4 in version
18.09 of HIPPEROS. While HIPPEROS also supports ARMv8, Intel x86 and PowerPC, we
focused our efforts on the widely available ARMv7 architecture. Specifically, we target the
NXP i.MX6Q system-on-chip (SoC), composed of 4 Cortex A9 cores, a 16-way 1MB shared
L2 cache with the L2C-310 cache controller, and 1 GB of DDR RAM.

Cache partitioning

As described in Section 3, our implementation of MCS requires that each task is guaranteed a
dedicated cache partition, which is proposed to avoid intra-core and inter-core cache evictions.
Any of the available cache partitioning solutions [24, 19, 6, 11] that provides that guarantee
could be used with our implementation. Nonetheless, some caveats must be taken into
account, which are described below.

When the cache partitioning can only be achieved at the core level, all the tasks in
the same core share the same cache partition, and thus could evict lines of each other.
Under this situation, our implementation of MCS is restricted to one task per core, or to
multiple non preemptive tasks per core. To implement cache partitioning in this paper, and
without loss of generality, we will exploit a feature in the L2C-310 cache controller called
lockdown by master, which restricts the cache allocations of each core to a particular set of
L2 cache-ways, thus effectively achieving core-level cache partitioning. As a consequence, to
meet the requirements of our implementation of MCS, we will consider only one task per
core. Nevertheless, this limitation does not curtail us from pursuing the objectives of this
paper. For the evaluation of our implementation of MCS, we are mainly focused on studying

ECRTS 2019

7:14 Implementation of Memory Centric Scheduling

the contention (or lack thereof) in the shared memory. Accordingly, we view the cores as
mere producers of memory requests, with no regard to which particular task produced it.
For this objective, a configuration of just one task per core is sufficient.

Special consideration must also be taken with systems with a high number of preemptive
tasks. Here the cache partitions could get very small, and as a consequence more memory
phases would be needed, increasing the overall overheads in the system. These MCS related
overheads compound with other pre-existing preemption delays [5]. To mitigate this problem,
our implementation of MCS supports non preemptive tasks, which allows core-level cache
partitioning and therefore larger partition sizes.

Finally, we assign the HIPPEROS master core an L2 cache partition that is big enough
to meet the memory requirements of the kernel. This way we can assume that the kernel
does not interfere with the tasks in neither the L2 cache nor in shared memory.

Memory phases

We have considered two types of memory phases: prefetch and write-back phases.
The objective of the prefetch phases is to copy lines from the shared memory into the

task cache partition. As we have previously stated, in this initial implementation we only
target the prefetch of data. For the prefetch we use the ARM PLD instruction, which has
two main caveats:
1. This instruction copies data to the L1 cache only. This is not a problem because, with

lockdown by master, any eviction in the L1 cache is allocated into the task L2 cache
partition. As a result, all the data prefetched with PLD would end up in the L1 cache
(private to the core) or in the L2 cache partition.

2. PLD is generally defined as a hint instruction, that is, it is not guaranteed that it would
produce any effects. However, in our evaluation we have confirmed that, at least in the
i.MX6Q SoC we used, this instruction always performs its operation.

As an alternative, ARM defines an optional component in the Cortex-A9 core called the
Preload Engine (PLE), which can be used to program loads of selected regions of memory
into L2. This component nicely fits the objective of the prefetch phases, but unfortunately
is not available in our SoC. It is important to note that we have disabled the speculative
hardware prefetchers, which would interfere with our own P-Phases.

Regarding the write-back phases, their objective is two-fold: (1) to copy into the shared
memory any data updated during a previous execution phase, and (2) leave the L2 cache
partition in a clean state. This can be achieved with common flush cache operations, targeting
the L1 private cache and L2 cache partition.

Memory phases worker (MPW)

As described in Section 4.3.2, the Memory Phases Worker (MPW) is a task that performs
memory phases on behalf of other tasks. Therefore, it must dynamically change its cache
partition to match that of the requesting task. With the lockdown by master feature described
before, we can perform this partition switch by dynamically changing the core cache ways
assignment, adding a necessary L1 flush before the switch to avoid inter-partition pollution.

5 Schedulability Analysis

From an analytical point of view, the main consequence of employing S-MP or A-MP is
that the unpredictable interferences in the shared memory and cache are now replaced
by predictable scheduling delays. This characteristic can lead to a simplification in the

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:15

P E W

Core 1

1 P E W

Core 1Mem Mem

Figure 10 Transformation from PREM task to end-to-end flow (distributed task).

mathematical frameworks needed to determine execution and response time bounds, compared
to the fully contended case. Essentially, with S-MP or A-MP, the response time of the tasks
is composed of two main components:

1. The execution times of the phases, which are not going to suffer from contention in
the shared memory or interferences due to any type of unplanned cache evictions. This
removes a great source of uncertainty that usually leads to an over-inflation of the
execution time estimations.

2. Scheduling delays: these can come from other tasks in the same core (intra-core), which is
the classical scheduling problem [13], or from other cores (inter-core) due to the scheduling
of the memory phases, which also have a predictable nature.

If we make the simplifying assumption that other sources of inter-core interferences besides
the shared memory and cache are negligible, we can establish that the execution times of
the task phases is not affected by the number of tasks in the system. In this situation, with
S-MP or A-MP, the response times of any task would only depend on the number of higher
priority tasks in its own core, and the number of higher priority memory phases system-wide.
In the evaluation section (Section 6) we will see how this assumption mostly holds true
in the measurements.

To define a formal response time analysis, and as already hinted by [39], we can draw
similarities between PREM and the distributed task model. In distributed systems, the
tasks, also sometimes called transactions or end-to-end flows, are formed by a sequence of
sub-tasks, each executing in a different processing resource (e.g. processor or network). A
sub-task can be a computational task in a processor, or a message scheduled and sent via a
network, that could trigger a further sub-task in the recipient processor. Additionally, these
sub-tasks are statically mapped to a processing resource due to the high costs that migration
would induce in a distributed system. Accordingly each processing resource typically has its
own scheduler for the sub-tasks it contains.

In view of this, we can model our PREM tasks as a distributed task: P-Phases and
W-Phases are modelled as sub-tasks executing in a memory processing resource, and the E-
Phases are sub-tasks executing in their original cores. Figure 10 illustrates this transformation
with a simple task that uses S-MP, where “Mem” is the memory processing resource. For a
task that uses A-MP, its equivalent distributed task is composed of just two sub-tasks: one
for the initial S-MP needed, and another for the sum of all E-Phases.

The distributed task model has been extensively studied, with several analysis techniques
proposed to calculate response times, a number of which are implemented in readily available
open-source applications. One of these tools is MAST [25, 14], which implements the seminal
holistic analysis [36], and several offset based analyses [26, 27] with different levels of precision
and complexity that improves on the holistic analysis, all for sporadic tasks. Section 6 will
compare these analytical techniques with actual measured response times. Additionally,
compositional analysis techniques can be applied to use different scheduling policies for each
processing resource [32][15]. This could enable for example the analysis of Memory Centric
Scheduling with EDF memory phases and fixed task priorities execution phases.

ECRTS 2019

7:16 Implementation of Memory Centric Scheduling

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

in
fla

ti
on

 fa
ct

or

sum

(a)

WOET inflation factor

Contention
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

1.0

1.1

1.2

1.3

1.4

in
fla

ti
on

 fa
ct

or

str

(b)

WOET inflation factor

Contention
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

1.0

1.1

1.2

1.3

1.4

in
fla

ti
on

 fa
ct

or

img

(c)

WOET inflation factor

Contention
S-MP
A-MP

Figure 11 Inflation factors for (a) Sum tasks, (b) Str tasks, and (c) Img tasks.

6 Evaluation

In this section we present the evaluation results of the Memory Centric Scheduling implement-
ation described in Section 5, based on actual execution time measurements of different types
of tasks. The framework was implemented in HIPPEROS 18.09, and the hardware platform
targeted is a Boundary Devices BD-SL-I.MX6 development board, which includes an NXP
i.MX6Q SoC composed of 4 Cortex-A9 cores, 1MB of 16-Way L2 cache with the L2C-310
controller, and 1GB of DDR3 RAM. We label the cores as Core 0 to Core 3, and assign Core
3 as the HIPPEROS master core, which means that this core executes the system scheduler,
the memory phases scheduler (MPS), and the memory phases worker (MPW) for A-MP.

The main focus is to evaluate how our implementation deals with the contention in the
shared memory, but is not concerned about intra-core scheduling. Accordingly, we only map
up to one task per core. The index of the task also indicates to which core it is mapped, e.g.,
τ0 is mapped to Core 0. Since we only consider one task per core, the concepts of WCET
and WCRT as defined in Section 3 became interchangeable during this evaluation.

We wrote three types of tasks: sum, which just sum batches of numbers; str which
encrypts strings; and img which applies a Gaussian blur filter on images. We compare 3
scheduling configurations: A-MP (from Section 4.3.1), S-MP (from Section 4.3.2), and
Contention. In the latter, the tasks do not invoke memory phases, and as such the hardware
arbiters handle the contention in the access to the main memory. For A-MP and S-MP,
the task indices also indicate the priority of its memory phases, with τ0 having the highest
priority. We vary the number of tasks in the system, and the task memory requirements
from 200 KB to 7.8 MB. Each task is given a partition of 4 cache ways, which implies that
for 200KB, the tasks just need 1 Section, while for 7.8MB the tasks need 40 Sections. To
obtain statistically relevant results, a total of 430000 executions were performed.

The evaluation is based on measurements of the execution times of the tasks. We define
woetK

i (m) as the worst-observed execution time (WOET) of τi, for a system with m total
tasks, and a K scheduling configuration (C for contention, S for S-MP, and A for A-MP).

Sequential Tasks

We first study the inflation factors of each configuration. For a system with up to m tasks, we
define the inflation factor of τi as the ratio between its WOET with (m− 1) co-runners and
its execution time running alone (0 co-runners), that is, woeti(m)/woeti(1). An inflation
factor above 1 indicates that the task execution time is affected by contention delays in
the shared memory. Figure 11 shows the inflation factors of τ0, for different data sizes and
the three types of tasks (sum, str and img). We can see that as expected, with Contention
scheduling, the inflation factor clearly grows above 1, with a measured maximum of up to 1.4.
On the other hand, we can observe that with S-MP and A-MP, the inflation factor remains

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:17

at approximately 1, with a slight advantage to S-MP. It is worth remembering that τ0 has
the highest priority memory phases, which implies that here it does not suffer from any type
of scheduling delays. This result also confirms that S-MP and A-MP can indeed isolate the
execution times of the tasks with respect the number of tasks accessing the shared memory.

We now study the improvement factor of using A-MP and S-MP with respect to Contention.
We define the improvement factor of τi as the ratio between its WOET with S-MP or A-
MP and its WOET with Contention. Here we consider systems with 3 tasks, that is,
the improvement factor is woeti(3)/woetC

i (3). Therefore, an improvement factor below 1
indicates that the task WOET improves with respect to Contention. Figure 12 shows the
improvement factor of τ0, τ1, τ2 for different data sizes and focusing on sum tasks. With a
general view of the figure we can reach two main conclusions. First, with S-MP or A-MP,
the WOET improvement gets more apparent the higher the size of the data is, remaining
constant above about 2 MB. Second, we can confirm that A-MP yields lower WOET than
S-MP. This is expected, as the majority of the memory phases with A-MP do not contribute
to the execution time of the task. In more detail, we also see that for τ0 (highest priority
memory phases), its WOET is always better with S-MP or A-MP than with Contention.
This result, in addition to the inflation factors shown before, indicate us that with S-MP or
A-MP we can achieve at the same time task execution time isolation and a reduction in the
execution times. For τ1, τ2 the WOET with S-MP is increased with respect Contention for
low data sizes (< 0.8 MB). This indicates that in this case, the overheads of S-MP (execution
of memory phases and scheduling delays) cannot be compensated by the lower execution
times of the fully cached E-Phases. On the other hand, In Figure 12b and c, we can identify
that for high data sizes, S-MP also grants improvements in τ1, τ2 over Contention.

Until now we have focused on evaluating the WOET’s. Another important factor in
real-time systems is the variability of the execution times, also called jitter. Figure 13 shows
the average observed execution times (AOET) of τ0, with added error bars (black vertical
lines) that show the WOET and best observed execution time (BOET) of each configuration.
Additionally, the overlapping patterned bars indicate the portion of the execution time that
is contributed by the “operation” portion of the task, which is the whole task in the case
of Contention, and the E-Phases in S-MP and A-MP. In the figure we can first confirm
that the jitter with Contention is clearly higher, especially when more tasks with more data
are involved. This is expected, as in these situations, with more shared memory accesses,
there is a higher chance of being delayed due to contention in those accesses, which varies
between different executions. On the other hand, S-MP and A-MP provide execution times
with no obvious jitter. This is the desired result, and it is expected as the main source of
variability (contention in shared memory) is solved by software in a predictable and constant
manner. Moreover, the figure also allows us to attest that the execution times of the E-Phases

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

0.7

0.8

0.9

im
pr

ov
em

en
t

fa
ct

or Task 0

(a)

WOET improvement factor
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

0.7

0.8

0.9

1.0

1.1

im
pr

ov
em

en
t

fa
ct

or Task 1

(b)

WOET improvement factor
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

im
pr

ov
em

en
t

fa
ct

or Task 2

(c)

WOET improvement factor
S-MP
A-MP

Figure 12 Improvement factors of sum tasks, for (a) Task 0, (b) Task 1 and (c) Task 2.

ECRTS 2019

7:18 Implementation of Memory Centric Scheduling

Contention S-MP A-MP

2.0

2.5

3.0

3.5

4.0

OE
T

(m
s) 0.2 MB/task

(a)

Task 0 OET

1 Task 2 Tasks 3 Tasks

operation

Contention S-MP A-MP

10

12

14

16

18

20

22

OE
T

(m
s) 0.8 MB/task

(b)

Task 0 OET

1 Task 2 Tasks 3 Tasks

operation

Contention S-MP A-MP

100

120

140

160

180

200

OE
T

(m
s) 7.6 MB/task

(c)

Task 0 OET

1 Task 2 Tasks 3 Tasks

operation

Figure 13 Average OET of Task 0, with maximum and minimum OET as error bars, for (a) 0.2
MB per task, (b) 0.8 MB per task, and (c) 7.6 MB per task.

0.4 2.9 5.3 7.8 10.3 12.8 15.3
Data per task (MB)

0.8

0.9

1.0

1.1

im
pr

ov
em

en
t

fa
ct

or 2 threads

(a)

WOS improvement factor
S-MP
A-MP

0.6 4.3 8.0 11.7 15.4 19.2 22.9
Data per task (MB)

0.6

0.8

1.0

1.2

im
pr

ov
em

en
t

fa
ct

or 3 threads

(b)

WOS improvement factor
S-MP
A-MP

Figure 14 Improvement factors of parallel tasks with (a) 2 threads and (3) threads.

(patterned portion) is the same for S-MP and A-MP. As expected, the only difference between
both originates from the higher number of memory phases that are included in the execution
times with S-MP.

Multi-threaded Tasks

We now evaluate the benefits of using S-MP and A-MP with multi-threaded tasks. For
this, we modify the sum tasks used before, so now they spawn 2 to 3 threads to process in
parallel a portion of its data. Each parallel thread requests its own memory phases. We
define the span of a parallel task as its execution time, which is the time interval between the
first thread is spawned, until the last thread finishes. We assume that the work performed
outside these parallel threads is negligible. Similarly to the WOET, we define the worst
observed span (WOS) as the maximum measured span, denoted as wosK for a K scheduling
configuration. Figure 14 shows the improvement factors of the WOS for S-MP and A-MP
over Contention, for parallel tasks with 2 and 3 threads, and different task data sizes. In
the figure we see similar results as with sequential tasks before: (1) only S-MP for low data
sizes sees and increase in the worst observed span times, and (2) A-MP gets a substantial
reduction in the execution times compared to S-MP and Contention.

Schedulability Analysis

We finally compare the measured WOET’s with the bounds obtained with analysis techniques
originally created for distributed systems. We model the PREM tasks as showed in Section 5,
and feed them as input to the MAST tool [14]. The models need worst-case execution times
for each task phase. For this, we use the highest task phases measured execution times. Then,
we apply three different analysis techniques: HOL, which is the original Holistic analysis by

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:19

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2

4

6

8
N

or
m

al
iz

ed
 r

es
po

ns
e

ti
m

e
Task 0

(a)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2

4

6

8

10

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

Task 1

(b)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2

4

6

8

10

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

Task 2

(c)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2.5

5.0

7.5

10.0

12.5

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

Task 3

(d)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

Figure 15 Analytical worst-case response times normalized to WOET, for (a) Task 0, (b) Task 1,
(c) Task 2, and (d) Task 3.

Tindell [36]; OFF, which is a subsequent off-based analysis [26]; and OFF-OPT which is an
optimization of the original offset-based analysis [27]. We only consider S-MP, as A-MP is
modelled as a pure S-MP task with only one memory phase at the beginning (Section 5).

We consider systems with 4 tasks. In Figure 15 we show, for each task in the system, the
worst-case response times obtained by these analysis techniques, normalized to the measured
WOET’s. First, we can confirm that the normalized response times are never below 1. This
indicates that the analyses never underestimated the observed response times. Furthermore,
we can attest that HOL provides the highest overestimation, followed by OFF and then
OFF-OPT. For τ0 (Figure 15a), which has the highest priority memory phases, both OFF
and OFF-OPT recognized that its memory phases always execute without delay, and thus
provide worst-case response times estimations very close to the WOET’s. For the rest of the
tasks, in which memory phases scheduling delays must be accounted for, OFF-OPT provides
clearly the best results, with normalized response times clearly below 2 for τ1, τ2, and below
4 for τ3. It is important to note that a higher task data size implies more memory phases.
Additionally, a task with low priority memory phases (e.g. τ3) is impacted by more higher
priority memory phases, so the scheduling scenario to analyze increases in complexity.

We think that one of the main sources of overestimation of these analysis techniques may
be due to task release phase considerations. The analytical concept of building a worst-case
situation (i.e. critical instant) by releasing all the tasks at the same time does not always
hold for distributed tasks [27]. Accordingly, part of the challenge of distributed analysis
techniques is in finding the tasks release time phases that lead to the worst case, which may
not have been arisen during the actual measured executions.

7 Conclusions and Future Work

In this paper we have tackled the problem of contention and interferences in the shared
memory of multi-core processors, which is a great impediment for the adoption of this
type of processors in real-time applications. Precisely, we have presented and tested an

ECRTS 2019

7:20 Implementation of Memory Centric Scheduling

implementation of Memory Centric Scheduling (MCS). The main idea of MCS is to solve the
access to the shared memory via a software-based dynamic scheduler, thus avoiding low level
and non real-time hardware arbiters.

While previous papers have proposed MCS from a theoretical standpoint, this paper,
to the best of our knowledge, is the first time it has been implemented in an actual RTOS
supporting dynamic scheduling. The implementation was carried out in an asymmetric
multi-core RTOS called HIPPEROS, which locates the scheduler in a dedicated core, called
the master core.

Two variants of MCS were implemented that can be used in commercial processors:
Synchronous Memory Phases (S-MP), in which the tasks execute the memory phases in
the foreground, and Asynchronous Memory Phases (A-MP), where the memory phases are
executed in the background by a dedicated task. We evaluated the implementation in a
quad core commercial processor, and confirmed via measurements the theoretical benefits of
Memory Centric Scheduling: the tasks effectively execute free of interferences in the shared
memory sub-system.

Specifically, by scheduling the memory phases with fixed priorities, we showed that the
tasks execution times were shielded from interferences from lower priority tasks. By extension,
the highest priority task has execution times that do not depend on the number of tasks in
the multi-core system. The main consequence of these isolation effects is that the execution
times can be more easily bounded, compared to the fully contended case. Furthermore, we
viewed that with MCS the worst-case observed execution times can be lower compared to
the fully contended case, specially for tasks with high memory requirements.

We also applied existing and proven analysis techniques for distributed systems, by
exploiting the similarities between the task model used in MCS and the distributed task
model. We showed how these techniques can indeed provide safe bounds of the execution
times of MCS systems, that are also in many cases very close to the observed values.

For future work we are planning: (1) to extend the evaluation to more than one task
per core, analyzing also the benefits of non-preemptibility; (2) to compare with other
approaches such as memory bandwidth regulators (e.g. MEMGUARD [42]); (3) to evaluate
new scheduling schemes for the memory phases (e.g. LLF) and the MPW.

References

1 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of Dynamic
Memory Bandwidth Regulation in Multi-core Real-Time Systems. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 230–241. IEEE, December 2018.

2 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-predictable
scheduling. In Proceedings of the 14th International Conference on Embedded Software -
EMSOFT ’14, pages 1–10, 2014.

3 Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multithreaded
applications on multicore systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, pages 1–6, New Jersey, 2014. IEEE Conference Publications.

4 Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global scheduling
of real-time tasks. In Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 285–296, 2015.

5 Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Improved cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems. Real-Time Systems,
48(5):499–526, September 2012.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:21

6 Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I. Davis. On the effectiveness
of cache partitioning in hard real-time systems. Real-Time Systems, 52(5):598–643, September
2016.

7 ARM. Arm® Architecture Reference Manual Supplement Memory System Resource Partition-
ing and Monitoring (MPAM). URL: https://developer.arm.com/docs/ddi0598/latest.

8 Muhammad Ali Awan, Pedro F. Souto, Benny Akesson, Konstantinos Bletsas, and Eduardo
Tovar. Uneven memory regulation for scheduling IMA applications on multi-core platforms.
Real-Time Systems, 55(2):248–292, April 2019.

9 Stanley Bak, Gang Yao, Rodolfo Pellizzoni, and Marco Caccamo. Memory-Aware Scheduling
of Multicore Task Sets for Real-Time Systems. In 2012 IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 300–309. IEEE, August
2012.

10 Moris Behnam, Rafia Inam, Thomas Nolte, and Mikael Sjödin. Multi-core composability in
the face of memory-bus contention. ACM SIGBED Review, 10(3):35–42, October 2013.

11 Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact of Cache Partitioning on
Multi-tasking Real Time Embedded Systems. In 2008 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 101–110. IEEE, August
2008.

12 Felipe Cerqueira, Manohar Vanga, and Björn B. Brandenburg. Scaling global scheduling with
message passing. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 263–274, April 2014.

13 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys, 43(4):1–44, October 2011.

14 Michael González Harbour, Jose Javier Gutiérrez, José M. Drake, Patricia López Martínez,
and Jose Carlos Palencia. Modeling distributed real-time systems with MAST 2. Journal of
Systems Architecture, 59(6):331–340, June 2013.

15 Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. Design space exploration and
system optimization with symTA/S - Symbolic timing analysis for systems. Proceedings -
Real-Time Systems Symposium, pages 469–478, 2004.

16 Tobias Kalb, Lester Kalms, Diana Göhringer, Carlota Pons, Ananya Muddukrishna, Magnus
Jahre, Boitumelo Ruf, Tobias Schuchert, Igor Tchouchenkov, Carl Ehrenstråhle, Magnus
Peterson, Flemming Christensen, Antonio Paolillo, Ben Rodriguez, and Philippe Millet.
Developing Low-Power Image Processing Applications with the TULIPP Reference Platform
Instance, pages 181–197. Springer International Publishing, Cham, 2019.

17 Claire Maiza, Hamza Rihani, Juan M Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I
Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM
Computing Surveys, 52(3), July 2019.

18 R. Mancuso, R. Dudko, and M. Caccamo. Light-PREM: Automated software refactoring
for predictable execution on COTS embedded systems. In 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems and Applications, pages 1–10,
August 2014.

19 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo
Pellizzoni. Real-time cache management framework for multi-core architectures. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54.
IEEE, April 2013.

20 Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun. WCET (m)
estimation in multi-core systems using single core equivalence. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), pages 174–183. IEEE, 2015.

21 Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo. WCET Derivation
Under Single Core Equivalence With Explicit Memory Budget Assignment. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

ECRTS 2019

https://developer.arm.com/docs/ddi0598/latest

7:22 Implementation of Memory Centric Scheduling

22 Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and Andrea
Marongiu. Combining PREM Compilation and ILP Scheduling for High-performance and
Predictable MPSoC Execution. In Proceedings of the 9th International Workshop on Program-
ming Models and Applications for Multicores and Manycores, PMAM’18, pages 11–20, New
York, NY, USA, 2018. ACM.

23 Sparsh Mittal. A Survey of Techniques for Cache Partitioning in Multicore Processors. ACM
Computing Surveys, 50(2):1–39, May 2017.

24 Frank Mueller. Compiler Support for Software-based Cache Partitioning. In Proceedings of
the ACM SIGPLAN 1995 Workshop on Languages, Compilers, &Amp; Tools for Real-time
Systems, LCTES ’95, pages 125–133, New York, NY, USA, 1995. ACM.

25 University of Cantabria. MAST. URL: https://mast.unican.es/.
26 Jose Carlos Palencia and Michael Gonzalez Harbour. Schedulability analysis for tasks with

static and dynamic offsets. In Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No.98CB36279), pages 26–37. IEEE Comput. Soc, 1998.

27 Jose.C. Palencia and Michael Gonzalez Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In Proceedings 20th IEEE Real-Time
Systems Symposium (Cat. No.99CB37054), pages 328–339. IEEE Comput. Soc, 1999.

28 Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens, and Ben Rodriguez. A
New Configurable and Parallel Embedded Real-time Micro-Kernel for Multi-core platforms.
OSPERT 2015, pages 25–27, 2015.

29 Antonio Paolillo, Paul Rodriguez, Vladimir Svoboda, Olivier Desenfans, Joël Goossens, Ben
Rodriguez, Sylvain Girbal, Madeleine Faugère, and Philippe Bonnot. Porting a safety-critical
industrial application on a mixed-criticality enabled real-time operating system. In Proceedings
of the 5th Workshop on Mixed-Criticality Systems, December 2017.

30 Antonio Paolillo, Paul Rodriguez, Nikita Veshchikov, Joël Goossens, and Ben Rodriguez.
Quantifying Energy Consumption for Practical Fork-Join Parallelism on an Embedded Real-
Time Operating System. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems, RTNS ’16, pages 329–338. ACM, 2016.

31 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A Predictable Execution Model for COTS-Based Embedded Systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 269–279.
IEEE, April 2011.

32 Juan M. Rivas, Jose Javier Gutiérrez, Jose Carlos Palencia, and Michael González Harbour.
Schedulability analysis and optimization of heterogeneous EDF and FP distributed real-time
systems. Euromicro Conference on Real-Time Systems (ECRTS), pages 195–204, 2011.

33 HIPPEROS SA. The real-time OS for high performance embedded systems. https://www.
hipperos.com/maestro/. 2019-02-04.

34 Ahmad Sadek, Ananya Muddukrishna, Lester Kalms, Asbjørn Djupdal, Ariel Podlubne,
Antonio Paolillo, Diana Goehringer, and Magnus Jahre. Supporting Utilities for Heterogeneous
Embedded Image Processing Platforms (STHEM): An Overview. In Nikolaos Voros, Michael
Huebner, Georgios Keramidas, Diana Goehringer, Christos Antonopoulos, and Pedro C. Diniz,
editors, Applied Reconfigurable Computing. Architectures, Tools, and Applications, pages
737–749, Cham, 2018. Springer International Publishing.

35 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Caccamo.
A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Systems. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11, April
2016. doi:10.1109/RTAS.2016.7461321.

36 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming, 40(2-3):117–134, April 1994.

37 Saud Wasly and Rodolfo Pellizzoni. Hiding Memory Latency Using Fixed Priority Scheduling.
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 75–86, 2014.

https://mast.unican.es/
https://www.hipperos.com/maestro/
https://www.hipperos.com/maestro/
http://dx.doi.org/10.1109/RTAS.2016.7461321

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:23

38 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time Systems, 48(6):681–715,
November 2012.

39 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo. Global Real-
Time Memory-Centric Scheduling for Multicore Systems. IEEE Transactions on Computers,
65(9):2739–2751, 2016.

40 Gang Yao, Heechul Yun, Zheng Pei Wu, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha.
Schedulability Analysis for Memory Bandwidth Regulated Multicore Real-Time Systems.
IEEE Transactions on Computers, 65(2):601–614, February 2016.

41 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore platforms. In IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 155–166.
IEEE, April 2014.

42 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 55–64, 2013.

ECRTS 2019

	Introduction
	Background and Related Work
	Memory Centric Scheduling
	Alternative approaches
	Multi-core real-time operating system: HIPPEROS RTOS

	System Model
	Hardware Assumptions
	Task Model

	Implementation of Memory Centric Scheduling
	Overview and Goals
	Kernel-level: memory phases scheduler (MPS)
	User level API
	Synchronous Memory Phases (S-MP)
	Asynchronous Memory Phases (A-MP)

	Implementation Details

	Schedulability Analysis
	Evaluation
	Conclusions and Future Work

