
31st Euromicro Conference on
Real-Time Systems

ECRTS 2019, July 9–12, 2019, Stuttgart, Germany

Edited by

Sophie Quinton

LIPIcs – Vo l . 133 – ECRTS 2019 www.dagstuh l .de/ l ip i c s

Editor

Sophie Quinton
INRIA Grenoble Rhône-Alpes, France
sophie.quinton@inria.fr

ACM Classification 2012
Computer systems organization → Embedded and cyber-physical systems; Computer systems organization
→ Real-time systems; Software and its engineering → Real-time systems software; Software and its
engineering → Real-time schedulability

ISBN 978-3-95977-110-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-110-8.

Publication date
July, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECRTS.2019.0

ISBN 978-3-95977-110-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:sophie.quinton@inria.fr
https://www.dagstuhl.de/dagpub/978-3-95977-110-8
https://www.dagstuhl.de/dagpub/978-3-95977-110-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ECRTS.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-110-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECRTS 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Sophie Quinton . 0:vii–0:viii

Committees
. 0:ix–0:xi

DMAC: Deadline-Miss-Aware Control
Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin 1:1–1:24

Control-Flow Integrity for Real-Time Embedded Systems
Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A. Shue, Hamed Okhravi,
and Bryan C. Ward . 2:1–2:24

Simultaneous Multithreading Applied to Real Time
Sims Hill Osborne, Joshua J. Bakita, and James H. Anderson 3:1–3:22

PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling
Muhammad R. Soliman and Rodolfo Pellizzoni . 4:1–4:23

RT-CASEs: Container-Based Virtualization for Temporally Separated
Mixed-Criticality Task Sets

Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia 5:1–5:22

Response-Time Analysis of ROS 2 Processing Chains Under Reservation-Based
Scheduling

Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Brandenburg 6:1–6:23

Implementation of Memory Centric Scheduling for COTS Multi-Core Real-Time
Systems

Juan M. Rivas, Joël Goossens, Xavier Poczekajlo, and Antonio Paolillo 7:1–7:23

Industrial Application of a Partitioning Scheduler to Support Mixed Criticality
Systems

Stephen Law, Iain Bate, and Benjamin Lesage . 8:1–8:22

From Iteration to System Failure: Characterizing the FITness of Periodic
Weakly-Hard Systems

Arpan Gujarati, Mitra Nasri, Rupak Majumdar, and Björn B. Brandenburg 9:1–9:23

End-To-End Deadlines over Dynamic Topologies
Victor Millnert, Johan Eker, and Enrico Bini . 10:1–10:22

Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks
Tao Gong, Tianyu Zhang, Xiaobo Sharon Hu, Qingxu Deng, Michael Lemmon, and
Song Han . 11:1–11:23

Isolation-Aware Timing Analysis and Design Space Exploration for Predictable
and Composable Many-Core Systems

Behnaz Pourmohseni, Fedor Smirnov, Stefan Wildermann, and Jürgen Teich 12:1–12:24

GEDF Tardiness: Open Problems Involving Uniform Multiprocessors and
Affinity Masks Resolved

Stephen Tang, Sergey Voronov, and James H. Anderson . 13:1–13:21

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Dual Priority Scheduling is Not Optimal
Pontus Ekberg . 14:1–14:9

NPM-BUNDLE: Non-Preemptive Multitask Scheduling for Jobs with
BUNDLE-Based Thread-Level Scheduling

Corey Tessler and Nathan Fisher . 15:1–15:23

Scheduling Self-Suspending Tasks: New and Old Results
Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and
Georg von der Brüggen . 16:1–16:23

Impact of DM-LRU on WCET: A Static Analysis Approach
Renato Mancuso, Heechul Yun, and Isabelle Puaut . 17:1–17:25

Modeling Cache Coherence to Expose Interference
Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti . 18:1–18:22

Arbitration-Induced Preemption Delays
Farouk Hebbache, Florian Brandner, Mathieu Jan, and Laurent Pautet 19:1–19:22

Fast and Effective Multiframe-Task Parameter Assignment Via Concave
Approximations of Demand

Bo Peng, Nathan Fisher, and Thidapat Chantem . 20:1–20:22

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under
Global Scheduling

Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg . 21:1–21:23

Novel Methodologies for Predictable CPU-To-GPU Command Offloading
Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, and Marko Bertogna 22:1–22:22

Generating and Exploiting Deep Learning Variants to Increase Heterogeneous
Resource Utilization in the NVIDIA Xavier

Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti,
Jaume Abella, and Francisco J. Cazorla . 23:1–23:23

A Bandwidth Reservation Mechanism for AXI-Based Hardware Accelerators on
FPGAs

Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni,
Giuseppe Lipari, and Giorgio Buttazzo . 24:1–24:24

Hiding Communication Delays in Contention-Free Execution for SPM-Based
Multi-Core Architectures

Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut 25:1–25:24

Slot-Based Transmission Protocol for Real-Time NoCs – SBT-NoC
Borislav Nikolić, Robin Hofmann, and Rolf Ernst . 26:1–26:22

Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC
Platforms

Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou,
Rodolfo Pellizzoni, and Marco Caccamo . 27:1–27:25

Preface

Message from the Chairs

Welcome to the 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)
in Stuttgart, Germany. ECRTS is the premier European venue for presenting research into
the broad area of real-time systems. Along with RTSS and RTAS, ECRTS ranks as one of
the top three international conferences on this topic. ECRTS has been at the forefront of
recent innovations in the real-time community such as artifact evaluation and open access
proceedings.

For ECRTS 2019, we received 80 submissions from 19 countries, 7 of which are outside
Europe and represent 37% of the submitted papers. Each submission was reviewed by at
least three members of the program committee – all active researchers and experts in their
field – with the help of 77 external reviewers. The submissions were evaluated according
to their contribution, originality, technical correctness and writing quality. The program
committee then selected, at a physical meeting of the program committee in Paris, 27 of
these submissions for publication in the proceedings and presentation at the conference.

From the 27 accepted papers, three have been recognized as outstanding papers by
the program committee and will be presented in the final session. One of these three papers
will be selected as best paper by a dedicated committee, based on both the contribution of
the paper and the presentation at the conference.

In 2016, ECRTS was the first conference on real-time systems to introduce an artifact
evaluation, with the aim to promote reproducibility of research results. An artifact eval-
uation committee reviews the artifacts submitted by the authors of accepted papers who
choose to do so. In 2019, eight papers (30% of the accepted papers) are marked in the
proceedings with a seal indicating that their artifact has passed the repeatability test.

In 2017, ECRTS was the first conference on real-time systems to introduce an open
access publication model, while retaining the existing quality-control measures. The
open access model uses LIPIcs – Leibniz International Proceedings in Informatics, a series
of high-quality conference proceedings established in cooperation with Schloss Dagstuhl,
Leibniz Center for Informatics. The conference serves the research community and the public
best when results are accessible to the largest audience, i.e., the research community and the
public. This year again, the proceedings will be accessible free of charge for everyone.

The workshops of ECRTS, that take place the day before the main conference starts,
are a key feature of the event. They are widely acknowledged to be lively and useful to the
community. ECRTS 2019 will host the following workshops:

CERTS – 4th International Workshop on
Security and Dependability of Critical Embedded Real-Time Systems

OSPERT – 15th International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications

RTN – 17th International Workshop on Real-Time Networks

WATERS – 10th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems

WCET – 19th International Workshop on Worst-Case Execution Time Analysis
31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Preface

ECRTS 2019 will start with a keynote by Thomas Kropf, president of corporate
research and advance engineering at Bosch. A second keynote will be given by David
Monniaux, senior researcher at CNRS and head of the PACSS team (Proofs and Code
analysis for Safety and Security) at Verimag.

The interactive session of ECRTS 2019 is one of the most attractive events at the
conference. It will feature:

a work-in-progress session where novel ideas are introduced to the ECRTS audience;
journal-to-conference presentations where work so far only published in journals can
be presented to the conference audience;
an overview of the industrial challenges discussed at the WATERS workshop to foster
collaboration between academia and industry;
an industry pitch session with industry speakers pitching their current and future
problems related to real-time issues.

The interactive session will be directly followed by a poster session and reception where
all participants can exchange ideas in a relaxed and friendly atmosphere. Submissions to
the work-in-progress, journal-to-conference and industry pitch sessions have been evaluated
separately by dedicated committees, and are not part of these published proceedings.

Thanks to our location on the premises of Bosch in Stuttgart this year, this edition
of ECRTS will represent an excellent opportunity for researchers and practitioners from
academia and industry to meet, interact and initiate collaborations. In addition to the special
industry focus of the first day, participants will have the chance to look behind the scenes of
the Bosch research campus on the second day of the conference during a guided tour, to get
insights into the different fields of research conducted at Bosch.

ECRTS 2019 is the result of the hard work of many people, whose names are listed in the
following pages. We are especially grateful for the contributions of the program committee
and the external reviewers for carefully reviewing the submitted papers and helping us
build the high-quality program of ECRTS 2019; the artifact evaluation chairs and the
artifact evaluators who help this conference pave the way for reproducible research; the
work-in-progress and journal-to-conference chair and the workshop chairs for their
hard work in organizing these key moments of the conference; and Dagstuhl Publishing for
their support in publishing these proceedings. Many thanks to the organization committee
and Robert Bosch GmbH for their help with the logistics. We also thank Sebastian
Altmeyer for sharing his experience as the ECRTS 2018 program chair, and Gerhard
Fohler for his steady guidance and support as the Euromicro Real-Time Technical Committee
Chair.

Last, but not least, we thank all the authors who submitted their work to ECRTS 2019.
This conference would not exist without them and we are proud of the high quality and
scientific relevance of this year’s program. Let us now enjoy ECRTS 2019!

Arne Hamann and Dirk Ziegenbein Sophie Quinton
General Chairs, ECRTS 2019 Program Chair, ECRTS 2019

Committees

General Chairs

Arne Hamann and Dirk Ziegenbein, Robert Bosch GmbH, Germany

Program Chair

Sophie Quinton, INRIA Grenoble Rhône-Alpes, France

Real-Time Technical Committee Chair

Gerhard Fohler, TU Kaiserslautern, Germany

Organization Committee

Steve Goddard, University of Nebraska-Lincoln, USA
Martina Maggio, Lund University, Sweden

Artifact Evaluation Chairs

Sebastian Altmeyer, University of Amsterdam, The Netherlands
Alessandro Papadopoulos, Mälardalen University, Sweden

Work-in-Progress and Journal-to-Conference Chair

Andrea Bastoni, SYSGO AG, Germany

Workshop Chairs

CERTS – Security and Dependability of Critical Embedded Real-Time Systems
Mikael Asplund, Linköping University, Sweden
Michael Paulitsch, Intel, Germany

OSPERT – Operating Systems Platforms for Embedded Real-Time Applications
Adam Lackorzynski, TU Dresden / Kernkonzept, Germany
Daniel Lohmann, Leibniz Universität Hannover, Germany

RTN – Real-Time Networks
Guillermo Rodriguez-Navas, Nokia Bell-Labs, Israel
Ramon Serna Oliver, TTTech, Austria

WATERS – Analysis Tools and Methodologies for Embedded and Real-time Systems
Claire Pagetti, ONERA / IRIT-ENSEEIHT, France
Selma Saidi, TU Hamburg, Germany

WCET – Worst-Case Execution Time Analysis
Sebastian Altmeyer, University of Amsterdam, The Netherlands

Program Committee

Benny Akesson, ESI (TNO), The Netherlands
Sebastian Altmeyer, University of Amsterdam, The Netherlands
Jim Anderson, The University of North Carolina at Chapel Hill, USA
Andrea Bastoni, SYSGO AG, Germany
31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Committees

Marko Bertogna, University of Modena, Italy
Alessandro Biondi, Scuola Superiore Sant’Anna, Pisa, Italy
Timothy Bourke, Inria Paris, France
Marius Bozga, CNRS, Verimag, Grenoble, France
Björn B. Brandenburg, Max Planck Institute for Software Systems (MPI-SWS), Germany
Francisco Cazorla, Barcelona Supercomputing Center, Spain
Robert I. Davis, University of York, UK
Johan Eker, Ericsson Research, Sweden
Rolf Ernst, TU Braunschweig, Germany
Sébastien Faucou, Université de Nantes, France
Nathan Fisher, Wayne State University, USA
Gerhard Fohler, TU Kaiserslautern, Germany
Julien Forget, University of Lille, France
Steve Goddard, University of Nebraska-Lincoln, USA
Joël Goossens, Université libre de Bruxelles, Belgium
Arne Hamann, Robert Bosch GmbH, Germany
Angeliki Kritikakou, Univ Rennes, Inria, CNRS, IRISA, France
George Lima, Federal University of Bahia, Brazil
Martina Maggio, Lund University, Sweden
Julio Medina, Universidad de Cantabria, Spain
Patrick Meumeu Yomsi, CISTER, ISEP, Portugal
Geoffrey Nelissen, CISTER, ISEP, Portugal
Claire Pagetti, ONERA / IRIT-ENSEEIHT, France
Michael Paulitsch, Intel, Germany
Rodolfo Pellizzoni, University of Waterloo, Canada
Isabelle Puaut, Université de Rennes 1/IRISA, France
Christine Rochange, Université de Toulouse, France
Jean-Luc Scharbarg, Université de Toulouse – IRIT – INPT/ENSEEIHT, France
Oleg Sokolsky, University of Pennsylvania, USA
Marcus Völp, SnT – University of Luxembourg, Luxembourg
Haibo Zeng, Virginia Tech, USA

Artifact Evaluators

Muhammad Ali Awan, CISTER, ISEP, Portugal
Tobias Blaß, Robert Bosch GmbH, Germany
Fabien Bouquillon, University of Lille, France
Lélio Brun, École normale supérieure / Inria Paris, France
Paolo Burgio, University of Modena and Reggio, Italy
Daniel Casini, Scuola Superiore Sant’Anna, Pisa, Italy
Pierre-Julien Chaine, ONERA, Toulouse, France
Xiaotian Dai, University of York, UK
Frédéric Fort, University of Lille, France
Arpan Gujarati, Max Planck Institute for Software Systems (MPI-SWS), Germany
Paolo Pazzaglia, Scuola Superiore Sant’Anna, Pisa, Italy
Julius Roeder, University of Amsterdam, The Netherlands
Helena Russello, Wageningen University, The Netherlands
Stefanos Skalistis, University of Rennes / IRISA, France
Aakash Soni, IRIT/ENSEEIHT/INP Toulouse, France

Committees 0:xi

Additional Reviewers
Aakash Soni Gowher Parry Muhammad Soliman
Aaron Willcock Hamid Tabani Nathan Otterness
Abhishek Singh Ignaco Sañudo Olmedo Nathanaël Sensfelder
Alexandre Venito Jacques Combaz Nicola Capodieci
Ali Syed James Robb Oana Hotescu
Ankit Agrawal Jaume Abella Paolo Burgio
Antonio Paolillo Jean-Luc Béchennec Pedro Benedicte
Arpan Gujarati Jean-Michel Dricot Radoslav Ivanov
Bo Peng Jérôme Ermont Rany Kahil
Braham Lotfi Mediouni Johannes Schlatow Roberto Cavicchioli
Catherine E. Nemitz Jordi Cardona Robin Hofmann
Cédric Ternon Jordy Ruiz Rodrigo Coelho
Charlotte Seidner Jorge Martinez Sebastian Tobuschat
Christoph Lambert José Carlos Palencia Gutiérrez Sergey Bozhko
Clara Hobbs Juan M. Rivas Sergey Voronov
Clément Ballabriga Junkil Park Stefanos Skalistis
Corey Tessler Kevin Delmas Stephen Tang
Dakshina Dasari Konstantinos Bletsas Syed Aftab Rashid
Daniel Casini Kristin Krüger Tanya Amert
Dirk Ziegenbein Leonidas Kosmidis Thomas Loquen
Eberle Rambo Leonie Köhler Tobias Blaß
Enrico Mezzetti Manohar Vanga Tomasz Kloda
Falk Wurst Marc Boyer Victor Milnert
Florian Heilmann Marco Solieri Xavier Poczekajlo
Gautam Gala Micaela Verucchi Zahaf Houssam Eddine
Gautham Nayak Seetanadi Mikaël Briday

ECRTS 2019

DMAC: Deadline-Miss-Aware Control
Paolo Pazzaglia
Scuola Superiore Sant’Anna, Pisa, Italy
Department of Automatic Control, Lund University, Sweden
paolo.pazzaglia@sssup.it

Claudio Mandrioli
Department of Automatic Control, Lund University, Sweden
claudio.mandrioli@control.lth.se

Martina Maggio
Department of Automatic Control, Lund University, Sweden
martina.maggio@control.lth.se

Anton Cervin
Department of Automatic Control, Lund University, Sweden
anton.cervin@control.lth.se

Abstract
The real-time implementation of periodic controllers requires solving a co-design problem, in which
the choice of the controller sampling period is a crucial element. Classic design techniques limit the
period exploration to safe values, that guarantee the correct execution of the controller alongside the
remaining real-time load, i.e., ensuring that the controller worst-case response time does not exceed
its deadline. This paper presents DMAC: the first formally-grounded controller design strategy that
explores shorter periods, thus explicitly taking into account the possibility of missing deadlines. The
design leverages information about the probability that specific sub-sequences of deadline misses
are experienced. The result is a fixed controller that on average works as the ideal clairvoyant
time-varying controller that knows future deadline hits and misses. We obtain a safe estimate of the
hit and miss events using the scenario theory, that allows us to provide probabilistic guarantees.
The paper analyzes controllers implemented using the Logical Execution Time paradigm and three
different strategies to handle deadline miss events: killing the job, letting the job continue but
skipping the next activation, and letting the job continue using a limited queue of jobs. Experimental
results show that our design proposal – i.e., exploring the space where deadlines can be missed and
handled with different strategies – greatly outperforms classical control design techniques.

2012 ACM Subject Classification Computing methodologies → Computational control theory;
Computer systems organization → Embedded software; Software and its engineering → Real-time
systems software; Theory of computation → Stochastic control and optimization

Keywords and phrases Weakly-Hard Real-Time Systems, Deadline Miss Handling, Control Design

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.1

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.3

Acknowledgements All authors from Lund University are part of the ELLIIT Excellence Center.
This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

1 Introduction

Controllers are often executed alongside other tasks in a real-time platform, demanding that
the scheduler ensures the timely execution of both the controller and the real-time workload
that the platform should execute. Controllers can be designed taking into account resource
limitations and scheduling constraints [16, 55, 54].

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 1; pp. 1:1–1:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pazzaglia@sssup.it
mailto:claudio.mandrioli@control.lth.se
https://orcid.org/0000-0002-1143-1127
mailto:martina.maggio@control.lth.se
https://orcid.org/0000-0003-4889-8772
mailto:anton.cervin@control.lth.se
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
https://dx.doi.org/10.4230/DARTS.5.1.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 DMAC: Deadline-Miss-Aware Control

Studying the optimal design of a control task to be run alongside a given real-time workload
can be considered an instance of the general problem of composability. Composability is the
capability to integrate new functionalities into a preexisting system. This issue is particularly
relevant in the automotive field, where the production of new vehicles requires a tight coupling
of new software together with legacy code, with minimal adjustment of the original structure.
In general, adding a new control task to a given taskset implies combining requirements
that come from both control theory and real-time implementation. These requirements
are different and often conflicting. As an example, selecting a high execution rate for the
controller improves the control performance, but at the same time limits the guarantees
on the timely completion of the control task code and forces the engineers to take into
account overruns [13, 41]. Moreover, minimizing the monetary cost of the final system is an
ever-present priority and over-provisioning resources is usually not a viable solution.

Timing constraints in real-time systems are modeled as deadlines, i.e., a threshold that the
execution time of each task instance (job) should respect. We refer to a job that successfully
completes its execution before the corresponding deadline as a deadline hit event. If the
job could not terminate its execution before that deadline instant, we say that it missed its
deadline. In hard real-time systems, missing a deadline has been always seen as a risk that
must be avoided, with possibly catastrophic consequences. In reality, a limited number of
deadline misses is an acceptable condition for many cyber-physical and control systems, since
well-designed controllers often expose intrinsic robustness to timing non-idealities. Recently,
researchers have then tried to formally relax deadline constraints, introducing the weakly
hard real-time system paradigm [7] to describe the case where tasks are allowed to miss a
limited number of deadlines. However, often control engineers lack information about the
timing behavior of the control task and the taskset structure. Understanding how a control
loop behaves under deadline misses may open the door to new and better control designs.

Inspired by this challenge, in this paper we tackle the problem of designing a controller
for a generic physical plant, while exploring a range of periods which have historically been
avoided for co-design: we are here interested in those period values that are shorter than
the worst-case response time of the task, thus neglecting the common hypothesis of hard
deadlines. Our design problem is to run the controller alongside a preexisting taskset. Tasks
are described with probabilistic execution times, ranging from a best case to a (rare) worst
case value. By leveraging the flexibility of robust control design techniques, we here propose
a novel method for creating an optimal fixed controller, the Deadline-Miss-Aware Control
(DMAC), which can be implemented in a real-time task that may miss some deadlines.

The DMAC design takes into account how the controlled system behaves when different
patterns of hit and missed deadlines occur. For robustness, DMAC considers a safe (pes-
simistic) probability of deadline miss events. Lack of scalability impedes the computation
of deadline miss probabilities analytically. However, bounds are extremely pessimistic and
would not aid the control design method. To overcome this limitation, we obtain an estimate
of deadline miss occurrence simulating the schedule execution, drawing execution times (for
all the tasks) from the corresponding probability distributions. A robust control tool, the
scenario theory [11], provides the means to select the worst-case sequence of misses and hits
from the simulations. Leveraging the scenario theory, our approach allows us to provide
probabilistic guarantees for worst-case conditions both in terms of the probability of not
having taken into account conditions that will eventually manifest, and in terms of the design
confidence. We obtain a controller which is optimal and robust to worst-case conditions.

The analysis presented in this paper considers three different strategies for handling
deadline misses: kill the job that missed the deadline, let it continue and skip the next
job, or let all jobs continue until completion, but limiting the ready queue to the most

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:3

recently activated among the pending jobs (in addition to completing the one that missed
the deadline). We implement the controller following the Logical Execution Time (LET)
paradigm [28]. To the best of our knowledge, this is the first attempt to design an optimal
controller for a real-time system that is aware of deadline misses and miss-handling strategies.

2 Methodology

The aim of DMAC is to provide the first control synthesis method that is robust both with
respect to deadline misses and with respect to the strategy used to handle them. Our control
design leverages knowledge of the probability that different sequences of deadline hits and
misses may occur, and produces a fixed controller that is (on average) optimal with respect
to a defined cost function. We obtain such knowledge by formulating a chance constrained
optimization problem in a probabilistic framework, and obtaining guarantees on both the
probability of neglecting important information and the confidence in the design.

2.1 Overview and Terminology
We present here an overview of the approach adopted for the control design and evaluation.
For the application of the approach we rely on the following input data:

ε: The user selects a defined value of ε, that represents a worst case bound on the
probability of carrying out the control design operations neglecting important information.
We rely on the generation of sequences of deadline hits and misses, from which we select
the worst case and design our controller to be robust with respect to such worst case.
While ε can be selected to be as small as possible, we still need to accept a certain
small probability that the next generated sequence would be worse than the worst case
generated up to the current one.
1− β: The user selects a value for the confidence that one can have in the probabilistic
guarantee that the approach is providing. The value of 1− β is determined together with
the value of ε, to indicate that the approach is based on a confidence 1 − β that the
probability ε is the true probability of missing important information.
Γ: The taskset that our design is targeting. We assume that additional (hard real-time)
load is run alongside the controller task.
njob: Our control design is based on extracting timing behavior from simulations of a
certain number of control jobs. The length of the sequences used for the controller design
can be chosen depending on physical parameters, for example assuming that after a
certain number of jobs the controller has settled. We recommend to select a value that
contains at least a few hyperperiods, to capture chain effects if they happen.
Jseq: The cost function that is used to evaluate the produced sequences to select the
worst-case sequence for the controller design.
ξ: The strategy used to handle a deadline miss. We consider three different strategies:
killing the job that missed the deadline, letting it continue and skipping the next job, or
letting it continue and enqueuing the next job (up to a maximum of one enqueued job at
any point in time).
Jctl: The cost function that is used to evaluate the controller behavior and compare the
different deadline miss handling strategies.

Figure 1 visually shows the different steps, inputs and outputs. As shown in the figure,
our approach feeds the probability bounds (ε and 1 − β) to the “Scenario Theory” [11]
block. The scenario theory is used in control for the design of robust controllers to handle

ECRTS 2019

1:4 DMAC: Deadline-Miss-Aware Control

Scenario
Theory Scheduler

Ω = {ω1, . . . , ωnsim}

. . .

Sequence
Selector

ω∗

Controller
Synthesis

Performance
Evaluator

{ε, 1− β}
Probability

Bounds

nsim

Jseq

y

Jctl

ξ: Strategy for
Deadline Miss

{Γ, njob}

Figure 1 Approach Overview.

uncertainty that is a priori unpredictable in the disturbance values and in the system model.
In this paper we reinterpret the scenario results to enable a control synthesis strategy that
uses deadline hits and misses information and provides (probabilistic) guarantees.

The scenario theory is a formal tool that determines how to analyze experimental data.
In particular, we schedule our taskset extracting execution times from the corresponding
probability distributions that are known in the Γ taskset. The theory provides us with
information on how many experiments (scheduling simulations) we should execute in order
for the probability that unforeseen circumstances are worse than the gathered data to be
lower or equal to ε with confidence 1− β. We denote the number produced by the scenario
theory with nsim. For each of the nsim experiments, we randomly sample the probability
distributions of the task execution times, to generate a set Ω = {ω1, . . . , ωnsim} scheduling
sequences, in which the control task executes for njob times, using strategy ξ to handle the
deadline misses. Using our scheduler, we record sequences of deadline hits and misses.

We evaluate each of these sequences with a cost function Jseq, identifying the worst
sequence ω∗, from the control perspective. From this sequence we extract the probability
of deadline hits and misses for each of the njob instances of the control task and the joint
probability distribution for each sequence of hits and misses needed for the control design.
The controller synthesis block uses the extracted information for the control strategy design.
The generated controller is then evaluated when the taskset is executed and the controller
is connected to the real plant, using a cost function Jctl, which allows us to compare the
performance of different deadline management strategies. We can then determine the best
deadline management strategy and control period for the system under analysis.

As output of our approach we obtain y, the evaluation of each tested strategy ξ for the
specific problem. As a by-product, we also obtain the set of sequences Ω. If we are not
satisfied with our controller behavior, we can analyze the set of sequences to understand how
to improve the control performance (i.e., for example optimize a certain task in the taskset).

Paper Organization

In the following, Section 3 discusses the model used for both the plant and the taskset,
and Section 4 describes the behavior of the system using different deadline miss handling
strategies. Section 5 presents the control design approach. In Section 6 we present the
framework that we use to obtain probabilistic information about the scheduler behavior, and
the scenario theory. In Section 7 we show our experimental setup and the evaluation criteria,
and present our results. Section 8 discusses related work, and Section 9 concludes the paper.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:5

3 System Model and Problem Definition

This section introduces the models used in the paper. Section 3.1 describes the model of the
taskset executing on the hardware. Section 3.2 discusses the models of plant and control
task. Finally, Section 3.3 introduces the three strategies used to handle deadline misses.

3.1 Taskset Model
In this paper, a real-time workload Γ is defined as the union of a (given) set of generic hard
real-time periodic tasks, plus a real-time control task τd, which is the target of our design, i.e.,
Γ = Γ′

⋃
{τd}. In this description, Γ′ is a set of NT periodic tasks, i.e., Γ′ = {τ1, τ2 . . . , τNT

}
and τd is an additional periodic task that contains our controller operation. We assume
that each task τi is independent from the others and released synchronously at a given
starting instant. The tasks are scheduled using a fixed priority scheduling policy (e.g. Rate
Monotonic) with preemption, and the indexing reflects their priority ordering, i.e. τi has
higher priority than τj if i < j. In our design problem, τd is the task with the lowest priority.

Each task is characterized by a tuple of parameters, τi = (Ci, fCi , Di, Ti). Here, Ci is a
random variable that represents the task execution time, while fCi (c) is its probability density
function, i.e. ∀c ∈ N, fCi (c) = P{Ci = c}; Di and Ti are deterministic values, representing
respectively the task deadline and period. In accordance with the literature on real-time
applications for control systems, task periods are chosen among a limited set of possible
values, typically related to physical requirements of the control task [32, 39].

For each task τi, we consider a discrete probability distribution Ci with Ni integer values,
ranging between a Best Case Execution Time (BCET) Cmin

i and a Worst Case Execution
Time (WCET) Cmax

i . Furthermore, we consider tasks that behave well in most cases, i.e.,
tasks whose probability density functions are skewed towards lower values. In fact, while our
approach can be applied to systems with generic probability density functions, we want to
capture tasks which experience occasional faulty conditions. This choice is in agreement with
most works that analyze execution time distributions for real-time tasks [53]. We will generally
refer to the utilization of taskset Γ′ as the worst-case utilization, i.e. UΓ′ =

∑NT

i=1(Cmax
i /Ti).

We denote each periodic instance of τi ∈ Γ with the term job, and define it as Ji,k, with
k = 1, 2, . . . representing the job index and i representing the task index. For every job
Ji,k, ai,k denotes the activation instant, and ai,k+1 − ai,k = Ti. Since we are considering
synchronous release conditions, ∀i, ai,0 = 0 holds. In the following, Ri,k represents the
random discrete variable that models the response time of Ji,k. The Worst Case Response
Time (WCRT) of task τi is denoted as RWi and computed with standard techniques [33], by
considering the condition where every task experiences its WCET. Similarly, the Best Case
Response Time (BCRT) [43] is introduced as RBi and computed considering that every job
executes with its BCET. Finally, in this work all tasks τi in Γ′ are schedulable, i.e. RWi ≤ Di

for each τi. However, this hypothesis will not be required for τd. We will only assume that
at least one job of τd respects its deadline, i.e. RBd ≤ Dd.

3.2 Plant and Controller Model
The plant to be controlled by τd is described as a linear time invariant, multi-input multi-
output system in continuous time. In line with standard assumptions, we assume the plant
to be controllable and the state to be fully measurable. The plant dynamics is described as

ẋ(t) = Ac x(t) +Bc uc(t) + vc(t). (1)

ECRTS 2019

1:6 DMAC: Deadline-Miss-Aware Control

Sampler Controller Hold

Plant

x(tk) u(tk)

vc(t)
uc(t)x(t)

Td

Figure 2 Plant and controller with time-triggered sampler and hold devices.

In Equation (1), every element in bold represents a vector, while Ac and Bc are the constant
matrices that encode the dynamic evolution of the system. The term x(t) denotes the system
state vector and ẋ(t) its time derivative. The term uc(t) is the vector that contains the
control signals. The vector vc(t) represents the plant disturbance, modeled as white noise
with known covariance matrix Rc. The goal of the control is to minimize a cost function,
defined as the mean value of a quadratic function of the state vector and the control vector:

Jctl = E
{∫

xT(t)Q1cx(t) + uc
T(t)Q2cuc(t)

}
. (2)

Here, E indicates the expected value, while Q1c and Q2c are constant positive semidefinite
matrices and design parameters of the controller. They represent the trade-off between
regulating x(t) to zero and the cost of using the control signal uc(t). This cost function is
used both as a controller design objective and for performance evaluation of the control task.

The plant is connected to the controller via time-triggered sampler and hold devices as
shown in Figure 2. The behavior of these devices can be modeled as a dedicated task that
reads and writes data with zero execution time and highest priority. The plant state is
sampled every Td time units, implying x(tk) = x(kTd). The control job Jd,k is released at
the same instant, i.e. ad,k = kTd, and the sensor data x(tk) is immediately available to it.
Based on the state measurement, the controller computes the feedback control action u(tk).

As an hypothesis, our control task τd executes under the Logical Execution Time paradigm.
Indeed, the job Jd,k computes the control output using x(tk) but makes it available to the
actuator only at the first deadline instant after the termination of its execution. The control
actuation is then held constant until the next update. This means that, if all jobs finish
before their deadline, the following equation holds:

uc(t) = u(tk), ad,k +Dd ≤ t < ad,k+1 +Dd. (3)

The execution time of the control task τd is given as a random variable with known probability
density function, and is treated equivalently to any other task in Γ′. On the contrary, the
deadline Dd and period Td of the control task τd are part of the design. Being a LET task,
we restrict our analysis to the implicit deadline case (Dd = Td), although in principle the
approach in the paper can be applied to other relative deadlines (and corresponding output
times). We further assume that the execution time properties of the controller do not change
with different periods and different controller parameters (since only the values of some
parameter are modified but the operations done by the control task are the same).

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:7

In the paper, τd is not treated as a hard-deadline task. On the contrary, we actively look
for those values of Td such that the resulting task may miss some deadline with probability
greater than zero, but still being able to guarantee a good control performance. This is to
increase the system utilization, and consolidate workload on one single core. In Section 5, we
present how to properly characterize the timing behavior of the controller and its synthesis.

I Remark 3.1. In this paper, we work under the assumption that τd is the task with the lowest
priority. If other tasks with priority lower than τd do exist, the design proposed hereafter is
still valid in principle, since those tasks cannot interfere with τd. However, if this is the case,
the range of possible values of Td should be tied with the schedulability guarantees for the
lower priority tasks. We reserve to analyze this more general case as a future work.

3.3 Handling Deadline Misses
In classic control design, the control task behavior is assumed to be strictly periodic, or at
least periodic with limited reponse time jitter [16]. To provide an implementation enforcing
periodicity for a controller on a real-time platform, one usually selects a period for the control
task that is greater or equal than the task’s WCRT. This approach is safe but can be very
pessimistic. In fact, WCRT conditions may be extremely rare. Selecting the period with the
mentioned constraint could limit the achievable control performance, since longer sampling
periods in general mean worse disturbance rejection and smaller stability margins [15].

The approach presented in this paper explores the possibility of designing a control task
with periods smaller than its WCRT, i.e., Td < RWd , thus greatly extending the design space.
We remark that, with Td ≥ RWd there are no deadline misses, and standard approaches for
the control design can be used [29, 4, 55].

Choosing Td < RWd implies the risk that the control task will miss some deadlines. A
deadline miss is a timing violation that can produce unbounded response times, due to
self-pushing [47], and therefore it should be properly handled. In this work, we consider
three different strategies to handle deadline misses, that have previously been explored in the
control community [13]: (i) to kill the job that has not completed at the deadline, (ii) to let
the current job continue but skip the next job(s), and (iii) to let the job continue, placing
the next job(s) in a queue of length one. In more detail, these strategies behave as follows:

Kill: A control job that is not able to terminate within its deadline is dropped at the
deadline instant. When a job is killed, its (partial) computation is discarded and no
output is produced. We assume that this dropping mechanism has negligible overhead
and internal states of the controller are not altered by the partial computation.
Skip-Next: A control job that is not able to terminate within its deadline is allowed
to continue until completion. However, whenever the active job exceeds a deadline, the
next instance of the control job is not activated (skipped). This is based on the idea that
completing a job that has already started is preferred to starting a new one and incurring
the risk that the computation runs longer than the deadline again.
Queue(1): A control job that is not able to complete its execution within its deadline is
allowed to continue its execution, while the following jobs are put in a queue that can
contain a single element. Thus, at the activation of a new job, if there is already an active
instance, the new job is enqueued, overwriting the currently existing job in the queue.
Only the most recently arrived job is stored in the queue and is activated as soon as the
current job completes.

An example of a schedule under the three strategies is presented in Figure 3, where the
odd jobs are shown in dark gray, while the even jobs are shown in light gray. With the Kill
strategy, the first job is killed at its deadline, before completing its execution. With the

ECRTS 2019

1:8 DMAC: Deadline-Miss-Aware Control

ad,1 ad,2 ad,3 ad,4

time

Kill

Skip-Next

Queue(1)

• •
•

Figure 3 Schedule example using the three proposed strategies to handle deadline misses. Those
jobs that missed a deadline (or are skipped) are marked with a red cross on their deadline, while a
green dot identifies deadline hit events.

other two strategies, the job is given additional time in the second period, and is therefore
able to complete, albeit running over time. With the Skip-Next strategy, the second job is
not started, since there is an active control job that has not terminated its computation.
With the Queue(1) strategy, the second job also runs over time, due to interference. In
general, the Kill and Skip-Next strategies avoid self-interference conditions. This is not true
for the Queue(1) strategy. However, Queue(1) may be seen as a particular case of finite
buffer strategy [1], where the freshest job of the queue is always preferred, discarding the old
one that has not yet started. This choice helps reducing the amount of self-interference and
avoids unbounded response times. In practice, a job that is delayed more than one period by
self-interference is skipped and the next one is put in the ready queue.

A sequence of consecutive control jobs may contain a certain number of jobs that are not
actively contributing to the actuation u(t). This happens either with jobs that are terminated
before completing their execution (killed) or with jobs not executed at all (skipped). For
those jobs, a proper response time value may not be defined. Moreover, under Queue(1)
strategy, it may happen that the output of a job which completes its execution after missing
one or more deadlines is overwritten by the next job, if the latter completes before the same
deadline. We therefore define the set of jobs that produce an output control that is actually
provided to the physical plant, as the set of valid control jobs.

I Definition 3.2 (Valid control job). A valid control job ν is a job that successfully completes
its execution and whose generated output is not overwritten before the next deadline instant.

For each time interval [0, t), we show that is possible to extract the ordered sequence of
v valid jobs, defined as S = {ν1, ν2, ..., νv} (where the index does not count the passing of
time) and the relation v ≤ dt/Tde trivially holds. The sequence of valid jobs depends on the
strategy used to handle deadline misses, and will be described in Section 4. Our control
design should be robust not only to the possibility of missing deadlines, but also to the
different pattern of delays that are produced depending on the strategy used to handle the
miss event. In the following section, we discuss how this affects the control task behavior.

4 Controller Behavior with Deadline Misses

In theory, choosing a shorter period allows the discrete-time controller to achieve better
control performance [5]. However, real-time constraints become harder to satisfy, due to
the increased interference from higher priority tasks. Since we are targeting periods shorter
than the WCRT, the probability of missing a deadline for the control task is greater than

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:9

τd
time

ad,k ad,k+1 ad,k+2 ad,k+3 ad,k+4

σk σk+1

hk hk+1

• •

Figure 4 Example of delay and hold values for Skip-Next strategy.

zero. A controller designed with standard techniques and subject to overrun may still display
some intrinsic robustness when experiencing occasional deadline misses [13, 41]. However,
the controller performance depends strongly on the deadline miss handling strategy, and
may become unacceptable when the probability of missing a deadline is too high. Here we
analyze the timing properties of a control task subject to deadline misses. We show that
only two parameters are needed to fully characterize the miss impact. We build the rules for
computing them and extract the sequence of valid control jobs.

4.1 Defining Delay and Hold

Missed deadlines invalidate one of the basic hypothesis of control theory, which is the
periodicity of the output pattern [41]. In this work, we exploit the knowledge of deadline
misses directly in the control design step. For this purpose, we need to characterize how
deadline misses affect the control performance. We fully describe the effect of deadline misses
of LET-based controllers with two parameters, named respectively delay and hold interval.

I Definition 4.1 (Delay σk). The delay σk experienced by a control job Jd,k is defined as the
time interval between the activation instant of the job ad,k and the instant where its control
output is made available to the actuator.

In other words, the delay σk represents the time from sampling the plant state until
updating the control signal. Using the above formulation, σk can only be properly defined
for jobs that correctly complete their execution: if a job is killed or skipped, no delay
information can be extracted, since its computation does not properly finish. We will refer
to this condition as an undefined delay, represented with the symbol ∞. From a control
perspective, the delay experienced by each (completed) job must be compensated accordingly
by a predictor that computes the expected state at the output instant (tk + σk), using the
knowledge of the current state x(tk) and the control output(s) active in that time span.

I Definition 4.2 (Hold interval hk). Given a control output computed by Jd,k and available
at the actuator for the first time at tk + σk, the hold interval hk is the time interval between
tk + σk and the first instant where a new control output is made available.

In other words, the hold interval hk indicates the lifetime of the control signal computed
by the k-th controller job and thus represents the time interval in which the computed control
signal is held constant. Similarly to the delay, the definition of hk is meaningful only for jobs
that correctly complete their execution. If job Jd,k is killed or skipped, the hold interval
is undefined and will be represented with the symbol ∞. Moreover, if job Jd,k correctly
completes its execution, but its output is overwritten by the output of job Jd,k+1 before
being used, we will assign a hold value hk = 0. Figure 4 shows an example of delay and hold
intervals for a sequence of four jobs using the Skip-Next strategy.

ECRTS 2019

1:10 DMAC: Deadline-Miss-Aware Control

4.2 Computing Delay and Hold
Under ideal timing conditions – i.e., when all the deadlines of the control task are hit – the
control signal produced in one period is always applied in the next period. The controller
should thus compensate for a fixed delay σk = Td. In this situation, the delay and hold have
the same value and they are often not even defined as two different parameters. However,
when considering deadline misses, σk and hk may assume different values. Figure 4 shows
one such example, where σk = 1Td, hk = 2Td, σk+1 = 2Td, and hk+1 = 1Td.

The potential differences between the delay and hold values have several consequences
for the control design. First, a predictor designed for a one period delay may produce a
value that is incorrect for longer delays. Second, a control signal calculated for a short hold
interval could be too aggressive if applied in longer intervals. Lastly, the resulting delay–hold
pattern may change across multiple control activations and depends heavily on the deadline
miss handling strategy that has been chosen.

Computing the values of σk and hk for each Jd,k in a schedule is then crucial for the
control design process. In fact, knowing in advance the values of delay and hold interval
of each job, enables the design of an optimal time-varying controller, that for each control
job selects how to compensate the particular combination of σ and h for the current and
following jobs. This however would require a clairvoyant controller, that is not practically
realizable. Here we extract the possible pairs (σk, hk) that may happen in a given scheduling
sequence, and their associated probability, to design a fixed controller that behaves as close
as possible to the ideal unrealizable one. We discuss the controller synthesis in Section 5.

Knowing σk and hk for a given job Jd,k, it is also possible to determine whether the k-th
control job is valid. This corollary follows from the definition of delay and hold interval:

I Corollary 4.3. A job Jd,k is valid if and only if it is possible to define both its delay σk and
hold interval hk (i.e., they are finite numbers) and if the hold interval is greater than zero.

As a consequence, the pairs (σk, hk) can be leveraged to extract the set of ordered valid
jobs, which are the ones effectively used for building the controller. We now discuss how to
compute σk and hk for each Jd,k with the different miss-handling strategies. First of all, it is
worth noting that the definition of σk is strictly related to the notion of response time of job
Jd,k. In fact, the control output computed by Jd,k is dispatched to the actuator at the first
control activation (i.e. the closest incoming deadline) that follows the termination of Jd,k.
The delay σk of Jd,k can then be computed (for each strategy) as follows:

σk =
{
dRd,k/TdeTd if Jd,k completes
∞ otherwise. (4)

Trivially, the maximum value for σk is σ̄ = dRWd /TdeTd. While extracting σk requires only
the knowledge of Jd,k, in order to compute the value of the hold interval hk it is necessary
to know the behavior of the control jobs executing after Jd,k, until the release of a new
control update. In practice, this means that only a finite number of sub-sequences needs to
be checked for characterizing all possible combinations of (σk, hk). Below, the equations for
computing hk for each strategy are presented in detail.

4.2.1 Hold Interval with Kill Strategy
Using the Kill strategy, the control job either finishes within one period or it is killed at
its deadline. An arbitrary sequence of deadline misses may happen between two jobs that
complete successfully. Denoting with λk,Kill the number of consecutive jobs that miss their

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:11

deadline after Jd,k, the hold interval associated to Jd,k is computed according to

hk =
{

(λk,Kill + 1) · Td if Jd,k completes
∞ otherwise (if Jd,k is killed).

If Jd,k has been killed, hk is not defined. Note that if some weakly hard constraint is known
for τd, the values of λk,Kill to check may be upperbounded with the maximum possible
number of consecutive deadline misses of that task.

4.2.2 Hold Interval with Skip-Next Strategy
Using the Skip-Next strategy, no new job may be activated while the active one is executing.
Denoting with λk,Skip-Next the number of skipped jobs that directly follows Jd,k, the hold
interval of a job Jd,k can then be computed as

hk =
{
σk+1+λk,Skip-Next if Jd,k completes

∞ otherwise (Jd,k is skipped).

If Jd,k is skipped, hk is not defined. Intuitively, this means that for the Skip-Next strategy,
the hold value of one completed job is equal to the delay of the subsequent job that completes
(i.e., of the next valid job). In the example of Figure 4, job Jd,k terminates correctly, while
Jd,k+1 does not complete before its deadline. Jd,k+2 is then skipped. The hold value hk is
therefore equal to the delay σk+1 which is 2Td since the job has an overrun. The hold value
hk+1 is equal to the delay of the next completed job Jd,k+3, i.e., hk+1 = σk+3 = Td. The
values that λk,Skip-Next may assume are upperbounded by dRWd /Tde − 1.

4.2.3 Hold Interval with Queue(1) Strategy
Using the Queue(1) strategy, if a job misses its deadline, two scenarios may happen: it
completes before the deadline of Jd,k+1, or it finishes later, then some of the subsequent jobs
is skipped. In both those cases, however, the instant where the control output is published to
the actuator falls exactly one period (Td) after the activation of the next valid job. Denoting
with λk,Queue(1) the number of (eventually) skipped jobs that directly follows Jd,k, the hold
value hk for job Jd,k is computed as follows:

hk =

σk+1 if Jd,k hits its deadline

σk+1+λk,Queue(1) − Td if Jd,k misses its deadline
∞ otherwise (skipped).

If Jd,k is skipped because it is removed from the queue due to a subsequent activation, hk is
not defined. Note that if Jd,k misses and Jd,k+1 hits its deadline – i.e., if both the k-th and
the k + 1-th control jobs complete before during the k + 1-th period – then σk+1 − Td = 0,
and the control signal produced by Jd,k is never actuated. Finally, values of λk,Queue(1) are
upperbounded by d(RWd − Td)/Tde − 1.

5 Synthesis of Deadline-Miss-Aware Controllers

Standard digital control design assumes that samples are taken regularly and that there is a
(most likely known and constant) delay from sampling to actuation [5]. When deadlines are
missed, the actual hold and delay intervals will deviate from the assumed values, as explained
in the previous section. This control jitter leads to degraded performance, and, in extreme

ECRTS 2019

1:12 DMAC: Deadline-Miss-Aware Control

τd

time

an−1 an
(tn − σn)

tntn−1

σn

ψ2n ψ1n

• •

Figure 5 Example of ψ1n and ψ2n.

cases, even to instability of the control loop [16]. With some knowledge about the jitter,
however, it is possible to synthesize a controller that partially compensates for the timing
irregularities. We outline two variants of our Deadline-Miss-Aware Control designs below.

5.1 Clairvoyant Controller Synthesis
The controlled system evolution can be derived by sampling the plant only at the update
instants of each valid job νn, i.e. at the time where the control output produced by νn is
provided to the actuator. With a slight abuse of notation we will refer hereafter to the
pair of delay and hold relative to νn as (σn, hn), while its activation instant is an. The
update instant of the control output produced by νn can then be defined as tn = an + σn.
Moreover, the relation tn+1 = tn + hn trivially holds. For each valid control job νn in
sequence S = {ν1, ν2, ..., νv}, the state evolution can be calculated as

x(tn+1) = x(tn + hn) = A(hn)x(tn) +B(hn)u(tn) + v(tn), (5)

where x(tn) is the state measurement sampled at time tn, u(tn) the control output released
at time tn, and v(tn) a discrete-time model of the plant disturbance. The discrete matrices A
and B are sampled from Ac and Bc of (1), respectively, with the step hn. It is worth noting
that different matrices A(hn) and B(hn) are created, depending on the possible values of hn.
In fact, a system described in this way behaves as a switched-linear system [48]. Computing
the matrices can be done with standard procedures for sampled-data systems [5].

If the timing behavior of all jobs was completely known in advance, we would be able to
design, by looking offline at the schedule, an optimal time-varying controller that minimizes
the cost function (2). We call this a clairvoyant controller. The optimal control signal to be
applied in the hold interval hn is given by

u(tn) = −Lnx(tn), (6)

where the sequence of feedback gain matrices
{
Ln
}

are obtained as the solution to a
time-varying Riccati equation involving the sequences

{
A(hn)

}
,
{
B(hn)

}
, and the sampled

equivalents of the cost matrices Q1c and Q2c. The feedback matrices can be calculated
off-line and stored in a table for on-line use.

The control law (6) cannot be implemented as it stands, though. The control action must
be computed based on a state measurement that is σn time units old. Hence the controller
must also predict the state from time tn − σn to tn. Note however that in the time interval
between tn − σn and tn, the control actuation may not be constant, thus a slightly different
modeling is needed. We will refer to the estimate of the state as x̂, which is computed as

x̂(tn) = A(σn)x(tn − σn) +A(ψ1n)B(ψ2n)u(tn−2) +B(ψ1n)u(tn−1). (7)

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:13

Here, ψ1n represents the time interval in [tn − σn, tn] when the control actuation of the
previous valid job u(tn−1) is held constant, while ψ2n is the (possible) interval where u(tn−2)
is active. For the sake of clarity, an example is shown in Figure 5. An operative procedure
for computing ψ1n and ψ2n is given as follows:

ψ1n = an + σn − (an−1 + σn−1), ψ2n = an−1 + σn−1 − an. (8)

5.2 Robust Controller Synthesis
The clairvoyant controller has two drawbacks. First of all, it relies on exact knowledge of the
execution of the system, ahead of time. This is only possible in very special circumstances.
The other drawback is that it is time varying, which is more complicated to implement and
requires extra memory to store the time-varying feedback gain and prediction matrices. A
more realistic approach is instead to design a fixed, robust controller, based on the statistical
properties of the system.

Again starting from the sampled system description (5), we can instead solve a stochastic
Riccati equation [38] based on the possible values of A(hn) and B(hn) and their relative
frequency in the schedule during the execution of the system. The control law is then

u(tn) = −L̄x(tn), (9)

where L̄ is a fixed gain matrix obtained from the solution to the stochastic Riccati equation

X̄ = E

{[
A(hn)T

B(hn)T

]T

S̄

[
A(hn)T

B(hn)T

]
+
[
Q1(hn) Q12(hn)
Q12(hn)T Q2(hn)

]}
S̄ = X̄11 − L̄TX̄22L̄

L̄ = X̄−1
22 X̄

T
12.

This would be the optimal fixed-gain control law if the matrices A(hn) and B(hn) were
random and independent from job to job. In reality, there is time dependence between the
hold intervals due to the scheduling algorithm, and the control law is hence only sub-optimal.

The predictor (7) must also be modified to work with statistics rather than known-ahead
values. The state can be predicted using expected value calculations as

x̂(tn) = E {A(σn)}x(tn − σn) + E {A(ψ1n)B(ψ2n)}u(tn−2) + E {B(ψ1n)}u(tn−1). (10)

Again, the predictor will only be sub-optimal due to the time-dependence induced by the
scheduling algorithm.

5.3 Controller Synthesis Example
The synthesis methods presented above are illustrated in a simple control example, which
was used to evaluate the performance of a standard (non-deadline-miss-aware) controller
under various overrun strategies in [13]. The plant to be controlled is an integrator process
described by the parameters Ac = 0, Bc = 1, Q1c = 1, Q2c = 0.1 and Rc = 1. The plant is
controlled by a control task with stochastic execution times, executing alone in a CPU. The
execution time may assume value equal to 1 s with probability 0.8, or uniformly distributed
in the interval (1, 2] with combined probability 0.2. For periods ranging between 1 and 2, we
compare the resulting performance under the Kill, Skip-Next, and Queue(1) strategies in
Figure 6. Since Jctl is defined as a cost, lower values in the graph mean better performance.

ECRTS 2019

1:14 DMAC: Deadline-Miss-Aware Control

1 1.2 1.4 1.6 1.8 2
2

3

4

Td – Kill

J
ct

l

Classic Control DMAC Clairvoyant

1 1.2 1.4 1.6 1.8 2
Td – Skip-Next

1 1.2 1.4 1.6 1.8 2
Td – Queue(1)

Figure 6 Control synthesis example: single task with deadline misses.

For each configuration, a standard controller (designed assuming no missed deadlines), a
robust controller, and a clairvoyant controller are designed, and the performance of each
controller, measured in terms of the cost function (2), is evaluated using JitterTime [14]
in a simulation of 100,000 jobs. It can be noted that there is a strict ordering from the
worst performance under standard control to the best performance under clairvoyant control,
as expected. This means that designing control strategies that take into account deadline
misses is beneficial in all cases. The DMAC design does not achieve the optimal cost that
the clairvoyant design is able to achieve, but systematically beats classical control design due
to its delay and hold compensation.

As the period is decreased from 2 to lower values, the Kill and Queue(1) strategies
initially behave similarly, with decreasing cost. In fact, in the case of a miss followed by a
deadline hit, the Kill and Queue(1) strategies have the same behavior (since the output of
the late-completed job under Queue(1) is overwritten by the completion of the next one).
Skip-Next initially has an increase in cost due to the waste of resources when a very small
overrun leads to a whole period being skipped. For smaller task periods, Queue(1) suffers
performance degradation and even instability (Jctl →∞) due to the lag introduced by the
queuing. The Kill and Skip-Next strategies perform the best at Td = 1, with very similar
results for this example.

It should be noted that the results are problem dependent, and it is hard to judge whether
Kill or Skip-Next works the best in general. In all examples, however, we have found that
better performance can be achieved by shortening the period and allowing a few deadline
misses. Some tests that include higher-priority tasks Γ′ are presented later in Section 7.

6 Stochastic Analysis

Section 5 introduced a control design technique that exploits information about the probability
of sequences of deadline hits and misses for the control job. Here, we provide a framework to
robustly estimate these probabilities, and at the same time preserve a pessimistic bound that
allows us to mitigate the effect of worst-case conditions. We formulate the estimation problem
as a chance-constrained optimization problem [37], i.e., an optimization problem where we
look for the probabilities of different sequences of hits and misses given the worst-case
realization of the uncertainty inherently present in the taskset execution.

Analytical approaches extracting the probability of hits and misses for a schedule of jobs
are either extremely pessimistic [17] or have a high computational complexity [51]. This
limits the applicability of these techniques in non-trivial cases. Moreover, there are few works
dealing with joint probabilities of consecutive jobs, like [49], but they still lack of scalability.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:15

To handle the scalability issue, we adopt a simulation-based approach, backed up by the
scenario theory [11], that empirically performs the uncertainty characterization, and provides
formal guarantees on the robustness of the resulting estimation. The scenario theory allows
us to exploit the fact that simulating the taskset execution (with statistical significance) is
less computationally expensive than an analytical approach that incurs into the problem of
combinatorial explosion of the different possible uncertainty realizations. In practice, this
means that we: (i) sample the execution times from the probability distributions specified
for each task, fCi (c), (ii) schedule the tasks, checking the resulting set of sequences Ω, and
(iii) find the worst-case sequence ω∗ based on the chosen cost function. The probabilities
of sequences of hits and misses are then computed based on this sequence, and used in the
design of the controller to be robust with respect to the sequence. We use the scenario theory
to quantify, according to the number of extracted samples, the probability ε of not having
extracted the true worst-case sequence and the confidence in the process 1 − β. Scenario
theory has for example found use in the management of energy storage[20].

6.1 Scenario Theory

The scenario theory has been developed in the field of robust control to provide robustness
guarantees for convex optimization problems in presence of probabilistic uncertainty. In these
problems, accounting for all the possible uncertainty realization might be achieved analytically,
but is computationally too heavy or results in pessimistic bounds. The scenario theory
proposes an empirical method in which samples are drawn from the possible realizations
of uncertainty, finding a lower bound on the number of samples. It provides statistical
guarantees on the value of the cost function with respect to the general case, provided that
the sources of uncertainty are the same.

One of the advantages of this approach is that there is no need to enumerate the uncertainty
sources, the only requirement being the possibility to draw representative samples. This
eliminates the need to make assumptions on the correlation between the probability of
deadline misses in subsequent jobs. If interference is happening between the jobs, this
interference empirically appears when the system behavior is sampled. While there is no
requirement on subsequent jobs interfering with one another, there is a requirement that
different sequences are independent (i.e., each sequence represents an execution of the entire
taskset of a given length, in the same or possibly different conditions). Taking the worst
observed case in a set of experiments, the scenario theory allows us to estimate the probability
that something worse than what is observed can happen during the execution of the system.

Specifically, for a sequence ω we define a cost function Jseq(ω), that determines when we
consider a sequence worse than another (from the perspective of the controller execution).
Denoting with µtot(ω) the total number of job skips and deadline misses that the control
task experienced in ω, and with µseq(ω) the maximum number of consecutive deadline misses
or skipped jobs in ω, we chose to use as a cost function the following expression:

Jseq(ω) = µtot(ω)µseq(ω) (11)

to determine the worst-case sequence of hits and misses. Given a set of sequences Ω =
{ω1, . . . ωnsim}, we select ω∗ = arg max

ω∈Ω
Jseq(ω). The choice of the cost function is anyhow

not-univocal. For instance, other viable alternatives would be: (i) the number of sub-
sequences of a given length with at least a given number of deadline misses, or (ii) the
shortest subsequence with more than a given number of deadline misses.

ECRTS 2019

1:16 DMAC: Deadline-Miss-Aware Control

6.2 Formal Guarantees
The scenario theory allows us to compute the number nsim of simulations that we need to
conduct to reach the required robustness ε and confidence 1−β. The parameter ε is a bound
on the probability of the obtained result being wrong, i.e., on the probability that another
simulation would lead to a sequence with a higher cost function Jseq than ω∗. The parameter
1 − β represents the confidence we have in this result, i.e., the probability of ε being an
incorrect bound. It can also be interpreted as the probability that the drawn nseq sequences
are representative enough of the whole set of possible uncertainty realizations.

Equation (12) shows the relation between the number of experiments nsim, ε and β [11].
Here, d is the number of optimization variables used for the selection. The cost function Jseq
that we defined takes as argument only a sequence ω, hence d = 1.

d−1∑
i=0

(
nsim
i

)
εi(1− ε)nsim−i ≤ β. (12)

Specifying β and ε univocally determines nsim. If β and ε are sufficiently small, we can use
the worst-case sequence for the design of the controller with high confidence.

6.3 Application and Threats to Validity
Similarly to any other empirical approach, the validity of the scenario theory depends on the
representativeness of the sampling set. In our case, for example the validity of our results
depends on the significance of the probabilistic execution time distributions for all the tasks.

Furthermore, the length of the simulations is a critical parameter. We simulate the system
for a number njob of executions of the control task. Clearly, we want to select njob to cover
an entire hyperperiod (to achieve complete analysis of the interferences between the tasks).
In practice, we want to be able to detect cascaded effects that might happen due to the
probabilistic nature of the execution times of the tasks. Some samplings could in fact make
the utilization of instances of the taskset greater than one. For this reason simulations that
include several hyperperiods should be performed. On top of that significancy with respect
the controlled of the physical system is required (since the existence of the hyperperiod is not
always guaranteed), hence the length of the simulated sequences should cover its dynamics.

7 Experimental Evaluation

This section presents and discusses the results obtained with our synthesis method. Experi-
ments are obtained generating synthetic real-time workload. First, we generate the tasks Γ′
and τd. We then use a simulator to draw execution time realizations from the determined
probability distributions for the tasks and generate schedules and sequences of deadline hits
and miss with different deadline-miss handling strategies, according to the scenario theory
parameters. We select the worst-case sequence and use it for control design. Finally, we
test the obtained controller on the physical plant, computing the control performance Jctl.
Section 7.1 describes our experimental setup, while Section 7.2 discusses our results.

7.1 Setup
To generate the taskset, and its execution time probability distributions, our experimental
evaluation follows this procedure:

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:17

Using the UUnifast algorithm [8], we generate an initial taskset Γ′, composed of NT − 1
tasks and having utilization UΓ′ . We order the tasks using Rate Monotonic priority. In
the following, we show examples where NT ∈ {5, 10, 20}, and UΓ′ ∈ {0.70, 0.80}. Tasks
periods are chosen randomly from a bucket of values, ranging between 100ms and 1000ms,
with steps of 10ms. The execution times generated by the UUnifast algorithm are set as
the WCETs of the tasks. All tasks in the generated task set must respect their (hard)
deadlines using the WCET values.
For each generated taskset, we build a control task τd. The control task is set to have
the lowest priority in the set. We assume that the interval of interesting periods for the
controller spans between 0.5 s and 2 s. These values are chosen according to the physical
constraints that the plant imposes (e.g., the speed of the plant dynamics). We then select
a random value for the WCET of τd, ensuring that the response time of its critical job
(which corresponds to the WCRT of τd in case no deadline is missed) is between 2 s and
2.5 s. This choice guarantees that in the interval of interest, the control task has non-zero
probability of missing at least one deadline.
For each task in the taskset we randomly choose the BCET, such that the the BCRT of τd
lies below the lower limit of 0.5 s of our interval of interest (coherently with our hypothesis
that the controller period should be higher than its BCRT). Since the execution time
probability of each task is skewed towards lower values, we expect that the probability
distribution of response times will be skewed in the same direction too. We experimented
with many values for the controller BCRT RBd . We found two representative intervals,
that show different trends and behaviors and therefore selected for visualization the cases
in which RBd ∈ [0.15, 0.25] s and RBd ∈ [0.4, 0.5] s.
For each task, we choose Ne points uniformly spaced in the interval between the task
BCET and its WCET as possible execution times. In our tests, we selected Ne = 5, but
a higher number of points does not pose any scalability issue. The probabilities for each
possible execution time have been assigned with the following heuristic: the lowest half
(rounded up) of values have assigned a probability of that cumulatively sums up to 0.75,
while the remaining sums up to 1− 0.75 = 0.25. This choice is based on the assumption
that, realistically, the probabilities should be skewed towards the lower values.

For each period of interest Td, we evaluate the control design as follows. We use a
simulator, built in C++, to generate the sequences used for the scenario theory. We choose
ε = 0.003 and β = 0.01, obtaining a value for the number of simulations equal nsim = 1533.
A number nj = 500 of control jobs has been chosen as representative temporal horizon for
our system. After choosing a target period Td for the controller in the interval [0.5, 2] s,
the simulator generates a vector of jobs activated in the time interval njob Td. Each job is
characterized by its activation instant, priority, deadline, and an execution time (drawn from
the probability distribution described above). The simulator computes the response time
and the delay σk of each control job, by using the three deadline miss strategies – i.e., Kill,
Skip-Next, Queue(1). For each sequence of control jobs the simulator computes a cost Jseq,
weighting both the total number of deadline misses and the maximum number of consecutive
ones as shown in Equation (11).

The worst-case sequence is the input of our control design script, expressed as a vector of
delays. The Matlab control design script computes the hold interval using the rules presented
in Section 4.1, and selects the set of valid control jobs from the sequence. The average
probability of all combinations of delay and hold values are extracted from the sequence, and
used to build the DMAC controller, as shown in Section 5.2.

ECRTS 2019

1:18 DMAC: Deadline-Miss-Aware Control

0.5 1 1.5 2

2

4

6

8
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td – Kill

J
ct

l

DMAC Jmax Jmin Classic Control

0.5 1 1.5 2

NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td – Skip-Next
0.5 1 1.5 2

NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td – Queue(1)

Figure 7 Comparison of DMAC with different deadline miss handling strategies (average, maxi-
mum, and minimum performance) with classical control.

Finally, the performance of the controlled system, where the control update is driven by
the sequence of delays and holds from task schedule, is computed using JitterTime [14], a
simulation-based tool for analysis of control systems performance inspired by Jitterbug [34]
and TrueTime [15]. This new tool, built entirely in Matlab, is able to model transitions
between different states with variable and conditional probabilities (overcoming some of
the limitations of Jitterbug). JitterTime tests the various sequences of job schedules (with
randomly generated execution times), producing the average and worst-case performance of
the controller in terms of the cost function Jctl.

7.2 Results
We conduct some experiments to study how the control performance, defined in Equation (2),
changes when the control task period Td assumes different values in the interval of interest.
In the following, we show results obtained in different configurations. Specifically, for each
deadline miss strategy we vary: (i) the number NT of tasks in the taskset, (ii) the utilization
of Γ′, (iii) the control task best case response time RBd , and (iv) the dynamics of the physical
plant to be controlled.

Figure 7 shows that DMAC design outperforms the classical control design (remember
that Jctl is defined as a cost, thus the lower, the better). We use the same plant as described
in Section 5.3. From left to right, the figures show the cost function Jctl obtained with
the Kill, the Skip-Next, and the Queue(1) strategy when the period Td varies. Solid lines
represent the average performance of the DMAC controller (in the nsim simulations). Dash
dotted lines show the average performance of the classical control design method. When
the period decreases, DMAC consistently and increasingly outperforms the classical design,
obtaining a lower cost function. To ensure the robustness of the DMAC controller, we also
plot the maximum and minimum cost obtained during the nsim simulations (respectively
using dashed and dotted lines). The area between the maximum and the minimum cost
(which apparently includes the average value) is narrow, validating the robustness claim.

In Figure 8 we investigate the effect of varying the number of tasks NT and the best case
response time of the control task RBd . The number of tasks does not have a dramatic effect
on any of the controllers, but the performance of a controller with the Kill strategy seem to
benefit from an increase in the number of tasks. More generally, however, the Kill strategy is
dominated by both the Skip-Next and the Queue(1) performance, that allow the design to
reach shorter periods and to lower the cost function. The Kill strategy, that was achieving
very good performance when tested with a single control task, does not handle additional
load well. In fact, the failure of the Kill strategy is due to cascaded effects – killing subsequent

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:19

2

4

6

8
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

J
ct

l
Kill Skip-Next Queue(1)

NT = 10, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

NT = 20, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

0.5 1 1.5 2

2

4

6

8
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.40, 0.50] s
Integrator

Td

J
ct

l

0.5 1 1.5 2

NT = 10, UΓ′ = 0.7
RB

d ∈ [0.40, 0.50] s
Integrator

Td

0.5 1 1.5 2

NT = 20, UΓ′ = 0.7
RB

d ∈ [0.40, 0.50] s
Integrator

Td

Figure 8 Control cost function for the Integrator plant with different miss-handling strategies,
varying the number of tasks, and the best case response time.

0.5 1 1.5 2

5

10

15

20
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td

J
ct

l

Kill Skip-Next Queue(1)

0.5 1 1.5 2

NT = 5, UΓ′ = 0.8
RB

d ∈ [0.15, 0.25] s
Integrator

Td

0.5 1 1.5 2

NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
First Order System

Td

Figure 9 Control cost function varying utilization and plant dynamics.

jobs due to interference introduces long delays for the control signal, while allowing the job to
terminate anyway (as the other two strategies do) leads to better performance. The Queue(1)
and Skip-Next strategies behave similarly for both low values of RBd and high number of
tasks. However, the Queue(1) shows some local performance drop in the cases of higher RBd .
This happens when the average delay is just before the threshold of 2Td, i.e. when high
delays but few skips occur. We then conclude that Skip-Next strategy is the most robust to
both variations in the number of tasks NT and in the best case response time RBd .

We conducted an extensive amount of tests, but due to space restrictions we can only
show a limited number of additional results. Figure 9 shows the effect of increasing the
utilization of Γ′ and of changing the plant dynamics. An increase in utilization does not
change the trends that can be observed (the Kill strategy being outperformed). However,
changing the dynamics of the plant from a (marginally stable) Integrator to an (unstable)
First-Order system has a dramatic effect on the cost function. The Queue(1) strategy behaves
similarly (although better) with respect to the Kill strategy, not being able to handle short
periods. The Skip-Next strategy, on the contrary, shows robust performance with respect
to period shortening. The qualitative dependence on the plant dynamics will be explored
further in future research.

ECRTS 2019

1:20 DMAC: Deadline-Miss-Aware Control

8 Related Work

When designing a discrete time controller, it is fundamental to study if timing non-idealities
may occur and how much they could harm the performance of the controlled system. The
problem of analyzing the effects of late information on the system performance [31] has
raised particular interest, especially in networked systems. In fact, transmission delays and
packet drops may happen frequently when the transmission channels are heavily loaded or
noisy. These timing effects are usually characterized as independent events with Gaussian
distributions, or using worst case bounds [6]. By leveraging the knowledge of the timing
non-idealities, many works proposed solutions for assuring the stability of the system [10, 35]
and improving the control performance [44]. Sinopoli et al. [45] proposed an optimal control
design for networked system leveraging the probability of packet losses. Similarly, the problem
of designing an optimal control considering packet drops from the sensor is faced in [26]
and [50]. In [46], the authors design an adaptive control that switches between normal, abort
and skip mode depending on the delay (but which is always lower than than the period).

When dealing with controllers implemented in real-time systems, however, a different and
more complex analysis is needed. Here, the input-output delay experienced by the control flow
comes from the interference of higher priority tasks due to limited computational resources,
that may even cause some job to miss their deadlines. Unforeseen delays may be caused,
for example, by overload activations [27, 54], cache misses [22, 3] or complex interactions
between scheduling and system state [9]. In recent works, systems that experience deadline
misses are described using the so called weakly-hard model [7]. In this model, the possibility
of missing a deadline is upper-bounded by a constraint (m,K), which gives the maximum
number of deadlines m that may happen every K activation of a task. This model has proved
being suitable for studying the effects of missed deadlines on the performance of control
tasks and scheduling [42, 24]. A detailed modeling of the control performance considering
different deadline miss handling strategies is presented in [41]. The effects of missed deadlines
on system performance have been studied also using co-simulation [40]. Other works faced
the co-design problem in overloaded systems by using complex mechanisms that take into
account system stability and processor load [25, 56, 19].

In this paper, we study the effects of missed deadlines on the control performance by
describing miss and hit events in a probabilistic fashion. The urge to bound WCET estimation
and ensure timing correctness of systems led to the development of many probabilistic
modeling techniques with remarkable success when applied to real systems [12, 52, 21, 30].

In our paper we assume that the execution times of each job are assumed as indepen-
dent [36, 2], but we overcome the limitation of classical approach, not requiring that response
times are modeled as independent variables. Exact methods for computing probabilistic
response times of jobs exist [23], but their major downside is that they do not scale well and
are applicable only to limited task sets and short hyperperiods. Other approaches face the
problem by extracting probabilistic bounds with various approximation techniques [17, 51, 18].
The particular case of extracting joint probabilities of successive jobs is however less studied,
and has been found e.g. in [49]. Again the work in [17] develops a bound for l-consecutive
deadline misses, but it is still insufficient for our purposes. The path chosen for our work
leverages the scenario theory approach [11] for performing a robust estimate of the hit and
miss probabilities, by simulating multiple possible schedules.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:21

9 Conclusion

This paper presented DMAC, a novel control design technique for building a fixed Deadline-
Miss-Aware Controller. It also contributes with a methodology to evaluate control design
strategies in the presence of deadline misses and possible overruns. Our controller leverages the
probability of possible sequences of missed deadlines to compensate for the introduced delays.
Our experimental results show that our design obtains better performance, while (safely)
exploring period ranges that are usually avoided in state-of-the-art approaches. Moreover,
we discussed how the control performance changes with respect to different deadline miss
strategies and different taskset parameters. This paper highlights how, choosing the deadline
miss handling strategy is one of the most critical parameters in the control design.

References
1 Leonie Ahrendts, Sophie Quinton, and Rolf Ernst. Finite ready queues as a mean for overload

reduction in weakly-hard real-time systems. In Proceedings of the 25th International Conference
on Real-Time Networks and Systems, pages 88–97. ACM, 2017.

2 Sebastian Altmeyer, Liliana Cucu-Grosjean, and Robert I Davis. Static probabilistic timing
analysis for real-time systems using random replacement caches. Real-Time Systems, 51(1):77–
123, 2015.

3 Sebastian Altmeyer and Robert I Davis. On the correctness, optimality and precision of static
probabilistic timing analysis. In Proceedings of the conference on Design, Automation & Test
in Europe, page 26. European Design and Automation Association, 2014.

4 Amir Aminifar, Soheil Samii, Petru Eles, Zebo Peng, and Anton Cervin. Designing high-quality
embedded control systems with guaranteed stability. In 2012 IEEE 33rd Real-Time Systems
Symposium, pages 283–292. IEEE, 2012.

5 Karl J Åström and Björn Wittenmark. Computer-controlled systems: theory and design.
Courier Corporation, 2013.

6 Philip Axer, Maurice Sebastian, and Rolf Ernst. Probabilistic response time bound for CAN
messages with arbitrary deadlines. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2012, pages 1114–1117. IEEE, 2012.

7 Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard real-time systems. IEEE
transactions on Computers, 50(4):308–321, 2001.

8 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

9 Alessandro Biondi, Marco Di Natale, Giorgio C Buttazzo, and Paolo Pazzaglia. Selecting the
transition speeds of engine control tasks to optimize the performance. ACM Transactions on
Cyber-Physical Systems, 2(1):1, 2018.

10 Rainer Blind and Frank Allgöwer. Towards networked control systems with guaranteed
stability: Using weakly hard real-time constraints to model the loss process. In Decision and
Control (CDC), 2015 IEEE 54th Annual Conference on, pages 7510–7515. IEEE, 2015.

11 Giuseppe C Calafiore and Marco C Campi. The scenario approach to robust control design.
IEEE Transactions on Automatic Control, 51(5):742–753, 2006.

12 Francisco J Cazorla, Eduardo Quiñones, Tullio Vardanega, Liliana Cucu, Benoit Triquet,
Guillem Bernat, Emery Berger, Jaume Abella, Franck Wartel, Michael Houston, et al. Proartis:
Probabilistically analyzable real-time systems. ACM Transactions on Embedded Computing
Systems (TECS), 12(2s):94, 2013.

13 Anton Cervin. Analysis of overrun strategies in periodic control tasks. In Proc. 16th IFAC
World Congress, Prague, Czech Republic, page 137. Citeseer, 2005.

14 Anton Cervin. JitterTime 1.0 reference manual. Technical report, Department of Automatic
Control, Lund University, 2019. Technical Report TFRT-7658.

ECRTS 2019

1:22 DMAC: Deadline-Miss-Aware Control

15 Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and K-E Arzen. How does control
timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime.
IEEE control systems, 23(3):16–30, 2003.

16 Anton Cervin, Bo Lincoln, Johan Eker, Karl-Erik Arzén, and Giorgio Buttazzo. The jitter
margin and its application in the design of real-time control systems. In Proceedings of the 10th
International Conference on Real-Time and Embedded Computing Systems and Applications,
pages 1–9. Gothenburg, Sweden, 2004.

17 Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for uniprocessor fixed-
priority scheduling under soft errors. In Industrial Embedded Systems (SIES), 2017 12th IEEE
International Symposium on, pages 1–8. IEEE, 2017.

18 Kuan-Hsun Chen, Georg Von Der Brüggen, and Jian-Jia Chen. Analysis of deadline miss
rates for uniprocessor fixed-priority scheduling. In 2018 IEEE 24th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 168–178.
IEEE, 2018.

19 Hoon Sung Chwa, Kang G Shin, and Jinkyu Lee. Closing the gap between stability and
schedulability: a new task model for Cyber-Physical Systems. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 327–337. IEEE, 2018.

20 G. Darivianakis, A. Eichler, R. S. Smith, and J. Lygeros. A Data-Driven Stochastic Optimiza-
tion Approach to the Seasonal Storage Energy Management. IEEE Control Systems Letters,
1(2):394–399, 2017.

21 Robert Davis, Tullio Vardanega, Franck Wartel, Liliana Cucu-Grosjean, et al. PROXIMA: a
probabilistic approach to the timing behaviour of mixed-criticality systems. Ada User Journal,
2:118–122, 2014.

22 Robert I Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean.
Analysis of probabilistic cache related pre-emption delays. In Real-Time Systems (ECRTS),
2013 25th Euromicro Conference on, pages 168–179. IEEE, 2013.

23 José Luis Díaz, Daniel F García, Kanghee Kim, Chang-Gun Lee, L Lo Bello, José María López,
Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic real-time systems. In
Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, pages 289–300. IEEE, 2002.

24 Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias Woehrle. Formal Analysis of
Timing Effects on Closed-Loop Properties of Control Software. In RTSS, pages 53–62, 2014.

25 Mongi Ben Gaid, Daniel Simon, and Olivier Sename. A design methodology for weakly-hard
real-time control. IFAC Proceedings Volumes, 41(2):10258–10264, 2008.

26 Vijay Gupta, Babak Hassibi, and Richard M Murray. Optimal LQG control across packet-
dropping links. Systems & Control Letters, 56(6):439–446, 2007.

27 Zain AH Hammadeh, Sophie Quinton, and Rolf Ernst. Extending typical worst-case analysis
using response-time dependencies to bound deadline misses. In Embedded Software (EMSOFT),
2014 International Conference on, pages 1–10. IEEE, 2014.

28 Thomas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A time-
triggered language for embedded programming. In International Workshop on Embedded
Software, pages 166–184. Springer, 2001.

29 Byung Kook Kim. Task scheduling with feedback latency for real-time control systems.
In Real-Time Computing Systems and Applications, 1998. Proceedings. Fifth International
Conference on, pages 37–41. IEEE, 1998.

30 Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J Cazorla. A cache
design for probabilistically analysable real-time systems. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 513–518. EDA Consortium, 2013.

31 Antzela Kosta, Nikolaos Pappas, Anthony Ephremides, and Vangelis Angelakis. Age and value
of information: Non-linear age case. In Information Theory (ISIT), 2017 IEEE International
Symposium on, pages 326–330. IEEE, 2017.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:23

32 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

33 John P Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In
Real-Time Systems Symposium, 1990. Proceedings., 11th, pages 201–209. IEEE, 1990.

34 Bo Lincoln and Anton Cervin. Jitterbug: A tool for analysis of real-time control performance.
In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., volume 2, pages
1319–1324. IEEE, 2002.

35 Steffen Linsenmayer and Frank Allgower. Stabilization of networked control systems with
weakly hard real-time dropout description. In Decision and Control (CDC), 2017 IEEE 56th
Annual Conference on, pages 4765–4770. IEEE, 2017.

36 Rui Liu, Alex F Mills, and James H Anderson. Independence thresholds: Balancing tractability
and practicality in soft real-time stochastic analysis. In Real-Time Systems Symposium (RTSS),
2014 IEEE, pages 314–323. IEEE, 2014.

37 Bruce L. Miller and Harvey M. Wagner. Chance Constrained Programming with Joint
Constraints. Oper. Res., 13(6), 1965.

38 Johan Nilsson, Bo Bernhardsson, and Bjorn Wittenmark. Stochastic analysis and control of
real-time systems with random time delays. Automatica, 34(1), 1998.

39 Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The ROSACE
case study: From Simulink specification to multi/many-core execution. In 20th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 309–318, 2014.

40 Paolo Pazzaglia, Marco Di Natale, Giorgio Buttazzo, and Matteo Secchiari. A framework
for the co-simulation of engine controls and task scheduling. In International Conference on
Software Engineering and Formal Methods, pages 438–452. Springer, 2017.

41 Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses. In 30th Euromicro
Conference on Real-Time Systems (ECRTS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

42 Parameswaran Ramanathan. Overload management in real-time control applications using
(m, k)-firm guarantee. IEEE Transactions on Parallel and Distributed Systems, 10(6):549–559,
1999.

43 Ola Redell and Martin Sanfridson. Exact best-case response time analysis of fixed priority
scheduled tasks. In Real-Time Systems, 2002. Proceedings. 14th Euromicro Conference on,
pages 165–172. IEEE, 2002.

44 Luca Schenato, Bruno Sinopoli, Massimo Franceschetti, Kameshwar Poolla, and S Shankar
Sastry. Foundations of control and estimation over lossy networks. Proceedings of the IEEE,
95(1):163–187, 2007.

45 Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, and Shankar
Sastry. An LQG optimal linear controller for control systems with packet losses. In Decision and
Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference
on, pages 458–463. IEEE, 2005.

46 Damoon Soudbakhsh, Linh Thi Xuan Phan, Anuradha M Annaswamy, and Oleg Sokolsky.
Co-design of arbitrated network control systems with overrun strategies. IEEE Transactions
on Control of Network Systems, 5(1):128–141, 2018.

47 Youcheng Sun and Marco Di Natale. Weakly Hard Schedulability Analysis for Fixed Priority
Scheduling of Periodic Real-Time Tasks. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):171, 2017.

48 Zhendong Sun. Switched linear systems: control and design. Springer Science & Business
Media, 2006.

49 Bogdan Tanasa, Unmesh D Bordoloi, Petru Eles, and Zebo Peng. Probabilistic response time
and joint analysis of periodic tasks. In Real-Time Systems (ECRTS), 2015 27th Euromicro
Conference on, pages 235–246. IEEE, 2015.

ECRTS 2019

1:24 DMAC: Deadline-Miss-Aware Control

50 Eelco P van Horssen, AR Baghban Behrouzian, Dip Goswami, Duarte Antunes, Twan Basten,
and WPMH Heemels. Performance analysis and controller improvement for linear systems
with (m, k)-firm data losses. In 2016 European Control Conference (ECC), pages 2571–2577.
IEEE, 2016.

51 Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katharina
Morik. Efficiently Approximating the Probability of Deadline Misses in Real-Time Systems.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 106 of ECRTS. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

52 Franck Wartel, Leonidas Kosmidis, Code Lo, Benoit Triquet, Eduardo Quinones, Jaume Abella,
Adriana Gogonel, Andrea Baldovin, Enrico Mezzetti, Liliana Cucu, et al. Measurement-based
probabilistic timing analysis: Lessons from an integrated-modular avionics case study. In
Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on, pages
241–248. IEEE, 2013.

53 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, et al.
The worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):36, 2008.

54 Wenbo Xu, Zain AH Hammadeh, Alexander Kroller, Rolf Ernst, and Sophie Quinton. Improved
deadline miss models for real-time systems using typical worst-case analysis. In 2015 27th
Euromicro Conference on Real-Time Systems (ECRTS), pages 247–256. IEEE, 2015.

55 Yang Xu, Karl-Erik Årzén, Anton Cervin, Enrico Bini, and Bogdan Tanasa. Exploiting job
response-time information in the co-design of real-time control systems. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2015 IEEE 21st International
Conference on, pages 247–256. IEEE, 2015.

56 Tatsuya Yoshimoto and Toshimitsu Ushio. Optimal arbitration of control tasks by job skipping
in cyber-physical systems. In Proceedings of the 2011 IEEE/ACM Second International
Conference on Cyber-Physical Systems, pages 55–64. IEEE Computer Society, 2011.

Control-Flow Integrity for Real-Time Embedded
Systems
Robert J. Walls
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
rjwalls@wpi.edu

Nicholas F. Brown
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
nfbrown@wpi.edu

Thomas Le Baron
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
tlebaron@wpi.edu

Craig A. Shue
Worcester Polytechnic Institute, Worcester, Massachusetts, USA
cshue@cs.wpi.edu

Hamed Okhravi
MIT Lincoln Laboratory, Lexington, Massachusetts, USA
hamed.okhravi@ll.mit.edu

Bryan C. Ward
MIT Lincoln Laboratory, Lexington, Massachusetts, USA
bryan.ward@ll.mit.edu

Abstract
Attacks on real-time embedded systems can endanger lives and critical infrastructure. Despite
this, techniques for securing embedded systems software have not been widely studied. Many
existing security techniques for general-purpose computers rely on assumptions that do not hold in
the embedded case. This paper focuses on one such technique, control-flow integrity (CFI), that
has been vetted as an effective countermeasure against control-flow hijacking attacks on general-
purpose computing systems. Without the process isolation and fine-grained memory protections
provided by a general-purpose computer with a rich operating system, CFI cannot provide any
security guarantees. This work proposes RECFISH, a system for providing CFI guarantees on
ARM Cortex-R devices running minimal real-time operating systems. We provide techniques for
protecting runtime structures, isolating processes, and instrumenting compiled ARM binaries with
CFI protection. We empirically evaluate RECFISH and its performance implications for real-time
systems. Our results suggest RECFISH can be directly applied to binaries without compromising
real-time performance; in a test of over six million realistic task systems running FreeRTOS, 85%
were still schedulable after adding RECFISH.

2012 ACM Subject Classification Security and privacy → Embedded systems security

Keywords and phrases Control-flow integrity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.2

1 Introduction

Real-time and embedded systems (RTES) are predominantly developed in C because it offers
high performance, low-level hardware control, and is often the only language supported by
the manufacturer-provided toolchain for the target device. However, C also brings a host of
potential memory errors, or vulnerabilities, that are both easy for developers to make, and
easy for attackers to exploit. For example, memory-corruption vulnerabilities (e.g., buffer

© Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A. Shue, Hamed Okhravi, and
Bryan C. Ward;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 2; pp. 2:1–2:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rjwalls@wpi.edu
mailto:nfbrown@wpi.edu
mailto:tlebaron@wpi.edu
mailto:cshue@cs.wpi.edu
mailto:hamed.okhravi@ll.mit.edu
mailto:bryan.ward@ll.mit.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Control-Flow Integrity for Real-Time Embedded Systems

overflows) allow an attacker to overwrite portions of memory with attacker-provided values.
Such vulnerabilities can be leveraged to hijack the control flow of a program by overwriting
code pointers (e.g., function pointers or return addresses). Such attacks, commonly called
control-flow hijacking, manipulate the execution of a program by redirecting control-flow
transfers to either attacker-supplied code [33] or useful code sequences already in the program
(e.g., return-oriented programming [ROP] [37]).

Several classes of defenses have been proposed for general-purpose systems to address
control-flow hijacking. These include control-flow integrity (CFI) [5], which prevents such
attacks by enforcing a precomputed control-flow graph (CFG) to runtime (indirect) control
transfers in an application. Various other randomization-based [23, 26, 7, 24] and enforcement-
based defenses [30, 31, 25, 32] have also been proposed in the literature.

However, there are a number of unique challenges that make existing implementations of
these defenses ill-suited to RTES. First, embedded hardware is less capable and often lacks
important hardware features that existing software defenses leverage. For example, the ARM
Cortex-R architecture that we target in this work does not have a memory management
unit (MMU) and, consequently, it does not support the abstraction of virtual memory nor
does it provide isolation between kernel and application code. Second, in order to ensure
the temporal correctness of the system, overheads associated with security defenses must
be analyzed and factored into schedulability analyses. Third, embedded systems rely on
toolchains tailored to each board and architecture, including custom versions of compilers
(e.g., GCC) and proprietary IDEs (e.g., CodeComposerStudio). It is time-consuming (or
impossible) to modify each of these toolchains to support new defenses.

Given these challenges, the security posture of many RTES lags behind that of general-
purpose systems, despite being deployed in safety- or mission-critical applications. Given the
proliferation of cyber-physical systems and Internet-of-things (IoT) devices, such systems
are becoming ubiquitous in our society. Furthermore, such devices are increasingly Internet-
connected, and therefore easily targeted by remote attackers. We must therefore develop
security defenses for RTES that address the aforementioned challenges.

Towards that end, in this paper, we propose, implement, and evaluate a new defense
for protecting RTES from control-flow hijacking attacks. Our defense, called Real-Time
Embedded CFI for Secure Hardware (RECFISH), is inspired by past work on control-flow
integrity but distinguishes itself from existing efforts in three key ways. First, RECFISH
addresses the problem of custom toolchains by retrofitting binaries. This allows the developer
to use existing toolchains without modification and even apply RECFISH protections to
binaries without access to their source code. Second, we develop a new memory-isolation
approach for ARM systems that does not rely on virtual memory. RECFISH provides
the isolation between application and OS code needed to support secure context switching
and enforce control-flow integrity. In particular, we modify a popular real-time operating
system, FreeRTOS, to include RECFISH protections. Third, we provide a rigorous analysis
of RECFISH’s impact on real-time schedulablility and show that RECFISH can be applied
to most systems without violating real-time requirements.

We evaluate the security and performance overhead of RECFISH using four broad classes
of experiments. First, we perform the Basic Exploitation Test (BET) proposed by Carlini et
al. [10] and demonstrate how RECFISH prevents various types of corruption used for control-
hijacking, and how it secures the necessary CFI state from malicious modifications. Second,
to evaluate the performance overhead, we run the CoreMark and BEEBS embedded-system
benchmarks. Third, in order to better understand the sources of overhead, we conduct a
series of microbenchmarks to quantify the CPU cycles necessary for each CFI operation.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:3

Finally, based on the microbenchmark results, we empirically measure the effect on real-time
schedulability [36], or the ability to analytically guarantee all deadlines will be satisfied, a
fundamental metric in work on RTES. To our knowledge, we are the first to analyze the
effect of a memory-corruption defense on analytical schedulability – this analysis provides a
significant distinction from previous work in the embedded space (e.g., EPOXY [12]). Our
contributions are summarized as follows:

Binary instrumentation for ARM: We develop a CFI scheme, RECFISH, that
protects both ARM-based bare-metal applications and those that run on FreeRTOS.
Protection mechanisms for CFI data structures: We protect the instrumentation
required for CFI as well as the shadow stack on low-resource ARM-based systems that
lack native capabilities for such protections.
Process isolation without virtual memory: We devise a low-overhead method for
isolating critical parts of a process on ARM systems where all processes run in the same
address space.
A binary-patching framework for ARM: We create a binary-patching framework
that rewrites precompiled ARM binaries to add CFI protection.
Evaluation: We conduct both a security evaluation of RECFISH using BET and a
performance evaluation using benchmarks, microbenchmarks, and schedulability.

2 Background and Related Work

2.1 Control Flow Integrity
CFI-based defenses check, at runtime, if program execution follows a legal control flow.
Broadly, CFI schemes modify the target binary in three ways. First, at each indirect branch
target, they insert a label to encode legal control-flow transfers. Second, at each indirect
branch instruction, they insert instrumentation to verify the target has the expected label.
Third, at each function return, they insert instrumentation to ensure control returns to the
calling function.

Legal control flow is defined by the program’s control-flow graph (CFG). Typically
computed at compile-time, the CFG is a directed graph where the nodes represent basic
blocks – i.e. sequences of program instructions ending in a branch – and the edges represent
legal control-flow transfers between basic blocks. There are broadly two classes of branches:
direct branches statically specify the target, while indirect branches depend on a register
or memory value to specify the target at runtime. The latter are the target of control-flow
hijacking attacks [37] and the focus of CFI. Note, checks are not needed for direct jumps
when the code section of memory is read-only as the attacker cannot modify the target.

CFI implementations vary primarily in the choice of labeling scheme and the approach to
protecting function returns. For performance reasons, some CFI approaches ignore function
returns and only protect the other indirect branches. Other CFI-based defenses – including
the original implementation by Abadi et al. [5] and the system proposed in this paper – rely
on a runtime data structure, called a shadow stack, to securely store return addresses. This
structure increases the precision of CFI and, by extension, the security of the instrumented
program [17]; the tradeoff is higher overhead. See the survey by Burow et al. for a more
comprehensive treatment of prior work on control-flow integrity [9].

Compared to earlier control-flow defenses (e.g., StackGuard [14], RAD [11], and DISE [13]),
CFI implementations often consider a stronger threat model and provide stronger security
guarantees. Specifically, CFI-based defenses must ensure that control-flow integrity is enforced

ECRTS 2019

2:4 Control-Flow Integrity for Real-Time Embedded Systems

even against adversaries that have full control of the data memory. In contrast, these earlier
defenses do not protect all code pointers (only return address) and the shadow stack is either
left unprotected from attackers with the ability to arbitrarily write to memory or the defense
adds significant overhead by interposing on all (or a large subset of) memory writes.

2.2 Real-Time Embedded Systems

To facilitate writing real-time software, embedded-system designers often use a real-time
operating system (RTOS). In a real-time OS, tasks are the rough equivalent of a process in a
general purpose system. A scheduler is used to switch between executions of each task to
meet pre-defined timing constraints.

RTOSes vary greatly in their complexity. On more powerful hardware, RTES can leverage
versions of Linux compiled with SCHED_DEADLINE or SCHED_RT, which replace Linux’s default
scheduler with a real-time scheduler. On processors designed for embedded use – like those
targeted for this work – the hardware typically does not meet the minimum requirements
for Linux. For reference, in 2014, a minimally configured Linux kernel required at least 8
MB of program flash and 1.6 MB of RAM [40], whereas the test device for this work has
only 1.25 MB of flash and 192 KB of RAM. The alternative to real-time Linux is using an
embedded RTOS such as FreeRTOS or µC/OS, which are designed to run on devices with
storage space and memory on the scale of kilobytes, rather than megabytes or gigabytes.
One of the most common RTOSes is FreeRTOS. Designed to be as small as possible, this
free and open source RTOS fits in as little as 5 KB of program flash and under 1 KB RAM,
depending on the features used [4]. FreeRTOS is highly portable, with ports for most major
architectures. FreeRTOS, while minimal in nature, provides a few rich features such as
mutexes, semaphores, shared queues, and software timers.

2.3 Real-time Security

There has been some prior work on providing increased security to real-time systems. However,
most of this work has focused on different attack classes or adopt weaker threat models
than considered here. For example, Hasan et al. [22] considered how to schedule security
monitoring into real-time scheduling while respecting legacy real-time constraints. Others
have considered information-leakage attacks via cache-based and other side channels [29, 35],
and how schedule randomization can be applied to defend against such threats [39]. In this
work, we consider a much stronger, more pernicious threat model, that of memory corruption
and control-flow hijacking.

EPOXY [12] targets the same class of attacks as RECFISH, but the underlying approach
is significantly different. First, EPOXY does not guarantee control flow integrity, i.e., EPOXY
does not check the target of indirect branches. Second, EPOXY is compiler-based whereas
RECFISH retrofits existing binaries. It is unlikely that EPOXY could be re-engineered to
work on existing binaries, e.g., EPOXY’s code diversification presents significant challenges
if implemented outside of a compiler. Third, EPOXY only targets bare-metal applications
whereas RECFISH is implemented for both bare-metal and FreeRTOS. As we explain later
sections, context switching introduces additional security challenges, which EPOXY does not
address; notably, EPOXY does nothing to protect the stack in a multi-task environment.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:5

2.4 ARM Architecture

Our work focuses on ARM’s Cortex-R architecture for high performance real-time systems.
Most Cortex-R processors are single core and they have special interrupt controllers and
caching mechanisms to support the low latency required by real-time systems. Unlike x86-
based hardware, ARM Cortex-R does not support virtual memory. Consequently, all realtime
tasks share the address space. The lack of a memory-management unit and high-quality
entropy sources [19], coupled with a small address space, mean it is especially challenging
to implement randomization-based defenses (e.g., ASLR). Further, these challenges also
complicate the implementation of secure runtime data structures (e.g., the shadow stack).

Another important complication is that Cortex-R chips operate on several different
instruction sets, such as the ARM and Thumb instruction sets. It is common for a single
ARM binary to include instructions from multiple sets and switch among them during
execution. Broadly, the Thumb instruction set and its variations are used to reduce code size
with minimal reduction in performance. We further describe on the details of the Cortex-R
architecture and its implications for the design of RECFISH in Section 3.

3 Design of RECFISH

RECFISH is a software defense for embedded ARM architectures. RECFISH takes a control
flow graph and program binary as input, adds security instrumentation, and produces a
protected binary. We divide the discussion of RECFISH into four components: (i) basic
memory protections, (ii) forward-edge CFI, (iii) shadow stack operations, and (iv) secure
context switching. The first three are presented in the context of bare-metal execution and
the last in the context of FreeRTOS.

3.1 Threat Model

We assume a powerful adversary able to modify anything in writeable memory at any
time, including all data on the stack or heap. The attacker cannot, however, modify read-
only memory such as program code. Unlike other software defenses, we also assume that
writeable memory is, by default, executable. Consequently, we must implement basic memory
protections as part of RECFISH.

The attacker’s goal is to subvert the control-flow of a program by modifying the target
of an indirect branch. In ARM, an indirect branch is either (i) a branch instruction with a
register operand, or (ii) any operation with the program counter register as the destination.
These instructions are enumerated in Appendix A. RECFISH is charged with thwarting such
attacks. As with previous work, RECFISH does not prevent memory corruption, but it does
prevent corrupted code pointers from hijacking control-flow.

In a system executing without RECFISH modifications all of RAM is configured, by
default, to be readable, writeable, and executable. The code is stored in ROM which is only
readable and executable. Discussed in detail below, RECFISH uses binary instrumentation
to check the targets of indirect branches and leverages the MPU to disable the execute
permissions for RAM and to create a region of protected memory for the shadow stack (and
other security-critical structures in FreeRTOS). Most code executes in an unprivileged mode
and this protected memory region is only accessible from privileged modes.

ECRTS 2019

2:6 Control-Flow Integrity for Real-Time Embedded Systems

.text .cfi

foo:
 Prologue
 …
 Jump
 …
 Epilogue

Instrumented
Prologue

Instrumented
Jump

Instrumented
Epilogue

Figure 1 RECFISH uses trampolines to add CFI instrumentation to binaries without access to
the source code.

3.2 RECFISH for Bare-Metal Execution

RECFISH patches pre-compiled binaries to add security instrumentation. Binary patching
promotes broad adoption of the defense as it allows developers to employ RECFISH without
modifying existing toolchains. This capability is important for retrofitting security to existing
devices that may otherwise never receive updates.

However, binary patching is more complicated than simply inserting additional instructions
into the code section. Namely, the inserted instructions can break the relative addressing com-
mon in the ARM Thumb instruction set. For example, the instruction ldr r1, [pc, #32]
loads data from an address 32 bytes after the program counter. With in-line checks, we must
update this instruction (and likely many others) to point to the new location of the data. To
avoid this issue, we instead instrument instructions by replacing them with trampolines, i.e.,
direct branches to CFI code appended to an unused memory section. At a high level, the
patched binary follows the format shown in Figure 1. The original program code is in the
.text section, and the CFI instrumentation goes into a new .cfi section.

3.2.1 Basic Memory Protections

Like previous CFI implementations, RECFISH depends on two basic memory invariants.
First, code regions must be read-only. Second, writeable regions must be non-executable.
Unlike x86, Cortex-R does not offer virtual memory support, so these protections must
be implemented using the limited functionality of the memory protection unit (MPU) and
privileged processing modes.

The MPU, included by most Cortex-R processors, supports developer-defined permissions
for up to 12 memory regions. For each region, there are three sets of permissions to be
set: user mode, privileged mode, and execute permissions. For example, a memory region
can be configured to be read-only for user mode, read and write for privileged mode, and
non-executable (in any mode). In addition to the basic memory protections described above,
we also leverage the MPU to create a protected region for shadow stack operations (see
Section 3.2.3). MPU violations result in a data abort and any attempts by an adversary to
modify program code or execute from writeable memory will be prevented.

To enforce basic memory protections, RECFISH requires the device to have an MPU and
two available MPU regions. This includes many Cortex-M, Cortex-R, and RISC-V devices.
The primary difference between Cortex-M and Cortex-R, in the context of this work, is that
the former uses memory-mapped registers that must also be protected – though this can be
done in the same manner that RECFISH protects the shadow stack.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:7

Listing 1 Example function that uses function pointers.
1 int foo(int a, int b) {
2 int (* func [2])(int , int) = {add , sub };
3 static unsigned int i = 0;
4 return func[i++

Listing 2 Disassembly of the foo() function.
0x192: push {r4 , r7 , lr} #
0x194: sub sp , 20 # Function Prologue
0x196: add r7 , sp , 0 #
...
0x1e6: add r3 , r3 , r4 #
0x1e8: blx r3 # Indirect Call
...
0x1f0: mov sp , r7 #
0x1f2: pop {r4 , r7 , pc} # Function Epilogue

Cortex-R processors have seven processing modes: User, System, Supervisor, Interrupt,
Fast Interrupt, Abort, and Undefined. We leverage these different modes to perform
operations at different privilege levels. Specifically, we use the unprivileged User mode for
normal code execution and forward-edge CFI checks and the privileged System, Supervisor,
and Interrupt modes for other CFI functionality such as shadow stack operations and context
switching. The most relevant distinction between privileged and unprivileged modes is that
the former can access memory marked as privileged-only.

3.2.2 Forward-Edge Checks

We use a simple example to illustrate how RECFISH handles forward-edge checks with
binary patching. Consider the function foo() given in Listing 1 and its disassembly shown
in Listing 2. RECFISH instruments three components of this function: the prologue, the
indirect call resulting from the function pointer usage on line 4, and the epilogue. Listing 3
shows the resulting instructions after RECFISH is applied; namely, each component is
overwritten with trampolines to RECFISH instrumentation.

Listing 3 Instrumented version of the foo() function.
0x192: b.w 0 x13f60 # Branch to new prologue

0x196: <label > # Insert label
...
0x1e6: bl 0 x13f80 # Replace indirect call

with CFI check
...
0x1f0: b.w 0 x13f98 # Branch to new epilogue
...

ECRTS 2019

2:8 Control-Flow Integrity for Real-Time Embedded Systems

Listing 4 Function prologue instrumentation.
0 x13f60 : push {r4 , r7} # Copy displaced instructions
0 x13f62 : sub sp , 20 # from the orig. prologue
0 x13f64 : add r7 , sp , 0 # with modifications
0 x13f66 : svc 0 # Call ss_push
0 x13f68 : b.w 0x198 # Branch back , skipping label

Listing 5 Indirect call instrumentation.
0 x13f80 : add r3 , r3 , r4 # Copied instruction
0 x13f82 : push {r0 , r1} # Save registers
0 x13f84 : ldrh r0 , [r3 , 3] # Load target ’s CFI label
0 x13f86 : movw r1 , <label > # Load expected label
0 x13f88 : cmp r0 , r1 # Compare the labels

error:
0 x13f8a : bne error # Error if mismatch
0 x13f8c : pop {r0 , r1} # Restore registers
0 x13d8e : bx r3 # Perform indirect jump

3.2.2.1 Function Prologue

RECFISH instruments the function prologue to embed the appropriate CFI label for foo().
This allows any calling function to verify that foo() is a legal target. As mentioned previously,
RECFISH cannot simply insert this label without breaking relative addressing. Instead,
RECFISH replaces 6 bytes of the original function prologue with a 4-byte branch to the
CFI section (i.e., the trampoline) and a 2-byte label. The CFI section for the function
prologue, shown in Listing 4, includes the instructions replaced in the original prologue, adds
some shadow stack operations (discussed later), and returns to the instruction following the
original function prologue.

3.2.2.2 Indirect Branches

RECFISH ensures that the target of the indirect branch is legal by checking the value of
the target’s label against the expected value. As with the prologue, RECFISH inserts these
checks into a separate CFI code region (Listing 5) and uses a trampoline to jump to the
check. Note that the target’s label is stored in a function prologue – similar to what was
discussed above for foo() – and the expected label is hard-coded into the instruction at
0x13f86. In the event of a label mismatch, the instruction at 0x13f8a will branch to error
handling code, which in the current implementation will result in an infinite loop.

RECFISH must replace the 16-bit indirect branch instruction with a 32-bit direct branch
to the CFI check. To make space, RECFISH replaces both the indirect branch and the
preceding add instruction. The displaced add is moved to the start of the appropriate CFI
code region. We use a branch-and-link operation as the direct branch to copy the return
address into the link register for use by the called function.

3.2.2.3 Function Epilogue

The modified function epilogue reverses the operations performed during the new prologue.
Namely, RECFISH restores the registers previously pushed to the normal stack and pops
the return address from the shadow stack. To do this, RECFISH again replaces two 16-bit

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:9

Listing 6 Function epilogue instrumentation.
0 x13f98 : mov sp , r7 # Execute displaced operation
0 x13f9a : svc 1 # Call ss_pop
0 x13f9c : pop {r4 , r7} # Perform pop without PC
0 x13f9e : bx lr # New return instruction

instructions with a 32-bit trampoline. In the instrumentation shown in Listing 6, the modified
epilogue includes code to retrieve the return address from the shadow stack and move it into
the link register. The original pop instruction is also modified such that the link register is
no longer included in operands. This modification is necessary as the link register is not
pushed to the normal stack in the new prologue. Finally, the code returns to the calling
function using a branch-and-exchange to the link register.

3.2.3 Shadow Stack
The shadow stack is a region of memory, separate from the normal stack, used to securely
store return addresses and increase the runtime precision of RECFISH checks. RECFISH
makes the shadow stack inaccessible from the User processing mode using the MPU, but
allows reading and writing from the Supervisor mode. Consequently, performing shadow
stack operations (e.g., push and pop) requires RECFISH to jump into a privileged mode,
modify the shadow stack, and jump back to an unprivilege mode. To implement this, we
created a system call interface using the ARM Supervisor call (svc) instruction.

The Supervisor call instruction takes one operand, an immediate value representing the
function number. When it executes, the svc instruction triggers an interrupt on the processor.
The handler for this interrupt determines the function number by reading the opcode of
the software interrupt instruction. The ARM assembly code function to do this is shown in
the Appendix in Listing 7. The short ARM assembly code functions for the shadow stack
operations are shown in the Appendix in Listing 8.

Procedure calls are handled differently in ARM than x86. In x86, procedure calls are
generally implemented with pairs of call and ret instructions. The call instruction is used
to branch to the target procedure, saving the return address onto the stack. The associated
ret instruction is later used to return to the caller, popping the return address off the stack.
In ARM, procedure calls are implemented using a branch-link-exchange instruction [16].
Branch-link-exchange instructions atomically branch to the target location stored in the
link register and then update the link register to store the return address. We leverage this
behavior to reduce the number of writes to the shadow stack. Specifically, we only need to
push LR to the shadow stack if the link register is spilled to the normal stack, e.g. when a
procedure calls another procedure.

3.2.4 Implementation
Our prototype implementation uses the Capstone disassembly engine [1], the pyelftools [3]
ELF file parser, and the Keystone assembler [2]. Capstone provides a powerful disassembly
and instruction decomposition framework that makes it possible to identify the registers
modified by any instruction. We search the executable for indirect branches and instructions
that indirectly modify the program counter register (such as a load multiple operation where
PC is a destination register). After enumerating the instructions that need instrumentation,
we follow the procedures outlined earlier in this section to generate the instrumentation.

ECRTS 2019

2:10 Control-Flow Integrity for Real-Time Embedded Systems

Finally, we use the Keystone assembler to write the patched code to a new binary. We follow
the same procedure for function prologues, epilogues, and indirect branch targets until we
have a fully instrumented binary.

3.2.4.1 Limitations

One limitation of our current implementation is that the size of the shadow stack must be
manually configured. However, RECFISH uses additional instrumentation to ensure that the
stack does not overflow.

Uncommon C features such as setjmp and longjmp pose additional challenges that
our current implementation does not directly address. Though such functionality was
not employed by any of the binaries we evaluated, we can extend RECFISH to support
setjmp/longjmp without a substantial impact on the security or performance results presen-
ted. For example, we can adopt an approach similar to that used by DISE [13] and push the
current stack pointer along with the return address to the shadow stack.

3.3 RECFISH for FreeRTOS
The primary challenge of extending RECFISH to the FreeRTOS real-time operating system
is supporting context switching and multithreading. As we discuss below and in the following
section, task preemption and the lack of memory isolation introduces the possibility of a
memory error in one task being used to corrupt the memory of another.

Each task has its own stack. This stack is also used by the scheduler to save and restore
state when switching from one task to another. Under our threat model, RECFISH must
assume any information stored on the stack during a context switch could be modified by the
attacker. Consequently, RECFISH cannot consider CFI checks as atomic operations as any
context-switches that preempt a CFI check could introduce a time-of-check to time-of-use
vulnerability. Specifically, CFI labels are loaded from read-only program code into registers.
In the presence of context switching, however, registers with CFI-critical information – i.e.,
the two registers with labels and the register storing the branch target – could be saved
to the task stack at any point during the CFI check. With careful timing, the attacker
could overwrite these saved register values. Defenses on general-purpose systems do not have
to address this challenge (for process threads) because register values are saved to kernel
memory during a context switch.

To avoid this vulnerability, RECFISH saves task state in the task’s shadow stack rather
than on the task’s unprotected regular stack. For FreeRTOS, this necessitates modification
of the Task Control Block (TCB) structure, the task creation procedure, and the scheduler.
The scheduler already runs in privileged mode with interrupts disabled, so we do not incur
additional overhead from the Supervisor call instruction.

One alternative to using the shadow stack for context switching would be to disable
interrupts during the CFI checks. However, we avoid this approach as it introduces additional
scheduling challenges, i.e., it introduces a new source of latency for real-time tasks. Even in
non-preemptive systems (where the scheduler only runs when a task yields), other real-time
sensitive hardware interrupts could be negatively impacted by disabling interrupts.

3.3.1 Task Creation Modifications
We modified the FreeRTOS task creation procedure to assign a shadow stack to each
task when it is created. Specifically, we extended the Task Control Block (TCB) struc-
ture to add a field for a shadow stack. We also modified the functions that initial-

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:11

ize this structure, the FreeRTOS function prvInitialiseNewTask and the port-specific
FreeRTOS function pxPortInitialiseStack. The prvInitialiseNewTask simply assigns
the next available shadow stack to the TCB of the newly created task. The port-specific
pxPortInitialiseStack function required more complicated changes. When FreeRTOS
creates a task, it sets up the stack such that the task appears to have been switched out
by the scheduler. This is an optimization that allows FreeRTOS to simply use its restore
context routine to start a task, rather than needing a special procedure.

3.3.2 Scheduler Modifications
Most of the scheduler is written in ARM assembly, and the instruction set makes it easy to
save context to the unprotected stack. Normally, to save the register information to the stack
from the scheduler, only two instructions are needed: srs and push. The srs mnemonic
is the store return state instruction, which pushes the IRQ return address and the saved
process state register to the system or user mode stack. After saving the return state, the
scheduler switches to system mode and pushes the rest of the registers to the stack. To
modify this to use the shadow stack, we need to get the pointer to the top of the shadow
stack, and use this like the stack pointer.

4 Evaluation

To evaluate RECFISH, we conducted three broad classes of experiments. First, we eval-
uated the security provided by RECFISH to show that the instrumentation will enforce
the CFI policy, even in the presence of a powerful attacker. Second, we conducted a series
of microbenchmarks to understand and quantify the overheads and costs associated with
specific functionality within our instrumentation, and how commonly such functionality
is invoked among many benchmark applications. Finally, the results of these microbench-
mark experiments informed the design of a large scale schedulability study, or effectively a
macrobenchmark study. This study demonstrates how the RECFISH overheads affect the
guarantees that a given task system will meet all deadlines.

The reference system used for this work is a Texas Instruments Hercules RM46L852, an
ARM Cortex-R4F processor. This processor has 1.25 MB of non-volatile program flash, 192
KB of RAM, and an additional 64 KB of flash for emulated EEPROM storage.

4.1 Security Evaluation
The security benefits of control-flow defenses are difficult to describe quantitatively. While
measurements of ROP gadget reduction and Average Indirect Target Reduction (AIR)
have been used in previous work, Carlini et al. have discussed how these measurements
are misleading and reflect CFG precision more so than security [10]. Instead of using the
aforementioned metrics, we adopt the standard qualitative analysis used in prior work on
control-flow defenses for general-purpose systems; we show that RECFISH checks that all
branches are legal with respect to the control-flow graph, those checks cannot be bypassed,
and the shadow stack cannot be modified by an attacker. Because our focus is on the security
of the proposed CFI instrumentation rather than the precision of the control flow graph,
attacks that follow a legal control flow are out of the scope of this evaluation.

In addition to the qualitative analysis, we also tested RECFISH using the empirical
methodology proposed by Carlini et al. – the Basic Exploitation Test (BET) – where a
minimal, representative program is written with a known vulnerability (such as a buffer

ECRTS 2019

2:12 Control-Flow Integrity for Real-Time Embedded Systems

overflow) to show that a defense prevents an attacker from achieving their specific goal (i.e.
arbitrary code execution) [10]. We elide further discussion of the BET results as RECFISH
successfully prevented the attack.

4.1.1 Basic Memory Protections
RECFISH leverages the MPU to set memory as either writeable or executable, but not both.
This prevents an attacker from inserting and executing their own code to bypass the CFI
checks. Further, the attacker cannot modify program code to disable CFI checks. These two
basic protections ensure the attacker’s only attack vector is to modify writeable memory.

4.1.2 Label Assignment
The labels for CFI instrumentation must be chosen to satisfy the global uniqueness assumption.
This assumption states that the byte sequence representing a label only appears in the code
section as part of the CFI instrumentation. If this assumption does not hold and the label
coincidentally appears somewhere else in code memory (e.g. as an instruction opcode), an
attacker could circumvent CFI by overwriting a code pointer with an address that is the
correct offset from the location where the erroneous label appears. Given that RECFISH
patches pre-compiled binaries and that there is no dynamic linking in our target system, we
can use static analysis to verify that all labels are globally unique.

Further, because the label is stored in executable code, the instrumentation should either
ensure that the label is never executed, or it should be a side-effect free instruction. In
the original CFI implementation, the side-effect-free x86 prefetch instruction was used to
encode the label [5]. In RECFISH, the forward-edge and shadow stack protections to prevent
the label from being executed.

4.1.3 Forward-edge Instrumentation Without Context Switching
Each forward-edge check has two parts: the source and destination instrumentation. The
source instrumentation replaces the indirect branch and its preceding instruction with a direct
branch to the correct location in the .cfi section. The general format of the indirect call
instrumentation is shown in Listing 5. All critical operations of the CFI check are performed
entirely in registers and thus are protected in the shadow stack if the check is pre-empted.

The source label is hardcoded in a mov instruction, so that cannot be modified. Consider
the case where the target label matches the expected label. In this scenario, the target label
either resides in read-only program code, or it has been inserted into writeable memory by
the attacker. If the label is in program code and the labels are globally unique, the label
must be valid and it precedes a legal branch target. If the label was maliciously inserted
into writeable memory, the CFI check will allow the branch to be taken, but the MPU will
prevent the processor from executing the code at the target. In summary, there are three
possible outcomes from the label checking code: the branch is taken and execution continues,
the branch is taken and the MPU prevents execution, or execution enters an infinite loop. In
any of the three cases, the attacker cannot achieve arbitrary code execution.

4.1.4 Backward-edge Instrumentation With Shadow Stack
Each backward-edge check has two parts: function prologue and function epilogue instru-
mentation. In ARM, we do not need to consider the backward-edge in leaf functions, that is,
functions at the end of a call tree that do not call any other functions. Leaf functions do

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:13

not push the return address to the stack; they keep the return address in the link register
and end the function with a bx lr instruction. In non-leaf functions, however, the compiler
will generate a matching pair of push {<reglist>, lr} and pop {<reglist>, pc} in-
structions to store the return address on the unprotected stack. All non-leaf functions are
instrumented by RECFISH.

The instrumentation for non-leaf functions has a single goal – protect the return address
by saving the link register on the shadow stack rather than on the unprotected regular stack.
The general form for this instrumentation is shown in Listings 4 and 6. Importantly, memory
accesses always occur at the current hardware privilege level (i.e., privileged or unprivileged).
Most program code executes in unprivileged mode, but RECFISH places the shadow stack
in a memory region accessible only during privileged mode execution. RECFISH uses the
software interrupt (svc) instruction to change the processing mode from user to supervisor
mode, allowing it to modify the shadow stack.

To manipulate the shadow stack, the attacker must exploit a memory corruption vulner-
ability while the processor is in privileged mode. Interrupt handlers execute in privileged
mode, and thus are a potential avenue of attack; however, interrupt handlers in real-time
systems are designed to be short and deterministic and can be designed without arbitrary
memory writes. Finally, the shadow stack code itself is effectively atomic. If a context switch
occurs during shadow stack operations, RECFISH pushes all of the context to the shadow
stack, so there is no time-of-check to time-of-use vulnerability.

4.1.5 Forward-edge Instrumentation With Context Switching
The only time that the CFI checks can be tampered with is when context switching is possible.
If the scheduler interrupts the CFI check and puts CFI-critical registers into memory, our
threat model dictates that the attacker could use this as an opportunity to corrupt the saved
CFI-critical registers. When context is restored, the corrupted values will be loaded into the
registers, potentially allowing the attacker to bypass CFI. As stated previously, we combat
this issue by storing all saved context in the shadow stack.

Since the scheduler runs with interrupts disabled, the scheduler operations are atomic
from the perspective of program code. This means that there is no opportunity for an
attacker to corrupt the context before it gets pushed to the protected shadow stack. Further,
an attacker cannot change the pointer to a task’s shadow stack because RECFISH protects
the entire Task Control Block using the same privileged MPU region as the shadow stack.

4.2 Performance Impact
To measure the performance impact of RECFISH, we look at four different measurements.
First, we use an embedded system benchmark to determine the overhead associated with the
bare metal instrumentation. Second, we look at the additional latency added to FreeRTOS
context switching by adding the shadow stack. Third, we analyze the resource requirements
for RECFISH via microbenchmarking. Finally, we perform a large-scale schedulability
analysis to assess the suitability of RECFISH for real-time systems.

4.2.1 CPU Benchmarks
RECFISH is designed to work on embedded systems without a traditional operating system,
thus benchmarks designed for general-purpose machines such as the SPEC CPU2006 bench-
mark are not appropriate for this evaluation. To measure the raw overhead associated with

ECRTS 2019

2:14 Control-Flow Integrity for Real-Time Embedded Systems

CFI checks on a realistic workload, we used the CoreMark embedded system benchmark [18]
and the BEEBS benchmark suite [34]. These easily portable applications run on a variety of
embedded architectures. CoreMark performs various common embedded tasks, like matrix
manipulation, linked list manipulation, state machine operations, and cyclic redundancy
check (CRC) calculation. BEEBS combines benchmarks from MiBench [21], WCET [20],
and DSPStone [42].

On our TI RM46L852 evaluation board, we measured the CoreMark score both with
and without CFI using the default settings and 1000 iterations. Without CFI, the recorded
CoreMark score was 97.371, which is a reasonable score for that hardware running in Thumb
mode. With CFI, we recorded a score of 76.767, a decrease of about 21% compared to the
non-CFI score. Additionally, we recorded an approximately 30% increase in total execution
time for the benchmark code. In this evaluation, all default settings were used, and 1000
iterations were run of the benchmark.

In the BEEBS benchmarks, over 70% of the applications saw less than 25% overhead.
On benchmarks with few or no function calls and no indirect branches, we see no significant
difference in execution time. However, in benchmarks like recursion and fac which both
use recursive function calls, we see up six times slowdown. In practice, real-time embedded
systems avoid using recursion because it introduces nondeterminism and can result in quickly
running out of memory, so a slowdown of this magnitude is unlikely to occur in production
systems. The trio-snprintf and mergesort benchmarks both have many indirect branches,
but they only see about 0.5 times slowdown. The CFI checks are fast relative to other
computation performed by these benchmarks.

4.2.2 Additional Resource Use

RECFISH requires an additional 10 bytes of storage per indirect branch and 8 bytes per
non-leaf function prologue and epilogue. While we cannot generalize the number of non-leaf
functions and indirect branches in any given program, the CoreMark benchmark required 964
bytes of instrumentation code for a 10 KB binary – just under a 10% increase in binary size.

RAM usage depends on the system being instrumented. On bare metal systems, a single
shadow stack is required, which on our evaluation system, we used a shadow stack size of 256
bytes plus 12 bytes for the shadow stack structure – a total of 268 additional bytes of RAM
for the shadow stack. In FreeRTOS, however, we used a larger shadow stack, since context
information is stored on the stack, so we required 528 bytes per task, which encompassed a
512-byte shadow stack, 12-byte shadow stack structure, and 4-byte pointer to the shadow
stack stored in each Task Control Block.

Finally, our implementation depends on some additional resources. We need at least two
MPU regions to prevent execution from RAM and to protect the shadow stack. On our
hardware, a maximum of 12 regions could be configured, so our utilization was minimal.
Also, we require two supervisor calls out of a possible 256 available in Thumb mode.

4.3 Microbenchmarks

To better understand the overhead introduced by RECFISH, we measured each component
of the instrumentation separately. In this section, we examine the number of CPU cycles
RECFISH adds to indirect branches, function prologues, and non-leaf function epilogues.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:15

4.3.1 Microbenchmark Design

We measured CPU cycles using the ARM Performance Monitoring Unit (PMU), configuring
the PMU to count three events: CPU cycles, predictable branches, and incorrectly predicted
branches. For each component, we took these measurements for a few different scenarios:
no instrumentation, inline instrumentation, and the trampoline-based instrumentation used
by RECFISH. We ran these microbenchmarks under different configurations of the branch
predictor. By default, ARM uses a 256-entry, 2-bit history-based branch predictor with a
hardware return stack [6]. The branch predictor can be configured to use static policies rather
than the history-based policy and the return stack can be disabled. For the schedulability
study, we also measured the context switch overhead in FreeRTOS, both with and without
the shadow stack. For this measurement, we used the default branch predictor configuration.

4.3.2 Results

Under default CPU settings, we found that unconditional indirect branches without RECFISH
instrumentation take 11 CPU cycles to execute. When adding inline checks to these branches,
we saw a varied number of cycles. In the worst-case, the forward-edge CFI check takes 41
cycles, although we only see this worst-case result in the first iteration of the experiment. In
later iterations, the branch predictor determined that the conditional branch inside the CFI
check was not likely to be taken, so the CFI check sped up to 26 cycles after 5 iterations.
For the trampoline method used in RECFISH, we saw a worst-case forward-edge check of
61 cycles, which sped up after 5 iterations to 44 cycles. By examining the execution time
under different branch predictor settings, we could account for the majority of variability in
execution time. By disabling the branch predictor’s dynamic history function and return
stack, only the first iteration of each microbenchmark was slower than the rest. We were
unable to determine the cause of this slowdown, but potential causes could include pipeline
stalls, pipeline flushes, or a conflict that prevents the CPU from dual-issuing instructions.

The other component that RECFISH affects is non-leaf function calls, since these functions
must save the return address at the start of the function and restore it at the end. RECFISH
requires that the return address be stored in the shadow stack, rather than on the unprotected
user stack. Since there are no conditional branches in the shadow stack operations, we saw a
constant increase from 19 cycles for the combined function prologue and epilogue without CFI
to 275 cycles with RECFISH. Most this overhead is associated with changing the execution
mode from User mode to Supervisor mode. Additionally, during these 275 cycles, interrupts
were disabled twice for 11 cycles during the handling of the svc instruction, which was used
once in the prologue and once in the epilogue. Since the combined function prologue and
epilogue in RECFISH requires significantly more CPU cycles than the unmodified binary, we
expect more performance degradation in binaries with many calls to short non-leaf functions.
By contrast, programs with many calls to longer functions (or leaf functions) will see less
performance degradation from shadow stack operations. Indeed, this matches our previous
observations of the macrobenchmarks.

The final microbenchmark that we measured was FreeRTOS context switch overhead,
which is critical to the schedulability study in Section 4.4. Without RECFISH, FreeRTOS
context switches take a total of 120 cycles, 57 for saving context and 63 for restoring it. With
RECFISH, we saw a moderate increase of context switch time to 159 cycles, 80 for saving
and 79 for restoring.

ECRTS 2019

2:16 Control-Flow Integrity for Real-Time Embedded Systems

Table 1 Microbenchmark results for individual components with the default branch predictor.
All units are CPU cycles.

Component CFI Type Worst Case Best Case
Indirect Branch No CFI 11 11
Indirect Branch Inline CFI 41 26
Indirect Branch RECFISH 61 44
Function Call No CFI 19 19
Function Call Inline CFI 237 237
Function Call RECFISH 275 275

4.4 Schedulability Study
Next, we incorporate the microbenchmark results into a large-scale schedulability study,
which demonstrates the effect RECFISH has on the ability to ensure that all deadlines
will be satisfied.

4.4.1 Schedulability
We begin our schedulability discussion with the periodic task model [28], which is implemented
in FreeRTOS. In this model, a task system τ is composed of a set of n tasks, denoted
τ = {T1, . . . , Tn}. Each task is mathematically modeled as a tuple, Ti = (ei, pi), and is
comprised of a (potentially infinite) sequence of jobs, which are common invocations of the
same logic. Each job of Ti executes for at most ei time units, or its worst-case execution
time (WCET). Jobs of Ti are released or made ready for execution every pi time units, and
must complete by their deadline. We assume the deadline of each job is pi time units after
it is released, i.e., when the next job of the task is released. The utilization of Ti is given
by ui = ei/pi, and the utilization of the task system U , is the sum of all tasks’ utilizations,
U =

∑
Ti∈τ ui. We assume fixed-priority scheduling, and evaluated schedulability using

standard fixed-priority time-demand analysis [27].

4.4.2 RECFISH Schedulability
RECFISH introduces sources of overhead that do not exist in an unprotected system. In
the rest of this section, we demonstrate how these overheads affect schedulability. To do
so, we must first consider how the RECFISH overheads should be incorporated into the
time-demand analysis. In our overhead analysis, we only consider overheads incurred on
normal control-flow paths. While detecting and triggering an exception on invalid control
flow incurs overhead, the code that must execute to handle such an exception is highly
application specific and we thus exclude them from the scope of this study.

RECFISH introduces several sources of overhead, which are described more completely
and quantified in Section 4.3. These overheads fall into two distinct categories: runtime
checks, which occur at indirect branches and function prologues/epilogues, and context-
switch-related overheads. These two types of overheads are accounted for analytically using
different techniques.

We can account for the time spent in CFI checks by inflating the execution time of the
task.1 We assume that each CFI check at an indirect branch (respectively, function epilogue
and prologue) imposes an overhead of ∆b (respectively, ∆f), and that each job of Ti executes

1 We note that for a mere 11 cycles, interrupts are disabled. This is handled as a priority inversion and
is incorporated into our analysis.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:17

at most Cbi indirect branches and Cfi functions. To incorporate the overhead of all of the
CFI checks, we simply inflate the execution time of each task to account for the time spent
in CFI checks, e′

i = ei + Cbi∆b + Cfi ∆f.
The second source of overhead in RECFISH is the additional context-switch overhead

associated with handling the shadow stack. We denote this overhead by ∆c. Specifically, ∆c
includes both the time to save the context of one process, as well as restore the context of
the next. We leverage existing techniques for handling context-switch overhead [8]. Instead
of charging the overhead of the context switch to the task whose context is being saved or
restored, instead, analytically, we charge the overhead to the preempting, higher-priority
task, as is commonly done for analyzing cache-related preemption delays [38]. Notably, each
job can only preempt at most one other job. Therefore, we analytically inflate each task’s
WCET to account for this overhead as, e′

i = ei + ∆c.
The other modifications to FreeRTOS required from RECFISH, such as augmenting the

TCB and the task initialization procedures do not affect schedulability. It is quite common
for a real-time system to startup and initialize the real-time tasks before entering a real-time
mode, during which all deadlines must be satisfied. The performance implications of the
remaining aspects of RECFISH fall within this initialization mode, and therefore do not affect
schedulability. As such, in our schedulability experiments, we consider that when RECFISH is
enabled, the execution time of each task is analytically treated as e′

i = ei+∆c+Cbi∆b+Cfi ∆f.
In the context of this study, these are the only overheads considered so as to focus on the
specific effects the RECFISH-specific overheads have on schedulability.

4.4.3 Experimental Design
We conducted a large-scale schedulability study to evaluate the tradeoff between security
and schedulability enabled by RECFISH. Practical real-time applications have varying
task-system parameters, and the interplay among these parameters, analysis pessimism,
and implementation overheads can have significant schedulability implications. Also, an
overhead may be observed to be minor, but if it is unpredictable, difficult to incorporate
into schedulability, or otherwise subject to analysis pessimism, it may significantly affect
schedulability. Accordingly, we consider many classes of real-time task systems in our
experimental design.

Overall, our schedulability study is conducted as follows. Using several different random
distributions, we generate over six million analytical task systems with different parameter
values. We then evaluate the schedulability of each task system both with and without
RECFISH applied.

We randomly generated sporadic task systems using a similar experimental design
as previous studies [8]. We generated task systems with a total system utilization in
U ∈ {0.05, 0.1 . . . , 1.0}. Per-task utilizations in each task system were chosen to be light,
medium, or heavy, which correspond to uniformly distributed utilizations in the range
[0.001, 0.1], [0.1, 0.4] and [0.5, 0.9], respectively. Tasks were randomly generated using
the chosen distribution until the desired system utilization was reached. The periods of
all tasks were chosen uniformly from either [3, 33] ms (short), [10, 100] ms (moderate), or
[50, 250] ms (long). Based on the micro-benchmark experiments presented previously, we
assume ∆c = 39 cycles. We also considered two different values for ∆b ∈ {33, 50} cycles,
which reflect the overhead at an indirect branch if branch correctly predicted or not. (In
provisioning a hard real-time system, one may assume branches are always mispredicted,
whereas in a soft real-time system, less analysis pessimism may be necessary.) We also
measured ∆f = 256 cycles.

ECRTS 2019

2:18 Control-Flow Integrity for Real-Time Embedded Systems

0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

NONE
RECFISH

(a) Bimodal indirect branches, few functions, short
periods, heavy utilizations.

0.0 0.2 0.4 0.6 0.8 1.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T

Sc
he

du
la

bi
lit

y

NONE
RECFISH

(b) Common indirect branches, frequent functions,
moderate periods, light utilizations.

Figure 2 Example schedulability graphs.

Based on our microbenchmark results, we considered several distributions for the frequency
of indirect branches and functions within each task. We considered that either no indirect
branches were taken (None), or the number of indirect branches were uniformly chosen
at a rate of one indirect branch among [103, 105] cycles (common), [106, 107] cycles (rare),
or bimodally between the two distributions none (90%) and common (10%). Similarly, we
considered the following distributions for the number of of functions: the total number of
functions per task is chosen uniformly among [1, 100] (few), or uniformly at a rate of one
function among [102, 103] cycles (frequent), [103, 104] cycles (moderate), or bimodally between
the two distributions moderate (90%) and few (10%).

We considered the cross product of these possible system parameters, resulting in 5,760
unique configurations. For each configuration, we generated and evaluated 1,000 task systems
for schedulability, for a total of over six million task systems.

The chosen taskset parameters were pioneered by Brandenburg [8] and have been widely
used in the community. We extended the taskset generation models to account for the
frequency of indirect branches and functions, based upon data from the benchmarks we
measured. To our knowledge, our work is the first to consider the effect of a control-flow
hijacking defense on schedulability, and therefore we could not compare against other defenses
from a schedulability perspective.

4.4.4 Schedulability Results and Observations
Based on these experiments, we generated 288 schedulability graphs, two of which, which
demonstrate the performance extremes, are depicted in Figure 2. From these figures, we
draw several observations.

Observation 1: RECFISH has a negligible impact on schedulability for some classes of
task systems. This observation is supported by inset (a) of Figure 2. In this system
configuration, there are relatively few tasks (because of the heavy utilizations) and relatively
few CFI checks on indirect branches or functions. As a result, RECFISH has a negligible
effect on schedulability, while improving security.

Observation 2: RECFISH has a significant impact on schedulability for some classes
of task systems. This observation is supported by inset (b) of Figure 2. In this system
configuration, there are many tasks given the light task utilizations, and each of those tasks
has many CFI checks on both indirect branches as well as function calls. In such a system
configuration, we would expect RECFISH to have a more significant effect on schedulability.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:19

In this case, there is roughly 30% utilization loss due to RECFISH, i.e., CFI checks and their
impact in overhead analysis cause 30% of the available system utilization to be sacrificed in
order to meet all deadlines.

Observation 3: Across all generated task systems, 85% of those that were schedulable
without RECFISH, were schedulable with RECFISH. This aggregate statistic demon-
strates the practical applicability of RECFISH. In 85% of the generated task systems,
RECFISH could be applied without compromising schedulability. Only those task systems
that stress the available computing resources are unlikely to be schedulable in the presence
of RECFISH. From these results, we believe that RECFISH can be deployed in most RTES
with only a minimal increase in system size, weight, and power.

4.4.5 Optimization Opportunities
While a real-time system is composed of many tasks, only a subset of those tasks typically
take external input, i.e. directly interact with the adversary. Any exploitation must involve
one of those tasks. Specifically, a task is unsafe if it accepts external inputs from the user,
and safe otherwise. We denote safe (resp. unsafe) tasks with the superscript TS (resp. TU).
We can reduce the overhead of RECFISH and improve schedulability on many task systems
by controlling the execution order of safe and unsafe tasks.

Consider the following example with two tasks TSi and TUj . Let us assume that TUj takes
external input, contains a memory error, and the attacker can leverage that error to corrupt
memory. Let us also assume that TSi does not contain any errors nor does it take external
input. Without RECFISH, if TUj has a higher priority than TSi then TSi can be pre-empted
by TUj . Thus, the attacker can leverage the bug in TUj to manipulate memory used by
TSi . Therefore, RECFISH checks are needed in both TSi and TUj to provide control-flow
integrity in this situation. If we prevent the preemption of TSi by TUj , then we need not
conduct the CFI checks on TSi , only TUj . This can be realized either by marking such tasks
as non-preemptive, or in fixed-priority scheduling which is supported in FreeRTOS and our
RECFISH implementation, by increasing the priority of TSi over that of all unsafe tasks.
Therefore, by carefully choosing priorities, we can eliminate the need for some CFI checks
and reduce the security overhead, while still providing the same security guarantees.

This raises the question, how should tasks be prioritized to minimize the number of
RECFISH-related CFI checks? We consider a technique we call task pushing in which the
priority of otherwise safe tasks are increased above the unsafe tasks. While task pushing
initially seems to have a negative impact on schedulability, we find that the resulting reduction
in RECFISH overhead actually increases the number of schedulable task sets.

To test task pushing, we generated additional task sets using the same configurations
as discussed earlier, and added an additional parameter for the probability of a task being
labeled safe. We considered several distinct values for this probability, 0%, 25%, 50%,
and 75%, which was constant for each generated task system. We then used a brute-force
algorithm to test all possible combinations of pushed tasks. We find that with task pushing,
the percentage of schedulable task sets with RECFISH increases from 85% to 88%, 91%,
and 95%, respectively. We also measured through simulation2, the total amount of overhead
observed during a hyperperiod, or the point at which the schedule repeats (the least-common

2 We assumed for this simulation that the execution time ei was exact.

ECRTS 2019

2:20 Control-Flow Integrity for Real-Time Embedded Systems

multiple of all periods). The average RECFISH overhead observed across all generated task
systems was 12%, 8%, and 4%, for safe-task probability of 25%, 50%, and 75%, respectively.
This is down from 16% overhead when RECFISH checks are applied to all tasks.

While these results are promising, there are still many open questions. For example, for
now we assume the developer provides the safe/unsafe label, but can automated mechanisms
(e.g., static program analysis) be leveraged to provide these labels? Can RECFISH-related
overheads be further reduced under different schedulers (e.g., non-preemptive unsafe tasks, or
other more dynamic scheduling policies)? How should information passing between safe and
unsafe tasks be handled? Intuitively, we believe it is simpler and more efficient to secure a few
well-defined interfaces between tasks rather than allowing an attacker unfettered access to
memory. Further, our analysis assumes that state from one execution of a task does not carry
over to subsequent executions. How do we use secure memory regions, e.g., the shadow stack,
to safely and efficiently persist that state? Finally, there is potential for greater optimization
through careful design by the application developer. For instance, if the developer designs
the tasks such that external input is always handled in low priority tasks then the process of
task pushing is greatly simplified.

5 Conclusions

CFI schemes are only as secure as the CFG is precise [41, 10, 17, 15]. There are two
sources of imprecision: the difficulty of sound and complete CFG generation and the labeling
scheme extracted from the CFG. Sound and complete CFG generation is believed to be
undecidable [10, 17], so to preserve functionality of programs, CFI schemes often use a more
permissive CFG, potentially allowing some unintended indirect branch targets. On top of
the inherent imprecision, the labeling scheme itself often introduces more imprecision for
performance reasons. For example, coarse-grained approaches assign a single label to all legal
targets. This imprecision can allow an attacker to achieve Turing-complete computation in
the presence of certain instruction sequences [10, 17]. RECFISH mitigates these attacks by
using fine-grained labeling and a shadow stack to increase precision.

One potential limitation of RECFISH is application-specific uses of privileged mode
execution in tasks, i.e., privileged code that is written by the developer and is not part of
RECFISH. In practice, this issue is unlikely to become a barrier to adoption. First, it is
uncommon for tasks themselves to have privileged sections (outside of handling hardware
interrupts). In the evaluated benchmarks, privileged code was limited to the RECFISH and
FreeRTOS code. Second, privileged code in tasks may not be an issue as long as that code
omits MPU-sensitive instructions. Specifically, the MPU in Cortex-R can only be modified
in privileged mode using the mcr and mrc instructions. As long as those two instructions
only appear in RECFISH code – this is statically verifiable – then RECFISH can rely on its
own CFI checks to prevent MPU instructions from being executed outside of normal control
flow and, consequently, prevent unwanted modification of the MPU. The proposed ARMv8-R
architecture provides another mechanism to address this issue with its bare metal hypervisor
mode, but these processors are not widely available yet, and existing systems with ARMv7-R
processors will likely not be upgraded.

In summary, RECFISH can be applied to both baremetal and FreeRTOS applications.
The defense introduces a minimal amount of program storage and RAM overhead, requiring
only 10 bytes of program storage per indirect branch and just 8 bytes per shadow stack
operation, and a constant, configurable block of memory for the shadow stacks. Further, in
the 85% of task systems where RECFISH can be applied without compromising schedulability,
there is no impact on real-time performance.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:21

While this work makes a significant step towards hardening real-time embedded systems,
there are many directions for future work. Beyond optimization, future work would benefit
from the use of formal methods to analyze the correctness of the CFI instrumentation.
Finally, new features in the upcoming ARMv8-R architecture could be leveraged to provide
stronger performance and security guarantees for RECFISH as well as other embedded
system hardening techniques.

References
1 The Capstone Disassembly Engine. http://www.capstone-engine.org/.
2 The Keystone Assembler. http://www.keystone-engine.org/.
3 pyelftools. https://github.com/eliben/pyelftools.
4 FreeRTOS FAQ relating to memory management and usage. http://www.freertos.org/

FAQMem.html, 2017. Accessed: 2017-03-28.
5 Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity principles,

implementations, and applications. ACM Transactions on Information and System Security
(TISSEC), 13(1):4, 2009.

6 ARM Limited. Cortex-R4 and Cortex-R4F Technical Reference Manual, 2011.
7 Michael Backes and Stefan Nürnberger. Oxymoron: Making Fine-Grained Memory Ran-

domization Practical by Allowing Code Sharing. In 23rd USENIX Security Symposium,
2014.

8 B. Brandenburg. Scheduling and Locking Multiprocessor Real-Time Operating Systems. PhD
thesis, The University of North Carolina at Chapel Hill, 2011.

9 Nathan Burow, Scott A Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per Larsen, and
Michael Franz. Control-flow integrity: Precision, security, and performance. ACM Computing
Surveys, 50(1), 2017.

10 Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R Gross.
Control-flow bending: On the effectiveness of control-flow integrity. In 24th USENIX Security
Symposium, 2015.

11 Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A Compile-Time Solution to Buffer Overflow Attacks.
In 21st International Conference on Distributed Computing Systems(ICDCS). IEEE, 2001.

12 Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast Srivastava, Jinkyu
Koo, Saurabh Bagchi, and Mathias Payer. Protecting Bare-metal Embedded Systems With
Privilege Overlays. In IEEE Symposium on Security and Privacy, 2017.

13 Marc L. Corliss, E. Christopher Lewis, and Amir Roth. Using DISE to Protect Return
Addresses from Attack. SIGARCH Computer Architecture News, 2005.

14 Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Battie, Aaron
Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adaptative Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX Security Symposium, 1998.

15 Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity protection. In 23rd
USENIX Security Symposium, 2014.

16 Richard Earnshaw. Procedure call standard for the ARM architecture. ARM Limited, October,
2003.

17 Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed
Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weaknesses of fine-grained
control flow integrity. In 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015.

18 Shay Gal-On and Markus Levy. Exploring CoreMark—A benchmark maximizing simplicity
and efficacy. The Embedded Microprocessor Benchmark Consortium, 2012.

19 Jacob Grycel and Robert J. Walls. A Random Number Generator Built from Repurposed
Hardware in Embedded Systems. CoRR, abs/1903.09365, 2019. arXiv:1903.09365.

ECRTS 2019

http://www.capstone-engine.org/
http://www.keystone-engine.org/
https://github.com/eliben/pyelftools
http://www.freertos.org/FAQMem.html
http://www.freertos.org/FAQMem.html
http://arxiv.org/abs/1903.09365

2:22 Control-Flow Integrity for Real-Time Embedded Systems

20 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
benchmarks: Past, present and future. In OASIcs-OpenAccess Series in Informatics, volume 15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

21 Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. MiBench: A free, commercially representative embedded benchmark suite.
In IEEE International Workshop on Workload Characterization. IEEE, 2001.

22 Monowar Hasan, Sibin Mohan, Rakesh Bobba, and Rodolfo Pellizzoni. Exploring opportunistic
execution for integrating security in legacy hard real-time systems. In 37th IEEE Real-Time
Systems Symposium, RTSS, 2016.

23 J. Hiser, A. Nguyen, M. Co, M. Hall, and J.W. Davidson. ILR: Where’d my gadgets go. In
IEEE Symposium on Security and Privacy, 2012.

24 T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler,
C. Wimmer, and M. Franz. Compiler-Generated Software Diversity. In Moving Target Defense,
Advances in Information Security. Springer, 2011.

25 Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn
Song. Code-Pointer Integrity. In 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2014.

26 Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. SoK: Automated software
diversity. In 35th IEEE Symposium on Security and Privacy, S&P, 2014.

27 J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm, Exact character-
ization and average case behavior. In 1989 IEEE Real-Time Systems Symposium (RTSS’89),
December 1989.

28 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973.

29 Sibin Mohan, Man-ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba. Real-time systems security
through scheduler constraints. In 26th Euromicro Conference on Real-Time Systems, ECRTS,
2014.

30 Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. SoftBound:
Highly compatible and complete spatial memory safety for C. In ACM Sigplan Notices, PLDI,
2009.

31 Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. CETS: compiler
enforced temporal safety for C. In ACM Sigplan Notices, 2010.

32 Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan Notices, volume 42 (6), 2007.

33 Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16, 1996.
34 James Pallister, Simon Hollis, and Jeremy Bennett. BEEBS: Open benchmarks for energy

measurements on embedded platforms. arXiv preprint, 2013. arXiv:1308.5174.
35 Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin Mohan, and Rakesh Bobba.

A generalized model for preventing information leakage in hard real-time systems. In 21st
Real-Time and Embedded Technology and Applications Symposium, RTAS, 2015.

36 Danbing Seto, John P Lehoczky, Lui Sha, and Kang G Shin. On task schedulability in real-time
control systems. In 17th IEEE Real-Time Systems Symposium, 1996.

37 Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In 14th ACM conference on Computer and communications security. ACM,
2007.

38 Bryan Ward, Abhilash Thekkilakattil, and James Anderson. Optimizing Preemption-Overhead
Accounting in Multiprocessor Real-Time Systems. In 22nd International Conference on
Real-Time and Network Systems, RTNS, 2014.

39 Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Liu Sha. TaskShuffler: A schedule
randomization protocol for obfuscation against timing inference attacks in real-time systems.
In 22nd Real-Time embedded Technology and Applications Symposium, RTAS, 2016.

40 Tom Zanussi. microYocto and the internet of tiny. Embedded Linux Conference, 2015.

http://arxiv.org/abs/1308.5174

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward 2:23

41 Mingwei Zhang and R Sekar. Control Flow Integrity for COTS Binaries. In USENIX Security
Symposium, volume 13, 2013.

42 Vojin Zivojnovic, Harald Schraut, M Willems, and R Schoenen. DSPs, GPPs, and multimedia
applications-an evaluation using dspstone. In International Conference on Signal Processing
Applications and Technology, 1995.

A ARM Indirect Jumps

The following table lists all indirect branch operations in ARM. All such branches much be
instrumented to enforce forward-edge control flow integrity.

Table 2 Indirect jump operations in ARM.

Mnemonic Instruction Description
bx Rm Branch and exchange Branch to target address Rm, and

exchange instruction set based on
least significant bit (LSB) of Rm.
If LSB is set, switch to Thumb
mode, else switch to ARM mode.

blx Rm Branch, link, and exchange Branch to target address Rm, set
link register, and exchange instruc-
tion set based on LSB of Rm.

ldm{mode } Rm{!}, reglist Load multiple Load into registers in reglist, start-
ing at address in Rm. If Rm! is
specified, write back the final ad-
dress into Rm. Mode specifies the
addressing order: ia (increment
after), ib (increment before), da
(decrement after), db (decrement
before). The pseudo instruction
ldmfd is for loading from a full-
descending stack. It is the same
as ldmia.

pop reglist Pop from stack Same as ldmfd sp!, reglist
rfe Rn{!} Return from exception Pop PC and CPSR off of the stack

pointer specified by Rn to return
from an exception state. If Rn! is
specified, write back new stack top
to Rn.

B Selected Source Code

The following source code details the instrumentation used by RECFISH to handle shadow
stack operations. Note, this code will jump into the higher privilege mode needed to access
shadow stack memory.

ECRTS 2019

2:24 Control-Flow Integrity for Real-Time Embedded Systems

Listing 7 Supervisor call handler.
do_syscall :

cpsie aif # Re - enable interrupts
stmfd sp!, {r9 ,r10 ,r12 ,lr} # Store registers
mrs r9 , spsr # Working register
tst r9 , 0x20 # Test if thumb state
ldrneh r9 , [lr , -2] # Yes: load halfword
bicne r9 , r9 , 0xFF00 # and get func num
ldreq r9 , [lr , -4] # No: load word and
biceq r9 , r9 , 0 xFF000000 # and get func num
ldr r10 , table # Load address of table
ldr pc , [r10 , r9 , lsl 2] # Jump to routine

table:
.word jump_table

jump_table :
.word ss_push
.word ss_pop

Listing 8 Shadow stack operations.
Input: User lr containing value to push to shadow stack
Returns : void
.type ss_push , ss_push :

ldr r9 , current_ss_const # Load stack pointer
ldr r10 , [r9] # Load stack top
stmfd r10!, {lr}^ # Push lr to stack
str r10 , [r9] # Store new top
exit_syscall # Syscall exit macro

Input: void
Returns : value at top of shadow stack -> lr
.type ss_pop , ss_pop :

ldr r9 , current_ss_const # Load stack pointer
ldr r10 , [r9] # Load stack top
ldmfd r10!, {lr}^ # Pop into user mode lr
str r10 , [r9] # Store new stack top
exit_syscall # Syscall exit macro

Constant pointer reference to current_ss
current_ss_const .word current_ss

Simultaneous Multithreading Applied to Real
Time
Sims Hill Osborne
University of North Carolina, Chapel Hill, North Carolina, USA
http://shosborn.web.unc.edu
shosborn@cs.unc.edu

Joshua J. Bakita
University of North Carolina, Chapel Hill, North Carolina, USA
https://jbakita.me/
jbakita@cs.unc.edu

James H. Anderson
University of North Carolina, Chapel Hill, North Carolina, USA
http://jamesanderson.web.unc.edu/
anderson@cs.unc.edu

Abstract
Existing models used in real-time scheduling are inadequate to take advantage of simultaneous
multithreading (SMT), which has been shown to improve performance in many areas of computing,
but has seen little application to real-time systems. The SMART task model, which allows for
combining SMT and real time by accounting for the variable task execution costs caused by
SMT, is introduced, along with methods and conditions for scheduling SMT tasks under global
earliest-deadline-first scheduling. The benefits of using SMT are demonstrated through a large-scale
schedulability study in which we show that task systems with utilizations 30% larger than what
would be schedulable without SMT can be correctly scheduled.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Real-time system specification; Software and its engineering → Scheduling;
Software and its engineering → Multithreading

Keywords and phrases real-time systems, simultaneous multithreading, soft real-time, scheduling
algorithms

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.3

Related Version Longer version with all graphs at http://jamesanderson.web.unc.edu/papers/.

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.8

Funding Work supported by NSF grants CNS 1409175, CNS 1563845, CNS 1717589, and CPS
1837337, ARO grant W911NF-17-1-0294, and funding from General Motors.

1 Introduction

Simultaneous multithreading (SMT) is a technology developed in the 1980s and 90s that
allows multiple processes to issue instructions to different processor contexts, or threads, on a
single physical computing core, creating the illusion of multiple cores for every one core that
is actually present. It was designed to increase system utilization, particularly in the presence
of memory latency [6, 26]. SMT became widely available in 2002, when it was made available
on Intel processors [18]. Early experiments on the Pentium 4 showed that SMT could increase
throughput by a factor of more than 1.5 in the best case [1, 2, 25]. The first attempt to
utilize SMT in a real-time context was made in 2002 by Jain et al. [15], who showed that, by

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Sims Hill Osborne, Joshua J. Bakita, and James H. Anderson;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 3; pp. 3:1–3:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://shosborn.web.unc.edu
mailto:shosborn@cs.unc.edu
https://jbakita.me/
mailto:jbakita@cs.unc.edu
http://jamesanderson.web.unc.edu/
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.3
http://jamesanderson.web.unc.edu/papers/
https://dx.doi.org/10.4230/DARTS.5.1.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Simultaneous Multithreading Applied to Real Time

enabling SMT and making every thread available for real-time work, it is possible to schedule
workloads with total utilizations up to 50 percent greater than what would be possible on
the same platform without SMT. While Jain et al. gave ample experimental evidence that
SMT can enable systems with higher utilization to be supported, neither they nor anyone
else, to our knowledge, has provided a schedulability test that takes SMT into account.

Unfortunately, SMT’s increase in throughput comes at the cost of longer and less
predictable execution times, caused by contention for limited hardware resources. Apparently,
the real-time systems community decided that this uncertainty makes SMT inappropriate for
real-time work. We question the validity of this assessment for soft real-time (SRT) systems
that may tolerate some tardiness. Evidence suggest that even others begin to question this
assessment in the context of safety-critical domains. In particular, the U.S. Federal Aviation
Administration has received requests to certify safety-critical applications that use SMT,
though they currently lack adequate techniques for doing so [21]. (We defer considerations
of safety-critical applications to future work.)

As evidence of the potential benefits of SMT, we present a sample of our results in
Fig. 1; a platform with 16 cores is capable of scheduling task systems with total utilizations
exceeding 20. We discuss this graph and others in Section 5.

Considered problem. We consider the problem of defining a scheduler for SRT systems
that reaps the benefits of SMT without sacrificing execution-cost predictability. Existing
models for analyzing real-time workloads do not allow us to specify how enabling SMT affects
a task, so to quantify the per-task effects of SMT, we introduce a new task model, SMART
(Simultaneous Multithreading Applied to Real Time). Using the SMART model, we attack
our problem by dividing it into three sub-problems:

Sub-Problem 1: Determine execution costs for tasks with SMT enabled. “Costs” is
plural for each task; one worst-case execution cost is not enough to define a task.
Sub-Problem 2: Decide which tasks should use SMT. How using SMT will affect any
given task is a function of what other tasks are using SMT.
Sub-Problem 3: Schedule so tasks using SMT do not interfere with tasks not using SMT.

16 17 18 19 20 21 22 23 24
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

[1,2,4] [3]

16 Cores, Task Utilization (0.0, 0.4]
s Gauss(0.72,0.13), f Gauss(0.72,0.04)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 1 Schedulability on 16 cores with SMT. Note that the horizontal axis begins at utilization
16 and that schedulability does not begin to drop until utilization 20. Effectively, more than 20
cores worth of capacity can be had on a 16-core platform. We discuss this graph and others like it
in detail later.

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:3

The second sub-problem is particularly interesting. In general, allowing a task to execute
with SMT will decrease the demand the task places on the hardware platform but increase
the time needed for the task to execute. To address our problem, we need to balance the
advantages of decreasing platform demand with the disadvantages of increasing task execution
time. It is not enough to evaluate a task in isolation; every task that uses SMT may influence
every other task that uses SMT.

Motivation. Processors are expensive. For any workload, real time or not, it is desirable
to minimize the hardware cost needed to obtain a given level of performance. SMT is a
means to get the most work out of a given processor. Presently, SMT is widely implemented,
meaning there is a high chance that users are paying for SMT even if they are not using it.
A better understanding of SMT would allow for better use of existing hardware resources.

Related works. Snavely and Tullsen demonstrated that SMT performance is dependent
on which tasks share a core and introduced the term “symbiosis” to describe this concept
[24]. We have already mentioned Jain et al.’s work on SMT and real-time scheduling from
2002 [15]. Since then, Cazorla et al. [3], Gomes et al. [12, 13], and Zimmer et al. [28]
have proposed ways to eliminate the timing uncertainties associated with SMT by means of
detailed control over program execution and, in the case of Zimmer et al., a purpose-built
processor, FlexPRET. Cazorla et al. [3] and Lo et al. [17] gave methods to limit real-time
work to a small number of threads, leaving the remaining threads to execute only when doing
so will not interfere with real-time work. Mische et al. [20] proposed to use SMT to hide
context-switch times by using threads to switch task state in and out in the background.
Early work on the performance of tasks executed by hardware threads was done by Bulpin
[1], Bulpin and Pratt [2], Huang et al. [14], and Tuck and Tulsen [25]. Detailed analysis
of Intel’s microarchitecture, including the resource constraints that are relevant with SMT,
have been performed by Fog [11]. A preliminary version of our paper was presented as a
work in progress at RTSS 2018 [22].

Contribution and organization. We introduce the SMART task model, a method for
scheduling SMART tasks, and a related schedulability test. While other works focus on
modifying hardware to make SMT more predictable, our work allows for SMT-supported
real-time work to run on existing hardware and operating systems. We give results of
benchmark tests measuring the performance impacts of SMT with regard to execution times.
We show, using a schedulability study based on our benchmark results, that it is possible to
correctly schedule task systems with utilizations more than 30% greater than what would be
schedulable on the same platform without SMT enabled.1

The rest of this paper is organized as follows. In Section 2, we give a brief overview of
SMT technology, discuss the shortcomings of the sporadic task model with regard to SMT,
and introduce the SMART model. In Section 3, we address Sub-Problems 2 and 3, showing
how SMT can be used to schedule otherwise unschedulable task systems. In Section 4, we
address Sub-Problem 1, how to determine appropriate costs. (Note that we address our
sub-problems in reverse order.) In Section 5, we present our schedulability experiments and
results. In Section 6, we conclude and suggest future directions for our research.

1 While Jain et al. [15] were able to schedule systems with up to 50% greater utilization, they define a
“correctly scheduled system” as one having a low number of observed deadline misses, whereas we define
correctness as all tasks having analytically guaranteed bounded tardiness.

ECRTS 2019

3:4 Simultaneous Multithreading Applied to Real Time

Figure 2 Top: task execution without SMT.
Bottom: task execution with SMT.

Figure 3 Two tasks executing without SMT
(top) and with SMT (bottom). With SMT, each
task requires more time to complete individually,
but time for both tasks to complete is reduced.

2 What is a SMART Task?

Here we give a brief overview of SMT technology alongside the sporadic task model and its
limitations. We introduce SMART as an alternative model to address SMT.

2.1 SMT Basics
Cores with SMT enabled accept multiple instructions per cycle from multiple tasks, reducing
wasted instructions per cycle. A detailed explanation is available in Eggers et al.[6], but we
illustrate the essentials in Example 1.

I Example 1. Fig. 2 shows the effect of enabling SMT. At the top of the figure, tasks τ1
and τ2 execute sequentially without SMT on a processor that can accept two instructions
per cycle. When less than two instructions are available for execution, as at times 2, 3, and
elsewhere, processor cycles are lost. τ1 finishes at time 6 and τ2 at time 12. At the bottom of
the figure, the same tasks execute in parallel with SMT enabled, reducing the number of lost
processor cycles. Both tasks finish at time 9. In this case, SMT has the effect of delaying the
completion of τ1, but speeding up the completion of τ2, since it does not have to wait for τ1
to complete before beginning its own execution. �

Fig. 3 gives a more task-centric view of the two tasks seen in Fig. 2. For the remainder
of this paper, we will conceptualize tasks as seen in Fig. 3; we are interested in how long a
task takes to execute and how much of a core it uses, not an exact cycle-by-cycle accounting.
As shown in Fig. 3, SMT can cause individual tasks to take longer to complete, but total
throughput is potentially increased, since the number of wasted instruction slots can be
decreased. The challenge for real-time scheduling is to take advantage of this increased
throughput without allowing increased execution costs to render the system unschedulable.
The effect of SMT on task execution times is not constant across tasks; how much a task’s
execution time is increased by SMT depends on both the task itself and on other tasks that
might be executing on the same core.

To discuss SMT more easily, we make a distinction between a core and a processor. A
core is the hardware unit responsible for executing instructions. A processor is a single
instruction context on a core. Every computer core, by definition, supports at least one
processor, but computer cores capable of SMT may support multiple processors. We define
a physical processor as a processor that occupies an entire core, while a threaded processor
corresponds to a single hardware thread. Different threaded processors on the same core are
sibling processors. Tasks scheduled on sibling processors are said to be co-scheduled.

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:5

Figure 4 Example of cores supporting threaded processors only, physical processors only, or both.

We focus on a platform π that has m cores where every core supports one physical
processor or two threaded processors at a time. For example, Fig. 4 shows a system of six
cores. Cores 1-3 have SMT enabled and support two threaded processors each. Cores 5
and 6 have SMT disabled and support one physical processor each. Core 4 initially has
SMT disabled and supports one physical processor, but at time 1, SMT is enabled on core 4,
causing the single physical processor to be replaced by two threaded processors. We only
consider two threads per core because this is what Intel currently supports.

2.2 Task Model
In the traditional implicit-deadline sporadic task model, a task τi = (Ti, Ci) is defined by its
period, Ti, and its worst-case execution cost, Ci. The utilization of τi is given by ui = Ci

Ti
.

Every task releases an unlimited number of jobs, with the kth job released by τi denoted by
τi,k. Jobs of τi are released at least Ti units of time apart and have an implicit deadline of
Ti. If the jobs of each task τi are released exactly Ti units apart, then the task system is
periodic. We consider only SRT systems here, in which some deadline misses are acceptable.
In our model, a job’s tardiness is the difference between its completion time and deadline, if
the job completes after its deadline, and zero otherwise. A task’s tardiness is the maximum
tardiness of any of its jobs. We define an SRT system as being correctly scheduled if all tasks
have guaranteed bounded tardiness. A task system is SRT-schedulable under scheduling
algorithm A if it can be correctly scheduled by the specific algorithm A, and SRT-feasible if
it is SRT-schedulable by some algorithm A. An algorithm is SRT-optimal if it can schedule
all SRT-feasible task systems.

Given a platform π consisting of m identical cores and no SMT, a task system τ is
SRT-feasible if and only if

∀τi ∈ τ ui ≤ 1 and
n∑
i=1

ui ≤ m (1)

both hold [4].

The SMART model. The shortcoming of the sporadic model in regard to SMT is that
it only allows one worst-case execution cost per task, and therefore cannot adequately
characterize a task system’s behavior in the presence of SMT. For example, it is not possible
to specify the task behavior seen in Fig. 3 using the sporadic model. To address this

ECRTS 2019

3:6 Simultaneous Multithreading Applied to Real Time

shortcoming, we introduce the SMART model. In this model, every task is modeled as
τi = (Ti, (Ci:j)). All parameters must be rational. As in the sporadic model, Ti is the period
of τi. The parameter (Ci:j) is a list of costs that indicate the worst-case execution cost of a
job of τi given that the entire job is co-scheduled with one or more jobs of τj . We define Ci:i
to be τi’s cost when it executes on a normal physical processor. For all i 6= j, Ci:j ≥ Ci:i.2
We define ui:j = Ci:j

Ti
.

Notice that we are implicitly making four simplifying assumptions here: (i) τi’s worst-case
execution time can be determined by examining how it is interfered with when co-scheduled
with each other task individually; (ii) when τi is co-scheduled with τj , every portion of τi
receives the same amount of interference from every portion of τj ; (iii) the two threads of a
given core are identical; and (iv) the hardware-level priority of τi and τj , when co-scheduled,
is fixed. In practice, (i) and (ii) will not necessarily hold, but we maintain that our model
is sufficient for non-safety critical SRT workloads. Currently, (iii) and (iv) hold on Intel
architectures [11]. We discuss (i) and (ii) further in Section 4 when we delve into the issue of
how to actually determine execution costs.

I Definition 2. The execution rate of τi given that it is co-scheduled with τj is given by
ri:j = Ci

Ci:j
, where both Ci and Ci:j are maximum observed execution times.

We assume no relationship between ri:j and rj:i; in fact, as we show in our benchmark
experiments, the two can differ significantly. Our definition assumes two hardware threads
per core, but could be expanded to allow for additional threads. In general, ri:j > 0.5
indicates that τi could benefit from being co-scheduled with τj assuming that Ci:j ≤ Ti and
Cj:i ≤ Tj hold.

I Example 3. Suppose Fig. 3 depicts one job each of SMART tasks τ1 and τ2. C1 = 6 and
C2 = 6, but C1:2 = 9 and C2:1 = 9, giving r1:2 = r2:1 = 2

3 . Task τ2 benefits from SMT; the
job completes at time 9 with SMT as opposed to time 12 without. If both jobs are released
at time 0 and have a deadline at time 10, then SMT allows for both jobs to complete on
time, whereas without SMT, τ2’s job misses its deadline. �

Scheduling SMART tasks. We need to schedule n tasks that have n costs each; this
problem poses obvious difficulties. In the next section, we show how we can schedule SMART
tasks similarly to traditional sporadic tasks without sacrificing the advantages of SMT.

3 Scheduling Physical and Threaded Tasks

Not all tasks will benefit from SMT. We label tasks that should and should not use SMT as
threaded tasks and physical tasks, respectively. Physical tasks can execute only on physical
processors and threaded tasks only on threaded processors. To keep the task types separate,
we divide them into two task subsystems, τp and τh, that we schedule separately.

I Definition 4. Subsystem τp is the set of all physical tasks in τ. np = |τp|. Subsystem τh

is the set of all threaded3 tasks in τ. nh = |τh|.

2 In the rare event that Ci:j < Ci:i holds, the two are likely close in value, and we can simply redefine
Ci:j to equal Ci:i.

3 We use h rather than t for threaded so as to avoid confusion with t for time.

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:7

After partitioning τ into τp and τh, physical tasks have cost Cpi and utilization upi = Cp
i

Ti
;

threaded tasks have cost Chi and utilization uhi = Ch
i

Ti
. Costs for physical tasks are no different

than costs in a sporadic task system, but costs for threaded tasks are a function of how
the task system is divided. These cost parameters are a simplification of the full SMART
parameters; we will show how to obtain them in Section 3.2.

I Definition 5. The total utilizations of τp and τh are given by Up =
∑np

i=1 u
p
i and Uh =∑nh

i=1 u
h
i respectively. To measure the total demand placed on the platform, we define effective

utilization, UE = Up + Uh

2 . U
h is halved in the sum to reflect the fact that each threaded

task requires only half a core at a time to execute. �

3.1 Sub-Problem 3: Scheduling Task Subsystems
In this section, we give conditions for scheduling τp and τh on π. We assume the decision of
which tasks should be physical and which should be threaded has already been made. Our
current problem is how to schedule those tasks, but the best way to do so is not clear.

I Example 6. Suppose we attempt to schedule a task system τ using global earliest-deadline-
first scheduling (GEDF). Let τ1 be a threaded task and τ2 a physical task such that at time
t, a job of τ1with a deadline of t+ 1 is contending for a single core with a job of τ2 with a
deadline of t + 2. Following GEDF, the job of τ1 should be given priority over that of τ2.

However, if no other threaded task has an active job at time t, then doing so will cause
the second threaded processor of a core in π to be unused, negating any advantage gained
by having τ1 be threaded. If we avoid this problem by giving priority to τ2, then we are
not wasting processor capacity, but we are violating EDF priority rules. If we co-schedule
the tasks on threaded processors despite τ2 being a physical task, then unanticipated task
interference may ensue, potentially invalidating assigned per-task worst-case execution costs.
None of these approaches is particularly satisfactory. �

To address the problems raised in Example 6, we divide π into sub-platforms πp and πh.

I Definition 7. πp is the sub-platform of π that schedules only tasks in τp. It includes
mp = bUpc fully available cores and one partially available core. Given a length-W interval,
denoted a window, the partially available core belongs to πp for apW time units per window,
where ap = Up − bUpc. πp can exist only if Up ≤ m.

I Definition 8. πh is the sub-platform of π that schedules only tasks in τh. It has mh =
m− dUpe fully available cores and one core available for ahW time units per window, where
ah = dUpe − Up. Consequently, mh + ah = m− Up. If ap > 0, then ah = 1− ap.

We refer to the core shared by both platforms as the shared core. If there is no shared
core, then ap = ah = 0. Note that mp + ap +mh + ah = m must hold.

I Example 9. In Fig. 4, πp is shown in dark gray and πh in light gray. The sub-platforms
are defined by mp = 2, mh = 3, W = 3, ap = 1

3 , and a
h = 2

3 . �.

We now give schedulability results for τp and τh individually and then combine those
conditions to get an overall schedulability result. For the most part, we will focus on the
case where a shared core exists. Our results are based on Devi and Anderson’s EDF-high-low
(EDF-hl) algorithm [5]. EDF-hl gives schedulability conditions and tardiness bounds for
“low” SRT tasks that are scheduled according to GEDF but are subject to interruption from
periodic “high” hard real-time tasks, with at most one such task fixed on each processor.

ECRTS 2019

3:8 Simultaneous Multithreading Applied to Real Time

For our purposes, we can view τp as a set of low tasks scheduled on mp + dape processors
and subject to preemption by a single high task with period W and cost ahW. This reflects
the fact that, from the perspective of τp, work on the shared core is periodically preempted.
Likewise, we can view τh as a set of low tasks scheduled on 2(mh + 1) processors that are
periodically preempted by two high tasks, both with period W and cost apW. The following
definitions apply to the EDF-hl results.

I Definition 10. Devi and Anderson define τH as the set of all high tasks, τL as the set of
all low tasks, umax(τL) as the highest-utilization task within τL, Usum as the total utilization
of both τH and τL, UH is the sum of all the utilizations of all tasks in τH , and UL is the sum
of the min(dUsume − 2, n) largest utilization of tasks in τL.

We state an abridged version of Theorem 1 in [5] here. The full version defines the
tardiness bound B as a function of the task system and platform. We omit that portion of
the theorem due to space constraints.

I Theorem 11. EDF-hl ensures a tardiness bound of at most B to every task τi of τL if
|τH | ≤ m and Usum ≤ m and at least one of (2) or (3) holds.

m− |τH | − UL > 0 (2)
m−max(|τH | − 1, 0)umax(τL)− UL − UH > 0 (3)

Returning to our problem, our schedulabilty conditions rely on the following assumptions.
These assumptions allow us to schedule τp and τh as if they both consisted of standard
sporadic tasks. We will show how to support Assumptions 1 and 2 in Section 3.2.

I Assumption 1. Tasks have been divided into threaded and physical tasks such that ∀τpi ∈
τp, upi ≤ 1 and ∀τhi ∈ τh, uhi ≤ 1 both hold. Without loss of generality, we assume that the
tasks in each of the sets τp and τh are indexed in decreasing-utilization order, e.g., up1 (resp.,
uh1) is the largest utilization in τp (resp., τh).

I Assumption 2. Worst-case costs for physical and threaded tasks have been determined.

I Assumption 3. Physical tasks are not permitted to execute on threaded processors.4

I Lemma 12. τp is schedulable on πp under GEDF such that all tasks have guaranteed
bounded tardiness if (4) holds.

Up ≤ mp + ap. (4)

Proof. If ap = 0, then the result restates the SRT feasibility condition for m identical, fully
available processors from (1). GEDF is known to be SRT-optimal [4], so the result follows.

If mp = 0, then it can easily be shown that the system is schedulable only if Up ≤ ap.
In the rest of the proof, we consider the remaining possibility, i.e., that ap > 0 and mp > 0

both hold. For this case, we show that Theorem 11 can be applied.
From the perspective of τp, there exists a set of low tasks τp with total utilization Up,

one high task with utilization ah, and mp+ 1 processors. Thus, we want to apply Theorem 11
with the substitutions m ← mp + 1, τL ← τp, Usum ← Up + ah, and |τH | = 1. With

4 When the shared core belongs to πp, it supports a physical processor, not a threaded processor.

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:9

these substitutions, (4), and Def. 8, it is straightforward to see that both |τH | ≤ m and
Usum ≤ m hold, as required by Theorem 11. We now show that (2) holds, from which
bounded tardiness for the tasks in τL, i.e., those in τp, follows. To see this, note that from
Def. 8 and Usum = Up + ah, we have

UL =
min(dUp+ahe−2,np)∑

i=1
upi

= {by Defs. 7 and 8, Up + ah = mp + 1}

UL =
min(mp−1,np)∑

i=1
upi

⇒ {because upi ≤ 1 holds, by Assumption 1}
UL < mp.

From this inequality, we have m− |τH | − UL = mp + 1− 1− UL > 0, as required by (2). J

The schedulability condition for τh is slightly more complicated, due to it potentially
having two partially available processors.

I Lemma 13. τh is schedulable on πh under GEDF such that all tasks have guaranteed
bounded tardiness if (5) and at least one of (6) or (7) hold, where umax(τh) denotes the
maximum task utilization in τh.

Uh ≤ 2(mh + ah) (5)

2mh >

min(2mh,nh)∑
i=1

uhi (6)

2(mh + ah)− umax(τh) >
min(2mh,nh)∑

i=1
uhi (7)

Proof. As in the prior proof, the proof is straightforward if either ah = 0 holds or mh = 0
holds, so we focus on the remaining possibility, i.e, mh > 0 and ah > 0 both hold; note that
the latter implies that ap > 0 holds as well. As before, we will use Theorem 11. In this case,
we are attempting to schedule a set of low tasks τh with total utilization Uh on 2(mh + 1)
processors given two high tasks, each with utilization ap. Thus, we want to apply Theorem 11
with the substitutions m ← 2(mh + 1), τL ← τh, Usum ← Uh + 2ap, and |τH | = 2. With
these substitutions, (5), and Def. 8, it is straightforward to see that both |τH | ≤ m and
Usum ≤ m hold, as required by Theorem 11. In the rest of the proof, we show that, with
these substitutions, (6) implies (2) and (7) implies (3), from which bounded tardiness for the
tasks in τL, i.e., those in τh, follows.

ECRTS 2019

3:10 Simultaneous Multithreading Applied to Real Time

To see that (6) implies (2), first note that, because mh is an integer, we have dUsume−2 ≤
dme − 2 = d2(mh + 1)e − 2 = d2mhe = 2mh. Therefore,

2mh >

min(2mh,nh)∑
i=1

uhi

⇒ {because dUsume − 2 ≤ 2mh}

2mh >

min(dUsume−2,nh)∑
i=1

uhi

= {by the definition of UL in Def. 10}
2mh > UL,

i.e., 2mh − UL > 0 holds, which is equivalent to (2), since m = 2(mh + 1) and |τH | = 2.
To see that (7) implies (3), observe that

2(mh + ah)− umax(τh) >
min(2mh,nh)∑

i=1
uhi

⇒ {reasoning as above}
2(mh + ah)− umax(τh) > UL

= {because ah = 1− ap}
2(mh + 1− ap)− umax(τh) > UL,

= {in our context umax(τh) = umax(τL), |τH | − 1 = 2, UH = 2ap, and m = 2(mh + 1)}
m−max(|τH | − 1, 0)umax(τL)− UH > UL,

which is equivalent to (3). J

A special case applies when there is no shared core.

I Lemma 14. If ah = 0, then τh is schedulable on πh under GEDF if and only if Uh ≤ 2mh

holds.

Proof. With no shared core, the platform consists of 2mh identical cores. The standard SRT
feasibility test given by (1) applies. J

Our next step is to give a schedulability condition for τp and τh combined on π. This
condition is a straightforward extension of the preceding lemmas, but it has the benefit of
letting us focus on τ rather than on how π is partitioned.

I Theorem 15. Platform π can be partitioned such that τp is schedulable on πp and τh is
schedulable on πh, both under GEDF, if (8) and at least one of (9) or (10) hold.

UE ≤ m (8)

2(m− dUpe) >
min(2(m−dUpe),np)∑

i=1
uhi (9)

2(m− Up)− uh1 >
min(2(m−dUpe),np)∑

i=1
uhi (10)

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:11

Proof. In order to define mp and ap so that mp + ap = Up holds, as in Def. 7, we merely
require Up ≤ m to hold, and by Def. 5, this is implied by (8). Note that mp + ap = Up

satisfies Condition (4) in Lemma 12.
Schedulability of τp on πp is implied by (8):

UE ≤ m

= {by Def. 5, UE = Up + Uh

2 }

Up ≤ m
= {by Def. 7, mp + ap = Up}

Up = mp + ap,

which is the condition for τp per Lemma 12.
We next show that (8) implies Condition (5) of Lemma 13. To see this, observe that, by

Def. 5, UE ≤ m ⇒ Uh

2 ≤ m−U
p. Also, by Def. 8, mh + ah = m−Up. Putting these facts

together, we have Uh ≤ 2(mh + ah), which is (5).
We conclude the proof by showing that (9) is equivalent to Condition (6) of Lemma 13,

and that (9) is equivalent to Condition (7) of Lemma 13. To see the former, note the following.

2(m− dUpe) >
min(2(m−dUpe),nh)∑

i=1
uhi

= {by Def. 8, m− dUpe = mh}

2mh >

min(2mh,nh)∑
i=1

uhi

Similarly, to see that (10) holds, note the following.

2(m− Up)− uh1 >
min(2(m−dUpe),nh)∑

i=1
uhi

= {by Def. 8, m− dUpe = mh.}

2(mh + ah)− uh1 >
min(2mh,nh)∑

i=1
uhi .

Having verified all conditions of Lemmas 12 and 13, we conclude that τp is schedulable on
πp and τh is schedulable on πh. J

Again, a special case applies if Up is integral.

I Corollary 16. If Up is integral, then both τp and τh are schedulable on their respective
sub-platforms under GEDF so long as UE ≤ m holds.

Proof. Similar to the proof of Lemma 14. J

It is not strictly necessary that πp be defined as we do here. If we allow other design
considerations, such as maximizing cache affinity or minimizing tardiness, different platform
definitions may be preferable, but we defer those possibilities to future work.

By themselves, the results of this section are not very useful, since there are an exponential
number of possible ways to partition π. In the next section, we show how to efficiently find
τp and τh that will be schedulable under Theorem 15.

ECRTS 2019

3:12 Simultaneous Multithreading Applied to Real Time

3.2 Sub-Problem 2: Dividing the Tasks
We have addressed how to schedule a task system τ for a given pair of subsystems τp and τh.
Here, we show how we arrive at Assumption 1 – τ has already been divided – and weaken
Assumption 2, which states that all execution costs have been determined, to the following:

I Assumption 4. If τi is a threaded task, then Chi = max∀τj∈τ Ci:j .

Oblivious scheduling. We first work through a simple example of dividing a task system
and then formalize that approach into what we term symbiosis-oblivious partitioning.5 We
then show how our approach can be improved by modifying Assumption 4.

I Example 17. Let τ consist of four SMART tasks,

τ1 =
(
8,
(
7, 10, 10, 9.3

))
, τ2 =

(
4,
(
4, 1, 2, 1.3

))
,

τ3 =
(
4,
(
3, 2.6, 2, 2.5

))
, τ4 =

(
8,
(
6, 6, 5.3, 4

))
.

Under traditional sporadic scheduling, where we consider only physical costs, τ has total
utilization 7

8 + 1
4 + 2

4 + 4
8 = 2.125 and will require three cores to be feasibly scheduled (recall

that Ci:i gives τi’s cost with nothing co-scheduled, i.e., without SMT). Based on Assumption
4, we see that Ch1 = 10 if τ1 is threaded. Because T1 = 8, making τ1 threaded would give
uh1 = 10

8 , making the system unschedulable. For τ2, C
h
2 would be at most τ2’s period, but

Ch2 = 4 would be more than twice Cp2 = 1. Part of the schedulability condition given in
Theorem 15 is that UE ≤ m. Because UE is defined as UE = Up + Uh

2 (Def. 5), placing τ2
in τh would increase UE more than placing τ2 in τp, so we do not wish for τ2 to be threaded.
For both τ3 and τ4, maxCi:j ≤ Ti and min(Ci

Ci:j
) ≥ .5 both hold, so letting those tasks be

threaded would decrease UE compared to placing them in τp without violating uhi ≤ 1, so
we allow those tasks to be threaded, giving uh3 = 3

4 and uh4 = 6
8 . The resulting partition has

Up = 7
8 + 1

4 , U
h = 3

4 + 6
8 , and U

E = 1.875. It can, per Theorem 15, be scheduled on only
two cores. �

We formally state the steps we just took in Algorithm 1, which partitions τ into τp and τh
so as to minimizes UE subject to uhi ≤ 1 for all threaded tasks and |τh| ≥ 2. The resulting
partition is then schedulable if Theorem 15 holds. We require that |τh| ≥ 2 holds since
allowing a single threaded task will give no schedulability advantage compared to letting all
tasks by physical. We refer to partitions of τ that obey both these constraints as legal. We
will examine the effectiveness of Algorithm 1 in our schedulability study.

I Definition 18. A partition of τ into τp and τh is legal if and only if ∀ τhi ∈ τh, uhi ≤ 1
and |τh| 6= 1 hold.

A more complex cost model. Under Assumption 4, the only variable that influences the
cost of τi is whether τi is physical or threaded. However, Assumption 4, and consequently
Algorithm 1, is highly pessimistic with regard to assigning Chi values. Returning to Example
17, we declared Ch3 = 3 on the grounds that ∀j, maxC3:j = 3 holds. However, there is a
limitation to that logic; Ch3 = 3 is based on the assumption that τ1 can interfere with τ3, but
in our example, we decided that τ1 should not be threaded. We can remove this limitation,
thereby improving our model, by replacing Assumption 4 with Assumption 5. The difference
is that under Assumption 5, Chi is only based on other threaded tasks, not on all tasks in τ.

5 The terms symbiosis-oblivious and symbiosis-aware scheduling were previously used by Jain et al. [15].

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:13

Algorithm 1: Oblivious Partitioning.
1: for all τi ∈ τ do
2: Chi ← max∀j≤n Ci:j
3: if Chi ≤ Ti and Ci

Ch
i

≥ 2 then
4: τh ← τh ∪ τi
5: else
6: Cpi ← Ci:i
7: τp ← τp ∪ τi
8: end if
9: end for
10: if |τh| < 2 then
11: τp ← τp ∪ τh
12: τh ← ∅
13: end if
14: return τp, τh

I Assumption 5. If τi is threaded, then Chi = max∀τj∈τh Ci:j .

The difference is that while Assumption 4 considers interference from all tasks in τ,

Assumption 5 considers interference only from other tasks in τh.While this approach removes
some of the pessimism present in symbiosis-oblivious scheduling, it has the disadvantage
that every time a task is added to or removed from τh, Chi may change for all tasks in τh.
We refer to task-partitioning algorithms that incorporate Assumption 5 as symbiosis-aware
partitioning. We give a brief demonstration of symbiosis-aware partitioning in Example 19,
using the same task set as in Example 17.

I Example 19. We first decide that τ1 must be physical, since ∀ j 6= 1, C1:j > T1. Knowing
that no task will be co-scheduled with τ1, we have Ch2 = 2 and Ch3 = 2.6, giving uh2 = 2

4 and
uh3 = 2.6

4 , but leaving u
h
4 unchanged. (In Example 17, we made τ2 a physical task and τ3 a

threaded task with uh3 = 3
4 .) Now we make all of τ2, τ3, and τ4 threaded, with τ3 having a

lower utilization than before. We now get Up = 7
8 and Uh = 2

4 + 2.6
4 + 6

8 , so that UE = 1.83.
a reduction from UE = 1.875 in Example 17. Again, τp and τh are schedulable on two
cores per Theorem 15.

A greedy approach to schedulability. We propose to use Algorithm 2 to partition τ. The
algorithm seeks to minimize UE by repeatedly moving a task from τp to τh, or vice versa,
to give the greatest decrease in UE . It does so until either a specified maximum number of
attempts has been made or it reaches a partition that cannot be improved by the movement
of any single task. The algorithm is not optimal, even given an unlimited number of attempts,
as there may exist partitions of τ that cannot be improved by moving any one task but can
be improved by moving two or more tasks.

The for loop of lines 3 through 16 determines, for every τi in τp, the benefit of moving
that task to τh. Line 4 tests what Chi would be if τi were in τh. Lines 10 through 13 calculate
the change to tasks already in τh caused by moving τi, and line 15 gives the total change to
UE caused by moving τi to τh.

Similarly, the for loop of lines 19 through 23 determines the benefit of moving τj to τp,
for every τj currently in τh. Line 20 gives the change to tasks remaining in τh caused by
moving τj , and line 22 gives the total change to UE caused by moving τj to τp. The if of
line 25 guarantees that no task will be moved unless moving that task will decrease UE ,
preventing the algorithm from placing τ into any one partition more than once.

ECRTS 2019

3:14 Simultaneous Multithreading Applied to Real Time

Algorithm 2: Greedy Partitioning.
Require: τ partitioned such that ∀τi ∈ τh, uhi ≤ 1 and |τh| ≥ 2
1: for `← 1...maxLoops do
2: . Identify best move from τp to τh
3: for all τi ∈ τp do
4: Chi = maxτi∈τh Ci:j

5: uhi = Ch
i

Ti

6: if uhi > 1 then
7: continue
8: end if
9: . Calculate how adding τi to τh will affect tasks already in τh

10: if moving τi to τh will cause uhj ≥ 1 for any τj ∈ τh then
11: continue
12: end if
13: I(τhi)← total increase in util. of tasks already in τh caused by moving τi
14: . ∆(i) gives decrease to UE caused by moving τi.
15: ∆(i)← upi −

uh
i +I(τh

i)
2

16: end for
17: . Identify best move from τh to τp
18: if |τh| > 2 then
19: for all τj ∈ τh do
20: D(τhj)← total decrease in util. of tasks already in τh caused by moving τj
21: . ∆(j) gives decrease to UE caused by moving τj .
22: ∆(j)← uh

j +D(τh
j)

2 − upj
23: end for
24: end if
25: if no task has a positive ∆ value then
26: break
27: end if
28: Move task with maximum ∆ to other subsystem and update threaded costs
29: end for
30: return(τp, τh)

The algorithm returns a partition that can be tested for schedulability by Theorem 15.
Algorithm 2 assumes, and maintains as an invariant, that the partition is legal, as defined

in Def. 18. To begin Algorithm 2, τ must already be in a legal partition. We propose three
ways to achieve this. First, in the greedy-threaded approach, we begin with all tasks in τh
and then place into τp all tasks for which any possible Chi value will give uhi > 1. Intuitively,
putting tasks in τh whenever possible should be beneficial, so we should start with as many
tasks in τh as possible.

Second, in the greedy-physical approach, we start with all tasks in τp apart from the
single pair of tasks that will give the greatest decrease to UE . This can be done by defining
the decrease to UE associated with a single pair of tasks (τi, τj) as

∀ (i, j),∆(i, j) = upi + upj −
1
2

(
Ci:j
Ti

+ Cj:i
Tj

)

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:15

and adding to τh the pair of tasks that maximize ∆(i, j) subject to Ci:j
Ti
≤ 1 and Cj:i

Tj
≤ 1.

When τi and τj are placed into τh, upi and upj are no longer part of Up and can be subtracted
from UE . However, we must add half of the new Uh value,

(
Ci:j
Ti

+ Cj:i
Tj

)
, to UE . We expect

this approach will be more efficient than the first one in task systems where upi is typically
large or Ci

Ci:j
is typically small, since there will be relatively few tasks that can be placed in

τh, making it more efficient to begin with the majority of tasks in τp. If no satisfactory pair
of tasks exists, then we conclude that SMT should not be used with this task system.

Third, in the greedy-mixed approach, we first run Algorithm 1 and use the partition given
by doing so as our starting point. Intuitively, Algorithm 1 by itself should give a partition
with a lower UE value than either of the other two approaches, so using it is a starting point
should yield better results. As with the greedy-physical approach, if Algorithm 1 places
no tasks in τh, then we conclude that SMT should not be used. We compare these three
approaches in our schedulability experiments, presented in Section 5. We found that for all
three versions of Algorithm 2, there existed task systems that were schedulable according to
that version alone. In fact, the greedy-physical approach seemed to find more schedulable
task systems than the other two.

4 Sub-Problem 1: SMT and Execution Times

Current literature does not address how SMT affects worst-case execution costs. While the
early 2000s saw multiple detailed analyses of the performance effects of SMT [1, 2, 25], little
work of this type has been done since then. While ongoing research into scheduling with SMT
exists outside of real time [7, 8, 10, 23], this current research does not suit our needs for two
reasons. First, it tends to be oriented towards total throughput and average execution costs,
whereas we need information on worst-case execution costs. Second, the current works we
are aware of compare different methods of implementing SMT, but do not compare systems
that use SMT to those that do not use it.

4.1 Benchmark Experiments
To analyze the effects of SMT on worst-case execution costs, we ran a series of experiments
using the TACLeBench sequential benchmarks [9], which consist of 23 C implementations
of functions commonly found in embedded and real-time systems. All of our experiments
were conducted in Linux on an Intel Xeon Silver 4110 2.1 GHz CPU with eight cores, each
capable of supporting two threaded processors, running Linux.6

To get baseline results for execution times without SMT enabled, we looped each bench-
mark 1,000 to 100,000 times – lower cost benchmarks got more loops – and timed the
execution of each loop using a nanosecond resolution timer. Between loops, an array the
size of the L3 cache was allocated and set, so that every execution started with a cold cache.
Benchmarks were assigned a Linux real-time priority, prioritizing them above all normal tasks,
pinned to a single processor, and executed sequentially. We excluded four benchmarks from
the set – anagram, audiobeam, g723_enc, and huff_dec – as they would not correctly execute
in a loop. Results of our baseline experiments are summarized in Table 1. The last column
gives the coefficient of variation, defined as the standard deviation divided by the mean.

6 Code for these experiments is available at https://github.com/JoshuaJB/SMART-ECRTS19,
https://jamesanderson.web.unc.edu/papers/, and https://doi.org/10.4230/DARTS.5.1.8.

ECRTS 2019

https://github.com/JoshuaJB/SMART-ECRTS19
https://jamesanderson.web.unc.edu/papers/
https://doi.org/10.4230/DARTS.5.1.8

3:16 Simultaneous Multithreading Applied to Real Time

Table 1 Baseline Execution Times (ns).

Benchmark max mean CV
(

std. dev.
mean

)
adpcm_dec 167,380 151,914 0.006659
adpcm_enc 158,053 147,394 0.006463
ammunition 47,979,870 47,899,553 0.001589
cjpeg_transupp 844,791 827,661 0.002087
cjpeg_wrbmp 32,420 26,712 0.010552
dijkstra 15,740,782 15,719,309 0.000445
epic 665,837 649,170 0.002284
fmref 154,776 99,280 0.068863
gsm_dec 470,193 463,592 0.002546
gsm_enc 1,337,465 1,320,787 0.001934
h264_dec 93,361 82,045 0.006340
huff_enc 247,232 234,213 0.005431
mpeg2 135,009,849 134,898,300 0.000248
ndes 21,600 15,426 0.015071
petrinet 3,682 62 0.215268
rijndael_dec 965,022 940,081 0.007688
rijndael_enc 872,400 858,645 0.002224
statemate 11,928 6,495 0.026602
susan 10,958,260 10,932,188 0.000379

For threaded execution times, every task was executed alongside every other task. For
each pair, the measured task was executed the same number of times as in the baseline
experiments while an interfering task executed continuously at equal priority on the second
thread of the same core. Our results are summarized in Fig. 5, which shows ri:j for every
pair of tasks, with the measured task as τi and the interfering task as τj . Observed rates
ranged from 0.51 (mpeg2 interfering with epic) to 1.00, with the exception of values involving
petrinet. Petrinet has an extremly short execution time, as indicated in Table 1; we suspect
its strange behavior is merely random noise.

We cannot guarantee that our experiments captured the maximum interference to τi
caused by τj . However, the low coefficients of variation recorded in Fig. 5 imply that different
interleavings of τi and τj will cause only minor variations in the cost of τi. As discussed in
Section 4.3 below, SRT systems may tolerate some cost overruns.

While we have defined Ci:i as the cost of τi with no co-schedule, the main diagonal of
Fig. 5 shows how much slower a task runs when executed with a second copy of itself. This
is irrelevant for real-time systems in which task parallelism is forbidden, but is relevant to
systems in which different jobs of the same task may execute in parallel, as discussed by
Voronov, Anderson, and Yang [27]. Prior to performing our experiments, we had expected
that tasks executed alongside copies of themselves would have very low ri:j , values, due to
competing for the same resources, but our experiments show this is not necessarily the case.

4.2 Benchmark Characterization
In our results, we observe that tasks are relatively consistent both in how vulnerable they are
to interference from other tasks and in how much interference they cause to other tasks. This
is similar to other results in the literature [1, 2, 14, 25]. We say that tasks that experience

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:17

Figure 5 Effect of SMT on execution times. Measured benchmarks execute with the listed ri:j

values when sharing a thread with a given interfering benchmark. Shading is darkest on smallest
values. Right column shows the maximum coefficient of variation experienced by each measured
benchmark over all interfering benchmarks.

little interference from other tasks – i.e. tasks τi for which ri:j tends to be high – are strong,
and that tasks which cause little interference to other tasks – i.e. τi for which rj:i tends to
be high – are friendly. When we define a strength score si = meanj(ri:j) and friendliness
score fi = meanj(rj:i), no task has a Pearson correlation7 with absolute value greater than
0.14 between si and fi values. Bulpin’s work on the behavior of threaded tasks discusses
this lack of correlation further [1, 2].

For both values, we centered and standardized each row and column before fitting them
to several common statistical distributions via a log-likelihood maximization. We found the
Gaussian distribution to best approximate the results from our experiments. Applying a
maximum likelihood (MLE) estimation, we found that mean 0.72 and standard deviation
0.13 were the best for si while mean 0.72 and standard deviation 0.04 were best for fi.

4.3 Reliability of Measured Worst-Case Costs
We stated in Assumption 4 that Chi is no more than maxτj∈τh Ci:j . While we are confident
that violations will be rare, we cannot guarantee there will not be any. In particular, our
assumption that all portions of τi receive the same amount of interference from all portions of
τj is a potential source of timing violations. For example, let τh = {τh1 , τh2 , τh3 } be such that
C1:2 = C1:3 = 6. Under Assumption 5, the worst-case execution time for τ1 is 6. Suppose τ1
can be broken into two segments, τ1a and τ1b, such that C1a:2 = 4, C1b:2 = 2, C1a:3 = 2, and
C1b:3 = 4. If τ1a is co-scheduled with τ2 and τ1b is co-scheduled with τ3, τ1’s total execution
time would be 8, violating our stated worst-case execution costs. At present, our benchmark
tests and model do not discover or account for task inter-leavings as in this scenario. In the

7 A Pearson correlation of ±1 indicates total positive or negative linear correlation; 0 indicates no
correlation.

ECRTS 2019

3:18 Simultaneous Multithreading Applied to Real Time

future, we would like to resolve this with finer-grained timing analysis and a model that does
not assume task interference is independent from location within the task. In particular,
breaking tasks into segments, determining execution costs per segment, as in our example,
and conducting an analysis similar to this paper, but at a finer granularity, seems like a
promising way forward. For now, we reiterate that we are only considering applications that
are not safety-critical and where some tardiness is acceptable.

Generally, precise timing analysis on multicore is hard and contains uncertainty regardless
of the added SMT challenge. Fortunately, Mills and Anderson have shown SRT systems to
have expected tardiness bounds based on average rather than worst-case execution times
[19]. Their approach relies on designating per-task execution budgets so that if any one job
overruns its budget, it will not receive further execution time until a subsequent job of the
same task could have been executed had the first job completed. These budgets come from
average execution times. Therefore, so long as our costs are greater than the true average
costs, any system τ that can be scheduled as we have described will remain so, though
possibly with increased tardiness, even if our stated costs are not true worst-case costs.

Concerning our results here, our true interest is not in these specific times, but rather in
developing a sense of how SMT-enabled tasks behave so that we can create synthetic tasks
for our schedulability study that are good representations of reality.

5 Schedulability Experiments

Having shown how to schedule SMT-enabled systems and analyzed the behavior of our
benchmark tasks when using SMT, it remains to be seen whether we can schedule otherwise
unschedulable systems. To answer this question, we ran a series of schedulabilty experiments.

5.1 Experimental Procedure

To run our experiments, we created synthetic task systems to be scheduled on platforms
with m cores, m ∈ {4, 8, 16} such that the total system utilization ranged from m to 2m.
For each task system, we partitioned the system into τp and τh using Algorithm 1 and
all three versions of Algorithm 2. We then tested for schedulability per Theorem 15. We
created enough task systems that each data point in our graphs represents the composite
schedulability of approximately 1,000 task systems. We created over 300 graphs, with a few
thousand to hundreds of thousands of task systems per graph. Creating task sets, partitioning
task sets, and testing for schedulability consumed over 30 days of CPU time.

We plotted our results on a series of schedulability graphs with total utilizations on the
horizontal axis and the proportion of systems that were schedulable on the vertical axis.
Since we started at utilization m, and the standard SRT feasibility condition given by (1)
requires that

∑n
i=1 ui ≤ m hold, every system we created was infeasible without using SMT.

Every system that we could schedule is an argument for adapting SMT in real-time systems.
Each graph shows results for tasks created using a common set of utilization and ri:j

values. Task utilizations were assigned from one of four ranges: the uniform distributions
(0, .4], [.3, .7], [.6, 1], and (0, 1]. We used two approaches for determining ri:j values. In
the Gaussian-average approach, we drew si and fi from the Gaussian distributions with
mean 0.72 for both values and standard deviations ranging from 0.13 to 0.39 for si and from
0.04 to 0.12 for fi. These parameters are based on distributions we fitted to our models, as
discussed in the previous section. We allowed larger standard deviations than we obtained
from our benchmarks to make our results more widely applicable.

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:19

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

[1,2,4]

[3]

4 Cores, Task Utilization (0.0, 0.4]
s Gauss(0.72,0.13), f Gauss(0.72,0.04)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 6 Graph shape is similar to Fig. 1,
which has more cores.

16 17 18 19 20 21 22 23 24
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

[1,2,4]
[3]

16 Cores, Task Utilization [0.3, 0.7]
s Gauss(0.72,0.13), f Gauss(0.72,0.04)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 7 Schedulability similar to Figs. 1
and 6, despite higher task utils.

16 17 18 19 20 21 22 23 24
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

[3]

[2] [1,4]

16 Cores, Task Utilization (0.0, 1.0)
s Gauss(0.72,0.13), f Gauss(0.72,0.04)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 8 Despite same expected per-task
util. as Fig. 7, schedulability is reduced.

16 17 18 19 20 21 22 23 24
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

[1]

[3]
[2,4]

16 Cores, Task Utilization [0.6, 1.0)
s Gauss(0.72,0.13), f Gauss(0.72,0.04)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 9 Given high per-task utiliza-
tions, only small schedulability gains can be
achieved.

In the uniform-normal approach, both si and fi come from one of four uniform distri-
butions: [.65, 1], [.7, 1], [.75, 1], or [.8, 1]. The two ranges may differ for a given graph.
Each ri:j value was then chosen from a normal distribution with mean sifi and standard
deviation σ, where σ is .01, .05, or .1. Negative values or those greater than 1 are clamped
to 0 or 1 respectively. The intuition behind the uniform-normal approach is to create ri:j
values broadly similar to the benchmark values we obtained, but via different methods than
Gaussian-average so as to avoid having our results be overly dependent on that model. While
high si values in this context still indicate tasks that receive little interference from other
tasks, and high fi values indicate tasks that cause little interference to others, they are used
differently here than in the Gaussian average approach and should not be directly compared.

5.2 Results
Due to space constraints, we present only a small portion of our graphs to highlight general
trends. A full set of graphs is available in our online appendix.8 For all of our graphs, the
horizontal axis begins at m; all of our task systems would be infeasible without SMT.

I Observation 1. Given favorable task parameters, virtually all task systems with utilizations
as high as 1.25m, and roughly half of task systems with utilizations of 1.33m, are schedulable.
Favorable task parameters are high means and low standard deviations for friendliness and
strength values combined with low per-task utilizations. Examples of these results are seen in
Figs. 1, 6, and 7.

8 Appendix and code is available at https://jamesanderson.web.unc.edu/papers/. Code is also avail-
able at https://github.com/JoshuaJB/SMART-ECRTS19 and https://doi.org/10.4230/DARTS.5.1.8.

ECRTS 2019

https://jamesanderson.web.unc.edu/papers/
https://github.com/JoshuaJB/SMART-ECRTS19
https://doi.org/10.4230/DARTS.5.1.8

3:20 Simultaneous Multithreading Applied to Real Time

16 17 18 19 20 21 22 23 24
Utilization

0.0

0.2

0.4

0.6

0.8

1.0
Sc

he
du

la
bi

lit
y

Ra
tio

[2]

[1]
[3]

[4]

16 Cores, Task Utilization (0.0, 0.4], = 0.055
s Uniform(0.65,1.00), f Uniform(0.65,1.00)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 10 Uniform-normal ri:j values on
16 cores. Note variations in algorithm per-
formance.

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

4 Cores, Task Utilization (0.0, 0.4], = 0.055
s Uniform(0.65,1.00), f Uniform(0.65,1.00)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 11 Uniform-normal ri:j on 4 cores.
Unlike the Gaussian model, core count influ-
ences gains from SMT here.

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Utilization (0.0, 0.4]
s Gauss(0.72,0.39), f Gauss(0.72,0.13)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 12 Gaussian approach with higher
variance. Gains from SMT are reduced com-
pared to Figs. 1, 6, and 7.

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
Ra

tio

8 Cores, Task Utilization [0.3, 0.7]
s Gauss(0.72,0.39), f Gauss(0.72,0.13)

[1] O s
[2] G -T
[3] G -P s
[4] G -M x

Figure 13 Underperformance of Greedy-
thread as in Fig. 12 disappears as utiliza-
tions increase.

I Observation 2. Task systems with low per-task utilization received the greatest improvement
in schedulability, and task systems with high utilization saw the least. Since threading tasks
increases individual execution costs, it will typically not be possible to thread tasks that already
have high utilizations. Fig. 6, in our introduction, shows schedulability for task systems
with individual utilizations drawn from the uniform distribution (0, 0.4], and shows that the
majority of systems considered are schedulable with utilizations as high as 5.34. Fig. 9 has
the same parameters as Figs. 1 and 6, but draws utilizations instead from the range [.6, 1].
This graph shows virtually no improvement when run with SMT.

I Observation 3. Algorithm 1, oblivious partitioning, competes with the more complex
algorithms. In our best results, such as Figs. 1, 6, 7, and 13, Algorithm 1 is indistinguishable
from the greedy algorithms. When Algorithm 1 does not perform as well as the variants of
Algorithm 2, the difference is small enough that the lower algorithm complexity might still
make it a better choice.

I Observation 4. Lower ri:j variability yields improved schedulability. In Fig. 12, the task
systems sample from the same utilization range as those of Figs. 1 and 6, but here the
standard deviation of the distribution from which si and fi are sampled is larger. This
increased variance causes fewer task sets to be schedulable Fig. 12 in than in Figs. 1 and 6.

I Observation 5. Schedulability benefits of our methods are not limited to task systems
generated using a single model. While the Gaussian approach created systems that saw more
improvement from SMT, the benefits of SMT are not limited to task systems created under
that model, suggesting that SMT can benefit a wide variety of task systems.

S.H. Osborne, J. J. Bakita, and J. H. Anderson 3:21

6 Conclusion

We have given a task model, SMART, that allows for reasoning about SMT-enabled task
systems by defining multiple cost parameters per task. We have shown how to decide which
tasks should and should not use SMT and how to take advantage of SMT to schedule
otherwise unschedulable task systems. We measured the execution times of benchmark
tasks with and without SMT enabled, with the SMT-enabled case covering interference from
all other tasks in the set. We conducted an extensive schedulability study using synthetic
tasks modeled on our benchmark tasks and showed that for task systems consisting of low
utilization tasks, it is possible to schedule virtually all systems with utilization as large as
1.25m and to schedule many task systems with utilizations approaching 1.33m.

In the future, we plan to improve our timing analysis to the point that hard real-time
systems, where no tardiness is permitted, becomes an option. In addition, we want expand
our soft real-time work by partitioning both task systems and hardware platforms to minimize
tardiness, rather than simply maximizing schedulability. Making tasks threaded tends to
decrease demand on the platform, potentially reducing tardiness, but will increase execution
costs, potentially increasing tardiness [4, 5, 16]. While the potential gains shown in this paper
are substantial, we have only begun to expose the potentials of hardware multithreading.

References
1 J. Bulpin. Operating system support for simultaneous multithreaded processors. PhD thesis, Uni-

versity of Cambridge, King’s College, 2005. URL: http://www.cl.com.ac.uk/TechReports/.
2 J. Bulpin and I. Pratt. Multiprogramming Performance of the Pentium 4 with Hyperthreading.

In Third Annual Workshop on Duplicating, Deconstruction and Debunking, pages 53–62, June
2004.

3 F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez, and M. Valero.
Predictable performance in SMT processors: synergy between the OS and SMTs. IEEE
Transactions on Computers, 55(7):785–799, July 2006. doi:10.1109/TC.2006.108.

4 U. M. C. Devi and J. H. Anderson. Tardiness bounds under global EDF scheduling on a
multiprocessor. In RTSS’05, pages 330–341, December 2005. doi:10.1109/RTSS.2005.39.

5 U. M. C. Devi and J. H. Anderson. Flexible tardiness bounds for sporadic real-time task systems
on multiprocessors. In 20th IEEE International Parallel Distributed Processing Symposium,
pages 10 pp.–, April 2006. doi:10.1109/IPDPS.2006.1639265.

6 S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen. Simultaneous
multithreading: a platform for next-generation processors. IEEE Micro, 17(5):12–19, September
1997. doi:10.1109/40.621209.

7 S. Eyerman and L. Eeckhout. The Benefit of SMT in the Multi-core Era: Flexibility Towards
Degrees of Thread-level Parallelism. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, pages
591–606, New York, NY, USA, 2014. ACM. doi:10.1145/2541940.2541954.

8 S. Eyerman, P. Michaud, and W. Rogiest. Revisiting symbiotic job scheduling. In 2015 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), pages
124–134, March 2015. doi:10.1109/ISPASS.2015.7095791.

9 H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl,
R. B. Sorensen, P. Wagemann, and S. Wegener. TACLeBench: A Benchmark Collection to
Support Worst-Case Execution Time Research. In Martin Schoeberl, editor, 16th International
Workshop on Worst-Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess
Series in Informatics (OASIcs), pages 2:1–2:10, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2016.2.

ECRTS 2019

http://www.cl.com.ac.uk/TechReports/
http://dx.doi.org/10.1109/TC.2006.108
http://dx.doi.org/10.1109/RTSS.2005.39
http://dx.doi.org/10.1109/IPDPS.2006.1639265
http://dx.doi.org/10.1109/40.621209
http://dx.doi.org/10.1145/2541940.2541954
http://dx.doi.org/10.1109/ISPASS.2015.7095791
http://dx.doi.org/10.4230/OASIcs.WCET.2016.2

3:22 Simultaneous Multithreading Applied to Real Time

10 J. Feliu, J. Sahuquillo, S. Petit, and J. Duato. Perf Fair: A Progress-Aware Scheduler to
Enhance Performance and Fairness in SMT Multicores. IEEE Transactions on Computers,
66(5):905–911, May 2017. doi:10.1109/TC.2016.2620977.

11 A. Fog. The Microarchitecture of Intel, AMD, and VIA CPUs: an optimization guide for
assembly programmers and compiler makers. Technical University of Denmark, 2018. URL:
https://www.agner.org/optimize/microarchitecture.pdf.

12 T. Gomes, P. Garcia, S. Pinto, J. Monteiro, and A. Tavares. Bringing Hardware Multithreading
to the Real-Time Domain. IEEE Embedded Systems Letters, 8(1):2–5, March 2016. doi:
10.1109/LES.2015.2486384.

13 T. Gomes, S. Pinto, P. Garcia, and A. Tavares. RT-SHADOWS: Real-time system hardware
for agnostic and deterministic OSes within softcore. In ETFA ’15, pages 1–4, September 2014.
doi:10.1109/ETFA.2015.7301572.

14 W. Huang, J. Lin, Z. Zhang, and J.M. Chang. Performance Characterization of Java
Applications on SMT Processors. In ISPASS ’05., pages 102–111, March 2005. doi:
10.1109/ISPASS.2005.1430565.

15 R. Jain, C. J. Hughes, and S. V. Adve. Soft real-time scheduling on simultaneous multithreaded
processors. In RTSS ’02, pages 134–145. Institute of Electrical and Electronics Engineers Inc.,
2002. doi:10.1109/REAL.2002.1181569.

16 H. Leontyev and J. H. Anderson. Generalized tardiness bounds for global multiprocessor
scheduling. Real-Time Systems, 44(1):26–71, March 2010. doi:10.1007/s11241-009-9089-2.

17 S. Lo, K. Lam, and T. Kuo. Real-time task scheduling for SMT systems. In RTCSA’05, pages
5–10, August 2005. doi:10.1109/RTCSA.2005.77.

18 D. Marr, F. Binns, D. Hill, G. Hinton, K. Koufaty, J. Miller, and M. Upton. Hyper-Threading
Technology Architecture and Microarchitecture. In Intel Technology Journal, volume 6, pages
4–15, February 2002.

19 A. F. Mills and J. H. Anderson. A Stochastic Framework for Multiprocessor Soft Real-Time
Scheduling. In RTAS ’10, pages 311–320, April 2010. doi:10.1109/RTAS.2010.33.

20 J. Mische, S. Uhrig, F. Kluge, and T. Ungerer. Using SMT to Hide Context Switch Times of
Large Real-Time Tasksets. In RTAS ’10, pages 255–264, August 2010. doi:10.1109/RTCSA.
2010.33.

21 B. Ocker. FAA special topics. In Collaborative Workshop: Solutions for Certification of
Multicore Processors, November 2018.

22 S. Osborne and J. H. Anderson. Work in Progress: Combining Real Time and Multithreading.
In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 139–142, December 2018. doi:
10.1109/RTSS.2018.00024.

23 P. Radojković, P. M. Carpenter, M. Moretó, V. Čakarević, J. Verdú, A. Pajuelo, F. J. Cazorla,
M. Nemirovsky, and M. Valero. Thread Assignment in Multicore/Multithreaded Processors:
A Statistical Approach. IEEE Transactions on Computers, 65(1):256–269, January 2016.
doi:10.1109/TC.2015.2417533.

24 A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous Multithreaded
Processor. In ASPLOS ’2000, ASPLOS IX, pages 234–244, New York, NY, USA, 2000. ACM.
doi:10.1145/378993.379244.

25 N. Tuck and D. M. Tullsen. Initial Observations of the Simultaneous Multithreading Pentium
4 Processor. In PACT ’03, PACT ’03, pages 26–35, Washington, DC, USA, 2003. IEEE
Computer Society. URL: http://dl.acm.org/citation.cfm?id=942806.943857.

26 D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In ISCA ’95, pages 392–403, 1995.

27 S. Voronov, J. H. Anderson, and K. Yang. Tardiness Bounds for Fixed-Priority Global
Scheduling Without Intra-Task Precedence Constraints. In RTNS ’18, RTNS ’18, pages 8–18,
New York, NY, USA, 2018. ACM. doi:10.1145/3273905.3273913.

28 M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. FlexPRET: A processor platform for mixed-
criticality systems. In RTAS ’14, pages 101–110, April 2014. doi:10.1109/RTAS.2014.6925994.

http://dx.doi.org/10.1109/TC.2016.2620977
https://www.agner.org/optimize/microarchitecture.pdf
http://dx.doi.org/10.1109/LES.2015.2486384
http://dx.doi.org/10.1109/LES.2015.2486384
http://dx.doi.org/10.1109/ETFA.2015.7301572
http://dx.doi.org/10.1109/ISPASS.2005.1430565
http://dx.doi.org/10.1109/ISPASS.2005.1430565
http://dx.doi.org/10.1109/REAL.2002.1181569
http://dx.doi.org/10.1007/s11241-009-9089-2
http://dx.doi.org/10.1109/RTCSA.2005.77
http://dx.doi.org/10.1109/RTAS.2010.33
http://dx.doi.org/10.1109/RTCSA.2010.33
http://dx.doi.org/10.1109/RTCSA.2010.33
http://dx.doi.org/10.1109/RTSS.2018.00024
http://dx.doi.org/10.1109/RTSS.2018.00024
http://dx.doi.org/10.1109/TC.2015.2417533
http://dx.doi.org/10.1145/378993.379244
http://dl.acm.org/citation.cfm?id=942806.943857
http://dx.doi.org/10.1145/3273905.3273913
http://dx.doi.org/10.1109/RTAS.2014.6925994

PREM-Based Optimal Task Segmentation
Under Fixed Priority Scheduling
Muhammad R. Soliman
University of Waterloo, Ontario, Canada
mrefaat@uwaterloo.ca

Rodolfo Pellizzoni
University of Waterloo, Ontario, Canada
rpellizz@uwaterloo.ca

Abstract
Recently, a large number of works have discussed scheduling tasks consisting of a sequence of memory
phases, where code and data are moved between main memory and local memory, and computation
phases, where the task executes based on the content of local memory only; the key idea is to prevent
main memory contention by scheduling the memory phase of one task in parallel with computation
phases of tasks running on other cores. This paper provides two main contributions: (1) we present
a compiler-level tool, based on the LLVM intermediate representation, that automatically converts
a program into a conditional sequence of segments comprising memory and computation phases;
(2) we propose an algorithm to find optimal segmentation decisions for a task set scheduled according
to a fixed-priority partitioned scheme. Our evaluation shows that the proposed framework can be
feasibly applied to realistic programs, and vastly overperforms a baseline greedy approach.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases PREM, LLVM, scratchpad memory, scheduling, program segmentation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.4

Funding This work was supported in part by NSERC and CMC Microsystems.

1 Introduction

Multi-Processor Systems-on-a-Chip (MPSoCs) are becoming increasingly popular in the real-
time and embedded system community. MPSoCs are characterized by the presence of shared
memory resources. In particular, a single main memory shared by all processing elements
on the chip can constitute a significant performance bottleneck. Even worse, hardware
arbitration schemes used in Commercial-Off-The-Shelf (COTS) systems are optimized for
average-case performance, resulting in extremely high worst-case latency in the presence of
contention for memory access among multiple processors [17, 30, 16].

Hence, there is a significant interest in the real-time community in controlling the pattern
of accesses in memory to avoid worst-case scenarios. This can be difficult in cache-based
systems, where main memory accesses are generated by misses in last level cache, as the
precise pattern of cache hits and misses is hard to predict. The PRedictable Execution
Model (PREM) first proposed in [22] attempts to solve this issue by dividing the execution
of each software task in two different parts: memory phases where the data and instructions
required by the task are loaded from main memory into local memory (cache or scratchpad),
and computation phases where a processor executes the task based on the content of local
memory only. Since the task does not need to access main memory during its computation
phase, other processors are free to do so without suffering contention.

© Muhammad R. Soliman and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7732-1131
mailto:mrefaat@uwaterloo.ca
mailto:rpellizz@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

Based on this core idea, successive works [33, 31, 32, 2, 1, 3, 27, 34, 19, 20, 12, 7, 21, 9, 10,
23, 4] have proposed a variety of contentionless approaches 1 targeting different scheduling
schemes (preemptive vs non-preemptive, partitioned vs global) and platforms (general purpose
processors vs GPU). However, the key problem of how to compile a program to execute
based on PREM has received significantly less attention. Due to the complexities inherent
in each step, we strongly believe that an automated tool is required to remove the burden
from the programmer.

The main contribution of this paper is a framework for automatically generating PREM-
compatible code for sequential programs running on a general purpose processor; it is largely
agnostic to the programming language being used since it operates on the intermediate
representation of the LLVM compiler infrastructure [18]. In particular, we propose a set
of program transformation constraints that allow us to convert a task into a conditional
sequence of PREM segments. We use a region-based approach to simplify segment creation,
in conjunction with loop splitting and tiling transformations [15] to split large loops into
multiple segments. Based on the proposed framework, we then derive a task segmentation
algorithm that enumerates the best possible conditional segments for a given task on a
platform with fixed-length memory phases [27]. Furthermore, for the case of fixed-priority
partitioned scheduling, we show that applying the algorithm to each task in priority order
leads to a solution that is optimal for the task set.

The rest of the paper is organized as follows. Section 2 summarizes the required background
on PREM and related work. Section 3 introduces our new conditional PREM model and
extends the existing schedulability analysis to cover such model. Section 5 then shows
how to obtain an optimal segmentation for a given task set, while Section 4 describes our
employed compilation framework, and our program segmentation algorithm based on such
framework. Section 6 compares our optimal segmentation approach versus both a previous
greedy approach, and a simple heuristic, using task set parameters extracted from real
programs. Finally, we conclude in Section 7.

2 Background and Related Work

In this section, we introduce existing research based on PREM and discuss required back-
ground and system assumptions. Note that while other predictable management approaches
for local memories exist in the literature, we limit ourselves to PREM-based solutions due to
space limitations. We consider a MPSoC platform comprising a set of possibly heterogeneous
processors. Each processor has a fast private local memory in the form of a last level cache
or ScrachPad Memory (SPM); all processors share the same main memory. As discussed
in Section 1, the goal of PREM is to create a contentionless memory schedule. While the
seminal work in [22] first proposed to split the execution of each application into a memory
and a computation phase, the approach has been refined in successive works [32, 2] into a
three-phase model. Here, two memory phases are considered: an acquisition (or load) phase
that copies data and instructions from main memory into local memory, and a replication
(or unload) phase that copies modified data back to main memory. Memory phases are
scheduled such that a single memory phase is executed at any one time in the entire system.

When the data used by a program is small and deterministic, the task can comprise
a single sequence of load-computation-unload phases. However, the code and data of the
program might be too large to fit in one partition of local memory. Second, it might be

1 Note that the model we are discussing is also referred to as three-phase model or acquisition-execution-
replication model in related work.

M.R. Soliman and R. Pellizzoni 4:3

t

memory

task u.a.

other
tasks

Interval1 Interval2 Interval3 Interval4 Interval5 Interval6

TDMA slot of other core(s)

Unused TDMA slot of the
core under analysis

Phase using Partition A

Phase using Partition B

Load /Unload Phase

Computation Phase

Figure 1 Example: TDMA memory schedule with M = 2 cores.

5/5s0

9/9s1
11/11s2

6/6s3

12/12s4

4/5s5 5/5s6

2/5s7 ts/max(ts,∆ = 5)

Segment (s)

Figure 2 Example segment DAG (s0 is sbegin and s7 is send).

difficult to predict the data accessed by a job before it starts executing, as data accesses can
be dependent on program inputs. To address such issue, the works in [22, 32, 9, 20] split
a task into a sequence of PREM segments, where each segment has its own memory and
computation phases and is executed non-preemptively.

2.1 Memory and Processor Schedule
The memory scheduling algorithm is different among related work, based on their specific
goals and system assumption. Approaches targeted at multitasking systems optimize task
execution by overlapping the computation of the current job with the memory phase for the
next job to be scheduled on that processor. In essence, one can pipeline computation and
memory phases using a double-buffering technique [32, 13, 12, 27], at the cost of halving
the available local memory space. As an example, we detail the approach in [32, 27], which
has been designed to schedule a set of fixed-priority, partitioned sporadic tasks, and fully
implemented on an automotive COTS platform. The local memory of each processor is
divided into two equal size partitions. Memory phases are executed by a dedicated DMA
component using a TDMA memory schedule with fixed time slots; the size of each slot is
sufficient to either load or unload the entirety of one partition. Figure 1 shows an example
schedule on one processor; the task under analysis (u.a.) consists of three segments s1, s3 and
s6, while segments s2, s4 and s5 belong to other tasks. The schedule consists of a sequence
of scheduling intervals. Segments are scheduled non-preemptively. During each interval, a
segment of a job (ex: s2 in Interval2) computes using data and instruction in one partition.
At the same time, the DMA unloads the previous segment (s1) and loads the next segment
(s3) in the other partition. Note that the length of each scheduling interval is the maximum
of the computation time for the corresponding segment, and the time required for the load
and unload operations. In the figure, Interval3 is bounded by the memory time, while all
other intervals are bounded by the computation time of the segment. Let M be the number
of cores, and σ the size of each TDMA slot. Then as proven in [27], the worst-case memory
time is equal to ∆ = σ · (2M + 1): as again shown in Interval3, the previous interval can
finish right after the beginning of a TDMA slot assigned to the core under analysis, forcing
that slot to be wasted. To abstract from the details of the memory schedule, in the rest of the
paper we assume a given bound ∆ on the memory time for any interval. Hence, the length

ECRTS 2019

4:4 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

of an interval is the maximum of ∆ and the computation time of the job in that interval.
Finally, note that two segments of the same task cannot run back-to-back as the computation
phase of a segment and the memory phase of the next one cannot be executed in parallel: in
general, the data required by a segment might not be determined until the previous segment
completes; furthermore, to load a segment we might need to first evict some data and code
of the previous one. To avoid idling the processor while a task loads its next segment, one or
more segments of (possibly lower priority) other tasks are instead scheduled.

A downside of the described approach is that a high priority job can suffer blocking by
a low priority job due to the non-preemptive interval schedule. The works in [33, 34, 21]
adopt preemptive scheduling, but this requires a number of local memory partitions equal to
the number of tasks: otherwise, a memory phase could be “wasted” by loading a job that
is immediately preempted by a higher priority one. Given that local memory is typically a
limited resource, we will not consider such fully-preemptive approaches.

2.2 Program Transformation

We next discuss how a program can be transformed to be PREM-compliant. Most single-
segment works do not require program transformation; instead, the entire memory region
allocated by the OS to the program is loaded in local memory [32, 7, 27, 4]. The seminal
work in [22] introduces a set of macros, which the programmer could add to the program to
both segment it, and mark data structures to be loaded / unloaded. Our experience with
programs of even medium complexity is that this places an undue burden on the programmer,
and it is likely to lead to a sub-optimal transformation. The authors of [13, 12] discuss a
compiler-based approach to transform a GPU kernel. The approach focuses on generating
code for the memory phase. On the other hand, our focus in this paper is how to automate
data usage analysis and task segmentation for sequential programs running on a general
purpose processor. Light-PREM [19] uses run-time profiling to detect memory areas used by
a program to load during memory phases. We find the approach suitable for programs with
highly dynamic data structures, but since it is based on profiling rather than static program
analysis, it cannot guarantee worst-case bounds. Also, it does not discuss how to segment
a task. In our previous work [24], we proposed a program analysis and transformation
technique that uses static analysis to determine data accesses and predictably load/unload
data from SPM while the program is executing. We reuse the same compiler framework in
Section 4 to determine the data to load in each segment. Note that [24] only deals with a
single-task, single processor case, and does not segment the program based on PREM.

The closest related work is [20], where the authors introduce an automated task compil-
ation and segmentation tool. The approach is similar to our work in that is relies on the
LLVM compiler infrastructure, and employs loop splitting and tiling [15] to break loops that
are too large to fit in local memory. However, the paper is focused on the case of a parallel,
single-task system, and the tool employs a “greedy” segmenting approach that results in the
longest possible segments. As we discuss in Section 3 and show in Section 6, such greedy
approach is not suitable for multi-tasking systems where blocking time due to non-preemptive
segments of lower priority tasks is a concern.

Finally, all related work assumes that a task comprises a single segment or a fixed
sequence of segments. However, a program can have multiple execution paths whereas it
accesses different data along each path, and must be PREM-compliant along all valid paths.
Therefore, in Section 3 we introduce a new conditional PREM model in which the fixed
segment sequence is replaced by a Directed Acyclic Graph (DAG) of segments, and we then
show how to compile the program to execute segments conditionally.

M.R. Soliman and R. Pellizzoni 4:5

3 Task Model and Schedulability Analysis

We consider scheduling a set of sequential, conditional PREM tasks on a multiprocessor.
We assume non-preemptive segment execution, with a fixed memory time ∆ to load/unload
each segment. In details, we consider a set of sporadic tasks Γ = {τ1, . . . , τN}. We use
Ti to denote the period (or minimum inter-arrival time) of task τi, and Di for its relative
deadline. We assume constrained deadline: Di ≤ Ti. τi is further characterized by a
DAG of segments Gi = (Si, Ei), where Si is a set of nodes representing segments, and Ei

is a set of edges representing precedence constraints between segments. We assume that
the set Si contains unique source and sink segments sbegin, send, as we consider programs
with a single entry and exit point. We define the length s.l of a segment s ∈ Si as
the maximum length of any scheduling interval for the segment, that is, the maximum
between the worst-case computation time ts of s (including context-switch overheads) and
the memory time ∆. In the remaining of the paper, we use p to denote a DAG path,
that is, an ordered sequence of segments; p.I is the number of segments in the path,
p.L the sum of their lengths, and p.end the length of the last segment in the path. We
say that a path is maximal if its first segment is sbegin and its last segment is send. To
avoid confusion, in the rest of the paper we use uppercase letters (P) to denote maximal
paths. Note that by definition P.end = send.l. Figure 2 shows an example DAG with
three maximal paths: P = {s0, s1, s2, s7}, P ′ = {s0, s3, s4, s7}, and P ′′ = {s0, s3, s5, s6, s7}.
Note that we have P.L = 30, P.I = 4, P ′.L = 28, P ′.I = 4, P ′′.L = 26, P ′′.I = 5, and
P.end = P ′.end = P ′′.end = 5. Finally, we will use the notation p = {p1, ..., pn} to indicate
that path p can be obtained as a sequence of n (sub-)paths. In general, a DAG could
have many maximal paths, and a task could be segmented into many different DAGs.
The following definitions will allow us to restrict the number of paths / DAGs to find a
schedulable task system.

I Definition 1. Given two maximal paths P, P ′, we say that P ′ dominates (is worse than
or equal to) P and write P ′ � P iff: P ′.L ≥ P.L and P ′.I ≥ P.I and P ′.end ≤ P.end. If
neither P ′ � P nor P � P ′ holds, we say that the two paths are incomparable.

Since the � relation defines a partial order between maximal paths, we can characterize a
task based on its set of dominating paths. Formally, given segment DAG G, we use G.C to
denote the Pareto frontier 2 of all maximal paths in G. Intuitively, for a task τi, we will
show that the set Gi.C replaces the concept of worst-case execution time. For example, for
Figure 2, G.C is the set P, P ′′; P ′ is not included since P dominates it; but both P and P ′′
are included since they are incomparable. While P ′.end = P.end for two paths belonging to
the same DAG, we can also use Definition 1 to compare two DAGs for the same program.

I Definition 2. Given two segment DAGs G,G′, we say that G′ dominates (is worse than
or equal to) G and write G′ � G iff: ∀P ∈ G.C,∃P ′ ∈ G′.C : P ′ � P . If neither G′ � G nor
G � G′ holds, the two DAGs are incomparable.

Note that since G.C is the Pareto frontier, G′ � G implies that for every path in G, there is
a corresponding path in G′ that dominates it.

2 Given a partial order over a set of distinct elements, the Pareto frontier is the subset of elements that
are not dominated by any other element.

ECRTS 2019

4:6 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

t
Segments of lower

priority tasks

memory

Interval3Interval1 Interval2 Interval4 Interval5 Interval6 Interval7 Interval8 Interval9 Interval10 Interval11

Phase using Partition A

Phase using Partition B

Load /Unload Phase

Computation Phase

Arrival time

Figure 3 Example critical instant.

3.1 Schedulability Analysis and Preliminaries
We now consider a partitioned system with fixed per-task priority, and extend the analysis
in [32, 27] to support conditional task execution. Since tasks are partitioned among cores
and the effect of the memory schedule is captured by the memory time ∆, each core can be
analyzed independently. Therefore, let Γ = {τ1, . . . , τN} represent the set of tasks on the
core under analysis, ordered by decreasing, distinct priorities, and assume that each task τi

is associated with a given segment DAG Gi. The scheduling algorithm follows the scheme
introduced in Section 2.1, where each SPM is divided in two partitions and the schedule is a
sequence of scheduling intervals. In details: at the beginning of each scheduling interval, we
execute on the processor the segment loaded during the previous interval (if any). In parallel,
we unload and load the other local memory partition with the next segment of the highest
priority ready task.

The critical instant for a task under analysis τ3 (the task arrival pattern that leads to
the worst case response time for the task under analysis), as derived in [32], is depicted in
Figure 3. Since scheduling decisions are only made when an interval starts, the worst case
arrival pattern corresponds to the task under analysis and all higher priority tasks arriving
just after the beginning of an interval for a lower priority task (Interval1 in the figure). As a
consequence, the task under analysis suffers an initial blocking time Bi equal to two intervals:
neither the task under analysis nor higher priority tasks can execute for the first two intervals,
as another lower priority segment loaded during Interval1 executes during Interval2. More in
general, let τi be the task under analysis, and let ll max

i denote the maximum length of any
segment of a lower priority task. Albeit pessimistically, we then bound the blocking time as:

ll max
i = max(∆, max

j=i+1,N
max
s∈Sj

s.l) (1)

Bi =

2 · ll max

i , if i ≤ N − 2.
ll max
N−1 + ∆, if i = N − 1.

∆, if i = N.

(2)

For task τN−1, there is only one lower priority task; hence, the first blocking interval has only
a memory phase and no task computation, while task τN computes in the second blocking
interval. For τN , there is only one initial blocking interval consisting of a memory phase.
Note that in the worst case, each successive segment of τi can suffer a blocking time equal to
ll max
i since two segments of τi cannot be executed back-to-back (Interval6 and Interval8 in
the figure). For τN , we set ll max

i = ∆ since there are no lower priority tasks, but a scheduling
interval with memory only would be needed between successive segments of τN .

M.R. Soliman and R. Pellizzoni 4:7

Since higher priority tasks arrive synchronously with the task under analysis, the interfer-
ence suffered by τi in an interval of length t is equal to:

Interi(t) =
i−1∑
j=1
dt/Tje · Lj , (3)

where Lj is the length of the path taken by τj . Since we cannot make any assumption on
path execution, we maximize the interference by considering the path with maximum length:

Lmax
j = max{P.L | P ∈ Gj .C}. (4)

Note that it is sufficient to consider only the maximal paths in Gj .C since each maximal path
in Gj is dominated by a path in Gj .C, and by Definition 1 the dominating path has longer or
equal L. Finally, since segments are executed non-preemptively, a task will complete by its
deadline if its last segment starts execution P.end time units before its deadline. Therefore,
for a maximal path P , the response time Ri(P) of τi up to its last segment can be computed
as a standard iteration:

Ri(P) = Bi + (P.I − 1) · ll max
i + P.L− P.end+ Interi

(
Ri(P)

)
, (5)

and the task is schedulable along that path if:

Ri(P) ≤ Di − P.end. (6)

Here, P.L− P.end represents the length of intervals where τi computes (excluding the last
segment), Bi is the blocking suffered by the first segment, (P.I − 1) · ll max

i is the blocking
suffered by other segments, and Interi

(
Ri(P)

)
is the interference of higher priority tasks. We

next prove three key properties of the analysis.

I Property 1. Consider two paths P, P ′ with P ′ � P . If Equation 6 holds for P ′, then it
also holds for P .

Proof. Note that Equation 3 is increasing in t, and Equation 5 is increasing in P.I and
P.L and decreasing in P.end. Since it holds P ′.L ≥ P.L, P ′.I ≥ P.I, P ′.end ≤ P.end, at
convergence it must hold: Ri(P ′) ≥ Ri(P).

Now by hypothesis it holds: Ri(P ′) ≤ Di − P ′.end, which is equivalent to: Di ≥
Bi + (P ′.I − 1) · ll max

i + P ′.L + Interi

(
Ri(P ′)

)
. But since we have: Bi + (P ′.I − 1) ·

ll max
i + P ′.L + Interi

(
Ri(P ′)

)
≥ Bi + (P.I − 1) · ll max

i + P.L + Interi

(
Ri(P)

)
, we obtain:

Di−P.end ≥ Bi + (P.I − 1) · ll max
i +P.L−P.end+ Interi

(
Ri(P)

)
, completing the proof. J

Based on Property 1, to check the schedulability of τi it is sufficient to test the set of
dominating maximal paths. Hence, the following lemma immediately follows, where

∧
denotes a logical and.

I Lemma 3. Task τi is schedulable if:∧
P∈Gi.C

Ri(P) ≤ Di − P.end. (7)

I Property 2. According to the analysis: (A) the schedulability of task τi depends on the
maximum length ll max

i of any segment of lower priority tasks τi + 1, . . . τN , but not on any
other parameter of those tasks; (B) if τi is schedulable for a value l of ll max

i , then it is also
schedulable for any other value l′ ≤ l.

ECRTS 2019

4:8 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

Proof. Part (A): by definition of Equations 5, 7. Part (B): since Ri is increasing in ll max
i ,

the response time for ll max
i = l′ cannot be larger than the one for l. J

If the segment DAG Gi for each task τi ∈ Γ is known, then task set schedulability can
be assessed by checking Equation 7 for all tasks in the order τ1, . . . , τN . However, we are
interested in using the response time of tasks τ1, . . . , τi in order to optimize the segmentation
of task τi+1, hence Gi+1, . . . , GN are not known when analyzing τi. Based on Property 2,
we instead use the analysis to determine the maximum value ll max

i of ll max
i under which

τi is still schedulable. Such value is then used by our segmentation algorithm working on
τi+1, as we detail in the next section: the algorithm considers a segmentation of τi+1 to be
valid only if its maximum segment length is no larger than ll max

i . Note that in theory, one
could determine ll max

i by performing a binary search over Equation 7. However, we show
in technical report [26] that an alternative formulation based on the concept of scheduling
points used in [5] can be used to derive ll max

i directly.

I Property 3. Consider two DAGs Gj , G
′
j for task τj where 1 ≤ j ≤ i and G′j � Gj. If τi

is schedulable for G′j according to the analysis, then it is also schedulable for Gj.

Proof. Case j = 1, . . . i− 1: since G′j � Gj , the value of Lmax
j for Gj is no larger than for

G′j . Since the interference Interi(t) is increasing in Lmax
j , the resulting response time of τi

for Gj cannot be larger than the one for G′j .
Case j = i: since G′i � Gi, for each maximal path P ∈ Gi.C there must exist a maximal

path P ′ ∈ G′i.C such that P ′ � P . Now since τi is schedulable for G′i according to the
analysis, by Equation 7 it must hold Ri(P ′) ≤ Di − P ′.end; then by Property 1, it must also
hold Ri(P) ≤ Di−P.end. This means that Equation 7 holds for Gi, concluding the proof. J

Property 3 shows that the dominance relation indeed corresponds to the notion of a DAG
being better than another from a schedulability perspective. Hence, the objective of our
segmentation algorithm is to find a set of “best” DAGs for a task based on Definition 2.
Intuitively, the rest of the paper proceeds as follows. In Section 4 we present a segmentation
algorithm that explores the set of all valid DAGs for a program, based on a set of constraints
which include the maximum segment length, but quickly cuts dominating (i.e., worse) DAGs
inspired by Property 3. Then, in Section 5 we show that, based on Property 2, we can invoke
the segmentation algorithm on each task in priority order and obtain a set of DAGs (one for
each task) that is optimal from a schedulability perspective.

4 Program Segmentation

In this section, we show how a task is compiled into segments. We start by discussing the
program structure based on regions. After that, we define valid segmentations according
to our compiler framework, which is based on LLVM [18] and the work in [24]. Finally, we
detail our algorithm, which segments the program and returns the set of all DAGs that could
be optimal. Similarly to [24], we assume that the program follows common real-time coding
conventions. Therefore, the code should not use recursion or function pointers and all loops
in the program are bounded. We also assume that the WCET and footprint of any part of
the program are known either using static analysis or measurement.

4.1 Program Structure
We adopt the region-based program structure introduced in [24] which represents each
function in the program as a tree where each node is a region. A region encompasses a
sub-graph of the program control flow graph (CFG) with a single entry and a single exit.

M.R. Soliman and R. Pellizzoni 4:9

main(){

X1;

for(..){

X2;

f(..);

X3;

}

}

r3

r5

r4

r2

r1

r0

(a) main pseudo-code.

f()

N
= 10t1 = 8

t5 = 5

t4 = 15

r5

r4r3r2

r0

r1

(b) main region tree.

ksN − kp − kskp

r5

rpost
2

r5

rmid
2

r5

rpre
2

(c) Loop splitting of r2.

f(..){

Y1;

for(..)

Y2;

Y4;

}

if(..)

else

Y3; rf
5

rf
6

rf
4

rf
3

rf
2

rf
1

rf
0

(d) f pseudo-code.

Nf
= 100

tf1 = 14 tf3 = 20

tf5 = 10

tf6 = 3
rf

6

rf
3

rf
5

rf
2

rf
4

rf
0

rf
1

(e) f region tree.

Mf

kt

klast
t

rf
4t

rf
o

rf
last

rf
e

rf
6rf

o

rf
tile

rf
e

rf
6

rf
t

(f) Loop tiling of rf
4 .

Figure 4 Region representation (→ ≡ parent-child / 99K ≡ sequential regions).

A leaf node in the region-tree is denoted as a trivial region and each trivial region comprises
a single basic block or a single function call. Two regions r1 and r2 are sequentially-composed
if the exit of r1 is the entry of r2. An internal node in the region-tree is a non-trivial region
that can represent a loop, a condition, or a maximal set of sequentially-composed regions
(i.e. a sequential region). A non-trivial region ri is the parent of region rj if ri is the closest
region containing rj . Each loop region has one child that represents a single iteration of the
loop. The top level region rf

0 of function f can either be a basic block or a sequential region.
If rf

0 is sequential, then the last region in its children sequence must be a basic block that
returns from f . Each region r in the region tree has WCET tr and a data footprint.

Figure 4 shows an example of a program with two functions: main() in Figure 4a and
f() in Figure 4d. Figure 4b shows the region tree of main(). Region r0, which is the top
level region of main(), is a sequential region with regions r1 to r4 as its children. Region
r2 is a loop with child r5 representing one iteration. All leaf regions r1, r3, r4 and r5 are
trivial regions. Region r3 is a call to f() . Figure 4e is the region tree of f() where rf

0 is the
top level region with rf

1 to rf
3 as its sequentially-composed children. Region rf

2 is an if-else
statement with region rf

4 as the true path and region rf
5 as the false path.

Loop transformations can be applied to loop regions that otherwise could not fit in a
segment. A loop transformation must be legal, i.e. it preserves the temporal sequence of all
dependencies and hence the result of the program. We are interested in two transformations:
loop splitting and loop tiling. Loop splitting breaks the loop into multiple loops which have
the same bodies but iterate over different contiguous portions of the index range. Figure 4c
shows an example of splitting loop region r2 in main() that has N iterations by expanding the
loop region into three nodes: pre-loop node with kp iterations, mid-loop node with N−kp−ks

iterations, and post-loop node with ks iterations. Loop tiling combines strip-mining and loop
permutation of a loop nest to create tiles of loop iterations which may be executed together.
A n-level tiled loop nest, which means that the n outer loops are tiled, is divided into n
tiling loops that iterate over tiles and n element loops that execute a tile. Note that the data
footprint of a tile is derived in terms of the tile sizes. An example for tiling a 1-level loop is

ECRTS 2019

4:10 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

depicted in Figure 4f. In the figure, rf
4 is a tiling loop region that has Nf iterations with

tile size kt. The number of tiles is dNf/kte with Mf = dNf/kte − 1 complete tiles and a last
tile klast

t ≤ kt such that klast
t = Nf −Mf ∗ kt. In Figure 4f, rf

t is the tiling loop with Mf

iterations over the element loop rf
e . Note that, adding a tiling loop adds an overhead which

is represented as rf
o ; we use ttile to denote the WCET of the overhead region. The last tile is

separated in rf
last, where a tile of size klast

t is executed after all complete tiles.

4.2 Valid Segmentation
Program segmentation is the process of assigning each part of the program code to a segment.
In this paper, we restrict the parts of the program that can be assigned to a segment to be a
region or a sequence of regions. A segmentation is valid if it satisfies the footprint constraint,
the (optional) length constraint and the compilation constraints. The footprint constraint
states that the footprint of each segment, i.e. the code and data of regions assigned to the
segment must fit in the available SPM size. The length constraint states that the length
of each segment must be at most lmax. As discussed in Section 3, this is done to limit the
blocking time imposed on higher priority tasks; setting lmax = +∞ is equivalent to removing
the constraint. Note that creating a segment incurs a segmentation overhead tseg which
contributes to the segment length. That is, if region r with WCET tr is assigned to segment
s, then s.l = max(tr + tseg,∆). If multiple regions in sequence are assigned to a segment s,
then s.l = max

(
(
∑

r tr) + tseg,∆
)
. We further assume that the regions’ WCETs satisfy the

following property, which we argue is required for the WCET values to be sound:

I Property 4. If r is a conditional region, then tr is equal to the WCET of its longer children.
If r is a sequential region or tiled loop, then its WCET is less than or equal to the sum of the
WCETs of its children or tiles.

The compilation constraints are related to how the code is modelled and transformed.
A necessary compilation constraint on a segment is that the data used by the segment is
known before executing the segment. This implies that if a pointer is used to access a data
object in a segment, the object(s) that the pointer may refer to must be known before the
segment. In this paper, we add the following compilation constraints based on the region
structure to develop a systematic segmentation process:

A region cannot be assigned to more than one segment. If a region is assigned to a
segment, all its children are assigned to the same segment.
Each basic block region must be assigned to a segment.
For all regions except function calls, we say that a region is mergeable if it satisfies the
footprint and length constraints and all the children of the region are mergeable.
A function is mergeable if the top level region of the function is mergeable. Accordingly,
a function call region is mergeable if the called function is mergeable.
A set of mergeable regions that are sequentially-composed can be combined in a multi-
region segment that satisfies the length and footprint constraints.
A loop can be divided into multiple segments using loop tiling and loop splitting. A loop
region is splittable if its child that represents a single iteration of the loop is mergeable.
A loop region that represents the outermost loop of a loop nest is tileable if it is legal to
tile and a single iteration of the innermost loop of the tiling loops is mergeable. Note
that a splittable loop is always tileable based on this definition. If a loop is tiled, then
each tile must be assigned to a segment that comprises that tile only and the loop node
represents a sequence of segments. Tiling allows combining multiple loop iterations in a
repeatable segment by inserting the segmentation instruction around the element loop.

M.R. Soliman and R. Pellizzoni 4:11

64

Mf

28/28 35/35

19/23

20/23

25/25

15/23

11
35/35 35/35 11/23

12
32/32 32/32 20/23

rf
4t

rf
lastrf

t

rf
5

rf
3rf

2

rf
0

rf
1

rmid
2rpre

2 r4

r0

r1

(a) Segmented Tree.

28/28 35/35 19/23 11

15/23

35/35 35/35 11/23
25/25 20/23

(67, 2) (23, 1) (25, 1) (23, 1)

(23, 1)

(408, 12)

G

t+ tseg/max(t+ tseg,∆)

(p.L, p.I) Path (p)

Segment (s)
Maximal Path (P)

28/28 35/35 19/23 12

15/23

32/32 32/32 20/23
25/25 20/23

(67, 2) (23, 1) (25, 1) (23, 1)

(23, 1)

(407, 12)

G′

P

P ′

(b) DAGs.

Figure 5 Segmentation Example.

Based on the introduced constraints, we say that a set of regions in the tree constitute a
region sequence if it comprises either: a single mergeable region, or a tiled loop, or a sequence
of mergeable regions and/or splittable regions and tiles. Note that all regions in a sequence
have the same parent. We say that a region sequence R is maximal if no children of its
parent that is not in R can be merged with a region in R to form a segment. Our program
segmentation produces a segmented tree T , that is, a tree where every node is a set of segment
paths P. In particular, the segmented tree for a program is obtained by substituting region
sequences in the region tree with sets of paths. A path p ∈ P for region sequence R is a
sequence of segments, to which the regions and tiles in R are assigned. The segmented tree
is derived inter-procedurally, i.e. for a call to a function that is not mergeable, the segmented
tree of that function is duplicated in place of the call region. If there are multiple calls to
the function, the segmented tree for all the calls must be the same. The segmented tree of
the program is accordingly the segmented tree of the main function.

A segmented tree T implicitly generates a set G of segment DAGs: each DAG in G is
constructed by taking one path out of each path set and joining them according to the
segmented tree hierarchy. A maximal path in the DAG thus comprises a sequence of paths
{p1, p2, ..., pn} for some n, where p1 encompasses sbegin and pn encompasses send and hence
the last region in the program rend. Note that for a function that has multiple calls, a path
that is chosen to construct a DAG from the path set of a region sequence in the function
must be used for all the function calls as the region sequence represents the same code.

Figure 5 illustrates an example segmentation of the program introduced in Figure 4. Let
the maximum segment length be lmax = 35, the memory time ∆ = 23, the segmentation
overhead tseg = 5, and the tiling overhead ttiling = 3. We assume for this example that all
the data of the program fits in the SPM, so the footprint constraint is always satisfied. Given
the times for each basic block t in Figure 4b and Figure 4d, regions {r1, r4, r

f
1 , r

f
3 , r

f
5} are

mergeable regions. However, loop regions {r2, r
f
4} are not mergeable. Assume that we applied

loop splitting on r2 that has 10 iterations such that it is split to two loops: pre-loop with 4
iterations and mid-loop with 6 iterations. In Figure 5a, the region sequence {r1, r

pre
2 , rmid

2 }
is replaced by a path set with a single path that has 2 segments and a total length 67. The
first segment combines r1 and r2

pre while the second segment is r2
mid. As region r3 is a call

to a non-mergeable function, it is replaced by a duplicate of the segmented tree of f . The
segmented tree of f has two regions rf

1 and rf
3 each wrapped in a segment. Region rf

2 is a
conditional that is not mergeable, so the false path rf

5 is wrapped in a segment while the
true path rf

4 which is a loop with 100 iterations is tiled. There are many possible tiling

ECRTS 2019

4:12 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

options that would satisfy the max segment length. We choose two of them based on the
tiling algorithm in the next section. The first path has length p.l = 408 and number of
segments p.I = 12. The first 11 segments are complete tiles each with size kt = 9 and length
max(9∗3 + ttiling + tseg, 23) = 35, and the last segment is the last tile klast

t = 100−11∗9 = 1
with length max(1 ∗ 3 + ttiling + tseg, 23) = 23. Similarly, the other path has length p.l = 497
and number of segments p.I = 13. The first 12 segments are complete tiles each with size
kt = 8 and with length max(8 ∗ 3 + ttiling + tseg, 23) = 32, and the last segment is the last
tile klast

t = 100− 12 ∗ 8 = 4 with length max(4 ∗ 3 + ttiling + tseg, 23) = 23. The two DAGs
generated from the segmented tree are shown in Figure 5b.

4.3 Segmentation Algorithm
The example in Section 4.2 shows that different segmentation decisions can result in in-
comparable maximal paths according to Definition 1 as in Figure 5b: for the path P , we
have P.L = 547, P.I = 17 and P.end = 23, while for the path P ′, we have P ′.L = 546,
P ′.I = 18 and P ′.end = 23. Since a DAG generated from the segmented tree T includes
either P or P ′, the resulting two DAGs G and G′ are also incomparable. This means that
without considering the other tasks in the system, we cannot determine whether G or G′ is
better from a schedulability perspective. Hence, to guarantee that we can find an optimal
segmentation for the task set, we need to consider both G and G′. On the other hand, if
G′ � G, we can safely ignore G′ based on Property 3. This is formally captured by the
following definition.

I Definition 4. Let G be the set of all valid DAGs for a program according to a set of
constraints, and let G′ be the set of DAGs returned by a segmentation algorithm for that
program. We say that the algorithm preserves optimality iff for any program: G′ is valid
according to the constraints, and ∀G ∈ G,∃G′ ∈ G′ : G � G′.

Based on Definition 4, a naive optimality-preserving algorithm could proceeds as follows:
first, enumerate all valid DAGs in G. Then, cut dominating DAGs based on the dominance
relation. However, due to possible variations of loop tiling/splitting and multi-region segments,
this is practically unfeasible as the set G is too large. Therefore, we propose a much faster
segmentation Algorithm 1 that preserves optimality according to Definition 4 but removes
dominating DAGs without enumerating G; instead, the algorithm explores the segmented
tree recursively and removes unneeded paths from the path set P of each region sequence R.
Note that the length, footprint and compilation constraints are implied in all the following
algorithms whenever a region is checked to be mergeable, splittable, or tileable and whenever
a segment is checked to be valid.

Algorithm 1 starts with a call to SegmentTask function. Then Segment(r0) is called
on r0, the top level region of main, hence returning the segmented subtree for the whole
program. Finally, a DAG set G is generated from the segmented tree and returned as a result
of SegmentTask. Note that if r0 is mergeable, then the segmented tree is composed of
a single, maximal region sequence R that comprises r0 only; hence, in this case we simply
return a DAG with r0 as its single segment.

Function Segment(r) segments a subtree of the region tree and returns a segmented
subtree with r as its root. The function traverses this subtree from its root r in depth-first
order preserving the topological order between sequentially-composed children. If r is a
sequential region, then a set of children in sequence that are mergeable or splittable loops
may be combined in multi-region segments. This is achieved by adding these children to a
region sequence R until a child that is not mergeable or splittable is found or until all children

M.R. Soliman and R. Pellizzoni 4:13

Algorithm 1 Segmentation Algorithm.
1: function SegmentTask(τ)
2: if r0 is mergeable then
3: Create DAG G with a single segment comprising r0, return G = {G}
4: Generate DAG set G from T = Segment(r0), return G
5: function Segment(r)
6: Initialize R = ∅ . A set of sequential regions.
7: Initialize T to be the subtree whose root is r
8: for all rc ∈ children(r) do
9: if r is sequential and rc is mergeable or splittable loop then
10: Add rc to R
11: else if rc is mergeable then . r is not sequential
12: Replace rc with P = {p}, where p is single-segment path
13: else
14: Replace regions in R with SegmentSequence(R), empty R
15: if rc is a tileable loop then
16: Replace rc with Tile(rc).
17: else if rc is a call to f then
18: Replace rc with Segment(rf

0)
19: else
20: Replace rc with Segment(rc)
21: If R 6= ∅, replace regions in R with SegmentSequence(R)
22: return T

are traversed. Note that based on the compilation constraints, no children outside R can be
combined with a region in R to form a segment; hence, the obtained R is maximal. Then,
the regions in R are replaced by a set of valid paths P that are generated using function
SegmentSequence(R). If r is not sequential, a mergeable child rc is directly replaced by a
path of one segment, as rc is a maximal region sequence by itself. If child rc is not mergeable,
then it has three cases: 1) rc is a tileable loop, then a set of paths are generated by tiling the
loop using function Tile(rc); 2) rc is a call to a function f , then the segmented tree of f is
duplicated in place of rc; 3) rc is not a tileable loop or a function call, then it is segmented
by recursively calling Segment(rc).

Since Algorithm 1 depends on SegmentSequence and Tile, we first state a key property
of both functions, which will be detailed in Algorithms 2 and 3. Since the functions return a
path set P, we begin by defining a concept of domination among paths and path sets.

I Definition 5. Given two paths p, p′, we say that p′ dominates p and write p′ � p iff:
p′.L ≥ p.L and p′.I ≥ p.I.

Note that Definition 5 is similar to Definition 1 for maximal paths, except that we do not
consider the last segment, since its length is only relevant in the case of send. We can relate
the two definitions through the following lemma.

I Lemma 6. Consider two maximal paths P = {p1, ..., pk, ..., pn}, P ′ = {p′1, ..., p′k, ..., p′n}
obtained by joining n paths. If p′n.end = pn.end and ∀k = 1...n : p′k � pk, then P ′ � P .

Proof. Note by construction P.L =
∑

k=1...n pk.L, P
′.L =

∑
k=1...n p

′
k.L. From p′k � pk it

follows p′k.L ≥ pk.L, hence P ′.L ≥ P.L. In the same manner, we obtain P ′.I ≥ P.I. Finally,
since p′n and pn contain the last segments in their corresponding maximal paths P ′ and P ,
p′n.end = pn.end implies P ′.end = P.end. Then by Definition 1 we have P ′ � P . J

ECRTS 2019

4:14 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

I Definition 7. Given two path sets P,P ′ for the same region sequence R, we say that
P ′ dominates P and write P ′ � P iff: ∀p′ ∈ P ′,∃p ∈ P : p′ � p, and if rend ∈ R, then
p′.end = p.end.

I Property 5. Let R be a region sequence and P ′ the set of all valid paths for R. Then
SegmentSequence(R) returns a set of paths P such that P ⊆ P ′ and P ′ � P.

I Property 6. Let rc be a tilable loop with Nr iterations and P ′ the set of all valid paths for
rc. Then Tile(rc) returns a set of paths P such that P ⊆ P ′ and P ′ � P.

Intuitively, this implies that Tile and SegmentSequence return a set of best path
for the corresponding region sequence / loop. Based on Properties 5, 6, we next prove in
Theorem 11 that Algorithm 1 preserves optimality. We start by showing that the algorithm
can stop traversing the tree at mergeable regions, i.e. if a region is mergeable we do not need
to segment its children.

I Lemma 8. Consider a region r that is either mergeable (possibly after splitting) or a tile,
and a valid DAG G′ for the program where r is not assigned to a segment. Then there exists
a valid DAG G where r is assigned to a segment and G′ � G.

Proof. Consider any maximal path P ′ in G′ of the form P ′ = {pbegin, p
′, pend}, where p′ is

a path through the descendants of r (note that no path of the form P ′ = {pbegin, p
′} can

exist, since the last region of main rend, and thus the program, is a basic block with no
descendants). Note that in case of conditional regions, there could be multiple such p′, and
hence maximal paths P ′ with the same pbegin and pend. Example: consider the conditional
region rf

2 in Figure 5; a valid DAG G′ has two maximal paths P ′ through the descendants of
rf

2 : one for the true path, and one for the false path.
Now consider a valid DAG G obtained by replacing all such maximal paths P ′ with a

path P = {pbegin, p, pend}, where p comprises a single segment that includes r only; note the
DAG is valid since r is mergeable or a tile. Since p.I = 1, it immediately follows p′.I ≥ p.I.
Based on Property 4, there must also exist one path p′ with p′.L ≥ p.L. By Lemma 6, we
then proved that there must exist a maximal path P ′ such that P ′ � P . By definition, this
implies G′ � G, completing the proof. J

I Lemma 9. Consider a segmented tree T where all region sequences are maximal, and the
path set P ′ for each region sequence R includes all valid paths for R. Then the DAG set
generated from T preserves optimality.

Proof. First note that by definition, each path p ∈ P ′ is a sequence of segments, to which
the regions and tiles in R are assigned, i.e. P ′ does not include (still valid) paths that would
segment the descendants of a region in R.

By the compilation constraints and definition of maximal region sequence R, it follows
that any region that is in R cannot be merged in a segment with a region that is not in R.
Hence, any valid maximal path for the program that includes segments of n region sequences
can be constructed by joining n paths: P = {p1, ..., pk, ..., pn}. By Lemma 8, we can restrict
each pk to be a path in P ′ (where each region r ∈ R is assigned to a segment) and for each
valid DAG G′, generate a DAG G such that G′ � G. By Definition 4, this means that
generating DAGs from T preserves optimality. J

Lemma 9 shows that to preserve optimality, it is sufficient to return a single segmented
tree with maximal region sequences, which is what Algorithm 1 builds by construction.
Finally, we show that instead of generating the set P ′ of all valid paths for each region
sequence R, we can use a dominated subset P.

M.R. Soliman and R. Pellizzoni 4:15

Algorithm 2 1-Level Tiling.
1: function Tile(r)
2: Compute kmax

t , P = ∅
3: for all kt ≤ kmax

t do
4: Generate p(kt) and add it to P if it is valid
5: Filter P by removing dominating paths based on Definition 5
6: return P

I Lemma 10. Consider a segmented tree T as in Lemma 9. Let T denote the segmented
tree obtained by replacing, for each maximal region sequence R in T , the set P ′ of all valid
paths with a set P such that P ⊆ P ′ and P ′ � P. Then the DAG set generated from T
preserves optimality.

Proof. Since for all regions P ⊆ P ′, DAGs generated from T are still valid. Consider
any DAG G′ generated from T , and a maximal path P ′ of G′ through n region sequences:
P ′ = {p′1, ..., p′k, ..., p′n}. Since for all regions P ′ � P, then for every p′k there exists another
path pk in T such that p′k � pk, and furthermore p′n.end = pn.end since the last region
sequence in any maximal path must include the last region in the program rend. By Lemma 6,
this means that we can find a maximal path P = {p1, ..., pk, ..., pn} for T such that P ′ � P .
Since this is true for any maximal path through a given set of region sequences, and both T
and T have the same set of (maximal) region sequences, we have shown that T can generate
a DAG G such that for every maximal path P ∈ G, there is a maximal path P ′ ∈ G′ with
P ′ � P . This implies G′ � G, and since by Lemma 9 T preserves optimality, it thus follows
that the DAG set generated from T also preserves optimality according to Definition 4. J

I Theorem 11. If Properties 5, 6 hold, Algorithm 1 preserves optimality based on the
footprint, length and compilation constraints.

Proof. By construction, the algorithm creates a segmented tree T of maximal region se-
quences. Let P ′ to denote the set of all valid paths for each region R. The actual path set P
used for R is generated at line 12, 16 or 21. At line 12, region rc is not sequential. Hence,
R = {rc} is a maximal region. The algorithm generates a path comprising a single segment
for rc, which is the only valid path for R; thus we have P = P ′. At line 16 and 21, the path
set P is generated by calling either SegmentSequence(R) or Tile(rc); by Properties 5, 6
and Lemma 10, in both cases P ⊆ P ′ and P ′ � P hold. In summary, Lemma 10 applies to
all maximal regions, hence the algorithm preserves optimality. J

4.3.1 Tiling Algorithm
We now discuss how to optimize the tile size for a 1-level tiled loop r, similarly to the
example in Section 4.1. Note that while we present the case of 1-level tiling for simplicity, in
practice 2-level tileable loops are common in embedded programs. Hence, our framework
also implements a more general algorithm that can find tile sizes for 2-level tiling; due to
space limitations, we detail it in the provided technical report [26].

Given an execution time for one iteration of t1, a number of iterations Nr and a tile
size kt with M = dNr/kte − 1 and klast

t = Nr − M ∗ kt, tiling results in a path p(kt)
comprising M segments of length max(∆, kt ∗ t1 + ttile + tseg), and one segment of length
max(∆, klast

t ∗ t1 + ttile + tseg). Algorithm 2 simply iterates over kt starting with kmax
t , the

maximum value of kt such that the length of any segments in p(kt) is less than or equal to

ECRTS 2019

4:16 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

lmax and its footprint is less than or equal to the SPM size. It then generates each path
p(kt) and adds it to P if it is valid. Finally, based on Definition 5, it removes any path
p(k′t) from P if there exists another path p(kt) ∈ P with p(k′t) � p(kt). The following lemma
then easily follows.

I Lemma 12. Algorithm 2 satisfies Property 6.

Proof. First note that r cannot be rend, since the last region in a program must be a basic
block and not a loop. By the compilation constraints, every generated tile must be assigned
to a segment that comprises the tile only. Then by the footprint and length constraints, any
path p(kt) with kt > kmax

t cannot be valid. Also since the algorithm adds all valid paths
p(kt) with kt ≤ kmax

t to P, before executing line 5, P contains all valid paths for r. Since
furthermore the filtering on line 5 respects Definition 7, Property 6 holds. J

4.3.2 Region Sequence Segmentation
Next, we consider Algorithm 3 that generates a path set P from a region sequence R. The
algorithm iterates over each region r in R, incrementally constructing a set of paths P̄ for
the sub-sequence that includes all regions from the beginning of R up to r. For simplicity of
notation, for a path p̄ ∈ P̄ , we use p̄.tend to denote the WCET of the regions included in the
last segment of p̄, such that p̄.end = max(∆, p̄.tend + tseg). At each step of the algorithm,
for a region r with computation time tr, a new set of paths is constructed by taking each
path p̄ in P̄ and adding r to it. Note that when doing so, two new paths might be generated
in the following way:
1. Add a new segment comprising r to p̄ to construct a new path p̄n such that p̄n.I = p̄.I+1,

p̄n.tend = tr, and p̄n.L = p̄.L+ p̄n.end. Note that p̄n is always valid, since r is mergeable.
2. Add r to the last segment 3 of p̄ to construct a new path p̄m such that p̄m.I = p̄.I,

p̄m.tend = p̄.tend + tr, and p̄m.L = p̄.L − p̄.end + p̄m.end. Note that p̄m might not be
valid according to the constraints; so, it is only added to the new set of paths if valid.

The process continues until after we reach the last region in R; at that point, we return the
final path set P̄.

Note that if we do not apply loop splitting, then there are 2m−1 possible paths for m
mergeable regions in sequence. An enumeration of these ways is possible as m is usually
small. However, adding loop splitting and tiling greatly increases the number of paths. We
tackle this complexity in the extended technical report [26] by introducing a set of conditions
that allows us to prune the generated paths from P̄ at each step while preserving optimality
and hence improve the segmentation time.

In details, Algorithm 3 traverses the regions in R in topological order. If the current
region r is not a splittable loop, then new paths p̄m and p̄n are generated by adding r to
each previous path in function CreatePaths. The new paths are placed in P̄next, before
becoming the set of paths P̄ at the next iteration. If r is a splittable loop, then before
generating a new path, the loop must be split to pre-loop region rp, mid-loop region rt and
post-loop region rs. Note that all combinations of pre-loop kp and post-loop ks splits are
visited. For each (kp, ks), paths P̄loop for rp are generated using CreatePaths, then rt is
tiled and each tile path is sequenced with the paths in P̄loop. Then, paths are created using
ks for all paths in P̄loop. All paths P̄loop are finally accumulated in P̄next. After traversing
all regions in R, the paths in P̄ are filtered using Definition 5 if rend /∈ R. Otherwise, all the
generated paths are kept. Finally, the path set P̄ for R is returned.

3 Note that adding a region r to a segment s implies that the footprint of the resulting segment is the
union of the footprints of r and of the regions in s.

M.R. Soliman and R. Pellizzoni 4:17

Algorithm 3 Segment a Region Sequence.
Require: A region sequence R and the last basic block region rend

1: function SegmentSequence(R)
2: P̄ = {p̄ = ∅}, Pnext = ∅
3: for all r ∈ R do . Traverse the sequence in topological order.
4: if r is a splittable loop then
5: for all kp, ks do:
6: Split r to rp, rt and rs

7: P̄loop = CreatePaths(rp, P̄)
8: P̄loop = generate all paths by joining P̄loop with Tile(rt)
9: P̄loop = CreatePaths(rs, P̄loop)
10: P̄next = P̄next

⋃
Ploop

11: else . r is a mergeable region that is not a splittable loop
12: P̄next = CreatePaths(r, P̄)
13: P̄ = P̄next, P̄next = ∅
14: If rend /∈ R, Filter P̄ by removing dominating paths based on Definition 5
15: return P̄
16: function CreatePaths(r, P̄)
17: P̄tmp = ∅
18: for all p̄ in P̄ do
19: Create p̄m by adding r to the last segment in p̄, add p̄m to P̄tmp if valid
20: Create p̄n by adding new segment using r to p̄, add p̄n to P̄tmp

21: return P̄tmp

I Lemma 13. Algorithm 3 satisfies Property 5.

Proof. By construction, the algorithm explores all possible combinations for the parameters
of a splittable loop, all possible valid assignments of sequential regions in R to segments, and
tiling decisions based on Algorithm 2. Therefore, it must hold P ⊆ P ′. It remains to show
that if a path p′ for R is discarded (i.e., the path is in P ′ but not in P), then there exists a
path p such that p′ � p, and if rend ∈ R, then p′.end = p.end. A path in P ′ can be discarded
if: (1) Algorithm 2 removes a tiling solution; (2) the path is filtered based on Definition 5.

Case (1): Assume that Algorithm 2 removes a path p′t from the returned path set for
a tiled loop; by Property 6, it must return another path pt such that p′t � pt. Then if we
consider any path p′ for R of the form p′ = {p1, ..., p

′
t, ..., pn}, there must exist another path

p = {p1, ..., pt, ..., pn}, and by Lemma 6, it must hold p′ � p. Next consider the case rend ∈ R:
by the compilation constraints, a tiled loop cannot generate the last segment in the program
(the last region is a basic block, and tiles cannot be merged with another region). Therefore
pn is not empty and it must hold p′.end = p.end = pn.end.

Case (2): Note this applies only if rend is not contained in R. It thus suffices to notice
that by Definition 5 p′ � p must hold. J

5 Optimal Task Set Segmentation

Based on the analysis Properties 2, 3 introduced in Section 3.1 and segmentation Algorithm 1,
we now show that we can obtain an optimal task set segmentation using Algorithm 4.
The algorithm recursively calls function SegmentTaskSet for task index i from 1 to N

ECRTS 2019

4:18 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

Algorithm 4 Task Set Segmentation.
Require: Task set Γ, source code for each task in Γ
1: SegmentTaskSet(Γ, i,+∞, ∅)
2: Terminate with FAILURE
3: function SegmentTaskSet(i, lmax, {G1, . . . , Gi−1})
4: Generate Gi = SegmentTask(τi) using Algorithm 1 based on length constraint lmax

5: if i < N then
6: for all Gi ∈ Gi do
7: Compute the maximum value ll max

i of ll max
i based on analysis

8: SegmentTaskSet(Γ, i+ 1,min
(
lmax, ll max

i

)
, {G1, . . . , Gi})

9: else
10: for all GN ∈ Gi do
11: If analysis returns schedulable on {G1, . . . , GN}, terminate with SUCCESS

by keeping track of the DAGs G1, . . . Gi−1 selected for the previous tasks. The function
maintains a maximum segment length lmax, which is provided as a constraint to Algorithm 1
to generate a DAG set Gi for τi. If i < N , the function iterates over all possible Gi ∈ Gi; the
schedulability analysis is used to determine ll max

i , the maximum schedulable value of ll max
i ,

and the function is then invoked recursively for task i+ 1 after updating lmax based on the
computed value. Note that if Gi is not schedulable, then we obtain lmax < 0; hence, there
will be no valid DAG for τi+1 (Gi is empty), and the recursive call will immediately return.
Once we reach task τN , the function checks if τN is schedulable for any DAG GN ∈ GN , in
which case we terminate by finding a solution {G1, . . . , GN}. If no solution can be found,
the algorithm eventually terminates on Line 2.

We now prove the optimality of Algorithm 4 for a program segmentation obeying the
footprint and compilation constraints in Section 4.2. We start with a corollary.

I Corollary 14. Consider two DAGs Gj , G
′
j for task τj where 1 ≤ j ≤ i and G′j � Gj. Let

ll max
i , ll max

i

′
be the maximum value of ll max

i under which τi is schedulable for Gj and G′j,
respectively, according to an analysis satisfying Properties 2, 3. Then ll max

i ≥ ll max
i

′
.

Proof. By Property 2, ll max
i and ll max

i

′
are well defined (i.e., there must exist such maximum

values). Since τi is schedulable with ll max
i ≤ ll max

i

′
for G′j , based on Property 3 it is also

schedulable with ll max
i ≤ ll max

i

′
for Gj ; this implies ll max

i ≥ ll max
i

′
. J

I Theorem 15. Algorithm 4 is an optimal segmentation algorithm for a conditional PREM
task set Γ according to any (sufficient) schedulability analysis satisfying Properties 2, 3 and
based on the footprint and compilation constraints.

Proof. We have to show that if there exists a set of segment DAGs G′1, . . . , G′N for Γ that is
valid according to the footprint and compilation constraints and is schedulable according to
the analysis, then Algorithm 4 finds a (same or different) DAG set G1, . . . , GN that is also
valid and schedulable.

By induction on the index i. We show that for every i, there exists a recursive call
sequence of function SegmentTaskSet that results in a DAG set G1, . . . Gi such that
G′j � Gj for every j = 1 . . . i; by Property 3 with i = N , this proves the theorem (note that
τN is schedulable by Property 3, while all other tasks are schedulable because the recursion

M.R. Soliman and R. Pellizzoni 4:19

reaches GN). We also show that for every j = 1 . . . i it holds ll max
j

′
≤ ll max

j , where ll max
j

′
is

the maximum schedulable value of ll max
j computed by the analysis with DAGs G′1, . . . , G′j ,

and ll max
j is the same value for DAGs G1, . . . , Gj .

Base Case (i = 1): note lmax = +∞, meaning that only the footprint and compilation
constraints apply when invoking Algorithm 1. Hence, by Definition 4 the algorithm must
find a DAG G1 ∈ T1 such that G′1 � G1. By Corollary 14, this also implies ll max

1
′
≤ ll max

1 .
Induction Step (i = 2...N): consider the recursive call sequence that results in G′j � Gj

and ll max
j

′
≤ ll max

j for each j = 1 . . . i− 1 (such sequence exists by induction hypothesis);
we have to show that we can find a DAG Gi ∈ Gi such that G′i � Gi and ll max

i

′
≤ ll max

i .

Based on the recursive call at line 7 of the algorithm, it must hold: lmax = mini−1
j=1 l

l max
j .

Define lmax′ = mini−1
j=1 l

l max
j

′
; since the task set is schedulable for G′1, . . . , G′N , the maximum

length of any segment in G′i is at most lmax′. By induction hypothesis, it must be lmax′ ≤ lmax,
which means that the maximum segment length in G′i is also no larger than lmax. Hence,
if we define Gi to be the set of all valid DAGs for a program according to the constraints
with maximum segment length lmax, we have G′i ∈ Gi. By Definition 4, this implies that
Algorithm 1 finds a valid DAG Gi with maximum segment length lmax such that G′i � Gi.
ll max
i

′
≤ ll max

i then again follows by Corollary 14. J

Complexity. Since it iterates over all Gi ∈ Gi, Algorithm 4 is exponential. Intuitively, it
might seem sufficient to only use the DAG in Gi that results in the highest value of ll max

i ;
however, given two DAGs Gi and G′i with ll max

i ≥ ll max
i

′
, it might be that Lmax

i ≥ L
′ max
i ,

that is, Gi results in larger slack for τi, but it increases the interference caused by τi on lower
priority tasks based on Equations 4. In this case, we have to test both Gi and G′i. However,
if Lmax

i ≤ L
′ max
i , then we can safely ignore G′i. As we show in Section 6, in practice this

results in an acceptable runtime considering the algorithm is an offline optimization.

Composability and Generality. As we (re-)compile all tasks, our approach requires the
source code of all applications in the system. Since Algorithm 4 segments tasks in priority
order, any code change in a program will not affect higher priority tasks; however, it might
force a recompilation of all lower priority tasks. This might be undesirable, especially if the
priority ordering does not match criticality levels. Therefore, in Section 6 we also explore a
simpler and faster (but non-optimal) heuristic that uses the same value of lmax for all tasks,
thus ensuring that each program can be compiled independently. In this sense, we would like
to stress that even if the optimality of Algorithm 4 depends on analysis Properties 2, 3, our
compiler framework in conjunction with Algorithm 1 can still be used to produce a set of
valid program segmentations for any PREM-based system.

6 Evaluation

We implemented our segmentation framework using LLVM to analyze and generate the
region trees for the program as in [24], and estimate the data footprint for each part of the
program. Poly [14] is used to handle loop transformations. For code generation, we target a
simple MIPS processor model with 5-stages pipeline and no branch prediction. We assume
that there are data SPM, and code SPM and that the task code fits in the code SPM. Note
that the WCET of each region in a program is statically estimated using the simple MIPS
processor model similar to [25]. For the data SPM, we vary its size from 4 kB to 512 kB. For

ECRTS 2019

4:20 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00
Sc

he
du

la
bi

lit
y

SPM Size = 16 kB

Ideal
Optimal
Heuristic
Greedy

0.2 0.4 0.6 0.8
Utilization

0.00

0.25

0.50

0.75

1.00
SPM Size = 64 kB

0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00
SPM Size = 256 kB

Figure 6 Schedulability vs Utilization.

22 24 26 28

SPM size (kB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d
Ut

iliz
at

io
n

Ideal
Optimal
Heuristic
Greedy

(a) tseg = 100.

22 24 26 28

SPM size (kB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d
Ut

iliz
at

io
n

Ideal
Optimal
Heuristic
Greedy

(b) tseg = 1000, footprint>24 kB.

Figure 7 Weighted Utilization VS SPM Size.

Table 1 Benchmarks
(LOC: lines of code).

Benchmark Suite LOC Data(B)

adpcm dec TACLeBench 476 404

cjpeg transupp TACLeBench 474 3459

fft TACLeBench 173 24572

compress UTDSP 131 136448

lpc UTDSP 249 8744

spectral UTDSP 340 4584

disparity CortexSuite 87 2704641

the memory transfer, we assume that the DMA speed is 1 cycle per word (4 bytes) 4. The
segmentation overhead tseg includes the DMA intialization and the context switching, and it
is assumed to be 100 cycles.

We evaluate the segmentation and scheduling algorithms using a set of synthetic and real
benchmarks. We used applications from UTDSP [29], TACLeBench [11] and CortexSuite [28]
benchmark suites. The application are chosen to represent a variety of sizes, complexities
and data footprints (see Table 1). The applications are used to generate sets of random
tasks. Each task set is composed of a random number of tasks between 4 and 12 tasks.
Given a system utilization and the number of tasks, the utilization of each task is generated
with uniform distribution [6], and then a period is assigned to each task. The period of
τi is computed as ui ∗ ci where ui is the generated utilization and ci is the WCET of the
application if executed without premption from the SPM. We assume deadlines equal to
periods. Schedulability tests are conducted for 250 task sets.

We report the results in terms of the system schedulability and the weighted utilization.
The system scheduability is the proportion of the schedulable task sets out of the total tested
task sets. We define the weighted utilization µ of a system as: µ =

∑
u

sched(u)∗u∑
u

u
where

sched(u) is the system schedulability for system utilization u. We compare our optimal
algorithm with ideal, greedy and heuristic algorithms. The ideal algorithm assumes no
restriction on SPM size and that the program code can be segmented at any arbitrary point
without any increased overhead. Hence, the only constraint is lmax which is produced from
Algorithm 4 5. The greedy and heuristic algorithms do not depend on Algorithm 4 to drive

4 In the extended technical report [26], we discuss the effect of the DMA speed on the system schedulability
5 Note that the ideal algorithm is still compliant with PREM, i.e. the next segment has to be decided
and loaded while the current segment is executing. Hence, to our understanding we cannot employ
existing scheduling analyses for limited-preemptive task sets [8].

M.R. Soliman and R. Pellizzoni 4:21

the segmentation of each task based on the schedulability analysis. The greedy algorithm
resembles the algorithm used in [20] and assumes lmax = ∞ for all tasks. The heuristic
algorithm uses the same lmax for all tasks by varying lmax between ∆ and 10 ∗∆ with step
0.5 ∗∆, and picking the value of lmax that achieves the highest weighted utilization.

Figure 6 shows the system schedulability for the four algorithms for SPM sizes of 16,
64 and 256 kB. The graphs show that the optimal algorithm performs much better than
the greedy and the heuristic algorithms and close to the ideal algorithm for different SPM
sizes. This is confirmed in Figure 7a that shows the weighted utilization for the compared
algorithms for SPM sizes between 4 kB and 512 kB. Note that the ideal algorithm may suffer
from segmentation overhead, the interference and blocking overhead from other tasks in
the system, and also segment under-utilization. This leads to lower schedulability at high
system utilization.

We can notice in Figure 7a that the weighted utilization does not increase as SPM size
increases. This might be counter-intuitive as increasing the SPM size allows more data to be
loaded for each segment which leads to decreased segmentation overhead. However, the tasks
suffer from a higher under-utilization penalty as ∆ increases. The second effect is dominant
since the segmentation overhead is relatively small and 4 benchmarks have data footprints
of less than 8kB. For this reason, we show in Figure 7b the weighted utilization using only
applications with data footprint greater than 24 kB and tseg = 1000. The figure shows that
the system schedulability ascents at first and then declines around SPM size of 48 kB.

The segmentation algorithm takes a few seconds to finish with a maximum of a minute
compared to few hours for the naive segmentation algorithm with exhaustive search. Running
the scheduling algorithm for one of the tested task sets takes an average of a minute to
segment the tasks and apply the schedulability test with a maximum of few minutes. In the
extended technical report [26], we discuss how the algorithm time scales with the number of
tasks in a task set in more details.

7 Conclusions and Future Work

PREM-based scheduling schemes have recently attracted significant attention in the literature,
but to make the approach applicable to industrial practice, there is a stringent need for
automated tools. To this end, we have proposed a compiler-level framework that automatize
the process of analyzing a program and transforming it into a conditional sequence of PREM
segments. Furthermore, for the case of fixed-priority partitioned scheduling with fixed-length
memory phases, which has been fully implemented and tested in [27], we have shown that it is
possible to find optimal segmentation decisions within reasonable time for realistic programs.

This work could be extended in two main directions: first, by applying it to other
PREM-based scheduling schemes. Note that since searching for an optimal segmentation
solution might become too expensive, we might have to resort to a heuristic instead. Second,
by extending it to other task and platform models. In particular, we are highly interested in
looking at parallel tasks executed on heterogeneous multicore devices.

References

1 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-predictable
scheduling. In Proceedings of the 14th International Conference on Embedded Software -
EMSOFT ’14, New York, New York, USA, 2014. ACM Press.

ECRTS 2019

4:22 PREM-Based Optimal Task Segmentation Under Fixed Priority Scheduling

2 Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multithreaded
applications on multicore systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, New Jersey, 2014. IEEE Conference Publications.

3 Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global scheduling
of real-time tasks. In 21st IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2015.

4 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nelis, and
Thomas Nolte. Contention-Free Execution of Automotive Applications on a Clustered Many-
Core Platform. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE,
2016.

5 E. Bini and G.C. Buttazzo. Schedulability analysis of periodic fixed priority systems. IEEE
Transactions on Computers, 53(11), 2004.

6 Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30(1-2), 2005.

7 Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna. A memory-centric
approach to enable timing-predictability within embedded many-core accelerators. In 2015
CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST). IEEE, 2015.

8 Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. Limited Preemptive Scheduling for
Real-Time Systems. A Survey. IEEE Transactions on Industrial Informatics, 2013.

9 Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna. SiGAMMA:
Server based integrated GPU Arbitration Mechanism for Memory Accesses. In Proceedings
of the 25th International Conference on Real-Time Networks and Systems - RTNS ’17, New
York, New York, USA, 2017. ACM Press.

10 Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti, and
W. Puffitsch. Predictable Flight Management System Implementation on a Multicore Processor.
{Embedded Real Time Software (ERTS’14)}, February 2014.

11 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research.
DROPS-IDN/6895, 55, 2016.

12 Bjorn Forsberg, Luca Benini, and Andrea Marongiu. HePREM: Enabling predictable GPU
execution on heterogeneous SoC. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2018.

13 Bjorn Forsberg, Andrea Marongiu, and Luca Benini. GPUguard: Towards supporting a
predictable execution model for heterogeneous SoC. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017.

14 TOBIAS GROSSER, ARMIN GROESSLINGER, and CHRISTIAN LENGAUER. Polly —
Performing Polyhedral Optimizations on a Low-Level Intermediate Representation. Parallel
Processing Letters, 22(04), 2012.

15 Emna Hammami and Yosr Slama. An overview on loop tiling techniques for code generation.
In Proceedings of IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA, volume 2017-October, 2018.

16 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM Interference in COTS Heterogen-
eous MPSoCs for Mixed Criticality Systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(11), 2018.

17 Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding memory interference delay in COTS-based multi-core systems. In
Real-Time Technology and Applications - Proceedings, 2014.

18 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, CGO,
2004.

M.R. Soliman and R. Pellizzoni 4:23

19 Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated software
refactoring for predictable execution on COTS embedded systems. In 2014 IEEE 20th
International Conference on Embedded and Real-Time Computing Systems and Applications.
IEEE, 2014.

20 Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and Andrea
Marongiu. Combining PREM compilation and ILP scheduling for high-performance and pre-
dictable MPSoC execution. In Proceedings of the 9th International Workshop on Programming
Models and Applications for Multicores and Manycores - PMAM’18, New York, New York,
USA, 2018. ACM Press.

21 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio Buttazzo. Memory-processor co-scheduling in fixed priority systems. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems - RTNS ’15, New
York, New York, USA, 2015. ACM Press.

22 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
Real-Time Technology and Applications - Proceedings, 2011.

23 Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening Contention Delays While
Scheduling Parallel Applications on Multi-core Architectures. ACM Transactions on Embedded
Computing Systems, 16(5s), 2017.

24 M.R. Soliman and R. Pellizzoni. WCET-driven dynamic data scratchpad management with
compiler-directed prefetching. In 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), 2017.

25 Muhammad R. Soliman and Rodolfo Pellizzoni. Data Scratchpad Prefetching for Real-time
Systems. Technical report, UWSpace, 2017.

26 Muhammad R Soliman and Rodolfo Pellizzoni. Optimal Task Segmentation for PREM-
based Systems Under Fixed Priority Scheduling. Technical report, University of Waterloo,
Canada, 2019. URL: http://ece.uwaterloo.ca/~rpellizz/techreps/optimal_seg_tech_
report.pdf.

27 Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S. Phatak, Rodolfo
Pellizzoni, and Marco Caccamo. A Real-Time Scratchpad-Centric OS for Multi-Core Embedded
Systems. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2016.

28 Shelby Thomas, Chetan Gohkale, Enrico Tanuwidjaja, Tony Chong, David Lau, Saturnino
Garcia, and Michael Bedford Taylor. CortexSuite: A synthetic brain benchmark suite. In
2014 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 2014.

29 UTDSP Benchmark Suite. URL: http://www.eecg.toronto.edu/~corinna/DSP/
infrastructure/UTDSP.html.

30 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming Non-Blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016.

31 Saud Wasly and Rodolfo Pellizzoni. A Dynamic Scratchpad Memory Unit for Predictable
Real-Time Embedded Systems. In 2013 25th Euromicro Conference on Real-Time Systems.
IEEE, 2013.

32 Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority scheduling. In
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2014.

33 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time Systems, 48(6), 2012.

34 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo. Global Real-
Time Memory-Centric Scheduling for Multicore Systems. IEEE Transactions on Computers,
65(9), 2016.

ECRTS 2019

http://ece.uwaterloo.ca/~rpellizz/techreps/optimal_seg_tech_report.pdf
http://ece.uwaterloo.ca/~rpellizz/techreps/optimal_seg_tech_report.pdf
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html

RT-CASEs: Container-Based Virtualization for
Temporally Separated Mixed-Criticality Task Sets
Marcello Cinque
Federico II University of Naples, Italy
wpage.unina.it/macinque
macinque@unina.it

Raffaele Della Corte
Federico II University of Naples, Italy
raffaele.dellacorte2@unina.it

Antonio Eliso
Federico II University of Naples, Italy
antonio.eliso@studenti.unina.it

Antonio Pecchia
Federico II University of Naples, Italy
antonio.pecchia@unina.it

Abstract
This paper presents the notion of real-time containers, or rt-cases, conceived as the convergence of
container-based virtualization technologies, such as Docker, and hard real-time operating systems.
The idea is to allow critical containers, characterized by stringent timeliness and reliability require-
ments, to cohabit with traditional non real-time containers on the same hardware. The approach
allows to keep the advantages of real-time virtualization, largely adopted in the industry, while
reducing its inherent scalability limitation when to be applied to large-scale mixed-criticality systems
or severely constrained hardware environments. The paper provides a reference architecture scheme
for implementing the real-time container concept on top of a Linux kernel patched with a hard
real-time co-kernel, and it discusses a possible solution, based on execution time monitoring, to
achieve temporal separation of fixed-priority hard real-time periodic tasks running within containers
with different criticality levels. The solution has been implemented using Docker over a Linux kernel
patched with RTAI. Experimental results on real machinery show how the implemented solution is
able to achieve temporal separation on a variety of random task sets, despite the presence of faulty
tasks within a container that systematically exceed their worst case execution time.

2012 ACM Subject Classification Software and its engineering → Real-time systems software

Keywords and phrases Containers, mixed-criticality, temporal separation, monitoring

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.5

Funding This work is partially supported by the RT-CASE project, funded by the Dept. of Electrical
Engineering and Information Technology of the University of Naples Federico II, Italy.

Acknowledgements We are thankful to the anonymous reviewers of the ECRTS program committee
for the valuable comments, which allowed us to improve the paper and provided useful guidance to
better target our future research efforts on rt-cases.

1 Introduction

A mixed-criticality system (MCS) can be defined as a real-time and embedded system
integrating software components with different levels of criticality onto a common hardware
platform [4]. The trend in the development of MCSs was initially intertwined with the
migration from single-core to many-core architectures, which paved the way to the opportunity

© Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1455-8614
wpage.unina.it/macinque
mailto:macinque@unina.it
mailto:raffaele.dellacorte2@unina.it
mailto:antonio.eliso@studenti.unina.it
mailto:antonio.pecchia@unina.it
https://doi.org/10.4230/LIPIcs.ECRTS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

of having components with different degrees of criticality (e.g., in terms of timeliness and
fault tolerance) running on the same hardware. An increasing number of vendors, such as
automotive and avionics industries, are considering MCSs to meet stringent non-functional
requirements. A typical example is to run hard-real time tasks to control the breaking
system of a car on the same board that runs non-critical monitoring tasks for diagnostics, in
order to reduce costs, space, and power consumption. Noteworthy, the concept of mixed-
criticality is now recognized and supported by the main software standards in automotive
(e.g., AUTOSAR – www.autosar.org) and avionics (e.g., ARINC – www.arinc.com).

A fundamental research challenge for MCSs is to assure the correct execution of high
critical tasks, with a disciplined (and possibly user-transparent) use of the underlying shared
resources. At least temporal separation, and fault isolation of tasks must be guaranteed,
in order to avoid that a problem or a delay in a low criticality task can affect a high criticality
one. A number of theoretical approaches have been defined, especially for task allocation
[15] and schedulability analysis [24] in multi-processor systems. However, when it comes
to the actual implementation of the software components, the assurance of separation and
isolation properties can easily become a burden for developers. For this reason, several
frameworks have been proposed, many of them tailored for a particular domain (e.g., [11] in
the automotive) or bound to particular platforms (such as [22] for FPGAs).

Many solutions capitalize on virtualization technologies to separate real-time kernels
from non real-time ones, by means of different virtual machines (VMs) hosted by specific
hypervisors. For instance, Wind River has recently introduced a Virtualization Profile for
VxWorks [25], integrating a real-time embedded, type 1 hypervisor into the VxWorks real-time
operating system, making it possible to consolidate multiple stand-alone hardware platforms
onto a single multi-core platform. Other examples are PikeOS [14], a separation microkernel
providing a paravirtualization real-time operating system for partitioned multi-core platforms,
and ARINC 653, one of the first industrially used hypervisors, insuring temporal and spatial
isolation of different RTOSes. The use of virtualization allows developers to work with their
preferred environment, and to deal with separation and isolation issues at the hypervisor
level; however, running VMs on a single host has a significant overhead. More importantly,
creating VMs for every hardware platform to consolidate may lead to both software and OS
stretch. In practice, real-time virtualization solutions – such as the ones above – are designed
to deal with the (deterministic) performance penalty introduced by a limited number of
VMs. We observe that the overhead caused by replicating entire OS environments makes it
unfeasible to scale-up to a large number of applications of different criticalities, especially
when they need to be consolidated on a limited number of machines.

A concrete example of such a need is represented by the so-called real-time infrastructure
currently under development as part of the control and data acquisition system of the
ITER1 tokamak [26]. The ITER international project aims at the construction of the world’s
largest nuclear fusion experimental facility in Saint-Paul-lès-Durance, south of France. The
construction of ITER is a challenge itself, as well as its future operation, which aims at
proving the feasibility of energy production by means of nuclear fusion on Earth. The inherent
complexity of ITER (such as any other large-scale critical system) requires to consolidate
tens of thousands of applications of different size and criticality – spanning from distributed
control to monitoring, sensor reading and network communication – on a limited number of
interconnected machines. Different real-time frameworks are currently under development
within the ITER project, in order to deal with the complexity of the overall project and to

1 ITER is a Nuclear Facility INB-174. The views and opinions expressed herein do not necessarily reflect
those of the ITER Organization.

www.autosar.org
www.arinc.com

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:3

facilitate integrated testing and commissioning [26]. Up to now, the ITER organization has
not focused yet on a solution to manage the integration and orchestration steps in a simple
way, considering the different criticality levels, temporal separation, and fault isolation needs
of the components to be run on the available hardware.

1.1 Contributions of the paper
To face these issues, typical of any large-scale mixed-criticality system, in this paper we
propose the notion and a possible implementation of real-time containers here referred to
as: rt-cases. Containers are today considered a key technology to achieve high consolidation
scalability with minimal space and performance overhead. For instance, Docker relies on an
operating system-level virtualization method for running multiple isolated Linux systems
(containers) on a single host. Technically a container is a set of processes and libraries isolated
from the rest of the machine. Unlike a VM, a container does not need to replicate the whole
OS environment for every system, hence reducing the overhead and increasing the number
of applications with different criticalities that can be run on a single node. The possible
advantages of rt-cases are evident: different developers can still work with their preferred
environment, which is desirable in large and heterogeneous teams. The resulting rt-cases can
be flexibly deployed on the available hardware, as done today with non real-time containers.

With rt-cases we aim to explore the benefits of combining containers and hard real-time
co-kernels. We propose a reference architecture for the rt-cases concept, firstly introduced in
[7], [6]. In this paper we explore the design space of rt-cases and discuss possible alternatives
for their realization on top of a Linux kernel patched with a real-time co-kernel. We present a
specific solution to rt-cases, based on fixed-priority scheduling, runtime execution monitoring,
and on-line mitigation. This solution allows to achieve temporal separation without requiring
modifications to the underlying real-time kernel. The paper presents the implementation
details and technical challenges of such solution, based on Docker and RTAI, and reports
the results of an experimentation with randomly generated feasible task sets. Results show
that, thanks to our runtime monitoring and mitigation strategy, the tasks running within a
container are not affected by faulty tasks (i.e., tasks that exceeds their declared worst case
execution time) running in a different container, regardless of the criticality of the container.
We also present the limitations of our current implementation, and discuss prospected
improvements and related trade-offs.

The rest of the paper is organized as follows. Section 2 presents related work in the
area and positions our work in context of existing contributions. Section 3 provides the
reference architecture and a discussion on potential alternatives to support the implementation
of rt-cases. Section 4 discusses the system model, while Section 5 describes a specific
implementation, technical challenges and prospected developments. Section 6 illustrates
the functioning of the approach with a case study and a measurement campaign. Section 7
concludes the work.

2 Related work

A consolidated trend in the literature and in the industry for time and space partitioning
in mixed-criticality systems is to make use of virtualization technologies. These solutions
range from type 1 hypervisors to full-featured operating systems, with the aim to completely
separate real-time kernels from non real-time ones.

RT-Xen [29] is a real-time hypervisor scheduling framework for Xen [3], a widely used open-
source type 1 hypervisor. The RT-Xen project extends Xen to support virtual machines with
real-time performance requirements. RT-Xen features a compositional real-time scheduling

ECRTS 2019

5:4 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

framework that bridges the gap between virtualization technology and real-time scheduling
theory for predictable computing on virtualized platforms. In [28] the second version of
RT-Xen is presented, which implements both global and partitioned VM schedulers, with
each scheduler being configurable to support dynamic or static priorities and to run VMs
as periodic or deferrable servers. RT-OpenStack [27] is a cloud CPU resource management
system for co-hosting real-time and regular VMs. RT-OpenStack integrates the real-time
hypervisor RT-Xen in the OpenStack cloud management system through a real-time resource
interface. PikeOS [14] is a separation microkernel targeted to real-time embedded systems,
which aims to provide a partitioned environment for multiple operating systems with different
design goals to coexist in a single multi-core platform. It provides full separation in both
time and space for multiple software applications running on different criticality levels.
XTRATUM [20] is a type 1 hypervisor specially designed for real-time embedded system,
which employs para-virtualization techniques. XTRATUM can be used to build partitioned
systems and provides both strong temporal separation, through a fixed cyclic scheduler, and
strong spatial isolation, since all partitions are executed in processor user mode and do not
share memory. The Wind River VxWorks RTOS [25] features a Virtualization Profile that
integrates a real-time embedded, type 1 hypervisor into the core of VxWorks, which is able
to slow down general purpose operating systems to ensure that real-time operating systems
can execute without performance impact.

An alternative to virtualized solutions, which require running a number of virtual machines,
is represented by the use of container-based environments. Differently from virtual machines,
where the operating system stack is entirely replicated for each virtual machine, containers
allow running multiple isolated Linux systems on a single host with minimal space and
performance overhead. We believe that containers can be a useful alternative or complement
to virtualized partitioned systems with a lightweight solution to sandbox multiple real-time
applications into isolated software environments on the same hardware or VM.

Recently, few studies have started to explore the possibility to use containers to run
real-time tasks. For example, [18] presents an empirical study on the problem of minimizing
computational and networking latencies for Radio Access Networks (RAN) through lightweight
containers. The study analyzes the performance of Docker containers running on the top of a
Linux kernel patched with Ingo Molnar’s preemption patch (PREEMPT-RT). The obtained
results highlight that the use of PREEMPT-RT improves latencies on Docker containers
when compared to a generic kernel. The paper in [19] proposes a sand-boxed environment,
based on Docker containers on a Linux kernel patched with PREEMPT-RT, to deploy the
software in automotive industry. Experimental results highlight that the use of containers
does not affect the performance of the software when compared with the native environment.

It should be noted that both the solutions make use of PREEMPT-RT in order to
meet the real-time requirements of the considered applications. Despite the good results
obtained, it is recognized that real-time co-kernels, such as RTAI (www.rtai.org) or Xenomai
(www.xenomai.org), outperform PREEMT-RT in terms of latencies and task switch times
[8][12], since they make Linux fully preemptable in favor of real-time tasks. Co-kernels also
add core real-time support to user level real-time tasks, such as fixed-priority or dynamic
scheduling, resource management with priority inheritance, and inter-task communication.
An alternative would be to guarantee a fixed CPU bandwidth to containers using server-
based scheduling, such as the Sporadic Server (SS) [23], periodic or deferrable servers as
done in RT-XEN [28], or the Constant Bandwidth Server (CBS) [1]. For instance, the
SCHED_DEADLINE scheduling policy [16], available in the Linux kernel since version 3.14,
is an implementation of the Earliest Deadline First (EDF) scheduling algorithm, augmented
with a CBS, that makes it possible to isolate the behavior of task groups. However, the use
of containers on top of co-kernels with server-based schedulers has not been explored yet.

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:5

Starting from these considerations, and from the opportunity, already emerged in the
literature, to use containers in real-time environments, in this paper we aim to propose a
reference architecture scheme where hard real-time tasks within containers are scheduled
by a co-kernel, such as RTAI or Xenomai. Our aim is to fully inherit the advantages of the
co-kernel in terms of real-time performance and functionalities, while letting tasks within
containers to keep using the same application programming interface, as if they were running
on the native system patched with the co-kernel.

3 High-level architecture

Figure 1 depicts the reference architecture underlying the proposed rt-case approach. The
idea is to host real-time (rt-) tasks within containers marked with different Criticality Levels
(CL, e.g. CL:0 and CL:1 in figure) on top of a patched real-time Linux kernel. The CL is
used to establish the relative importance of rt-cases.

Linux Kernel modules

Hardware (CPU, memory, disk, …)

System Call Interface

container

libs
user
mode

kernel
mode

real-time co-kernel modules
(scheduling, resource mgmt, …)

RT-CASE ENGINE
(Container Engine and Feasibility Checker)

rt-case

task

task

rt-lib

rt-task

rt-task

CL:0

rt-case

rt-lib

rt-task

rt-task

CL:1

RT-HAL

Figure 1 High level scheme of the rt-case architecture.

The RT-CASE engine includes a container engine, e.g., Docker (www.docker.com) or
Linux Containers (www.linuxcontainers.org), and a feasibility checker, to verify if a new
rt-case can be admitted on a running computing node, without affecting the rt-cases already
hosted on it. At kernel level, we imagine to have a vanilla Linux kernel patched with a
real-time co-kernel, such as RTAI or Xenomai, in order to make the Linux kernel and all the
non real-time environment (including traditional containers) fully preemtable by rt-tasks
run within rt-cases.

The rt-lib is a key component of the architecture: its objective is to provide a transparent
mapping of rt-tasks on the underlying real-time core, depending on the CL of the container,
possibly exposing standard primitives to rt-tasks. With this approach, the code of rt-tasks
does not need to be modified to run in a container. Hence, the same rt-case can be moved
over time on the different machines of a large-scale computing environment, and with a
different CL, depending on temporal needs, hardware constraints, and presence of other
rt-cases, as regularly done in container-based environments.

ECRTS 2019

5:6 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

3.1 Design alternatives
A simple way to implement the rt-cases architecture is to map whole containers on real-time
tasks (see Figure 2a). In this case, a cooperative, non-preemptive user-level scheduler can
be implemented in the rt-lib to schedule real-time tasks running within an rt-case. Even
if conceptually simple, this solution does not allow to define precise individual deadlines
for tasks within containers, which are hence forced to share a container deadline. This also
requires to introduce specific primitives for cooperative scheduling in the rt-lib (such as yield
primitives) that contradicts our idea to adopt standard primitives for real-time tasks.

Preemptive scheduling for individual tasks within containers overcomes these limitations,
but, to achieve temporal separation, tasks belonging to different containers have not to
interfere each other. To this aim, a possible solution is to adopt hierarchical scheduling
[9][21], e.g., by using Earliest Deadline First (EDF) on task groups (one group for rt-case),
each with a fixed bandwidth Ui guaranteed by a server-based mechanism, such as, the
Constant Bandwidth Server (CBS) [1] (see Figure 2b), or by using the Hierarchical CBS
scheme [17]. This is similar to what done in RT-Xen to assign virtual machines on different
virtual CPUs in a multicore environment, with different bandwidths [28]. In this case, to
admit a (n+ 1)th rt-case to an existing computing node with n rt-cases already running, it
is sufficient to check that:

∑n
i=1 Ui + Un+1 ≤ 1. Even if simple in principle, this solution

implies a significant implementation effort in our architectural proposal, since it requires
to modify the real-time co-kernel (e.g., RTAI or Xenomai core modules) to implement the
hierarchical scheduling solution.

rt-case 2

T3

rt-case 1
T1

rt-lib

T2

CL:0 rt-lib CL:1

PFP
scheduler

Monitor
module

rt-case 2

T3

rt-case 1
T1

rt-lib

T2

CL:0 rt-lib CL:1

EDF scheduler with
CBS policy

rt-case 2

T3

rt-case 1
T1

rt-lib

T2

CL:0 rt-lib CL:1

real-tme scheduler

rt-task 2rt-task 1

(a) (b) (c)

Figure 2 Design alternatives to implement the rt-case model: (a) mapping of whole containers
on single rt-tasks; (b) use of task groups and hierarchical scheduling (for instance, EDF with CBS);
(c) use of preemptive fixed-priority scheduling, static priority assignment, and temporal protection
with on-line execution time monitoring.

A possible compromise to achieve temporal separation without requiring modification to
the real-time kernel support is to perform a one-to-one mapping of tasks within containers
with real-time tasks at kernel level, using a preemptive fixed-priority (PFP) scheduler and a
static priority mapping (see Figure 2c). Using a proper priority assignment, we can assure
that rt-tasks running within a container with a high CL (corresponding to a low CL value,
e.g., 0 in the figure) cannot be preempted neither by any rt-task running in a container
with a lower CL (e.g., 1 in the figure) nor by any non-real time task (running either in
other containers or on the host OS). A priority assignment algorithm is needed in this
case, in order to assure both the feasibility of individual tasks and the feasibility of whole
rt-cases to be admitted on a computing node. The advantage of this solution is simplicity: in

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:7

principle, it only requires a PFP scheduler, such as rate monotonic (RM), largely available in
existing real-time operating systems. In practice, the solution requires a temporal protection
mechanism (with on-line task execution time monitoring), in order to assure that faulty tasks,
exceeding their worst case execution time (WCET), do not interfere with tasks belonging to
different containers.

In this paper we focus on the implementation of the rt-cases model following the last
alternative, i.e., fixed priority scheduling with monitoring, as in Figure 2c. Future work will
be devoted to the implementation of the hierarchical scheduling alternative (Figure 2b) and
to the comparison between the two solutions.

4 System model

We assume a system composed of M rt-cases, each of them with a criticality level CLj :
j = 0...M − 1. A criticality level CLj can assume an integer value in the interval [0, CLmax],
with 0 being the highest CL, and CLmax the lowest CL. Each rt-case hosts one or more
periodic hard real-time tasks τi, characterized by a worst case execution time Ci and a
period Ti. We assume Ti to be coincident with the relative deadline of the task. Overall, the
system is composed by a set Γ of N tasks, each of them assigned to an rt-case with a given
CL. With Γ(CL) we indicate the subset of tasks with criticality level CL. By construction:
Γ = Γ(CL0) ∪ ... ∪ Γ(CLM−1) and Γ(CLk) ∩ Γ(CLh) = ∅, where CLk 6= CLj .

For example, considering the system depicted in Figure 3, with 4 rt-cases, 8 tasks, and
3 criticality levels, we have: M = 4; N = 8 CLmax = 2; Γ = {τ1 ... τ8}, Γ(0) = {τ1, τ2},
Γ(1) = {τ3, τ4, τ5, τ6}, and Γ(2) = {τ7, τ8}.

CL0 = 0 CL1 = 1 CL2 = 1 CL3 = 2

𝜏" 𝜏# 𝜏$

𝜏%
𝜏&

𝜏' 𝜏(𝜏)

Figure 3 An example of decomposition of tasks within containers: circles represent tasks and
squares represent rt-cases with different CLs; rt-cases 1 and 2 have the same CL.

Each task τi is characterized by a static priority pi. Priority values range in the integer
interval [0, N − 1], where N is the total number of tasks, assuming 0 to be the highest and
N − 1 the lowest priority values. Priorities have to be assigned to tasks according to the CL
of the container they belong to. In particular, to avoid that tasks in a high criticality rt-case
are preempted by tasks in a lower criticality rt-case, we assume that:

CLk < CLH ∧ τi ∈ Γ(CLk) ∧ τj ∈ Γ(CLh) ⇐⇒ pi < pj (1)

In other terms, tasks belonging to high criticality containers must receive high priorities,
and viceversa.

Once priorities are assigned, tasks can be scheduled by a PFP scheduler. Having assumed
a PFP scheduler, a simple method to assign priorities to tasks, while checking the feasibility
of the system, is to adopt the Audsley’s priority assignment algorithm [2], with the classical
Joseph-Pandya’s response time analysis (RTA) schedulability test [13]. RTA consists in
computing the response time Ri of a task τi as: Ri = Ci +

∑
pk<pi

dRi/Tke · Ck. Ri takes
into account the interference that a task can suffer due to preemptions by higher priority
tasks. The task set is schedulable if and only if Ri ≤ Ti ∀i.

The Audsley’s algorithm is based on the following lemmas:

ECRTS 2019

5:8 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

Lemma 1 : the worst case response time of a task τi can be determined with a test (such
as RTA), by knowing the tasks that have priorities greater than τi, but without knowing
the specific assignments of such priorities;
Lemma 2 : if a task is schedulable considering a given priority assignment, then it remains
schedulable if it receives a higher priority.

We adapted the algorithm to our case, as shown in Alg. 1. In particular, to be compliant
with our assumption in (1), we force the assignment of priorities to proceed from tasks
belonging to the lowest criticality rt-case (with CL = CLmax) to the highest one (with
CL = 0, see line 2 in the algorithm), starting from the lowest priority (N − 1) to the highest
one (0). A priority is assigned to a task τi if Ri < Ti (see lines 5-6). If we are not able to
assign the priorities to all the tasks of a given CL, then the task set is unschedulable (see
lines 10-11). If all priorities are assigned, the task set is schedulable.

Algorithm 1 Priority Assignment Algorithm (Audsley’s algorithm adaptation).
1: p← N − 1
2: for CL = CLmax down to 0 do
3: while p ≥ 0 do
4: for each unassigned task τi in Γ(CL) do
5: if Ri ≤ Ti, with all unassigned tasks assumed to have priorities < p then
6: assign p to τi

7: p = p− 1
8: end if
9: end for

10: if not all tasks in Γ(CL) can be assigned then
11: return UNSCHEDULABLE;
12: end if
13: break
14: end while
15: end for
16: return SCHEDULABLE;

Such priority assignment solution assures isolation of high criticality rt-cases from lower
ones, since, by construction, a task running in an rt-case with CLk can never be preempted
by a task running in an rt-case with CLh > CLk, according to (1). However, we must also
ensure that faulty tasks in high criticality rt-cases (e.g., a task instance, or job, exceeding
its Ci) do not affect tasks in low criticality rt-cases. Hence, we assume the system to be
equipped with a temporal protection mechanism implemented by a monitor, running on a
different CPU than the one(s) running rt-cases. The monitor has to measure the execution
time of tasks at runtime, in order to interrupt a job of a periodic task whenever it exceeds
its declared Ci.

With reference to the rt-case architecture in Figure 1, the proposed priority assignment
algorithm has to be implemented by the feasibility checker within the RT-CASE engine. The
algorithm can be run whenever a new rt-case becomes ready, to check if it can be admitted
to a CPU hosting other rt-cases without affecting their execution.

It has to be noted that the assignment obtained with Alg. 1 may not reflect the priority
assignment originally planned by the application developer for the tasks to be run within
his/her container. This might still be fine in the cases where the developer does not care
about individual task priorities, as long as the assignment guarantees that task deadlines

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:9

are met. However, if application dependent constraints on priorities must be met, Alg. 1
cannot be used as it is. In this case, our implementation leaves to the developer the chance to
manually assign the priorities to tasks, at his/her own risk. A viable alternative is to force the
algorithm (i) to allot disjoint priority intervals to different containers (even for rt-cases with
the same CL), and (ii) to assign priorities to tasks within a rt-case by respecting their original
relative order, in terms of the priorities assigned by the developer. A different solution is
to adopt the rt-case design alternative based on hierarchical scheduling and server-based
approaches (see Figure 2b), since it makes priority assignments within rt-cases independent
from the feasibility checker. We leave the implementation and evaluation of this solution,
along with the comparison with the currently developed scheme, as future work.

5 Implementation details

We present the details on the implementation of our proposal on top of RTAI (Real Time
Application Interface), a real-time co-kernel extension for Linux. RTAI is an open-source
project born to add real-time capabilities to standard Linux kernels. It is conceived as a
patch of the Linux Hardware Abstraction Layer (the RT-HAL) that makes the Linux kernel
fully preemptable in favor of real-time tasks, by masking the interrupts handling mechanism
and by redirecting interrupts to the Linux kernel only when there is no real-time activity to
be performed. The RT-HAL is complemented by a number of RTAI modules, providing a
rich set of services for real-time tasks running at the user level, among which real-time task
management, real-time inter-process communication with priority inheritance, etc.

We implement our proposal on a vanilla Linux kernel 4.9.80 patched with RTAI 5.1.
The proposal encompasses three main components, as depicted in Figure 4: the RT-CASE
engine, the RT-lib and the RT-CASE monitoring. The implementation of these components
is presented in the following2.

Figure 4 System components.

2 The source code of the components has been made publicly available at http://www.dessert.unina.
it/RT-CASE.zip.

ECRTS 2019

http://www.dessert.unina.it/RT-CASE.zip
http://www.dessert.unina.it/RT-CASE.zip

5:10 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

5.1 RT-CASE engine
The RT-CASE engine represents a macro-component dedicated to the orchestration of the
rt-cases and, more important, to the feasibility evaluation of the rt-task set to be run inside
the rt-cases. The RT-CASE engine is composed by two components: the feasibility checker
and the container engine.

The feasibility checker aims to verify the schedulability of a given task set Γ. It is
a Python script that accepts the specification of a task set as input. For each task τi, the
specification contains: (i) id, (ii) name, (iii) the period Ti, (iv) the worst case execution
time Ci, (v) the CL and the name of the container hosting the task. Given the task set,
the feasibility checker runs the priority assignment algorithm (Alg. 1); if the task set is
schedulable, the component returns the priorities to be assigned to tasks. In particular, it
fills a data structure, named control_struct, containing for each task: its id, its name, the
rt-case where it runs, its priority and its Ci. The structure is then used at run-time by the
RT-lib, as a contract for the tasks, as described in Section 5.2.

The container engine is used to launch feasible rt-cases. In our implementation, we
use Docker as container engine. Each rt-case is a Docker container, including in its image
the RT-lib and the executables of the rt-tasks to run. Each rt-case is run providing the
PIDC env variable, which contains the ID of the container; the variable is used by the
RT-lib as described in Section 5.2. It is important to note that only user-space rt-tasks are
allowed to run inside the rt-cases. Kernel-space rt-tasks can be run at host level; however,
they are not managed by our proposal. More important, a number of capabilities as well
as the access to some host devices have to be granted to rt-cases in order to allow the
execution of rt-tasks. For example, if the tasks of a given rt-case needs to access to both the
/dev/rtai_shm and /dev/rtc0 device files (representing the RTAI shared memory and real-
time clock device files, respectively), the rt-case has to be lunched with the following
Docker flags: –device=/dev/rtai_shm:/dev/rtai_shm –device=/dev/rtc0:/dev/rtc0.
Similarly, since rt-tasks usually need to set the real-time clock, the rt-cases are lunched with
the Docker flag –cap-add=SYS_TIME.

5.2 RT-lib
The RT-lib exports the user-space APIs provided by RTAI, which are made available for
each rt-task running inside an rt-case. More in details, the RT-lib encapsulates a modified
version of the RTAI LXRT library, i.e., the library allowing the access to all the services
made available by RTAI and its schedulers in user-space; a number of primitives are modified
in order to grant naming isolation and to assign priorities to rt-tasks running inside rt-cases.

Naming isolation allows avoiding clashes due to the use of the same name for a rt-
task or a resource from applications running in different rt-cases. We modify the LXRT
rt_task_init_schmod primitive, which allows to create and initialize rt-tasks in user-space,
to combine the name of the rt-task, generally provided as input parameter, with the ID
of the related rt-case, which is defined through the PIDC env variable of the rt-case.
Similar modifications have to be applied to the other LXRT initialization primitives, such
as rt_typed_sem_init and rt_typed_mbx_init, which allow the initialization of semaphores
and mailboxes, respectively.

To perform the priority assignment, we modify the rt_task_init_schmod primitive. The
modified version of this primitive sets the task priority to the one defined in the control_struct
(the contract) generated by the feasibility checker. If the priority value is not defined in the
control_struct, i.e., the feasibility check has not been executed for the current task set or the
task set is not feasible, the primitive does not change the priority.

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:11

Finally, in order to assure temporal separation through the protection mechanism imple-
mented by the monitoring component (see next section), both the rt_task _init_schmod
and rt_task_wait_period are modified. The rt_task_init_schmod is modified to create
and initialize a data structure, named task_ descriptor, used by the monitoring compon-
ent and containing the information about the current task. The descriptor, created if the
monitoring is active, logically extends the Linux task_struct (without actually modifying it)
with a number of fields required by the monitoring component. The main fields of the the
task_descriptor are detailed in Table 1. The rt_task_wait_period, i.e., the RTAI primitive
that suspends the execution of a periodic hard real-time task until the next period, is modified
to count the number of cycles of the task. This parameter is reported in the cycle field of the
task_descriptor. Before invoking the syscall allowing the task to wait the next period, the
primitive first verifies if the monitoring is active and, in this case, increments the cycle field.
When the task is resumed at the next cycle, the primitive also saves the current time in the
last_switch_time field of the task_descriptor, which is used by the monitoring component to
measure the execution time of the task (see next section).

It should be noted that all the modifications explained above are totally transparent
to the developer. In fact, the modifications affect only the body of the primitives, while
their signatures are left unchanged. More important, the modifications only affect the RTAI
LXRT user-space library, without any change to the RTAI kernel level source code. This
avoids the need to re-compile the kernel; only the library source code needs to be compiled
and installed in the containers, fostering an easy and quick adoption of the solution. Finally,
it is important to note that if the monitoring component or the feasibility checker is not
activated, all the modified primitives act as the original ones. This leaves the programmer
the freedom to manually assign the priorities at his/her own risk.

Table 1 Main fileds of task_descriptor.

Field Description
wcet Worst Case Execution Time (WCET, or Ci) of the task
exec_time Execution time of the task in the current cycle
last_switch_time Time of the last context switch involving the task
last_overrun Last time the task has been found in overrun
task_alarm Pointer to the task in charge to manage the task, when it becomes faulty
cycle Current cycle of the task
last_cycle Last cycle of the task
overtime Number of overtimes of the task
overrun Number of overruns of the task

5.3 RT-CASE monitoring
The RT-CASE monitoring component aims to provide temporal protection to rt-cases.
The component prevents that a faulty task (i.e., a task exceeding its WCET or having an
activation frequency higher than the one declared during the feasibility checking) running
within an rt-case may affect the tasks running in rt-cases with lower or equal CLs. To this
aim, the component periodically checks the execution time and the activation frequency of
the rt-tasks running inside the rt-cases; in addition, it measures the number of overruns and
overtimes of each task, i.e., the number of times a task exceeds its deadline and WCET,
respectively. When a faulty task is detected, the RT-CASE monitoring implements one of
the following policies to guarantee temporal protection:

ECRTS 2019

5:12 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

KILL: the task is killed in a forced way;
SUSPEND: the task is suspended indefinitely;
FORCE_PERIOD: the task is suspended and it will be resumed at the next period activation;
SIGNAL: a notification is sent to a given task, which will be in charge to take action as a
consequence of the fault.

The policy to adopt represents one of the parameters of the monitoring component, which
also includes the CPU it has to be run on and the monitoring period.

The RT-CASE monitoring component has been developed as a kernel module. The
module launches a number of tasks on a dedicated processor in order to avoid that the
monitoring operation affects the rt-tasks running inside rt-cases. Therefore, the proposed
monitoring approach requires a multiprocessor hardware configuration with at least 2 CPUs,
one for monitoring and the other one for the rt-tasks running in rt-cases. The usage of a
single processor system is also possible (although we leave it as future work); however, there
are two constraints to be considered in this case: (i) the monitoring task has to be taken into
account in the feasibility checking and (ii) it has to be the task with the highest priority.

The RT-CASE monitoring component provides two main services: subscription service
and controller service.

The subscription service is an aperiodic task that is activated when the SIGNAL policy
is used. The service allows developers to subscribe a control task for a rt-task to monitor.
The control task will be notified each time the monitored rt-task is detected as faulty, as
defined by the SIGNAL policy. When a control task requests the subscription for a given
rt-task, the subscription service retrieves the task_descriptor of the rt-task and stores the
pointer to the control task into the task_alarm field. This policy is useful to handle the
recovery of tasks in overtime at the user-space, within rt-cases; however developers must be
aware of it. The other policies do not require modifications to the source code of tasks.

The controller service is the main service of the monitoring component since it aims to
detect faulty tasks. The service is conceived as a set of periodic real-time tasks - watchdogs
hereinafter. A watchdog is created for each CPU running the rt-cases. Each watchdog
periodically executes the following steps: (i) gets the task currently running on the CPU it
monitors; (ii) if the current task is a periodic, user-space, hard real-time task, it retrieves the
pointer to its Linux task_struct; (iii) it retrieves the rt-case task_descriptor of the task and
measures its execution time and activation frequency; (iv) if a deviation is detected, i.e., the
execution time exceeds the WCET of the task and/or the activation frequency is higher than
the one declared during the feasibility checking, the configured policy will take place for the
task (i.e., SIGNAL, KILL, SUSPEND or FORCE_PERIOD).

It should be noted that in order to measure the execution time and the number of overruns
and overtimes, the watchdogs leverage information contained in the task_descriptor, e.g., cycle,
last_cycle and last_switch_time fields, as well as RTAI primitives (e.g., rt_get_time_cpuid
to obtain the current time in internal count units on a given cpu). In addition, the
switch_time[cpu] provided by RTAI is used, which indicates the time of the last context
switch on the indicated cpu. Alg. 2 describes the algorithm used by the watchdogs to measure
the execution time of rt-tasks.

The algorithm evaluates the execution time in three different cases, depicted in Figure 5,
which shows two rt-tasks running in rt-cases with different CLs: (a) the current task is in a
cycle different from the one of the last monitoring check (at M0 and M4 for Task 2, at M2
for Task 1); (b) the current task is in the same cycle of the last monitoring check and it has
not been preempted (at M1, M5 and M6 for Task 2); (c) the current task is in the same
cycle of the last monitoring check and it has been preempted in favor of a task with a higher

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:13

Figure 5 Execution time measurement.

Algorithm 2 Execution time evaluation algorithm.
1: if tsk_desc–>cycle == tsk_desc–>last_cycle then
2: if tsk_desc–>last_switch_time == switch_time[cpu] then
3: tsk_desc–>exec_time = rt_get_time_cpuid (cpu) - tsk_desc–>last_switch_time;
4: else
5: tsk_desc–>last_switch_time = switch_time[cpu];
6: tsk_desc–>exec_time += rt_get_time_cpuid (cpu) - tsk_desc–>last_switch_time;
7: end if
8: else
9: tsk_desc–>last_cycle = tsk_desc–>cycle;
10: switch_time[cpu] = tsk_desc–>last_switch_time;
11: tsk_desc–>exec_time = rt_get_time_cpuid (cpu) - tsk_desc–>last_switch_time;
12: end if

priority (at M3 for Task 2). In both cases (a) and (b) the current execution time of the task
is evaluated as the difference between the current time, provided by rt_get_time_cpuid, and
the last_switch_time (Alg. 2 - lines 3 and 11), i.e., M1 - t0, M6 - t4 (Task 1) and M2 - t1
(Task 2) in Figure 5; however, in case (a) the algorithm also updates the last_cycle value
and updates the switch_time[cpu] with the last_switch_time (lines 9 and 10) since a new
cycle is started. It should be noted that the update of the switch_time[cpu] is required
to avoid an erroneous evaluation of the execution time when a task enters in a new cycle
without any context switch; in fact, in this case the switch_time[cpu] is not updated by
RTAI. In case (c) the algorithm measures the execution time of the task as the sum between
the last measured execution time for the task and the difference between the current time
and the last_switch_time (Alg. 2 - lines 6), i.e., (M1 - t0) + (M3 - t2) in Figure 5 for Task
2; noteworthy, the last_switch_time here is updated to the switch_time[cpu] value (Alg. 2 -
line 5), i.e., t2, in order to consider the begin of the new activation of the task.

Alg. 3 describes the algorithm used by watchdogs to detect tasks in overrun and overtime,
and rt-tasks activating before the expected time. An overrun is detected by evaluating the
difference between the current time, the periodic_resume_time, i.e., the time the task has
been or will be resumed after a cycle, and the period of the task (Alg. 3 - line 3). Both the
periodic_resume_time and the task period are provided through the task struct of the task
(task in Alg. 3); in addition, the function count2nano used in the algorithm converts a value

ECRTS 2019

5:14 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

Algorithm 3 Detection algorithm.
1: //CHECK OV ERRUN
2: overrun = count2nano(rt_get_time_cpuid (cpu) - task–>periodic_resume_time - task–>period);
3: if overrun > 0 AND tsk_desc–>last_overrun != tsk_desc–>cycle AND tsk_desc–>cycle > 1 then
4: tsk_desc–>overrun++;
5: tsk_desc–>last_overrun = tsk_desc–>cycle;
6: end if
7: //CHECK OV ERT IME
8: if count2nano(tsk_desc–>exec_time) > tsk_desc–>wcet AND tsk_desc–>cycle > 0 then
9: tsk_desc–>overtime ++;
10: start_policy(tsk_desc);
11: end if
12: //CHECK ACT IV AT ION
13: if rt_get_time_cpuid (cpu) < task–>periodic_resume_time) then
14: start_policy(tsk_desc);
15: end if

in tick count to nanoseconds. If the obtained value is positive, the rt-task is considered in
overrun, since its execution time exceeds its deadline (that we assume to be equal to the
period of the task). For example, in Figure 6 it is depicted a task exceeding its deadline. It
can be noted that the sum of the periodic_resume_time and the task period is lower than the
current time; therefore, the difference evaluated by the detection algorithm is a positive value,
which allows detecting the overrun at M0. When a task is found in overrun, the algorithm
increments the number of overruns (line 9), i.e., the overrun field of the task_descriptor, and
saves the cycle of the overrun (line 10), i.e., the last_overrun field.

Figure 6 Overrun detection.

Overtimes are evaluated by comparing the evaluated execution time with the WCET
of the task (Alg. 3 - line 8); if the execution time is greater than the WCET, the task is
considered in overtime and the overtime field of the task_descriptor is updated (line 9).
Finally, in order to detect task activating before the expected time, the algorithm verifies
if the current time is lower than the periodic_resume_time (Alg. 3 - line 13); in this case,
the task has been activated before expected. If an overtime or a premature task activation
occurs, the algorithm calls the start_policy function, which applies the policy configured for
the temporal protection (lines 10 and 14).

5.4 Discussion
The algorithm currently implemented for RT-CASE monitoring has the benefit of a constant
computational complexity, which does not depend on the number of tasks running on the
monitored CPUs. At each period, the monitor performs checks on the currently running
rt-task, with a relatively small number of lines of code. We measured the typical execution
time of an instance of the implemented monitor, e.g., the time it takes to perform a check

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:15

within a period. The measurements have been conducted in our deployment (composed by a
2.4 GHz dual-core Intel Core i7-5500U machine, equipped with 8 GB DDR3 RAM and a
Crucial MX500 SSD) and they show that a watchdog instance is able to run within about
3,500ns in the worst case, regardless of the number of tasks to monitor. This relatively short
monitoring time allows very fine grain monitoring periods, in the order of few microseconds,
if the monitor is run on a dedicated CPU.

As a drawback, it is important to note that the current implementation of the monitor
provides an under-estimation of the execution time of rt-tasks. In fact, each time a task
is preempted in favor of a task with a higher priority or terminates its execution in the
current activation, the watchdog is not able to estimate the time between the last monitoring
activation and the termination of the task execution. For example, in the case depicted in
Figure 5 a watchdog is not able to measure the execution time in [M2, t2] for Task 1, and in
[M1, t1], [M3, t3] and [M6, t5] for Task 2. However, the extent of the estimation error can
be easily evaluated. Given a task with a priority pi and period Ti, the error of the execution
time measured by a watchdog in the worst case is given by Tmon · (P + 1). Tmon is the
monitoring period, while P is the number of times the task can be preempted in favor of
tasks with a higher priority. Thanks to the adoption of a PFP scheduling policy, the value of
P can be easily obtained as:

∑
pk<pi

dTk/Tie. It should be noted that Tmon is multiplied by
P + 1, since we have always an underestimation of the execution time at the task termination
in the current period, also if the task is not preempted, as in [M6, t5] of Figure 5. Such
estimation error can be taken into account in the feasibility analysis (see Section 6.3).

We defined a possible solution for reducing the underestimation obtained with the current
implementation. The solution requires that the watchdog stores the current task in a last
monitored task variable, before terminating the current monitoring activation. This allows
the watchdog to update the execution time of the previous monitored task during the next
activation; the new value is obtained as the difference between the current switch_time[cpu]
and last_switch_time of the previous monitored task. For example, in Figure 5 the execution
time of the Task 2 will be updated at M2 as t1 - t0. In this case, the underestimation error
committed by the monitor is Tmon at most, when the task ends its execution between two
monitoring executions. However, this solution requires the watchdog to analyze two tasks
at each cycle. In particular, it has to evaluate the execution time of both the current and
the previous task, and it has to execute the overtime and overrun detection for both of
them. This may have an impact on the execution time of watchdog instances, consequently
requiring to reduce the maximum frequency of monitoring. We leave the implementation of
this new version of the monitoring approach, and its evaluation, as future work.

6 Case study

We present a case study of the proposed approach, which consists in a typical setup of high,
medium, and low criticality containers, with CL values equal to 0, 1, and 2, respectively.
Figure 7 depicts the case study: we hypothesize that the tasks hosted by the medium critical
rt-case exhibit a faulty behavior by exceeding their WCET. We propose a mixture of
experiments to gain insights into the following points: (i) thanks to our monitor, the faulty
tasks in an rt-case do not impact tasks hosted by the remaining containers, (ii) trade-offs of
the monitor and viable workarounds. We deploy the containers on a 2.4 GHz dual-core Intel
Core i7-5500U machine, equipped with 8 GB DDR3 RAM and a Crucial MX500 SSD. The
installation consists of the following key components: Docker 17.031-ce, Ubuntu 16.04, Linux
kernel 4.9.80 and RTAI 5.1. We devote special care to achieve a representative setup although

ECRTS 2019

5:16 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

rt-case
(HIGH, CL=0)

rt-case
(MEDIUM, CL=1)

rt-case
(LOW, CL=2)

rt-task

rt-task

rt-task rt-taskrt-task

rt-task

rt-task

rt-taskfault

Figure 7 Representation of the case study.

by means of general purpose hardware. As such, the Linux kernel has been configured in order
to prevent common sources of non-determinism, such as energy savings, frequency scaling
and hyper trading. Monitor and containers are pinned to distinct cores; the monitoring
period is set to 8,000ns. We would like to point out that this case study is not meant to be
exhaustive, but it has been arranged with the aim of eliciting reasonable operating conditions,
which illustrate the basic functioning of the approach and its concrete implementation.

6.1 Experiments
We conduct a campaign of experiments3 to gain insights into the temporal separation across
the containers. Each experiment of the campaign consists in generating a task set with a
total utilization U. We run the task set for one minute, and record the following outcomes
for each task at the end of the run:

overtime: number of times the task exceeds the WCET;
overrun: number of times the task misses the deadline.

We assess 5 levels of utilization within U={0.45, 0.55, 0.65, 0.75, 0.85}; since the task set
is generated randomly – as explained in the following – experiments are replicated 30 times
for each level U, thus leading to 150 experiments. Moreover, experiments are done both
without and with our monitor, i.e., total 2×5×30 experiments.

For each experiment, the task set with utilization U is synthesized according to the
approach in [10]. As such, if we denote by Ui = Ci

Ti
the utilization of a task (with Ci and

Ti denoting the WCET and the period, respectively), we obtain U =
∑n

i=1 Ui where n is
the number of tasks. In our case study, n is set to 14 because we note that with a higher
number of tasks and at levels of utilization higher than 0.85 (i.e., the maximum level of U
assessed) it is becomes hard to find feasible task sets with fixed priority scheduling. Once
the task set is generated, we (i) assign the tasks to the containers, i.e., 3, 7, and 4 tasks, to
the high, medium, and low criticality container, respectively, and (ii) assign the priorities
with the feasibility checker based on Alg. 1 in Section 4. The feasibility checker assigns the
priorities only if the task set is schedulable, so to be sure that potential overruns are not
merely caused by unfeasible task sets.

The tasks execute a CPU-bound workload made of arithmetic operations for a time
consistent with the declared WCET; however, in order to emulate faulty behaviors, the
tasks allotted to the medium criticality container deliberately keep the CPU busy up to
eight times the WCET. For the experiments with monitoring on, we use the SIGNAL policy:
accordingly, each task is accompanied by the corresponding control task, which terminates
the task under-monitoring when it receives a notification from the monitoring system.

3 The code used for experiments has been made public available within the source code of the proposal.

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:17

Table 2 shows the outcome of one experiment replication with no monitor and a task
set with U=0.85. For each task, we record overtime and overrun at the end of the
experiment by accessing the corresponding task_descriptor. In this specific instance, the
tasks belonging to the medium criticality container cause 1,067 overtimes in total, which
reflects into total 92 overruns by the tasks within the low criticality container. The high
criticality container is not affected by the faulty tasks, as expected.

Table 2 Outcome of one experiment replication with no monitor and U=0.85.

Ci (ns) Ti (ns) Ui criticality priority overtime overrun
978854 7071458 0.138 high 1 0 0
621582 7566834 0.082 high 2 0 0
1380333 8008509 0.172 high 3 0 0
160056 4869494 0.033 medium 4 339 0
34866 6432178 0.005 medium 5 220 0
103005 6606403 0.016 medium 6 169 0
624445 7667583 0.081 medium 7 133 0
123770 8385032 0.015 medium 8 101 0
95034 8792447 0.011 medium 9 70 0
167473 9991428 0.017 medium 10 35 1
77299 5288777 0.015 low 11 0 21
250561 6660143 0.038 low 12 0 4
1438550 7360892 0.195 low 13 0 43
283605 8931703 0.032 low 14 1 24

6.2 Results with no monitoring
We discuss the results obtained at the termination of the experimental campaign. Fig-
ure 8 summarizes the key outcomes obtained without the monitoring approach, i.e., the
tasks allotted to the medium criticality container are free to exceed their WCET with no
temporal separation.

(a) Total overtime medium critic-
ality container.

(b) Total overrun medium critical-
ity container.

(c) Total overrun low criticality
container.

Figure 8 Total overtime and overrun without our monitoring approach.

Boxplots in Figure 8a summarize the variability of the total overtime at increasing
utilization U . One observation of the total overtime is the sum of the overtime of the tasks
allotted to the medium criticality container at the end of one experiment: each boxplot is
obtained with the data from 30 experiment replications for a given U as stated above.

ECRTS 2019

5:18 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

On average, the tasks produce around 1,027 total overtime per experiment across the different
levels of utilization U , such as shown by the dotted line in Figure 8a. By means of ANOVA,
we observe that there is no statistically significant effect of U on the total overtime with
respect to the inherent variability of the overtime across the experiments. This is an expected
result that is given by the way we generate the task sets and emulate the faulty tasks.

Similarly to Figure 8a, boxplots in Figure 8b show the total overrun – i.e., the sum of
the overrun – of the tasks allotted to the medium criticality container. Again, each boxplot
summarizes the outcomes from 30 experiment replications. Figure 8c shows the total overrun
for the low criticality container. In both Figure 8b and 8c the dotted line represents the
mean of the observations. It can be noted that the total overrun increases as the utilization
increases. Noteworthy, this is not merely caused by an increase of the total overtime of
the tasks in the medium criticality container, because we have excluded the existence of a
statistically significant trend with respect to U , as stated above. Rather, it can be reasonably
stated that at low levels of utilization U (e.g., 0.45-0.55) the remaining amount of free CPU
bandwidth provides higher chance to tolerate faults that reflect into exceeding the WCET.
This chance is progressively smaller as U increases, which causes higher total overrun.

Regarding the tasks allotted to the high criticality container, we observe no overrun.
Since this container hosts high-priority tasks – and given that RTAI has a PFP scheduler –
even if the tasks in the medium criticality exceeds the WCET, they do not affect the high
criticality container. The effect of priorities can be also noted by comparing Figure 8b and 8c,
where the total overrun is smaller for the medium criticality container.

6.3 Results and considerations with the proposed monitor
We analyze the outcome of the remaining 150 experiments obtained by monitoring the tasks
with the proposed approach, which means that any task exceeding the declared WCET is
terminated by its corresponding control task upon the receipt of a SIGNAL. Differently from
the results discussed in Section 6.2, we observe no overrun across all the levels of utilization
assessed in this case study. Our monitor prevents the overrun affecting the tasks allotted
both to the medium and low criticality container.

Beyond this favorable finding, which pertains the basic functioning of the proposed
architecture, we would like to discuss cons of our monitor and potential workarounds. At
this stage of development, we have pursued a lightweight implementation of the monitor,
with a reactive protection approach, as it can be noted by the mitigation policies described
in Section 5.3. In consequence, it is reasonable to assume the existence of a latency of the
detection mechanism, i.e., the time between (i) a faulty task exceeding the WCET, and (ii)
the effect of the mitigation, e.g., a KILL, triggered by our monitor.

Latency may be an issue in some very strict scheduling scenarios. For example, let us
hypothesize a scenario – generated with SimSo [5] – which consists of six tasks with the
parameters shown in Table 3 and total utilization U=1. Figure 9 shows a schedule of the
tasks (CPU row) and a detailed view for the tasks. It can be noted that there is no timeslot
left for tolerating any latency of the detection: for this worst case scenario any minimum
delay at terminating the tasks that exceed the WCET will likely cause an overrun.

In principle, it is possible to tolerate the latency of the monitor with the following
workaround. Let Cmon denote a WCET estimation for the latency of the detection. Given a
task set, for the sole purpose of the schedulability test we use the declared WCETs of the
tasks augmented by Cmon, i.e., Ci+Cmon. If the task set is admitted, any task can safely
exceed its WCET up to Cmon since we assure – by construction – enough time for the actions
of the monitor to take place. The proposed adjustment of the WCETs has a trade-off, which

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:19

Table 3 An example of worst case scenario with U=1.0.

ID Ci (ms) Ti (ms) criticality priority
Task T1 1.66 10 high 1
Task T2 8.33 50 high 2
Task T3 8.33 50 medium 3
Task T4 16.66 100 medium 4
Task T5 25.00 150 low 5
Task T6 50.00 300 low 6

Figure 9 Representation of the worst case scenario (adapted from SimSo).

reflects into an inherent increase of the declared utilization of a task set. In the following, we
explore this proposition by analyzing the sensitivity of the probability (p) to find schedulable
task sets at increasing utilization with/without tolerance of the latency.

For this analysis we assume the KILL policy, i.e., a faulty task is terminated outright
by the monitor without the mediation of the corresponding control task. In consequence,
the duration of the mitigation action – per se – is negligible, and the main contribution to
Cmon consists of the time taken by the monitor to detect a faulty task. As discussed in
Section 5.4, at this stage of development Cmon depends on both the monitoring period Tmon

and the number of potential task preemptions, which is a function of the relative priorities
and periods of the tasks. In our case study, for simplicity, a reasonable estimate of Cmon is
around 60,000ns. For example, this value can be obtained by applying the computations
described in Section 5.4 to the tasks in Table 2 and taking the mean value across the tasks.

Figure 10a shows the probability (p) to find a schedulable task set with respect to U for 14
tasks and Cmon=60,000ns. For each value of utilization U within 0.05 and 1.0 (by step 0.05)
we generate 100 task sets according to [10], beforehand. We then run the schedulability test
(Alg. 1) with our feasibility checker: p is the ratio between the number of feasible task sets
divided by 100. For the dotted time series (i.e., no tolerance) WCETs are not modified, while
for the solid time series (i.e., with tolerance) WCETs are augmented by Cmon before assessing
the schedulability. As shown in Figure 10a, p decreases as U increases both with/without
tolerance. We observe that the tolerance does not affect p up to U=0.5, while its impact
is significant between 0.6 and 0.9. For example, it can be noted that with no tolerance, p
approaches 0 at U = 0.9, while with tolerance is around 0 at U = 0.75. Noteworthy, the
distance between no/with tolerance series depends on n: for example, the series are closer
with n=11 – i.e., Figure 10d – at a similar distribution of the tasks across the containers,
i.e., 2, 6, and 3 tasks, to the high, medium, and low criticality container, respectively.

We discuss two workarounds that allow mitigating the loss of utilization. The former,
reducing Tmon. Although we used 8,000ns in the case study, Tmon can be safely set to
4,000ns, which is larger than the WCET of the current algorithm implementation. In

ECRTS 2019

5:20 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

(a) n=14; Cmon = 60, 000ns (b) n=14; Cmon = 30, 000ns (c) n=14; Cmon = 8, 000ns

(d) n=11; Cmon = 60, 000ns (e) n=11; Cmon = 30, 000ns (f) n=11; Cmon = 8, 000ns

Figure 10 Sensitivity of p with respect to the utilization.

this case we obtain Cmon=30,000ns. Figure 10b and 10e show how p varies with/without
tolerance at this lower Cmon, and denote a significant improvement with respect to the figures
discussed before. The latter, improving the implementation of the monitoring algorithm.
According to the discussion in Section 5.4, we are pursuing an implementation that reduces
the measurement error on the execution time; at each monitoring activation we plan to
leverage the last_switch_time of the current rt-task to properly measure the execution
time of the previous monitored rt-task. Hence, in the new implementation, Cmon would be
equal to Tmon, which is strongly desirable in practice. In fact, according to the sensitivity
analysis presented in Figure 10c and 10f with Cmon=8,000ns, no/with tolerance series almost
overlap. Based on this finding, we are confident that the prospected improvement of the
implementation should address the current drawbacks in tolerating the latency.

7 Conclusions

This paper presented the notion and an implementation of real-time containers, or rt-cases,
as a possible lightweight solution to let mixed-criticality hard real-time task sets cohabit on
the same hardware. Containers are largely adopted in the software industry to modularize
application components, to streamline the management of dependencies, and to simplify
their deployment and migration in heterogeneous server environments. With rt-cases, we aim
to bring these advantages and software management attitudes to real-time mixed criticality
systems, allowing for the first time to run hard real-time tasks, from within containers, on
low latency Linux systems patched with real-time co-kernels, such as RTAI.

The paper demonstrated the practical feasibility of the rt-case concept in a real context.
The main enabling components of the proposed architecture have been implemented in a
Linux environment, made publicly available and tested under realistic and feasible task

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:21

sets. Preemptive fixed priority scheduling has been chosen as underlying task scheduling
solution, to avoid modifications to the co-kernel support, thus fostering the early adoption
of the solution. As drawbacks, we have observed that the measurement error committed
by the monitor can affect significantly the feasibility of the task set when increasing the
CPU utilization. In addition, we noted that the priority assignment algorithm currently
implemented in the feasibility checker may not respect the relative ordering of task priorities,
originally planned by the developer. To mitigate these problems, future work will be devoted
to the implementation of the improved version of the monitoring algorithm that reduces
the measurement error, as described in section 5.4, and to the development of the design
alternative based on the use of task groups and hierarchical scheduling with server-based
approaches, which makes priority assignments within rt-cases independent from the feasibility
checker. We also plan to test the solution with realistic workloads in the context of the ITER
project [26], thanks to an on-going research collaboration.

References
1 L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems.

In Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279), pages 4–13,
December 1998. doi:10.1109/REAL.1998.739726.

2 N.C. Audsley. Optimal Priority Assignment And Feasibility Of Static Priority Tasks With
Arbitrary Start Times. Technical report YCS 164, 1991.

3 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA, 2003. ACM. doi:10.1145/945445.945462.

4 Alan Burns and Robert I. Davis. Mixed Criticality Systems – A review. Tech Rep of the
University of York, 2018. URL: https://www-users.cs.york.ac.uk/burns/review.pdf.

5 Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche. SimSo: A Simulation
Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms. In Proc. of the 5th
International Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems, WATERS, 2014.

6 M. Cinque and D. Cotroneo. Towards Lightweight Temporal and Fault Isolation in Mixed-
Criticality Systems with Real-Time Containers. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), pages 59–60, June
2018. doi:10.1109/DSN-W.2018.00029.

7 M. Cinque and G. De Tommasi. Work-in-Progress: Real-Time Containers for Large-Scale
Mixed-Criticality Systems. In 2017 IEEE Real-Time Systems Symposium (RTSS), pages
369–371, December 2017. doi:10.1109/RTSS.2017.00046.

8 N. T. Dantam, D. M. Lofaro, A. Hereid, P. Y. Oh, A. D. Ames, and M. Stilman. The
Ach Library: A New Framework for Real-Time Communication. IEEE Robotics Automation
Magazine, 22(1):76–85, March 2015. doi:10.1109/MRA.2014.2356937.

9 Z. Deng and J. W. . Liu. Scheduling real-time applications in an open environment. In
Proceedings Real-Time Systems Symposium, pages 308–319, December 1997. doi:10.1109/
REAL.1997.641292.

10 P. Emberson, R. Stafford, and R.I. Davis. Techniques For The Synthesis Of Multiprocessor
Tasksets. In WATERS workshop at the Euromicro Conference on Real-Time Systems, pages
6–11, July 2010.

11 G. Farrall, C. Stellwag, J. Diemer, and R. Ernst. Hardware and software support for mixed-
criticality multicore systems. In Proc. of the Conference on Design, Automation and Test in
Europe, WICERT, DATE, 2013.

12 G. Garre, D. Mundo, M. Gubitosa, and A. Toso. Real-Time and Real-Fast Performance of
General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation

ECRTS 2019

http://dx.doi.org/10.1109/REAL.1998.739726
http://dx.doi.org/10.1145/945445.945462
https://www-users.cs.york.ac.uk/burns/review.pdf
http://dx.doi.org/10.1109/DSN-W.2018.00029
http://dx.doi.org/10.1109/RTSS.2017.00046
http://dx.doi.org/10.1109/MRA.2014.2356937
http://dx.doi.org/10.1109/REAL.1997.641292
http://dx.doi.org/10.1109/REAL.1997.641292

5:22 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

of Complex Mechanical Systems. Mathematical Problems in Engineering, Article ID 945850,
2014. doi:10.1155/2014/945850.

13 M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer
Journal, 29(5):390–395, January 1986. doi:10.1093/comjnl/29.5.390.

14 R. Kaiser. The PikeOS concept history and design. Technical Report, SYSGO, 2007.
15 K. Lakshmanan, D. d. Niz, R. Rajkumar, and G. Moreno. Resource Allocation in Distributed

Mixed-Criticality Cyber-Physical Systems. In 2010 IEEE 30th International Conference on
Distributed Computing Systems, pages 169–178, June 2010. doi:10.1109/ICDCS.2010.91.

16 Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline scheduling in the Linux
kernel. Software: Practice and Experience, 46(6):821–839, 2016. doi:10.1002/spe.2335.

17 G. Lipari and S. Baruah. A hierarchical extension to the constant bandwidth server framework.
In Proceedings Seventh IEEE Real-Time Technology and Applications Symposium, pages 26–35,
May 2001. doi:10.1109/RTTAS.2001.929863.

18 C. Mao, M. Huang, S. Padhy, S. Wang, W. Chung, Y. Chung, and C. Hsu. Minimizing
Latency of Real-Time Container Cloud for Software Radio Access Networks. In 2015 IEEE
7th International Conference on Cloud Computing Technology and Science (CloudCom), pages
611–616, November 2015. doi:10.1109/CloudCom.2015.67.

19 Philip Masek, Magnus Thulin, Hugo Sica de Andrade, Christian Berger, and Ola Benderius.
Systematic Evaluation of Sandboxed Software Deployment for Real-time Software on the
Example of a Self-Driving Heavy Vehicle. CoRR, abs/1608.06759, 2016. arXiv:1608.06759.

20 Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. Xtratum: a hypervisor for
safety critical embedded systems. In 11th Real-Time Linux Workshop, pages 263–272. Citeseer,
2009.

21 M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos. Mixed-
Criticality Real-Time Scheduling for Multicore Systems. 10th IEEE International Conference
on Computer and Information Technology, Bradford, pp. 1864-1871, 2010.

22 R. Santos, S. Venkataraman, A. Das, and A. Kumar. Criticality-aware scrubbing mechanism
for SRAM-based FPGAs. Technical report, Nanyang Technological University, Singapore,
2014.

23 Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for Hard-Real-Time
systems. Real-Time Systems, 1(1):27–60, June 1989. doi:10.1007/BF02341920.

24 X. Wang, Z. Li, and W. M. Wonham. Optimal Priority-Free Conditionally-Preemptive Real-
Time Scheduling of Periodic Tasks Based on DES Supervisory Control. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 47(7):1082–1098, July 2017. doi:10.1109/TSMC.
2016.2531681.

25 WindRiver. VxWorks Virtualization Profile. http://www.windriver.com/products/vxworks/
technology-profiles/#virtualization. [Online; accessed 15-Jan-2019].

26 A. Winter, P. Makijarvi, S. Simrock, J.A. Snipes, A. Wallander, and L. Zabeo. Towards the
conceptual design of the ITER real-time plasma control system. Fusion Engineering and
Design, 89(3):267–272, 2014. doi:10.1016/j.fusengdes.2014.02.064.

27 S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. X. Phan, I. Lee, and O. Sokolsky. RT-Open Stack:
CPU Resource Management for Real-Time Cloud Computing. In 2015 IEEE 8th International
Conference on Cloud Computing, pages 179–186, June 2015. doi:10.1109/CLOUD.2015.33.

28 S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee. Real-time multi-core
virtual machine scheduling in Xen. In 2014 International Conference on Embedded Software
(EMSOFT), pages 1–10, October 2014. doi:10.1145/2656045.2656061.

29 Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. RT-Xen: Towards Real-time
Hypervisor Scheduling in Xen. In Proceedings of the Ninth ACM International Conference
on Embedded Software, EMSOFT ’11, pages 39–48, New York, NY, USA, 2011. ACM. doi:
10.1145/2038642.2038651.

http://dx.doi.org/10.1155/2014/945850
http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1109/ICDCS.2010.91
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1109/RTTAS.2001.929863
http://dx.doi.org/10.1109/CloudCom.2015.67
http://arxiv.org/abs/1608.06759
http://dx.doi.org/10.1007/BF02341920
http://dx.doi.org/10.1109/TSMC.2016.2531681
http://dx.doi.org/10.1109/TSMC.2016.2531681
http://www.windriver.com/products/vxworks/technology-profiles/#virtualization
http://www.windriver.com/products/vxworks/technology-profiles/#virtualization
http://dx.doi.org/10.1016/j.fusengdes.2014.02.064
http://dx.doi.org/10.1109/CLOUD.2015.33
http://dx.doi.org/10.1145/2656045.2656061
http://dx.doi.org/10.1145/2038642.2038651
http://dx.doi.org/10.1145/2038642.2038651

Response-Time Analysis of ROS 2 Processing
Chains Under Reservation-Based Scheduling
Daniel Casini
Scuola Superiore Sant’Anna, Pisa, Italy
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
daniel.casini@sssup.it

Tobias Blaß
Corporate Research, Robert Bosch GmbH, Renningen, Germany
Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
tobias.blass@de.bosch.com

Ingo Lütkebohle
Corporate Research, Robert Bosch GmbH, Renningen, Germany
ingo.luetkebohle@de.bosch.com

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
bbb@mpi-sws.org

Abstract
Bounding the end-to-end latency of processing chains in distributed real-time systems is a well-
studied problem, relevant in multiple industrial fields, such as automotive systems and robotics.
Nonetheless, to date, only little attention has been given to the study of the impact that specific
frameworks and implementation choices have on real-time performance. This paper proposes a
scheduling model and a response-time analysis for ROS 2 (specifically, version “Crystal Clemmys”
released in December 2018), a popular framework for the rapid prototyping, development, and
deployment of robotics applications with thousands of professional users around the world. The
purpose of this paper is threefold. Firstly, it is aimed at providing to robotic engineers a practical
analysis to bound the worst-case response times of their applications. Secondly, it shines a light on
current ROS 2 implementation choices from a real-time perspective. Finally, it presents a realistic
real-time scheduling model, which provides an opportunity for future impact on the robotics industry.

2012 ACM Subject Classification Software and its engineering → Real-time schedulability

Keywords and phrases ROS, real-time systems, response-time analysis, robotics, resource reservation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.6

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.5
The associated source code is available at https://github.com/boschresearch/ros2_response_
time_analysis.

1 Introduction

ROS, the Robot Operating System [43], is one of the most popular frameworks for designing
and developing Linux-based robots. Powering over 100 different robot designs, it is used
by tens of thousands of developers and researchers in both industry and academia [4, 22].
However, after over a decade of development and in the face of increasingly demanding
applications, it became clear to the ROS community that the framework is held back by
several long-standing shortcomings and architectural limitations that cannot be rectified in
a backwards-compatible manner. This motivated the development of ROS 2, a complete
refactoring of ROS that puts the successful concept onto a modernized and improved

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Brandenburg ;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.casini@sssup.it
mailto:tobias.blass@de.bosch.com
mailto:ingo.luetkebohle@de.bosch.com
mailto:bbb@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECRTS.2019.6
https://dx.doi.org/10.4230/DARTS.5.1.5
https://github.com/boschresearch/ros2_response_time_analysis
https://github.com/boschresearch/ros2_response_time_analysis
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Response-Time Analysis of ROS 2 Processing Chains

foundation. Of particular interest to us, a major design goal of ROS 2 is to improve the
real-time capabilities of the framework, enabling the implementation of time-critical control
paths inside ROS [24].

Safely implementing such control paths requires predicting the end-to-end latency (or
response time) of time-critical processing chains. For instance, such a chain might cover
all steps from a sensor, via a controller, to the final actuator and span multiple software
components, multiple cores, and even multiple hosts. Although the end-to-end latency
problem is well-studied in the literature, existing work often assumes idealized scheduling
models that are not always directly applicable in real systems. Case in point, the ROS1
scheduling approach (as described in detail in Section 3) does not match any of the classic
results on bounding end-to-end latencies. ROS developers therefore have to resort to fully
prototyping and deploying a design to measure its timing properties, which severely limits
the degree to which the design space can be explored in practice.

While the scheduling model of operating systems like Linux has been studied extensively,
this is not the case for ROS. Even though it is a middleware layer and not a proper operating
system, its effects on an application’s runtime behavior are substantial, rivaling or even
exceeding that of the underlying OS. For example, ROS multiplexes independent message
handlers onto shared threads using custom scheduling policies. Consequently, applications
running on top of ROS are subject to the scheduling decisions of the underlying operating
system and the middleware layer, with complex and interdependent effects on timing.

An additional complication stems from one of the key strengths of ROS: its modular
structure. ROS emphasizes composing existing, battle-tested components instead of reimple-
menting common subsystems for each robot from scratch. While this greatly simplifies and
speeds up robot development, it also obfuscates the overall timing behavior. This problem is
further aggravated by ROS’ event-driven design style, which gives rise to data dependencies
and potentially long processing chains. As a result, it is extremely difficult for developers
to anticipate, or even just understand, the timing of processing chains that cross multiple,
loosely coupled components, most of which are developed by independent teams all around
the world. Realistically, automated end-to-end response-time analysis is thus required to
safely employ ROS in time-critical situations.

In this paper, we seek to lay the theoretical foundations for such an automated analysis
tool by exploring the temporal behavior of ROS 2 “Crystal Clemmys” (released in Decem-
ber 2018) [5]. We present and validate a model of ROS applications running on top of
a resource reservation scheduler such as SCHED_DEADLINE in Linux. Based on this model,
we develop an end-to-end response-time analysis for ROS processing chains that takes the
peculiarities and engineering constraints of the ROS environment into account. Finally, to
demonstrate the applicability of our analysis to practical ROS components, we evaluate our
approach on the popular move_base package [3], the core of the ROS navigation stack.

2 Background

This section introduces necessary background on the three pillars on which this paper rests.
First, the structure of ROS and its execution model are presented. Then, we review resource
reservations, an OS-level mechanism to isolate the resource consumption of processes, and
last we review the Compositional Performance Analysis approach for response-time analysis.

1 For brevity, we omit the version number and refer to ROS 2 as ROS in the remainder of the paper.

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:3

ROS Application

Client libraries

DDS Intra-process API

ROS Middleware

Operating System Linux/Windows/OS X

Language-specific

Client Libraries

Client Library

Middleware Library

rclcpp rclpy rclnodejs RCLAda

rclcpp rclpy

rcl

rmw

eProsima
FastRTPS

RTI Connext
DDS

OpenSplice
DDS

DDS Implementations

RTI Connext DDS OpenSplice DDS

eProsima FastRTPS

Figure 1 Layered structure of ROS.

2.1 ROS
ROS places great emphasis on modularity and composability. It therefore encourages strict
separation between the logical structure of the application and the mapping of this structure
onto hosts, processors, and threads. While the former is defined by the package developer,
the latter is entirely up to the system integrator. This way, software modules can be
developed independently of the target platform without losing the ability to taylor them to
the deployment characteristics of a particular robot.

From a logical perspective, ROS applications are composed of nodes, the smallest self-
contained units of behavior. These nodes communicate using the publish-subscribe paradigm:
nodes publish messages on topics, which broadcast the message to all nodes that are
subscribed to the topic. Nodes react to incoming messages by activating callbacks to process
each message. Since these callbacks may publish messages themselves, complex behavior can
be implemented as a network of topics and callbacks. ROS also allows callbacks to invoke
remote procedure calls by means of the service mechanism using a continuation-passing style.
Specifically, a callback can initiate a non-blocking service request to a service callback and
specify a third client callback to be invoked once the response is available.

ROS seamlessly allows composing nodes written in different programming languages and
using different communication backends. The ROS implementation is therefore split into
multiple layers of abstraction, which are visualized in Figure 1. Each supported programming
language requires a client library that provides a language-specific API to the ROS application
model. The ROS project officially supports C++ and Python, with community-provided
support for numerous other languages. Below the surface, these libraries use a common
system model provided by the rcl library. This ensures consistent behavior between the
languages and reduces code duplication.

Despite this unified implementation, some parts of the ROS system are allowed to differ
between languages. In particular, client libraries have a lot of freedom in implementing the
execution model to allow the callback graph to be expressed in the most natural way in each
language. A language supporting coroutines, for example, might allow coroutines as event
handlers instead of callbacks. We therefore limit the focus of this paper to the C++ interface,
which we believe to be the most likely choice for time-critical components.

For inter-node communication, ROS uses the Data Distribution Service [39] (DDS), an
industry standard for data distribution in real-time systems. DDS specifies a network-
transparent publish-subscribe mechanism that can be adapted to the needs at hand using
a rich set of Quality-of-Service (QoS) policies. ROS works with different, independent
implementations of the DDS standard (currently, FastRTPS by eProsima [2], Connext by
RTI [6], and Vortex OpenSplice by Adlink [7]), each with a different API. The rcl client library
therefore accesses the DDS subsystem over the common rmw (ROS MiddleWare) interface,

ECRTS 2019

6:4 Response-Time Analysis of ROS 2 Processing Chains

which provides a DDS-agnostic API to the rcl layer. Each supported DDS implementation
requires a dedicated rmw implementation, which translates between the common rmw
interface and the vendor-specific DDS API.

To deploy a ROS application, the individual nodes have to be distributed to hosts and
then mapped onto operating system processes. ROS does not impose any restrictions on
this mapping. Processes implement the ROS execution model by running executors, which
receive messages from rcl and invoke the corresponding callbacks. ROS provides two built-in
executors: a sequential one that executes callbacks in a single thread, and a parallel one
that distributes the processing of pending callbacks across multiple threads. Moreover, ROS
supports arbitrarily complex setups of multiple, user-defined executors.

From a real-time perspective, it is important to note that executors implement custom
scheduling policies; we revisit this issue in Section 3 in detail. Furthermore, how each ROS
executor’s threads are scheduled by the OS has a major impact on the overall timing behavior
of the application. To ensure predictable scheduling, executor threads can be bound to a
reservation server, which is a pragmatic configuration approach to increasing predictability
that we advocate in this paper. Next, we briefly review key aspects of resource reservations.

2.2 Resource Reservations
An ideal mechanism to ensure predictable service for ROS threads is a resource reservation,
which is a classic OS-level abstraction that limits interference between processes by bounding
their resource consumption. Resource reservations are typically implemented by reservation
servers. In general, a reservation server ri is characterized by a budget Qi and a period Pi,
and guarantees that its client threads receive Qi units of execution time in each period.

Many different reservation algorithms have been designed and developed over the last
30 years [12], with various different features and support for different scheduling algorithms
(e.g., fixed-priority, deadline-based scheduling, etc.). This paper does not focus on any
specific algorithm, but we assume the reservation server to comply with the periodic resource
model [58], namely, we require that: (i) each reservation has an implicit deadline, (ii)
whenever ri has workload, the reservation algorithm guarantees at least Qi units of service
every Pi time units, and (iii) there exists a bounded maximum service delay, i.e., a bounded
maximum release delay that a process running in a reservation can experience because of
budget exhaustion and delays due to other reservations. Under these assumptions, the
minimum amount of service provided by the reservation in an interval of length ∆ can be
expressed with a supply-bound function sbf(∆) [33, 58]. In the following, we assume that
such a supply bound function is known for each reservation and refer to [12, 15, 33, 58] for a
discussion of how to obtain them.

On Linux systems, resource reservations are available through the SCHED_DEADLINE [32]
scheduling class, which implements the Constant Bandwidth Server [8] reservation algorithm.
Moreover, as a special case of practical relevance, a thread running on a dedicated core at
the highest priority of the SCHED_FIFO scheduling class can be considered as running in a
reservation with the supply bound function sbf(∆) = ∆.

Next, to complete the overview of needed background, we review the Compositional
Performance Analysis approach, upon which we base our response-time analysis.

2.3 Compositional Performance Analysis
Compositional Performance Analysis (CPA) is an approach to analytically evaluate the
performance of heterogeneous and distributed systems [27]. CPA models systems as networks
of resources, and workloads as tasks with dependencies. Resources provide processing time,

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:5

which is consumed by tasks. Tasks with dependencies are organized as a direct acyclic
graph, and paths in the graphs are denoted as processing chains. Tasks sharing the same
resource are scheduled according to a resource-specific scheduling policy. The source task of
a chain is triggered according to an externally provided event arrival curve [27, 30, 62] ηe(∆),
which defines an upper bound on the number of events that can arrive in any time window
[t, t+ ∆). Event arrival curves are general enough to model both periodic and event-driven
(e.g., interrupt-driven) activations [47]. For example, when a task Tx is periodically triggered,
its arrival curve can be expressed as ηex(∆) =

⌈
∆

period(x)

⌉
. Non-source tasks are triggered

according to derived activation curves. Activation curves are obtained from arrival curves
by accounting for release jitter, which reflects the activation delay due to predecessor tasks
and depends on their response times. However, response times also depend on the release
jitter, thus creating a cyclic dependency. To solve this problem, the analysis starts with
an initial jitter of zero, and then iteratively applies the response-time analysis and updates
all jitter bounds until convergence is achieved [42, 63]. Convergence is guaranteed (for
non-overloaded systems) by the monotonic dependency between response time and jitter (the
more jitter, the higher the response times, and vice versa). The basic CPA approach bounds
the end-to-end latency of a chain with the sum of the individual response-time bounds of each
task. Extensions have been subsequently designed to improve analysis precision, e.g., [54, 56].

Since ROS provides executors that dispatch callbacks in peculiar ways using custom
scheduling policies, the existing CPA literature and tooling is not a perfect match for ROS.
However, we liberally take inspiration from CPA to obtain a similarly flexible timing model
that reflects the idiosyncrasies of ROS, which we introduce next.

3 ROS Scheduling

As described in Section 2.1, the ROS execution model multiplexes all callbacks associated with
an executor onto one or more threads. The ROS C++ library provides its built-in executor
in two variants: a single-threaded and a multi-threaded one. In this initial study of the ROS
timing behavior, we focus exclusively on the simpler and more predictable single-threaded
executor. The following description is based on a careful study of the ROS source code and
documentation, and is to our knowledge the first comprehensive description of the scheduling
behavior of ROS. To validate our observations, we conclude this section with an experiment
that demonstrates and corroborates our findings on a concrete example.

The executor distinguishes four categories of callbacks: timers, which are triggered by
system-level timers, subscribers, which are triggered by new messages on a subscribed topic,
services, which are triggered by service requests, and clients, which are triggered by responses
to service requests. The executor is responsible for taking messages from the input queues of
the DDS layer (by interacting with the rcl layer) and executing the corresponding callback.
Since it executes callbacks to completion, it is a non-preemptive scheduler. However, unlike
most commonly studied schedulers, it does not always consider all ready tasks for execution.
Instead, it bases its decisions on the readySet, a cached copy of the set of ready non-timer
callbacks, which it updates in irregular, execution-dependent intervals. The algorithm is
depicted in Figure 2, in which we assume C to be the set of all callbacks assigned to the
executor, and Ctmr, Csub, Csrv, Cclt to be the subsets of C consisting only of timers, subscribers,
services, and clients, respectively.

If the executor is idle, it updates its readySet. This is the only step in which the executor
interacts with the underlying communication layer (i.e., rmw, via rcl). It then looks for
a callback to execute by searching through the four callback categories (for efficiency, the

ECRTS 2019

6:6 Response-Time Analysis of ROS 2 Processing Chains

readySet ← {c ∈ (C \ Ctmr) | c ready in rcl}

s← {t ∈ Ctmr | t ready in rcl}

s← Csub ∩ readySet

s = ∅

s← Csrv ∩ readySet

s = ∅

s← Cclt ∩ readySet

s = ∅

s = ∅

cb ← highest-priority callback in s
execute next instance of cb
readySet ← readySet \ {cb}

s 6= ∅

s 6= ∅

s 6= ∅

s 6= ∅

Figure 2 The executor scheduling algorithm.

executor blocks if there is nothing to do; this optimization has been omitted for clarity). It
first checks whether any timers have expired. Since these are not managed by the DDS layer,
this check is based on the current timer state and does not depend on the readySet. It then
searches the readySet for subscriptions, services, and clients (in this order). Evaluating the
queues in a fixed order has the intrinsic effect of assigning each queue a different priority
(i.e., the timer queue is examined first and hence has the highest priority, and the client
queue is examined last and has the lowest priority). When a queue is considered, callback
instances are examined in callback registration order, i.e., the order in which the callbacks
were registered with the executor. Consequently, the registration order represents a second
level of priorities. Overall, the pair (callback type, registration time) is a unique priority
for each callback.

Whenever a category has at least one ready callback, the highest-priority one is selected,
executed, and then removed from the readySet. Finally, when the readySet is empty and no
expired timers are left, the executor returns to the idle state and updates the readySet based
on a current snapshot of the communication layer. We refer to the updating of the readySet
as a polling point and the interval between two polling points as a processing window. The
n-th polling point is referred to as PPn, and the n-th processing window (ranging from PPn

to PPn+1) as PW n.
Compared to regular fixed-priority scheduling, this algorithm exhibits a few unusual

properties. First, messages arriving during a processing window are not considered until the
next polling point, which depends on all remaining callbacks. This leads to priority inversion,
as lower-priority callbacks may implicitly block higher-priority callbacks by prolonging the
current processing window.

Second, it relies on a ready set instead of the more usual ready list. This means that the
algorithm cannot know how many instances of any non-timer callback are ready. It therefore
processes at most one instance of any callback per processing window. This aggravates the

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:7

0 1 2 3 4 5 6 7 8 9

H

T0
T1

M
L

T2
T3

SH

SL
SM

T1 T2 T3

PP0 PP1

Time (seconds)

Figure 3 Gantt-Chart of the scheduler validation test. At times T1 and T3, the timers trigger.
At time T2, the second batch of service requests and messages is submitted.

priority inversion above, as a backlogged callback might have to wait for multiple processing
windows until it is even considered for scheduling. Effectively, this means that a non-timer
callback instance might be blocked by multiple instances of the same lower-priority callback.

The presented description of the ROS scheduler is based on manual code inspection. In a
system as complex as ROS, however, this is potentially error-prone, as there might be subtle
interactions that are easily overlooked yet change the behavior drastically. Thus, to validate
our model, we implemented a special-purpose ROS node that executes arbitrary-length
callbacks in a way that allows inferring the behavior of the ROS scheduler from the resulting
trace. Specifically, the node is controlled using three topics (H, M, and L), three services
(SH, SM, and SL), and a special-purpose topic to create timers. Note that the chosen names
assume that topics and services are prioritized in registration order; checking that topic H
actually has the highest priority is part of the model validation. In the following description,
time zero refers to the point in time when the first batch of validation callbacks arrives at the
node. The i-th timer is denoted as ti. For ease of visualization, all callbacks run for 500ms.

Our test first sets up two timers at 200ms (T0) and two timers at 2300ms (T3). It then
sends the message sequence <L M H SH SL L M H SH SL>, waits for 1.5 seconds (T2), and
then sends <SM SM H>. The result is visualized in Figure 3. Note that the polling points
are not determined by the test; rather, they are inferred from the resulting timing behavior.

One can clearly observe the scheduler executing only a single callback per ready event,
even if multiple messages have been queued up; this is especially apparent after the second
polling point. Furthermore SM is visibly skipped at time 4, even though it arrives earlier at
T2 (i.e., during the execution of t1). This proves the existence of polling points. The timers,
however, are clearly not subject to these polling points, since t2 and t3 arrive later than SM
but are still executed during the first processing window.

ECRTS 2019

6:8 Response-Time Analysis of ROS 2 Processing Chains

callback

topic

dummy callback

(a) (b)

||

||

&&

|| OR activation

&& AND activation

𝛾1

𝛾2

𝛾3

𝛾4

𝛾5

𝛾6

&&

𝛾1

𝛾2

𝛾3

𝛾4

𝛾5

𝛾6

𝑐1

𝑐1

𝑐1 𝑐2

𝑐3 𝑐4

𝑐5

𝑐6 𝑐7 𝑐11 𝑐12

𝑐8 𝑐9
𝑐10

𝑐13 𝑐14

𝛾1= (𝑐1, 𝑐2, 𝑐5)
𝛾2= (𝑐3, 𝑐4, 𝑐5)

𝛾3= (𝑐6, 𝑐7, 𝑐10, 𝑐11, 𝑐12)

𝛾4= (𝑐6, 𝑐7, 𝑐10, 𝑐13, 𝑐14)
𝛾5= (𝑐8, 𝑐9, 𝑐10, 𝑐11, 𝑐12)
𝛾6= (𝑐8, 𝑐9, 𝑐10, 𝑐13, 𝑐14)

Figure 4 Example of a ROS graph. Circles represent callbacks, and edges represent communication
relations among them. The corresponding processing chains are also shown.

4 System Model

In this section, we introduce a model of the timing-related aspects of a ROS system, its
callbacks, and their activation relations. Table 1 summarizes our notation.

We model a ROS system as a direct acyclic graph (DAG) D = {C, E} composed of a set
of callbacks C = {c1, . . . , cn} and a set of directed edges E ⊆ C × C. We assume the graph
D to be fixed, i.e., callbacks can neither join nor leave the system at runtime. Recall from
Section 3 that Ctmr, Csub, Cclt, and Csrv denote the subsets of all timer, subscriber, client,
and service callbacks, respectively.

Each callback ci ∈ C has a worst-case execution time ei, a unique priority πi, and releases
a potentially infinite sequence of instances. We assume a discrete-time model, that is, all
time parameters are integer multiples of some basic time unit (e.g., a processor cycle).

Depending on its type, a callback instance is activated when the DDS layer receives a
message or a timer expires. When an instance of a callback is activated, it is said to be pending,
and it remains pending until it completes. A callback instance is said to be ready when it
is pending but not executing. Each edge (ci, cj) ∈ E encodes an activation relation from
callback ci to callback cj , meaning that during the execution of an instance of ci it activates
up to one instance of cj (e.g., by publishing a message to the topic to which cj is subscribed).
Each callback is associated with a set of predecessors pred(ci) = {cj ∈ C : ∃ (cj , ci) ∈ E}
and a set of successors succ(ci) = {cj ∈ C : ∃ (ci, cj) ∈ E}. A callback without predecessors
(respectively, successors) is said to be a source callback (respectively, sink callback).

Processing chains. The ROS graph D can have multiple source and sink callbacks. Each
source originates one or more callback chains γx = (cs, . . . , ce), i.e., directed paths in the
graph. The set of all chains of the graph from a source callback to any other callback is
denoted by chains(D) = {γ1, . . . , γs}. Callbacks can be shared by multiple chains. An
example of a ROS graph with several chains is shown in Figure 4.

Activation model. As in CPA, each source callback cs is associated with a given external
event arrival curve ηes(∆), denoting the maximum number of instances of cs that can be
released in any interval of length ∆, while non-source callbacks are associated with a (derived)
activation curve. We assume w.l.o.g. that ηes(∆) > 0 for ∆ > 0.

As discussed in Section 2.1, non timer-callbacks are activated in a data-driven fashion.
Our model assumes that callbacks belong to a single timer, topic, or service. (This is not
a restriction, since two callbacks may execute the same code.) Consequently, a callback
may have multiple incoming edges only if it subscribes to a topic with multiple publishers
(similarly to what is referred to as OR-activation semantics in other work [27]). In this case,
all subscribers are triggered once for each message published to the topic. The derivation of
activation curves for callbacks with multiple incoming edges is discussed in Section 5.1.

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:9

Table 1 Summary of Notation.

Symbol Description Symbol Description

ci the i-th callback γx the x-th processing chain
rk the k-th reservation γx,y the y-th subchain of γx

Ck set of callbacks in reservation rk ηe
i external arrival curve of ci

δi,j propagation delay from ci to cj ηa
i derived activation curve of ci

A an offset into a busy window sbfk(∆) supply-bound function of rk

R∗i (A) least positive solution of ci’s rbfi(∆) request-bound function of ci

response-time equation for offset A RBF(C,∆)
∑

ci∈C
rbfi(∆)

Scheduling of executors. As discussed in Section 3, this paper adopts the built-in single-
threaded executor. To compel the OS to guarantee predictable service to ROS executors, we
assume each executor (i.e., each thread) to be assigned to a single reservation server, and
each reservation server to handle a single executor. Consequently, callbacks assigned to an
executor can equivalently be considered as assigned to the corresponding reservation server.

The system comprises a set of w reservations R = {r1, . . . , rw}, and the set of all the
callbacks assigned to reservation rk is denoted Ck. Analogously, the sets of all timers,
subscriptions, clients and services allocated to reservation rk are denoted as Ctmr

k , Csub
k , Cclt

k ,
and Csrv

k , respectively. The symbols lpk(ci) and hpk(ci) denote the set of callbacks in Ck with
lower and higher priority than πi, respectively. The reservations are partitioned onto a set of
m processors P = {p1, . . . , pm}, i.e., each reservation is statically assigned to a processor.

The results presented in this paper rely on the availability of a supply-bound function
sbfk(∆) denoting the minimum service provided by a reservation rk in any interval of length
∆ (recall Section 2.2). Whenever multiple reservations are allocated to the same processor,
the resource provisioning described by the supply-bound function is guaranteed only if all
reservations are schedulable, i.e., they are always able to provide their complete budget
during each period [33]. In this paper, reservations are assumed to be schedulable. The
problem of guaranteeing reservations to meet their timing constraints is also referred to as
global schedulability in prior works (e.g., in the context of hierarchical scheduling [9]). Many
results are available to ensure global schedulability, e.g., [37].

Propagation delay. The propagation delay between the publication of a message by a
sending callback and the activation of an associated receiving callback can be significant.
Indeed, due to the inherently distributed topology of ROS systems, the message exchange
can involve the network, introducing additional latencies. To model such a delay, each pair of
reservations (rx, ry) is characterized by a (DDS-dependent) worst-case communication delay
δi,j , denoting the maximum time experienced by a message sent from the DDS layer of a
sending callback ci allocated to rx until being received by the DDS layer of a receiving callback
cj allocated to ry, i.e., the maximum additional delay experienced by cj before being activated.
When rx = ry, δi,j is assumed to be negligible. This delay can be either analytically upper-
bounded for different types of networks (e.g., see [17, 19, 51]), or pragmatically measured,
depending on the requirements of the target application domain.

Event sources. With the exception of timers, all callback types provided by ROS implement
data-driven activation semantics. Consequently, all chains comprised solely of ROS callbacks
are initially triggered by a timer. Nonetheless, applications often have to react to external

ECRTS 2019

6:10 Response-Time Analysis of ROS 2 Processing Chains

events that are delivered asynchronously via interrupts (e.g., certain sensors, network packets
delivering inputs from supervisory controllers or human operators, etc.). To integrate such
events in our ROS model, we allow external threads to interact with ROS and model them
as pseudo-callbacks. Specifically, we name these threads event sources. An event source is a
regular OS-level thread that is sporadically activated, and interacts with ROS by publishing
to one or more topics, thus acting as an interface or ingress point for external events. As
we do in the case of executors, we assume each event source to be exclusively assigned to
a dedicated reservation. For notational convenience, we let Cevt denote the set of all event
sources and refer to event sources as callbacks ci ∈ Cevt.

5 Response-Time Analysis for Processing Chains

This section presents an analysis of the end-to-end delay (i.e., the maximum response time)
of a generic ROS processing chain. Our analysis is inspired by the CPA approach (described
in Section 2.3), whose event-propagation mechanism is a natural fit for the distributed and
message-based nature of ROS. A discussion of possible alternatives is postponed to Section 7.

As in CPA, a complex ROS graph is analyzed by computing individual response-time
upper bounds for each callback. End-to-end latencies can then be obtained by summing
the individual response times of the callbacks of each chain [27]. Unfortunately, none of the
existing instantiations of CPA can compute these per-callback response times, as they are
unaware of the peculiarities of the ROS scheduling mechanism (e.g., polling points). We
therefore present a ROS-specific response-time analysis for callbacks in Section 5.2.

Although this approach provides a safe and simple upper bound on end-to-end latencies,
the resulting bounds may be overly pessimistic if arrival bursts of interfering callbacks are
accounted for multiple times, once for each callback in the chain under analysis. This effect
is known in the literature as the “pay-burst-only-once” problem [30, 56]. To improve the
accuracy of our analysis, Section 5.4 presents a bound in which portions of chains, named
subchains, are analyzed in a holistic way. We define the y-th subchain γx,y of γx as a sequence
of consecutive callbacks ci ∈ γx of the original chain that are allocated to a single reservation
rk, i.e., ci ∈ γx,y ⇒ ci ∈ Ck. With this approach, arrival bursts are accounted for only
once per subchain. The CPA approach can then be applied on a per-subchain basis, by
propagating arrival curves and summing response-time bounds whenever a subchain crosses
a reservation boundary, or joins with another chain in a callback with multiple predecessors.

5.1 High-Level Overview

Figure 5 shows an example that illustrates how the proposed analysis can be used to upper-
bound the response time of a callback chain spanning multiple reservations. For clarity,
interfering callbacks have been omitted in the figure. Response-time bounds for the various
subchains of γx (i.e., γx,1 = (c1, c2), γx,2 = (c3, c4), γx,4 = (c6, c7), and γx,3 = (c5)) can be
derived with the results that will be presented in Sections 5.2 and 5.4.

As discussed in Section 2.3, activation curves of non-source subchains must be derived
from their predecessors and depend on both the response time of previous subchains and
communication delays. In this example, ηax,2(∆) = ηex(∆ +Rx,1 + δ2,3), ηax,3(∆) = ηax,2(∆ +
Rx,2 + δ4,5), ηax,4(∆) = ηex,3(∆ + Rx,3 + δ5,6), where Rx,y is a response-time upper bound
for γx,y. The response time of the chain shown in this example can then be computed
as the sum of the response times of the subchains and communications delays, i.e., as
Rx = Rx,1 + δ2,3 +Rx,2 + δ4,5 +Rx,3 + δ5,6 +Rx,4.

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:11

𝑐1 𝑐3𝑐2 𝑐4 𝑐5

𝑐6
𝑟1

𝑐7
𝑟2 𝑟3

𝛾𝑥,1 𝛾𝑥,2 𝛾𝑥,3

𝛾𝑥,4

η𝑥
𝑒(∆) η𝑥,2

𝑎 (∆) η𝑥,3
𝑎 (∆)

η𝑥,4
𝑎 (∆)

Figure 5 A callback chain crossing multiple reservations. Activations of the first subchain are
bounded by an external event arrival curve, while subsequent subchains are characterized by an
activation curve that depends on response times and communication delays in the previous subchains.

Processing chains sharing one or more callbacks are also supported by the analysis
framework. To deal with this case, the jitter propagation approach is extended to callbacks
with multiple incoming edges, i.e., multiple predecessors [29]. As discussed in Section 4, a
callback with multiple incoming edges is triggered when it receives a message from any of its
predecessors. Consequently, the activation curve of a callback (i.e., the source callback of a
subchain, when the holistic approach of Section 5.4 is adopted) is derived from the activation
curves of the predecessors as follows:

ηai (∆) =
∑

cj∈pred(ci)

ηaj (∆ +Rj + δj,i), (1)

where Rj is the response time of cj and δj,i is the propagation delay of messages from cj to
ci. The sum in Equation (1) follows since each incoming message spawns a callback instance.

5.2 Analysis for Individual Callbacks
To start, we recall some classic definitions from uniprocessor schedulability analysis. A
time t is a quiet time with respect to a callback ci if there is no pending instance of ci
that arrived prior to t. An interval [t1, t2) is a busy period [59] for ci iff t1 and t2 are
quiet times of ci and there is no quiet time (w.r.t. ci) in between t1 and t2. The response
time Ri of a callback ci is defined as the maximum difference, over all possible instances,
between the finishing time and the release time of the specific instance. For each callback
ci, the request-bound function rbfi(∆) is defined as the maximum amount of (cumulative)
processor service required by callback instances released in an interval of length ∆, i.e.,
rbfi(∆) = ηai (∆) · ei [31]. Finally, we define the total request-bound function of a given set of
callbacks C∗ as RBF(C∗,∆) =

∑
ci∈C∗ rbfi(∆).

From a scheduling perspective, callbacks can be divided into three categories: event
sources, timers, and polling-point-based (pp-based) callbacks. For convenience, in addition
to the sets Cevt

k and Ctmr
k containing respectively the event sources and timers allocated

to rk, we define also the set Cpp
k = Ck \ (Cevt

k ∪ Ctmr
k) of pp-based callbacks allocated to

rk. Event sources are the easiest to analyze since, as described in Section 4, each event
source is exclusively allocated to a dedicated reservation. Building on the concept of the
supply-bound function sbfk(∆), i.e., the minimum amount of service provided by reservation
rk in an interval of length ∆, Lemma 1 provides a response-time bound for event sources.

I Lemma 1. If A ≥ 0 is the time at which the instance of an event source callback ci ∈ Cevt
k

under analysis is released (relative to the beginning of the current busy period), and R∗i (A) is
the least positive value that satisfies

sbfk(A+R∗i (A)) = rbfi(A+ 1), (2)

then Ri = max{R∗i (A) | A ≥ 0} is a response-time bound for ci.

ECRTS 2019

6:12 Response-Time Analysis of ROS 2 Processing Chains

Proof. By assumption (cf. Section 4), if an event source ci is allocated to a reservation
rk, no other callbacks are allocated to rk. Consequently, each callback instance can suffer
only self-interference from other instances of the same callback. The lemma follows since
the amount of service provided by rk in the interval [0, A + R∗i (A)) is lower-bounded by
sbfk(A+R∗i (A)) and the maximum amount of service required by instances of ci released in
the interval [0, A] is bounded by rbfi(A+ 1). J

Lemma 1 is not directly applicable, as it requires checking an unbounded number of
possible release offsets A. To actually implement a response-time analysis, both an upper
bound on the length of the analysis interval and a reduction of the number of release offsets
that must be checked are needed; we revisit this issue in Section 5.3.

Next, we consider the response times of timers, which are proper callbacks and thus
dispatched by ROS executors. As described in Section 3, timer scheduling is not subject to
polling points. Nevertheless, since executors process callbacks non-preemptively, timers are
subject to lower-priority blocking. Lemma 2 bounds the blocking experienced by a timer
callback due to the lower-priority callbacks cj ∈ lpk(ci).

I Lemma 2. A timer callback ci ∈ Ck is blocked for at most Bi = max{ej | cj ∈ lpk(ci)}
time units by lower-priority callbacks.

Proof. First note that callbacks allocated to any reservation ro 6= rk cannot block ci since
there is an independent executor in each reservation and, as explained in Section 3, timers
are not subject to polling points. An instance of a timer callback ci ∈ Ck can be released
at time t∗ + 1, where t∗ is the time at which a lower-priority callback cj ∈ lpk(ci) started
executing. Due to non-preemptive scheduling, ci cannot start until cj completes, i.e., after
at most ej time units. The lemma follows. J

With Lemma 2 in place, Lemma 3 upper-bounds the response time of timer callbacks.

I Lemma 3. If A ≥ 0 is the time at which the instance under analysis of a timer callback
ci ∈ Ctmr

k is released (relative to the beginning of the current busy period), and R∗i (A) is the
least positive value that satisfies

sbfk(A+R∗i (A)) = rbfi(A+ 1) + RBF(hpk(ci), A+R∗i (A)− ei + 1) +Bi, (3)

then Ri = max{R∗i (A) | A ≥ 0} is a response-time bound for ci.

Proof. By Lemma 2, the blocking due to lower-priority callbacks experienced by ci is bounded
by Bi. Due to the priority assignment presented in Section 3, every callback with a priority
higher than a timer is itself a timer, i.e., cj ∈ hpk(ci)⇒ cj ∈ Ctmr

k . Due to non-preemptive
scheduling, as soon a callback instance starts executing it cannot be interfered with by any
other callback, i.e., higher-priority callbacks can interfere only in the interval [0, A+R∗i (A)−ei].
The lemma follows by noting that: (i) the interference from higher-priority callbacks is
bounded by the total request-bound function, i.e., RBF(hpk(ci), A+R∗i (A)− ei + 1), (ii) the
callback under analysis can suffer self-interference only from instances released in [0, A], and
(iii) the amount of service provided by rk in the interval [0, A+ R∗i (A)) is lower-bounded
by sbfk(A + R∗i (A)), i.e., the callback under analysis completes no later than when the
guaranteed minimum service matches the maximum total demand. J

Again, we discuss how to use Lemma 3 in a practical response-time analysis in Section 5.3.
Next, we consider pp-based callbacks. Due to the unpredictable nature of dynamic polling
points, pp-based callbacks suffer additional blocking. Indeed, when an instance of a pp-based

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:13

𝑃𝑃ℎ𝐴 𝑡0

workload subject to polling points (both higher and lower priority)

timers

𝐴 + 𝑅𝑖
∗(𝐴)

…

𝑒𝑖

other instances of 𝑐𝑖 𝑋

𝑃𝑃ℎ−1

Figure 6 Time intervals in which other pp-based callbacks and timers can interfere with a
pp-based callback ci under analysis.

callback is released, it requires the completion of one or more processing windows before
being executed. A response-time bound for pp-based callbacks is provided by Lemma 4,
which is illustrated in Figure 6.

I Lemma 4. If A ≥ 0 is the time at which the instance of a pp-based callback ci ∈ Cpp
k

under analysis is released (relative to the beginning of the current busy period), X ≥ 0 is the
difference between time A+R∗i (A)− ei and the last polling point before time A+R∗i (A)− ei
(see Figure 6), and R∗i (A) is the least positive value that satisfies

sbfk(A+R∗i (A)) = rbfi(A+ 1) + RBF(Coth
k , A+R∗i (A)− ei −X + 1)

+ RBF(Ctmr
k , A+R∗i (A)− ei + 1), (4)

where Coth
k = Ck \ (Ctmr

k ∪ {ci}) is the set of the other non-timer callbacks allocated to rk,
then Ri = max{R∗i (A) | A ≥ 0} is a response-time bound for ci.

Proof. Due to polling points, non-timer callbacks (both of higher and lower priority) can
delay the callback under analysis only with instances that have arrived by the last polling
point. Note that a polling point cannot occur while a callback is executing. Consequently,
the polling point at time A+R∗i (A)− ei −X is the last polling point before A+R∗i (A), and
pp-based callbacks can delay the callback instance under analysis only with instances released
in [0, A+R∗i (A)− ei −X) (note that a callback released exactly at a polling point PPn is
processed during PW n). Due to the priority assignment discussed in Section 3, each timer
callback has higher priority than any pp-based callback. It follows that, due to non-preemptive
scheduling, all timer callbacks Ctmr

k can interfere with the pp-based callback under analysis
up to the time at which it starts executing, i.e., at any time in [0, A+R∗i (A)−ei]. The lemma
then follows analogously to Lemma 3 by noting that: (i) the callback under analysis can
suffer self-interference only from instances released in [0, A], and (ii) the amount of service
provided by rk in the interval [0, A+R∗i (A)) is lower-bounded by sbfk(A+R∗i (A)). J

Lemma 4 upper-bounds the response time experienced by a pp-based callback. As for the
previous lemmas, we will discuss how to bound the space of possible times A in Section 5.3.
Moreover, Lemma 4 depends on the time distance X between A + R∗i (A) − ei and the
last polling point before A + R∗i (A), which is generally unknown during offline analysis.
Consequently, we need to determine the scenario (i.e., the value of X) that maximizes
the response time. Intuitively, this case occurs when the callback ci under analysis starts
executing just after the last polling point, i.e., lower-priority callbacks can interfere with ci
throughout the time from its release until it starts executing. In this case, X = 0. Lemma 5
proves that X = 0 indeed dominates all possible values of X.

ECRTS 2019

6:14 Response-Time Analysis of ROS 2 Processing Chains

I Lemma 5. The delay experienced by a pp-based callback ci ∈ Ck \ (Ctmr
k ∪ Cevt

k) due to
other pp-based callbacks is maximized when ci starts executing just after the last polling point:

max
A≥0,X≥0

RBF(Coth
k , A+R∗i (A)− ei −X + 1) = max

A≥0
RBF(Coth

k , A+R∗i (A)− ei + 1), (5)

where R∗i (A), A, and X are defined as in Lemma 5.

Proof. The lemma follows by noting thatX ≥ 0 and that RBF(Coth
k , A+R∗i (A)−ei−X+1) is

a sum of monotonic non-decreasing functions; hence it is monotonic non-decreasing, too. J

By Lemma 5, it follows that the amount of interference generated by timer callbacks
ct ∈ Ctmr

k and non-timer callbacks cn ∈ Coth
k is the same in the worst case. Consequently, we

can merge the two sets, and rewrite Equation (4) in a simpler manner:

sbfk(A+R∗i (A)) = rbfi(A+ 1) + RBF({Ck \ ci}, A+R∗i (A)− ei + 1). (6)

Equation (6) highlights that the scheduling policy adopted by the built-in ROS executor
allows every other callback, independent of priority, to interfere with pp-based callbacks.
Consequently, polling points make the priority assignment ineffective for upper-bounding the
response time of pp-based callbacks. This confirms what we empirically observed during the
model validation (Section 3) from an analytical perspective. Note that timer callbacks are
not affected by polling points and their response-time bound is equivalent to non-preemptive
fixed-priority scheduling [17], in the context of a resource reservation (Lemma 3).

5.3 Bounding the Search Space
The lemmas presented in Section 5.2 require checking Equations (3), (4) and (5) for all
possible A ≥ 0, where A represents the relative release time (with respect to the beginning of
the current busy period) of the callback instance under analysis. To use the previous lemmas
in a practical response-time analysis, both a bound on the analysis interval and a reduction
of the search space size are required. Note that the analysis interval can be bounded by
the longest interval during which a reservation rk is busy serving higher-or-equal-priority
workload, i.e., the length of the longest busy period [59], which Lemma 6 bounds.

I Lemma 6. Let Cevt
k , Ctmr

k , and Cpp
k be the sets of all event source, timer, and pp-based

callbacks allocated to rk, respectively. If ci ∈ Ck is the callback under analysis, and L∗ is the
least positive value that satisfies

sbfk(L∗) =

rbfi(L∗) if ci ∈ Cevt

k

RBF(hpk(ci), L∗) +Bi + rbfi(L∗) if ci ∈ Ctmr
k

RBF(Ck, L∗) if ci ∈ Cpp
k ,

(7)

then L∗ is an upper bound on the length of the longest busy period.

Proof. By contradiction, assume that there exist a busy period of ci with length L′ > L∗.
Under this assumption, in the busy period corresponding to L′ either (i) there are more
callbacks delaying ci, or (ii) callbacks execute for more time or, (iii) callbacks arrive more
frequently than in the busy period corresponding to L∗. By Lemmas 1, 3, and 4, Equation (7)
accounts for all callbacks that can delay ci. Moreover, by definition of the request-bound
function, Equation (7) is composed of a sum of products of worst-case execution times and

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:15

arrival curves. By definition, no callback can execute for more than its worst-case execution
time. Further, the activation curve ηa(∆) defines an upper bound on the number of events
that can arrive in any time window [t, t+ ∆), thus leading to a contradiction. J

With Lemma 6 restricting the search to a finite interval, Lemma 7 below reduces the number
of points contained in the search space. To this end, consider the response-time bounds
computed with Equations (3), (4) and (6): each can be expressed as an instance of a general
response-time equation sbfk(A+ x) = rbfi(A+ 1) + I(A+ x) +B, where B is a constant and
the function I depends only on its argument. Equation (6), for example, can be written in
this form by substituting B = 0 and I(∆) = RBF({Ck \ ci},∆− ei + 1). For any A, we let
SOL(A) denote the set of all positive x that satisfy the general response-time equation.

I Lemma 7. For a callback ci ∈ Ck under analysis, let A−i = {A > 0 | rbfi(A+1) = rbfi(A)}
denote the points where rbfi(A) stays constant. For any a ∈ A−i , R∗i (a) 6= maxA≥0R

∗
i (A).

Proof. We prove that R∗i (a) is strictly less than its “neighbor” R∗i (a− 1) ∈ SOL(a− 1), and
hence necessarily also less than maxA≥0R

∗
i (A). To this end, we establish that R∗i (a− 1) =

R∗i (a) + 1 (which is well-defined since 0 /∈ A−i) by showing that (i) R∗i (a) + 1 ∈ SOL(a− 1)
and (ii) R∗i (a) + 1 ≤ a′ for any a′ ∈ SOL(a− 1).

Step (i): By definition, R∗i (a) ∈ SOL(a), and thus sbfk(A+R∗i (A)) = rbfi(A+ 1) + I(A+
R∗i (A))+B. By adding 0 = 1−1 and using the fact that a ∈ A−i and hence rbfi(a+1) = rbfi(a),
we equivalently obtain sbfk(a− 1 +R∗i (a) + 1) = rbfi(a− 1 + 1) + I(a− 1 +R∗i (a) + 1) +B.
This is the definition of SOL(a− 1) and hence proves R∗i (a) + 1 ∈ SOL(a− 1).

Step (ii): Consider any a′ ∈ SOL(a−1). Then sbfk((a−1)+a′) = rbfk(a)+I((a−1)+a′)+B.
Using again that rbfi(a+1) = rbfi(a), this is equivalent to sbfk(a+(a′−1)) = rbfk(a+1)+I(a+
(a′−1))+B, which matches the definition of SOL(a) and hence a′−1 ∈ SOL(a). By definition,
R∗i (a) = min{x | x ∈ SOL(a)}, and thus we have a′ − 1 ≥ R∗i (a)⇔ R∗i (a) + 1 ≤ a′. J

Together, Lemmas 6 and 7 enable an efficient implementation of the response-time analysis
by restricting the required search space Ai (w.r.t. a callback ci) to

Ai = {A | 0 ≤ A ≤ L∗} \ A−i = {0 ≤ A ≤ L∗ | rbfi(A+ 1) 6= rbfi(A)} ∪ {0}.

To further reduce the effects of arrival bursts, we next provide a joint response-time bound
for a sequence of callbacks in a single reservation.

5.4 Analysis for Processing Chains
This section is provides an end-to-end analysis for linear subchains composed of multiple
callbacks, where each subchain does not cross reservation boundaries. To this end, we extend
the notion of request bound functions to subchains as rbf x,y(∆) = ηas (∆) · ex,y, where cs is
the first callback of the subchain γx,y, and ex,y =

∑
ci∈γx,y ei is the cumulative worst-case

execution time of the subchain. Consequently, RBFγ(Γk,∆) =
∑
∀γx,y∈Γk

rbf x,y(∆), where
Γk is the set of subchains allocated to rk. Lemma 8 allows us to compute a response-time
bound for a subchain composed of multiple callbacks (if a subchain consists of only a single
callback, its response time can be computed with the results of Section 5.2).

I Lemma 8. If γx,y = (cs, . . . , ce) is a subchain composed of |γx,y| ≥ 2 callbacks, Γk is the
set of subchains allocated to rk, and Rx,y is the least positive value that satisfies

sbfk(Rx,y) = RBFγ(Γk, Rx,y − ee + 1), (8)

then Rx,y is a response-time bound for γx,y.

ECRTS 2019

6:16 Response-Time Analysis of ROS 2 Processing Chains

callback

topic

dummy callback

(a) (b)

||

||

&&

|| OR activation

&& AND activation

𝛾1

𝛾2

𝛾3

𝛾4

𝛾5

𝛾6

&&

𝑐1

𝑐1 𝑐2

𝑐3 𝑐4

𝑐5

𝑐6 𝑐7 𝑐11 𝑐12

𝑐8 𝑐9
𝑐10

𝑐13 𝑐14

𝛾1= (𝑐1, 𝑐2, 𝑐5)
𝛾2= (𝑐3, 𝑐4, 𝑐5)

𝛾3= (𝑐6, 𝑐7, 𝑐10, 𝑐11, 𝑐12)

𝛾4= (𝑐6, 𝑐7, 𝑐10, 𝑐13, 𝑐14)
𝛾5= (𝑐8, 𝑐9, 𝑐10, 𝑐11, 𝑐12)
𝛾6= (𝑐8, 𝑐9, 𝑐10, 𝑐13, 𝑐14)

position

odometry

laser scanner

vel

goal

P=1s
J =0

P=80ms
J =20 μs

P=10s
J =0

P=80ms
J =20 μs

P=80ms
J =20 μs

local-planner global-planner

reservation

callback

arrival curve

legend

𝑒1 = 200 μs
𝜋1 = 1

𝑒2 =200μs
𝜋2 = 2

𝑒3 =2ms
𝜋3 = 3

𝑒4 =18ms
𝜋4 = 4

𝑒5 = 10𝑚s
𝜋5 = 1

𝑒6 = 200𝑚s
𝜋6 = 2

𝑒9 = 200𝑚s
𝜋7 = 3

pose mapl
planl

plan1

plan2

plan2

mapg

Figure 7 Callback graph of the event-driven move_base system.

Proof. Since |γx,y| ≥ 2, the last callback in a subchain is a pp-based callback (timers and
event source are necessarily source callbacks). By Lemmas 4, 5, and Equation (6), every
other callback can interfere with a pp-based callback. Since each instance of a subchain
completes when the last callback of the chain terminates, it follows that the chain under
analysis can be interfered with by all other chains, regardless of callback priorities. The
lemma follows by noting that, due to non-preemptive scheduling, the subchain cannot be
interfered with during the execution of its last callback. J

Lemma 8 extends Lemma 4 for subchains. As observed in Section 5.2, also in this case
the presence of pp-based callbacks make the priority assignment ineffective for the purpose
of computing a tighter response-time bound. However, since arrival bursts of interfering
callbacks are accounted only for once per subchain, analyzing a subchain holistically still
overall improves the analysis accuracy for long subchains.

5.5 Analysis Summary

The results presented in this section allows analyzing ROS systems under reservation-based
scheduling. Specifically, Section 5.2 proposed a response-time analysis for single callbacks,
and Section 5.4 extended it to subchains allocated to a single reservation. As discussed
in Section 5.1, both approaches allow to compute a safe end-to-end latency for generic
processing chains by propagating arrival curves and summing individual response-time
bounds. Specifically, the effects of predecessor callbacks are accounted for as release jitter in
the activation curves of non-source callbacks. Such release jitter depends on the response
times of predecessors, but also response times depend on jitter in a circular manner. As in
the CPA approach, this problem can be solved by iteratively searching for a global fixed
point at which all jitter terms and response times are consistent.

6 Case Study

Our analysis seeks to enable ROS developers to easily and quickly try different designs
and explore various what-if scenarios. To evaluate the suitability of our approach for that
purpose, we analyzed a safety-critical processing chain in the popular move_base package,
the central part of the ROS navigation stack for wheeled robots, using sensor rates and
(observed) maximum execution times from a Bosch-internal case study. Since move_base has
not been ported to ROS 2 yet, we model the ROS 1 version as if it ran on a ROS 2 system.

The move_base package addresses the path planning problem: given a map of the
environment, first find a path to the goal location (global planning), and then control the
robot’s velocity to follow that path while avoiding obstacles (local planning). Both planners
base their decision on internal maps, which reflect the component’s knowledge of obstacles
and properties of the environment. As the robot moves through the environment, these maps
are continously updated based on the most recent sensor data.

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:17

The move_base callback graph is illustrated in Figure 7. The incoming sensor and position
data is normalized to absolute coordinates based on the robot’s pose and then integrated into
the respective maps. The local planner then updates its plan based on the new information.

From a timing perspective, the execution time of the global planner stands out. Unlike
the local planner, the global planner is difficult to predict and its execution time depends
heavily on the path-finding difficulty. The global planner’s map is also significantly larger
and often updated only partially, further reducing predictability. In the Bosch case study,
global planning times reached up to 200ms, more than ten times the local planner’s runtime.
Fortunately, the global planning is not time-critical. At worst, computing the global plan too
late may cause the robot to take a detour for a few moments. We therefore separate the global
planning callbacks from the time-critical local planning callbacks using two reservations.
This not only isolates the more unpredictable components from the critical path, but also
helps to limit the effects of the ROS executor scheduling policy.

Internally, the move_base subsystem is completely time-driven, using ROS topics only to
communicate with other components. We configured the local planner to run in sync with
the fixed sensor rate of 12.5Hz, and the global planner to run more rarely at 1Hz. While this
setup makes for a quite predictable system, it is also very inflexible and makes it difficult to
ensure that components do not consume stale data. For comparison, we therefore modeled
two variants: the original, time-driven version, and an event-driven alternative design that
models the activation dependency explicitly using internal topics.

In our case study, we are interested in the end-to-end latency of the path from the
odometry input to the wheel command output (denoted “vel” for velocity). This latency
determines, for example, how long the robot takes to react to an obstacle suddenly appearing
in front of it, and hence is safety-relevant. In the event-driven setup, this is defined as the
worst-case response time from activation to completion of the chain. For the time-driven
setup, we compute the response time of the local planner and, if there is jitter on the sensor
inputs, add the activation period as worst-case sampling delay. Although generally speaking
the response time of the last chain element is not necessarily identical to the chain’s overall
latency, it happens to coincide here: by prioritizing the chain in decreasing order, and
triggering all tasks at the same time, no task can run before its predecessor completes. The
completion of the local planner thus implies the completion of the entire processing chain.

One of the most difficult steps in using reservation-based scheduling is dimensioning the
reservations correctly. When isolating the local from the global planner, one would like to
give the local planner just enough budget to complete in time, leaving as much execution
time as possible for the global planner. To this end, we prototyped our analysis in the
pyCPA framework [18]. Figure 8a shows the results for both the time-driven setup and the
event-driven setup. In case of the event-driven setup, we also included the analysis results
when disabling the whole-chain analysis described in Section 5.4. The graph shows the entire
range of local planner budgets in percent of the total core bandwidth. For simplicity, we
allocate the rest of the core to the global planner reservation. Since we do not analyze any
processing chains through the global planner’s reservation, though, the exact amount of
bandwidth dedicated to this reservation does not impact the reported response times.

The graph clearly shows a similar effect of budgeting on the time-driven and event-driven
system. However, due to the worst-case sampling delay, the time-driven system remains one
sampling period of 80ms above the event-driven latencies. Clearly, the event-driven approach
is advisable in this setup, allowing the system to wait until the sensor results arrive instead
of commencing planning based on stale values. One can also observe the beneficial effects of
the whole-chain analysis; when disabled, the chain’s self-interference significantly inflates
the predicted response-time bounds. Since the analysis conservatively assumes that every
callback is blocked by every other callback, actual interference is overcounted four-fold.

ECRTS 2019

6:18 Response-Time Analysis of ROS 2 Processing Chains

40 45 50 55 60 65

Budget of the local reservation (percent)

0

100

200

300

400

500

E
n
d
-t

o
-e

n
d

la
te

n
c
y

(m
s) time-driven

event-driven

event-driven (no chains)

(a) Effects of reservation dimensioning on the
critical path latency.

0 20 40 60

Jitter on the input sensors (ms)

100

200

300

400

500

600

700

E
n
d
-t

o
-E

n
d

la
te

n
c
y

(m
s) time-driven

event-driven

event-driven (no chains)

(b) Effects of input jitter on the critical path
latency, using a budget of 45%.

Figure 8 Experimental results.

Another important property of any control system is how it copes with input jitter.
While the previous experiment modeled the sensors as strictly following the 12.5Hz schedule
with only 200µs of jitter, Figure 8b shows the predicted end-to-end latency as input jitter
increases, using a local planning budget of 45%. Here, one clearly observes the main benefits
of purely time-driven systems; they are very robust to input jitter, mainly because they are
not influenced by bursts. For the event-driven system, one can observe a significant rise
roughly every 20ms. These are the points at which one more event can arrive during the
execution of the processing chain. The event-driven system remains superior below 40ms of
jitter (i.e., at most one event at the same time), but succumbs to self-interference at larger
jitters. Without a systematic analysis, such tradeoffs are extremely difficult to anticipate.

In conclusion, this case study highlights the benefits of automated response-time analysis.
Without implementing a single line of ROS code, we are able to reason about the worst-case
latencies of two quite different move_base designs, noting the advantages and disadvantages
in different scenarios. Having a fully-integrated and automatic version of this analysis
would clearly be a major aid to ROS developers, allowing response times to be treated
as a measurable design constraint instead of relying solely on intuition, trial-and-error, or
post-implementation experimentation. Extrapolating a bit further, it might even allow one
day to reason about the latency of external dependencies, enabling the safe and easy reuse of
well-tested components for time-critical purposes.

7 Related Work

The literature concerning the real-time aspects of ROS 2 processing chains is quite limited.
To the best of our knowledge, this is the first paper modeling a ROS system from a real-time
perspective and proposing a response-time analysis for ROS processing chains.

Most of the existing work on ROS targets ROS 1 systems, mainly conducting empirical
performance measurement and proposing possible improvements. For instance, Saito et al. [53]
proposed a priority-based message transmission algorithm for ROS 1 that allows publishers
to send data to multiple subscribers according to their priorities, and a mechanism for
synchronizing communications among multiple nodes running at different frequencies. Suzuki
et al. [61] presented a mechanism for coordinating CPU and GPU execution of ROS 1 nodes,
and an offline scheduling algorithm that assigns priorities to nodes according to their laxities.
Maruyama et al. [36] conducted an experimental study aimed at comparing the performance

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:19

of ROS 1 and a preliminary version of ROS 2 under different DDS implementations. Gutiérrez
et al. [25] performed a similar evaluation of ROS 2 “Ardent Apalone” under Linux with
the PREEMPT-RT patch. Concerning more general robotic systems, Lotz et al. [34, 35]
presented a meta-model for designing non-functional aspects of robotics systems such that
the resulting models can be analyzed with the SymTA/S timing analysis tool [27], which is
based on the CPA approach [29, 46, 48, 49, 65].

Concerning the analysis of processing chains in distributed systems, one of the first
proposals to verify end-to-end timing constraints is due to Fohler and Ramamritham [20],
who proposed an approach for obtaining a static schedule composed of tasks with precedence
constraints. In the context of non-static scheduling, prior work can be divided into two main
categories: those based on CPA [27] and those adopting an holistic approach [42, 63]. The
first method adopts arbitrary arrival curves [47] and analyzes chains crossing different nodes
of a distributed system individually (by means of a local component analysis), and propagates
the event model (i.e., activation curves) until convergence is achieved [50]. Different local
analyses have been designed over years. For instance, Schlatow and Ernst [54, 55] proposed
a local analysis for chains entirely contained in a single resource (e.g., a processing node)
where tasks along the chain can have arbitrary priorities, under preemptive scheduling. Other
authors [26, 28, 52, 56, 64] improved the analysis precision by accounting for correlations
among events in different components. Previously, Thiele et al. [62] proposed Real-Time
Calculus, an approach similar to CPA in which the service demand of the workload is modeled
with arrival curves, and service curves model the processing capacity of local components. As
in Network Calculus [30], arrival curves and services curve are combined together by means
of a max-plus algebra, thereby obtaining the timing behavior of the component. Concerning
the holistic approach, the seminal work is due to Tindell and Clark [63], who proposed
a schedulability analysis for transactions, i.e., sporadically triggered sequences of events,
scheduled under fixed-priority preemptive scheduling. Their analysis has been refined by
Palencia et al. considering offsets [42] and precedence relations [41]. More details about the
transactional task model can be found in a survey by Rahni et al. [44].

Only little attention has been given to date on how specific frameworks affect worst-case
response times. To the best of our knowledge, all of them target the OpenMP framework [40],
which is usually used for globally scheduled parallel tasks. For example, Serrano et al. [57]
distinguished between tied and untied sub-tasks in OpenMP, proposing a response-time
analysis for a parallel task composed of untied sub-tasks. While untied nodes have no
particular scheduling restrictions, tied sub-tasks are OpenMP-specific and consist of a
subgraph whose nodes must all execute on a single thread. Subsequently, Sun et al. [60]
proposed an improvement of the OpenMP scheduling policy. To the best of our knowledge,
the present paper is the first to systematically study the temporal behavior of ROS.

8 Limitations, Extensions, and Conclusions

This initial work on the timing analysis of ROS 2 processing chains can already handle practical
components (such as move_base), and provides a rich foundation for future developments.
Nonetheless, given the inevitable complexities associated with a mature, flexible, and widely
used framework, we had to elide certain infrequently used aspects of ROS. In the following,
we discuss these limitations and highlight promising direction for future extensions.

This paper considers the built-in single-threaded ROS executor. ROS also provides a
multi-threaded variant of that executor, and additionally allows the definition of arbitrary
special-purpose executors. Being able to easily integrate special-purpose schedulers tailored
to specific robot needs would allow for interesting domain-specific research in the future.

ECRTS 2019

6:20 Response-Time Analysis of ROS 2 Processing Chains

When using multiple executor threads in a shared process, concurrency problems arise.
ROS introduces mutually-exclusive callback groups to address this problem, and guarantees
that callbacks in the same group are never executed concurrently. Extending our analysis to
handle blocking relationships among callbacks remains future work.

This paper assumed the graph of the callbacks to be fixed. However, ROS allows nodes to
dynamically join and leave, as well as to subscribe to and unsubscribe from topics dynamically
at runtime, which is particularly useful for implementing different operating modes. This
problem is referred to as mode changes in the literature [38, 45]. Our analysis can be
applied to each mode in stable operation, but not does account for transient effects during
mode changes. The design of new analysis techniques accounting for mode changes (e.g.,
extending [10, 11, 13] to ROS systems) represents another relevant future direction.

We modeled the overhead of network delays and the underlying DDS implementation as a
single variable δi,j , which allows for a safe and simple accounting for network-related delays
in the overall response time by summing the communication delay every time the network is
crossed. An opportunity for future improvements would be to integrate network analysis
to eliminate the pessimism induced by the pay-burst-only-once problem when the network
is crossed multiple times. Furthermore, a detailed study of available DDS implementations
would allow for a more precise modeling of message processing overheads.

In addition to topics and services, ROS also provides a waitable callback type. This type
is intended to implement more complex communication primitives like the long-running and
high-level actions known from ROS 1 [1]. Since this mechanism was only introduced in the
latest release, there are no known users of this mechanism as of now. It will be necessary to
extend our analysis to these additional methods as and when they are adopted in ROS 2.

We assumed each callback to trigger an activation of all its successors at most once per
execution. As a future improvement, we would like to extend the proposed analysis to allow a
callback to trigger its successors only after having executed a predefined number of instances,
or to trigger multiple instances of each successors in a single execution [23].

Our analysis based on the CPA approach allows to simply and efficiently analyze a
real-world system, limiting the complexity by considering reservations individually. The
analysis accuracy can be further improved by considering correlations among activation
events in the chain, thus reducing the “pay-burst-only-once” problem also for chains spanning
multiple reservations. A possible research direction for future work consists in extending the
approaches presented by Fonseca et al. [21] and Casini et al. [14] (in the context of preemptive
and non-preemptive fixed-priority scheduling of parallel tasks, respectively), based on which
chains crossing multiple reservations could be modeled by means of self-suspending tasks [16].
In this way, arrival bursts can be considered only once per reservation, thus improving the
analysis precision for chains crossing the same reservation multiple times.

To conclude, we have presented the first comprehensive scheduling model of ROS 2
systems, based on a review of its source code and documentation. We derived a response-time
analysis for processing chains that takes the specific properties of the ROS framework into
account and applied to a realistic case study. While there remain ample opportunities for
future extensions, our contributions represent the first steps towards an automated analysis
tool that could allow ROS users without expert knowledge in real-time systems to quickly
and conveniently determine temporal safety and latency properties of their applications.

References
1 Action Lib. URL: http://wiki.ros.org/actionlib.
2 eProsima FastRTPS. URL: https://www.eprosima.com/index.php/products-all/

eprosima-fast-rtps.

http://wiki.ros.org/actionlib
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:21

3 The move_base package. URL: http://wiki.ros.org/move_base.
4 Robots using ROS. URL: http://robots.ros.org.
5 ROS 2 “Crystal Clemmys”. URL: http://www.ros.org/news/2018/12/ros-2-crystal-

clemmys-released.html.
6 RTI Connext DDS. URL: https://www.rti.com/products/connext-dds-professional.
7 Vortex OpenSplice. URL: http://www.prismtech.com/vortex/vortex-opensplice.
8 L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. In

Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS 1998), Madrid, Spain,
december 2-4, 1998.

9 A. Biondi, G. C. Buttazzo, and M. Bertogna. Schedulability Analysis of Hierarchical Real-Time
Systems under Shared Resources. IEEE Transactions on Computers, 65, May 2016.

10 A. Block and J. H. Anderson. Accuracy versus migration overhead in real-time multiprocessor
reweighting algorithms. In 12th International Conference on Parallel and Distributed Systems
- (ICPADS’06), Minneapolis, USA, july, 12-15, 2006.

11 A. Block, J. H. Anderson, and G. Bishop. Fine-grained task reweighting on multiprocessors.
In 11th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’05), Hong Kong, China, july, 17-19, 2005.

12 G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications, Third Edition. Springer, 2011.

13 D. Casini, A. Biondi, and G. C. Buttazzo. Handling Transients of Dynamic Real-Time
Workload Under EDF Scheduling. IEEE Transactions on Computers, 2018.

14 D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. Partitioned Fixed-Priority Scheduling of
Parallel Tasks Without Preemptions. In 2018 IEEE Real-Time Systems Symposium (RTSS),
December 2018.

15 Daniel Casini, Luca Abeni, Alessandro Biondi, Tommaso Cucinotta, and Giorgio Buttazzo.
Constant Bandwidth Servers with Constrained Deadlines. In Proceedings of the 25th Interna-
tional Conference on Real-Time Networks and Systems, RTNS ’17, 2017.

16 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many problems: a review of
self-suspending tasks in real-time systems. Real-Time Systems, September 2018.

17 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3):239–
272, April 2007.

18 Jonas Diemer, Philip Axer, and Rolf Ernst. Compositional performance analysis in python
with pyCPA. In In Proceedings of WATERS’12, 2012.

19 Jonas Diemer, Jonas Rox, and Rolf Ernst. Modeling of Ethernet AVB Networks for Worst-Case
Timing Analysis. IFAC Proceedings Volumes, 2012. 7th Vienna International Conference on
Mathematical Modelling.

20 G. Fohler and K. Ramamritham. Static scheduling of pipelined periodic tasks in distributed
real-time systems. In Proceedings 9th Euromicro Workshop on Real Time Systems, June 1997.

21 J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho. Response time analysis of sporadic DAG
tasks under partitioned scheduling. In 2016 11th IEEE Symposium on Industrial Embedded
Systems (SIES), May 2016.

22 T. Foote. ROS community metrics report. URL: http://download.ros.org/downloads/
metrics/metrics-report-2018-07.pdf.

23 J. J. G. Garcia, J. C. P. Gutierrez, and M. G. Harbour. Schedulability analysis of distributed
hard real-time systems with multiple-event synchronization. In Proceedings 12th Euromicro
Conference on Real-Time Systems. Euromicro RTS 2000, 2000.

24 B. Gerkey. Why ROS 2.0? URL: http://design.ros2.org/articles/why_ros2.html.

ECRTS 2019

http://wiki.ros.org/move_base
http://robots.ros.org
http://www.ros.org/news/2018/12/ros-2-crystal-clemmys-released.html
http://www.ros.org/news/2018/12/ros-2-crystal-clemmys-released.html
https://www.rti.com/products/connext-dds-professional
http://www.prismtech.com/vortex/vortex-opensplice
http://download.ros.org/downloads/metrics/metrics-report-2018-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2018-07.pdf
http://design.ros2.org/articles/why_ros2.html

6:22 Response-Time Analysis of ROS 2 Processing Chains

25 C. Gutierrez, L. Juan, I. Uguarte, and V. Vilches. Towards a distributed and real-time
framework for robotsç Evaluation of ROS 2.0 communications for real-time robotics applications.
Techical report, Erle Robotics S.L., 2018.

26 R. Henia and R. Ernst. Context-aware scheduling analysis of distributed systems with
tree-shaped task-dependencies. In Design, Automation and Test in Europe, March 2005.

27 R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level performance
analysis - the SymTA/S approach. IEEE Proceedings - Computers and Digital Techniques,
March 2005.

28 K. Huang, L. Thiele, T. Stefanov, and E. Deprettere. Performance Analysis of Multimedia
Applications using Correlated Streams. In 2007 Design, Automation Test in Europe Conference
Exhibition, 2007.

29 M. Jersak. Compositional Performance Analysis for Complex Embedded Applications.
30 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic

Queuing Systems for the Internet. Springer-Verlag, Berlin, Heidelberg, 2001.
31 J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact charac-

terization and average case behavior. In [1989] Proceedings. Real-Time Systems Symposium,
1989.

32 J. Lelli, C. Scordino, L. Abeni, and D. Faggioli. Deadline scheduling in the Linux kernel.
Software: Practice and Experience, 46(6):821–839, 2016.

33 G. Lipari and E. Bini. Resource partitioning among real-time applications. In 15th Euromicro
Conference on Real-Time Systems, 2003. Proceedings., pages 151–158, July 2003.

34 A. Lotz, A. Hamann, R. Lange, C. Heinzemann, J. Staschulat, V. Kesel, D. Stampfer, M. Lutz,
and C. Schlegel. Combining robotics component-based model-driven development with a
model-based performance analysis. In 2016 IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), December 2016.

35 Alex Lotz, Arne Hamann, Ingo Lütkebohle, Dennis Stampfer, Matthias Lutz, and Christian
Schlegel. Modeling Non-Functional Application Domain Constraints for Component-Based
Robotics Software Systems. In 6th International Workshop on Domain-Specific Languages
and Models for Robotic Systems (DSLRob’15), 2015.

36 Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the performance of ROS2. In
Proceedings of the 13th International Conference on Embedded Software, page 5. ACM, 2016.

37 L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS: a new reclaiming algorithm
for server-based real-time systems. In Proceedings. RTAS 2004. 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2004., May 2004.

38 M. Negrean, M. Neukirchner, S. Stein, S. Schliecker, and R. Ernst. Bounding mode change
transition latencies for multi-mode real-time distributed applications. In ETFA2011, 2011.

39 Object Management Group. Data Distribution Service (DDS), 1.4 edition, 2015.
40 OpenMP. OpenMP Application Program Interface, Version 4.0., 2013.
41 J. C. Palencia and M. G. Harbour. Exploiting precedence relations in the schedulability analysis

of distributed real-time systems. In Proceedings 20th IEEE Real-Time Systems Symposium,
1999.

42 J. C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static and
dynamic offsets. In Proceedings 19th IEEE Real-Time Systems Symposium, 1998.

43 Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating System. In ICRA workshop
on open source software, volume 3, page 5. Kobe, Japan, 2009.

44 Ahmed Rahni, Emmanuel Grolleau, Michaël Richard, and Pascal Richard. Feasibility Analysis
of Real-time Transactions. Real-Time Syst., 48(3), 2012.

45 J. Real and A. Crespo. Mode Change Protocols for Real-Time Systems: A Survey and a New
Proposal. Real-Time Systems, 26(2):161–197, March 2004.

46 K. Richter. Compositional Scheduling Analysis Using Standard Event Models: The SymTA/S
Approach.

D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg 6:23

47 K. Richter and R. Ernst. Event model interfaces for heterogeneous system analysis. In
Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition, pages
506–513, 2002.

48 K. Richter, M. Jersak, and R. Ernst. A Formal Approach to MpSoC Performance Verification.
Computer, 36(4), 2003.

49 K. Richter, R. Racu, and R. Ernst. Scheduling Analysis Integration for Heterogeneous
Multiprocessor SoC. In Proceedings of the 24th IEEE International Real-Time Systems
Symposium (RTSS), 2003.

50 K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling analysis
in platform design. In Proceedings 2002 Design Automation Conference, June 2002.

51 Jonas Rox and Rolf Ernst. Formal Timing Analysis of Full Duplex Switched Based Ethernet
Network Architectures. In SAE Technical Paper, 2010.

52 Jonas Rox and Rolf Ernst. Compositional Performance Analysis with Improved Analysis
Techniques for Obtaining Viable End-to-end Latencies in Distributed Embedded Systems. Int.
J. Softw. Tools Technol. Transf., 15(3), 2013.

53 Yukihiro Saito, Takuya Azumi, Shinpei Kato, and Nobuhiko Nishio. Priority and synchroniza-
tion support for ROS. In 2016 IEEE 4th International Conference on Cyber-Physical Systems,
Networks, and Applications (CPSNA), pages 77–82. IEEE, 2016.

54 J. Schlatow and R. Ernst. Response-Time Analysis for Task Chains in Communicating Threads.
In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
April 2016.

55 Johannes Schlatow and Rolf Ernst. Response-Time Analysis for Task Chains with Complex
Precedence and Blocking Relations. ACM Trans. Embed. Comput. Syst., 16(5s), September
2017.

56 Simon Schliecker and Rolf Ernst. A Recursive Approach to End-to-end Path Latency Com-
putation in Heterogeneous Multiprocessor Systems. In Proceedings of the 7th IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’09, 2009.

57 M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and E. Quiñones. Timing
characterization of OpenMP4 tasking model. In 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), 2015.

58 Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. In
24th IEEE Real-Time Systems Symposium, 2003.

59 Marco Spuri. Analysis of Deadline Scheduled Real-Time Systems. Technical report, RR-2772,
INRIA, 1996.

60 J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi. Real-Time Scheduling and Analysis of
OpenMP Task Systems with Tied Tasks. In 2017 IEEE Real-Time Systems Symposium
(RTSS), December 2017.

61 Yuhei Suzuki, Takuya Azumi, Shinpei Kato, and Nobuhiko Nishio. Real-Time ROS extension on
transparent CPU/GPU coordination mechanism. In 2018 IEEE 21st International Symposium
on Real-Time Distributed Computing (ISORC), pages 184–192. IEEE, 2018.

62 L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-
time systems. In 2000 IEEE International Symposium on Circuits and Systems. Emerging
Technologies for the 21st Century. Proceedings, May 2000.

63 Ken Tindell and John Clark. Holistic Schedulability Analysis for Distributed Hard Real-time
Systems. Microprocess. Microprogram., 40(2-3):117–134, 2012.

64 Ernesto Wandeler and Lothar Thiele. Workload Correlations in Multi-processor Hard Real-time
Systems. J. Comput. Syst. Sci., 73(2), 2007.

65 D. Ziegenbein, M. Jersak, K. Richter, and R. Ernst. Breaking Down Complexity for Reliable
System-Level Timing Validation. In Ninth IEEE/DATC Electronic Design Processes Workshop
(EDP’02), 2002.

ECRTS 2019

Implementation of Memory Centric Scheduling for
COTS Multi-Core Real-Time Systems
Juan M. Rivas1

PARTS Research Centre, Université libre de Bruxelles, Brussels, Belgium
jrivasco@ulb.ac.be

Joël Goossens
PARTS Research Centre, Université libre de Bruxelles, Brussels, Belgium
joel.goossens@ulb.ac.be

Xavier Poczekajlo
PARTS Research Centre, Université libre de Bruxelles, Brussels, Belgium
xavier.poczekajlo@ulb.ac.be

Antonio Paolillo
HIPPEROS S.A., Louvain-la-Neuve, Belgium
antonio.paolillo@hipperos.com

Abstract
The demands for high performance computing with a low cost and low power consumption are
driving a transition towards multi-core processors in many consumer and industrial applications.
However, the adoption of multi-core processors in the domain of real-time systems faces a series
of challenges that has been the focus of great research intensity during the last decade. These
challenges arise in great part from the non real-time nature of the hardware arbiters that schedule
the access to shared resources, such as the main memory. One solution proposed in the literature is
called Memory Centric Scheduling, which defines a separate software scheduler for the sections of the
tasks that will access the main memory, hence circumventing the low level unpredictable hardware
arbiters. Several Memory Centric schedulers and associated theoretical analyses have been proposed,
but as far as we know, no actual implementation of the required OS-level underpinnings to support
dynamic event-driven Memory Centric Scheduling has been presented before. In this paper we aim
to fill this gap, targeting cache based COTS multi-core systems. We will confirm via measurements
the main theoretical benefits of Memory Centric Scheduling (e.g. task isolation). Furthermore, we
will describe an effective schedulability analysis using concepts from distributed systems.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases real-time, multi-core, memory centric, predictability, implementation, rtos

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.7

Funding Juan M. Rivas: This research was funded by Wallonia Region (Belgium) BEWARE grant
PARTITA (1610375).

1 Introduction

Advancements in the manufacturing process of integrated electronics, in addition to the sheer
size of the general computing market, are increasingly widening the offer and lowering the
costs of commercial off-the-shelf (COTS) multi-core processors. While these commercial
processors are generally designed with average performance in mind, their wide availability
and low cost are pushing their adoption into real-time applications where a different set of
requirements such as predictability and worst-case guarantees are needed.

1 Corresponding author

© Juan Maria Rivas, Joël Goossens, Xavier Poczekajlo, and Antonio Paolillo;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jrivasco@ulb.ac.be
mailto:joel.goossens@ulb.ac.be
mailto:xavier.poczekajlo@ulb.ac.be
mailto:antonio.paolillo@hipperos.com
https://doi.org/10.4230/LIPIcs.ECRTS.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Implementation of Memory Centric Scheduling

The main challenge of considering COTS multi-core processors for real-time applications
can be found in the way some resources are shared between the cores. For instance, the access
to the shared main memory is usually scheduled by hardware arbiters that are generally
not designed with real-time or predictability considerations in mind. In essence, all the
jobs concurrently accessing the shared memory can interfere with each other, thus adding
delays to the execution time that are potentially large and very difficult to tightly bound.
This interference can be compounded by other inter-dependent sources such as the shared
cache: a task could evict a cache line of another task in a different core, which could produce
further accesses to the shared memory and interferences down the line. In conclusion, in a
multi-core processor the execution time of any task can be affected by any other concurrent
task, regardless of priorities or criticalities. This leads to two main problems: (1) the task
execution times are inflated due to interferences from other cores, and (2), the worst-case
execution time (WCET) estimations tend to be greatly inflated due to the difficulty to predict
these inter-core interferences.

This mismatch between the predictability requirements needed in real-time systems
and the performance characteristics of available multi-core processors has triggered an
intense research effort in the real-time community during the last decade [17]. One line
of research proposes additional layers of software and associated mathematical analyses to
add predictability to the commercial multi-core platforms. An example of such approach
is based on the new task model called the PRedictable Execution Model (PREM) [31].
With PREM, each task code is explicitly divided into coarse grained phases that will access
the shared memory (memory phases) and phases that will operate exclusively on cached
data and instructions (execution phases). Typically, the memory phases are composed of
prefetch or load instructions that copy into the cache the data and instructions needed by a
subsequent execution phase, or by write-back instructions to copy updated data from the
cache to the main memory.

Leveraging the PREM model, a new type of scheduling scheme called Memory Centric [38]
defines high level schedulers for the memory phases with the aim to limit or avoid concurrent
memory phases. This way, the contention in the shared memory subsystem can be solved by
software, avoiding relying on the low level unpredictable arbiters. Several previous works
have proposed different variations of Memory Centric schedulers, a selection of which will be
briefly discussed in Section 2. Notwithstanding this body of work, and as far as we know,
all these proposals are either theoretical works or implementations relying on static or time
triggered scheduling.

The main objective of this paper is to complement those previous approaches, by im-
plementing dynamic Memory Centric Scheduling in an actual Real-time Operating System
(RTOS). While the basic ideas to sustain our implementation do not depend on any particular
RTOS, we choose to target HIPPEROS [28]. HIPPEROS is built from the ground-up to
support multi-core processors and employs an asymmetric master-slave architecture in which
the schedulers run on a dedicated core, called the master core. By exploiting this architecture
the overheads of executing the schedulers are concentrated in the master core, while the slave
cores can execute tasks with a baremetal level of overheads.

To tease the outcome of this paper, Figure 1 shows the execution times of a periodic task
during a span of 40 seconds. From 0 to 10 seconds the task runs alone in the system, and
then a new task is added to a new core every 10 seconds (each core has at most one task).
The blue line (contention) shows how the execution time of the task increases any time a
new task is added, indicating that it is being affected by interferences from other cores. The
orange line (labelled as “this paper”) shows the execution times of the same task, but using
the implementation we provide in this paper. We can see that now the task execution time
remains constant, thus achieving a level of isolation from other tasks.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:3

0 10 20 30 40
time (s)

900

1000

1100

1200

ex
ec

ut
io

n
tim

e
(u

s)

contention
this paper

Figure 1 Execution times of a task with different number of competing tasks.

Contributions of this paper

Implementation of dynamic Memory Centric Scheduling in HIPPEROS. This
includes a kernel-level scheduler and a user-level API. We target fixed task priority and
preemptive memory phases, that can be dynamically invoked either synchronously or
asynchronously.
An evaluation study to confirm with measurements the theoretical benefits of Memory
Centric Scheduling, namely an execution free of interferences in the main memory.
A schedulability analysis defined by exploiting the similarities between the task model
used in Memory Centric Scheduling and the distributed task model [36]. We compare
the analytical results with actual measurements.

The paper is organized as follows: Section 2 provides more background on works related
to handling interferences in the main memory of multi-core systems, with a focus on Memory
Centric Scheduling, and a brief introduction to the HIPPEROS RTOS main relevant features.
Section 3 presents a description of the system model and general hardware characteristic
assumptions adopted throughout the paper. Section 4 presents our implementation of Memory
Centric Scheduling in HIPPEROS. Section 5 describes our schedulability analysis based
on distributed systems. Section 6 shows the results of the extensive evaluation performed.
Finally, Section 7 provides the main conclusions we have reached in this work, and hints at
some general research paths that we could follow in the future.

2 Background and Related Work

In this section we will contextualize this paper in relation to other similar previous works,
focusing on approaches that tackle the problem of handling the interferences in the main
memory. In Section 2.1 we will briefly describe the basic elements of Memory Centric
Scheduling, also providing a selection of papers that develop it. Section 2.2 is dedicated
to discuss other approaches similar to Memory Centric Scheduling. Finally, Section 2.3
provides a description of the main relevant characteristics of the RTOS we target in this
paper, HIPPEROS.

2.1 Memory Centric Scheduling
In the context of this paper we define Memory Centric Scheduling (MCS) as a scheduling
framework of real-time tasks that complies with the following characteristics:
(a) The tasks follow a PREM’like model [31]: tasks have two possible coarse grained states

or phases: memory phases (M-Phases) in which the task will access the shared main
memory; and execution phases (E-Phases) in which the task operates on cached data
and instructions with no access to the shared memory.

ECRTS 2019

7:4 Implementation of Memory Centric Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ1 M E M E M

τ2 M E M E M

Figure 2 Simple example of Memory Centric Scheduling with two tasks.

(b) There exists a system wide scheduler for the memory phases (memory phases scheduler,
MPS) that dynamically decides which memory phase can execute, hence effectively
controlling the access to the shared memory.

If the MPS limits the number of concurrent memory phases to 1, the low level non real-
time hardware arbiters that control the access to the shared memory are effectively bypassed,
avoiding any unpredictable interference delays they could produce. Figure 2 shows an example
of MCS with 2 tasks, in which each task executes in a different core, memory phases and
execution phases are labeled with M and E respectively, and vertical arrows indicate the
task activation. Note that at any time there is at most one memory phase executing.

Memory Centric Scheduling was first introduced by Yao et al [38], proposing a TDMA
schedule for the memory phases. That paper also introduces the concept of memory promotion,
by which the memory phases are given a higher priority than the execution phases to seek a
better schedulability. The work in [9] studies with simulations different partitioned scheduling
policies for MCS, and reaches the conclusion that non-preemptive least-laxity first memory
phases is the best approach. The papers [3, 22] propose static schedules of the memory and
execution phases. MCS with global scheduling has also been studied [2, 39].

The authors of [37] propose a mechanism to hide the latencies of the memory phases by
executing them as background DMA transfers. This initial work targets single-core systems,
but is later extended for multi-core systems in [4]. These two papers assume special hardware
such as double ported scratchpad memories, or a cache based system that supports DMA
transfers from the main memory to the cache. The paper [35] presents an integration of
MCS in an RTOS, relying on scratchpad memory and implementing the memory phases with
DMA transfers scheduled with TDMA.

In this paper we provide an actual implementation of Memory Centric Scheduling in
an RTOS (HIPPEROS), where the memory phases can be dynamically invoked. We will
also describe latency hiding techniques that do not rely on special hardware. Additionally
we will adapt existing analysis techniques for real-time distributed systems, and compare it
with our measurements.

2.2 Alternative approaches
Memory bandwidth regulators are usually mentioned as an alternative to MCS. This approach
assigns per-core memory bandwidth reservation budgets that do not overload the memory
bus. Therefore, each core can run with a guaranteed memory bandwidth, independently on
the number of other active cores. A clear advantage of this approach is that it is transparent
to the tasks, i.e., no task modifications are needed. On the other hand, with MCS, once a
task is granted access to the memory, it can enjoy full access to its bandwidth.

Examples of this approach implemented in software are MEMGUARD [42] or the Multi-
Resource Server [10]. A challenge of these techniques is to find an optimal budget assignment
per core. A framework called Single Core Equivalence [20] proposes a static and even budget

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:5

assignment, which is complemented by a mechanism to lock in cache the most frequently
used pages [19], and a tool called PALLOC [41] that allocates pages to specific memory
banks to allow a certain level of parallelism in the main memory. Subsequent works allow
uneven memory bandwidth budget allocations [21, 40, 1, 8]. Recently ARM presented the
Memory Partitioning and Monitoring (MPAM) feature in the Armv8.4-A specification [7],
which allows to partition the memory bandwidth among different system components.

2.3 Multi-core real-time operating system: HIPPEROS RTOS

HIPPEROS [33] is a multi-core real-time operating system targeting high performance and
safety-critical applications running on embedded systems.

The HIPPEROS kernel is a micro-kernel written to natively support multi-core and
parallel systems. The kernel software architecture is distributed and asymmetric. This means
that, when entering kernel mode, different cores are running different kernel code. In this
case, only one core has a different code path than the others, and it is called the master core.
The master core is responsible of the heavy kernel operations such as scheduling, memory
management and task states. The other cores are the slave cores and have a lighter kernel
mode of operations. The rationale behind that asymmetric design is that the master core,
being dedicated to heavy management operations, is freeing the slave cores of that burden,
letting them focus on user-mode task execution with few interferences. The master core can
orchestrate task context switches remotely on the slave cores through inter-core interrupts.
When a slave core requires to invoke the scheduler (for example when a task is completed
and exits), it can do so by calling a remote system call, triggering an inter-core interrupt to
the master core which is in turn effectively calling the scheduler module. The slave core waits
the system call response from the master core by spinning the task in user-mode, making it
easy to preempt the task when executing a context switch ordered by the master core.

This software architecture has the following advantages.
For a kernel developer perspective, the design and the code base is much easier to write
and maintain. It avoids having to lock every single structure which is shared among cores
in a symmetric kernel design.
As slave cores do not directly interact with each other but only with the master core,
the asymmetric design has the effect of reducing peak contention on spinlocks when cores
are trying to acquire them. In fact, the only spinlocks required are to implement the
communication mechanisms between slaves and master to trigger the remote system call
procedure and the context switches. Less contention allows for an improved scalability
(in the worst case) when increasing the number of cores.
The asymmetric design naturally partitions the data among cores, automatically making
a better use of private caches. As the state of the system regarding tasks and scheduling
is only maintained by the master core, this data must not be shared among cores and
can stay in the private caches of the master core, allowing for both a faster execution of
the master core kernel path and less cache misses on the slave side.

The concept of an asymmetric kernel for multi-core real-time systems was previously
studied and validated in prior work [12]. Regarding HIPPEROS, it has been the target
of previous contributions, such as its own parallel micro-kernel design [28], power-aware
real-time scheduling [30], mixed-criticality scheduling [29] and hardware acceleration for
embedded image processing applications [34, 16]. In this paper, the HIPPEROS RTOS is
used to showcase an in-kernel implementation of the Memory Centric Scheduling approach.

ECRTS 2019

7:6 Implementation of Memory Centric Scheduling

3 System Model

3.1 Hardware Assumptions
We consider a typical commercial off-the-shelf (COTS) multi-core processor, composed of
M identical cores with one or more levels of cache connected to the main memory via a
shared memory bus. We assume that the last-level cache (LLC) is shared among the cores
and employs a write-back policy: an LLC miss produces a share memory access to load
a cache line, and possibly another memory bus access to write-back an evicted LLC line.
Therefore we can establish that accesses to the shared bus only occur during LLC misses.
We also assume that the shared LLC cache can serve concurrent hits from several cores with
negligible interference delays. We will see in Section 6 that this assumption holds in our
measurements. Additionally, we consider that only the cores can trigger a memory bus access
(e.g. no peripheral DMA transfers are allowed). Figure 3 depicts a typical COTS multi-core
processor, with 4 cores, private L1 caches and shared L2 cache.

3.2 Task Model
The cores execute a set of N preemptive sporadic tasks Γ = τ1, ..., τN . In this paper we
consider fixed task priorities (FTP) partitioned scheduling. We use a modified PREM task
model that, in addition to the Execution Phases, defines two types of memory phases, called
Prefetch Phases and Write-Back Phases. These phases operate in the following manner:

1. Prefetch Phase (P-Phase): tasks start with a memory phase called Prefetch Phase that
prefetches (i.e. copies) the necessary data and instructions from the main memory to the
cache.

2. Execution Phase (E-Phase): the task operates on data and instructions cached during
the previous phase. As a result, no accesses to the main memory are triggered during
this phase.

3. Write-back Phase (W-Phase): this is a memory phase that executes after an E-Phase to
copy any updated data from the cache to the main memory. Additionally, the W-Phase
also flushes all the previously prefetched cache lines, so any subsequent P-Phase could
start with a known clean state.

For a predictable execution, cache lines prefetched during a P-Phase should only be evicted
in a controlled manner during a W-Phase. Otherwise, any cache line that is inadvertently
evicted could later trigger main memory accesses during the E-Phases, thus breaking the
assumptions of the PREM model. Accidental cache line evictions can be produced by the
task to itself (self-eviction), by other tasks in the same core (intra-core eviction) or from
a different core (inter-core eviction). In this paper we propose to evade intra-core and

Core 0 Core 1 Core 2 Core 3
L1 L1 L1 L1

L2

Main Memory

Memory bus

Figure 3 Simplified diagram of a typical commercial quad-core processor with 2 levels of cache.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:7

inter-core evictions by assigning each task a partition of the shared cache. Cache partitioning
is a commonly used solution that has been extensively studied [11, 23, 6]. Formally, we
define Ai as the set of shared cache partitions assigned to τi, and BAi the total size of the
cache partitions assigned to τi. In this paper we assume that the cache partition mapping
is performed offline. Section 4.4 provides more details about how we implemented cache
partitioning for our particular platform.

Regarding the problem of self-evictions, in the context of this paper we can establish
that they occur when the size of the data/instructions prefetched in a P-Phase exceeds the
size of the cache partition assigned to the task. To handle this situation, we allow tasks to
have several sequential batches of P-E-W phases, each one targeting a different portion of
the memory with a size up to the size of the task cache partition. Formally, we define Bi as
the memory requirement of τi, that is, the total size of data and instructions that τi needs
to execute. If the memory requirement is larger than the task cache partition (Bi > BAi),
the task must invoke several P-E-W phases to cover its memory requirement. We call each
P-E-W phase triplet a Section.

We define Si,j as the j-th Section of task τi. Additionally, Pi,j , Ei,j and Wi,j are the
P-Phase, E-Phase and W-Phase in section Si,j , respectively. To avoid self-evictions, each
Section operates on data/instructions with a size up to BAi. Thus, the number of Sections
needed by task τi is at least d Bi

BAi
e. Furthermore, we assume that the memory requirements

of the tasks are fully available at task release, and that they can be partitioned. An example
of a PREM task with two Sections is shown in Figure 4.

In this paper we target fixed priority scheduling of the memory phases. Accordingly, the
tasks have two fixed priority values: its fixed task priority (with a core local scope) and its
fixed memory phase priority (with a global scope). In HIPPEROS the task priority can be
defined by an external configuration file, or by using the standard API’s such as OpenMP
or pthreads. To set the memory phase priority we have implemented a new system call
(memphase_priority_set).

In single-core systems, the worst-case execution time (WCET) of a task is usually defined
as an upper bound of its execution time when it runs alone in its core. This definition cannot
be maintained in multi-core systems due to inter-core interference delays [17]. Accordingly,
in this paper we define the WCET of task τi as an upper bound of its execution time when
it is running alone in its core, and a known set of tasks are running in other cores. Similarly,
we define the worst-case response time (WCRT) of τi as an upper bound of its execution
time when it runs with a known set of tasks, in the same core and others. Thus, the WCRT
includes the WCET of the task, and possible scheduling delays due to tasks in the same core.

This paper will define the system calls to start memory phases, but is not concerned
about how to generate the code of the tasks, or how to determine the memory addresses to
prefetch. We assume that the memory phases are either defined manually, or using some
automatic tool [31, 18].

τi Pi,1 Ei,1 Wi,1 Pi,2 Ei,2 Wi,2

S1,1 S1,2

Figure 4 PREM task τi with 2 sections.

ECRTS 2019

7:8 Implementation of Memory Centric Scheduling

4 Implementation of Memory Centric Scheduling

In this section we describe the main contribution of this paper, which is a full implementation
of Memory Centric Scheduling in an RTOS. In the next subsection we first lay-out the goals
and intended behavior which will later shape the implementation.

4.1 Overview and Goals
We identify that an implementation of Memory Centric Scheduling is composed of two main
interconnected components: (1) a scheduler for the memory phases and (2) an API for tasks
to invoke the start and end of memory phases.

An initial approximation could understand a memory phase as a critical region protected
by a mutex located in shared memory, in which the mutex lock and unlock functions would
signal the start and end of the memory phases. While this approach can indeed assure that
only one memory phase is executing at a time, it restricts their behavior to be non-preemptive.
Consequently, any task could be temporarily blocked while requesting the start of a memory
phase, independently of any priority assignment.

We propose an architecture similar to that of a mutex but with a preemptive nature
to avoid those blocking times. Also, the memory phases are scheduled according to their
fixed priorities and only one memory phase is allowed to execute at a time. By removing
the interference in the shared memory and cache, and prioritizing the memory phases, the
target of our implementation is that the response time of any task would only depend on
the number of higher priority tasks executing in the same core, and the number of higher
priority memory phases system-wide.

It is worth noting that the underlying hardware platform could force the use of non-
preemptive memory phases. For example, the cache controller could not support performing
a write-back cache operation (e.g. clean or invalidate) while a previous cache operation
has yet not finished. This would not allow a W-Phase to preempt another W-Phase. For
such situations we support non preemptive memory phases, which can however co-exist
with preemptive ones.

In the next subsections we explain the implementation in more detail. Section 4.2 deals
with the kernel-level memory phase scheduler and system calls to start and end a memory
phase, while Section 4.3 presents the user level API that uses those system calls to request
prefetch and write-back phases. In Section 4.4 we will describe how to use existing techniques
to analyze our task model.

4.2 Kernel-level: memory phases scheduler (MPS)
As we described in the previous subsection, to implement the memory phases scheduler
(MPS) we get inspiration from how mutexes operate, aiming to implement a mechanism that
acts like a “preemptive critical region”.

The two main components of the MPS are the system calls to invoke the start and end of
a memory phase, called memphase_start and memphase_end, respectively. To illustrate how
they operate we present a simple example with two tasks, τ1 and τ2, in which the memory
phases of τ1 have a higher priority to those of τ2. Additionally, each task is mapped to a
different core, and a third core handles the scheduler and MPS (HIPPEROS master core).
Figure 5 shows the timeline of their execution, with a focus on the memory phase invoked by

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:9

0 1 2 3 4 5 6 7 8 9

τ1 M E

τ2 M M E

memphase start

memphase end

Figure 5 Simple example of scheduling of memory phases and needed system calls.

�1
Core 1

Master Core

Core 2

MPS Scheduler

�2

Kernel

memphase_start block

block
��2

�1
Core 1

Master Core

Core 2

MPS Scheduler

�2

Kernel

memphase_start

�1
Core 1

Master Core

Core 2

MPS Scheduler

�2

Kernel

memphase_end unblock

unblock
��2

t = 0 t = 1 t = 3a) b) c)

Figure 6 System calls to schedule the simple example of memory phases.

τ1, while Figure 6 shows the different system calls involved and the interaction between the
master core and the slave cores. It is worth noting that the master core is still available to
execute user tasks.

First, at t = 0, τ2 requests the start of a memory phase with memphase_start, which
is immediately granted by the MPS as no other memory phase is executing at that time
(Figure 6a). At this point the MPS stores τ2 in its internal task queue that keeps track on
the tasks that have a pending memory phase, ordered according to their priorities. Note
that in this context, the MPS grants access to τ2 by just letting it continue its execution. At
t = 1, τ1 requests the start of a memory phase (Figure 6b). At this time the MPS decides to
grant access to τ1 since its memory phase has a higher priority than the memory phase of
τ2. Accordingly, the MPS requests the system scheduler to block the execution of τ2. At
t = 2, τ1 signals the end of its memory phase with the system call memphase_end (Figure 6c),
which prompts the MPS to unblock τ2 to let it finish its memory phase.

The pseudocode shown in Listing 1 describes the system call memphase_start. The
variable “caller” is a pointer to the task requesting the memory phase, while “owner” is a
pointer to the task currently executing a memory phase. Basically, the system call always
add to the queue the “caller”, and blocks the task with the lowest priority memory phase
between “caller” and “owner”, updating the “owner” when necessary. If “owner” is non
preemptive, the “caller” is always blocked.

Similarly, Listing 2 shows a pseudocode describing memphase_end. When called, this func-
tion unblocks the next highest priority memory phase (if any), and assign it as the new “owner”.

4.3 User level API
The previous sub-section presented the mechanisms to invoke and schedule memory phases.
It is important to note that, in our implementation, the kernel is not concerned about
the contents of the memory phases, or even if they access the main memory or not. We

ECRTS 2019

7:10 Implementation of Memory Centric Scheduling

Listing 1 memphase_start pseudocode.
1 memphase_start (nonpreemptive)
2 caller = getCaller ()
3 owner = getFirst (queue)
4 if (nonpreemptive)
5 setnonpreemptive (owner)
6 insert (caller , queue)
7 if owner != NULL
8 if nonpreemptivemp (owner)
9 block(caller)

10 else if memprio (caller) > memprio (owner)
11 block(owner)
12 else
13 block(caller)

Listing 2 memphase_end pseudocode.
1 memphase_end ()
2 caller = getCaller ()
3 removeFirst (caller , queue)
4 owner = getFirst (queue)
5 if owner != NULL
6 unblock (owner)

provide the semantics of a memory phase in user-space, by creating functions that employ
the memphase_start and memphase_end system calls to protect prefetch and write-back
instructions, defining prefetch and write-back phases respectively.

Two variants of this user-space API are implemented:
Synchronous memory phases (S-MP) (Section 4.3.1).
Asynchronous memory phases (A-MP) (Section 4.3.2).

4.3.1 Synchronous Memory Phases (S-MP)
Synchronous Memory Phases (S-MP) are memory phases that are actively executed by the
tasks that request them. To illustrate S-MP, Figure 7 shows an example with three tasks
τ1, τ2, τ3 in decreasing order of fixed memory phase priority, with each task executing in a
dedicated core, and τ1 released one time instant after τ2 and τ3. For simplicity, the labels
for the phases do not show the sub-indices. We can see that the tasks follow the sequence
P-Phase → E-Phase → W-Phase, each one executed by the requesting task in its core. In
the figure we can also see that the MPS decides at each time to schedule the highest priority
memory phase, preempting memory phases when necessary.

We implement two functions to request the start of Prefetch and Write-back phases,
called h_memphase_prefetch and h_memphase_writeback respectively. A simplified version
of their code is presented in Listing 3 and 4, respectively. We can see that these functions use

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

τ1 P E W P E W

τ2 P P E W P E W

τ3 P E W

Figure 7 Taskset scheduled with synchronous memory phases (S-MP).

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:11

Listing 3 memphase_prefetch simplified code.
1 void h_memphase_prefetch (void *addr , size_t bytes) {
2 memphase_start ();
3 prefetch (addr , bytes);
4 memphase_end ();
5 }

Listing 4 memphase_writeback simplified code.
1 void h_memphase_writeback (void *addr , size_t bytes) {
2 memphase_start ();
3 writeback (addr , bytes);
4 memphase_end ();
5 }

the memory phase start and end system calls to protect the call to a prefetch or write-back
function. The only requisite of the prefetch function is that they result in data/instructions
copied to the task cache partition or private cache, while the write-back function must be able
to copy the updated data into the shared memory and leave the cache partition in a clean
state. These requirements represent basic functionalities that are commonly implemented
in any commercial processor. Implementation details for our particular platform will be
provided in Section 4.4.

In this initial version of the implementation we only target the prefetch and write-back
of data (i.e. not instructions). The evaluation section will show how this limitation provides
good results. Additionally, the current API is limited to contiguous memory prefetches and
write-backs (i.e. defined by base address + memory size).

4.3.2 Asynchronous Memory Phases (A-MP)
An Asynchronous Memory Phase (A-MP) is a memory phase that is executed by a dedicated
worker in the background, which we call the Memory Phase Worker (MPW). Crucially, the
main benefit of A-MP is that the execution times of these background memory phases do not
contribute to the execution times of the requesting tasks. It is worth noting that, contrary
to previous proposals for background memory phases [37, 4], our implementation does not
rely on any special hardware like scratchpad memories or support for DMA transfers from
memory to cache, so it can be accomplished in a wider spectrum of available processors.

A-MP requires that the task cache partitions must be divided into two sub-partitions,
which we call the A and B sub-partitions. Formally, given a task τi, we define AA

i and AB
i

as its two sub-partitions, with Ai = AA
i ∪ AB

i . The basic idea behind A-MP is that while
an E-Phase is working on data from a given sub-partition, background memory phases are
preparing the other sub-partition. By switching the executing sub-partition, we can effectively
hide the execution times of the memory phases while continuously executing E-Phases. We
extend the names of the phases to indicate in which sub-partition they are operating, e.g. PA,
EA and WA express a P, E and W Phases operating on sub-partition A, respectively.

The MPW is implemented as a task which just executes memory phases on behalf of
other tasks, therefore it must have access to the same address space as the requesting
tasks. If all the tasks share the same address space (e.g. single-page table), a single MPW is
enough. Otherwise, each task must spawn its own MPW thread. Following the philosophy of
HIPPEROS, by default we map the MPW(s) to the master core. As a result, if A-MP is used,
the overheads due to the execution of the memory phases are localized in the master core.

ECRTS 2019

7:12 Implementation of Memory Centric Scheduling

Listing 5 A-MP API.
void h_memphase_init_a (void);
h_mp_request_t h_memphase_prefetch_a (void *addr , size_t bytes , u32 part);
h_mp_request_t h_memphase_writeback_a (void *addr , size_t bytes , u32 part);
bool h_memphase_finished_a (h_mp_request_t * request);
void h_cache_set_partition (u32 partition);
void h_cache_revert_partition (void);

Kernel

MPS

Scheduler

MPW

Master Core
h_memphase_prefetch

prefetch, �2, B, 0x1FF, 200000
prefetch, �3, B, 0x000, 200000
prefetch, �1, B, 0x1A0, 200000�1

Core 1

h_memphase_prefetch_a(0x1A0, 200000, B)

Figure 8 Elements involved in A-MP.

Listing 5 shows the functions implemented to use A-MP. Before it can be used, the
MPW must be initialized by using the API function h_memphase_init_a, after which it
remains waiting for memory phase requests. A memory phase request is stored in a data
type called h_mp_request_t which has 4 elements: type (i.e. prefetch or write-back), data
memory address and size, and the cache sub-partition to use (A or B). Tasks can request
an A-MP by using functions h_memphase_prefetch_a and h_memphase_writeback_a for P
and W Phases respectively, which return a h_mp_request_t data structure. The parameters
of these request functions are the memory address region of data to prefetch/writeback (addr
and bytes), and which task cache sub-partition to target (part). Tasks can determine if an
A-MP has finished by using the function h_memphase_finished_a.

Once a request is received by the MPW, it is stored in an internal FIFO queue. The
MPW serves these requests by performing S-MP’s. Figure 8 illustrates an example of how
the A-MP requests operate, in which we can see that the MPW queue is filled with prefetch
requests, which are served by requesting an S-MP with function h_memphase_prefetch.

It is important to note that the MPW is just another task executing in the system, and
as such it has its own cache partition assignment. Accordingly, when it performs a memory
phase on behalf of another task, it must temporarily change its own cache partition to the
appropriate A or B sub-partition of the requesting task. This way the S-MP performed by
the MPW will operate on the correct cache partition. Once the request has been served,
the MPW cache partition returns to its default value. We implement two functions to
dynamically set the task cache partition: h_cache_set_partition to set a specific partition,
and h_cache_revert_partition to return to the default task partition. Details on how this
dynamic cache partition mapping is implemented are detailed in Section 4.4.

It is worth mentioning that since the A-MP are just S-MP executed by the MPW, both
S-MP and A-MP can coexist in the same system without further modifications. In our
implementation we give the MPW memory phases the lowest priority, so they do not interfere
with other tasks S-MP requests. Additionally, the MPW task itself has the highest priority,
so any other task mapped in the master core would not preempt it and delay the execution
of other tasks A-MP’s.

To illustrate the benefits of A-MP, Figure 9 shows the same task-set as Figure 7, with
the difference that now the tasks use A-MP. In the example, the tasks start by invoking an
S-MP to prefetch the initial batch of data to sub-partition A of each task. This request is
synchronous because the cache partitions start with a clean state, so there is no benefit in
requesting an A-MP prefetch and wait for it to finish.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

MPW PB
2 P

B
3 P

B
1 WA

2 P
A
2 W

A
1 P

A
1 W

A
3 WB

2 P
B
2 W

B
1 P

B
1 W

B
3 WA

2W
A
1 WB

2W
B
1

τ1 PA EA EB EA EB

τ2 PA EA EB EA EB

τ3 PA EA EB

Figure 9 Task-set scheduled with asynchronous memory phases (A-MP).

If we now focus on τ1, we can see that it starts its first execution phase EA at t = 2. At
that moment, the task also requests an A-MP prefetch for its sub-partition B (PB

1), which is
served by the MPW at t = 5. By the time EA finished, that prefetch request has already
finished so EB can start without delay (t = 8). In general, we can see that while a task is
executing an E-Phase on a partition, the MPW is preparing the other sub-partition with the
pertinent write-back and prefetch phases, which allows a continuous execution of E-Phases.
As a result, the execution time of the tasks is just composed of the execution time of its
E-Phases plus an initial synchronous P-Phase. It is worth noting that with A-MP, the phases
operate on half the data size compared to S-MP, as they operate on a sub-partition.

In conclusion, A-MP has the potential to drastically reduce the execution times of the
tasks, at the expense of adding workload in the master core. In practice, the master core only
remains available for non real-time tasks, or real-time tasks with big slack times. Furthermore,
it is trivial to see that the benefits of A-MP can only be realized if the E-Phases are long
enough to completely cover the execution time-span of the background memory phases.

4.4 Implementation Details
We implemented the Memory Centric Scheduling elements described in Section 4 in version
18.09 of HIPPEROS. While HIPPEROS also supports ARMv8, Intel x86 and PowerPC, we
focused our efforts on the widely available ARMv7 architecture. Specifically, we target the
NXP i.MX6Q system-on-chip (SoC), composed of 4 Cortex A9 cores, a 16-way 1MB shared
L2 cache with the L2C-310 cache controller, and 1 GB of DDR RAM.

Cache partitioning

As described in Section 3, our implementation of MCS requires that each task is guaranteed a
dedicated cache partition, which is proposed to avoid intra-core and inter-core cache evictions.
Any of the available cache partitioning solutions [24, 19, 6, 11] that provides that guarantee
could be used with our implementation. Nonetheless, some caveats must be taken into
account, which are described below.

When the cache partitioning can only be achieved at the core level, all the tasks in
the same core share the same cache partition, and thus could evict lines of each other.
Under this situation, our implementation of MCS is restricted to one task per core, or to
multiple non preemptive tasks per core. To implement cache partitioning in this paper, and
without loss of generality, we will exploit a feature in the L2C-310 cache controller called
lockdown by master, which restricts the cache allocations of each core to a particular set of
L2 cache-ways, thus effectively achieving core-level cache partitioning. As a consequence, to
meet the requirements of our implementation of MCS, we will consider only one task per
core. Nevertheless, this limitation does not curtail us from pursuing the objectives of this
paper. For the evaluation of our implementation of MCS, we are mainly focused on studying

ECRTS 2019

7:14 Implementation of Memory Centric Scheduling

the contention (or lack thereof) in the shared memory. Accordingly, we view the cores as
mere producers of memory requests, with no regard to which particular task produced it.
For this objective, a configuration of just one task per core is sufficient.

Special consideration must also be taken with systems with a high number of preemptive
tasks. Here the cache partitions could get very small, and as a consequence more memory
phases would be needed, increasing the overall overheads in the system. These MCS related
overheads compound with other pre-existing preemption delays [5]. To mitigate this problem,
our implementation of MCS supports non preemptive tasks, which allows core-level cache
partitioning and therefore larger partition sizes.

Finally, we assign the HIPPEROS master core an L2 cache partition that is big enough
to meet the memory requirements of the kernel. This way we can assume that the kernel
does not interfere with the tasks in neither the L2 cache nor in shared memory.

Memory phases

We have considered two types of memory phases: prefetch and write-back phases.
The objective of the prefetch phases is to copy lines from the shared memory into the

task cache partition. As we have previously stated, in this initial implementation we only
target the prefetch of data. For the prefetch we use the ARM PLD instruction, which has
two main caveats:
1. This instruction copies data to the L1 cache only. This is not a problem because, with

lockdown by master, any eviction in the L1 cache is allocated into the task L2 cache
partition. As a result, all the data prefetched with PLD would end up in the L1 cache
(private to the core) or in the L2 cache partition.

2. PLD is generally defined as a hint instruction, that is, it is not guaranteed that it would
produce any effects. However, in our evaluation we have confirmed that, at least in the
i.MX6Q SoC we used, this instruction always performs its operation.

As an alternative, ARM defines an optional component in the Cortex-A9 core called the
Preload Engine (PLE), which can be used to program loads of selected regions of memory
into L2. This component nicely fits the objective of the prefetch phases, but unfortunately
is not available in our SoC. It is important to note that we have disabled the speculative
hardware prefetchers, which would interfere with our own P-Phases.

Regarding the write-back phases, their objective is two-fold: (1) to copy into the shared
memory any data updated during a previous execution phase, and (2) leave the L2 cache
partition in a clean state. This can be achieved with common flush cache operations, targeting
the L1 private cache and L2 cache partition.

Memory phases worker (MPW)

As described in Section 4.3.2, the Memory Phases Worker (MPW) is a task that performs
memory phases on behalf of other tasks. Therefore, it must dynamically change its cache
partition to match that of the requesting task. With the lockdown by master feature described
before, we can perform this partition switch by dynamically changing the core cache ways
assignment, adding a necessary L1 flush before the switch to avoid inter-partition pollution.

5 Schedulability Analysis

From an analytical point of view, the main consequence of employing S-MP or A-MP is
that the unpredictable interferences in the shared memory and cache are now replaced
by predictable scheduling delays. This characteristic can lead to a simplification in the

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:15

P E W

Core 1

1 P E W

Core 1Mem Mem

Figure 10 Transformation from PREM task to end-to-end flow (distributed task).

mathematical frameworks needed to determine execution and response time bounds, compared
to the fully contended case. Essentially, with S-MP or A-MP, the response time of the tasks
is composed of two main components:

1. The execution times of the phases, which are not going to suffer from contention in
the shared memory or interferences due to any type of unplanned cache evictions. This
removes a great source of uncertainty that usually leads to an over-inflation of the
execution time estimations.

2. Scheduling delays: these can come from other tasks in the same core (intra-core), which is
the classical scheduling problem [13], or from other cores (inter-core) due to the scheduling
of the memory phases, which also have a predictable nature.

If we make the simplifying assumption that other sources of inter-core interferences besides
the shared memory and cache are negligible, we can establish that the execution times of
the task phases is not affected by the number of tasks in the system. In this situation, with
S-MP or A-MP, the response times of any task would only depend on the number of higher
priority tasks in its own core, and the number of higher priority memory phases system-wide.
In the evaluation section (Section 6) we will see how this assumption mostly holds true
in the measurements.

To define a formal response time analysis, and as already hinted by [39], we can draw
similarities between PREM and the distributed task model. In distributed systems, the
tasks, also sometimes called transactions or end-to-end flows, are formed by a sequence of
sub-tasks, each executing in a different processing resource (e.g. processor or network). A
sub-task can be a computational task in a processor, or a message scheduled and sent via a
network, that could trigger a further sub-task in the recipient processor. Additionally, these
sub-tasks are statically mapped to a processing resource due to the high costs that migration
would induce in a distributed system. Accordingly each processing resource typically has its
own scheduler for the sub-tasks it contains.

In view of this, we can model our PREM tasks as a distributed task: P-Phases and
W-Phases are modelled as sub-tasks executing in a memory processing resource, and the E-
Phases are sub-tasks executing in their original cores. Figure 10 illustrates this transformation
with a simple task that uses S-MP, where “Mem” is the memory processing resource. For a
task that uses A-MP, its equivalent distributed task is composed of just two sub-tasks: one
for the initial S-MP needed, and another for the sum of all E-Phases.

The distributed task model has been extensively studied, with several analysis techniques
proposed to calculate response times, a number of which are implemented in readily available
open-source applications. One of these tools is MAST [25, 14], which implements the seminal
holistic analysis [36], and several offset based analyses [26, 27] with different levels of precision
and complexity that improves on the holistic analysis, all for sporadic tasks. Section 6 will
compare these analytical techniques with actual measured response times. Additionally,
compositional analysis techniques can be applied to use different scheduling policies for each
processing resource [32][15]. This could enable for example the analysis of Memory Centric
Scheduling with EDF memory phases and fixed task priorities execution phases.

ECRTS 2019

7:16 Implementation of Memory Centric Scheduling

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

in
fla

ti
on

 fa
ct

or

sum

(a)

WOET inflation factor

Contention
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

1.0

1.1

1.2

1.3

1.4

in
fla

ti
on

 fa
ct

or

str

(b)

WOET inflation factor

Contention
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

1.0

1.1

1.2

1.3

1.4

in
fla

ti
on

 fa
ct

or

img

(c)

WOET inflation factor

Contention
S-MP
A-MP

Figure 11 Inflation factors for (a) Sum tasks, (b) Str tasks, and (c) Img tasks.

6 Evaluation

In this section we present the evaluation results of the Memory Centric Scheduling implement-
ation described in Section 5, based on actual execution time measurements of different types
of tasks. The framework was implemented in HIPPEROS 18.09, and the hardware platform
targeted is a Boundary Devices BD-SL-I.MX6 development board, which includes an NXP
i.MX6Q SoC composed of 4 Cortex-A9 cores, 1MB of 16-Way L2 cache with the L2C-310
controller, and 1GB of DDR3 RAM. We label the cores as Core 0 to Core 3, and assign Core
3 as the HIPPEROS master core, which means that this core executes the system scheduler,
the memory phases scheduler (MPS), and the memory phases worker (MPW) for A-MP.

The main focus is to evaluate how our implementation deals with the contention in the
shared memory, but is not concerned about intra-core scheduling. Accordingly, we only map
up to one task per core. The index of the task also indicates to which core it is mapped, e.g.,
τ0 is mapped to Core 0. Since we only consider one task per core, the concepts of WCET
and WCRT as defined in Section 3 became interchangeable during this evaluation.

We wrote three types of tasks: sum, which just sum batches of numbers; str which
encrypts strings; and img which applies a Gaussian blur filter on images. We compare 3
scheduling configurations: A-MP (from Section 4.3.1), S-MP (from Section 4.3.2), and
Contention. In the latter, the tasks do not invoke memory phases, and as such the hardware
arbiters handle the contention in the access to the main memory. For A-MP and S-MP,
the task indices also indicate the priority of its memory phases, with τ0 having the highest
priority. We vary the number of tasks in the system, and the task memory requirements
from 200 KB to 7.8 MB. Each task is given a partition of 4 cache ways, which implies that
for 200KB, the tasks just need 1 Section, while for 7.8MB the tasks need 40 Sections. To
obtain statistically relevant results, a total of 430000 executions were performed.

The evaluation is based on measurements of the execution times of the tasks. We define
woetK

i (m) as the worst-observed execution time (WOET) of τi, for a system with m total
tasks, and a K scheduling configuration (C for contention, S for S-MP, and A for A-MP).

Sequential Tasks

We first study the inflation factors of each configuration. For a system with up to m tasks, we
define the inflation factor of τi as the ratio between its WOET with (m− 1) co-runners and
its execution time running alone (0 co-runners), that is, woeti(m)/woeti(1). An inflation
factor above 1 indicates that the task execution time is affected by contention delays in
the shared memory. Figure 11 shows the inflation factors of τ0, for different data sizes and
the three types of tasks (sum, str and img). We can see that as expected, with Contention
scheduling, the inflation factor clearly grows above 1, with a measured maximum of up to 1.4.
On the other hand, we can observe that with S-MP and A-MP, the inflation factor remains

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:17

at approximately 1, with a slight advantage to S-MP. It is worth remembering that τ0 has
the highest priority memory phases, which implies that here it does not suffer from any type
of scheduling delays. This result also confirms that S-MP and A-MP can indeed isolate the
execution times of the tasks with respect the number of tasks accessing the shared memory.

We now study the improvement factor of using A-MP and S-MP with respect to Contention.
We define the improvement factor of τi as the ratio between its WOET with S-MP or A-
MP and its WOET with Contention. Here we consider systems with 3 tasks, that is,
the improvement factor is woeti(3)/woetC

i (3). Therefore, an improvement factor below 1
indicates that the task WOET improves with respect to Contention. Figure 12 shows the
improvement factor of τ0, τ1, τ2 for different data sizes and focusing on sum tasks. With a
general view of the figure we can reach two main conclusions. First, with S-MP or A-MP,
the WOET improvement gets more apparent the higher the size of the data is, remaining
constant above about 2 MB. Second, we can confirm that A-MP yields lower WOET than
S-MP. This is expected, as the majority of the memory phases with A-MP do not contribute
to the execution time of the task. In more detail, we also see that for τ0 (highest priority
memory phases), its WOET is always better with S-MP or A-MP than with Contention.
This result, in addition to the inflation factors shown before, indicate us that with S-MP or
A-MP we can achieve at the same time task execution time isolation and a reduction in the
execution times. For τ1, τ2 the WOET with S-MP is increased with respect Contention for
low data sizes (< 0.8 MB). This indicates that in this case, the overheads of S-MP (execution
of memory phases and scheduling delays) cannot be compensated by the lower execution
times of the fully cached E-Phases. On the other hand, In Figure 12b and c, we can identify
that for high data sizes, S-MP also grants improvements in τ1, τ2 over Contention.

Until now we have focused on evaluating the WOET’s. Another important factor in
real-time systems is the variability of the execution times, also called jitter. Figure 13 shows
the average observed execution times (AOET) of τ0, with added error bars (black vertical
lines) that show the WOET and best observed execution time (BOET) of each configuration.
Additionally, the overlapping patterned bars indicate the portion of the execution time that
is contributed by the “operation” portion of the task, which is the whole task in the case
of Contention, and the E-Phases in S-MP and A-MP. In the figure we can first confirm
that the jitter with Contention is clearly higher, especially when more tasks with more data
are involved. This is expected, as in these situations, with more shared memory accesses,
there is a higher chance of being delayed due to contention in those accesses, which varies
between different executions. On the other hand, S-MP and A-MP provide execution times
with no obvious jitter. This is the desired result, and it is expected as the main source of
variability (contention in shared memory) is solved by software in a predictable and constant
manner. Moreover, the figure also allows us to attest that the execution times of the E-Phases

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

0.7

0.8

0.9

im
pr

ov
em

en
t

fa
ct

or Task 0

(a)

WOET improvement factor
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

0.7

0.8

0.9

1.0

1.1

im
pr

ov
em

en
t

fa
ct

or Task 1

(b)

WOET improvement factor
S-MP
A-MP

0.2 1.4 2.7 3.9 5.1 6.4 7.6
Data per task (MB)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

im
pr

ov
em

en
t

fa
ct

or Task 2

(c)

WOET improvement factor
S-MP
A-MP

Figure 12 Improvement factors of sum tasks, for (a) Task 0, (b) Task 1 and (c) Task 2.

ECRTS 2019

7:18 Implementation of Memory Centric Scheduling

Contention S-MP A-MP

2.0

2.5

3.0

3.5

4.0

OE
T

(m
s) 0.2 MB/task

(a)

Task 0 OET

1 Task 2 Tasks 3 Tasks

operation

Contention S-MP A-MP

10

12

14

16

18

20

22

OE
T

(m
s) 0.8 MB/task

(b)

Task 0 OET

1 Task 2 Tasks 3 Tasks

operation

Contention S-MP A-MP

100

120

140

160

180

200

OE
T

(m
s) 7.6 MB/task

(c)

Task 0 OET

1 Task 2 Tasks 3 Tasks

operation

Figure 13 Average OET of Task 0, with maximum and minimum OET as error bars, for (a) 0.2
MB per task, (b) 0.8 MB per task, and (c) 7.6 MB per task.

0.4 2.9 5.3 7.8 10.3 12.8 15.3
Data per task (MB)

0.8

0.9

1.0

1.1

im
pr

ov
em

en
t

fa
ct

or 2 threads

(a)

WOS improvement factor
S-MP
A-MP

0.6 4.3 8.0 11.7 15.4 19.2 22.9
Data per task (MB)

0.6

0.8

1.0

1.2

im
pr

ov
em

en
t

fa
ct

or 3 threads

(b)

WOS improvement factor
S-MP
A-MP

Figure 14 Improvement factors of parallel tasks with (a) 2 threads and (3) threads.

(patterned portion) is the same for S-MP and A-MP. As expected, the only difference between
both originates from the higher number of memory phases that are included in the execution
times with S-MP.

Multi-threaded Tasks

We now evaluate the benefits of using S-MP and A-MP with multi-threaded tasks. For
this, we modify the sum tasks used before, so now they spawn 2 to 3 threads to process in
parallel a portion of its data. Each parallel thread requests its own memory phases. We
define the span of a parallel task as its execution time, which is the time interval between the
first thread is spawned, until the last thread finishes. We assume that the work performed
outside these parallel threads is negligible. Similarly to the WOET, we define the worst
observed span (WOS) as the maximum measured span, denoted as wosK for a K scheduling
configuration. Figure 14 shows the improvement factors of the WOS for S-MP and A-MP
over Contention, for parallel tasks with 2 and 3 threads, and different task data sizes. In
the figure we see similar results as with sequential tasks before: (1) only S-MP for low data
sizes sees and increase in the worst observed span times, and (2) A-MP gets a substantial
reduction in the execution times compared to S-MP and Contention.

Schedulability Analysis

We finally compare the measured WOET’s with the bounds obtained with analysis techniques
originally created for distributed systems. We model the PREM tasks as showed in Section 5,
and feed them as input to the MAST tool [14]. The models need worst-case execution times
for each task phase. For this, we use the highest task phases measured execution times. Then,
we apply three different analysis techniques: HOL, which is the original Holistic analysis by

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:19

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2

4

6

8
N

or
m

al
iz

ed
 r

es
po

ns
e

ti
m

e
Task 0

(a)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2

4

6

8

10

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

Task 1

(b)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2

4

6

8

10

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

Task 2

(c)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

0.2 0.4 0.6 0.8 1.0 1.1 1.3 1.5
Data per task (MB)

2.5

5.0

7.5

10.0

12.5

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

Task 3

(d)

WCRT normalized to WOET

HOL
OFF
OFF-OPT

Figure 15 Analytical worst-case response times normalized to WOET, for (a) Task 0, (b) Task 1,
(c) Task 2, and (d) Task 3.

Tindell [36]; OFF, which is a subsequent off-based analysis [26]; and OFF-OPT which is an
optimization of the original offset-based analysis [27]. We only consider S-MP, as A-MP is
modelled as a pure S-MP task with only one memory phase at the beginning (Section 5).

We consider systems with 4 tasks. In Figure 15 we show, for each task in the system, the
worst-case response times obtained by these analysis techniques, normalized to the measured
WOET’s. First, we can confirm that the normalized response times are never below 1. This
indicates that the analyses never underestimated the observed response times. Furthermore,
we can attest that HOL provides the highest overestimation, followed by OFF and then
OFF-OPT. For τ0 (Figure 15a), which has the highest priority memory phases, both OFF
and OFF-OPT recognized that its memory phases always execute without delay, and thus
provide worst-case response times estimations very close to the WOET’s. For the rest of the
tasks, in which memory phases scheduling delays must be accounted for, OFF-OPT provides
clearly the best results, with normalized response times clearly below 2 for τ1, τ2, and below
4 for τ3. It is important to note that a higher task data size implies more memory phases.
Additionally, a task with low priority memory phases (e.g. τ3) is impacted by more higher
priority memory phases, so the scheduling scenario to analyze increases in complexity.

We think that one of the main sources of overestimation of these analysis techniques may
be due to task release phase considerations. The analytical concept of building a worst-case
situation (i.e. critical instant) by releasing all the tasks at the same time does not always
hold for distributed tasks [27]. Accordingly, part of the challenge of distributed analysis
techniques is in finding the tasks release time phases that lead to the worst case, which may
not have been arisen during the actual measured executions.

7 Conclusions and Future Work

In this paper we have tackled the problem of contention and interferences in the shared
memory of multi-core processors, which is a great impediment for the adoption of this
type of processors in real-time applications. Precisely, we have presented and tested an

ECRTS 2019

7:20 Implementation of Memory Centric Scheduling

implementation of Memory Centric Scheduling (MCS). The main idea of MCS is to solve the
access to the shared memory via a software-based dynamic scheduler, thus avoiding low level
and non real-time hardware arbiters.

While previous papers have proposed MCS from a theoretical standpoint, this paper,
to the best of our knowledge, is the first time it has been implemented in an actual RTOS
supporting dynamic scheduling. The implementation was carried out in an asymmetric
multi-core RTOS called HIPPEROS, which locates the scheduler in a dedicated core, called
the master core.

Two variants of MCS were implemented that can be used in commercial processors:
Synchronous Memory Phases (S-MP), in which the tasks execute the memory phases in
the foreground, and Asynchronous Memory Phases (A-MP), where the memory phases are
executed in the background by a dedicated task. We evaluated the implementation in a
quad core commercial processor, and confirmed via measurements the theoretical benefits of
Memory Centric Scheduling: the tasks effectively execute free of interferences in the shared
memory sub-system.

Specifically, by scheduling the memory phases with fixed priorities, we showed that the
tasks execution times were shielded from interferences from lower priority tasks. By extension,
the highest priority task has execution times that do not depend on the number of tasks in
the multi-core system. The main consequence of these isolation effects is that the execution
times can be more easily bounded, compared to the fully contended case. Furthermore, we
viewed that with MCS the worst-case observed execution times can be lower compared to
the fully contended case, specially for tasks with high memory requirements.

We also applied existing and proven analysis techniques for distributed systems, by
exploiting the similarities between the task model used in MCS and the distributed task
model. We showed how these techniques can indeed provide safe bounds of the execution
times of MCS systems, that are also in many cases very close to the observed values.

For future work we are planning: (1) to extend the evaluation to more than one task
per core, analyzing also the benefits of non-preemptibility; (2) to compare with other
approaches such as memory bandwidth regulators (e.g. MEMGUARD [42]); (3) to evaluate
new scheduling schemes for the memory phases (e.g. LLF) and the MPW.

References

1 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of Dynamic
Memory Bandwidth Regulation in Multi-core Real-Time Systems. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 230–241. IEEE, December 2018.

2 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-predictable
scheduling. In Proceedings of the 14th International Conference on Embedded Software -
EMSOFT ’14, pages 1–10, 2014.

3 Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multithreaded
applications on multicore systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, pages 1–6, New Jersey, 2014. IEEE Conference Publications.

4 Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global scheduling
of real-time tasks. In Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 285–296, 2015.

5 Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Improved cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems. Real-Time Systems,
48(5):499–526, September 2012.

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:21

6 Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I. Davis. On the effectiveness
of cache partitioning in hard real-time systems. Real-Time Systems, 52(5):598–643, September
2016.

7 ARM. Arm® Architecture Reference Manual Supplement Memory System Resource Partition-
ing and Monitoring (MPAM). URL: https://developer.arm.com/docs/ddi0598/latest.

8 Muhammad Ali Awan, Pedro F. Souto, Benny Akesson, Konstantinos Bletsas, and Eduardo
Tovar. Uneven memory regulation for scheduling IMA applications on multi-core platforms.
Real-Time Systems, 55(2):248–292, April 2019.

9 Stanley Bak, Gang Yao, Rodolfo Pellizzoni, and Marco Caccamo. Memory-Aware Scheduling
of Multicore Task Sets for Real-Time Systems. In 2012 IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 300–309. IEEE, August
2012.

10 Moris Behnam, Rafia Inam, Thomas Nolte, and Mikael Sjödin. Multi-core composability in
the face of memory-bus contention. ACM SIGBED Review, 10(3):35–42, October 2013.

11 Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact of Cache Partitioning on
Multi-tasking Real Time Embedded Systems. In 2008 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 101–110. IEEE, August
2008.

12 Felipe Cerqueira, Manohar Vanga, and Björn B. Brandenburg. Scaling global scheduling with
message passing. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 263–274, April 2014.

13 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys, 43(4):1–44, October 2011.

14 Michael González Harbour, Jose Javier Gutiérrez, José M. Drake, Patricia López Martínez,
and Jose Carlos Palencia. Modeling distributed real-time systems with MAST 2. Journal of
Systems Architecture, 59(6):331–340, June 2013.

15 Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. Design space exploration and
system optimization with symTA/S - Symbolic timing analysis for systems. Proceedings -
Real-Time Systems Symposium, pages 469–478, 2004.

16 Tobias Kalb, Lester Kalms, Diana Göhringer, Carlota Pons, Ananya Muddukrishna, Magnus
Jahre, Boitumelo Ruf, Tobias Schuchert, Igor Tchouchenkov, Carl Ehrenstråhle, Magnus
Peterson, Flemming Christensen, Antonio Paolillo, Ben Rodriguez, and Philippe Millet.
Developing Low-Power Image Processing Applications with the TULIPP Reference Platform
Instance, pages 181–197. Springer International Publishing, Cham, 2019.

17 Claire Maiza, Hamza Rihani, Juan M Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I
Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM
Computing Surveys, 52(3), July 2019.

18 R. Mancuso, R. Dudko, and M. Caccamo. Light-PREM: Automated software refactoring
for predictable execution on COTS embedded systems. In 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems and Applications, pages 1–10,
August 2014.

19 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo
Pellizzoni. Real-time cache management framework for multi-core architectures. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54.
IEEE, April 2013.

20 Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun. WCET (m)
estimation in multi-core systems using single core equivalence. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), pages 174–183. IEEE, 2015.

21 Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo. WCET Derivation
Under Single Core Equivalence With Explicit Memory Budget Assignment. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

ECRTS 2019

https://developer.arm.com/docs/ddi0598/latest

7:22 Implementation of Memory Centric Scheduling

22 Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini, and Andrea
Marongiu. Combining PREM Compilation and ILP Scheduling for High-performance and
Predictable MPSoC Execution. In Proceedings of the 9th International Workshop on Program-
ming Models and Applications for Multicores and Manycores, PMAM’18, pages 11–20, New
York, NY, USA, 2018. ACM.

23 Sparsh Mittal. A Survey of Techniques for Cache Partitioning in Multicore Processors. ACM
Computing Surveys, 50(2):1–39, May 2017.

24 Frank Mueller. Compiler Support for Software-based Cache Partitioning. In Proceedings of
the ACM SIGPLAN 1995 Workshop on Languages, Compilers, &Amp; Tools for Real-time
Systems, LCTES ’95, pages 125–133, New York, NY, USA, 1995. ACM.

25 University of Cantabria. MAST. URL: https://mast.unican.es/.
26 Jose Carlos Palencia and Michael Gonzalez Harbour. Schedulability analysis for tasks with

static and dynamic offsets. In Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No.98CB36279), pages 26–37. IEEE Comput. Soc, 1998.

27 Jose.C. Palencia and Michael Gonzalez Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In Proceedings 20th IEEE Real-Time
Systems Symposium (Cat. No.99CB37054), pages 328–339. IEEE Comput. Soc, 1999.

28 Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens, and Ben Rodriguez. A
New Configurable and Parallel Embedded Real-time Micro-Kernel for Multi-core platforms.
OSPERT 2015, pages 25–27, 2015.

29 Antonio Paolillo, Paul Rodriguez, Vladimir Svoboda, Olivier Desenfans, Joël Goossens, Ben
Rodriguez, Sylvain Girbal, Madeleine Faugère, and Philippe Bonnot. Porting a safety-critical
industrial application on a mixed-criticality enabled real-time operating system. In Proceedings
of the 5th Workshop on Mixed-Criticality Systems, December 2017.

30 Antonio Paolillo, Paul Rodriguez, Nikita Veshchikov, Joël Goossens, and Ben Rodriguez.
Quantifying Energy Consumption for Practical Fork-Join Parallelism on an Embedded Real-
Time Operating System. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems, RTNS ’16, pages 329–338. ACM, 2016.

31 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A Predictable Execution Model for COTS-Based Embedded Systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 269–279.
IEEE, April 2011.

32 Juan M. Rivas, Jose Javier Gutiérrez, Jose Carlos Palencia, and Michael González Harbour.
Schedulability analysis and optimization of heterogeneous EDF and FP distributed real-time
systems. Euromicro Conference on Real-Time Systems (ECRTS), pages 195–204, 2011.

33 HIPPEROS SA. The real-time OS for high performance embedded systems. https://www.
hipperos.com/maestro/. 2019-02-04.

34 Ahmad Sadek, Ananya Muddukrishna, Lester Kalms, Asbjørn Djupdal, Ariel Podlubne,
Antonio Paolillo, Diana Goehringer, and Magnus Jahre. Supporting Utilities for Heterogeneous
Embedded Image Processing Platforms (STHEM): An Overview. In Nikolaos Voros, Michael
Huebner, Georgios Keramidas, Diana Goehringer, Christos Antonopoulos, and Pedro C. Diniz,
editors, Applied Reconfigurable Computing. Architectures, Tools, and Applications, pages
737–749, Cham, 2018. Springer International Publishing.

35 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Caccamo.
A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Systems. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11, April
2016. doi:10.1109/RTAS.2016.7461321.

36 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming, 40(2-3):117–134, April 1994.

37 Saud Wasly and Rodolfo Pellizzoni. Hiding Memory Latency Using Fixed Priority Scheduling.
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 75–86, 2014.

https://mast.unican.es/
https://www.hipperos.com/maestro/
https://www.hipperos.com/maestro/
http://dx.doi.org/10.1109/RTAS.2016.7461321

J.M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo 7:23

38 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time Systems, 48(6):681–715,
November 2012.

39 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo. Global Real-
Time Memory-Centric Scheduling for Multicore Systems. IEEE Transactions on Computers,
65(9):2739–2751, 2016.

40 Gang Yao, Heechul Yun, Zheng Pei Wu, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha.
Schedulability Analysis for Memory Bandwidth Regulated Multicore Real-Time Systems.
IEEE Transactions on Computers, 65(2):601–614, February 2016.

41 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore platforms. In IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 155–166.
IEEE, April 2014.

42 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 55–64, 2013.

ECRTS 2019

Industrial Application of a Partitioning Scheduler
to Support Mixed Criticality Systems
Stephen Law
Rolls Royce Control Systems, Birmingham, UK
forename.surname@Rolls-Royce.com

Iain Bate
The University of York, York, UK
forename.surname@york.ac.uk

Benjamin Lesage
Rolls Royce Control Systems, Birmingham, UK
The University of York, York, UK
forename.surname@york.ac.uk

Abstract
The ever-growing complexity of safety-critical control systems continues to require evolution in
control system design, architecture and implementation. At the same time the cost of developing
such systems must be controlled and importantly quality must be maintained.

This paper examines the application of Mixed Criticality System (MCS) research to a DAL-A
aircraft engine Full Authority Digital Engine Control (FADEC) system which includes studying
porting the control system’s software to a preemptive scheduler from a non-preemptive scheduler. The
paper deals with three key challenges as part of the technology transitions. Firstly, how to provide
an equivalent level of fault isolation to ARINC 653 without the restriction of strict temporal slicing
between criticality levels. Secondly extending the current analysis for Adaptive Mixed Criticality
(AMC) scheduling to include the overheads of the system. Finally the development of clustering
algorithms that automatically group tasks into larger super-tasks to both reduce overheads whilst
ensuring the timing requirements, including the important task transaction requirements, are met.

2012 ACM Subject Classification Computer systems organization → Real-time operating systems;
Software and its engineering → Real-time schedulability; Hardware → Safety critical systems

Keywords and phrases MCS, DO-178C, Real-Time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.8

1 Introduction

Real time embedded software tasks developed for safety critical systems, such as civil aircraft
engine controls, are typically developed according to a specific Development Assurance Level
(DAL) [28]. The DAL indicates a criticality level for a component and is assigned based on
the consequence to the system’s safety that a failure of this component could cause. This
paper shall consider the model presented in [28], that defines DAL-A as the highest criticality
level and DAL-E the lowest. It is typically assumed that the amount of effort assigned to
producing enough evidence to prove the correct operation of a software component is directly
proportional to its DAL [32]. However, in practice it is still essential that lower DAL software
operates as expected to deliver the desired customer capability. Put simply a task’s criticality
is not necessarily related to its “importance”.

In accordance with DO-178C [28], where two components developed against different DALs
are integrated in the same system, it is necessary to guarantee that high DAL components
have temporal and spatial isolation from “unproven” low DAL components.

© Rolls-Royce Plc;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:forename.surname@Rolls-Royce.com
mailto:forename.surname@york.ac.uk
mailto:forename.surname@york.ac.uk
https://doi.org/10.4230/LIPIcs.ECRTS.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

There are two forms of partitioning that must be employed [29]: temporal partitioning,
which is concerned with the response time of a component, and spatial partitioning, which is
concerned with the hardware and memory space of a component. This paper is principally
concerned with the former, however in order to develop a safety critical system it is vital to
consider both together.

In the literature a Mixed Criticality System (MCS) is a system which combines software of
multiple DALs on the same processor. The technical objective of which is to provide sufficient
evidence that a low DAL component cannot jeopardise any high DAL component’s temporal
or functional requirements, while still providing a level of service to the low DAL component.
One approach to MCS development is to deploy the partitioned architecture defined by the
ARINC 653 standard [1]. The standard defines a partitioned model principally aimed at the
development of Integrated Modular Avionics (IMA), but is capable of supporting partitions
developed against different DALs. The issue with the ARINC 653 approach is that the
solution defined for temporal partitioning, essentially a two-level scheduler with time division,
makes the approach difficult to apply to a complex control system [3]. This is because it can
lead to the introduction of higher completion jitter, longer end-to-end transaction response
times and in general it can be difficult to accommodate a complex task schedule into fixed
time partitions [3].

Instead, this paper examines the potential for applying a pre-emptive MCS scheduling
approach, available in the literature, to a real industrial safety critical avionics application.
The application chosen for prototyping was a Rolls-Royce DAL-A avionics engine control
system. This system was taken off a certified in-service application without modification or
simplification. The primary aim was to investigate whether a set of less critical monitoring
functionality could be executed on the same processor as the DAL-A control software whilst
still meeting its certification requirements. In order to support these requirements a move to
a preemptive system was required in order to allow the introduction of temporal partitioning
protection. Therefore a secondary aim was to study the migration of the existing non-
preemptive fixed priority scheduling approach [8] to using preemptive scheduling. This
offered further advantages such as responsiveness, avoidance of high blocking terms, however
at the expense of greater RTOS overheads and complexity.

This work considers AMC+, the Adaptive Mixed Criticality (AMC) [5] variant, which
uses a simple mode change protocol and recovery point on an idle tick [31]. AMC+ is chosen
as it is the simplest fixed-priority scheduling approach for MCS that allows the system to
return to low mode after a switch to high-criticality mode.

The paper describes the challenges involved in certifying a real industrial system with
AMC+ and as part of doing so three main contributions are made. The first contribution,
in section 3, is a process that explains how the scheduler can be constructed that when
combined with timing watchdogs allows AMC+ to be efficiently implemented whilst giving
the necessary temporal isolation between high and low criticality tasks. In section 4, given
a suitable RTOS and watchdog mechanisms, the standard AMC+ schedulability analysis
is extended to account for the real overheads of the Rolls-Royce aircraft engine control
system, referred to in this paper as a Full-Authority Digital Engine Controller (FADEC).
The extensions form the second contribution of the paper.

The main contributions of the paper, in section 5, are: demonstrating how real world
requirements of task dependencies and jitter requirements can be handled; and a task
clustering mechanism based around the tasks’ deadlines that mitigates the overheads of the
system such that more individual tasks are schedulable. This includes adherence to tight

S. Law, I. Bate, and B. Lesage 8:3

jitter requirements placed on certain tasks, as well as transaction requirements involving
multiple tasks. Even though the work is targeting the control system, the benefits of the
proposed clustering algorithms are also demonstrated on a larger-scale evaluation.

Sections 3, 4 and 5 are preceded by a Related Work section and followed by the conclusions.

2 Background

The purpose of this section is to consider related work to this paper, explain the standard
system model for AMC+, the standard schedulability analysis for AMC+, and finally the
existing Rolls-Royce control system’s approach to scheduling.

2.1 Related Work
This section considers the related work on two topics: reducing the cost of RTOS overheads
and MCS. The work on reducing the cost of overheads has two main approaches: firstly
making the analysis less pessimistic and secondly reducing the actual overheads. In terms
of the analysis pessimism, the majority of work has been in the area of Cache-Related
Preemption Delays (CRPD) where an understanding is derived of the impact of on-the-cache
contents and which parts of the software cannot preempt each other [24]. The focus in
this work is not reducing the pessimism of the analysis, although such approaches could be
applied as part of future work, but instead reducing the size of the RTOS overheads.

Overlooking the obvious aim that any RTOS or scheduler must be designed to be as efficient
as possible; two main areas of research have been performed on reducing the occurrences of
overheads. Firstly work has looked at minimising the number of priority levels, e.g. [2], which
can lead to a reduction in the number of task context switches. The second approach is
grouping a number of software components (tasks in the original Rolls-Royce control software)
into larger schedulable tasks (referred to here as super-tasks). This approach is the same
philosophy as adopted in AUTOSAR systems where runnables are grouped to form tasks
as part of reducing overheads [11, 16, 26]. The approach however suffers from restrictions
that prevent their application in the current case; they either ignore transactions between
tasks [11], or require the possibility to duplicate tasks shared between transactions [16]. This
paper identifies, for the system studied, that the most appropriate method was the latter
of the two mentioned here, that is reducing the number of tasks scheduled by the RTOS.
This paper extends this research by examining task sets incorporating task transactions and
jitter requirements.

Vestal [32] was one of the first publications to consider the schedulability of a MCS. The
work draws the comparison that the reliability of the Worst Case Execution Time (WCET)
figure used for each task is commensurate to its criticality. This is based on the observation
that lower DAL tasks are not developed, or verified, to the same rigour that higher DAL
tasks are, and therefore the output WCET figures cannot be expected to be as reliable.

Building off Vestal’s work, Baruah et al. [5] introduced three models for Mixed Criticality
Scheduling - partitioned criticality, Static Mixed Criticality (SMC) and Adaptive Mixed
Criticality (AMC).

Partitioned criticality [5] is the simplest form of mixed criticality scheduling, where
priorities are assigned according to each task’s criticality. Accordingly a task with a higher
criticality will always be scheduled with a higher priority than another task of lower criticality.
This approach ensures a timing error in a low DAL task cannot affect the temporal require-
ments of a high DAL task, therefore requiring no run time monitoring. However, because
the scheduler will always execute a high DAL task if one is ready, it makes it significantly

ECRTS 2019

8:4 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

ResetNormal Mode HighDAL Mode

HighDAL Task

Exceeds CLo

Idle Task Called

HighDAL Task

Exceeds CHi

LowDAL Task

Exceeds CLo

Interrupt

Enter Supervisor

Mode

Service Watchdog

Cause of Interrupt

Scheduler Tick Task Yield or

Preemption

Has Task Overrun CLo?

Yes

No

Release Ready

Tasks

Switch Mode to

HighDAL

Identify Highest

Priority Task

Set Interrupt Timer

Return from Interrupt

Context Switch

Set Restricted Mode

Handle Memory

Error

User Mode

Memory Error

Figure 1 AMC+ State Flow Diagram.

more difficult to meet low DAL task deadlines [5]. Furthermore as Baruah et al. [5] point
out, the argument for avoiding run time monitoring is voided by the fact that many safety
critical systems already incorporate run time monitoring for the purpose of error detection.

SMC and AMC [5] on the other hand assign task priorities according to their temporal
requirements, regardless of criticality. The algorithms following Vestal’s work assume that
each task has a WCET bound (CL

i) for each criticality level (L = {A,B,C,D,E}) where
CA

i ≥ CB
i ≥ CC

i ≥ CD
i ≥ CE

i . In most cases, previous works consider only two WCET
bounds, CHI

i and CLO
i , where CHI

i ≥ CLO
i . In this paper, DAL-A tasks have two execution

times, CHI
i and CLO

i , and DAL-C tasks have just CLO
i . Extensive software testing in

representative engine operation simulations provide confidence that CLO
i should not be

exceeded, however this cannot be proved, and so CHI
i , produced through WCET analysis,

provides a safe upper bound.
SMC allows low or high DAL tasks to execute up to their CLO

i or CHI
i respectively; but

they are then prevented from executing further [4]. This offers a stop dead point where
any task must cease executing and provides adequate protection for high DAL tasks from
low DAL tasks.

The AMC protocol builds off this; however whereas SMC de-schedules one task if it
executes for longer than CL

i , AMC de-schedules all low DAL tasks if any high DAL task
executes for longer than its CLO

i . While the original paper did not explicitly define a recovery
point, an obvious route back to re-enabling low DAL tasks is to use the Idle Task or state of
the system. This is referred to in this paper as AMC+ and is based around the simple mode
change protocol in [31]. The AMC+ protocol is achieved through a scheduler mode change
which is summarised in Figure 1.

There are a great number of refinements to the AMC+ model, e.g. the Bailout protocol
in [9, 10], however these are largely independent to the contributions of this paper. That is,
the papers lacked details of how the implementation would ensure the properties needed for
certification, the analysis did not consider overheads as part of the analysis, and the papers
did not consider how overheads could be reduced. Therefore, they are not covered here.

A number of papers have considered system development of an MCS. Sousa et al [30]
identify the overheads induced by a multi-core task-split mixed criticality system, a number
of the overheads identified and integrated into the schedulability analysis are similar to the
overheads identified in this paper. However, in this paper we go further by presenting a full
process for how overheads can be analysed and reduced.

Freitag et al [17] divides tasks of different criticalities across different cores on a multi-core
processor, in order to simplify system proof, the system supervisor analyses the interference
induced by low criticality cores on high criticality cores, disabling the low criticality core if
required. Herman et al [19] perform an analysis of the development of a mixed criticality

S. Law, I. Bate, and B. Lesage 8:5

multi-core system, however the initial analysis does not progress far enough to support actual
development, for instance through proof of the effect of overheads on the schedulability of
the system. Finally, Paolillo et al [27] examine the benefits of porting an industrial case
study to a mixed criticality system, finding that the potential low criticality task utilisation
is high, but also identifying how the identification of sound task WCETs had a significant
effect on the service afforded to low criticality tasks. The paper however did not progress far
enough to explore how such a system could be implemented and certified.

The focus of this paper is on applying an industrial avionics control system against the
mixed criticality model originally presented by Vestal [32] as this provides a model well
suited to industrial application. The specific implementation chosen is the AMC+ algorithm
introduced by Baruah et al. [5]. The following sub-sections present more formally the baseline
system model and schedulability analysis of AMC+.

2.2 System Model
A system is defined as a collection of tasks denoted by τi where 1 ≤ i ≤ N . Each task τi is
denoted by a deadline Di, a period Ti, a criticality level Li, and one or many WCETs
Ci. A task is said to have a hard deadline (Di ≤ Ti) if its execution must meet every deadline,
whereas a soft deadline allows deadlines to be missed without having an adverse impact on
the safe operation of the component.

Other parameters which describe a task include the release jitter Ji which denotes the
maximum permissible variation of the period Ti for the release of the task. Once a task has
been scheduled it may be assigned a priority Pi where 1 ≤ Pi ≤ N . It is possible for the
execution of one task τi to be reliant on the completion of another task τj , such an interaction
is described as a transaction. Transactions are formed in order to aid the proof of system
level timing requirements, where it may need to be proven that the system performs a set
sequence of activities in order, and within a set period of time.

Finally, a task τi is said to be schedulable if its worst case response time (WCRT)
Ri, is less than its deadline Di.

2.3 Static Schedulability Analysis
The static schedulability analysis assessed in this implementation follows the AMC-rtb
algorithm introduced by Baruah et al. [5]. The schedulability analysis is performed in
three stages. First, the response time of each task is assessed in the high and low modes.
Finally, the response times of the high criticality tasks are assessed during a mode change
from low to high.

The low and steady high mode response time analysis equations are defined below, where
hp(i) is the set of higher priority tasks than task τi and hpH(i) is the set of high DAL higher
priority tasks than task τi. Respectively hpL(i) for the set of low DAL higher priority tasks.
These equations calculate the high-criticality mode WCRT, RHI

i , and the low-criticality
mode WCRT, RLO

i .

RLO
i = CLO

i +
∑

j∈hp(i)

(⌈
RLO

i

Tj

⌉
CLO

j

)
(1)

RHI
i = CHI

i +
∑

j∈hpH(i)

(⌈
RHI

i

Tj

⌉
CHI

j

)
(2)

ECRTS 2019

8:6 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

Where each equation should be recursively solved. Low criticality tasks are not considered
when in the high-criticality mode as they are de-scheduled by the system. The sufficient
mode change analysis [5] then defines the response time analysis for a high DAL task during
a low-to-high mode change as follows:

R∗i = CHI
i +

∑
j∈hpH(i)

(⌈
R∗i
Tj

⌉
CHI

j

)
+

∑
k∈hpL(i)

(⌈
RLO

i

Tk

⌉
CLO

k

)
(3)

This ensures the interference from low DAL tasks is capped as R∗i must be greater
than RLO

i .

2.4 Existing Control System
“Visual Fixed Priority Scheduler” (VisualFPS) is a task attribute assignment and scheduling
analysis tool framework developed initially by Bate and Burns [8] and then used by Rolls-
Royce on all their FADECs since 2002 [15].

The current FADEC approach features a non-preemptive scheduler where all tasks are
released by a clock tick which has a period equal to the greatest common divisor of the
tasks’ periods [8]. Timing protection is provided by a hardware timing watchdog that counts
down from the clock tick period. If the counter is not reset before it reaches zero then the
processor is reset, re-initialising the system. When combined with a dual lane architecture
each with independent power supplies, sensors and actuators, the use of a hardware timing
watchdog ensures the likelihood of a processor or software fault leading to a hazardous safety
event is acceptably low.

The current system is controlled using a non-premptive scheduler supported by a hard-
ware timing watchdog. It consists of over 200 tasks, designed against an extensive set of
system timing requirements [8]. Certification is achieved using timing information from a
measurement-based timing analysis process [23] [22] [25].

The timing requirements for the task set include independent task requirements of period
Ti, deadline Di and in some cases completion jitter Ji as well as dependent task transaction
requirements. The transaction requirements are further complicated by two factors. Firstly
some tasks appear in more than one transaction, and secondly within a transaction it may be
the case that some tasks have different periods. For example a transaction may run a sequence
of tasks with periods of 25, 50, 50, 25, 100 and then 25 respectively. An important decision
taken is to use a repeatable algorithm (i.e. that always produces the same results) that takes
all the requirements and uses them to calculate the deadline for each task. Task priorities
are then assigned using the Deadline Monotonic Priority Ordering (DMPO) algorithm where
the task with the shortest deadline is given the highest priority. If all deadlines are met, all
the timing requirements are met; the method ensures the schedule is correct by construction.
This approach has a further advantage, key to industry, that by incorporating the timing
requirements for each task into its design-time calculated deadline; the system can be easily
proved, reviewed and understood by engineers and system integrators [8].

An aim of this work is to change the processing platform, scheduling mechanisms, and
tooling by only the minimum amount necessary, as the tooling is well understood and
accepted by engineers and certification authorities respectively.

Each task is designed to communicate with a common interface, and follows a format
of input-process-output, furthermore tasks are designed to execute upon the data that is
currently available and will not wait until fresh data is available. Where fresh data is required
to move between tasks this is generally controlled by a transaction. This approach has
the advantage of simplifying access to shared resources between tasks, and is therefore not
considered further as part of this paper.

S. Law, I. Bate, and B. Lesage 8:7

3 Achieving Sufficient Temporal Isolation

This section introduces the requirements surrounding the development of a MCS, both from
a certification and a system integration point of view.

3.1 Certification Requirements

The paper focuses on the development of software for avionics systems. Accordingly,
only the guidelines detailed in DO-178C [20] are explored in this section. However the
guidelines are considered similar to those detailed in other software domains such as ISO26262
and IEC61508 [18].

DO-178C Section 2.4 defines five requirements for partitioning as follows:
1. A partitioned software component should not be allowed to contaminate another parti-

tioned software component’s code, input/output (I/O), or data storage areas
2. A partitioned software component should be allowed to consume shared processor resources

only during its scheduled period of execution
3. Failures of hardware unique to a partitioned software component should not cause adverse

effects on other partitioned software components
4. Any software providing partitioning should have the same or higher software level as the

highest level assigned to any of the partitioned software components
5. Any hardware providing partitioning should be assessed by the system safety assessment

process to ensure that it does not adversely affect safety

These requirements form the basis for this mixed criticality assessment and they are
explored further in the following sections.

3.2 Target Processor

The target processor for this analysis is the Rolls-Royce in-house processor. The Rolls-
Royce processor is a packaged device that integrates a core, memory, IO and tracepoint
interfaces. Being targeted at the safety-critical embedded sector, the device is DO-254 –
Level A compliant. It has extensive single-event-upset protection and is suitable for harsh
environments. The processor does not incorporate a data or instruction cache due to their
impact on timing predictability.

The processor has been carefully designed to ensure that each instruction’s execution is
time-invariant; in other words each instruction will take the same time to execute, regardless
of the data its operation is performed upon. These design features further ensure that
previous processor state has no effect on the current operation of the device.

The use of such a deterministic processor allows worst case timing measurements of
software components, including the scheduler, to be taken during normal operation, without
the need for special builds [22,23]. These measurements are used in two ways. For High-DAL
tasks the measurements are input into a hybrid measurement based WCET analysis tool and
used for the task’s CHI

i . Secondly for both High-DAL and Low-DAL tasks the Maximum
Observed Execution Time (or High Water Mark - HWM) obtained during the extensive
software test regime is used as the task’s CLO

i .
Together with supervisor and user mode spatial partitioning control, this determinism

provides the basis for an argument to be made that different software partitions executing upon
the Rolls-Royce processor cannot affect each other from a spatial or temporal point of view.

ECRTS 2019

8:8 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

3.3 Partitioning
The aim of this assessment was to identify how a set of low DAL monitoring tasks can be
integrated alongside a set of high DAL-Control tasks. The assumption that should be made
for a low criticality task is that the task may execute, if allowed, for longer than its observed
HWM; its CLO

i is assumed to be optimistic. However, due to the rigorous testing regime the
software undergoes and the extensive in-test and in-flight monitoring it is known that it is
rarely exceeded.

From a certification point of view as the evidence to prove otherwise may not have
been produced to the same level as a high DAL component, then a certification authority
must assume a low DAL component is more likely to contain an error. So as guided by the
requirements noted in Section 3.1, partitioning must be employed to prove that any errors
that occur in a low DAL partition, cannot propagate to a high DAL partition. Partitioning
is thus employed between high and low DAL tasks.

The scheduler proposed in this work implements two key protection mechanisms to
implement a DO-178C partitioned architecture: the use of timer driven interrupts, and
the use of processor memory protection. Figure 2 shows the statechart for the interrupt
driven scheduler.

A timer driven interrupt is employed both to control the release of new tasks by invoking
a scheduler tick, and to interrupt low DAL components when they reach their CLO

i . As
the interrupt handler prepares to switch in a task, one of the final operations is to set the
interrupt timer to the lowest of either 1) the time to the next task release, or 2) in the case
of a low DAL task the allowed execution time remaining.

High DAL tasks are not regulated in the same way. If a high DAL task executes beyond its
CLO

i then it is permitted to continue, but the next time the scheduler executes it will identify
the need to move into the high DAL mode. This is controlled by the “Handle Overrun” block
within Figure 2. Return to the low mode is controlled by a high DAL idle task.

Secondly, processor memory protection is employed in a User/Supervisor arrangement.
All tasks execute in a design-defined protected area of memory, with access to different
hardware features or memory regions either permitted or restricted as necessary. Should any
task execute outside these fixed boundaries, then an interrupt is raised and the interrupt
handler handles the data error. This is enforced by the scheduler setting the proper User
Mode when returning to a task as illustrated in Figure 2.

The memory protection employed ensures that each component executing on the processor
cannot execute outside its design time defined boundaries, thus providing protection for high
DAL tasks from low DAL task promiscuous memory or hardware interactions. Whereas the
timer driven interrupt restricts the execution of low DAL tasks, ensuring a low DAL task
cannot execute beyond its CLO

i .
The processor is further protected by the accepted and proven in use hardware timing

watchdog, which ensures any timing requirement not met is detected sufficiently quickly.
Finally, at a system level the control system is designed around a full dual redundant archi-
tecture.

The earlier certification requirements are now re-visited with the reasons they are met
in italics.

1. A partitioned software component should not be allowed to contaminate another parti-
tioned software component’s code, input/output (I/O), or data storage areas
The use of appropriately written and tested software makes this less likely, in addition
the control system processor provides memory and other hardware protections through the
use of a supervisor/user mode configuration. Furthermore, the processor is built upon a
deterministic platform.

S. Law, I. Bate, and B. Lesage 8:9

Figure 2 Partitioned Scheduler Statechart.

ECRTS 2019

8:10 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

2. A partitioned software component should be allowed to consume shared processor resources
only during its scheduled period of execution
The software timing interrupt, controlled by the scheduler, should prevent this by bounding
the execution time of low criticality tasks according to the task’s CLO. High criticality
tasks are not interrupted except by a scheduler tick, this is based on the trusted WCET
analysis process followed for high criticality tasks.

3. Failures of hardware unique to a partitioned software component should not cause adverse
effects on other partitioned software components
If a failure prevents the software timing interrupt providing the expected protection then
the hardware timing watchdog, which is accepted and proven in use, combined with a
two-lane (duplex) architecture will ensure acceptable safety. Furthermore, the spatial
partitioning employed shall ensure a task cannot interact with address regions outside of
its permitted bounds

4. Any software providing partitioning should have the same or higher software level as the
highest level assigned to any of the partitioned software components
The RTOS, interrupt handler, scheduler and software timing watchdog should all be
developed to the highest DAL and are executed as protected “supervisor” mode components.

5. Any hardware providing partitioning should be assessed by the system safety assessment
process to ensure that it does not adversely affect safety
The processor timing supervision component has been verified to DO-254 DAL-A and has
been used on multiple certified systems.

4 Extending AMC+ Analysis to Allow for Overheads

In order to include the execution time of the scheduler shown in Figure 2 into the response
time analysis for the system, the overheads were broken down into three constituent parts as
described below:
1. Tick Overhead - δT (Figure 2 - dot/dash line, red). Calculated using the measured worst

case tick time CT ICK . It includes:
The pre-emption of the executing task.
The handling of system services, e.g. the watchdog.
The context switch, and calling, of the highest priority task.
The release of any tasks into the ready state. Measured separately as CREL. (Figure 2
- solid line, green)

2. Start Task Time - δS (Figure 2 - dashed line, blue). Calculated using the measured worst
case task switch in time CST ART . It includes:

The initial time taken to context switch each task into the executing state. Except for
the highest priority task, which is accounted for in the tick overhead.

3. Stop Task Time - δE (Figure 2 - dotted line, yellow). Calculated using the measured
worst case task switch in time CEND.

The end time taken when a task finishes executing and returns to the scheduler.

Task releases are fixed to only occur on a scheduler tick, and the scheduler tick is the
only component that can interrupt another task. The execution time of each overhead was
measured during normal system operation, which included at certain points, the schedule’s
critical instance. This ensures the maximum execution time for each overhead was captured
firstly by ensuring the maximum number of tasks were in the released state at certain points,
and that the maximum number of preemption points are observed.

S. Law, I. Bate, and B. Lesage 8:11

The release overhead was measured and recorded against the number of tasks being
released. This allowed the release overhead of each task to be assessed, which proved to be
linear against the number of tasks being released as per the design goal.

The credibility of this maximum observed overhead time is based on the following
implementation details:

The use of a time deterministic target processor.
Tasks are only released on the system tick. The system tick period is equal to the greatest
common divisor of the tasks’ period. All other task periods in the system are a harmonic
of the tick period.
Each overhead is measured while the system executes a full system test campaign on a
full simulation rig.
The RTOS is carefully designed to ensure the task release overhead is linearly proportional
to the number of tasks in the system.

Finally, each overhead was factored into the analysis through synthetic tasks, in the same
way originally introduced by Burns et al [13]. This method of essentially viewing certain
overheads as tasks provides a safe and suitable method for taking account of the periodicity
of the overheads, and allows the overheads to be placed at the appropriate place in the
schedule to ensure correct analysis of interference.

The effect that the tick overhead has on the response time of a task can then be calculated
as follows:

δMODE
T =

⌈
RMODE

i

TT ICK

⌉
CT ICK +

∑
j∈MODE(i)

(⌈
RMODE

i

Tj

⌉
CREL

)
(4)

In Equation 4, as in the following Equations 5 and 6 the value of RMODE
i used should

either be RLO
i , RHI

i or R∗i depending on whether the low mode, high mode or mode change
response time is being calculated.

Secondly, the set of higher priority tasks used in each equation (denoted as j ∈MODE(i)
or j ∈ hpMODE(i)) should be limited to those tasks permitted to execute in order to avoid
undue pessimism. The scheduler tick occurs in all scheduler modes, as well as during a mode
change. However the release overhead for low DAL tasks will only occur in the low mode,
or during a mode change from low criticality to high. This low DAL task release overhead
cannot be ignored during a mode change because the release of these tasks occurs before the
highest priority task begins to execute.

The start and stop overheads of each task are calculated as follows.

δMODE
S =

∑
j∈hpMODE(i)

(⌈
RMODE

i

Tj

⌉
CST ART

)
(5)

δMODE
E =

∑
j∈hpMODE(i)

(⌈
RMODE

i

Tj

⌉
CEND

)
(6)

Equations 1 and 2 can therefore be extended as follows:

RLO
i = CLO

i + CST ART + δLO
T +

∑
j∈hp(i)

(⌈
RLO

i

Tj

⌉
CLO

j

)
+ δLO

S + δLO
E (7)

RHI
i = CHI

i + CST ART + δHI
T +

∑
j∈hpH(i)

(⌈
RHI

i

Tj

⌉
CHI

j

)
+ δHI

S + δHI
E (8)

ECRTS 2019

8:12 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

Finally Equation 3 can be extended as follows:

R∗i = CHI
i +CST ART + δ∗T +

∑
j∈hpH(i)

(⌈
R∗i
Tj

⌉
CHI

j

)
+

∑
k∈hpL(i)

(⌈
RLO

i

Tk

⌉
CLO

k

)
+ δ∗S + δ∗E (9)

This overhead model is built on the assumption that a switch from a low to a high DAL
task, and the associated context switch, takes a constant time. On the deterministic Rolls-
Royce aerospace company processor this is the case. However for less deterministic processors,
or more complex context or thread switching mechanisms this model, and associated priority
assignment mechanism, it may need to be adapted in a similar way to the work presented by
Davis et al. [14].

This section has introduced an overhead model for calculating the response time of tasks
in a preemptive mixed criticality system. The following section will now examine how these
overheads can be minimised through appropriate system design.

5 Clustering to Reduce the Overheads of a Pre-Emptive Mixed
Criticality System

The current Rolls-Royce control system architecture consists of a large number of tasks,
carefully designed to reduce the effects of task blocking in the current non pre-emptive
scheduler (§ 2.4). The system follows a correct by construction design approach; each task‘s
deadline is calculated as part of the design process to ensure that if all tasks meet their
deadline (as confirmed through response time analysis), then the system as a whole will meet
its temporal requirements. This relies on a task attribution assignment which calculates each
task’s deadline based on its period, transaction and completion jitter requirements. This
system can then be said to comply with its timing requirements provided all tasks meet
their deadlines.

The overhead assessment and implementation rules defined in Section 4 illustrated how
the approach of using a large number of individual scheduled tasks is less desirable for a
pre-emptive model. This is because firstly the RTOS overheads of the pre-emptive RTOS are
significantly higher than the overheads of the non-pre-emptive system due to the introduction
of context switching and task monitoring, but also because the overheads increase with the
number of tasks, and their associated releases, in the system. By reducing the number of
tasks called from the RTOS, the number of tasks N is reduced to NCLUST ER (referring to
Equation 4) reducing the overhead induced by task releases. Furthermore, the number of
higher priority tasks hpMODE(i) is reduced in Equations 5 and 6, reducing the start and
stop task induced overheads.

This meant that simply porting the existing control system task set to the new architecture
produced a system whose overheads exceeded 40% of the total system utilisation, making
the system unschedulable. Therefore, it is necessary to condense the set of tasks in order to
reduce the RTOS overheads to a level where a schedulable system can be defined.

There are two aspects that must be considered when porting components from one
architecture to another. The first is the correct handling, and protection, of data transfers
that are conducted across the system. The second is in the correct allocation of tasks to
fulfil the temporal requirements of the compiled system. This paper is concerned principally
with the latter, with the former being considered in parallel work.

A number of methods were investigated for controlling the clustering, all methods were
defined using some or all of the temporal requirements placed on the tasks within a system.
Each method follows the same basic process of placing tasks into a defined order, where

S. Law, I. Bate, and B. Lesage 8:13

Algorithm 1 Task Clustering Algorithm.
1: /* Calculate task deadlines based on each task’s timing requirements */
2: UnOrderedTasks = CalculateTaskDeadlines(Period, Jitter, Transactions)
3: /* Create OrderedTaskSet according to the defined clustering method */
4: switch (ClusteringMethod) is
5: case Period:
6: /* Order tasks based on their period, lowest period taking the highest priority */
7: OrderedTaskSet = OrderByPeriod(UnOrderedTasks)
8: case Transaction:
9: /* Order tasks based on their transaction requirements. Transactions with the lowest overall

deadline take the highest priority */
10: OrderedTaskSet = OrderByTransaction(UnOrderedTasks[Task ∈ Transactions])
11: /* Order tasks without transaction requirements based on their jitter requirements first, and

finally any remaining tasks by their period. */
12: OrderedTaskSet += OrderByJitter(UnOrderedTasks[Task /∈ OrderedTaskSet])
13: OrderedTaskSet += OrderByPeriod(UnOrderedTasks[Task /∈ OrderedTaskSet])
14: case Jitter:
15: /* Order tasks based on their Jitter requirements. Prioritising tasks with small Jitter require-

ments */
16: OrderedTaskSet = OrderByJitter(UnOrderedTasks)
17: OrderedTaskSet += OrderByTransaction([(Task /∈ OrderedTaskSet) ∈ Transaction])
18: OrderedTaskSet += OrderByPeriod([Task /∈ OrderedTaskSet])
19: case Deadline:
20: /* Order tasks based on their Deadline, shortest Deadline taking the highest priority */
21: OrderedTaskSet = OrderByDeadline(UnOrderedTasks)
22:
23: Move OrderedTaskSet[0] into SuperTask[0]
24: SuperTask[0].Period = OrderedTaskSet[0].Period
25: SuperTask[0].Criticality = OrderedTaskSet[0].Criticality
26:
27: j = 0
28: for i in 1..OrderedTaskSet.Length do
29: if OrderedTaskSet[i].Period is NOT a harmonic of OrderedTaskSet[i-1].Period

or OrderedTaskSet[i].Criticality 6= SuperTask[j].Criticality then
30: j++
31: Move OrderedTaskSet[i] into SuperTask[j]
32: SuperTask[j].Period = OrderedTaskSet[i].Period
33: SuperTask[j].Deadline = OrderedTaskSet[i].Deadline
34: SuperTask[j].Criticality = OrderedTaskSet[i].Criticality
35: else
36: Move OrderedTaskSet[i] into SuperTask[j]
37: SuperTask[j].Deadline = min(OrderedTaskSet[i].Deadline, SuperTask[j].Deadline)
38: SuperTask[j].Period =

GreatestCommonDivisor(OrderedTaskSet[i].Period, SuperTask[j].Period)
39: end if
40: end for
41:
42: Apply DMPO to SuperTask set

ECRTS 2019

8:14 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

Algorithm 2 Extension to Support Deadline_D.
29: if Task[i].Period is NOT a harmonic of Task[i-1].Period

or Task[i].Criticality 6= SuperTask[j].Criticality
or Task[i].Deadline 6= SuperTask[j].Deadline

nominally the first task would form the highest priority, and the last task the lowest. The
next step is to step through the ordered set breaking it down into super-tasks. The methods
studied are introduced in Algorithm 1 and described below:

No Clustering - no clustering is performed
Period - Tasks were ordered according to period, then one super-task was formed for each
different task period
Jitter - Tasks with completion jitter requirements were first organised into super-tasks,
before all remaining tasks were ordered and grouped using their transaction requirements
(if applicable) and finally period.
Transactions (Trans) - Tasks with cross-task transactional requirements were first placed
into super-tasks along with the other tasks in their transaction. The remaining tasks
were then sorted into super-tasks first using their jitter requirements (if applicable) and
finally periods.
Deadline_D (D_D) - Tasks were first ordered using their computed deadline, then the
ordered set was divided into super-tasks across task period boundaries. Finally, tasks
with different deadlines are not clustered together.
Deadline_P (D_P) - As Deadline_D, however tasks with different deadlines were per-
mitted to be clustered together.

In all cases no super-task contains tasks of different criticalities, this is vital to comply
with the partitioning approach introduced in section 3.3. Finally, if any two tasks’ timing
requirements are identical, then their order is decided arbitrarily.

For brevity, Deadline_D is not shown explicitly in Algorithm 1. Unlike Deadline_P,
Deadline_D does not cluster together tasks that have different deadlines. Deadline_D is
implemented by replacing line 29 of Algorithm 2 with line 29 of Algorithm 1.

As the deadline of a task is derived as described in [7], this in one respect means the
Deadline clustering methods are an implicit amalgamation of the Jitter, Transactions and
Period clustering methods.

In all cases the deadline for each super-task was set to the lowest deadline of any
task inside the super-task. The set of RTOS super-tasks were then prioritised using the
DMP Oprotocol [8].

In addition to the above stated clustering methods a search based optimisation algorithm
was used to attempt to identify an appropriate task set, however in no cases did it deliver
improved results. The reason is the transaction requirements have to be carefully handled,
which meant a guided random algorithm did not perform well. Therefore it is not included
in this paper.

6 Evaluation & Results

The various approaches to task clustering and their impact on the RTOS overheads were
assessed in three ways. Firstly, the clustering methods were each applied to a real Rolls-Royce
DAL-A control system, which was then complimented using a set of DAL-C monitoring
functions; thus providing a Mixed Criticality System for analysis. Secondly, the clustering

S. Law, I. Bate, and B. Lesage 8:15

Table 1 Clustering Results When Applied to the Rolls-Royce Aircraft Engine Control System.

#SuperTasks Sched Tasks Trans Pass? δS δE δT δSUM

NoClustering 228 24.1% Yes 17.6% 21.1% 6.3% 45.0%
Period 17 85.5% No 2.5% 3.0% 2.1% 7.6%

Transaction 10 9.2% Yes 4.0% 4.8% 2.5% 11.4%
Jitter 53 38.2% No 13.1% 15.7% 5.1% 33.9%

Deadline_D 167 40.4% Yes 11.7% 14.1% 4.7% 30.5%
Deadline_P 15 100.0% Yes 0.8% 0.9% 1.6% 3.3%

algorithms were applied to a publicly available aircraft engine control case study taken
from [6]. Finally, a random task set generator was used to produce a large number of tasksets,
each of which was clustered using the set of clustering algorithms.

The actual RTOS overhead figures used through the temporal analysis are as measured on
the Rolls-Royce control system application, and were obtained during a system test campaign
on an aircraft engine control system test rig, and are not discussed further in this paper.
However, in order to ensure the analysis was not influenced by these figures, the study also
investigated how the proposed methods responded to varying RTOS overheads.

6.1 “Current” Rolls-Royce Engine Control System Example

The Rolls-Royce control software example used for this analysis has already been certified as a
DAL-A system. The system consists of a large number of tasks, each of which has a measured
HWM and an analysed WCET, obtained using a hybrid-measurement based approach [23].
The HWM and WCET were used for the CLO

i and CHI
i respectively. Additional monitoring

tasks were added to the system simulating DAL-C functionality, which increased the number
of tasks in total to 228. The results from applying each clustering algorithm to the engine
control system are shown in Table 1. The table shows the percentage of tasks whose worst
case response time is lower than its deadline (Schedulable Tasks), whether all transactions
have maintained the correct order (Transactions Fulfilled), and the utilisation of the RTOS.

Each task has a defined period, approximately 5% of tasks have completion jitter re-
quirements and approximately 50% of tasks form part of a transaction. Each transaction
requirement, which consists of between 2 and 11 tasks, reflects a specific execution, or priority,
order that must be maintained to ensure compliance to system level timing requirements.
These transactions are often interconnected, and can feature tasks with different periods.
The task periods are taken from the set (2.5, 5, 10, 12.5, 25, 50, 100, 200, 500)ms.

The results in Table 1 showed that the Deadline_P clustering method was the only
algorithm able to generate a schedulable system, this was in-spite of the fact that it was not
the algorithm that produced the task set with the smallest number of Super Tasks. The
Period and Transaction clustering algorithms failed to prioritise tasks with jitter requirements,
and so those tasks presented worst case response times that would have failed to meet their
tight timing requirements. Whereas the Jitter clustering algorithm failed to correctly order
transactions, and created a system with a larger number of high rate super-tasks, leading to
a higher RTOS utilisation which left the system unschedulable. The Deadline_D method
correctly ordered transactional tasks, and prioritised tasks with jitter requirements, however
as it did not group together tasks with different deadlines, it created a system with a
prohibitively large RTOS overhead.

ECRTS 2019

8:16 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

Table 2 Clustering Results When Applied to an Aircraft Engine Control Case Study.

#SuperTasks Sched Tasks Trans Pass? δS δE δT δSUM

NoClustering 71 94.4% Yes 3.6% 4.3% 2.4% 10.4%
Period 5 53.5% No 0.3% 0.3% 1.5% 2.1%

Transaction 3 59.2% Yes 2.2% 2.6% 2.0% 6.8%
Jitter 8 38.0% Yes 4.4% 5.3% 2.6% 12.3%

Deadline_D 33 97.2% Yes 2.0% 2.4% 2.0% 6.4%
Deadline_P 2 100.0% Yes 0.1% 0.1% 1.4% 1.5%

In comparison to the original system, this partitioned approach allowed low DAL tasks
totalling 44% utilisation to be added into the system without compromising schedulability
across all clustering algorithms. This would not have been possible in the existing legacy
system and was only made possible as the analysis was able to capitalise on the difference
between each high DAL task’s CLO

i and CHI
i .

6.2 Public Domain Engine Control System Example
The second case study used for this analysis has been taken directly from a publicly available
aircraft engine control example, as documented in [6]. The task set features 71 individual
tasks, conjoined by 24 different transactions. All tasks in the original system were schedulable
with all transactions being met.

The results in Table 2 were similar to those produced by the Rolls-Royce case study in
section 6.1, and showed that only the Deadline_P clustering algorithm was able to produce a
schedulable system with all transactions being met. Similarly to the Rolls-Royce case study,
the RTOS overhead was considerable lower with clustering than without, but in order to
produce a fully schedulable solution it was necessary to prioritise Transactions and Jitter
requirements equally, as performed by the Deadline_D and Deadline_P algorithms.

6.3 Random Task Set Generation Assessment
The random task set generator is based on a version of the UUniFast algorithm [12], and
was extended, as detailed below, to feature jitter requirements and transaction requirements.
The random task set generation assessment was performed at varying target utilisations
from 30% to 100% (at an interval of every 5%), with a varying number of tasks (10, 50,
100). Each clustering technique was then applied to each generated task set. Finally the
result was statically analysed to confirm every task’s response time was less than its deadline
and that each transaction was correctly ordered. 1000 tests were then performed for each
test configuration.

Key characteristics of the real engine control software were identified (and simplified) to
constrain the generated tasksets as follows:

Harmonic periods from the set (2.5, 5, 10, 12.5, 25, 50, 100, 200, 500)ms, inline with the
real system used in section 6.1.
5% of tasks randomly chosen to contain a jitter requirement. If part of a transaction only
a task at the beginning or end of the transaction was given a jitter requirement.
Transactions consisting of three tasks, randomly chosen from the existing set. The number
of transactions in the system was set to one fifth of the number of tasks.
The CLO

i for each task was randomly defined based on the system level target utilisation.
Each task’s CHI

i was randomly selected from the range CLO
i ≤ CHI

i ≤ 2CLO
i .

S. Law, I. Bate, and B. Lesage 8:17

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 3 Schedulability of a 10, 50 and
100 Task System at Varying Target Utilisations.

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Jitter
D_D

D_P
No Overhead

Figure 4 Schedulability of a 10, 50 and
100 Task System With No Transactions.

No Clustering Period Trans Jitter D_D D_P No Overhead
0

20

40

60

80

100

RT
OS

 U
til

isa
tio

n
%

50% Target System Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0

20

40

60

80

100

RT
OS

 U
til

isa
tio

n
%

70% Target System Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0

20

40

60

80

100

RT
OS

 U
til

isa
tio

n
%

90% Target System Utilisation

Figure 5 RTOS Overheads Calculated for
each Clustered System.

No Clustering Period Trans Jitter D_D D_P No Overhead
0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

Fa
ct

or

50% Target Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

Fa
ct

or

70% Target Utilisation

No Clustering Period Trans Jitter D_D D_P No Overhead
0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

Fa
ct

or

90% Target Utilisation

Figure 6 Maximum WCET Scaling Factor
to Provide a Schedulable System.

ECRTS 2019

8:18 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 7 Number of Schedulable Tasks with Varying Transaction Rates [10%, 25% and 50%].

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 8 Number of Schedulable Tasks
with Varying Jitter Rates of [0%, 5% and 10%].

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

30 40 50 60 70 80 90 100
Target Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 T
es

ts

No Clustering
Period

Trans
Jitter

D_D
D_P

No Overhead

Figure 9 Number of Schedulable Tasks with
Low, Medium and High RTOS Overheads.

S. Law, I. Bate, and B. Lesage 8:19

This follows principles similar to the approach defined in [21] where key characteristics are
extracted from a real application and fed into a generator to derive representative benchmarks.
However, the tasksets in [21] follow the AUTOSAR runnable model and do not include
transactions which have a profound effect on the scheduling approach.

Figure 3 shows the number of schedulable tests out of the 1000 executed for each clustering
algorithm at varying target utilisation configurations. The experiments showed that for a
small task system there was not a great difference across the different methods, with the
exception of the Transaction method. From the inspection of the results this was largely
because the Transaction method fails to take account of tasks with tight jitter requirements,
which consequently receive lower priorities and fail their response time analysis.

For a system with 50 tasks, as shown in the second plot of Figure 3, the difference
between the clustering methods is more profound. Neither the Transactions nor the Period
methods are able to generate reliably schedulable systems, failing to take account of jitter
requirements. The Jitter algorithm fares better, but a general failure to preserve transactions
causes the schedulability of the solutions to suffer as the task set utilisation grows. The only
algorithms able to track near the No Overhead ideal are the Deadline algorithms, with the
Deadline_P faring best as it is able to minimise RTOS overheads by producing systems with
less super-tasks. This hypothesis is further supported in Figure 5 which shows the RTOS
overhead produced by each clustering method.

These results are amplified as the task set size grows to 100 tasks, where again the only
algorithm following a similar trend to the No Overhead ideal is the Deadline_P algorithm.
One irregularity with the results is the fact that for 50 and 100 task systems no clustering
algorithms are able to achieve a 100% set of schedulable tests. This is because of the effect of
transactions as shown by Figure 4 which shows the same test as shown by Figure 3, however
without Transactions.

Figure 6 shows, for a 100 task system at varying target utilisation (50%,70%,90%), the
analysed maximum possible WCET inflation factor, or sensitivity. That is, the maximum
figure that every CLO

i and CHI
i can be multiplied by before the system is no longer schedulable.

This figure is determined by sensitivity analysis. Therefore a value above or below one
would indicate an increase or decrease (for an initially unschedulable system) in task times
respectively. The results showed the Deadline_P clustering method maintaining the highest
inflation factor across all three target utilisations with other algorithms, in particular Period
and Transaction, tracking inflation factors close to zero. The results further indicate that
even No Clustering is frequently better than Jitter, Period and Transaction.

Comparing Figure 5 to Figures 3 and 6; even though Period tended to have the lowest
overhead, it tended to produce less schedulable solutions. This is because the algorithm
frequently produces a system with the lowest number of RTOS tasks, however these tasks do
not take account of jitter or temporal requirements, and so is in general not schedulable. Either
because tasks with jitter requirements have high response times, or because transaction orders
are not maintained. This shows that the aim of this clustering operation is not necessarily to
simply minimise RTOS overheads.

In order to further review the effectiveness of the different clustering algorithms the
analysis was extended through application to different systems with varying transactions
rates (Figure 7), varying jitter rates (Figure 8) and varying overheads (Figure 9). This
analysis shows how the clustering algorithms performed when presented with different system
configurations which moved beyond the assumptions introduced by the avionic control system.

Again the results showed that the Deadline_P was reliably the best clustering method, it
was shown to be reliable while other clustering algorithms’ performance varied significantly
across the different system parameters.

ECRTS 2019

8:20 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

7 Conclusion

This paper has considered the application of a MCS scheduler to a DAL-A avionics engine
control system. In particular, the paper examined how such a system should be developed
and analysed to prove schedulability in the face of real life overheads. The partitioned
architecture provides robustness against spatial and temporal infringements by low DAL
tasks, and is capable of achieving a greater software utilisation than existing legacy systems.

The paper further considers the temporal requirements surrounding porting of an existing
non-preemptive system. The study aimed to identify the most efficient implementation for
porting a large system to a new pre-emptive Mixed Criticality System.

The work in this paper has targeted the AMC approach of [31], however the key contri-
butions should be largely independent (or at least applicable to those that build off fixed
priority scheduling) of which scheduling approach is used. The reasons are: the architectural
approaches for detecting timing overruns and performing mode switches are independent
of the policy; the overheads added to the standard analysis are only dependent on the
architecture; and finally the method for reducing the number of pre-emptions and task
releases is also independent of the scheduling approach. It is worth noting the benefits of
the clustering algorithm would almost certainly be greater for systems with more complex
processors as the preemption overheads would also include Cache-Related Preemption Delays.

For future work this study shall develop the implementation explored in this paper toward
a full dynamic study of the operation and performance of the scheduled system. This will
include assessing the quality of service provided to low DAL tasks and validating that a
promiscuous low DAL task cannot affect the temporal performance of the system.

References
1 Airlines Electronic Engineering Committee. Avionics Application Software Standard Interface

Part 1 - Required Services. ARINC Specification 653 Part 1-3, Aeronautical Radio, Inc., 2010.
2 N. Audsley. On priority assignment in fixed priority scheduling. Information Processing Letters,

79(1):39–44, 2001.
3 N. Audsley and A. Wellings. Analysing APEX applications. In 17th IEEE International

Real-Time Systems Symposium, (RTSS), pages 39–44, December 1996.
4 S. Baruah and A. Burns. Implementing mixed criticality systems in Ada. In International

Conference on Reliable Software Technologies, pages 174–188. Springer, 2011.
5 S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed criticality systems. In

32nd IEEE International Real-Time Systems Symposium, (RTSS). IEEE, 2011.
6 I. Bate. Scheduling and timing analysis for safety critical real-time systems. PhD thesis,

Citeseer, 1999.
7 I. Bate and A. Burns. An Approach to Task Attribute Assignment for Uniprocessor Systems.

In 11th Euromicro Conference on Real-Time Systems, pages 46–53, 1999.
8 I. Bate and A. Burns. An Integrated Approach to Scheduling in Safety-Critical Embedded

Control Systems. Real-Time Systems Journal, 25(1):5–37, July 2003.
9 I. Bate, A. Burns, and R. Davis. A bailout protocol for mixed criticality systems. IEEE

Transactions on Software Engineering, 2015.
10 I. Bate, A. Burns, and R. Davis. An enhanced bailout protocol for mixed criticality embedded

software. IEEE Transactions on Software Engineering, 43(4):298–320, 2017.
11 A. Bertout, J. Forget, and R. Olejnik. Automated runnable to task mapping. Technical report,

HAL, May 2013.
12 E. Bini and G. Buttazzo. Measuring the performance of schedulability tests. Real-Time

Systems, 30(1-2):129–154, 2005.

S. Law, I. Bate, and B. Lesage 8:21

13 A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering real-time fixed priority
schedulers. IEEE Transactions on Software Engineering, 21(5):475–480, 1995.

14 R. Davis, S. Altmeyer, and A. Burns. Mixed Criticality Systems with Varying Context Switch
Costs. In Proceedings IEEE Real Time and Embedded Technology and Applications Symposium
(RTAS), 2018.

15 R. Davis, I. Bate, G. Bernat, I. Broster, A. Burns, A. Colin, S. Hutchesson, and N. Tracey.
Transferring real-time systems research into industrial practice: Four impact case studies. In
Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 2018.

16 H. Faragardi, B. Lisper, K. Sandström, and T. Nolte. An efficient scheduling of AUTOSAR
runnables to minimize communication cost in multi-core systems. In 7th International
Symposium on Telecommunications (IST), pages 41–48, September 2014.

17 Johannes Freitag, Sascha Uhrig, and Theo Ungerer. Virtual Timing Isolation for Mixed-
Criticality Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

18 P. Graydon and I. Bate. Safety Assurance Driven Problem Formulation for Mixed-Criticality
Scheduling. In Proceedings of the Workshop on Mixed-Criticality Systems, pages 19–24, 2013.

19 Jonathan L Herman, Christopher J Kenna, Malcolm S Mollison, James H Anderson, and
Daniel M Johnson. RTOS support for multicore mixed-criticality systems. In 18th Real Time
and Embedded Technology and Applications Symposium, pages 197–208. IEEE, 2012.

20 B. Korel. Automated software test data generation. IEEE Transactions on software engineering,
16(8):870–879, 1990.

21 S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive benchmarks for free. In
6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems, 2015.

22 S. Law and I. Bate. Achieving appropriate test coverage for reliable measurement-based timing
analysis. In 28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 2016.

23 S. Law, M. Bennett, I. Ellis, S. Hutchesson, G. Bernat, A. Colin, and A. Coombes. Effective
Worst-Case Execution Time Analysis of DO178C Level A Software. Ada User Journal,
36(3):182–186, 2015.

24 C. Lee, H. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and C. Kim. Analysis of
cache-related preemption delay in fixed-priority preemptive scheduling. IEEE transactions on
computers, 47(6):700–713, 1998.

25 B. Lesage, S. Law, and I. Bate. TACO: An industrial case study of Test Automation for
COverage. In Proceedings of the 26th International Conference on Real-Time Networks and
Systems, RTNS ’18, pages 114–124, 2018.

26 E. Oklapi, M. Deubzer, S. Schmidhuber, E. Lalo, and J. Mottok. Optimization of real-time
multicore systems reached by a Genetic Algorithm approach for runnable sequencing. In
Proceedings of the International Conference on Applied Electronics (AE), pages 233–238. IEEE,
2014.

27 Antonio Paolillo, Paul Rodriguez, Vladimir Svoboda, Olivier Desenfans, Joël Goossens, Ben
Rodriguez, Sylvain Girbal, Madeleine Faugere, and Philippe Bonnot. Porting a safety-critical
industrial application on a mixed-criticality enabled real-time operating system. In Proc. 5th
Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2017.

28 RTCA. Software Considerations in Airborne Systems and Equipment Certification. DO-178C,
2011.

29 J. Rushby. Partitioning for Safety and Security: Requirements, Mechanisms, and Assurance.
NASA Contractor Report CR-1999-209347, NASA Langley Research Center, June 1999. Also
issued by the FAA.

30 Paulo Baltarejo Sousa, Konstantinos Bletsas, Eduardo Tovar, Pedro Souto, and Benny Åkesson.
Unified overhead-aware schedulability analysis for slot-based task-splitting. Real-Time Systems,
50(5-6):680–735, 2014.

ECRTS 2019

8:22 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

31 K. Tindell and A. Alonso. A very simple protocol for mode changes in priority preemptive
systems. Technical report, Universidad Politecnica de Madrid, 1996.

32 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In 28th IEEE International Real-Time Systems Symposium, (RTSS). IEEE,
2007.

From Iteration to System Failure: Characterizing
the FITness of Periodic Weakly-Hard Systems
Arpan Gujarati
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
arpanbg@mpi-sws.org

Mitra Nasri
Delft University of Technology, Delft, The Netherlands
m.nasri@tu-delft.nl

Rupak Majumdar
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
rupak@mpi-sws.org

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
bbb@mpi-sws.org

Abstract

Estimating metrics such as the Mean Time To Failure (MTTF) or its inverse, the Failures-In-Time
(FIT), is a central problem in reliability estimation of safety-critical systems. To this end, prior
work in the real-time and embedded systems community has focused on bounding the probability of
failures in a single iteration of the control loop, resulting in, for example, the worst-case probability
of a message transmission error due to electromagnetic interference, or an upper bound on the
probability of a skipped or an incorrect actuation. However, periodic systems, which can be found
at the core of most safety-critical real-time systems, are routinely designed to be robust to a single
fault or to occasional failures (case in point, control applications are usually robust to a few skipped
or misbehaving control loop iterations). Thus, obtaining long-run reliability metrics like MTTF and
FIT from single iteration estimates by calculating the time to first fault can be quite pessimistic.
Instead, overall system failures for such systems are better characterized using multi-state models
such as weakly-hard constraints. In this paper, we describe and empirically evaluate three orthogonal
approaches, PMC, Mart, and SAp, for the sound estimation of system’s MTTF, starting from
a periodic stochastic model characterizing the failure in a single iteration of a periodic system,
and using weakly-hard constraints as a measure of system robustness. PMC and Mart are exact
analyses based on Markov chain analysis and martingale theory, respectively, whereas SAp is a sound
approximation based on numerical analysis. We evaluate these techniques empirically in terms of
their accuracy and numerical precision, their expressiveness for different definitions of weakly-hard
constraints, and their space and time complexities, which affect their scalability and applicability in
different regions of the space of weakly-hard constraints.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Real-time systems; Computer systems organization →
Reliability; Theory of computation → Probabilistic computation

Keywords and phrases reliability analysis, MTTF/FIT analysis, weakly-hard constraints

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.9

Related Version https://www.mpi-sws.org/tr/2019-001.pdf

© Arpan Gujarati, Mitra Nasri, Rupal Majumdar, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 9; pp. 9:1–9:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arpanbg@mpi-sws.org
mailto:m.nasri@tu-delft.nl
mailto:rupak@mpi-sws.org
mailto:bbb@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECRTS.2019.9
https://www.mpi-sws.org/tr/2019-001.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Characterizing the FITness of Periodic Weakly-Hard Systems

1 Introduction

Zero risk of failure in the presence of intolerable errors, such as errors due to electromagnetic
interference (EMI), can never be achieved [4]. Instead, since environmental sources of
interference are stochastic in nature, probabilistic analyses are often used to bound the
probabilities of failure to within societally acceptable levels of risk. For example, prior work
has investigated the effects of EMI on real-time systems (RTS), resulting in the worst-case
probability of an EMI-induced message transmission error [14], or an upper bound on the
probability of a skipped or an incorrect actuation in a single iteration of a control loop [22].

However, probabilistic analyses for a single message or iteration are often insufficient for
answering whole-system reliability questions in the context of system operation times, and
for many certification standards, e.g., ISO-26262 for the automotive domain or DO-178C for
the avionics domain. For example, given a fleet of one million autonomous cars, each with
an average operating time of five hours a day, if it is desired that less than ten cars break
down due to EMI in a year, a reliability metric like Failures-In-Time (FIT) [46] – i.e., the
expected number of failures in one billion operating hours – is much more useful.

A simplistic approach to obtain such long-run reliability metrics from single iteration
estimates is to calculate the time to first fault; this can be done analytically if the probability
distribution is known, or through simulation otherwise. However, periodic systems, which
can be found at the core of most safety-critical RTS, are routinely designed to be robust
to a single fault or to a few occasional failures (a classic example being real-time control
applications, which are usually robust to a few skipped or misbehaving control loop iterations).
Hence, for such well-engineered RTS, this simplistic approach can be excessively pessimistic.
Instead, overall system failures of such temporally robust RTS are better characterized using
multi-state models such as weakly-hard constraints.

Weakly-hard constraints are widely used and well-studied, especially in the context of
temporal requirements [24, 10, 15, 38, 36, 11, 20, 34, 17, 16, 26]. They capture properties
related to a discrete sequence of events (or iterations) rather than properties required per each
individual event (or a single iteration). For instance, an (m, k) constraint, one of the simplest
forms of weakly-hard constraints, requires a periodic system to have at least m successful
iterations in any window of k consecutive iterations. It is non-trivial to obtain closed-form FIT
bounds for such stateful specifications. Simulation-based methods do not yield exact answers,
may even unsafely under-approximate the true failure rate, and scale poorly, especially when
analyzing low-probability events. The reliability modeling literature (see related work in §8)
focuses mostly on spatial redundancy, i.e., analysis of systems with redundant components,
but does not explore analysis of periodic systems with intermittent iteration failures, a form
of temporal redundancy that is common in RTS, but not in general-purpose systems.

In this paper, we bridge the gap between analyzing the failure probability of a single
iteration in a time-sensitive periodic system, e.g., network control systems, and analyzing
the overall reliability of the system while considering its robustness to a few failed iterations.
That is, we consider the problem of soundly and accurately estimating the FIT rate, or its
inverse, the Mean Time To Failure (MTTF), of a periodic control system with respect to
failure models expressed as one or more weakly-hard constraints, given that bounds on the
reliability of a single iteration have been computed, e.g., using the techniques of [14, 22].

Any such analysis to upper-bound the FIT rate (FITness analysis) must be generic enough
to support complex weakly-hard requirements in order to stand for the needs of larger and
more complicated systems. Further, a FITness analysis must be accurate, ideally, exact, to
minimize pessimism in the final system reliability. Last, but not least, a FITness analysis must

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:3

Table 1 Approaches to FIT derivation.

Approach Accuracy Scalability Expressiveness

PMC Exact Poor General system, all properties
Mart Exact Poor IID systems, all properties
SAp Approximate Good IID systems, single (m, k) constraint

be scalable with respect to the problem size, since capturing asymptotic control properties
requires dealing with large problem windows. To respond to each of these requirements, we
propose and compare three approaches for FITness analysis: PMC, Mart, and SAp.

PMC (Probabilistic Model Checking) models the problem as an expected reward problem
in a discrete-time Markov chain, which can be solved using state-of-the-art probabilistic model
checkers such as PRISM [31] and Storm [18]. PMC is able to express complex robustness
constraints as well as sophisticated system models with state-dependent probabilities of
failure, such as in [34]. For the common special case of Bernoulli systems, where failure
probabilities are independently and identically distributed (IID), martingale theory [32]
allows for a direct approach that we call Mart. It constructs a system of linear equations,
whose solution gives the expected time to failure, and is therefore able to use powerful
linear algebra routines such as LAPACK [5] and BLAS [1]. Like PMC, Mart provides an
exact analysis and can support general weakly-hard constraints, but both PMC and Mart
have limited scalability. To scale to large window-size constraints (see §2 for an example),
we introduce SAp (Sound Approximation), an empirically-driven, scalable, and yet sound
approach designed to evaluate a single (m, k) constraint. The tradeoffs of the three proposed
techniques are summarized in Table 1.

Our main contribution is a systematic exploration and empirical evaluation of the afore-
mentioned methods, each of which is sound by construction, for different points in the
weakly-hard constraint design space. We show that for (m, k) constraints where m is close to
k, exact analyses scale well, but an implementation must account for numerical imprecisions,
especially when failure probabilities are low. On the other hand, SAp is scalable across
the entire range of m (for a given k) and, in our experiments, provides safe approximations
within a factor of two of the exact answer (when both can be computed). While algorithms
for computing reliability measures using Markov chains or martingale theory are not new
(see, e.g., [39]), to the best of our knowledge, our paper is the first in applying these techniques
in the context of weakly-hard periodic RTS, which are at the heart of many safety-critical
systems where sound reliability assessments are essential, and in empirically evaluating the
performance-accuracy tradeoffs in this context.

The rest of the paper is organized as follows. We start with an example to motivate
the reliability analysis problem studied in this paper (§2). A periodic stochastic model of
the system and a formal model of weakly-hard constraints are provided in §3. The three
FITness analysis approaches, PMC, Mart, and SAp, are discussed in §4–§6, respectively.
Results from a comprehensive evaluation of these approaches are discussed in §7. Finally, we
conclude with a discussion of related and future work in §8 and §9, respectively.

2 Motivation

As mentioned in §1, this work bridges the gap between single-iteration analyses and full-system
reliability analyses for weakly-hard real-time systems. To explain this further, and to motivate
our problem statement along with the specific assumptions that we make, we discuss below
the steps involved in the end-to-end reliability analysis of a network control system (NCS).

ECRTS 2019

9:4 Characterizing the FITness of Periodic Weakly-Hard Systems

PlantSensor Actuator

S1

S2
C1

C2 A

N NSensor
msg. streams

Controller
task replicas

Control
Msg. streams

Actuator
task

Sensor
task replicas

X1

X2

U1

U2

Figure 1 A single-input single-output networked control loop. Solid boxes denote hosts. Each
dashed box denotes a task replica set or a set of message streams transmitted by a task replica set.
Dashed arrows denote message streams broadcasted over the shared network N .

Consider the single-input single-output NCS illustrated in Fig. 1. For mitigating the
effects of environmentally-induced transient faults, the NCS consists of active replicas of its
sensor and controller tasks. The safety-certification objective is to ensure that despite the
presence of transient faults, the system is expected to provide its intended service for at least
X hours, where the threshold X is typically determined in a domain-specific manner, and
based on whether the system runs in a continuous mode. In other words, the objective is to
ensure that the system’s MTTF is lower-bounded by X.

The first step in the reliability analysis is to understand the manifestation of transient
faults as errors (i.e., program-visible effects of faults). For example, faults on the network
can cause retransmission of messages, which may manifest as deadline violation errors if the
bandwidth consumed by the retransmissions exceeds the available slack. An upper bound
on the probability of such errors can be quantified a priori by considering the peak fault
rates expected in practice. The next step is to evaluate error propagation in the system.
For example, redundant controller tasks with majority voting on the actuator side may
mask a few deadline violation errors experienced by the control command messages, but
if there are too many such errors, their effect may propagate to the plant actuation stage.
Through exhaustive enumeration and evaluation of all error scenarios, the probability of
one or more errors affecting the final plant actuation can thus also be upper-bounded. See
[22, 44, 25, 14, 19, 43] for such analyses for actual system configurations.

In a nutshell, the above steps provide us with an upper-bound on the per-iteration
failure probability, and these bounds are typically independent of the iteration number,
since worst-case scenarios and peak fault rates are used in every step of the analysis. Thus,
treating an iteration failure as a full-system failure, the per-iteration failure probability bound
could be used to estimate the MTTF by calculating the time to first failed iteration. For
example, if the NCS loop operates at a frequency of 100 Hz (i.e., with a time period of 10 ms),
and its iteration failure probability is upper-bounded by 10−10, its MTTF evaluates to 108

seconds (equivalent to a FIT rate of 36 000). However, this simplistic approach can be quite
pessimistic, as evident from the estimated FIT rate, which is extremely high. For instance, if
the NCS loop functions correctly despite at most one failed iteration in every four consecutive
iterations, the estimated FIT rate drops by several orders of magnitude to 1.08× 10−5.1

1 The FIT rate of 1.08× 10−5 for m = 3, k = 4, T = 10 ms, and PF = 10−10 is computed using PMC.
In particular, PMC as realized with PRISM yields an MTTF of T/(3 600 000)× (P 3

F − 3P 2
F + 3PF +

1)/(P 4
F − 3P 3

F + 3P 2
F) hours. The FIT rate is then computed as FIT = 109/(MTTF in hours).

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:5

In general, prior studies have shown that a control system can be (and typically is)
designed to withstand occasionally failing iterations, without compromising its intended
service (i.e., the first iteration failure does not denote a full-system failure). For example,
Majumdar et al. [33] describe a NCS where the control system continues using the previous
iteration parameters in case the current iteration is dropped. Using networked control
techniques [13], they also provide methods to estimate a minimum dropout rate tolerated
by a control system without compromising its stability (e.g., an inverted pendulum control
system with mass 0.5 kg, length 0.20 m, and sampling time 10 ms remains asymptotically
stable with at least 76.51 % successful iterations). Such constraints directly translate to
weakly-hard models. For instance, the inverted pendulum control system could be safely
modeled using m = 77 and k = 100, or using m = 766 and k = 1000.

In many cases, however, a single asymptotic constraint of the form m = 77 and k = 100
may not be sufficient to satisfy other performance specifications (such as settling time),
and must be appended with an additional short-range “liveness” constraint. For example,
given a sampling time of 10 ms, the inverted pendulum control system would surely crash
if it experienced 33 consecutive dropouts. In such cases, the temporal robustness of the
control system is better modeled using either a harder constraint (e.g., m = 4 and k = 5
instead of m = 77 and k = 100) or multiple constraints (e.g., using both m1 = 766 and
k1 = 1000 as well as m2 = 1 and k2 = 4) [12]. The objective of this paper is thus to use the
temporal robustness property of control systems, modeled using weakly-hard constraints, for
estimating their long-run reliability from the per-iteration failure probabilities.

In the subsequent sections, we provide techniques to estimate the MTTF and FIT of
temporally robust periodic RTS with such weakly-hard constraints from their per-iteration
failure probability bounds. While these bounds account for the maximum possible background
interference, system components that are not being analyzed are assumed to execute reliably.
This does not imply that the proposed analysis is not useful if a dependent component fails or
if dependent components have different robustness criteria, rather it provides a FIT rate for
one subsystem, which can then be composed with the FITs of other dependent, dependee, or
unrelated subsystems, e.g., using a fault tree analysis. This is a common way of decomposing
the reliability analysis of the whole system into manageable components.

3 System Model

We model the problem of computing a system’s MTTF as the expected stopping time of a
stochastic process.2 To that end, we model a periodic system S abstractly as a stochastic
process (Xn)n≥0 evolving in discrete time. We assume that S is periodic with a period of
T time units, i.e., the observation Xn is emitted at time nT . Each random variable Xn is
boolean-valued: Xn = 1 indicates that S executes correctly in its nth period and Xn = 0
indicates S executes incorrectly. An execution of system S is a string in {0, 1}∗ denoting
an outcome of the stochastic process (Xn)n≥0. We emphasize that S is not just a single,
periodic task, but the entire system, divided into logical iterations. For example, as in the
system described in §2, one iteration of the system may involve end-to-end execution of a
set of periodic real-time tasks and message exchanges (with period T each). The proposed
analyses can also be used to analyze multi-rate systems by analyzing each task (or sets of
tasks sharing the same rate) individually and adding their respective FIT bounds.

2 In probability theory [8], a stochastic process is defined as a family of random variables Rt, where t
ranges over an arbitrary set I. For a given stochastic process, a stopping time is a specific type of
random variable, whose value is defined as the time at which the stochastic process exhibits a certain
behavior of interest (e.g., in this paper, a violation of the system’s weakly-hard constraints).

ECRTS 2019

9:6 Characterizing the FITness of Periodic Weakly-Hard Systems

Failure probabilities in system S can be modeled as a Bernoulli system, where each
observation Xn is an independent, identically distributed (IID) Bernoulli variable, with
Pr [Xi = 0] = PF and Pr [Xi = 1] = 1 − PF . Such a system represents a periodic system
where errors occur independently in each iteration, and the probability of error in each
iteration is (bounded by) PF . It can also represent periodic systems where errors in multiple
iterations are dependent, but the bound PF derived for each iteration is independent of the
iteration (this is possible if PF is derived pessimistically assuming the worst-possible error
scenario, which is a common approach in the analysis of hard real-time systems, e.g., [14]).

Alternatively, to capture history-dependence in failures and more accurate iteration-
specific error scenarios, the failure probabilities can be modeled more expressively using a
discrete-time labeled Markov chain [9]. In this case, the system is modeled as a set of states
Q and a probabilistic transition function P : Q×Q 7→ [0, 1], where P(sn+1, sn) specifies the
probability with which the system transitions from state sn at any step n to state sn+1 at
step n+ 1. Each state is labeled with a Boolean variable denoting success (1) or failure (0),
and observation Xn is the label of the (random) state at step n.

Next, we formalize robustness specifications to capture the intuition that a periodic RTS,
such as one hosting a well-designed control application, continues to provide overall acceptable
service despite individual iteration failures, as long as there are not “too many” such iteration
failures. In particular, we characterize the set of safe executions for which a periodic system
is guaranteed to provide its service as a prefix-closed3 set of executions R ⊆ {0, 1}∗. Thus,
the intersection of two robustness specifications is again a robustness specification.

In this paper, we focus on the classic (m, k), 〈m, k〉, and 〈m〉 robustness specifications,
usually called weakly-hard specifications, which have been originally proposed in the context
of firm real-time systems that can tolerate a limited number of deadline misses [11]. Let π1(s)
denote the number of 1’s (successful iterations) in any string (system execution) s ∈ {0, 1}∗.
Let u, v, w,w′ ∈ {0, 1}∗ each denote an execution of system S. Formally, an execution w
is (m, k) robust if every window of size k has at least m successes, i.e., ∀u, v, w′ : w =
uw′v ∧ |w′| = k ⇒ π1(w′) ≥ m; it is 〈m, k〉 robust if every window of size k has at least m
consecutive successes, i.e., ∀u, v, w′ : w = uw′v ∧ |w′| = k ⇒ ∃u′, v′ : w′ = u′1mv′; and it is
〈m〉 robust if there are never more than m consecutive failures, i.e., 6 ∃u′, v′ : w = u′0m+1v′.

For a given system, one can be interested in several robustness specifications simul-
taneously, e.g., to express both asymptotic properties (such as “no more than 5% failed
iterations”) and short-term requirements (such as “no more than two iteration failures in
a row”). Thus, for example, we can ask that a system is (m1, k1) robust and also 〈m2〉
robust. This just means that executions of the system satisfy both the (m1, k1) constraint
and the 〈m2〉 constraint. In general, given a set of robustness specifications, an execution is
considered correct if it satisfies all the specifications in the set.

Given a periodic system S and its robustness specification R, we next define the reliability
metrics MTTF and FIT. Let a system failure denote an execution that is not in R. For
example, for a system with a robustness specification (2, 5), an execution 010100100 denotes
a failure (since the last five iterations consist of only one successful iteration). We assume
that S stops if it encounters a system failure, and therefore to compute the MTTF and FIT
we are interested in a failing execution whose proper prefixes (i.e., prefixes excluding the last
iteration) satisfy the robustness specification. Accordingly, given a robustness specification
R, we define the stopping time of system S as a random variable

N(S,R) = min
{
n ≥ 0

∣∣∣ X0 . . . Xn 6∈ R∧
∀i < n X0 . . . Xi ∈ R

}
. (1)

3 In a prefix-closed set, if an execution belongs to the set, all its prefixes also belong to the set.

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:7

The Mean Time To Failure (MTTF) is the expectation of the stopping time multiplied
by the period T of the system,

MTTF = T

∞∑
n=0

n · Pr [N(S,R) = n]. (2)

As mentioned before, the Failures-In-Time (FIT) metric is the inverse of the MTTF, with a
human-friendly scale factor, to the effect that the FIT represents the expected number of
failures in one billion operating hours. Thus, FIT = 109/(MTTF in hours).

In §4–§6, we propose three approaches for FIT derivation: PMC, Mart, and SAp. To
explain the techniques in detail, we initially focus on a single (m, k) robustness specification,
and discuss the applicability of the respective technique for evaluating a generic set of
robustness specifications such as {(m1, k1), 〈m2, k2〉, 〈m3〉} at the end of each section.
Wherever a Bernoulli system is considered, PF is used to denote the probability of a failed
iteration, and PS = 1− PF is used to denote the complement of PF .

4 PMC: Markov Chain Analysis

We start with the most general method PMC, which is based on discrete-time Markov chains.
PMC uses two Markov chains, one for modeling the system, and another (referred to below as
the monitor Markov chain) for modeling the weakly-hard robustness constraints as a function
of the system’s execution history. Therefore, PMC is able to account for both sophisticated sys-
tem models with state-dependent probabilities as well as complex robustness specifications.

We explain the Markov chain constructions in detail in the following. Our observation
is that computing the MTTF reduces to finding the expected total reward in an absorbing
Markov chain (explained below). Conceptually, our method works for any regular robustness
specification, i.e., robustness specifications that can be accepted by a finite automaton, but
we focus our discussion on the class of weakly-hard robustness specifications, which we expect
to be most widely used in practice, and also for concreteness.

Suppose that the system S is modeled as a Markov chain M = (Q,P,L, si), where Q
denotes a finite set of system states, P : Q×Q 7→ [0, 1] denotes the transition probability
matrix, L : Q 7→ {0, 1} denotes the state labels with 1 and 0 corresponding to success and
failure (respectively), and si ∈ Q denotes the initial state. For example, if S is a Bernoulli
system, then M , as illustrated in Fig. 2(a), consists of states s0 and s1 and transition
probabilities P (s0, s0) = P (s1, s0) = PF and P (s0, s1) = P (s1, s1) = 1− PF .

Given the Markov model M and a robustness specification R = (m, k), we run a monitor
Markov chain, denoted Monitor(M,R) = (Q′, P ′, L′, qi), along with M . The monitor tracks
a finite execution history of M of length k to decide whether S has failed, i.e., whether there
were more than k −m failures in the last k steps. Thus, Q′ consists of 2k states, and each
state q ∈ Q′ is labeled with a unique label L′(q) ∈ {0, 1}k, e.g., a label of 1k−10 implies that
every iteration but the last one was successful. Every time M takes a step, the monitor state
is updated to reflect the past k steps of M ’s execution. Thus, the transition probability of
Monitor(M,R) from state q with label w to state q′ with label w′ is P ′(q, q′) = P (s, s′) if
system S can transition from history w to w′ by transitioning from state s to s′; otherwise, it
is P ′(q, q′) = 0. The initial state qi ∈ Q′ is labeled 1k to model absence of any failure during
system start. In addition, since system S stops as soon as it encounters an execution that does
not satisfy (m, k) robustness (recall from §3), we define Bad(m, k) = {q | q ∈ Q′∧L′(q) 6∈ R}
as the set of all “bad” states in Q′ and make them absorbing, i.e., once the monitor enters a
state in Bad(m, k), it does not transition into another state.

ECRTS 2019

9:8 Characterizing the FITness of Periodic Weakly-Hard Systems

S0

S1

P
F 1� P

F

1� P
F

P
F

(a) Markov chain for a Bernoulli system.

11 01

10 00P10,00

P10
,01

P11,11 P
1
1
,1

0

P01
,10

P01,11

(b) Monitor (Type 1) for k = 2.

1 2 3 F

T P11
0,
10

0

P110,101

P10
1,0

10

P101,011

P011,110

P011,111

P111,111

P111,110

(c) Monitor (Type 2) for (2, 3).

Figure 2 PMC approach. In inset (b), Px1x2, y1y2 is a shorthand for transition probability
P ′(q, q′) where states q and q′ have labels L′(q) = x1x2 and L′(q′) = y1y2, respectively. In inset (c),
Px1x2x3, y1y2y3 is a shorthand for P ′(q, q′), where states q and q′ correspond to execution histories
x1x2x3 and y1y2y3, respectively. Since the Type 2 monitor is represented more concisely, the node
labels in inset (c) are not equal to the execution histories, e.g., label “3” indicates an execution
history of “110” where the latest iteration has failed. In insets (b) and (c), transitions with zero
probability are marked with dashed arrows, and states in Bad(1, 2) and Bad(2, 3) are colored red.

As an example, the monitor representation for R = (1, 2) is illustrated in Fig. 2(b). All
execution histories of length k = 2 belong to set {11, 10, 01, 00}, and hence the monitor
Markov chain consists of four nodes, each labeled with a unique execution history from this
set. An execution history of 01 denotes that the latest iteration was a success (1), whereas
the iteration before that was a failure (0). Thus, depending on whether the next iteration is
a success or a failure, the system can transition from the state labeled 01 into either a state
labeled 11 or 10, respectively. All other transitions from this state have zero probability.
Since the robustness constraint R = (1, 2) defines a robust system execution as one in which
at least one out of every two consecutive iterations is successful, the set of bad states in this
example is a singleton corresponding to the state labeled 00 with two consecutive failures.

Given the monitor Markov chain construction described above, we reduce the MTTF
computation to deriving the expected number of steps until the monitor enters a bad state.
For this, assume that each step of the monitor has a reward of 1. We define the expected
number of steps E as the expected reward until any state in Bad(m, k) is reached, starting
from the initial state qi ∈ Q′. E can be obtained using probabilistic model checkers such as
PRISM [31] and Storm [18]. Thus, if system S has period T , and E is the expected number
of steps until a state in Bad(m, k) is reached, the MTTF of S with respect to robustness
specification (m, k) is given by MTTF = T × E.

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:9

Note that the monitor representation discussed above is independent of m. While the
monitor’s simple structure makes it trivial to implement, its O(2k) space complexity can be
detrimental in practice. Fortunately, for the common case where k −m� k, e.g., (98, 100),
the monitor representation can be optimized to be much more space efficient. Since the
system stops as soon as the (m, k) constraint is violated, we need not keep any executions
that have more than k −m failures. In other words, it suffices to store a limited history as a
string of length k−m, where each element in the string is from {1, . . . , k}∪{⊥}, representing
the positions along the previous k steps when a failure occurred (⊥ is used in case we have
seen fewer than k −m failures). Furthermore, we can coalesce all states in Bad(m, k) into a
single “bad” state. The space complexity of the resulting monitor is only O((k+ 1)(k−m) + 1).
For example, Fig. 2(c) illustrates the monitor representation for R = (2, 3), which consists of
only five states whereas otherwise it would have required eight states.

Similarly, for m� k, we can optimize the model by storing a history as a string of length
m, where each element in the string is from {1, . . . , k}. We refer to the three representations,
i.e., the default one, the optimized version for k −m � k, and the optimized version for
m� k, as Type 1, Type 2, and Type 3 models, respectively.

Compared to the aforementioned monitor representations for an (m, k) robustness specifi-
cation, monitor representation for 〈m, k〉 and 〈m〉 robustness specifications are both simpler
and more efficient (we do not formally define these due to space constraints). For 〈m, k〉
robustness, the monitor needs to keep track of positions corresponding to (i) the latest run
of 1’s of length at least m and (ii) the current run of 1’s of length at most m. For (i), since
the beginning and the end of run can be any element in a window of size k, a string of length
two belonging to {1 . . . k}2 is needed, whereas for (ii), since the current run must always
include the latest element, a string of length one belonging to {1 . . .m} is sufficient. In both
cases, ⊥ can be used to denote the absence of a run, resulting in a space complexity of
O((k + 1)2 · (m+ 1)). For 〈m〉 robustness, the monitor can be simplified even further, since
we only need one accumulator to store the current sequence of consecutive 0’s, and so the
space complexity is O(m). For multiple specifications, i.e., for robustness constraints of the
form R = {(m, k), 〈m′, k′〉, 〈m′′〉}, we run the monitor for each specification in parallel, and
set Bad to denote states where some monitor is in a bad state.

Implementation of the PMC approach using the PRISM probabilistic model checker, along
with a discussion of model construction times and model solving times are provided in §7.

5 Mart: The Martingale Approach

Computing the MTTF using PMC reduces to the problem of solving a system of linear
equations [9]. In the special case of Bernoulli systems, there is a direct and elegant approach
to deriving an equivalent system of linear equations whose solution provides the expected
stopping time of the system (i.e., the MTTF), without going through the process of Markov
chain modeling. Thus, even though this approach, denoted Mart, does not model history-
dependent failures like PMC, it is easy to implement scalably on top of mature linear algebra
libraries such as LAPACK [5] and BLAS [1].

We now summarize Mart for (m, k) robustness. The first step in Mart is similar
to enumerating the “bad” states of the monitor Markov chain in the PMC approach. In
particular, we list all failure strings that correspond to a violation of the (m, k) constraint,
i.e., all strings in {0, 1}≤k in which at least k −m+ 1 failures occur. We do this by fixing
the last position to be a failure and then choosing all possible combinations of k −m indices
from the set {1, . . . , k}. In the second step, given an exhaustive list of failure strings, we
reduce the problem of computing MTTF to that of computing the expected waiting time
until one of the failure strings is realized by the system execution.

ECRTS 2019

9:10 Characterizing the FITness of Periodic Weakly-Hard Systems

To find the expected waiting time, we use an elegant algorithm from the theory of
occurrence patterns in repeated experiments proposed by Li [32]. Li’s algorithm translates
the failure strings into a set of linear equations, such that solving these linear equations
directly yields an expected waiting time for each individual failure string (i.e., until a specific
failure string is realized by the system) as well as an expected waiting time until any of the
failure strings manifests. To compute the MTTF, we require only the latter. We summarize
Li’s algorithm and MTTF derivation using the algorithm in the following.

Let Π = {π1, π2, . . .} be the set of failure strings obtained in the first step. Let |πi| denote
the length of a string πi ∈ Π, and let πi,j denote the jth character in string πi. Key to Li’s
algorithm is a combinatorial operator ‘∗’ (see Eq. 2.3 in [32]) between any pair of strings πa

and πb from Π, which is defined as follows.

πa ∗ πb = (δ1,1δ2,2 . . . δx,x) + (δ2,1δ3,2 . . . δx,x−1) + . . . + (δx−1,1δx,2) + (δx,1), (3)

where x = |πa|, y = |πb|, and δi,j =

1

PF
if i ∈ [1, x], j ∈ [1, y], πa,i = πb,j = 0

1
PS

if i ∈ [1, x], j ∈ [1, y], πa,i = πb,j = 1
0 otherwise.

Using this operator, the expected waiting time e0 until any one of the sequence patterns in
Π occurs for the first time satisfies the following linear system of equations,

0 1 1 . . . 1
−1 π1 ∗ π1 π2 ∗ π1 . . . πn ∗ π1
−1 π1 ∗ π2 π2 ∗ π2 . . . πn ∗ π2
...

...
...

...
...

−1 π1 ∗ πn π2 ∗ πn . . . πn ∗ πn

e0
e1
e2
...
en

 =

1
0
0
...
0

 , (4)

where n = |Π|. Thus, if S has period T , the MTTF is given by eo × T . As mentioned before,
Li’s algorithm also yields the expected waiting times for each individual failure string in
π1, π2, . . . , πn ∈ Π, which are given by e1, e2, . . . , en, respectively.

For example, consider a system with period 5 ms, iteration failure probability bounded by
PF = 0.1, and robustness specification (2, 3), i.e., at most one 0 is allowed in any execution
of length three. The set of all failure strings in {0, 1}≤3 that violate (2, 3) robustness and
end in a failure is Π = {00, 010, 100}. Using Eq. 3, π2 ∗ π2 is computed as follows.

π2 ∗ π2 = δ1,1δ2,2δ3,3 + δ2,1δ3,2 + δ3,1

= δ1,1δ2,2δ3,3 + δ3,1 {since π2,2 6= π2,1, δ2,1 = 0}
= 10 · δ2,2 · 10 + δ3,1 {since π2,1 = π2,3 = 0, δ1,1 = δ3,3 = 1/PF = 10}
= 10 · δ2,2 · 10 + 10 {since π2,3 = π2,1 = 0, δ3,1 = 1/PF = 10}

= 10 · 10
9 · 10 + 10 = 1090

9 {since π2,2 = 1, δ2,2 = 1/PS = 10/9}

Other πa∗πb’s can be similarly computed, resulting in the following system of linear equations:
0 1 1 1
−1 110 10 110
−1 10 1090/9 10
−1 0 100/9 1000/9

e0
e1
e2
e3

 =

1
0
0
0

 , (5)

which yields e0 = 62.63 and MTTF = e0 × 5 = 313.15 ms.

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:11

With the Mart approach, accounting for a generic set of robustness specifications, such
as {(m1, k1), 〈m2, k2〉, 〈m3〉}, is relatively straightforward in comparison to PMC. We need
to modify only the first step of Mart to obtain an appropriate set of failure strings that
corresponds to a violation of any of the robustness specifications, which is used as before to
instantiate the system of linear equations defined in Eq. 4. However, we must ensure that
any two patterns πa, πb ∈ Π do not contain one another [32]. This is possible if, for example,
the failure patterns for constraints (95, 100) and 〈3〉 are merged. For such cases, the longer
pattern is removed from Π, since the shorter pattern occurs first.

6 SAp: An Approximate Analysis

The PMC and Mart approaches presented in §4 and §5, respectively, can be used to
determine the exact value of MTTF for systems with multiple different types of weakly-hard
robustness specifications. Unlike Mart, PMC even allows estimating the MTTF of systems
that do not resemble a Bernoulli process. However, neither PMC nor Mart scale to large
values of m and k. Thus, with scalability being the primary motivation, we present next an
approximate analysis SAp. Like Mart, SAp can be used only for Bernoulli systems. However,
unlike PMC and Mart, SAp is applicable only for a single (m, k) robustness constraint;
it does not support constraints of the form 〈m, k〉 or 〈m〉, or combinations thereof. Most
importantly, though, SAp is sound, that is, it estimates an approximate value of the MTTF
that lower-bounds the actual MTTF (as given by the exact analyses PMC and Mart).

Before we describe SAp, recall the definition of MTTF from §3. For brevity, let g(n) =
Pr [N(S,R) = n], which is a factor in the integrand in Eq. 2. SAp consists of two key steps.
In the first step, we derive a lower bound on g(n), denoted gLB(n). For this, we split the
(m, k) robustness specification into three conditions, compute an exact or lower bound on the
probability for each of these conditions, and then compute a product of these probabilities.
In the second step, we integrate n · gLB(n) numerically (but in a sound manner) to strictly
lower-bound the MTTF of system S. We discuss both these steps in detail next.

For S to violate the (m, k) specification for the first time during its nth iteration, the
following three conditions must hold. (E1) The nth iteration must fail; (E2) exactly
k −m iterations must fail out of the k − 1 iterations between the (n − k + 1)th and the
(n−1)th iteration; and (E3) fewer than k−m+1 iterations must fail out of any k consecutive
iterations, among the first n− 1 iterations. Then g(n) = Pr(E1)× Pr(E2)× Pr(E3). Now,
Pr(E1) = PF , and summing over all possible combinations of k−m iteration failures in k − 1
consecutive iterations yields Pr(E2) =

(
k−1
k−m

)
P

(k−m)
F P

(m−1)
S .

However, obtaining the exact value of Pr(E3) is challenging. To tackle this challenge,
we use the a-within-consecutive-b-out-of-c:F model [30, §11.4] (or a/Con/b/c:F in short),
proposed originally for a system that consists of c (c ≥ a) linearly ordered components and
that fails iff at least a (a ≤ b) components fail among any b consecutive components. Thus,
in terms of the (m, k) constraint, for a = k −m + 1, b = k, and c = n − 1, a successful
execution of an a/Con/b/c:F system is equivalent to condition E3, and the reliability of an
a/Con/b/c:F system, whose approximations have been well studied in the past, yields Pr(E3).
In particular, since we are interested in a sound approximation, we reuse the reliability lower
bound RLB(a, b, c) of the a/Con/b/c:F system as proposed by Sfakianakis, et al. [42].

Sfakianakis et al.’s analysis [42] breaks the problem into smaller subproblems for which
exact analyses are available and that can be computed quickly. However, neither Sfakianakis
et al. nor any prior work explicitly enumerates the reliability definitions for an exhaustive
set of parameters, i.e., which covers all possibles values of parameters a, b, and c. Therefore,

ECRTS 2019

9:12 Characterizing the FITness of Periodic Weakly-Hard Systems

Table 2 Reliability lower bound of a linear a/Con/b/c:F system with IID components. Type
indicates whether the reliability definition is an exact value or a lower bound (LB).

Case Definition Type Source

a = 0 R1(a, b, c) = 0 Exact –

a = 1 R2(a, b, c) = P c
S Exact –

a = 2, c ≤ 4b R3(a, b, c) =
∑b c+b−1

b c
i=0

(
c−(i−1)(b−1)

i

)
P i
FP c−i

S
Exact [30, §11.4.1]

(Eq 11.10)

a = 2, c > 4b
R4(a, b, c) = R3(a, b, b + t− 1)(R3(a, b, b + 3))u

where t = (c− b + 1)mod 4 and u =
⌊
c−b+1

4

⌋ LB [30, §11.4.1]
(Eq. 11.16)

a > 2, c ≤ 2b,

a = b
R5(a, b, c) =

{
1 0 ≤ c < a

1− P a
F − (c− k)P a

FPS a ≤ c ≤ 2a
Exact [30, §9.1.1]

(Eq. 9.20)

a > 2, c ≤ 2b,

a 6= b, c ≤ b
R6(a, b, c) =

∑c

i=c−a+1

(
c
i

)
P i
SP c−i

F Exact [30, §7.1.1]
(Eq. 7.2)

a > 2, c ≤ 2b,

a 6= b, c > b

R7(a, b, c) =
∑a−1

i=0

(
b−s
i

)
P i
FP b−s−i

S M(a′, s, 2s)
where s = c− b and a′ = a− i,

and M(a′, s, 2s) =

1 a′ > s

R2(a′, s, 2s) a′ = 1
R3(a′, s, 2s) a′ = 2
R5(a′, s, 2s) a′ > 2 ∧ a′ = s

R7(a′, s, 2s) a′ > 2 ∧ a′ 6= s

Exact [30, §11.4.1]
(Eq. 11.14)

a > 2, c > 2b

R8(a, b, c) = Rφ(a, b, b + t− 1)(Rφ(a, b, b + 3))u

where t = (c− b + 1)mod 4 and u =
⌊
c−b+1

4

⌋
,

and Rφ(a, b, c) =

R5(a, b, c) a = b

R6(a, b, c) a 6= b ∧ a ≤ b

R7(a, b, c) a 6= b ∧ a > b

LB [30, §11.4.1]
(Eq. 11.16)

we provide an unambiguous definition of the reliability lower bound RLB(a, b, c) that draws
from Sfakianakis et al.’s analysis for large values of c and from other prior works for some
special cases and smaller values of c. Note that in many cases, there are multiple ways to
define RLB(a, b, c), in which case we prefer a definition that can be quickly computed. We
summarize our definition of RLB(a, b, c) in Table 2.4 Using this reliability lower bound and
the definitions of Pr(E1) and Pr(E2), a lower bound gLB(n) on g(n) is given by

gLB(n) =
(
k − 1
k −m

)
P

(k−m+1)
F P

(m−1)
S RLB (k −m+ 1, k, n− 1) . (6)

4 In our definition of RLB(a, b, c) in Table 2, notice that while we are interested in a reliability lower
bound, we point to Eq. 11.16 in [30, §11.4.1], which refers to an upper bound. This mismatch is due
to a slight inconsistency in how the textbook chapter [30, §11.4.1] adopts the result from the original
paper by Sfakianakis et al. [42]. Notations L and U in Table I in [42] denote lower and upper bounds
(respectively) on the failure rate of the system. Eq. 11.16 in [30, §11.4.1] uses the same notation. Thus,
UBa in Eq. 11.16 in [30, §11.4.1] actually refers to an upper bound on the system failure probability, and
not an upper bound on the system reliability (although the text in the chapter may seem contradictory).
Since we require a lower bound on the system reliability, and since system reliability is one minus its
failure probability, we use 1−UBa, where UBa is defined as in Eq. 11.16 in [30, §11.4.1].

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:13

The next step is to use gLB(n) for lower-bounding the system’s MTTF. This requires
solving Eq. 2 with gLB(n) in place of Pr [N(S,R) = n]. Unfortunately, we were not able to
obtain a closed-form solution with current symbolic solvers due to the complicated definition
of gLB(n). In particular, gLB(n) is defined in terms of RLB(k − m + 1, k, n − 1), which
is a recursive expression with complex definitions of its subproblems, as can be seen from
Table 2. Therefore, similar to numerical integration methods, we adopt an empirical solution
for MTTF derivation that is both fast and reasonably accurate. We empirically compute
the value of function gLB(n) at finitely many sampling points d0, d1, d2, . . . , dD ∈ N such
that d0 = k −m+ 1, and d0 < d1 < d2 < . . . < dD. Using the empirically-determined values
gLB(d0), gLB(d1), . . . , gLB(dD), we derive a lower bound on the MTTF in Lemma 1 below.

The derivation in Lemma 1 depends on the property that gLB(n) (defined in Eq. 6)
decreases with increasing n, which in turn requires that RLB (a, b, c) decreases with increasing
c (since all the terms except RLB (k −m+ 1, k, n− 1) in the definition of gLB(n) are
independent of n). While this property trivially holds for cases a = 0 and a = 1, proving the
property for cases a = 2 and a > 2 is not trivial. We have provided a detailed proof of this
monotonicity property for the more general case a ≥ 2 online [21, Section IV.B].

I Lemma 1. A lower bound on the MTTF of system S with period T and robustness
specification R = (m, k) is given by T

∑D−1
i=0 (gLB(di+1)× (di+1 − di)× (di)).

Proof. From Eq. 2, MTTF is defined as T
∑∞

n=0 n · Pr [N(S,R) = n]. Since gLB ≤ g(n) =
Pr[N(S,R) = n], we lower-bound the MTTF as MTTF ≥ T

∑∞
n=0(n× gLB(n)).

Next, we split the summation range (0,∞) in the above equation into a finite number of
subintervals (0, d0], (d0, d1], . . . , (dD−1, dD], and (dD, ∞). Further, since all terms under
the summation are non-negative, and since we are interested in a lower bound, we drop
the summation terms corresponding to subintervals (0, d0] and (dD, ∞). Thus, we obtain
another lower bound MTTF ≥ T

∑D−1
i=0

∑di+1
n=di

(n× gLB(n)).
Now, since gLB(n) is decreasing with increasing n, for each interval (di, di+1], we replace

gLB(n) with gLB(di+1), which is a constant with respect to n. With this replacement, we get
MTTF ≥ T

∑D−1
i=0 (gLB(di+1)×

∑di+1
n=di

n). Finally, summing the arithmetic progression, and
using inequalities di+1 − di + 1 > di+1 − di and di + di+1 > 2di, we get the desired bound:

MTTF ≥ T
D−1∑
i=0

gLB(di+1)×
di+1∑
n=di

n

≥ T

D−1∑
i=0

(gLB(di+1)× (di+1 − di)× (di)) . J

Since scalability is the primary motivation for SAp, we choose D � dD, so that the
MTTF lower bound can be quickly computed using Lemma 1. We further choose the sampling
points d1, . . . , dD to minimize the amount of pessimism introduced by numerical integration.
Another source of inaccuracy is the use of the reliability lower bound RLB(a, b, c) proposed by
Sfakianakis et al. [42], which inherently introduces some pessimism. We discuss the choice of
sampling points in detail in §7, and compare SAp with PMC and Mart in terms of accuracy.

As mentioned before, SAp is customized for a single (m, k) constraint and does not apply
to 〈m, k〉 or 〈m〉 robustness specifications. We leave similar approximate analysis for the
other robustness constraints as future work.

ECRTS 2019

9:14 Characterizing the FITness of Periodic Weakly-Hard Systems

Table 3 MTTF values derived using PRISM engines.

Engine Iterations Epsilon MTTF for PF = 10−2 MTTF for PF = 10−10

1004 10−06 – –
Explicit 1009 10−06 3.36× 1005 0.23× 1015

1009 10−10 3.41× 1005 1.21× 1017

Exact N/A N/A 3.41× 1005 3.33× 1029

7 Evaluation

The objective of this section is threefold. We discuss implementation choices and challenges,
compare the three types of Markov chain models discussed in §4, and then explore the
scalability versus accuracy tradeoffs of PMC, Mart, and SAp. Since the approximate
analysis SAp is not applicable to generic robustness specifications as defined in §3, and since
(m, k) constraints are the limiting factor when it comes to scaling up the analysis, we focus
on Bernoulli systems and a single (m, k) constraint in the evaluation. In the end, we revisit
the strengths and weaknesses of each approach. All experiments were carried out on Intel
Xeon E7-8857 v2 machines with 4× 12 cores and 1.5 TB of memory.

7.1 Implementation Choices
In the following, we highlight important implementation choices that affect the accuracy and
speed of the analyses. We realized PMC using the state-of-the-art probabilistic model checker
PRISM [31].5 However, configuring PRISM properly to ensure that the estimated results are
both accurate and sound is not trivial. PRISM provides many different configuration options
that affect the method used for linear equation solving (e.g., Jacobi, Gauss-Seidel, etc.),
the model checking engine (MTBDD, Sparse, Hybrid, or Explicit), parameters for precision
tuning (i.e., the epsilon value and maximum number of iterations for convergence checks
during iterative linear solving), and even options to select exact (with arbitrary precision) or
parametric model checking (where some model parameters are not fixed). Choosing the right
set of options is thus important because they can significantly affect the estimated MTTF.

With the parametric model checking option, PRISM outputs the MTTF as a function of
parameter PF , e.g., denoting PF as q, the MTTF for robustness specification (2, 4) is:

T × q5 − 3q4 + 3q3 − 2q2 − q − 1
q6 − 3q5 + 4q4 − 3q3 . (7)

Parametric model checking is thus an ideal choice since it allows for fast reliability analysis
across a range of failure probabilities without the need to build and check the model repeatedly.
However, as we show later, parametric model checking is also the costliest analysis approach.
Thus, for scalability purposes, we also considered both exact and non-exact model checking.

We observed that non-exact model checking resulted in significant inaccuracy. For
example, Table 3 reports the MTTF results for specification (2, 4) obtained with non-exact
model checking (using PRISM’s Explicit engine) and with exact model checking (currently
implemented by PRISM as a special case of parametric model checking). The non-exact engine

5 Our implementation of PMC using PRISM for a robustness specification of (5, 10) is explained in the
Appendix, which is available online as part of an extended tech report [23]. An empirical comparison of
PRISM with Storm [18], a more recent probabilistic model checker, is also provided in the Appendix.

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:15

Table 4 Percentage errors in FIT (R = (8, 10) and y = 1.23456789).

Precision PF = y · 10−10 PF = y · 10−30 PF = y · 10−50

10 −2.20× 10−00 −3.96× 10−01 −1.42× 10−00

20 +1.81× 10−04 −2.70× 10−04 +3.04× 10−04

30 +3.39× 10−07 −5.26× 10−07 +1.36× 10−06

40 −2.75× 10−10 +1.20× 10−09 −2.00× 10−09

50 −1.89× 10−14 +2.99× 10−13 −4.80× 10−13

did not converge (first row of the table) for default configuration options. For PF = 10−10,
even upon decreasing the epsilon value and increasing the maximum number of iterations,
the estimated MTTF is several orders of magnitude off from the exact value, indicating the
sensitivity of non-exact model checking to small probabilities. In our evaluation of PMC, we
thus worked only with parametric and exact model checking. We denote these variants of
PMC as PMC-P and PMC-E, respectively.

The Mart approach was implemented in C++ using the Elemental [2] library, since it
uses LAPACK-based routines [5] for solving linear equations, allows for arbitrary precision
using the GNU MPFR library [3], and also allows for parallel computing using OpenMPI [7].
SAp was implemented in Python using the mpmath [6] library for arbitrary precision. Thus,
for Mart and SAp, unlike for PMC-E, we could explicitly set the global working precision,
i.e., the number of decimal digits used to represent the floating point significand.

However, the choice of the global working precision was not obvious. Table 4 reports
the percentage errors in the estimated FIT when the precision is varied from 10 to 50, with
respect to the FIT estimated using a precision of 1000. The results indicate that low precision
may result in significant errors if PF is also small, and sometimes, the results can even be
unsafe (i.e., resulting in negative errors). In general, estimating a precision that is safe to
use based on the computations involved requires rigorous analysis, e.g., [28]. To be on the
safe side, we used a precision of 1000 bits for both Mart and SAp, which ensured that any
remaining errors were of negligible magnitude.

Finally, when implementing SAp, recall that we need a mechanism to choose an appro-
priate set of data points d0, d1, d2, . . . , dD over which to run the empirical computations.
We discuss this mechanism with the help of an example. Let m = 3, k = 10, and PF = 10−7.
In Fig. 3(a), we illustrate gLB(n) given these parameters. Since the MTTF lower bound
derived using SAp depends on gLB(n), the key idea is to ensure that points d0, d1, d2, . . . ,
dD are sufficient to trace the shape of function gLB(n), and that the magnitude of gLB(n) is
negligible beyond n = dD. The first point d0, as mentioned before, is set to (k −m+ 1). To
compute the last point dD, i.e., the point at which gLB(n) becomes negligible, we observed
the logarithm of function gLB(n) for n ∈ {1, 101, 102, 103, . . .}. That is, we plotted the
function gLB(n) on a logarithmic scale for both the x- and y-axes as in Fig. 3(b), and then
determined a threshold at which the curve starts falling rapidly (e.g., dD ≈ 1055 in Fig. 3(b)).

The intermediate points d1, d2, . . . , dD−1 were chosen such that the step size di+1 − di

between any two consecutive points di and di+1 (i) is small enough to closely track the
function gLB(n), and (ii) yet still proportional to the order of magnitude of di, to avoid
evaluating an exponential number of points. For example, while generating Fig. 3, the step
size was 1 for n ∈ (10, 100] and 1052 for n ∈ (1053, 1054].

ECRTS 2019

9:16 Characterizing the FITness of Periodic Weakly-Hard Systems

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

n (normal scale) 1e55

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

g L
B
(n

)
(n

o
rm

a
l
sc

a
le

)

1e 55

(a) Normal-scale axes.

100 105 10101015102010251030103510401045105010551060

n (log scale)

10-298
10-277
10-256
10-235
10-214
10-193
10-172
10-151
10-130
10-109
10-88
10-67
10-46
10-25

g L
B
(n

)
(l

o
g
 s

ca
le

)

(b) Log-scale axes.

Figure 3 Sampling points gLB(d0), gLB(d1), . . . , gLB(dD) for m = 3, k = 10, PF = 10−7, and
T = 10 ms in (a) normal scale and (b) log scale. In this example, D = 5050 and dD = 9.90× 1057.

7.2 Evaluating PMC Model Types
Recall from §4 that we introduced three different types of Markov chain models – Type 1,
Type 2, and Type 3 – each resulting in a different asymptotic model size. Does the use of
one model over the other affect the computation times or even the model building times in
practice? To answer this question, we measured the asymptotic model sizes for k = 20 and
m ∈ [1, k− 1], and compared the measurements with the model size and build time statistics
reported by PRISM. We also measured the checking time statistics for k = 10 (since model
checking for k = 20 frequently timed out). We summarize the results for PMC-E in Fig. 4.

Fig. 4a plots the asymptotic size for each model type, indicating that none of the models
is an optimal choice for all parameters. Fig. 4b reports the number of elements in the
transition matrix as reported by PRISM. The number of transition matrix nodes varies
with m in the same way as the asymptotic model size, but the absolute numbers are less
than the asymptotic sizes. This is because PRISM already prunes some states that are
unreachable during the build process. Figs. 4c and 4d illustrate the time to build and check
the models, respectively. The model construction time for each model type is proportional
to the respective model size. The model checking time, however, is independent of the model
type, since the models are equivalent and result in the same set of linear equations.

In summary, to achieve maximum scalability, it is important to choose a model that
requires the minimum time for construction. In the subsequent experiments, we thus use the
asymptotic model sizes as a guideline to choose the appropriate model type for an (m, k)
specification. That is, if k = 20, based on Fig. 4a we use the Type-3 model if m ≤ 4, the
Type-2 model if m ≥ 16, or the Type-1 model otherwise.

7.3 The Scalability vs. Accuracy Tradeoff
We start by evaluating the scalability of the analyses PMC-P, PMC-E, Mart, and SAp by
measuring the analysis duration for each k ∈ [2, 20] for four different configurations of m and
PF : (i) m = bk/2c and PF = 10−10 (Fig. 5a); (ii) m = bk/2c and PF = 10−20 (Fig. 5b);
(iii) m = k − 2 and PF = 10−10 (Fig. 5c); and (iv) m = k − 2 and PF = 10−20 (Fig. 5d).
Since evaluating (m, k) requires maximum time if m = k/2 and minimum time if m is close
to either 1 or k− 1 (see Fig. 4d), results for (i) and (iii) indicate the minimum and maximum
scalability that can be achieved by the analyses; whereas results for (ii) and (iv) help us to
understand the impact, if any, of PF ’s value on the analysis scalability.

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:17

0 5 10 15 20

m (with k=20 and PF =10−10)

101
103

105
107
109

1011
1013

1015
1017
1019
1021
1023
1025

O
(m

o
d
e
l
si

ze
)

Type 1
Type 2
Type 3

(a)

0 5 10 15 20

m (with k=20 and PF =10−10)

0

1000

2000

3000

4000

5000

#
 T

ra
n
s.

 m
a
tr

ix
 n

o
d
e
s

Type 1
Type 2
Type 3

(b)

0 5 10 15 20

m (with k=20 and PF =10−10)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
o
d
e
l
co

n
st

ru
ct

io
n
 t

im
e
 (

s) Type 1
Type 2
Type 3

(c)

0 2 4 6 8 10

m (k = 10)

0

10

20

30

40

50

60

70

80

M
o
d
e
l
ch

e
ck

in
g
 t

im
e
 (

s)

Type 1
Type 2
Type 3

(d)

Figure 4 Comparing the three PMC model types using PMC-E. While measuring the checking
time statistics, k = 10 was used, since model checking for k = 20 frequently timed out.

First, as evident from each graph, and as expected, PMC-P, PMC-E, and Mart do not
scale well in comparison to SAp. For configurations of type (i) and (ii), where m = bk/2c
(see Figs. 5a and 5b), PMC-P and PMC-E scale only up to k = 9 and k = 11, respectively.
The Mart approach performs better and scales up to k = 15, mainly because it gives up
exactness (but still guarantees soundness owing to its very high precision). In contrast,
SAp easily scales up to the maximum value of k = 20. Also, notice that while SAp’s
analysis time grows exponentially in k (the y-axis is log scale), PMC’s and Mart’s analysis
times grow super-exponentially. For configurations of type (iii) and (iv) where m = k − 2
(Figs. 5c and 5d), PRISM-based analyses scale better than in the first two configurations
because the Type-3 model allows for a concise representation of the (m, k) specification in
this case and hence fast building of the model. SAp’s scalability also improves significantly
in this case because the recursion involved in computing RLB(k −m+ 1, k, n− 1) for the
empirical data points is eliminated in this case. Between configurations (i) and (ii), as well
as between configurations (iii) and (iv), only the failure probability PF is changed from
10−10 to 10−20. As a result, PMC-E takes an order of magnitude more time. This is because
lower probabilities require more space for exact representation, and hence more time for
computations on these representations. SAp is also affected since the number of data points
to be measured is larger in this case. Mart is unaffected because irrespective of PF , it uses
a precision of 1000. PMC-P is also unaffected since it is independent of PF .

ECRTS 2019

9:18 Characterizing the FITness of Periodic Weakly-Hard Systems

2 4 6 8 10 12 14 16 18 20

k (with m=
⌊
k
2

⌋
 and PF =10−10)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s)

PMC-P
PMC-E
MART
SAp

(a)

2 4 6 8 10 12 14 16 18 20

k (with m=
⌊
k
2

⌋
 and PF =10−20)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s)

PMC-P
PMC-E
MART
SAp

(b)

2 4 6 8 10 12 14 16 18 20

k (with m=k−2 and PF =10−10)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s)

PMC-P
PMC-E

MART
SAp

(c)

2 4 6 8 10 12 14 16 18 20

k (with m=k−2 and PF =10−20)

10-2

10-1

100

101

102

103

104

A
n
a
ly

si
s

d
u
ra

ti
o
n
 (

s)

PMC-P
PMC-E

MART
SAp

(d)

Figure 5 Comparing analysis duration for PMC-P, PMC-E, Mart, and SAp. The analysis
duration for Mart for k ≤ 5 was extremely small and is hence not illustrated. The configuration
k = 2 in (c) and (d) was ignored since (0, 2) is not a valid (or rather a trivial) specification.

To summarize the discussion on analysis scalability, we illustrate in Fig. 6a for each
k ∈ [1, 25] and m ∈ [2, k − 1] whether analyses PMC-P, PMC-E, Mart, and SAp finished
on time, i.e., within a one-hour timeout window. For each cell, P denotes that PMC-P was
successful, E denotes that PMC-P timed out but PMC-E was successful, M denotes that
both PMC-P and PMC-E timed out but Mart was successful, and S denotes that only SAp
was successful. Clearly, the results indicate that exact analyses can be used only if k ≤ 15,
or else if m is either very small or very large relative to k. Thus, for larger values of k, an
approximate analysis, such as SAp, is needed, that trades some accuracy for scalability. But
is SAp accurate enough to be useful at very large values of k? And is it accurate for small
values of k so that the costly exact analyses may not be needed at all? To answer these
questions, we evaluate next SAp’s accuracy with respect to Mart and PMC.

In Fig. 6c (similar in structure to Fig. 6a), we report the percentage error in the MTTF
obtained using SAp versus that obtained from either PMC or Mart (PMC was preferred,
if available) for each k ∈ [2, 12] and m ∈ [1, k − 1]. As expected, SAp always resulted in
a lower, pessimistic MTTF than PMC and Mart since it is sound by construction. Thus,
error signs are not explicitly denoted in the figure.

We make the two key observations regarding SAp’s accuracy. First, even for small values
of k, the relative errors are significant (see the red cells in Fig. 6c denoting specifications
with relative error greater than 50%). This validates the need for an exact analysis whenever

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:19

(a)

2 4 6 8 10 12 14 16

k

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
ta

g
e
 e

rr
o
r

m = k - 2
m = 2
m = k / 2

(b)

(c)

Figure 6 Quantifying the scalability vs. accuracy tradeoff. (a) Scalability results for different
values of m and k. (b) SAp’s accuracy trend for m = 2, m = k/2, and m = k − 2. (c) Summary of
SAp’s accuracy with respect to Mart and PMC for different values of k and m.

feasible. Second, the relative errors are higher if the ratio m/k is closer to one. To investigate
this further, we also plot the percentage errors for m = k − 2, m = 2, and m = k/2 with
respect to k in Fig. 6b. From this figure, we observe that in all evaluated cases, the MTTF
estimated with SAp was within an order of magnitude of the exact MTTF. Since in the
context of reliability analyses the order of magnitude is typically of prime interest (rather
than the exact value), we conclude that SAp is reasonably accurate for large values of k.

7.4 Discussion
Mart outperforms both PMC-P and PMC-E, which is not surprising. In fact, for the scenario
with IID iteration failure probabilities that we evaluated, Mart directly represents the
underlying system of linear equations without needing to construct a model. PMC’s benefits
lie in its ability to express non-IID iteration failure probabilities. SAp on the other hand scales
much better than PMC and Mart, at the cost of acceptable, but non-zero pessimism. To
conclude, PMC, Mart, and SAp are useful alternatives for reliability evaluation depending
on the values of m and k. PMC and Mart are ideal to evaluate short-range safety properties
that are usually applied on short window lengths e.g., such as “there should not be more
than 3 consecutive failures in any window of 10 iterations” [17]. In contrast, SAp can

ECRTS 2019

9:20 Characterizing the FITness of Periodic Weakly-Hard Systems

evaluate asymptotic properties that are defined over a large window of events and reflect
minimum acceptable longterm quality-of-service levels, e.g., such as “at least 90% of actuation
commands must be applied on the plant in every 100 iterations” [33, 41].

Although we focused on a binary failure type in this paper, i.e., each iteration was
categorized either as a successful iteration or a failed iteration, one could also use fine-grained
label types for each iteration, such as deadline violation, message loss, miscomputation, and
so on. That is, an execution of system S could be modeled as a string in {0 . . . λ}∗, instead of
a string in {0, 1}∗, where λ is the number of failure categories. Both PMC and Mart easily
extend to such systems. In contrast, SAp has limited extensibility in its current form, since our
objective when designing SAp was primarily to scale the evaluation of (m, k) specifications
that are widely used in practice. However, the same blueprint could be used to safely
approximate other types of robustness specifications as well, i.e., by breaking each specification
into smaller events, computing the product of respective event probabilities (or a lower bound),
and then reusing Lemma 1 for MTTF estimation. We leave such extensions for future work.

8 Related Work

Weakly-hard constraints have been widely studied in the context of firm real-time systems to
represent robustness of a time-sensitive task against occasional timing failures [24, 10, 15,
38, 36, 16]. In particular, the focus has been on (i) analyzing task schedulability according
to a given weakly-hard (usually (m, k)) constraint [36, 37], (ii) design of online schedulers to
meet these constraints [24, 10, 15, 16], and (iii) co-design approaches to find the schedulable
set of (m, k) parameters that maximizes an application’s quality of service [45, 29, 17]. Most
recently, Pazzaglia et al. [34] introduced state-based representation of the evolution of a
control system with respect to deadline misses, and showed the merits of having multiple
(m, k) constraints for a control application. In contrast, Huang et al. [26] focused on the
safety verification problem of nonlinear weakly-hard systems by modeling them using hybrid
automata. Huang et al. [27] also discuss new research directions in applying weakly-hard
constraints to general-purpose networked systems. None of these papers provides a means
for bounding a system’s MTTF with respect to its weakly-hard specification.

In the general reliability literature, there is a long tradition of work on deriving a system’s
MTTF if the occurrence of failures is described by well-known probability distributions (see
[30] for a comprehensive overview). Similarly, the problem of evaluating the reliability of series-
or parallel-redundant systems, both with and without repairs, in the context of robustness
specifications such as k-out-of-n, consecutive-k-out-of-n, multidimensional consecutive-k-out-
of-n, etc. is well understood, e.g., see [35, 40]. However, the available techniques in this
domain do not directly apply to the problem studied in this paper. Either the constraints
cannot be reduced to these techniques or symbolically integrating the applicable technique
over an infinite domain is not trivial. Further, for multiple weakly-hard specifications, a
model-based approach helps to accurately account for common failure sequences.

9 Conclusion

We proposed methods for safely bounding the MTTF of periodic systems with stochastic
faults w.r.t. weakly-hard robustness specifications. Empirical evaluations showed that an
exact (even parametric) analysis is feasible when k −m is small, and that an approximate
analysis is scalable and (within the parameters of our experiments) produces bounds within
2× of the exact bounds. In future work, it would be interesting to consider more expressive

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:21

models of stochastic faults [39], such as continuous-time models and dynamic fault trees.
We also plan to extend SAp for evaluating other types of robustness constraints. Finally, a
holistic analysis of periodic systems that are composed of multiple subsystems with possibly
different periods and different weakly-hard constraints, as opposed to analyzing each of these
subsystems independently, would help reduce pessimism in the overall reliability assessment.

References
1 BLAS (Basic Linear Algebra Subprograms). URL: http://www.netlib.org/blas/.
2 Elemental: distributed-memory dense and sparse-direct linear algebra and optimization —

Elemental. URL: http://libelemental.org/.
3 The GNU MPFR Library. URL: https://www.mpfr.org/.
4 IEC 61158-1:2014 | IEC Webstore. URL: https://webstore.iec.ch/publication/4624.
5 LAPACK – Linear Algebra PACKage. URL: http://www.netlib.org/lapack/.
6 mpmath - Python library for arbitrary-precision floating-point arithmetic. URL: http://

mpmath.org/.
7 Open MPI: Open Source High Performance Computing. URL: https://www.open-mpi.org/.
8 Robert B. Ash. Basic probability theory. Dover Publications, Mineola, N.Y, dover ed edition,

2008. OCLC: ocn190785258 (pbk.).
9 Christel Baier and Joost-Pieter Katoen. Principles of model checking. The MIT Press,

Cambridge, Mass, 2008. OCLC: ocn171152628.
10 Guillem Bernat and Alan Burns. Combining (/sub m//sup n/)-hard deadlines and dual

priority scheduling. In Proceedings Real-Time Systems Symposium, pages 46–57, San Francisco,
CA, USA, 1997. IEEE Comput. Soc. doi:10.1109/REAL.1997.641268.

11 Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard real-time systems. IEEE
Transactions on Computers, 50(4):308–321, April 2001. doi:10.1109/12.919277.

12 Rainer Blind and Frank Allgower. Towards Networked Control Systems with guaranteed
stability: Using weakly hard real-time constraints to model the loss process. In 2015 54th
IEEE Conference on Decision and Control (CDC), pages 7510–7515, Osaka, December 2015.
IEEE. doi:10.1109/CDC.2015.7403405.

13 Michael S. Branicky, Stephen M. Phillips, and Wei Zhang. Scheduling and feedback co-design
for networked control systems. In Proceedings of the 41st IEEE Conference on Decision
and Control, 2002., volume 2, pages 1211–1217, Las Vegas, NV, USA, 2002. IEEE. doi:
10.1109/CDC.2002.1184679.

14 Ian Broster, Alan Burns, and Guillermo Rodriguez-Navas. Timing Analysis of Real-Time
Communication Under Electromagnetic Interference. Real-Time Systems, 30(1-2):55–81, May
2005. doi:10.1007/s11241-005-0504-z.

15 Marco Caccamo and Giorgio Buttazzo. Exploiting skips in periodic tasks for enhancing
aperiodic responsiveness. In Proceedings Real-Time Systems Symposium, pages 330–339, San
Francisco, CA, USA, 1997. IEEE Comput. Soc. doi:10.1109/REAL.1997.641294.

16 Hyunjong Choi, Hyoseung Kim, and Qi Zhu. Job-Class-Level Fixed Priority Scheduling
of Weakly-Hard Real-Time Systems. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), Montreal, Quebec, Canada, April 2019. IEEE. doi:
10.1109/RTAS.2019.00028.

17 Hoon Sung Chwa, Kang G. Shin, and Jinkyu Lee. Closing the Gap Between Stability and
Schedulability: A New Task Model for Cyber-Physical Systems. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 327–337, Porto, April 2018.
IEEE. doi:10.1109/RTAS.2018.00040.

18 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A Storm is
Coming: A Modern Probabilistic Model Checker. In Computer Aided Verification, pages
592–600, Cham, 2017. Springer International Publishing.

ECRTS 2019

http://www.netlib.org/blas/
http://libelemental.org/
https://www.mpfr.org/
https://webstore.iec.ch/publication/4624
http://www.netlib.org/lapack/
http://mpmath.org/
http://mpmath.org/
https://www.open-mpi.org/
http://dx.doi.org/10.1109/REAL.1997.641268
http://dx.doi.org/10.1109/12.919277
http://dx.doi.org/10.1109/CDC.2015.7403405
http://dx.doi.org/10.1109/CDC.2002.1184679
http://dx.doi.org/10.1109/CDC.2002.1184679
http://dx.doi.org/10.1007/s11241-005-0504-z
http://dx.doi.org/10.1109/REAL.1997.641294
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1109/RTAS.2018.00040

9:22 Characterizing the FITness of Periodic Weakly-Hard Systems

19 Joanne Bechta Dugan and Randy Van Buren. Reliability evaluation of fly-by-wire com-
puter systems. Journal of Systems and Software, 25(1):109–120, April 1994. doi:10.1016/
0164-1212(94)90061-2.

20 Oliver Gettings, Sophie Quinton, and Robert I. Davis. Mixed criticality systems with weakly-
hard constraints. In Proceedings of the 23rd International Conference on Real Time and
Networks Systems - RTNS ’15, pages 237–246, Lille, France, 2015. ACM Press. doi:10.1145/
2834848.2834850.

21 Arpan Gujarati, Mitra Nasri, and Björn B. Brandenburg. Lower-Bounding the MTTF
for Systems with (m, k) Constraints and IID Iteration Failure Probabilities. Technical
Report MPI-SWS-2018-004, Max Planck Insitute for Software Systems, April 2018. URL:
https://www.mpi-sws.org/tr/2018-004.pdf.

22 Arpan Gujarati, Mitra Nasri, and Björn B. Brandenburg. Quantifying the Resiliency of
Fail-Operational Real-Time Networked Control Systems. In 30th Euromicro Conference
on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 16:1–16:24, Barcelona, Spain, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/lipics.ecrts.2018.16.

23 Arpan Gujarati, Mitra Nasri, Rupak Majumdar, and Björn B. Brandenburg. From Iteration
to System Failure: Characterizing the FITness of Periodic Weakly-Hard Systems. Technical
Report MPI-SWS-2019-001, Max Planck Insitute for Software Systems, Germany, May 2019.
URL: https://www.mpi-sws.org/tr/2019-001.pdf.

24 Moncef Hamdaoui and Parameswaran Ramanathan. A dynamic priority assignment technique
for streams with (m, k)-firm deadlines. IEEE Transactions on Computers, 44(12):1443–1451,
December 1995. doi:10.1109/12.477249.

25 Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and Rolf Ernst. System
level performance analysis – the SymTA/S approach. IEE Proceedings - Computers and Digital
Techniques, 152(2):148, 2005. doi:10.1049/ip-cdt:20045088.

26 Chao Huang, Wenchao Li, and Qi Zhu. Formal verification of weakly-hard systems. In
Proceedings of the 22nd ACM International Conference on Hybrid Systems Computation
and Control - HSCC ’19, pages 197–207, Montreal, Quebec, Canada, 2019. ACM Press.
doi:10.1145/3302504.3311811.

27 Chao Huang, Kacper Wardega, Wenchao Li, and Qi Zhu. Exploring weakly-hard paradigm
for networked systems. In Proceedings of the Workshop on Design Automation for CPS
and IoT - DESTION ’19, pages 51–59, Montreal, Quebec, Canada, 2019. ACM Press. doi:
10.1145/3313151.3313165.

28 Anastasiia Izycheva and Eva Darulova. On Sound Relative Error Bounds for Floating-
point Arithmetic. In Proceedings of the 17th Conference on Formal Methods in Computer-
Aided Design, FMCAD ’17, pages 15–22, Austin, TX, 2017. FMCAD Inc. URL: http:
//dl.acm.org/citation.cfm?id=3168451.3168462.

29 Matthias Kauer, Damoon Soudbakhsh, Dip Goswami, Samarjit Chakraborty, and Anuradha M.
Annaswamy. Fault-tolerant Control Synthesis and Verification of Distributed Embedded
Systems. In Proceedings of the Conference on Design, Automation & Test in Europe, DATE
’14, pages 56:1–56:6, 3001 Leuven, Belgium, Belgium, 2014. European Design and Automation
Association. URL: http://dl.acm.org/citation.cfm?id=2616606.2616675.

30 Way Kuo and Ming J. Zuo. Optimal reliability modeling: principles and applications. John
Wiley & Sons, Hoboken, N.J, 2003.

31 Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of Prob-
abilistic Real-Time Systems. In Computer Aided Verification, volume 6806, pages 585–591.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-22110-1_47.

32 Shuo-Yen Robert Li. A Martingale Approach to the Study of Occurrence of Sequence
Patterns in Repeated Experiments. The Annals of Probability, 8(6):1171–1176, 1980. URL:
https://www.jstor.org/stable/2243018.

http://dx.doi.org/10.1016/0164-1212(94)90061-2
http://dx.doi.org/10.1016/0164-1212(94)90061-2
http://dx.doi.org/10.1145/2834848.2834850
http://dx.doi.org/10.1145/2834848.2834850
https://www.mpi-sws.org/tr/2018-004.pdf
http://dx.doi.org/10.4230/lipics.ecrts.2018.16
https://www.mpi-sws.org/tr/2019-001.pdf
http://dx.doi.org/10.1109/12.477249
http://dx.doi.org/10.1049/ip-cdt:20045088
http://dx.doi.org/10.1145/3302504.3311811
http://dx.doi.org/10.1145/3313151.3313165
http://dx.doi.org/10.1145/3313151.3313165
http://dl.acm.org/citation.cfm?id=3168451.3168462
http://dl.acm.org/citation.cfm?id=3168451.3168462
http://dl.acm.org/citation.cfm?id=2616606.2616675
http://dx.doi.org/10.1007/978-3-642-22110-1_47
https://www.jstor.org/stable/2243018

A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg 9:23

33 Rupak Majumdar, Indranil Saha, and Majid Zamani. Performance-aware scheduler synthesis for
control systems. In Proceedings of the 9th ACM international conference on Embedded software
- EMSOFT ’11, page 299, Taipei, Taiwan, 2011. ACM Press. doi:10.1145/2038642.2038689.

34 Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses. In 30th Euromi-
cro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:22, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2018.10.

35 Hoang Pham. Optimal design of k-out-of-n redundant systems. Microelectronics Reliability,
32(1):119–126, January 1992. doi:10.1016/0026-2714(92)90091-X.

36 Gang Quan and Xiaobo Hu. Enhanced fixed-priority scheduling with (m,k)-firm guarantee.
In Proceedings 21st IEEE Real-Time Systems Symposium, pages 79–88, November 2000.
doi:10.1109/REAL.2000.895998.

37 Sophie Quinton and Rolf Ernst. Generalized Weakly-Hard Constraints. In Leveraging Applica-
tions of Formal Methods, Verification and Validation. Applications and Case Studies, Lecture
Notes in Computer Science, pages 96–110. Springer Berlin Heidelberg, 2012.

38 Parameswaran Ramanathan. Overload management in real-time control applications using
(m, k)-firm guarantee. IEEE Transactions on Parallel and Distributed Systems, 10(6):549–559,
June 1999. doi:10.1109/71.774906.

39 Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review, 15-16:29–62, February 2015.
doi:10.1016/j.cosrev.2015.03.001.

40 Raaj K. Sah. An explicit closed-form formula for profit-maximizing k-out-of-n systems
subject to two kinds of failures. Microelectronics Reliability, 30(6):1123–1130, January 1990.
doi:10.1016/0026-2714(90)90291-T.

41 Indranil Saha, Sanjoy Baruah, and Rupak Majumdar. Dynamic Scheduling for Networked
Control Systems. In Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, HSCC ’15, pages 98–107, New York, NY, USA, 2015. ACM.
doi:10.1145/2728606.2728636.

42 Michael Sfakianakis, Stratis G. Kounias, and Alexander E. Hillaris. Reliability of a consecutive
k-out-of-r-from-n:F system. IEEE Transactions on Reliability, 41(3):442–447, September 1992.
doi:10.1109/24.159817.

43 Purnendu Sinha. Architectural design and reliability analysis of a fail-operational brake-by-wire
system from ISO 26262 perspectives. Reliability Engineering & System Safety, 96(10):1349–
1359, October 2011. doi:10.1016/j.ress.2011.03.013.

44 Fedor Smirnov, Michael Glaß, Felix Reimann, and Jürgen Teich. Formal reliability analysis of
switched ethernet automotive networks under transient transmission errors. In Proceedings of
the 53rd Annual Design Automation Conference on - DAC ’16, pages 1–6, Austin, Texas, 2016.
ACM Press. doi:10.1145/2897937.2898026.

45 Damoon Soudbakhsh, Linh T. X. Phan, Oleg Sokolsky, Insup Lee, and Anuradha Annaswamy.
Co-design of Control and Platform with Dropped Signals. In Proceedings of the ACM/IEEE
4th International Conference on Cyber-Physical Systems, ICCPS ’13, pages 129–140, New
York, NY, USA, 2013. ACM. doi:10.1145/2502524.2502542.

46 Susan Stanley. MTBF, MTTR, MTTF & FIT Explanation of Terms. URL:
http://www.bb-elec.com/Learning-Center/All-White-Papers/Fiber/MTBF,-MTTR,
-MTTF,-FIT-Explanation-of-Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf.

ECRTS 2019

http://dx.doi.org/10.1145/2038642.2038689
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.10
http://dx.doi.org/10.1016/0026-2714(92)90091-X
http://dx.doi.org/10.1109/REAL.2000.895998
http://dx.doi.org/10.1109/71.774906
http://dx.doi.org/10.1016/j.cosrev.2015.03.001
http://dx.doi.org/10.1016/0026-2714(90)90291-T
http://dx.doi.org/10.1145/2728606.2728636
http://dx.doi.org/10.1109/24.159817
http://dx.doi.org/10.1016/j.ress.2011.03.013
http://dx.doi.org/10.1145/2897937.2898026
http://dx.doi.org/10.1145/2502524.2502542
http://www.bb-elec.com/Learning-Center/All-White-Papers/Fiber/MTBF,-MTTR,-MTTF,-FIT-Explanation-of-Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf
http://www.bb-elec.com/Learning-Center/All-White-Papers/Fiber/MTBF,-MTTR,-MTTF,-FIT-Explanation-of-Terms/MTBF-MTTR-MTTF-FIT-10262012-pdf.pdf

End-To-End Deadlines over Dynamic Topologies
Victor Millnert
Lund University, Sweden

Johan Eker
Lund University, Sweden
Ericsson Research, Sweden

Enrico Bini
University of Turin, Italy

Abstract
Despite the creativity of the scientific community and the funding agencies, the underlying model of
computation behind IoT, WSN, cloud, edge, fog, and mist is fundamentally the same; Computational
nodes which are dynamically interconnected to form a system in where both processing capacity
and connectivity may vary over time. On top of such a system, we consider applications that need
packets to flow along a path and adhere to end-to-end deadlines. This application model is motivated
by both control and automation systems, as well as telecom systems. The challenge is to guarantee
end-to-end deadlines when allowing nodes and applications to join or leave.

The mainstream, and to some extent natural, approach to this is to relax the stringency of
the constraint (e.g. use probabilistic guarantees, soft deadlines). In this paper we take a different
approach and keep the end-to-end deadlines as hard constraints and instead partially limit the
freedom of how nodes and applications are allowed to leave and join. We present a theoretical
framework for modeling such systems along with proofs that deadlines are always honored.

2012 ACM Subject Classification Computer systems organization → Cloud computing; Networks
→ Cloud computing

Keywords and phrases Cloud, real-time, end-to-end latency guarantee, end-to-end response time
guarantee, dynamic network

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.10

1 Introduction

Cloud computing plays a pivotal role in the ongoing digitalization of both the industry and
the society at large. This transformation borrows many technologies and concepts from
traditional cloud applications (mail services, ride sharing, media streaming, e-commerce etc.).
The focus for these applications is commonly availability, scalability, and price/performance.
While response time is of great concern for such applications, determinism is usually not.
For the next generation of cloud-applications, such as industrial automation, collaborative
traffic, and telecom systems, predictable timing is crucial. In order to secure a successful
transformation and allow such timing-critical systems, the underlying cloud infrastructure
must be able to guarantee predictable end-to-end response-times.

One example of such an application could be a dynamically reconfigurable production
cell in a manufacturing plant, where the elements in the production cell are connected to the
cloud and controlled centrally. The cloud provides large-scale compute and storage capacity.
Cloud back-end systems are typically implemented as a service meshes consisting of networks
of interconnected microservices. The production cell may be dynamically configured to adapt
to changes, such as hardware failures, or respond to external events, etc. Elements may thus
dynamically join or leave a cell. Figure 1 illustrates such a production cell with industrial
robots connected to the cloud, which provide services for automation, analytics, artificial
intelligence and machine learning algorithms. The topology of the service network may

© Victor Millnert, Johan Eker, and Enrico Bini;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 End-To-End Deadlines over Dynamic Topologies

1

3

4

7

5

2
10

1

3

4

7

8

5
6 9

2
10

deadline

3

4

7

8

6 9

10

deadline deadline deadline

Figure 1 Illustration of configurable, and mobile, manufacturing cells connected to a set of smart
services in the cloud. It highlights the changes of the network topology which arises when new
robots, and cloud services, join and leave the system. With the upcoming 5G standard it becomes
possible to establish a low-latency wireless connection between the robots and the cloud. However,
in order to guarantee the required low end-to-end response-time for the robots, there still remains a
challenge to ensure a low end-to-end response-time within the cloud, especially during the transitions
of the network topology.

therefore change over time as robots join and leave the network. As mentioned earlier, the
challenge is to still guarantee that the end-to-end deadline required by the robots are always
met, despite dynamic changes of the network topology.

This paper addresses the challenge of allowing network churn and still ensures predictable
end-to-end response times within the cloud. A framework that allows for transitions of the
network topology is presented. Moreover, it is formally proved that the suggested framework
guarantees that it will never violate any timing constraints.

2 The system model

The focus of this paper is to develop a framework where applications are implemented as flows
of packets through a network of nodes. Each node offers a service to the incoming packets.
The goal is to manage the on-line arrival/departure of flows and the on-line arrival/departure
of nodes of the network in a way such that end-to-end deadlines of packets are honored,
while allowing for topology changes.

Section 2.1 presents definitions and assumptions with respect to the services offered
by nodes. Applications are then defined as a set of interconnected services and referred
to as flows. Definitions and assumptions on flows are given in Section 2.2. Finally, in
Section 2.3, we present some assumptions on how these flows and nodes interact with the
resource manager.

2.1 Model of the nodes
A node represents an entity that offers a service to the incoming packets. The time taken by
a node to provide the service to an incoming packet is given in Def. 1 below. The nodes in
the system are denoted by V(t) ⊂ N, which is the set of indices of the nodes present at time
t. The terms “node” and “vertex” are used interchangeably1.

1 We may use the term “node” when we refer to its capacity to process packets, while the term “vertex”
is more often used when referring to the topological structure of the network.

V. Millnert, J. Eker, and E. Bini 10:3

I Definition 1 (Response time). We define the response time Ri(t), as the time taken by a
packet entering node i at time t to be processed.

From the definition above, we remark the following facts:
The response time Ri(t) accounts for all sources of delay possibly occurring within node
i (queuing, interference, processing, etc.).
All incoming packets are treated in the same way regardless of the flow they belong to.
Differentiantig packets depending on the application they belong to is feasible. This
would require to attach the flow index j to the response time, which would become then
Ri,j(t). However, this choice poses a notational challenge only with no conceptual added
value. For this reason we believe that letting the packet response time depend only on
the node (and time) does not significantly impact the applicability of the results. We
leave the case of per-flow response time to future works.
Moreover, in contrast to a large body of the research on real-time systems, this paper does
not address how the response time may be computed based on the amount of incoming
workload (due to the arrival of packets) and the amount of processing capacity of a
node, etc. The interested readers can refer to a vast relate literature addressing this
aspects [12, 18, 7, 16, 17, 19, 25, 3].
Rather, the focus is on the interactions between nodes aimed at guaranteeing end-to-end
deadlines in the context of a dynamic network.

Naturally, the service provided to packets by a node might include some minimum
requirements, which determines a lower bound to the response time of the service time of a
node. The node is unable to process packets in less time than this value. Hence, to model the
minimum time needed by a node to process a packet, we introduce the following definition.

I Definition 2 (Response time lower bound). We define the response time lower bound Ri,
as the minimum a packet may take to be processed by node i.

In practice, Ri may represent the pure processing time of a packet, without any interference
or delay of any kind.

Finally, we assume that the node is capable of controlling its response-time, as stated
below in Assumption 1. This assumptions is backed by the vast body of research for different
ways of controlling the response-time of cloud services. For instance, in [18] they use the
concept of “brownout control” to ensure that the response-time of a server is within a desired
limit. In [7] control theory is used to modify the processing capacity of the web servers to
control response times. In [17] a combination of scaling the resources of the nodes with an
admission control is used to ensure that the deadlines of the nodes in the network are met.
More interesting work addressing this is found in [19, 25, 3].

I Assumption 1 (Response-time control). We assume that a node i is capable of controlling
its response-time Ri(t) such that it is always below a deadline Di(t) ≥ Ri, i.e., such that

∀t ≥ 0, ∀i ∈ V(t), Ri(t) ≤ Di(t). (1)

2.2 Model of the flows
An application in the system is modeled as a flow indexed by some j ∈ F(t) and characterized
by a path and an end-to-end deadline, properly defined next.

ECRTS 2019

10:4 End-To-End Deadlines over Dynamic Topologies

I Definition 3 (Path). The path of a flow j ∈ F(t) is defined by the sequence pj :
{1, . . . , `j} → V(t), with `j ≥ 1 being the length of the path, such that

∀i = 1, . . . , `j − 1, (pj(i), pj(i+ 1)) ∈ E(t), (2)

where E(t) ∈ V(t)× V(t) are the current edges between the nodes of the network.

By Def. 3, it follows that pj(i) is the i-th node on the path of flow j. It should be noted
that Eq. (2) enforces the existence of an edge of the graph between two consecutive nodes
in a path. It should be noted that this paths may traverse a node more than once, which
allows us to capture typical client-server sessions. With a slight abuse of notation, we may
denote the image of the map pj , which is the set of nodes touched by path j, by pj only,
rather than pj({1, . . . , `j}).

We remark that the type of application addressed in this paper is borrowed from cloud
microservices, where each service provides a unique value to the travelling packet. Hence, the
route of packets belonging to an application is known and must not be decided at run time.

I Definition 4 (End-to-end deadline). We define the end-to-end deadline Dj of the flow
j ∈ F(t) as the maximum time a packet may take to be processed by all nodes along the path pj .

Finally, a flow j is also characterized by an end-to-end response-time Rj(t), which is the
time taken by a packet entering the first node pj(1) of the flow at time t to be processed by
all nodes of the path pj . However, before properly defining Rj(t), we need to introduce the
mid-path response-time Rj,i(t), that is the time needed by a packet that entered flow j at
time t to pass through the first i nodes of the path pj . Formally, this quantity is defined
recursively by

Rj,i(t) =
{
Rpj(1)(t) if i = 1
Rj,i−1(t) +Rpj(i)

(
t+Rj,i−1(t)

)
otherwise.

(3)

The intuition of (3) is quite straightforward: the time it takes a packet to traverse the first
i nodes is equal to the time required to traverse the first i− 1 nodes plus the response-time
of the i-th node. The end-to-end response-time of a flow j is therefore given by Rj,`j (t),
which we compactly denote by Rj(t).

2.3 Model of the dynamic network
Flows and nodes may join and leave the network at run time. Hence, we define the network
as follows.

I Definition 5 (Network). We define the network G(t) of the system at time t as the set of
nodes, directed edges, and flows present at that time: G(t) = {V(t), E(t), F(t)}.

Since we aim at guaranteeing end-to-end deadlines, the requests to join or leave must
be properly handled by a resource manager, which manages the network (as illustrated in
Figure 2). If not properly handled, the risk is that newly admitted flows may cause overload
or the uncontrolled departure of nodes may disconnect the network.

The interactions between the resource manager and the flows are as follows:
A flow j 6∈ F(t) may request to join the network. Such an instant is denoted by f rq+

j .
When a new flow issues such a request, it also communicates to the resource manager the
following information:
1. its path pj

2. its end-to-end deadline Dj .

V. Millnert, J. Eker, and E. Bini 10:5

Nodes

request

ok to leave

notify to join

to leave

Flows

request

ok to join

notify to leave

to join

Resource Manager

Figure 2 Scheme of interactions between the resource manager (which manages the network),
the flows, and the nodes.

After the request by a flow to join, the resource manager:
1. accepts the flow j to the network at an instant fok+

j (which ≥ f rq+
j), if feasible, or

2. rejects the flow j immediately, if not feasible.
Details on the admission of new flows based on its characteristics and the current state of
the network are given in Section 4.
A flow j ∈ F(t) may notify and leave the network at any time that we denote by f−j . In
fact, it is only advantageous to let a flow (and its constraint) to leave.
The resource manager may notify a flow j ∈ F(t) that it has to leave the network. This
might, for instance, happen if a node along the path pj requests to leave the network. In
such a case, the resource manager is no longer able to provide the requested services of
the flow j.

The interactions between the resource manager and the nodes (which are the vertices of
the graph) are as follows:

A node i 6∈ V(t) may notify and join the network at any time. We denote such an instant
by v+

i . Since a node is bringing a new service to the network, there is no admission
control to its request to join.
A node i ∈ V(t) may request to leave the network to the resource manager. The instant
of such a request is denoted by vrq−

i .
The resource manager lets a node leave only at time vok−

i (which is ≥ vrq−
i). The time

between vrq−
i and vok−

i is needed by the resource manager to allow flows going through
node i to properly exit.

Problem formulation

The problem formulation in this paper can now formally be summarized as follows;
control when/how nodes are allowed to leave the network,
control when/how flows are allowed to join the network,
control the node deadlines D(t) = [Di(t)]∀i∈V(t),

such that the end-to-end deadlines of all the flows in the network are met:

∀t ≥ 0, ∀j ∈ F(t), Rj(t) ≤ Dj . (4)

3 Static networks

In this section, we introduce a protocol which allows for dynamic deadlines in static networks.
By a static network we mean one where no nodes or flows join or leave the network, that is
∀t ≥ 0, G(t) = G. The traffic rates and response times of nodes may change dynamically.

ECRTS 2019

10:6 End-To-End Deadlines over Dynamic Topologies

However, the topology is static: the nodes, the flows and their end-to-end deadlines do not
change over time. Hence, we can drop the time dependency of the set E(t) = E of edge, the
set V(t) = V of nodes, and the set F(t) = F of flows. However, node deadlines may change
to accommodate variations in the workload.

To give some intuition of the challenges of guaranteeing end-to-end deadlines in a system
with dynamic node deadlines (even for a static network), we present a simple example in
Section 3.1. In Section 3.2 we propose a solution, which allows for dynamic node deadlines
and still provides guarantees on the end-to-end deadlines. Naturally, this is also proved in
Theorem 6. Finally, in Section 3.3 we adapt the opening example of Section 3.1 such that it
uses the method suggested in Section 3.2 and show that it is then able to guarantee that all
the end-to-end deadlines are met for all times.

3.1 Example – issues with dynamic deadlines
If node deadlines were constant then a static assignment of node deadlines, equal to any
vector of node deadlines D = {Di}∀i∈V satisfying

D ∈ D(G) =
{
Di ∈ R+ : ∀i ∈ V, Di ≥ Ri, ∀j ∈ F ,

`j∑
i=1

Dpj(i) ≤ Dj

}
. (5)

would guarantee no end-to-end deadlines to be missed. The intuition behind Eq. (5) is simple:
the sum of the node deadlines along the path pj of a flow j cannot exceed the end-to-end
deadline Dj of the path j. We remark that the set D(G) is convex, since it is the polytope
built from the intersection among linear half-spaces. This also implies that every line between
any two points in D(G) belongs to D(G).

Let us now consider the issues of performing a transition from some deadline assignment
D(t1) ∈ D(G) to another assignment D(t2) ∈ D(G), hence with both the starting and ending
node deadlines belonging to D(G). Since D(G) is convex then the linear transition of node
deadlines

D(t) = D(t1)× t2 − t
t2 − t1

+ D(t2)× t− t1
t2 − t1

always belongs to D(G) for all t ∈ [t1, t2].

1

1

2 4

3

2

5

31 2 3

Figure 3 Example of network. Nodes are represented by light yellow boxes. Flows are represented
by: a source of packets (a colored circle labelled by the flow index), a path (a sequence of arrows
from the source, through the nodes), and a destination of the packets (a colored circle with dashed
boundary labelled by the flow index). This example of network is used to illustrate an issue with
dynamic deadlines in Section 3.1.

V. Millnert, J. Eker, and E. Bini 10:7

However, even if ∀t ∈ [t1, t2], the linear combination D(t) always belongs to D(G), the
end-to-end deadline may be missed anyway. Suppose we have the network G, illustrated
in Figure 3 and focus on flow 1 (the blue flow), with path p1 = {1, 2}. The end-to-end
deadline for this flow is D1 = 6 milliseconds (ms). Suppose now that in response to an
increase of the incoming packets rate, node 2 must change its deadline from D2(t1) = 1 to
D2(t2) = 5. The node deadlines of the system are therefore changing from D(t1) = [5, 1, . . .]
to D(t2) = [1, 5, . . .]. Please, note that for the purpose of this example the particular choice
of deadlines for nodes 3, 4, and 5 does not matter.

Figure 4 shows the deadlines node 1 and node 2 over time. At time τ1 = 1 a packet enters
node 1, which has D1(τ1) = 5. In the worst case, node 1 will finish processing that packet
at time τ1 +D1(τ1) = 6ms. Suppose now, that at time t1 = 2ms, while this packet is still
at node 1, the resource manager begins changing the node deadlines from D(t1) = [5, 1, . . .]
towards D(t2) = [1, 5, . . .]. When the packet exits node 1 at time τ1 +D1(τ1) = t2 = 6, then
it enters node 2. Due to the change of node deadlines, now the value of D2(t) at t = 6 is
D2(6) = 5. This means that, in the worst case, the response time of the second node is
also 5ms, since R2(t2) ≤ D2(t2) = 5. The packet that entered flow 1 at time τ1 = 1 would
therefore, in the worst case, may take up to 10ms to traverse its path p1. Hence, the end-to-
end deadline D1 = 6 of the packet is violated, despite the fact the sum of the node deadlines
D1(t) and D2(t) along the path was never greater than D1 (that is ∀t, D1(t) +D2(t) ≤ D1).

This simple example shows that when the network is allowed to change the node deadlines
dynamically, the constraint D(t) ∈ D(G) is not a sufficient condition to guarantee end-to-end
deadlines to be met. In fact, the violation of the end-to-end deadline illustrated by this
example is related to the variation of the node deadlines. The node deadlines D(t) need to
satisfy a stricter constraint, which is discussed next.

0 2 4 6 8 10 12
0

2

4

6

τ1 t1 t2 τ1 +D1

time (ms)

ti
m
e
(m

s)

D1(t)

D2(t)
packet

Figure 4 Example of how dynamic node deadlines may lead to end-to-end deadline violations.
The node deadlines D1(t) (in blue) and D2(t) (in red) are changed from D(t1) = [5, 1, . . .] to
D(t2) = [1, 5, . . .]. This may lead a packet in flow 1 (with path p1 = {1, 2}, as shown in Figure 3) to
miss its end-to-end deadline D1 = 6.

3.2 Guaranteeing end-to-end deadlines
In this section, we provide the conditions that allow the network to dynamically change the
node deadlines without incurring any end-to-end violation, as exemplified in Section 3.1. In
fact, by letting node deadlines change over time, prediction of the end-to-end response time of
packets becomes difficult. In Protocol 1 we present a solution to this problem. The intuition
is that by limiting the rate-of-change of the node deadlines, it is possible to compute the
end-to-end response time of a flow j ∈ F at time t. This allows us to compute the allowed
node deadlines. This is formally proved in Theorem 6.

ECRTS 2019

10:8 End-To-End Deadlines over Dynamic Topologies

Protocol 1 Management of dynamic node deadlines in static networks.

The node deadlines can never change with a rate larger than some fixed α ∈ [0, 1]:

∀t ≥ 0, ∀i ∈ V, |Ḋi(t)| ≤ α.

The node deadlines must always be within the set of feasible node deadlines:

D(t) ∈ D(G) =
{
Di ∈ R+ : Di ≥ Ri, i ∈ V, ∀j ∈ F ,

`j∑
i=1

(1 + α)`j−iDpj(i) ≤ Dj

}
.

I Theorem 6 (Dynamic deadlines in static networks). No end-to-end deadlines of any flow is
violated, that is

∀t ≥ 0, ∀j ∈ F Rj(t) ≤ Dj , (6)

as long as the node deadlines D(t) never change with a rate faster than a given bound α ∈ [0, 1]:

∀t ≥ 0, ∀i ∈ V, |Ḋi(t)| ≤ α, (7)

and as long as the node deadlines remain within the space of feasible node deadlines:

∀t ≥ 0, D(t) ∈ D(G), (8)

with D(G) given by

D(G) =
{
Di ∈ R+ : ∀i ∈ V, Di ≥ Ri, ∀j ∈ F ,

`j∑
i=1

(1 + α)`j−iDpj(i) ≤ Dj

}
. (9)

Proof. We begin by recalling Assumption 1: the nodes in the network have a response-time
controller which ensures that Eq. (1) always holds, that is ∀t ≥ 0, Ri(t) ≤ Di(t). It follows
that for the first node pj(1) of any path j ∈ F , it is always true that:

∀t ≥ 0, ∀j ∈ F , Rj,1(t) = Rpj(1)(t) ≤ Dpj(1)(t). (10)

It then follows that for all subsequent nodes with index i > 1, from Eq. (3), we have that

∀t ≥ 0, ∀j ∈ F , Rj,i(t) = Rj,i−1(t) +Rpj(i)
(
t+Rj,i−1(t)

)
≤ Rj,i−1(t) +Dpj(i)

(
t+Rj,i−1(t)

)
≤ Rj,i−1(t) +Dpj(i)(t) + αRj,i−1(t)
= (1 + α)Rj,i−1(t) +Dpj(i)(t) (11)

where each step follows:
1. from the definition of end-to-end response-time (3),
2. from Eq. (1),
3. from Eq. (7), which implies Lipschitz-continuity of Di(t) with Lipschitz-constant α,
4. from basic math.

In the next step, we show

∀t ≥ 0, ∀j ∈ F , ∀x = 1, . . . , `j , Rj,x(t) ≤
x∑

i=1
(1 + α)x−iDpj(i)(t), (12)

V. Millnert, J. Eker, and E. Bini 10:9

holds by proving by induction on the index x of nodes over the path j. When x = 1, Eq. (12)
follows directly from (10). For any other x > 1, we have that

Rj,x(t) ≤ (1 + α)Rj,x−1(t) +Dpj(x)(t)

≤ (1 + α)
x−1∑
i=1

(1 + α)x−1−iDpj(i)(t) +Dpj(x)(t)

=
x−1∑
i=1

(1 + α)x−iDpj(i)(t) +Dpj(x)(t)

=
x∑

i=1
(1 + α)x−iDpj(i)(t)

where the different steps follow:
1. because the inequality is the same as Eq. (11)
2. because we exploit the inductive hypothesis of (12) for x− 1,
3. from basic math.
Hence, Eq. (12) is proved for all x = 1, . . . , `j .

Finally, we can conclude the proof by showing that

∀t ≥ 0, ∀j ∈ F Rj(t) = Rj,`j (t) ≤
`j∑

i=1
(1 + α)`j−iDpj(i)(t) ≤ Dj

which implies that as long as the node deadlines are chosen such that D(t) ∈ D(G) no
end-to-end deadlines of any flow j ∈ F is violated, and the theorem is proved. J

3.3 Example – fixed by applying Theorem 6

0 2 4 6 8 10 12
0

2

4

6

t1 t2 τ1 +D1

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)

D1(t) packet

(a) Maximum rate-of-change α = 1.

0 2 4 6 8 10 12
0

2

4

6

t1 t1 +D1 tt

time (ms)

ti
m
e
(m

s)

D1(t) D2(t)

D1(t) packet

(b) Maximum rate-of-change α = 0.5.

Figure 5 Modified example from Section 3.1. We illustrate how the system dynamically changes
node deadlines over time, with different rates of change. In 5a and 5b the nodes deadlines are
allowed to change with a rate of α = 1 and α = 0.5, respectively. Given the change of D2(t)
(illustrated in red) from 1 to 5, the resource manager is only allowed to change D1(t) ensuring that
it remains within the shaded blue region (denoted by D1(t) and representing the space of feasible
node deadlines for D1(t)). Finally, as illustrated by the dashed black line, by ensuring that D1(t)
remains within the blue region, the longest time it will take a packet to traverse flow 1 will be less
than its end-to-end deadline.

ECRTS 2019

10:10 End-To-End Deadlines over Dynamic Topologies

This section illustrates that if the node deadlines are changed in accordance to Protocol 1,
then the issue of end-to-end deadline misses shown in Section 3.1 cannot happen. To do so,
we modify the example of Section 3.1. We consider again flow 1 of Figure 3, which has path
p1 = {1, 2} and end-to-end deadline D1 = 6.

In this scenario, we assume that the resource manager must change D2(t) from D2(t1) = 1
to D2(t2) = 5. The reason is to allow node 2 to handle a sudden increase in incoming traffic.
Recalling the example in Section 3.1, we can now verify that if the node deadlines begin in a
state of D1(t1) = 5 and D2(t1) = 1 the resource manager is not able to change them at all. In
fact, by writing explicitly the constraint of Eq. (9) in Protocol 1 for the path j = 1, we have

D1(t1) + (1 + α)D2(t1) ≤ D1

1 + (1 + α)5 ≤ 6 ⇒ α ≤ 0

which means that node deadlines are not allowed to change at all. If some change is needed
(for example, to handle a burst of incoming traffic), then the node deadlines must be more
constrained. In fact, given the change of D2(t), the choice of D1(t) has to satisfy the
following constraint:

∀t ≥ 0, (1 + α)D1(t) +D2(t) ≤ D1 = 6. (13)

Next, we compare two cases of different values of feasible rate of change α for the node
deadlines. The result are illustrated in Figure 5.

Maximum rate-of-change α = 1

To allow the network to transition quickly from D2(t1) = 1 to D2(t2) = 5 we choose α = 1.
This means that the the choices of D1 are constrained by the following condition:

∀t ≥ 0, (1 + 1)D1(t) +D2(t) ≤ D1 = 6.

This condition gives the resource manager the space of possible choices for D1(t) illustrated
by the shaded blue region in Figure 5a. The largest possible choices for D1(t) therefore
involves changing D1 from D1(t1) = 2.5 to D1(t2) = 0.5, with t1 = 1 and t2 = 5.

Maximum rate-of-change α = 0.5

The stringency of the constraint on the node deadlines when α = 1 may be relaxed by
requiring a slower transition between the node deadlines, for example α = 0.5. By doing so,
we get the following conditions on D1(t):

D1(t1) ≤ 10
3 ≈ 3.333, D1(t2) ≤ 2

3 ≈ 0.666,

in order to ensure that Eq. (13) holds, and assuming that D2(t) is again changed from
D2(t1) = 1 to D2(t2) = 5. Not surprisingly, by requiring a smoother transition, the node
deadlines may be larger. Similarly to the previous case, this is illustrated in Figure 5b, where
we illustrate that when D1(t) is chosen to be as large as possible, a packet traversing flow 1
is always guaranteed to meet its end-to-end deadline of 6ms.

Trade-offs with alpha

This example illustrates some fundamental trade-offs that come by adopting Protocol 1.
While it allows the system to change the node deadlines dynamically with a rate of α, it
imposes some constraints on the possible choices of node deadlines. The quicker one wishes
to change the node deadlines, the more restricted the choice of feasible node deadlines
becomes, and vice versa. The design-parameter α should be chosen appropriately for a
given application.

V. Millnert, J. Eker, and E. Bini 10:11

4 Dynamic networks

In this section, we generalize the method presented Section 3 to the case of a dynamic
network G(t) = {V(t), E(t), F(t)}, where nodes and flows may join and leave the network
at run time. We begin by showing, in Corollary 7, that the result of Theorem 6 transfers
directly to a dynamic network. This means that the end-to-end deadline of any flow in the
network will be met as long as the hypothesis of Theorem 6 hold for all states of the network
G(t) at all times t. Conditions stated in Corollary 7 are fulfilled. By comparing Theorem 6
and Corollary 7 one can see that the only difference is that we now allow for a dynamic
network, i.e., G(t) instead of a static network G.

I Corollary 7 (Dynamic deadlines in dynamic networks). The end-to-end deadline of all flows
are always met, at all times, that is:

∀t ≥ 0, ∀j ∈ F(t) Rj(t) ≤ Dj , (14)

as long as the node deadlines D(t) never change with a rate faster than some α ∈ [0, 1]:

∀t ≥ 0, ∀i ∈ V(t), |Ḋi(t)| ≤ α, (15)

and as long as the node deadlines belong to the space of feasible node deadlines:

∀t ≥ 0, D(t) ∈ D(G(t)), (16)

with D(G(t)) given by

D
(
G(t)

)
=
{
Di ∈ R+ : ∀i ∈ V(t), Di ≥ Ri, ∀j ∈ F(t),

`j∑
i=1

(1+α)`j−iDpj(i) ≤ Dj

}
. (17)

Proof. We begin the proof by observing that from Eq. (15), it follows directly from Theorem 6
that for a fixed time-instance t′ it holds that

∀j ∈ F(t′), Rj(t′) ≤ Dj , (18)

as long as

D(t′) ∈ D
(
G(t′)

)
, (19)

with D
(
G(t′)

)
given by Eq. (17). In fact, this is precisely what was stated and proved in

Theorem 6, but with a fixed network topology G, instead of an instantaneous “snapshot”
G(t′) of a dynamic topology.

Then, the hypothesis of Eq. (16) ensures that Eq. (19) holds ∀t ≥ 0. Therefore, it follows
that Eq. (18) holds ∀t ≥ 0, and in turn that Eq. (14) does always hold, as required. J

As demonstrated by the short proof, Corollary 7 does not poses any deeper conceptual
challenges compared to Theorem 6. However, the two hypothesis of (15) and (16) may be
hard to hold simultaneously, if no special care is taken. This is illustrated in the next example.

Example – issues in acceptance a new flow

The blind admission of new flows as soon as they request to join, may cause the violation of
one of the two hypothesis of the corollary (Equations (15) and (16)) making then Corollary 7
incapable to guarantee end-to-end deadlines. At the time when any new flow j′ is admitted

ECRTS 2019

10:12 End-To-End Deadlines over Dynamic Topologies

to the network, the set of flows F(t) includes the new flow j′ which was not previously in the
set. As a consequence of the acceptance of the new flow j′ into F(t), the set of feasible node
deadlines D

(
G(t)

)
may suddenly shrink due to the newly added constraint. As illustrated in

the next example, this might in turn cause the node deadlines to be in an infeasible state,
such that the end-to-end deadline of the newly accepted flow will be violated. Notice that
node deadlines cannot instantaneously adapt to the new constraint, otherwise the hypothesis
of “bounded rate of change” of Eq. (15) is violated.

In Figure 6, we illustrate a system where a new flow j′ registers to join the network at
time f rq+

j′ = 3. As soon as this flow is accepted into the network, at time fok+
j′ = 4.5, the

set of feasible node deadlines (illustrated by the shaded green area) make a discrete jump.
This means that the node deadlines D(t) (black thick line in Figure 6) will no longer remain
within D

(
G(t)

)
. In other words this means that D(fok+

j′) 6∈ D
(
G(fok+

j′)
)
, which is a clear

violation of the conditions of Corollary 7.

0 2 4 6 8 10
0

5

10

f rq+
j′ fok+

j′

time

n
o
d
e
d
ea
d
li
n
e D1(G)

D1(t)
violation

Figure 6 Illustration of why it might be difficult to ensure that ∀t ≥ 0, D(t) ∈ D
(
G(t)

)
and

|Ḋi(t)| ≤ α. In this scenario, the space of feasible node deadline choices for the first node, D1
(
G(t)

)
(shaded green area), makes a discrete jump as soon as the new flow j′ is accepted into the network.
The reason is that the inclusion of the new flow adds a new end-to-end deadline constraints. This, in
turn, may cause the node deadlines to instantaneouslt become infeasible.“leave” the space of feasible
node deadlines (illustrated by the dashed line).

The illustrated issue suggests that a special care must be taken when the network G(t)
is modified, since the discrete variation of the network may not be compatible with the
need of smooth node deadlines. Therefore, in Section 4.1, we present two protocols which
address this issue:

Protocol 2 explains how the requests of flows are managed, while
Protocol 3 illustrates the management of nodes of the network.

4.1 Protocol allowing dynamic networks
In this section, we present a protocol for managing how flows may join and leave the network.
We show that by following this protocol, the hypothesis of Corollary 7 do always hold, making
then the corollary applicable. We then present a second protocol for how to manage nodes
joining and leaving the network.

Management of flows

The intuition behind Protocol 2, which manages the flows, comes from the fact that as
soon as a new flow j′ is accepted into the network, at time fok+

j′ , the network changes from
G = {V(t), E(t),F(t)} to G+ =

{
V(t), E(t),F(t) ∪ {j′}

}
. The constraint corresponding to

the new flow j′ is thus added to D(G) leading to the new set of feasible node deadlines
D(G+) ⊆ D(G). Therefore, in order to ensure that the node deadlines remain within the set

V. Millnert, J. Eker, and E. Bini 10:13

of feasible node deadlines once j′ is accepted, i.e., that D(fok+
j′) ∈ D

(
G(fok+

j′)
)
, Protocol 2

will only accept j′ if D(t) ∈ D(G+). If this is the case when j′ requests to join, i.e., that
D(f rq+

j′) ∈ D(G+), then the new flow will be accepted immediately, and fok+
j′ = f rq+

j′ .
If on the other hand, D(f rq+

j′) 6∈ D(G+), it is not possible to accept j′ immediately.
Therefore, in order to accept it, the resource manager changes the node deadlines towards
a goal point D∗ ∈ D(G+). It will then accept the new flow j′, once D(t) = D∗, which will
occur at time fok+

j′ , given by Eq. (20).

Protocol 2 Management of flows.

At time f rq+
j′ , the new flow j′ requests to join

If D(f rq+
j′) ∈ D(G+), then the flow j′ is admitted immediately, that is fok+

j′ = f rq+
j′ .

If D(f rq+
j′) /∈ D(G+), then the admission of flow j′ is delayed until the node deadlines

have completed a linear transition to a goal point D∗ ∈ D(G+), that is

fok+
j′ = f rq+

j′ +
maxi∈V(t)

∣∣∣D∗i −Di(f rq+
j′)

∣∣∣
α

. (20)

with α being the maximum feasible rate of change of node deadlines.
If D

(
G+)

)
= ∅, then the request of flow j′ to join the network is rejected.

A flow j ∈ F(t) may notify the resource manager and leave the network at any time. The
time when it leaves is denoted by f−j .

Let us comment on the choice of the “goal point” D∗. In general, any choice of D∗ ∈ D(G+)
is valid. However, if the target is to minimize the transition-time fron the time f rq+

j′ flow j′

request to join to the time fok+
j′ it is admitted to the network (given by Eq. (20)), then it

should be chosen as

D∗ = arg min
D∈G+

max
i

∣∣∣Di −Di(f rq+
j′)

∣∣∣ .
We would like to point out three observations from Protocol 2. The first one is that

during the transition to accept the new flow j′ the node deadlines are changed according to
the following linear function:

∀i ∈ V(f rq+
j′), ∀t ∈ [f rq+

j′ , f
ok+
j′], Di(t) =

Di(f rq+
j′)× (t− f rq+

j′)
fok+

j′ − f
rq+
j′

+
D∗i × (fok+

j′ − t)
fok+

j′ − f
rq+
j′

. (21)

This means that the node deadlines are changed along a line from D(f rq+
j′) to D(fok+

j′). Since
D(G) is a convex space, it follows that D(t) ∈ D(G) during the transition. Hence, it also
follows that the hypothesis of Eq. (16) in Corollary 7 holds during the transition.

The second observation is that by changing the node deadlines according to Eq. (21) we
acquire the property that Di(fok+

j′) = D∗i . This means that at the end of the transition, at
time t = fok+

j′ , we have D(t) ∈ D(G+). This implies that once the new flow j′ is accepted
condition (16) of Corollary 7 continues to hold.

The final observation is that by exploiting the value of fok+
j′ of Eq. (20), we have

|Ḋi(t)| =
|Di(f rq+

j′)−D∗i |
fok+

j′ − f
rq+
j′

= α
|Di(f rq+

j′)−D∗i |

maxi∈V(t)

∣∣∣D∗i −Di(f rq+
j′)

∣∣∣ ≤ α (22)

This implies that Protocol 2 fulfills condition (15) of Corollary 7, since the maximum
rate-of-change of any node is α during the transition.

ECRTS 2019

10:14 End-To-End Deadlines over Dynamic Topologies

By combining all three observations, we can conclude that by following Protocol 2, the
hypotheses of Corollary 7 are always met when accepting new flows, and then no end-to-end
deadline is violated.

Finally, we remark that if there is no possible choice of a goal point, i.e., if D(G+) = ∅,
then the request of j′ to join is clearly rejected because the admission of the new flow j′ may
cause the violation of end-to-end deadline of some flow already admitted to the network.

Management of nodes

The basic idea behind Protocol 3 is that when a node i ∈ V(t) leaves the network, it does affect
the flows with a path going through i. Therefore, at time vrq−

i , that is when node i requests to
leave the network, the resource manager notifies any affected flow j ∈ {j : ∀j ∈ F(t), i ∈ pj}
that it will be pushed out from the network after a time T leave

i . The rationale for this is
simply that the resource manager will no longer be able to provide any guarantees for the
end-to-end deadlines of the affected flows once node i has left the network.

However, should the affected flows still wish to use some of the services in the network,
they may request to re-join the network as a new flow. In order to allow the affected flows
adequate time to do this, and to also ensure that there is enough time for the packets in the
affected flows, we require T leave

i to be greater than the largest end-to-end deadline of the
affected flows.

Moreover, it can be noticed that there is no condition on the nodes willing to join
the network.

Protocol 3 Management of nodes.

A node i 6∈ V(t) may notify the resource manager and join the network at any time v+
i .

When a node i ∈ V(t) requests to leave the network (we denote such an instant by vrq−
i),

it is allowed to do so at:

vok−
i ≥ vrq−

i + T leave
i

with T leave
i ≥ max{Dj : ∀j ∈ F(t), i ∈ pj}

The resource manager will notify all the affected flows j ∈ {j : ∀j ∈ F(t), i ∈ pj} that
they will be kicked out at time t = vok−

i if they have not left the network by then.

Comments on handling multiple flows

It should be noted that while Protocol 2 only treats the case where a single flow j′ request to
join, it is possible to allow multiple flows to request. The management of this scenario can be
achieved by introducing a request queue, and then applying Protocol 2 for the request at the
head of the queue. Once the request is served, the resource manager can then repeat for the
new head-of-the-queue request until there are no more pending requests. This methodology
would only incur in a heavier notation which we prefer not to add to lighten the presentation.

Moreover, as we show in the experiments of Section 5.2 a new flow can be accepted
in matter of milliseconds, or even micro seconds. Therefore, given the application of
cloud robotics, it is fair to assume that there will not be multiple flows requesting to join
simultaneously. And should there be, introducing a request queue will not incur any significant
delay for accepting new flow.

V. Millnert, J. Eker, and E. Bini 10:15

4.2 Example – dynamic network topology

1

1

2

4

2

3 5

6

3

7

timet1<latexit sha1_base64="R2xcdzs3LWI33/bYgj+lD0CgK1U=">AAAB/nicbVDLSgNBEOyNrxhfUY+CDAbBU9j1ot4CXvQW0TWBZAmzs7PJkNmZZWZWCEsOfoBX/QRP4tVf8Qs8+BE6eRxMYkFDUdVNd1eYcqaN6346haXlldW14nppY3Nre6e8u3evZaYI9YnkUjVDrClngvqGGU6bqaI4CTlthP3Lkd94oEozKe7MIKVBgruCxYxgY6Vb0/E65YpbdcdAi8Sbkkrt8OcbLOqd8lc7kiRLqDCEY61bnpuaIMfKMMLpsNTONE0x6eMubVkqcEJ1kI9PHaJjq0QolsqWMGis/p3IcaL1IAltZ4JNT897I/E/r5WZ+DzImUgzQwWZLIozjoxEo79RxBQlhg8swUQxeysiPawwMTadmS08kRFVYliyyXjzOSwS/7R6UfVubELXMEERDuAITsCDM6jBFdTBBwJdeIJneHEenVfnzXmftBac6cw+zMD5+AWTSpih</latexit>

t1<latexit sha1_base64="R2xcdzs3LWI33/bYgj+lD0CgK1U=">AAAB/nicbVDLSgNBEOyNrxhfUY+CDAbBU9j1ot4CXvQW0TWBZAmzs7PJkNmZZWZWCEsOfoBX/QRP4tVf8Qs8+BE6eRxMYkFDUdVNd1eYcqaN6346haXlldW14nppY3Nre6e8u3evZaYI9YnkUjVDrClngvqGGU6bqaI4CTlthP3Lkd94oEozKe7MIKVBgruCxYxgY6Vb0/E65YpbdcdAi8Sbkkrt8OcbLOqd8lc7kiRLqDCEY61bnpuaIMfKMMLpsNTONE0x6eMubVkqcEJ1kI9PHaJjq0QolsqWMGis/p3IcaL1IAltZ4JNT897I/E/r5WZ+DzImUgzQwWZLIozjoxEo79RxBQlhg8swUQxeysiPawwMTadmS08kRFVYliyyXjzOSwS/7R6UfVubELXMEERDuAITsCDM6jBFdTBBwJdeIJneHEenVfnzXmftBac6cw+zMD5+AWTSpih</latexit>

t2<latexit sha1_base64="OYkpcrAx2AODfo3Gx4zZFduwPY8=">AAAB/nicbVDLSgNBEOyNrxhfUY+CLAbBU9jNRb0FvOgtomuEZAmzs7PJkHksM7NCWHLwA7zqJ3gSr/6KX+DBj9DJ42ASCxqKqm66u6KUUW0879MpLC2vrK4V10sbm1vbO+XdvTstM4VJgCWT6j5CmjAqSGCoYeQ+VQTxiJFm1L8Y+c0HojSV4tYMUhJy1BU0oRgZK92YTq1TrnhVbwx3kfhTUqkf/nyDRaNT/mrHEmecCIMZ0rrle6kJc6QMxYwMS+1MkxThPuqSlqUCcaLDfHzq0D22SuwmUtkSxh2rfydyxLUe8Mh2cmR6et4bif95rcwkZ2FORZoZIvBkUZIx10h39LcbU0WwYQNLEFbU3uriHlIIG5vOzBbGZUyUGJZsMv58DoskqFXPq/61TegKJijCARzBCfhwCnW4hAYEgKELT/AML86j8+q8Oe+T1oIzndmHGTgfv5TimKI=</latexit>

t2<latexit sha1_base64="OYkpcrAx2AODfo3Gx4zZFduwPY8=">AAAB/nicbVDLSgNBEOyNrxhfUY+CLAbBU9jNRb0FvOgtomuEZAmzs7PJkHksM7NCWHLwA7zqJ3gSr/6KX+DBj9DJ42ASCxqKqm66u6KUUW0879MpLC2vrK4V10sbm1vbO+XdvTstM4VJgCWT6j5CmjAqSGCoYeQ+VQTxiJFm1L8Y+c0HojSV4tYMUhJy1BU0oRgZK92YTq1TrnhVbwx3kfhTUqkf/nyDRaNT/mrHEmecCIMZ0rrle6kJc6QMxYwMS+1MkxThPuqSlqUCcaLDfHzq0D22SuwmUtkSxh2rfydyxLUe8Mh2cmR6et4bif95rcwkZ2FORZoZIvBkUZIx10h39LcbU0WwYQNLEFbU3uriHlIIG5vOzBbGZUyUGJZsMv58DoskqFXPq/61TegKJijCARzBCfhwCnW4hAYEgKELT/AML86j8+q8Oe+T1oIzndmHGTgfv5TimKI=</latexit>

t3
<latexit sha1_base64="ocP42doId11jwas/XnTo5laR+5I=">AAAB/nicbVDLSgNBEOz1GeMr6lGQwSB4Crt6UG8BL3qL6JpAsoTZ2dlkyOzMMjMrhCUHP8CrfoIn8eqv+AUe/AidPA4msaChqOqmuytMOdPGdT+dhcWl5ZXVwlpxfWNza7u0s3uvZaYI9YnkUjVCrClngvqGGU4bqaI4CTmth73LoV9/oEozKe5MP6VBgjuCxYxgY6Vb0z5tl8puxR0BzRNvQsrVg59vsKi1S1+tSJIsocIQjrVuem5qghwrwwing2Ir0zTFpIc7tGmpwAnVQT46dYCOrBKhWCpbwqCR+ncix4nW/SS0nQk2XT3rDcX/vGZm4vMgZyLNDBVkvCjOODISDf9GEVOUGN63BBPF7K2IdLHCxNh0prbwREZUiUHRJuPN5jBP/JPKRcW7sQldwxgF2IdDOAYPzqAKV1ADHwh04Ame4cV5dF6dN+d93LrgTGb2YArOxy+Wepij</latexit>

t3
<latexit sha1_base64="ocP42doId11jwas/XnTo5laR+5I=">AAAB/nicbVDLSgNBEOz1GeMr6lGQwSB4Crt6UG8BL3qL6JpAsoTZ2dlkyOzMMjMrhCUHP8CrfoIn8eqv+AUe/AidPA4msaChqOqmuytMOdPGdT+dhcWl5ZXVwlpxfWNza7u0s3uvZaYI9YnkUjVCrClngvqGGU4bqaI4CTmth73LoV9/oEozKe5MP6VBgjuCxYxgY6Vb0z5tl8puxR0BzRNvQsrVg59vsKi1S1+tSJIsocIQjrVuem5qghwrwwing2Ir0zTFpIc7tGmpwAnVQT46dYCOrBKhWCpbwqCR+ncix4nW/SS0nQk2XT3rDcX/vGZm4vMgZyLNDBVkvCjOODISDf9GEVOUGN63BBPF7K2IdLHCxNh0prbwREZUiUHRJuPN5jBP/JPKRcW7sQldwxgF2IdDOAYPzqAKV1ADHwh04Ame4cV5dF6dN+d93LrgTGb2YArOxy+Wepij</latexit>

1

1

2

4

2

3 5

6

3

7

4 1

1

2

4

2

3 5

7

4 51 2 3 1 2 3 4 1 2 54

Figure 7 Illustration of how the network changes in the example of Section 4.2. In the first
transition, from time t1 to t2, flow, 4 (green), joins the network, which already has flows 1, 2, and 3.
Then in the second transition, from time t2 to t3, node 6 leaves the network. When node 6 leaves the
network, it affects flow 3 (yellow), which then leaves, and re-join the network as a new flow 5 (gray).

In this section, by using some examples, we illustrate how the protocols between the
flows, nodes, and the resource manager work.

The scenario is illustrated in Figure 7 and consists of the two transitions. In the first
transition, from t1 to t2, flow 4 (green) requests to join the network. The second transition,
from t2 to t3 illustrates how node 6 requests to leave the network. By doing so, it will affect
flow 3, which has a path passing through node i = 6. The affected flow must therefore leave
the network, and re-join as a new flow j = 6, illustrated by the gray arrows in Figure 7.

Next, we describe the first transition (of the new flow joining), followed by the second
transition (node 6 leaving). The schedule for both transitions are depicted in Figure 8.

0 2 4 6 8 10 12 14 16 18
0

5

10

∗
f rq+
4 fok+

4 fok+
5vrq−6 vok−6

time

n
o
d
e
d
ea
d
li
n
e D1(G)

D1(G+)
D1(t)

Figure 8 Illustration of how the space of feasible node deadlines changes when new flows are
accepted into the network, as well as when nodes leave. It show a request from flow j′ = 4 to join
the network at time f rq+

4 = 3 as well as a request from node i = 6 to leave the network at time
vrq−

6 = 9. It also illustrates how the resource manager changes the node deadlines towards D∗ (given
by ∗) before accepting the new flow j′ = 4.

Request of a flow to join

When the new flow 4 requests to join the network, at time f rq+
4 = 3, the node deadlines of

the system are in a state such that it cannot be accepted immediately, i.e., D(f rq+
4) 6∈ D(G+).

According to Protocol 2, this requires the resource manager to change the node deadlines
to a goal point D∗ ∈ D(G+). The node deadlines will therefore be changed linearly from
D(f rq+

4) to D∗. At time fok+
4 , we have that D(t) = D∗, and then flow 4 is admitted into the

network. This is illustrated in Figure 7 with D(G) shown as the shaded green region, D(G+)
as the shaded blue region, and the goal point D∗ as the ∗ symbol.

ECRTS 2019

10:16 End-To-End Deadlines over Dynamic Topologies

Request of a node to leave

At time vrq−
6 = 9, node 6 requests to leave the network. This is illustrated in Figure 8 by

the downward arrow. Since node 6 belongs to the path p3 of flow 3 (see Figure 7), the
departure of node 6 would affect flow 3 (yellow), with end-to-end deadline D3 = 5. By
following Protocol 3, the resource manager will therefore notify flow 3 that it will no longer
provide any end-to-end deadline guarantees after a time

vok−
6 = vrq−

6 + T leave
6 = 9 + 5 = 14.

The node will then be allowed to leave the network at this time vok−
6 , as illustrated in

Figure 8. In the figure, it can also be noticed that the space of feasible node deadlines
increases when node 6 leaves. The reason is that constraint of the end-to-end deadline D3 of
flow 3 is removed.

In this example, we assume that flow 3 still wants to remain in the network. Therefore,
it will request to re-join the network as a new flow 5 at time f rq+

5 . At this time, the node
deadlines already allow the requesting flow 5 to join (that is D(f rq+

5) ∈ D(G+)) and then flow
5 is admitted immediately (fok+

5 = f rq+
5), as shown in Figure 8.

5 Evaluation: trade-offs with alpha

In this section we evaluate some of the effects introducing Protocols 1, 2, and 3 might have
on a system. We are particularly concerned with the trade-offs of choosing different values
of the design-parameter α. The intuition is that by choosing a value for α we choose how
quickly the resource manager is able to change the node deadlines in the network. A higher
value of α will therefore allow for quicker changes. This will in allow the resource manager to
accept new flows faster. However, as illustrated in Section 3, a higher value of α will require
lower node deadlines. This means that the response-times of the nodes in the network have
to be lower. In order to satisfy this, some response-time controllers might have to sacrifice
the quality of service (QoS) provided by the nodes. For instance, in [17] the sacrifice is to
sometimes discard packets, and in [18] the sacrifice is to decrease the amount of content
provided by the nodes.

5.1 System used for evaluation
The system used to evaluate the trade-offs of α is presented in a previous work [17] by the
authors. In short, it allows nodes in a network, such as the one illustrated in Figure 9, to
ensure that the response-time is less than a specific node deadline. The way it does this is
by combining admission control and service control in every node.

The goal of the service controller is to ensure there is adequate processing capacity in the
nodes. It does so by dynamically scaling the processing capacity according to a control-law.
However, since the system is targeting a cloud-environment, the incoming traffic may be very
dynamic. Moreover, the amount of processing capacity provided to the nodes may vary over
time (i.e., servers might crash, etc.).

The goal of the admission controller is to always ensure that the response-time of the
node is less than the node deadline. If there is sufficient processing capacity to serve the
incoming traffic, it will not have to discard any packets. However, should a node find itself in
a situation where there is not sufficient processing capacity to meet the incoming traffic, then
the admission controller will have discard packets in order to guarantee that the response-time
of the node will be less than the node deadline.

V. Millnert, J. Eker, and E. Bini 10:17

1

1

2 4

2

3

5

31 2 3

Figure 9 Illustration of the network used to evaluate the trade-offs with α and the time taken
to reach the goal point D∗ (in Section 5.2) as well as between α and the system performance
(in Section 5.3).

5.2 Trade-off: alpha and time to accept a new flow
To evaluate the impact of α on the time required to accept a new flow, we will use the system
presented in Section 5.1 and evaluate how long it takes the system to reach different goal
points D∗ ∈ D(G+). Using a network with 5 nodes and 3 flows, we used the following set-up:
1. Choose the order-of-magnitude for the end-to-end deadlinesD ∈ {0.1, 1, 10} (milliseconds)

as well as a value for α ∈ [10−3, 100].
2. Assign a randomly generated end-to-end deadline to each flow, Dj ∈ U(0.7 · D, 1.3 · D).

Note that Dj is drawn from a uniform distribution.
3. Chose the goal point D∗ as the solution to the optimal node-deadline problem, presented

in [17], but adapted with the constraints of Eq. (16):

minimize
∑

i∈V(t)
1/Di

subject to
`j∑

i=1
(1 + α)`j−iDpj(i) ≤ Dj ∀j ∈ F(t)

Di ≥ 0 ∀i ∈ V(t)

(23)

4. Simulate how long it takes the network to reach the desired goal point D∗.
5. Repeated steps 2 thru 4 for 100 simulations.
6. From the 100 simulations, compute the average time to reach a goal point D∗.
7. Repeat steps 1 thru 6 for a different choices of D and α.

The result of the evaluation is shown in Figure 10. As expected, it shows a clear
relationship between α and the time needed to reach D∗. It is interesting to note that even
when having end-to-end deadlines in the order of 10ms, and a very small α the resource
manager is still able to reach D∗ in less than a second. By allowing a higher α, it is possible
to reach D∗ in less than a microsecond.

5.3 Trade-off: alpha and quality of service
To evaluate how different choices of α affect the QoS provided by the nodes in the network
we will again use the system briefly presented in Section 5.1. As mentioned there, the system
used an admission controller and a service controller to ensure that the response-time of the
nodes always remained less than their node deadlines.

ECRTS 2019

10:18 End-To-End Deadlines over Dynamic Topologies

10−3 10−2 10−1 100

100

10−2

10−4

10−6

10−8

alpha

ti
m
e
to

re
ac
h
D

∗ D = 10 ms

D = 1.0 ms

D = 0.1 ms

Figure 10 Simulation result of how long takes a system (with the network depicted in Figure 9)
to reach a goal-point D∗. It shows how this time depend on both the choice of α as well as how
large the end-to-end deadlines of the systems are.

Due to the uncertainties of the available processing capacities, and since the amount of
traffic going through the flows is highly varying, the admission controller sometimes have to
discard packets. This is what we define as the QoS, in other words

QoS = 1− ρ,

where ρ is the fraction of packets which are dropped.
The evaluation was performed using a network with 5 nodes and 3 flows, together with

the following set-up:
1. Choose a processing uncertainty ξ̄ ∈ {0.05, 0.1, 0.2, 0.4} and a value of α ∈ [10−3, 100]..
2. Generate traffic based on data from the Swedish University Network (SUNET) and

simulate the system for 20 seconds. A typical traffic pattern is illustrated in Figure 11a.
3. Compute the QoS for the simulation.
4. Repeat steps 2 and 3 for another 100 simulations.
5. Compute the average QoS for this choice of ξ̄ and α.
6. Repeat steps 1 thru 5 for a new choice of ξ̄ and α.

Some comments on the processing uncertainty above is that if ξ̄ = 0.2 a node in the
network might believe it has a processing capacity of 1000 packets per second (pps), but in
reality it could only handle 800 pps. Therefore, the higher ξ̄, the higher the probability is
that the node has a lack of available processing capacity.

The result of the evaluation, presented in Figure 11b, where the y-axis show the quality
of service and the x-axis show the values of α. The different colors highlight the different
bounds on the uncertainty for the processing capacity. An interesting observation is that
the QoS does not depend so much on the uncertainty ξ̄ as it does on the choice of α. As
expected, when α increases, the QoS goes down. However, even for large values of α, the
QoS remains fairly high, i.e., above 0.9980. This means that 99.8% of all the packets make it
through the system on time.

6 Related work

Despite the fact that the addressed problem in this paper comes from very recent technology
advancements (e.g. cloud computing and 5G), it is possible to abstract it in a way where related
results can be found over quite vast a spectrum of older contributions. In an abstract way,
the problem presented in this paper can be decomposed into the following sub-components:

providing end-to-end deadline guarantees for flows in a network,
splitting end-to-end deadlines into local deadlines.

V. Millnert, J. Eker, and E. Bini 10:19

0 5 10 15 20
0

5 000 000

10 000 000

time (hours)

tr
a
ffi

c
(p

a
ck

et
s/

s)
flow 1 flow 2 flow 3

(a) Traffic for one of the simulations.

10−3 10−2 10−1 100
0.9980

0.9985

0.9990

0.9995

1.0000

alpha

q
u

a
li

ty
of

se
rv

ic
e

ξ̄ = 0.05 ξ̄ = 0.1 ξ̄ = 0.2 ξ̄ = 0.4

(b) Evaluation of α and the quality-of-service.

Figure 11 Simulation to evaluate how α affect QoS of the system. It highlights that despite a
highly varying traffic going through the flows (as depicted in Figure 11a) the QoS remains high,
even for a value of α close to 1. In fact, it shows that for α = 0.1 about 99.8% of all the packets
made it through the system and met their end-to-end deadlines.

However, to the best of our knowledge, no work has considered all of these sub-components
together in the context of a dynamic network topology.

A considerable amount of previous works addresses the deadline guarantee of a sequence
of jobs that needs to be processed at a given node of a network [24, 20, 21]. Within each
node, jobs are scheduled by any single processor scheduling policy (FP, EDF, or else). The
communication between nodes is modelled by propagating the jitter [24, 20] or the offset [21]
of the task execution within a node. Gerber et al. [5] proposed an alternate method to
translate end-to-end deadlines over a directed graph of nodes into constraints on the activation
periods of the tasks running at the intermediate nodes.

In the context of compositional analysis, previous works have addressed the problem of
isolating and composing a single flow over a network of nodes. Lorente et al. [14] extended
the holistic analysis to the case with nodes running at a fraction of computing capacity
(abstracted by a bounded-delay time partition with bandwidth and delay). Jayachandran and
Abdelzaher [10] developed several transformations (“delay composition algebra”) to reduce
the analysis of a distributed system to the single processor case. Serreli et al. [22] proposed a
component interface for chains of tasks activated sporadically and an intermediate deadline
assignment, which minimises the requested computing capacity. Similarly, Ashjaei et al. [1]
proposed resource reservation over each node along the path.

In the context of computation happening at “small” scale, it is worth mentioning the
modular analysis by Hamann, Jersak, Richter, Ernst [6]. Such a modular analysis, which
found an application in the automotive domain, may well be a source of inspiration to
analyze the schedulability within each node and the interaction between nodes. It is, however,
orthogonal to our method which focuses on the policies to allow new flows of packets (“event
streams” in the terminology of [6]) to be admitted at run time. Also, network calculus [13]
and real-time calculus [23] are excellent orthogonal methods to analyze the schedulability
within nodes as well as theier interactions.

The idea of breaking end-to-end deadlines in local deadlines was also exploited by several
authors. Di Natale and Stankovic [2] proposed to split the end-to-end deadline proportionally
to the local computation time or to divide equally the slack time. Marinca et al. [15]
proposed two methods to assign local deadlines (“Fair Laxity Distribution” and “Unfair
Laxity Distribution”) to balance the distribution of the slack among the flows. Later,
Jiang [11] used time slices to decouple the schedulability analysis of each node, reducing
the complexity of the analysis. More recently, Hong et al. [8] formulated the local deadline
assignment problem as a Mixed-Integer Linear Program (MILP) with the goal of maximising

ECRTS 2019

10:20 End-To-End Deadlines over Dynamic Topologies

the slack time. The number of local deadlines, however, is very high and makes the resulting
optimisation problem hard to solve. Jabob et al. [9] proposed to split among local deadlines
by using a deadline ratio ρ ∈ (0, 1) configuration parameter chosen at design-time.

Related, but orthogonal to the presented research is the problem of mapping the flows
of packets onto the available processing nodes. In the automotive context, Zhu et al. [26]
formulated a MILP problem to find a task mapping that minimises the sum of a set of
sensitive latencies. Garibay-Martínez et al. [4] used heuristics to partition tasks and assigned
priorities to tasks sharing the same resource.

7 Conclusion and future works

In this work, we presented a framework, which allows applications and cloud-services to
dynamically join and leave a system over time. The intuition is that by assigning and
controlling how quickly local deadlines of cloud-services may change, it is possible to guarantee
the end-to-end deadlines of the applications in presence of flows and nodes dynamically
leaving and joining the network. Finally, with extensive simulations we are able to show
that with the suggested protocols it is possible to accept new applications in matter of
milliseconds. Moreover, we show that the constraints of the protocols does not affect the
quality-of-service in a significant way.

This preliminary work opens for many research directions. Among them we mention:
impact of node policies How can the end-to-end response time benefit from per-flow packet

scheduling policies within the nodes? For example, fixed priorities, EDF, etc.
decentralized protocol Can the framework be implemented in a decentralized way by ex-

ploiting per-node information rather than using the full knowledge, as in this paper?

References
1 Mohammad Ashjaei, Saad Mubeen, Moris Behnam, Luis Almeida, and Thomas Nolte. End-

to-End Resource Reservations in Distributed Embedded Systems. In 22nd IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages
1–11, August 2016.

2 Marco Di Natale and John A. Stankovic. Dynamic End-to-end Guarantees in Distributed
Real Time Systems. In Proceedings of the 15th IEEE Real-Time Systems Symposium, pages
215–227, December 1994.

3 Neha Gandhi, Dawn M Tilbury, Yixin Diao, J Hellerstein, and Sujay Parekh. Mimo control of
an apache web server: Modeling and controller design. In American Control Conference, 2002.
Proceedings of the 2002, volume 6, pages 4922–4927. IEEE, 2002.

4 Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, and Luis Miguel Pinho.
Task partitioning and priority assignment for distributed hard real-time systems. Journal of
Computer and System Sciences, 81(8):1542–1555, 2015.

5 Richard Gerber, Seongsoo Hong, and Manas Saksena. Guaranteeing Real-Time Require-
ments with Resource-based Calibration of Periodic Processes. IEEE Transaction on Software
Engineering, 21(7):579–592, July 1995.

6 Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. A framework for modular analysis
and exploration of heterogeneous embedded systems. Real-Time Systems, 33(1):101–137, July
2006. doi:10.1007/s11241-006-6884-x.

7 Dan Henriksson, Ying Lu, and Tarek Abdelzaher. Improved prediction for web server delay
control. In Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference
on, pages 61–68. IEEE, 2004.

http://dx.doi.org/10.1007/s11241-006-6884-x

V. Millnert, J. Eker, and E. Bini 10:21

8 Shengyan Hong, Thidapat Chantem, and Xiaobo Sharon Hu. Local-deadline assignment
for distributed real-time systems. IEEE Transactions on Computers, 64(7):1983–1997, 2015.
doi:10.1109/TC.2014.2349494.

9 Romain Jacob, Marco Zimmerling, Pengcheng Huang, Jan Beutel, and Lothar Thiele. End-
to-end real-time guarantees in wireless cyber-physical systems. In Proceedings 2016 IEEE
Real-Time Systems Symposium. RTSS 2016, pages 167–178. IEEE, 2016.

10 Praveen Jayachandran and Tarek Abdelzaher. Delay Composition Algebra: A Reduction-Based
Schedulability Algebra for Distributed Real-Time Systems. In Proceedings of the 29th IEEE
Real-Time Systems Symposium, pages 259–269, December 2008. doi:10.1109/RTSS.2008.38.

11 Shengbing Jiang. A decoupled scheduling approach for distributed real-time embedded
automotive systems. In Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 191–198, 2006.

12 Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez.
Brownout: Building more robust cloud applications. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 700–711. ACM, 2014.

13 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: a theory of deterministic queuing
systems for the internet, volume 2050 of Lecture Notes in Computer Science. Springer, 2001.

14 José L. Lorente, Giuseppe Lipari, and Enrico Bini. A hierarchical scheduling model for
component-based real-time systems. In Proc. of the 20th International Parallel and Distributed
Processing Symp., April 2006. doi:10.1109/IPDPS.2006.1639405.

15 Dana Marinca, Pascale Minet, and Laurent George. Analysis of deadline assignment methods
in distributed real-time systems. Computer Communications, 27(15):1412–1423, 2004.

16 Victor Millnert, Johan Eker, and Enrico Bini. Dynamic control of NFV forwarding graphs
with end-to-end deadline constraints. In IEEE International Conference on Communications,
pages 1–7. IEEE, 2017.

17 Victor Millnert, Johan Eker, and Enrico Bini. Achieving predictable and low end-to-end
latency for a network of smart services. In IEEE GLOBECOM 2018, 2018.

18 Tommi Nylander, Marcus Thelander Andrén, Karl-Erik Årzén, and Martina Maggio. Cloud
Application Predictability through Integrated Load-Balancing and Service Time Control. In
2018 IEEE International Conference on Autonomic Computing (ICAC), pages 51–60. IEEE,
2018.

19 Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif
Merchant, and Kenneth Salem. Adaptive control of virtualized resources in utility computing
environments. In ACM SIGOPS Operating Systems Review, volume 41, pages 289–302. ACM,
2007.

20 José Carlos Palencia and Michael González Harbour. Schedulability Analysis for Tasks with
Static and Dynamic Offsets. In Proceedings of the 19th IEEE Real-Time Systems Symposium,
pages 26–37, December 1998.

21 Rodolfo Pellizzoni and Giuseppe Lipari. Holistic analysis of asynchronous real-time transactions
with earliest deadline scheduling. Journal of Computer and System Sciences, 73(2):186–206,
March 2007. doi:10.1016/j.jcss.2006.04.002.

22 Nicola Serreli, Giuseppe Lipari, and Enrico Bini. The Demand Bound Function Interface
of Distributed Sporadic Pipelines of Tasks Scheduled by EDF. In Proceedings of the 22nd
Euromicro Conference on Real-Time Systems, pages 187–196, July 2010. doi:10.1109/ECRTS.
2010.17.

23 Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The
2000 IEEE International Symposium on, volume 4, pages 101–104. IEEE, 2000.

24 Ken Tindell and John Clark. Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems. Microprocessing and Microprogramming, 50:117–134, April 1994.

25 Thiemo Voigt and Per Gunningberg. Adaptive resource-based Web server admission control.
In ISCC, 2002.

ECRTS 2019

http://dx.doi.org/10.1109/TC.2014.2349494
http://dx.doi.org/10.1109/RTSS.2008.38
http://dx.doi.org/10.1109/IPDPS.2006.1639405
http://dx.doi.org/10.1016/j.jcss.2006.04.002
http://dx.doi.org/10.1109/ECRTS.2010.17
http://dx.doi.org/10.1109/ECRTS.2010.17

10:22 End-To-End Deadlines over Dynamic Topologies

26 Qi Zhu, Haibo Zeng, Wei Zheng, Marco Di Natale, and Alberto Sangiovanni-Vincentelli.
Optimization of Task Allocation and Priority Assignment in Hard Real-time Distributed
Systems. ACM Transactions on Embedded Computing Systems, 11(4):85:1–85:30, January
2013. doi:10.1145/2362336.2362352.

http://dx.doi.org/10.1145/2362336.2362352

Reliable Dynamic Packet Scheduling over Lossy
Real-Time Wireless Networks
Tao Gong1

University of Connecticut, Storrs, USA

Tianyu Zhang
University of Notre Dame, USA
Qingdao University, China

Xiaobo Sharon Hu
University of Notre Dame, USA

Qingxu Deng
Northeastern University, Shenyang, China

Michael Lemmon
University of Notre Dame, USA

Song Han
University of Connecticut, Storrs, USA

Abstract
Along with the rapid development and deployment of real-time wireless network (RTWN) technologies
in a wide range of applications, effective packet scheduling algorithms have been playing a critical
role in RTWNs for achieving desired Quality of Service (QoS) for real-time sensing and control,
especially in the presence of unexpected disturbances. Most existing solutions in the literature focus
either on static or dynamic schedule construction to meet the desired QoS requirements, but have
a common assumption that all wireless links are reliable. Although this assumption simplifies the
algorithm design and analysis, it is not realistic in real-life settings. To address this drawback, this
paper introduces a novel reliable dynamic packet scheduling framework, called RD-PaS. RD-PaS
can not only construct static schedules to meet both the timing and reliability requirements of
end-to-end packet transmissions in RTWNs for a given periodic network traffic pattern, but also
construct new schedules rapidly to handle abruptly increased network traffic induced by unexpected
disturbances while minimizing the impact on existing network flows. The functional correctness of
the RD-PaS framework has been validated through its implementation and deployment on a real-life
RTWN testbed. Extensive simulation-based experiments have also been performed to evaluate the
effectiveness of RD-PaS, especially in large-scale network settings.

2012 ACM Subject Classification Networks → Network resources allocation; Networks → Network
dynamics; Networks → Network reliability

Keywords and phrases Real-time wireless networks, lossy links, dynamic packet scheduling, reliability

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.11

1 Introduction

In recent years, real-time wireless networks (RTWNs) have been making their way into
a wide range of industrial applications [1, 5, 14, 19]. These applications commonly have
stringent timing and reliability requirements to ensure timely data collection and control
decision delivery. Thus packet scheduling in RTWNs plays an important role for achieving
the desired Quality of Service (QoS) in such applications. QoS here is often measured by

1 The first two authors have equal contribution to this work.

© Tao Gong, Tianyu Zhang, Xiaobo Sharon Hu, Qingxu Deng, Michael Lemmon, and Song Han;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

how well the network delivers the packets by their deadlines. Although packet scheduling in
RTWNs has been studied for a long time, how to handle abruptly increased network traffic
in the presence of unexpected disturbances (i.e., events causing more frequent sensing of the
environment and processing of sensed data) remains a challenge. This challenge is further
exacerbated by the lossy wireless links in typical industrial environments [7].

Most RTWNs adopt Time Division Multiple Access (TDMA) based data link layers to
achieve deterministic real-time communication. Sensing and control tasks are abstracted
as end-to-end (e2e) flows with specified timing and reliability requirements. Most earlier
packet scheduling algorithm designs in RTWNs focus on schedulability analysis and employ
centralized and static (or infrequently updated) management frameworks (e.g., [17, 18, 16, 8,
22]). Those solutions may fit well for small-scale static RTWNs. They however often lead
to significantly degraded QoS when the system becomes large and/or when deployed for
monitoring and controlling complex physical processes where disturbances are present.

To model and respond to disturbances in RTWNs, many dynamic scheduling approaches
have been proposed. Both [4] and [27] support admission control in response to adding/re-
moving tasks for handling disturbances in the network. They however do not consider
scenarios when not all tasks can meet their deadlines. The protocol in [12] proposes to
allocate reserved slots for occasionally occurring emergencies (i.e., disturbances), and allow
regular tasks to steal slots from the emergency schedule when no emergency exists. However,
how to satisfy the deadlines of regular tasks in the presence of emergencies is not considered.
[21] proposes a MAC protocol with a centralized reschedule scheme allowing on-line changes
of active streams and network topology. However, the scheduler and the data format of the
schedule distribution are not specified in [21].

Another thread of research significantly advances the state of the art by providing dynamic
packet scheduling functions in RTWNs. Among these approaches, OLS in [9] relies on a
centralized gateway to construct and disseminate a dynamic schedule to all the nodes in
the network; D2-PaS in [23] offloads the schedule construction to individual nodes and only
disseminates minimum information for the nodes to construct a dynamic schedule locally; and
FD-PaS in [26] further eliminates the need of a centralized gateway by notifies and handles
the disturbances in a local and distributed manner. They, however, all assume perfect wireless
network links, which is not realistic especially in noisy and harsh industrial environments.
To our best knowledge, none of the existing dynamic packet scheduling algorithms consider
packet losses and thus can lead to poor QoS for real-life deployment.

On the other hand, a rich set of methods have been designed for RTWNs to improve the
reliability of wireless packet transmission over lossy links. For instance, most RTWN solutions
(e.g., WirelessHART [20], ISA 100.11a [10], and 6TiSCH [6]) employ multiple channels and
some frequency hopping mechanisms to minimize potential interference. Further, [8] proposed
a set of reliable graph routing algorithms in WirelessHART networks to explore path diversity
to improve reliability. These works are complementary to the approach to be introduced in
this paper since we focus on single channel with pre-defined routing. [3] proposed an algorithm
to allocate a necessary number of retransmision links for individual nodes to guarantee a
desired success ratio of packet delivery in a star network topology. [2] extended the network
model in [3] to allow multi-hop flows and proposed both Link-Centric and Flow-Centric
scheduling policies. However, the policies in [3, 2] tend to assign more retransmission slots
than necessary, and thus require higher network bandwidth. Our approach in this work
results in an optimal retransmission slot assignment. Furthermore, all aforementioned studies
only focus on packet scheduling in static RTWN settings over lossy links, and cannot be easily
extended to handle abruptly increased network traffic caused by unexpected disturbances. In

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:3

a recently submitted work [25], we addressed disturbance handling in lossy RTWNs. However,
the schedule used in the static setting is generated by directly applying the retransmission
mechanism in [2] which can lead to higher network bandwidth usage than necessary. Further,
[25] is based on the distributed framework FD-PaS to handle disturbances which can cause
high QoS degradation on other uncritical tasks according to the results in [26].

In this work, we introduce a reliable dynamic packet scheduling framework, called RD-PaS,
for meeting both timing and reliability requirements in packet scheduling in the presence of
disturbances. When no disturbance occurs (i.e., in the static scenario), RD-PaS determines
the minimum number of retransmission slots needed for each task to guarantee reliable
e2e packet delivery, and construct a communication schedule locally in a hybrid manner at
individual nodes. The hybrid approach needs a centralized controller and a local schedule
generator to keep a good tradeoff between bandwidth usage and QoS. When a disturbance
occurs, RD-PaS generates a dynamic schedule to guarantee desired reliability of critical
task(s) while judiciously degrade the reliability of packet transmissions for other tasks. We
formulate a reliable dynamic scheduling problem to minimize such degradation, prove that
this problem is NP-hard, and present an effective heuristic to solve it. The functional
correctness of the RD-PaS framework has been validated through its implementation and
deployment on a real-life RTWN testbed. Extensive simulation-based experiments have also
been performed to evaluate the effectiveness of RD-PaS, especially in large-scale network
settings. Our results show that RD-PaS can reduce e2e packet deliver ratio degradation in
dynamic schedule by 58% on average compared to the D2-PaS approach.

The remainder of this paper is organized as follows. Section 2 describes the system model
and problem definition, and gives an overview of the RD-PaS framework. Section 3 presents
the details of RD-PaS for the Transmission-based Scheduling (TBS) model, including both
static schedule construction and dynamic schedule adjustment in the presence of disturbances.
These efforts are further extended to the Packet-based Scheduling (PBS) model in Section 4.
In Section 5, we present the implementation and functional validation of RD-PaS on a real-life
RTWN testbed. Performance evaluation from extensive simulation-based experiments is
reported in Section 6. Finally, we conclude the paper and discuss future work in Section 7.

2 Preliminaries

In this section, we first discuss the system model and then give an overview of the proposed
RD-PaS framework.

2.1 System Model and Problem Definition
The system architecture of an RTWN studied in this work is modeled after RTWNs often
found in industrial process control applications. Such an RTWN consists of multiple sensor
and actuator nodes wirelessly connected to a single controller node either directly or through
relay nodes. The network is described by a directed graph G = (V,E), where the node set
V = {V0, V1, . . . , Vc}. Vc is the controller node and the rest are referred to as the device
nodes. A direct link e = (Vi, Vj) ∈ E represents a wireless link from node Vi to Vj with a
Packet Delivery Ratio (PDR), λLe , which represents the probabilistic transmission success
rate on link e2. Vc connects to all the nodes via some routes and is responsible for executing

2 Link PDR λL
e is usually measured during the site survey and is stable during normal network operations.

In case the value of λL
e changes significantly, the new value is assumed to be broadcast to all the nodes

in the network.

ECRTS 2019

11:4 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Controller Vc

Sensor V0

Sensor V3

Sensor V5

Actuator V1

Actuator V4 Sensor/Actuator V2

χ0,j (0)

χ0,j(1)

χ0,j(2
)

χ1,j(0)
χ1,j (1)

χ1,j(2)
χ1,j(3)

χ2,j(0) χ2,j(1
)

χ3,j (0)

χ3,j(1
)

χ5,j(0)

χ5,j(0
)

χ5,j (0)

χ5,j (1)

χ5,j(1)

χ5,j(2)

Routing Paths
τ0 τ1 τ2 τ3 τ5

V3→

V0→

Vc→
V1

V5→

V2→
Vc→
V0→

V4

V0→
Vc→

V1

V2→

Vc→

V1

Vc→

V0,V1,V2|

V0→

V3,V4|

V2→

V5

Figure 1 An example RTWN with 5 tasks running on 7 nodes. The sensor and actuator nodes
are taken from a crude processing plant.

relevant control algorithms. Vc also contains a network manager which conducts network
configuration and resource allocation. In this work, we focus on RTWNs with only one
controller node. Networks with multiple controller nodes are left for future work.

We assume that the system executes a fixed set of control tasks T = {τ0, τ1, . . . τn} where
τi (0 ≤ i < n) is a unicast task and τn is a broadcast task. Each task τi is associated with a
period Pi and deadline Di, and follows a designated single routing path with Hi hops. We
use −→L i = [Li[0], Li[1], . . . , Li[Hi − 1]] to represent the routing path of task τi. For a unicast
task, Li[h] ∈ E (0 ≤ h < Hi). Each unicast task periodically generates a packet originated
at a sensor node, passing through the controller node and delivering a control message to the
designated actuator node. For the broadcast task τn, each hop involves multiple links, thus
Ln[h] = (Ln[h](0), Ln[h](1), . . .), where Ln[h](i) ∈ E. The broadcast task runs periodically
in Vc and only generates packets when necessary. These packets are broadcast to each node
directly or though some intermediate nodes by the designed broadcast path Ln. The j-th
released instance of τi is referred to as packet χi,j , with its release time, deadline, and finish
time denoted as ri,j , di,j and fi,j , respectively. We denote the transmission of packet χi,j at
the h-th hop as transmission χi,j(h), (0 ≤ h < Hi).

Fig. 1 shows an example RTWN running 4 unicast tasks (τ0, τ1, τ2 and τ3) and 1 broadcast
task (τ5) on 7 nodes (V0, V1, . . . , V5 and Vc) where V0, V3, V5 are the sensor nodes, V1, V4 are
the actuator nodes, and V2 is a combined sensor and actuator node. The routing paths of
individual tasks are summarized on the right side of Fig. 1.

In applications such as crude oil refining, a disturbance, e.g., a sudden change in temper-
ature, may occur unexpectedly. When a disturbance occurs, the system usually requires the
sensor nodes located within the range of the disturbance to monitor the environment more
closely, and thus one or multiple tasks may demand more network bandwidth during the
disturbance. To capture such abrupt increase in network resource demand upon the detection
of a disturbance, we adopt the rhythmic task model [11] in this work3. In the rhythmic model,
each task has two states: nominal state and rhythmic state. In the nominal state, τi releases
packets following the nominal period Pi and each packet has a relative deadline Di ≤ Pi.
In the rhythmic state, the period and relative deadline of τi adopt a series of new values
specified by pre-designed vectors −→P i and

−→
D i. Once τi returns to nominal state, it starts to

use Pi and Di again. When a disturbance occurs and the corresponding tasks (denoted as
TRhy) enter their rhythmic states, we say the system switches to the rhythmic mode. The
system returns to the nominal mode after the disturbance has been completely handled, i.e.

3 RD-PaS is not limited to the rhythmic task model and can be applied to any task models capturing
unexpected network resource demand changes.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:5

all the corresponding tasks return to their nominal states. In Fig. 1, when the disturbance
(in the yellow region) occurs, τ0 and τ2 (installed on nodes V3 and V0, respectively) will enter
their rhythmic states and the system switches to the rhythmic mode. In the following, we
first assume that at any time during the system operation, at most one disturbance can
occur and needs to be detected and handled. We will then generalize the system model to
discuss concurrent disturbances at the end of Section 3.2.

Following the industrial practice for RTWNs, we consider a synchronized network adopting
a time-slotted schedule. The length of a time slot is typically 10ms. Within each time slot,
at most one packet can be transmitted over the air from a sender to a receiver. The
acknowledgement (ACK) is then sent back from the receiver to the sender in the same slot
to notify the successful reception.

Traditional RTWNs employ Link-based Scheduling (LBS) to allocate time slots. In
LBS, each time slot is allocated to a link by specifying the sender and receiver. If packets
from different tasks share a common link and are both buffered at the same sender, their
transmission order is decided by a node-specified policy (e.g., FIFO). This approach introduces
uncertainty in packet scheduling and may violate the e2e timing constraints on packet delivery.
To tackle this problem, Transmission-based Scheduling (TBS) and Packet-based Scheduling
(PBS) are proposed in [23] and [2], respectively, to construct deterministic schedules. Each
of the two scheduling models has its own advantages and disadvantages and is preferred in
different usage scenarios as discussed in [2]. Hence, we consider both models in our RD-PaS
framework. Furthermore we focus on single-channel RTWNs in this work since it forms the
basis for more advanced studies. Multichannel networks are left for future work.

In the TBS model, each time slot is allocated to the transmission of a specfic packet
χi,j at a particular hop h or kept idle. Once the network schedule is constructed, packet
transmission in each time slot is unique and fixed. In the PBS model, each time slot is
allocated to a specific packet χi,j or kept idle. Within each time slot assigned to χi,j , every
node along χi,j ’s routing path decides the action to take (e.g., transmit, receive or idle),
depending on whether the node has received χi,j or not. Table 1 gives a time slot allocation
example for task τ2 in Fig. 1. In TBS model, each time slot is allocated to a dedicated hop.
In PBS model, slot 1 can be used to transmit both hops depending on whether the first
transmission succeeds in slot 0.

Table 1 An example of time slot allocation in TBS model and PBS model.

Slot 0 Slot 1 Slot 2
TBS model V0 → Vc V0 → Vc Vc → V1

PBS model V0 → Vc
V0 → Vc

Vc → V1
Vc → V1

Since each link e in the network may suffer packet losses, i.e., λLe < 1, packet transmissions
may fail, which can significantly affect the timely delivery of real-time packets. To handle
such cases, a retransmission mechanism is commonly employed in RTWNs [20, 6]. Specifically,
if a sender node does not receive the ACK from the receiver node of a packet, it automatically
retransmits the packet in the next possible time slot.

To quantify the reliability requirement of the e2e packet delivery for each task, a required
e2e PDR for τi, denoted as λRi , is introduced. For example, a control application can tolerate
0.01% packet loss, so λRi is 99.99%. Based on λRi , the transmission of any packet of τi
is reliable if and only if the achieved e2e PDR of τi is larger than or equal to λRi , i.e.,
λi,j ≥ λRi . To simplify presentation, we assume that all tasks in the network share a common

ECRTS 2019

11:6 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Table 2 Table of Important Symbols and Notations.

V0, V1, . . . Device nodes: sensor, actuator or relay node
Vc Controller node
T , τi Task set and task i
Hi, Pi, Di Number of hops, period and deadline of τi
Li[h] The h-th link on the routing path of τi (0 ≤ h < Hi)
χi,j The j-th released packet of τi
ri,j , di,j , fi,j Absolute release time, deadline, finish time of χi,j
Wi,j Total number of slots assigned for χi,j
λR Required e2e packet delivery ratio (for all tasks)
λLLi[h] Measured link packet delivery ratio of link Li[h]
λi,j ,

−→
R i,j E2e PDR value and retry vector of χi,j

Ri,j [h] Number of trials for h-th hop assigned by −→R i,j

λ∗i (·) Optimal PDR of τi as a function of number of assigned slots
−→
R ∗i (·) Optimal retry vector of τi as a function of numer of assigned slots
w+
i The smallest w achieving λ∗i (w) ≥ λR

[tsp, tep) Time duration of system rhythmic mode (dynamic schedule)
δi,j PDR degradation of χi,j
Γ Active packet set containing all packets to be scheduled in the system rhythmic mode
ρ Updated packet set

required e2e PDR value, denoted as λR. However, our proposed approach can be easily
extended to support different λR’s for different tasks. Table 2 summarizes the frequently
used symbols in this paper.

Based on the above system model, the two key problems that we aim to solve in this work
are as follows. P1: In the system nominal mode, construct a schedule such that both the e2e
timing and reliability requirements of all tasks can be satisfied; P2: When disturbances occur
and are detected, adjust the schedule in a dynamic and hybrid manner to still guarantee
the reliable and timely transmissions of the rhythmic packets while achieving the minimum
reliability degradation on other packets. More formally, we have the following.

P1: Given RTWN G = (V,E) where each link e ∈ E has an associated PDR, and task set
T in which each task τi has a single routing path −→L i, determine the nominal-mode schedule
under which the following constraints are satisfied.

I Constraint 1. ∀i, j, λi,j ≥ λR. (e2e reliability requirements for all tasks)

I Constraint 2. ∀i, j, fi,j ≤ di,j . (e2e timing requirements for all tasks)

P2∗: Given the packet set, Γ, in the rhythmic mode under consideration, the PDR function
of each task τi, and other network related constraints, determine the rhythmic-mode schedule
such that

∑
χi,j∈Γ max{0, λR − λi,j} is minimized, with the following constraints being

satisfied.

I Constraint 3. ∀τi ∈ TRhy, λi,j ≥ λR. (e2e reliability requirements for rhythmic tasks)

I Constraint 4. ∀τi ∈ TRhy, fi,j ≤ di,j . (e2e timing requirements for rhythmic tasks)

Here we use P2∗ instead of P2 as we have not discussed the network constraints. They will
be elaborated in Section 3 and 4 where formal definitions of P2 will be given.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:7

teptsp

Some packets are not reliable, but
QoS degradation is minimized

System rhythmic mode
Rhythmic state

System nominal mode

Network starts

All packets are reliable

Power on

Compute λ∗
i (w),

−→
R ∗

i (w), w+
i

Initialization

Disturbance detected
Broadcast (Rhythmic tasks info + schedule update)

System nominal mode

All packets are reliable

Figure 2 Overview of the execution model of RD-PaS in both nominal and rhythmic modes.
Short upward arrows represent the releases of the rhythmic packets.

2.2 Overview of the RD-PaS Framework

We propose a reliable dynamic packet scheduling framework, referred to as RD-PaS, to
address the questions raised above. An overview of the execution model of RD-PaS is shown
in Fig. 2. Below we focus on a high-level discussion while leave the detailed explanation of
the symbols in Section 3.

In the network initialization phase, each device node stores necessary specification
information of all tasks (i.e., Hi, Di, Pi and λR) locally after receiving it from the network
manager through broadcast packets. Each device node then calculates the number of time
slots to be allocated to each task (for both transmission and retransmission) in order to
achieve the required e2e PDR value λR.

After the network starts, each device node generates a static schedule locally, following
which all tasks can meet their timing and reliability requirements. By locally generating a
static schedule, no unnecessary bandwidth is wasted on transmitting the schedule from the
gateway. When a disturbance occurs, several sensor nodes within the range may detect it
and send a report to the controller node via the corresponding tasks. After the controller
node receives the disturbance information from any of the sensor nodes, Vc first determines
a time duration, denoted as [tsp, tep), during which the system runs in the rhythmic mode
using a temporary dynamic schedule. As RD-PaS and D2-PaS in [23] both require each node
to generate schedule locally, RD-PaS adopts the same end point selection method in D2-PaS
to determine the system rhythmic mode duration [tsp, tep). Vc, then, checks whether all tasks
can still be reliably delivered after the rhythmic tasks entering their rhythmic states. If so, Vc
only broadcasts the rhythmic tasks information (task IDs and the corresponding −→P i and

−→
D i)

to the network. Otherwise, Vc needs to generate a dynamic schedule in which the number
of time slots assigned to certain periodic packets are updated in order to accommodate the
increased workload from the rhythmic tasks. Vc then piggybacks the information of the
updated packet set as well as the rhythmic tasks information to a broadcast packet and
disseminates it to all nodes in the network. After all the nodes receive the updates, the
system switches to the rhythmic mode to handle the disturbance.

In the rhythmic mode, individual device nodes generate their own dynamic schedules
locally and these local schedules collaboratively guarantee the timing and reliability require-
ments of the rhythmic packets while minimizing the total reliability degradation suffered by
other periodic tasks. After executing the dynamic schedules, all the device nodes return to
the nominal mode and re-employ the static schedule.

In the following, we first present the details of the RD-PaS framework for the TBS model
in Section 3. We then introduce required modifications to support the RD-PaS framework
for the PBS model in Section 4.

ECRTS 2019

11:8 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

3 Reliable Scheduling for TBS

This section focuses on reliable scheduling for the Transmission-based Scheduling (TBS)
model. We first describe how RD-PaS constructs a reliable static schedule in the system
nominal mode. We then introduce how RD-PaS handles disturbances in the rhythmic mode.

3.1 Reliable Static Scheduling
An RTWN starts at running in the nominal mode in which all tasks need to 1) be reliably
scheduled to achieve the required e2e PDRs; and 2) meet the e2e timing constraints for all
the packet transmissions. That is, we need to solve P1 defined in Section 2.1. In the TBS
model, each specific time slot is assigned to an individual packet transmission. Considering
the lossy nature of wireless links, when a transmission is not successful, retransmissions
are needed, which require extra time slots. To reduce the demand on network resources,
we aim to minimize the number of extra slots for each task while satisfying the reliability
requirement (i.e. Constraint 1 in P1). On the other hand, we observe that Constraint 2 can
be handled separately from Constraint 1 since satisfying Constraint 2 can be treated as a
standard transmission scheduling problem once the number of extra time slots is determined
for each task. Thus, we intend to first tackle the following sub-problem.

P1.1: Given RTWN G = (V,E) where each link e ∈ E has an associated PDR, and task set
T in which each task τi has a single routing path −→L i, determine the minimum number of
extra slots needed by each task τi for satisfying Constraint 1.

To solve P1.1, we propose to first determine whether a given number of extra time slots
for each task can satisfy Constraint 1 and then search for the optimal number of extra time
slots for every task. We will prove later that this approach indeed leads to an exact solution
for P1.1. We discuss our approach in detail below.

Let −→R i,j = [Ri,j [0], Ri,j [1], . . . , Ri,j [Hi − 1]] be the retry vector of packet χi,j , where
Ri,j [h] denotes the number of time slots assigned to hop h of χi,j . We use Wi,j to denote
the total number of time slots assigned to χi,j , i.e., Wi,j =

∑Hi−1
h=0 Ri,j [h]. Given the PDRs

of all the links along the routing path of τi and the retry vector of χi,j , the e2e PDR of χi,j ,
λi,j , can be derived as:

λi,j =
Hi−1∏
h=0

1− (1− λLLi[h])Ri,j [h]. (1)

According to Constraints 1 and 2 in P1, all the packets released by τi must meet the same
timing and reliability requirements in the system nominal mode. Thus, in the following
discussion, we only consider parameter settings (including both the assigned number of slots
and the retry vector) for each individual task τi instead of each packet χi,j . For a given
number of slots, say w, assigned to τi, the number of possible slot allocations, i.e. retry
vectors, equals to

(
w−1
Hi−1

)
. We further introduce the following definitions.

I Definition 1. Optimal Retry Vector −→R ∗i (w): An optimal retry vector of task τi for a given
number of slots w is the retry vector that leads to the largest PDR value for the given w,
denoted as λ∗i (w), among all the possible allocations.

I Definition 2. Optimal Retry Vector Function −→R ∗i (·): The optimal retry vector function of
task τi is the set of pairs (w,−→R ∗i (w)) such that each −→R ∗i (w) is the optimal retry vector for
the given number of slots w.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:9

Algorithm 1 PDR Table Computation under TBS for Task τi.
Input: G = (V,E), τi, λR

Output: PDR table of τi and w+
i

1: w ← Hi;
2:
−→
R ∗

i (w)← [1, 1, 1, . . .];
3: λ∗

i (w)←
∏Hi−1

h=0 λL
Li[h];

4: while λ∗
i (w) < λR do

5: w ← w + 1;
6: Select the hop index h which yields the maximum PDR value (computed by Eq. (1));
7: Update −→R ∗

i (w) and λ∗
i (w) in PDR table;

8: end while
9: w+

i ← w

I Definition 3. Optimal PDR Function λ∗i (·): The optimal PDR function of task τi is the
set of pairs (w, λ∗i (w)) such that each PDR value λ∗i (w) corresponds to the optimal retry
vector with the given number of slots w.

As the first step towards satisfying Constraint 1, we present our solution to calculate the
optimal retry vector function −→R ∗i (·) and the optimal PDR function λ∗i (·) for each task τi. As
both functions are only related to task τi itself, the computation for each task is independent.
For the sake of clarity, we create a PDR table for each task τi to store both −→R ∗i (·) and λ∗i (·)
for all (needed) values of w in each node, such overhead in our implementation is given in
Sec. 5. (An example PDR table can be found in Table 4 in Section 5.) Below, we describe
our optimal PDR table generation algorithm, Alg. 1, and prove its optimality.

Alg. 1 iteratively constructs the PDR table. At each iteration, we add one time slot to τi
at the h-th hop that yields the maximum PDR value λ∗i and store the resulting retry vector
−→
R ∗i into the PDR table (Lines 5-7). The retry vector is initially set to [1, 1, 1, . . .] and the
corresponding PDR value equals to

∏Hi−1
h=0 λLLi[h] (Lines 1-3). Since the required PDR value

is λR, the iterative process stops when λ∗i (w) ≥ λR. We use w+
i to denote the minimum

number of slots that guarantees the reliable delivery of τi.
Lemma 4 and Theorem 5 below affirm that Alg. 1 indeed results in the optimal retry

vector function −→R ∗i (·) and optimal PDR function λ∗i (·).

I Lemma 4. Let G(R∗(w)[h], λLL[h]) = λ∗(w+1)
λ∗(w) be a function of R∗(w)[h] and λLL[h]. When

λLL[h] is set to an arbitrary value λ0, Gλ0 = G(R∗(w)[h], λ0) is a monotonically decreasing
function of R∗(w)[h].

Proof of Lemma 4. If we update −→R ∗(w) by allocating one slot at an arbitrary hop h-th,
according to Eq. (1), we only need to update λ∗(w) by replacing the term 1−(1−λLL[h])R

∗(w)[h]

by 1− (1− λLL[h])R
∗(w)[h]+1 to get λ∗(w + 1). That is,

G(R∗(w)[h], λLL[h]) = λ∗(w + 1)
λ∗(w) =

1− (1− λLL[h])R
∗(w)[h]+1

1− (1− λLL[h])R
∗(w)[h]

Thus, if λLL[h] is fixed to λ0, we have:

G′λ0
= ∂G(R∗(w)[h], λ0)

∂R∗(w)[h] = λ0 · (1− λ0)R∗(w)[h] log(1− λ0)(
(1− λ0)R∗(w)[h] − 1

)2
Since 0 < λLL[h] < 1 and (1 − λLL[h])R

∗(w)[h] > 0, we have G′λ0
< 0. Further, Gλ0 decreases

monotonically as R∗(w)[h] increases. J

ECRTS 2019

11:10 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

I Theorem 5. For any given number of time slots w, no other retry vector can yield a larger
PDR value than −→R ∗i (w) as computed by Alg. 1.

Proof of Theorem 5. We prove the theorem by mathematical induction, i.e., for any w =
H,H + 1, . . . , w+, the retry vector −→R ∗(w) determined by Alg. 1 can achieve the largest PDR
value λ∗(w). (Here we omit the task index i since only one task is considered).
Base case: When w = H, the statement holds as only one possible retry vector exists, i.e.,−→

R ∗(H) = [1, 1, . . . , 1].
Inductive step: Suppose the PDR value of −→R ∗(w) is largest among that of all possible retry

vectors when w = k, we should prove that the PDR value of −→R ∗(k + 1) obtained by
Alg. 1, i.e. λ∗(k + 1) is also the largest. We prove this by contradiction.
Suppose there exists another retry vector (denoted as −→R o(k+1)) leads a larger PDR value,
i.e., λ∗(k + 1) < λo(k + 1). Since the total number of slots assigned to the task (i.e., the
sum of all elements in the retry vectors) both equal to k + 1 and −→R ∗(k + 1) 6= −→R o(k + 1),
we can always find one hop at which the number of assigned slots in −→R o(k + 1) is larger
than that in −→R ∗(k + 1). We use q to denote this hop index and Ro(k)[q] to denote the
number of slots assigned at the q-th hop in −→R o(k). Then, Ro(k + 1)[q] > R∗(k + 1)[q].
Suppose −→R ∗(k + 1) is achieved by adding one slot at the p-th hop in −→R ∗(k).
Case 1: p = q. In this case, −→R ∗(k + 1) and −→R o(k + 1) are both achieved by adding one

slot at the p-th hop in −→R ∗(k) and −→R o(k), respectively. Then, according to Lemma 4,
λ∗(k + 1) and λo(k + 1) can be rewritten with G(R∗(w)[h], λLL[h]) function as follows:

λ∗(k + 1) = λ∗(k) · G(R∗(k)[p], λLL[p]), λo(k + 1) = λo(k) · G(Ro(k)[p], λLL[p]).

According to the assumption that the PDR value of −→R ∗(k) is largest, we have λ∗(k) ≥
λo(k). Since R∗(k)[p] < Ro(k)[p], according to Lemma 4, we have G(R∗(k)[p], λLL[p]) >
G(Ro(k)[p], λLL[p]). Then, λ∗(k + 1) > λo(k + 1). This contradicts our assumption.

Case 2: p 6= q. λ∗(k + 1) and λo(k + 1) can be rewritten as:

λ∗(k + 1) = λ∗(k) · G(R∗(k)[p], λLL[p]), λo(k + 1) = λo(k) · G(Ro(k)[q], λLL[q]).

As λ∗(k + 1) < λo(k + 1) and λ∗(k) ≥ λo(k), it must holds that

G(R∗(k)[p], λLL[p]) < G(Ro(k)[q], λLL[q]). (2)

Since R∗(k)[q] < Ro(k)[q] according to the assumption, the following inequality holds:

G(R∗(k)[q], λLL[q]) > G(Ro(k)[q], λLL[q]). (3)

Combining Eq. (2) and Eq. (3), we have G(R∗(k)[p], λLL[p]) < G(R∗(k)[q], λLL[q]) .
Further,

λ∗(k) · G(R∗(k)[p], λLL[p]) < λ∗(k) · G(R∗(k)[q], λLL[q]).

This means that if we allocate one slot at the q-th hop in −→R ∗(k) instead of at the p-th
hop, we can have a larger PDR value. This contradicts with Alg. 1 which allocats one
slot at the hop which yields the largest PDR value at each iteration.

Since both cases lead to contradiction, the inductive step is proved. Thus, Theorem 5
holds for all values of w. J

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:11

Now with the functions −→R ∗i (·) and λ∗i (·) being determined, we have successfully solved
P1.1. To satisfy Constraint 2 in P1, we need to create a static schedule, i.e., specifying when
a packet uses a slot, to ensure real-time constraints are met. We introduce an observation
that helps map the reliable static schedule generation problem, i.e., P1, to a conventional
real-time scheduling problem.

I Observation 1. Given task set T to be reliably scheduled, if we set the number of slots
for τi to w+

i according to λ∗i (·)4, w+
i is then equivalent to the execution time of τi. Then,

each task τi ∈ T with Pi, Di and w+
i can be mapped to a task in a conventional real-time

task set with the same period, deadline and execution time. Thus, a feasible schedule for the
corresponding conventional real-time task set is also a feasible schedule under which all tasks
in T can be reliably delivered.

Given the schedule specifying the slot assignment for each task, each node can further
allocate specific slots to the transmission at each hop according to the retry vector function−→
R ∗i (·). Thus, given a task set to be reliably scheduled in an RTWN, the network can adopt
any conventional real-time scheduling algorithm to generate a static schedule that guarantees
to meet all the constraints in P1. Since we allow at most one transmission within each
timeslot, determining the nominal-mode schedule (i.e., P1) can be mapped to a uni-processor
scheduling problem. Here, we adopt Earliest-Deadline-First (EDF) [13] to generate optimal
schedule for tasks and assign time slots to transmissions according to retry vector, consistently
at each node.

Note that regarding the broadcast task, two more issues need to be considered. First, the
transmission of a broadcast packet at each hop involves one sender node but multiple receiver
nodes. Second, no acknowledgement is sent back from the receiver nodes in a broadcast slot.
The first issue mainly affects the number of slots assigned at each hop since multiple links
with different link PDRs are involved. To tackle this, we directly adopt the lowest link PDR
to determine the number of retries assigned at the hop. Due to the second issue, the sender
node does not have any knowledge about whether the current transmission succeeds. Thus,
we just let the sender node to keep transmitting at all the slots assigned to the current hop
to maximize the success probability.

3.2 Reliable Dynamic Scheduling
Our proposed solution for P1 ensures that both timing and reliability requirements are
met in the system nominal mode. However, upon the detection of any disturbance, the
corresponding tasks enter their rhythmic states and follow new release patterns and deadlines
as shown in Fig. 2. The static schedule may no longer be able to meet both requirements
especially for all the critical rhythmic packets. Therefore, a well-designed reliable dynamic
packet scheduling mechanism is needed to enable the system to be adaptive to any workload
change after the detection of a disturbance.

In our RD-PaS framework, the network generates the static schedule by assigning w+
i slots

to each task τi according to the retry vector function. When a disturbance is detected and
reported to the control node, the system follows the execution model outlined in Section 2.2

4 All the retry vectors for other w values stored in −→R∗
i (·) are used in the dynamic schedule generation,

which will be discussed in Section 3.2.

ECRTS 2019

11:12 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

to switch to the rhythmic mode. The main challenge here is to generate a temporary dynamic
schedule when tasks cannot be reliably delivered after the rhythmic tasks (in TRhy) enter
their rhythmic states. That is, problem P2∗ needs to be solved. The dynamic schedule must
be able to accommodate the increased rhythmic workload and minimizes the degradation on
both timing and reliability of other periodic tasks. Specifically, all the rhythmic packets must
meet their timing and reliability requirements. That is, Constraints 3 and 4 are satisfied.

To ensure this, we may have to sacrifice the reliability requirements, i.e. lowering the
e2e PDR values of some periodic packets, or even sacrifice their timing requirements, i.e.
dropping some periodic packets. That is, the number of slots assigned to each packet may
need to be updated. Since the PDR table for each task containing both the retry vector
function −→R ∗i (·) and PDR function λ∗i (·) is pre-calculated and stored at each node, Vc only
needs to piggyback on a broadcast packet the information of the updated total number of
slots (Wi,j) assigned to each periodic packet, and then each node can decode the updated
retry vector accordingly, once it receives this information.5

To formally define the dynamic schedule generation problem, we introduce some con-
cepts/notation. Let Γ denote the active packet set containing all the packets to be scheduled
within the rhythmic mode duration [tsp, tep). Since the payload size of a broadcast packet
is bounded, we set an upper bound on the number of periodic packets whose Wi,j can be
changed, and denote it as α. To capture the reliability degradation for periodic packet χi,j ,
let δi,j represent the difference between the required PDR λR and the updated PDR value
λi,j = λ∗i (Wi,j) in the dynamic schedule, i.e., δi,j = max{0, λR − λi,j}. Note that the timing
degradation of each packet can also be captured by δi,j where δi,j = λR if χi,j is dropped.
Now the dynamic schedule generation problem, which is defined formally below, becomes
finding Wi,j for each periodic packet in Γ to satisfy Constraint 3 and 4.

P2: Given the active packet set Γ, the PDR function λ∗i (·) of each task τi, the maximum
allowed number of updated packets α, determine the updated packet set ρ = {Wi,j |χi,j ∈ Γ}
such that i) the size of ρ is not larger than α, i.e., |ρ| ≤ α, and ii) the total reliability
degradation is minimized, i.e., ∀χi,j ∈ ρ,min

∑
δi,j .

The theorem below states that determining the updated packet set, i.e. solving P2, is
non-trivial.

I Theorem 6. The updated packet set generation problem P2, i.e., the dynamic schedule
generation problem, is NP-hard.

Proof of Theorem 6. We prove the theorem by reducing the 0-1 knapsack problem [15] to
a special case of the updated packet set generation problem.

The 0-1 knapsack problem is defined as follows: Given a set of n items numbered from 1
up to n, each with a weight wi and a value vi, along with a maximum weight capacity W .
Each item can either be included in the knapsack, denoted as xi = 1, or not which is denoted
by xi = 0. The 0-1 knapsack problem is to maximize the sum of the values of the items in
the knapsack, i.e. max

∑n
i=1 vixi, so that the sum of the weights is less than or equal to the

knapsack’s capacity W , i.e.
∑n
i=1 wixi ≤W and xi ∈ {0, 1}.

Given a knapsack problem, we construct a special case of the updated packet set generation
problem in polynomial time: Suppose the active packet set Γ = {χ1, χ2, ..., χn} such that
∀χi ∈ Γ, ri = 0, Di = W,Hi = wi. Each packet χi can either be scheduled, i.e. λi = vi or

5 In the system rhythmic mode, we adjust the assigned number of slots for each packet instead of each
task for more flexibility.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:13

Algorithm 2 Updated Packet Set Generation.
Input: Γ, α, λ∗

i (w)
Output: ρ
1: Schedule the rhythmic packets in Γ using w+

0 ;
//Suppose n is the number of periodic packets in Γ

2: if all periodic packets in Γ can be reliably scheduled then
3: No packet needs to be updated;
4: else
5: Find the first n − α schedulable periodic packets with the minimum w+

i using the packet-
dropping heuristic in [23];

6: if Such n− α periodic packets can be found then
7: if the α packets can be scheduled using Hi then
8: Assign extra slots to the α packets by Alg. 3;
9: else
10: Determine the dropped packet set (suppose m packets) using the dropping heuristic in

[23];
11: Assign extra slots to the α−m packets by Alg. 3;
12: end if
13: else
14: Drop all the periodic packets;
15: end if
16: end if

dropped, i.e. λi = 0. Let the required PDR value λR for all packets equals to max{vi}.
Then, the PDR degradation δi = λR − vi if χi is scheduled. Otherwise, δi = λR.

As minimizing the total PDR degradation for all packets equals to maximizing the
total PDR value, the updated packet set with the minimum total PDR degradation can be
determined if and only if a knapsack with the maximum value can be identified. J

Next we propose a heuristic to solve P2 and the high-level idea is as follows. Since
dropping any packet χi,j leads to a significant decrease in the PDR value of χi,j , i.e., δi,j = λR,
we always prefer to allocate at least the basic number of slots (i.e., Hi) to each packet. If
the network bandwidth is sufficient, we assign extra slots to periodic packets in a greedy
manner according to their PDR degradation. Alg. 2 summarizes the updated packet set
generation algorithm which uses the greedy extra slots assignment heuristic described in
Alg. 3. Specifically, at each iteration, Alg. 3 adds one slot to the packet resulting in the
minimum PDR degradation after an extra slot has been assigned. Using Alg. 2 and Alg. 3,
the updated packet set can be determined in O(α ·Wmax) time where Wmax is the maximum
w+
i among all the tasks.
Note that the proposed RD-PaS framework can be readily extended to handle concurrent

disturbances in RTWNs, following the similar way as elaborated in [24]. Specifically, we
need to handle two cases depending on the relative positions of any two consecutive disturb-
ances [24]. The first case is when both disturbances occur before an upcoming broadcast slot.
Then, Vc simply generates a dynamic schedule considering all rhythmic tasks triggered by the
two disturbances to handle them together. The second case is when a subsequent disturbance
arrives at Vc after the dynamic schedule information for handling the first disturbance has
been broadcast. In this case, Vc must update the dynamic schedule starting from the next
broadcast slot. The readers are referred to [24] for the details.

ECRTS 2019

11:14 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Algorithm 3 Extra Slots Assignment.
1: Sextra ← {Packets to be assigned extra slots};
2: while Sextra 6= ∅ do
3: Add one slot to the packet χs if doing so leads to the minimum PDR degradation;
4: if the system is schedulable then
5: if χs is already reliable then
6: Remove χs from Sextra;
7: end if
8: else
9: Reduce one slot from χs;
10: Remove χs from Sextra;
11: end if
12: end while

4 Reliable Scheduling for PBS

In this section, we discuss how to support the RD-PaS framework for the packet-based
scheduling (PBS) model. At the highest level, reliable scheduling for PBS has three main
differences from that for TBS. First, since each time slot is assigned to a specific packet
instead of a dedicated hop, retry vector −→R i,j and its function −→R ∗i (·) are no longer needed.
Second, the computation for PDR function λ∗i (·) is different because the time slot allocation
mechanism has changed. Third, the retransmission mechanism of the broadcast task for
TBS, i.e., keep transmitting using all assigned slots at each hop, does not work for PBS since
each slot allocation is not dedicated to a hop but a packet.

Since PDR function is a key parameter in checking reliability, we first describe how to
compute the PDR value for a task with a given number of slots in PBS. Let Pri(0, w) denote
the probability of a packet of τi staying in the source node within w slots; Pri(h,w) denote
the probability of a packet of τi being transmitted to the receiver of the h-th hop along
the routing path (1 ≤ h ≤ Hi), and have not been successfully forwarded, within w slots.
Pri(h,w) can be computed by:

Pri(h,w) =

1 h = 0, w = 0
λLLi[h−1]Pri(h− 1, w − 1) h 6= 0, w = h

(1− λLLi[h])Pri(h,w − 1) h = 0, w 6= 0
Pri(h,w − 1) + λLLi[h−1]Pri(h− 1, w − 1) h = Hi, w 6= h

(1− λLLi[h])Pri(h,w − 1) + λLLi[h−1]Pri(h− 1, w − 1) otherwise.

(4)

In Fig. 3, we use an example task with 2 hops (links a and b with PDR λLa and λLb ,
respectively) and 4 slots to describe the computation of Pri(h,w). As shown in the figure,
Pri(h,w) can be either reached by Pri(h− 1, w − 1), followed by a successful transmission
(λLLi[h−1]), or Pri(h,w−1), followed by a failed transmission (1−λLLi[h]), except for boundary
conditions. These boundary conditions include the following:

Case 1: When h = 0, w = 0, the source node generates a packet (Pri(0, 0) = 1).
Case 2: When h 6= 0, w = h, it is not possible for Pri(h,w) to be reached by Pri(h,w − 1)

(Pri(1, 1), Pri(2, 2) in the figure). Thus only Pri(h− 1, w − 1) is considered.
Case 3: When h = 0, w 6= 0, it is not possible for Pri(h,w) to be reached by Pri(h−1, w−1)

(Pri(0, 1), Pri(0, 2) in the figure). Thus only Pri(h,w − 1) is considered.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:15

Pri(0, 0)

Pri(0, 1)

Pri(0, 2)

Pri(1, 1)

Pri(1, 2)

Pri(1, 3)

Pri(2, 2)

Pri(2, 3)

Pri(2, 4)

Failure Success
1−

λ
L
a

1−
λ
L
a

1−
λ
L
b

1−
λ
L
b 1

1

λ L
a

λ L
a

λ L
b

λ L
b

λ L
a

λ L
b

· · · Slot 1

· · · Slot 2

· · · Slot 3

· · · Slot 4

Link a

Link b

Figure 3 PDR computation for a task with two hops under the PBS model.

Algorithm 4 PDR Table Computation under PBS for Task τi.
Input: G = (V,E), τi, λR

Output: The PDR function of τi and w+
i

1: w ← 0;
2: while λi(w) < λR or w < Hi do
3: w ← w + 1;
4: for h = 0 to Hi do
5: Compute Pri(h,w) following Eq.(4);
6: end for
7: if w >= Hi then
8: λ∗

i (w)← Pri(Hi, w);
9: end if
10: end while
11: w+

i ← w

Case 4: When h = Hi, w 6= h, Pri(h,w − 1) always reaches Pri(h,w) (Pri(2, 3), Pri(2, 4)
in the figure).

Different from TBS, which finds the optimal PDR values by using retry vectors for a
given w, the PDR values in PBS is solely determined by w, i.e., λ∗i (w) = Pri(Hi, w). Based
on Eq.(4), we propose a dynamic programming algorithm (Alg. 4) to compute Pri(h,w) and
finally λ∗i (w). In Alg. 4, the iteration starts from w = 1, and stops when λR is reached. In
each iteration, it computes all Pri(h,w) for 0 ≤ h ≤ Hi, and stores them to λ∗i (·) if w ≥ Hi.

After the PDR function is computed, we can apply the same method proposed in Section
2.2 and 3 to generate reliable static and dynamic schedule, respectively. More specifically, we
use Observation 1 with computed PDR function to generate a reliable static schedule, and
use Alg. 2 and Alg. 3 to determine the updated W in the rhythmic mode.

Now let us consider the broadcast task. Because the link layer multicast does not have
ACK and in PBS each slot is allocated to a packet instead of a hop, it is not possible for the
broadcast task to track its progress. Thus the broadcast task still needs to follow the TBS
model. That is, for the broadcast task, we adopt the lowest link PDR for each hop among
all the receivers, and use Alg. 1 to compute −→R ∗i (·) and λ∗i (·).

5 Testbed Implementation and Validation

To validate the functionality of the proposed RD-PaS framework in real-life RTWNs, we
implemented RD-PaS on a 7-node RTWN testbed (see Fig. 4) running the 6TiSCH protocol.

ECRTS 2019

11:16 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Vc

V0

V1 V2

V3 V4

V5

82
.5
%

89
.1%

86.0%

76.9% 90
.9%

87
.6%

Figure 4 Left: the RTWN testbed with 7 CC2538 evaluation boards; Right: the testing topology
with emulated link PDR values.

The testbed consists of seven CC2538 evaluation boards. One of these boards is configured
as the controller node, while the others are configured as device nodes. A 16-channel 802.15.4
sniffer and an 8-channel logic analyzer are used to capture and analyze the activities of each
device node. Our modified 6TiSCH stack utilizes 5KB more ROM and 2KB more RAM
space for implementing RD-PaS (in TBS and PBS). These are relatively small compared
to the original 6TiSCH stack which needs 69KB ROM and 6KB RAM. Due to the page
limit, the implementation details of the RD-PaS framework is omitted. Below, we focus on
discussing the functional validation of RD-PaS on the testbed.

The testing topology is shown on the right side of Fig. 4. To attain the link PDRs as
specified in the topology, we implemented a random packet dropper at the MAC layer of each
device node. Six tasks are installed in the testbed and the task specifications are summarized
in Table 3. The desired e2e PDR for all the tasks, λR, is set to 99%. τ0, τ1, τ2 and τ3 are
unicast tasks, τ5 is a broadcast task, and τ4 is a task that handles all network management
packets. Since we always allocate two shared slots at the beginning of τ4’s period, we set
D4 = 2. For simplicity, only τ0 enters the rhythmic state when a rhythmic event occurs.

5.1 Validation of reliable static scheduling
To validate the static schedule construction in RD-PaS, we run the specified task set on the
testing topology in the nominal mode under both TBS and PBS models. The PDR tables
computed by the testbed are exactly the same as those obtained from simulation. The PDR
table for task τ1 is given in Table 4 (while others are not shown due to the page limit). The
highlighted rows indicate the corresponding w+

i ’s for TBS (w+
i = 13) and PBS (w+

i = 7)
when λR is reached.

Table 3 Parameters of the task set deployed on the testbed.

Task Routing Path Pi(Di)
−→
P i = −→D i

τ0 V3 → V0 → Vc → V1 30 (30) [20, 20, 20, 20, 20, 20]
τ1 V5 → V2 → Vc → V0 → V4 45 (45) -
τ2 V0 → Vc → V1 40 (40) -
τ3 V2 → Vc → V1 60 (60) -
τ4 - 60 (2) -
τ5 Vc → (V0, V1, V2), V0 → (V3, V4), V2 → (V5) 120 (120) -

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:17

Table 4 PDR table for task τ1 in TBS and PBS models.

PDR Table in TBS Model PDR Table in PBS Model
w

λ∗
i (w) −→

R ∗
i (w) λ∗

i (w)
4 0.564963 1,1,1,1 0.564963
5 0.663832 1,1,2,1 0.864394
6 0.756769 1,2,2,1 0.964613
7 0.850608 2,2,2,1 0.991720 (λ∗

i (w+
i))

8 0.928013 2,2,2,2
9 0.952201 2,2,3,2
10 0.968572 2,3,3,2
11 0.981822 3,3,3,2
12 0.989274 3,3,3,3
13 0.993672 (λ∗

i (w+
i)) 3,3,4,3

Table 5 Reliable static schedule validation in TBS and PBS models on the testbed.

Task TBS Model PBS Model
−→
R ∗

i λ∗
i (w+

i) Measured PDR w+
i or −→R ∗

i λ∗
i (w+

i) Measured PDR
τ0 [4,3,3] 99.01% 99.21% 7 99.68% 99.22%
τ1 [3,3,4,3] 99.37% 99.61% 7 99.17% 99.65%
τ2 [3,3] 99.34% 99.41% 5 99.80% 99.34%
τ3 [3,3] 99.60% 99.71% 4 99.29% 99.65%
τ5 [4,4,3] 99.38% 100% [4,4,3] 99.38% 100%

We further test 5000 packets for each unicast and broadcast task under both models, and
compare the actual e2e PDR values collected from the testbed with the simulated values
from Alg. 1 and Alg. 4. These results are summarized in Table 5. τ4 is omitted in the table
since it is a task dedicated for network management packets. It can be concluded from the
table that the reliable static scheduling function in RD-PaS executes correctly as the actual
e2e PDRs are improved to the desired values (≥ 99%) in both models in the presence of
specified packet loss. The slight differences between the measured and predicted e2e PDR
values are expected due to the limited sample size.

5.2 Validation of reliable dynamic scheduling
To validate the functional correctness of reliable dynamic scheduling in RD-PaS on our
testbed, we let the network trigger rhythmic events, and use the logic analyzer to capture
the radio activities through a physical pin on each device node and plot the waveforms. We
configure the network to enter the rhythmic mode at slot 720. The hyperperiod of the task
set is 360 according to Table 3. (Rhythmic events can happen at any time. We chose this
integer multiple of the hyperperiod to simplify the waveform demo.) Fig. 5 illustrates a
sample waveform for 240 consecutive slots (slot 600-840) in the TBS model. (Both TBS
and PBS models are validated. We present the results in the TBS model here for ease of
explanation.) The network runs in the nominal mode for the first 120 time slots (Fig. 5b)
and then switches to the rhythmic mode in the next 120 slots (Fig. 5c). Seven waveforms
represent the radio activities, either transmitting, receiving, or listening, for all the 7 nodes,
as labeled on the left side of the figures. Each rising and falling edge in the Slot row (lower
part of the figures) mark the start of a new time slot. In the schedule row (lower part of the
figures), slot assignments are indicated using different colors.

From Fig. 5b, we observe that each task τi releases its packets according to Pi, and

ECRTS 2019

11:18 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Release (τ0/τ1/τ2/τ3/τ4/τ5) Transmission (τ0/τ1/τ2/τ3/τ5)Schedule (τ0/τ1/τ2/τ3/τ4/τ5)

(a) Legend.
Vc

V0

V1
V2

V3

V4

V5

Slot
Schedule

(b) Radio activities in slots 600 to 720 (nominal mode).

Vc

V0

V1
V2

V3

V4

V5

Slot
Schedule

(c) Radio activities in slots 720 to 840 (rhythmic mode). Task τ0 is in the rhythmic state and releases
packets following −→P 0 given in Table 3.

Figure 5 Slot information and radio activities in the reliable dynamic scheduling test case
captured by the logic analyzer.

w+
i number of slots are allocated to each packet before its deadline (shown in the schedule

row). In each scheduled slot, the sender attempts to transmit the packet and may succeed
(marked by the arrows). Although some attempts fail, all the packets are still delivered to
the destination node because of the right amount of retransmission slots as determined by
the reliable static scheduling function. In Fig. 5c, τ0 enters the rhythmic state, and its period
is reduced according to −→P 0 given in Table 3. Also as shown in the schedule row, the Wi,j

values for τ0 do not change, while those for τ1, τ2, τ3, τ5 are reduced to [9, 9, 9], [4, 5, 5], [4, 4],
[7], respectively. The −→R i,j vectors are also selected correctly by the updated Wi,j values in
the rhythmic mode, and all the packets from the rhythmic task (τ0) are successfully delivered
to the destination. The captured results match the results from the simulation, and this
validates the correctness of the reliable dynamic scheduling function in RD-PaS.

6 Simulation-based Performance Evaluation

In this section, we evaluate the performance of RD-PaS through extensive simulations and
compare RD-PaS with a state-of-the-art dynamic approach, D2-PaS.6 The first three sets
of simulations compare packet delivery ratio, network bandwidth usage and number of
extra slots produced by RD-PaS with those by D2-PaS. The last set of simulations studies

6 [26] shows that D2-PaS has a clear advantage in packet dropping performance compared to the fully
distributed scheduling framework FD-PaS, so we omit the comparison between RD-PaS and FD-PaS.
Also, since we have proved the optimality of our retransmission slots assignment in Sec. 3.1, we omit to
compare with the retransmission mechanism in [2] in the static setting.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:19

2
4

6
8

10

0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

H

Average λL

Pa
ck
et

D
el
iv
er
y
R
at
io

D2-PaS

Figure 6 PDR in D2-PaS framework.

2
4

6
8

0.5
0.6

0.7
0.8

0.9

0

0.2

0.4

H

Average λL

T
hr
ou

gh
pu

t
(P

PS
)

D2-PaS
RD-PaS-TBS

RD-PaS-PBS

Figure 7 Throughput comparison among
different scheduling frameworks.

2
4

6
8

0.5
0.6

0.7
0.8

0.9

0
20
40
60
80

H

Average λL

w
+ i

RD-PaS-TBS

RD-PaS-PBS

Figure 8 Comparison of w+
i in TBS and

PBS.

0.4
0.5

0.6
0.7

0.8
0.9

0.4
0.5

0.6
0.7

0.8

0

20

U∗
γ

Av
er
ag

e
PD

R
D
R

(%
)

eD2-PaS
RD-PaS-PBS

Figure 9 Comparison of the PDR degrad-
ation rate.

the behavior of the rhythmic mode. We evaluate the reliability degradation by comparing
RD-PaS with D2-PaS on handling disturbances in RTWNs.

6.1 Comparison of Packet Delivery Ratio

As RD-PaS utilizes retransmission slots to guarantee the required e2e PDR value for each task,
there is no doubt that the system reliability will be improved compared with a traditional
scheduling framework not considering reliablity. To quantify such improvements, we calculate
the e2e PDR resulted from applying D2-PaS in lossy links with randomly generated link
PDRs. Since the e2e PDR for each task is independent, we use different settings to randomly
generate tasks and compute the PDR value for each task. The number of hops for a task,
H, is drawn from the uniform distribution over {1, 2, ..., 10} and the PDR value of each link
on the routing path is randomly generated by controlling the average value of link PDR,
λL, following a uniform distribution in {0.5, 0.55, ..., 1}. As periods and deadlines do not
affect the packet delivery ratio, we only study PDR’s dependcy on H and λL. Fig. 6 shows
the e2e PDR of a task as a function of λL and H. Because RD-PaS can always guarantee
the required PDR value, its results are always at the ceiling (above 99%) of the figure and
are thus omitted. From Fig. 6, we can observe the large gap between RD-PaS and D2-PaS
(60.6% on average) in guaranteeing the e2e PDR of the task.

ECRTS 2019

11:20 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

6.2 Comparison of Network Bandwidth Usage
Allocating extra retransmission slots can significantly improve the reliability of packet delivery.
However, higher network bandwidth is required which may affect system schedulability. In
this set of experiments, we study the efficiency of using time slots to deliver packets, in
different scheduling frameworks, according to the performance metric throughput. Throughput
is defined as the number of packets delivered per slot (PPS) and is the ratio between the e2e
PDR value and the number of allocated slots assigned to the task, i.e. λ∗

i (w)
w . The parameter

settings of this set of experiments are the same as that in Section 6.1.
Fig. 7 summarizes throughputs for different scheduling frameworks with varied average

link PDR λL and the number of hops, H, for the generated task. From the results, we can
observe that D2-PaS has a higher throughput when H is small and when λL is close to
1. However when the link PDR drops and H increases, RD-PaS (in both TBS and PBS
models) gains better throughput. This is mainly due to the fact that using a time slot for
retransmission can gain more throughput than transmitting a new packet in these cases.
The simulation results also show that RD-PaS in the PBS model can always achieve a better
throughput than in the TBS model. The reason is that the PBS model can always achieve
same PDR with less number of slots, compared to the TBS model due to the PBS’s ability
in sharing slots among transmissions of a packet.

6.3 Comparison of Required Numbers of Slots
In this set of experiments, we make further evaluation on RD-PaS in TBS and PBS models.
As discussed in Section 4, the PBS model provides more flexibility on the retransmission slot
assignment, and a less number of slots, w+

i , is required to achieve the same λR as compared
to the TBS model. Fig. 8 gives the comparison on the required number of slots under different
settings of average λL and H, and the required end-to-end PDR value λR is set to 99%. As
can be observed, tasks in PBS model require less number of slots than in TBS model, when
H > 1. The required number of slots in the PBS model is 55.0% less on average compared
to that in TBS model. This is consistent with the observation that one packet requires less
number of slots to achieve the same λR in the PBS model.

6.4 Effectiveness in Handling Rhythmic Events
To evaluate the performance of RD-PaS in handling rhythmic events, we compare the
degradation rate (DR) between RD-PaS and D2-PaS. DR is defined as the ratio between the
sum of reliability degradation (i.e., δi,j) from all periodic packets and the total number of
generated periodic packets in the rhythmic mode. As D2-PaS does not consider unreliable
wireless links, we first extend D2-PaS to support reliable transmission, denoted as eD2-PaS.
Specifically, all packets in eD2-PaS are reliably transmitted using w+

i slots in the static
schedule. In the dynamic schedule, transmission and retransmission slots assigned for each
packet are not differentiated, i.e., each packet can either be reliably scheduled or dropped.

To better control the system workload, we vary the nominal utilization of the task set.
Specifically, we use a random periodic task set generated according to a target nominal
utilization U∗. The generation of each random task τi is controlled by the following parameter
settings: i) the number of hops Hi is drawn from the uniform distribution over {2, 3, ..., 16},
ii) the nominal period Pi is equal to deadline Di and follows a uniform distribution in
{50, 51, ...100}. As the simulation results in the last sub-section have shown, the PBS model
requires less total number of slots to achieve the same transmission reliability. Thus, here we
use the PBS model to generate the PDR function λ∗i (·) for each task τi.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:21

After a task set is generated, we randomly select two tasks to be the rhythmic tasks. To
better control the workload of the rhythmic event, we assume that all the rhythmic periods
(deadlines) are the same in −→P i(

−→
D i) and the number of elements in −→P i equals to 10. The

value of each element Pi,R is thus controlled by the rhythmic period ratio, γ = Pi,R

Pi
.

Fig. 9 shows the results of DR as a function of both the nominal task set utilization U∗
and the rhythmic period ratio γ. Each data point is the average value of 1, 000 trials. From
Fig. 9, we can observe that RD-PaS has a lower PDR degradation rate (58.4% on average)
over eD2-PaS. The main reason is that eD2-PaS either schedules or drops any packet χi,j ,
i.e. Wi,j ∈ {0, w+

i }. However, RD-PaS has more flexibility on tuning the number of slots
assigned to χi,j , i.e. Wi,j ∈ {0, Hi, . . . , w

+
i }.

7 Conclusion and Future Work

In this paper, we present RD-PaS, a reliable dynamic packet scheduling framework for
RTWNs. RD-PaS provides guaranteed reliability of packet delivery in RTWNs for both
transmission-based scheduling model and packet-based scheduling model in a hybrid manner.
In the presence of unexpected disturbances, RD-PaS makes dynamic schedule adjustment
judiciously to guarantee timely and reliable delivery of the critical rhythmic packets while
minimizes reliability degradation for noncritical packets. A provably optimal algorithm (for
the static case) as well as a heuristic (for the dynamic case) are introduced for realizing
RD-PaS. Extensive testbed and simulation based experiments are conducted to validate
the correctness and effectiveness of RD-PaS. Our experimental results show that RD-PaS
can significantly improve the QoS (in terms of reliability) compared with the state-of-the-
art approaches. As future work, we will extend RD-PaS to further support RTWNs with
multi-channel scheduling and multi-path routing capabilities, and evaluate its performance
in large-scale RTWN testbeds.

References

1 Johan Åkerberg, Mikael Gidlund, and Mats Björkman. Future research challenges in wireless
sensor and actuator networks targeting industrial automation. In 2011 9th IEEE International
Conference on Industrial Informatics, pages 410–415, July 2011. doi:10.1109/INDIN.2011.
6034912.

2 Ryan Brummet, Dolvara Gunatilaka, Dhruv Vyas, Octav Chipara, and Chenyang Lu. A
Flexible Retransmission Policy for Industrial Wireless Sensor Actuator Networks. In 2018
IEEE International Conference on Industrial Internet (ICII), pages 79–88, October 2018.
doi:10.1109/ICII.2018.00017.

3 Yu Chen, Hongwei Zhang, Nathan Fisher, Le Yi Wang, and George Yin. Probabilistic Per-
Packet Real-Time Guarantees for Wireless Networked Sensing and Control. IEEE Transactions
on Industrial Informatics, 14(5):2133–2145, May 2018. doi:10.1109/TII.2018.2795567.

4 Octav Chipara, Chengjie Wu, Chenyang Lu, and William Griswold. Interference-Aware Real-
Time Flow Scheduling for Wireless Sensor Networks. In 2011 23rd Euromicro Conference on
Real-Time Systems, pages 67–77, July 2011. doi:10.1109/ECRTS.2011.15.

5 Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey. IEEE
Transactions on Industrial Informatics, 10(4):2233–2243, November 2014. doi:10.1109/TII.
2014.2300753.

6 Diego Dujovne, Thomas Watteyne, Xavier Vilajosana, and Pascal Thubert. 6TiSCH: determin-
istic ip-enabled industrial internet (of things). IEEE Communications Magazine, 52(12):36–41,
December 2014. doi:10.1109/MCOM.2014.6979984.

ECRTS 2019

http://dx.doi.org/10.1109/INDIN.2011.6034912
http://dx.doi.org/10.1109/INDIN.2011.6034912
http://dx.doi.org/10.1109/ICII.2018.00017
http://dx.doi.org/10.1109/TII.2018.2795567
http://dx.doi.org/10.1109/ECRTS.2011.15
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/MCOM.2014.6979984

11:22 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

7 Vehbi C Gungor, Gerhard P Hancke, et al. Industrial Wireless Sensor Networks: Challenges,
Design Principles, and Technical Approaches. IEEE Transactions on Industrial Electronics,
56(10):4258–4265, October 2009. doi:10.1109/TIE.2009.2015754.

8 Song Han, Xiuming Zhu, Aloysius K Mok, Deji Chen, and Mark Nixon. Reliable and
Real-Time Communication in Industrial Wireless Mesh Networks. In 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 3–12, April 2011. doi:
10.1109/RTAS.2011.9.

9 Shengyan Hong, Xiaobo Sharon Hu, Tao Gong, and Song Han. On-Line Data Link Layer
Scheduling in Wireless Networked Control Systems. In 2015 27th Euromicro Conference on
Real-Time Systems, pages 57–66, July 2015. doi:10.1109/ECRTS.2015.13.

10 ISA Standard. Wireless systems for industrial automation: process control and related
applications. ISA-100.11 a-2009, 2009.

11 Junsung Kim, Karthik Lakshmanan, and Ragunathan Raj Rajkumar. Rhythmic Tasks: A
New Task Model with Continually Varying Periods for Cyber-Physical Systems. In 2012
IEEE/ACM Third International Conference on Cyber-Physical Systems, pages 55–64, April
2012. doi:10.1109/ICCPS.2012.14.

12 Bo Li, Lanshun Nie, Chengjie Wu, Humberto Gonzalez, and Chenyang Lu. Incorporating
Emergency Alarms in Reliable Wireless Process Control. In Proceedings of the ACM/IEEE
Sixth International Conference on Cyber-Physical Systems, ICCPS ’15, pages 218–227, New
York, NY, USA, 2015. ACM. doi:10.1145/2735960.2735983.

13 Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 1973.

14 Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara Gunatilaka,
Chengjie Wu, Lanshun Nie, and Yixin Chen. Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems. Proceedings of the IEEE, 104(5):1013–1024, May 2016.
doi:10.1109/JPROC.2015.2497161.

15 Silvano Martello, David Pisinger, and Paolo Toth. New trends in exact algorithms for the
0–1 knapsack problem. European Journal of Operational Research, 123(2):325–332, 2000.
doi:10.1016/S0377-2217(99)00260-X.

16 Abusayeed Saifullah, Dolvara Gunatilaka, Paras Tiwari, Mo Sha, Chenyang Lu, Bo Li,
Chengjie Wu, and Yixin Chen. Schedulability Analysis under Graph Routing in WirelessHART
Networks. In 2015 IEEE Real-Time Systems Symposium, pages 165–174, December 2015.
doi:10.1109/RTSS.2015.23.

17 Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Real-Time Scheduling for
WirelessHART Networks. In 2010 31st IEEE Real-Time Systems Symposium, pages 150–159,
November 2010. doi:10.1109/RTSS.2010.41.

18 Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-End Communication
Delay Analysis in Industrial Wireless Networks. IEEE Transactions on Computers, 64(5):1361–
1374, May 2015. doi:10.1109/TC.2014.2322609.

19 Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund. Industrial
Internet of Things: Challenges, Opportunities, and Directions. IEEE Transactions on Industrial
Informatics, 14(11):4724–4734, November 2018. doi:10.1109/TII.2018.2852491.

20 Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon, and Wally Pratt.
WirelessHART: Applying wireless technology in real-time industrial process control. In 2008
IEEE Real-Time and Embedded Technology and Applications Symposium, pages 377–386, April
2008. doi:10.1109/RTAS.2008.15.

21 Federico Terraneo, Paolo Polidori, Alberto Leva, and William Fornaciari. TDMH-MAC: Real-
time and multi-hop in the same wireless mac. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 277–287, December 2018. doi:10.1109/RTSS.2018.00044.

22 Haibo Zhang, Pablo Soldati, and Mikael Johansson. Performance Bounds and Latency-Optimal
Scheduling for Convergecast in WirelessHART Networks. IEEE Transactions on Wireless
Communications, 12(6):2688–2696, June 2013. doi:10.1109/TWC.2013.050313.120543.

http://dx.doi.org/10.1109/TIE.2009.2015754
http://dx.doi.org/10.1109/RTAS.2011.9
http://dx.doi.org/10.1109/RTAS.2011.9
http://dx.doi.org/10.1109/ECRTS.2015.13
http://dx.doi.org/10.1109/ICCPS.2012.14
http://dx.doi.org/10.1145/2735960.2735983
http://dx.doi.org/10.1109/JPROC.2015.2497161
http://dx.doi.org/10.1016/S0377-2217(99)00260-X
http://dx.doi.org/10.1109/RTSS.2015.23
http://dx.doi.org/10.1109/RTSS.2010.41
http://dx.doi.org/10.1109/TC.2014.2322609
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/RTAS.2008.15
http://dx.doi.org/10.1109/RTSS.2018.00044
http://dx.doi.org/10.1109/TWC.2013.050313.120543

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:23

23 Tianyu Zhang, Tao Gong, Chuancai Gu, Huayi Ji, Song Han, Qingxu Deng, and Xiaobo Sharon
Hu. Distributed Dynamic Packet Scheduling for Handling Disturbances in Real-Time Wireless
Networks. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 261–272, April 2017. doi:10.1109/RTAS.2017.11.

24 Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and X Sharon Hu. Distributed Dynamic
Packet Scheduling Framework for Handling Disturbances in Real-Time Wireless Networks.
IEEE Transactions on Mobile Computing, pages 1–1, 2018. doi:10.1109/TMC.2018.2877681.

25 Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. Fully Distributed
Packet Scheduling Framework for Handling Disturbances in Lossy Real-TimeWireless Networks,
2019. arXiv:1902.02023.

26 Tianyu Zhang, Tao Gong, Zelin Yun, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. FD-PaS:
A fully distributed packet scheduling framework for handling disturbances in real-time wireless
networks. In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12, April 2018. doi:10.1109/RTAS.2018.00007.

27 Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari, and Lothar Thiele.
Adaptive Real-Time Communication for Wireless Cyber-Physical Systems. ACM Transactions
on Cyber-Physical Systems, 1(2):8:1–8:29, February 2017. doi:10.1145/3012005.

ECRTS 2019

http://dx.doi.org/10.1109/RTAS.2017.11
http://dx.doi.org/10.1109/TMC.2018.2877681
http://arxiv.org/abs/1902.02023
http://dx.doi.org/10.1109/RTAS.2018.00007
http://dx.doi.org/10.1145/3012005

Isolation-Aware Timing Analysis and Design
Space Exploration for Predictable and
Composable Many-Core Systems
Behnaz Pourmohseni
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
behnaz.pourmohseni@fau.de

Fedor Smirnov
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
fedor.smirnov@fau.de

Stefan Wildermann
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
stefan.wildermann@fau.de

Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
juergen.teich@fau.de

Abstract
Composable many-core systems enable the independent development and analysis of applications
which will be executed on a shared platform where the mix of concurrently executed applications
may change dynamically at run time. For each individual application, an off-line Design Space
Exploration (DSE) is performed to compute several mapping alternatives on the platform, offering
Pareto-optimal trade-offs in terms of real-time guarantees, resource usage, etc. At run time,
one mapping is then chosen to launch the application on demand. In this context, to enable
an independent analysis of each individual application at design time, so-called inter-application
isolation schemes are applied which specify temporal/spatial isolation policies between applications.
State-of-the-art composable many-core systems are developed based on a fixed isolation scheme
that is exclusively applied to every resource in every mapping of every application and use a timing
analysis tailored to that isolation scheme to derive timing guarantees for each mapping. A fixed
isolation scheme, however, heavily restricts the explored space of solutions and can, therefore, lead to
suboptimality. Lifting this restriction necessitates a timing analysis that is applicable to mappings
with an arbitrary mix of isolation schemes on different resources. To address this issue, in this
paper, we (a) present an isolation-aware timing analysis that – unlike existing analyses – can handle
multiple isolation schemes in combination within one mapping and delivers safe yet tight timing
bounds by identifying and excluding interference scenarios that can never happen under the given
combination of isolation schemes. Based on the timing analysis, we (b) present a DSE which explores
the choices of isolation scheme per resource within each mapping and uses the proposed timing
analysis for timing verification. Experimental results demonstrate that, for a variety of real-time
applications and many-core platforms, the proposed approach achieves an improvement of up to
67% in the quality of delivered mappings compared to approaches based on a fixed isolation scheme.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded and cyber-physical systems; Computer systems organization →
Multicore architectures

Keywords and phrases Many-core systems, timing analysis, design space exploration (DSE), isolation
scheme, predictability, composability.

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.12

Acknowledgements This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project Number 146371743 - TRR 89 Invasive Computing.

© Behnaz Pourmohseni, Fedor Smirnov, Stefan Wildermann, and Jürgen Teich;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0350-4784
mailto:behnaz.pourmohseni@fau.de
mailto:fedor.smirnov@fau.de
mailto:stefan.wildermann@fau.de
mailto:juergen.teich@fau.de
https://doi.org/10.4230/LIPIcs.ECRTS.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

Core0

Core1

CoreN

...Shared
Memory

Network
Adapter

R

...

...

...
...

Figure 1 An example of a tiled many-core architecture composed of heterogeneous compute tiles.

1 Introduction

The ever-growing number of applications hosted in modern embedded systems introduces
a high compute power demand which has given rise to the recent shift towards many-core
architectures, e.g., Tilera TILE-Gx [4], Kalray MPPA-256 [9], and Intel SCC [23]. For
scalability, a many-core architecture is often organized as a set of compute tiles intercon-
nected via a Network-on-Chip (NoC), see Figure 1. Each compute tile comprises a
Network Adapter (NA), a set of processing cores and peripherals such as memories which
are interconnected via a set of buses. From a designer’s perspective, the large number and
diversity of applications and their non-functional requirements, e.g., real-time constraints, in
modern embedded systems introduces an immense system design complexity. This renders the
integrated system design approach, in which the whole system is designed at once, impractical.
Over the past decade, composable systems, e.g. [21], have emerged to address this issue. In a
composable system, applications are temporally and/or spatially isolated from each other,
enabling an incremental system design approach where each application is first developed
and analyzed individually and then added to the system on demand [1].

Composability is particularly crucial for the development of dynamic many-core systems
with variable workloads and hard real-time requirements. In such systems, several independent
applications are executed simultaneously, each being launched and terminated on demand
and independently from others, resulting in a dynamic mix of active applications and, thus,
a dynamic availability of platform resources. Each running application may be exposed to a
variable workload which corresponds to a dynamic compute power demand to, e.g., meet real-
time constraints. Moreover, unforeseeable conditions, e.g., thermal hot spots and hardware
faults, affect the execution of applications that are currently running on the affected regions
of the platform. Reserving resources according to the worst-possible workload scenario often
leads to an immense underutilization of system resources which is typically not acceptable
due to cost concerns. To cope with such dynamics in both resource availability of the system
and resource demand of applications, Hybrid Application Mapping (HAM) strategies have
emerged recently [45, 50]. In HAM, each application is developed and analyzed individually
using an off-line Design Space Exploration (DSE) which computes several deployment
options, so-called mappings, of the application on the platform. The computed mappings
are ensured to offer diverse resource demand and performance guarantees to address various
run-time resource-availability and workload scenarios, respectively. The mappings computed
for each application are then provided to a so-called run-time platform manager which
launches each application on demand using a precomputed mapping that satisfies the on-line
performance requirements of the application and the resource constraints of the platform.

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:3

core0 core1 core2

t

(a) core sharing

CS

core0 core1 core2

t

(b) core reservation

CR

core0 core1 core2

t

(c) tile reservation

TR
allocated (required)

allocated (extra)

not allocated

Figure 2 An example of a task t mapped to core0 of a 3-core tile under (a) core-sharing, (b) core-
reservation, and (c) tile-reservation isolation schemes. For a timely completion, t requires a core
budget of 3 (shaded cells). Dotted cells are allocated in addition due to the isolation scheme in use.

Moreover, if the mapping in use by a running application fails, e.g., due to thermal hot spots,
resource faults, or a drastic workload change, the run-time manager switches the application
to another precomputed mapping which conforms to the new conditions [37].

The off-line DSE used in HAM strategies employs compute-intensive optimization and
verification techniques to find high-quality mappings that offer Pareto-optimal trade-offs
w.r.t. multiple – oftentimes non-linear and conflicting – design objectives, e.g., resource
usage, latency, energy, etc. To achieve predictability, the worst-case timing properties of each
mapping are bounded based on the choice of allocated resources by deriving the worst-case
timing interferences that may be imposed by other (concurrent) applications which share
resources with the mapping under analysis [48]. During the DSE, however, an application
is developed individually, and the characteristics of the potential concurrent applications
are not available to be considered in the timing analysis. In order to regulate the maximum
degree of timing interferences that may be imposed by other applications, temporal and
spatial isolation techniques are employed which apply certain restrictions on the accessibility
of resources used by the mapping under analysis to other applications that run concurrently.
These restrictions are referred to as so-called inter-application isolation schemes. Figure 2
illustrates three major isolation schemes that are predominantly used in many-core systems
to establish composability. In all three cases, an exemplary task t is mapped to core0 of a
3-core tile. For the sake of brevity, only cores are depicted in the illustration of the tile. The
compute power of each core is divided into 5 budgets of equal size. For a timely completion,
t requires a budget of 3 on core0. In the following, each isolation scheme is explained.

Core Sharing (CS). In the isolation scheme referred to as core sharing, illustrated in
Figure 2a, only the 3 core budgets required for t are allocated for the mapping. Hence,
concurrent applications are temporally isolated from the current mapping on core0 and
can use the 2 not-allocated budgets of core0, the whole budget of core1 and core2, and any
other on-tile resource, e.g., memories and the NA. Core sharing is the least restrictive
isolation scheme which merely depends on temporal isolation on all resources.
Core Reservation (CR). In the isolation scheme referred to as core reservation, illus-
trated in Figure 2b, core0 is allocated as a whole, regardless of the budget demand of t.
This realizes a spatial isolation from other applications on core0, eliminating interferences
from them on core0 and resulting in an alleviated worst-case latency compared to core
sharing. Note that interferences may still arise on other on-tile resources, e.g., memory
buses used by t, as applications are temporally isolated from each other on those resources.
Tile Reservation (TR). In the isolation scheme referred to as tile reservation, illustrated
in Figure 2c, the compute tile is allocated as a whole, eliminating any interference from
concurrent applications on any on-tile resource. This is the most restrictive isolation
scheme which realizes a spatial isolation from concurrent applications at tile level and
enables the largest reduction in the worst-case timing interferences imposed on t.

ECRTS 2019

12:4 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

t0 t1

m0 m1

t2

(a) application core0 core1 core2

core3 core4 core5

......

...

...

...

t0

t1

t2

CS

CS CS

(b) core sharing

Latency = 525
Cost = 8

core0 core1 core2

core3 core4 core5

......

...

...

...

t0

t1

t2

CR

CR CR

(c) core reservation

Latency = 435
Cost = 15

core0 core1 core2

core3 core4 core5

......

...

...

...

t0

t1

t2

TR

TR

(d) tile reservation

Latency = 395
Cost = 30

core0 core1 core2

core3 core4 core5

......

...

...

...

t0

t1

t2

CS

CR CR

(e) combination 1

Latency = 435
Cost = 13

core0 core1 core2

core3 core4 core5

......

...

...

...

t0

t1

t2

CS

TR

(f) combination 2

Latency = 395
Cost = 18

allocated (required) allocated (not required) not allocated

Figure 3 (a) an example of an application. A mapping of the application on two adjacent tiles
is illustrated for the following isolation scenarios: (b) exclusive core sharing, (c) exclusive core
reservation, (d) exclusive tile reservation, (e) core sharing on core0 and core reservation on core3 and
core4, (f) core sharing on core0 and tile reservation on the lower tile. The core budget required for
each task is shaded on the respective core. For each scenario, the worst-case latency of the mapping
(derived based on Table 1a–b) and its allocation cost are given below the respective sub-figure.

Noteworthy, sharing the NoC which interconnects the tiles can hardly be avoided [34].
Hence, applications are always temporally isolated from each other on the NoC. State-of-the-
art composable many-core systems are designed based on a fixed isolation scheme that is
uniformly applied to every core/tile of every mapping of every application in the system and
is coupled with a timing analysis tailored to that specific isolation scheme to derive tight
timing guarantees. The choice of isolation scheme highly impacts the resource usage and
worst-case timing characteristics of the mappings. As an example, consider the application
shown in Figure 3a and a mapping of it on two adjacent 3-core tiles illustrated in Figure 3b–f.
For the sake of this motivational example, assume that the timing analysis of the tasks
yields the qualitative Worst-Case Response Time (WCRT) values given in Table 1a under
different isolation schemes. Likewise, the qualitative Worst-Case Traversal Time (WCTT)
of message m1 (communicated between the two tiles, from t1 to t2) is given in Table 1b
for various combinations of isolation scheme on m1’s source and destination cores/tiles.
Message m0 is implicitly communicated between t0 and t2 via the tile’s shared memories.
In this example, applying core sharing exclusively, as illustrated in Figure 3b, offers the
minimum allocation cost, i.e., 8 core budgets, at the expense of considerably high worst-case

Table 1 Qualitative timing properties assumed for tasks and messages in the example illustrated
in Figure 3: (a) WCRT of tasks t0, t1, and t2 under different isolation schemes, (b) WCTT of
message m1 for different combinations of isolation scheme on m1’s source and destination cores/tiles.

(a) Worst-Case Response Time assumed for t0–t2

isolation WCRT(t0) WCRT(t1) WCRT(t2)scheme

TR 290 75 105

CR 315 115 120

CS 380 165 145

(b) Worst-Case Traversal Time assumed for m1

source destination WCTT(m1)isolation scheme isolation scheme

TR TR 12
TR CR/CS 15

CR/CS TR 17
CR/CS CR/CS 20

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:5

10 15 20 25 30

400

450

500

550 core sharing

core
reservation

tile
reservationcomb. 1 comb. 2

Cost

La
te

nc
y

Figure 4 The latency-cost trade-offs offered by the 15 possible isolation scheme scenarios for the
application mapping from Figure 3. Pareto-optimal trade-offs are designated by red squares, domi-
nating the highlighted space. Labeled trade-offs correspond to the scenarios illustrated in Figure 3.

interferences on cores and other on-tile resources, resulting in an end-to-end application
latency of 525 time units in the worst case. Applying core reservation exclusively, as depicted
in Figure 3c, results in an elevated allocation cost of 15 budgets. It, however, eliminates core
interferences which alleviates the worst-case application latency to 435 time units. Applying
tile reservation exclusively, as depicted in Figure 3d, minimizes the worst-case application
latency to 395 time units at the expense of a maximized allocation cost of 30 budgets.

Motivation. A fixed isolation scheme that is always applied exclusively – which is the
common practice in state-of-the-art composable many-core systems – heavily restricts the
space of explored mappings and excludes numerous promising solutions where multiple
isolation schemes are applied in combination. For instance, in the example above, considering
arbitrary combinations of isolation schemes within one mapping enables 12 additional isolation
scenarios, two of which are depicted in Figure 3e–f. In combination 1, core sharing is applied
on core0 and core reservation is applied on core3 and core4, offering the same latency as the
exclusive core-reservation scenario from Figure 3c, but at a lower cost. Likewise, combination 2
applies core sharing on core0 and tile reservation on the lower tile, outperforming the exclusive
tile-reservation scenario from Figure 3d by offering the same latency at a considerably lower
cost. Having evaluated all possible combinations of isolation scenarios, Figure 4 illustrates the
obtained cost-latency trade-offs where Pareto-optimal trade-offs are designated by red squares,
dominating the highlighted space above the red dashed line. The trade-offs corresponding
to the scenarios in Figure 3 are labeled accordingly in Figure 4. As shown, nearly always,
Pareto-optimal trade-offs are obtained only when multiple isolation schemes are applied in
combination within one mapping. In Section 6, we experimentally verify this observation for
realistic use cases as well.

Contribution. The example above demonstrates that using multiple isolation schemes in
combination yields mappings of a better quality trade-off. Deriving safe bounds on the
worst-case timing characteristics of such mappings, however, requires an isolation-aware
timing analysis that can capture the impact of the isolation scheme of each core/tile on the
worst-case timing behavior of tasks/messages affected by it and, hence, on the worst-case
timing behavior of the application. On the one hand, existing timing analyses applicable to
composable many-core systems are tailored to one fixed isolation scheme and cannot handle
multiple isolation schemes in combination within one mapping. On the other hand, from an

ECRTS 2019

12:6 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

architectural point of view, many-core platforms are undergoing a transition from single-core
tiles, e.g., in [4], to multi-core tiles, e.g., in [9]. This transition introduces new sources of
timing interference within each tile, e.g., on shared memory buses, which must be accounted
for to obtain safe timing guarantees. In the context of composable systems, there exist
no timing analysis known to us which accounts for all sources of timing interference that
may arise in a many-core platform with multi-core tiles (without applying restrictive spatial
isolation schemes that eliminate on-tile inter-application interferences altogether). Provided
with an isolation-aware timing analysis, the off-line DSE in HAM strategies can be extended
to also explore the choices of isolation scheme for each core/tile within each investigated
mapping to obtain solutions with a better quality trade-off. In this line, the paper at hand
makes the following contributions in the context of composable many-core systems:
1. We present an isolation-aware timing analysis which can handle arbitrary combinations

of isolation schemes within one mapping and accounts for all timing interferences that
may arise within a shared multi-core tile and on the NoC interconnecting tiles. It derives
tight timing bounds by identifying and excluding interference scenarios that can never
happen under the current combination of isolation schemes.

2. We present an isolation-aware DSE which explores the choices of isolation scheme for
each core/tile in each investigated mapping of the application under analysis and uses
the proposed timing analysis for the scheduling and timing verification of the mappings.

For a variety of hard real-time applications and many-core platforms, we experimentally
verify the advantage of the proposed isolation-aware exploration and timing analysis approach
over existing fixed-isolation-scheme approaches in terms of the quality of obtained mappings.

Organization. The remainder of this paper is organized as follows. In Section 2, related
work on timing analysis and DSE of multi-/many-core systems is reviewed. Section 3 presents
the preliminaries and the system model for this work. The proposed isolation-aware DSE
and timing analysis are presented in Sections 4 and 5, respectively. Experimental results are
discussed in Section 6 before the paper is concluded in Section 7.

2 Related Work

Worst-case timing analysis of applications in multi-/many-core systems has long been con-
ducted in two steps: First, a context-independent analysis is applied to bound the
Worst-Case Execution Time (WCET) of each task in isolation, i.e., in absence of interfer-
ences. An overview of tools and methods for context-independent WCET analysis is provided
in [51]. Following the context-independent analysis, an interference analysis is performed
to bound the additional latencies that may be imposed on shared resources due to external
interferences.

Multi-/many-core timing analyses predominantly focus on worst-case interference analysis
based on the context-independent characteristics of each task and message. For instance,
the analyses presented in [2, 6, 8, 15, 17, 40, 41, 46] bound the WCRT of tasks in a multi-
core setup where several cores are connected to one or more memories over shared buses.
In [2, 8], a framework for multi-core response time analysis is presented for a preemptive
Fixed-Priority (FP) core scheduling policy coupled with multiple memory bus arbitration
policies, e.g., Time-Division Multiplexing (TDM), Round-Robin (RR), and FP. Targeting
mixed-criticality systems, [15, 17] analyze WCRT under a non-preemptive FP core scheduling
policy and a RR memory bus arbitration. The authors of [40, 46] present response time
analyses for non-preemptive FP core scheduling policy and a multi-level bus arbitration

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:7

scheme which combines RR and FP policies. In [41], memory bus interference is bounded
using an ILP-based timing analysis under a RR bus arbitration policy. The framework
presented in [6], analyzes memory bus interference under a variety of arbitration policies,
e.g., TDM and FP. Concerning the NoC, in [43] and [54] NoC transfer delays are analyzed
under FP and RR link arbitration policies, respectively.

The works listed above consider – to some extent – non-preemptive and/or contention-
oriented arbitration/scheduling policies, e.g., priority-based schemes, for which safe timing
guarantees can be derived only if the whole set of applications accessing shared resources is
known at the time of analysis. In a composable system, however, the mix of concurrently
running applications that share some resources may not be known at design time. Hence,
contention-oriented policies can be applied in a composable system only if each and every
resource with such an arbitration scheme is exclusively used by one application. To realize
this on state-of-the-art many-core platforms, each mapping computed for each application
must (a) have a tile-reservation isolation scheme only, (b) be restricted within one tile only,
and (c) not rely on inter-tile communications, e.g., I/O transfers. In practice, however, the
small number of cores comprised within one tile [4, 23], on the one hand, and the high
compute power demand of each application, on the other hand, necessitate the deployment
of some applications over several compute tiles to meet their real-time requirements. For
such applications, NoC links could – in theory – be exclusively reserved per application to
enable the timing analysis of multi-tile mappings using NoC delay analyses, e.g. [54, 43]. In
practice, however, sharing NoC links among applications can hardly be avoided [34].

Contention-free arbitration policies based on time slicing, e.g., TDM and Weighted
Round-Robin (WRR), offer a practical approach for predictable inter-application resource
sharing without violating composability. For instance, the authors of [48, 49] consider a
NoC [22] with WRR link arbitration policy and analyze worst-case NoC delays based on
the reserved link budget for each communication, independent of the other communication
flows that may share the same links. For WCRT analysis, [48] considers a preemptive RR
core scheduling policy which, however, restricts its scope of coverage to core interferences
originating from within the application under analysis only. In [49], on the other hand, a WRR
core scheduling policy is considered, and based on that, a response time analysis is presented
which accounts also for core interferences that may be imposed by other (currently unknown)
applications. Both [48, 49], however, consider single-core tiles and, hence, cannot capture NA
and memory bus interferences that may arise in a multi-core tile, e.g., in [9, 23]. Contrarily,
we present a timing analysis that captures also the NA and memory bus interferences in
multi-core tiles.

From an isolation scheme point of view, existing multi-/many-core timing analyses are
tailored to a fixed isolation scheme. For instance, the analyzes in [2, 6, 8, 15, 17, 40, 41, 46]
are applicable only under tile-reservation isolation scheme. The analysis presented in [48]
is applicable to systems with single-core tiles only and assumes tile-reservation isolation
scheme. Authors in [49] consider single-core tiles and core-sharing isolation scheme. The
timing analysis presented in this paper is the first timing analysis known to us which can
handle arbitrary mixes of isolation schemes in combination within one mapping.

Application mapping in multi-/many-core systems is typically viewed as a multi-objective
optimization problem and is known to be NP-hard [14]. Due to its immensely large space
of possible mapping solutions, using exact optimization approaches, e.g., enumeration or
(integer-)linear programming, to solve this NP-hard problem demands an extremely high
computational effort and is prohibitively time-consuming, except for very small/simple
problems. In this context, meta-heuristic optimization approaches, e.g., evolutionary/genetic

ECRTS 2019

12:8 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

algorithms [7, 13, 12], simulated annealing [27], and particle swarm optimization [25], enable
a scalable optimization approach that can deliver high-quality solutions at a reasonable
time- and computational effort. As a result, they have become the de facto standard
approach for multi-objective application mapping optimization in multi-/many-core systems.
For instance, in [33, 36, 48, 49], evolutionary/genetic algorithms are used for mapping
optimization. In [16, 17], mapping optimization is realized using simulated annealing
algorithms, while [42] adopts particle swarm optimization. The majority of existing works
on mapping optimization in HAM methodologies employ population-based meta-heuristics,
e.g., particle swarm optimization or evolutionary/genetic algorithms, to collect a so-called
population of best mappings. During the Design Space Exploration (DSE), the optimizer
follows the course of several iterations to generate new mappings and evaluate them w.r.t. the
given set of design objectives, e.g., resource cost, timing, or energy. It collects a population
of explored mappings which is updated per iteration to retain the best solutions found so far
and is used for the generation of mappings in the next iteration. Like [33, 36, 48, 49], we
employ a multi-objective evolutionary algorithm for mapping optimization.

To the best of our knowledge, existing DSE proposals on mapping optimization in the
context of HAM strategies, e.g., [26, 33, 36, 47, 44, 48, 49, 53], consider a fixed isolation
scheme that is applied exclusively to every resource (core or tile) of every explored mapping of
every application. For instance, the DSE approaches in [36, 33, 53] assume a core-reservation
isolation scheme. In [26, 44, 48], a tile-reservation isolation scheme is assumed. In [49], a
core-sharing isolation scheme is assumed. The DSE proposed in this paper does not assume
a globally-fixed isolation scheme. Instead, it explores the choices of isolation scheme per
allocated resource within each explored mapping. This provides a fine-grained control over
the degree of admitted inter-application interferences (which we analyze using the proposed
timing analysis) and renders many mappings with promising quality trade-offs reachable to
the DSE which are not reachable under a fixed isolation scheme.

3 Preliminaries

3.1 Mapping Optimization Problem Specification
Similar to any other optimization problem, the multi-/many-core mapping optimization
problem requires a problem model which describes the space of possible solutions and the
conditions that must be satisfied by a mapping to be regarded a valid solution. In this
paper, we use the graph-based system model from [3]. This model represents the mapping
optimization problem by a so-called specification which describes the entire design space
and is used to generate different mapping solutions. The specification and each mapping
generated based on that consist of an application graph, an architecture graph, and mapping
edges connecting them, which will be introduced in Sections 3.1.1 to 3.1.3.

3.1.1 Application Model
We consider periodic hard real-time applications. Each application is specified by an
application graph GP (T ∪M,E) where T denotes the set of (processing) tasks, M denotes
the set of messages exchanged between tasks, and edges e ∈ E define data dependencies among
tasks and messages, e.g., see Figure 5a. For each task t ∈ T , the execution period PRD(t),
the context-independent worst-case execution time WCET(t, c) on each mappable core c, and
the memory demand MD(t) (maximum number of memory accesses) per execution iteration

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:9

m0 m1 m2

t0 t1

t2 t3 t4

m3 m4 m5

t5

(a) application graph
r0

n0

b0 b1

q0 q1

c0 c1

u0

r1

n1

b2 b3

q2 q3

c2 c3

u1

(b) architecture graph

(c) mapping
edges

Figure 5 Specification of an exemplary mapping optimization problem, composed of (a) application
graph, (b) architecture graph, and (c) mapping edges connecting them (depicted only for task t5).

are known. For each message m ∈ M , the transfer period PRD(m) and the maximum
payload size PLD(m) together with its corresponding memory demand MD(m) (number of
memory accesses for reading/writing m from/to memory) are given.

3.1.2 Architecture Model

We consider heterogeneous tiled many-core architectures composed of multi-core tiles in-
terconnected by a NoC. The platform architecture is specified by an architecture graph
GA = (R ∪N ∪B ∪ C ∪Q ∪ U,L), e.g., see Figure 5b. Here, r ∈ R denotes a NoC router,
n ∈ N a NA, b ∈ B a memory bus, c ∈ C a processing core, and q ∈ Q a shared memory (or
memory bank) with an own memory bus, respectively. Edges l ∈ L represent bidirectional
connections between these resources. Each u ∈ U represents a compute tile which comprises
a set of cores and memories and a NA, thus, u ⊆ N ∪B ∪C ∪Q. Each memory (or memory
bank) is accessible to cores and the NA on the same tile via a shared bus. Each NA consists
of separate Transmitter (TX) and Receiver (RX) units with own ports to each memory
bus. We assume many-core architectures without timing anomalies [39]. This enables a
compositional analysis of execution, communication, and memory latency contributions
which can be combined to derive globally safe timing guarantees.

Memory Model. We consider a No Remote Memory Access (NORMA) scheme which
is commonly practiced in many-core systems to achieve scalability [32]. Under a NORMA
scheme, the memories located on one tile are not accessible to resources located on other
tiles, thus, data exchanges among different tiles are realized exclusively by means of explicit
message passing between them. To achieve storage composability, (a) the on-tile memory
space is partitioned, such that each core is given a dedicated storage space. Likewise,
(b) shared caches are partitioned or disabled. In the same line, (c) the dedicated storage
space of each core is dynamically partitioned among the tasks hosted by it. Finally, (d) each
message is provided with a dedicated memory space in each tile where it is produced and/or
consumed. To perform a memory access, the requestor must first attain the ownership of the
shared bus associated with the target memory. We assume blocking and indivisible memory
accesses, so that the processing progress on the requestor side is stalled during the memory
operation. Each memory access is a single-word operation with a known maximum service
time, eliminating burst/block operations. A requestor may perform several consecutive but
non-overlapping single-word memory operations during its bus ownership interval.

ECRTS 2019

12:10 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

NoC Model. We consider wormhole-switched NoCs with a credit-based virtual-channel
flow control, for instance [22], to allow per-link bandwidth reservation and, thereby, to enable
link sharing without violating composability. Under a wormhole-switched flow control, data
packets are decomposed into control flow digits (flits) of fixed size which are then routed
over the NoC independent from each other in a pipeline fashion [35]. The virtual-channel
flow control [5] provides multiple buffers per physical link to enable transmission preemption
and composable link sharing. The transmission progress of flits in each buffer of a router
is controlled using so-called credits which reflect the availability of buffer space at the next
router. This realizes a backpressure mechanism inherently.

Communication Model. Intra-tile communications, i.e., data exchanges within one tile, are
realized through a dedicated space in the tile’s shared memories. Inter-tile communications,
i.e., data exchanges between tiles, are realized by explicit message passing over the NoC. For
the latter, after the data is written by the sender into the dedicated memory space, the TX
reads the data, decomposes it into flits, and injects the flits into the NoC. The flits are then
routed over the NoC toward the destination tile where the RX reconstructs the data from
the flits and writes it into a dedicated memory space to be read by the receiver thereafter.

Resource Arbitration. Any hardware resource, e.g., cores, memory buses or the NoC, that
can be shared among multiple applications is assumed to have an arbitration policy that is
both predictable and composable. While (a) predictability enables formal worst-case timing
analysis of each application, (b) composability ensures that worst-case timing bounds can be
derived for each application merely based on the resource budgets reserved for it, without any
knowledge about other applications that may run concurrently to it and share resources with
it. This definition necessitates a contention-free arbitration policy for each and every resource
that may be shared among applications. Time-Division Multiplexing (TDM) and Weighted
Round-Robin (WRR) are well-established predictable and composable arbitration policies
which serve as primary candidates for composable many-core systems [19, 21, 22]. Both
TDM and WRR establish temporal isolation using time-triggered preemption, dividing the
access to a resource into time slots of equal length that are periodically assigned to requestors
which have reserved one or more slots on that resource. TDM is not work-conserving1 which
leads to a poor average-case performance, making it an unattractive candidate for, e.g.,
systems hosting both real-time and best-effort applications [24]. Contrarily, WRR provides
predictability and composability in a work-conserving fashion by skipping over idle slots. This
enables a notable average-case performance improvement in favor of best-effort applications
while allowing worst-case timing guarantees to be derived for real-time applications. We
assume each shared resource has a preemptive time-triggered arbitration policy that follows
similar principles as TDM and WRR.

3.1.3 Mapping Edges
In the specification of the mapping optimization problem, the application graph and the
architecture graph are connected by mapping edges V ⊆ T × C, e.g., see Figure 5c. Each
mapping edge v = (t, c) ∈ V indicates that task t ∈ T can be executed on core c ∈ C.

1 In a work-conserving arbitration policy, time slots are assigned only to requestors with pending requests
while idle slots, i.e., those without an access request, are skipped. This scheme results in a varying
arbitration period and varying position of assigned slots for each requestor within one arbitration period.

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:11

t t t t t t t t t... ...

Pt
core0 = 5·(1.0 + 0.2) = 6.0

Score0 = 1.0 Dcore0 = 0.2

W t
core0 = 3

Figure 6 Arbitration tuple of task t on core0 from Figure 2a, calculated as (1.0, 3, 6.0).

3.2 Arbitration Tuple
In this work, all parameters relevant for the worst-case timing analysis of a requestor on a
resource, i.e., the budget reserved for it and the worst-case interference that can be imposed by
other requestors, are compactly reflected by a so-called arbitration tuple: For each requestor x
of resource r, the arbitration tuple is represented as (Sr,W x

r , P
x
r) where Sr denotes the length

of one arbitration slot of r, W x
r denotes the number of periodic arbitration slots (weight)

reserved for x on r, and P xr denotes the worst-case arbitration period perceived by x on r.
Given the arbitration tuple, one can deduce that x has a periodic reserved time budget of
(W x

r · Sr) on r and, thus, experiences a worst-case wait time of (P xr −W x
r · Sr) per arbitration

period P xr . We exemplify the calculation of the arbitration tuple for task t in Figure 2a under
an arbitration policy with a slot length of Score0 = 1.0, an arbitration delay of Dcore0 = 0.2
between consecutive slots2, and an arbitration capacity of Kcore0 = 5 slots per period. Under
such an arbitration policy, task t with 3 reserved periodic slots perceives an arbitration weight
of W t

core0
= 3 and a worst-case arbitration period of P tcore0

= 5× (1.0 + 0.2) = 6.0 based on
which the arbitration tuple is created as (1.0, 3, 6.0). This calculation is also illustrated in
Figure 6. Note that, the arbiter delay is reflected in the calculation of arbitration period,
rendering the arbitration tuple expressive of realistic resource arbiters in practice.

It may happen that the isolation scheme of a resource leads to one or more arbitration
slots to be allocated by the mapping under analysis but not utilized. Given a work-conserving
arbitration policy, e.g. WRR, in such cases we reduce the arbitration capacity of that resource
to exclude those slots that are never utilized and, hence, are always skipped by the arbiter.
For instance, in Figure 2b, core0 is allocated exclusively where only 3 slots are utilized by
t while the remaining 2 slots are never utilized. Thus, given a work-conserving arbitration
policy, the arbitration period is guaranteed not to exceed P tcore0

= (5− 2)× (1.0 + 0.2) = 3.6,
resulting in an adapted arbitration tuple of (1.0, 3, 3.6) for t on core0.

The proposed timing analysis presented in Section 5 takes the arbitration tuples as input
and derives safe bounds on the worst-case timing characteristics of each task and message
under the combination of applied isolation schemes. For the calculation of the arbitration
tuples, the arbitration policy of each resource r and its parameters, namely, arbitration slot
length Sr, arbitration delay Dr, and arbitration capacity Kr, are provided by the architecture,
while both the isolation scheme of each resource r and the number W x

r of slots reserved
for each analyzed requestor x are decided by the mapping optimizer during the DSE. We
calculate arbitration tuples for the following requestors:

For each task t ∈ T , the arbitration tuple on core c ∈ C executing t is calculated and
denoted as (Sc,W t

c , P
t
c).

For each inter-tile message m ∈M , the arbitration tuple (a) on the TX tx injecting m
into the NoC, (b) on the NoC route ρ (sequence of links) over which m is routed, and
(c) on the RX rx receiving m from the NoC are calculated and denoted as (Stx ,W

m
tx , P

m
tx),

(Sρ,Wm
ρ , P

m
ρ), and (Srx ,W

m
rx , P

m
rx), respectively.

2 The arbitration delay denotes the latency of the arbiter for switching between consecutive arbitration
slots. For instance, on a core, it corresponds to the context-switch overhead of the operating system.

ECRTS 2019

12:12 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

For each core c ∈ C that has at least one task mapped to it, the arbitration tuple on each
on-tile memory bus b ∈ B is calculated and denoted as (Sb,W c

b , P
c
b).

For each TX tx that routes at least one outbound message out of the tile, the arbitration
tuple on each on-tile memory bus b ∈ B is calculated and denoted as (Sb,W tx

b , P
tx
b).

For each RX rx that routes at least one incoming message into the tile, the arbitration
tuple on each on-tile memory bus b ∈ B is calculated and denoted as (Sb,W rx

b , P rx
b).

4 Isolation-Aware Design Space Exploration (DSE)

This section presents our isolation-aware DSE approach, illustrated in Figure 7. The
DSE takes as input the specification of the mapping optimization problem comprising the
application graph, the architecture graph, and mapping edges, and delivers a set of mappings
that offer Pareto-optimal trade-offs w.r.t. a given set of design objectives, e.g., latency,
throughput, energy, and resource usage. The DSE employs a mapping optimizer to explore
the space of possible mappings of the application on the target architecture. The optimizer
creates each mapping by conducting a series of binding, isolation, routing, allocation, and
scheduling design decisions, elaborated later in Section 4.1. Once a mapping is generated, it
is provided to a set of evaluators to assess the quality of the mapping w.r.t. the given design
objectives. The proposed isolation-aware timing analysis, which will be presented in Section 5,
is used here as an evaluator to derive safe bounds for timing-related design objectives, namely,
latency and throughput. The optimizer uses an evolutionary algorithm which conducts
several iterations to generate new mappings and collect a set of Pareto-optimal mappings.

The Pareto-optimal mappings will be used at run time to launch the application on
demand by selecting a mapping that complies with the current real-time constraints of the
application and resource availability of the system (restricted due to, e.g., other running
applications). Since our timing analysis accounts for the worst-case interferences that may be
imposed by any mix of (statically unknown) concurrent applications, the worst-case timing
characteristics it provides for each mapping are guaranteed to hold regardless of the mix and
deployment of other applications at run time. This allows the DSE to be performed for each
application individually without any knowledge about the other applications in the system.

4.1 Mapping Creation
The creation of each mapping starts by making the binding and the isolation design decisions:

Binding. In this step, each task of the application is bound to a core on the architecture.
We use the SAT-Decoding approach [29] to explore the binding of tasks to cores. By
encoding the constraints from [31], we ensure that each task is bound exactly to one core.
Isolation. In this step, an isolation scheme is selected for each core and each tile. To
this end, each core and each tile is decided to be either shared or reserved. We implement
the exploration of isolation schemes using the SAT-Decoding approach [29], see also [18].

The creation of the mapping is completed by deriving the implications of binding and isolation
decisions on message routing, resource allocation, and scheduling of tasks and message:

Routing. In this step, for each inter-tile message (i.e., a message communicated between
two tasks which, according to the binding decisions, are bound to different tiles), a NoC
route (sequence of links) is determined over which the message is transferred between the
two tiles. Without loss of generality, we use the XY-routing algorithm [35].
Allocation. In this step, the processor budget required for the mapping is allocated
according to the previously made binding and isolation decisions: If a task is bound onto
any core of a reserved tile, the whole tile is allocated completely and, thus, none of the

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:13

mapping optimizer
(binding, isolation,

routing, allocation, scheduling)

specification

Pareto-optimal mappings

evaluators
(latency, throughput,

energy, resource usage)

mapping

quality numbers

Figure 7 Overview of the proposed isolation-aware design space exploration (DSE) approach.

resources on that tile can be used by other applications (tile reservation). If a task is
bound to a reserved core on a shared tile, that particular core is allocated completely
while other resources on the tile can be used by other applications (core reservation).
Finally, if a task is bound to a shared core on a shared tile, only the minimum budget
required by that task will be allocated on that core while the remaining core budget can
be used by other applications (core sharing). Any core and tile that does not correspond
to one of the cases above is not allocated and, therefore, can be used by other applications.
We also allocate the minimum budget required for each inter-tile message on NoC links
that are part of the message’s route specified in the routing step.
Scheduling. We elaborate on the scheduling step in Section 4.2.

4.2 Isolation-Aware Scheduling

In the scheduling step, the arbitration tuples listed in Section 3.2 which are required for
the timing analysis of the mapping are calculated. In what follows, we first calculate
in Section 4.2.1 the resource budgets (arbitration weight) required for tasks and messages.
Based on these weights, the arbitration tuples are then calculated in Section 4.2.2.

4.2.1 Resource Budget Calculation

To calculate the arbitration weight of each task/message x ∈ T∪M on each respective resource
r, first the worst-case arbitration period P xr for x on r is calculated (as presented in Section 3.2)
based on r’s arbitration capacity Kr and arbitration slot length Sr which are provided by
the architecture. Then, for each task t bound to core c, we start with an arbitration weight
of W t

c = 1 and iteratively (I) construct the arbitration tuple (Sc,W t
c , P

t
c) and (II) use

Equations (1) to (4) from Section 5 to determine t’s WCRT for the current arbitration weight
W t
c . If the WCRT of t exceeds its deadline given by the application, i.e., WCRT(t) > PRD(t),

we (III) incrementW t
c by one and go back to step (I). Otherwise, the iterations are terminated

and the current arbitration weight is considered for t. Likewise, for each inter-tile message
m routed via TX unit tx, RX unit rx, and NoC route ρ, we use Equations (5) to (8)
from Section 5 to calculate the minimum arbitration weight Wm

tx = Wm
rx = Wm

ρ such that
m’s WCTT does not exceed its production period, i.e., WCTT(m) ≤ PRD(m).

After the weights are derived, we evaluate the overall weight demanded on each resource.
If the weight demanded by all tasks mapped to a core exceed the core’s arbitration capacity,
the mapping is considered as infeasible and is discarded. Likewise, if the weight demanded
on a NoC link, a TX or a RX by messages routed over it exceeds its arbitration capacity,
the mapping is considered as infeasible and discarded.

ECRTS 2019

12:14 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

4.2.2 Arbitration Tuple Calculation
Given the arbitration weights of tasks and messages on their respective resources, calculated
in Section 4.2.1, and the isolation scheme of each core/tile, the arbitration tuples for tasks and
messages are calculated as follows. For each exclusively allocated core c, first the arbitration
capacity is reduced as Kc =

∑
t∈T W

t
c to discard scheduling slots that are not utilized by

the tasks mapped to it, and the arbitration period P tc of each task t ∈ T mapped to it is
refined accordingly as presented in Section 3.2. Then, the arbitration tuple (Sc,W t

c , P
t
c) is

created for each task t ∈ T mapped to c where the scheduling slot length Sc is provided by
the architecture. Likewise, for each exclusively allocated tile, first the arbitration capacity of
the TX unit tx is reduced as Ktx =

∑
m∈M Wm

tx to reflect only the arbitration slots reserved
for the outbound messages m ∈ M of that tile within the current mapping. Then, the
arbitration period Pmtx of each outbound message m on tx is refined, and the arbitration tuple
(Stx ,W

m
tx , P

m
tx) is constructed. A similar procedure is followed for the incoming messages of

the tile. Since the NoC is assumed to be shared, no reduction will be applied to the capacity
of NoC links, and thus, no refinement is required for the calculation of the arbitration tuple
(Sρ,Wm

ρ , P
m
ρ) of an inter-tile message m ∈M on the links of its NoC route ρ.

For each core c ∈ C, the arbitration tuple (Sb,W c
b , P

c
b) on each memory bus b ∈ B

connected to it is calculated as follows. The bus arbitration slot length Sb, the bus arbitration
capacity Kb, and the core arbitration weight W c

b on the bus are provided by the architecture.
The arbitration period P cb perceived by c on bus b is calculated according to the decided
isolation scheme: If a tile-reservation isolation scheme is selected, the bus arbitration capacity
Kb is reduced to exclude the arbitration slots corresponding to idle cores (cores that do not
host any tasks). Accordingly, the refined arbitration period P cb is calculated as presented
in Section 3.2. For each TX and RX, the arbitration tuples (Sb,W tx

b , P
tx
b) and (Sb,W rx

b , P rx
b)

on each memory bus b ∈ B connected to them is calculated similarly. Note that all arbitration
capacity reductions discussed above are applied only in case of a work-conserving arbitration
policy, e.g., WRR. Otherwise, the arbitration capacities remain unaffected.

5 Isolation-Aware Timing Analysis

This section presents the proposed timing analysis which formally bounds the WCRT of each
task t ∈ T and the WCTT of each inter-tile message m ∈ M using the arbitration tuples
calculated in the scheduling step. The timing analysis is performed compositionally [20], so
that the worst-case timing behavior of each task/message is decomposed into several timing
contributions on different resources which are analyzed separately and, then, are combined
to obtain globally safe timing guarantees. The obtained task/message latency bounds are
then used to bound the worst-case latency (makespan) and throughput of the mapping.

5.1 Worst-Case Response Time
The WCRT of a task denotes the worst-case time interval between its start time and
completion time, subject to the worst-case timing interferences that may arise on shared
resources due to the presence of interfering requests. In each iteration of its execution, a
task reads its required data and input messages from the memory, performs its processing,
and writes its output messages into the memory. In general, two sources of interference may
occur here: (a) bus interferences when accessing memory and (b) preemption delays on the
cores. Therefore, the WCRT of each task t ∈ T can be bounded as:

WCRT(t, c, q, b) = WCET(t, c) + MD(t) · ST(q, b) + Ibus(t, c, q, b) + Icore(t, c, q, b) (1)

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:15

where WCET(t, c) denotes the worst-case execution time of t on core c in isolation, assuming
a zero delay for bus and memory. MD(t) denotes the memory demand (number of single-
word memory accesses) of t, and ST(q, b) denotes the service time of memory q over bus b,
i.e., the turnaround delay of a single-word memory access in absence of bus interferences.
Ibus(t, c, q, b) denotes the worst-case delay introduced due to interferences on bus b over
which memory q is accessed. Icore(t, c, q, b) denotes the worst-case preemption delay imposed
on t’s execution on c. Here, WCET(t, c) and MD(t) are provided by the application, ST(q, b)
is provided by the architecture, and Ibus(t, c, q, b) and Icore(t, c, q, b) are derived as follows.

5.1.1 Memory Bus Interference
Given that task t executed on core c accesses memory q over bus b, we bound the worst-case
memory bus interference Ibus(t, c, q, b) based on the memory demand MD(t) of t, the service
time ST(q, b) of memory q accessed over bus b, and the arbitration tuple (Sb,W c

b , P
c
b) for core

c on bus b. To this end, we first derive the maximum number of dedicated bus arbitration
slots, denoted by N(t, c, q, b), that t may require for performing MD(t) memory operations:
On the one hand, N(t, c, q, b) can never exceed MD(t), since each bus arbitration slot is
necessarily long enough to allow performing at least one single-word memory access, i.e.,
Sb ≥ ST(q, b). On the other hand, N(t, c, q, b) can never exceed the maximum number of bus
arbitration slots that may pass during t’s execution when performing its memory accesses in
absence of bus interferences. Thus, N(t, c, q, b) can be bounded as:

N(t, c, q, b) = min
{
MD(t),

⌈
WCET(t, c) + MD(t) · ST(q, b)

Sb

⌉}
(2)

In the worst case, the memory accesses of t are distributed such that each of the N(t, c, q, b)
required bus slots falls into a separate bus arbitration period. In each bus arbitration period,
a worst-case wait time of (P cb −W c

b · Sb) may be imposed on t’s execution before t acquires
the bus ownership. Therefore, the overall bus interference can be bounded as:

Ibus(t, c, q, b) = N(t, c, q, b) · (P cb −W c
b · Sb) (3)

In some cases, a memory access may be initiated so late that it cannot be completed before
the end of the respective bus arbitration slot. To compensate for this misalignment, the
arbitration delay Db of each bus b ∈ B is extended by the service time ST(q, b) of its
memory q. This practice (a) allows late memory accesses to be completed before the next
bus arbitration slot is assigned and, thereby, (b) eliminates memory interferences due to
overlapping memory accesses from different bus masters in consecutive bus slots. Note that,
if t accesses multiple memories, the analysis above must be applied for each memory bus bi
over which t performs MDi(t) accesses to memory qi with a service time of ST(qi, bi).

5.1.2 Core Preemption Delay
We bound the worst-case preemption delay of task t on core c based on its arbitration tuple
on c, i.e., (Sc,W t

c , P
t
c), and the arbitration tuple of c on the bus b over which c accesses

memory q, i.e., (Sb,W c
b , P

c
b). In each iteration of its execution, t requires an overall dedicated

processor time of (WCET(t, c) + MD(t) · ST(q) + Ibus(t, c, q, b)) on core c to complete its
processing and perform its memory accesses over the shared bus. In each scheduling period
of c, an overall processor time of (W t

c · Sc) is dedicated to t and, hence, a worst-case periodic

ECRTS 2019

12:16 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

wait time of (P tc −W t
c · Sc) is imposed on t’s execution due to preemption. Thus, the overall

preemption delay imposed on t’s execution can be bounded as:

Icore(t, c, q, b) =
⌈
WCET(t, c) + MD(t) · ST(q) + Ibus(t, c, q, b)

W t
c · Sc

⌉
·
(
P tc −W t

c · Sc
)

(4)

where the first factor derives the maximum number of scheduling periods over which the
execution of t may span, and the second factor reflects the worst-case wait time imposed
per scheduling period. Note that, also here, a memory access may be initiated so late
that it cannot be completed before the end of the scheduling slot. To compensate for this
misalignment, the context-switch latency Dc of each core c ∈ C is extended by the maximum
service time among all memories accessible to c to allow an initiated memory access to be
completed before the following context switch on c.

5.2 Worst-Case Traversal Time
The WCTT of an inter-tile message m denotes its worst-case transfer latency from the
memory in which m is stored on the source tile to the respective target memory on m’s
destination tile. This transfer is realized in three steps: (I) the TX tx on the source tile
reads m from memory q over bus b, decomposes it into flits, and injects the flits into the
NoC. (II) the flits are routed over m’s NoC route ρ to the destination tile. Once arrived at
the destination tile, (III) the RX rx reconstructs m and writes it into m’s dedicated space in
memory q̂ over bus b̂. Therefore, the WCTT of message m can be bounded as:

WCTT(m, tx, q, b, ρ, rx, q̂, b̂) = Dtx(m, tx, q, b) +Dnoc(m, ρ) +Drx(m, rx, q̂, b̂) (5)

where Dtx(m, tx, q, b), Dnoc(m, ρ), and Drx(m, rx, q̂, b̂) respectively denote the worst-case
latency of the transfer steps (I)–(III) above which we analyze in the following.

5.2.1 TX/RX Latency
Reading message m from memory q over bus b for injection into the NoC is subject to
two sources of interference: (a) TX interference (as multiple outbound messages may be
transmitted concurrently from the tile) and (b) bus interference (when TX accesses memory
for reading m). We assume that, in each bus arbitration period, bus slots dedicated to TX
tx are used for reading one message only, resulting in an equivalent tx slot length of one
bus period, i.e., Stx = P tx

b . To bound the TX latency Dtx(m, tx, q, b), we first derive the
maximum number of bus slots, denoted as N(m, q, b), that can be required in the worst case
for reading m from memory q: In each bus arbitration slot, a total of dSb/ST(q, b)e consecutive
memory accesses can be initiated and completed. Hence, given m’s memory demand MD(m)
(number of memory accesses required for reading m), N(m, q, b) is calculated as:

N(m, q, b) =
⌈
MD(m) ·

⌈
Sb

ST(q, b)

⌉−1
⌉

(6)

Given N(m, q, b), we use Equation (7) to bound the TX latency based on the arbitra-
tion tuple of tx on bus b, i.e., (Sb,W tx

b , P
tx
b), and the arbitration tuple of m on tx, i.e.,

(Stx ,W
m
tx , P

m
tx) where Stx = P tx

b as discussed above. The first summand in Equation (7)
bounds the overall memory service time for the MD(m) memory accesses required for reading
m from memory in absence of bus and TX interferences. The second summand calculates the
worst-case bus interference imposed when reading m: Here, the first factor gives the number

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:17

of bus arbitration periods that may pass before acquiring all N(m, q, b) bus slots required
for reading m, and the second factor gives the worst-case wait time imposed per bus period.
Finally, the third summand in Equation (7) calculates the worst-case TX interference: Here,
the first factor calculates the number of tx arbitration periods involved in the transfer of m,
and the second factor gives the worst-case wait time per tx period. We use the same analysis
to bound the RX latency, i.e., Drx(m, rx, q̂, b̂) in Equation (5).

Dtx(m, tx, q, b) = MD(m) · ST(q, b) +
⌈
N(m, q, b)
W tx
b

⌉
·
(
P tx
b −W tx

b · Sb
)

+
⌈⌈
N(m, q, b)
W tx
b

⌉
· 1
Wm

tx

⌉
· (Pmtx −Wm

tx · Stx)
(7)

5.2.2 NoC Latency
We bound the worst-case NoC routing latency of message m over route ρ based on the
arbitration tuple of m on the links in ρ, i.e., (Sρ,Wm

ρ , P
m
ρ), using Equation (8) adopted

from [48]. Here, fm denotes the number of m’s flits which is calculated based on its payload
size PLD(m), |ρ| gives the length of route ρ in number of hops, τnoc denotes the length of
one NoC clock cycle which also gives the length of one link arbitration slot (Sρ = τnoc), and
Drouter gives the latency of a NoC router in clock cycles. The first summand in Equation (8)
derives the transfer latency of fm flits in absence of interferences on ρ. The second summand
bounds the worst-case interferences on ρ: Here, the first factor gives the maximum number
of link arbitration periods in which m’s flits may be stalled due to interfering flows, and the
second factor gives the worst-case wait time per link arbitration period, see [48].

Dnoc(m, ρ) = (fm− 1 + |ρ|·Drouter)·τnoc +
(⌈ fm

Wm
ρ

⌉
− 1 + |ρ|

)
·
(
Pmρ −Wm

ρ ·τnoc
)

(8)

5.3 Worst-Case Throughput and Latency
Given the WCRT of each task t ∈ T , in short, WCRT(t), and the WCTT of each inter-tile
messagem ∈M , in short, WCTT(m), the worst-case throughput of the mapping is calculated
using Equation (9). Likewise, the worst-case application latency (makespan) is calculated
using Equation (10) where Π denotes the set of all end-to-end paths in the application graph.

T H = max
{

max
t∈T
{WCRT(t)} , max

m∈M
{WCTT(m)}

}−1
(9)

L = max
π∈Π

{∑
t∈(T∩π)

WCRT(t) +
∑

m∈(M∩π)
WCTT(m)

}
(10)

6 Experimental Results

This section presents the results of a series of experiments for a variety of applications and
architectures to compare the performance of the proposed isolation-aware approach with
existing fixed-isolation-scheme approaches w.r.t. the quality of delivered mappings.

6.1 Experiment Setup
Applications and Architectures. We use four real-time applications from the domains of
networking (7 tasks, 9 messages), consumer (11 tasks, 12 messages), telecommunication (14
tasks, 20 messages), and automotive (18 tasks, 21 messages), provided by the Embedded

ECRTS 2019

12:18 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

System Synthesis Benchmarks Suite (E3S) [11]. For target platform, we use three heteroge-
neous many-core architectures with 4×4, 5×5, and 6×6 tiles, respectively. Each architecture is
composed of three tile types. Each tile comprises four homogeneous cores, a shared memory,
a NA with separate TX and RX units, and a shared memory bus. Every shared resource has
a WRR arbitration policy configured as follows: For each core, an arbitration capacity of
K=10, a slot length of S=50 us, and a context switch overhead of D=10 us is considered.
On each bus, each bus master (TX, RX, and four cores) has an arbitration weight of W =1,
resulting in a bus arbitration capacity of K=6. The length of each bus slot S is set equal to
the memory service time of 7 clock cycles. For NoC links, we consider an arbitration capacity
of K=10 and a slot length S= τnoc =10ns. For each TX/RX, an arbitration capacity of
K=10 and a slot length equal to the bus arbitration period is considered, cf. Section 5.2.1.

Design Objectives. We use three design objectives which are commonly considered in the
DSE of predictable and composable many-core systems: (I) worst-case latency derived using
the proposed timing analysis, (II) resource usage calculated (in number of cores) as the
sum of time slots reserved on each core divided by core arbitration capacity K = 10, and
(III) energy consumption, calculated based on the processor power parameters provided
by [11] for each investigated benchmark application and the NoC/bus energy model from [52],
assuming a link length of 2mm and a bus length of 5mm.

Design Space Exploration. To perform the DSE, we use the OpenDSE framework [38]
and the NSGA-II [10] multi-objective evolutionary algorithm provided by the optimization
framework Opt4J [30]. Each run of the DSE features 4,000 iterations with 25 mappings
generated per iteration and a population size of 100 mappings. The results reported in this
section are an average over 20 runs of the DSE for each application on each architecture.

Investigated Approaches. We compare the proposed isolation-aware DSE approach with
the three major fixed-isolation-scheme DSE approaches, namely, core sharing, core reservation,
and tile reservation. For each approach, the DSE delivers a set of mappings with Pareto-
optimal trade-offs in the space of the three design objectives above. We compare the DSE
approaches in terms of the quality of mappings they deliver.

Quality Metric. To compare the quality of mappings obtained by the investigated DSE
approaches, we use the well-established ε-dominance metric [28] from the domain of multi-
objective optimization, defined as follows: Let F ⊆ R+N represent a set of Pareto-optimal
mappings f ∈ F obtained by an optimization approach in the space of design objectives
o1, ..., oN to be minimized. Let S ⊆ R+N represent a reference set containing the true
Pareto-optimal mappings for the optimization problem in question. To assess the quality of
mappings in F w.r.t. S, ε-dominance provides a unary indicator εF ∈ [0, 1) calculated as:

εF = min{0 ≤ ε < 1 | ∀s ∈ S : ∃f ∈ F s.t. (1− ε)·fon ≤ son ∀n = 1, ..., N} (11)

where fon
and son

denote the quality of mappings f ∈ F and s ∈ S, respectively, w.r.t. design
objective on. A smaller value for εF indicates a smaller distance between the mappings in F
and those in the reference set S w.r.t. the design objectives which, in turn, denotes a higher
quality of mappings in F . For our following experiments, the reference set S is constructed
by collecting the mappings obtained by the four approaches under analysis in one set.

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:19

6.2 Result Discussion

Figure 8 illustrates, for each benchmark application on each many-core architecture, the
ε-dominance indicator for the proposed approach and the three fixed-isolation-scheme ap-
proaches across their exploration run time. The plots in each row correspond to the same
application, and the plots in each column correspond to the same architecture. In general,
the quality of mappings collected by each approach improves as the exploration progresses,
resulting in a decrease in the ε indicator of each approach throughout the course of its opti-
mization iterations. Also, the exploration time of each approaches grows with the application
size (compare the plots in one column) and architecture size (compare the plots in one
row). The results illustrated in Figure 8 uniformly verify that (a) the proposed approach
always outperforms the approaches with a fixed isolation scheme, irrespective of the choice
of application and architecture, which is indicated by its lower ε-dominance indicator at the
end of its exploration. Moreover, (b) the proposed approach exhibits an exploration run time
within the same range as the other approaches and, hence, does not impact the scalability of
the optimization approach adversely. Among the other approaches, core reservation generally
performs better than core sharing and tile reservation for most of cases. Core sharing exhibits
the worst quality of solutions for all applications and architectures. Considering all 12 com-
binations of applications and architectures, the proposed isolation-aware approach achieves
an ε-dominance improvement of up to 67% (compared with the core-sharing approach) with
an average improvement of 26% over the three fixed-isolation-scheme approaches.

To reason about these quality differences, we investigate the distribution of the mappings
delivered by each DSE approach in the 3D objective space. Figure 9 illustrates this using
two 2D projections of the objective space for two exemplary applications on the 6×6
architecture. Similar distributions are obtained for other applications and architectures. For
each application (column), the x-axes in both projections denote resource usage while the
y-axes denote worst-case latency (top) and energy consumption (bottom). As illustrated,
solutions delivered by the core-sharing approach exhibit low resource usage, as this approach
allocates a minimal resource budget, just enough to meet the deadlines of tasks/messages.
This, however, implies a high worst-case inter-application interference and, thus, considerably
high worst-case latency and energy consumption. The tile-reservation approach, on the other
hand, allocates compute tiles exclusively (thus, higher resource usage) which eliminates all
on-tile inter-application interferences (thus, lower latency and energy). When considering all
objectives together, both of these approaches need a large scaling factor ε to compensate for
their inferior objective values, explaining their poor (high) ε-dominance indices in Figure 8.
A compromise between these approaches is achieved by core reservation which restricts the
exclusive allocation of resources to cores, leading to a moderate trade-off between resource
usage, latency, and energy consumption and, thus, a better (lower) ε-dominance index.

The fixed isolation scheme of the approaches above excludes large parts of the actual
solution space and, thus, restricts their coverage of the objective space to a considerably
smaller sub-region. Contrary to them, the proposed approach covers and extends beyond the
solution space of these approaches as it explores the isolation schemes in combination within
each mapping, also reflected by the wide spread of its solutions in Figure 9. As a result, it
can find solutions of higher quality and, thus, outperforms the other approaches as confirmed
by its lower ε-dominance index in Figure 8 for all investigated applications and architectures.

ECRTS 2019

12:20 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

0 50 100 150
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

4×4 NoC - Networking

0 100 200
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

4×4 NoC - Consumer

0 100 200 300
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

4×4 NoC - Telecommun.

0 200 400
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

4×4 NoC - Automotive

0 100 200
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

5×5 NoC - Networking

0 100 200 300
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

5×5 NoC - Consumer

0 200 400
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

5×5 NoC - Telecommun.

0 200 400
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

5×5 NoC - Automotive

0 100 200
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

6×6 NoC - Networking

0 200 400
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

6×6 NoC - Consumer

0 200 400
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

6×6 NoC - Telecommun.

0 200 400 600
0

0.2
0.4
0.6
0.8

exploration run time [s]

ε-
do

m
in

an
ce

6×6 NoC - Automotive

isolation aware (proposed) core sharing core reservation tile reservation

Figure 8 ε-dominance of the investigated DSE approaches versus their exploration run time.
Plots in each column (row) correspond to the same many-core architecture (application). The
proposed isolation-aware approach outperforms existing fixed-isolation-scheme approaches for all
applications and architectures, denoted by its lower ε-dominance indicator.

7 Conclusion

Applications in composable many-core systems are typically developed with the assumption
of a fixed inter-application isolation scheme which restricts the resource allocation policy of
the applications and, therefore, their quality trade-off w.r.t. resource usage and worst-case
timing. To lift this restriction, we have proposed (a) an isolation-aware Design Space
Exploration (DSE) which explores the isolation schemes per allocated core/tile within each
mapping and (b) an isolation-aware timing analysis to formally bound the worst-case timing
properties of each explored mapping. For a variety of hard real-time applications and many-
core architectures, we have experimentally demonstrated the advantage of the proposed
approach over existing fixed-isolation-scheme approaches w.r.t. the quality of the delivered
solutions in terms of resource usage, worst-case latency, and energy consumption.

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:21

0 5 10 15 20 25
2

4

6

8

resource usage

la
te

nc
y

[m
s]

Networking

0 5 10 15 20 25
22

24

26

28

resource usage

en
er

gy
[m

J]

Networking

0 10 20 30 40 50
1

3

5

resource usage

la
te

nc
y

[m
s]

Telecommunication

0 10 20 30 40 50

5

10

15

resource usage

en
er

gy
[m

J]

Telecommunication

isolation aware (proposed) core sharing core reservation tile reservation

Figure 9 2D projections of the 3D objective space showing the spread of solutions delivered by
each DSE approach for two exemplary applications (columns) on the 6×6 many-core architecture.

References
1 Benny Akesson, Anca Molnos, Andreas Hansson, Jude Ambrose Angelo, and Kees Goossens.

Composability and predictability for independent application development, verification, and
execution. In Multiprocessor System-on-Chip, pages 25–56. Springer, 2011.

2 Sebastian Altmeyer, Robert I Davis, Leandro Indrusiak, Claire Maiza, Vincent Nelis, and Jan
Reineke. A generic and compositional framework for multicore response time analysis. In
Proceedings of the Conference on Real Time Networks and Systems (RTNS), pages 129–138.
ACM, 2015.

3 Tobias Blickle, Jürgen Teich, and Lothar Thiele. System-level synthesis using evolutionary
algorithms. Design Automation for Embedded Systems, 3(1):23–58, 1998.

4 Tilera Corporation. Tile Processor Architecture Overview for the TILE-Gx Series, 2012.
5 William J Dally. Virtual-channel flow control. IEEE Transactions on Parallel and Distributed

systems, 3(2):194–205, 1992.
6 Dakshina Dasari, Vincent Nelis, and Benny Akesson. A framework for memory contention

analysis in multi-core platforms. Real-Time Systems, 52(3):272–322, 2016.
7 Lawrence Davis. Handbook of genetic algorithms. VNR computer library. Van Nostrand

Reinhold, 1991.
8 Robert I Davis, Sebastian Altmeyer, Leandro S Indrusiak, Claire Maiza, Vincent Nelis, and Jan

Reineke. An extensible framework for multicore response time analysis. Real-Time Systems,
pages 1–55, 2017.

9 Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice Couvert,
Benoit Ganne, Pierre Guironnet de Massas, François Jacquet, Samuel Jones, Nicolas Morey
Chaisemartin, Frédéric Riss, et al. A clustered manycore processor architecture for embed-
ded and accelerated applications. In Proceedings of High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2013.

10 Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

ECRTS 2019

12:22 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

11 Robert Dick. Embedded system synthesis benchmarks suite (E3S), 2010. URL: http://
ziyang.eecs.umich.edu/~dickrp/e3sdd/.

12 Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In Proceedings of the International Conference
on Genetic Algorithms, pages 416–423. Morgan Kaufmann Publishers Inc., 1993.

13 Carlos M Fonseca and Peter J Fleming. An overview of evolutionary algorithms in multiobjec-
tive optimization. Evolutionary computation, 3(1):1–16, 1995.

14 Michael R Garey and David S Johnson. A Guide to the Theory of NP-Completeness. Computers
and Intractability, pages 37–79, 1990.

15 Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele. Timed model
checking with abstractions: Towards worst-case response time analysis in resource-sharing
manycore systems. In Proceedings of the International Conference on Embedded Software,
pages 63–72. ACM, 2012.

16 Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems. In Proceedings of the
International Conference on Embedded Software, page 17. ACM, 2013.

17 Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele, and
Benoît Dupont de Dinechin. Mixed-criticality scheduling on cluster-based manycores with
shared communication and storage resources. Real-Time Systems, 52(4):399–449, 2016.

18 Michael Glaß, Jürgen Teich, Martin Lukasiewycz, and Felix Reimann. Hybrid optimization
techniques for system-level design space exploration. In Handbook of Hardware/Software
Codesign, volume 1, pages 217–246. Springer, 2017.

19 Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev Gomony, Sven Goossens,
Martijn Koedam, Yonghui Li, Davit Mirzoyan, Anca Molnos, Ashkan Beyranvand Nejad, et al.
Virtual execution platforms for mixed-time-criticality systems: the CompSOC architecture
and design flow. ACM SIGBED Review, 10(3):23–34, 2013.

20 Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution
time analysis: definition and challenges. ACM SIGBED Review, 12(1):28–36, 2015.

21 Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. CoMPSoC: A template for
composable and predictable multi-processor system on chips. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 14(1):2, 2009.

22 Jan Heisswolf, Ralf König, Martin Kupper, and Jürgen Becker. Providing multiple hard
latency and throughput guarantees for packet switching networks on chip. Computers &
Electrical Engineering, 39(8):2603–2622, 2013.

23 Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl,
David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, et al. A 48-core IA-32 message-
passing processor with DVFS in 45nm CMOS. In International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 108–109. IEEE, 2010.

24 Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk. Evaluation of resource arbitration
methods for multi-core real-time systems. In Proceedings of the workshop on Worst-Case
Execution Time Analysis (WCET). Schloss Dagstuhl-Leibniz-Zentrum f̈r Informatik, 2013.

25 James Kennedy. Particle swarm optimization. Encyclopedia of Machine Learning, pages
760–766, 2010.

26 Pham Nam Khanh, Amit Kumar Singh, Akash Kumar, and Khin Mi Mi Aung. Incorporating
energy and throughput awareness in design space exploration and run-time mapping for
heterogeneous MPSoCs. In Proceedings of the Euromicro Conference on Digital System Design
(DSD), pages 513–521. IEEE, 2013.

27 Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

28 Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combining convergence
and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263–
282, 2002.

http://ziyang.eecs.umich.edu/~dickrp/e3sdd/
http://ziyang.eecs.umich.edu/~dickrp/e3sdd/

B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 12:23

29 Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. SAT-decoding in
evolutionary algorithms for discrete constrained optimization problems. In Proceedings of the
IEEE Congress onEvolutionary Computation, pages 935–942. IEEE, 2007.

30 Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich. Opt4J: a modular
framework for meta-heuristic optimization. In Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO), pages 1723–1730. ACM, 2011.

31 Martin Lukasiewycz, Shanker Shreejith, and Suhaib A Fahmy. System simulation and
optimization using reconfigurable hardware. In International Symposium on Integrated Circuits
(ISIC), pages 468–471, 2014.

32 Guilherme Madalozzo, Liana Duenha, Rodolfo Azevedo, and Fernando G Moraes. Scalability
evaluation in many-core systems due to the memory organization. In Proceedings of the
International Conference on Electronics, Circuits and Systems (ICECS), pages 396–399. IEEE,
2016.

33 Giovanni Mariani, Prabhat Avasare, Geert Vanmeerbeeck, Chantal Ykman-Couvreur, Gianluca
Palermo, Cristina Silvano, and Vittorio Zaccaria. An industrial design space exploration
framework for supporting run-time resource management on multi-core systems. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition (DATE), pages
196–201, 2010.

34 Tulika Mitra, Jürgen Teich, and Lothar Thiele. Time-Critical Systems Design: A Survey.
IEEE Design & Test, 35(2):8–26, 2018.

35 Lionel M Ni and Philip K McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26(2):62–76, 1993.

36 Roberta Piscitelli and Andy D Pimentel. Design space pruning through hybrid analysis in
system-level design space exploration. In Proceedings of the Conference on Design, Automation
and Test in Europe Conference and Exhibition (DATE), pages 781–786. IEEE, 2012.

37 Behnaz Pourmohseni, Stefan Wildermann, Michael Glaß, and Jürgen Teich. Hard real-time
application mapping reconfiguration for NoC-based many-core systems. Real-Time Systems,
pages 1–37, 2019.

38 Felix Reimann, Martin Lukasiewycz, Michael Glaß, and Fedor Smirnov. OpenDSE – open
design space exploration framework, 2018. URL: http://opendse.sourceforge.net/.

39 Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A definition and classification of timing anomalies. In Proceedings of the
International Workshop on Worst-Case Execution Time Analysis (WCET). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2006.

40 Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I Davis, and Sebastian Altmeyer. Response
Time Analysis of Synchronous Data Flow Programs on a Many-Core Processor. In Proceedings
of the conference on Real-Time Networks and Systems (RTNS), pages 67–76. ACM, 2016.

41 Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening contention delays while
scheduling parallel applications on multi-core architectures. ACM Transactions on Embedded
Computing Systems (TECS), 16(5s):164, 2017.

42 Pradip Kumar Sahu, Tapan Shah, Kanchan Manna, and Santanu Chattopadhyay. Application
mapping onto mesh-based network-on-chip using discrete particle swarm optimization. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 22(2):300–312, 2014.

43 Z. Shi and A. Burns. Real-Time Communication Analysis for On-Chip Networks with Wormhole
Switching. In International Symposium on Networks-on-Chip (NOCS), pages 161–170, 2008.

44 Amit Kumar Singh, Akash Kumar, and Thambipillai Srikanthan. Accelerating throughput-
aware runtime mapping for heterogeneous MPSoCs. ACM Transaction on Design Automation
of Electronic Systems (TODAES), 18(1):9:1–9:29, 2013.

45 Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. Mapping on
multi/many-core systems: survey of current and emerging trends. In Proceedings of the Design
Automation Conference (DAC), pages 1–10, 2013.

ECRTS 2019

http://opendse.sourceforge.net/

12:24 Isolation-Aware Timing Analysis and Design Space Exploration for Many-Cores

46 Stefanos Skalistis and Alena Simalatsar. Worst-case execution time analysis for many-core
architectures with NoC. In International Conference on Formal Modeling and Analysis of
Timed Systems, pages 211–227. Springer, 2016.

47 Stefanos Skalistis and Alena Simalatsar. Near-optimal deployment of dataflow applications on
many-core platforms with real-time guarantees. In Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition (DATE), pages 752–757. IEEE, 2017.

48 Andreas Weichslgartner, Deepak Gangadharan, Stefan Wildermann, Michael Glaß, and Jürgen
Teich. DAARM: Design-time application analysis and run-time mapping for predictable
execution in many-core systems. In Proceedings of the International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, 2014.

49 Andreas Weichslgartner, Stefan Wildermann, Deepak Gangadharan, Michael Glaß, and Jürgen
Teich. A design-time/run-time application mapping methodology for predictable execution
time in MPSoCs. ACM Transactions on Embedded Computing Systems (TECS), 2018.

50 Andreas Weichslgartner, Stefan Wildermann, Michael Glaß, and Jürgen Teich. Invasive
Computing for mapping parallel programs to many-core architectures. Springer, 2018.

51 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, et al. The
worst-case execution-time problem-overview of methods and survey of tools. ACM Transactions
on Embedded Computing Systems (TECS), 7(3):36, 2008.

52 Pascal T Wolkotte, Gerard JM Smit, Nikolay Kavaldjiev, Jens E Becker, and Jürgen Becker.
Energy model of networks-on-chip and a bus. In Proceedings of the International Symposium
on System-on-Chip (SoC), pages 82–85, 2005.

53 Chantal Ykman-Couvreur, Prabhat Avasare, Giovanni Mariani, Gianluca Palermo, Cristina
Silvano, and Vittorio Zaccaria. Linking run-time resource management of embedded multi-core
platforms with automated design-time exploration. IET Computers and Digital Techniques,
5(2):123–135, 2011.

54 Jia Zhan, Nikolay Stoimenov, Jin Ouyang, Lothar Thiele, Vijaykrishnan Narayanan, and
Yuan Xie. Designing energy-efficient NoC for real-time embedded systems through slack
optimization. In Proceedings of the Design Automation Conference (DAC), pages 1–6. IEEE,
2013.

GEDF Tardiness: Open Problems Involving
Uniform Multiprocessors and Affinity Masks
Resolved
Stephen Tang
Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
sytang@cs.unc.edu

Sergey Voronov
Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
rdkl@cs.unc.edu

James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
anderson@cs.unc.edu

Abstract
Prior work has shown that the global earliest-deadline-first (GEDF) scheduler is soft real-time
(SRT)-optimal for sporadic task systems in a variety of contexts, meaning that bounded deadline
tardiness can be guaranteed under it for any task system that does not cause platform overutilization.
However, one particularly compelling context has remained elusive: multiprocessor platforms in
which tasks have affinity masks that determine the processors where they may execute. Actual
GEDF implementations, such as the SCHED_DEADLINE class in Linux, have dealt with this unresolved
question by foregoing SRT guarantees once affinity masks are set. This unresolved question, as it
pertains to SCHED_DEADLINE, was included by Peter Zijlstra in a list of important open problems
affecting Linux in his keynote talk at ECRTS 2017. In this paper, this question is resolved along
with another open problem that at first blush seems unrelated but actually is. Specifically, both
problems are closed by establishing two results. First, a proof strategy used previously to establish
GEDF tardiness bounds that are exponential in size on heterogeneous uniform multiprocessors
is generalized to show that polynomial bounds exist on a wider class of platforms. Second, both
uniform multiprocessors and identical multiprocessors with affinities are shown to be within this
class. These results yield the first polynomial GEDF tardiness bounds for the uniform case and the
first such bounds of any kind for the identical-with-affinities case.

2012 ACM Subject Classification Software and its engineering → Real-time schedulability

Keywords and phrases scheduling theory, multicore, processor affinity masks, GEDF, uniform
multiprocessors

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.13

Related Version A full version of the paper is available at http://www.cs.unc.edu/~anderson/
papers.html.

Funding Work supported by NSF grants CNS 1409175, CNS 1563845, CNS 1717589, and CPS
1837337, ARO grant W911NF-17-1-0294, and funding from General Motors.

1 Introduction

The global earliest-deadline-first (GEDF) scheduler has received considerable prior attention.
One attractive property of GEDF is that its use ensures guaranteed bounded deadline
tardiness on certain multiprocessor platform types for any sporadic task system that does
not cause platform overutilization [5, 9]. In this sense, GEDF is considered an optimal soft

© Stephen Tang, Sergey Voronov, and James H. Anderson;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sytang@cs.unc.edu
mailto:rdkl@cs.unc.edu
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.13
http://www.cs.unc.edu/~anderson/papers.html
http://www.cs.unc.edu/~anderson/papers.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

real-time (SRT) scheduler. This SRT-optimality is significant enough to warrant mention in
the documentation of SCHED_DEADLINE [2], Linux’s implementation of GEDF. A practical
use by SCHED_DEADLINE of this optimality is the ability to perform online admission control.

A major caveat of GEDF’s SRT-optimality is that it was originally proven only for
processors with identical speeds [5]. Processor models that break this assumption, called
heterogeneous multiprocessors, tend to fundamentally break the proof techniques applied to
the identical model. Only one prior work [9] has succeeded in extending the SRT-optimality
of GEDF to a multiprocessor model with heterogeneity, namely the uniform model, which
allows speed differences among processors. This work required years of thought and several
new proof techniques but only yielded tardiness bounds that are exponential in size.

Affinity masks. Heterogeneity is also introduced by the usage of affinity masks. A task’s
affinity mask (typically a bit vector) indicates the processors upon which it may execute.
Affinity masks are useful for preventing excessive task migrations and can be used to take
better advantage of cache hierarchies. Also, global, clustered, and partitioned scheduling can
all be expressed using affinity masks.

Affinity masks introduce heterogeneity by removing the symmetry among processors. An
important property used to prove the SRT-optimality of GEDF without affinities is that the
existence of an idle processor is a sufficient condition for a pending task to begin executing.
With this property, showing that a task of interest makes progress merely requires showing
that some processor becomes idle in a bounded amount of time. With affinity masks, this
proof strategy does not work. In particular, this strategy’s use would require showing that a
processor allowed by the considered task’s affinity mask becomes idle, and doing so over the
entire space of arbitrary affinity masks leads to a case explosion.

This difficulty has left unresolved the question of whether GEDF retains its SRT-optimality
with the introduction of affinity masks. This unresolved question has rendered systems
that support both GEDF and affinity masks incomplete. For example, in the case of
SCHED_DEADLINE, either admission control is disabled or affinity masks are forbidden alto-
gether. This specific gap between theory and implementation was mentioned by Peter Zijlstra
[10] in a keynote talk at ECRTS 2017 and by Luca Abeni [1] at RTSS 2017.

Contributions. In this paper, we close the open problem of whether GEDF retains its
SRT-optimality on identical multiprocessors with affinities by showing that it does, provided
the GEDF implementation maintains a certain task-migration property. We also establish
the first ever polynomial tardiness bounds for GEDF on uniform multiprocessors. While
these two platform models (uniform and identical with affinities) may seem unrelated to each
other, we shall see that they are.

These results hinge on three proof innovations. First, we introduce a layer of abstraction
between the processor models we consider and the tardiness analysis. This abstraction layer
is a property we call “HP-LAG,” which we prove is satisfied by GEDF on the models we
consider for all sporadic task systems that do not cause platform overutilization.1 This
strategy allows us to reason about tardiness without regard for specifics concerning the
underlying platform, and as a result, we are able to avoid the aforementioned case explosion.

Second, for the statement made in the prior paragraph concerning GEDF to be valid, the
definition of GEDF itself must be tailored for the specific platform type under consideration.
Prior work [9] has shown how to do so for the case of a uniform platform, and we show here

1 The concept of “overutilization” is more nuanced on uniform platforms and platforms with affinities
than on identical platforms with no affinities.

S. Tang, S. Voronov, and J. Anderson 13:3

how to do so for an identical platform with affinities by specifying rules that GEDF must
adhere to in this case. These rules specify when and how tasks must be migrated as scheduling
decisions are made. Now that these rules are known, actual implementations of GEDF on
systems that support affinity masks should be designed to uphold them. Unfortunately, as
we discuss in App. C, available online [7], the current SCHED_DEADLINE implementation does
not do so, so a refinement of it is needed if affinity masks are to be used alongside admission
control. In App. A, also available online [7], we present an algorithm that implements our
GEDF scheduling rules for affinity masks with lower time complexity than SCHED_DEADLINE,
given some preprocessing.

The last innovation is our improved tardiness analysis with less pessimism than prior work,
particularly with respect to uniform multiprocessor platforms. This required maintaining an
exponential number of invariants relative to prior work.

Organization. In the rest of this paper, we cover needed background and define the import-
ant concept of Lag, which is widely used in tardiness analysis (Sec. 2), list some general Lag
properties that are predicated upon tasks being periodic and executing for their worst-case re-
quirements (Sec. 3), define HP-LAG and present our tardiness analysis for HP-LAG-compliant
schedulers using said properties (Sec. 4), show that GEDF (if implemented appropriately) is
HP-LAG-compliant on both uniform multiprocessors (Sec. 5) and identical multiprocessors
with affinities (Sec. 6), show that our results extend to sporadic tasks that may execute for
less than their worst-case requirements (Sec. 7), explain why these results cannot be easily
extended to more general models (Sec. 8), and conclude (Sec. 9).

2 Background

We consider the problem of scheduling n implicit-deadline sporadic tasks τ = {τ1, . . . , τn} on
a multiprocessor π = {π1, . . . , πm} with m processors. We consider time to be continuous.
Each task τi releases a sequence of jobs with a minimum separation of Ti time units between
releases; Ti is called τi’s period. The jth released job of τi is denoted Ji,j , and its release
time is denoted ri,j . When this separation between the jobs of each task τi is exactly Ti, the
system is called periodic. With the assumption of implicit deadlines, the deadline of a job of
τi is exactly Ti time units after its release; the deadline of job Ji,j is denoted di,j = ri,j + Ti.
The amount of work that is needed to complete a job of τi is bounded by τi’s worst-case
execution requirement (WCER) Ci, the largest of which among the tasks in τ we denote as
Cmax. Note that Ci is typically called the worst-case execution time in the literature. This
is because much of the literature assumes that processors complete one unit of execution in
one unit of time. This assumption does not hold for some of the hardware platform models
we consider in this work (see Sec. 2.1). τi’s utilization is defined as ui = Ci/Ti. We let umin
be the smallest utilization among the tasks in τ . For any τ ′ ⊆ τ , we let Uτ ′ denote

∑
τi∈τ ′ ui.

A job is pending at time t if it has been released but has not completed. Likewise, a task is
pending at t if any of its jobs are pending at t. A job is ready at t if it is the earliest released
pending job from its task.

I Definition 1. If task τi is pending at time t, then we define its release time at t, denoted
ri(t), and its deadline at t, denoted di(t), as the release time and deadline, respectively, of
its ready job at time t. If τi is not pending at t, then we define di(t) =∞.

If a job has a deadline at time td and completes at time tc, then its tardiness is defined as
max(0, tc − td). The tardiness of a task is the supremum of the tardiness of any of its jobs.
If this value is finite, then we say that the task has bounded tardiness.

ECRTS 2019

13:4 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

In the real-time literature, both hard real-time (HRT) and soft real-time (SRT) systems
are considered. While SRT can be defined in different ways, we adopt the following definitions.
A task set τ is HRT-schedulable (resp., SRT-schedulable) under a given scheduling algorithm
if each task in τ has 0 (resp., bounded) tardiness in any schedule for τ generated by that
algorithm. A task set τ is HRT-feasible (resp., SRT-feasible) if it is HRT-schedulable (resp.,
SRT-schedulable) under some scheduling algorithm. A scheduler is HRT-optimal (resp.,
SRT-optimal) if it can schedule any HRT-feasible (resp., SRT-feasible) system.

2.1 Multiprocessor Platform Models
There exist several multiprocessor platform models in the literature that differ by how
execution speeds are allowed to vary. We formalize execution speeds as follows. Hereafter, we
let A(S, τi, t, t′) denote the cumulative execution allocated to jobs of task τi in the schedule
S in the time interval (t, t′).

I Definition 2. A time interval (t, t′) is a continuous scheduling interval if the assignment
of tasks to processors at t is maintained throughout (t, t′).

I Definition 3. Suppose task τi executes on processor πj over the continuous scheduling
interval (t, t′) in schedule S. If the speed of τi on πj is s, then A(S, τi, t, t′) = s(t′ − t).

In order of increasing generality, the platform models of relevance to us are as follows.
1. Identical. All tasks execute with speed 1.0 on all processors.
2. Uniform. Speeds may vary by processor, but not by task. Any task on processor πi

executes with speed si, which may differ from 1.0.
3. Unrelated. Speeds may vary by processor and by task. Task τi executes on processor πj

with speed si,j .

In addition to these models, the migration scheme can be one of two types.
1. Global. A task can be scheduled on any processor.
2. Affinity. A task can only be scheduled on a specific set of processors as defined by its

affinity mask. We let αi ⊆ π denote the set of processors allowed by τi’s affinity mask.

Note that global, clustered, and partitioned scheduling can all be defined using affinity
masks. We separate global scheduling as a separate case because some later proofs focus
on it exclusively. From this point on, global scheduling is assumed unless the -Aff suffix is
appended. For example, Identical and Identical-Aff refer to an identical multiprocessor under
global and affinity scheduling, respectively. Note that Unrelated generalizes not only Identical
and Uniform, but also affinity scheduling, as πj /∈ αi can be represented by letting si,j = 0.
Hence, all combinations of platform and migration scheme are generalized by Unrelated.

GEDF has been proven to be SRT-optimal under Identical, but no prior work has
generalized this to Identical-Aff. GEDF’s SRT-optimality has been generalized to Uniform [9],
but with exponential tardiness bounds. In this work, we establish the SRT-optimality of
GEDF with polynomial tardiness under both Uniform and Identical-Aff.

The SRT-optimality of GEDF under Uniform-Aff and Unrelated are difficult or impossible
to prove using the techniques of this work. We describe why in Sec. 8.

We will later show that the typical GEDF scheduling rules under Identical may be
insufficient to achieve SRT-optimality under the more general models. As such, we will later
define extended GEDF scheduling rules for Identical-Aff and Uniform, respectively (our rules
for Uniform are actually from [9]).

S. Tang, S. Voronov, and J. Anderson 13:5

The standard gedf scheduler under Identical is:
IG-GEDF: At every time instant, if more than m tasks are pending, then the m pending tasks

with the earliest deadlines are scheduled; otherwise, all pending tasks are scheduled.

The prefix “IG” denotes that this rule applies under Identical with global scheduling.
We will keep this notation when extending GEDF, denoting the extended GEDF rules for
Identical-Aff and Uniform as IA-GEDF and UG-GEDF, respectively. Under all GEDF variants
we consider, we assume deadline ties are broken in some arbitrary but consistent way (e.g.,
by task index). For any time instant t, for tasks τi and τj , we let di(t) ≺ dj(t) denote that
either di(t) < dj(t) holds or di(t) = dj(t) holds with the tie broken in τi’s favor. As we shall
see, IA-GEDF and UG-GEDF reduce to IG-GEDF when the underlying processor model is
Identical (note that both Uniform and Identical-Aff generalize Identical).

2.2 Lag
As in [5], our analysis is based on the concept of Lag. Lag compares the execution of a task
in a “real” schedule R to its allocation in an “ideal” schedule I.

I Definition 4. A non-fluid schedule is a schedule such that at any time instant t, there
exists some δ > 0 such that (t, t+ δ) is a continuous scheduling interval.

Implementable schedulers are non-fluid.

I Definition 5. We let R denote a non-fluid schedule produced under a considered scheduling
algorithm and multiprocessor platform.

I Definition 6. We let I denote a schedule that executes task τi on processor πi of speed ui.

Notice that I is defined with respect to a Uniform multiprocessor consisting of n processors
π1, ..., πn with speeds u1, ..., un, respectively, and not the actual platform π.

Under the implicit-deadline sporadic task model, every job executes in I from its release
until its completion without interference from other jobs or tasks (different tasks run on
different processors). If a job’s execution requirement is smaller than the WCER of its task,
then the job completes in the ideal schedule before its deadline; otherwise, it completes
exactly at its deadline. Thus, in I, at most one job from every task is ever scheduled.

We are now ready to formally define Lag.

I Definition 7. For a single task τi, Lagi(t) = A(I, τi, 0, t)− A(R, τi, 0, t). For the subset
τ ′ ⊆ τ , LAG(τ ′, t) =

∑
τi∈τ ′

Lagi(t).

3 General Lag Properties

In [9], Yang and Anderson showed how to generalize IG-GEDF to obtain a variant, which we
denote as UG-GEDF, that is SRT-optimal under Uniform. Yang and Anderson’s proof relied
on several properties of Lag that we make use of in this work. We repeat these properties
and proofs verbatim from [9], with minor wording changes. However, unlike [9], where these
properties were considered in the context of Uniform, we consider them in the context of
Unrelated. Because Unrelated generalizes all the models in Sec. 2.1, these Lag properties
apply to all the models considered in this work.

ECRTS 2019

13:6 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

Lemmas 10–12 rely on the following assumptions, which we henceforth assume until
stated otherwise.

Every task is periodic. (P)
Every job Ji,j has an execution requirement equal to Ci (the worst case for τi). (W)

So as to leave no doubt that the properties considered in this section hold under Unrelated,
we begin by listing all of the model-related concepts the proofs below will use:

the task-system parameters Ci, Ti, ui, ri(t), and di(t);
Lag and LAG, as defined in Def. 7;
the fact that I continuously executes task τi with speed ui, which follows from (P) and
(W), hence the need for these assumptions

[9] showed that removing (P) and (W) cannot cause greater tardiness in UG-GEDF under
Uniform. We will show the same for IA-GEDF under Identical-Aff later in Sec. 7.

I Lemma 8 (Property 1 of [9]). ∀τ ′ ⊆ τ : LAG(τ ′, t) is a continuous function of t.

Proof. By definition, A(S, τi, t, t′) is a continuous function in t and t′. By Def. 7, LAG(τ ′, t) =∑
τi∈τ ′

Lagτi
(t) =

∑
τi∈τ ′

(A(I, τi, 0, t) − A(R, τi, 0, t)). Because LAG(τ ′, t) is a finite sum of

continuous functions in t, it is continuous in t. J

I Lemma 9 (Lemma 1 of [9]). Lagi(t) > 0⇒ τi has a pending job at t.

Proof. We prove the lemma by contradiction. Suppose that Lagi(t) > 0 holds but τi is not
pending at t in R. Then, all jobs of τi released before or at t have completed by t. Let
W denote the total execution requirement of such jobs such that W = A(R, τi, 0, t). In
I, only released jobs can be scheduled and will not execute for more than their execution
requirement. Thus, A(I, τi, 0, t) ≤W holds as well. Therefore, by Def. 7, we have Lagi(t) =
A(I, τi, 0, t)−A(R, τi, 0, t) ≤ 0, a contradiction. J

I Lemma 10 (Lemma 2 of [9]). If task τi is pending at time t in R, then

t− Lagi(t)
ui

< di(t) ≤ t−
Lagi(t)
ui

+ Ti. (1)

Proof. Let ei(t) denote the remaining execution requirement for the ready job Ji,j of τi at
time t. Because this job is ready, it must not be complete, hence

0 < ei(t) ≤ Ci. (2)

All jobs of τi prior to Ji,j must have been completed by time t. Let E denote the total
execution requirement of these jobs. Then,

A(R, τi, 0, t) = E + Ci − ei(t). (3)

In I, all prior jobs of τi have completed by ri(t). Within (ri(t), t), I continuously executes
τi on a processor with speed ui. Thus,

A(I, τi, 0, t) = E + (t− ri(t))ui. (4)

S. Tang, S. Voronov, and J. Anderson 13:7

Given these facts, an expression for Lagi(t) can be derived as follows.

Lagi(t) = {by Def. 7}
A(I, τi, 0, t)−A(R, τi, 0, t)

= {by (3) and (4)}
(t− ri(t))ui − (Ci − ei(t))

= {because di(t) = ri(t) + Ti}
(t− di(t) + Ti)ui − (Ci − ei(t))

= {because uiTi = Ci}
(t− di(t))ui + ei(t)

By (2) and the above expression, we have

(t− di(t))ui < Lagi(t) ≤ (t− di(t))ui + Ci, (5)

which (using Ti = Ci/ui) can be rearranged to obtain (1). J

I Corollary 11 (Corollary 1 of [9]). If for some L > 0 we have ∀t, Lagi(t) ≤ L, then the
tardiness of task τi does not exceed L/ui.

Proof. We prove the corollary by contradiction. Suppose that

Lagi(t) ≤ L (6)

holds but τi has tardiness exceeding L/ui. Then, there exists a job Ji,j that is pending at
time t ≥ di,j where

t− di,j > L/ui. (7)

Because Ji,j is pending at t, τi’s ready job cannot have been released later than Ji,j . Thus,
di(t) ≤ di,j . Therefore,

t− di(t) ≥ t− di,j
> {by (7)}
L/ui

≥ {by (6)}
Lagi(t)/ui.

Rearrangement yields t− Lagi(t)/ui > di(t), which contradicts Lemma 10. J

I Lemma 12 (Lemma 4 of [9]). If a task τi has a pending job at t and for a task τj we have

1
uj

Lagj(t) + Tmax ≤
1
ui

Lagi(t), (8)

then di(t) < dj(t).

ECRTS 2019

13:8 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

Proof. Assume τj is pending at t, as otherwise dj(t) =∞, and we trivially have di(t) < dj(t).

di(t) ≤ {by Lemma 10}

t− Lagi(t)
ui

+ Ti

≤ {by (8)}

t−
Lagj(t)
uj

− Tmax + Ti

≤ {because − Tmax + Ti ≤ 0}

t−
Lagj(t)
uj

< {by Lemma 10}
dj(t) J

As a reminder, we are considering the properties in this section in the context of Unrelated.
This means these properties apply to all of our considered models.

4 Tardiness Bounds for HP-LAG-Compliant Schedulers

In this paper, we consider two Identical generalizations: Uniform and Identical-Aff. In order
to prove GEDF’s SRT-optimality under these different processor models, we provide an
abstraction layer called HP-LAG. Informally, HP-LAG states that the LAG of any subset of
tasks τ ′ with the earliest deadlines is temporarily non-increasing.
HP-LAG: For any time instant t, if τ ′ ⊆ τ is a set of pending tasks such that ∀τh ∈ τ ′ and

∀τ` ∈ τ/τ ′ we have dh(t) < d`(t), then ∃δ > 0 such that ∀t′ ∈ (t, t+δ) : LAG(τ ′, t) ≥
LAG(τ ′, t′).

I Definition 13. We say that a scheduler is HP-LAG-compliant under a given platform if
HP-LAG holds for any feasible task system τ under said platform model.

In this section, we show that every HP-LAG-compliant scheduler ensures bounded
tardiness under its considered platform model. We do this by extending the approach of [9]
by maintaining as invariants bounds on the LAG of every task subset; in [9], only a linear
(with respect to m) number of invariants is instead maintained. The LAG bound we define
for any subset of tasks τ ′ ⊆ τ is

β(τ ′) = Tmax
2umin

Uτ ′ (2Uτ − Uτ ′) . (9)

We will prove by contradiction that ∀τ ′ ⊆ τ ∀t : LAG(τ ′, t) ≤ β(τ ′) holds for any
HP-LAG-compliant scheduler. We continue to consider all properties in the context of
Unrelated. Thus, Lemmas 16, 17, 18, and 19 below hold for any scheduler that is HP-LAG-
compliant under any processor model that Unrelated generalizes. We begin by defining a set
of time instants that must exist if our LAG bounds are violated.

I Definition 14. We call a time instant t invalid if ∃τ ′ ⊆ τ such that ∀δ > 0 ∃t′ ∈ (t, t+ δ) :
LAG(τ ′, t′) > β(τ ′). τ ′ is called an attestant set of the invalid instant t.

Note that for any invalid instant, ∅ is never an attestant set because for any time instant t
we have LAG(∅, t) = 0 and β(∅) = 0.

S. Tang, S. Voronov, and J. Anderson 13:9

I Definition 15. If at least one invalid time instant exists, then we call the first2 such instant
a boundary instant, denoted tb. We let τ b denote an arbitrary attestant set of tb. We call
any task from τ b a boundary task.

Because tb is the first invalid instant, we can prove specific bounds on Lag values at tb.

I Lemma 16. For the boundary instant tb, the following three expressions hold.

∀τ ′ ⊆ τ : LAG(τ ′, tb) ≤ β(τ ′) (10)
LAG(τ b, tb) = β(τ b) (11)

∀δ > 0 ∃t′ ∈ (tb, tb + δ) : LAG(τ b, t′) > β(τ b) (12)

Proof. We prove (10) by contradiction. If for some τ ′ ⊆ τ , LAG(τ ′, tb) > β(τ ′), then, by
Lemma 8 (continuity of LAG(τ ′, t)), ∃δ > 0 ∀t′ ∈ (tb − δ, tb) : LAG(τ ′, t′) > β(τ ′). Thus,
time instant tb − δ is invalid with attestant set τ ′, which contradicts Def. 15.

By Defs. 14 and 15, ∀δ > 0 ∃t′ ∈ (tb, tb + δ) : LAG(τ b, t′) > β(τ b). By Lemma 8
(continuity of LAG(τ b, t)), we have LAG(τ b, tb) ≥ β(τ b). By (10), LAG(τ b, tb) ≤ β(τ b), so
(11) holds.

(12) follows from Defs. 14 and 15. J

I Lemma 17. For any boundary task τi at tb, Lagi(tb) ≥
Tmax
2umin

(2uiUτ − 2uiUτb + u2
i).

Proof.

Lagi(tb) = {by Def. 7}
LAG(τ b, tb)− LAG(τ b/{τi}, tb)

≥ {by (11), LAG(τ b, tb) = β(τ b), and by (10), LAG(τ b/{τi}, tb) ≤ β(τ b/{τi})}
β(τ b)− β(τ b/{τi})

= {by (9)}
Tmax
2umin

[Uτb (2Uτ − Uτb)]− Tmax
2umin

[
Uτb/{τi}

(
2Uτ − Uτb/{τi}

)]
= {by the definition of Uτb/{τi}}

Tmax
2umin

[Uτb (2Uτ − Uτb)]− Tmax
2umin

[(Uτb − ui) (2Uτ − Uτb + ui)]

= {rearranging}
Tmax
2umin

(2uiUτ − 2uiUτb + u2
i) J

Note that the Lag lower bound from Lemma 17 is strictly positive, because Uτ ≥ Uτb .
Thus, by Lemma 9, any boundary task τi is pending at tb. This proves the following lemma.

I Lemma 18. At the boundary time instant tb, every boundary task has a pending job.

As shown next, similar reasoning as in Lemma 17 can be used to upper bound the Lag
of non-boundary tasks. This allows us to establish a relationship between the deadlines of
boundary and non-boundary tasks.

2 It can be shown that the infimum of all invalid instants is itself an invalid instant. Hence, the first
invalid instant, tb, is well-defined.

ECRTS 2019

13:10 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

I Lemma 19. At time instant tb, every boundary task has an earlier deadline than any
non-boundary task (i.e., from τ/τ b).

Proof. For any non-boundary task τj ∈ τ/τ b, we have the following.

Lagj(tb) = {by Def. 7}

LAG(τ b ∪ {τj}, tb)− LAG(τ b, tb)

≤ {by (10), LAG(τ b ∪ {τj}, tb) ≤ β(τ b ∪ {τj}), and by (11), LAG(τ b, tb) = β(τ b)}

β(τ b ∪ {τj})− β(τ b)
= {by (9)}

Tmax
2umin

[
Uτb∪{τj }

(
2Uτ − Uτb∪{τj }

)]
− Tmax

2umin
[Uτb (2Uτ − Uτb)]

= {by the definition of Uτb∪{τj }}
Tmax
2umin

[(Uτb + uj) (2Uτ − Uτb − uj))]−
Tmax
2umin

[Uτb (2Uτ − Uτb)]

= {rearranging}
Tmax
2umin

(2ujUτ − 2ujUτb − u2
j) (13)

To conclude the proof, we show that the Lag of a boundary task τi ∈ τ b and the Lag of a
non-boundary task τj ∈ τ/τ b together satisfy the requirement specified in Lemma 12.

1
uj

Lagj(tb) + Tmax ≤ {by (13)}

1
uj

Tmax
2umin

(2ujUτ − 2ujUτb − u2
j) + Tmax

= {factor in 1/uj and out 1/ui from 2ujUτ − 2ujUτb}
1
ui

Tmax
2umin

(2uiUτ − 2uiUτb) + Tmax

(
1− uj

2umin

)
≤ {2umin − uj = umin + (umin − uj) ≤ umin ≤ ui}

1
ui

Tmax
2umin

(2uiUτ − 2uiUτb) + Tmax
1
ui

(
u2
i

2umin

)
≤ {by Lemma 17}

Lagi(tb) (14)

By Lemma 18, a boundary task τi is pending, and by Lemma 12, its deadline is earlier
than task τj ∈ τ/τ b (if τj has no pending job, then dj(t) =∞ by Def. 1) at time tb. J

I Theorem 20. If a scheduler is HP-LAG-compliant under its considered platform, then for
any feasible task system τ , the tardiness of task τi ∈ τ is at most

Tmax
2umin

(2Uτ − ui). (15)

Proof. If there exists at least one invalid instant, we can define the boundary time instant
tb with an attestant set τ b. By Lemma 19, tasks in τ b have earlier deadlines than any task
in τ/τ b. Thus, by HP-LAG with τ ′ = τ b,

∃δ > 0 ∀t ∈ (tb, tb + δ) : LAG(τ b, tb) ≥ LAG(τ b, t). (16)

S. Tang, S. Voronov, and J. Anderson 13:11

However, by Lemma 16,

∀δ > 0 ∃t ∈ (tb, tb + δ) : LAG(τ b, t) > β(τ b) = LAG(τ b, tb),

which contradicts (16). Because the existence of tb leads to a contradiction, there is no first
invalid instant, and hence there are no invalid time instants. Thus, by Def. 14,

∀τ ′ ⊆ τ ∀t ≥ 0 ∃δ > 0 ∀t′ ∈ (t, t+ δ) : LAG(τ ′, t′) ≤ β(τ ′).

By Lemma 8, it follows that

∀τ ′ ⊆ τ ∀t ≥ 0 : LAG(τ ′, t) ≤ β(τ ′). (17)

Hence, for any task τi and any time instant t,

Lagi(t) = {by Def. 7}
LAG({τi}, t)

≤ {by (17) with τ ′ = {τi}}
β({τi})

= {by (9)}
Tmax
2umin

ui(2Uτ − ui).

Thus, by Corollary 11, task τi has maximum tardiness at most Tmax
2umin

(2Uτ − ui). J

The theorem above is proved under the context of Unrelated. Thus, the theorem holds
for HP-LAG-compliant schedulers under Uniform and Identical-Aff because these models are
special cases of Unrelated. In Secs. 5 and 6, we demonstrate that the GEDF generalizations
discussed in this work are HP-LAG-compliant.

5 GEDF Tardiness Bounds under the Uniform Model

In this section, we show that UG-GEDF, the generalization of IG-GEDF under Uniform in
[9], is HP-LAG-compliant. This result enables us to apply Theorem 20 to obtain tardiness
bounds for UG-GEDF that are superior to those in [9].

5.1 Refining GEDF for the Uniform Model

IG-GEDF is not SRT-optimal under Uniform. Consider a single-task system τ = {τ1} with
C1 = 1 and T1 = 2 (hence u1 = 0.5) running on π = {π1, π2} with s1 = 1 and s2 = 0.1. This
system is clearly feasible if τ1 always executes on the faster processor π1. Under IG-GEDF,
however, it is legal for τ1 to be continuously scheduled on the slower processor π2. This
would lead to unbounded tardiness, as π2’s speed is lower than τ1’s utilization.

Such counterexamples led Yang and Anderson to define UG-GEDF as below. For the
remainder of this section, we assume that processors are indexed by decreasing speed.
UG-GEDF: At any time instant, the ready job of the pending task with the kth earliest deadline

is scheduled on πk for k ∈ [1,m].

ECRTS 2019

13:12 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

5.2 HP-LAG-Compliance for UG-GEDF
To prove HP-LAG-compliance, we reference the feasibility condition under Uniform, which
references the following definition.

I Definition 21. Let Sk =
k∑
i=1

si for k ≤ m.

When tasks are indexed by decreasing utilization, the feasibility condition is as follows [6, 9].

∀k ≤ m :
k∑
i=i

ui ≤ Sk (18)

Uτ ≤ Sm (19)

In terms of subsets of tasks, this condition is equivalent to

∀τ ′ ⊆ τ : Uτ ′ ≤ Smin(|τ ′|,m). (20)

I Lemma 22. UG-GEDF is HP-LAG-compliant under Uniform.

Proof. By Def. 13, we need only consider the case that task system τ is feasible under
Uniform. Let τ ′ ⊆ τ be any subset as defined in HP-LAG for any time instant t. HP-LAG
states that the tasks in τ ′ have earlier deadlines at time t than any tasks outside of τ ′. Under
UG-GEDF, tasks from τ ′ occupy the min(|τ ′|,m) fastest processors. Because UG-GEDF is a
non-fluid scheduler (see Def. 4), for any time instant t, for some δ > 0 we have that (t, t+ δ)
is a continuous scheduling interval (see Def. 2). For any t′ ∈ (t, t+ δ),

LAG(τ ′, t′) ={by Def. 7}

LAG(τ ′, t) +
∑
τi∈τ ′

A(I, τi, t, t′)−
∑
τi∈τ ′

A(R, τi, t, t′)

= {by Defs. 3 and 6}

LAG(τ ′, t) +
∑
τi∈τ ′

ui(t′ − t)−
∑
τi∈τ ′

A(R, τi, t, t′)

= {tasks from τ ′ occupy processors with speeds s1, ..., smin(|τ ′|,m)}

LAG(τ ′, t) +
∑
τi∈τ ′

ui(t′ − t)−
min(|τ ′|,m)∑

i=1
si(t′ − t)

= {by Def. 21}

LAG(τ ′, t) +
∑
τi∈τ ′

ui(t′ − t)− Smin(|τ ′|,m) · (t′ − t)

= LAG(τ ′, t) + (t′ − t)
[
Uτ ′ − Smin(|τ ′|,m)

]
≤ {t′ > t by definition and Uτ ′ ≤ Smin(|τ ′|,m) by (20)}

LAG(τ ′, t).

Therefore, UG-GEDF is HP-LAG-compliant. J

Because we have proven in Lemma 22 that UG-GEDF is HP-LAG-compliant, we have
the following corollary of Theorem 20.

I Corollary 23. Under UG-GEDF on a Uniform multiprocessor executing a feasible task
system, the tardiness of any task τi is at most (15).

S. Tang, S. Voronov, and J. Anderson 13:13

π1 π2

τ1 τ2 τ3

G{τ1}

Figure 1 Affinity graph (AG) example.

We assumed without loss of generality that tasks (processors) are indexed by decreasing
utilizations (speeds) to make stating UG-GEDF and the Uniform feasibility condition simpler.
We no longer keep these assumptions in the following sections.

6 GEDF Tardiness Bounds under the Identical Model with Affinities

In this section, we generalize the IG-GEDF scheduling rules under the context of Identical-
Aff. We show that the resulting scheduling policy, IA-GEDF, is HP-LAG-compliant. Thus,
Theorem 20 ensures bounded tardiness because Identical-Aff is a special case of Unrelated.

Under Identical-Aff, all processors have speed equal to 1.0. As in [8], we use in our analysis
the concept of an affinity graph.

I Definition 24. An affinity graph (AG) Gτ of a task system τ on platform π with affinity
masks is a undirected bipartite graph containing one vertex for each task and each processor.
An edge exists between τi and πj if and only if πj ∈ αi. For any τ ′ ⊆ τ , we let Gτ ′ denote
the subgraph of Gτ containing only the vertices that correspond to the tasks in τ ′ and the
processors in the union of their affinity masks.

I Example 25. An example Gτ for the task system τ = {τ1, τ2, τ3} on π = {π1, π2} with
α1 = {π1, π2} and α2 = α3 = {π2} is given in Fig. 1. The same figure also shows G{τ1}.

6.1 Refining GEDF for the Identical Model with Affinities
Unlike under Identical or Uniform, it is not always possible to schedule the m tasks with the
earliest deadlines under Identical-Aff. Consider the example in Fig. 1 with two processors
and three tasks. If all tasks are pending at a time instant t and the deadlines are such that
d2(t) < d3(t) < d1(t) holds, then the tasks with the earliest deadlines, τ2 and τ3, cannot be
simultaneously scheduled because they share a single processor.

The choice of processor assignments can also leave a processor idle, i.e., with no job to
execute. Consider again Fig. 1 with the assumption that only τ1 is pending and is assigned to
π2. Suppose that τ2 at time instant t releases a job such that d1(t) < d2(t). Under IG-GEDF,
a lower-priority task such as τ2 would be scheduled on π1, but affinity-mask restrictions
disallow this. Because d1(t) < d2(t), τ1 has higher priority, and τ2 is not scheduled, leaving
processor π1 idle. However, forcing τ1 to migrate to π1 is a more efficient use of processor
capacity in this example. The problem here is that the availability of processors for different
tasks under affinity scheduling is not symmetrical.

Under IG-GEDF, a preemption only affects the preempting and preempted tasks and a
single processor. We define IA-GEDF to extend this preemption rule to avoid unnecessary
idleness. To formally specify IA-GEDF, we require several graph-theory definitions.

I Definition 26. A matching of a graph G with edge set E is an edge set M ⊆ E such that
no two edges in M share a common vertex. A vertex is matched if it is an endpoint of one
of the edges in the matching; otherwise, the vertex is unmatched.

ECRTS 2019

13:14 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

π1 π2 π3 π4

τ1 τ2 τ3 τ4

π1 π2 π3 π4

τ1 τ2 τ3 τ4

π1 π2 π3 π4

τ1 τ2 τ3 τ4

Ex.
33:

casca
de over (τ2,π2,τ1 ,π1)

Ex. 32: cascade over (τ2,π3,τ3,π4)
assuming d2(t)≺d4(t)

πj τi

πj τi

matched
vertices

unmatched
vertices

Legend

affinity

matching

Figure 2 Two examples of a scheduling cascade.

I Example 27. An example matching can be found in the left graph of Fig. 2. We have the
matching M = {(τ1, π2), (τ3, π3), (τ4, π4)}, with vertices π1 and τ2 being unmatched.

Observe that any assignment of tasks to processors at runtime that obeys the tasks’
affinity masks defines a matching of Gτ (and vice versa). While the concept of a matching
can be applied to any graph, we restrict attention to only AGs and their subgraphs.

I Definition 28. An alternating path p of a matching in a graph is a path that begins with
an unmatched “task” vertex, has edges that alternately are in the matching and not in the
matching, and ends with a “processor” vertex. An augmenting path p of a matching is an
alternating path that ends with an unmatched vertex.

I Example 29. In the left graph of Fig. 2, (τ2, π3, τ3, π4) is an alternating path that is not
an augmenting path for the given matching, and (τ2,π2,τ1,π1) is an augmenting path.

Observe that an alternating path must have an odd number of edges because its first and
last vertices are task and processor vertices, respectively. The following lemma establishes a
relationship between augmenting and alternating paths.

I Lemma 30. Consider a matching M for Gτ and τ ′ ⊆ τ . Let M ′ denote the set of edges
of M that are present in Gτ ′ . Then, M ′ is a matching in Gτ ′ . Furthermore, if p is an
augmenting path of the matching M ′ in Gτ ′ , then p is an alternating path of M in Gτ .

Proof. By Def. 26, no two edges in M share a common vertex. This does not change when
removing edges and vertices from Gτ and edges from M , through which we get Gτ ′ and M ′,
respectively. Thus, M ′ is also a matching in Gτ ′ .

Let the first vertex of p (as mentioned in the lemma statement) be task τi. By Def. 28, τi
is unmatched in Gτ ′ . By Def. 24, Gτ ′ contains τi and all the processors in its affinity mask.
Hence, all edges from τi that are in Gτ are also in Gτ ′ . Thus, τi is also unmatched in Gτ .

By definition, M ′ contains all the edges in M that are also in Gτ ′ . Hence, an edge of Gτ ′

is in M ′ if and only if it is also in M , which applies to all edges of p because it is contained
in Gτ ′ . Because an augmenting path is a special case of an alternating path, edges of p are
alternately in and not in M ′, and hence, alternately in and not in M . This fact and the fact
that the first vertex of p, task τi, is unmatched in M make p an alternating path in Gτ . J

S. Tang, S. Voronov, and J. Anderson 13:15

Algorithm 1: The scheduling cascade algorithm.
Input :Matching M of the AG Gτ at time t;
Alternating path p = (τi1 , πj1 , τi2 , πj2 , . . . , τik , πjk

) such that if τ` exists such that
(τ`, πjk

) ∈M , then di1(t) ≺ d`(t)
1 if πjk

is matched in M then
2 τ` ← πjk

’s matched task;
3 Remove edge (τ`, πjk

) from M ;
4 for r ∈ [1, k − 1] do
5 Remove edge (τir+1 , πjr

) from M ;
6 for r ∈ [1, k] do
7 Add edge (τir , πjr

) to M ;
8 return

We now have sufficient terminology to define a generalized notion of a preemption that
occurs under Identical-Aff and that we call a scheduling cascade. Informally, in a scheduling
cascade, an unscheduled task is scheduled by making an idle processor busy or by unscheduling
a different task, perhaps on a different processor, with a later deadline. Note that this may
require several migrations.

I Definition 31. A scheduling cascade at time t via the alternating path p in Gτ changes
the task-to-processor assignments (i.e., the matching M at t in Gτ) via Alg. 1.

We can write p = (τi1 , πj1 , τi2 , πj2 , . . . , τik , πjk
) for some k ≥ 1 and task (resp., processor)

indicies i1, i2, . . . , ik (resp., j1, j2, . . . , jk) because the first vertex of p is a task by Def. 28.
Because p is alternating, ∀r ∈ [1, k − 1] : (τir+1 , πjr

) ∈M and ∀r ∈ [1, k] : (τir , πjr
) /∈M .

Note that M remains a matching after a scheduling cascade. All tasks and processors
in p are unmatched prior to line 6 and each iteration of line 7 matches a distinct task and
processor from the other iterations.

I Example 32. Consider the lower scheduling cascade in Fig. 2. In the scheduling cascade,
we have τi1 = τ2 and πjk

= π4. Because π4 is matched to task τ4, we have τ` = τ4. Thus,
the condition di1(t) ≺ d`(t) becomes d2(t) ≺ d4(t) in this example, and we remove edge
(τ4, π4) from the matching (line 3). Of the edges in the alternating path, we remove edge
(τ3, π3) (line 5) and add edges (τ2, π3) and (τ3, π4) (line 7). This results in a new matching,
as indicated in Fig. 2.

I Example 33. Consider the higher scheduling cascade in Fig. 2. In the scheduling cascade,
we have τi1 = τ2 and πjk

= π1. We do not execute line 3 because π1 is unmatched. Of the
edges in the alternating path, we remove edge (τ1, π2) (line 5) and add edges (τ2, π2) and
(τ1, π1) (line 7). This results in a new matching, as indicated in Fig. 2.

The net result of a scheduling cascade is that task τi1 that was not scheduled prior to the
scheduling cascade is now scheduled, and task τ` (if it exists) with later deadline than τi1
is now not scheduled. All other tasks that were scheduled in matching M continue to be
scheduled after the scheduling cascade, though the other tasks in p have migrated.

To define our GEDF scheduling policy with affinity masks, we define the task-to-processor
assignments at scheduling events, i.e., job releases or job completions, and assume these
assignments hold between scheduling events.

ECRTS 2019

13:16 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

IA-GEDF: At every scheduling event, task-to-processor assignments are made such that after-
wards no scheduling cascade is possible. These assignments do not change until the
next scheduling event.

One might assume that a simpler scheduling policy may be sufficient, but issues arise
when weaker scheduling rules are used. For example, SCHED_DEADLINE under Identical-Aff is
not HP-LAG-compliant. These details can be found in App. C, available online [7].

Because we do not explicitly specify the task-to-processor assignments, there may exist
multiple assignments that satisfy IA-GEDF at every scheduling event. Note that every
scheduling cascade either schedules an additional task or replaces a scheduled task with an
unscheduled task with an earlier deadline. Thus, the total number of possible scheduling
cascades per scheduling event is finite. To show IA-GEDF is possible to implement, we
created an O(mn) algorithm that computes task-to-processor assignments at every scheduling
event that obeys IA-GEDF. With offline preprocessing, the time complexity is reduced to
O(m+ logn) per scheduling event. The algorithm and preprocessing details are available in
App. A, available online [7]. In App. C, also available online [7], we show that SCHED_DEADLINE
under Identical-Aff has higher time complexity per scheduling event.

Note that a preemption in IG-GEDF can be interpreted as a scheduling cascade with an
alternating path of a single edge. Thus, IA-GEDF reduces to IG-GEDF under Identical.

6.2 HP-LAG-Compliance for IA-GEDF

Here we consider only feasible task systems τ because HP-LAG-compliance is defined only
for such systems. Exact feasibility conditions under Identical-Aff were established in [8], but
in our reasoning about IA-GEDF’s HP-LAG-compliance, we only use a necessary condition
for a feasible task system, provided in Lemma 35.

I Definition 34. A matching M of a graph G is a maximal matching if |M | ≥ |M ′| for any
matching M ′ of G, where |M | denotes the number of edges of the matching M .

I Lemma 35. If a task system τ is feasible under Identical-Aff, then for any task subset
τ ′ ⊆ τ , a maximal matching M ′ under Gτ ′ has |M ′| ≥ Uτ ′ edges.

Proof. Suppose otherwise that τ is feasible and there exists τ ′ such that a maximal matching
M ′ under Gτ ′ has |M ′| edges with |M ′| < Uτ ′ . Because M ′ is maximal, the tasks of τ ′ are
scheduled on at most |M ′| processors at any time instant, and hence, for any schedule R
and time instant t,

∑
τi∈τ ′

A(R, τi, 0, t) ≤ |M ′|t. Hence, by Defs. 3, 6, 7, and the definition

of Uτ ′ , we have LAG(τ ′, t) =
∑
τi∈τ ′

A(I, τi, 0, t)−
∑
τi∈τ ′

A(R, τi, 0, t) ≥ Uτ ′t− |M ′|t. Because

Uτ ′ > |M ′|, Uτ ′t−|M ′|t→∞ as t→∞. Thus, LAG(τ ′, t) is unbounded under any schedule
R, making τ ′ unfeasible, which contradicts the asumption that τ is feasible. J

We use Berge’s Theorem to prove that IA-GEDF is HP-LAG-compliant. Berge’s definition
of an augmenting path reduces to Def. 28 in the context of an AG and its subgraphs.

I Theorem 36 (Theorem 1 of [3], Berge’s Theorem). A matching M of a graph G is maximal
if and only if there is no augmenting path for M and G.

S. Tang, S. Voronov, and J. Anderson 13:17

π1 π2 π3 π4

τ1 τ2 τ3 τ4 τ5

Gτ ′

Figure 3 An example graph Gτ ′ for the proof of Lemma 37. Solid gray edges represent the
task-to-processor assignments prior to a scheduling cascade and dashed edges represent affinity.

I Lemma 37. IA-GEDF is HP-LAG-compliant under Identical-Aff.

Proof. We use Fig. 3 to illustrate the key steps of the proof. Consider a matching M in Gτ
defined by the IA-GEDF task-to-processor assignments at time t. Let τ ′ be as defined in
HP-LAG at time t (τ ′ = {τ1, τ2, τ3} in Fig. 3). Consider a matching M ′ in Gτ ′ defined by
the assignments of tasks in τ ′ to processors (M ′ = {(τ1, π1), (τ3, π2)}).

We will first show that M ′ is maximal in Gτ ′ . Suppose otherwise that M ′ is not
maximal in Gτ ′ . Then, by Theorem 36, there exists an augmenting path p for M ′ in Gτ ′

(p = (τ2, π2, τ3, π3)). By Lemma 30, p is an alternating path for M in Gτ .
Consider the task τh that is represented by the first vertex of p (τ2), and the processor

πj that is represented by the last vertex of p (π3). If there is a task τ` that is scheduled
on πj (τ4 on π3), then τh ∈ τ ′ and τ` ∈ τ/τ ′ because p is an augmenting path in Gτ ′ . By
the definition of τ ′ in HP-LAG, we have dh(t) < d`(t) (d2(t) < d4(t)). Thus, because we
have satisfied the input requirements of Alg. 1, we can perform a scheduling cascade via p
at time t (remove (τ4, π3) and (τ3, π2) and add (τ3, π3) and (τ2, π2) to the matching), which
contradicts our definition of IA-GEDF. Hence, M ′ is maximal.

Because IA-GEDF produces a non-fluid schedule (Def. 4), the interval (t, t+ δ) must be
a continuous scheduling interval for some δ > 0. Thus, for all t′ ∈ (t, t+ δ),

LAG(τ ′, t′) ={by Def. 7}

LAG(τ ′, t) +
∑
τi∈τ ′

A(I, τi, t, t′)−
∑
τi∈τ ′

A(R, τi, t, t′)

= {by Defs. 3 and 6}

LAG(τ ′, t) +
∑
τi∈τ ′

(t′ − t)ui −
∑
τi∈τ ′

A(R, τi, t, t′)

= {the number of processors scheduling tasks of τ ′ is |M ′|}

LAG(τ ′, t) +
∑
τi∈τ ′

(t′ − t)ui − (t′ − t)|M ′|

= {
∑
τi∈τ ′

ui = Uτ ′}

LAG(τ ′, t) + (t′ − t)(Uτ ′ − |M ′|)
≤ {t < t′ and by Lemma 35, Uτ ′ ≤ |M ′|}

LAG(τ ′, t).

Therefore, IA-GEDF is HP-LAG-compliant. J

Applying Theorem 20 yields the following.

I Corollary 38. Under IA-GEDF on a Identical-Aff multiprocessor executing a feasible task
system, the tardiness of any task τi is at most (15).

ECRTS 2019

13:18 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

π1 π2

τ1 τ2 τ3

(a) Affinity graph.

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

π1 π2

τ1

τ2

τ3

(b) IA-GEDF schedule with (W).

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

τ1

τ2

τ3

completion time change with Fig. 4b

(c) IA-GEDF schedule where the first
job of τ1 completes early.

Figure 4 An example task system where removing assumption (W) only causes jobs to complete
earlier. When the completion times in the two schedules differ for a job, a dashed gray marker in 4c
indicates its original completion time in 4b. Every task has (C, T) = (2, 3).

7 Extending to the Sporadic Task Model

As in [9], we made assumptions (P) and (W). It was proven in Theorems 3 and 4 of [9]
that any tardiness bounds derived for UG-GEDF under Uniform assuming (P) and (W)
hold without these assumptions. Thus, Corollary 23, which establishes tardiness bounds for
UG-GEDF under Uniform, applies to sporadic tasks.

It remains to show that these assumptions can be removed from Corollary 38, which
pertains to IA-GEDF on Identical-Aff. We use reasoning similar to [9] to show this, though
some details are changed due to the different scheduler and platform. Due to space constraints,
we present a proof sketch and provide the formal proofs in App. B, available online [7].

Removing assumption (W). The intuition here is that reducing the execution requirement
of a job cannot cause jobs to complete later. Consider Figs. 4b and 4c, which show two
schedules under IA-GEDF for two periodic instances of the task system defined in Fig. 4a. In
Fig. 4b, assumption (W) is true, while in Fig. 4c, job J1,1 completes with 1.0 less execution
unit than τ1’s WCER of 2.0. As a result, jobs J2,2 and J3,1 complete earlier in Fig. 4c than in
Fig. 4b, while all other jobs complete at the same time in both schedules (the two schedules
converge at time t = 6). Thus, reducing the execution time of a job did not increase tardiness
for any other job. We prove in App. B, available online [7], that this is always the case. By
applying this fact inductively, it follows that tardiness bounds derived assuming (W) hold in
systems without (W) under IA-GEDF on Identical-Aff.

Removing assumption (P). In order to remove (P), we use the varying-period periodic
(VPP) task model, defined in [9]. A VPP task τVi of task set τV is defined through its
utilization uVi . Every job JVi,j has its own WCER CVi,j . maxj CVi,j is denoted as CVi . Unlike
the sporadic task model, each VPP task τVi releases its first job JVi,1 at time t = 0. Afterwards,
each job Ji,j+1 is released exactly TVi,j = CVi,j/u

V
i time units after the release of JVi,j for j ≥ 1.

CVi /u
V
i is denoted as TVi .

It was shown in App. A of [9] that sporadic task systems are special cases of VPP task
systems. For example, in Fig. 5, the first timeline represents a sporadic release of jobs by
some task τi and the second timeline represents a VPP release of jobs by a VPP task τVi
with ui = uVi and Ci = CVi . When the separation between jobs of τi is greater than Ti,

S. Tang, S. Voronov, and J. Anderson 13:19

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

Sporadic task
C = 2, T = 3

VPP task
CV = 2, TV = 3

Actual
execution

WCER

Figure 5 Transformation of a sporadic task to a VPP task.

arbitrarily small VPP jobs with an execution requirement of 0.0 are inserted between the
gap in releases, thereby making the second timeline a valid VPP release sequence. Thus, the
sporadic release of jobs is also a VPP release of jobs.

Because sporadic task systems are special cases of VPP task systems, our proof obligation
is to show that our tardiness bounds apply under the VPP model. The tardiness bounds
under IA-GEDF depend only on properties of HP-LAG schedulers, which in turn depend
only on the properties in Sec. 3. The fact that these properties hold under the VPP model
with assumption (W) (with some reinterpretation of parameters, e.g., substituting ui with
uVi and Ci with CVi,j in proofs) was shown in App. A of [9]. Hence, because removing (W)
does not increase tardiness, Corollary 38 holds with VPP task systems (substituting Cmax
with maxi CVi in (15)). If the VPP task system is also a sporadic system, as in Fig. 5, then
maxi CVi = maxi Ci = Cmax. Thus, the tardiness bound in Corollary 38 for sporadic tasks is
exactly as written in (15).

8 Problems with Extending to the Uniform Model with Affinities

Of the models listed in Sec. 2.1, we have not addressed Uniform-Aff and Unrelated. In this
section, we explain why extending our proof techniques to these models is difficult. The
exact proof strategy used in this work cannot be directly applied to the more general models
in Sec. 2.1 because HP-LAG may not hold.

I Theorem 39. No non-fluid scheduler always satisfies HP-LAG under Uniform-Aff.

Proof. We prove the theorem by constructing a feasible task system, deadline ordering, and
Uniform-Aff platform for which no scheduler satisfies HP-LAG. Consider the task system
τ = {τ1, τ2} with (C1, T1) = (3, 2) and (C2, T2) = (4, 4). Then, u1 = 1.5 and u2 = 1. τ runs
on two processors π = {π1, π2} with s1 = 2 and s2 = 1. Gτ is illustrated in Fig. 6a.

We know this system is feasible from the schedule in Fig. 6b, which contains a timeline for
each task that describes what processor, if any, schedules the task at any time instant. The
schedule repeats every four time units. This schedule provides six units of execution to τ1 and
four units of execution to τ2 every four time units. Because the schedule provides execution
to each task at a long-run rate equal to its utilization (6/4 = 3/2 = u1 and 4/4 = u2), both
tasks have bounded tardiness.

Let the deadline ordering at some time instant t be d1(t) < d2(t) (e.g., t = 0). Suppose
some non-fluid scheduling algorithm is HP-LAG-compliant at t. By Def. 4, we have that
(t, t + δ) is a continuous scheduling interval for some δ > 0. Note that τ ′ as defined in
HP-LAG for this task system may be either {τ1} or {τ1, τ2} at time t. HP-LAG states for
these two task subsets that ∀t′ ∈ (t, t+ δ):

LAG({τ1}, t′) ≤ LAG({τ1}, t) (21)
LAG({τ1, τ2}, t′) ≤ LAG({τ1, τ2}, t) (22)

ECRTS 2019

13:20 GEDF Tardiness: Uniform Multiprocessors and Affinity Masks

π1 π2

τ1 τ2

(a) Affinity graph.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

τ2

τ1

π2

π1

Repeats every 4 time unitsTardiness of 0.5

Job release

Job deadline

Job completion

Legend

(b) A SRT schedule (with a maximum tardiness of 0.5) of a periodic instance of
the task system in Theorem 39. The height of a scheduling interval represents the
speed of the allocated processor.

Figure 6 Task system considered in the proof of Theorem 39.

We show that τ1 must execute on π1 over (t, t+ δ) by contradiction. Consider otherwise
that there exists a time instant in (t, t+ δ) where τ1 executes on π2. Because (t, t+ δ) is a
continuous scheduling interval, by Def. 2, τ1 executes on π2 for all t′ ∈ (t, t+ δ). Thus,

LAG({τ1}, t′) = {by Def. 7}
LAG({τ1}, t) +A(I, τ1, t, t

′)−A(R, τ1, t, t
′)

= {by Defs. 3 and 6}
LAG({τ1}, t) + u1(t′ − t)−A(R, τ1, t, t

′)
= {by Def. 3 and the assumption that τ1 is scheduled on π2}

LAG({τ1}, t) + u1(t′ − t)− s2(t′ − t)
= {u1 = 1.5 and s2 = 1}

LAG({τ1}, t) + 0.5(t′ − t)
> {t′ − t > 0 by definition}

LAG({τ1}, t),

which contradicts (21). A similar contradiction arises when τ1 is not executing for any instant
in (t, t+ δ), so any HP-LAG compliant scheduler must schedule τ1 on π1 during (t, t+ δ).
Scheduling τ1 on π1 means τ2 is not scheduled over this interval, because π1 is the only
processor in τ2’s affinity mask.

Consider the LAG of {τ1, τ2} for all t′ ∈ (t, t+ δ) given that τ1 executes on π1 and τ2 is
not executing over this interval. Through reasoning similar to that above, we can conclude
LAG({τ1, τ2}, t′) = LAG({τ1, τ2}, t) + 0.5(t′ − t) > LAG({τ1, τ2}, t), which contradicts
(22). Because no non-fluid scheduler can simultaneously satisfy (21) and (22), no non-fluid
scheduler can satisfy HP-LAG for this feasible task system. J

9 Conclusion

We have derived the first ever GEDF tardiness bounds that are polynomial in the number
of processors under Uniform. We have also derived for the first time generalized GEDF
scheduling rules that are provably SRT-optimal under Identical-Aff. This result shows that
the open problem mentioned by Peter Zijlstra and Luca Abeni can be resolved by altering
SCHED_DEADLINE to be HP-LAG-compliant. In App. A, available online [7], we have provided
an algorithm that implements our generalized GEDF scheduling rules with lower time
complexity per scheduling event than SCHED_DEADLINE, given some preprocessing.

S. Tang, S. Voronov, and J. Anderson 13:21

Note that the proofs in Sec. 4 only require that the values of β satisfy certain linear
constraints. Thus, lower β values than ours can be derived using linear programming (though
the constraint set grows exponentially with the task count). This suggests that the properties
in Sec. 3 are sufficient to derive tighter analytical tardiness bounds than ours.

In future work, we will investigate dynamic task systems, where tasks may enter or exit
the system and affinity masks may change at runtime. The interaction of affinity masks
with dynamic task systems is particularly relevant to SCHED_DEADLINE, as admission control
with affinity masks is currently broken. We plan to investigate what restrictions must be
placed on these dynamics to avoid compromising bounded tardiness, as done in prior work [4]
on GEDF without affinity masks. We are also interested in how overhead accounting and
non-preemptive sections might be handled as well as how algorithms that satisfy IA-GEDF
might be constructed with lower time complexity than in App. A.

The SRT-optimality of GEDF on more general platforms also remains an open problem.
We have shown via a counterexample that HP-LAG, a property that applies to both Uniform
and Identical-Aff individually, does not hold when the models are combined. It is unknown
whether a weaker version of HP-LAG exists that applies to the more general processor models
while still being sufficient to bound tardiness. If not, these open problems may require new
proof techniques.

References
1 Luca Abeni. SCHED_DEADLINE: a real-time CPU scheduler for Linux. 2nd TuTor at

the 38th IEEE Real-Time Systems Symposium, 2017. URL: https://tutor2017.inria.fr/
sched_deadline/.

2 Luca Abeni et al. Deadline Task Scheduling. Linux kernel documenta-
tion, 2018. URL: https://github.com/torvalds/linux/blob/master/Documentation/
scheduler/sched-deadline.txt.

3 Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,
43(9):842–844, 1957.

4 Aaron Block, UmaMaheswari C. Devi, and James H. Anderson. Task reweighting under global
scheduling on multiprocessors. In Proceedings of the 18th Euromicro Conference on Real-Time
Systems, pages 123–167, 2006.

5 UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. Real-Time Systems, 38(2):133–189, 2008.

6 Shelby Funk, Joel Goossens, and Sanjoy Baruah. On-line scheduling on uniform multiprocessors.
In Proceedings of the 22th IEEE Real-Time Systems Symposium, pages 183–192, 2001.

7 Stephen Tang, Sergey Voronov, and James H. Anderson. GEDF tardiness: Open problems
involving uniform multiprocessors and affinity masks resolved. Full version of this paper,
available at http://www.cs.unc.edu/~anderson/papers.html.

8 Sergey Voronov and James H. Anderson. AM-Red: An optimal semi-partitioned scheduler
assuming arbitrary affinity masks. In Proceedings of the 39th IEEE Real-Time Systems
Symposium, pages 408–420, 2018.

9 Kecheng Yang and James H. Anderson. On the Soft Real-Time Optimality of Global EDF on
Uniform Multiprocessors. In Proceedings of the 38th IEEE Real-Time Systems Symposium,
pages 319–330, 2017.

10 Peter Zijlstra. An update on Real-Time scheduling on Linux. Keynote talk at the 29th
Euromicro Conference on Real-Time Systems, 2017. URL: https://www.ecrts.org/archives/
index.php?id=284.

ECRTS 2019

https://tutor2017.inria.fr/sched_deadline/
https://tutor2017.inria.fr/sched_deadline/
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.txt
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.txt
http://www.cs.unc.edu/~anderson/papers.html
https://www.ecrts.org/archives/index.php?id=284
https://www.ecrts.org/archives/index.php?id=284

Dual Priority Scheduling is Not Optimal
Pontus Ekberg
Uppsala University, Sweden
http://user.it.uu.se/~ponek616/
pontus.ekberg@it.uu.se

Abstract
In dual priority scheduling, periodic tasks are executed in a fixed-priority manner, but each job
has two phases with different priorities. The second phase is entered after a fixed amount of time
has passed since the release of the job, at which point the job changes its priority. Dual priority
scheduling was introduced by Burns and Wellings in 1993 and was shown to successfully schedule
many task sets that are not schedulable with ordinary (single) fixed-priority scheduling. Burns and
Wellings conjectured that dual priority scheduling is an optimal scheduling algorithm for synchronous
periodic tasks with implicit deadlines on preemptive uniprocessors. We demonstrate the falsity of
this conjecture, as well as of some related conjectures that have since been stated. This is achieved
by means of computer-verified counterexamples.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Scheduling

Keywords and phrases Scheduling, real time systems, dual priority

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.14

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.1
The source code for a C program that verifies the correctness of the counterexamples in this paper
can be found at https://github.com/pontusekberg/dualpriotest/.

Funding Pontus Ekberg: This work was supported in part by Vetenskapsrådet, grant 2018-04446.

Acknowledgements The author wants to thank Martina Maggio and Joël Goossens for independently
verifying the counterexamples given in this paper, using their own computer implementations.

1 Introduction

Dual priority scheduling was introduced by Burns and Wellings [1] as a technique to schedule
implicit-deadline periodic task sets with high utilization “whilst retaining an essentially static
priority model”. It has the capability to successfully schedule many high-utilization task sets,
similar to what can be achieved by earliest deadline first (EDF) scheduling, but it also has
low overhead and easy implementation, similar to that of ordinary fixed-priority scheduling.

Curiously, dual priority scheduling works very well despite its simplicity and mostly
static behavior. In fact, it works so well that no feasible task set that is not dual priority
schedulable has ever been found. Burns and Wellings conjectured in 1993 that dual priority
scheduling is optimal for scheduling synchronous periodic tasks with implicit deadlines on a
preemptive uniprocessor, just like EDF or Least Laxity First scheduling. This open problem
has since been restated several times (e.g., in [4]) and stronger conjectures have also been
given [7, 6] (these are detailed in Section 1.2). Renewed interest was likely sparked by a
paper by Burns [2] dedicated to the problem in the Real-Time Scheduling Open Problems
Seminar in 2010.

In this paper we give a counterexample to the conjecture by Burns and Wellings, as well
as counterexamples to the related conjectures. These counterexamples can not feasibly be
verified by hand because of the vast number of cases that have to be considered. Fortunately,

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Pontus Ekberg;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 14; pp. 14:1–14:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://user.it.uu.se/~ponek616/
mailto:pontus.ekberg@it.uu.se
https://doi.org/10.4230/LIPIcs.ECRTS.2019.14
https://dx.doi.org/10.4230/DARTS.5.1.1
https://github.com/pontusekberg/dualpriotest/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Dual Priority Scheduling is Not Optimal

it is straightforward (though still time consuming) to do so by computer. A program that
verifies all the counterexamples in this paper can be found by following the link under the
heading Supplement Material above.

1.1 System model and definitions
We consider dual priority scheduling of synchronous periodic task sets on a preemptive
uniprocessor. A task set T consists of n tasks, T = {τ1, . . . , τn}, where ei and pi are positive
integers denoting the worst-case execution time and period of task τi, respectively.

In dual priority scheduling, each task τi is assigned two fixed priorities: a phase 1 priority
π1

i and a phase 2 priority π2
i . Each task is also assigned a phase change point δi, which is an

integer such that 0 6 δi 6 pi.
Jobs from task τi are initially assigned the phase 1 priority π1

i . If the job is still active
δi time units after its release time, it changes its priority to π2

i for the remainder of its
execution. Jobs are scheduled preemptively and strictly in priority order. Note that a task
τi with δi = 0 or δi = pi is effectively a single-priority task.

We assume that priorities are distinct and that lower numbers denote higher priorities.
We call a complete setting of priorities and phase change points to the tasks in a task set T
a dual priority configuration of T. If T meets all deadlines with a particular configuration,
we call that a schedulable configuration.

There are (2n)!×
∏n

i=1 (pi + 1) unique configurations for a task set T with n tasks, since
there are (2n)! different priority settings and

∏n
i=1 (pi + 1) different ways of assigning the

phase change points. We will also consider some restrictions on the priority orderings:

I Definition 1 (phase 1 RM). A configuration of T is phase 1 RM if for each pair of tasks
τi, τj ∈ T, we have π1

i < π1
j if pi < pj.

I Definition 2 (phase 2 promoted). A configuration of T is phase 2 promoted if for each
task τi ∈ T, we have π2

i < π1
i .

I Definition 3 (RM+RM). A configuration of T is RM+RM if (1) for each pair of tasks
τi, τj ∈ T, we have π1

i < π1
j and π2

i < π2
j if pi < pj, and (2) maxi(π2

i) < mini(π1
i).

Note that there are many priority settings that fulfill the requirements for phase 1 RM
and phase 2 promoted (with distinct periods there are

(2n
n

)
× n! and (2n)!/2n such priority

settings, respectively). For RM+RM, however, there is exactly one valid priority setting if
periods are distinct. For each priority setting there are

∏n
i=1 (pi + 1) unique configurations.

1.2 Related work and conjectures
In the original formulation by Burns and Wellings [1], all configurations were assumed to be
both phase 1 RM and phase 2 promoted (see Definitions 1 and 2). Under these restrictions
they conjectured that any feasible task set is dual priority schedulable.

I Conjecture 4 (Burns and Wellings [1]). For any feasible synchronous periodic task set T
with implicit deadlines, there exists a schedulable dual priority configuration of T that is
phase 1 RM and phase 2 promoted.

However, in Burns’ paper at the Real-Time Scheduling Open Problems Seminar [2], it
was only assumed that configurations are phase 2 promoted, but conjectured1 that phase 1
RM is an optimal choice for priorities.

1 Burns did not use the word “conjecture” here, but wrote that “The phase 1 priorities are probably Rate
Monotonic.”

P. Ekberg 14:3

I Conjecture 5 (Burns [2], but see the caveat in footnote 1). If there exists a schedulable
dual priority configuration of T, then there exists a schedulable configuration of T that is
phase 1 RM.

George et al. [7] and Fautrel et al. [6] made the stronger conjecture that RM+RM is an
optimal choice for priorities.

I Conjecture 6 (George et al. [7], Fautrel et al. [6]). If there exists a schedulable dual priority
configuration of T, then there exists a schedulable configuration of T that is RM+RM.

Fautrel et al. [6] also presented a heuristic called the First Deadline Missed Strategy
(FDMS) for assigning the phase change points under RM+RM priorities. FDMS works by
initially setting δi equal to pi for every task τi. Then it simulates the hyper-period, and the
first task τi to miss a deadline gets δi decremented by 1. This process is then repeated until
no task misses a deadline (success) or a task that misses a deadline cannot further decrease
its phase change point (failure). Fautrel et al. conjectured that FDMS is an optimal strategy
for assigning phase change points with RM+RM priorities.

I Conjecture 7 (Fautrel et al. [6]). If there exists a schedulable dual priority configuration
of T that is RM+RM, then the FDMS heuristic will find a schedulable configuration for T.

For task sets with only n = 2 tasks, Burns [2] proved that dual priority scheduling is
indeed optimal. Burns also noted that given k priority levels per task (and k − 1 phase
change points), k-priority scheduling can be made to simulate EDF and is therefore optimal.
Pathan [11, 12] showed that k = n priority levels is enough to simulate EDF, where n is
the number of tasks. Pathan’s result is also applicable to sporadic tasks and tasks without
implicit deadlines. Nasri and Fohler [10] also considered scheduling with more than 2 priority
levels per task and designed a heuristic for assigning the phase change points.

George et al. [7] demonstrated some properties of dual priority scheduling that differ from
those of ordinary (single) fixed-priority scheduling: (1) The first job of each task does not
always have the longest response time, (2) a first deadline miss can occur after the first busy
period, and (3) the synchronous arrival sequence is not always the worst case.

In addition to the FDMS heuristic conjectured optimal above, Fautrel et al. [6] also
designed another heuristic for finding a schedulable configuration. The latter was shown to
be sub-optimal, but also faster than FDMS as it does not require repeated simulations of the
hyper-period. Gu et al. [8] also designed heuristics for finding schedulable configurations,
and presented a sufficient schedulability test for dual priority scheduling that is applicable to
constrained-deadline periodic and sporadic tasks.

Last, there are other uses for dual priority scheduling as well. An early example is the
work by Davis and Wellings [3]. Rather than using dual priority scheduling to maximize
utilization of hard real-time tasks, they used it to improve the timeliness of soft real-time tasks
that would otherwise run in the background. By giving the soft real-time tasks priorities
in between the phase 1 and phase 2 priorities of the hard-real time tasks, they get the
opportunity to run except when a hard-real time task is nearing its deadline.

2 Counterexamples

Here we list counterexamples that disprove the four conjectures in Section 1.2. Because
Conjecture 6 implies Conjecture 5, we can disprove both by disproving Conjecture 5. We
therefore have three counterexamples: one for disproving Conjecture 4, one for disproving
Conjectures 5 and 6, and one for disproving Conjecture 7.

ECRTS 2019

14:4 Dual Priority Scheduling is Not Optimal

Verifying these counterexamples by hand is intractable, but they are readily verifiable by
computer. A C program that verifies the counterexamples can be downloaded from the link
given under Supplement Material on the first page. The run times reported below are for
this program running on an AMD Ryzen 7 1700X CPU with Linux 4.20, compiled by GCC
8.2.1 and -O3 optimization settings (memory usage is negligible).

The first counterexample actually disproves a weaker version of Conjecture 4 (thus
obtaining a stronger result) by virtue of being a feasible task set that is not schedulable with
any dual priority configuration.

I Counterexample 8. The following task set is feasible, but is not dual priority schedulable
with any configuration.

ei pi

τ1 8 19
τ2 13 29
τ3 9 151
τ4 14 197

hyper-period: 16 390 597
utilization: 16 390 550 / 16 390 597 ≈ 0.9999971

simulated configurations: 728 082 432 000
verification run time: ∼ 61 hours

This counterexample is verified by simulating dual priority scheduling of the task set with all
8!×

∏4
i=1(pi + 1) = 728 082 432 000 possible configurations and noting that some deadline is

missed in every simulation. The task set is feasible because its utilization is less than 1. [9]

The above counterexample shows that dual priority scheduling is not optimal for syn-
chronous periodic tasks with implicit deadlines. A corollary is that it is also not optimal for
sporadic tasks with implicit deadlines because clearly the task set is feasible also if sporadic,
but is still not dual priority schedulable. The sub-optimality also carries over to any task
model that is a generalization of either of these two.2

The next counterexample is a task set that is dual priority schedulable, but not so with
any configuration that is phase 1 RM. It thus disproves Conjectures 5 and 6.

I Counterexample 9. The following task set is dual priority schedulable, but not with any
configuration that is phase 1 RM.

ei pi

τ1 13 29
τ2 17 47
τ3 4 89
τ4 28 193

hyper-period: 23 412 251
utilization: 23 412 240 / 23 412 251 ≈ 0.9999995

simulated configurations: 42 239 232 001
verification run time: ∼ 13 hours

This counterexample is verified by
(i) simulating dual priority scheduling with all

(8
4
)
× 4! ×

∏4
i=1(pi + 1) = 42 239 232 000

possible configurations that are phase 1 RM and noting that some deadline is missed in
every simulation, and

(ii) simulating the full hyper-period with the (non-phase 1 RM) configuration given below
and noting that no deadlines are missed with this configuration.

A schedulable configuration that is not phase 1 RM:

π1
i π2

i δi

τ1 4 0 13
τ2 5 1 17
τ3 7 2 42
τ4 6 3 139

2 In fact, Gu et al. [8] restated Burns and Wellings’ conjecture for constrained-deadline sporadic tasks.
We can conclude that this variant also does not hold.

P. Ekberg 14:5

The last counterexample demonstrates that the FDMS heuristic is not guaranteed to find
a valid setting of phase change points for RM+RM priorities, even though a schedulable
configuration that is RM+RM exists. This disproves Conjecture 7.

I Counterexample 10. The following task set is dual priority schedulable with a configuration
that is RM+RM, but the FDMS heuristic fails to find a schedulable configuration.

ei pi

τ1 6 11
τ2 6 20
τ3 4 46
τ4 5 74

hyper-period: 187 220
utilization: 46 804 / 46 805 ≈ 0.9999786

simulated configurations: 134
verification run time: ∼ 0.01 seconds

This counterexample is verified by
(i) setting priorities to be RM+RM and noting that the FDMS heuristic fails to find phase

change points that give a schedulable configuration (FDMS will try 133 configurations
before failing), and

(ii) simulating the full hyper-period with the RM+RM configuration given below and noting
that no deadlines are missed with this configuration.

A schedulable configuration that is RM+RM:

π1
i π2

i δi

τ1 4 0 5
τ2 5 1 3
τ3 6 2 25
τ4 7 3 35

In contrast to Counterexample 8, it can be noted that the results of Counterexamples 9
and 10 do not immediately carry over to sporadic tasks. The reason is that the synchronous
arrival sequence is not necessarily the worst case [7], and so simulating it for the given custom
configurations without any deadline misses does not guarantee schedulability for sporadic
tasks with the same configurations.

3 On searching for counterexamples

For completeness we briefly outline the process of finding the reported counterexamples.
Roughly speaking, to find these counterexamples one needs some intuition about which
classes of task sets to search among (in addition to patience and a fast method for evaluating
the schedulability of task sets).

The search space. After some trial and error, and after eventually finding Counterex-
ample 10 using ad hoc methods, a more focused search was carried out in a search space
delimited as follows.

Exactly four tasks per task set.
Task periods chosen from the first 100 prime numbers (i.e., the primes from 2 to 541).
Product of periods at most 35 000 000.
Utilization in the interval [0.99999, 1].

In more detail, task periods were chosen uniformly at random (without replacement) from
the 100 first primes, and if their product was at most 35 000 000, each possible combination
of execution times for which total utilization ended up in the interval [0.99999, 1] was used
to generate a separate candidate task set.

ECRTS 2019

14:6 Dual Priority Scheduling is Not Optimal

“Quickly” determining schedulability. Each candidate task set was first evaluated using
the FDMS heuristic [6] with RM+RM priorities. Despite being suboptimal (as shown in
this paper), this heuristic could establish dual priority schedulability for the vast majority
of task sets. FDMS runs in exponential time, but for these small task sets it was fast, and
importantly much faster than exhaustive checking of configurations. Only task sets that
were not FDMS-schedulable were finally evaluated using exhaustive methods as potential
counterexamples to Conjectures 4 or 5.

Of course, checking is aborted as soon as a schedulable configuration has been found,
and for each configuration, simulation is stopped at the first deadline miss. The latter point
is very important as it keeps us from simulating the full hyper-period over and over. In
fact, most configurations of the reported counterexamples lead to a deadline miss almost
immediately. For example, in Counterexample 8 more than 99.7% of all configurations lead
to a deadline miss within the largest period p4 in that task set (i.e., within the first 197 time
units). The average number of time units simulated over the 728 082 432 000 configurations
is less than 31, which is smaller than 0.00019% of the hyper-period.

The bound of 35 000 000 on the product of the periods of the generated task sets is
put in place to ensure reasonably fast checking of schedulability by limiting the number of
combinations of phase change points. It also puts a limit on the hyper-period, but because
of the above observation that we tend to not simulate even close to the full hyper-period,
this is likely a less important effect.

Why four tasks in each task set? The counterexamples found all have four tasks, which
seems to be a sweet spot of being complicated enough for dual priority scheduling to fail,
and still small enough for exhaustive checking of all configurations to be feasible. We know
from Burns [2] that there are no counterexamples with two tasks, and we have not been able
to find counterexamples to any of the conjectures with three tasks either. On the other hand,
five tasks seem to be beyond what can be checked with reasonable time and effort: As an
example, consider what would happen if we added a fifth task with period 100 to the task
set of Counterexample 8 (and adjusted execution times in some suitable way). The number
of possible permutations of priorities would increase by a factor of (2 × 5)!/(2 × 4)! = 90,
and the possible combinations of phase change points would increase by a factor of 101. The
number of configurations we would have to check would therefore increase by a factor of 9090,
and assuming everything else stays the same, the time required for checking all configurations
would increase from around 2.5 days to over 60 years! We would have to be patient indeed,
or at least have access to lots of processing capacity.

Why prime periods? We want the generated task sets to be as difficult as possible to
schedule, and the intuition is that, in addition to high utilization, pairwise coprime periods3
could be correlated to this. The reasoning is that the behavior of a given dual priority
configuration is static with respect to the pattern of job releases (the phase change points
are always at a certain offset from the job releases). Some configurations might therefore
work well with some patterns, but not with others. By having all possible patterns of job
releases occur in the hyper-period, the chance that no configuration will work might therefore
increase. We know from the Chinese remainder theorem that all patterns will occur if the
periods are pairwise coprime.

3 Picking the periods from a list of primes was just a straightforward way of making sure they are always
pairwise coprime.

P. Ekberg 14:7

The occurrence of counterexamples in the search space. The search space described
above is somewhat ad hoc, and no claim is made that it is in any meaningful way the worst
for dual priority scheduling. Here is, in any case, a characterization of the occurrence of
“interesting” task sets in it. For this, candidate task sets were randomly generated according
to the description above until a first unschedulable task set (like the one in Counterexample 8)
was found. This happened after evaluating a total of 130 255 candidate task sets. These task
sets are classified in the table below.

task sets % of explored search space
Schedulable with RM+RM using FDMS 129 823 ∼ 99.67%
Schedulable with RM+RM, but not using FDMS 0 0%
Schedulable with phase 1 RM, but not RM+RM 284 ∼ 0.22%
Schedulable, but not with phase 1 RM 147 ∼ 0.11%
Unschedulable 1 ∼ 0.0008%

It can be noted that even in this search space, which was heavily narrowed down to what
was believed to be “difficult” task sets, almost all task sets are still schedulable with the
FDMS heuristic and RM+RM priorities. It is also interesting that among the evaluated task
sets in this experiment, FDMS succeeded in finding a schedulable configuration to all task
sets that were schedulable with RM+RM. (However, as is evidenced by Counterexample 10,
there are cases where FDMS fails to find schedulable RM+RM configurations.)

4 Conclusions and open problems

Even though we show negative results about dual priority scheduling in this paper, most
importantly that it is not an optimal algorithm, this does not directly imply that dual
priority scheduling is not, in general, a good algorithm. It still successfully schedules the vast
majority of task sets that have been tried – presumably the very reason it was conjectured
optimal in the first place. One could argue, with some justification, that it is close enough to
optimal for any practical uses. However, there are still major challenges ahead to make full
use of the apparent near-optimality of dual priority scheduling. Here we list some of those
challenges (see also Burns [2]).

1. Can we efficiently test whether a schedulable configuration exists? Had dual
priority scheduling been optimal this would be trivial by simply checking whether the
utilization is at most 100%, but now this cannot be a sufficient test. The current state-of-
the art, to try all possible configurations and see if one works, is utterly unsatisfactory.
This problem is clearly in PSPACE, but lower bounds are unknown.

2. Can we efficiently find a schedulable configuration if one exists? It is not
unlikely that a good solution to the first point would somehow allow us to also find a
schedulable configuration, but it is not necessarily so. For example, a non-constructive
proof of optimality would have allowed us to use the 100% utilization bound to check for
existence of a schedulable configuration, but it might not have helped us find one.

3. Can we efficiently test whether a given configuration is schedulable? The
current state-of-the-art is to simulate a full hyper-period, which is straightforward but
not very scalable. It also does not seem to be applicable to sporadic tasks as George et
al. [7] have shown that the synchronous arrival sequence is not guaranteed to be the worst
case. This problem is clearly in PSPACE and is also (weakly) NP-hard as it generalizes
the ordinary fixed-priority schedulability problem [5].

ECRTS 2019

14:8 Dual Priority Scheduling is Not Optimal

4. What is the utilization bound for dual priority scheduling? Dual priority schedul-
ing is suboptimal, but is more powerful than ordinary fixed-priority scheduling. Its
utilization bound must therefore be in the half-open interval [ln(2), 1),4 but where? It can
be noted that a constant utilization bound can not be an exact schedulability test here.

5. Does the apparent near-optimality of dual priority scheduling diminish with
larger task sets? Dual priority scheduling appears to work very well, but out of
necessity it has only been systematically evaluated on small task sets so far (something
that solutions to the issues above might change). At the same time, there is evidence
that the number of priorities each task might need is related to the number of tasks in
the task set: Burns [2] proved that dual priority scheduling is optimal for task sets with
n = 2 tasks, while Pathan [11, 12] has shown that, in general, n-priority scheduling is
optimal for task sets with n tasks. Does dual priority scheduling seem so good because
our observations are biased?

6. Is phase 2 promoted an optimal choice for priorities? It is usually assumed in
the literature that configurations should be phase 2 promoted (see Definition 2). While
this seems very sensible, it has to the best of the author’s knowledge never been proven
optimal. After all, phase 1 RM and RM+RM seem like sensible choices as well, but they
turn out to not be optimal.

7. Would rational phase change points improve schedulability? We have assumed
that the phase change points, like task parameters, are integer. Integer phase change
points are a reasonable assumption as we could always pick the clock cycle as our time
unit, and it also seems to be in line with previous work on dual priority scheduling, even
though it is not always spelled out. But what if phase change points can be rational?
An interesting theoretical question is whether this adds any extra power. Naturally, it is
impossible to exhaustively check all configurations in such a model.

8. Is k-priority scheduling optimal for some constant k? We know now that dual
(k = 2) priority scheduling is not optimal, but also that given enough priority levels k
per task, k-priority scheduling can be made to simulate EDF and is therefore optimal.
The smallest bound on k known for optimal scheduling is k = n, where n is the number
of tasks, as shown by Pathan [11, 12]. Is there some constant k, such that k-priority
scheduling is optimal?

9. Is there some deeper insight to be gained about why some task sets are
unschedulable? We have demonstrated that dual priority scheduling is not optimal,
but the brute-force method with which this is done leaves something to be desired. It
is not easy to see what actually makes a certain task set unschedulable, like the one in
Counterexample 8. For a given configuration we could, in principle, analyze the concrete
schedule to see where the “wrong” scheduling decision was made and explain why and
how this happened. Explaining in a satisfiable way why none of billions of different
configurations work seems to require some entirely different type of insight, however. This
is insight that is currently lacking. Of course, it is entirely possible that there does not
actually exist a more elegant and general characterization of dual priority unschedulability
than “a task set is unschedulable if all configurations lead to a deadline miss.” But if a
more elegant characterization does exist, finding it would be key to deeper understanding.
Such a characterization would likely be needed for a satisfactory solution to the first point
in this list as well.

4 As is evidenced by Counterexample 8, the utilization bound must in fact be in the slightly smaller
interval [ln(2), 16 390 550 / 16 390 597).

P. Ekberg 14:9

References
1 A. Burns and A.J. Wellings. DUAL PRIORITY ASSIGNMENT: A Practical Method for

Increasing Processor Utilisation. In Proceedings of the 5th Euromicro Workshop on Real-Time
Systems, pages 48–53, 1993. doi:10.1109/EMWRT.1993.639052.

2 Alan Burns. Dual priority scheduling: Is the processor utilisation bound 100%? In Proceedings
of the 1st International Real-Time Scheduling Open Problems Seminar (RTSOPS), 2010. URL:
https://www.cs.york.ac.uk/ftpdir/reports/2010/YCS/455/YCS-2010-455.pdf#page=9.

3 Robert Davis and Andy Wellings. Dual Priority Scheduling. In Proceedings of the 16th
Real-Time Systems Symposium (RTSS), pages 100–109, December 1995. doi:10.1109/REAL.
1995.495200.

4 Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. A review of
priority assignment in real-time systems. Journal of Systems Architecture, 65:64–82, 2016.
doi:10.1016/j.sysarc.2016.04.002.

5 Pontus Ekberg and Wang Yi. Fixed-Priority Schedulability of Sporadic Tasks on Uniprocessors
is NP-hard. In Proceedings of the 38th Real-Time Systems Symposium (RTSS), pages 139–146,
2017. doi:10.1109/RTSS.2017.00020.

6 Tristan Fautrel, Laurent George, Joël Goossens, Damien Masson, and Paul Rodriguez. A
Practical Sub-Optimal Solution for the Dual Priority Scheduling Problem. In Proceedings
of the 13th International Symposium on Industrial Embedded Systems (SIES), June 2018.
doi:10.1109/SIES.2018.8442075.

7 Laurent George, Joël Goossens, and Damien Masson. Dual Priority and EDF: a closer
look. In Proceedings of the Work-in-Progress Session of 35th Real-Time Systems Symposium
(RTSS-WiP), December 2014. URL: https://hal.archives-ouvertes.fr/hal-01217433.

8 Xiaozhe Gu, Arvind Easwaran, and Risat Pathan. Design and Analysis for Dual Priority
Scheduling. In Proceedings of the 21st International Symposium on Real-Time Distributed
Computing (ISORC), pages 164–173, 2018. doi:10.1109/ISORC.2018.00033.

9 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

10 Mitra Nasri and Gerhard Fohler. Some Results in Rate Monotonic Scheduling with Priority
Promotion. In Proceedings of the Work-in-Progress Session of the 27th Euromicro Conference
on Real-Time Systems (ECRTS-WiP), pages 5–8, 2015. URL: https://people.mpi-sws.org/
~mitra/papers/Nasri_WIPECRTS15.pdf.

11 Risat Mahmud Pathan. Unifying Fixed- and Dynamic-Priority Scheduling based on Priority
Promotion and an Improved Ready Queue Management Technique. In Proceedings of the 21st
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 209–220,
April 2015. doi:10.1109/RTAS.2015.7108444.

12 Risat Mahmud Pathan. Real-Time Scheduling on Uni- and Multiprocessors based on Priority
Promotions. Leibniz Transactions on Embedded Systems, 3(1):02–1–02:29, 2016. doi:10.4230/
LITES-v003-i001-a002.

ECRTS 2019

http://dx.doi.org/10.1109/EMWRT.1993.639052
https://www.cs.york.ac.uk/ftpdir/reports/2010/YCS/455/YCS-2010-455.pdf#page=9
http://dx.doi.org/10.1109/REAL.1995.495200
http://dx.doi.org/10.1109/REAL.1995.495200
http://dx.doi.org/10.1016/j.sysarc.2016.04.002
http://dx.doi.org/10.1109/RTSS.2017.00020
http://dx.doi.org/10.1109/SIES.2018.8442075
https://hal.archives-ouvertes.fr/hal-01217433
http://dx.doi.org/10.1109/ISORC.2018.00033
http://dx.doi.org/10.1145/321738.321743
https://people.mpi-sws.org/~mitra/papers/Nasri_WIPECRTS15.pdf
https://people.mpi-sws.org/~mitra/papers/Nasri_WIPECRTS15.pdf
http://dx.doi.org/10.1109/RTAS.2015.7108444
http://dx.doi.org/10.4230/LITES-v003-i001-a002
http://dx.doi.org/10.4230/LITES-v003-i001-a002

NPM-BUNDLE: Non-Preemptive Multitask
Scheduling for Jobs with BUNDLE-Based
Thread-Level Scheduling
Corey Tessler
Wayne State University, Detroit, Michigan, USA
corey.tessler@wayne.edu

Nathan Fisher
Wayne State University, Detroit, Michigan, USA
fishern@wayne.edu

Abstract
The BUNDLE and BUNDLEP scheduling algorithms are cache-cognizant thread-level scheduling algorithms
and associated worst case execution time and cache overhead (WCETO) techniques for hard real-time
multi-threaded tasks. The BUNDLE-based approaches utilize the inter-thread cache benefit to reduce
WCETO values for jobs. Currently, the BUNDLE-based approaches are limited to scheduling a single
task. This work aims to expand the applicability of BUNDLE-based scheduling to multiple task
multi-threaded task sets.

BUNDLE-based scheduling leverages knowledge of potential cache conflicts to selectively preempt
one thread in favor of another from the same job. This thread-level preemption is a requirement for
the run-time behavior and WCETO calculation to receive the benefit of BUNDLE-based approaches.
This work proposes scheduling BUNDLE-based jobs non-preemptively according to the earliest deadline
first (EDF) policy. Jobs are forbidden from preempting one another, while threads within a job are
allowed to preempt other threads.

An accompanying schedulability test is provided, named Threads Per Job (tpj). tpj is a
novel schedulability test, input is a task set specification which may be transformed (under certain
restrictions); dividing threads among tasks in an effort to find a feasible task set. Enhanced by
the flexibility to transform task sets and taking advantage of the inter-thread cache benefit, the
evaluation shows tpj scheduling task sets fully preemptive EDF cannot.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases Scheduling algorithms, Cache Memory, Multi-threading, Static Analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.15

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.2

Funding The research presented in this paper was supported by the National Science Foundation
under Grant Nos. CNS-1618185 and IIS-1724227.

1 Introduction

Hard real-time multi-threaded task systems which incorporate cache memory, must account
for the variation in execution time and cache related preemption delays found in single-
threaded task systems. For multi-threaded task systems, the complexity of cache interactions
is increased due to thread-level cache interference and preemptions. Worst-case execution
time (WCET) and schedulability analysis of hard real-time multi-threaded tasks commonly
treat threads independently [21] or utilize cache management techniques [33] to limit the
cache interference.

Analysis techniques focusing on independent treatment or limiting of cache interference
exclude the possible benefit of caches. Multi-threaded tasks may benefit from caches. By
virtue of sharing the same address space one thread of a task may cache values on behalf of

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Corey Tessler and Nathan Fisher;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:corey.tessler@wayne.edu
mailto:fishern@wayne.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.15
https://dx.doi.org/10.4230/DARTS.5.1.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

another reducing the total execution time to complete both. This positive effect is referred
to as the inter-thread cache benefit [26].

Currently, only the BUNDLE [26] and BUNDLEP [27] analysis techniques and cache congnizant
thread-level scheduling algorithms incorporate the inter-thread cache benefit into WCET
and schedulability analysis. These BUNDLE-based approaches are currently limited to a single
multi-threaded task. The primary focus of this work is to provide a scheduling algorithm and
schedulability test for multi-threaded task sets with multiple tasks, where individual jobs
utilize BUNDLE-based scheduling. As the first scheduling algorithm to incorporate BUNDLE-
based thread-level scheduling, a non-preemptive algorithm was chosen to avoid necessary
modifications to BUNDLE and BUNDLEP. Non-preemptive EDF was selected as the task-level
scheduler, as the proposed schedulability test presented in Section 4 is based upon Baruah’s
limited-preemption for EDF [6] algorithm.

An additional consideration is made for alternative approaches and the unforeseen benefits
to schedulability of thread-level schedulers of non-preemptive multi-threaded jobs. If the
WCET of jobs can be expressed as a strictly increasing discrete concave function of the
number of threads per job, the schedulability test developed for this work applies without
modification to the BUNDLE-based approaches or non-preemptive EDF scheduling.

In the following sections, the key contributions are:
1. A model of hard real-time multi-threaded tasks which is compatible with existing single-

threaded models, where tasks sets may be transformed through division of threads.
2. A schedulability test named Threads Per Job (tpj) that provides a schedulability result

and transformed feasible task set if the specified task set could not be scheduled non-
preemptively.

3. Proof of tpj’s optimality with respect to non-preemptive multi-threaded feasibility.
4. An improvement to Baruah’s [6] non-preemptive chunk algorithm, increasing chunk sizes.
5. An evaluation of over 500,000 task sets, comparing the schedulability ratio of tpj to those

of non-preemptive and (limited) preemptive EDF, with an accompanying implementation
available for download [28].

These contributions are presented following the related research of Section 2. Section 3
introduces the proposed model, application of non-preemptive EDF scheduling for thread-
level schedulers, and the requirements of task transformation. Section 4 introduces then
improves upon the non-preemptive chunk algorithm [6], followed by the tpj schedulability
algorithm and proof of feasibility. Section 5 compares the schedulability ratio of tpj to other
non-preemptive and preemptive scheduling algorithms, before concluding with Section 6.

2 Discussion of Related Research

Single-Threaded Tasks. The challenge of dealing with the non-uniformity of execution times
in real-time systems due to cache misses or hits has received considerable attention [34, 30].
In particular, much of the prior real-time systems work on understanding caches vis-à-vis
scheduling has focused upon the contention in the cache due to tasks preempting each other.
Roughly speaking, a large majority of this research can be classified into two categories:
cache-related preemption delay (CRPD) analysis and deferred/limited-preemption scheduling.
The goal of CRPD analysis is to bound the number of cache blocks of a task that need to be
reloaded due to evictions caused by a preempting task. The foundation of CRPD analysis is
the development of techniques for counting and bounding the number of blocks affected by
preemption; this is achieved by categorizing a task’s cache blocks into sets of useful cache
blocks (UCBs) or evicting cache block (ECBs) [17, 31]. The size of these sets can be used as

C. Tessler and N. Fisher 15:3

an upper bound on the cache cost of a preemption. Subsequent research based upon this
UCB and ECB categorization has refined these sets and incorporated the CRPD analysis
into schedulability analysis [1, 2, 3, 20, 24, 25]. However, please note that these CRPD
approaches only quantify the cache effect of preemption into existing scheduling approaches
and do not change any scheduling decision based upon the knowledge of preemption.

In limited/deferred-preemption scheduling, a higher-priority task may preempt a lower-
priority task only when some condition is satisfied. The overall effect of deferring or limiting
preemptions is to reduce the number of times a task may be preempted during its execution.
The hope is that by limiting the number of preemptions this will lead to a decrease in the
execution time of job due to the cache overhead of preemption. Different conditions for
deferring preemptions have been considered. The fixed preemption-point approach [11] selects
specific locations in a task code that are most appropriate for the program but preserve the
system schedulability. The preemption-threshold scheduling approach [32] sets a threshold
that only task with higher-priority than this threshold may preempt a currently-executing
lower priority task. The floating preemption-point model [6, 19] computes the maximum time
duration that a lower-priority task may delay the preemption of a higher-priority task. Each
of the deferred preemption approaches have been shown to limit the number of preemptions
but do not incorporate the CRPD overhead cost in its decision on how to defer preemption.

More recently, a line of research has emerged to combine the aspects of CRPD analysis
and limited/deferred preemption scheduling by explicitly placing preemption points in the
code to minimize CRPD effects. Early heuristics were proposed by Simonson and Patel [23]
and Lee et al. [17]. Bril et al. [10] integrated CRPD analysis into preemption-threshold
scheduling. Bertogna et al. [8] provide a more formal approach for optimally determining
preemptions in programs that can be represented by linear control flowgraphs given the
CRPD overhead of each preemption and a bound on the maximum non-preemption region [6].
Later work, extended this to more general control flowgraphs [22] or more precise CRPD
characterizations of the preemption costs [14]. However, all of this aforementioned research
assumes each task is single-threaded. The techniques proposed in this paper extend the
CRPD and limited preemption concepts to scheduling multi-threaded tasks by combining
and extending the limited-preemption scheduling results of Baruah [6] to the cache-cognizant
thread-level scheduling algorithms that minimize cache contention between threads called
BUNDLE [26] and BUNDLEP [27].

Multi-Threaded Tasks. Cache interference amplifies the variation in execution times of
multi-threaded task sets. Threads of the same task share cache locations, with the potential
to increase misses and hits depending on the order of execution of threads. This variability
is an addition to the variation already present when considering CRPD with other tasks.

There are few works we are aware which directly address the inter-thread variability
due to caches in multi-threaded task sets. The approaches focus on isolating execution or
managing cache behavior. Memory-Centric Scheduling [4] isolates contentious execution by
scheduling tasks according to their cache behavior. To create such isolation, tasks must be
PREM-compliant [21], with distinct load and execution phases. Cache management utilize
techniques that limit the contention in the cache, such as coloring and blocking found in [33].
These approaches come at a cost of modified or restricted executable objects, reduced cache
sizes, or additional cache misses of blocked lines. Yet, with these limitations, the inter-thread
variability is not accounted for within multi-threaded tasks.

BUNDLE [26] and BUNDLEP [27] address inter-thread variability due to cache interactions.
These BUNDLE-based approaches analyze executable object coupled with a cache-cognizant
thread-level scheduling algorithm without the added detriment of modified (or restricted)

ECRTS 2019

15:4 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

objects, or cache management penalties. We are not aware of any other technique that
addresses inter-thread variability, with the execption of Calandrino’s [13] limited cache spread.
However, the results of [13] are strictly empirical.

3 Model

To permit non-preemptive jobs that utilize thread-level schedulers, a new model is proposed
in this work. The set of n multi-threaded tasks is given by τ = {τ0, τ1, ..., τn−1}. Each job
of a task τi = (pi, di,mi, ci : N 7→ R+) has a minimum inter-arrival time of pi and relative
deadline di. For every job release of τi, a positive integer mi identical threads are released.
Each thread of τi executes over the same object oi on the shared processor. An object is a
set of executable machine instructions, mapping to one set of in memory addresses, such
that all threads execute the same instruction from the same address. All threads share the
same deadline as their job. The worst-case execution time (WCET) of τi is a function of the
number of threads per job, ci(mi).

Scheduling and schedulability analysis proposed in this work relies upon a relationship
between the number of threads scheduled per multi-threaded job and the WCET of the
job executed non-preemptively. To clarify, the scheduling mechanism proposed in this
work precludes preemptions between jobs of different tasks. For threads within a job of a
task, a thread-level scheduler may execute threads preemptively. Figure 1a illustrates the
scheduling behavior.

In Figure 1a, at t = 1 a job of τ2 is released. The job of τ2 cannot be preempted by the
job of τ1 released at t = 5. During the execution of τ2, the two threads (given distinct colors)
may preempt one another according to the thread-level scheduler, at t = 8 for instance.
Thread-level scheduling and preemption decisions are not prescribed by this work. The
thread-level scheduling policies of τ1 and τ2 are independent of the non-preemptive task-level
scheduling of non-preemptive EDF used in this work.

Thread-level scheduling algorithms must be characterized by a WCET function ci(mi)
for mi threads per job and ci(mi) must be strictly increasing discrete and concave (detailed
in Subsection 3.2). Thread-level schedulers that produce concave ci(mi) functions establish
a relationship between the execution requirements of a task and the number of threads,
where the requirement for one job of mi threads is less than mi jobs of one thread. For
BUNDLE-based schedulers, concavity is the result of the inter-thread cache benefit, where
ci(m)− ci(m− 1) ≥ ci(m+ 1)− ci(m); it is this relationship the proposed scheduling beha-
vior and analysis seek to exploit.

Not all tasks and thread-level schedulers will produce concave WCET functions. For a
task τi with a convex WCET function (where there is no benefit in grouping threads together),
the mi threads of τi may be replaced with mi single-threaded tasks. These single-threaded
have vacuously concave WCET functions by virtue of executing no more than one thread.

(a) Scheduling Behavior. (b) Schedulability and Transformable Task Sets.

Figure 1 Scheduling and Schedulability of the Proposed Model.

C. Tessler and N. Fisher 15:5

The task set τ provided by the system designer to schedulability analysis is referred
to as the task set specification. Commonly [5, 18, 6, 8, 11, 12], task set specifications are
immutable in hard-real time models. The number of tasks, their WCET time, period, and
deadline are provided by the system designer, not to be changed. Schedulability analysis
determines if the task set specification is feasible. In this work, task sets are transformable
(obeying some restrictions).

Transformation of a task set exploits the concavity of execution requirements, redistrib-
uting the threads of individual tasks to multiple tasks. A greater number of threads per
job reduces the WCET of a task but increases the non-preemptive execution requirement.
Conversely, a fewer number of threads per task increases the total WCET for all tasks
while decreasing the non-preemptive execution requirement. Schedulability analysis in this
non-preemptive setting encompasses the search for a distribution of the fixed number threads
from the task set specification to a variable number of tasks, resolving the tension between a
greater number of tasks and a greater number of threads per task to find a feasible task set.

Under the proposed model, schedulability analysis is a process that begins by considering
the current task set named the anterior task set τ̂ . If the set is schedulable, the set is
unmodified and processing ceases with a positive result. If the task set τ̂ cannot be scheduled
as described, the task set is transformed into a posterior task set τ , and processed again
as an anterior set. Processing ceases with a negative result when there are no available
transformations of τ̂ .

Figure 1b illustrates the schedulability analysis process. Division is the transformative
operation of the process and is described in Subsection 3.1. The figure highlights the ability
of a single task set to be both anterior and posterior to different sets during processing.
To aid in explanation, properties of a task may be referred to in terms of the set the task
was transformed from and to. By example, if the number of threads assigned to τi in the
anterior set τ̂ is reduced by one in the posterior task set τ , the posterior threads of τi may
be written as mi = m̂i − 1.

As a process, schedulability analysis of the specified task set serves two purposes under
this model. The first, is to determine if there exists a posterior task set which is feasible.
Second, to produce the feasible posterior task set if one exists. It is the feasible posterior task
set τ found by schedulability analysis that is then deployed on the target architecture. From
the system designer’s perspective, each task τi ∈ τ of the specified task set is a request to
execute mi threads of the object oi with shared periods pi and deadlines di for any posterior
task set τ . A task set specification is flexible, for one object there may be multiple tasks
with variable numbers of threads per job. However, the specified mi of a task is a ceiling on
any mi of a posterior task.

3.1 Dividing and Task Parts
A task set may be transformed by dividing tasks of the set. Dividing a task reduces the
number of threads executed by each job, splitting the anterior task into two or more tasks in
the posterior set.

I Definition 1 (Task Division). In the anterior task set τ̂ , a task τi = (pi, di, ci(mi)) may be
divided into two (or more) posterior tasks τj and τk with three restrictions: 1.) the periods
of τj and τk are equal to the period of τi 2.) the relative deadlines of τj and τk are equal to
the deadline of τi 3.) the sum of threads of τj and τk are equal to τi 4.) the objects of τi, τj ,
and τk are equal. Enumerated, the restrictions are:

1. pi = pj = pk

2. di = dj = pk

3. mi = mj + mk

4. oi = oj = ok

ECRTS 2019

15:6 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

I Definition 2 (Partial Tasks). When an anterior task τi is divided into τj and τk posterior
tasks, τj and τk are referred to as partial tasks or parts of τi.

I Definition 3 (Partial Task Set). For convenience, the set of posterior tasks of τi is denoted
Φi and called the partial task set of τi, where mi =

∑
τk∈Φi

mk.

3.2 Worst-Case Execution Time Function Growth
Motivation for the task model and schedulability analysis process proposed in this work
stems from the inter-thread cache benefit of BUNDLE-based scheduling [26, 27]. The previous
works [26, 27] are limited to a single task; this work extends the method (non-preemptively)
to multiple tasks. Schedulability analysis for BUNDLE-based scheduling algorithms produce,
for each task τi, a worst-case execution time combined with cache overhead (WCETO)
function ci(m) in terms of m the number of threads per job scheduled in a cache-cognizant
manner. For tasks that benefit from BUNDLE-based scheduling and analysis, ci(m) is a strictly
increasing discrete concave function. Tasks that do not are made vacuously concave by
restricting jobs to release one thread.

In the WCETO analysis of BUNDLE and BUNDLEP, threads are assigned to paths through
the conflict-free region graph of the executable object which maximize their contribution
to ci(mi) . When considering the addition of a thread mi + 1, only the greatest increase in
ci(mi) is permitted. Subsequently, the addition of thread mi + 2 must increase ci(mi) by
less than or equal to the increase from mi + 1 or the increase of mi + 1 would not have been
maximal. Therefore, for any ma < mb < mc the point (mb, ci(mb)) lies above the straight
line described by (ma, ci(ma)) and (mc, ci(mc)) – subsequently, ci(mi) is concave.

A consequence of ci(m)’s strictly increasing discrete concavity is a limit on the increase
of the WCET as the number of threads increases. This property is referred to as the concave
restricted growth (concave growth for brevity) of ci(m) and is leveraged in Sections 4 and 5.

I Property 1 (Concavity Restriction on WCET Growth). For a strictly increasing discrete
concave WCET function ci(m):

∀m ∈ N+ | ci(m)− ci(m− 1) ≥ ci(m+ 1)− ci(m) (1)

It then follows for mx ≥ my > 0

ci(mx + 1)− ci(mx) ≤ ci(mx)− ci(mx − 1)
≤ ci(mx − 1)− ci(mx − 2)
...

≤ ci(my)− ci(my + 1)
≤ ci(my)− ci(my − 1)

A WCET function ci(m) that obeys Property 1, will produce a value for ci(m+ 1) threads
which is greater than ci(m). The difference between ci(m+ 1) and ci(m) must be less than
or equal to the difference of ci(m) and ci(m− 1). As the number of threads increase, ci(m)
increases at a decreasing (or stable) rate.

For the purposes of comparison and evaluation in Section 5, an upper bound on the
growth of ci(m) is called the growth factor Fi of τi. Growth factors relate the WCET of one
thread ci(1) to the WCET of an arbitrary number of threads ci(m) for m > 0. A growth
factor Fi ∈ (0, 1], for a task τi, is a real number that satisfies Equation 2.

I Definition 4 (Growth Factor for τi).

∀m | ci(m) ≤ ci(1) + (m− 1) · F · ci(1) (2)

C. Tessler and N. Fisher 15:7

For an F satisfying Equation 2, the pessimistic upper bound provides a linear function
that can be rearranged to find an upper bound on the WCET of one thread in terms of
m threads. The result is Equation 3, which will be used in the evaluation Section 5 when
constructing task sets. Note, since m ∈ N each increase of m increases ci(m) by F · ci(1).

ci(m) = ci(1) + (m− 1) · F · ci(1) (3)

4 Non-Preemptive EDF Schedulability

Preemptive earliest deadline first (EDF) schedulability analysis for sporadic task sets has
been well studied [18, 5, 15]. In the fully preemptive setting for which the algorithm is
optimal, the overhead of a large number of preemptions may be a detriment to schedulability.
Baruah [6] addresses this concern with an algorithm for calculating the non-preemptive chunk
size qi of each task τi ∈ τ . The non-preemptive chunk size qi guarantees that task τi may
execute up to qi time units non-preemptively without introducing a deadline miss for any
task in τ scheduled by preemptive EDF.

Section 4.3 introduces the non-preemptive feasibility algorithm Thread Per Job (tpj) based
upon the non-preemptive chunks algorithm from [6]. tpj differs from the non-preemptive
chunks algorithm by requiring the non-preemptive chunk size qi of each task τi to be greater
than or equal to its WCET: ci(mi) ≤ qi. As such, all jobs can be scheduled non-preemptively
without fear of a deadline miss. To clearly convey tpj, a description of the non-preemptive
chunks algorithm and its dependencies is provided in the immediate subsection. Subsection 4.2
describes, by example, the available improvements to the non-preemptive chunks algorithm [6].
Subsection 4.4 defines and proves tpj’s optimality.

4.1 Non-Preemptive Chunks
The non-preemptive chunks algorithm depends on the demand bound function, EDF feasibility,
ordering of absolute deadlines, and slack for the task set τ . Ordered absolute deadlines are
given by {D1, D2, ...} with Dn < Dn+1 for all n, where each task τi ∈ τ contributes deadlines
D = k · pi + di for k ∈ Z+.

For a sporadic task τi the demand bound function for a task dbf(τi,t) is an upper bound
on the amount of execution requirement generated from jobs released by τi over t units of
time. The demand bound function is presented as Equation 4 as dbf(τi,t) modified from [5]
to suit the task set model used in this work.

I Definition 5 (Demand Bound Function for a Task τi and Interval t).

dbf(τi,t) = max
(

0,
(⌊

t− di
pi

⌋
+ 1
)
· ci(mi)

)
(4)

When necessary for brevity, Equation 5 will be used to represent the sum of demand of
all tasks over an interval of length t.

I Definition 6 (Demand Bound Function for the Task Set τ and Interval t).

dbf(τ ,t) =
∑
τi∈τ

dbf(τi,t) (5)

Slack of the task set τ at deadline Dk is given by Equation 6. Intuitively, slack is the
minimum time the processor will be idle over an interval. It is the difference between the
demand over the interval and the length of the interval.

ECRTS 2019

15:8 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

I Definition 7 (Slack at Deadline Dk).

slack(Dk) = min
j≤k

(
Dj −

∑
τi∈τ

dbf(τi,Dk)
)

(6)

For EDF, feasibility is determined by examining increasing time intervals and calculating
the demand and supply. If demand exceeds supply, the system is infeasible. Equation 7
provides a formal definition of feasibility for the task set τ .

I Definition 8 (EDF Feasibility Demand Bound Test).

∀t ≥ 0,
(∑
τi∈τ

dbf(τi,t)
)
≤ t (7)

In [6], the number of time instants tested by Equation 7 is limited to the values of the
ordered set of absolute deadlines {D1, D2, ...}. The ordered set of absolute deadlines is an
infinite set, impractical for feasibility test. There is an upper bound on the value of all time
instants (absolute deadlines) that must be tested and is denoted T ∗(τ). Taken from [15], T ∗(τ)
is given by Equation 8 below. Among all tasks the largest deadline is dmax = maxτj∈τ (dj).
Utilization of τj is defined as Uj = cj(mj)

pj
. Among all tasks, the greatest difference of period

and deadline is given by ∆max = maxτi∈τ (pi − di). The hyper-period of all tasks (the least
common multiple of all relative deadlines) is given by P .

I Definition 9 (Feasibility Test Bound t for τ).

T ∗(τ) = min
(
P,max

(
dmax,

1
1− U ·∆max ·

n−1∑
i=0

Ui

))
(8)

The non-preemptive chunks algorithm from [6] is presented (with additional details) as
pseudocode in Algorithm 1 and named np-chunks. In addition to determining if the task set
is schedulable under EDF, the algorithm produces a non-preemptive chunk size qj for each
task τj ∈ τ . Jobs of τj may execute up to qj time units non-preemptively without negatively
impacting schedulability. This setting, where a task τj may execute non-preemptively for
some period of time qj is referred to as limited-preemption.

Algorithm 1 Non-Preemptive Chunks (np-chunks).
1: slack(D1) ← D1 −

∑
τi∈τ dbf(τi,D1)

2: for τj ∈ {τi ∈ τ | (di = D1)} do
3: qj ← cj(mj)
4: end for
5: for k ∈ {D2, D3, ..., } do
6: if Dk > T ∗(τ) then
7: return feasible
8: end if
9: slack(Dk) ← min

(
slack(Dk−1), Dk −

∑
τi∈τ dbf(τi,Dk)

)
10: if slack(Dk) < 0 then
11: return infeasible
12: end if
13: for τj ∈ {τi ∈ τ | (di = Dk)} do
14: qj ← slack(Dk)
15: end for
16: end for

C. Tessler and N. Fisher 15:9

For a detailed description of np-chunks refer to [6]. To summarize, np-chunks begins
by seeding the slack of the smallest interval D1 and the non-preemptive chunk size of
tasks with the smallest relative deadline equal to their WCET. During each iteration of
Dk ∈ {D2, D3, ..., }, the slack for the interval Dk is calculated as the minimum of the current
slack and the previous slack value. If there is less than zero slack, the system is infeasible. If
the slack is zero or greater, each task with relative deadline equal to the current interval size
is assigned the available slack as the task’s non-preemptive chunk size. A task τj is assigned
a non-preemptive chunk once, before assignment qj = ∅ afterwards qj 6= ∅. If the interval
being examined Dk exceeds T ∗(τ), the task set must be schedulable.

4.2 Improving the Non-Preemptive Chunk Size
From the description of np-chunks in [6], there is an opportunity to improve the available
slack for each of the k deadlines considered. Alogrithm 1 is pessimistic in the amount of
available slack at any deadline Dk. To illustrate, consider the task set and intermediate
values described by Table 1.

Table 1 Example Task Set τ = {τ0, τ1, τ2}.

i pi di mi ci(mi)
τ0 4 2 1 1
τ1 3 3 1 1
τ2 3 3 1 1

P Dk τj : dj = Dk dbf(τ ,Di) slack(Di) qj

12
D1 = 2 τ0 1 1 1

D2 = 3 τ1 3 0 0
τ2 3 0 0

There are three tasks in the task set of Table 1, with utilization of approximately 0.92.
For τ0, initialization assigns a non-preemptive chunk of q0 = 1 time units. By observation,
after release τ0 may be delayed from execution by at most one time unit or it will miss its
deadline. Consequently, the non-preemptive chunk size available to τ1 and τ2 is 1. As such
np-chunks would be expected to find q0 = 1, q1 = 1, q2 = 1.

Note, it is not possible for τ0 to be blocked for 1 or more time units if both τ1 and τ2
execute non-preemptively for 1 time unit each. If τ0 is blocked for less than 1 time unit
by τ1, then τ0 will be the highest priority task when τ1 completes (similarly for τ2). It is
impossible for τ0 to be blocked 1 time unit or more by τ1 or τ2, τ0 would have to be released
at the same time instant as τ1 or τ2 and τ1 or τ2 would have to execute before τ0, since the
relative deadline of τ0 is less than the other two, limited-preemption EDF executes τ0: the
task with earliest absolute deadline.

For τ0, q0 is calculated as expected q0 = c0(m0) = 1, by Lines 2-4 of Algorithm 1. However,
τ1 has a non-preemptive chunk size of q1 = 0. The reason is Line 9, where slack(D2) is
calculated which includes the execution demand of τ1 and τ2. Slack is an upper bound on the
non-preemptive chunk size assigned to a task (in this case τ1). Giving a task the available
slack permits the task to execute longer, delaying higher priority jobs from executing in the
interval by delaying them for as much time as there is slack.

By example in Table 1, the available slack for τ1 is determined from the interval of length
D2 = 3. The execution requirement of τ1 and τ2 is included in dbf(τ ,3) because d1 = d2 = 3.
Thus slack(D2) is zero. Since τ1’s execution requirement is already included, it cannot
further interfere over the interval D2. Furthermore, τ1 must have executed some portion
without being preempted or the system would not be schedulable. Inclusion of τ1’s execution
requirement within the interval over which slack is calculated for is pessimistic with respect
to the non-preemptive chunk q1 in this specific example, and qj in general.

In the pseudocode implementation of np-chunks adopted from [6], Line 9 calculates
the non-preemptive chunk size according Equation 9 (Equation 7 of Theorem 1 in [6]).

ECRTS 2019

15:10 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Comparing Line 9 of Algorithm 1 to Equation 9 a mismatch between the algorithm and the
infeasibility test is illuminated.

I Definition 10 (Infeasibility Test, Equation 7, from [6]).

∃τj ∈ τ , t ∈ [0, dj) | t < qj +
n−1∑
i=0
i 6=j

dbf(τi,t) (9)

If the condition of Equation 9 is satisfied for a task set τ , the task set is unschedulable
given a limited-preemption task set with assigned non-preemptive chunks q. The interval
considered in the demand of Equation 9 is over [0, dj). The demand used in Algorithm 1 to
calculate qj is over the interval [0, dj]. Extending the interval to include dj introduces the
pessimism identified by the example and is not required by Equation 9.

Table 1 illustrates the pessimism of np-chunks found in [6]. The example uses the
notation of assigning non-preemptive chunks to individual tasks from [6]. A later work [7]
uses a different notation, assigning non-preemptive chunks to interval lengths for the remaining
execution of a job. The conceptual pessimism of including demand for tasks with deadline
equal to the current interval (described by Table 1) is also found in [7].

4.3 Threads per Job (TPJ) Scheduling Algorithm
In this work, the np-chunks algorithm is modified for several purposes. First, the unnecessary
pessimism is removed from chunk calculations. Second, the schedulability test is adapted to
the model used herein. Lastly, when a given assignment of tasks and threads are infeasible,
tasks are divided (when possible) to fit into their chunks. The division process is repeated
until the task set is feasible, or no possible divisions remain and the task set is reported as
infeasible. The algorithm is named the Threads Per Job (tpj) scheduling algorithm.

A full description of tpj is presented at the end of this subsection. To reach the complete
description, an intermediate algorithm named Bigger Non-Preemptive Chunks (bnc) is
presented as pseudocode in Algorithm 2. bnc removes the pessimism described in Section 4.2.
The algorithm takes advantage of a property of the demand function dbf(τ ,t) noted in [6].

I Property 2 (Demand Change). Demand for a task does not change for values of t
that do not equal an absolute deadline. In terms of the set of ordered absolute deadlines,
dbf(τ ,Di−1) = dbf(τ ,Di−ε), for 0 < ε ≤ (Di −Di−1).

Algorithm 2 Bigger Non-Preemptive Chunks (bnc).
1: slack(D0) ←∞
2: for k ∈ {D1, D2, D3, ..., } do
3: if Dk > T ∗(τ) then
4: return feasible
5: end if
6: slack(Dk) ← min

(
slack(Dk−1), Dk −

∑
τi∈τ dbf(τi,Dk)

)
7: if slack(Dk) < 0 then
8: return infeasible
9: end if
10: for τj ∈ {τi ∈ τ | (di = Dk)} do
11: qj ← min(cj(mj), slack(Dk−1))
12: end for
13: end for

C. Tessler and N. Fisher 15:11

Line 11 of Algorithm 2 implements the improvement of bnc over np-chunks. The
non-preemptive chunk qj of task τj is taken from the slack of the previous interval Dk−1 or
the task’s WCET cj(mj), whichever is smaller. The algorithm verifies the condition set by
Equation 9, selecting the correct interval length by Property 2, which precludes the inclusion
of τj ’s execution requirement in the interval (and other tasks with deadline Dk).

Algorithm 3 Threads-Per-Job (tpj).
1: slack(D0) ←∞
2: for k ∈ {D1, D2, D3, ..., } do
3: if Dk > T ∗(τ) then
4: return feasible
5: end if
6: for τ̂j ∈ {τi ∈ τ | (di = Dk)} do
7: if slack(Dk−1) < ĉj(1) then
8: return infeasible
9: end if
10: Φj ← {τ̂j}
11: if slack(Dk−1) < ĉj(m̂j) then . Jobs must be divided
12: Φj ← divide(τ̂j,slack(Dk−1))
13: τ ← τ \ τ̂j . Anterior task τ̂j is represented by Φj
14: τ ← τ ∪ Φj . Partial tasks include all threads of τ̂j
15: end if
16: for τj ∈ Φj do
17: qj ← cj(mj)
18: end for
19: end for
20: slack(Dk) ← min

(
slack(Dk−1), Dk −

∑
τi∈τ dbf(τi,Dk)

)
21: if slack(Dk) < 0 then
22: return infeasible
23: end if
24: end for

The Threads per Job scheduling Algorithm 3, is a modification of bnc from limited-
preemption EDF (EDF-LP) scheduling to non-preemptive EDF (EDF-NP). Input to the
schedulability test is a task set specification τ , if tpj returns a feasibile result there exists a
posterior task set which can be scheduled by non-preemptive EDF and the posterior task
set is returned as τ . An infeasible result indicates that tpj could not guarantee τ would be
schedulable by EDF-NP for any posterior task set. Since non-preemptive EDF is not optimal
with respect to feasibility [12], tpj is a sufficient test but cannot be necessary.

Algorithm 3 (tpj) modifies bnc, the modifications are limited to Lines 6-19. An additional
benefit of bnc removing the pessimism of each qj , is that each qj can be calculated without
consideration of the current task τj and the demand at Dk. Chunk values depend on the
demand of Dk−1 instead. This permits an efficient implementation of tpj by moving the
slack calculation of the current interval to the end of each iteration. Otherwise, if slack were
calculated earlier in each iteration, the changes to demand resulting from Lines 6-19 would
force the demand and slack of Dk to be recalculated.

The first notable change to bnc is introduced on Line 7, comparing the available slack to
the WCET of a single thread of τ̂j . If there is insufficient slack to execute just one thread of
τ̂j to completion, the task cannot be executed non-preemptively for any number of threads
and the task set is infeasible non-preemptively.

ECRTS 2019

15:12 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Lines 11-15 introduce several subtle changes. For clarity, it is simpler to discuss the
negative case (slack(Dk−1) ≥ ĉj(m̂j)) before the positive. When there is sufficient slack
for m̂j threads to execute without preemption, τ̂j is given its full WCET (ĉj(m̂j)) as its
non-preemptive chunk. In other words, no division of τ̂j is required and the posterior task
set τ is unchanged (with respect to τ̂j). Lines 11-15 are avoided, the algorithm progresses to
the next task such that di = Dk.

However, in the positive case on Line 11 (when slack(Dk−1) < ĉj(m̂j)), m̂j threads of
τ̂j cannot feasibly execute without being preempted. Therefore, τ̂j must be divided. The
divide procedure creates a partial task Φj set of τ̂j , such that all tasks τp ∈ Φj will complete
within the available slack cp(mp) ≤ Dk−1. The posterior task set τ has τ̂j removed, and is
replaced by the partial set Φj maintaining the specified number of threads for τ̂j .

For any task τ̂j , the task is transformed into a partial task set Φj and assigned a non-
preemptive chunk only once in the iteration where the absolute deadline Dk is equal to the
relative deadline of the task: Dk = d̂j . Since tasks of τ are evaluated in strictly increasing
absolute deadline order, the impact on demand and non-preemptive chunk sizes of processing
τ̂j exclusively impacts demand for larger intervals D` > Dk and non-preemptive chunk sizes
for tasks τ` ∈ τ with greater relative deadlines d` > d̂k.

I Property 3 (Divisions of τ̂j Exclusively Impacts Interval of Length t ≥ d̂j). Division of τ̂j
into the partial set Φj, and replacing τ̂j in τ with Φj will impact demand exclusively for
intervals of length Dk ≥ d̂j , slack of absolute deadlines Dk > d̂j and therefore non-preemptive
chunk values q` for tasks τ` ∈ τ with relative deadlines d` ≥ Dk

By definition of dbf(τ̂j,t), no task of Φj or τ̂j can impact the task set τ demand dbf(τ ,t)
when t < dj. Thus replacing τ̂j in τ , only affects the demand of intervals with length d̂j or
greater. Slack over the interval Dk is calculated from exclusively shorter intervals. Since the
demand of the current interval Dk does not influence the slack at Dk, replacing τ̂j in τ only
affects the slack of intervals with length greater than Dk. Non-preemptive chunk sizes are
assigned based on the available slack, and only those assigned for an interval of length greater
than Dk can be affected by replacing τ̂j in τ .

Algorithm 4 divide.
1: procedure divide(τ̂j , q)
2: Φj ← {}
3: m← argmax

m∈Z+
(ĉi(m) ≤ q)

4: r ← m̂j

5: while r > 0 do
6: mp ← min(r,m)
7: τp ← (p̂j , d̂j ,mp, ĉj) . Posterior task, same period, deadline, WCET function.
8: Φj ← Φj ∪ τp
9: r ← r −mp

10: end while
11: return Φj
12: end procedure

On Line 12 of the tpj Algorithm 3, the task τ̂j is divided into Φj by the divide procedure.
Pseudocode of divide is given by Algorithm 4. The number of tasks in Φj are determined by
the maximum number of threads m of τ̂j that can execute non-preemptively within q time
units. Each task τk ∈ Φj is assigned m threads of τ̂j or however many remain, whichever is
less. The result is that each task set has the following properties.

C. Tessler and N. Fisher 15:13

I Property 4 (Partial Task Sets Returned from divide). The partial task set Φj of an anterior
task τ̂ for a specific q value (and related maximum threads assigned per job m such that
cj(m) ≤ q) contains posterior tasks where:
1. The exact number of posterior tasks is |Φj | = d m̂j

m e
2. Exactly b m̂j

m c tasks of Φj are assigned m threads per job.
3. There is at most one task τg ∈ Φj with exactly mg = m̂j mod m threads.

4.4 Non-Preemptive Feasibility of TPJ and DIVIDE
The divide Algorithm 4 creates a partial task set Φj for an anterior task τ̂j , assigning as
many threads to each task in Φj as possible. Upon returning Φj to tpj, τ̂j is replaced in
the task set τ . Algorithm 4 is one method of dividing of τ̂j which tpj could employ when
creating the posterior task set τ . This section justifies divide’s method by demonstrating
the effect on schedulability and optimality of tpj.

This section’s ultimate objective is to clearly convey Theorem 5; concluding that tpj is
optimal with respect to task-level non-preemptive multi-threaded feasibility. The theorems
that precede Theorem 5 establish minimal demand and WCET sums for partial sets created
by divide necessary to illustrate tpj’s optimality.

Non-preemptive EDF scheduling of jobs of multiple threads ordered by a thread-level
scheduler (such as BUNDLE or BUNDLEP) allows preemptions between threads of the same
job but precludes preemptions between jobs. Each task benefits from the advantages of
thread-level scheduling by the exclusive use of the processor and shared resources. Since task
set specifications may be divided, a specification is feasible when threads of the specification
τ̂ may be assigned to tasks such that the posterior task set τ is feasible by EDF-NP.

I Definition 11 (npm-feasible). A task set specification τ̂ is task-level non-preemptive multi-
threaded feasible (npm-feasible) if there exists a posterior task set τ of τ̂ such that all
multi-threaded jobs scheduled by EDF-NP will always meet their deadlines.

For the theorems that follow, unless necessary to discriminate between anterior and
posterior tasks, the anterior task τ̂i will be written τi. The sum of the demand of the partial
tasks of τi for an interval of length t is

∑
τk∈Φi

dbf(τk,t).

I Theorem 1 (Minimal Demand of Partial Task Sets Over All Intervals). For a partial task
set Φi of an anterior task τi with mi threads, minimizing

∑
τk∈Φi

dbf(τk,di) minimizes∑
τk∈Φi

dbf(τk,t) for all t ≥ 0.

Proof. Provided into two parts, when t < di and t ≥ di. The first portion is a simple direct
argument. The second portion is by contradiction.

Part 1 : When t < di, 0 =
∑
τk∈Φi

dbf(τk,t). By definition of the demand bound function
(Equation 4) the execution requirement of a task is zero before the first possible deadline. All
tasks τk ∈ Φi share the same relative deadlines dk = di and absolute deadlines because pk = pi.
These follow from the definition of division (Definition 1) and partial tasks (Definition 2).
Since t < di, dbf(τk,t) = 0 for all τk ∈ Φi. Therefore,

∑
τk∈Φi

dbf(τk,t) will be minimal
(exactly zero) when t < di, regardless of

∑
τk∈Φi

dbf(τk,di).
Part 2 : When t ≥ di, assume

∑
τk∈Φi

dbf(τk,di) is minimal and
∑
τk∈Φi

dbf(τk,t) is not
minimal. Since all partial tasks τk ∈ Φi share absolute deadlines (as described in Part 1),
demand for each task dbf(τk,t) increases only for values of t that equal absolute deadlines.
Furthermore, the execution requirement of every τk increases exactly by ck(mk) for each

ECRTS 2019

15:14 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

absolute deadline of τi = {D1, D2, ...}:

dbf(τk,D1) = 1 · ck(mk)
dbf(τk,D2) = 2 · ck(mk)

...

dbf(τk,Dz) = z · ck(mk)

Utilizing Property 2, for t ≥ di and Dz, where Dz is the greatest absolute deadline of τi
less than or equal to t (Dz ≤ t):∑

τk∈Φi

dbf(τk,t) =
∑
τk∈Φi

z · dbf(τk,di) = z ·
∑
τk∈Φi

dbf(τk,di)

Because z depends on t (and is completely independent of the division of the partial task
set), if

∑
τk∈Φi

dbf(τk,t) were not minimal then
∑
τk∈Φi

dbf(τk,di) could not be minimal,
contradicting the assumption.

Combining Parts 1 and 2, when the demand for the partial tasks of τi is minimized for the
interval di, the demand of partial tasks of τi is minimized for all intervals of length t ≥ 0. J

I Corollary 2 (Minimal WCET Sum of Φi Minimizes Demand Over the Interval di). The
demand of Φi over the interval di is minimized when the sum of WCET of Φi is minimized.

Proof. Following directly from Theorem 1, where the demand over the interval di of each
task τk ∈ Φi is given by dbf(τk,di) = 1 · ck(mk) = ck(mk). Then,∑

τk∈Φi

dbf(τk,di) =
∑
τk∈Φi

ck(mk)

Thus, minimizing
∑
τk∈Φi

ck(mk) minimizes
∑
τk∈Φi

dbf(τk,di) J

I Corollary 3 (Minimal WCET Sum of Φi Minimizes Demand Over all Intervals t ≥ 0). The
demand of Φi over alls interval t ≥ 0 is minimized when the sum of WCET of Φi is minimized.

Proof. Following directly from Theorem 1 and Corollary 2. J

I Definition 12 (Assumptions of Theorem 4). For the following theorem, there are several
assumptions that must be upheld for the result to be valid. These assumptions are consequences
of the non-preemptive setting and requirements of the task set specification.

1. All tasks τi must be characterized by strictly increasing discrete concave WCET function
ci(mi).

2. Any task τi ∈ τ where ci(mi) > qi is not schedulable non-preemptively. Consequently, no
assignment of mi may cause ci(mi) > qi or the task set is infeasible.

3. The greatest number of threads assigned to a task τi such that ci(mi) ≤ qi is named
m = argmax

m∈Z+
(ci(m) ≤ qi).

I Theorem 4 (Minimal Sum of WCET of Φi for any q by divide). For an anterior task τ̂i
and non-preemptive chunk size q, divide will produce a partial task set Φi with minimum
WCET sum among all possible partial task sets of τ̂i.

C. Tessler and N. Fisher 15:15

Proof. To illustrate a contradiction, assume Φi returned from divide does not have the
minimal WCET sum for a specific q and task τ̂i. There must exist a partial task set Φk of τ̂i
that differs, ie. Φi 6= Φk and∑

τk∈Φk

ck(mk) <
∑
τj∈Φi

cj(mj)

By Property 4 of partial tasks created by divide, Φi will have at most one task with less
than m threads assigned to it. For Φk to differ, it must have at least two tasks with less
than m threads assigned to them. Call these two tasks with less than m threads τx, τy ∈ Φk.
Select τx as the task with the greater number of threads mx ≥ my.

Consider the impact on
∑
τk∈Φk

ck(mk) of moving one thread of τy to τx, as the operation
of adding the difference of WCET values for cx(mx + 1) and cy(my − 1) to the sum.(∑

τk∈Φk

ck(mk)
)
− cx(mx) + cx(mx + 1)− cy(my) + cy(my − 1)

=
(∑
τk∈Φk

ck(mk)
)

+ (cx(mx + 1)− cx(mx))− (cy(my)− cy(my − 1))

By the concave growth Property 1 and virtue of my ≤ mx, the quantity
(cx(mx + 1)− cx(mx)) is less than or equal to (cy(my)− cy(my − 1)) so the difference must
be less than or equal to zero. Therefore:(∑

τk∈Φk

ck(mk)
)

+ (cx(mx + 1)− cx(mx))− (cy(my)− cy(my − 1)) ≤
∑
τk∈Φk

ck(mk)

The WCET sum of Φk can be reduced by moving one thread of τy to τx. When mx = m

no more threads may be assigned to τx or the system will be infeasible by Definition 12.
While there are two (or more) tasks of τx, τy ∈ Φk with fewer than m threads assigned,
moving one thread from τy to τx will reduce the WCET sum. By repeatedly moving tasks to
reduce the WCET sum, Φk will satisfy all aspects of Property 4 of partial task sets created by
divide, ie. Φi = Φk after all moves have been completed. This contradicts the assumption
that Φi 6= Φk and the relationship of their WCET sums, therefor Φi is minimal. J

I Theorem 5 (tpj is Optimal with Respect to npm-feasibility). For a task set specification τ̂ ,
tpj returns feasible if and only if there exists an npm-feasible posterior task set τ of τ̂ .

Proof. Forward Direction (tpj returns feasible for τ̂ =⇒ ∃ a posterior task set τ | τ is
npm-feasible): The tpj algorithm returned a posterior task set τ where the infeasibility
condition (Equation 9) is never satisfied across intervals of length 0 ≤ t ≤ T ∗(τ) and every job
of τi ∈ τ executes non-preemptively for ci(mi) ≤ qi time units. Therefore, τ is npm-feasible.

Reverse Direction (∃ a posterior task set τ | τ is npm-feasible =⇒ tpj returns feasible
for τ̂): For the purpose of demonstrating a contradiction, assume tpj returns infeasible for
an npm-feasible task set τ̂ . Name the absolute deadline which tpj returned infeasibility for
Dx from the set ordered deadlines {D1, D2, ...} and the task which generated Dx, τ̂x. Name
the set of tasks with relative deadlines smaller than d̂x, τ̄ .

For any task τk ∈ τ̄ and partial task set Φk of τk included in the posterior set τ , the
number of tasks and threads assigned to each Φk cannot be affected by τ̂x due to d̂x > dk
and Property 3. The combined set of posterior tasks of τ̄ in τ is denoted τ̇ = ∪τk∈τ̄Φk.

There are two cases where tpj will return infeasible for τ̂ , on Line 8 and Line 22. Both
illustrate a contradiction with the respect to demand.

ECRTS 2019

15:16 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Line 8: If tpj returns infeasible for τ̂ on Line 8 there is insufficient slack qx to execute
any one-thread job of τ̂x non-preemptively. Since slack is inversely related to demand, the
demand of τ̇ is too great to allow any thread of τx as part of a feasible task set.

Line 22: If tpj returns infeasible for τ̂ on Line 22, there is insufficient supply for Φx (the
set of partial tasks of τ̂x). By Corollary 2 and Theorem 4 the demand of Φx is minimal over
all intervals for the available slack qx. Due to Property 3 only tasks with shorter relative
deadlines i.e. τ̇ , can impact the demand of Φx by affecting qx. In this case, the demand of τ̇
is too great for the demand of Φx to be included as part of a feasible task set.

By assumption τ̂ is npm-feasible, the infeasibility conditions on Lines 8 and 22 of tpj
indicate the demand of τ̇ is too great. However, tpj adds each partial set Φk to τ̇ in increasing
deadline order. By Property 3, every Φk added to τ̇ exclusively impacts the demand of larger
deadlines. Every Φk increases the demand of τ̇ minimally starting with D1, maximizing the
slack available for partial task sets with greater deadlines; thus the demand of τ̇ is minimal
and cannot be reduced. For τ̂ to be npm-feasible, there must be another partial task set that
reduces τ̇ ’s demand, which is a direct contradiction. Therefore, tpj must return feasible. J

5 Evaluation

Evaluation [28] of tpj and the non-preemptive multi-threaded task model presented in this
work focuses on the schedulability ratio of synthetic task sets and a case study based upon the
evaluation of BUNDLEP [29]. The ratio of task set specifications deemed schedulable by tpj
for EDF-NP will be compared to np-chunks in both limited and fully preemptive settings
for EDF. What follows is a description of the parameters to task set specification generation,
the prescribed evaluation metrics, and analysis of the results.

5.1 Generating Task Sets
A specified task set τ is generated with four parameters, M the total number of threads
of execution, U the target utilization, a maximum growth factor F, and m the maximum
number of threads per task. The number of threads M may be one of {3, 5, 7, 10, 25, 50, 100}
with dependent m values of {2, 2, 3, 4, 8, 16, 32}. Utilization varies from [0.1, 0.9] and the
growth factor varies from [0.1, 0.9] independently by increments of 0.1.

Each task τi ∈ τ is assigned mi threads from a random uniform integer distribution over
[1,m], such that the sum of all threads is equal to M =

∑
τi∈τ mi. A task’s period pi is from

a uniform integer distribution over [10, 1000]. Utilization ui of each task τi is calculated
using the UUniFast(n,U) [9] algorithm, where n = |τ |.

A task’s WCET is assigned for mi threads, ci(mi) = dpi · Uie. Tasks are given a growth
factor Fi in a uniform real distribution over [0.1,F]. The remaining mi − 1 WCET values
are determined by substituting Fi into Equation 3. The relative deadline of τi, di is taken
from a uniform integer distribution over [max(ci(mi), pi/2), 1000].

For each combination of (M,m,U,F), 1000 task sets specifications are generated. Table 2
summarizes the parameters of task set generation. The smaller values ofM are taken from [7]
and the dependent m values were selected to avoid one task consuming more than half of
the threads in the task set specification (where possible).

Table 2 Task Set Generation Parameters.

U [0.1, 0.9]
F [0.1, 0.9]

M {3, 5, 7, 10, 25, 50, 100}
m {2, 2, 3, 4, 8, 16, 32}

C. Tessler and N. Fisher 15:17

5.1.1 Applicability of Parameters
To avoid favoring tpj, the task set generation parameters m and F were carefully selected.
For the threads per task m, a large m favors tpj. Therefore, no single task my be assigned
more than half the total threads: m ≤ bM2 c (except for M = 3).

The growth factor F is informed by previous results for BUNDLEP [29]. In [29], multi-
threaded tasks are constructed from the Mälardalen WCET benchmarks [16]. Task analysis
in [29] yields growth factors below 0.1 for several benchmarks. A lower bound (0.1) on F
greater than observed values is pessimistic, resulting in less favorable results for tpj.

5.2 Case Study
BUNDLEP’s evaluation covers 18 benchmarks for distinct architecture configurations. An
architecture configuration includes the block reload time (BRT), cycles per instruction (CPI),
and number of cache lines. One of the least favorable in terms of the analytical benefit of
BUNDLEP is a BRT of 100, CPI of one, and 32 cache lines. From this configuration, the WCET
values and growth factors were extracted, growth factors ranging in the range [0.08, 3.02].1

From these results of BUNDLEP 1000 task sets with 18 tasks (one per benchmark) and a
total 100 threads were generated per utilization target. The utilization target ranged from
0.1 to 1.0 increments of 0.1. Threads were assigned to each task τi from a distribution over
mi ∈ [2, 8]. Each tasks utilization, period, and deadline, ci(mi) were assigned using the same
method as synthetic tasks. The WCET values for fewer threads 1 ≤ k < mi, were scaled such
that the value of ci(k)/ci(mi) remained constant after the ci(mi) = dpi · Uie assignment.

5.3 Evaluation Metrics
tpj is compared with the np-chunks schedulability test in non-preemptive (EDF-NP) and
preemptive (EDF-P) settings. The focus of the evaluation is on the non-preemptive setting.
The preemptive setting serves as a comparison to alternative scheduling strategies and the
theoretical best case. For EDF-P, preemptions incur no penalty, CRPD or otherwise. In
this highly advantageous setting for EDF-P, tpj can still produce feasible non-preemptive
task sets np-chunks deems infeasible in a preemptive setting!

To compare schedulability tests, each task set specification τ̂ is provided to tpj without
modification under EDF-NP scheduling. tpj will transform the task set producing a posterior
task set τ if a feasible one exists. A task set specification τ̂ cannot be provided directly to
np-chunks, since np-chunks has no concept of threads per job.

To be suitable for analysis by np-chunks, a task set specification τ̂ is transformed into
two posterior task sets. The first task set, τ1 represents single-threaded tasks by including
all threads of τ̂ as individual tasks. The second task set, τm represents the tasks of τ̂ as
indivisible, executing all specified threads without preemption per job. Each task in τm

benefits from the thread-level scheduler but does not expose the threaded nature of the task
to the scheduling algorithm. This is achieved by modifying an anterior task τ̂j with m̂j > 1
and ĉj(m̂j) to a posterior task τj with mj = 1 and cj(1) = ĉj(m̂j).

The np-chunks schedulability test will produce results for τ1 and τm in both preemptive
and non-preemptive settings. For non-preemptive schedulability analysis, each task τi ∈ τ1

or τm must have a non-preemptive chunk size qi ≥ ci(mi). When evaluating preemptive EDF
schedulability for τ1 and τm, the results are labeled EDF-P:1 and EDF-P:M respectively.
When evaluating non-preemptive EDF schedulability, the results are labeled EDF-NP:1 and

1 Due to length restrictions the full listing of WECT and growth factors are omitted.

ECRTS 2019

15:18 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

Table 3 Schedulability Test Combinations.

Test Task Set EDF-NP EDF-P

tpj τ̂ EDF-TPJ -

np-chunks τ1 EDF-NP:1 EDF-P:1
τm EDF-NP:M EDF-P:M

EDF-NP:M. Schedulability results for tpj under EDF-NP scheduling are labeled EDF-TPJ.
Table 3 gives a synopsis of the schedulability tests. Schedulability ratios for each of the
combinations are calculated for every (M,m,U,F) configuration.

It must be noted that EDF-P:M is an unrealistic schedulability test. It serves only as a
theoretical limit to the benefits of concave growth. Concave growth is a result of scheduling
threads of the same job without preemption by another job with a BUNDLE-based thread-level
scheduler. However, current BUNDLE implementations require that an executing task cannot
be preempted by a different task. Such a preemption would destroy the cache benefits and
analysis of BUNDLE scheduling. Analysis of EDF-P:M assumes preemptions between jobs are
allowed and have zero cost. It is included as a reference for tpj’s performance, as a ceiling
for what is theoretically possible given ideal (but likely impossible) conditions.

As a consequence of transforming multi-threaded task set specifications τ̂ to single-
threaded task sets τ1, some single threaded task sets may not be feasible. One reason for
a task set τ1 to become infeasible is the utilization exceeding one, while τm and τ̂ have
utilization less than one. In this setting, EDF-TPJ is capable of scheduling task sets that
preemptive EDF cannot.

For a task set specification configuration (M,m,U,F), call S the set of all task set
specifications τ̂ generated for the configuration. Call s the set of τ1 task sets transformed
from τ̂ ∈ S such that τ1 has utilization greater than one. The set stpj is the subset of s
deemed feasible by the tpj schedulability test. That is, stpj is the set of all tasks tpj could
schedule, yet EDF-P:1 could not (even) when CRPD values are zero.

5.4 Results

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(a) BUNDLEP Case Study.

Schedulability Ratio for EDF-TPJ
EDF-P:1

EDF-P:M
EDF-TPJ

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) EDF-TPJ Summary.

Figure 2 Case Study and EDF-TPJ Summary Results.

Schedulability ratios from the BUNDLEP case study are given in Figure 2a. For the
target architecture and 18 benchmarks, EDF-TPJ consistently outperforms the other non-
preemptive algorithms. For preemptive EDF-P:1 (with zero cost preemptions), EDF-TPJ
has higher schedulability ratios for the majority of target utilization values. EDF-TPJ’s

C. Tessler and N. Fisher 15:19

comparative performance increases with the target utilization. This case study demonstrates
the benefit of tpj to non-preemptive and (potentially) preemptive approaches.

Figures 2b, 3a, and 3b, summarize the results for the synthetic task sets varied by the
utilization and growth factor. Within each graph, the schedulability ratios provided by
EDF-P:1 and EDF-P:M serve as references. The difference between EDF-P:1 and the subject
of the graph illustrate the benefit of preemptive scheduling. Inclusion of EDF-PM highlights
the theoretical limit of concave growth to schedulability.

Schedulability Ratio for EDF-NP:1
EDF-P:1

EDF-P:M
EDF-NP:1

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a) EDF-NP:1 Summary.

Schedulability Ratio for EDF-NP:M
EDF-P:1

EDF-P:M
EDF-NP:M

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) EDF-NP:M Summary.

Figure 3 EDF-NP:1 and EDF-NP:M Summary.

Including EDF-P:1 and EDF-P:M in each of the summary graphs eases the comparison
between EDF-NP:1, EDF-NP:M, and EDF-TPJ. Comparing EDF-NP:1 (3a) to EDF-NP:M
(3b), illustrates the benefits of the model and scheduling mechanism. EDF-NP:M has a
consistently higher schedulability ratio for all utilizations and growth factors. EDF-TPJ (2b)
outperforms EDF-NP:M, with higher schedulability ratios for all utilizations and growth
factors due to the ability to transform task sets. EDF-TPJ performs best among the non-
preemptive tests across all configurations. Additionally, EDF-TPJ is able to schedule task
sets deemed infeasible for EDF-P:1.

Table 4 summarizes the infeasible utilization findings for the synthetic tasks. For moderate
and larger values of M(≥ 25), the number of infeasible by utilization task sets dominate
the specifications. For 25, 50, and 100 total threads, the infeasible by utilization comprise
44, 59, and 74 percent of the task sets respectively, with EDF-TPJ finding 25, 34, and 45
percent feasible. This illustrates the large potential of the proposed model, in conjunction
with concave growth WCET functions of thread-level schedulers (e.g. BUNDLE and BUNDLEP).

Table 4 U > 1 Feasibility.

(M,m) (3, 2) (5, 2) (7, 3) (10, 4) (25, 8) (50, 16) (100, 32) Total
|S| 81000 81000 81000 81000 81000 81000 81000 567000
|s| 3131 4973 11744 18689 36565 49147 59412 183661

|stpj| 465 291 1437 3065 9426 16912 25832 57428

There are two noteworthy trends within the schedulability results. The simpler of
the two is the relationship between utilization and schedulability ratio for a fixed growth
factor. Figure 4a illustrates the trend common among M ≤ 10 total threads. The trend
for preemptive and non-preemptive schedulability tests when utilization increases is for
the schedulability ratio to decrease. However, EDF-TPJ always outperforms the other
non-preemptive tests.

ECRTS 2019

15:20 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 10,m ≤ 4, F = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(a) (M,m,U,F) = (10, 4, ∗, 0.5).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 7,m ≤ 3, U = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(b) (M,m,U,F) = (7, 3, 0.5, ∗).

Figure 4 M ≤ 10 Performance.

The second trend is slightly more complex. Figure 4b was selected for the smallest M
and U values with visually distinct plots per schedulability test. The growth factor and the
schedulability ratio are correlated. As the growth factor increases, so does the schedulability
ratio. This is due to the utilization being held constant. When the growth factor is small,
the WCET of the first thread of each task is larger. Larger WCET values are harder to
schedule non-preemptively.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 25,m ≤ 8, U = 0.7)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 25,m ≤ 8, F = 0.9)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

Figure 5 M > 10 EDF-TPJ Performance Above EDF-P:1.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 100,m ≤ 32, F = 0.4)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 100,m ≤ 32, U = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

Figure 6 M = 100 EDF-TPJ Performance.

As M increases beyond 10 total threads, the number of infeasible by utilization task sets
s grows. This contributes to the schedulability ratio of EDF-TPJ surpassing EDF-P:1 for
threshold utilization and growth factor values. For M = 25, the threshold of utilization is
between [0.6, 0.7] shown in Figure 5.

C. Tessler and N. Fisher 15:21

For M = 100 and F ≤ 0.4, EDF-TPJ outperforms EDF-P:1. Figure 6 highlights the
advantage of EDF-TPJ compared to EDF-P:1 by virtue of concave growth. It also highlights
the benefit of dividing tasks, as the performance of EDF-NP:M is always below EDF-TPJ.

The comparative performance of EDF-TPJ is at its lowest for M < 10 threads and
U > .4 utilization. In these ranges EDF-TPJ maintains the highest schedulability ratio
among the non-preemptive methods, but the ratio is closer to EDF-NP:M or EDF-NP:1 than
EDF-P:1. This suggests, the decrease in EDF-TPJ’s performance is more likely due to the
non-preemptive setting combined with larger WCET values for individual threads.

6 Conclusion

Motivation for this work stemmed from BUNDLE-based thread-level schedulers limitation of a
single task and single job. The primary goal was to create a multi-task scheduling technique
and schedulability test for those BUNDLE-based thread-level schedulers which leverages without
decreasing the inter-thread cache benefit.

In addition to achieving the primary goal, the scheduling technique and schedulability
test developed for the multi-task BUNDLE-based scheduler can be applied to any thread
level scheduler with strictly increasing discrete concave WCET functions. This allows any
compatible thread-level scheduling technique to benefit from the tpj approach developed in
this work. As a non-preemptive multi-threaded schedulability test tpj is optimal with respect
to npm-feasibility, always producing a feasible task set if one is schedulable by EDF-NP.

For future work, the primary focus is upon a fully or limited preemption scheduling
algorithm that permits the inter-thread cache benefit of BUNDLE-based schedulers and other
schedulers characterized by concave growth to retain their thread-level scheduling benefits.

References
1 S. Altmeyer, R. Davis, and C. Maiza. Improved cache related pre-emption delay aware response

time analysis for fixed priority pre-emptive systems. Real Time Systems, 48(5), 2012.
2 S. Altmeyer, R. I. Davis, and C. Maiza. Cache Related Pre-emption Delay Aware Response

Time Analysis for Fixed Priority Pre-emptive Systems. In IEEE Real-Time Systems Symposium,
pages 261–271, November 2011. doi:10.1109/RTSS.2011.31.

3 Sebastian Altmeyer and Claire Maiza Burguière. Cache-related Preemption Delay via Useful
Cache Blocks: Survey and Redefinition. Journal of Systems Architecture, 57(7):707–719,
August 2011. doi:10.1016/j.sysarc.2010.08.006.

4 S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-Aware Scheduling of Multicore Task
Sets for Real-Time Systems. In IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 300–309, August 2012. doi:10.1109/RTCSA.2012.
48.

5 S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In [1990] Proceedings 11th Real-Time Systems Symposium, pages
182–190, December 1990. doi:10.1109/REAL.1990.128746.

6 Sanjoy Baruah. The limited-preemption uniprocessor scheduling of sporadic task systems. In
17th Euromicro Conference on Real-Time Systems (ECRTS’05), pages 137–144, July 2005.
doi:10.1109/ECRTS.2005.32.

7 M. Bertogna and S. Baruah. Limited Preemption EDF Scheduling of Sporadic Task Systems.
IEEE Transactions on Industrial Informatics, 6(4):579–591, November 2010. doi:10.1109/
TII.2010.2049654.

8 M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo. Optimal Selection
of Preemption Points to Minimize Preemption Overhead. In Proceedings of the Euromicro
Conference on Real-Time Systems, pages 217–227, July 2011. doi:10.1109/ECRTS.2011.28.

ECRTS 2019

http://dx.doi.org/10.1109/RTSS.2011.31
http://dx.doi.org/10.1016/j.sysarc.2010.08.006
http://dx.doi.org/10.1109/RTCSA.2012.48
http://dx.doi.org/10.1109/RTCSA.2012.48
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/ECRTS.2005.32
http://dx.doi.org/10.1109/TII.2010.2049654
http://dx.doi.org/10.1109/TII.2010.2049654
http://dx.doi.org/10.1109/ECRTS.2011.28

15:22 NPM-BUNDLE: Non-Preemptive Multitask BUNDLE

9 E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In Proceedings. 16th
Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004., pages 196–203, July 2004.
doi:10.1109/EMRTS.2004.1311021.

10 R. Bril, S. Altmeyer, M. van den Heuvel, R. Davis, and M. Behnam. Fixed priority scheduling
with pre-emption thresholds and cache-related pre-emption delays: integrated analysis and
evaluation. Real-Time Systems, 53(4):403–466, July 2017.

11 A. Burns. Advances in Real-Time Systems, chapter Preemptive priority-based scheduling: an
appropriate engineering approach, pages 225–248. Prentice Hall, Inc., 1995.

12 Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Springer Publishing Company, Incorporated, 3rd edition, 2011.

13 John Michael Calandrino. On the Design and Implementation of a Cache-aware Soft Real-time
Scheduler for Multicore Platforms. PhD thesis, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, 2009.

14 J. Cavicchio, C. Tessler, and N. Fisher. Minimizing Cache Overhead via Loaded Cache Blocks
and Preemption Placement. In Proceedings of the Euromicro Conference on Real-Time Systems,
2015.

15 Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and Non-Preemptive Real-
Time UniProcessor Scheduling. Research Report RR-2966, INRIA, 1996. Projet REFLECS.
URL: https://hal.inria.fr/inria-00073732.

16 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks: Past, Present And Future. In International Workshop on Worst-Case Execution
Time Analysis, volume 15, pages 136–146, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

17 C.-G. Lee, J. Hahn, S.L. Min, R. Ha, S. Hong, C.Y. Park, M. Lee, and C.S. Kim. Analysis of
cache-related preemption delay in fixed-priority preemptive scheduling. IEEE Transactions on
Computers, 47(6):700–713, 1998.

18 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. J. ACM, 20(1):46–61, January 1973. doi:10.1145/321738.321743.

19 J. M. Marinho, V. Nelis, S.M. Petters, and I. Puaut. An Improved Preemption Delay Upper
Bound for Floating Non-preemptive Region. In Proceedings of IEEE International Symposium
on Industrial Embedded Systems, 2012.

20 H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate Estimation of Cache Related Preemption
Delay. In Proceedings of IEEE/ACM/IFIP International Conference on Hardware/ Software
Codesign and Systems Synthesis (CODES), 2003.

21 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A Predictable
Execution Model for COTS-Based Embedded Systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 269–279, April 2011. doi:10.1109/RTAS.2011.
33.

22 B. Peng, N. Fisher, and M. Bertogna. Explicit Preemption Placement for Real-Time Conditional
Code. In Proceedings of Euromicro Conference on Real-Time Systems, 2014.

23 J. Simonson and J.H. Patel. Use of preferred preemption points in cache based real-time
systems. In Proceedings of IEEE International Computer Performance and Dependability
Symposium, 1995.

24 J. Staschulat and R. Ernst. Scalable Precision Cache Analysis for Real-Time Software. ACM
Transactions on Embedded Computing Systems (TECS), 6(4), September 2005.

25 Y. Tan and V. Mooney. Integrated intra- and inter-task cache analysis for preemptive multi-
tasking real-time systems. In Proceedings of International Workshop on Software and Compilers
for Embedded Systems (SCOPES), 2004.

26 C. Tessler and N. Fisher. BUNDLE: Real-Time Multi-threaded Scheduling to Reduce Cache
Contention. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 279–290, November
2016. doi:10.1109/RTSS.2016.035.

http://dx.doi.org/10.1109/EMRTS.2004.1311021
https://hal.inria.fr/inria-00073732
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1109/RTSS.2016.035

C. Tessler and N. Fisher 15:23

27 C. Tessler and N. Fisher. BUNDLEP: Prioritizing Conflict Free Regions in Multi-threaded
Programs to Improve Cache Reuse. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 325–337, December 2018. doi:10.1109/RTSS.2018.00048.

28 Corey Tessler. NPM-BUNDLE Artifacts, 2019. URL: http://www.cs.wayne.edu/~fh3227/
npm-bundle/.

29 Corey Tessler and Nathan Fisher. BUNDLEP: prioritizing conflict free regions in multi-
threaded programs to improve cache reuse - extended results and technical report. CoRR,
abs/1805.12041, 2018. arXiv:1805.12041.

30 Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and Precise WCET
Prediction by Separated Cache and Path Analyses. Real-Time Systems, 18(2):157–179, May
2000. doi:10.1023/A:1008141130870.

31 H. Tomiyama and N. D. Dutt. Program Path Analysis to Bound Cache-Related Preemption
Delay in Preemptive Real-Time Systems. In Proceedings of the Eighth International Workshop
on Hardware/Software Codesign (CODES), 2000.

32 Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In
Proceedings of the International Conference on Real Time Computing Systems and Applications,
1999.

33 B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making Shared Caches More
Predictable on Multicore Platforms. In Euromicro Conference on Real-Time Systems, pages
157–167, July 2013. doi:10.1109/ECRTS.2013.26.

34 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-case
Execution-time Problem – Overview of Methods and Survey of Tools. ACM Trans. Embed.
Comput. Syst., 7(3):36:1–36:53, May 2008. doi:10.1145/1347375.1347389.

ECRTS 2019

http://dx.doi.org/10.1109/RTSS.2018.00048
http://www.cs.wayne.edu/~fh3227/npm-bundle/
http://www.cs.wayne.edu/~fh3227/npm-bundle/
http://arxiv.org/abs/1805.12041
http://dx.doi.org/10.1023/A:1008141130870
http://dx.doi.org/10.1109/ECRTS.2013.26
http://dx.doi.org/10.1145/1347375.1347389

Scheduling Self-Suspending Tasks:
New and Old Results
Jian-Jia Chen
TU Dortmund University, Germany
jian-jia.chen@tu-dortmund.de

Tobias Hahn
University of Bremen, Germany
tobiash4hn@gmail.com

Ruben Hoeksma
University of Bremen, Germany
hoeksma@uni-bremen.de

Nicole Megow
University of Bremen, Germany
nicole.megow@uni-bremen.de

Georg von der Brüggen
TU Dortmund University, Germany
georg.von-der-brueggen@tu-dortmund.de

Abstract
In computing systems, a job may suspend itself (before it finishes its execution) when it has to wait
for certain results from other (usually external) activities. For real-time systems, such self-suspension
behavior has been shown to induce performance degradation. Hence, the researchers in the real-time
systems community have devoted themselves to the design and analysis of scheduling algorithms
that can alleviate the performance penalty due to self-suspension behavior. As self-suspension and
delegation of parts of a job to non-bottleneck resources is pretty natural in many applications,
researchers in the operations research (OR) community have also explored scheduling algorithms for
systems with such suspension behavior, called the master-slave problem in the OR community.

This paper first reviews the results for the master-slave problem in the OR literature and explains
their impact on several long-standing problems for scheduling self-suspending real-time tasks. For
frame-based periodic real-time tasks, in which the periods of all tasks are identical and all jobs related
to one frame are released synchronously, we explore different approximation metrics with respect to
resource augmentation factors under different scenarios for both uniprocessor and multiprocessor
systems, and demonstrate that different approximation metrics can create different levels of difficulty
for the approximation. Our experimental results show that such more carefully designed schedules
can significantly outperform the state-of-the-art.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Self-suspension, master-slave problem, computational complexity, speedup
factors

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.16

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.6

Funding Ruben Hoeksma: Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project Number 146371743 – TRR 89 Invasive Computing.
Nicole Megow: Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project Number 146371743 – TRR 89 Invasive Computing.

Acknowledgements The authors thank Minming Li from City University of Hong Kong and Guil-
laume Sagnol from TU Berlin, for discussions in an early stage of this research. The authors
also thank the organizing committee of MAPSP 2017 for planning a discussion session during the
workshop, which initialized the study in this paper.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and
Georg von der Brüggen;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8114-9760
mailto:jian-jia.chen@tu-dortmund.de
mailto:tobiash4hn@gmail.com
https://orcid.org/0000-0002-6553-7242
mailto:hoeksma@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0002-8137-3612
mailto:georg.von-der-brueggen@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.ECRTS.2019.16
https://dx.doi.org/10.4230/DARTS.5.1.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Scheduling Self-Suspending Tasks: New and Old Results

1 Introduction

Advanced embedded computing and information processing systems heavily interact with the
physical world in which time naturally progresses. Due to this, timeliness of computation is
an essential requirement of correctness. Thus, to ensure safe operations of such embedded
systems, also called real-time embedded systems, worst-case timeliness needs to be verified.

In most real-time embedded systems, control tasks are executed recurrently, i.e., each
task τi releases an infinite number of tasks instances, called jobs, either periodically [32] or
sporadically [35], i.e., with a fixed period Ti or a minimum inter-arrival time Ti between two
jobs. When a job with relative deadline Di arrives at the system at time t, it must finish its
execution no later than its absolute deadline t+Di. If the relative deadline Di of each task
τi in the task set is equal to (no more than, respectively) the period Ti, the task set is called
an implicit-deadline (constrained-deadline, respectively) task set. For real-time systems,
two correlated problems exists: (1) designing scheduling policies to schedule the tasks and
(2) validating whether the deadlines are always met in the resulting schedule. We term the
former as the scheduler design problem and the latter as the schedulability test problem.

Most existing approaches to analyze real-time systems work under the important assump-
tion that a job does not suspend itself, therefore allowing to exploit the widely-adopted
critical instant theorem [32], the busy-window concept [30], etc. This assumption means that
a job that starts executing on the computer either finishes its execution or is preempted
by a higher priority job, i.e., the job currently executing is preempted and the processor is
allocated to the new arriving job. If tasks can suspend themselves, most scheduling analysis
for existing scheduling algorithms cannot be applied without modifications. Nevertheless,
in real-world systems self-suspension behavior may occur for multiple reasons, for instance
when: (1) external devices are used to accelerate computation, so called computation offload-
ing [15,25], (2) resources are shared in multiprocessor systems, i.e., when a job requests a
resource currently held by a different job on another processor and cannot continue before
the resource access is granted [23,47], (3) direct memory access (DMA) is used to hide the
latency of memory accesses [21], etc. In these situations, the execution efficiency of the
system may be improved if a job suspends itself and releases the processor, i.e., allowing a
lower priority job to run instead of spinning on the processor.

To model self-suspension behavior, three self-suspension task models have been explored
in the literature as detailed in recent surveys [10,12]. The dynamic self-suspension model
allows a job of task τi to suspend itself at any moment before it finishes as long as the
worst-case (or maximum) self-suspension time Si is not violated. The segmented self-
suspension model further characterizes the computation segments and suspension intervals
as (Ci,1, Si,1, Ci,2, Si,2, . . . , Si,mi−1, Ci,mi

), an array composed of mi computation segments
separated by mi − 1 suspension intervals. The simplest segmented self-suspension model
allows a task to have at most one self-suspension interval, i.e., mi ≤ 2. The hybrid self-
suspension model [48] introduces some flexibility into the segmented suspension model by
allowing certain combinations of

∑mi

j=1 Ci,j . For instance, when considering two execution
segments, the hybrid model is applicable for scenarios where Ci,1 + Ci,2 is specified but the
detailed information of Ci,1 and Ci,2 is not revealed until the job finishes its execution.

The investigation of the impact of self-suspension on timing predictability in real-time
systems has started since 1988 by Rajkumar et al. [38]. The early research mainly focused on
the schedulability test problem under the classical real-time scheduling algorithms, e.g., [38]
in 1988, [34] in 1994, [27] in 1995, [17] in 1998, [33, p. 164-165] in 2000, [14, Section 4.5] in
2003, [1, 2] in 2004, and [5] in 2005.

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:3

For periodic segmented self-suspension real-time tasks, the first scheduling algorithm to
alleviate the self-suspension behavior, called period enforcer, is due to Rajkumar [37] in 1991.
In 2004, Ridouard et al. [39] showed that the scheduler design problem for the segmented
self-suspension task model is NP-hard in the strong sense. The proof by Ridouard et al. [39]
only needs each segmented self-suspending task to have one suspension interval with two
computation segments. In 2014, Chen and Liu [9] presented the fixed-relative deadline
(FRD) strategy and provided a resource augmentation factor of 3 in uniprocessor systems
for the segmented self-suspension task model with at most one self-suspension interval per
implicit-deadline task. Since then, FRD has been applied in several results [20,36,47–49],
and it has been shown by von der Brüggen et al. [49] that the speedup factor of 3 also holds
for other FRD approaches. Chen and Brandenburg [8] have recently revisited the period
enforcer algorithm and presented its underlying assumptions and limitations. Schönberger
et al. [44] considered fixed-priority scheduling, combining suspension as computation and
restarting inference for each computation interval.

For scheduling periodic dynamic self-suspension real-time tasks, Huang et al. [22] in 2015
provided a priority assignment scheme which achieves a resource augmentation factor of 2,
compared to the optimal fixed-priority scheduling strategy. In 2016, Chen [7] showed that
the speedup factor for any fixed-priority preemptive scheduling, compared to the optimal
schedules, is not bounded by a constant if the suspension time cannot be reduced by speeding up.
An unbounded speedup factor has also been proved for the earliest-deadline-first (EDF), the
least-laxity-first (LLF), and the earliest-deadline-zero-laxity (EDZL) scheduling algorithms.

Nevertheless, most of the theoretical results regarding speedup factors are byproducts of
the construction of scheduling algorithms and a thorough theoretical analysis in this direction
has never been performed. Therefore, we focus ourselves on the fundamental analysis of the
most basic recurrent setting, i.e., frame-based implicit deadline tasks sets, to provide some
theoretical ground work that leads to a deeper understanding of the underlying problem
and algorithms to handle the setting efficiently. For instance, a large number of flaws were
found in the literature [10] and in our opinion fundamental theoretical results will help to
avoid such flaws in the future. Furthermore, we hope that the provided algorithms can be
extended to cover more general settings like periodic tasks, especially when harmonic or
semi-harmonic task sets are considered, for instance in automotive systems [19,28,50].

Our Contribution. In light of the increasing importance of self-suspending behavior in many
applications in real-time systems, we examine the fundamental difficulty of the scheduler
design problem. The contribution of this paper is as follows:

We provide a survey of several results in the operations research (OR) community for the
master-slave problem, which is shown NP-hard in the strong sense by Yu et al. [51] in
2004 even for a very simple setting. This concludes that the computational complexity of
the scheduler design problem is NOT due to the recurrence of real-time jobs, and that
removing the periodicity and non-uniform execution times of the computation segments
does NOT make the problem easier with respect to the computational complexity. Details
can be found in Section 3.
We provide a systematic study to quantify the resource augmentation (speedup) factors
of several heuristic algorithms that can be applied for different self-suspension models.
Motivated by the necessity for a fundamental exploration detailed above and the fact that
Yu et al. [51] showed that the complexity of self-suspension can be observed even in simple
settings, we focus our work on the frame-based task model. Two types of speedup factors
are explored in this paper. The suspension-coherent speedup factor defines the resource

ECRTS 2019

16:4 Scheduling Self-Suspending Tasks: New and Old Results

Table 1 Summary of speedup factors for uni- and multiprocessor systems.

Uniprocessor segmented hybrid dynamic
(one suspension) (one suspension) (multiple suspen.)

coherent speedup 1.5 ([42]) 1.5 (Cor. 4.5) 2 (Theorem 4.7)
speedup only the processor 2 (Theorem 4.12) 2 (Theorem 4.13) -

Multiprocessor segmented hybrid dynamic
(one suspension) (one suspension) (multiple suspen.)

coherent speedup 2 ([42]) 2 ([42] & Thm. 5.5) 2 (Theorem 5.5)
speedup only the processors 3− 1/m (Thm. 5.9) 3−1/m (Thm. 5.10) -

augmentation factor by reducing the suspension time and execution time of a job at the
same time. The speedup factor defines the resource augmentation factor by reducing
only the execution time of a job. In addition to providing upper bounds on the speedup
factors in the uniprocessor and the multiprocessor setting, we provide lower bounds that
show that these two types of factors are very different. Constant suspension-coherent
speedup factors can be achieved easily by using work-conserving scheduling algorithms.
However, speedup factors without reducing the suspension time are much more difficult
to achieve. Table 1 summarizes these resource augmentation factors for uniprocessor and
multiprocessor systems from the literature and in Sections 4 and 5, respectively, where a
“-” denotes the cases where the speedup factor is unknown.

2 Model, Terminology, and Assumptions

In this section we explain the basic task models and terminology used in this paper. For a
self-suspending task τi, we consider three different models:

Segmented self-suspension with only one suspension interval: task τi is defined by the
triple (Ci,1, Si, Ci,2), where Ci,1 and Ci,2 are execution times on a processor and Si is the
suspension time, which for the segmented model is also called the length of the suspension
interval.1 A job of task τi suspends itself for Si amount of time after it is executed for
Ci,1 time units, i.e., the execution of the first computation segment is finished. The
second computation segment is released when the job returns from self-suspension. For
notational brevity, we denote Ci = Ci,1 + Ci,2.
Dynamic self-suspension: task τi is defined by (Ci, Si), where a job of task τi can suspend
itself at any moment and several times if needed before it finishes as long as the total
self-suspension time of the job is not more than Si.
Hybrid self-suspension with only one suspension interval: the tuple (Ci, Si) defines task τi,
where a job of τi suspends only once for Si amount of time and the sum of the execution
times of the two computation segments is at most Ci, i.e., the individual segments Ci,1
and Ci,2 are unknown but the sum of their length Ci,1 + Ci,2 = Ci is known.2

In this paper, we will implicitly consider frame-based real-time task systems. The given
tasks release their jobs at the same time, have the same period D, and a uniform relative
deadline D. Let T be the set of the n given tasks. As a result, we do not have to consider

1 In most task models in the literature, the suspension and execution time are both upper bounds. Here,
we consider them to be exact in the segmented self-suspension model to give rigorous worst-case bounds.

2 In general, the hybrid model assumes Ci,1 +Ci,2 ≤ Ci. In this case, some lemmas have to be revised but
the corresponding factors remain the same. Furthermore, in [48] multiple hybrid models are provided
that take advantage of additional information about the tasks if available.

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:5

the periodicity of the tasks while scheduling frame-based real-time task systems. That is,
we assume that each task releases a job at time 0 and the schedule starts always at time 0.
We consider both uniprocessor and homogeneous multiprocessor platforms, i.e., m identical
processors, to schedule the given self-suspending tasks. When considering the multiprocessor
setting, we assume that no intra-task parallelization is possible, i.e., each task can be executed
on at most one processor at any given time.

The two problems that we consider are: (1) the scheduler design problem, where we
design scheduling policies to schedule the tasks, and (2) the schedulability test problem,
where we validate whether the deadlines are always met in the resulting schedule.

A schedule is work-conserving if the processor in a uniprocessor system (or a processor
in a multiprocessor system) never idles whenever a computation segment is available. A
scheduling instance is called feasible or schedulable, if there exists a schedule on a uniprocessor
(multiprocessor, respectively) system of unit speed (on a set of m unit speed processors,
respectively) in which all jobs complete before their deadline.

We say that a computation segment is available if it could be scheduled. To be precise,
the first computation segment of a task is available from the beginning of the frame until it
finishes its execution, and the second computation segment becomes available Si time units
after the first computation segment finishes its execution, i.e., after the suspension interval
of the task is finished.

Speedup Factors. As it is the case for many interesting problems, the problems that we
consider here are NP-hard. Therefore, we cannot hope for exact polynomial time algorithms
unless P = NP . Hence, the metrics of the resource augmentation bound or the speedup factor
are widely used to quantify the imperfectness of the scheduling algorithms [24]. Assume that
the input task set can be feasibly scheduled on a unit-speed processor by a (not necessarily
known) optimal scheduling algorithm. An algorithm A has a speedup factor ρ ≥ 1 when it can
be guaranteed that the schedule derived from algorithm A is always feasible by running the
processor at speed ρ. The speedup factor of a (sufficient) schedulability test can be defined
accordingly. When considering a multiprocessor platform, all m processors are assumed to
be sped up by ρ.

While for non-suspending task sets any computation is assumed to be sped up by ρ,
regarding self-suspension the questions remains weather only the computation segments are
sped up or if the suspension interval is sped up as well. Both possibilities are meaningful,
depending on the analyzed system. If the suspension interval can be coherently reduced by
changing the local execution platform, we talk about a suspension-coherent speedup factor.
For instance, it can be assumed that the suspension interval can be reduced as well when the
self-suspension behavior is due to resource access and multiprocessor synchronization on the
same platform. On the other hand, if the suspension length cannot be coherently reduced by
changing the local execution platform the general term speedup factor is used, e.g., if the
suspension behaviour is due to computation offloading to an external device.

Please note that the speedup factor should only be considered to analyze the worst-case
behavior of an algorithm, since algorithms with similar speedup factors may differ largely
regarding their performance. This fact and how considering speedup factors during the
algorithm design can lead to reduced performance has been recently elaborated by Chen et
al. [11]. To the best of our knowledge, the algorithms presented in this paper do not suffer
from any of the potential pitfalls pointed out in [11].

ECRTS 2019

16:6 Scheduling Self-Suspending Tasks: New and Old Results

Clairvoyant Schedules. In the hybrid and dynamic self-suspension models, the scheduling
algorithm is supposed to be unaware of the exact moment when a job suspends itself.
Therefore, the scheduling algorithm works in the on-line fashion. However, according to the
self-suspension models, there are upper bounds of the suspension time and the execution
time of a job. To analyze the speedup factors and suspension-coherent speedup factors for
the hybrid and dynamic self-suspension models, we have to essentially compare to clairvoyant
schedules that know exactly when a job suspends and plan the best possible schedules.

Approximation guarantee. A polynomial-time algorithm is called ρ-approximation al-
gorithm if it guarantees to derive a feasible solution with an objective value that is within a
factor ρ of the optimal objective value for every input instance. The factor ρ is also called
approximation factor or guarantee.

3 Master-Slave Problem and Complexity

As self-suspension is pretty natural in many applications, researchers in the operations research
(OR) community have also explored scheduling algorithms for systems with such suspension
behavior. In 1991, Kern and Nawijn [26] introduced the scheduling of multi-operation jobs
with time lags on a single machine. Their problem definition is:

“There are jobs to be processed on a single machine. Each job requires two operations
to be processed in a given order. The time between the start of the second operation
and the completion of the first operation cannot be less than a pre-specified time
constant, i.e., there is a minimal time lag between the two operations of a job. Our
aim is to minimize the makespan, i.e., the completion time of the second operation of
the last job in the schedule.”

The two operations defined by Kern and Nawijn [26] are identical to the two computation
segments in our segmented suspension model and the lag is identical to the self-suspension
time. Therefore, the problem studied by Kern and Nawijn [26] is in fact identical to the
scheduler design problem for frame-based segmented self-suspending real-time task systems
with a single suspension interval per job in uniprocessor platforms. They proved that the
decision version of the problem, i.e., whether there exists a schedule to meet the uniform
deadline D, is NP-complete in the weak sense (by reduction from the 2-Partition problem).

Kern and Nawijn [26] also explored some special cases that can be solved in polynomial
time. Specifically, they concluded that there are polynomial-time scheduling algorithms to
derive optimal schedules for a single suspension on a uniprocessor for the following two cases:

All jobs have the same lag, i.e., uniform suspension time.
All jobs have only the first operation, i.e., Ci,2 = 0.

As a third special case, they analyzed the case where Ci,1 = Ci,2 = 1 for all the tasks (jobs),
but the computational complexity was left as an open problem [26].

In 1995, Sahni [40,41] termed the above problem as the master-slave scheduling model.
It assumes a given number of master devices and a sufficiently large number of slave devices.
A job is associated with three activities: preprocessing on the master device (i.e., first
computation segment), slave work (i.e., self-suspension interval), and postprocessing on the
master device (i.e., second computation segment). It is assumed that the number of slaves is
sufficient, i.e., there is always a slave device available if needed, and that the slave device
starts working without any delay. Hence, if there is only one master, this problem is identical
to the scheduler design problem for the segmented self-suspension task model in uniprocessor

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:7

systems, and if there are multiple masters, this problem is identical to the scheduler design
problem for the segmented self-suspension task model in multiprocessor systems. Sahni [40]
proved that the makespan problem for only one master is also NP-hard in the weak sense
for the scheduling algorithms that have certain limited capabilities, e.g., the order of the jobs
in the preprocessing must be identical to the order in the postprocessing.

In 1996, Sahni and Vairaktarakis [42] proposed several heuristic algorithms to minimize
the makespan, i.e., the completion time of the last job, for the master-slave scheduling model
under single-master and multiple-master systems. Specifically, an approximation algorithm
with an approximation ratio of 3/2 was given for single-master systems and an approximation
algorithm with an approximation ratio of 2 was given for multiple-master systems. In 1997,
Vairaktarakis [46] further considered variants when there are m1 masters for preprocessing
andm2 masters for postprocessing. He gave approximation algorithms with an approximation
ratio of 2− 1/max{m1,m2} for such scenarios. Different configurations for multiple masters
in the master-slave scheduling model, including preemptive and non-preemptive constraints
and job migration constrains, were further studied by Leung and Zhao [31]. A survey article
on the master-slave scheduling model can be found in [43].

The master-slave scheduling model can be viewed as a special case of the two-stage
flowshop problem with transfer lags. The two-stage flow shop problem is defined as follows:
There are two machine stages each of which has one machine. Each job has to be first
processed on the first machine stage and then on the second stage, in which the operation
time on each stage is specified as the input. A job cannot be processed on the second stage
unless it has finished on the first stage. In classical scheduling theory, scheduling problems
are typically described shortly in the three-field notion α|β|γ [16], where

α characterizes the processor environment,

β the job/task parameters, and

γ gives the objective function.
In this compact notation, the makespan minimization for the two-stage flowshop problem
is termed as F2||Cmax. The transfer lag of a job is defined as the minimum separation
time between the start of its operation on the second machine stage and the completion
of its operation on the first stage. This problem is termed as F2|lj |Cmax. If the transfer
lags are long enough such that all of the operations on the first machine stage finish before
the second-stage machine starts any operation, then those special cases of F2|lj |Cmax are
equivalent to the master-slave scheduling model for one master.

In 1996, Dell’Amico [13] showed that the problem F2|lj |Cmax is NP-hard in the strong
sense for both preemptive and non-preemptive settings. In 2004, Yu et al. [51] further
proved that the problem F2|lj , pij = 1|Cmax is NP-hard in the strong sense, where the
condition pij = 1 implies that all jobs only need unit time operations in both machines.
Specifically, Yu et al. [51, Theorem 24] concluded that the open problem left by Kern and
Nawijn [26] mentioned above, i.e., the master-slave scheduling model for a single master with
Ci,1 = Ci,2 = 1 for all the tasks (jobs), is NP-hard in the strong sense.

Therefore, the computational complexity of the master-slave scheduling model as well
as the scheduler design problem of segmented self-suspension task systems is in fact mainly
due to the non-uniform self-suspension time. Removing the periodicity and non-uniform
execution times of the computation segments does not make the problem easier with respect
to the computational complexity. This result regarding the computational complexity of
the scheduler design problem for self-suspending real-time tasks is in fact stronger than the
NP-hardness by Ridouard et al. [39] for periodic real-time task systems in 2004.

ECRTS 2019

16:8 Scheduling Self-Suspending Tasks: New and Old Results

The above research line has unfortunately been ignored in the real-time systems community
while exploring self-suspension task models. The recent survey papers by Chen et al. [10, 12]
also did not refer to these results. Although most of these results cannot be applied to
generic periodic or sporadic real-time task systems, they have provided solid fundamental
results regarding computational complexity and approximation algorithms for the scheduler
design problem for self-suspension task models.

4 Speedup Factors: Uniprocessor

This section presents new and old algorithms that have bounded speedup factors on a
uniprocessor for scheduling recurrent frame-based task sets, where the given tasks release
their jobs at the same time, have the same period D, and a uniform relative deadline D. We
will first discuss the suspension-coherent speedup factors and then the speedup factors for
the case that the suspension time is not reduced, summarized in Table 1. We provide lower
and upper bounds that clearly separate both models in terms of achievable speedup factors.

4.1 Suspension-Coherent Speedup Factors

Let J be the set of the jobs released by the task set T at time 0. As mentioned in Section 3,
Sahni and Vairaktarakis [42] developed a 3/2-approximation algorithm for the single-master
master-slave scheduling model. The algorithm is detailed in Algorithm 1.

Algorithm 1 Sahni-Vairaktarakis’ Algorithm (SV).
Input: J on one processor;
1: Classify the jobs generated by T into two sets: J1 and J2, where

J1 = {Ji | Ci,1 ≤ Ci,2, τi ∈ T} and J2 = {Ji | Ci,1 > Ci,2, τi ∈ T}.
2: Order the jobs in J1 according to a non-decreasing order of Si, i.e., shortest suspension first.
3: Order the jobs in J2 according to a non-increasing order of Si, i.e. longest suspension first.
4: Schedule the jobs in J1 first and then in J2 according to the above orders, and always prioritize

the first computation segments of the jobs.

Note that the schedule is work-conserving, i.e., the uniprocessor always executes a
computation segment whenever a computation segment is available.

I Theorem 4.1 ([42]). SV is a 3/2-approximation algorithm for the single-master master-
slave problem.

While SV is a simple algorithm, Hahn [18] shows that the even simpler Longest-suspension
time first algorithm (LSF) displayed in Algorithm 2 also is a 3/2-approximation algorithm.

Algorithm 2 Longest-suspension first (LSF).
Input: J on one processor; jobs are indexed in non-increasing order of Sj ;
1: Schedule the first computation segments of the jobs in increasing order of index;
2: Then schedule the second computation segments of the jobs as early as possible (when they

become available) in a work-conserving manner (i.e., first-come-first serve (FCFS));

I Theorem 4.2 ([18]). LSF is a 3/2-approximation algorithm for the single-master master-
slave problem.

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:9

For completeness, we provide another proof for Theorem 4.2. Yet, before we do, we give
the following straightforward bound on the makespan of any feasible schedule that directly
follows from the definition. Hence, the proof is omitted.

I Lemma 4.3. The makespan of any uniprocessor schedule for a given task set T is at least
max

{
maxτi∈T {Si} ,

∑
τi∈T Ci

}
. This lower bound holds for all the segmented, hybrid, and

dynamic self-suspension models.

Now, we prove Theorem 4.2.

Proof of Theorem 4.2. Let the jobs be indexed in non-increasing order of Sj . Consider
the schedule produced by LSF and denote by ∆ the time between the time at which LSF
finishes the last first segment, i.e.,

∑n
j=1 Cj,1, and the time at which the last suspension time

finishes, i.e., maxJj∈J
∑j
k=1 Ck,1 + Sj . Moreover, let C2 be the processing volume that is

processed after the last suspension time finishes. Then, the following three lower bounds on
the makespan of the optimal solution, denoted Opt, hold.

Opt ≥
n∑
j=1

Cj (1)

Opt ≥ ∆ +
n∑
j=1

Cj,1 (2)

Opt ≥ ∆ + C2 (3)

Note that if (1)–(3) hold, then the makespan of LSF is at most

n∑
j=1

Cj,1 + ∆ + C2 ≤
1
2

 n∑
j=1

Cj,1 +
n∑
j=1

Cj,2 + ∆ +
n∑
j=1

Cj,1 + ∆ + C2

 ≤ 3
2Opt .

Thus, it is sufficient to show that (1)–(3) hold.
From Lemma 4.3 we have that (1) holds. To see why (2) holds, consider the relaxation

of the instance where for all Jj ∈ J, we have Cj,2 = 0. Then, the makespan is given by the
latest finished suspension. For LSF this is equal to the right hand side of (2). LSF minimizes
the makespan in this relaxation, as can be seen by the following simple interchange argument.
Consider a non-LSF schedule σ and two jobs Jj and Jk, such that j < k and Cj,1 is scheduled
after Ck,1. Then, the suspension of Jj finishes after the suspension of Jk. Now, consider the
schedule σ′ where we reschedule Ck,1 directly after Cj,1 and shift all jobs originally scheduled
after Ck,1 forward by that amount, such that there is no idle time. In σ′, the time at which
Ck,1 finishes is equal to the time at which Cj,1 finishes in σ, and Cj,1 finished earlier in σ′
than in σ. This can be repeated until no jobs are scheduled in non-LSF order. Therefore,
LSF minimizes the makespan for this relaxation and the right hand side of (2) is a lower
bound on the makespan in the optimal schedule.

Now, to see why (3) holds, we consider a similar relaxation, where for all Jj ∈ J, we
have Cj,1 = 0. Then, for this relaxation, any work-conserving schedule is optimal, since it
minimizes idle time. Compare an optimal solution for the relaxation to the LSF schedule
starting from time

∑n
j=1 Cj,1. This LSF schedule schedules exactly the same computation

segments that the relaxation needs to schedule. Moreover, it is work-conserving by definition,
and, since no first segment finishes later than

∑n
j=1 Cj,1, no segment is available later than

in the relaxation. Thus, the makespan of this LSF schedule, ∆ + C2, is at most the makespan
of an optimal schedule for the relaxation and therefore also at most Opt. J

ECRTS 2019

16:10 Scheduling Self-Suspending Tasks: New and Old Results

An approximation guarantee ρ for an algorithm for the master-slave problem translates
directly to a suspension-coherent speedup factor of ρ for the scheduler design problem for the
frame-based segmented self-suspension task model. Let Opt denote the optimal makespan
for an input instance I of the master-slave scheduling problem, and let Alg denote the
makespan of the ρ-approximation algorithm. By definition Alg ≤ ρ ·Opt. Consider a task
set in the frame-based segmented self-suspension task model that consists of the same set
of jobs as in I with an additional deadline D. If the task set is feasible then the makespan
Opt satisfies Opt ≤ D. If we speedup the computation and suspension with a factor of ρ,
then the makespan obtained by the algorithm is ρ ·Opt/ρ ≤ D, and thus, the algorithm is
guaranteed to find a feasible schedule for a feasible task set.

I Corollary 4.4. Both SV and LSF have a suspension-coherent speedup factor of 3/2 for
the scheduler design problem for the frame-based segmented self-suspension task model in
uniprocessor systems.

While SV crucially uses information about the length of Cj,1 and Cj,2 to classify job Jj ,
LSF does not need this information. Hence LSF is directly applicable to the hybrid model.

I Corollary 4.5. LSF has a suspension-coherent speedup factor of 3/2 for the scheduler
design problem for the frame-based hybrid self-suspension task model in uniprocessor systems.

In addition to SV, Sahni and Vairaktarakis [42] also showed that any canonical schedule (that
starts from the first computation segments followed by the second computation segments)
has an approximation ratio of 2 for minimizing the makespan. By the above argumentation,
this translates to a suspension-coherent speedup factor of 2 for the hybrid suspension model.
Here, we present a slightly stronger result. The suspension-coherent speedup factors for
the hybrid and dynamic suspension models can be obtained by considering any arbitrary
work-conserving schedule. Before presenting the suspension-coherent speedup factors, we
first demonstrate the upper bound of the makespan of a work-conserving schedule.

I Lemma 4.6. The makespan of a work-conserving schedule for all the segmented, hybrid,
and dynamic self-suspension models is at most maxτi∈T {Si}+

∑
τi∈T Ci.

Proof. Suppose that job Jj is the last job finished in the work-conserving schedule. Let f be
the makespan of the work-conserving schedule. Since the schedule is work-conserving, from
time 0 to f , the processor either idles or executes a job. If the processor idles at time t, since
the schedule is work-conserving, job Jj must be suspended at time t; otherwise it should be
executed. Therefore, from 0 to f , the maximum idle time is at most the suspension time Sj
of job Jj . Since the amount of execution time is

∑
τi∈T Ci, we know that

f ≤ Sj +
∑
τi∈T

Ci ≤ max
τi∈T

{Si}+
∑
τi∈T

Ci . J

I Theorem 4.7. On a uniprocessor, the suspension-coherent speedup factor of any work-
conserving scheduling algorithm is 2 for scheduling a frame-based task set T under both the
hybrid self-suspension model and the dynamic self-suspension model. This factor is tight.

Proof. By Lemma 4.3, if the input task set is feasible (i.e., there exists a feasible schedule),
then both maxτi∈T {Si} ≤ D and

∑
τi∈T Ci ≤ D hold. By Lemma 4.6, under a suspension-

coherent speedup factor of 2, we know that the makespan is at most

maxτi∈T {Si}+
∑
τi∈T Ci

2 ≤ D .

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:11

The analysis is tight as the following example shows. Consider two jobs: job J1 with
(C1, S1) = (1, ε) and job J2 with (C2, S2) = (2ε, 1), for an infinitesimal ε > 0. A work-
conserving algorithm may schedule J1 from 0 to 1 − ε and J2 from 1 − ε to 1, while J1
suspends at time 1 − ε for ε time units and J2 suspends at time 1 for 1 time units. The
makespan of the above schedule is 2 + ε, while scheduling the jobs in the reverse order
provides a schedule with a makespan of 1 + 2ε.

Since Lemma 4.6 holds for the dynamic suspension model, the proof of the dynamic case
is identical to the hybrid case. The tightness example can be applied as well. J

4.2 Speedup Factors
In this section, we assume that only the processor speed can be changed. We firstly give a
necessary condition that any feasible task set must satisfy. Then we consider a preemptive
variant of LSF, called pmt-LSF, which may interrupt the processing of a job at any time
and continues processing it at any time later. We show that pmt-LSF requires at most a
speed of 2. Then we show that a preemptive schedule produced by our algorithm can be
transformed into a non-preemptive schedule without increasing the makespan. Based on this,
we can argue that also LSF requires a speedup factor of at most 2 – in both, the segmented
and the hybrid suspension model.

I Lemma 4.8. Let the jobs in J be indexed in non-increasing order of Sj. Any feasible
instance with one suspension satisfies for any job Jj:

max
{

j∑
k=1

Ck,1,

j∑
k=1

Ck,2

}
≤ D − Sj . (4)

Proof. Consider a feasible instance with a feasible schedule. Suppose there is at least one
job which does not satisfy (4). We distinguish two cases.
(a) Let Jj be the job with the smallest index and

∑j
k=1 Ck,1 > D−Sj . In a feasible schedule,

Jj completes its first computation segment by D − Sj . Since not all jobs in {J1, . . . , Jj}
can finish by D−Sj , there is a job Jk′ ∈ {J1, . . . , Jj−1} that finishes its first computation
segment after D − Sj . The completion time of this first computation segment is later
than D−Sj ≥ D−Sk′ since Sj ≤ Sk′ , and thus, job Jk′ fails to meet the deadline. This
contradicts the assumption that we have a feasible schedule. Hence, there cannot be a
job Jj with

∑j
k=1 Ck,1 > D − Sj .

(b) Similarly, let Jj be the smallest-index job with
∑j
k=1 Ck,2 > D − Sj . In a feasible

schedule, Jj does not start its second computation segment earlier than Sj . Since not all
jobs in {J1, . . . , Jj} can start their second computation segments at Sj or later, there
must be some job Jk′ 6= Jj , which starts its second computation segment earlier. This
start time is strictly less than Sj ≤ Sk′ which is infeasible and gives a contradiction. J

I Lemma 4.9. Let jobs be indexed in non-increasing order of Sj. Any feasible instance for
the hybrid suspension model (in which a job suspends at most once) satisfies for any job Jj∑j

k=1 Ck
2 ≤ D − Sj .

Proof. Recall that the hybrid suspension model assumes to know Ck = Ck,1 + Ck,2 but is
unaware of the actual distribution of Ck,1 and Ck,2 before the first computation segment
finishes. However, for a concrete distribution of Ck,1 and Ck,2 of the given jobs Jk’s in J,

ECRTS 2019

16:12 Scheduling Self-Suspending Tasks: New and Old Results

this set of jobs can be scheduled under the segmented self-suspension model. Therefore, we
can directly apply the result in Lemma 4.8 for each given distribution of Ck,1 and Ck,2 for
the jobs Jk’s in J. By the pigeon hole principle, we have∑j

k=1 Ck
2 ≤ max

{
j∑

k=1
Ck,1,

j∑
k=1

Ck,2

}
.

Therefore, by the above inequality and Lemma 4.8, we reach the conclusion. J

For the analysis of LSF (Algorithm 2) in terms of speedup factors, we first consider the
preemptive version (see Algorithm 3).

Algorithm 3 Preemptive longest-suspension first (pmt-LSF).
Input: J on one processor; jobs are indexed in non-increasing order of Sj ;
1: At any time schedule the available computation segment with smallest job index. Preempt a

running job if another lower-index (second) segment becomes available.;

I Theorem 4.10. For any instance that satisfies Condition (4) and Cj + Sj ≤ D, for any
job Jj, pmt-LSF finds a feasible schedule on a processor with speed 2.

Proof. Consider an instance with jobs indexed in non-increasing order of Sj that satisfy (4).
Let α ≥ 2 denote the speedup of the machine.

Consider some job Jk ∈ J and the time interval between time 0 and the completion time
of the second computation segment of Jk. Whenever Jk is not being executed, then either
some other, higher priority, job Jj ∈ J with j < k is being executed or Jk is suspended. Thus,
the completion time of Jk is bounded by the total computation volume of higher priority
jobs in J processed at speed α and the suspension time Sk, that is, the completion time of
job Jk is at most

k∑
j=1

Cj
α

+ Sk =
k∑
j=1

Cj,1
α

+
k∑
j=1

Cj,2
α

+ Sk ≤
2
α
·max

k∑
j=1

Cj,1,

k∑
j=1

Cj,2

+ Sk

≤ 2
α

(D − Sk) + Sk ≤ D ,

where the last inequality holds by Lemma 4.9 and since α ≥ 2. Thus, we conclude that all
jobs finish before the deadline D and therefore the schedule is feasible. J

Now we first show that there exists a non-preemptive schedule that has makespan equal
to the makespan of the schedule produced by pmt-LSF.

I Theorem 4.11. Any preemptive schedule produced by pmt-LSF can be transformed into a
non-preemptive schedule without increasing the makespan.

Proof. Let σ be the schedule produced by pmt-LSF and let Cj,i be the first computation
segment that is preempted. Let C be the set of computation segments that preempt
Cj,i. First note that a preemption can only happen if the preempting segment became
available after the preempted computation segment started to be processed. Thus, since first
computation segments are available from time 0, all computation segments in C must be
second computation segments. Then note that the completion time of a second computation
segment does not influence the availability of any other computation segment. Lastly,

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:13

between the start and completion of the processing of Cj,i there cannot be idle time, since
Cj,i remains available. Therefore, the machine only processes Cj,i and C, between the start
and completion of the processing of Cj,i.

Now, consider the schedule σ′ that is constructed by finished the processing of Cj,i before
starting the processing of C, where the latter is otherwise processed exactly as in σ. The new
schedule is feasible, since none of the computation segments start their processing before the
time that they start processing in σ. Clearly, in σ′, segment Cj,i finishes not later than in σ.
Moreover, in σ′, the segments in C finish processing exactly at the time that Cj,i finishes
processing in σ. Thus the makespan of σ′ is not greater that the makespan of σ.

We repeat this process until there are no preempted segments left. J

Now we are ready to prove that LSF has a speedup factor of 2 as well.

I Theorem 4.12. The speedup factor of LSF is 2 for scheduling a frame-based task set T
under the segmented-suspension model on a single processor. This factor is tight.

Proof. Note that, in the proof of Theorem 4.11, the computation segments in C are all
second computation segments. Moreover, in the non-preemptive schedule, all these segments
are processed consecutively without idle time between them, since all processing of the
preempted job is shifted to the front. Thus, we can process the jobs in C in any order, that
does not introduce idle time, without changing the makespan. Therefore, LSF computes one
particular non-preemptive schedule that has a makespan equal to at most the makespan of
the preemptive schedule produced by pmt-LSF.

The analysis for LSF is tight as the following example shows. Consider two jobs: job
J1 with (C1,1, S1, C1,2) = (0, 1, 1) and job J2 with (C2,1, S2, C2,2) = (1, 1 + ε, 0) for an
infinitesimal ε > 0. LSF schedules in a decreasing order of Sj and achieves a makespan of
2 only when given speed 2. The opposite order of scheduling gives an optimal solution of
makespan 2 on a unit-speed processor. J

LSF only prioritizes the first computation segments of the jobs in J according to their
suspension times. Therefore, they can be applied for the hybrid and dynamic suspension
models as well. Interestingly, the knowledge of the exact values of Cj,1 and Cj,2 does not
improve the speedup factors in such a case.

I Theorem 4.13. The speedup factor of LSF is 2 for scheduling a frame-based task set T
under the hybrid self-suspension model on a uniprocessor. This factor is tight.

Proof. LSF does not require the knowledge of Cj,i. It relies only on the relative order of
suspension times Sj and on observing when a segment is completed. Thus, the algorithm
and its analysis apply to the hybrid model and the result follows from Theorem 4.12. J

In fact, LSF is speedup optimal for the hybrid self-suspension model, i.e., it has the best
possible speedup factor, as the following lower bound proves.

I Theorem 4.14. There is no deterministic algorithm which can achieve a speedup factor
of 2− ε for an infinitesimal ε > 0 for scheduling a frame-based task set T under the hybrid
self-suspension model on a processor. This means that LSF is best possible algorithm with
respect to speedup factors.

Proof. Consider two jobs similar to the example in the proof of Theorem 4.12: job J1
with (C1,1, S1, C1,2) = (0, 1, 1) and job J2 with (C2,1, S2, C2,2) = (1, 1, 0). In the hybrid
self-suspension model, an algorithm knows Cj = Cj,1 + Cj,2 but not the individual values

ECRTS 2019

16:14 Scheduling Self-Suspending Tasks: New and Old Results

Cj,i. Hence, in our example, jobs J1 and J2 are indistinguishable. W.l.o.g. we may assume
that an algorithm schedules job J2 before J1 and achieves a makespan of 2 only when given
speed 2. The opposite order, that is, jobs J1 before J2, gives an optimal solution of makespan
2 on a unit-speed processor. J

It is somewhat surprising that LSF is powerful for both the segmented and the hybrid
model. It remains open, if another algorithm can improve on LSF in the segmented model by
exploiting the exact values Cj,1 and Cj,2 for jobs j. However, we rule out that the previously
known algorithm SV can improve on LSF.

I Lemma 4.15. The speedup factor of SV is at least 2.

Proof. Consider three jobs: J1 and J2 with (Cj,1, Sj , Cj,2) = (1, 1, 1) for j ∈ {1, 2} and J3
with (C3,1, S3, C3,2) = (1 + ε, 4, 1− ε) for an infinitesimal ε > 0. SV classifies J1 = {J1, J2}
and J2 = {J3} and achieves a makespan of 6 only when given speed 2. The opposite order of
scheduling gives an optimal solution of makespan 6 on a unit-speed processor. J

4.3 Makespan and Schedulability Tests
As already mentioned in Section 1, the schedulability test problem is also important for
real-time systems. After deriving the scheduling algorithms, we should also explore the
schedulability conditions. In our model, it is rather straightforward. We simply need to check
whether the resulting makespan is at most D. The time complexity of such a schedulability
test is the same as the time complexity of the scheduling algorithm. However, for LSF, we
can derive the following schedulability test.

I Theorem 4.16. Let the jobs in J be indexed in non-increasing order of Sj. Let set Aj be

Aj =
{
J` | J` ∈ J and S` +

∑̀
k=1

Ck,1 ≥ Sj +
j∑

k=1
Ck,1

}
.

If
∑
Jk∈J Ck,1 + Ck,2 ≤ D and every job Jj satisfies

j∑
k=1

Ck,1 +
∑
Jk∈Aj

Ck,2 ≤ D − Sj

then LSF derives a feasible schedule for J under the segmented self-suspension model.

Proof. Suppose this is not the case and there is a job Jj that finishes its second computation
segment after the deadline D. Then, there is some job j∗ such that its second computation
segment starts at time

rj∗ =
j∗∑
k=1

Ck,1 + Sj∗

and there is no idle time between rj∗ and the time that Jj finishes. Now, note that Aj∗

exactly describes the jobs of which the second computation segment becomes available later
than rj∗ . Therefore, the time at which j finishes is not later than

j∗∑
k=1

Ck,1 + Sj∗ +
∑

Jk∈Aj∗

Ck,2 ≤ D . J

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:15

The schedulability condition in Theorem 4.16 can be further extended to a schedulability
test of LSF for the hybrid self-suspension model.

I Theorem 4.17. Let the jobs in J be indexed in non-increasing order of Sj. If
1.
∑
Jk∈J Ck ≤ D, and

2. for every combination of Ck,1 and Ck,2 such that Ck,1 + Ck,2 = Ck for jobs Jk in J, we
have that for each job Jj,

j∑
k=1

Ck,1 +
∑
Jk∈Aj

Ck,2 ≤ D − Sj

then LSF derives a feasible schedule for J under the hybrid self-suspension model, where

Aj =
{
J` | J` ∈ J and S` +

∑̀
k=1

Ck,1 ≥ Sj +
j∑

k=1
Ck,1

}
.

Proof. This is identical to the proof of Theorem 4.16. J

The schedulability test provided in Theorem 4.17 requires to consider all combinations of
Ck,1 + Ck,2 = Ck for every job Jk in J. Tools like Satisfiability Modulo Theories (SMT) can
be used to evaluate whether the condition holds (or is violated for unschedulability).

5 Speedup Factors: Multiprocessor Systems

This section presents new and known algorithms with bounded speedup factors for scheduling
frame-based task sets in a homogeneous multiprocessor setting. Regarding suspension-
coherent speedup factors, we show that a known algorithm from the master-slave scheduling
literature has a speedup factor of 2. Then we provide a speedup factor of 3− 1/m for the
case that the suspension time is not reduced (see Table 1).

5.1 Suspension-Coherent Speedup Factors
For multiprocessor systems, Sahni and Vairaktarakis [42] developed a 2-approximation
algorithm. The algorithm is described by Algorithm 4.

Algorithm 4 Sahni-Vairaktarakis’ Algorithm for multiprocessor systems (Multi-SV).
Input: J on m processors; jobs are indexed in decreasing order of Cj ;
1: Schedule the first computation segments of the jobs in order of indices, scheduling each job on

the first free processor and each of them directly followed by the suspension segment on the
external source.

2: Then, when no first computation segments are left to schedule, schedule the second computation
segments of the jobs as early as possible (after they are released) in a work-conserving manner
on any free processor (i.e., first-come-first serve (FCFS)).

I Theorem 5.1 ([42]). Multi-SV is a 2-approximation algorithm for the multi-master master-
slave problem.

By the same argument as in the uniprocessor case, the theorem implies the following result.

I Corollary 5.2. Multi-SV has a suspension-coherent speedup factor of 2 for the scheduler
design problem for the frame-based segmented and hybrid self-suspension task models in
multiprocessor systems.

ECRTS 2019

16:16 Scheduling Self-Suspending Tasks: New and Old Results

I Lemma 5.3. The makespan of a work-conserving schedule, which means that at least
one of the m uniprocessors always executes a computation segment whenever a computation
segment is available, is at most maxτi∈T {Si + Ci}+

∑
τi∈T Ci/m. This upper bound holds

for all the segmented, hybrid, and dynamic self-suspension models.

Proof. Suppose that the last job finished in the work-conserving schedule is due to job Jj .
Let f be the makespan of the work-conserving schedule. Since the schedule is work-conserving,
from time 0 to f , either all of the m processors idle or one (or more) of them executes a job.

If all the m processors idle at time t, since the schedule is work-conserving, job Jj must
be suspended at time t. Therefore, from 0 to f , the maximum idle time is at most the
suspension time Sj of job Jj .
Otherwise, job Jj should be executed or all them processors are executing jobs. Therefore,
from 0 to f , the amount of time that at least one processor is executing a job under
work-conserving schedules is at most Cj +

((∑
τi∈T Ci

)
− Cj

)
/m.

Hence,

f ≤ Sj + Cj +
(∑

τi∈T Ci
)
− Cj

m
≤ max

τi∈T

{
Si + Ci −

Ci
m

}
+
∑
τi∈T Ci

m
. J

I Lemma 5.4. The makespan of any schedule for a given task set T on m homogeneous
multiprocessors is at least max

{
maxτi∈T {Si + Ci} ,

∑
τi∈T Ci/m

}
. This lower bound holds

for all the segmented, hybrid, and dynamic self-suspension models.

Proof. This follows directly from the definition. J

I Theorem 5.5. On m identical processors, the suspension-coherent speedup factor of any
work-conserving scheduling algorithm is 2 for scheduling a frame-based task set T under the
hybrid self-suspension model and the dynamic suspension model. The factor is tight.

Proof. By Lemma 5.4, if the input task set is feasible (i.e., there exists a feasible schedule),
then both maxτi∈T {Si + Ci} ≤ D and

∑
τi∈T Ci/m ≤ D hold. By Lemma 5.3, under a

suspension-coherent speedup factor of 2, we know that the makespan is at most D.
The analysis is tight as a special case whenm = 1 is tight in Theorem 4.7. Since Lemma 5.3

can be applied also for the dynamic self-suspension model, the proof of this theorem is identical
to the proof of Theorem 5.5. The tightness example can be applied as well. J

5.2 Speedup Factors
In this section, we present an algorithm with speedup factor 3−1/m. After giving a necessary
condition that any feasible task set must satisfy, we consider again first a preemptive scheduling
algorithm (pmtn-Multi-LSF, Algorithm 5) which is a list scheduling algorithm prioritizing
tasks in decreasing order of suspension times. We show a speedup factor of 3−1/m. Then, we
can apply the uniprocessor results (Theorem 4.11) and we argue that any preemptive schedule
produced by pmt-Multi-LSF can be transformed into a non-preemptive schedule without
increasing the makespan. This gives a non-preemptive algorithm (Multi-LSF, detailed in
Algorithm 6) with speedup factor 3− 1/m.

We first generalize the necessary condition in Lemma 4.8 to multiprocessors.

I Lemma 5.6. Let jobs be indexed in non-increasing order of Sj. Any feasible instance for
the multiprocessor model with one suspension satisfies for any job Jj that

max
{

j∑
k=1

Ck,1,

j∑
k=1

Ck,2

}
≤ m (D − Sj) . (5)

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:17

Algorithm 5 Multi-processor preemptive longest-suspension first (pmt-Multi-LSF).
Input: J on m processors; jobs are indexed in non-increasing order of Sj

1: Assign jobs to machines as follows: consider jobs in order of indices and assign a job to the
machine that has currently the least total computation time (first and second segments) assigned.

2: On each machine, consider only the jobs assigned to it and at any time schedule the available
computation segment with the smallest index. Preempt a running job if another lower-index
(second) segment becomes available.

Proof. Consider a feasible instance with a feasible schedule. Suppose there is at least one
job which does not satisfy (5). The proof is similar to the one for the uniprocessor case.
Again, we distinguish two cases.
(a) Let Jj be the job with the smallest index and

∑j
k=1 Ck,1 > m · (D − Sj). In a feasible

schedule, Jj completes its first computation segment by D − Sj . By time D − Sj , the m
processors process at most a total load of m · (D−Sj). Thus, not all jobs in {J1, . . . , Jj}
can finish by time D − Sj , so there is a job Jk′ ∈ {J1, . . . , Jj−1} that finishes its first
computation segment after time D − Sj . The completion time of this first computation
segment is later than D−Sj ≥ D−Sk′ since Sj ≤ Sk′ , and thus, Jk′ misses the deadline.
This contradicts the assumption that we have a feasible schedule. Hence, there cannot
be a job Jj with

∑j
k=1 Ck,1 > m · (D − Sj).

(b) Similarly, let Jj be the smallest-index job with
∑j
k=1 Ck,2 > m · (D − Sj). Between

time Sj and D, them processors process at mostm·(D−Sj) total load. Thus, not all jobs
in {J1, . . . , Jj} can start their second computation segments at Sj or later. In a feasible
schedule, Jj does not start its second computation segment earlier than Sj . Since not all
jobs in {J1, . . . , Jj} can start their second computation segments at Sj or later, there
must be some Jk′ 6= Jj among them, which starts its second computation segment earlier.
This start time is smaller than Sj ≤ Sk′ which is infeasible and gives a contradiction. J

Now we can analyze Algorithm 5, a preemptive list scheduling algorithm that prioritizes
tasks in decreasing order of suspension time, Multi-processor preemptive longest-suspension
first (pmt-Multi-LSF).

I Theorem 5.7. For any instance that satisfies (5) and Cj + Sj ≤ D, for any job Jj,
pmt-Multi-LSF finds a feasible schedule on m processors of speed 3− 1/m.

Proof. Consider an instance with jobs indexed in decreasing order of Sj that satisfy (5). Let
α ≥ 3 − 1/m denote the speedup of the machines. Consider some processor i and let Ai
denote the set of jobs assigned to i. Notice that for any job Jj ∈ Ai, the total computation
volume of higher priority jobs in Ai is at most

∑k−1
j=1 Cj/m due to the greedy assignment in

Step 1 of the algorithm.
Now, consider some job Jk ∈ Ai and the time interval between time 0 and the completion

time of the second computation segment of Jk. Whenever Jk is not being executed on
processor i, then either some other, higher priority, job Jj ∈ Ai with j < k is being executed
or Jk is suspended. Thus, the completion time of Jk is bounded by the total computation
volume of higher priority jobs in Ai processed at speed α and the suspension time Sk, that
is, the completion time is at most

k−1∑
j=1

Cj
αm

+ 1
α
Ck + Sk =

k∑
j=1

Cj
αm

+ 1
α

(
1− 1

m

)
Ck + Sk .

ECRTS 2019

16:18 Scheduling Self-Suspending Tasks: New and Old Results

Algorithm 6 Multi-processor longest-suspension first (Multi-LSF).
Input: J on m processors; jobs are indexed in non-increasing order of Sj

1: Assign jobs to machines as follows: consider jobs in order of indices and assign a job to the
machine that has currently the least total computation time (first and second segments) assigned.

2: On each machine, consider only the jobs assigned to it and at any time schedule non-preemptively
the available computation segment with the smallest index.

Notice that we can bound the first time using (5) as follows

k−1∑
j=1

Cj
m
≤ 2 ·max

k−1∑
j=1

Cj,1
m

,

k−1∑
j=1

Cj,2
m

 ≤ 2(D − Sk) .

Thus, the completion time of Jk is at most

2
α

(D − Sk) + 1
α

(
1− 1

m

)
Ck + Sk = 2

α
D + 1

α

(
1− 1

m

)
Ck +

(
1− 2

α

)
Sk

≤ 2
α
D +

(
1− 2

α

)
(Ck + Sk) ≤ D .

In the first inequality, we use that α ≥ 3− 1/m, which implies that 1
α (1− 1

m) ≤ 1− 2
α . In

the last inequality, we use that in any feasible instance holds Ck + Sk ≤ D. We conclude
that any job completes before the deadline when α = 3− 1/m. J

Our findings in the uniprocessor case, imply the following result.

I Theorem 5.8. Any preemptive schedule produced by pmt-Multi-LSF can be transformed
into a non-preemptive schedule without increasing the makespan.

Proof. Notice that pmt-Multi-LSF runs on each uniprocessor the Algorithm pmt-LSF
(Algorithm 3). Thus, we can directly apply Theorem 4.11 on each processor separately
which concludes the proof. J

Now, consider the non-preemptive algorithm in Algorithm 6.

I Theorem 5.9. The speedup factor of Multi-LSF is 3− 1/m for scheduling a frame-based
task set T under the segmented self-suspension model on m processors.

Proof. The same argumentation of the proof for Theorem 4.12 holds for each machine,
separately. Thus, we conclude that Multi-LSF computes a non-preemptive schedule that
has makespan equal to at most the makespan of the preemptive schedule produced by
pmt-Multi-LSF. J

Notice that also Multi-LSF prioritizes jobs in J according to their suspension times.
When assigning jobs to processors, only total execution times Cj play a role. Therefore, this
algorithm can be applied again for both, the hybrid and dynamic self-suspension model.

I Theorem 5.10. The speedup factor of Multi-LSF is 3− 1/m for scheduling a frame-based
task set T under the hybrid self-suspension model on m processors.

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:19

6 Evaluation

We analyzed the performance in a uniprocessor frame-based setting for the algorithms
considered in this paper by evaluating how the algorithm by Sahni & Vairaktarakis (SV)
and the Largest Suspension First (LSF) Algorithm perform compared to SEIFDA [49], the
state-of-the-art for scheduling period segmented self-suspending tasks with one suspension
interval. SEIFDA [49] (short for Shortest Execution Interval First Deadline Assignment)
considers the tasks in increasing order of their execution interval, i.e., Ti − Si, which for a
frame-based setting is identical to the LSF order. For each task, a virtual deadline is set for
both computation segments and after such a deadline is set for all segments of all tasks the
segments are scheduled using EDF. The metric to compare the performance is the acceptance
ratio, i.e., percentage of accepted task sets, with respect to the task set utilization. 100
synthetic task sets were randomly generated for each setting and utilization level, ranging
from 0% to 100% system utilization with steps of 1%.

In our evaluations we focused on the impact that the number of tasks and the length
of the suspension interval has on the acceptance ratio, considering 3 different values for
the cardinality of the task set, i.e., 10, 20, and 50 tasks. For a given cardinality, first a set
of utilization values with the same size was generated adopting the UUniFast method [4],
ensuring that the total utilization was identical to the currently considered system utilization.
The total execution time of the tasks was set accordingly to Ci = T · Ui where T is the
length of the frame, set to 1000ms in all experiments, since Ui = Ci/T . We generated Ci,1
as a percentage of Ci, chosen based on a uniform distribution from [0.1, 0.9], and set Ci,2
accordingly. The suspension length was determined as a random fraction of T − Ci, based
on a factor x uniformly drawn from an interval of possible values. We considered 3 settings
for this interval:

short suspension: x ∈ [0.01, 0.1]
moderate suspension: x ∈ [0.1, 0.3]
long suspension: x ∈ [0.3, 0.6]

Since the evaluations showed similar behaviour independent from the cardinality, in
Figure 1 we only display the results for 20 tasks due to space limitations. SEIFDA is clearly
outperformed by SV and LSF and the gap enlarges if the suspension interval gets longer.
Since SEIFDA is designed for periodic tasks, it considers all possible release patterns of
segments. Specifically, it also considers the case that the second computation segment of an
already evaluated task is released together with the first segment of the current task and
the other way around. This introduces some pessimism, since in the frame-based setting
the first segments are always released at the same time, which increases if the suspension
intervals get longer. SV always performs better than LSF and here the gap increases as
well with the length of the suspension interval. The reason is that, if the tasks with larger
suspension intervals are scheduled first, it is likely that at some point after all first segments
are executed the processor will idle for some time since all tasks are in their suspension
phase at the same time. Since SEIFDA [49] can handle periodic and sporadic task sets and
therefore is applicable to a wider range of problems, a performance gain of SV and LSF
compared to SEIFDA was expected. Hence, the large performance gain of SV and LSF on
the one hand shows that these algorithms perform well for the considered problem and on
the other hand shows that an extension of SV and LSF to periodic settings may potentially
lead to good results.

However, when analyzing SV it is clear that tasks with a long suspension interval that
are in J2 could jeopardize the schedulability, since they are executed late and therefore could
lead to a case where the second segment is released too late to be finished before the deadline.

ECRTS 2019

16:20 Scheduling Self-Suspending Tasks: New and Old Results

0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ep

ta
nc

e
R

at
io

(%
)

50 60 70 80 90 100
0

20

40

60

80

100
(a) Short Suspension: 1%-10%

SEIFDA PB-MinD Sahni-Vairaktarakis Longest Suspension First

50 60 70 80 90 100
0

20

40

60

80

100
(b) Medium Suspension: 10%-30%

50 60 70 80 90 100
0

20

40

60

80

100
(c) Long Suspension: 30%-60%

Figure 1 Comparison of Longest Suspension First (LSF) with the algorithm by Sahni & Vairak-
tarakis (SV) and SEIFDA (20 tasks per Set).

0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

50 60 70 80 90 100
0

20

40

60

80

100
(a) 10 Tasks

Sahni-Vairaktarakis Longest Suspension First

50 60 70 80 90 100
0

20

40

60

80

100
(b) 50 Tasks

50 60 70 80 90 100
0

20

40

60

80

100
(c) 100 Tasks

Figure 2 Displaying the case where Longest Suspension First (LSF) performs better than the
algorithm by Sahni & Vairaktarakis (SV).

Therefore, this scenario should favor LSF. We conducted evaluations to enforce this case
which are displayed in Figure 2. During the task generation process, the suspension intervals
are randomly drawn from [0.1, 0.8]. Afterwards, the task with the longest suspension interval
is placed in J2 while all other tasks are placed in J1 by exchanging the computation segments
if necessary. Since the suspension intervals are still drawn randomly, the number of tasks
plays a big factor to ensure that the suspension interval of the task in J2 is sufficiently large
to create worse cases for SV as shown in Figure 2.

Since LSF and SV do not dominate each other and both have a low runtime complexity,
we suggest to run both algorithms and take the better schedule. Furthermore, note that LSF
can be used when considering the hybrid self-suspension model while SV is not applicable.

7 Conclusion and Discussions

We have demonstrated algorithms and analyses for different approximation metrics of different
self-suspension models for uniprocessor and multiprocessor systems, as shown in Table 1.

In terms of possible speedup factors, we clearly separate the coherent speedup model,
in which suspension and processing can be speeded up, from the model in which only the
processor changed the speed. In contrast and somewhat surprising, we obtain the same
speedup factors for the segmented and hybrid self-suspension models. This means that we
have powerful LSF-based algorithms for general frame-based task scheduling, but we do not
know how to exploit additional knowledge about the exact execution times of the first and
second segment to obtain improved speedup factors in that case.

The dynamic self-suspension model is the most abstract and general self-suspension model.
But, it also imposes great challenges to the scheduler design. We are not able to provide any
upper bound and lower bound on the speedup factor, even for frame-based real-time task

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:21

systems. A major difficulty lies in the fact that the speedup factor is defined to compare
with a clairvoyant schedule, which knows the exact suspension and execution pattern. It
should be mentioned that the analysis of preemptive LSF can be generalized for both, the
uni- and the multiprocessor setting. It remains open if we can, and if so how to, convert a
preemptive schedule into a non-preemptive one.

An important next step is to extend the results from frame-based real-time tasks to
harmonic or nearly-harmonic real-time task systems. A task set is harmonic if the periods
are integer multiples of each other. It has been formally proven in uniprocessor environments
that scheduling tasks with (nearly-)harmonic periods is significantly better tractable than
those with arbitrary periods [3,6,29,50]. Such task systems are important in many industrial
applications, e.g., avionic systems [45] and automotive systems [28]. We hope to reach
better scheduling algorithms that can handle the studied self-suspension models well for
(nearly-)harmonic task systems.

References
1 Neil C. Audsley and Konstantinos Bletsas. Fixed Priority Timing Analysis of Real-Time

Systems with Limited Parallelism. In 16th Euromicro Conference on Real-Time Systems
(ECRTS), pages 231–238, 2004. doi:10.1109/ECRTS.2004.12.

2 Neil C. Audsley and Konstantinos Bletsas. Realistic Analysis of Limited Parallel Software
/ Hardware Implementations. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 388–395, 2004. doi:10.1109/RTTAS.2004.1317285.

3 Sanjoy K. Baruah and Joël Goossens. Scheduling Real-Time Tasks: Algorithms and Complexity.
In Joseph Y.-T. Leung, editor, Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, chapter 28. CRC Press, 2003.

4 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

5 Konstantinos Bletsas and Neil C. Audsley. Extended Analysis with Reduced Pessimism for
Systems with Limited Parallelism. In 11th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), pages 525–531, 2005. doi:
10.1109/RTCSA.2005.48.

6 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Nicole Megow, and Andreas Wiese.
Polynomial-Time Exact Schedulability Tests for Harmonic Real-Time Tasks. In Proceed-
ings of the IEEE 34th Real-Time Systems Symposium, RTSS 2013, Vancouver, BC, Canada,
December 3-6, 2013, pages 236–245. IEEE Computer Society, 2013.

7 Jian-Jia Chen. Computational Complexity and Speedup Factors Analyses for Self-Suspending
Tasks. In Real-Time Systems Symposium (RTSS), pages 327–338, 2016.

8 Jian-Jia Chen and Björn B. Brandenburg. A Note on the Period Enforcer Algorithm for
Self-Suspending Tasks. LITES, 4(1):01:1–01:22, 2017.

9 Jian-Jia Chen and Cong Liu. Fixed-Relative-Deadline Scheduling of Hard Real-Time Tasks
with Self-Suspensions. In Real-Time Systems Symposium (RTSS), pages 149–160, 2014.

10 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many problems: a review of
self-suspending tasks in real-time systems. Real-Time Systems, September 2018.

11 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Robert I. Davis. On the Pitfalls
of Resource Augmentation Factors and Utilization Bounds in Real-Time Scheduling. In 29th
Euromicro Conference on Real-Time Systems, ECRTS, pages 9:1–9:25, 2017.

12 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Cong Liu. State of the art for
scheduling and analyzing self-suspending sporadic real-time tasks. In 23rd IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA, 2017.

ECRTS 2019

http://dx.doi.org/10.1109/ECRTS.2004.12
http://dx.doi.org/10.1109/RTTAS.2004.1317285
http://dx.doi.org/10.1109/RTCSA.2005.48
http://dx.doi.org/10.1109/RTCSA.2005.48

16:22 Scheduling Self-Suspending Tasks: New and Old Results

13 Mauro Dell’Amico. Shop Problems With Two Machines and Time Lags. Operations Research,
44(5):777–787, 1996.

14 UmaMaheswari C. Devi. An Improved Schedulability Test for Uniprocessor Periodic Task
Systems. In 15th Euromicro Conference on Real-Time Systems (ECRTS), pages 23–32, 2003.

15 Zheng Dong, Cong Liu, Soroush Bateni, Kuan-Hsun Chen, Jian-Jia Chen, Georg von der
Brüggen, and Junjie Shi. Shared-Resource-Centric Limited Preemptive Scheduling: A Compre-
hensive Study of Suspension-base Partitioning Approaches. In Proceedings of the 24th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2018.

16 R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling : a survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

17 José C. Palencia Gutiérrez and Michael González Harbour. Schedulability Analysis for Tasks
with Static and Dynamic Offsets. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, Madrid, Spain, December 2-4, 1998, pages 26–37. IEEE Computer Society, 1998.

18 Tobias Hahn. Algorithms for scheduling with mandatory suspensions: worst-case and empirical
analysis. Master’s thesis, University of Bremen, 2019.

19 Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Com-
munication Centric Design in Complex Automotive Embedded Systems. In 29th Euromicro
Conference on Real-Time Systems, ECRTS 2017, pages 10:1–10:20, 2017.

20 Wen-Hung Huang and Jian-Jia Chen. Self-Suspension Real-Time Tasks under Fixed-Relative-
Deadline Fixed-Priority Scheduling. In Design, Automation, and Test in Europe (DATE),
pages 1078–1083, 2016.

21 Wen-Hung Huang, Jian-Jia Chen, and Jan Reineke. MIRROR: symmetric timing analysis
for real-time tasks on multicore platforms with shared resources. In Proceedings of the 53rd
Annual Design Automation Conference, DAC, pages 158:1–158:6, 2016.

22 Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou, and Cong Liu. PASS: Priority assignment
of real-time tasks with dynamic suspending behavior under fixed-priority scheduling. In
Proceedings of the 52nd Annual Design Automation Conference (DAC), 2015.

23 Wen-Hung Huang, Maolin Yang, and Jian-Jia Chen. Resource-Oriented Partitioned Scheduling
in Multiprocessor Systems: How to Partition and How to Share? In Real-Time Systems
Symposium (RTSS), pages 111–122, 2016.

24 Bala Kalyanasundaram and Kirk Pruhs. Speed is As Powerful As Clairvoyance. Journal of
ACM, 47(4):617–643, July 2000.

25 W. Kang, S. Son, J. Stankovic, and M. Amirijoo. I/O-Aware Deadline Miss Ratio Management
in Real-Time Embedded Databases. In Proc. of the 28th IEEE Real-Time Systems Symp.,
pages 277–287, 2007.

26 W. Kern and W. Nawijn. Scheduling multi-operation jobs with time lags on a single machine.
In 2nd Twente Workshop on Graphs and Combinatorial, 1991.

27 In-Guk Kim, Kyung-Hee Choi, Seung-Kyu Park, Dong-Yoon Kim, and Man-Pyo Hong. Real-
time scheduling of tasks that contain the external blocking intervals. In RTCSA, 1995.
doi:10.1109/RTCSA.1995.528751.

28 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

29 Tei-Wei Kuo and Aloysius K. Mok. Load Adjustment in Adaptive Real-Time Systems. In
IEEE Real-Time Systems Symposium, pages 160–171, 1991.

30 John P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines.
In RTSS, pages 201–209, 1990. doi:10.1109/REAL.1990.128748.

31 Joseph Y.-T. Leung and Hairong Zhao. Minimizing Sum of Completion Times and Makespan
in Master-Slave Systems. IEEE Trans. Computers, 55(8):985–999, 2006.

32 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

http://dx.doi.org/10.1109/RTCSA.1995.528751
http://dx.doi.org/10.1109/REAL.1990.128748

J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen 16:23

33 Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.
34 Li Ming. Scheduling of the Inter-Dependent Messages in Real-Time Communication. In Proc.

of the First International Workshop on Real-Time Computing Systems and Applications, 1994.
35 Aloysius Ka-Lau Mok. Fundamental design problems of distributed systems for the hard-real-

time environment. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1983.

36 Bo Peng and Nathan Fisher. Parameter Adaptation for Generalized Multiframe Tasks and
Applications to Self-Suspending Tasks. In International Conference on Real-Time Computing
Systems and Applications (RTCSA), pages 49–58, 2016.

37 Ragunathan Rajkumar. Dealing with Suspending Periodic Tasks. Technical report, IBM T. J.
Watson Research Center, 1991.

38 Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-Time Synchronization Protocols
for Multiprocessors. In Proceedings of the 9th IEEE Real-Time Systems Symposium (RTSS
’88), pages 259–269, 1988.

39 Frédéric Ridouard, Pascal Richard, and Francis Cottet. Negative Results for Scheduling
Independent Hard Real-Time Tasks with Self-Suspensions. In RTSS, pages 47–56, 2004.
doi:10.1109/REAL.2004.35.

40 Sartaj Sahni. Scheduling Master-Slave Multiprocessor Systems. In Parallel Processing, First
International Euro-Par Conference, pages 611–622, 1995.

41 Sartaj Sahni. Scheduling Master-Slave Multiprocessor Systems. IEEE Trans. Computers,
45(10):1195–1199, 1996.

42 Sartaj Sahni and George L. Vairaktarakis. The master-slave paradigm in parallel computer
and industrial settings. J. Global Optimization, 9(3-4):357–377, 1996.

43 Sartaj Sahni and George L. Vairaktarakis. The Master-Slave Scheduling Model. In Handbook
of Scheduling. Chapman and Hall/CRC, 2004.

44 Lea Schönberger, Wen-Hung Huang, Georg von der Brüggen, Kuan-Hsun Chen, and Jian-Jia
Chen. Schedulability Analysis and Priority Assignment for Segmented Self-Suspending Tasks.
In 24th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2018, Hakodate, Japan, August 28-31, 2018, pages 157–167, 2018.

45 Lui Sha. Real-Time Virtual Machines for Avionics Software Porting and Development. In
Real-Time and Embedded Computing Systems and Applications, 9th International Conference,
RTCSA, pages 123–135, 2003.

46 George L. Vairaktarakis. Analysis of scheduling algorithms for master–slave systems. IIE
Transactions, 29(11):939–949, November 1997.

47 Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang, and Maolin Yang. Release enforce-
ment in resource-oriented partitioned scheduling for multiprocessor systems. In Proceedings of
the 25th International Conference on Real-Time Networks and Systems, RTNS, pages 287–296,
2017.

48 Georg von der Brüggen, Wen-Hung Huang, and Jian-Jia Chen. Hybrid Self-Suspension Models
in Real-Time Embedded Systems. In International Conference on Real-Time Computing
Systems and Applications (RTCSA), 2017.

49 Georg von der Brüggen, Wen-Hung Huang, Jian-Jia Chen, and Cong Liu. Uniprocessor
Scheduling Strategies for Self-Suspending Task Systems. In International Conference on
Real-Time Networks and Systems (RTNS), 2016.

50 Georg von der Brüggen, Niklas Ueter, Jian-Jia Chen, and Matthias Freier. Parametric
utilization bounds for implicit-deadline periodic tasks in automotive systems. In Proceedings
of the 25th International Conference on Real-Time Networks and Systems, RTNS, 2017.

51 Wenci Yu, Han Hoogeveen, and Jan Karel Lenstra. Minimizing Makespan in a Two-Machine
Flow Shop with Delays and Unit-Time Operations is NP-Hard. J. Scheduling, 7(5):333–348,
2004.

ECRTS 2019

http://dx.doi.org/10.1109/REAL.2004.35

Impact of DM-LRU on WCET: A Static Analysis
Approach
Renato Mancuso
Boston University, MA, USA
rmancuso@bu.edu

Heechul Yun
University of Kansas, Lawrence, KS, USA
heechul.yun@ku.edu

Isabelle Puaut
University of Rennes 1/IRISA, France
isabelle.puaut@irisa.fr

Abstract
Cache memories in modern embedded processors are known to improve average memory access
performance. Unfortunately, they are also known to represent a major source of unpredictability for
hard real-time workload. One of the main limitations of typical caches is that content selection and
replacement is entirely performed in hardware. As such, it is hard to control the cache behavior in
software to favor caching of blocks that are known to have an impact on an application’s worst-case
execution time (WCET).

In this paper, we consider a cache replacement policy, namely DM-LRU, that allows system
designers to prioritize caching of memory blocks that are known to have an important impact
on an application’s WCET. Considering a single-core, single-level cache hierarchy, we describe an
abstract interpretation-based timing analysis for DM-LRU. We implement the proposed analysis in
a self-contained toolkit and study its qualitative properties on a set of representative benchmarks.
Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the
proposed analysis can allow designers to perform WCET impact-aware selection of content to be
retained in cache.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Theory of
computation → Caching and paging algorithms

Keywords and phrases real-time, static cache analysis, abstract interpretation, LRU, deterministic
memory, static cache locking, dynamic cache locking, cache profiling, WCET analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.17

Funding This research is supported in part by NSF CNS 1718880. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the NSF.

Acknowledgements We are especially grateful to Daniel Grund for making his research thesis [15]
promptly available to us.

1 Introduction

Most modern embedded processors include cache(s) to improve average performance by
reducing average memory access cost. However, a well-known downside of using caches is
that it makes timing analysis difficult because software has little, if any, control over whether
a certain memory block is in the cache or not, as it is determined by the hardware – the cache
replacement policy and the state of the cache. This is problematic because analyzing precise
and tight worst-case timing is necessary for real-time systems. While there are timing analysis

© Renato Mancuso, Heechul Yun, and Isabelle Puaut;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 17; pp. 17:1–17:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmancuso@bu.edu
mailto:heechul.yun@ku.edu
mailto:isabelle.puaut@irisa.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Impact of DM-LRU on WCET: A Static Analysis Approach

techniques for well-known cache replacement policies [42], they cannot take advantage of
programmer’s insights (e.g., important data used in time-critical loops), potentially resulting
in pessimistic timing.

On the other hand, a scratchpad memory is similar to a cache as it offers high-speed
temporary storage for a processor, but the key difference is that it is entirely managed by
software. For real-time systems, the fact that software, not hardware, has full control over
its management is highly beneficial because accurate timing analysis is possible. However,
the downside of scratchpad is that it is generally more difficult to use than cache due to
its high programming complexity [3]. Alternatively, some cache designs support selective
cache locking, which enables programmers to lock certain cache-lines in the cache at a
fine-granularity (typically a cache line) [2, 7, 13]. A locked cache-line stays in the cache until
it is explicitly unlocked by the programmer, which guarantees predictable timing. However,
because the cache size is limited, the programmer must carefully select which cache-lines to be
locked [5, 40]. Dynamic cache-locking techniques [39, 47] can help alleviate the size limitation
problem of static cache-locking, but at the cost of increased complexity (for selecting locked
cache lines) and overhead (to change cache contents dynamically).

In this paper, we consider a new cache architecture, which can leverage programmers’ high-
level insights on access frequency of memory blocks, and propose an abstract interpretation-
based static analysis method to reason on the worst-case execution time (WCET) of applica-
tions. Our approach is based on a new memory abstraction, called Deterministic Memory
(DM). Deterministic Memory enables classification of a program’s address space into two
distinct memory types – DM and non-DM [10], where the DM type indicates predictability
is more important while the non-DM type indicates average performance is more important.
The DM abstraction allows effective and extensible software/hardware co-designs, some
of which are demonstrated in the context of providing efficient hardware isolation in mul-
ticore [10]. In this work, we instead focus on a single-core with a private cache, and study how
static guarantees on cache hits/misses can be derived for a DM-aware LRU cache replacement
policy, which we call DM-LRU.

We first describe the DM-LRU cache replacement algorithm, which is a single-core
adaptation of the DM-aware cache initially proposed in [10]. Next, we generalize an abstract
interpretation-based analysis for LRU caches to reason on the worst-case behavior of DM-
LRU. We integrated DM-LRU support in Heptane [23], an academic static WCET analysis
tool, in order to evaluate the effectiveness of DM-LRU in lowering tasks’ WCET. Our results
show that with DM-LRU WCET improvements up to 23.7% can be achieved, compared
to vanilla LRU. The WCET improvements are comparable to static and dynamic cache
locking techniques while significantly lowering programming complexity. Our contributions
are as follows:

We extend LRU abstract interpretation-based analysis to perform static WCET timing
analysis for DM-LRU.
We implement DM-LRU support in the Heptane static WCET analysis tool.
We provide experimental evaluation results showing the WCET benefits and complexity
reduction of the DM-LRU based approach.
We propose a WCET-driven heuristic approach to select content to be preferentially
cached using DM-LRU.

The remainder of the paper is organized as follows. Section 2 introduces necessary
background on caches and the deterministic memory abstraction. Next, the DM-LRU policy
is described in Section 3 and the proposed static timing analysis is described in Section 4.
A comprehensive example on how to apply the proposed analysis is presented in Section 5.

R. Mancuso, H. Yun, and I. Puaut 17:3

Deterministic
memory

Best-effort
memory

Figure 1 High-level application’s memory view, where DM and BE memory coexist.

Comparison and differences with cache locking techniques are briefly highlighted in Section 6,
while the WCET of a set of representative benchmarks is evaluated in Section 7. Section 8
discuss related work and we conclude in Section 9.

2 Background

In this section, we provide necessary background on memory abstractions, cache replacement
algorithms, and cache timing analysis.

2.1 Deterministic Memory Abstraction
Traditionally, operating systems and hardware have provided a simple uniform memory
abstraction to applications. While the simple abstraction is convenient for programmability,
its downside is that programmer’s insights on memory characteristics (e.g., time-criticality of
certain data structures) cannot be explicitly expressed to enable better resource management.

Recently, a new memory abstraction, called Deterministic Memory abstraction, was pro-
posed to explore the possibilities of more expressive memory abstractions [10]. In essence, the
abstraction allows a programmer to associate (tag) a single bit of information to each memory
block in the system, which classifies the memory block as either “deterministic memory”
(DM) or “best-effort memory” (BE). Figure 1 shows an example address space of a task using
both deterministic and best-effort memory. In [10], the memory tagging is implemented at
the page granularity, although more fine-granularity tagging is also possible (e.g., [45]).

Once a task’s memory blocks are tagged, the information can then be used by the operating
system and the hardware to apply different resource management policies depending on the
memory tag information. In [10], the DM abstraction is used to achieve hardware isolation
among the cores in multicore, focusing on effective isolation of shared cache and DRAM.

2.2 DM-LRU Cache Replacement Policy
In this paper, we consider a deterministic memory-aware private cache design and show how
such a design enables tighter static WCET cache timing analysis. We assume the cache
controller has a mean to distinguish whether a certain cache-line corresponds to deterministic
memory or best-effort one. This can be implemented as an additional bit in the auxiliary tag
store of each cache-line, as in [10], or as a set of separately located architectural hardware
range registers as in [27]. The cache implements an extended least recently used (LRU) cache
replacement algorithm, which defines two eviction classes using the DM/BE abstractions
and applies LRU-based replacement to DM lines and to BE lines separately. Allocation of a
DM line can cause eviction of a BE line, but the opposite is not allowed. Note that prior

ECRTS 2019

17:4 Impact of DM-LRU on WCET: A Static Analysis Approach

work that implements a similar cache replacement policy exists [27]. In this paper, we call
the extended LRU as Deterministic Memory-aware Least Recently Used, or DM-LRU for
short. A more formal definition of DM-LRU is given in Section 3.

Figure 2 Comparison between traditional LRU, DM-LRU, and a statically locked LRU cache
over the same access pattern b, c, d, a, e, b, where b and e are DM memory blocks, or statically locked.

Figure 2 illustrates the difference between traditional LRU, DM-LRU, and static locking.
For simplicity, the example considers a single set of a 4-way set-associative cache. In the
first step, only a and d are cached, and 0 lines are allocated for DM blocks under DM-LRU.
Moreover, blocks b and e are set as DM blocks under DM-LRU, and pre-allocated in cache
in case of static locking. The figure tracks the evolution of the cache state for the same
access sequence b, c, d, a, e, b. A miss for a DM block triggers an increase of the number of
ways allocated for the DM class. This is depicted in step 2 (miss on b) and 6 (miss on e).
Traditional LRU simply ignores the DM/BE tag of the considered memory blocks. First,
note that DM-LRU results in fewer misses compared to LRU, as the DM marked memory
block b was not evicted by the best-effort memory accesses. Also note that while realizing
the same number of hits in the example compared to static locking, two important remarks
are required. First, the figure does not include the time spent to prefetch and lock the b and
e blocks. Second, static locking causes additional misses for non-locked blocks compared to
DM-LRU. This exemplifies the on-demand nature of DM-LRU, which is able to retain in
cache blocks as they become needed during a task’s execution. We discuss the analogies and
differences between DM-LRU and static/dynamic locking more extensively in Section 6.

Intuitively, it is thanks to the on-demand allocation and differential treatment of DM
memory blocks that DM-LRU enables tighter worst-case cache timing analysis, as we show
in the rest of the paper.

2.3 Cache Analysis via Abstract Interpretation
In this work, we extend abstract interpretation-based analysis to reason on the hit/miss
classification of memory accesses when a DM-LRU cache controller is implemented in
hardware. Analysis via abstract interpretation was originally proposed for LRU caches [11]
and better formalized and extended to FIFO and Pseudo-LRU in [41, 15]. An excellent survey

R. Mancuso, H. Yun, and I. Puaut 17:5

on the topic was proposed in [32]. We reuse the notation in [15, 32], while some details are
omitted due to space constraints. Since this work focuses on a DM-aware extension of LRU,
we introduce some of the background related to abstract interpretation-based LRU analysis.

Imagine taking a snapshot of the cache state at a given point in time. In this case, one
could highlight the state of the cache in terms of: (i) which blocks are currently in cache,
and (ii) what is the age of each block. In LRU, the age of a block, say block a, captures
the number of memory accesses (to other blocks than a) that were performed since the last
access to a. For instance, in the six steps in Figure 2, the LRU age for a is in the following
sequence: 0, 1, 2, 3, 0, 1, and 2. If a has an LRU age greater than or equal to the number of
ways (4 in our example), then a is not cached.

If the ages of all the cached blocks are known, the cache is in a concrete state. From a
concrete state, it is possible to produce a new concrete state that follows each new memory
access (state update), as shown in Figure 2. In a typical program, however, execution
may follow different paths. This means that at a given point in time, multiple concrete
states are possible, depending on the execution path taken by the program in its control-
flow graph (CFG).

Instead of keeping track of all the possible concrete states at any point of the CFG,
abstract interpretation keeps track of two main pieces of information: (i) the upper-bound
and (ii) the lower-bound on the age of any memory block among all the possible con-
crete states. Analysis on the age upper-bound and lower-bound is carried on separately.
The former is referred to as must-analysis, while the latter goes under the name of may-
analysis. A state that summarizes the upper-bound (resp., lower-bound) of each block
in a set of possible concrete states is called an abstract state. For instance, consider a
must-analysis abstract state of the form: q̄ = [{}, {a, b}, {}, {d, e}]. This corresponds to
all the concrete states where blocks a, b have age at most 1, and d, e at most 3. The full
concretization of q̄ is the set: {[a, b, d, e], [b, a, d, e], [a, b, e, d], [b, a, e, d]}. Similarly, consider
the may-analysis abstract state q = [{}, {}, {a, b}, {}]. A concretization of q is the set
{[⊥,⊥,⊥,⊥], [⊥,⊥, a,⊥], [⊥,⊥,⊥, a], [⊥,⊥, b,⊥], [⊥,⊥,⊥, b], [⊥,⊥, a, b], [⊥,⊥, b, a]}, where
⊥ is a generic unknown block.

Given a must-analysis abstract state, it is possible to determine – i.e., classify – a memory
access as always-hit (H). These are accesses that result in hits regardless of the path taken in
the CFG. Similarly, given a may-analysis abstract state, it is possible to perform classification
of always-miss memory accesses. If neither classification applies, the block is simply non-
classified (NC). NC, often indicated as >, represents the case in which some execution paths
lead to a miss while others lead to a hit for the same memory access.

Note that for architectures without timing anomalies [31, 20], must-analysis is sufficient
to safely compute the WCET of an application. In fact in this case NC accesses can be
simply treated as misses. We developed and implemented both must- and may-analysis for
DM-LRU, but we hereby focus in greater detail on must-analysis. Additional details about
may-analysis are provided in the appendix.

3 Cache Model and Terminology

In this section we discuss the cache model adopted to represent the behavior of DM-LRU, and
we introduce key concepts required to follow the proposed abstract interpretation analysis.

3.1 DM-LRU Model
Algorithm 1 shows the full pseudo-code of the DM-LRU cache replacement algorithm. The
algorithm is defined for a generic A-way set-associative cache with S sets. The index of a set
is indicated with s ∈ {0, . . . , S − 1}. In the algorithm, DetMasks denotes the bitmask of the

ECRTS 2019

17:6 Impact of DM-LRU on WCET: A Static Analysis Approach

set s’s cache lines that contain deterministic memory. Consider a DM request (DM = 1) that
resulted in a cache miss – see step 1 or 6 in Figure 2. The algorithm first tries to evict a BE
cache line, if such a line exists (Line 3-4). This also causes an additional bit to be asserted
in the DetMasks bitmap. If no BE can be evicted (i.e., all lines are deterministic ones), it
chooses one of the deterministic lines (the older one in the LRU stack) as the victim (Line
6). On the other hand, consider the case where a BE memory block is requested (DM 6= 1),
resulting in a miss – steps 1 and 2 in Figure 2. DM-LRU evicts one of the best-effort cache
lines, but not any of the deterministic cache lines (Line 9).

Algorithm 1: Deterministic memory-aware cache line replacement algorithm.
Input :DetMasks - deterministic ways of Set s
Input :A - cache associativity
Output : victim - the victim way to be replaced or NULL if no replacement possible

1 if DM == 1 then
2 if (¬DetMasks) 6= NULL then

// evict a best-effort line first
3 victim = LRU(¬DetMasks)
4 DetMasks |= 1� victim

5 else
// evict a deterministic line

6 victim = LRU(DetMasks)
7 end
8 else
9 if (¬DetMasks) 6= NULL then

// evict a best-effort line
10 victim = LRU(¬DetMask)
11 else

// no BE line can be allocated
12 victim = NULL

13 end
14 end
15 return victim

We assume a single-core, single-level set-associative cache. We indicate with A the
associativity of the cache. Since DM-LRU operates independently on each set, it is possible
to describe our analysis on a single set without loss of generality. Hereafter, we consider
a single cache set. At any point in time, D is the number of cache lines allocated to DM
memory blocks for the considered cache set. D is the number of bits set to “1” in the
DetMasks for the set under analysis. We indicate with B the number of lines that have not
been allocated for DM memory. It holds that D +B = A. Note that if D < A, and a DM
line that is currently not cached as a DM line is accessed, then the new DM line is allocated
and D is increased by one. This may trigger the eviction of the least recently used BE block,
as per Algorithm 1.

3.2 Terminology and notations
We indicate with B the set of memory blocks that map to the cache set under analysis.
A generic memory block bCL ∈ B is comprised of an address b and an eviction class
CL = {DM,BE}. The set of all the possible concrete states of a DM-LRU cache is denoted
as QDM−LRUA

, where each state q ∈ QDM−LRUA
is defined as follows:

q := {D, [bDM
0 , . . . , bDM

D−1], [bCL
D , . . . bCL

A−1]}, (1)

R. Mancuso, H. Yun, and I. Puaut 17:7

where D ∈ [0, A] and bCL
i ∈ B. Note that the first D cache lines are allocated as DM cache

lines, hence these are necessarily DM memory blocks. The remaining A − D blocks are
currently allocated BE memory blocks. Throughout this paper we will use the shorthand
notation bi ∈ B for blocks whose eviction class is obvious from context or unimportant. For
blocks allocated as BE, we assume BE class unless specified otherwise.

An important concept is the age of a memory block under DM-LRU, defined as follows.

I Definition 1 (DM-LRU Age). The age of a DM memory block aDM is defined as the
number of distinct DM blocks accessed since the last access to aDM ; the age of a BE memory
block b is set to the current value of D whenever bBE is accessed. It is then defined as D+K,
where K is the number of misses to DM blocks, or accesses to distinct BE blocks since the
last access to bBE.

Following Definition 1, the index of a given block bCL
i ∈ q is also the age of the block

in DM-LRU. The age of a block bDM
i allocated as DM can increase if: (1) a new DM line

is allocated (with age 0); or (2) a line bDM
j already allocated as DM with age greater than

bi is accessed. Conversely, the age of a BE block bBE
i can increase if: (1) a new DM line is

allocated (with age 0); (2) a new BE line is allocated (with age D); or (3) a line bBE
j already

in cache with age greater than bBE
i is accessed.

Also note that Definition 1 remains consistent for the case in which a block bBE is
accessed but cannot be allocated because all the sets have been reserved for DM lines. This
phenomenon goes under the name of DM takeover, and can be resolved by imposing a
hard cap on the maximum number of DM lines that can be allocated. The analysis for
a DM-LRU with an allocation cap is almost identical to an unrestricted DM-LRU, and
only introduces uninteresting subcases. For simplicity, we hereby focus on the analysis for
unrestricted DM-LRU. We demonstrate that preventing DM takeover is indeed necessary
and beneficial in Section 7.

4 DM-LRU Analysis

In this section we detail our abstract interpretation-based analysis [15, 32] for DM-LRU,
i.e. when the cache controller implements the policy defined in Algorithm 1. We discuss
must-analysis in detail. As previously mentioned, may-analysis is not strictly required for
architectures without timing anomalies. As such we only provide the intuition behind it and
defer the details to the appendix. We do not provide a persistence analysis for DM-LRU.
Persistence analysis is useful to determine if memory accesses inside loops can result in hits
after the first iteration. Instead, for our evaluations, we unroll the first iteration of each loop,
i.e., we perform virtual unrolling, virtual inlining (VIVU) [34, 32].

4.1 Must-analysis
Must-analysis is performed considering abstract cache states. In this case, must-analysis
keeps track of the upper bound on the number of allocated DM blocks indicated with
D ∈ {0, . . . , A}, and the upper-bound on the DM-LRU age of each addressable memory block
b ∈ B. The abstract domain DMLruvA is defined as:

DMLruv
A := {0, . . . , A} × B → {0, . . . , A− 1,∞}. (2)

ECRTS 2019

17:8 Impact of DM-LRU on WCET: A Static Analysis Approach

Intuitively, the domain associates a current eviction class (DM or BE) and an age upper
bound (0, . . . , A or ∞) to a memory block b ∈ B mapping to the set under analysis. We use
the notation q̄(b) to indicate the upper-bound on the age of b in q̄. To represent a generic
abstract state q̄ ∈ DMLruvA we use a compact notation that highlights the distinction
between DM and BE allocations. For instance, the notation

q̄ = [{}, {a, b}], [{c}, {d}] ∈ DMLruv
A (3)

denotes an abstract state q̄ where D ≤ 2, B ≥ 2, A = 4. Hence, blocks a and b have
upper-bound q̄(a) = q̄(b) = 1 on their DM-LRU age. Similarly, c, d are BE blocks with
q̄(c) = 2 and q̄(d) = 3, respectively.

Given an abstract state q̄ ∈ DMLruvA, the Boolean operator DMv(q̄, b) returns true
only if the block b ∈ B must exist as a DM-allocated block in q̄. Formally

DMv(q̄, bCL) :=

{
true if CL = DM ∧ q̄(b) <∞
false otherwise.

(4)

For instance, considering q̄ defined as in Equation 3, we obtain DMv(q̄, a) = true,
DMv(q̄, d) = false, and so on. We use the simpler notation DMv(b) when the state is
implicit. The operator BEv(q̄, b) is simply defined as BEv(q̄, b) := ¬DMv(q̄, b). To prevent
additional clutter in our notation, DMv(q̄, bDM) evaluates to true if and only if the DM
block bDM must be allocated in cache in q̄. As such, if the generic DM block bDM has an
upper-bound on its DM-LRU age greater than A− 1, then BEv(q̄, bDM) = true.

An abstract state transformer for the DMLruvA domain is an operator that takes in input
an abstract state q̄ ∈ DMLruvA and any number of additional parameters, and returns in
output a transformed state q̄′ ∈ DMLruvA. We consider and define two abstract transformers
for DMLruvA: an update transformer Uv(q̄, a), and a join transformer Jv(q̄, p̄). We use the
operator λb. to represent an age update operation carried on each b ∈ B when considering a
transformation from state q̄ to q̄′. This operator can be formally defined as:

λb. f(q̄(b)) := ∀b ∈ B, q̄′(b)← f(q̄(b)) (5)

Must-analysis Update

The update abstract transformer for the must-analysis Uv(q̄, a) is used to go from an initial
abstract state, to a new abstract state after a new memory access has been performed.
Uv(q̄, a) takes in input an initial abstract state q̄ and a memory block a ∈ B, and returns
the abstract state that results from accessing a. For ease of notation, we split the definition
of Uv in two parts: the logic that corresponds to the update operation when a DM block
aDM is accessed, indicated with UvD ; and the update transformation when a BE block aBE

is accessed, namely UvB . UvD is defined in Equation 6.

Uv
D (q̄, aDM) :=

D′ ←

{
D + 1 if D < A ∧BEv(a) (a.1)
D if D = A ∨DMv(a) (a.2)

R. Mancuso, H. Yun, and I. Puaut 17:9

λb.

0 if b = a (b)

q̄(b) if b 6= a ∧

∣∣∣∣∣∣
∣∣∣∣∣∣
BEv(b) ∧DMv(a) (c.1)
DMv(b) ∧ q̄(a) ≤ q̄(b) (c.2)
BEv(b) ∧BEv(a) ∧ q̄(a) ≤ q̄(b) (c.3)

q̄(b) + 1 if b 6= a ∧ q̄(a) > q̄(b)∧∣∣∣∣∣∣∣∣DMv(b) ∧ q̄(b) < D′ − 1 (d.1)
BEv(b) ∧BEv(a) ∧ q̄(b) < A− 1 (d.2)

∞ if b 6= a ∧ q̄(a) > q̄(b)∧∣∣∣∣∣∣∣∣DMv(b) ∧ q̄(b) ≥ D′ − 1 (e.1)
BEv(b) ∧BEv(a) ∧ q̄(b) ≥ A− 1 (e.2)

(6)

Here, D′ (B′, resp.) is the new value of D (B, resp.) after the update. The conditions
following the || operator are to be considered in logical “or” with each other.

The update abstract transformer UvB for a best-effort memory access a can be defined
as follows:

Uv
B (q̄, aBE) :=

λb.

D if b = a ∧D < A (a)

q̄(b) if b 6= a ∧
∣∣∣∣∣∣∣∣DMv(b)
BEv(b) ∧ q̄(a) ≤ q̄(b) (b)

q̄(b) + 1 if b 6= a ∧BEv(b) ∧ q̄(a) > q̄(b) ∧ q̄(b) < A− 1 (c)

∞ if
∣∣∣∣∣∣∣∣ b = a ∧D ≥ A
b 6= a ∧BEv(b) ∧ q̄(a) > q̄(b) ∧ q̄(b) ≥ A− 1 (d)

(7)

To clarify the update operation, consider the abstract state q̄ = [{}, {b, f}], [{c}, {d}],
where D = 2. Assume that deterministic block aDM is accessed, which has age upper-
bound ∞ in q̄, to obtain q̄′ = Uv(q̄, a) = UvD (q̄, a). First, the value of D′ is computed as
D′ = D+ 1 = 3 (a.1); next, b, f both satisfy the condition q̄(a) > q̄(b) = q̄(f) = 1. Moreover,
we have that DMv(b) = DMv(f) = true, and that q̄(b) = q̄(f) = 1 < D′ − 1 = 2. This
corresponds to condition (d.1) in Equation 6. Hence, the age of b, f in the resulting state is
q̄′(b) = q̄′(f) = 2. Similarly, block c and d satisfy condition (d.2) and (e.2), respectively. The
resulting updated abstract state is: q̄′ = [{a}, {}, {b, f}], [{c}].

An example for the abstract transformer UvB defined in Equation 7 is provided in Section 5.

I Theorem 2 (Correctness of must-analysis update). Consider a generic abstract state
p̄ = Uv(q̄, aCL) obtained from the must-analysis update state transformer when accessing
a generic block aCL from an initial abstract state q̄. Then for any block b ∈ B, p̄(b) is an
upper-bound on the DM-LRU age of b.

Proof Sketch. A proof can be constructed by considering two main sub-cases: (1) when
CL = DM for the block being accessed; and (2) the case when CL = BE. Due to space
constraints, we provide an intuition for the former case, as the latter follows from the same
reasoning. When considering CL = DM , the new state p̄ is obtained as p̄ = UvD (q̄, aDM), as
per Equation 6.

ECRTS 2019

17:10 Impact of DM-LRU on WCET: A Static Analysis Approach

First let us consider the rule on the update of D. If q̄(a) =∞ then a is not necessarily
in cache and accessing a increases the upper-bound on the number of allocated DM blocks,
as long as the associativity A has not been exceeded, i.e. D < A. In this case, note that
BEv(q̄, a) = true and condition Equation 6 (a.1) applies. D does not change in any other
case (a.2). After the update, block a will have age upper-bound equal to 0 (b).

Next, consider all the blocks b 6= a that had age upper-bound of infinity in q̄ – i.e.
q̄(b) = ∞, and BEv(q̄, b) = true. When a is accessed, their age upper-bound should not
change. If q̄(a) =∞ then condition (c.3) applies. If q̄(a) 6=∞ then DMv(q̄, a) = true and
condition (c.1) applies.

Furthermore, consider all the blocks bDM , b 6= a that must be allocated as DM blocks in
q̄, i.e. such that DMv(q̄, b) = true. If q̄(a) = ∞, the upper-bound on their DM-LRU age
will have to increase by 1 (d.1). If however the value of q̄(b) + 1 exceeds the updated value of
D, namely D′, then the block may be evicted and the new upper-bound on its DM-LRU age
p̄(b) =∞ (e.1). The same cases apply when q̄(a) <∞ and q̄(a) > q̄(b).

On the other hand, if a has an age upper-bound that is same as or lower than b’s, i.e.
q̄(a) ≤ q̄(b), then a concrete state where DM-LRU age of a is strictly larger than that of
b cannot exist. As such, the upper-bound on the DM-LRU age of b will not change, as
per condition (c.2).

Lastly, consider all the blocks bBE , b 6= a that must be allocated as BE blocks in q̄, i.e.
such that BEv(q̄, b) = true and q̄(b) <∞. The only case in which q̄(a) > q̄(b) is if q̄(a) =∞.
When a is accessed, the upper-bound on the age of b will have to increase by 1 (d.2), unless
by doing so the associativity A is exceeded. In the latter case, p̄(b) =∞ (e.2). J

Must-analysis Join
The join abstract transformer Jv(q̄, p̄) is used to compute a new abstract state at the merging
point of two or more execution paths. There are strong similarities between the transformer
defined hereby and what used in traditional LRU must-analysis [15]. At a high level, the
joined state will consider as must-cached only those blocks in the intersection of the joining
states, each with the maximum age in any of the two states. For the new state, D is taken
as the maximum between the value of D in the joining states. Equation 8 formalizes the
Jv(q̄, p̄) abstract transformer:

Jv(q̄, p̄) := D ← max{Dq̄, Dp̄}, λb.max{q̄(b), p̄(b)} (8)

If we were to join q̄ = [{}, {b, f}], [{c}, {d}] with q̄′ = [{a}, {}, {b, f}], [{c}], the resulting
state would be q̄′′ = Jv(q̄, q̄′) = [{}, {}, {b, f}], [{c}].

I Theorem 3 (Correctness of must-analysis join). Consider an abstract state s̄ = Jv(q̄, p̄)
obtained from the must-analysis join state transformer from two initial abstract states q̄ and
p̄. Then for any block b ∈ B, s̄(b) is an upper-bound on the DM-LRU age of b.

Proof Sketch. A proof can simply follow from the definition of the Jv operator in Equation 8.
By hypothesis q̄ and p̄ carry the upper-bound on the age of a generic block b along two
disjoint execution sub-paths. After the two sub-paths join, the maximum between q̄(b)
and p̄(b) is a safe upper-bound on the DM-LRU age of b in the resulting abstract state s̄.
Moreover, an upper-bound on the number of allocated DM blocks in s̄ is the maximum
between Dq̄ and Dp̄. J

Must-analysis Classification
Every time an access is performed, it is possible to classify a memory access using a
classification function that will either return M for cache miss, H for cache hit, or > in case
neither M nor H classification can be made given the current abstract state. In order to

R. Mancuso, H. Yun, and I. Puaut 17:11

Figure 3 Fragment of process CFG. At the end of the fragment, all the cache blocks in the figure
may be cached.

classify memory accesses, for a given q̄ abstract state we define two helper sets D̄ and B̄
representing the deterministic and best-effort memory blocks that have finite upper bound
on their DM-LRU age:

D̄ := {bCL ∈ B | CL = DM ∧ q̄(b) <∞}
B̄ := {bCL ∈ B | CL = BE ∧ q̄(b) <∞} (9)

The classification function of the must analysis is defined as:

Cv(q̄, aCL) :=

H if q̄(a) <∞ (a)

M if
∣∣∣∣∣∣∣∣CL = DM ∧ a 6 ∈D̄ ∧ |D̄| = D

CL = BE ∧ a 6 ∈B̄ ∧ |B̄| = B
(b)

> otherwise (c)

(10)

We provide a complete step-by-step example on how must-analysis can be applied to an
application’s CFG in Section 5.

4.2 May-analysis
The complete may-analysis is provided in the appendix (Section A). We hereby provide a
sketch of the approach followed in the analysis.

The goal of may-analysis is to track the lower-bound on the age of memory blocks. Given
a may-analysis abstract state it is possible to classify a memory access as always leading to a
miss. Let us consider the example in Figure 3 and reason on the lower bound on the age of
each block for a 4-way fully associative cache. For block aDM , the best case is represented by
the execution pattern 1-5-4. In this case, the block has DM-LRU age 0. A similar situation
occurs for block bDM and path 1-3-4. For blocks f and g, the best-case is represented by the
paths 2-6-8, and 2-7-8, respectively. This leads the two blocks to have a lower-bound of 2 on
their DM-LRU age. Similarly, blocks c, d, and g have lower-bound 0, 1, and 3, respectively.

We can represent the resulting may-analysis state obtained following the derivation above
as: [{a, b}], [{c}, {d}, {f, e}, {g}]. What happens if another access to a occurs after path 4
and 8 join? Then the best-case for block b is still 1-3-4, but its age lower-bound will be 1.
At the same time, because at least one DM block was allocated regardless of the taken path,
the minimum lower-bound on the age of any BE block has to be 1. Also note that regardless
of the execution path taken, block g will be evicted. The result is the following may-analysis
abstract state: [{a}, {b}], [{}, {c}, {d}, {f, e}].

ECRTS 2019

17:12 Impact of DM-LRU on WCET: A Static Analysis Approach

main

loop [3]

@0x8150 (BB)

@0x80e8 (BB)
LOAD a (DM)@0x815c (BB)

@0x8138 (BB)
LOAD f (DM)

@0x80f8 (BB)
LOAD b
LOAD c

@0x8120 (BB)
LOAD d
LOAD e
LOAD g

@0x80d8 (BB)

@0x8150 (BB)

@0x80e8 (BB)
LOAD a (DM)

@0x8138 (BB)
LOAD f (DM)

@0x80f8 (BB)
LOAD b
LOAD c

@0x8120 (BB)
LOAD d
LOAD e
LOAD g

Figure 4 Original CFG of considered example as rendered by the Heptane tool, with annotated
memory accesses (LOAD). Note that VIVU has been performed on the loop.

5 Analysis Example

In this section we provide a description of how DM-LRU must-analysis can be applied to a
CFG once the target of each memory access is known. The original CFG of the considered C
program code generated by the Heptane tool is shown in Figure 4. The program consists of
a single loop with four iterations, where the first iteration has been unrolled. The program
accesses 7 memory locations. These are B = {a, b, c, d, e, f, g} and are visible in the various
basic blocks as operands of load/store instructions.

R. Mancuso, H. Yun, and I. Puaut 17:13

Figure 5 An example of must analysis under DM-LRU (orange states), compared to traditional
LRU (blue states). If a and f are marked as DM, their accesses inside the loop can be classified as
always hits.

Figure 5 shows the same CFG as in Figure 4, but where only basic blocks in which
memory accesses are being performed are kept. Moreover, basic blocks with multiple memory
accesses are depicted as sequences of blocks, each with a single memory access. The nodes
are annotated with their corresponding abstract states. We apply must-analysis starting
from the entry node a. We compare the behavior of traditional LRU analysis and DM-LRU
when blocks a and f have been declared as DM. We consider a fully-associative cache with
4 ways. For DM-LRU analysis, the cache state before the first access q̄0 = [], [{}, {}, {}, {}]
(D0 = 0); for LRU analysis it is [{}, {}, {}, {}]. Under DM-LRU, when block aDM is accessed,
the performed operation is q̄1 = Uv(q̄0, aDM) = UvD (q̄0, a). Following Equation 6, we have
D1 = D0 + 1, then condition (a) is satisfied by a, all the other blocks b ∈ B satisfy condition
(d.2). As such, we have q̄1 = [{a}], [{}, {}, {}], as reported in the figure.

Let us now follow the upper branch with access sequence d → e → g (all of them are
best-effort memory accesses). For each memory access, we apply Equation 7 to obtain a new
abstract state. After accessing e, the resulting abstract state is: q̄2 = [{a}][{e}, {d}, {}]. Let
us now show more clearly how we obtain q̄3 = Uv(q̄2, g

BE) = UvB (q̄2, g), when we next access
g. Considering all blocks in B and using Equation 7 we know: block a satisfies condition (b.1)
and its age remains the same; b and c satisfy (d.2) and their age remains ∞; block e satisfies
(c) and its age increases by 1, from 1 to 2; the age of block d increases from 2 to 3; and
finally, block g (being accessed) satisfies condition (a) and its age is set to D2 = 1. The final
state is q̄3 = [{a}], [{g}, {e}, {d}], as shown in the figure above node g. The same procedure
applies to the lower branch of the CFG, and we obtain the state q̄4 = [{a}], [{c}, {b}, {}],
after we access c.

Before accessing f , we need to join states q̄3 and q̄4 derived above. In this case, we apply
Equation 8 to obtain q̄5 = Jv(q̄3, q̄4). It follows that D5 = 1. Moreover, the only block
present in both states q̄3 and q̄4 is a. All other blocks in B will have age ∞ in q̄5. As such we
have q̄5 = [{a}], [{}, {}, {}]. Next, accessing fDM yields q̄6 = UvD (q̄5, f) = [{f}, {a}], [{}, {}],
as shown in the figure. This is because D6 = D5 + 1, and because a satisfies condition (c.1)
in Equation 6. The same reasoning can be applied to obtain the remaining states depicted
in the figure.

Consider now the state q̄6 and apply the must-analysis classifier before accessing aDM ,
i.e. compute Cv(q̄6, a) as in Equation 10. First, the sets D̄6 and B̄6 can be computed using
Equation 9 as D̄6 = {a, f}, and B̄6 = {}. Hence condition (a) is satisfied and access to a is
classified as H (hit). Conversely, no access can be classified as hit under LRU.

ECRTS 2019

17:14 Impact of DM-LRU on WCET: A Static Analysis Approach

6 Analogies and Differences with Cache Locking

Cache locking refers to a technique where cache blocks that are deemed important for
an application’s timing are pinned (locked) in cache. Similar to DM-LRU, cache locking
represents a way to partially override the best-effort replacement strategy offered by the
hardware. And like DM-LRU, specialized hardware support is required to perform locking.
With respect to WCET analysis, the big advantage provided by cache locking is that all those
accesses for locked cache blocks can be immediately classified as hits. While cache locking
was commonly supported in previous-generation embedded systems, the current trend in
embedded SoCs is toward cache controllers that offer little or no management primitives.

Despite the strong similarities, some profound differences exist between cache locking
and DM-LRU. Leveraging cache locking implies injection of additional logic – in either the
application, the compiler, and/or the OS – to perform a series of prefetch&lock operations.
On the contrary, a system featuring a DM-LRU cache only requires that memory blocks are
tagged appropriately at task load time.

In case of static locking, prefetch&lock can be performed at initialization time. As such,
the extra logic required to perform locking does not impact the task’s WCET. Conversely,
with dynamic cache locking, the locked cache content is modified at runtime. Depending on
the available hardware support, this operation may not be directly possible in user-space,
requiring instead a costly switch to kernel-space. Regardless, an online prefetch&lock routine
can pollute the rest of the cache, resulting in overheads that may largely offset any benefit.
In other words, additional system-level assumptions are required to make a meaningful
comparison with dynamic locking. For this reason, we do not compare DM-LRU against
dynamic locking.

Interestingly enough, however, the proposed DM-LRU analysis can be re-used to analyze
dynamic locking schemes if additional system parameters are available. In a nutshell, consider
a 4-way fully associative cache. Next, assume that the locked content is switched whenever
a given branch in the CFG is taken. Then, consider the case where the new content to
be locked is comprised of blocks a, b, c. A special node on the branch can be added with
associated a modified update abstract transformer Lockv. This is such that the resulting
must-analysis abstract state q̄ after the update is: q̄ = Lockv({a, b, c}) = [{a}, {b}, {c}][{}].

7 Evaluation

The DM-LRU analysis presented in the previous sections provides a way to understand how
the WCET of applications varies as memory blocks addressed in applications are declared
as DM. We now apply DM-LRU analysis to a set of realistic embedded benchmarks. In
this section, we first briefly describe our implementation. Next, we investigate three main
aspects: (1) what is the degree of WCET improvement that can be achieved via DM-LRU
when compared to LRU? (2) Is there an advantage in imposing a limit to the number of DM
lines that can be simultaneously allocated, i.e. in preventing DM takeover? (3) how does
DM-LRU compares to static cache locking?

In our evaluation we focus on the degree of WCET improvement that DM-LRU can
provide compared to LRU. However, because supporting DM-LRU implies changes to the
hardware cache memory and controller, it is also important to determine if a DM-LRU
implementation can be efficiently carried out. In short, only one additional bit to distinguish

R. Mancuso, H. Yun, and I. Puaut 17:15

between DM and BE lines is required per cache line. Additionally, compact changes1 are
required to the cache controller to restrict victim selection based on the classification (DM
or BE) of a new line being allocated. No additional logic is required to appropriately set the
DM bits at line fetch. Additional considerations on the incurred hardware costs to support
DM memory are also provided in [10].

7.1 Implementation

We have implemented support for DM-LRU inside a state of the art static WCET analysis tool,
namely Heptane [23]. Heptane implements Implicit Path Enumeration Technique (IPET) [29]
and performs analysis for many cache architectures: e.g., LRU, FIFO, Pseudo-LRU, multi-
level non-inclusive caches, and shared caches. In our setup, we consider a single-level of
cache, divided into an instruction (I) cache, and a data (D) cache. For simplicity, we assume
in all our experiments that both caches are selected to have the same number of sets and
ways. Heptane supports two architectures: ARMv7 and MIPS. The ARMv7 target was used
for this paper.

We have modified the Heptane tool to support two variants of DM-LRU, as well as
static locking. Most importantly, we have extended the support for abstract interpretation-
based cache analysis to implement the must- and may-analysis presented in the previous
sections. The performed changes allow backward compatibility with the original set of
policies supported by the tool. Next, we have integrated the logic to differentiate between BE
memory and DM memory. For this purpose, we have added a table of DM addresses – the
DM Table – that can be specified by an external tool, mimicking the selection of DM blocks
by the OS at binary load time. Furthermore, we have added appropriate logic in Heptane
to output per-memory-block statistics in terms of references, hits, and misses, as computed
during WCET analysis. These statistics are then used to build a DM-block selection heuristic.
Finally, we have modified Heptane’s CFG extraction routines to perform VIVU – i.e., to
recursively peel the first iteration of every loop.

We have developed and employed a simple heuristic to determine which memory block-
s/addresses should be marked as DM and inserted into the DM Table. The heuristic initially
performs WCET analysis without selecting any DM line. Next, it analyzes the per-memory-
block statistics and selects as DM the block with the largest number of misses. At this point,
WCET analysis is performed again with the new DM Table containing a single entry. Using
the per-memory-block statistics of the latest run, a new DM block is selected in addition to
the previously selected block. The same steps are performed until no more addresses can be
selected as DM. Note that when no lines are selected as DM, the behavior of the cache is
indistinguishable from vanilla LRU. Similarly, when the entire memory of an applications is
selected as DM, no differences exist with LRU. In practice, however, we saw no differences
between DM-LRU and LRU when more than 3× S ×A lines are selected as DM, where S
and A is the number of sets and ways of the cache, respectively. In our experiments, we
acquired analytical results for a number of DM lines in the range [1, 3× S ×A].

1 Whenever a line eviction has to occur, the DM/BE bits of all the lines in the considered set form a
bitmask. Victim selection for a BE access is then performed by excluding all those lines that have a bit
set to 1 in the DM bitmask.

ECRTS 2019

17:16 Impact of DM-LRU on WCET: A Static Analysis Approach

7.2 Setup
We compare two variants of DM-LRU and static cache locking against LRU. A description
of the three scenarios follows.
1. Unrestricted DM-LRU (“DM-nolim”): in this variant, no restriction is imposed on

the maximum number of cache sets that can be reserved for DM lines. It follows that
the only constraint for the allocation of DM lines is the cache associativity itself. The
analysis for unrestricted DM-LRU is the one presented in the previous sections.

2. Limited DM-LRU (“DM-cap”): in this variant, a hard cap in the maximum number
of ways is imposed on the expansion of DM lines. This represents a solution to the
aforementioned problem of DM takeover. Imposing a cap of 0 makes DM-cap to be
identical to vanilla LRU. Similarly, imposing a cap of A makes DM-cap to be identical
to DM-nolim. In our experiments, we explore all the possible values of cap in the range
[1, A].

3. Static locking (“Static”): this case is used to draw a comparison between the considered
DM-LRU variants and static locking. In case of static locking, selection of lines to statically
allocate is performed following the same heuristic used for DM lines selection. Similar to
DM-cap, we impose how many ways can be dedicated to statically locked content (locked
ways). The maximum number of allocated line is then S × locked. Note that the main
performance difference between DM-cap and Static lies in the additional flexibility that
DM-cap provides. In DM-cap, in fact, more lines than S × cap can be selected, while it is
not allowed in static locking.

For all the considered variants, we explore a number of cache configurations. Specifically,
we vary the associativity A of the I/D caches in the set {2, 4, 8, 16}. We vary the number
of cache sets S such that S ∈ {2, 4, 8, 16, 32}. As previously mentioned, for DM-nolim and
DM-cap, we progressively select up to 3× S ×A DM lines following the heuristic described
above. In each system instance, we perform WCET analysis using the modified Heptane
tool. Then, we keep track of which configuration – S, A, DM-lim cap, locked ways, number
of DM lines – for each of the three scenarios leads to the best reduction in WCET compared
to the vanilla LRU case.

For our benchmarks, we use a subset of realistic benchmarks from the Mälardalen suite [19].
Unfortunately, vanilla HEPTANE is not able to perform WCET analysis for some of the
benchmarks in the suite. As such, our evaluation only includes those benchmarks that
are correctly handled by HEPTANE. Notably, the aforementioned changes to implement
DM-LRU analysis did not impact the set of benchmarks that can be correctly analyzed
by the tool.

7.3 Results
Figure 6 provides an overview of the obtained results. A cluster of bars is provided for each of
the considered benchmarks. Reading the plot from top to bottom, the first bar corresponds
to the WCET under LRU. All the results in the figure are normalized to the LRU case. The
second bar represents the best WCET improvement that was observed under DM-nolim. The
WCET improvement is calculated as: W CETDM-nolim

W CETLRU
, where the WCETs under DM-nolim

and under LRU are obtained in the same system configuration. A similar calculation was
performed to derive the remaining two bars, i.e. for the DM-lim and Static cases.

What emerges from the plot is that in 16 out of 20 cases, DM-nolim is able to achieve
WCET reductions compared to vanilla LRU. Notably, in case of bsort100 and prime, it is
possible to achieve a WCET reduction of around 23.73% and 23.47%, respectively. It can

R. Mancuso, H. Yun, and I. Puaut 17:17

Normalized WCETs

0.0 0.5 1.0

bs

crc

fibcall
lcdnum

minver

0.0 0.5 1.0
prime

sqrt
bsort100

expint
ludcmp

0.0 0.5 1.0
qurt

statemate
insertso

rt
matmult

ns

0.0 0.5 1.0
select

ud
jfdctin

t
minmax

fft

LRU DM-nolim DM-cap Static

Figure 6 Computed WCETs for vanilla LRU (LRU), unrestricted DM (DM-nolim), DM limited
to a subset of ways (DM-cap), and static locking (Static).

also be noted that DM-cap outperforms DM-nolim. Moreover, DM-cap performs generally
better than static locking. For instance, the best WCET reduction achieved via static locking
for the jfdctint benchmark is 26.09% under DM-cap (with a S = 4, A = 8, 19 DM lines,
cap = 1). But the best WCET reduction under static locking is only 14.64%, which is
achieved for a cache with parameters S = 2, A = 16 and 15 ways occupied by statically
locked lines. Similar results can be observed for the benchmarks matmult and fft.

The reason for the performance improvement that can be obtained with DM-cap is
twofold. On the one hand, the problem of DM takeover is solved. This prevents the case that
all the accesses to BE lines result in misses. On the other hand, for applications that exhibit
changes in working sets, static locking can be sub-optimal. Conversely, under DM-cap, is is
possible to mark lines belonging to different working sets as DM. In this case, at working
set changes over time, those DM lines belonging to a previous working set will be naturally
evicted, without suffering pollution from BE lines.

A more detailed overview of the obtained experimental results is provided in Table 1. In
the table, the first column reports the name of the benchmark under analysis. If multiple
configurations are of interest, multiple rows are shown for a given benchmark. The second
column reports the cache configuration in terms of sets S and ways W for the results on
each row. Next, the WCET obtained with LRU is reported in the following column, followed
by the best WCET obtained for the same configuration under DM-nolim and the relative
improvement (due to the space limitation, the number of DM lines that were selected has
been omitted in the table.) Similarly, the best result obtained under DM-cap is reported
next, and the value of cap under which the result was achieved is reported in the adjacent
column. Finally, the last two columns report the WCET (and the relative improvement)
for static locking with the given cache configuration and number of locked ways reported in
the last column.

8 Related Work

Memory Tagging and Hardware Support. In this work, we assume that hardware allows us
to encode (tag) extra information (e.g., importance) on memory locations at a fine-granularity.
The basic idea of memory tagging has first explored in the security community, to prevent
memory corruption (e.g., buffer overflow) [6, 38] and to enforce data flow integrity [45] and
capability protection [51]. Efficient hardware designs for word-granularity single-bit and
multi-bit memory tagging have been investigated [24] and several real SoC prototypes have
been built [45, 4], demonstrating the feasibility. In the real-time systems community, several

ECRTS 2019

17:18 Impact of DM-LRU on WCET: A Static Analysis Approach

Table 1 Summary of notable experimental results under four strategies: (1) vanilla LRU
(“LRU”); (2) unrestricted DM-LRU (“DM-nolim”); (3) restricted DM-LRU (“DM-cap”); and (4)
static locking (“Static”).

Benchmark S×A LRU DM-nolim DM-cap cap Static locked

bs 2×2 6613 5513 (-16.63%) 5513 (-16.63%) 2 5513 (-16.63%) 2
crc 4×2 2492320 2425920 (-2.66%) 2330620 (-6.49%) 1 2330620 (-6.49%) 1
fibcall 2×2 14191 14191 (-0.00%) 14191 (-0.00%) 1 14191 (-0.00%) 1

lcdnum 4×2 16291 14791 (-9.21%) 14791 (-9.21%) 2 14791 (-9.21%) 2
2×4 16191 16191 (-0.00%) 14391 (-11.12%) 2 15291 (-5.56%) 2

minver 4×2 126558 115758 (-8.53%) 109958 (-13.12%) 1 109958 (-13.12%) 1
prime 2×4 611425 467925 (-23.47%) 467925 (-23.47%) 3 467925 (-23.47%) 3

sqrt 2×4 54983 47552 (-13.52%) 47252 (-14.06%) 3 52552 (-4.42%) 2
2×4 54983 47552 (-13.52%) 47252 (-14.06%) 3 47583 (-13.30%) 6

bsort100 2×2 12434700 9484580 (-23.72%) 9484580 (-23.72%) 1 9484580 (-23.72%) 1
expint 2×4 759551 709651 (-6.57%) 709651 (-6.57%) 4 709651 (-6.57%) 4
ludcmp 16×2 638233 564633 (-11.53%) 564633 (-11.53%) 2 564633 (-11.53%) 2

qurt 2×8 217555 212160 (-2.48%) 173755 (-20.13%) 6 173755 (-20.13%) 6
4×4 217555 220355 (–1.29%) 171155 (-21.33%) 3 171155 (-21.33%) 3

statemate 2×2 616218 612918 (-0.54%) 576718 (-6.41%) 1 576718 (-6.41%) 1
8×8 383718 382818 (-0.23%) 359118 (-6.41%) 6 359118 (-6.41%) 6

insertsort 2×2 80126 70126 (-12.48%) 70126 (-12.48%) 1 70126 (-12.48%) 1
matmult 2×2 7191620 6568220 (-8.67%) 5555520 (-22.75%) 1 6391620 (-11.12%) 1

ns 4×2 193481 193481 (-0.00%) 193481 (-0.00%) 1 193481 (-0.00%) 1
2×2 530781 534781 (–0.75%) 406681 (-23.38%) 1 406681 (-23.38%) 1

select 4×2 170766 162266 (-4.98%) 157966 (-7.50%) 1 157966 (-7.50%) 1
2×4 170766 162866 (-4.63%) 150966 (-11.59%) 3 150966 (-11.59%) 3

ud 4×2 226843 223243 (-1.59%) 223243 (-1.59%) 2 225243 (-0.71%) 2
2×2 302443 354143 (–17.09%) 283843 (-6.15%) 1 283843 (-6.15%) 1

jfdctint
2×16 150234 128734 (-14.31%) 111034 (-26.09%) 2 128234 (-14.64%) 15
4×8 150234 130334 (-13.25%) 111134 (-26.03%) 1 147134 (-2.06%) 1
4×8 150234 130334 (-13.25%) 111134 (-26.03%) 1 130334 (-13.25%) 7

minmax 2×2 4034 4034 (-0.00%) 4034 (-0.00%) 1 4034 (-0.00%) 1
2×4 4034 4034 (-0.00%) 3934 (-2.48%) 1 4034 (-0.00%) 1

fft
32×2 1683830 1623930 (-3.56%) 1623430 (-3.59%) 1 1623430 (-3.59%) 1
4×4 2488230 2494360 (–0.25%) 2140830 (-13.96%) 1 2443230 (-1.81%) 1
4×4 2488230 2494360 (–0.25%) 2140830 (-13.96%) 1 1716630 (-4.62%) 2

works explored the use physical memory address based differentiated hardware designs (mostly
cache) in a more coarse-grained manner (i.e., memory segments, page, and task granularity).
Kumar et al, proposed a criticality-aware cache design, called Least Critical (LC), which
includes a memory criticality-aware extension to LRU replacement policy [27]. The LC
cache’s replacement policy is similar to the replacement policy we assumed in this work
(Algorithm 1), while its memory tagging mechanism, which uses a fixed number of specialized
range registers, does not allow flexible and fine-grained memory tagging. Therefore, our
static analysis method can be directly applicable to analyze the LC cache. PRETI [28] also
proposes a criticality-aware cache design but it focuses on shared cache for SMT hardware,
while we focus on private caches. More recently, OS-level page-granularity memory tagging
and supporting multicore architecture designs (including a new cache design) have been
explored to provide efficient hardware isolation (incl. cache isolation) in multicore [10].

Static Cache Analysis. There exists a broad literature on static cache analysis [32, 50].
With respect to existing literature, this work is closely related to approaches that propose
abstract interpretation-based cache analysis. This approach was initially proposed in [1, 12].
These works illustrate LRU analysis and hit/miss classification using may- and must-analysis.

R. Mancuso, H. Yun, and I. Puaut 17:19

The work in [12] also proposes a persistence analysis based on abstract states, which was found
to be unsafe and for which a fix was proposed in [8, 25]. We base our DM-LRU extension on
the may- and must-analysis proposed in [12], but use the improved formalization in [15]. In
order to perform access classification in case of loops we use an approach similar to virtual
inlining & virtual unrolling (VIVU) originally proposed in [34]. A large body of works has
considered cache replacement policies other than LRU. These include FIFO [15, 14, 18],
MRU [17], Pseudo-LRU [16]. Comparatively less work has been produced to analyze non-
inclusive [36, 21] as well as inclusive [22] multi-level caches. With respect to these works,
the proposed methodology set itself apart because it focuses on the impact on the WCET
of designer-driven selection of frequently accessed memory blocks. In this sense, proposed
approach can be used to analyze caches that support the definition of touch-and-lock cache
lines, under the assumption that no more than A blocks are simultaneously locked on any
set, where A is the associativity of the cache.

Cache Locking and Scratchpad Memory. Some COTS cache designs [2, 7, 13] support
selective cache locking, which prevents evictions for certain programmer selected cache-lines.
Exploting the feature, various static and dynamic cache locking schemes for both instruction
and data caches have been investigated [5, 40, 39, 47, 35]. In [48, 47], for instance, cache
locking statements are inserted in the task’s execution flow at compilation time, when
the uncertainty about the memory locations being accessed negatively impacts the static
WCET analysis. Some recent works combined cache locking with cache partitioning to
improve task WCET in multicore [30, 43, 33]. As an alternative to cache, scratchpad memory
has received significant attention in the real-time systems community for its predictability
benefits [46, 9, 49, 44]. More recently, a technique called invalidation-driven allocation
(IDA) [26] was proposed to achieve the same level of determinism of a locked cache in
spite of lack of hardware-assisted locking primitives. IDA can be used as long as precise
invariants on the size of an application’s working set hold. To overcome its high programming
complexity, however, many researchers proposed various compiler-based techniques. In [44],
for instance, a sophisticated compiler-based technique is proposed to break each task into
intervals and at the beginning of each interval, the required memory blocks of the interval
are prefetched onto a scratchpad memory via a DMA controller without blocking the task
execution. Dividing a task into a sequence of well-defined memory and computation phases
was originally proposed in [37, 52]. In both cache locking and scratchpad memory based
techniques, a common limitation is the overhead of explicitly executing additional instructions
(prefetch, lock/unlock, or data movement to/from scratchpad). Furthermore, these additional
instructions are context sensitive in the sense that they must be executed before actual accesses
occur, and if they are executed too early, they can negatively impact both performance and
WCET. In contrast, our approach is context insensitive in the sense that, once DM blocks
are flagged, actual allocation and replacement are automatically performed by the hardware
(cache controller) without additional instruction execution overhead.

9 Conclusion

In this paper, we presented the DM-LRU cache replacement policy and proposed an abstract
interpretation-based analysis for DM-LRU. We implemented the proposed analysis and DM-
LRU support in the Heptane static WCET analysis tool. Using the Heptane, we evaluated
the WCET impacts of our DM-LRU based approach on a number of benchmarks. The results
show that our DM-LRU approach can provide lower task WCETs with less performance
overhead and programming complexity, compared to the standard LRU and cache locking
based approaches.

ECRTS 2019

17:20 Impact of DM-LRU on WCET: A Static Analysis Approach

References
1 Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache Behavior

Prediction by Abstract Interpretation. In Proceedings of the Third International Symposium
on Static Analysis, SAS ’96, pages 52–66, Berlin, Heidelberg, 1996. Springer-Verlag.

2 ARM. PL310 Cache Controller Technical Reference Manual, Rev: r0p0, 2007.
3 R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad memory: design

alternative for cache on-chip memory in embedded systems. In Int. Symp. Hardware/Software
Codesign (CODES+ISSS), pages 73–78. ACM, 2002.

4 Alex Bradbury, Gavin Ferris, and Robert Mullins. Tagged memory and minion cores in the
lowRISC SoC. Memo, University of Cambridge, 2014.

5 Marti Campoy, A Perles Ivars, and JV Busquets-Mataix. Static use of locking caches in
multitask preemptive real-time systems. In Real-Time Embedded Systems Workshop (Satellite
of the IEEE Real-Time Systems Symposium), pages 1–6, 2001.

6 Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar K Iyer. Defeating
memory corruption attacks via pointer taintedness detection. In Dependable Systems and
Networks (DSN), pages 378–387. IEEE, 2005.

7 NVIDIA Corp. Variable SMP – A Multi-Core CPU Architecture for Low Power and High
Performance. Technical report, Nvidia, 2011.

8 Christoph Cullmann. Cache Persistence Analysis: Theory and Practice. ACM Trans. Embed.
Comput. Syst., 12(1s):40:1–40:25, March 2013.

9 Jean-Francois Deverge and Isabelle Puaut. WCET-directed dynamic scratchpad memory
allocation of data. In Euromicro Conference on Real-Time Systems (ECRTS), pages 179–190.
IEEE, 2007.

10 Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, and Heechul Yun. Deterministic
Memory Abstraction and Supporting Multicore System Architecture. In Euromicro Conf.
Real-Time Syst. (ECRTS). IEEE, 2018.

11 Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. Cache Behavior
Prediction by Abstract Interpretation. Sci. Comput. Program., 35(2-3):163–189, November
1999.

12 Christian Ferdinand and Reinhard Wilhelm. Efficient and Precise Cache Behavior Prediction
for Real-TimeSystems. Real-Time Syst., 17(2-3):131–181, December 1999.

13 Freescale. e500mc Core Reference Manual, 2012.
14 D. Grund and J. Reineke. Precise and Efficient FIFO-Replacement Analysis Based on Static

Phase Detection. In Euromicro Conference on Real-Time Systems (ECRTS), pages 155–164,
July 2010.

15 Daniel Grund. Static Cache Analysis for Real-Time Systems: LRU, FIFO, PLRU. epubli,
2012.

16 Daniel Grund and Jan Reineke. Toward Precise PLRU Cache Analysis. In International
Workshop on Worst-Case Execution Time Analysis (WCET), pages 23–35, 2010.

17 N. Guan, M. Lv, W. Yi, and G. Yu. WCET Analysis with MRU Caches: Challenging LRU for
Predictability. In Real Time and Embedded Technology and Applications Symposium (RTAS),
pages 55–64, April 2012.

18 Nan Guan, Xinping Yang, Mingsong Lv, and Wang Yi. FIFO Cache Analysis for WCET
Estimation: A Quantitative Approach. In Design, Automation and Test in Europe (DATE),
pages 296–301, San Jose, CA, USA, 2013. EDA Consortium.

19 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks – Past, Present and Future. In Björn Lisper, editor, Procedings of the 10th
International Workshop on Worst-Case Execution Time Analysis (WCET’2010), pages 137–
147, Brussels, Belgium, July 2010. OCG.

20 Sebastian Hahn and Jan Reineke. Design and Analysis of SIC: A Provably Timing-Predictable
Pipelined Processor Core. In Real-Time Systems Symposium (RTSS), pages 469–481. IEEE,
2018.

R. Mancuso, H. Yun, and I. Puaut 17:21

21 D. Hardy and I. Puaut. WCET Analysis of Multi-level Non-inclusive Set-Associative Instruction
Caches. In Real-Time Systems Symposium (RTSS), pages 456–466, November 2008.

22 Damien Hardy and Isabelle Puaut. WCET Analysis of Instruction Cache Hierarchies. J. Syst.
Archit., 57(7):677–694, August 2011.

23 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane Static Worst-Case
Execution Time Estimation Tool. In 17th International Workshop on Worst-Case Execution
Time Analysis (WCET 2017), volume 8 of International Workshop on Worst-Case Execution
Time Analysis, page 12, Dubrovnik, Croatia, June 2017. doi:10.4230/OASIcs.WCET.2017.8.

24 Alexandre Joannou, Jonathan Woodruff, Robert Kovacsics, Simon W Moore, Alex Bradbury,
Hongyan Xia, Robert NM Watson, David Chisnall, Michael Roe, Brooks Davis, et al. Efficient
Tagged Memory. In International Conference on Computer Design (ICCD), pages 641–648.
IEEE, 2017.

25 Lei Ju, Samarjit Chakraborty, and Abhik Roychoudhury. Accounting for Cache-related
Preemption Delay in Dynamic Priority Schedulability Analysis. In Design, Automation and
Test in Europe (DATE), pages 1623–1628, San Jose, CA, USA, 2007. EDA Consortium.

26 T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In 2019
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Montreal,
Canada, April 2019.

27 NG Chetan Kumar, Sudhanshu Vyas, Ron K Cytron, Christopher D Gill, Joseph Zambreno,
and Phillip H Jones. Cache design for mixed criticality real-time systems. In Computer Design
(ICCD), pages 513–516. IEEE, 2014.

28 Benjamin Lesage, Isabelle Puaut, and André Seznec. PRETI: Partitioned REal-TIme shared
cache for mixed-criticality real-time systems. In Real-Time and Network Systems (RTNS),
pages 171–180. ACM, 2012.

29 Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 16(12):1477–1487, December 1997. doi:10.1109/43.664229.

30 T. Liu, Y. Zhao, M. Li, and C. J. Xue. Task Assignment with Cache Partitioning and Locking
for WCET Minimization on MPSoC. In 2010 39th Int. Conf. Parallel Processing, pages
573–582, September 2010.

31 Thomas Lundqvist and Per Stenström. Timing Anomalies in Dynamically Scheduled Mi-
croprocessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99,
pages 12–, Washington, DC, USA, 1999. IEEE Computer Society. URL: http://dl.acm.org/
citation.cfm?id=827271.829103.

32 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05–1,
2016.

33 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-Time Cache
Management Framework for Multi-core Architectures. In Real-Time and Embedded Technology
and Applicat. Symp. (RTAS). IEEE, 2013.

34 Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of Loops.
In International Conference on Compiler Construction (CC), pages 80–94, London, UK, UK,
1998. Springer-Verlag.

35 Sparsh Mittal. A Survey of Techniques for Cache Locking. Transactions on Design Automation
of Electronic Systems (TODAES), 21(3):49:1–49:24, May 2016. doi:10.1145/2858792.

36 Frank Mueller. Timing Predictions for Multi-Level Caches. In In ACM SIGPLAN Workshop
on Language, Compiler, and Tool Support for Real-Time Systems, pages 29–36, 1997.

37 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A predictable
execution model for COTS-based embedded systems. In Real-Time and Embedded Technology
and Applicat. Symp. (RTAS), pages 269–279. IEEE, 2011.

ECRTS 2019

http://dx.doi.org/10.4230/OASIcs.WCET.2017.8
http://dx.doi.org/10.1109/43.664229
http://dl.acm.org/citation.cfm?id=827271.829103
http://dl.acm.org/citation.cfm?id=827271.829103
http://dx.doi.org/10.1145/2858792

17:22 Impact of DM-LRU on WCET: A Static Analysis Approach

38 Krerk Piromsopa and Richard J Enbody. Secure bit: Transparent, hardware buffer-overflow
protection. Transactions on Dependable and Secure Computing, 3(4):365–376, 2006.

39 Isabelle Puaut. WCET-centric software-controlled instruction caches for hard real-time systems.
In Euromicro Conference on Real-Time Systems (ECRTS), pages 10–pp. IEEE, 2006.

40 Isabelle Puaut and David Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In Real-Time Systems Symposium (RTSS), pages
114–123. IEEE, 2002.

41 Jan Reineke. Caches in WCET analysis: predictability, competitiveness, sensitivity. epubli,
2008.

42 Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing Predictability of
Cache Replacement Policies. Real-Time Syst., 37(2):99–122, November 2007. doi:10.1007/
s11241-007-9032-3.

43 A. Sarkar, F. Mueller, and H. Ramaprasad. Static Task Partitioning for Locked Caches in
Multicore Real-Time Systems. ACM Trans. Embed. Comput. Syst., 14(1):4:1–4:30, January
2015.

44 M. R. Soliman and R. Pellizzoni. WCET-Driven dynamic data scratchpad management with
compiler-directed prefetching. In Euromicro Conference on Real-Time Systems (ECRTS),
volume 76, pages 24:1–24:23, 2017.

45 Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo Kim,
Wenke Lee, and Yunheung Paek. HDFI: hardware-assisted data-flow isolation. In Symposium
on Security and Privacy (SP), pages 1–17. IEEE, 2016.

46 Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET centric data
allocation to scratchpad memory. In Real-Time Systems Symposium (RTSS), pages 10–pp.
IEEE, 2005.

47 X. Vera, B. Lisper, and J. Xue. Data Cache Locking for Tight Timing Calculations. ACM
Trans. Embed. Comput. Syst., 7(1):4:1–4:38, December 2007.

48 Xavier Vera, Björn Lisper, and Jingling Xue. Data Cache Locking for Higher Program
Predictability. SIGMETRICS Perform. Eval. Rev., 31(1):272–282, June 2003. doi:10.1145/
885651.781062.

49 Jack Whitham and Neil Audsley. Studying the applicability of the scratchpad memory
management unit. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 205–214. IEEE, 2010.

50 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdin-
and, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.
The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst. (TECS), 7(3), 2008.

51 Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore, Jonathan Anderson,
Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton, and Michael Roe. The CHERI
capability model: Revisiting RISC in an age of risk. In International Symposium on Computer
Architecture (ISCA), 2014.

52 G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-centric scheduling for
multicore hard real-time systems. Real-Time Syst., 48(6):681–715, 2012.

A Appendix: May Analysis

In the DM-LRU analysis framework, may-analysis is once again performed by considering
abstract cache states. Recall that may-analysis keeps track of the lower-bound on the age
of each addressable memory block. There are a number of differences compared to the
analytical tools used for must analysis. In may-analysis it is necessary to keep track of both
D ∈ {0, . . . , A} and B ∈ {0, . . . , A}. Here, the meaning of D and B changes. In this case,
D represents the maximum lower-bound of any possibly cached DM block. Conversely, B
captures the minimum lower-bound on the DM-LRU age of any BE block. It may be the case

http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1145/885651.781062
http://dx.doi.org/10.1145/885651.781062

R. Mancuso, H. Yun, and I. Puaut 17:23

Figure 7 Fragment of process CFG that leads to abstract DM-LRU state
q = [{a, b}], [{c}, {d}, {e, f}, {g}].

that B +D > A in order to correctly abstract the age lower-bound resulting from multiple
execution paths. It must hold however that A ≤ D +B ≤ 2A. It follows that the abstract
domain for may-analysis DMLruwA is defined as:

DMLruwA := {0, . . . , A} × {0, . . . , A} × B → {0, . . . , A− 1, A}. (11)

An abstract state q ∈ DMLruwA is then represented as two sets of memory blocks, for instance:
q = [{a, b}], [{c}, {d}, {e, f}, {g}] ∈ DMLruwA. In this example, we have D = 1, B = 4, A = 4.
It follows that the upper-bound on the number of DM memory blocks is 1, and that blocks a
and b have at least DM-LRU age 0, and may be marked as deterministic blocks. On the
other hand, c is a best-effort memory block with DM-LRU age at least 0. It should not come
as a surprise that in some states D +B > A. Consider the execution depicted in Figure 7
that produces q. When execution reaches the end of the figure, there could be 0 or 1 DM
blocks allocated in cache. Hence the upper-bound on the number of DM blocks has to be
D = 1. On the other hand, the upper bound on the number of BE blocks is B = 4.

The operator DMw(q, a) takes an abstract state q and a block a, and returns true if a
may be allocated as a DM block in q. For ease of notation, we simply use DMw(a) when
the considered abstract state is obvious. We define the operator DMw(q, a) as follows:

DMw(q, bCL) :=
{
true if CL = DM ∧ q(b) < A

false otherwise.
(12)

The update abstract transformer UwD for a DM memory access a can be defined as follows:

UwD (q, a) :=

D′ ←

D + 1 if D < A ∧BEw(a)
D + 1 if D < A ∧ ∃xDM 6= a : q(x) = q(a) = D − 1
D otherwise

, (13)

B′ ←

{
B − 1 if B > 0 ∧ q(a) ≥ A−B
B if B = 0 ∨ q(a) < A−B

, (14)

ECRTS 2019

17:24 Impact of DM-LRU on WCET: A Static Analysis Approach

λb.

0 if b = a (a)

q(b) if b 6= a∧∣∣∣∣∣
∣∣∣∣∣DMw(b) ∧ q(a) < q(b)
BEw(b) ∧ q(a) < A−B

(b)

q(b) + 1 if b 6= a∧∣∣∣∣∣
∣∣∣∣∣DMw(b) ∧ q(a) ≥ q(b) ∧ q(b) < D′ − 1
BEw(b) ∧ q(a) ≥ A−B ∧ q(b) < A− 1

(c)

A if b 6= a∧∣∣∣∣∣
∣∣∣∣∣DMw(b) ∧ q(a) ≥ q(b) ∧ q(b) ≥ D′ − 1
BEw(b) ∧ q(a) ≥ A−B ∧ q(b) ≥ A− 1

(d)

(15)

Where D′ (B′, resp.) is the new value of D (B, resp.) after the update. Similarly, the
update abstract transformer UwB for a best-effort memory access a can be defined as follows:

UwB (q, a) := (16)

λb.

A−B if b = a (a)

q(b) if b 6= a ∧
∣∣∣∣∣∣∣∣DMw(b)
BEw(b) ∧ q(a) < q(b) (b)

q(b) + 1 if b 6= a ∧BEw(b) ∧ q(a) ≥ q(b) ∧ q(b) < A− 1 (c)
A if b 6= a ∧BEw(b) ∧ q(a) ≥ q(b) ∧ q(b) ≥ A− 1 (d)

(17)

To clarify how the Uw operation transforms a given state , consider the abstract state
q = [{a, b}], [{c}, {d}, {e, f}, {g}], where D = 1, B = 4. Assume that DM block h is accessed,
whose DM-LRU age is currently A or higher. First, the value of D′ (B′, resp.) is computed
as D′ = D + 1 (B′ = B − 1, resp.); next, {a, b} both satisfy the fourth condition in UwD –
Equation 15, first case of (c); block c, d, e and f satisfy the fifth condition; g the seventh.
The resulting updated abstract state is: q′ = [{h}, {a, b}], [{}, {c}, {d}, {e, f}]. Note that in
the resulting state B = 3, hence the least lower-bound on any BE block is A−B = 1.

May-analysis Join. The join abstract transformer for DM-LRU may-analysis is symmetric
to the join abstract transformer used for DM-LRU must-analysis. The joined state will
contain all the blocks in the union of the joining states, each with the minimum age in any
of the two states. Furthermore, D is taken as the maximum between the value of D in the
joining states. Similarly, B is taken as the maximum between the value of B in the joining
states. As such, after a join, it always holds that D +B ≤ 2A. Equation 18 formalizes the
Jw(q̄, p̄) abstract transformer:

Jw(q̄, p̄) := D ← max{Dq̄, Dp̄}, B ← max{Bq̄, Bp̄}, λb.min{q̄(b), p̄(b)}. (18)

To clarify the join operation, consider the state q = [{a, b}], [{c}, {d}, {e, f}, {g}] obtained in
Figure 7, and the state q′ = [{h}, {a, b}], [{}, {c}, {d}, {e, f}] obtained as q′ = Uw(q, hDM)
(i.e. by accessing the DM block h). If we were to join q with q′, the resulting state would be
q′′ = [{a, b, h}, {}], [{c}, {d}, {e, f}, {g}].

R. Mancuso, H. Yun, and I. Puaut 17:25

May-analysis Classification. It is possible to classify a memory access using a classification
function that will either return M for cache miss, or > in case access to a memory block
cannot be guaranteed to be a miss given the current abstract state. The classification function
of the may analysis is defined as:

Cw(q, aCL) :=
{
M if q(a) = A

> otherwise.
(19)

ECRTS 2019

Modeling Cache Coherence to Expose
Interference
Nathanaël Sensfelder
ONERA, Toulouse, France

Julien Brunel
ONERA, Toulouse, France

Claire Pagetti
ONERA, Toulouse, France

Abstract
To facilitate programming, most multi-core processors feature automated mechanisms maintaining
coherence between each core’s cache. These mechanisms introduce interference, that is, delays caused
by concurrent access to a shared resource. This type of interference is hard to predict, leading to
the mechanisms being shunned by real-time system designers, at the cost of potential benefits in
both running time and system complexity.

We believe that formal methods can provide the means to ensure that the effects of this interference
are properly exposed and mitigated. Consequently, this paper proposes a nascent framework relying
on timed automata to model and analyze the interference caused by cache coherence.

2012 ACM Subject Classification Computer systems organization → Multicore architectures; Com-
puter systems organization → Real-time systems

Keywords and phrases Real-time systems, multi-core processor, cache coherence, formal methods

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.18

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.7
https://github.com/nsensfel/phylog-cache-coherence/

Acknowledgements We would like to thank Mamoun Filali-Amine (IRIT-CNRS) for his helpful
insights on how to validate our model and related works suggestions.

1 Introduction

The next generation of aircrafts will embed multi-core processors. Indeed, it will be more and
more difficult to find mono-core processors on the market and, when correctly programmed,
multi-core processors offer huge opportunities to reduce the amount of equipment required
to host multiple applications compared to federated or single-core IMA (Integrated Modular
Avionics) architectures. However, multi-core processors come with several drawbacks, among
which is the lack of predictability [26, 27], one of the key elements of certification expectations.
This lack of predictability is caused by interference, a delay inherent to the concurrent access
to a shared resource.

Cache Coherence. In most multi-core processors, each core has its own cache memory, of
which it is virtually the sole accessor. A cache coherence protocol ensures that:

At any given time, a memory location can either be accessed by a single cache controller,
in which case both writing and reading are allowed, or by any number of cache controllers,
in which case only reading is allowed.
Any copy of a memory location held in a cache has the most up-to-date value.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.18
https://dx.doi.org/10.4230/DARTS.5.1.7
https://github.com/nsensfel/phylog-cache-coherence/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Modeling Cache Coherence to Expose Interference

Maintaining this cache coherence requires exchanges of information between cache memo-
ries. These exchanges can be the source of a large amount of additional traffic, a potential
hindrance that we qualify of implicit interference, because of how difficult to predict they
are. Additionally, it can result in the removal of elements from the cache, which may lead to
time consuming communications with the system’s memory (cache misses).

While multi-core processors feature hardware to efficiently and automatically handle
cache coherence, the black-box nature of commercial processors leads to a lack of control,
visibility, and predictability of the cache coherence protocol and, by extension, of the delays
it may create.

Current Research Practices. Several approaches have been developed in the literature to
deal with the interference found in multi-core processors. The main solutions to ensure
predictability are 1) preventing any kind of uncontrolled interference (e.g. run-time services
[15, 28]); 2) enforcing a unique access to any shared resource at any time, so as to be equivalent
to a single core situation (e.g. execution models [18, 5, 12]). Because its interference is
difficult to predict, most of the considered hardware do not have or use automatic cache
coherency. Instead, the burden of cache management is placed on the developers, forcing
an application-specific solution (e.g. scratchpad memory [25, 22]). Such solutions prevent
the gains in performance that would otherwise be provided by automatic hardware cache
management mechanisms.

Contributions. We believe that the implicit interference generated by the cache coherence
can be exposed and taken into account to achieve predictable programming of a multi-core
processor. In this work, we focus on exposing these unexpected delays, the analysis of a
formal model of the processor.

We start this paper by going into more details on how cache coherence can be achieved
(Section 2), the type of system we are interested in (Section 3), and the categories of
interference it can host (Section 4). We then present the tools that we use to model and
analyze it (Section 5). Afterwards, we explain our choices in how we modeled the cache
coherence in a multi-core processor (Section 6). Finally, we showcase some of the results that
can be extracted from our model (Section 7), before listing some related works (Section 8)
and concluding (Section 9).

2 Cache Coherence Protocols

We start by introducing archetypal systems on which coherence protocols run. We then
present how those protocols behave.

A number of components (see Figure 1) are involved in the coherence.

Interconnect

Coherency
Manager

Memory
Controller

Cache
Controller

. . . Cache
Controller

Core Core

Figure 1 Components involved in cache coherence.

N. Sensfelder, J. Brunel, and C. Pagetti 18:3

Memory Element: The main memory is composed of chunks (or memory elements) which
have a fixed size and contain multiple addressable elements. Reading/writing from/to an
address in the main memory actually corresponds to reading or writing a whole memory
element. The distinction between an addressable space and a memory element is not
relevant to cache coherence, and thus, for simplification purposes, this paper considers
that each memory element has a single address.

Core: The component actually using and modifying memory element values. Instead of
accessing the original memory elements through the interconnect, each core is linked to its
own private cache. The content of this cache is managed by an associated cache controller.
The core can ask its cache controller for the value held by the memory element at a
given address through a load request. It can also send a store request to modify this
value. Additionally, the core can issue an evict request, which tells its cache controller
to invalidate a memory element copy. While it is rare for cores to be the initiators of
evict requests, it remains a possibility (e.g. for micro-optimization). Cores can be made
to stall by their cache controller, delaying the emission of a request until the cache
controller is ready to accept it.

Cache Controller: Component that handles requests from its core, potentially initiating a
transaction by making a query on the interconnect. Such queries take the form of a GetS
when asking for a read-only copy of a memory element and that of a GetM when asking
for a read-and-write copy. Queries that indicate a new value for the memory element are
done through PutM messages. Depending on the protocol, variants of these messages may
be used. Cache controllers are also able to reply to the query of another cache controller
with a data reply (data). Additionally, cache controllers may initiate evict requests
on themselves to make space for new memory element copies. These self-requests are
controlled by a cache replacement policy, which is most commonly a speed-over-accuracy
variation on the Least Recently Used policy.

Coherency Manager: Component that stores information on the state of the cache con-
trollers, to help maintain the cache coherence. Using this stored information, it can tell if
a query should be answered by the memory controller or not. This component is very
much dependent on which protocol is being implemented, and can range from being a
simple link between the cache controllers to actually being multiple separate components
(e.g. all directory nodes of a directory-based cache coherence protocol). It is usually found
inside the interconnect.

Memory Controller: Component that handles the modification or copy of the original mem-
ory elements.

Interconnect: Component that regulates and handles the propagation of messages between
cache controllers, memory controllers, and the coherency manager.

I Definition 1 (Request, Message, Query, and Data Reply). To keep things separate, we use
the term request when talking about communications between a core and its cache controller,
and the term message when talking about communications that use the interconnect. As such,
queries (e.g. GetM, GetS, PutM) are messages, and so are data replies (e.g. data). Thus,
messages = queries ∪ data replies.

I Definition 2 (Transaction). A transaction is composed of a query and of all the data
messages the completion of that query requires.

Each message transiting through the interconnect, and each cache controller query, is
about a specific memory element. Upon receiving either one of those, cache controllers look
up the state they associate with their copy of the memory element for this address, and act
according to the cache coherence protocol.

ECRTS 2019

18:4 Modeling Cache Coherence to Expose Interference

2.1 Protocols
Most cache coherence protocols are based on the MSI protocol, named after the states given
to copies of the memory elements by the cache controllers. M stands for Modified, the
state a cache controller gives its copy of the memory element to indicate that it has both
read-and-write access to the original. S stands for Shared, and is the equivalent for read-only
access. I stands for Invalid, when a cache controller does not currently have a copy.

MSI-based protocols are all categorized as Write-Back, because caches may contain a
more up-to-date value of the memory element than the RAM.

The aforementioned protocols are referred to according to their states and general idea,
however, the definition of their behavior depends on the system they are implemented on.

There are two main families of cache coherence implementation: snooping-based and
directory-based. When using a snooping-based protocol, cache controller queries are broad-
casted to all cache controllers and to the coherency manager. The protocol also ensures
that only one of the components answers the query. This answer is not broadcasted, but is
instead only meant for the query’s originator. For such protocols to properly function, all
the components have to receive the queries in the same order. In the sequel, we only take
into consideration snooping-based protocols.

I S

M

load?GetS!data?

store?GetM!data?

evict?

GetM?

st
or

e?
Ge

tM
!da

ta
?

load?

Ge
tM

?d
at

a!

Ge
tS
?m

em
_d

at
a!d

at
a!

ev
ic

t?
Pu

tM
!m

em
_d

at
a!

load?
store?

Figure 2 Generic MSI Cache Controller.

U

M

GetM?data!

GetS?data!
Pu

tM
?m

em
_d

at
a?

Ge
tS

?m
em

_d
at

a?

Figure 3 Generic MSI Coherency
Manager.

Automata describing a generic snooping-based MSI protocol can be seen in Figure 2 and
Figure 3. Figure 2 shows how the state given to a memory element’s copy evolves when
receiving a request (store?, load?, or evict?), or a query (GetM? or GetS?). Data exchanges
between cache controllers are also represented (data! and data?). Cache controllers do not
differentiate between data sent from another cache controller and data sent from the memory
controller (both use data?). Sending data to the memory controller, however, is marked as
mem_data!. Figure 3 represents the coherency manager, which keeps track of whether the
memory has the most up-to-date value for a memory element (state U) or not (state M).

N. Sensfelder, J. Brunel, and C. Pagetti 18:5

This particular protocol considers that cache controllers delay incoming requests until
they are able to use the interconnect, and that transactions cannot take place simultaneously.

These automata actually describe a generic snooping-based MSI protocol. They feature
macro-transitions (a succession of atomic transitions). The next section presents a more
detailed protocol.

3 MSI Snooping-Based Protocol

3.1 A Few Caveats
These are the hypotheses made on the targeted hardware. Placing such hypotheses (or lack
thereof) is necessary to properly define the targeted cache coherence protocol.

I Hypothesis 1 (Non-Atomic Requests). Cores are able to issue load, store, and evict
requests to their cache controller regardless of whether the cache controller is currently able to
initiate a transaction on the interconnect. In this paper, we consider that this is implemented
through the use of a FIFO queue between each cache controller and the interconnect.

I Hypothesis 2 (Unique Interconnect). The interconnect is unique. As a result, all cache
controllers are able to see all transactions, and those transactions are all seen in the same
order. Examples of excluded hardware include many-core processors, which feature a Network-
On-Chip.

I Hypothesis 3 (Split-Transaction Interconnect). The interconnect supports simultaneous
transfer of data and queries and allows multiple transactions to take place simultaneously.

3.2 From Abstract to Concrete Behaviour
In Subsection 2.1, we have seen automata using macro-transitions to describe a generic
snooping-based MSI protocol. Let us now look in details at what is composing the transition
from I to S with the load?GetS!data? label. Let us consider two cache controllers, CC0 and
CC1, each of which is driven by its own core (CU0 and CU1, respectively) and a memory
element. Let us assume that, while CC1 already has read-only access to that memory element,
CC0 does not, and that core CU0 issues a load request to acquire it.

In the sequence diagram of Figure 4, we see the behavior of all components involved.
Once the core issues the load request, the cache controller generates a GetS query to the
interconnect. The latter broadcasts the GetS to all cache controllers, including the query’s
originator, and the coherency manager. As the owner of the data is the memory, the coherency
manager transmits that query to the memory controller, which, in turn, sends the data to
the core CU0.

In order to expose the interference, we need to model the atomic transitions and interme-
diate states, such as the ones shown in the figure.

3.3 Detailed Snooping-Based MSI Protocol
Instead of representing the full automaton as a graph, we use a matrix representation (see
Figure 6). The first column details every possible states. As in [20], the naming of each
state is determined by the following reasoning: Invalid (I), Shared (S), and Modified (M) are
the three stable states of the MSI protocol. The other states are transient. Reception of a
request that requires use of the interconnect will usually lead to a XYBD transient state, which
means that the cache controller is handling a transition between the stable states X and Y,

ECRTS 2019

18:6 Modeling Cache Coherence to Expose Interference

CU0 CC0 CU1 CC1
Inter-
connect

Coherency
Manager

Memory
Controller

load

GetS
GetSGetS

GetS

read

data

data

I
〈〉

S
〈〉

U

ISBD

〈GetS〉

ISD

〈〉

S
〈〉

Figure 4 load request.

CU0 CC0 CU1 CC1 CU2 CC2
Inter-
connect

Coherency
Manager

M
〈〉

I
〈〉

I
〈〉 M

o = CC0
evict store store

MIB

〈PutM〉
IMBD

〈GetM〉
IMBD

〈GetM〉
GetM

GetMGetM

GetM GetM
IMD

〈〉
IIB

〈PutM〉
o← CC1

GetM

GetMGetM

GetM GetM

IMDI
〈〉

IMD

〈〉
o← CC2

data

data
I
〈〉

data

data
M
〈〉

PutM

PutM PutM PutM PutM

I
〈〉

Figure 5 Double store.

with (B) indicating that this transition requires the acquisition of the interconnect and (D)
the reception of a related data reply (whether it comes from an other cache controller or
the memory). This can be followed by XYD if the cache controller sees its own query before
receiving a reply, or XYB if a reply is received before the query is processed. This happens
when, despite processing all queries in the same order, not all cache controllers take the same
time to do so. Another possibility is for an external query to be received when in the XYD

state. Indeed, at that point, the system pretty much considers that the cache controller is in
the Y state and thus has the responsibilities that the Y would require. This makes it possible
for a cache controller to see a query it needs to act upon before being actually ready to
do so (e.g. observing a GetM query while waiting for data). These states have a XYDA form
(which means that when all is handled, the cache controller ends up in the A state), or XYDAB
(which ends up leading to the B state). As it may be that the required action is to reply
to said query, it is sometimes necessary to remember the originator of the query. This is
marked as r←s.

When the core makes a request (load, store or evict), the second macro-column
indicates how the cache controller behaves. The a/b notation denotes the emission of an a
message on the interconnect, followed by a transition of the memory element copy’s state to
b. If you look at the load from the I state, the cell indicates that the GetS request will be
generated and the reached state is ISBD. We recognize the beginning of the sequence diagram
described in Figure 4. Grayed out cells indicate situations that cannot occur in the protocol,
due to our hypotheses.

The third macro-column (named Interconnect access) indicates what happens when the
previously queued query is broadcasted on the interconnect. When in the ISBD state, we
know that, at some point, our previously queued GetS query is going to be broadcasted

N. Sensfelder, J. Brunel, and C. Pagetti 18:7

State Core Request Interconnect
Access

Data
Reply Received Queries

load store evict GetS GetM PutM
I GetS/ISBD GetM/IMBD - - -
ISBD stall stall stall -/ISD -/ISB - - -
ISB stall stall stall -/S - -
ISD stall stall stall -/S - -/ISDI
ISDI stall stall stall -/I - -
IMBD stall stall stall -/IMD -/IMB - - -
IMB stall stall stall -/M - - -

IMD stall stall stall -/M
r←s
-/IMDS

r←s
-/IMDI

IMDI stall stall stall
r!data
-/I

- -

IMDS stall stall stall
r!data
m!data
-/I

- -/IMDSI

IMDSI stall stall stall
r!data
m!data
-/I

- -

S hit GetM/SMBD -/I - -/I
SMBD hit stall stall -/SMD -/SMB - -/IMBD

SMB hit stall stall -/M - -/IMB

SMD hit stall stall -/M
r←s
-/SMDS

r←s
-/SMDI

SMDI hit stall stall
r!data
-/I

- -

SMDS hit stall stall
r!data
m!data
-/S

- -/SMDSI

SMDSI hit stall stall
r!data
m!data
-/I

- -

M hit hit PutM/MIB
m!data
s!data
-/S

s!data
-/I

MIB hit hit stall
m!data
-/I

m!data
s!data
-/IIB

s!data
-/IIB

IIB stall stall stall -/I - - -
Handling Requests Handling Queries

Figure 6 Cache Controller Memory Element State Changes (adapted from [20]).

on the interconnect. This will result in reaching the ISD state. As a side note, if the core
makes a second load request on the same memory element while the copy is ISBD, that new
request is stalled.

The fourth macro-column describes the behavior upon reception of a data reply.

The fifth macro-column (named Received Queries) defines the behavior of the cache
controller when snooping a transiting query that is not its own (which would otherwise
pertain to the third macro-column). For instance, from state S, when snooping a GetS,
the cache controller does not do anything, as can be seen with core CU1 in the sequence
diagram of Figure 4.

Replying with a message d, meant for t (t = m when sending to the memory controller
and the coherency manager, t = s when sending to the cache controller that initiated the
transaction, and t = r when sending to the initiator of an earlier query) is written as t!d.

ECRTS 2019

18:8 Modeling Cache Coherence to Expose Interference

I Example 3. Let us have a look at a more complex behavior: when 2 cores attempt
modification of the same memory element. This is illustrated in the sequence diagram of
Figure 5. CC0 starts with read-and-write access to the memory element (its copy being in
the M state), neither CC1 nor CC2 have a copy (state I), and the coherency manager knows
that its value is out of date (state M).

The sequence starts when CU0 issues an evict request and both CU1 and CU2 issue
a store request. CC0 receives the evict request, queues a PutM query and now considers
the memory element to be MIB (that is, “was Modified, will be Invalid once access to the
interconnect is granted”). On the other hand, the other two caches receive their store
requests, queue a GetM query, and now consider the memory element to be IMBD (“was Invalid,
will be Modified after access to the interconnect and reception of a data reply”).

All the cache controllers want to access the interconnect. The internal behavior of the
interconnect will drive this choice. Most of the time, the interconnect is based on Fair-RR
(Round Robin) [11]. In this scenario, the interconnect first broadcasts the GetM query from
CC1’s queue, which is now empty.

CC1, seeing its own query, confirms that it has accessed the interconnect, and switches
to the IMD state to await a data reply. The coherency manager ignores the query. Seeing
CC1’s GetM query passing through the interconnect, CC0 has to reply with a data message
(this corresponds to s!data in the protocol definition), containing its value for the memory
element, and to transition to the IIB state.

CC2’s GetM query is broadcasted. As it is about to receive the data with read-and-write
access, CC1 is the component that should reply to CC2’s query. Not having the data yet,
CC1 is currently unable to do so. Instead, it transitions to the IMDI, remembering that it
should send the data to CC2 as soon as possible.

Finally receiving the data, CC1 applies completes CU1’s request, sends the updated data
to CC2 and transitions to the I state (as CC2 wants read-and-write access).

CC2 receives the data and completes CU2’s request.
CC0’s PutM is broadcasted, but has been superseded by a previous GetM and thus causes

no reaction in the other cache controllers or the coherency manager. CC0 transitions to I,
completing its core’s request.

3.4 Coherency Manager

State Received Queries Data Reply
GetS GetM PutM (Owner) PutM (Other) data

U s!data
s!data
o←s
-/M

-

UD stall stall stall - -/U

UB o← ∅
-/U

- o← ∅
-/U

-

M
o← ∅
-/UD o←s

o← ∅
-/UD - -/UB

Figure 7 Coherency Manager Memory Element State Changes (adapted from [20]).

Figure 7 shows how the coherency manager keeps track of whether the RAM has the
most up-to-date value for a memory element (state U) or if a cache controller does (state M).
This is used to determine if the RAM should be the one to reply when either a GetS or a
GetM query passes through the interconnect. The U state indicates that the RAM currently

N. Sensfelder, J. Brunel, and C. Pagetti 18:9

has the most up-to-date value. The UD state indicates that the RAM should be the one to
respond to queries, but it still hasn’t received the latest value. Unlike the cache controller, it
will not switch to a dedicated state but instead force queries from the interconnect to stall
until the problematic query can be fulfilled. UB indicates that the RAM has received the
latest value, but has not yet seen the query that led this data to be sent.

The exact cache controller currently in charge of the memory element is kept track of.
Change of ownership are marked as o←s (the query originator becomes the new owner) and
o← ∅ (there is no longer an owner, meaning that the RAM is currently responsible for it).

I Example 4. Back to the sequence diagram of Figure 5 and to Example 3, let us observe
the behavior of the coherency manager. The coherency manager reacts to each GetM query,
updating its internal state to reflect the change of ownership. Thus, the coherency manager
starts by considering that CC0 is the only one to have a valid (i.e. up-to-date) value of the
memory element, then, upon seeing the first GetM, considers CC1 to be responsible for it
(o←s in the table). As a result, at the end of the execution, the coherency manager knows
that the PutM query is originating from a cache controller that is not currently responsible
for that memory element and can thus safely ignore it.

4 Interference

St
at

e
R

ec
ei

ve
d

Q
ue

ri
es

Ge
tS

Ge
tM

Pu
tM

I
Mi

.
Mi

.
Mi

.
IS

BD
Mi

.
Mi

.
Mi

.
IS

B
Mi

.
Mi

.
IS

D
Mi

.
Ex

.
IS

D
I

Mi
.

Mi
.

IM
BD

Mi
.

Mi
.

Mi
.

IM
B

Mi
.

Mi
.

Mi
.

IM
D

De
.

Ex
.

IM
D
I

Mi
.

Mi
.

IM
D
S

Mi
.

Ex
.

IM
D
SI

Mi
.

Mi
.

SM
BD

Mi
.

Ex
.

SM
B

Mi
.

Mi
.

SM
D

De
.

Ex
.

SM
D
I

Mi
.

Mi
.

SM
D
S

Mi
.

Ex
.

SM
D
SI

Mi
.

Mi
.

M
De

.
Ex

.
MI

B
Ex

.
Ex

.
II

B
Mi

.
Mi

.
Mi

.

Minor Expelling Demoting

Figure 8 Occurrences of Interference.

Let us now categorize how a cache controller may be negatively affected by the actions of
another. Figure 8 summarizes the occurrences of each interference category. In the Figures 9,
11, and 10, the dark gray area indicates when the cache controller is unavailable due to
having to handle the incoming query (deciding how to act and, potentially, updating its
internal state), and the light gray area shows when its core’s next request for that memory
element may be negatively impacted by the change of state.

I Definition 5 (Minor Interference). Cache controllers have actions to perform upon receiving
any type of request. Because of this, every time a cache controller has to deal with an incoming
query, there is a very small amount of time during which it cannot be used by its core. We call
this unavailability period minor interference. And, while the effect of each minor interference
is so small as to be considered negligible, their accumulation most definitely is not. Indeed,
minor interferences are one of the main motivations behind the use of a directory-based
coherency protocol (in which minor interferences are only experienced by cache controllers
likely to have a use for that query) over a snooping-based one (in which all cache controllers
are affected by every query).

ECRTS 2019

18:10 Modeling Cache Coherence to Expose Interference

Figure 9 Minor. Figure 10 Expelling. Figure 11 Demoting.

Figure 9 shows an example of minor interference: the CC1 cache controller has to
process the GetS broadcast, despite that message not requiring any reply or internal state
update from CC1.

I Definition 6 (Expelling Interference). To maintain the principles of cache coherency, it may
be required for a cache controller to dispense of its copy of a memory element, relinquishing
its access rights. This is caused by another cache controller demanding read-and-write access
to that memory element (a GetM query). We have, however, marked the reception of a GetS
query for an element in the MIB as being an expelling interference in Figure 8. It could be
argued that reaching the MIB indicates that the cache controller is already in the process of
evicting its copy of the memory element. But, as the MIB state allows immediate (i.e. hit)
access for both writing and reading that memory element, we still consider this event to have
a negative impact.

Figure 10 shows an example of expelling interference: the CC1 cache controller, receiving
a demand for read-and-write access, is forced to relinquish its read-only copy.

I Definition 7 (Demoting Interference). Another type of interference is the demoting inter-
ference, in which a cache controller has to abandon its writing access rights to a memory
element, while retaining its reading access.

Figure 11 shows an example of demoting interference: the CC1 cache controller, receiving
a demand for read access on that memory element, has to update the value from the main
memory and go from read-and-write access to read-only access.

5 Formal Modeling of Real-Time Systems with Timed Automata

To expose the interference presented in the previous section, we chose to use formal methods.
More precisely, we are relying on timed automata [1] to model and analyze our system.

A timed automaton is an extended automaton with variables and clocks. During the
system’s execution, the state of timed automaton is defined as a location, the value of its
integer variables and of its clocks. The evolution of these integer variables is controlled

N. Sensfelder, J. Brunel, and C. Pagetti 18:11

by the automaton’s transitions, whereas all of the system’s clocks progress at the same
rate, following the passing of time. To indicate that a location should be left immediately,
UPPAAL [4] offers the following location modifiers:
Urgent: The location must be left before any time passes.
Committed: The location must be left before any time passes, and the next transition must

originate from a committed location.
Invariant φ: The location is defined only if a linear constraint φ holds true. φ may reason

over the automaton’s integer variables, clocks, or both.

The automata transitions are composed of the following:
Guard: Prerequisite (linear constraint) for this transition to be able to fire. The condition

uses the automaton’s integer variables, clocks, or both.
Synchronization: Allows to have more than one automaton transitioning during a step, by

synchronizing multiple transitions over a channel. The channel can be used in either
receiver (with a ? suffix) or sender (with a ! suffix) mode. On a channel that was
declared without modifier, the transition requires exactly two automata to synchronize
during this step: the sender, and the receiver. It is also possible for a channel to have
been declared as a broadcast channel, in which case the sender synchronizes with all
available receivers. Furthermore, the channel may have been declared as urgent, which
prevents waiting in a location if the synchronization can occur. Finally, priorities between
channels may be put in place.

Update: Sequence of instructions to alter the automaton’s integer variables, or reset its
clocks.

Select: The transition selects the given integer variables’ next value from a specified range.

Example. This subsection presents an example of UPPAAL model: a processor attempts
to read a variable, which may be either in RAM or in its cache. The automaton in Figure 12
corresponds to the core, the one in Figure 13 to the RAM controller, and the remaining
one (Figure 14) is used to mark a transition as urgent by having an automaton always
ready to synchronize on a dedicated urgent channel (FORCE_URGENT). In this model, the
FORCE_URGENT and READ_LINE channels are both declared as urgent.

Figure 12 Core and cache. Figure 13 RAM. Figure 14 Urgence.

The Core Automaton (Figure 12). Its initial location is marked as committed, meaning
that it is left immediately. The exiting transition sets the x clock to 0, and the var_is_cached
variable to a value in the [0, 1] range. The x clock will be used to know how long it took for
the processor to get its variable. Two transitions are fireable from the S1 location, depending
on whether the targeted variable is cached or not. If it is indeed cached, the transition
labeled FORCE_URGENT is the only one fireable and it synchronizes with the automaton of
Figure 14, forcing it to be taken as soon as possible. Additionally, the transition increases an

ECRTS 2019

18:12 Modeling Cache Coherence to Expose Interference

integer variable that counts the number of times a variable was found in the cache. Taking
said transition leads to a location in which the only exiting transition requires the x clock to
equal 1 unit of time before arriving in the Done location.

If the variable was not in the cache, the other transition from S1 is active and leads to a
synchronization on the READ_LINE which is also to be taken as soon as possible. This time,
however, it is possible for that synchronization to not be immediately available, as the RAM
controller automaton may be handling another query and thus not be ready to synchronize
as it would not be in its initial location. This also justifies not marking the location as urgent
or committed: the automaton may have to wait an unknown amount of time. Once the
synchronization does happen, an integer variable counting the number of times the variable
was not found in the cache is incremented, then the automaton waits for the RAM automaton
to synchronize on the REPLY channel before considering it has acquired the variable.

The RAM Controller Automaton (Figure 13). Its initial location awaits synchronization
on the READ_LINE channel. Since READ_LINE is urgent, the transition happens as soon as
possible. It resets the automaton’s time clock back to 0. The synchronization leads to
a location which has to be left strictly before more than 2 units of time pass, as defined
by the invariant. To ensure that the automaton stays in this location for exactly 2 units
of time, the only exiting transition has a guard stating just that. This transition also
requires a synchronization on the REPLY channel before allowing a return to the automaton’s
initial location.

6 Model of the Cache Coherence

This sections describes the general ideas behind how we modeled the cache coherence in
UPPAAL. We have released the model under an LGPL v3 license at https://www.onera.
fr/sites/default/files/598/ecrts19.zip.

6.1 Modeling Strategy
The model contains one automaton per component present in Figure 1, an automaton in
charge of synchronizing on the FORCE_URGENT channel (in an identical manner to the one
in Figure 14), as well as message queues for both queries and data (Sub-section 6.6). Each
core runs exactly one program. To change the number of cores, one simply has to add
or remove cores (and associated cache controllers) and to change the value of a dedicated
system-wide constant. Moreover, each component has a unique identifier, which is used
both to target a specific automaton on some synchronization, and to indicate the emitter of
requests and queries.

The states and transitions seen on the automata do not visibly reflect any program
or protocol. This means that the stable states (M, S, I) and the transient states (ISBD,
ISD, . . .) will not appear explicitly. Instead, the automata’s designs are focused on their
synchronizations, with the logic (and state) of the protocols being held in their variables
instead. As such, the same automaton can easily be used for any program or protocol
(provided the hypotheses from Sub-Section 3.1 remain), only requiring small changes in the
definition of the functions found in its transitions.

Priorities on synchronizations are used to reduce the number of redundant system states.
For example, any transition that exits a waiting location (i.e. location in which nothing
happens until a clock has reached a certain count) has a higher priority than any other type
of transition.

https://www.onera.fr/sites/default/files/598/ecrts19.zip
https://www.onera.fr/sites/default/files/598/ecrts19.zip

N. Sensfelder, J. Brunel, and C. Pagetti 18:13

6.2 Core

Figure 15 Model of the Core.

program_line_t program_0 [7] =
{

{ INSTR_LOAD , 1},
{ INSTR_LOAD , 2},
{ INSTR_STORE , 3},
{ INSTR_LOAD , 3},
{ INSTR_STORE , 1},
{ INSTR_EVICT , 1},
{INSTR_END , 0}

};

Figure 16 Model of a Program.

Programs are modeled using arrays of address-targeting instructions, not so dissimilar
to their binary executable. These arrays only contain instructions related to memory
accesses (INSTR_LOAD, INSTR_STORE, INSTR_EVICT), and one (INSTR_END) to indicate that
the execution of the program is completed. An example can be seen in Figure 16.

The automaton corresponding to the core is shown in Figure 15. Progress of the program’s
execution is tracked by the program_counter, which is incremented each time an instruction
has been started. Another integer variable, received_acks, counts how many times the cache
controller has confirmed that a request has been fulfilled. The sending of each instruction to
the cache controller is separated by at least the time of a clock cycle.

To ensure that synchronization occurs with the right automaton, the request uses the
cache controller’s identifier to select a sub-channel of CPU_REQ. Conversely, acknowledgments
are received on the sub-channel of CPU_ACK corresponding to the core’s identifier. Upon
reaching the INSTR_END instruction, the automaton has to wait until all of its outstanding
requests have been fulfilled before being able to reach the TERMINATED state.

6.3 Coherency Manager and Memory Controller

Figure 17 Model of the Coherency Manager. Figure 18 Model of the Memory Con-
troller.

The timed automaton modeling the coherency manager can be seen on Figure 17. The
coherency manager has to know for which memory elements the RAM copy is to be considered
as superseded by a cache controller. For this purpose, it maintains an array associating a
state to each memory element address. The size of this array must be able to accommodate
all cache controllers having their caches full of superseding copies of memory elements. In
effect, |mem_array| = |cache_array| × |caches|.

ECRTS 2019

18:14 Modeling Cache Coherence to Expose Interference

After initializing its array with default values, the timed automaton waits for either
a cache controller query or a data message.Receiving any of these leads to an update of
the internal state associated with the related memory element, as described by the array
in Figure 7.

Upon receiving a cache controller query, the update to the internal state may indicate
the need to provide data from the RAM, leading the automaton to synchronize with the
memory controller to wait for RAM_READ_TIME units of time before providing a reply to the
query’s originator. Alternatively, when receiving data, the automaton synchronizes with
the memory controller to wait for RAM_WRITE_TIME units of time. The memory controller’s
automaton is shown in Figure 18. It has a local clock, clk, which is used to wait either
RAM_WRITE_TIME or RAM_READ_TIME, depending on what the coherency manager demands.

6.4 Interconnect

Figure 19 Model of the Interconnect.

Figure 19 shows the timed automaton for the interconnect. It starts (S1) by waiting for
cache controllers to synchronize through the ADD_BUS_MASTER so that they can be added to
the bus policy. The order in which the cache controllers make that synchronization is not
deterministic. This results in all possible orders being explored when analyzing the system.
Once all cache controllers have been added, the automaton proceeds and synchronizes with
all the other components by broadcasting on the SYS_INIT channel.

Using a component identifier to select the appropriate sub-channel, the interconnect
awaits either an incoming cache controller query, or a notice that the cache controller does
not have any to send (Ready). If the latter happens, the access policy is followed to determine
which cache controller should be made able to send its query (e.g. with a Fair-Round-Robin
the next cache controller is chosen). With the former, the query is first received by the
interconnect (Ready→S2), then, in a second transition (S2→Ready), it is broadcasted to all
components that listen for cache controller queries. This broadcast is stalled if any of the
components that need to receive it indicate that they are not ready to do so (e.g. because
their incoming query queue is full).

6.5 Cache Controller
The automaton used to model a cache controller is rather complex. As previously stated,
it does not feature any of the states found in the protocol description (e.g. the ones of the
matrix in Figure 6). Instead, this automaton keeps an array that indicates the protocol state
associated with a given memory element. The automaton starts by synchronizing with the
interconnect so that it is taken into account by the interconnect’s access policy (S0→S1). It
then waits for the broadcast on the SYS_INIT channel (S1→Ready).

N. Sensfelder, J. Brunel, and C. Pagetti 18:15

Figure 20 Model of the Cache Controller.

CPU Communications. Each cache controller has a queue of outstanding requests from its
core, as well as a queue of completed requests to inform the core of. Both queues are first in,
first out. Upon receiving a request from its core (middle Ready→S5 transition), the cache
controller attempts to find a line in its array either corresponding to the associated address,
or, if none exists, one that is not currently used (Invalid). If no such line is found, the
request is stalled, meaning that it is simply put in the outstanding requests queue for later.
Otherwise, the behavior of the cache controller depends on the cache coherence protocol and
the state held by the line, such as indicated in Figure 6. If the eviction policy is applicable
and no line can currently accommodate the request, an automated eviction occurs. The
cache controller is re-evaluated once the eviction has been completed (leftmost Ready→S5
transition). In our model, we use an accurate LRU eviction policy, meaning that the cache
controller keeps track of the order in which its cache lines have been used and will allow an
automated eviction to occur if the least recently used line points to a state for which the
protocol does not indicate stall in case of evict request.

There are two possible reasons for a request to be acted upon: it is an incoming request
from a core, or it is a previously stalled request on a memory element which just changed state.
hit: the request is moved to the completed requests queue. The handling of stalled requests

continues. This also counts as a use of the line according to the eviction policy, if the
request is not an evict.

stall: the request is put in the outstanding requests queue, if it is not already there. The
handling of stalled requests is stopped.

msg/state: the state of the line is set to state, the request is put in the outstanding requests
queue, if it is not already there. If this is encountered during the un-stalling of requests,
the request is re-evaluated. In the latter case, this counts as a use of the line according
to the eviction policy, if the request is not an evict.

ECRTS 2019

18:16 Modeling Cache Coherence to Expose Interference

Interconnect Communications. Handling of pending incoming queries is done through the
Ready→S2→S3 transitions. This updates the internal state of the cache following what
was indicated by Figure 6 and has a waiting period that accounts for the simulated query
handling time period. Handling of pending incoming data is similar (Ready→S3). The S3
location is where data emission is handled. Data can be sent to either memory or another
cache controller (the latter introducing yet another delay). This data is actually sent to a
FIFO queue and not to the other components directly. When there is no data to send, the
S3→S5 transition evaluates the impact the changes had on the currently stalled core requests.

6.6 Message Queues

Figure 21 Model of the Data FIFOs. Figure 22 Model of the Query FIFOs.

Access to the bus is done through message queues. We use separate automata for data and
query queues to avoid over-encumbering the automata that use them (we would otherwise
need to add their transitions to nearly all the locations of the cache controller automaton).
These automata actually handle both an incoming and outgoing queue. Each cache controller
has a dedicated instance of both automata. The memory controller has an instance of the
data queues automaton.

The data and query queues automata are fairly straightforward, having one transition to
take and one transition to push items in either direction. However, the actual condition for
incoming queries to be allowed in is hidden behind a shared variable. Indeed, the queries
come from broadcasts made by the bus and UPPAAL does not allow conditions on transitions
receiving from a broadcast channel. Thus, the condition of having all query message queues
ready to receive is actually handled on the side of the interconnect.

7 Checking Properties

UPPAAL lets users check if their model verify properties. These properties can be
used to know if at least one (E) or all (A) execution paths always (�) or at least once (♦)
verify a given formula over the automata’s clocks, integer variables, or location. In addition,
UPPAAL has an operator that looks for the highest value reachable by an automaton’s
clock or integer variable.

For example, taking the system from Section 5, with two CPUs (C0 and C1), we can
know if both processors always end up getting their variable (all paths lead to both automata
reaching the Done location, A♦(C0.Done && C1.Done)), or the longest time it would take for
one of them to do so (what is the maximum value the clock can reach before the automaton
reaches its Done location, sup{not C0.Done}: C0.x).

N. Sensfelder, J. Brunel, and C. Pagetti 18:17

program_line_t program_200 [11] =
{

{ INSTR_STORE , 1},
{ INSTR_STORE , 2},
{INSTR_LOAD , 1},
{ INSTR_STORE , 1},

{INSTR_LOAD , 2},
{ INSTR_STORE , 2},
{INSTR_LOAD , 1},
{ INSTR_STORE , 1},

{INSTR_LOAD , 2},
{ INSTR_STORE , 2},
{INSTR_END , 0}

};

Figure 23 Program Model 200.

program_line_t program_201 [11] =
{

{ INSTR_STORE , 3},
{ INSTR_STORE , 4},
{INSTR_LOAD , 3},
{ INSTR_STORE , 3},

{INSTR_LOAD , 4},
{ INSTR_STORE , 4},
{INSTR_LOAD , 3},
{ INSTR_STORE , 3},

{INSTR_LOAD , 4},
{ INSTR_STORE , 4},
{INSTR_END , 0}

};

Figure 24 Program Model 201.

7.1 Exposing Interference
Using such properties, we are able to expose the interference in a number of fashions. The
example we will take for showcasing them is that of a dual core on which two instances of
the program modeled by Figure 23 are running.

Counting Hits & Misses: An easy metric to measure is the number of cache hits
and misses for each address. This can be achieved by simply looking at the state of
the memory element upon reception of a core’s request, and increasing the right integer
variable accordingly (much like in Section 5).
In the dual core example, this shows that each core has 2 cache hits and 3 cache misses
for the first address; one core has 2 cache hits and 3 cache misses for the second address,
whereas whereas the other has 1 cache hit and 4 cache misses.
Counting All Occurrences: We can expose interference by counting all of its occur-
rences, without regards for whether it had an impact on the system’s execution or not.
In effect, this equates to having one integer variable per address and type of interference,
and increasing the right one according to what is described in Figure 8.
When applied to the dual core example, we can see that for the second address, both
caches have 4 occurrences of minor interference, 1 occurrence of demoting interference,
and 2 occurrences of expelling ones. For the first address, one cache has 4 minors, 1
demoting, and 1 expelling, whereas the other has 3 minors, no demoting, and 3 expelling.
Counting Meaningful Occurrences: Another pertinent information is an account of
the interference that actually has an impact on the system. Since we are already able to
detect any occurrence of the interference, we simply have to isolate the occurrences which
impacted the cache’s completion of core’s requests. To do so, each cache keeps track, for
each address, of whether an interference occurred since that address was last involved in
a core request. Thus, if the CPU requests a read on an address for which the expelling
flag is active, we consider that a meaningful expelling interference occurred.
Using this with the dual core example, we can see that, for the second address, both caches
are affected by the effects of 1 demoting and 1 expelling interference. For the first address,
one cache has the same and the other experiences the effects of 2 expelling interferences.
Execution Time Analysis: A more general metric is the execution time. Indeed, we
can measure the impact that cache coherence has on an application’s execution time. This
can be achieved by simply replacing all accesses to shared variables made by the target

ECRTS 2019

18:18 Modeling Cache Coherence to Expose Interference

application with accesses to new variables, setting the time impact of minor interferences
to nil, and having the framework compute the new maximum execution time so that it
can be compared to the one with shared variables left intact.
On the dual core example, we first measure the execution time with the system as is,
then replace the program running on one of the two cores by Figure 24 and set the cost
of minor interferences to zero. Our first analysis indicates a maximum execution time
of 1602 time units, the second one indicates 1050 time units. This implies that cache
coherence causes a 16 percent increase in execution time.
Alternatively, by keeping the time impact of minor interferences to its default value,
a WCET of these two programs lets us deduce how much time is lost due to minor
interferences. In the dual core example, the result is still 1050 time units, showing a lack
of negative effects from minor interference.

7.2 Model Validation
In addition, we can assert that the behavior of our model does indeed correspond to what
we expect. The successful verification of all these properties gives us a reasonable confidence
in the validity of the protocol used in our model. The validation of the chosen timing
parameters, however, would still require a few judicious benchmarks.

Programs Always Terminate: By checking that all possible execution paths lead all
cores to the Terminated location, we ensured that there are no deadlocks in our model.
No Incompatible States: As stated in Section 1, there should never be two cache
controllers simultaneously having writing access to the same memory element. Thus, we
checked that if a cache controller is in a state where it may write to a memory element,
then the others are not in a state where they may read that memory element.
Values Are Always Up-To-Date: Another point stated in Section 1 is that the values
in cache should be up-to-date. We verified that it is the case in our model by creating a
version in which the exact value of each memory element is taken into account. Using a
shared variable to keep track of the expected system-wide value, we tested that every
time an action (either read or write) was taken on a memory element, it the local copy
of that memory element had a value equal to the system-wide one. This is a standard
property to validate coherency protocol [10, 19].

8 Related Works

WCET Analysis for Single-Core: The authors of [9] introduce METAMOC, a
UPPAAL-based framework for modular WCET analysis of programs running on single-
core processors. It transforms program binary executables into timed automata, one for
each function of the program. These programs are simplified. For example, a conditional
jump may be removed if it would lead to less instructions being executed. This is justified
by the assumption that the more instructions there are, the longer the execution time
is (the reverse of which is called a time anomaly). METAMOC supports instruction
pipelines, which are modeled using five timed automata (fetch, decode, execute, memory,
and writeback). These five automata have to be manually made for the targeted archi-
tecture. Caching is also supported, and requires a similar attention the architecture’s
specifics. As it is intended for single-core architectures, METAMOC obviously does not
have any concept of cache coherence. We are, however, taking a very similar approach to
tackle our problematic.

N. Sensfelder, J. Brunel, and C. Pagetti 18:19

The work in [6] also shares similarities with [9], as UPPAAL is used to estimate WCET for
programs running on single core processors with pipeline and cache, in what is presented
as a modular framework. It attempts to improve on the weaknesses of METAMOC by
replacing the value analysis based control flow graphs with program slicing. In effect,
statements that do not affect dynamic jump addresses are replaced with nop (i.e. “do
nothing”) operations. In [7], they address the state explosion issue.
WCET Analysis for Multi-Core with Private Caches: Readers can refer to [17] for
an overview of Multi-Core WCET Analysis. [16], proposes a UPPAAL-based framework
to estimate the WCET of applications running on a multi-core processor. They consider
the delays caused by contention on the interconnect and a private instruction cache for
each core (data caches are not considered). They perform analysis on the memory blocks
pertinent to the instructions of the program. A memory block may contain one or more
instruction. For each instruction, they are only interested in whether it: is always found
in the cache; is always found except on the first access; is never found in the cache; is
undecided. They have defined a timed automaton to model each of these possibilities
(modeling the need for interconnect access, time to read the memory blocks, and updates
to the cache). They consider programs as control flow graphs in which each node is a
memory block. As such, they model each program by a single timed automaton based
on the control flow graph, but in which each instruction has been replaced by one of
the aforementioned timed automata corresponding to its impact. Their paper presents
models for two types of interconnects: TDMA and FCFS, which control the order the
bus can be accessed by the timed automata modeling the instructions. Cache coherence
is not addressed.
WCET Analysis for Multi-Core with Shared Caches: The authors of [8] focus
on the estimation of WCET on multi-core processors. Their point of interests are the
delays caused by hierarchical caches, the use of a shared cache, and the interconnect.
They do not use UPPAAL, but instead model the applications as task-dependency graphs
and perform computations to estimate the WCET. Their approach starts by analyzing
how the L1 caches are accessed, to remove elements that are sure to always be present
from further consideration. The other accesses are dependent on both the content of the
L2 cache, and access to the bus. The content of the L2 cache depends on which tasks
are running, which in turns, depends on bus access time access. To resolve the circular
dependency, they propose an iterative approach: starting by considering the worse case
scenario in which all tasks interfere, they estimate the running time of the tasks, which
lets them remove any interference between two tasks whose running time are disjoint,
and start over until a fix point is reached. Data caches are not taken into account and
are assumed to have no effect on the calculations. Cache coherence is not addressed.
The authors of [29] study the impact of a shared cache (including data caches) on
execution time. To do so, they represent each program as an address flow graph, in which
edges correspond to instruction, and vertices correspond to the state of the cache and its
access history. They actually build a combined cache conflict graph, which is pretty much
the combination of each core’s address flow graph into a single graph. Cache coherence
is not addressed.
The work done in [13] has similarities with ours, as it uses UPPAAL to calculate WCET
of programs running on multi-core processors. Their focus is not on cache coherence, but
it does feature some, as write requests lead to the invalidation of the memory element in
the other caches.

ECRTS 2019

18:20 Modeling Cache Coherence to Expose Interference

Cache Coherence Protocol Comparison: The authors of [2] compare the efficiency of
common snooping-based cache coherence protocols. To do so, they described a multi-core
processor and the cache coherence protocols in Simula. Much like ours, the programs
running on this simulation are described as a succession of memory related instructions.
However, they do not use explicit addresses for these instructions. Instead, they have
defined system-wide weights to regulate the probability of an instruction to be applied
on a private memory element (i.e. a memory element the cache is the sole user of) or a
shared block (i.e. a memory element used by multiple blocks). Thus, cache coherence is
addressed, but only in a very broad context. Indeed, whereas our work focuses on the
impact of cache coherence on specific applications on a specific architecture, the cache
coherence protocol comparison made by the authors of [2] provides a general idea of
which protocol is more fitted for which type of application.
Predictable Cache Coherence: An alternative to trying to predict how cache coher-
ence is going to behave is to use a kind of cache coherence designed to be predictable.
[24] lists the cache coherence related latencies that need to be known before predictability
of the protocol can be achieved. Its authors argue that write-through, update-based
protocols (i.e. writes are propagated to other caches and to the memory) can be made to
be predictable.
[14] presents PMSI, a variation on the MSI protocol that uses a TDM bus to achieve
predictability. Emission of coherence queries and is restricted to a core’s TDM slots.
As a result, a cache does not suffer from interference during its own TDM slots. [21]
expands on this by introducing HourGlass, which allows separate handling of critical
and non-critical cores. HourGlass uses timers to allow cores to hold access to a memory
element for a predefined time duration. The evaluation of queries that would remove
an access currently protected a timer are delayed until its time is up. Both PMSI and
HourGlass require hardware modification, which prevents them from being used in a
context that relies on COTS.

9 Conclusion and Future Work

When using cache coherence, the execution of a program running on a core is affected by
the execution of the programs running on the other cores. Because of this, analysis of the
execution time becomes much more difficult. In this paper, we categorized the types of
interference that cache coherence induces: minor interference, caused by the handling of
queries irrelevant to the cache controller; demoting interference, when an external event
forces the loss of writing rights; and expelling interference, when an external event forces
eviction of a cache line.

We also presented timed automata as a way to model cache coherence so that this
interference can be studied and exposed. For this purpose, we also showed and explained our
current model for the analysis of cache coherence, as well as the hypotheses made for that
model to be applicable.

We are also working on a tool to automatically switch which MSI variant (MESI, MOSI,
MOESI, MESIF) is used by the model. We also intend to add another type of instruction
to programs soon, adding more non-determinism to the model by having a INSTR_CALC
instruction that causes the CPU to wait for any amount of time in a given range. Lastly, we
have planned to perform a benchmark comparison on the Keystone TCI6630K2L [23] from
Texas Instruments to further validate our approach.

Our current model was tested with up to 6 cores. We are working on its scalability issues,
and intend to make use of SAT/SMT [3] to tackle this limitation.

N. Sensfelder, J. Brunel, and C. Pagetti 18:21

References
1 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126(2):183–

235, April 1994. doi:10.1016/0304-3975(94)90010-8.
2 James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a

Multiprocessor Simulation Model. ACM Trans. Comput. Syst., 4(4):273–298, September 1986.
doi:10.1145/6513.6514.

3 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Handbook of
Satisfiability, chapter Satisfiability Modulo Theories, pages 825–885. IOS Press, 2009.

4 Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal, pages 200–236.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. doi:10.1007/978-3-540-30080-9_7.

5 Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. Deterministic Execution
Model on COTS Hardware. In Proceedings of the 25th International Conference on Architecture
of Computing Systems (ARCS’12), pages 98–110, 2012.

6 Franck Cassez and Jean-Luc Béchennec. Timing Analysis of Binary Programs with UPPAAL.
In 13th International Conference on Application of Concurrency to System Design, ACSD
2013, pages 41–50. IEEE Computer Society, July 2013. doi:10.1109/ACSD.2013.7.

7 Franck Cassez and Pablo González de Aledo Marugán. Timed Automata for Modelling
Caches and Pipelines. In Rob J. van Glabbeek, Jan Friso Groote, and Peter Höfner, editors,
Proceedings Workshop on Models for Formal Analysis of Real Systems, MARS 2015, Suva, Fiji,
November 23, 2015., volume 196 of EPTCS, pages 37–45, 2015. doi:10.4204/EPTCS.196.4.

8 Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling Shared Cache and
Bus in Multi-cores for Timing Analysis. In Proceedings of the 13th International Workshop on
Software & Compilers for Embedded Systems, SCOPES ’10, pages 6:1–6:10, New York, NY,
USA, 2010. ACM. doi:10.1145/1811212.1811220.

9 Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and Kim Guld-
strand Larsen. METAMOC: Modular Execution Time Analysis using Model Checking. In Björn
Lisper, editor, 10th International Workshop on Worst-Case Execution Time Analysis (WCET
2010), volume 15 of OpenAccess Series in Informatics (OASIcs), pages 113–123, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. The printed version of
the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.
doi:10.4230/OASIcs.WCET.2010.113.

10 Giorgio Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. In
Proceedings of the 12th International Conference on Computer Aided Verification, CAV ’00,
pages 53–68, London, UK, UK, 2000. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=647769.734088.

11 Philip Enslow, Jr. Multiprocessor Organization - a Survey. ACM Comput. Surv., 9(1):103–129,
March 1977.

12 Sylvain Girbal, Xavier Jean, Jimmy le Rhun, Daniel Gracia Pérez, and Marc Gatti. Determin-
istic Platform Software for Hard Real-Time systems using multi-core COTS. In 34th Digital
Avionics Systems Conference (DASC’15), 2015.

13 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards WCET
Analysis of Multicore Architectures Using UPPAAL. In 10th International Workshop on
Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages
101–112, 2010. doi:10.4230/OASIcs.WCET.2010.101.

14 Mohamed Hassan, Anirudh M. Kaushik, and Hiren D. Patel. Predictable Cache Coherence
for Multi-core Real-Time Systems. In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2017, Pittsburg, PA, USA, April 18-21, 2017, pages 235–246,
2017. doi:10.1109/RTAS.2017.13.

15 Xavier Jean, David Faura, Marc Gatti, Laurent Pautet, and Thomas Robert. Ensuring
robust partitioning in multicore platforms for IMA systems. In 31st Digital Avionics Systems
Conference (DASC’16), 2012.

ECRTS 2019

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/6513.6514
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1109/ACSD.2013.7
http://dx.doi.org/10.4204/EPTCS.196.4
http://dx.doi.org/10.1145/1811212.1811220
http://dx.doi.org/10.4230/OASIcs.WCET.2010.113
http://dl.acm.org/citation.cfm?id=647769.734088
http://dl.acm.org/citation.cfm?id=647769.734088
http://dx.doi.org/10.4230/OASIcs.WCET.2010.101
http://dx.doi.org/10.1109/RTAS.2017.13

18:22 Modeling Cache Coherence to Expose Interference

16 M. Lv, W. Yi, N. Guan, and G. Yu. Combining Abstract Interpretation with Model Checking
for Timing Analysis of Multicore Software. In 2010 31st IEEE Real-Time Systems Symposium,
pages 339–349, November 2010. doi:10.1109/RTSS.2010.30.

17 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël, Godelieve Goossens, Sebastian Altmeyer,
and Robert I. Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time
Systems. Technical report, Grenoble INP/Ensimag/Verimag, 2018.

18 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A Predictable Execution Model for COTS-Based Embedded Systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium RTAS 2011,
pages 269–279, 2011.

19 Fong Pong and Michel Dubois. A New Approach for the Verification of Cache Coherence
Protocols. IEEE Trans. Parallel Distrib. Syst., 6(8):773–787, August 1995. doi:10.1109/71.
406955.

20 Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

21 Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, and Hiren D. Patel. HourGlass:
Predictable Time-based Cache Coherence Protocol for Dual-Critical Multi-Core Systems.
CoRR, abs/1706.07568, 2017. arXiv:1706.07568.

22 V. Suhendra, T. Mitra, and A. Roychoudhury and. WCET centric data allocation to scratchpad
memory. In 26th IEEE International Real-Time Systems Symposium (RTSS’05), pages 10
pp.–232, December 2005. doi:10.1109/RTSS.2005.45.

23 Texas Instruments. TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip. Techni-
cal Report SPRS893E, Texas Instruments Incorporated, 2013.

24 Sascha Uhrig, Lillian Tadros, and Arthur Pyka. MESI-Based Cache Coherence for Hard
Real-Time Multicore Systems. In Luís Miguel Pinho Pinho, Wolfgang Karl, Albert Cohen, and
Uwe Brinkschulte, editors, Architecture of Computing Systems – ARCS 2015, pages 212–223,
Cham, 2015. Springer International Publishing.

25 L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on predictability for time
constrained embedded software. In Design, Automation and Test in Europe, pages 600–605
Vol. 1, March 2005. doi:10.1109/DATE.2005.183.

26 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-case
Execution-time Problem - Overview of Methods and Survey of Tools. ACM Transactions
Embedded Computing Systems, 7(3):36:1–36:53, May 2008.

27 Reinhard Wilhelm and Jan Reineke. Embedded systems: Many cores - Many problems. In 7th
IEEE International Symposium on Industrial Embedded Systems (SIES’12), pages 176–180,
2012.

28 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Mem-
ory bandwidth reservation system for efficient performance isolation in multi-core platforms.
In 19th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’13),
pages 55–64, 2013.

29 Wei Zhang and Jun Yan. Static Timing Analysis of Shared Caches for Multicore Processors.
JCSE, 6(4):267–278, 2012. doi:10.5626/JCSE.2012.6.4.267.

http://dx.doi.org/10.1109/RTSS.2010.30
http://dx.doi.org/10.1109/71.406955
http://dx.doi.org/10.1109/71.406955
http://arxiv.org/abs/1706.07568
http://dx.doi.org/10.1109/RTSS.2005.45
http://dx.doi.org/10.1109/DATE.2005.183
http://dx.doi.org/10.5626/JCSE.2012.6.4.267

Arbitration-Induced Preemption Delays
Farouk Hebbache
CEA, List, 91191 Gif-sur-Yvette, France
farouk.hebbache@cea.fr

Florian Brandner
LTCI, Télécom ParisTech, Université Paris-Saclay, France
florian.brandner@telecom-paristech.fr

Mathieu Jan
CEA, List, 91191 Gif-sur-Yvette, France
mathieu.jan@cea.fr

Laurent Pautet
LTCI, Télécom ParisTech, Université Paris-Saclay, France
laurent.pautet@telecom-paristech.fr

Abstract
The interactions among concurrent tasks pose a challenge in the design of real-time multi-core
systems, where blocking delays that tasks may experience while accessing shared memory have to be
taken into consideration. Various memory arbitration schemes have been devised that address these
issues, by providing trade-offs between predictability, average-case performance, and analyzability.
Time-Division Multiplexing (TDM) is a well-known arbitration scheme due to its simplicity and
analyzability. However, it suffers from low resource utilization due to its non-work-conserving nature.
We proposed in our recent work dynamic schemes based on TDM, showing work-conserving behavior
in practice, while retaining the guarantees of TDM. These approaches have only been evaluated
in a restricted setting. Their applicability in a preemptive setting appears problematic, since they
may induce long memory blocking times depending on execution history. These blocking delays may
induce significant jitter and consequently increase the tasks’ response times.

This work explores means to manage and, finally, bound these blocking delays. Three different
schemes are explored and compared with regard to their analyzability, impact on response-time
analysis, implementation complexity, and runtime behavior. Experiments show that the various
approaches behave virtually identically at runtime. This allows to retain the approach combining
low implementation complexity with analyzability.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Dynamic Time-Division Multiplexing, Predictable Computing, Multi-Crit-
icality, Preemption

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.19

1 Introduction

Multi-core architectures pose many challenges in real-time systems, which arise from the
manifold interactions between concurrent tasks during their execution – most notably accesses
to shared main memory. These interactions make it difficult to tightly bound the Worst-
Case Execution Time (WCET) of real-time tasks. Systematically considering the worst-case
behavior of an arbitration policy with regard to memory accesses in the presence of concurrent
requests is too pessimistic, as it leads to low resource utilization at runtime. Considering
Mixed-Criticality (MC) systems is one approach to increase resource utilization. In an MC
system, tasks with different levels of criticality, and even non-critical tasks, execute on the
same multi-core architecture. The non-critical tasks in such a system may then exploit
resource budgets that have not been fully consumed by critical tasks – which rarely fully

© Farouk Hebbache, Florian Brandner, Mathieu Jan, and Laurent Pautet;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:farouk.hebbache@cea.fr
mailto:florian.brandner@telecom-paristech.fr
mailto:mathieu.jan@cea.fr
mailto:laurent.pautet@telecom-paristech.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Arbitration-Induced Preemption Delays

exploit the worst-case budgets reserved for them. However, most MC systems take decisions
only at the level of task scheduling. Our aim here is, hence, to apply similar ideas to the
arbitration of memory requests in order to improve memory utilization.

Amongst the memory arbitration policies, Time-Division Multiplexing (TDM) divides
time into slots and allocates them to cores to exclusively access memory. Using TDM, the
accesses within a slot no longer depend on whether concurrent requests exist or not. TDM
provides predictable behavior and improves composability by bounding access latencies and
guaranteeing bandwidth independently from other cores. However, the access latency of a
memory request when using TDM now depends on the scheduling of these time slots, even if
they are unused. Such unused slots appear when the owner of a TDM slot does not (yet) have
a memory request ready to be served. Under a strict TDM scheme, these unused slots cannot
be reclaimed by another task. This non-work-conserving behavior of TDM often leads to low
resource utilization. This problem is further amplified as the number of cores increases,
leading to longer TDM schedules. Another source of TDM pessimism stems from the length
of TDM slots, expressed in clock cycles, which have to be longer than the worst-case latency
for handling memory requests. The arbiter consequently has to wait for the beginning of
the next TDM slot, even when memory requests complete earlier than this worst-case latency.
Resulting in low average-case performance and poor memory utilization.

To overcome these limitations, we recently explored novel dynamic TDM-based arbitration
schemes [13]. In that work, we envisioned that the task’s criticality level should not only
be used by the task scheduler, but also by the memory arbiter. The arbiter associates a
deadline with each memory request of a critical task, which corresponds to the end of its
corresponding slot under a strict TDM scheme. The deadline then allows to compute the
slack time of a critical task, i.e., the amount of time that the task’s last request completed
before the request’s deadline. This slack time then can be exploited by the arbiter, under
certain conditions, to favor requests of non-critical tasks over requests from critical tasks, to
freely reorder memory requests, and to schedule memory requests at the granularity of clock
cycles – instead of being confined to TDM slots. The resulting arbiter significantly reduces the
memory idle time, compared to a regular TDM arbiter. The improvements go up to a factor
of 350 and even remain above a factor of 50 under high memory load [13].

However, the proposed dynamic TDM-based arbitration techniques face issues under a
preemptive execution model. In this paper, we define two memory delays induced by
preemptions, the memory blocking delay and the misalignment delay, which may lead to
significant jitter and increase task response times. Even worse, due to non-critical tasks,
the memory blocking delay may be unbounded in some circumstances. We explore three
different approaches to analyze the impact of these arbitration-induced preemption delays
considering preemptive [18] (SHDp) and non-preemptive [1] (SHDw) memory requests. Finally,
we propose a new technique (SHDi) to resolve these issues by adapting (priority or rather)
criticality inheritance known from scheduling theory. This allows us to manage and easily
bound these preemption delays. Our evaluation shows that our new approach successfully
limits the worst-case preemption delays experienced at runtime under our dynamic TDM-
based arbitration schemes. At the same time we see virtually no impact on average-case
performance and success rate. Note, in addition, that the proposed technique is not limited
to the dynamic TDM-based arbitration schemes and is also applicable to other arbitration
techniques, e.g., arbitration based on fixed priorities [1].

The remainder of this paper is organized as follows. Section 2 describes the considered
system model. In Section 3, we briefly review the dynamic TDM-based arbitration schemes.
Section 4 identifies the different delays caused by preemptions in dynamic TDM-based arbitra-

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:3

tion strategies, while Section 5 proposes three preemption models to handle these delays.
In Section 6, we evaluate our contributions and demonstrate the improvements in terms
of blocking delay reductions and success rates on randomly generated task sets. Section 7
presents related work, before concluding in Section 8.

2 System Architecture

2.1 Task Model
In our previous work [12, 13] on TDM-based dynamic memory arbitration, we assumed a
restricted task model, where each core executes a single independent and periodic task without
preemption. Here, we relax these assumptions to allow multiple tasks to be scheduled on each
core under a fixed-priority preemptive scheduler. We assume a finite task set Γ consisting
of independent and periodic tasks. Each task τi ∈ Γ is assigned a fixed priority1 i and is
characterized by the tuple τi = (Ci, Ti, Di,Mi), representing the task’s WCET, its period,
its implicit deadline, and finally its worst-case number of memory requests respectively. Each
task generates an infinite sequence of jobs at runtime, which, in turn, generate sequences
of memory requests τi,j where j ≤ Mi. Requests are separated by a dynamic number of
processor clock cycles (see Section 3). This distance represents the amount of computation
performed between the completion of request τi,j and the issuing of the consecutive request
τi,j+1 or the job’s termination. This allows us to model any dynamic job execution (even
input-dependent) considering a deterministic hardware platform (see below).

Ultimately we aim at mixed-criticality systems, where tasks can be associated with
multiple WCETs depending on the system’s execution mode (criticality). This work focuses
on the impact of the memory arbitration scheme on such MC systems, more precisely the
interplay between dynamic TDM-based arbitration and task preemptions. We consider two
classes of tasks: critical tasks τ c

i and non-critical tasks τnc
i . However, we currently only

consider a single Ci value per task in our task model, i.e, we assume a multi-criticality
system. Our experiments are based on simulations to evaluate memory arbitration under
realistic circumstances. We here assume that the WCETs (Ci) and deadlines (Di) of critical
tasks are firm and have to be respected under all circumstances. An execution thus fails if
a critical task misses its deadline. Non-critical tasks, on the other hand, are executed in a
best-effort manner by the underlying computer platform and memory arbitration scheme.
During execution, they may exceed their WCET budget, potentially causing deadline misses –
for themselves or other (critical) tasks. Handling timing failure events, in particular switching
critical tasks to a different behavior as in MC scheduling [5], is out of the scope of this work.
It will be addressed in future work. For the formal analysis, based on response-time analysis
(RTA) [2], we simply require (for now) firm WCETs and deadlines for non-critical tasks in
order to bound the response times of critical tasks.

2.2 Hardware Architecture
We assume a hardware platform consisting of m cores connected via a central arbiter to a
shared main memory. The memory requests dynamically generated by the jobs at runtime
thus compete for this shared resource. We assume that each core is equipped with internal
caches. Memory requests thus represent transfers of cache blocks resulting from cache misses.

1 A larger task index indicates higher priority.

ECRTS 2019

19:4 Arbitration-Induced Preemption Delays

In order to ensure that the aforementioned distances between requests are independent
from the execution of other tasks, we assume composable compute cores [9] and the absence
of any external events that may interfere with the execution of a core. The interference
between the independent tasks consequently stems from accesses to the shared memory only
and, in particular, depends on the employed memory arbiter.

For simplicity, we assume that all cores, the memory bus/arbiter, and the memory itself
operate at the same clock speed. We thus generally refer to time in clock cycles.

2.3 Scheduling Policy
On multi-core platforms, task scheduling can be performed globally among all/a subset of
the available m cores [16] or in a partitioned manner [3, 4]. Partitioned scheduling statically
assigns each task onto a fixed core, while global scheduling allows tasks to migrate among
cores dynamically. In principle both of these scheduling policies could be combined with
the approaches proposed here. For brevity, we limit our discussion on partitioned scheduling
using fixed priorities.

This enables the scheduler on each core to determine at any moment in time and in advance,
which task will need to be activated next on its core. Instead of triggering preemptions
periodically, we assume that the scheduler programs a hardware component that signals the
need to preempt the currently running task to both the core and the memory arbiter. This
ensures that preemption handling does not interfere with the execution on a given core – up
until to the moment when a preemption is triggered. We assume that each core is equipped
with such a component, separately tracking the next upcoming preemptions stemming from
a non-critical or a critical task. This also ensures that the preemption mechanism does not
interfere with the computation (distance) between memory accesses.

3 Background

This section provides a brief introduction to our recent work on TDM-based dynamic memory
arbitration as well as well-established iterative techniques for response-time analysis.

3.1 TDM-Based Dynamic Memory Arbitration
TDM-based arbitration is popular due to its simplicity and predictability, despite the fact
that strictly applying TDM often results in under-utilization of resources. Our recent work on
dynamic TDM-based memory arbitration schemes [12, 13] addresses resource under-utilization
by (a) introducing two classes of memory requests (critical and non-critical) and (b) by
exploiting slack to allow for more dynamic scheduling decisions as long as the deadlines of
critical requests can be met safely.

The key idea of the dynamic TDM with slack counters (TDMds) arbitration scheme [12] is
to interpret TDM scheduling as driven by deadlines. Under strict TDM each request completes
precisely at the end of the request owner’s next TDM slot, which can be seen as a deadline.
The deadlines of TDMds similarly correspond to the end of TDM slots. However, instead
of systematically delaying requests until their respective deadlines, requests are processed
dynamically in any order – as long as deadlines are met. This allows to compute the slack
time of a critical task, i.e., by how much the task’s last request completed earlier w.r.t.
the request’s deadline. This slack is stored in dedicated counters and allows to prioritize
non-critical requests, i.e., spend the slack of a critical task in favor of a non-critical task.
Note, however, that slack accumulated within one job of a task naturally is not preserved for

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:5

subsequent jobs. Slack counters are consequently reset at job start. Also note that deadlines
are ensured for critical requests only, while non-critical requests are processed in a best-effort
manner. The dynamic processing allows non-critical tasks, for instance, to reclaim otherwise
unused TDM slots.

A critical request may arrive earlier than expected under a strict TDM scheme if the
request’s owner accumulated some slack before. The request’s deadline would then also
appear earlier than under strict TDM if one would simply consider the request’s issue date to
compute the deadline, i.e., the end of the next TDM slot after the issue date. Under TDMds
the deadline of a new critical request is instead computed from a delayed issue date, which
is derived by adding the previously accumulated slack to the request’s original issue date.
Given enough slack this may push the request’s deadline into the future, i.e., past the next
TDM slot, and provide additional freedom to the arbiter. This also ensures that the deadlines
under TDMds exactly correspond to the deadlines/completion dates that would be observed
under strict TDM. This holds for any dynamic execution of any program [13].

The TDMds arbiter keeps critical requests in a priority queue (ordered by increasing
deadlines) and non-critical requests in a simple FIFO. At the beginning of each TDM slot the
arbiter schedules the top-most request from one of these two queues in order to be processed
by the shared memory. The arbiter prioritizes non-critical requests over critical requests, as
long as the deadline of the top-most critical request is not at the end of the current TDM slot.
This ensures that non-critical requests can quickly access memory as long as critical requests
have enough slack, while also guaranteeing that deadlines of critical requests are met.

An extension of TDMds, called dynamic TDM with early release (TDMer) even goes a step
further by performing arbitration at the level of (bus) clock cycles instead of TDM slots [13].
The key insight is that memory can begin the processing of a request at any moment (even
in the middle of a slot), if the arbiter can ensure that subsequent critical requests do not
miss their deadlines. Two cases can be distinguished. Firstly, consider that memory is idle
during TDM slot i, while a request by the owner of the upcoming TDM slot i+ 1 is pending.
This request can immediately be processed, as the TDM slot i is unused and the request is
guaranteed to finish before its deadline, which may not lie before the end of TDM slot i+ 1.
The processing cannot interfere with requests of other slots (e.g., i+ 2). A similar argument
can be built for arbitrary pending requests, if the owner of the upcoming TDM slot has enough
slack (e.g., more than a slot length). In this case, the processing of another request can start
in the middle of the unused TDM slot i and complete in slot i+ 1. This may, in the worst-case,
delay a request of the owner of slot i+ 1. However, the deadline of the delayed request, under
all circumstances, falls into the next TDM period, due the use of the delayed issue date to
derive its deadline. Exploiting these two cases, TDMer was shown to be work-conserving even
under high memory load, when every job of critical tasks is granted an initial slack counter
value of a single slot length [13] (not shown in the following example).

Figure 1 shows an execution of a task set under TDMer, considering two critical tasks (τ c
0 ,

τ c
1) and a non-critical task (τnc

2). All tasks execute on separate cores, which issue critical
and non-critical requests on behalf of the respective tasks. Only critical tasks have dedicated
TDM slots (C0, C1) that take 8 clock cycles each and 16 clock cycles for both, corresponding
to the TDM slot length Sl and the TDM period P respectively. The non-critical task thus
may only access memory during unused slots or when the slack of critical tasks permits.
The visualization of a request includes the request’s issue date () and deadline (). The
processing of a request by the main memory is indicated using a solid green hatched bar
(), whose right edge indicates the request’s completion date. The memory is not always
busy, memory idling is indicated by a red hatched bar (). The deadline may lie after the

ECRTS 2019

19:6 Arbitration-Induced Preemption Delays

1 2 3 4 5 6 7 8 9 10 11

C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1

τc,0∆
0,0 τc,10∆

0,1 τc,11∆
0,2

τc,0∆
1,0 τc,10∆

1,1 τc,8∆
1,2

τnc
2,0 τnc

2,1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

Figure 1 Dynamic arbitration using TDMer of critical tasks τ c
0 and τ c

1 and non-critical task τnc
2 .

request’s completion date, which then generates slack for the task issuing the request. The
value of the slack counter when issuing a request is displayed as a superscript. For instance,
task τ c

0 accumulated 11 cycles of slack due to the early completion of requests τ c
0,0 and τ c

0,1.
When issuing request τ c

0,2 this slack (superscript 11∆) pushes the request’s deadline beyond
the next TDM slot owned by τ c

0 (beyond slot 9 to 11). The arbiter is no longer tied to TDM
slots and can choose one of the issued requests, independently from the actual owner of the
slot and the alignment with the TDM schedule – given enough slack. This is illustrated by
the non-critical request τnc

2,1, which is issued in TDM slot 5. The request first has to wait for
the ongoing request τ c

1,1 to complete. Then, τ c
0,1 is prioritized, since τ c

0 is the owner of the
upcoming TDM slot 7. At the moment when the processing of τnc

2,1 starts, τ c
0 is the owner of

the upcoming slot 7, but has no pending request. However, any request issued by τ c
0 is known

to have a deadline that lies beyond slot 7, due to its slack counter value of 11. It is thus safe
to begin the processing of τnc

2,1. We can also see that the non-critical request is prioritized
over the pending critical request τ c

1,2, as τ c
1 has accumulated 8 cycles of slack. Note, that the

slack counters are all reset for subsequent job instances of the critical tasks τ c
0 and τ c

1 .

3.2 Worst-Case Response Time Analysis

We assume that schedulability is verified using a variant of Response-Time Analysis (RTA) [2]
based on the usual recurrence equations:

Rn+1
i = Ci +Bi +

∑
∀j∈hp(i)

⌈
Rn

i

Tj

⌉
Cj (1)

The recurrence equations are initialized to R0
i = 0 and then iteratively reevaluated until a

fixed point is reached. Ri then indicates the response time of task i, having a WCET bound
Ci (see Section 2). In addition, the impact of preemptions by tasks with higher priority than
i (j ∈ hp(i)) is considered via their WCET bounds Cj and periods Tj . Bi indicates an upper
bound on the time task i may be blocked (e.g., by semaphores). However, we will ignore this
part of the equation in the remainder of this paper and instead consider additional delays
potentially caused by the memory arbitration policy.

The dynamic memory arbitration approaches presented above may induce additional
preemption delays and jitter that need to be considered during schedulability analysis in
order to be certain that the tasks actually meet their deadlines safely. Both issues are caused
by the way memory requests are processed as explained in the following section.

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:7

(a) Three different scenarios of τi+1 preempting τi

at release dates (1), (2), and (3).
(b) Alignment of task τi w.r.t. to its TDM slot C1
without (top) and with preemption (bottom).

Figure 2 Preemption effects w.r.t. TDM memory arbitration.

4 Arbitration-Induced Preemption Delays

We now investigate the issues raised by TDM-based arbitration in general and our dynamic
schemes [12, 13] in particular, considering the preemptive system model from Section 2. For
brevity, we will focus on preemption costs caused by the arbitration policy and ignore other
costs due to the scheduler invocation, context switching, pipeline flushes, or Cache-Related
Preemption Delays (CRPD). From here on, we use the term preemption cost to refer to the
costs related to the arbitration policy only.

4.1 Preemption Costs for strict TDM Arbitration

Subfigure 2a depicts three preemption scenarios of a task τi+1 that preempts a lower-priority
task τi at different release dates (red vertical lines). The first case (1) refers to a preemption
occurring while the CPU performs computations (gray area). The task then can be preempted
right away (ignoring potential pipeline stalls). The second case (2) refers to a situation where
the preemption occurs while the CPU stalls, waiting to access the shared memory. While it
would be possible to abort the pending memory request and immediately preempt τi [18],
this requires modifications to the processor pipeline. In the last case (3), the preemption
occurs while the memory actually processes a memory request. It would theoretically be
possible to also abort the request at this stage – requiring modifications to the processor
pipeline and throughout the entire memory hierarchy. A simpler alternative for cases (2)
and (3), both in terms of hardware and timing analysis, would be to avoid aborting the
request and simply wait for its completion [1].

Clearly, all three cases may induce preemption-related delays that need to be bounded
and taken into consideration by the schedulability test (in addition to classical CRPD). The
worst case delay experienced for case (1) is trivial and only depends on the characteristics of
the processor pipeline. Case (3) similarly is analyzable and can be bounded by the worst-case
memory latency, e.g., a TDM slot length [1]. The analysis of case (2) is more complex, since the
behavior potentially depends on the other tasks in the system and the memory arbitration
policy. We first analyze the timing behavior for strict TDM and later extend this analysis to
the dynamic TDM-based approaches.

I Definition 1. Under a system with fixed-priority preemptive scheduling, the memory
blocking delay (MB) denotes the number of clock cycles that a higher-priority task τh is
blocked from executing on its core after its release, due to a pending memory request by a
lower-priority task τl (l < h).

ECRTS 2019

19:8 Arbitration-Induced Preemption Delays

However, the blocking time does not cover all preemption-related delays of strict TDM.
Recent work [14, 19] proposed sophisticated WCET analyses, which exploit the relative
alignment of the program execution with regard to the TDM schedule, without preemption. A
preemption may impact the program’s relative alignment – unless task scheduling itself is
aligned with the TDM period.

I Definition 2. The misalignment delay (MA) denotes the number of additional clock
cycles that the first memory access of a task takes, w.r.t. the worst case considered by the
WCET analysis, when resuming after a preemption.

Subfigure 2b depicts such a misalignment delay under strict TDM for a request of a critical
task τi, owning TDM slot C1. Case 1 (top) illustrates an execution without preemption, where
a request is issued right at the beginning of the task’s TDM slot at time instant tnp. The
program’s alignment w.r.t. the TDM schedule is ideal and the request is processed immediately.
The second case (bottom) shows the same execution of τi after a preemption by τi+1. In the
absence of other side-effects, such as CRPDs, the same computations are performed by τi up
to its first memory request (as indicted by the red dotted lines), which now is issued at time
instant tp. However, the task’s alignment w.r.t. the TDM schedule was slightly shifted due to
the preemption. The request thus has to wait longer than expected by the WCET analysis,
which assumed an execution without preemption.

4.2 Preemption Costs for Dynamic TDM-based Arbitration
The dynamic TDM-based arbitration schemes [12, 13] inherit the memory blocking and
misalignment delays from strict TDM. Figure 3 shows 3 tasks executing on 2 cores that share
slots C0 and C1 within a TDM period under the TDMds arbitration scheme. The mapping
between tasks and cores is indicated by matching colors (yellow and orange). Critical
tasks τ c

0 and τ c
1 are executed on the same core, which results in a preemption of task τ c

0 by
τ c

1 (). Non-critical task τnc
2 executes alone on the other core. A core has a dedicated TDM

slot when it executes a critical task (τ c
1 , τ c

0), while the slots of cores executing non-critical
tasks (here only τnc

2) are shared by the running non-critical tasks (see the next section).
Lets assume that tasks cannot be preempted while performing a memory access [1]. Task τ c

0
then blocks the higher-priority task τ c

1 after its release in TDM slot 4. The preemption’s
blocking time, highlighted by the blue cross-hatched bar (), appears to be larger than
the worst-case memory access latency under strict TDM. The latency of request τ c

0,2 amounts
to two entire TDM periods and τ c

1 starts executing only after its completion. The reason for
this long delay is the high slack counter value (∆16) for request τ c

0,2, combined with the
interference of the non-critical task τnc

2 running on the other core. The non-critical task

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C0 C0 C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1 C1 C1

τnc
2,0 τnc

2,1 τnc
2,2 τnc

2,3

τc,0∆
1,0 τc,0∆

1,1

τc,0∆
0,0 τc,8∆

0,1 τc,16∆
0,2 τc,0∆

0,3 τc,0∆
0,4

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Slots

Figure 3 Impact of slack accumulation on the memory blocking time for TDMds.

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:9

consumes all the slack of the critical request τ c
0,2, delaying its completion, and thus also

delaying the preemption. The situation is potentially even worse when a non-critical task
is preempted during a memory request. Recall that non-critical requests are executed in a
best-effort manner. The blocking time caused by such a request may even be unbounded.

The example illustrates that preemption-induced delays need to be taken into consid-
eration during system analysis. Note that the same reasoning (see Section 4.1) used for
strict TDM to establish the misalignment delay bound applies for all dynamic TDM-based
approaches considered here. Next, we investigate three different approaches to integrate the
memory blocking delay due to preemptions for our dynamic TDM-based arbitration schemes
by extending response-time analysis. In addition, we compare the approaches w.r.t. their
implementation complexity and actual runtime behavior.

5 Arbitration-Aware Preemption Techniques

Let us assume that memory requests are never aborted – cf. cases (2) and (3) from
Subfigure 2a. In this case, preemptions have to be delayed until a potentially ongoing request
completes. Under strict TDM arbitration, this corresponds to the usual worst-case memory
access latency w.r.t. the TDM period P and TDM slot length Sl, which can be bounded by [1]:

MBTDM = P + Sl − 1 (2)

As demonstrated in Section 4, this bound is not valid for TDMds and TDMer, due to additional
delays caused by the slack counters. While it certainly appears feasible to determine
bounds on the slack counter values of tasks, it can be expected that these bounds would
be rather pessimistic. In this section, we first explore this option to simply wait [1] due to
its uncomplicated hardware implementation and later refer to it as SHDw (for ScHeDuling
wait). Next, we explore an alternative option (SHDp, for ScHeDuling preempt), which assumes
that ongoing requests can be preempted as long as they are not yet processed by the main
memory [18] – cf. case (2) from Subfigure 2a. Finally, we propose a new solution (SHDi, for
ScHeDuling inheritance) that tries to limit the impact of the slack counters by imposing a
(new) deadline on an ongoing request when the core’s timer signals a preemption by a critical
task, i.e., the request of the preempted task inherits the criticality of the preempting task.
However, before discussing these preemption models, we first need to refine the architecture
model considering the fact that the cores can be shared by the tasks. Finally, we show how
these models can be integrated into a response time analysis.

5.1 TDM Schedule and Preemption
We assume a multi-core platform with m cores and partitioned fixed-priority scheduling
on each core. Critical and non-critical tasks may reside on the same core – without any
restrictions on priority assignment. Notably, non-critical tasks may have a higher priority
than critical tasks.

This raises the question on how TDM slots are assigned among cores/tasks. We propose a
pragmatic solution for this work, but other alternatives are obviously possible. Since each
core that executes at least one critical task may require a TDM slot at some moment, we
assign one TDM slot to each such core. However, the slot is only reserved exclusively for that
core when it actually executes a critical task, i.e., the core is considered critical. Cores that
do not execute a critical task at a specific moment are themselves non-critical. The TDM slots
that are not reserved by critical cores are marked as NC and shared among all running tasks
on all cores in the system. This strategy is illustrated by Figure 4, showing a system with

ECRTS 2019

19:10 Arbitration-Induced Preemption Delays

(a) All TDM slots are reserved by critical cores. (b) One reserved TDM slot, two are shared (NC).

Figure 4 Hardware architecture.

4 cores. The TDM schedule consists of three slots (C0, C1, and C2), since only three of the
cores may execute critical tasks (red). In Subfigure 4a, these three cores execute critical
tasks and are thus themselves critical. In Subfigure 4b, on the other hand, only a single
critical task executes. Consequently two of the TDM slots are marked NC and shared by all
running tasks. Note, that non-critical tasks on core 3 may suffer from starvation on the
depicted platform. For the formal analysis we require that at least one TDM slot is marked NC
whenever a non-critical task executes in order to rule starvation out. This can be seen as a
form of hierarchical arbitration similar to the work by Paolieri et al. [18] on Round-Robin. We
thus define a larger TDM period for non-critical tasks using an application-specific constant k
(e.g., k represents the number of non-critical cores divided by the number of NC slots when
applying FIFO arbitration among non-critical requests): Pnc = k · P .

Also, recall that we assume that preemptions are pre-programmed through a timer-like
hardware component (see section 2.3). Using these components, we can control under which
conditions preemptions are actually triggered, e.g., to block the current preemption until an
ongoing memory request has completed or to preempt a pending request, et cetera.

5.2 Scheduling with Request Waiting (SHDw)

This strategy simply waits that an on-going memory request finishes [1]. Compared to
strict TDM, the memory blocking time can however be considerably larger due to the slack
counters. Consequently, a timing analysis technique is required that allows to bound the
maximum slack counter value of a critical task τ c

i . A trivial bound ∆max
i can be computed

by multiplying a task’s worst-case number of memory requests (Mi) with the maximum slack
possibly accumulated per request: Mi ·(P −Sl) (TDMds) orMi ·(P +Sl−1− l) (TDMer), where
l indicates the minimum memory latency. The resulting bound appears highly pessimistic,
but more precise bounds are out of the scope of this work.

To bound the memory blocking time of a critical task τ c
i two cases need to be considered.

Firstly, the blocking delay of preempting some lower-priority non-critical tasks (lpnc(i)) has
to be considered via MBnc,SHDw

i – which is similar to Equation 2 for strict TDM. Secondly, the
blocking delay of preempting another lower-priority critical task (lpc(i)) has to be considered
via MBc,SHDw

i . Here, the maximum slack counter values (∆max
l) over all lower-priority critical

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:11

tasks τ c
l , has to be considered in addition to the cost of a single memory access as follows:

MBc,SHDw
i =

{
0 if lpc(i) = ∅,
P + Sl − 1 + max

l∈lpc(i)
∆max

l else

MBnc,SHDw
i =

{
0 if lpnc(i) = ∅,
Pnc + Sl − 1 else

MBSHDw
i = max(MBc,SHDw

i , MBnc,SHDw
i) (3)

The main advantage of this approach is its simplicity in terms of hardware complexity.
The timer-like component triggering the preemption on behalf of the task scheduler simply
has to detect whether a memory request is pending and, if so, delay the preemption until the
request completes. The downside is that it requires precise information on slack counters, so
a complex analysis that appears to go against a simple analysis, main advantage of TDM.

5.3 Scheduling with Request Preemption (SHDp)
An alternative approach is to preempt ongoing memory requests. We consider that requests
can only be preempted while pending at the arbiter, but not while being processed by
the memory [18]. Consequently, preemptions are still delayed when a request is currently
processed by the memory (cf. case 3 of Subfigure 2a). The memory blocking delay for critical
and non-critical tasks then can trivially be bounded by the worst-case memory latency, which
in turn is bounded by Sl:

MBSHDp
i = Sl − 1 (4)

However, the preempted task later has to reissue the memory request that was preempted,
which causes additional delays that need to be accounted for in its response time. A trivial
bound for this reissuing delay is the TDM period P , i.e., the maximum latency of a pending
request after the preemption. Note that there is no need to consider the slack counter value,
since it is already covered by the WCET. Furthermore, the misalignment delay always applies
to the preempted/reissued request. The misalignment delay thus already covers this overhead
(see Subsection 5.5).

Figure 5 shows an execution of the same task set introduced in Subsection 4.2 using
TDMds and the SHDp preemption scheme. This time request τ c

0,2, waiting to access the
memory, is immediately preempted by task τ c

1 and is reissued once τ c
0 resumes execution.

The request τ c
0,2 thus appears twice in the figure, once before the preemption (aborted) and

once thereafter (reissued). Note that the slack counter, due to the request’s preemption,
diminished from 16∆ to 13∆.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C0 C0 C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1 C1 C1

τnc
2,0 τnc

2,1 τnc
2,2 τnc

2,3

τc,0∆
1,0 τc,0∆

1,1

τc,0∆
0,0 τc,8∆

0,1 τc,16∆
0,2

τc,13∆
0,2

τc,8∆
0,3

τc,8∆
0,4

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Slots

Figure 5 Memory blocking delays considering request preemption (SHDp).

ECRTS 2019

19:12 Arbitration-Induced Preemption Delays

This solution appears to be ideal in terms of preemption costs. However, preempting
ongoing memory requests can be complex to implement. The processor pipeline has to be
extended such that the memory access instruction and all instructions that started execution
after it can be aborted. All these instructions have to be reexecuted and thus are not
allowed to cause side-effects on the processor state. Such side-effects are, unfortunately, very
common. Examples include branch prediction and instruction cache accesses, which occur
early in processor pipelines and whose side-effects cannot (easily) be reverted. These effects
consequently need to be taken into consideration through dedicated timing analyses. Similarly
extensions are required on the memory hierarchy, including caches (aborting cache updates),
the memory bus (cache coherence), and the memory arbiter itself. It thus appears preferable
to explore an alternative approach that strikes a compromise in terms of implementation
and analysis complexity.

5.4 Scheduling with Criticality Inheritance (SHDi)

The aim of this approach is to provide a means to control the impact of the slack counters and
the interference from non-critical tasks on the memory blocking delay of preempting tasks.
The dynamic TDM-based arbiters considered here are all based on the notion of deadlines.
The idea of criticality inheritance is to impose a new deadline on a pending request at the
moment when a critical task is released, regardless of the criticality of the preempted task.
The preemption is still delayed – as before under the SHDw scheme. However, the blocking
time is bounded by the newly imposed deadline.

This new deadline is computed in the same way as ordinary request deadlines. The
only difference is that the issue date is replaced by the release date of the preempting task
and that the current value of the slack counter, belonging to the preempted task, is always
considered to be 0 (TDMds) or Sl (TDMer). This yields a deadline that certainly falls within
the current or the next TDM period, and thus effectively bounds the memory blocking delay.
An important aspect is that the slack counter for TDMer needs to be Sl for this computation,
and not 0. This is required for the simple reason that, without slack, the deadline could
fall on the immediate next TDM slot. Under TDMer this could cause a clash with an ongoing
request from another core that was granted access by the arbiter based on the – then valid –
slack counter value of the preempted task. Setting the slack counter to Sl thus ensures that
any ongoing request can finish before the request from the preempted task is handled.

At runtime two scenarios can be distinguished, depending on the criticality of the
preempted task. Firstly, if another critical task is preempted it is clear that its pending
critical request already carries a deadline. Replacing this deadline is easy, it suffices to signal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C0 C0 C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1 C1 C1

τnc
2,0 τnc

2,1 τnc
2,2 τnc

2,3

τc,0∆
1,0 τc,0∆

1,1

τc,0∆
0,0 τc,8∆

0,1 τc,16∆
0,2

τc,16∆
0,3

τc,16∆
0,4

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Slots

Figure 6 Memory blocking delays considering criticality inheritance (SHDi).

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:13

to the memory arbiter that the recomputation of the deadline is needed using the current
cycle, i.e., the release of the preempting task. Non-critical requests do not carry a deadline
and may be held in a structure separated from critical requests (e.g., a FIFO for TDMer).
The request thus needs to be taken out of this structure and reissued as a critical request
with the appropriate deadline. Finally, the core has to reclaim its TDM slot, which up to now
has been marked non-critical, i.e. NC . These operations only concern the arbiter and do not
impact the processor pipeline or other parts of the memory hierarchy.

Assuming that both cases require a constant amount of clock cycles tid to associate the
ongoing request with the newly imposed deadline, we obtain the following bound for the
memory blocking delay under SHDi for TDMds and TDMer respectively:

MBSHDids
i = P + Sl − 1 + tid (5)

MBSHDier
i = P + 2 · Sl − 1 + tid (6)

Note that the second Sl in Equation 6 stems from the non-zero slack counter, which ensures
that all requests can access memory without clashes. We currently do not apply criticality
inheritance when the preempting task is non-critical.2 This falls in the domain of defining
a (sensible) task model, which is not the subject of this work. We plan to address this in
future work, along with the handling of timing failure events, in order to fully implement
mixed-criticality systems. Non-critical tasks currently implicitly follow the SHDw strategy.

Figure 6 again shows an execution of the same task set as in the previous examples, this
time under TDMds combined with SHDi. Critical task τ c

1 is released while critical request τ c
0,2

is pending. The pending request has its original deadline at the end of TDM slot 7 (). As
before, it is subject to interference from task τnc

2 on the other core, which otherwise would be
prioritized due to the far deadline of τ c

0,2. However, the preemption imposes a new deadline
at the end of the immediate next TDM slot (slot 5). The arbiter thus has to prevent the
interference from the other core and has to assign the next slot to the preempted task –
effectively bounding the memory blocking delay.

This approach combines a reasonable memory blocking delay bound with moderate
implementation complexity and simple analysis. The hardware modifications only concern
the memory arbiter that reacts to the core’s timer, providing the release date and the
criticality of the preempting task.

5.5 Misalignment Delays
Strict TDM as well as the dynamic TDM-based schemes all suffer from misalignment delays,
highlighted in Section 4, for the same reasons. The delay appears when the task’s misalignment
at the first memory access after a preemption is larger w.r.t. the task’s own TDM slot as
determined by the WCET analysis [14, 19]. In the worst case the associated memory request
misses the task’s TDM slot by a single cycle, i.e., the issue date (TDM) or delayed issue date
(dynamic TDM) miss the slot by a cycle. The request consequently completes in the worst case
in the next TDM period, resulting in the following bound for all the TDM-based approaches:

MATDM = MATDMds = MATDMer = P (7)

The delay can be larger for non-critical tasks (Pnc = k · P). Also note that the bound
is smaller than the worst-case memory access latency of strict TDM (P + Sl − 1), since the
memory wait time of to the first TDM slot is accounted for in the WCET (highlighted in beige

in Subfigure 2b).

2 Deadlines could easily be imposed for preemptions by non-critical tasks.

ECRTS 2019

19:14 Arbitration-Induced Preemption Delays

5.6 Response-Time Analysis
The memory blocking (MB) and misalignment delay (MA) bounds, as described above for
the preemption mechanisms SHDw, SHDp, and SHDi as well as the arbitration policies TDMds
and TDMer, can now be integrated into the recurrence equations of the response-time analysis.

With regard to a task τi, the misalignment delay may appear every time any task τj

(i < j) resumes after a preemption. This is independent of whether τj directly preempts τi

or some other task. The misalignment delay bound MA of the respective arbitration scheme
thus needs to be added for every potential preemption that might occur.

Every preempting critical or non-critical task τi (i > 0) may experience the memory
blocking delay before starting to execute. The bound thus can be seen as part of the task’s
WCET, i.e., the ongoing memory request of the preempted task is essentially considered to
be executed by the preempting task. We thus add MB to those parts of the equation that
represent a WCET (Ci, Cj):

Rn+1
i = (Ci + MBi) +

∑
∀j∈hp(i)

⌈
Rn

i

Tj

⌉
((Cj + MBj) + MA) (8)

For the SHDw and SHDp schemes, independently of the TDM policy, but also for SHDi when
combined with TDMds, the term MBj can thus be safely removed from this equation. The
latency of the ongoing memory request, owned by the preempted task, is indeed counted
twice: once for the preempting task (MBj) and the preempted task (Ci). This is illustrated
by Figure 6, were the blue area (), representing the MBj term for task τ c

1 , ends at the
deadline of request τ c

0,2 and thus the Ci of τ c
0 . For TDMer under SHDi, the imposed deadline

may be greater than the original deadline of the ongoing request, since the imposed deadline
is recomputed with a slack counter of Sl. The term MBj is thus pessimistic and a possible
refinement is to subtract the minimal memory latency l from this term.

6 Experiments

We use simulation to evaluate the runtime behavior of the various preemption mechanisms.
Before discussing the results, we provide details on the experimental setup.

6.1 Experimental Setup
We developed a simulation engine that is able to simulate a dynamic execution trace of an
entire multi-core platform. Traces are specified according to the system/hardware model
from Sections 2 and 5. The engine includes a fixed-priority preemptive task scheduler, and
various memory arbitration schemes (TDMfs, TDMds, TDMer), which can be combined with the
aforementioned preemption mechanisms (SHDw, SHDp, SHDi). The TDMfs arbiter represents a
variant of strict TDM, where non-critical tasks may only reclaim unused slots, and serves as a
baseline for our measurements.

The engine can be configured in terms of the number of (non-)critical cores, TDM slots in a
period (at least 1 per critical core), and (non-)critical tasks. The task scheduler respects user-
defined core affinities that can be assigned freely to tasks. However, for our experiments each
task is assigned to a single fixed core only (partitioned scheduling). Tasks are represented
by a sequence of jobs, which, in turn, represent dynamic execution traces consisting of
memory accesses that are separated by a fixed amount of computation time (cf. the various
examples). This allows to simulate the same execution trace of a task set using different
platform configurations and compare the results. Note that the framework does not model
the actual computations, only the time needed for computations.

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:15

6.1.1 Task Set Generation
The UUniFast algorithm [6] allows to randomly generate a task set based on two parameters
n and U , where n specifies the total number of tasks and U the total utilization desired. As
we assume partitioned scheduling, we apply the algorithm for each core of the multi-core
system separately and combine the resulting tasks, with the corresponding affinities, into a
final task set Γ.

For each core, UUniFast first generates n different utilization values {u0, u1, . . . , un−1},
one for each task τi. The sum of these utilization numbers yields the core utilization U ≤ 1.
From the utilization parameters, the task periods Ti are generated. Note that we constrain
our system to harmonic periods, which ensure that hyper-periods and simulation times
remain reasonable. The period of the first task T0 is 20ms, while all other periods are
random multiples of T0, obtained from a uniform random distribution in the range [1, 5].
The individual task periods are hence in the range from 20ms to 100ms. From the task
periods and the utilization numbers as well as the task set’s hyper-period h, we then derive
the worst-case execution time of each task Ci = Ti · ui, the implicit deadline Di = Ti, and
the number of jobs for each task Ji = h/Ti. Finally, task priority and criticality (on critical
cores) are randomly assigned when the final task set Γ is constructed.

6.1.2 Traffic Generator
The simulation framework then requires a memory trace for each job of the generated task
set, i.e., the (time) distances between consecutive memory accesses (see Section 2). We use
the same traffic generator as in our previous work [13]. We thus only provide a brief overview
here and invite interested readers to consult the original paper for additional details.

The goal of the traffic generator is to provide synthetic memory access patterns repres-
enting cache misses of some random dynamic program execution. The generator is thus
calibrated against actual dynamic execution traces collected using the MiBench benchmark
suite [8] on the Patmos processor architecture [20]. Note, however, that the generated memory
accesses have to be consistent with the task’s WCET (Ci). The generator thus tracks the
evolution of a WCET bound as it proceeds. For each newly generated memory access this
WCET bound is incremented by the worst-case memory access latency, which is bounded by
P −1+Sl cycles. Note that the same bound is applied for critical and non-critical tasks, even
if no TDM slot is allocated to a core executing only non-critical tasks. The generator simply
stops once the bound reaches the task’s Ci. The resulting execution times thus rather closely
approach the tasks’ WCETs. The memory load is higher than can be expected in the average
case. Note that we capture this effect in our experiments by varying the total system load.

6.1.3 TDM Schedule
The duration of a TDM slot length Sl, corresponds to an upper bound of the memory access
latency previously determined on a Terasic DE-10 Nano evaluation board that is equipped
with an Intel Cyclone V SoC-FPGA and 1GB of DDR3 memory. A single Patmos processor
was implemented in the FPGA and performed memory accesses in isolation via the SoC’s
multi-port memory controller running at 100 Mhz (the remaining components of the SoC were
deactivated). At any moment a single memory access was in-flight during these measurements.
Depending on the internal state of the memory controller and DDR memory (refresh, open
page, etc.), we measured a memory latency between 21 and 40 cycles. In the simulation runs
we thus consider a TDM slot length of 40 cycles. For TDMer, which is able to exploit memory
requests completing faster than the TDM slot length, we simulate a varying latencies using a
uniform random distribution in the range [21, 40] clock cycles.

ECRTS 2019

19:16 Arbitration-Induced Preemption Delays

6.1.4 Simulation Setup
Using the task set and memory traffic generators, we perform simulations with varying
numbers of cores (2, 4, 8, 16), critical cores (power of 2 in the range from 1 to the number of
cores), and the normalized system utilization (steps of 10 from 10% to 100%, normalized
to the number of cores). The number of tasks is randomly chosen between the number of
cores and 32 tasks, while the number of critical tasks is randomly chosen between 1 and the
number of tasks assigned to a critical core.

The TDM schedule assigns a single slot to each critical core, where each slot takes Sl = 40
cycles. The period P hence ranges from 40 to 640 cycles. The slack counters are reset at
every job start to 0 or 40 cycles for TDMds and TDMer respectively. For each of these system
configurations, 10 simulation runs were performed using 10 different task sets, which results
in 12 600 runs.

6.2 Results for Preemption Schemes
We start by analyzing the memory blocking delays on the simulated task sets with the three
preemption mechanisms considered. Subfigure 7a shows the cumulative average memory
blocking delay over an entire simulation run for the SHDw preemption mechanism considering
the TDMfs, TDMds, and TDMer arbitration policies.3 As expected, the cumulative overhead
can become very large going up to 1.6 · 106 cycles for both TDMfs and TDMds (showing
virtually identical results), while only reaching 3 · 103 cycles for TDMer– despite the fact that
preemptions are rare events.4 We observed a task set executing on 16 cores experiencing
502ms (an average of 31ms per core) of blocking delays within 590ms of total execution
time (assuming a clock speed of 100 Mhz). The other approaches, SHDp and SHDi, have
significantly lower overhead compared to SHDw (not shown due to space considerations).

Since non-critical tasks execute in a best-effort manner, their memory blocking delays
are expected to potentially become quite large, in particular, when preempting another
non-critical task. Subfigure 7b thus highlights the average maximum memory blocking delay
experienced by non-critical tasks across utilization levels for SHDw in combination with either
TDMfs, TDMds, or TDMer. As can be seen, individual preemptions consistently take thousands
of cycles, which corresponds to about 18ms (maximum observed memory blocking delay).
As these events are still rare, some volatility in the simulations is visible through the large
drop at 90% utilization. Note that typically non-critical tasks represent the majority of the
computation and memory load of the generated task sets. Consequently, non-critical tasks
experience most of the preemptions as well as the associated memory blocking delays.

Finally, Subfigure 8a shows the maximum memory blocking delays experienced by critical
tasks considering all three preemption mechanisms in combination with TDMfs, TDMds, and
TDMer. The delays are normalized w.r.t. the TDM period in order to avoid penalizing simulation
configurations with shorter periods. These delays are representative of the upper bounds
defined in Subsection 5. Note that the results for TDMfs are virtually identical to those for
TDMds and are thus not shown.

As expected, the SHDp scheme presents very low memory blocking delays, as can be
seen in more detail in Subfigure 8b. Under TDMds this preemption mechanism leads to no
noticeable memory blocking. This is explained due to the non-work-conserving nature of this
arbitration technique, which leads to long memory wait times and consequently increases

3 Each point represents an average value over all schedulable task sets at the corresponding normalized
utilization.

4 On average, there are 7 preemptions per run, with a maximum number of 288 preemptions in rare cases.

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:17

20 40 60 80 100
Utilization

10 1

100

101

102

103

104

105

106
M

em
or

y
bl

oc
ki

ng
 d

el
ay

 (c
yc

le
s)

TDMfs
TDMds
TDMer

(a) Average cumulative memory blocking delay over
all tasks.

20 40 60 80 100
Utilization

10 1

100

101

102

103

104

105

M
em

or
y

bl
oc

ki
ng

 d
el

ay
 (c

yc
le

s)

TDMfs
TDMds
TDMer

(b) Average maximum memory blocking delay for
non-critical tasks.

Figure 7 Memory blocking delays across normalized system utilization for SHDw.

the probability of preempting a pending request. The situation is different for TDMer. Due
to its high efficiency, the probability of preempting a pending request is much lower. It is
instead more likely to preempt a request that is currently processed by the memory, resulting
in moderate memory blocking delays for SHDp. Note that these delays may never exceed a
single TDM period, notably for configurations with a single critical core. The highest memory
blocking delays are observed for SHDw under TDMds. The memory delay amounts to up to
16 TDM periods for a configuration with 2 cores, where both cores are critical (i.e., P = 80
cycles). The TDMer arbiter fares slightly better, with a maximum of about 12 TDM periods.
This demonstrates the high overhead experienced even by critical tasks when using SHDw.

The SHDi scheme, as expected, falls in-between the two other schemes. In combination
with TDMds the memory blocking delay is at most one TDM period. However, starting from
50% utilization, we can notice that TDMer exhibits slightly worse results compared to TDMds.
Nevertheless, the preemption cost for TDMer always stays below 2 TDM periods (highlighted
by Subfigure 8b) – notably for configurations with a single critical core (cf. Equation 6).

These result confirm the intuitive expectation that the overhead induced by the three
preemption schemes is strictly increasing from SHDp over SHDi to SHDw. However, this is
not always the case due to the extra costs induced by the slack counters under TDMer (a
counter-example was encountered for a larger slot length of Sl = 100, while evaluating the

20 40 60 80 100
Utilization

0
2
4
6
8

10
12
14
16

M
em

or
y

bl
oc

ki
ng

 d
el

ay
 (T

DM
 p

er
io

d) TDMdsSHDw
TDMdsSHDp
TDMdsSHDi
TDMerSHDw
TDMerSHDp
TDMerSHDi

(a) Maximum memory blocking delay w.r.t. the
arbitration and preemption schemes.

20 40 60 80 100
Utilization

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
em

or
y

bl
oc

ki
ng

 d
el

ay
 (T

DM
 p

er
io

d)

(b) Zoom on the plot from the left, focusing on
blocking delay up to 2 TDM periods.

Figure 8 Maximum memory blocking delay for critical tasks across normalized system utilization.

ECRTS 2019

19:18 Arbitration-Induced Preemption Delays

impact of varying the memory access latency5). Recall that the newly imposed deadline
during a preemption is computed considering a minimum slack of a single TDM slot length (Sl)
in order to avoid clashes on the immediate next TDM slot (see Subsection 5.4). Accounting for
this additional runtime overhead ε ≤ Sl, we can derive a relationship between the various
preemption schemes: MBSHDp

i ≤ MBSHDi
i ≤ MBSHDw

i + ε.
To conclude, the arbitration-induced preemption costs for critical tasks can be very

high at runtime when the SHDw scheme is used, while it is similar for the SHDi and the
SHDp schemes. This means that other criteria, such as predictability and implementation
complexity, can be used to choose among the schemes. SHDi appears to strike a reasonable
balance between these two criteria. Besides, the memory blocking delays are lower using
TDMer than when using TDMfs or TDMds.

6.3 Results for (Preemptive) Arbitration Schemes
We now evaluate the success rate of our preemptive arbitration policies. The success ratio
refers to the number of task sets6 that were schedulable for each level of utilization, i.e.,
simulation ended its execution without any deadline miss for critical tasks. Subfigures 9a, 9b,
and 9c depict this success rate for our 3 arbitration policies under SHDw, SHDp, and SHDi
respectively. Results are shown considering the same task set for all combinations. Comparing
the impact of the preemption schemes across all utilization levels, little difference among them
is visible. This can be explained by the number of preemptions, which is small compared to
the total execution time of each simulation. As seen in Section 6.2, individual preemptions
may however cause considerable overhead.

Overall, there was no significant difference in the success ratio of TDMfs and TDMds, except
for a normalized utilization above 70%. In that case, we can notice better results for TDMds,
regardless of the preemption technique. This is different from the results obtained in our
previous work [12, 13], which shows an improved memory utilization for TDMds compared to
TDMfs. In this previous work, the observed improvement reached up to a factor of 3.3 [13] in
terms of memory utilization at low total system utilization, which then leveled off considerably
at higher load. It appears that, TDMds improves the memory utilization mostly for situations
where system load is not jeopardizing schedulability, explaining the small impact on success
rates. However, regardless of the preemption techniques, TDMer shows better results at
almost all utilization levels. This can be explained by the decoupling from TDM slots and

5 Results not shown due to space constraints.
6 Each point represents an average value over 124 runs.

20 40 60 80 100
Utilization

40

50

60

70

80

90

100

Su
cc

es
s R

at
io

 (%
)

TDMfs
TDMds
TDMer

(a) SHDw.

20 40 60 80 100
Utilization

40

50

60

70

80

90

100

Su
cc

es
s R

at
io

 (%
)

TDMfs
TDMds
TDMer

(b) SHDp.

20 40 60 80 100
Utilization

40

50

60

70

80

90

100

Su
cc

es
s R

at
io

 (%
)

TDMfs
TDMds
TDMer

(c) SHDi.

Figure 9 Average schedulability success ratio through normalized system utilization.

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:19

20 40 60 80 100
Utilization

0.2

0.4

0.6

0.8

1.0

Av
g.

 c
rit

ica
l j

ob
 e

xe
cu

tio
n

tim
e

(c
yc

le
s) 1e6

TDMfs
TDMds
TDMer

(a) Critical jobs execution time.

20 40 60 80 100
Utilization

0

1

2

3

4

5

6

Av
g.

 n
on

-c
rit

ica
l j

ob
 e

xe
cu

tio
n

tim
e

(c
yc

le
s)

1e7

TDMfs
TDMds
TDMer

(b) Non-critical jobs execution time.

Figure 10 Average jobs execution times with varying normalized system utilization using SHDi.

the fine-grained dynamic memory arbitration. This effectively renders the TDMer scheme
work-conserving. These results confirm those previously obtained considering a restricted
task model (one task per core), where the observed memory utilization improvements for
TDMer were considerable, even at high utilization levels [13]. TDMer thus has a relevant impact
on the success rates.

As the most reasonable choice for a preemption scheme is SHDi, Subfigures 10a and 10b
depict the average execution time of critical and non-critical tasks respectively using this
scheme. The relative gain by TDMer is particularly visible for the average execution time of
non-critical tasks at high utilization levels. For instance, at 100% system utilization TDMer
achieves an improvement of 36%. Clearly concluding that TDMer improves the execution
times of critical and non-critical tasks, and thus can reduce the probability of missing the
deadline of critical tasks. Additionally, as preemptions are rare events, the runtime impact of
the different preemption schemes is small compared to the impact of the arbitration policy.

7 Related work

TDM strategies have been used at different design levels of real-time systems. Tabish et
al. [21] split tasks into execution phases with and without main memory activities, which are
scheduled in order to avoid contention by applying TDM. TDM is applied at the task scheduling
level, with slot sizes accommodating the longest phase. Phases without main memory activity
may only access data stored in a scratchpad. Preemption-related delays due to memory
accesses thus cannot appear.

The slot shifting approach by Fohler [7], applies a similar idea as our dynamic arbitration
schemes, but to task scheduling. The granularity of slots allocated to tasks is consequently
much larger than individual memory requests considered here. Memory blocking delays may
be present, depending on the underlying platform, even when only a single core is considered,
but not taken into consideration.

ECRTS 2019

19:20 Arbitration-Induced Preemption Delays

Altmeyer et al. [1] worked on a compositional framework for multi-core response time
analysis. Among other things, they explored the impact of different arbitration schemes
(Fixed-Priority, FIFO, Round-Robin and TDM) and defined upper-bounds for the arbitration
induced preemptions delays. They assume that all requests sent to the bus are non-preemptive,
which is similar to our SHDw approach. Their results only apply to strict TDM and not to
our dynamic TDM-based approaches. However, their bounds for Fixed-Priority arbitration
seem to be incorrect. Suppose a higher-priority task τi preempts another tasks τj (j < i).
The bus interference experienced by an ongoing request of τj may then block τi, i.e., the
memory blocking delay. The proposed equation [1, Eq. 12], however, misses interference
from requests issued by a higher priority task τk running on another core, where j < k < i.
This cannot be resolved easily using the framework of Altmeyer et al. – except if a scheme
similar to SHDi is applied. In that case it suffices to consider the ongoing request of the
preempted task in the context of the preempting task – via the term Sx

i (t).
Yonghui et al. skip unused slots in a TDM period, supporting variable-sized TDM slots [17].

Hassan et al. [11, 10] similarly propose a work-conserving variant of TDM along with a
technique to generate harmonic TDM schedules accommodating critical and non-critical tasks.
The approaches do not preserve the relative alignment of the program execution with the
TDM schedule, offset analyses [14, 19] thus cannot be applied. Preemption mechanism are not
explicitly discussed, it appears that a strategy similar to SHDp is envisioned by the authors.
Memory blocking delays exist and have not been analyzed previously. The bounds for strict
TDM appear to be applicable – except for preemptions of non-critical tasks in a harmonic TDM
schedule. Finally, it is unclear whether the TDM schedule can be changed in response to a
task preemption.

Paolieri et al. [18] propose a multi-core platform for mixed-criticality systems that is
equipped with a hierarchical Round-Robin arbiter, which always to prioritizes critical tasks. In
contrast to the approaches presented here, their arbiter is not able to exploit task criticalities
to improve memory utilization or to reduce the average execution time of non-critical tasks.
The authors envision a preemption scheme similar to SHDp, but do not analyze the preemption
costs. The ideas underlying Altmeyer’s analysis for Round-Robin and Fixed-Priority [1]
could be used to model the system.

Kostrzewa et al. [15] propose a mechanism, which provides latency guarantees for hard
real-time transmissions in a network-on-chip. For each critical task the amount of slack time
is computed off-line and programmed into a counter at the level of NoC interface at every
job start. Best-effort transmissions, similar to the dynamic arbiters considered here, may
then delay critical transmissions as long as slack is available. Task preemptions are then
considered for hard real-time and best-effort transmissions. Critical tasks may run out of
slack in the middle of a best-effort transmission which are thus preempted. A delay – similar
to the memory blocking delay – is taken into consideration to avoid exhausting the slack
budget before all best-effort transmissions are successfully suspended.

8 Conclusion

The work presented in this paper extends previous work on dynamic TDM-based memory
arbitration schemes by adding support for a preemptive execution model and by identifying
the limitations of such a system. We identify two sources of arbitration-induced preemption
delays, the memory blocking delay and the misalignment delay, and propose means to manage,
and finally bound these delays. While bounding the misalignment delay is straightforward,
limiting the memory blocking delay is more involved. We thus propose formal bounds for two

F. Hebbache, F. Brandner, M. Jan, and L. Pautet 19:21

obvious preemption schemes based on waiting and preemptable memory requests (SHDw and
SHDp). Additionally, we propose an alternative scheme (SHDi), which imposes new deadlines
for critical requests and leverages criticality inheritance when a critical task is blocked by a
non-critical request. The experimental results showed that the preemption mechanisms show
little difference at runtime, which allows us to select the best approach according to other
criteria, such as low implementation complexity and analyzability. The new SHDi approach
appears to offer the best trade-off in terms these criteria.

References

1 Sebastian Altmeyer, Robert I. Davis, Leandro Indrusiak, Claire Maiza, Vincent Nelis, and Jan
Reineke. A Generic and Compositional Framework for Multicore Response Time Analysis. In
Proceedings of the International Conference on Real Time and Networks Systems, RTNS ’15,
pages 129–138. ACM, 2015. doi:10.1145/2834848.2834862.

2 N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new scheduling
theory to static priority pre-emptive scheduling. Software Engineering Journal, 8:284–292,
1993.

3 S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic task systems.
In 26th IEEE International Real-Time Systems Symposium (RTSS’05), pages 9 pp.–329,
December 2005. doi:10.1109/RTSS.2005.40.

4 Sanjoy Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-constrained
sporadic task systems. IEEE Transactions on Computers, 55(7):918–923, July 2006. doi:
10.1109/TC.2006.113.

5 Alan Burns and Robert I. Davis. A Survey of Research into Mixed Criticality Systems. ACM
Comput. Surv., 50(6):82:1–82:37, November 2017. doi:10.1145/3131347.

6 P. Emberson, R. Stafford, and R.I. Davis. Techniques For The Synthesis Of Multiprocessor
Tasksets. In Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), pages 6–11, 2010.

7 G. Fohler. Joint scheduling of distributed complex periodic and hard aperiodic tasks in
statically scheduled systems. In Proc. Real-Time Systems Symposium (RTSS), pages 152–161,
Pisa, Italy, December 1995.

8 M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In Proc. of the Int.
Workshop on Workload Characterization, pages 3–14, 2001.

9 S. Hahn, J. Reineke, and R. Wilhelm. Towards Compositionality in Execution Time Analysis:
Definition and Challenges. SIGBED Rev., 12(1):28–36, 2015.

10 M. Hassan and H. Patel. Criticality- and Requirement-Aware Bus Arbitration for Multi-
Core Mixed Criticality Systems. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1–11, April 2016. doi:10.1109/RTAS.2016.7461327.

11 M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling DRAM memory accesses
for multi-core mixed-time critical systems. In 21st IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 307–316, April 2015. doi:10.1109/RTAS.2015.7108454.

12 F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Dynamic Arbitration of Memory Re-
quests with TDM-like Guarantees. In International Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems (CRTS’17), December 2017.

13 F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding the Shackles of Time-Division
Multiplexing. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 456–468, December
2018. doi:10.1109/RTSS.2018.00059.

14 T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Static Analysis of
Multi-core TDMA Resource Arbitration Delays. Real-Time Syst., 50(2):185–229, March 2014.

ECRTS 2019

http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1109/RTSS.2005.40
http://dx.doi.org/10.1109/TC.2006.113
http://dx.doi.org/10.1109/TC.2006.113
http://dx.doi.org/10.1145/3131347
http://dx.doi.org/10.1109/RTAS.2016.7461327
http://dx.doi.org/10.1109/RTAS.2015.7108454
http://dx.doi.org/10.1109/RTSS.2018.00059

19:22 Arbitration-Induced Preemption Delays

15 A. Kostrzewa, S. Saidi, and R. Ernst. Slack-based Resource Arbitration for Real-time Networks-
on-chip. In Proceedings of the Conference on Design, Automation & Test in Europe, DATE
’16, pages 1012–1017. EDA, 2016.

16 H. Leontyev and J. H. Anderson. Generalized Tardiness Bounds for Global Multiprocessor
Scheduling. In 28th IEEE International Real-Time Systems Symposium (RTSS 2007), pages
413–422, December 2007. doi:10.1109/RTSS.2007.33.

17 Y. Li, B. Akesson, and K. Goossens. Architecture and Analysis of a Dynamically-scheduled
Real-time Memory Controller. Real-Time Syst., 52(5):675–729, September 2016.

18 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and Mateo Valero.
Hardware Support for WCET Analysis of Hard Real-time Multicore Systems. In Proceedings
of the International Symposium on Computer Architecture, ISCA ’09, pages 57–68. ACM, 2009.
doi:10.1145/1555754.1555764.

19 Hamza Rihani, Matthieu Moy, Claire Maiza, and Sebastian Altmeyer. WCET analysis in
shared resources real-time systems with TDMA buses. In Proceedings of the International
Conference on Real Time and Networks Systems, RTNS ’15, pages 183–192. ACM, 2015.
doi:10.1145/2834848.2834871.

20 M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst, S. Karlsson, and
T. Thorn. Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach. In
Bringing Theory to Practice: Predictability and Performance in Embedded Systems, OASICS,
pages 11–21, 2011.

21 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Caccamo.
A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–11, April 2016.

http://dx.doi.org/10.1109/RTSS.2007.33
http://dx.doi.org/10.1145/1555754.1555764
http://dx.doi.org/10.1145/2834848.2834871

Fast and Effective Multiframe-Task Parameter
Assignment Via Concave Approximations of
Demand
Bo Peng
Department of Computer Science, Wayne State University, Detroit, MI, USA
et7889@wayne.edu

Nathan Fisher
Department of Computer Science, Wayne State University, Detroit, MI, USA
fishern@wayne.edu

Thidapat Chantem
Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
tchantem@vt.edu

Abstract
Task parameters in traditional models, e.g., the generalized multiframe (GMF) model, are fixed
after task specification time. When tasks whose parameters can be assigned within a range, such as
the frame parameters in self-suspending tasks and end-to-end tasks, the optimal offline assignment
towards schedulability of such parameters becomes important. The GMF-PA (GMF with parameter
adaptation) model proposed in recent work allows frame parameters to be flexibly chosen (offline)
in arbitrary-deadline systems. Based on the GMF-PA model, a mixed-integer linear programming
(MILP)-based schedulability test was previously given under EDF scheduling for a given assignment of
frame parameters in uniprocessor systems. Due to the NP-hardness of the MILP, we present a pseudo-
polynomial linear programming (LP)-based heuristic algorithm guided by a concave approximation
algorithm to achieve a feasible parameter assignment at a fraction of the time overhead of the
MILP-based approach. The concave programming approximation algorithm closely approximates the
MILP algorithm, and we prove its speed-up factor is (1 + δ)2 where δ > 0 can be arbitrarily small,
with respect to the exact schedulability test of GMF-PA tasks under EDF. Extensive experiments
involving self-suspending tasks (an application of the GMF-PA model) reveal that the schedulability
ratio is significantly improved compared to other previously proposed polynomial-time approaches
in medium and moderately highly loaded systems.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases generalized multiframe task model (GMF), generalized multiframe task model
with parameter adaptation (GMF-PA), self-suspending tasks, uniprocessor scheduling, mixed-integer
linear programming, concave approximation, linear programming

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.20

Acknowledgements We are grateful to the anonymous reviewers whose comments helped to signi-
ficantly improve our paper. This research has been supported in part by the US National Science
Foundation (Grant Nos. CNS-1618185, IIS-1724227, and CSR-1618979).

1 Introduction

A generalized multiframe (GMF) task, whose model [3] generalizes the multiframe task
model [16] (MF) and the sporadic task model, consists of a number of ordered frames where
each frame has its own execution time, relative deadline, and frame separation time (the
minimum interval between two frames’ release times). The GMF model generalizes the
sporadic model by using a set of ordered frames to represent an instance of a sporadic task.

© Bo Peng, Nathan Fisher, and Thidapat Chantem;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:et7889@wayne.edu
mailto:fishern@wayne.edu
mailto:tchantem@vt.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Fast and Effective Multiframe-Task Parameter Assignment

Instead of setting an identical implicit frame deadline and minimal separation time for each
frame as in the MF model, the GMF model assigns each frame an individual deadline and a
minimum frame separation time.

The multiframe models (GMF/MF) have many applications. For example, Andersson [1]
presented the schedulability analysis of flows in multi-hop networks comprising software-
implemented Ethernet switches according to the GMF model. Ding et al. [11] scheduled a set
of tasks with an I/O blocking property under the MF model. The self-suspension tasks [18]
can be represented using the GMF model but the problem size can be very large, e.g., in
automotive systems. In the keynote [7] of ECRTS 2012, Buttle has shown many scheduling
challenges as the number of ECUs in vehicles increases rapidly each year; there are more
than 100 ECUs nowadays and each task can easily have 50-300 functions. In such complex
systems, there are several self-suspension tasks (each consisting of multiple functions) and
their end-to-end latencies need to be maintained in distributed settings.

The GMF model increases flexibility compared to the sporadic and MF task models, and
all parameters in the GMF model are typically not mutable after task specification time.
However, frame parameters can be adjustable (under the constraints of task parameters) to
improve schedulability in applications such as the self-suspension tasks [20] and end-to-end
flows [19]. Frame parameters are mainly used to maintain execution order in such applications
(e.g., frame priorities in FP scheduling and frame deadlines in EDF scheduling [22]). In order
to optimally assign parameters to improve schedulability, Peng and Fisher [18] extended the
GMF model and presented the GMF with parameter adaptation model (GMF-PA). In the
GMF-PA model, frame deadlines and separations can be selected under a set of constraints.
In this flexible model, frame parameters are optimally assigned (towards schedulability)
offline for each frame under the MILP algorithms [18].

Although the GMF-PA model is more flexible, it has been shown that both the feasibility
and the parameter selection problems are very hard to solve. On the feasibility side, Ekberg
and Yi [12] proved that the feasibility of sporadic task systems remains coNP-complete under
bounded utilization. On the parameter selection side, the priority assignment of subtasks in
end-to-end task systems (originally the classical job-shop scheduling algorithm) has been
shown to be NP-hard [13]. The scheduling of self-suspending tasks (even for self-suspending
tasks with at most two frames) is NP-hard in the strong sense [21].

In order to address the feasibility test and parameter selection problem, Peng and
Fisher [18] gave an exact schedulability test of GMF-PA tasks when frame parameters
are integers. The test is based on mixed-integer linear programming (MILP) under EDF
scheduling in uniprocessor systems. A sufficient, MILP-based schedulability test was also
developed. Although this sufficient approximation algorithm [18] is quite efficient, it is
still MILP-based and thus may require exponential-time to solve in general. The goal and
contribution of this paper are to give an efficient linear programming-based algorithm that
can determine the feasibility and select the frame parameters of GMF-PA tasks.

The MILP-based algorithm contains a set of integer variables which form a set of staircase
functions/constraints (detailed in Section 5). To transform the MILP-based algorithm into a
LP-based algorithm, our idea is to use a set of linear functions to approximate all staircase
functions. As such, the selection of the slope values of the linear functions is directly related
to the schedulability of a system; if the slope values are not properly set, the linear functions
can grossly over-approximate, resulting in low schedulability ratio (the number of successfully
scheduled systems over the total tested).

In order to get a close approximation, we first use a set of concave functions that very
closely tracks the demand staircase functions to incur only a very small speed-up factor
compared to the MILP algorithm. Since there exist no known efficient methods to solve

B. Peng, N. Fisher, and T. Chantem 20:3

concave programming problems, we use the concave functions to guide the slope assignment
of linear functions in our iterative LP-based algorithm. That is, the LP algorithm runs
multiple times during which the algorithm adjusts the slopes of the linear functions based
on the concave functions. According to experiments, after a small number of iterations, the
LP-based algorithm can approach (or reach) the local optimal1. We apply the LP-based
algorithms to schedule self-suspending tasks under EDF scheduling in uniprocessor systems
as a test case.

Our Contributions:
We give a concave approximation algorithm based on the MILP algorithm and prove the
speed-up factor of the algorithm is (1 + δ)2 with respect to the exact schedulability test
of GMF-PA tasks under EDF scheduling on uniprocessors. The positive constant δ is a
user-defined constant which can be made arbitrarily close to zero.
Since there is no known tractable way to solve a concave programming problem, we
develop a LP-based heuristic algorithm based on the concave approximation algorithm
for GMF-PA tasks. The LP-based algorithm is an efficient schedulability test and can
select frame parameters at the same time.
We apply the LP-based algorithm to schedule multiple-suspending tasks. To exploit
the unique property of one-suspending tasks, as opposed to multi-suspending tasks, we
present an improved heuristic algorithm for GMF-PA tasks.
We conduct extensive experiments and show that the LP-based algorithms with fixed
numbers of iterations outperform previous work in terms of schedulability and average
running time. The fixed numbers of iterations make the LP-based algorithms pseudo-
polynomial (the input size depends on the maximum interval length [3]), which is more
efficient than the MILP-based approach.

Section 2 surveys the related work. We review our GMF-PA model in Section 3, and we
formally state the goal of this paper in Section 4. Section 5 reviews our parameter-adaptation
method using mixed-integer linear programming (MILP) to obtain a schedulability test under
EDF scheduling. The concave approximation algorithm based on the MILP algorithm is
presented in Section 6. Since concave programming algorithm does not scale well, two iterative
LP-based algorithms are presented in Section 7. After applying the LP-based algorithms
to self-suspending tasks, Section 8 provides extensive experimental results compared to
state-of-the-art results. At last, Section 9 concludes this work and proposes future work.

2 Related Work

In this section, we introduce the related work on the GMF-PA model in Section 2.1, and
survey one of its applications, the self-suspending tasks, in Section 2.2.

2.1 The Generalized Multiframe Model
The generalized multiframe model (GMF) was presented by Baruah et al.[3] to extend
the sporadic task model and multiframe task model (MF) [16]. The recurring real-time
task (RRT) model [2] generalizes the GMF model to handle conditional code. The digraph
model [23] further generalizes the RRT model to allow arbitrary directed graphs (with loops),

1 The local optimal of the iterative LP-based algorithm is reached when all variables converge.

ECRTS 2019

20:4 Fast and Effective Multiframe-Task Parameter Assignment

and it was shown that the feasibility problem on preemptive uni-processor systems remains
tractable (pseudo-polynomial complexity with bounded system utilization). A complete
review is surveyed by Stigge and Yi [24].

The GMF model has great advantages and has been applied to multiple areas, as described
earlier. However, current related models typically assume that parameters are fixed during
task specification time. In the GMF-PA model [18] which extends the GMF model, frame
parameters are flexible and can be chosen by the MILP-based approach in uniprocessor
systems. The dGMF-PA model [19] extends the GMF-PA model to represent end-to-end
flows in distributed systems. Similar flexible models, such as the parameter-adaptation
model [8] and elastic model [6], are also used in many applications.

2.2 The Self-Suspending Task Model
A typical self-suspension task model [15] contains two computational frames separated by a
self-suspending frame. After the first computational frame finishes, the job suspends executing
the other computational frame until an external operation completes. The order of the frames
is required and a task suspends itself to communicate with external devices, I/O operations,
computation offloading, etc. We call such tasks one-suspension self-suspending tasks.

For one-suspension self-suspending tasks, Ridouard et al. [21] proved that scheduling
such periodic self-suspending tasks on a uniprocessor is NP-hard in the strong sense. Due to
the hardness of such scheduling problems, Chen and Liu [9] gave a fixed-relative-deadline
(FRD) scheduling algorithm to improve the schedulability of sporadic self-suspending tasks
on uniprocessor systems. The FRD algorithm assigns frame relative deadlines and schedules
the ordering of frames of tasks under EDF scheduling.

The multiple-segment suspending task model [14], which allows multiple suspending
frames, explicitly considers the execution sequence of frames in a task. Peng and Fisher [18]
utilize MILP to select frame parameters of multiple-segment self-suspending tasks. The
MILP algorithm [18] is an optimal FRD algorithm which extends the work by Chen and
Liu [9]. A recent review on scheduling self-suspending tasks (mostly on one-suspension tasks)
can be found in the work by Chen et al. [10].

3 Model

We review the generalized multiframe (GMF) model [3] and the generalized multiframe
model with parameter adaptation (GMF-PA) in this section.

A GMF task τi consists of a set of ordered frames and each frame φji has its own execution
time Eji , relative deadline Dj

i , and frame separation time P ji . All frames of a task τi can
be represented by the 3-vector tuple (−→Ei,

−→
Di,
−→
Pi) where −→Ei=[E0

i , E1
i ,..., E

Ni−1
i], −→Di=[D0

i ,
D1
i ,..., D

Ni−1
i], and −→Pi=[P 0

i , P 1
i ,..., P

Ni−1
i]. The `’th frame of task τi arrives at time a`i , has

deadline at a`i + d`i , and worst-case execution time e`i . Since frames arrive in sequence, the
`’th frame corresponds to frame φ` mod Ni

i , and we have:
1. a`+1

i ≥ a`i + P ` mod Ni
i

2. d`i = D` mod Ni
i

3. e`i = E` mod Ni
i

Based on the GMF model, the GMF-PA model [18] is derived to allow frame parameters
to be assigned instead of fixing them during task specification time. Let T = {τ0, τ2,...,
τn−1} be the task system of n GMF-PA tasks executing on one processor. The task τi=[φ0

i ,
φ1
i , φ2

i ,..., φ
Ni−1
i] consists of Ni frames where φji=(Eji , D

j
i , D

j

i , P
j
i , P

j

i). The j’th frame

B. Peng, N. Fisher, and T. Chantem 20:5

execution time of the i’th task is Eji , and the i’th task-wise execution time is Ei =
Ni−1∑
j=0

Eji .

The lower bound of relative deadline Dj
i (respectively, the minimum inter-arrival time

between consecutive frames, P ji) is Dj
i (respectively, P ji) and the upper bound of Dj

i

(respectively, P ji) is D
j

i (respectively, P ji). The frame parameters Dj
i and P ji can be flexibly

assigned in the ranges [Dj
i , D

j

i] and [P ji , P
j

i], respectively. The frame distance Dj,k
i = Dk

i

+
(k−j−1) mod Ni∑

p=0
P

(j+p) mod Ni

i represents the relative time between the release of the j’th

frame and the deadline Dk
i of the k’th frame. For example, D2,4

i = P 2
i + P 3

i + D4
i . The task

deadline Di is the upper bound of DNi−1
i +

Ni−2∑
j=0

P ji , and the task minimum inter-arrival

time Pi is the upper bound of
Ni−1∑
j=0

P ji . The utilization of task τi is Ui = Ei/Pi, and the

utilization of a task system is Ucap =
n−1∑
i=0

Ui.

Frame parameters (Dj
i and P ji) must satisfy the localized Monotonic Absolute Deadlines

(l-MAD) property [3] to maintain frame execution order. That is, the absolute deadline of the
j’th frame must be no later than the one of the j + 1’th frame (Dj

i ≤ P ji + D
(j+1) mod Ni

i ,
∀i, j). Figure 1 shows an example of the GMF model with the l-MAD property. The
l-MAD property is widely used in systems which use first-in first-out (FIFO) scheduling for
a shared resource. E.g., a network can be seen as a shared resource and packets sent from a
computational node to a network node follow FIFO scheduling.

Ej
i Ej+1

i

Execution Time

· · ·
Dj

i

P j
i P j+1

i

Dj+1
i

Ej+2
i

Dj+2
i

P j+2
i

Ej−1
i

P j−1
i

Dj−1
i

· · ·

Figure 1 This figure contains all task τi’s ordered frames from the j’th frame to the (j − 1)
mod Ni’th frame (we omit “mod Ni” in this figure for simplicity). The starting frame can be any
frame φji in an interval length t. Note that each frame deadline can be larger than frame separation
time, e.g., Dj+1

i ≥ P j+1
i in this figure. The details will be shown in Section 5.

4 Problem Statement

Let dbfi(t, ~Fi) be the task demand bound function of a GMF-PA task τi within the interval
length t. Let ~Fi = [D0

i , P 0
i , D1

i , P 1
i ,..., D

Ni−1
i , PNi−1

i] represent an assignment of values
for all the task parameters (frame deadline and separations) of task τi. The task demand
bound function dbfi(t, ~Fi) accounts for task τi’s accumulated execution time of frames which
have both release times and deadlines inside the interval of length t. We use the notation
dbfi(t,Dj,k

i) to represent the demand for the k’th frame when the first frame to arrive in

ECRTS 2019

20:6 Fast and Effective Multiframe-Task Parameter Assignment

the interval length t is the j’th frame. The relationship between the frame demand and
task demand will be presented in Section 5. In a uniprocessor system T , the sufficient and
necessary condition for schedulability of a task set T is shown in Equation 1.∑

τi∈T
dbfi(t, ~Fi) ≤ t, ∀t. (1)

I Problem Definition. Given the above model, our goal is to find an optimal and valid
assignment ~Fi of frame parameters of all tasks so that the worst-case demand

∑
τi∈T dbfi(t, ~Fi)

over all time intervals of length t is minimized.

5 The MILP Algorithm

We review the MILP algorithm [18] to solve the problem defined in Section 4 under EDF
scheduling in uniprocessor systems since the proposed concave programming and LP-based
algorithms are closely related to the MILP algorithm.

Figure 2 shows the MILP algorithm. Notations in bold font are constants and the other
notations are variables. Lines 3 and 5 are the requirements that a feasible system must obey.
Line 4 shows the l-MAD property. Line 6 shows the calculation of the demand for every
possible sequence of frames of task τi over any interval of length t. To calculate all possible
frame demands, we use the notation2 yj,ki (t) to denote the demand of the k’th frame of task
τi starting from the j’th frame over a t-length interval. To calculate the worst-case demand
under EDF scheduling, the starting j’th frame arrives exactly at the start of the interval and
subsequent frames arrive as soon as possible (e.g., see [3] for GMF schedulability).

The inequality t−tb
Pi
≤ xj,ki (t)− realmin

Pi
is the constraint function that decides the value

of xj,ki (t) where xj,ki (t) decides the value of yj,ki (t) in turn. The length tb is the summation
of the previous periods b tPi

c · Pi and the frame distance from the starting j’th frame to
k’th frame Dj,k

i , and the constant realmin is the smallest representable positive number for
the MILP solver. For example, the length tb = D1,3

i + b tPi
c · Pi if we consider the interval

starting with an arrival of the first frame and ending at the deadline of the third frame.
When t ≥ tb, the integer variable xj,ki (t) ∈ [0, 1] must be one for the inequality in Line 6 to
be feasible and the demand Eki contributes to yj,ki (t). When t < tb, xj,ki (t) can be either
zero or one. However, the MILP tends to choose zero for xj,ki (t) to obtain a smaller demand
(shown in Lemma 1). We calculate demand yj,ki (t) for all possible combinations of i, j, k,
and t in Line 6. For simplicity, we use “∀” to represent the ranges of variables. The task
index i ranges from zero to n− 1. The superscripts j and k range from zero to Ni − 1. The
maximum integer interval length [3] H = d Ucap

1−Ucap
·maxτi∈τ (Pi)e.

I Lemma 1 (from [18]). The value of yj,ki (t) in the MILP is the exact worst-case demand
of frame φki over a t-length interval when the first frame to arrive in the interval is φji (with
respect to the frame parameters assigned to each frame of τi by the MILP).

Line 7 calculates task τi’s demand yji (t) whose starting frame in the t-length interval is
the j’th frame. In Line 8, the demand yi(t) is the maximum demand for τi over all yji (t). At

last, the demand of all tasks
n−1∑
i=0

yi(t) is set to be no larger than L · t as shown in Equation 1.

2 The term dbfi(t,Dj,ki) represents the frame demand, and the term yj,ki (t) is a free variable in the
mathematical programming formulation that is used to calculate the demand dbfi(t,Dj,ki).

B. Peng, N. Fisher, and T. Chantem 20:7

Parameter Selection and Exact Feasiblity Test.
1 minimize: L
2 subject to:
3 EkiE

k
iE
k
i ≤Dk

iD
k
iD
k
i ≤ D

k
i ≤D

k
iD
k
iD
k
i , ∀i, k.

EkiE
k
iE
k
i ≤ P kiP

k
iP
k
i ≤ P

k
i ≤ P

k
iP
k
iP
k
i , ∀i, k.

4 Dk
i ≤ P ki +D

(k+1) mod Ni
i , ∀i, k.

5
Ni−1∑
k=0

P ki ≤ PiPiPi, DNi−1
i +

Ni−2∑
j=0

P ji ≤ DiDiDi, ∀i.

6
yj,ki (t) = xj,ki (t) ·EkiEkiEki + b tttPiPiPi

c ·EkiEkiEki , ∀i, j, k, t.
ttt−tb
PiPiPi
≤ xj,ki (t)− realminrealminrealmin

PiPiPi
, ∀i, j, k, t.

tb = Dj,k
i + b tttPiPiPi

c · PiPiPi

7 yji (t) =
Ni−1∑
k=0

yj,ki (t), ∀i, j, t.

8 yi(t) ≥ yji (t), ∀i, j.

9
n−1∑
i=0

yi(t) ≤ L · ttt ∀t.

10 and: Dk
i , P

k
i , y

j,k
i (t), yi(t),L ∈ R∗, xj,ki (t) ∈ {0, 1} .

Figure 2 This figure shows the MILP algorithm [18]. In the concave programming and LP-based
algorithms (shown in Sections 6 and 7), we only change the frame demand in Line 6 and remove all
integer variables xj,ki (t).

If the system is schedulable, L ≤ 1. We minimize L in the MILP which also minimizes the
summation of all task demand over all interval lengths3 t. The MILP algorithm’s necessity
and sufficiency for feasibility are proved in Theorem 2.

I Theorem 2 (from [18]). For arbitrary, real-valued parameters, our MILP is a necessary
feasibility test when L ≤ 1. When frame parameters are restricted to be integers (i.e., Dk

i ,
P ki ∈ N ∀ i, k), then the MILP is an exact feasibility test when L ≤ 1.

6 The Concave Approximation Algorithm

We reviewed our previously proposed MILP in the last section. In this section, we give a
concave approximation algorithm for the MILP algorithm and prove the speed-up factor of
the concave approximation algorithm (compared to the optimal FRD/the MILP algorithm)
can approach one. Although there is no known efficient way to solve a concave programming
problem, our concave approximation algorithm plays a key role in the LP-based algorithms
presented in the next section.

6.1 The Concave Functions
We first use the concave function (Equation 2) (illustrated by the blue dashed curve of
Figure 3) to approximate the exact frame demand determined by the MILP in Line 6
of Figure 2.

3 We take integer-valued t since we cannot check all real-valued t. We also use integer constants t in the
concave programming and LP-based algorithms later.

ECRTS 2019

20:8 Fast and Effective Multiframe-Task Parameter Assignment

dbfconcavei (t,Dj,k
i) = max {0, Eki · (1 + δ)− Eki · δ · e

µ·(Dj,k
i

+b t
Pi
c·Pi−t)}+ b t

Pi
c · Eki (2)

The concave programming algorithm is constructed by replacing all staircase functions in
Line 6 of Figure 2 with yj,ki (t) = dbfconcavei (t,Dj,k

i) and removing all integer variables. The
other lines in Figure 2 remain the same.

Dj,k
i

Frame Demand

(0, Eki) (t, Eki)

(t, 0)

(0, y′)
(0, Eki · (1 + δ))

(t′, 0) (t · (1 + δ), 0)

Figure 3 This example shows the frame demand within interval length t < Pi. The blue dashed
curve is a concave function and the staircase function in black solid line represents the exact frame
demand in the MILP. The red dotted staircase line with error rates δ on both axes represents an
upper bound on the concave function.

Equation 2 shows our proposed concave approximation function dbfconcavei (t,Dj,k
i) (e.g.,

the blue dashed curve in Figure 3) for the k’th frame demand of task τi during the t-length
interval in which the starting frame is the j’th frame. We define the system-wide maximum
error rate4 δ. The rate δ must be larger than zero to ensure the demand of any approximation
function be larger than the staircase function for any given deadline. We set δ as a designer-
defined constant in the system, and set the constant µ = 1

δ · ln
(
1 + 1

δ

)
as shown in Lemma 3.

In Lemma 3, we prove that the maximum error rate of the concave function is smaller than
the system maximum error rate δ, and the concave function approaches the staircase function
when δ decreases.

I Lemma 3. The demand of the concave function in Equation 2 over-approximates the one
in the MILP algorithm, and the error rate of the concave function is smaller than the system
error constant δ when we set µ in Equation 2 as follows,

µ = 1
δ
· ln
(

1 + 1
δ

)
. (3)

Proof. Let δy and δd be the worst-case error rates on the demand (on y-axis) and deadline
(on x-axis) directions of concave functions, respectively. Let tb = Dj,k

i + b tPi
c · Pi − t. The

worst rates happen when, in Figure 3 for example, Eki · (1 + δy) = y′ and t · (1 + δd) = t′. We
will prove that δ ≥ δy and δ ≥ δd.

When 0 ≤ tb ≤ t, the largest demand of the concave function happens at tb = 0.
By substituting Eki · (1 + δy) (respectively, 0) for yj,ki (t) (respectively, tb), the concave
function becomes Eki · (1 + δy) = Eki · (1 + δ)− Eki · δ · eµ·(0−t). After simplification, we get

4 The error rate (with respect to the exact frame demand function) of an approximation function is its
percentage increase in the y-axis direction for t ≤ Dj,ki or its percentage increase in the x-axis dimension
if t > Dj,ki . The maximum error rate is the largest error rate over all t > 0. E.g., the error rate on
the x-axis of the point (t · (1 + δ), 0) in Figure 3 is δ. The maximum error rate of any approximation
function must be smaller than the system-wide maximum error rate δ.

B. Peng, N. Fisher, and T. Chantem 20:9

δy = δ − δ · eµ·(−t). Thus, δ ≥ δy and δ is an upper bound of δy. Since the concave function
is a decreasing function and it passes the points (0, Eki · (1 + δy)) and (t, Eki), the concave
function over-approximates the corresponding demand in MILP when 0 ≤ tb ≤ t.

When tb > t, the maximum error on the deadline direction happens at tb = t · (1 + δd).
By substituting 0 (respectively, t · (1 + δd)) for yj,ki (t) (respectively, tb), we have 0 =
Eki · (1 + δ)−Eki · δ · eµ·(t·(1+δd)−t). After simplification, we have δd = 1

t·µ · ln(1 + 1
δ). We set

µ = 1
δ · ln(1 + 1

δ), and δd = δ
t after replacing µ in δd. Since t ≥ 1, δ ≥ δd. J

6.2 Speed-Up Factor Analysis
A speedup factor is a value that quantifies the quality of an approximation algorithm with
respect to the optimal scheduling algorithm. A speedup factor S > 1 [4] means that an
approximation algorithm can schedule a task system at a speed-S processor if an optimal
algorithm can schedule the system at a speed-one processor.

Let LMILP be the value of the objective function returned by the MILP algorithm and
Lconcave be the value returned by the concave programming algorithm. We will prove that
LMILP < Lconcave < LMILP · (1 + δ)2. LMILP < Lconcave indicates that a task system
will be deemed schedulable by the MILP algorithm if the system is schedulable by the
concave programming algorithm (which means LMILP < Lconcave ≤ 1). By the definition of
the speed-up factor, Lconcave < LMILP · (1 + δ)2 indicates that the speed-up factor of our
concave programming algorithm is (1 + δ)2 with respect to the MILP algorithm. In other
words, Lconcave/(1 + δ)2 < LMILP indicates a task system can be scheduled by the concave
programming algorithm under a (1 + δ)2-speed processor if the system can be scheduled by
the MILP algorithm under the corresponding one-speed processor.

We prove LMILP < Lconcave in Lemma 4, and Lconcave < LMILP · (1+δ)2 from Lemma 5
to Lemma 8. By Lemmas 4 and 8, we prove that the speed-up factor of our concave
programming algorithm is (1 + δ)2 with respect to the MILP algorithm in Theorem 9.

I Lemma 4. Let LMILP and Lconcave be the values returned by the MILP and concave
programming algorithms (assume they exist), respectively. We have:

LMILP < Lconcave. (4)

Proof. Let L′MILP be the value calculated as follows. Assume there exists such a solver
that can solve the concave programming algorithm and return Lconcave, frame deadlines
and separations. We assign the returned frame parameters from the concave programming
algorithm to the formulation of the MILP algorithm and get the value of L′MILP .

Under the same values of frame parameters, any frame demand of concave programming
algorithm is larger than its corresponding demand of the MILP algorithm, as shown in
Lemma 3. The task demands of concave programming algorithm with the preassigned
frame parameters are thus also larger than the ones from the MILP approach. When we
summarize task demands over any interval length, L′MILP is thus always less than Lconcave.
Since L′MILP is calculated by preassigned frame parameters, L′MILP must not be smaller
than LMILP . If the frame parameters returned by the MILP and concave programming
algorithms are all identical, L′MILP = LMILP . In all, LMILP ≤ L

′

MILP < Lconcave and this
lemma is proved. J

In order to prove Lconcave < LMILP · (1 + δ)2, we first define L′concave. Let the MILP
algorithm return LMILP , frame deadlines and separations. If we fix the deadline and
separation variables of the concave programming formulation to be the values returned by the

ECRTS 2019

20:10 Fast and Effective Multiframe-Task Parameter Assignment

MILP, we calculate the value of L′concave. We will prove Lconcave ≤ L
′

concave < LMILP ·(1+δ)2.
Lconcave ≤ L

′

concave is proved in Lemma 5. Based on the demand bound functions defined in
Equations 8 and 9, we prove L′concave < LMILP · (1 + δ)2 in Lemma 8.

I Lemma 5. Let Lconcave be the optimal value returned by the concave programming algorithm,
and L′concave be the value calculated by the concave programming algorithm using the frame
parameters returned by the MILP. We have:

Lconcave ≤ L
′

concave. (5)

Proof. Since the concave programming algorithm minimizes Lconcave, Lconcave must be
the smallest value over all feasible-assigned/preassigned frame parameters, and Lconcave <
L′concave. If frame parameters returned by the MILP and concave programming algorithms
are same, Lconcave = L′concave. In all, Lconcave ≤ L

′

concave. J

For ease of proof, we consider a staircase approximation function dbfai (t,Dj,k
i) illustrated

by the red dotted line in Figure 3 for task τi over the t-length interval, and the solid line
shows an example of the staircase demand dbfi(t,Dj,k

i).
Equation 6 shows dbfi(t,Dj,k

i) as the k’th frame-demand function of task τi over the
t-length interval that starts with the j’th frame. The corresponding task demand dbfi(t, ~Fi)
is shown in Equation 8, and the reasoning is same as to the relationship between yi(t) and
yj,ki (t) in the MILP algorithm. I.e., we take the maximum demand over all sequences as the
task demand. The approximate frame-demand dbfai (t,Dj,k

i) and task-demand dbfai (t, ~Fi) (for
dbfi(t,Dj,k

i) and dbfi(t, ~Fi), respectively) are defined in Equations 7 and 9, respectively. We
prove that the approximation demand over-approximates the concave demand in Lemma 6.

dbfi(t,Dj,k
i) =

0, 0 ≤ t < Dj,ki
Eki , Dj,ki ≤ t ≤ Pi
Eki · b tPi

c+ dbfi(t− Pi · b tPi
c, Dj,ki), t > Pi

(6)

dbfai (t,Dj,k
i) =

0, 0 ≤ t < D

j,k
i

(1+δ)

(1 + δ) · Eki ,
D

j,k
i

(1+δ) ≤ t ≤ Pi
Eki · b tPi

c+ dbfai (t− Pi · b tPi
c, Dj,k

i), t > Pi

(7)

dbfi(t, ~Fi) = Ni−1max
j=0
{
Ni−1∑
k=0

dbfi(t,Dj,k
i)} (8)

dbfai (t, ~Fi) = Ni−1max
j=0
{
Ni−1∑
k=0

dbfai (t,Dj,k
i)} (9)

I Lemma 6. The demand of task τi over any interval length t in Equation 9 is an upper
bound of its corresponding concave approximation demand.

Proof. In Lemma 3, we proved that δd ≤ δ. Let t∆ = t− Pi · b tPi
c. From Equation 2 and

the definition of δd, the concave demand with any value assigned for Dj,k
i ∈ [0, t∆ · (1 + δd)]

is smaller than Eki · (1 + δ), and the demand is zero when Dj,k
i > t∆ · (1 + δd). Since

dbfai (t,D
j,k
i) = Eki · (1 + δ) when Dj,k

i ≤ t∆ · (1 + δ) and δd ≤ δ, the demand function
dbfai (t,Dj,k

i) over approximates the concave demand. For task-wise demand dbfai (t, ~Fi), we
take the summation of all frame demand dbfai (t,Dj,k

i) of task τi over all sequences (sequences
differ from the starting j’th frame in the t-length interval), and take the maximum demand
over all sequences as the task demand. The task demand dbfai (t, ~Fi) also over approximates
the corresponding concave demand. In all, we have proved this lemma. J

B. Peng, N. Fisher, and T. Chantem 20:11

With the demand bound functions shown in Equations 8-9, we prove L′concave < LMILP ·
(1 + δ)2 in Lemmas 7-8.

I Lemma 7. For the task τi’s demand dbfi(t, ~Fi) and its approximation demand dbfai (t, ~Fi)
in the t-length time interval, we have: dbfi((1 + δ) · t, ~Fi) · (1 + δ) ≥ dbfai (t, ~Fi).

Proof. We first prove dbfi((1 + δ) · t,Dj,k
i) · (1 + δ) ≥ dbfai (t,Dj,k

i), and dbfi((1 + δ) · t, ~Fi) ·
(1 + δ) ≥ dbfai (t, ~Fi) can be extended by Equations 8 and 9. We classify all interval lengths t
in three sets:

T1 : 0 ≤ t < Dj,k
i /(1 + δ),

T2 : Dj,k
i /(1 + δ) ≤ t ≤ Pi,

T3 : otherwise.
When t ∈ T1, dbfi(t,Dj,k

i) = dbfai (t,Dj,k
i) = 0. Since demand bound functions are monoton-

ically increasing functions, dbfi((1 + δ) · t,Dj,k
i) · (1 + δ) ≥ dbfi(t,Dj,k

i) = dbfai (t,Dj,k
i).

When t ∈ T2, we know that dbfi(t∗, Dj,k
i) = Eki at Dj,k

i ≤ t∗ ≤ Pi from Equation 6. Let
t∗ = t ·(1+δ), we have dbfi(t ·(1+δ), Dj,k

i) = Eki at Dj,k
i /(1+δ) ≤ t ≤ Pi. From Equations 6

and 7, we know that dbfi(t · (1 + δ), Dj,k
i) · (1 + δ) = dbfai (t,Dj,k

i) at Dj,k
i /(1 + δ) ≤ t ≤ Pi.

When t ∈ T3, it is trivial to see the fact that dbfi((1 + δ) · t,Dj,k
i) · (1 + δ) ≥ dbfai (t,Dj,k

i)
since the demand is iteratively calculated from the demand when t ∈ T1 ∪ T2. J

I Lemma 8. Let LMILP be the optimal value returned by the MILP algorithm, and L′concave
be the value calculated by the frame parameters returned by the MILP. We have:

L
′

concave < LMILP · (1 + δ)2. (10)

Proof. Line 9 of Figure 2 shows that L is the largest value of
∑n−1

i=0
yi(t)

t for all values of t in
the MILP algorithm (can be derived from Lemma 1). We also require this line in the concave
programming algorithm. From Lemma 7, we know that dbfi((1+δ)·t, ~Fi)·(1+δ) ≥ dbfai (t, ~Fi)
for any task τi over any t-length interval. Let t = (1 + δ) · t∗, we have:

LMILP = max
t>0

∑
τi∈T

dbfi(t, ~Fi)
t

By Lemma 1

=
∑

τi∈T
dbfi((1 + δ) · t∗, ~Fi)
(1 + δ) · t∗

=
∑

τi∈T
dbfi((1 + δ) · t∗, ~Fi) · (1 + δ)

(1 + δ)2 · t∗

≥

∑
τi∈T

dbfai (t∗, ~Fi)
(1 + δ)2 · t∗ By Lemma 7

≥ L
′
concave

(1 + δ)2 By Lemma 6
(11)

J

I Theorem 9. When the concave programming algorithm returns integer frame deadlines
and separation times, the speed-up factor of our concave programming algorithm with respect
to the MILP algorithm is (1 + δ)2.

Proof. In Lemmas 4, 5, and 8, we have proved that LMILP < Lconcave < LMILP · (1 + δ)2.
LMILP < Lconcave indicates that a task system is deemed schedulable (with integer frame
parameters) by the MILP if the task system is deemed schedulable (with integer parameters)

ECRTS 2019

20:12 Fast and Effective Multiframe-Task Parameter Assignment

The LP-based Algorithm for GMF-PA tasks.
1 Initialize D as Dk

i ← (Eki /Ei) · Pi, Llast ←∞, and Lcur ←∞
2 repeat
3 Llast ← Lcur

4 S ← computeSlope(D)
5 [D,Lcur]← Heuristic-LP (D,S)
6 until Llast − Lcur < ε

7 Process frame deadlines D to integers.
8 [Lcur]← Heuristic-LP -fixedDeadline(D,S)
9 if Lcur ≤ 1

10 then return schedulable

11 else return unschedulable

Figure 4 The LP-based algorithm for GMF-PA tasks.

by the concave programming algorithm. LMILP < Lconcave shows our concave programming
algorithm is an approximation algorithm for the MILP.

We divide (1 + δ)2 on both sides of the inequality Lconcave < LMILP · (1 + δ)2 to get
Lconcave/(1 + δ)2 < LMILP . Lconcave/(1 + δ)2 represents that we change the speed of the
processor from one to (1 + δ)2. Thus, a task system must be scheduled by the concave
programming algorithm with a (1 + δ)2-speed processor if the task system is scheduled by
the MILP on a single speed processor. From the definition of the speed-up factor, we have
proved that the speed-up factor of our concave programming algorithm with respect to the
MILP is (1 + δ)2. J

7 The Linear Programming-Based Heuristic Algorithm and its
Application to One-Suspension Self-Suspending Tasks

Until now, we have constructed the concave programming approximation algorithm for the
MILP-based algorithm. Due to the difficulties in solving concave programming (or non-convex
optimization) problems in general, we use a heuristic LP-based scheme to efficiently select
frame parameters of GMF-PA tasks, and apply it to self-suspending tasks. For ease of
presentation, we let Dk

i = Eki , D
k

i = Pi, and P ki = Dk
i . In this case, frames deadlines are

constrained by frame execution time and the l-MAD property. We present the LP-based
heuristic algorithm in Section 7.1, and further to optimize the LP-based algorithm to schedule
one-suspension self-suspending tasks in Section 7.2.

7.1 The Linear Programming-Based Heuristic Algorithm
The general routine of the LP-based scheme for GMF-PA tasks is: 1) We initialize frame
parameters of GMF-PA tasks. 2) Given the frame parameters, we recalculate a set of linear
functions, which approximate the staircase functions for frame demands in the MILP, guided
by the concave programming algorithm. 3) We run the LP algorithm (shown later) based on
the assigned linear functions, and receive frame parameters as outputs. If the difference in L
values between the current and the last iterations is no smaller than some threshold, the
program goes back to Step 2. 4) We round frame parameters to integers and run the LP
algorithm with the fixed integer-valued parameters to get the final assignment.

dbflinear
i (t,Dj,k

i) = max {0, sj,ki (t) · (Dj,k
i − t

′) + Eki }+ b tPi
c · Eki , t′ = t− b tPi

c · Pi (12)

B. Peng, N. Fisher, and T. Chantem 20:13

computeSlope(D).
1 Calculate all Dj,k′

i from D

2 t′ ← t− b tPi
c · Pi

3 yj,k
′

i (t′)← Eki · (1 + δ)− Eki · δ · eµ·(D
j,k′
i
−t′)

4 if Dj,k′

i > t′

5 then sj,ki (t)← (0− Eki)/(1
µ
· ln(1 + 1

δ
) + t′ − t′)

6 elseif Dj,k′

i == t′

7 then sj,ki (t)← ∂

∂D
j,k
i

[
dbfconcave

i (t′, Dj,k
i)
]

8 else sj,ki (t)← (yj,k
′

i (t′)− Eki)/(Dj,k′

i − t′)
9 return S

10 � S is the matrix that stores all slopes sj,ki (t).

Figure 5 This algorithm calculates all slopes given all frame deadlines.

In The LP-based Algorithm for GMF-PA Tasks (Figure 4), we initialize frame deadlines by
proportional deadline assignment (PDA [15]) to Dk

i = (Eki /Ei) · Pi. Given the deadline
matrix D which stores all Dk

i , we calculate all slopes and store them in matrix S. We
replace Line 6 of Figure 2 with Equation 12 to transform the algorithm into a LP algorithm
Heuristic-LP (D,S) (Line 5 of Figure 4). The slope element sj,ki (t) of S, which corresponds
to yj,ki (t), is calculated in the algorithm shown in Figure 5 and all lines pass the point
(t′, Eki). The linear functions are illustrated by the red lines in Figures 6-8. If the deadline
Dj,k′

i (generated from the previous iteration) is smaller than t′ = t− b tPi
c · Pi, we calculate

the demand yj,k
′

i (t′) of the concave function at Dj,k′

i . The slope of the line is calculated
by two points (Dj,k′

i , yj,k
′

i (t′)) and (t′, Eki) illustrated in Figure 6. If the deadline Dj,k′

i

equals t′, we calculate the slope by taking the tangent of the concave function at the point
(t′, Eki) shown in Figure 7. If the deadline is larger than t′, we use two points (t′, Eki) and(

1
µ · ln(1 + 1

δ) + t′, 0
)
, which is the cross point of the x-axis and the concave function, to

calculate the slope, and the line with the slope is shown in Figure 8. The slope matrix S is
adjusted in each iteration of the loop in Figure 4.

Dj,k
i

Demand

(t′, Eki)
(t′, 0)Dj,k′

i

Figure 6 The frame deadline
Dj,k′

i of the last iteration is smal-
ler than t′ in this case.

Dj,k
i

Demand

(t′, Eki)

(Dj,k′

i , 0)

Figure 7 The frame deadline
Dj,k′

i of the last iteration equals
t′ in this case.

Dj,k
i

Demand

(t′, Eki)
(t′, 0) Dj,k′

i

Figure 8 The frame deadline
Dj,k′

i of the last iteration is lar-
ger than t′ in this case.

The loop in Figure 4 will not stop recursively calling function Heuristic-LP (D,S) until
the difference of the L values in two consecutive iterations is smaller than the positive threshold
ε. Llast and Lcur represent the L values of the last and current iterations, respectively. The
Heuristic-LP -fixedDeadline(D,S) algorithm (Line 8 of Figure 4) uses the integer deadlines
to maintain sufficiency for schedulability, which is proved in Theorem 11. We first round up
frame deadlines to be integers. For each task, we keep reducing the largest frame deadline by

ECRTS 2019

20:14 Fast and Effective Multiframe-Task Parameter Assignment

one until the summation of them equals to its task deadline/period. We assign the deadline
variables to the integer values in Line 7 of Figure 4 and the other parts are the same as in
the Heuristic-LP (D,S) algorithm. The system is schedulable if L ≤ 1.

We prove in Theorem 10 that the while loop of the algorithm The LP-based Algorithm
for GMF-PA Tasks function stops after a finite number of iterations. The sufficiency of the
LP-based algorithm for schedulability is proved in Theorem 11.

I Theorem 10. The while loop of the function The LP-based Algorithm for GMF-PA Tasks
stops in a finite number of iterations.

Proof. We first prove that L decreases from one iteration to the next. Before each iteration
of the algorithm Heuristic-LP (D,S), we use the deadline assignment D′ from the last
iteration to calculate the slopes S of frame functions in the current iteration. Let Llast be
the value of L in the last iteration. In the current iteration, let us assume that we use the
same set of the deadlines D′ to calculated the value Lcur.

In the first and third cases shown in Figures 6 and 8, the frame demand is either smaller
(if the last iteration is the first iteration) or equal to the one in the last iteration. In the
second case, the frame demand is the same as the one in the last iteration. From all cases,
we know that the same set of deadlines causes Lcur ≤ Llast. Since we minimize L in the
algorithm, the returned deadlines by the algorithm Heuristic-LP (D,S) must generate a
value of L that is smaller than Lcur. Thus, we have proved that L decreases from one
iteration to the next. We also set a threshold to be the difference of the L values in two
consecutive iterations, and we know that the lower bound of L equals

∑n
i=1 Ui. In either

cases, the loop of the function The LP-based Algorithm for GMF-PA Tasks stops in a finite
number of iterations. J

I Theorem 11. The LP-based algorithm is a sufficient schedulability test when L ≤ 1.

Proof. This proof is similar to Theorem 2. The sufficiency of any approximation/heuristic
algorithm (w.r.t. the MILP algorithm) for schedulability requires two conditions: 1) the
demand of the algorithm over any t-length interval is larger than the one in the MILP. 2)
frame parameters must take integer values. The first condition ensures that the demand over
approximates on any t, and the second condition ensures that the demand only changes at
integer values. We require the second condition since all lengths (represented by t) can only be
integers in the MILP algorithm. The LP-based algorithm over approximates system demand
among all t, and the algorithm adjusts frame deadlines to be integers in the last iteration. J

7.2 The Application of the LP-Based Algorithm to One-Suspension
Self-Suspending Tasks

The LP-based scheme can be applied to multiple-segment self-suspending tasks directly. In
this section, we further optimize the algorithm for one-suspension self-suspending tasks by
reducing the number of free variables and equations. Given that n is the number of tasks
and H is the maximum interval length, the algorithm uses 8 · n ·H + n fewer variables and
15 · n ·H + n fewer number of constraints than the ones in the standard LP-based scheme.

For each task τi, we use variables D1
i and Pi − Si −D1

i (instead of D1
i and D2

i) to denote
frame deadlines to reduce the number of variables and constraints. Si is the suspension
length of task τi. In this case, the demand bound function only relies on D1

i and t and
~Fi = [D1

i , D
1
i ,Pi − Si −D1

i ,Pi − Si −D1
i] since we let P ki = Dk

i . A task demand falls in four
cases which are shown and proved in Theorem 12.

B. Peng, N. Fisher, and T. Chantem 20:15

I Theorem 12. The demand bound function of a task τi lies in one of the following four cases:

dbfi(t, ~Fi) =

dbf1
i (t, ~Fi) =

E1
i , 0 < D1

i ≤ t
0, t < D1

i < Pi − Si − t
E2
i , Pi − Si − t < D1

i ≤ Pi − Si
when 0 < t < (Pi − Si)/2

dbf2
i (t, ~Fi) =

E1
i , 0 < D1

i < Pi − Si − t
max {E1

i , E
2
i }, Pi − Si − t ≤ D1

i ≤ t
E2
i , t < D1

i < Pi − Si
when (Pi − Si)/2 ≤ t < Pi − Si

dbf3
i (t, ~Fi) = E1

i + E2
i ,

when Pi − Si ≤ t ≤ Pi
dbf4

i (t, ~Fi) = b tPi
c · (E1

i + E2
i) + dbfi(t− b tPi

c · Pi, D1
i),

when t > Pi

(13)

Proof. Figures 9-10 show an example of the staircase demand of dbf1
i (t, ~Fi) and dbf2

i (t, ~Fi)
with black solid lines, respectively. Roughly, the two staircase/concave demand curves head
toward each other when t increases. The first two cases differ when the two staircase functions
meet as t increases. The demand dbf3

i (t, ~Fi) considers the total task demand and dbf4
i (t, ~Fi)

iterates over the first three cases.
For the demand dbf1

i (t, ~Fi) in the first case, when 0 < t < (Pi − Si)/2, we know that
t < Pi − Si − t by simple mathematical transformation. In this case, we have two separate
staircase functions as shown in Figure 9. When D1

i ≤ t, the demand of the first frame is E1
i ,

the demand of the second frame is zero because D1
i ≤ t < Pi − Si − t. D1

i < Pi − Si − t
means t < Pi − Si −D1

i which indicates the deadline of the second frame is larger than t.
Thus, dbf1

i (t, ~Fi) = E1
i when D1

i ≤ t. When t < D1
i < Pi − Si − t, dbf1

i (t, ~Fi) = 0 because
t < D1

i and t < Pi − Si −D1
i . When D1

i ≥ Pi − Si − t, i.e., t ≥ Pi − Si −D1
i , the demand

dbf1
i (t, ~Fi) equals E2

i . Thus, we have proved that the demand of task τi is this case when
0 < t < (Pi − Si)/2.

For the demand dbf2
i (t, ~Fi), the proof is similar to the one of the demand dbf1

i (t, ~Fi).
We know Pi − Si − t ≤ t since (Pi − Si)/2 ≤ t. By comparing the deadline and length t,
dbf2

i (t, ~Fi) = E1
i when 0 < D1

i < Pi − Si − t and dbf2
i (t, ~Fi) = E2

i when t < D1
i < Pi − Si.

When Pi − Si ≤ t ≤ Pi, we know that either frame can contribute to the demand. However,
the two frames cannot contribute together since t < Pi − Si. In other words, the interval
length t cannot fit both frames. Thus, we take the maximum execution of the two frames as
the demand when Pi − Si ≤ t ≤ Pi.

It is trivial to see that dbf3
i (t, ~Fi) = E1

i +E2
i when Pi − Si ≤ t ≤ Pi, and the fourth case

iterates over the first three cases. In all, we have proved this theorem. J

The LP-based algorithm for one-suspension tasks is based on approximating the exact
demand in Theorem 12 and the algorithm The LP-based Algorithm for GMF-PA Tasks in
Figure 4. We replace Lines 6-8 in the MILP algorithm with the linear functions shown
in Equation 16 to get the LP algorithm Heuristic-LP (D,S) in Line 5 of Figure 4. The
linear functions shown in Equations 14-15 are to approximate the two concave portions of
the task demand for dbf1

i (t, ~Fi) and dbf2
i (t, ~Fi), respectively, illustrated by the red dotted

lines in Figures 9-10.

ECRTS 2019

20:16 Fast and Effective Multiframe-Task Parameter Assignment

D1
i

dbf1
i (t, ~Fi)

(0, E1
i) (t, E1

i)

(t, 0)

(Pi − Si − t, E2
i)

(Pi − Si − t, 0)(D1′
i , 0)

Figure 9 The black solid line shows the demand dbf1
i (t, ~Fi), the blue dashed line shows its concave

approximation, and the red dotted line shows its linear function when the deadline D1′
i of the last

iteration lies between (t, 0) and (Pi − Si − t, 0).

D1
i

dbf2
i (t, ~Fi)

(0, E1
i)

(t, 0)

(Pi − Si − t, E2
i)

(Pi − Si − t, 0)

Figure 10 Similar to Figure 9, the dashed and dotted lines show the concave and linear functions
of the demand dbf2

i (t, ~Fi), shown with the solid line, respectively. The black dotted line shows the
frame-wise demand.

dbf1,lineari (t, ~Fi) =

max

{
dbflinear

i (t,D1
i)

dbflinear
i (t,Pi − Si −D1

i)
when 0 < D1′

i ≤ t

max

0−E1

i

D1′
i
−t′
· (D1

i − t) + E1
i

0−E2
i

D1′
i
−(Pi−Si−t′)

· (D1
i − (Pi − Si − t)) + E2

i

0
when t < D1′

i < Pi − Si − t

max

{
dbflinear

i (t,D1
i)

dbflinear
i (t,Pi − Si −D1

i)
when Pi − Si − t ≤ D1′

i < Pi − Si

(14)

dbf2,lineari (t, ~Fi) =

max

{
dbflinear

i (t,D1
i)

E2
i

when E1
i ≥ E2

i

max

{
dbflinear

i (t,Pi − Si −D1
i)

E1
i

when E1
i < E2

i

(15)

B. Peng, N. Fisher, and T. Chantem 20:17

dbf lineari (t, ~Fi) =

dbf1,linear
i (t, ~Fi) when 0 < t < (Pi − Si)/2

dbf2,linear
i (t, ~Fi) when (Pi − Si)/2 ≤ t < Pi − Si

dbf3,linear
i (t, ~Fi) = E1

i + E2
i ,

when Pi − Si ≤ t ≤ Pi
dbf4,linear

i (t, ~Fi) = b tPi
c · (E1

i + E2
i) + dbfi(t− b tPi

c · Pi, D1
i),

when t > Pi

(16)

The approximation demand dbf lineari (t, ~Fi) is calculated based on the t-length interval.
Equation 14 shows that the task demand is approximated when 0 < t < (Pi−Si)/2. This case
is illustrated by the red dashed lines shown in Figure 9. The functions are also based on the
LP-based iterative process and the initial deadline D1

i is assigned by PDA (Pi − Si) · E1
i

E1
i
+E2

i
.

The slope of the linear function depends on the frame deadline D1′
i from the last iteration.

If the deadline D1′
i lies in the region (t,Pi − Si − t), we use the two red dotted lines shown

in Figure 9 to approximate the staircase demand. The first line passes the points (t, E1
i) and

(D1′
i , 0), and the second line passes the points (D1′

i , 0) and (Pi−Si− t, E2
i). When the frame

deadline D1′
i lies in the region (0, t] or [Pi − Si − t,Pi − Si), we reuse the linear function

dbf lineari (t,D1
i) shown in Equation 12 to calculate the slopes.

Equation 15 shows the task demand when (Pi−Si)/2 ≤ t < Pi−Si, the demand functions
differ by the values of E1

i and E2
i . In the case of the demand dbf2

i (t, ~Fi), the first line equals
min

{
E1
i , E

2
i

}
, and the second line uses the previous method computeSlope(D) to adjust the

slope of the linear function as shown in Figure 10. Figure 10 shows the approximate lines
when E1

i < E2
i , and the case is similar when E1

i ≥ E2
i . When t ≥ Pi − Si, the demand

dbf3,linear
i (t, ~Fi) and dbf4,linear

i (t, ~Fi) are identical to dbf3
i (t, ~Fi) and dbf4

i (t, ~Fi) of Equation 13,
respectively. Thus, we have created the LP-based algorithm for one-suspension tasks.

8 Experiments

We implement our LP-based algorithms using the commercial solver GUROBI [17] in
MATLAB on a 2 GHz Intel Core i5 processor and 8 GB memory machine. We compare
our LP-based algorithm with the MILP algorithm [18] and its application to self-suspending
tasks [9, 14] on uniprocessor systems. The algorithm LP-δ is the LP-based schedulability
test given the maximum error δ of the concave programming algorithm. The algorithm
niter-LP-δ limits the number of iterations to be niter. Note that we set δ = 0.1, as the
constant µ = 1

δ · ln
(
1 + 1

δ

)
(e.g. the exponential constants in Equation 2) will be out of

range if δ is too small.
The MILP algorithm is introduced in Section 5. The algorithm EDA (equal deadline

assignment [9, 3]) assigns each frame the same deadline (Dk
i = (Pi −

∑Ni−1
i=0 Ski)/Ni), and

the algorithm PDA [15, 3] assigns frame deadlines proportional to frame execution time
(Dk

i = (Pi −
∑Ni−1
i=0 Ski) · Eki /Ei). Note that we use the schedulability test in the GMF

model [3] with the EDA and PDA deadline assignment, since the upper bound of the
maximum interval length is bounded [3]. The details of application from GMF-PA to self-
suspending tasks can be found in a previous paper [18]. Comparative results on tasks with
one suspension and multiple suspensions are shown in Section 8.1 and 8.2, respectively.

8.1 The Experiments for One-Suspension Self-Suspending Tasks
For one-suspension self-suspending tasks, we compare schedulability ratio and total running
time among the algorithms in Figures 11a and 11b, respectively. Since the MILP algorithm
does not scale well with an increasing number of tasks (Figure 12) and task periods, we

ECRTS 2019

20:18 Fast and Effective Multiframe-Task Parameter Assignment

test multiple-suspension self-suspending tasks in Figures 14a and 15a without the MILP
algorithm. The schedulability ratio is the number of feasible systems over the total systems.
The total running time consists of matrix building time and solver running time.

In the task systems, task periods Pi are randomly generated in the range [Plow, Phigh].
Plow and Phigh are the low and high bounds of the task periods. The UUniFast algorithm [5]
divides the utilizations Ui of n tasks under system utilization Ucap. The total execution time is
Ei = Pi ·Ui, and the suspension delay is generated from [Slow ·(1−Ui) ·Pi, Shigh ·(1−Ui) ·Pi].
Slow and Shigh in suspension range [Slow, Shigh] are the low and high suspension index
bounds, respectively. The UUniFast algorithm also divides the total execution time into
frame execution times. ε represents the threshold in the LP-based algorithm shown in Figure 4
and is set to be 0.01. Since all algorithms perform well under small system utilization Ucap,
we focus on the experiments whose system utilization Ucap ≥ 0.5.

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

S
ch

ed
ul

ab
ili

ty
 R

at
io

0

0.2

0.4

0.6

0.8

1
LP-0.1
PDA
EDA
MILP

(a) The schedulability ratio of the algorithms at
system utilization [0.5, 0.9].

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

T
ot

al
 R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

0

0.5

1

1.5

LP-0.1
PDA
EDA
MILP

(b) The average running time of the algorithms
at system utilization [0.5, 0.9].

Figure 11 The comparison of our LP-based algorithm with the MILP and other polynomial-time
algorithms on schedulability ratio and average running time.

In Figures 11a and 11b, the x-axes represent the system utilization Ucap ∈ [0.5, 0.9] with a
step size of 0.05. Each task system contains five tasks. The task configuration parameters are
Plow = 10, Phigh = 100, Slow = 0.3, and Shigh = 0.6. The y-axes represent the schedulability
ratio and total running time in Figures 11a and 11b, respectively. The data are the average
numbers of 500 runs on each Ucap. Figure 11a shows that our LP-δ is better than PDA
and EDA algorithms in terms of schedulability ratio. The iteration numbers of all tested
LP-δ algorithm are smaller than five. The multiple runs of the LP algorithm make the LP-δ
algorithm take slightly longer than the MILP algorithm shown in Figure 11b. The MILP can
be relatively efficient for small enough task systems; however, as the number of tasks/frames
increases, the MILP running time increases exponentially. Note that in Figure 11, we focus
on a small system where we can gauge the effectiveness of the LP in comparison with the
MILP and other algorithms. With Ucap = 0.5, Figure 12 shows that the execution time of
the MILP algorithm increases dramatically when the number of tasks increases. Multiple
input dimensions affect the execution time of the MILP algorithm, e.g., the task periods.
Task periods directly affect the number of integer variables of the MILP algorithm and the
running time is longer with higher task periods even when the number of tasks in the system
is small. The running time of the LP-based algorithm scales relatively well.

Since we use the concave programming algorithm to guide the LP-based algorithm and
have not proved a speed-up factor for the LP-based algorithm, we perform experiments
on L value and maximum error (

√
L/LMILP − 1 by the transformation of Theorem 9). L

shows how close the value of the heuristic algorithm is to the MILP algorithm. L indicates
the minimization of the maximum demands over all tested intervals. E.g., assume there
exist two heuristic algorithms that generate L = 0.2 and 0.9, respectively. Both algorithms

B. Peng, N. Fisher, and T. Chantem 20:19

Number of Tasks per System
10 20 30 40 50 60 70 80

T
ot

al
 R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

0

20

40

60

80

100

120

LP-0.1
PDA
EDA
MILP

Figure 12 The average running time of the algorithms as the number of tasks increases.

will give successful schedules in the schedulability ratio test, but the one with L = 0.2 is a
tighter schedule compared to the other one. If L > 1, the system is not schedulable. We also
compare the maximum error of the LP-δ algorithm since the error can be larger than δ.

Figure 13a shows the average L value of the algorithms among all system utilization points.
The LP-0.1 algorithm returns the closest values to the MILP algorithm. The maximum error
values shown in Figure 13b take the maximum values among 500 runs in each utilization
point. Our LP-based algorithm returns the smallest error across all algorithms.

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

L
va

lu
e

0.6

0.8

1

1.2

1.4

1.6

LP-0.1
PDA
EDA
MILP

(a) The L value of the algorithms at system
utilization [0.5, 0.9].

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
a
x
im

u
m

E
rr

or

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

LP-0.1
PDA
EDA

(b) The maximum error of the algorithms com-
pared with the MILP algorithm.

Figure 13 The quality of the LP-based algorithm on the L value and the maximum system error.

8.2 The Experiments for Multiple-Suspension Self-Suspending Tasks
Among the shown experiments on self-suspending tasks with one suspension frame, the
average number of iterations of the LP-based algorithm is smaller than five among all system
utilization Ucap. Since we believe that the algorithms can approach local optimal with a small
number of iterations, we fix the number of iterations to five and test on multiple-suspending
tasks. In Figures 14 and 15, the data for each system utilization point is based on 100
runs. Each run of the system contains 30 tasks and each task contains six execution frames
separated by five suspending frames (11 frames in total). Plow = 10 and Phigh = 100. Since
the MILP-based approach in this setting takes much longer than the LP-based algorithm,
we do not include the MILP-based approach in this experiment. The MILP-based approach
takes more than 1.5 ∗ 103 (respectively, 3.0 ∗ 103) seconds with optimality gap (the gap
between the lower and upper objective bounds) which is larger than 10% (respectively, 5%).

In Figure 14a, the system utilization Ucap ∈ [0.8, 0.96] with step size of 0.02 is shown
on the x-axis. Figure 14a has the suspension range with Slow = 0.1 and Shigh = 0.3. In
Figure 15a, the system utilization Ucap ∈ [0.5, 0.9] with a step size of 0.05 is shown on the
x-axis. Figure 15a has the suspension range with Slow = 0.3 and Shigh = 0.6. Figures 14a
and 15a show that our LP-δ is the best among all polynomial-time algorithms in terms of

ECRTS 2019

20:20 Fast and Effective Multiframe-Task Parameter Assignment

System Utilization
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

S
ch

ed
ul

ab
ili

ty
 R

at
io

0

0.2

0.4

0.6

0.8

1

5-LP-0.1
PDA
EDA

(a) The schedulability ratio of the algorithms at
system utilization [0.8, 0.96].

System Utilization
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

T
ot

al
 R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

0

10

20

30

40

50
5-LP-0.1
PDA
EDA

(b) The average running time of the algorithms
at system utilization [0.8, 0.96].

Figure 14 Comparison of our LP-based algorithm with other polynomial-time algorithms on the
schedulability ratio and average running time.

schedulability ratio. The running times in Figures 14b and 14b reveal that LP-δ also scales
well. The improvements for low suspension range [0.1, 0.3] are better than the one with long
range [0.3, 0.6]. The reason is that when the system specification has more slack time (small
frame execution time and short suspending length), the LP-based algorithms can be “trained”
to get near optimal parameters during the five iterations. In other words, e.g., the frames
deadlines will be equal to their corresponding execution times if there are no slacks for all
tasks, and all algorithms will return identical frame deadlines.

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

S
ch

ed
ul

ab
ili

ty
 R

at
io

0

0.2

0.4

0.6

0.8

1

5-LP-0.1
PDA
EDA

(a) The schedulability ratio of the algorithms at
system utilization [0.5, 0.9].

System Utilization
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

T
ot

al
 R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

0

10

20

30

40

50
5-LP-0.1
PDA
EDA

(b) The average running time of the algorithms
at system utilization [0.5, 0.9].

Figure 15 The comparison of our LP-based algorithm with other polynomial-time algorithms on
schedulability ratio and average running time.

Our LP-based algorithm always yields higher schedulability ratio compared to other
polynomial-time algorithms. The average running time is competitive overall even when
compared with non-mathematical-programming based algorithms such as EDA/PDA.

9 Conclusions

In this paper, we propose a concave programming approximation algorithm and prove its
speed-up factor (can approach one) compared to the optimal MILP algorithm. Under the
guidance of the tunable small speed-up factor, we present the general LP-based scheme
to schedule GMF-PA tasks. We further optimize the LP-based algorithm and apply it to
schedule one-suspension tasks. Extensive experiments show that our algorithms improve the
schedulability ratio and have competitive running time compared to the previous results.

B. Peng, N. Fisher, and T. Chantem 20:21

References
1 B. Andersson. Schedulability analysis of generalized multiframe traffic on multihop-networks

comprising software-implemented ethernet-switches. In Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing, pages 1–8, April 2008.

2 S. Baruah. Dynamic- and Static-priority Scheduling of Recurring Real-time Tasks. Real-Time
Syst., 24(1):93–128, January 2003.

3 S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized Multiframe Tasks. Real-Time
Systems, pages 5–22, 1999.

4 S. Baruah and N. Fisher. The Partitioned Multiprocessor Scheduling of Sporadic Task Systems.
In Proceedings of the 26th Real-Time Systems Symposium, pages 321–329, 2005.

5 E. Bini and G. C. Buttazzo. Measuring the Performance of Schedulability Tests. Real-Time
Systems, pages 129–154, 2005.

6 G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic Scheduling for Flexible Workload
Management. IEEE Transactions on Computers, pages 289–302, March 2002.

7 D. Buttle. Real-Time in the Prime-Time. In Proceedings of the 24th Euromicro Conference on
Real-Time Systems, pages xii–xiii, July 2012. doi:10.1109/ECRTS.2012.7.

8 T. Chantem, X. Wang, M.D. Lemmon, and X.S. Hu. Period and Deadline Selection for
Schedulability in Real-Time Systems. In Proceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 168–177, July 2008.

9 J. J. Chen and C. Liu. Fixed-Relative-Deadline Scheduling of Hard Real-Time Tasks with
Self-Suspensions. In Proceedings of the Real Time Systems Symposium (RTSS), December
2014.

10 J. J. Chen, G. von der Bruggen, W. H. Huang, and C. Liu. State of the Art for Scheduling
and Analyzing Self-Suspending Sporadic Real-Time Tasks. In Proceedings of the Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2017.

11 S. Ding, H. Tomiyama, and H. Takada. Scheduling Algorithms for I/O Blockings with a Multi-
frame Task Model. In Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, August 2007.

12 P. Ekberg and W. Yi. Uniprocessor Feasibility of Sporadic Tasks Remains coNP-complete
Under Bounded Utilization. In Proceedings of the 36th IEEE Real-Time Systems Symposium
(RTSS), 2015.

13 M. R. Garey, D. S. Johnson, and Ravi Sethi. The Complexity of Flowshop and Jobshop
Scheduling. Math. Oper. Res., 1(2):117–129, May 1976. doi:10.1287/moor.1.2.117.

14 W.H. Huang and J.J. Chen. Self-Suspension Real-Time Tasks under Fixed-Relative-Deadline
Fixed-Priority Scheduling. In Proceedings of the Design, Automation, and Test in Europe
(DATE), March 2016.

15 J. Liu. Real-Time Systems. Prentice Hall, 2000.
16 A.K. Mok and D. Chen. A multiframe model for real-time tasks. In Proceedings of the 17th

IEEE Real-Time Systems Symposium, pages 22–29, December 1996.
17 Gurobi Optimization. GUROBI: The state-of-the-art mathematical programming solver. URL:

http://www.gurobi.com/.
18 B. Peng and N. Fisher. Parameter Adaptation for Generalized Multiframe Tasks and Ap-

plications to Self-Suspending Tasks. In Proceedings of the 22nd Embedded and Real-Time
Computing Systems and Applications (RTCSA), August 2016.

19 B. Peng, N. Fisher, and T. Chantem. MILP-based deadline assignment for end-to-end flows
in distributed real-time systems. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems, RTNS ’16, pages 13–22, New York, NY, USA, 2016. ACM.
doi:10.1145/2997465.2997498.

20 Bo Peng and Nathan Fisher. Parameter adaptation for generalized multiframe tasks: schedulab-
ility analysis, case study, and applications to self-suspending tasks. Real-Time Systems, 2017.

ECRTS 2019

http://dx.doi.org/10.1109/ECRTS.2012.7
http://dx.doi.org/10.1287/moor.1.2.117
http://www.gurobi.com/
http://dx.doi.org/10.1145/2997465.2997498

20:22 Fast and Effective Multiframe-Task Parameter Assignment

21 F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling independent hard
real-time tasks with self-suspensions. In Proceedings of the 25th Real-Time Systems Symposium,
pages 47–56, December 2004. doi:10.1109/REAL.2004.35.

22 J. M. Rivas, J. J. Gutiérrez, J. C. Palencia, and M. G. Harbour. Schedulability Analysis and
Optimization of Heterogeneous EDF and FP Distributed Real-Time Systems. In Proceedings
of the 23rd Euromicro Conference on Real-Time Systems (ECRTS), pages 195–204, July 2011.
doi:10.1109/ECRTS.2011.26.

23 M. Stigge, P. Ekberg, N. Guan, and W. Yi. The Digraph Real-Time Task Model. In Proceedings
of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
71–80, April 2011. doi:10.1109/RTAS.2011.15.

24 Martin Stigge and Wang Yi. Graph-based models for real-time workload: a survey. Real-Time
Systems, 2015.

http://dx.doi.org/10.1109/REAL.2004.35
http://dx.doi.org/10.1109/ECRTS.2011.26
http://dx.doi.org/10.1109/RTAS.2011.15

Response-Time Analysis of Limited-Preemptive
Parallel DAG Tasks Under Global Scheduling
Mitra Nasri
Delft University of Technology (TUDelft), Delft, The Netherlands

Geoffrey Nelissen
CISTER Research Centre, Polytechnic Institute of Porto (ISEP-IPP), Portugal

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
Most recurrent real-time applications can be modeled as a set of sequential code segments (or blocks)
that must be (repeatedly) executed in a specific order. This paper provides a schedulability analysis
for such systems modeled as a set of parallel DAG tasks executed under any limited-preemptive
global job-level fixed priority scheduling policy. More precisely, we derive response-time bounds for
a set of jobs subject to precedence constraints, release jitter, and execution-time uncertainty, which
enables support for a wide variety of parallel, limited-preemptive execution models (e.g., periodic
DAG tasks, transactional tasks, generalized multi-frame tasks, etc.). Our analysis explores the
space of all possible schedules using a powerful new state abstraction and state-pruning technique.
An empirical evaluation shows the analysis to identify between 10 to 90 percentage points more
schedulable task sets than the state-of-the-art schedulability test for limited-preemptive sporadic
DAG tasks. It scales to systems of up to 64 cores with 20 DAG tasks. Moreover, while our analysis
is almost as accurate as the state-of-the-art exact schedulability test based on model checking
(for sequential non-preemptive tasks), it is three orders of magnitude faster and hence capable of
analyzing task sets with more than 60 tasks on 8 cores in a few seconds.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases parallel DAG tasks, global multiprocessor scheduling, schedulability analysis,
non-preemptive jobs, precedence constraints, worst-case response time, OpenMP

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.21

Supplement Material The source code of the analysis tool is available at https://github.com/
brandenburg/np-schedulability-analysis.

Funding This work was partially supported by national funds through FCT/MCTES (Portuguese
Foundation for Science and Technology), within the CISTER Research Unit (UID/CEC/04234); by
the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under
the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF),
and by national funds through the FCT, within project POCI-01-0145-FEDER-029119 (PReFECT);
as well as by the European Union through the Clean Sky 2 Joint Undertaking, under H2020
(H2020-CS2-CFP08-2018-01) grant agreement number 832011 (THERMAC).

1 Introduction

With the proliferation of multicore and many-core processing platforms, the embedded
systems world is steadily moving towards developing critical applications as (highly) parallel
programs. In embedded real-time systems in particular, parallel programming approaches
allow for more efficient use of a computing platform’s resources, resulting in lower response
times and improved power consumption. For instance, the automotive industry adopted

© Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
https://github.com/brandenburg/np-schedulability-analysis
https://github.com/brandenburg/np-schedulability-analysis
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 18 21 24 27

sc
h

ed
u

la
b

ili
ty

 r
at

io

number of tasks

4 cores, 30% utilization

exact test (timeout)

this paper

exact test

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper

Serrano

0

500

1000

1500

2000

2500

3000

3 9 15 21 27 33 39 45 51 57

ru
n

ti
m

e
(s

ec
)

number of tasks

this paper

exact test

8 cores

4 cores

2 cores

1 core

this paper (8 cores)

(a) (b) (c) 10 DAG tasks, 4 cores

Figure 1 (a) schedulability ratio of the exact test [46] vs. our test for independent non-preemptive
periodic tasks, (b) average runtime of the exact test [46] vs. our test for schedulable independent
non-preemptive periodic task sets with total utilization of 30%, (c) schedulability ratio of Serrano
et al.’s test [39] vs our test for DAG tasks. In inset (a), given a one-hour budget, starting from 12
tasks the exact test reports lower schedulability than the proposed test due to frequent timeouts.
See Sec. 5 for a detailed description of the experimental setup.

multicore processors already more than six years ago, and their applications are routinely
composed of thousands of runnables executing in parallel [24]. Such runnables are sequential
code segments that perform simple operations, which are composed to produce complex
applications by imposing precedence constraints that must be respected at runtime (to
enforce a predictable ordering and to respect data dependencies). Because of the application
domain, additional constraints on release and completion times are also associated with
runnables to ensure temporal correctness, control performance, ease of synchronization and,
in consequence, ease of integration of concurrent applications on multicore platforms.

Similarly to the automotive case, a wide variety of industrially relevant systems boil
down to the execution of a set of functions with precedence constraints where a function
is simply a sequential execution segment of a bigger, potentially parallel, application. Such
applications (henceforth called tasks) may be modeled with Directed Acyclic Graphs (DAGs).
Nodes of a DAG represent sequential code segments, and edges model their precedence
constraints. Each application represented by a DAG releases jobs based on timer events or
inputs regularly received from the environment following periodic or non-periodic activation
patterns (e.g., multi-frame or multi-rate tasks [16, 6, 20]). Robotics applications executed
upon the ROS middleware, machine learning algorithms developed with the TensorFlow or
Pytorch frameworks, or applications developed with OpenMP are other notable examples
of systems that are often time-driven and that may be naturally modeled with DAGs. To
summarize, parallel DAG tasks are the characteristic real-time workload of the multicore age
and thus of central interest for schedulability analysis.

In this work, we consider a limited-preemptive task model, where nodes of a DAG must
execute non-preemptively, but higher-priority workload may preempt the execution of a DAG
between the execution of any two of its nodes. This execution model is motivated by many
previous studies [11, 34, 2, 29, 37, 39] that have shown that non-preemptive (or limited-
preemptive) scheduling improves the timing predictability of jobs running on a multicore
platform, since it reduces the number of context switches, increases cache predictability [45],
and improves the accuracy of worst-case execution time (WCET) estimates and worst-case
blocking bounds (e.g., due to contention for shared resources).

Two types of frameworks exist for the schedulability analysis of such systems today. Exact
solutions based on model checkers or constraint programming [46, 42], and sufficient (but
inexact) solutions usually based on some sort of response-time analysis [39, 15, 13, 14].

It has been demonstrated that exact analyses based on constrained programming or
model checkers such as Uppaal do not scale well [46, 42]. For example, Figure 1(b) shows the
time required to deem a simple non-preemptive periodic task set schedulable using Uppaal

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:3

as a function of the number of tasks for several different core counts on a 3.3 GHz Intel Xeon
machine with 256 GiB RAM. Even for such a simple model without intra-task parallelism
or precedence constraints, Uppaal requires an average of 45 minutes to analyze 24 tasks
on 4 cores used at only 30% of their capacity (i.e., the total platform utilization is 30%),
with nearly 50% of the tested workloads timing out after 1 hour (see Figure 1(a)). Worse, it
cannot solve the problem at all in less than one hour for 12 tasks (or more) on 8 cores with a
total utilization of only 30%. Clearly, such a solution can realistically be used only for very
small systems, which limits practicality.

On the other hand, classic sufficient schedulability analyses following the standard
response-time analysis paradigms are usually fast but very pessimistic. For instance, as seen
in Figure 1(c), the only sufficient test existing for the schedulability of limited-preemptive
DAGs scheduled by a global fixed-priority scheduler (proposed by Serrano et al. [39]) cannot
detect that any of the generated task sets with a total utilization larger than 50% (4 cores,
10 DAG tasks) is schedulable, when in fact at least 90% of them are. This pessimism reaches
a level that calls into question the utility of such tests in industrial settings.

In this paper, we propose a new approach for the schedulability analysis of limited-
preemptive DAG tasks that presents a more balanced tradeoff between runtime and accuracy.
Case in point, w.r.t. analysis speed, in the scenario shown in Figure 1(a), our solution solves
the schedulability problem of non-preemptive tasks almost optimally (empirically, almost all
schedulable workloads are in fact deemed schedulable) in less than 10 seconds on average,
while Uppaal needed tens of minutes to reach the same conclusion (and frequently exceeded
the one-hour timeout). Furthermore, w.r.t. analysis accuracy for DAG tasks, the proposed
analysis clearly increases the number of workloads successfully detected as being schedulable
in comparison to the solution of Serrano et al. by a substantial margin (see Figure 1(c)).

The analysis presented in this paper covers any global job-level fixed-priority (JLFP)
scheduler (e.g., global limited-preemptive earliest-deadline first (G-LP-EDF) or fixed-priority
(G-LP-FP) scheduling). Specifically, each node of each DAG instance released by a task can
have a distinct priority, a distinct release time, and is assumed to execute non-preemptively.
We allow for the practical, but analytically challenging complication that each node may
experience release jitter and execution-time uncertainty, which in combination with non-
preemptivity results in scheduling anomalies that are notoriously difficult to analyze precisely.

To strike a good balance between accuracy and runtime, our analysis constructs a schedule-
abstraction graph that abstracts all possible orderings of job dispatch times resulting from
the underlying JLFP scheduling policy, based on which we derive bounds on the best- and
worst-case response time of each job. This approach requires: (i) a system-state abstraction
that represents the state in which the system may be after a given sequence of scheduling
events, (ii) sound exploration rules that reflect how new system states may be reached from
a given state, and (iii) merging rules for the aggregation of similar states to defer, as long as
possible, the usual state-space explosion problem.

As a key technical contribution, this paper introduces a new system-state abstraction in
which the number of newly created states at the end of each exploration step is independent
of the number of cores, which ensures scalability to large multicore platforms. Furthermore,
our new abstraction also allows for aggressive merging rules, and hence greatly reduces the
number of system states that must be investigated to cover all relevant job schedules. Based
on this novel technique, (i) we devise a schedule-abstraction graph generation algorithm
that considers the precedence constraints of DAG tasks and ensures a small per-state
memory footprint and low per-state computational costs, (ii) we prove the system state-
space exploration and merging rules to be sound, and (iii) we report results on extensive

ECRTS 2019

21:4 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

experiments involving both synthetic DAGs and actual DAGs from parallel benchmark
applications. The experiments show the proposed method to scale to systems with up to
64 cores, to be able to identify up to 90 percentage points more schedulable task sets in
comparison to the state-of-the-art response-time analysis for limited-preemptive sporadic DAG
tasks [39], and to be three orders of magnitude faster than model-checking approaches [46].

2 Related Work

The schedulability analysis of a set of independent non-preemptive sporadic tasks scheduled
by a global scheduling policy such as G-LP-EDF or G-LP-FP has been studied in several
works [5, 19, 23, 22, 11]. These analyses, however, do not account for release jitter and
become needlessly pessimistic when applied to periodic tasks or jobs with regular, yet not
necessarily periodic, activation patterns [33] as they fail to discount many execution scenarios
that are impossible in such systems commonly found in industry.

In response to the need for supporting task models with more complicated job activation
patterns, Stigge et al. [41] and Abdullah et al. [1] provided schedulability analyses for non-
preemptive digraphs and digraphs with a mixed set of preemptive and non-preemptive nodes,
respectively. The digraph model was later extended to support a rendezvous synchronization
mechanism [31]. However, to the best of our knowledge, there is no result yet on digraphs
with non-preemptive nodes and complex inter-task precedence constraints.

To work around the lack of a schedulability test for non-preemptive DAGs, Saifullah et al.
[37] provided solutions to convert a DAG to a set of independent jobs whose arrival times and
deadlines are assigned in a way that respects the DAG’s given precedence constraints. This
job set is then converted to an equivalent periodic task set and evaluated using Baruah’s [5]
or Guan’s [19] schedulability analyses for independent, non-preemptive tasks. This approach,
however, suffers from the pessimism inherent in the decomposition step, i.e., regardless of the
accuracy of the underlying schedulability tests, many schedulable DAG tasks will be deemed
unschedulable simply because the decomposition technique may not be able to find feasible
parameters for the decomposed independent tasks.

Liu and Anderson extensively studied sporadic processing pipelines and DAGs under
global scheduling in a soft real-time context [25, 26, 27, 28], showing that deadline tardiness
remains bounded as long as the system is not overloaded (i.e., DAG instances may miss
deadlines, but are guaranteed to complete within an a priori fixed interval after their deadline).
In contrast to Liu and Anderson’s focus on establishing (non-tight) tardiness bounds, our goal
is to determine as accurate as possible response-time bounds given (possibly) hard deadlines.

Serrano et al. [39] proposed an analysis for limited-preemptive DAG tasks. This is the
closest work to our problem as it explicitly considers precedence constraints and limited-
preemptive global scheduling at the same time. Our work improves upon this result by:
(i) providing a much more accurate analysis for periodic DAGs and other types of tasks with
regular, yet non-periodic release patterns, (ii) including all JLFP global scheduling policies
in one uniform analysis framework, and (iii) supporting inter-task dependencies (rather than
only precedence constraints within individual DAG tasks).

Several works have proposed exact analyses for global preemptive sporadic tasks without
precedence constraints [4, 8, 9, 18, 43]. These analyses generally explore all system states that
can possibly be reached using model checking, timed automata, or linear-hybrid automata.
These solutions, however, are limited to the preemptive execution model and have limited
scalability w.r.t. the number of tasks, processors, and the granularity of time. For instance,
the analysis of Sun et al. [43] is reported to be limited to 7 tasks and 4 cores, and Guan et
al.’s approach [18] is applicable only if task periods are integers in the range from 8 to 20.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:5

In our own prior work [33], we considered the schedulablity analysis of a set of independent
(i.e., non-DAG), non-preemptive sequential jobs scheduled with a global JLFP scheduling
policy. While this paper superficially resembles [33] in that it uses a similar general approach –
namely, the generation of a schedule-abstraction graph [32] – it actually follows a substantially
different design needed to support limited-preemptive parallel DAG tasks. Specifically, in
order to scale to non-trivial DAG tasks, the system state abstraction, exploration rules, and
merge rules presented in this paper are entirely novel, and in fact even incomparable, to
those previously used in [33]. Case in point, extensive experiments (see Sec. 5) revealed
that the solution presented in this paper is up to two orders-of-magnitude faster than [33]
when non-preemptive sequential tasks are analyzed, which reflects the nontrivial scalability
advantages of the novel approach introduced in this paper.

3 System Model and Definitions

We consider the problem of globally scheduling a set of limited-preemptive parallel tasks with
known arrival patterns upon a multiprocessor platform composed of m unit-speed processors.
Each task is modeled by a DAG (V,E), where V is the set of execution segments, and E is
the set of precedence constraints between execution segments in V . Each execution segment
vj ∈ V has an execution time, and may (or may not) be assigned a relative release offset and
relative deadline with respect to the arrival time of the task. For each arrival of a task, every
execution segment in V releases a job. Even though we assume that tasks have known arrival
patterns, we allow their execution segments, and hence their jobs, to be subject to release
jitter. Similarly, the exact execution time of each job is a priori unknown. In addition, we
allow precedence constraints to be specified among execution segments of different DAGs,
thereby allowing for arbitrary inter-task precedence constraints.

As the arrival pattern of each task is known, our problem reduces to the analysis of a
finite set of non-preemptive jobs J on an observation window whose length can be computed
a priori. For periodic tasks with constrained deadlines, release jitter and synchronous releases,
the observation window is equal to one hyperperiod (i.e., the least common multiple of all
periods). Bounds on the observation window length for periodic tasks with release offsets,
precedence constraints, and arbitrary deadlines were established by Goossens et al. [17].

Each job Ji = ([rmin
i , rmax

i], [Cmin
i , Cmax

i], di, pi, predi)) released in the observation win-
dow has an earliest-release time rmin

i , a latest-release time rmax
i , a best-case execution time

(BCET) Cmin
i , a WCET Cmax

i , an absolute deadline di, a priority pi, and a set of predecessors
predi ⊂ J , i.e., a set of jobs that must complete before Ji may start executing. The set of
successors of a job Ji is denoted by succi = {Jx | Ji ∈ predx}.

Each job is assigned a priority by a given job-level fixed-priority (JLFP) scheduling policy.
We assume that a numerically smaller value of pi implies higher priority. Any ties in priority
are broken arbitrarily in a deterministic way. For ease of notation, we assume that the “<”
operator implicitly reflects this tie-breaking rule. We assume a discrete-time model, i.e., all
job timing parameters are integer multiples of a basic time unit such as a processor cycle.

At runtime, each job is released at an a priori unknown time ri ∈ [rmin
i , rmax

i]. The
release bounds rmin

i and rmax
i are computed based on the arrival pattern (e.g., periodic,

multi-rate, or bursty) of Ji’s task, its offset, and its release jitter. We also assume that each
job Ji has an a priori unknown execution time requirement Ci ∈ [Cmin

i , Cmax
i]. We assume

that a job’s absolute deadline di is fixed and not affected by release jitter. We say that a job
Ji is possibly released at time t if t ≥ rmin

i , and certainly released if t ≥ rmax
i .

Any two jobs that are neither directly nor indirectly predecessor/successor of each other
are said to be independent. Independent jobs may execute in parallel. Each individual job
must execute sequentially, i.e., it cannot execute on more than one core at a time and must

ECRTS 2019

21:6 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

run to completion once started. A job Ji that starts its execution on a core at time t occupies
that core during the interval [t, t + Ci). In this case, we say that job Ji finishes by time
t+ Ci. At time t+ Ci, the core used by Ji becomes available to start executing other jobs.
A job’s response time is defined as the difference between the earliest-release time and the
actual completion time of the job1, i.e., t+ Ci − rmin

i . We say that a job is ready at time
t if it is released, did not start its execution before time t, and all of its predecessors have
finished by time t. Further, we assume that the system does not have a job-discarding policy,
i.e., released jobs remain pending until their execution is finished.

The paper assumes that shared resources that must be accessed in mutual exclusion are
protected by FIFO spin locks. Since jobs execute non-preemptively, it is easy to obtain
a bound on the worst-case time that any job spends spinning while waiting to acquire a
contested lock [44]; we assume the worst-case spin delay is included in each job’s WCET.

For ease of notation, we use max0{X} and min∞{X} over a set of positive values X ⊆ N
that is completed by 0 and ∞, respectively. That is, if X = ∅, then max0{X} = 0 and
min∞{X} =∞. Otherwise they yield the usual maximum and minimum values in X.

We consider any non-preemptive global JLFP scheduler upon an identical multiprocessor
platform. The scheduler is invoked whenever a job is released or completed. To simplify
the presentation of the proposed analysis, we make the modeling assumption that, without
loss of generality, at any invocation of the scheduling algorithm, at most one of the pending
jobs is picked by the scheduler and assigned to a core. The scheduler is invoked once for
each event if two or more release or completion events occur at the same time. The actual
scheduler implementation in the analyzed system need not adhere to this restriction and
may process more than one event during a single invocation. Our analysis remains safe if the
assumption is relaxed in this manner.

In this paper, we exclusively focus on priority-driven and work-conserving scheduling
algorithms, i.e., the scheduler dispatches a job only if the job has the highest priority among
all ready jobs, and it does not leave a core idle if there exists a ready job. We assume that
the WCET of each job is padded to cover all scheduling overheads and to account for any
micro-architectural interference (e.g., competition for shared caches or memory bandwidth).

A job set J is schedulable under a given scheduling policy if no execution scenario of J
results in a deadline miss, where an execution scenario is defined as follows [32].

I Definition 1. An execution scenario γ = {(r1, C1), (r2, C2), . . . , (rn, Cn)}, where n = |J |,
is an assignment of execution times and release times to the jobs of J such that, for each
job Ji, Ci ∈ [Cmin

i , Cmax
i] and ri ∈ [rmin

i , rmax
i].

4 Schedulability Analysis

The schedulability analysis proceeds by exploring the space of all possible schedules using
the notion of a schedule-abstraction graph [32]. Each path in this graph reflects a sequence
of job-dispatch decisions made by the underlying scheduling policy. As discussed in Sec. 2, a
key innovation of this paper is a new system-state abstraction that more richly aggregates
the necessary information in each state and, ultimately, reduces the number of edges in the
final graph. After introducing the new abstraction (Sec. 4.2), we explain how to build the
graph (Sec. 4.3), define exploration rules for work-conserving global JLFP scheduling policies
(Sec. 4.4), describe how to soundly construct a new state (Sec. 4.5), and finally show how to
merge similar states to reduce the size of the graph (Sec. 4.6). A proof of correctness of the
analysis is presented in Sec. 4.7.

1 Any release jitter is counted as part of the job’s response time, as introduced by Audsley et al. [3].

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:7

4.1 Job Finish Times and System-Availability Intervals
Because jobs experience release jitter and execution time variation, exponentially many
execution scenarios exist, and the exact finishing time of each job cannot be known a priori.
Therefore, we compute an interval [EFT i,LFT i] in which a job Ji will finish after a given
sequence of scheduling decisions taken by the scheduler. This interval is lower-bounded by
Ji’s earliest finish time EFT i and upper-bounded by its latest finish time LFT i, that is, Ji

may possibly finish at or after EFT i and is certainly finished at LFT i. A key challenge
is that this uncertainty in job finish times introduces uncertainty in processor availability,
which in turn affects the finish-time intervals of subsequently scheduled jobs.

To address this challenge, in our new abstraction, a state represents the state of the system
after a possible sequence of scheduling decisions (corresponding to a subset of execution
scenarios) by indicating when one, two, three, . . ., m cores will possibly and certainly
become available. Namely, each state includes a set of system-availability intervals, denoted
A = {A1, A2, . . . , Am}, where Ax = [Amin

x ,Amax
x] means that x cores are possibly available

(PA) starting at time Amin
x and certainly available (CA) no later than at time Amax

x .

I Example 1. Consider a system with m = 3 cores and suppose that three jobs are scheduled,
with the following finish-time intervals: [10, 45], [30, 40], and [15, 25]. In this example, one
core becomes possibly available at time 10. Two cores can possibly be available from time 15
onward. Similarly, one core becomes certainly available at time 25, and two cores become
certainly available at time 40. Thus, A1 = [10, 25], A2 = [15, 40], and A3 = [30, 45].

4.2 Graph Definition
We define the schedule-abstraction graph as a directed-acyclic graph G = (V,E), where V
is a set of system states and E is the set of labeled edges. An edge e ∈ E is defined as
e = (vp, vq, Ji), where vp and vq are the source and destination vertices of the edge, and the
label Ji is the job that, by being scheduled, evolves state vp to state vq. We say job Ji is
dispatched next after vp or succeeds vp if it is on an outgoing edge from a state vp.

A path P from the initial state v1 to a state vp represents a possible sequence of job-
dispatching events (or scheduling decisions) that lead to state vp from the initial state v1,
which represents the initial idle system at time zero before any job is scheduled. The length
of a path refers to the number of jobs scheduled on that path, i.e., |P | , |J P |, where J P

is the set of jobs that appear as labels on the edges of path P .
In graph G, it is possible to have more than one incoming edge to a vertex vp. However,

in that case, the following property must hold for any two paths that connect v1 to vp.

I Property 1. For any two arbitrary paths P and Q that connect v1 to vp, J P = JQ.

Having defined edges and paths, we next define a system state v ∈ V as a three-tuple
that contains: (i) the set of m system-availability intervals as defined in Sec. 4.1, denoted
A(v), (ii) a set X (v) of jobs that are certainly executing on the platform in state v, and
(iii) a set of finish-time intervals {[EFTx(v),LFTx(v)] | Jx ∈ X (v)}, where EFTx(v) and
LFTx(v) represent the time at which job Jx is possibly and certainly finished considering
the sequence of job-dispatch events that led to state v.

The motivation for including the set of certainly running jobs X (v) is that, given
precedence constraints, the ready time of a job depends on the completion time of its
predecessors. This creates a challenge as storing the EFT and LFT of every job on every
path would require an exponentially increasing amount of memory w.r.t. the number of jobs
scheduled. As a tradeoff, to improve the accuracy of the analysis, we maintain the set of

ECRTS 2019

21:8 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

Algorithm 1: Schedule Graph Construction Algorithm.
Input : Job set J
Output : Schedule graph G = (V, E)

1 ∀Ji ∈ J , BRi ←∞, WRi ← 0;
2 Initialize G by adding v1 =

(
{[0, 0], . . . , [0, 0]},X = ∅, ∅

)
;

3 while ∃ path P from v1 to a leaf vertex s.th. |P | < |J | do
4 P ← the shortest path from v1 to a leaf vertex vp;
5 RP ← set of ready jobs obtained with Eq. (1);
6 for each job Ji ∈ RP do
7 if Ji can be dispatched after vp according to Eq. (9) then
8 Build v′

p using Algorithm 2;
9 BRi ← min{EFT i(v′

p)− rmin
i , BRi};

10 WRi ← max{LFT i(v′
p)− rmin

i , WRi};
11 Connect vp to v′

p by an edge with label Ji;
12 while ∃ path Q that ends to vq such that Rule 1 is satisfied for v′

p and vq do
13 Merge v′

p and vq by updating v′
p using Eq. (15);

14 Redirect all incoming edges of vq to v′
p;

15 Remove vq from V ;
16 end
17 end
18 end
19 end

certainly running jobs X (v) and their finishing time intervals in each system state v. Since
there are at most m such jobs per state, the amount of memory required per state remains
constant. This property of the algorithm is discussed in detail in Sec. 4.4.

4.3 Graph-Generation Algorithm
We next introduce the main state-space exploration algorithm for finding the schedule-
abstraction graph for a given workload and platform. We first provide an informal high-level
overview, and then present the algorithm more precisely as pseudocode in Algorithm 1.

The schedule-abstraction graph is built iteratively in two alternating phases: expansion
and merging. The expansion phase, expands (one of) the shortest path(s) P in the graph
by considering all jobs that can possibly be dispatched next in the job-dispatch sequence
represented by P . For each such job Ji, a new vertex v′p is created and added to the graph
via a directed edge from vp to v′p. The new state v′p is generated from vp by updating the core
availability intervals and the set of certainly running jobs (and their finish-time intervals)
when the execution of Ji is considered.

The merge phase slows down the growth of the graph by merging, whenever possible, the
terminal vertices of paths that have the same set of dispatched jobs. As a key soundness
condition, the merge phase guarantees that any possible execution scenario that can be
generated from two un-merged states vp and vq can still be generated after they are merged.

The search ends when there is no vertex left to expand, that is, when all paths represent
a valid schedule of all jobs in J , which implies that all possible schedules have been explored.

Algorithm 1 presents our iterative breadth-first method for generating the schedule-
abstraction graph in full detail. A set of variables keeping track of the smallest and largest
response times (BRi and WRi, respectively) observed for each job in all execution scenarios
explored so far is initialized in line 1; these bounds are updated whenever a job Ji can
possibly be dispatched on a core (lines 9 and 10). The graph is initialized in line 2 with a

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:9

root vertex v1 that represents m idle cores at time 0. The expansion phase corresponds to
lines 6–18 and lines 12–16 implement the merge phase. These phases repeat until every path
in the graph contains |J | distinct jobs (line 3). We next discuss each phase in detail.

4.4 Expansion Phase
In this section, we explain how to expand a path P ending in vp, as found in line 4 in
Algorithm 1, by dispatching an eligible job after the scheduling sequence represented by P .

Overview

The expansion phase starts by obtaining the set of potentially ready jobs for system state vp,
i.e., jobs whose predecessors have been dispatched previously on path P .

For each ready job Ji, we calculate the earliest and latest time at which Ji can be
dispatched on the platform after state vp. These times are called the earliest start time (EST)
and the latest start time (LST) of the job, denoted by EST i(vp) and LST i(vp), respectively.

If the earliest time at which the job can potentially start executing, i.e., EST i(vp), is
earlier than the latest time at which a work-conserving JLFP scheduler would allow that
job to start if it is to be the next scheduled job, i.e., LST i(vp), then the job is eligible to be
dispatched after state vp. For each eligible job, a new state v′p is created and appended to
path P after state vp.

We next explain in detail, and precisely define, each step of the expansion phase.

Ready Interval

As stated in Sec. 3, a job is ready only if it is released and all of its predecessors have been
completed. Thus, potentially ready jobs for path P are those that are not yet dispatched
and all of their predecessors are in J P , i.e.,

RP , {Ji | Ji ∈ J \ J P ∧ pred(Ji) ⊆ J P }. (1)

Since each job Ji may suffer release jitter and because the exact finish times of Ji’s
predecessors are not known, the exact time at which Ji becomes ready is also unknown. For
that reason, we compute a lower bound on the time at which a job Ji ∈ RP is possibly ready,
denoted Rmin

i , and an upper bound on the time at which Ji is certainly ready, denoted Rmax
i .

Since a job can start its execution only if (i) it is released, and (ii) all its predecessors have
completed, Rmin

i is the minimum of rmin
i and the earliest time at which all predecessors of

Ji have possibly completed, and Rmax
i is the maximum of rmax

i and the time at which all
predecessors of Ji have certainly completed, i.e.,

Rmin
i , max

{
rmin

i ,max0{EFT∗x(vp) | Jx ∈ pred(Ji)}
}
, and (2)

Rmax
i , max

{
rmax

i ,max0{LFT∗x(vp) | Jx ∈ pred(Ji)}
}
, (3)

where EFT∗x(vp) and LFT∗x(vp) are safe bounds (defined next) on the earliest and latest
finish time of Jx for all execution scenarios that lead to vp. The use of max0 in Eqs. (2) and
(3) ensures that the ready interval of jobs with no precedence constraint is equal to their
release jitter interval, i.e., Rmin

i = rmin
i and Rmax

i = rmax
i if Ji does not have predecessors.

For the predecessors of Ji that are certainly running in system state vp, i.e., any job
Jx ∈ X (vp) ∩ pred(Ji), the bounds EFT∗x(vp) and LFT∗x(vp) can safely assume the values
EFTx(vp) and LFTx(vp) saved in state vp. However, for predecessors of Ji that are not
certainly running in state vp, i.e., any job Jx that is not in X (vp), there is no bound on

ECRTS 2019

21:10 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

EFTx(vp) and LFTx(vp) saved in vp (which, to recall, is an intentional space optimization).
Therefore, we instead use the current values of BRx and WRx (see Algorithm 1) as they
are safe bounds on the EFT and LFT of Jx for all system states explored up to this point
(lines 9 and 10 of Algorithm 1), which also includes vp.

To summarize, if a job Jx belongs to X (vp), then EFT∗x and LFT∗x are equal to EFTx(vp)
and LFTx(vp), respectively. Otherwise, they are equal to BRx and WRx, respectively.

Earliest and Latest Start Times

Consider a job Ji ∈ RP , i.e., all the precedence constraints of Ji are respected. Job Ji cannot
start executing prior to the earliest time at which it may become ready, i.e., Rmin

i , nor can it
start executing before the earliest time at which a core may become available, which is given
by Amin

1 . Thus, the earliest time at which Ji can start its execution after path P is given by

EST i = max{Rmin
i ,Amin

1 }. (4)

The latest start time of Ji after path P is decided by two factors: (i) the scheduler follows
a JLFP scheduling policy, and (ii) the scheduler is work-conserving.

Considering factor (i), since a JLFP scheduling policy always dispatches the highest-
priority ready job, the latest start time of Ji is upper-bounded by thigh − 1, where thigh is
the earliest point in time from which on Ji certainly is not the highest-priority ready job
anymore. An upper bound on thigh is given by Eq. (5) as proven in Lemma 2.

thigh , min
∞
{thx(Ji) | Jx ∈ RP ∧ px < pi}, where (5)

thx(Ji) , max
{
rmax

x ,max
0
{LFT∗y(vp) | Jy ∈ pred(Jx) \ pred(Ji)}

}
. (6)

I Lemma 2. Job Ji will not be the highest-priority ready job in RP for system state vp at
any time later than thigh − 1.

Proof. Suppose that thigh 6=∞ (otherwise the claim is trivially true as it does not actually
constrain Ji). Let Jx ∈ RP be the job with higher priority than Ji such that thx(Ji) = thigh .

At time thx(Ji), job Jx is certainly released (since according to Eq. (6), thx(Ji) ≥ rmax
x)

and all predecessors of Jx that are not predecessors of Ji have been certainly completed (since
∀Jy ∈ pred(Jx)\pred(Ji), thx(Ji) ≥ LFT∗y(vp) according to Eq. (6)). If pred(Jx)∩pred(Ji) =
∅, then according to Eq. (3), Jx is certainly ready at thx(Ji) and Ji cannot be the highest-
priority ready job from thx(Ji) onward.

If pred(Jx) ∩ pred(Ji) 6= ∅, then, at the first point in time t ≥ thx(Ji) such that all
precedence constraints of Ji are respected, all precedence constraints of Jx are also respected
(recall that the precedence constraints of Jx that are not common with Ji were already
respected before or at time thx(Ji)). In other words, if Ji becomes ready at or after thx(Ji)
then Jx also becomes ready and Ji is not the highest-priority ready job. J

Additionally, considering factor (ii), if there is a time where a core is certainly available
(which is the case from time Amax

1 onward), and a job is certainly ready, a work-conserving
scheduler must dispatch the job at that time, which is denoted twc and obtained as follows.

twc , max
{

Amax
1 , min

∞
{Rmax

x | Jx ∈ RP }
}

(7)

I Lemma 3. Job Ji ∈ RP will not be dispatched next after vp at any time later than twc.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:11

Legend:

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥

𝑝𝑥 < 𝑝𝑖 < 𝑝ℎ
𝑅𝑥 = 6, 16
𝑅𝑖 = 13, 18
𝑅ℎ = 12, 22

𝑣𝑝
𝐴2:

𝐴1:
8

10 18

15

𝜒 = 𝐽2 , 𝐸𝐹𝑇2 = 13, 𝐿𝐹𝑇2 = 18

𝐴3:
13 27

𝑡𝑗𝑜𝑏 = 16

𝑡𝑤𝑐 = max 15, 16
𝐿𝑆𝑇𝑖 = min 16, 21
𝐸𝑆𝑇𝑖 = max 8, 13

𝐽𝑥

14

6

𝐽ℎ

16

22

𝐽𝑖 9

12

𝐽𝑖
𝑡ℎ𝑖𝑔ℎ

22

𝑡𝑤𝑐

16 18

𝑅𝑖
𝑚𝑖𝑛

13

𝑅𝑖
𝑚𝑎𝑥𝐴1

𝑚𝑖𝑛

8

𝑟𝑖
𝑚𝑖𝑛

9
𝐸𝑆𝑇𝑖 𝐿𝑆𝑇𝑖

Figure 2 Calculating EST i and LST i for a successor job Ji of a certainly running job J2.

Proof. Assume that twc 6= ∞; otherwise the claim is trivial. At time twc, a not-yet-
dispatched job Jx whose precedence constraints are satisfied is certainly ready (because
twc ≥ min∞{Rmax

x | Jx ∈ RP }), and a core is certainly available (because twc ≥ Amax
1).

Hence, a work-conserving scheduler will dispatch Jx at twc. Consequently, Ji will be a direct
successor of state vp only if it starts no later than twc. J

Combining the facts that LST i ≤ thigh − 1 (Lemma 2) and LST i ≤ twc (Lemma 3), we
observe that Ji may be the next job scheduled after path P only if it starts no later than

LST i = min{twc, thigh − 1}. (8)

I Example 4. Figure 2 shows how EST i and LST i are calculated for Ji. The earliest time
at which one core becomes ready is 8, and Ji is released at the earliest at time rmin

i = 9.
However, since Ji must wait for its predecessor J2 to finish before it becomes ready, we have
EST i = 13, which is the earliest finish time of J2. Since Jx is certainly ready at time 16, and
since at least one core is certainly available from time 15 onward, the latest time at which
job Ji can be dispatched next after vp is 16; otherwise, a work-conserving scheduler would
schedule Jx after vp instead. In this example, thigh is 22, where a higher priority job Jh is
certainly released. However, since twc < thigh − 1, the LST i is bounded by twc = 16.

Eligibility Condition

A job Ji ∈ RP can be dispatched next after path P if its earliest start time EST i is not later
than its latest start time LST i, i.e., if

EST i ≤ LST i. (9)

I Lemma 5. Job Ji is a direct successor of vp only if Inequality (9) holds.

Proof. According to Lemmas 2 and 3, LST i is an upper bound on the time at which Ji can
be dispatched after vp. Therefore, if Ji cannot be dispatched by LST i, then it cannot be a
direct successor of vp. Since EST i is the earliest time at which Ji can be dispatched after vp,
if EST i > LST i, Ji cannot be a direct successor of vp. J

If a job Ji is dispatched next after vp, its earliest and latest finish times are trivially

EFT i = EST i + Cmin
i and (10)

LFT i = LST i + Cmax
i . (11)

ECRTS 2019

21:12 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

Algorithm 2: Create a new state v′p by dispatching job Ji after state vp.

1 Initialize PA and CA using Eqs. (12) and (13);
2 for each Jx ∈ X (vp) ∩ pred(Ji) do
3 if LST i < LFTx(vp) ∧ LFTx(vp) ∈ CA then
4 replace LFTx(vp) with LST i in CA;
5 end
6 end
7 Sort PA and CA in non-decreasing order;
8 ∀x, 1 ≤ x ≤ m, Ax(v′p)← [PAx,CAx];
9 X (v′p) is obtained from Eq. (14);

4.5 Creating a New State
If job Ji ∈ RP satisfies Inequality (9), it can be dispatched next after vp and a new system
state v′p is created to reflect this possibility. Algorithm 2 presents the procedure for creating
a new state v′p for job Ji. Line 1 creates two lists called PA and CA that contain bounds on
the instants at which each core becomes possibly and certainly available after dispatching
job Ji, respectively. Those lists are built using the following two lemmas.

I Lemma 6. Lower bounds (respectively, upper bounds) on the instants at which each core
becomes possibly (respectively, certainly) available after dispatching job Ji in system state vp

are given by PA (respectively, CA) defined as follows.

PA ,
{

max{EST i,Amin
x (vp)} | 2 ≤ x ≤ m

}
∪ {EFT i} (12)

CA ,
{

max{EST i,Amax
x (vp)} | 2 ≤ x ≤ m

}
∪ {LFT i} (13)

Proof. We rely on the following four facts:
Fact 1. Since Ji is the first job starting to execute after system state vp is reached, and

because Ji’s earliest start time is EST i(vp), either all cores are busy until EST i(vp), or
no other job is released until EST i(vp). In either case, after Ji is dispatched and the new
system state v′p is reached, none of the cores start executing another job before EST i(vp).
Therefore, for each core, its earliest and latest availability times for jobs other than Ji in
the new state v′p are no smaller than EST i(vp).

Fact 2. At most x cores are available in the interval [Amin
x (vp),Amin

x+1(vp)) for 1 ≤ x < m,
and no core is available for Ji to execute prior to Amin

1 (vp) (by definition of Amin
x (vp)).

Therefore, each instant Amin
x (vp) is a lower bound on the availability time of a different

core.
Fact 3. x cores are certainly available in the interval [Amax

x (vp),Amax
x+1 (vp)) for 1 ≤ x < m,

and all cores are certainly available after Amax
m (vp), by definition of Amax

x (vp). Each
instant Amax

x (vp) is thus an upper bound on the availability time of a different core.
Fact 4. When Ji starts executing, it starts on the first available core (whichever physical

core it is), and will occupy it until its finish time.

From Facts 1 and 2, the availability times of the cores in the new state v′p are lower-
bounded by {max{EST i,Amin

x (vp)} | 1 ≤ x ≤ m}. Furthermore, from Facts 2 and 4, Ji

starts its execution at the earliest at time Amin
1 (vp) and keeps the core that was potentially

available at Amin
1 (vp) certainly busy until EFT i(vp). Equivalently, that core will be possibly

available at the earliest at EFT i(vp) in the new system state v′p. Therefore, the earliest

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:13

times at which cores are potentially available in the new state v′p are lower-bounded by
{max{EST i,Amin

x (vp)} | 2 ≤ x ≤ m} ∪ {EFT i}. This proves Eq. (12).
Similarly, from Facts 3 and 4, Ji starts executing on the first available core, which becomes

certainly available at the latest at time Amax
1 . Ji keeps that core possibly busy until LFT i(vp),

or equivalently said, the core that became available no later than Amax
1 will be certainly

available at LFT i(vp) in the new system state v′p. Therefore, considering Facts 1 and 3,
the times at which cores are certainly available in the new state v′p are upper-bounded by
{max{EST i,Amax

x (vp)} | 2 ≤ x ≤ m} ∪ {LFT i}. This proves Eq. (13). J

I Lemma 7. If Ji is the job scheduled after vp, all cores running predecessors of Ji in system
state vp become available by time LST i(vp).

Proof. As all predecessors of Ji must complete before Ji starts executing, and as the
latest start time of Ji is LST i(vp), all running predecessors of Ji must complete before time
LST i(vp). Hence, all cores running predecessors of Ji become available by time LST i(vp). J

Line 1 in Algorithm 2 computes PA and CA according to Lemma 6. Lines 2–6 further
ensure that the availability times of cores that are certainly executing predecessors of Ji are
not larger than LST i(vp), hence complying with Lemma 7.

Finally, Algorithm 2 computes the system-availability intervals for v′p by sorting the lists
PA and CA in non-decreasing order (lines 7–8). The correctness of this step is proven next.

I Lemma 8. For any state v′p built with Algorithm 1, let us define t(v′p) as follows: if
vp = v1 then t(v′p) = 0, otherwise t(v′p) is the EST of the last job dispatched to reach v′p. For
1 ≤ x ≤ m, x cores cannot be simultaneously available within [t(v′p), Amin

x (v′p)), and x cores
are certainly available after time Amax

x (v′p).

Proof. We prove the claim by structural induction on the states in the schedule-abstraction
graph. The base case is state v1, in which all cores are idle and, for 1 ≤ x ≤ m, Amin

x (v1) =
Amax

x (v1) = 0. The claim trivially holds as the interval [t(v1), Amin
x (v1)) = [0, 0) is empty,

and x cores are certainly available at time Amax
x (v1) = 0, for all 1 ≤ x ≤ m.

Next, in the inductive step, assume the claim holds for state vp, that is x cores cannot be
simultaneously available within [t(vp), Amin

x (vp)), and x cores are certainly available after
time Amax

x (vp) for all 1 ≤ x ≤ m. We prove that the claim holds in state v′p resulting from
dispatching Ji after vp.

Assuming that Amin
x (vp) and Amax

x (vp) were safe bounds in state vp (which holds by the
induction hypothesis), Lemmas 6 and 7 prove that PA and CA provide safe lower bounds
(resp., upper bounds) on the potential (resp., certain) availability times of each core in
system state v′p following the dispatch of job Ji, which happens no earlier than t(v′p) = EST i.
Therefore, the xth smallest element in PA is a lower bound on the time at which the xth core
may become available after t(v′p). Hence, the xth smallest element in PA is also a lower bound
on the time at which x cores may be simultaneously available after t(v′p). Since Algorithm 2
assigns the xth smallest element in PA to Amin

x (v′p), the inductive claim holds for Amin
x (v′p).

Similarly, the xth smallest element in CA is an upper bound on the time at which an xth
core becomes certainly available in state v′p. Hence, the xth smallest element in CA is an
upper bound on the time at which x cores are certainly available in v′p. Since Amax

x (v′p) is
assigned the xth smallest element in CA, the inductive claim holds for Amax

x (v′p). J

Finally, Algorithm 2 updates the set of jobs that are certainly running in system state v′p
using the following property.

I Property 2. If the earliest finish time of a running job Jx ∈ X (vp) is later than Ji’s latest
start time, then Jx is still certainly running after Ji starts executing.

ECRTS 2019

21:14 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

𝒗𝒑

1 core 5 15

(a) Before merging 𝒗𝒑 and 𝒗𝒒

2 cores 12 30

(b) After merging 𝒗𝒑 and 𝒗𝒒

2 cores 2510
𝒗𝒒

1 core 8 20

𝜒 𝑣𝑞 = 𝐽𝑥
𝐸𝐹𝑇𝑥 𝑣𝑝 = 8, 𝐿𝐹𝑇𝑥 𝑣𝑝 = 25

2 cores 3010
𝒗𝒛

1 core 5 20

𝜒 𝑣𝑧 = 𝐽𝑥
𝐸𝐹𝑇𝑥 𝑣𝑧 = 8, 𝐿𝐹𝑇𝑥 𝑣𝑧 = 25

𝜒 𝑣𝑝 = 𝐽𝑥
𝐸𝐹𝑇𝑥 𝑣𝑝 = 12,𝐿𝐹𝑇𝑥 𝑣𝑝 = 15

Figure 3 States vp and vq (a) before and (b) after merging.

Therefore, certainly running jobs in state v′p include Ji and all jobs that were running in
state vp and respect Property 2, i.e.,

{
Jx | Jx ∈ X (vp) ∧ LST i ≤ EFTx(vp)}. Moreover,

all predecessors of Ji must have been completed by LST i. Hence, Eq. (14) below excludes
the predecessors of Ji from the list of jobs that are certainly running in state v′p.

X (v′p)← {Ji} ∪
{
Jx | Jx ∈ X (vp) \ pred(Ji) ∧ LST i ≤ EFTx(vp)

}
(14)

4.6 Merge Phase

To slow down the growth of the graph (in terms of the number of system states generated),
we merge paths with intersecting availability intervals that have the same set of jobs.

I Rule 1 (Merge Rule). Two states vp and vq can be merged if J P = JQ and ∀x, 1 ≤ x ≤ m,
Ax(vp) ∩Ax(vq) 6= ∅.

When two states vp and vq are merged, the system-availability intervals Ax(vz) in the
merged state vz are set to include the availability intervals of both vp and vq:

Ax(vz) =
[

min{Amin
x (vp),Amin

x (vq)}, max{Amax
x (vp),Amax

x (vq)}
]
. (15)

Eq. (15) expresses the fact that x cores become potentially available in the merged state vz

when x cores become potentially available in either of the original states vp or vq, and x core
are certainly available in vz when x cores are certainly available in both vp and vq.

Additionally, it is easy to see that the set of certainly running jobs in the merged state
vz comprises the jobs that were certainly running in both vp and vq, that is,

X (vz) = {Jx | Jx ∈ X (vp) ∩ X (vq)}. (16)

The finish time interval of each job Jx that is certainly running in vz is updated to
consider the bounds that were previously derived for all execution scenarios that lead to
either vp or vq, and hence also to the merged state vz. Therefore, we have that the EFT of
Jx in vz is the minimum between the EFTs in vp and vq. Similarly, the LST of Jx in vz is
the maximum LST reported for Jx in vp and vq, that is,

EFTx(vz) = min{EFTx(vp),EFTx(vq)} and
LFTx(vz) = max{LFTx(vp),LFTx(vq)}. (17)

Figure 3 shows two states before and after merging. Lemma 9 proves that merging is safe.

I Lemma 9. Merging two states vp and vq according to Rule 1 and Eqs. (15), (16) and (17)
is safe, i.e., it does not remove any potentially reachable system state from the graph.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:15

Proof. First, Rule 1 enforces that the set of jobs scheduled on the path to vp and vq is
identical for vp and vq. Therefore, the set of jobs that remain to be dispatched after vz is
the same as for vp and vq.

Second, removing jobs from the set of certainly running jobs X (·) as done by Eq. (16),
only increases the uncertainty in state vz and therefore the set of system states reachable
from vz. Similarly, increasing the size of the possible finish intervals of the certainly running
jobs (as done by Eq. (17)) increases the number of possible execution scenarios covered by
vz in comparison to vp and vq.

Finally, by Eq. (15) the system-availability intervals of the merged state vz include the
availability intervals of vp and vq. Therefore, all possible combinations of times at which
a given number of cores is available either in state vp or in state vq are also possible in vz.
Thus, all sequences of dispatch events that are possible in vp and vq are possible in vz and
the system states reachable from vz include all system states reachable from vp and vq. J

4.7 Correctness of the Proposed Solution
This section establishes the correctness of our analysis by showing that, for any possible
execution scenario, there exists a path in the graph created by Algorithm 1 that represents
the schedule of all jobs in the given scenario (i.e., Algorithm 1 is sound, but not exact).

I Theorem 10. For any execution scenario such that a job Ji ∈ J finishes at some time
t, there exists a path P = 〈v1, . . . , vp, v

′
p〉 in the schedule-abstraction graph generated by

Algorithm 1 such that Ji is the label of the edge from the state vp to the state v′p and
t ∈ [EFT i(vp),LFT i(vp)].

Proof. Initially, assume that the path 〈v1, . . . , vp〉 respects the claim for all jobs dispatched
before Ji in the execution scenario that led Ji to finish at time t. Furthermore, assume
that (i) the availability intervals of state vp correctly bound the availability time of x
simultaneous cores in state vp, ∀x, 1 ≤ x ≤ m, (ii) X (vp) correctly includes a subset of the
jobs that are certainly running on the platform before Ji is dispatched, and (iii) for each
job Jx ∈ X (vp), the interval [EFTx(vp),LFTx(vp)] safely lower- and upper-bounds (i.e.,
contains) the completion time of Jx. We prove that there exists a vertex v′p that is directly
connected to vp with an edge labeled Ji, that all three requirements (i)–(iii) hold for state
v′p, and that the interval [EFT i(vp),LFT i(vp)] contains the completion time of Ji.

Under the assumption that hypotheses (i)–(iii) hold for vp, Lemma 5 proves that Algo-
rithm 1 expands the graph for any job that can possibly be dispatched next after vp, hence
also for Ji. Further, as proven in Sec. 4.4, Eq. (10) and Eq. (11) provide a lower and an upper
bound on the completion time of Ji, respectively. Moreover, by Lemma 8, the availability
intervals of v′p correctly bound the simultaneous availability of x cores for all 1 ≤ x ≤ m.

Eq. (14) computes the set X (v′p) of certainly running jobs in state v′p. Therefore,
Requirement (ii) directly follows from Property 2 and the discussion of its role in obtaining
Eq. (14) in Section 4.5. Requirement (iii) is the consequence of the assumption that the
interval [EFTx(vp),LFTx(vp)] computed for every job Jx dispatched before Ji in a state
reached prior to vp (and certainly running in vp) is correct. Finally, according to Lemma 9,
merging two states as in lines 12–16 of Algorithm 1 does not invalidate Requirements (i)-(iii).

Crucially, requirements (i)–(iii) are true for any state vp’ that is a direct successor of
the initial system state v1 because (a) in the initial state no job has been dispatched yet
and all cores are available, and (b) Algorithm 1 initializes v1’s availability intervals to [0, 0]
(satisfying (i)), and sets the certainly running jobs set X (v1) to ∅ (thus also satisfying (ii)
and (iii)). The claim thus follows by induction on the states created by Algorithm 1. J

ECRTS 2019

21:16 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

5 Empirical Evaluation

We conducted experiments to answer two main questions: (i) does the proposed test detect
more schedulable workloads than state-of-the-art schedulability tests? And (ii) is the runtime
of our analysis practical? We applied Algorithm 1 to the global limited-preemptive scheduling
policy G-LP-FP. For the sake of simplicity, we used simple rate-monotonic priorities. As a
baseline, we compared our results with the schedulability test of Serrano et al. [39] (identified
as Serrano in the graphs) designed for sporadic limited-preemptive DAG tasks as it is the only
available schedulability test in the state of the art for global limited-preemptive scheduling
of DAG tasks based on the classical response-time analysis approach.

Since our test may also be used to analyze the special case of independent sequential
non-preemptive tasks (NPR), we also performed experiments on such task sets, and compared
our results to the test of Baruah for G-NP-EDF [5] (denoted by Baruah in the graphs), the
test of Guan et al. for G-NP-FP [19] (denoted by Guan), the test of Lee for G-NP-FP [22]
(denoted by Lee), and the test of Nasri et al. [33] for any G-NP-JLFP scheduling algorithm
(denoted by Nasri18). Finally, we compare against the test of Yalcinkaya et al. [46] (denoted
as Exact), an exact UPPAAL-based schedulability test for G-NP-FP (and EDF) that is
designed for periodic tasks with fixed-preemption points and segmented self-suspensions.

We note that the Serrano, Baruah, Guan, and Lee tests are designed for sporadic DAG
tasks; hence, we expect them to be pessimistic when applied to periodic workloads since
sporadic tasks can generate more interference scenarios than periodic tasks. However, we
believe that quantifying this pessimism serves to signify the need for schedulability tests that
take task-activation patterns into account in order to provide more accurate results.

We implemented Algorithm 1 as a multi-threaded C++ program and performed the
analysis on a cluster of machines each equipped with 256GiB RAM and Intel Xeon E5-
2667 v2 processors clocked at 3.3GHz. We parallelized the breadth-first exploration of the
schedule-abstraction graph using Intel’s open-source Thread Building Blocks (TBB) library.
Specifically, the while-loop in lines 3–19 can be easily parallelized since each iteration works
on a different path. We report the CPU time as the runtime of the analysis, i.e., the total
sum of the runtime of all threads used to analyze a task set. In the experiments, a task set
was claimed unschedulable as soon as an execution scenario with a deadline miss was found.

Experiments on synthetic task sets. We generated tasks using the same established tech-
niques as used in prior studies [30, 35, 38, 39, 10]. The method generates series-parallel DAGs
with nested fork-joins by recursively expanding blocks (a.k.a. non-terminal nodes) to either
terminal nodes or parallel sub-graphs until a maximum depth of recursion (which limits the
number of nested branches), a maximum length of the critical path, or a maximum number
of nodes in the DAG is reached. The generation algorithm allows to define the branching
factor, i.e., the maximum number of branches of parallel sub-graphs (denoted by npar). In
our experiment, the probability that a node is terminal, i.e., that it does not immediately fork
a new branch, was set to pterm = 0.4, the probability of adding a random edge (precedence
constraint) between two siblings was set to padd = 0.1, the maximum number of nested
branches was 3, the maximum number of nodes in the DAG was 50, and the maximum
critical path length was set to 10 nodes. The WCET of each node was selected uniformly at
random from the range [1, 50]. The BCET of each node was set to be 70% of the WCET.

To generate periodic DAG tasks with total utilization U , we used uUniFast [7] to
generate random utilization values with a total sum U , and then assigned a period to each
task using max{C̄i/Ui, C̄i}, where C̄i is the total sum of the WCET of all nodes of the

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:17

task and Ui is the task utilization. To avoid cases where periods are co-prime and hence
systems for which the hyperperiod is impractically large, we scaled the obtained periods so
that they are contained in the interval [500, 100000] with possible values given by the set
{x · 10y | 1 ≤ x ≤ 9, 3 ≤ y ≤ 5}ms. This covers periods that are three orders of magnitude
apart with a log-uniform distribution and includes periods commonly used by the automotive
industry [21]. After assigning periods, we proportionally scale the WCET of the nodes so
that tasks keep their intended utilization Ui (as assigned by uUniFast). We assumed that
all tasks are first released at time 0 and that their deadlines are equal to their periods.
Moreover, we assumed that all DAG nodes have an arrival time equal to the arrival time of
the corresponding task. To filter out trivial task sets, we discarded task sets that cannot be
successfully scheduled by G-LP-FP when each node of each task executes for its WCET. That
is, we simulated the schedule of one hyperperiod using the WCET of each node and checked
if there is a deadline miss (note that this initial test is only a necessary schedulability test,
not a sufficient one because of the schedulability anomalies that exist under non-preemptive
and limited preemptive scheduling).

The experiments were performed by varying (Exp1) the total system utilization U for 10
DAG tasks on 4 cores (Figures 4(a) and (d)), and (Exp2) the number of cores m and DAG
tasks n ∈ {5, 10, 15, 20} with U = 0.5 ·m (Figures 4(b) and (e)). For each combination of
parameters (e.g., DAG tasks with U = 30%, n = 10,m = 4), more than 100 random task sets
were generated. For each setup, we report the schedulability ratio (ratio of schedulable task
sets to the number of task sets generated for that setup) and the runtime of Algorithm 1 for
the task sets that were deemed schedulable. We excluded the runtime of unschedulable task
sets since it would otherwise favor our solution and bias the results due to the fact that we
stop the analysis as soon as a deadline miss is found. In other words, we only report the
runtime of experiments that ran to the end, which is the worst case from an analysis runtime
perspective. Since the runtime of the Serrano test never exceeded one second, it was omitted
from all diagrams depicting runtimes.

Figure 4(a) shows a significant gap between the schedulability ratio determined by our
solution and the baseline analysis for DAG tasks. For example, the Serrano test could only
identify 10% of schedulable task sets for U = 0.3, while our test shows that at least 99% of
them are schedulable. Furthermore, with the increase in the number of cores, the Serrano
test becomes more pessimistic, e.g., it cannot find any schedulable task set with U ≥ 0.3
when there are 16 cores, while the proposed test still finds schedulable task sets until U = 0.6.

Figure 4(b) shows the schedulability ratio as a function of the ratio between the number
of DAG tasks and the number of cores (denoted by n/m). We observe that schedulability
decreases when the number of tasks is close to the number of cores (i.e., the ratio n/m is
around 1). We explain this trend by the fact that when there are more tasks than cores
(n/m > 1), the per-task utilization and hence the blocking times caused by nodes of lower-
priority tasks are smaller. As a result, the schedulability ratio is larger. This can be easily
seen for m = 4 and m = 8 (since most values of n are larger than 4 or 8). The effect of
smaller blocking times shows itself for m = 16, too, as an increase in the schedulability ratio
for n = 20. When there are more cores than tasks (n/m < 1), there are enough cores to
execute all tasks in parallel, hence the increase in schedulability. Further, more cores for
a fixed number of tasks implies increased opportunity for tasks to execute their nodes in
parallel; hence their response times approach their critical path lengths. This can be seen for
larger values of m, e.g., 16 to 64. For instance the schedulability ratio for m = 64 is 100%
for 10, 15 and 25 tasks, while it varies between 30% and 75% for m = 16.

ECRTS 2019

21:18 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

Nasri18 this paper Baruah
Guan Lee Serrano

(c) Exp3: 10 sequential NPR tasks (4 cores)(b) Exp2: DAG tasks (U=50%)
for 5, 10, 15, and 20 DAG tasks

(a) Exp1: 10 DAG tasks

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=4) Serrano (m=4)

this paper (m=8) Serrano (m=8)

this paper (m=16) Serrano (m=16)

(d) Exp1: 10 DAG tasks (f) Exp4: sequential NPR tasks (4 cores, U=70%)(e) Exp2: DAG tasks (U=50%)

39

294

41

8

0

100

200

300

m=4 m=8 m=16

ru
n

ti
m

e
(s

)

average

0.90 percentile

0.95 percentile

0.98 percentile

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

sc
h

ed
u

la
b

ili
ty

 r
at

io

ratio of tasks to cores (n / m)

m=4 m=8 m=16
m=32 m=64

0.01

0.1

1

10

100

1000

10000

100000

 m=4 m=8 m=16 m=32 m=64

ru
n

ti
m

e
(s

ec
)

0
.9

5
 p

er
ce

n
ti

le

n=5 n=10 n=15 n=20

2,115

166

0

500

1,000

1,500

2,000

2,500

6 9 12 15 18 21 24 27 30

ru
n

ti
m

e
(s

)
0

.9
5

 p
er

ce
n

ti
le

tasks

Nasri18 this paper

Figure 4 Experimental results for synthetic task sets for different experiments: (a, d) Exp1,
(b, e) Exp2, (c) Exp3, and (f) Exp4. In (b), all task sets with m = 64 are schedulable. Hence, the
curve overlaps with other curves (prior to the point n/m < 0.4).

Figures 4(d) and (e) show either a decrease or only a small linear increase in the runtime
of the analysis w.r.t. to the increase in the number of cores in all experiments. Thanks to
our new system state abstraction, the number of direct successors of a state does not depend
on the number of cores in the system (unlike Nasri18 [33]) and hence the dependence on m
is limited to the cost of calculating thigh, twc, etc. for each state.

For DAG tasks, with an increase in the number of tasks, the runtime of our analysis
increases rapidly as the number of nodes and hence the number of jobs increases. While our
analysis efficiently handles most task sets with up to 15 tasks within a couple of hours, it
becomes notably slower for larger numbers of tasks. This, in particular, affects systems with
a smaller number of cores, e.g., 4 and 8 cores, because when the system has insufficient cores
to fully exploit the available task parallelism, the number of pending nodes in each system
state increases. Since all nodes exhibit execution time variation, this drastically increases the
number of possible scheduling decisions. As a result, the schedule abstraction graph grows
rapidly since it must consider all possible interleavings.

In Figure 4(e) we observe a decrease in the runtime of the analysis from m = 16 to
m = 32 and then an increase from m = 32 to m = 64. This decrease is due to the decrease
in blocking times and an increase in the number of available cores (e.g., from 16 to 32 for 20
tasks). As a result, the busy windows become shorter, and hence paths merge very quickly
as there are only relatively few interleavings to consider. On the other hand, the increase in
the runtime of the analysis for m = 64 comes from the fact that, in a task set with 20 DAG
tasks with U = 50%, there are more tasks with large per-task utilizations. This situation
increases the length of busy windows since tasks have only little slack. Moreover, due to the
execution time variation of the tasks, there will be more scenarios that must be covered in
the graph, which leads to an increase in the runtime of the analysis.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:19

Experiments on non-preemptive sequential tasks (NPR). For the experiments on inde-
pendent sequential non-preemptive tasks, we used the same task set generation setup as
in [33]. To randomly generate a non-preemptive periodic task set with n tasks and a given
utilization U , we used Emberson et al. [12] method to select the periods with a log-uniform
distribution from the range [10000, 100000] microseconds with a granularity of 5000µs. We
then used the RandFixSum [40] algorithm to generate n random task utilizations that sum to
U . From the task utilization, we obtained Cmax

i from the task utilization and the period and
then set Cmin

i to be 10% of Cmax
i . Tasks were assumed to have implicit deadlines and any

task set that had more than 100,000 jobs per hyperperiod was discarded from the experiment.
The experiments were performed by varying (Exp3) the total system utilization U

(n = 10 and m = 4) for sequential non-preemptive tasks (Figure 4(c)), and (Exp4) the
number of tasks n (U = 70% and m = 4) for sequential non-preemptive tasks (Figure 4(f)).

For sequential NPR tasks, as seen in Figure 4(c), our test performs similarly to Nasri18
(event though those tests are incomparable since task sets may be deemed schedulable by
one and unschedulable by the other and vice versa). Both tests find many more schedulable
task sets than the tests of Baruah, Guan, Lee, and Serrano. For example, for U = 0.6, our
test and Nasri18 improve accuracy by 66 percentage points over the other baseline tests.

We have tried to run the exact test of Yalcinkaya et al. [46] on the data from Exp3.
However, due to the scalability issue discussed in the introduction, the test could not complete
the analysis of enough task sets to extract any meaningful results. Instead, we ran our
analysis on the dataset used by Yalcinkaya et al. for sequential NPR task sets (see Exp2 in
[46] for details). The results are depicted in Figure 1(a); the difference in accuracy between
our test and the exact test is indistinguishable for the considered NPR task sets.

Figure 4(f) shows a neat improvement of our new analysis w.r.t. Nasri18, i.e., the best
known analysis for G-NP-JLFP scheduling. For example, the 95th percentile runtime of
Nasri18 [33] for 4 cores and 30 NPR tasks is more than 2,115 s while the 95th percentile
runtime of the analysis presented in this paper is 166 s (i.e., a more than one order-of-
magnitude difference). The maximum runtime of Nasri18 on all experiments that finished
was 3027 s and one task set reached the time out of 1 h, while the maximum runtime of our
new analysis was 275 s. The average runtime of the Nasri18 test was 327 s while our new
analysis took an average of 25s only. These numbers strongly suggest that the proposed
analysis is at least one order of magnitude faster than the Nasri18 test.

Experiments on benchmark task sets. We used the StreamIT benchmarks, which consist
of a set of digital signal processing applications to evaluate the performance of our analysis
on a realistic application workload. We used the DAG structure and WCET information of
the tasks obtained by Rouxel et al. [36]. Table 1 reports the number of DAG nodes, width
of the DAG graph (i.e., maximum number of parallel nodes), and the number of fork/join
nodes. This table also presents the number of states, edges, and the runtime of the analysis
for each of the benchmark applications when executed on a 4-core platform. As it can be
seen, the analysis takes less than a minute even when there are more than 400 nodes in the
DAG or when there are 80 fork/join constructs.

Discussion. Overall, we conclude that: (i) the proposed analysis is practical for realistic
workload sizes and benchmarks, (ii) it has high accuracy when compared with the state-
of-the-art exact schedulability analysis of sequential non-preemptive tasks with a global
scheduling policy while being able to scale to much bigger systems (i.e., with more tasks

ECRTS 2019

21:20 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

Table 1 Analysis of Benchmark Tasks.

Benchmark #nodes w forks states edges runtime (ms)

802.11a 119 7 17 10,164 28,656 483.15
Audiobeam 20 15 1 20 20 0.18
BeamFormer 56 12 2 6,036 29,686 494.45
CFAR 4 1 0 4 4 0.05
Complex-FIR 3 1 0 3 3 0.04
DCT2 40 16 2 40 40 0.63
DES 423 8 80 2,343 4,983 849.63
FFT2 26 2 1 74 122 1.24
FFT4 42 2 10 42 42 0.27
Filterbank 52 6 1 810,425 5,293,419 25,339.02
FMRadio 43 12 7 53,199 258,781 1,402.83

and more cores), (iii) it identifies a significantly larger portion of schedulable DAG tasks in
comparison to the existing test, and (iv) the new system state abstraction allows a significant
improvement in terms of scalability in comparison to the state-of-the-art test Nasri18.

However, even though the new abstraction allows scaling to much larger workloads, the
treatment of execution time variation still needs further improvement. In the presence of
precedence constraints, the impact of the response-time jitter of a job on its successors is the
same as if the successors had a large release jitter. This induced jitter accumulates over chains
of jobs with precedence constraints and greatly increases the degree of non-determinism in
the graph exploration, and eventually forces the algorithm to consider all combinations of
job orderings. This, for example, happens often in highly parallel DAG tasks or when the
number of DAG tasks increases. Consequently, new techniques will have to be developed to
allow the analysis to scale to highly parallel DAGs with large execution-time jitter.

6 Conclusion

We have considered the problem of analyzing the schedulability of a set of limited-preemptive
DAG tasks with internal parallelism and precedence constraints scheduled upon a multicore
platform using a global job-level fixed-priority (JLFP) scheduling policy. Our analysis
conceptually enumerates all possible schedules using a novel system state abstraction that
keeps track of the times at which a certain number of cores will become available. We have
shown how the space of possible schedules can be explored with the abstraction, provided
a proof of correctness, and conducted extensive experiments to assess the efficiency of the
solution. Our analysis finds between 10 and 90 percentage points more schedulable task sets
for most system configurations, in comparison with the best available baseline. It also scales
to systems with up to 64 cores and 20 DAG tasks. A comparison with the state-of-the-art
exact schedulability test for sequential non-preemptive tasks scheduled by a global JLFP
scheduling policy has shown our analysis to scale much better while being almost as accurate
as the exact test. The proposed analysis, however, does not yet scale to highly parallel DAG
tasks or systems with a large number of cores (e.g., more than 64). In the future, we will
investigate better ways of managing jitter, e.g., by applying partial-order reduction to skip
over redundant paths that do not contribute to the worst-case response time of a task.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:21

References
1 Jakaria Abdullah, Morteza Mohaqeqi, Gaoyang Dai, and Wang Yi. Schedulability Analysis and

Software Synthesis for Graph-Based Task Models with Resource Sharing. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 261–270, 2018.

2 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability Analysis of Global Memory-
predictable Scheduling. In ACM International Conference on Embedded Software, pages
20:1–20:10, 2014.

3 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying New
scheduling Theory to Static Priority Preemptive Scheduling. Software Engineering Journal,
8(5):284–292, 1993.

4 Theodore P. Baker and Michele Cirinei. Brute-Force Determination of Multiprocessor Schedu-
lability for Sets of Sporadic Hard-Deadline Tasks. In International Conference on Principles
of Distributed Systems (OPODIS), pages 62–75, 2007.

5 Sanjoy Baruah. The Non-preemptive Scheduling of Periodic Tasks upon Multiprocessors.
Real-Time Systems, 32(1):9–20, 2006.

6 Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The Global EDF
Scheduling of Systems of Conditional Sporadic DAG Tasks. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 222–231, 2015.

7 Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30(1-2):129–154, 2005.

8 Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility Analysis of Sporadic Real-
time Multiprocessor Task Systems. In ESA, pages 230–241. Springer, 2010.

9 Artem Burmyakov, Enrico Bini, and Eduardo Tovar. An Exact Schedulability Test for Global
FP Using State Space Pruning. In International Conference on Real-Time Networks and
Systems (RTNS), pages 225–234, 2015.

10 Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C. Buttazzo. Partitioned
Fixed-Priority Scheduling of Parallel Tasks Without Preemptions. In IEEE Real-Time Systems
Symposium (RTSS), 2018.

11 UmaMaheswari Devi and James H. Anderson. Tardiness bounds under global EDF scheduling
on a multiprocessor. In IEEE International Real-Time Systems Symposium (RTSS), pages
12–341, 2005.

12 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques For The Synthesis Of
Multiprocessor Tasksets. In International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), pages 6–11, 2010.

13 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Improved Response Time Analysis of
Sporadic DAG Tasks for Global FP Scheduling. In Proceedings of the 25th international
conference on real-time networks and systems, pages 28–37. ACM, 2017.

14 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Schedulability Analysis of DAG Tasks
With Arbitrary Deadlines Under Global Fixed-Priority Scheduling. Real-Time Systems,
55(2):387–432, April 2019.

15 José Fonseca, Geoffrey Nelissen, Vincent Nelis, and Luís Miguel Pinho. Response Time
Analysis of Sporadic DAG Tasks Under Partitioned Scheduling. In 11th IEEE Symposium on
Industrial Embedded Systems (SIES). IEEE, 2016.

16 José Carlos Fonseca, Vincent Nélis, Gurulingesh Raravi, and Luís Miguel Pinho. A multi-DAG
Model for Real-time Parallel Applications with Conditional Execution. In Annual ACM
Symposium on Applied Computing (SAC), pages 1925–1932, 2015.

17 Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-time
schedules for dependent periodic tasks on identical multiprocessor platforms. Real-Time Syst.,
52(6):808–832, 2016.

18 Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Exact Schedulability
Analysis for Static-Priority Global Multiprocessor Scheduling Using Model-Checking. In
Software Technologies for Embedded and Ubiquitous Systems (SEUS), pages 263–272, 2007.

ECRTS 2019

21:22 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

19 Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis for
non-preemptive fixed-priority multiprocessor scheduling. Journal of Systems Architecture,
57(5):536–546, 2011.

20 Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong.
Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 22:1–22:21, 2017.

21 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmark for
free. In International Workshop on Analysis Tools and Methodologies for Embedded Real-Time
Systems (WATERS), 2015.

22 Jinkyu Lee. Improved Schedulability Analysis Using Carry-In Limitation for Non-Preemptive
Fixed-Priority Multiprocessor Scheduling. IEEE Transactions on Computers, 66(10):1816–1823,
2017.

23 Jinkyu Lee and Kang G. Shin. Improvement of Real-Time Multi-CoreSchedulability with Forced
Non-Preemption. IEEE Transactions on Parallel and Distributed Systems, 25(5):1233–1243,
2014.

24 Robert Leibinger. Software Architectures for Advanced Driver Assistance Sys-
tems (ADAS), 2015. URL: https://people.mpi-sws.org/~bbb/events/ospert15/pdf/
ospert15-talk-keynote.pdf.

25 Cong Liu and James H Anderson. Supporting pipelines in soft real-time multiprocessor systems.
In 21st Euromicro Conference on Real-Time Systems (ECRTS), pages 269–278. IEEE, 2009.

26 Cong Liu and James H Anderson. Scheduling suspendable, pipelined tasks with non-preemptive
sections in soft real-time multiprocessor systems. In 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 23–32. IEEE, 2010.

27 Cong Liu and James H Anderson. Supporting soft real-time DAG-based systems on multipro-
cessors with no utilization loss. In 31st IEEE Real-Time Systems Symposium (RTSS), pages
3–13. IEEE, 2010.

28 Cong Liu and James H Anderson. Supporting graph-based real-time applications in distributed
systems. In 17th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), volume 1, pages 143–152. IEEE, 2011.

29 Cláudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez.
Schedulability analysis for global fixed-priority scheduling of the 3-phase task model. In IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 1–10, 2017.

30 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio C. Buttazzo. Response-Time Analysis of Conditional DAG Tasks in Multiprocessor
Systems. In Euromicro Conference on Real-Time Systems, (ECRTS), pages 211–221, 2015.

31 Morteza Mohaqeqi, Jakaria Abdullah, Nan Guan, and Wang Yi. Schedulability Analysis
of Synchronous Digraph Real-Time Tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 176–186, 2016.

32 Mitra Nasri and Björn B. Brandenburg. An Exact and Sustainable Analysis of Non-Preemptive
Scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 1–12, 2017.

33 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis for
Non-Preemptive Job Sets under Global Scheduling. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 9:1–9:23, 2018.

34 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A Predictable Execution Model for COTS-Based Embedded Systems.
In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
269–279, 2011.

35 Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit Preemption Placement for Real-Time
Conditional Code. In Euromicro Conference on Real-Time Systems (ECRTS), pages 177–188,
2014.

https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-talk-keynote.pdf
https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-talk-keynote.pdf

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:23

36 Benjamin Rouxel and Isabelle Puaut. STR2RTS: Refactored streamit benchmarks into
statically analysable parallel benchmarks for WCET estimation & real-time scheduling. In
OASIcs-OpenAccess Series in Informatics, volume 57, pages 1:1–1:12, 2017.

37 Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D.
Gill. Parallel Real-Time Scheduling of DAGs. IEEE Transactions on Parallel and Distributed
Systems, 25(12):3242–3252, 2014.

38 Maria A. Serrano, Alessandra Melani, Marko Bertogna, and Eduardo Quiñones. Response-time
analysis of DAG tasks under fixed priority scheduling with limited preemptions. In Europe
Conference on Design, Automation & Test & Exhibition (DATE), pages 1066–1071, 2016.

39 Maria A. Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna, and Eduardo Quiñones.
An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-Based Global
Fixed Priority Scheduling. In IEEE International Symposium on Real-Time Distributed
Computing (ISORC), pages 193–202, 2017.

40 Roger Stafford. Random vectors with fixed sum. Technical report, University of Oxford, 2006.
URL: http://www.mathworks.com/matlabcentral/fileexchange/9700.

41 Martin Stigge and Wang Yi. Combinatorial Abstraction Refinement for Feasibility Analysis of
Static Priorities. Real-Time Systems, 51(6):639–674, 2015.

42 Youcheng Sun and Marco Di Natale. Assessing the Pessimism of Current Multicore Global
Fixed-Priority Schedulability Analysis. Research report, University of Oxford, 2017. URL:
https://hal.archives-ouvertes.fr/hal-01468067.

43 Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test of
sporadic tasks on multiprocessor Global Fixed-Priority scheduling. Real-Time Systems Journal,
52(3):323–355, 2016.

44 Alexander Wieder and Björn B. Brandenburg. On Spin Locks in AUTOSAR: Blocking Analysis
of FIFO, Unordered, and Priority-Ordered Spin Locks. In IEEE Real-Time Systems Symposium
(RTSS), pages 45–56, 2013.

45 Jun Xiao, Sebastian Altmeyer, and Andy Pimentel. Schedulability Analysis of Non-preemptive
Real-time Scheduling for Multicore Processors with Shared Caches. In IEEE Real-Time
Systems Symposium (RTSS), pages 199–208, 2017.

46 Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg. An Exact Schedulability Test
for Non-Preemptive Self-Suspending Real-Time Tasks. In IEEE/ACM Design, Automation
and Test in Europe (DATE), pages 1222–1227, 2019.

ECRTS 2019

http://www.mathworks.com/matlabcentral/fileexchange/9700
https://hal.archives-ouvertes.fr/hal-01468067

Novel Methodologies for Predictable
CPU-To-GPU Command Offloading
Roberto Cavicchioli
Università di Modena e Reggio Emilia, Italy
roberto.cavicchioli@unimore.it

Nicola Capodieci
Università di Modena e Reggio Emilia, Italy
nicola.capodieci@unimore.it

Marco Solieri
Università di Modena e Reggio Emilia, Italy
ms@xt3.it

Marko Bertogna
Università di Modena e Reggio Emilia, Italy
marko.bertogna@unimore.it

Abstract

There is an increasing industrial and academic interest towards a more predictable characterization
of real-time tasks on high-performance heterogeneous embedded platforms, where a host system
offloads parallel workloads to an integrated accelerator, such as General Purpose-Graphic Processing
Units (GP-GPUs). In this paper, we analyze an important aspect that has not yet been considered
in the real-time literature, and that may significantly affect real-time performance if not properly
treated, i.e., the time spent by the CPU for submitting GP-GPU operations. We will show that the
impact of CPU-to-GPU kernel submissions may be indeed relevant for typical real-time workloads,
and that it should be properly factored in when deriving an integrated schedulability analysis for
the considered platforms.

This is the case when an application is composed of many small and consecutive GPU com-
pute/copy operations. While existing techniques mitigate this issue by batching kernel calls into a
reduced number of persistent kernel invocations, in this work we present and evaluate three other
approaches that are made possible by recently released versions of the NVIDIA CUDA GP-GPU
API, and by Vulkan, a novel open standard GPU API that allows an improved control of GPU com-
mand submissions. We will show that this added control may significantly improve the application
performance and predictability due to a substantial reduction in CPU-to-GPU driver interactions,
making Vulkan an interesting candidate for becoming the state-of-the-art API for heterogeneous
Real-Time systems.

Our findings are evaluated on a latest generation NVIDIA Jetson AGX Xavier embedded board,
executing typical workloads involving Deep Neural Networks of parameterized complexity.

2012 ACM Subject Classification Computer systems organization → System on a chip; Computer
systems organization → Real-time system architecture

Keywords and phrases Heterogeneous systems, GPU, CUDA, Vulkan

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.22

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.4

Funding Work supported by the CLASS Project, European Union’s H2020 G.A. No. 780622.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, and Marko Bertogna;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0166-0898
mailto:roberto.cavicchioli@unimore.it
https://orcid.org/0000-0002-5845-4991
mailto:nicola.capodieci@unimore.it
https://orcid.org/0000-0003-4531-2633
mailto:ms@xt3.it
https://orcid.org/0000-0003-2115-4853
mailto:marko.bertogna@unimore.it
https://doi.org/10.4230/LIPIcs.ECRTS.2019.22
https://dx.doi.org/10.4230/DARTS.5.1.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

1 Introduction

Modern high-performance embedded platforms feature heterogeneous systems, where a
multicore CPU host is integrated with one or more parallel accelerators. These platforms
are used to run cyber-physical real-time systems, requiring workload-intensive tasks to be
executed within given deadlines. While there are many works addressing the schedulability
analysis of real-time tasks on multi-core systems [4], there is an increasing interest in
understanding and refining the adopted task models to better capture the timing behavior of
real-time workloads in practical scheduling settings on heterogeneous embedded platforms.
Thanks to the dramatic improvement of performance-per-Watt figures over multicore CPUs,
GP-GPU (General Purpose GPU) computing is a widely adopted programming model to
perform embarrassingly parallel computations in both embedded and discrete devices. Typical
usage scenarios of heterogeneous embedded platforms are found in the domain of autonomous
driving, avionics and industrial robotics, presenting important design challenges due to the
safety-critical nature of these domains [12, 25].

To address this challenge, we first briefly summarize how computations are orchestrated
in an embedded platform that features a multicore CPU (host) and an integrated GPU
accelerator (device).

1.1 CPU-to-GPU interaction
The interactions between CPU-threads and the GPU are described through different APIs
(Application Programming Interfaces) that allow the host to control the offloading of data
and workload description, to be later executed by the parallel processing units within the
GPU. A way to abstract a higher-level description of the processing units of a GPU is to
think of it as being composed of two engines: the Execution Engine (EE) for computation,
and the Copy Engine (CE) for high throughput DMA data transfers.

The Execution Engine enables a high level of SIMD parallelism by exploiting hundreds
of ALU pipelines, that are usually grouped into processing clusters. Within each of these
processing clusters, a hardware scheduler dispatches small groups of threads in lockstep to the
ALU pipelines. A well-known API for modelling such interactions is CUDA [24], a proprietary
API developed by NVIDIA. In such a model, ALU pipelines are called CUDA cores, and
processing clusters are known as Streaming Multiprocessors (SMs). SMs schedule warps, i.e.
groups of 32 lockstep threads. Considering different GP-GPU APIs (such as OpenCL), the
terminology may slightly vary, but these higher-level concepts remain unchanged. On the
host side, the application developer has the responsibility to trigger data movements and
the workload to be executed to the Execution Engine of the GPU by using API function
calls. This operation is known as kernel invocation. When many workloads have to be
dispatched within short time intervals, the time spent on the CPU for these offloading
operations becomes non-negligible, and it should be properly accounted for when pursuing a
sound schedulability analysis.

A task may be modeled using a Directed Acyclic Graph (DAG), where nodes represent
workloads executing on a CPU core or on a GPU engine, while edges are precedence constraints
between nodes. In a typical application, CPU nodes are constantly interleaved with GPU
nodes. Despite its intrinsic parallelism, the GPU is considered as a single resource. This is
due to its lockstep nature that limits task-level parallelism, especially for embedded GPUs
with a smaller number of SMs. In other words, a GPU node represents a kernel occupying
all the processing units of the considered GPU engine.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:3

Figure 1 Sequences of sub-tasks of a CPU core submitting work to both compute and copy GPU
engines. White nodes are CPU offloading operations, yellow and green nodes represent GPU copy
and compute operations.

Figure 2 Data transfers and Layer-to-kernel invocations over the YOLO network [26].

Moreover, CPU nodes have to account for a variable cost of GPU commands’ submission
time, related to the translation of API function calls and to trigger the GPU operations,
independently of this operation being synchronous (i.e., the CPU shall wait for the offloaded
GPU kernel to complete before continuing) or asynchronous (i.e., the CPU may proceed to
the next node without needing to wait for the offloaded kernel to complete).

The example depicted in Figure 1 shows a submission-intensive workload, in which a
variable number of CPU-nodes offload-operations interleave among different kernels and copy
invocations. Even if the represented chain may appear simplistic w.r.t. a fully-fledged DAG,
it is not far from real world applications. In Figure 2, we profile CPU and GPU traces of a
single iteration of the inference operation on a widely used YOLOv2 neural network [27]. The
inference over YOLO’s 28 network layers requires heavy data movements and the invocation
of a very large number of kernels, each preceded by a CPU offloading phase. Using nvprof,
the NVIDIA CUDA profiler, we discovered that kernels and copies are invoked as a sequence
of implicitly synchronized operations.

There are two negative effects of interleaving CPU offloads and GPU workloads:
1. the completion of a submission node is a mandatory requirement for the activation of the

subsequent GPU node. This implies that jitters or delays in the completion of the CPU
node will postpone the actual release of the GPU sub-task, increasing the complexity of
the schedulability analysis.

2. In case of shorter GPU kernels, CPU offloading becomes a performance bottleneck.

As a consequence of these considerations, we aim at analyzing and minimizing the time
spent by the CPU for submitting commands related to GPU operations.

In the literature, these issues have been addressed using persistent kernels [15], i.e. a
reduced number of kernel invocations that delegates the responsibilities of future workload
invocations to GPU threads. We hereafter discuss the limitations of CUDA persistent

ECRTS 2019

22:4 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

threads, showing how novel features of the latest CUDA SDK release allows the programmer
to mitigate the problem of submission-intensive operations. We characterize novel submission
methods such as CUDA Dynamic Parallelism (CDP) and pre-constructed CUDA Graphs, and
investigate a novel API for GPU programming called Vulkan. Vulkan is a next generation bare-
metal API allowing a dramatic improvement in the control that the application programmer
has over the interaction between the application layer and the GPU driver. Aspects that
were commonly well hidden by traditional APIs are completely exposed to the application
programmer: fine grained synchronization, low level mechanisms of memory allocation and
coherency, state tracking and commands validation are all essential parts in direct control
of the application developer. According to the Khronos Group, the industrial consortium
that released and maintains the Vulkan technical specification [21], this increased level of
control enhances applications performance and predictability due to substantially reduced
CPU-to-GPU driver interaction. We will prove that this is indeed the case, especially for
submission intensive workloads, making Vulkan a very promising open standard for real-time
systems executing on heterogeneous platforms.

We experimentally validate our considerations executing representative kernels on an
NVIDIA Jetson AGX Xavier1, a recently released embedded development platform, featuring
a Tegra System on Chip (Xavier SoC) composed of 8 NVIDIA Carmel CPU Cores (superscalar
architecture compatible with ARMv8.2 ISA) and an integrated GPU based on the NVIDIA
Volta architecture with 512 CUDA cores. On this platform, we executed a parametrized
version of a Deep Neural Network, varying the number and position of convolutional and
fully-connected layers.

The remainder of the paper is structured as follows. Section 2 presents a recent overview
on the challenges of achieving timing predictability on GPU-accelerated SoCs, with specific
emphasis on the impact of submission procedures. In Section 3, we describe the relevant
CUDA features that have been introduced in the latest SDK versions, and how we leveraged
them in our experiments. Section 4 provides a brief explanation of the Vulkan API peculiarities
and related programming model, while Section 5 introduces our open source Vulkan Compute
wrapper, that we implemented to simplify the generation (and easy reproduction for artifact
evaluation) of the experiments. Experimental settings and related discussion on the results
are provided in Sections 6 and 7. Section 8 concludes the paper with further remarks and
proposals for future work.

2 Related Work

The recent literature on GPU-based real-time systems identified multiple sources of unpredict-
ability, related to GPU scheduling [17], CPU interactions with the GPU API/driver [13, 14]
and memory contention [28, 2, 9]. In this paper, we focus on minimizing driver interactions
by exploiting recently proposed instruments to pre-record and pre-validate the GPU com-
mands that characterize CPU-to-GPU offloading operations. Previously, a way to minimize
CPU offloading times was to batch compute kernel calls into a single or reduced number of
command submissions. This approach based on persistent kernel proved to have beneficial
effects in terms of average performance [5, 15, 6, 16] and for obtaining a higher degree of
control when scheduling blocks of GPU threads [31, 10]. The problem with persistent kernels
is that they often require a substantial code rewriting effort and they are not able to properly
manage Copy Engine operations mixed with computing kernels. Moreover, a persistent

1 https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit

https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:5

kernel approach would require managing GPU kernels with different safety criticality levels
within a single application context, posing a significant threat to the overall system safety
integrity assessment.

Our work tries to overcome these aspects by exploiting more recent methodologies, such
as CUDA Dynamic Parallelism (CDP) and CUDA graphs. CDP allows the programmer to
minimize kernel launch latencies in a similar way as a persistent kernel, without the need of
substantial code rewriting and still allowing the different GPU tasks to reside in different
process address spaces. CDP has been introduced in the CUDA SDK since version 5.0
(released in 2014).

More recently, the latest release of the CUDA SDK (version 10, released in late 2018)
introduced the concept of CUDA graphs: a CUDA graph allows the developer to construct a
graph of copy, compute and even host sub-tasks together with their related dependencies
in advance. Then, at runtime, the offloading operation only involves a single call to the
CUDA runtime driver. As pointed out in the introductory section, we model CPU and GPU
interactions as sequences of operations that can be generalized to a DAG: this is similar to
the OpenVX programming interface [32].

To the best of our knowledge, we are exploring for the first time not only these novel
CUDA functionalities, but also the real-time capabilities of the Vulkan API, a recently
released open standard for GPU programming. The work on novel low level and low overhead
GPU APIs started in late 2013, with Apple’s Metal and AMD’s Mantle APIs representing
the first concrete efforts toward the implementation of such a novel bare-metal approach.
While the first one is a proprietary effort limited to Apple devices, Mantle development
stopped around mid 2015, but served to the Khronos group as a base to start developing the
Vulkan specifications (Version 1.0 was released in February 2016). In parallel, Microsoft’s
Direct3D 12 saw its release at the same time as Windows 10. All these APIs share a common
programming model that imposes minimal driver overhead as a result of a more explicit and
direct control over GPU related commands.

The problem of minimizing CPU-GPU driver overhead is an issue that the Khronos group
considered also for newer OpenGL releases. The so-called AZDO methodology (Approaching
Zero Driver Overhead) aimed at minimizing the driver interaction by batching draw calls,
state changes, reduced texture bindings and data factorization into command lists to be
submitted within a reduced number of OpenGL API calls. As we already highlighted in
the previous section, we are more interested on reducing submission latencies to improve
the predictability of real-time applications. Hence, our work will focus on measuring how
effective is the compute pipeline of Vulkan compared to traditional and to recently released
CUDA-based submission models. We believe this document may be an instructive reference
for real-time practitioners looking for more predictable settings and programming models on
modern heterogeneous embedded platforms.

3 Alternative submission models for CUDA

In this section we provide an in-depth explanation of the approaches we tested for minimizing
CPU-GPU driver interactions with relation to NVIDIA CUDA. These mechanisms are made
possible by recent releases of the CUDA SDK, and they describe the motivation and typical
usage scenarios of CDP and CUDA graphs.

ECRTS 2019

22:6 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

Figure 3 Timelines of the baseline CUDA submission model compared to CDP. Note that K0,
K1 and K2 implementations are identical in both cases and the launch configuration of Ki depends
on the result of K(i− 1).

3.1 CDP
GPU kernel invocations are characterized by a launch configuration. A launch configuration
describes the degree of parallelism of the GPU computation. Implementation-wise, this
implies that the programmer has to decide the size and number of CUDA blocks for the
specific launch configuration. A CUDA block is a collection of concurrent threads that share
the same L1 cache and/or scratchpad memory inside a single SM. The size of a block is the
actual number of threads within each block. Trivially, if a GPU task is an algorithm in which
each step presents a different parallelization degree, then the programmer has to break down
this task into multiple kernel launches, each with a potentially different launch configuration.
As discussed in the previous section, this can easily translate in additional overhead on
the CPU side for performing offloading operations, especially when launch configurations
between different launches are not known a priori.

Nested parallelism is a known construct in the parallel programming literature that allows
the programmer to express variable parallelism as a series of nested kernel invocations with
adaptive launch configurations. Nested parallelism has therefore the potential to fully exploit
the GPU parallelism for workloads involving variable depth recursion (e.g: sorting [23], graph
exploration [34], clustering algorithms [1] ...). In CUDA, this is implemented by having a
parent kernel invoking child kernels with a varying block/thread count, without involving
the CPU for launching the child kernels.

An example scenario is depicted in Figure 3, where a baseline offloading (top) is compared
against a CDP sequence of invocations (bottom). In the depicted corner case, the CPU
submission time is comparable to the GPU execution time for the considered kernels. In
the baseline scenario, there is an interleaved work between host and GPU, where the CPU
thread has to adjust the launch configuration for each subsequent kernel. A similar situation
happens even for asynchronous submissions. Conversely, with the CPD scenario the CPU is
only active during the launch of the parent kernel, while subsequent kernel invocations are
managed by the device, allowing the concurrent execution of GPU workloads [3, 24]. This
drastically reduces the response time of the entire task. Another interesting advantage is
related to the simplification of the related worst-case response-time analysis, as the task graph
to consider has significantly less nodes (CPU sub-tasks) and edges (CPU-GPU interactions).
However, we will see in the evaluation section that CDP presents some limitations when data
is requested by the CPU through the Copy Engine and when the sequence of kernels is not
characterized by variable parallelism.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:7

3.2 CUDA Graphs
CUDA graphs are the most recent innovation to the CUDA runtime set of functions. Graphs
are a step forward compared to the more traditional CUDA streams: a stream in CUDA is a
queue of copy and compute commands. Within a stream, enqueued operations are implicitly
synchronized by the GPU so to execute them in the same order as they are placed into the
stream by the programmer. Streams allow for asynchronous compute and copy, meaning that
the CPU cores dispatch commands without waiting for their GPU-side completion: even
in asynchronous submissions, little to no control is left to the programmer with respect to
when commands are inserted/fetched to/from the stream and then dispatched to the GPU
engines, with these operations potentially overlapping in time.

Graphs improve on this approach by allowing the programmer to construct a graph of
compute, host and copy operations with arbitrary intra- and inter-stream synchronization,
to then dispatch the previously described operations within a single CPU runtime function.
Dispatching a CUDA graph can be an iterative or periodic operation, so to implement
GPU-CPU tasksets as periodic DAGs. This aspect represents an appealing mechanism for
the real-time system engineer. Legacy CUDA applications built on streams can be converted
to CUDA graphs by capturing pre-existing stream operations, as it is shown in Listing 1.

In Listing 1 a baseline implementation of asynchronous offloading of copy, compute and
CPU-side operations is shown (lines from 1 to 7): while the CPU is still inserting operations
within the stream, the GPU fetches previously inserted commands on behalf of the GPU
engines. This mechanism improves the average performance for long GPU-side workloads, but
it is difficult to precisely model this CPU-GPU interaction for scheduling purposes. Moreover,
the CPU can act as a bottleneck in case of a long sequences of small GPU operations. Also,
in case of dispatching periodic work, CPU-GPU interaction will be repeated and the timing
cost for each command submission and validation is bound to increase.

Lines from 9 to 15 show how to capture the same stream operations of the baseline
approach to construct a CUDA graph. Lines from 18 to 32 show a graph construction that
is equivalent to the previous methodology, but nodes and their dependencies are explicitly
instantiated instead of being inferred from pre-existing stream operations. When building
a graph, no operations are submitted to the GPU. This allows the developer to describe
in advance complex work pipelines. Work is then dispatched with a single or periodic call
to cudaGraphLaunch (lines 50 and 58). In the experimental section of this paper, we will
show how submission latencies and CPU-GPU interaction timeline vary by exploiting these
novel CUDA constructs.

4 The Vulkan API

Although Vulkan is defined as a graphics and compute API, the Vulkan model is agnostic to
which of these two pipelines will be mostly used within an application. Initial benchmarks
on the Vulkan API are related to graphics applications, hence measuring the performance of
the same application with a Vulkan renderer and over an OpenGL/OpenGLES or Direct
3D 11 renderer [29]. One of the recent fields of applications that has been shown to provide
sensible benefits from this new API paradigm is Virtual Reality (VR), due to the very
stringent latency requirements required to mitigate motion/cyber sickness for users wearing
VR-enabled devices [30]. We instead investigate the possibility of exploiting Vulkan to
minimize driver interactions for allowing a more predictable response time of computing
kernels. To the best of our knowledge, we are the first to propose the adoption of this newer
generation API for real-time systems. The following overview of the Vulkan API from the
programmer point of view can be followed on Figure 4.

ECRTS 2019

22:8 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

Listing 1 CUDA baseline streams – node graphs and stream capture.
void baseline (cudaStream_t &s){

cudaMemcpyAsync (.... ,s);
...
cudaStreamAddCallback (s,.., cpuFunction);

5 kernelCall <<<...,s > > >(...);
...
}

cudaGraph_t cudaGraphFromStreamCapture (&s){
10 cudaGraph_t graph;

cudaStreamBeginCapture (s);
baseline (&s); //no modifications to baseline

cudaStreamEndCapture (s,& graph);
// stream operations are not yet submitted .

15 }

cudaGraph_t cudaGraphCreation (){
cudaGraph_t graph;
// node pointers

20 cudaGraphNode_t * memcpyNodes , * kernelNodes , * hostFuncNodes ;
// node params
cudaKernelNodeParams * memcpyParams , * kerNodeParams ,

* hostNodeParams ;
// define params for all the previously declared nodes

25 //(addesses , function names etc ...)
cudaGraphCreate (& graph ,0);
// for each host/ device node and respective params ...
cudaGraphAdd < Memcpy / Kernel /Host >Node
(& nodePtrs , graph , ..., ..., & nodeParams);

30 // first param: node ptrs , second and third: depedencies
//info , forth: node params .
//No stream operations are submitted to the GPU
}

35 void mainPrepareAndOffload (){
cudaStream_t s, sGraph ;
cudaStreamCreate (&s); // regular stream
cudaStreamCreate (& sGraph); // stream for graph launch
cudaGraphExec_t graphExec ; // graph execution data structure

40
// enqueue in stream s and launch with baseline behaviour :
baseline (&s);
// wait for finish
// ALTERNATIVE METHOD 1:

45 // create and define graph from pre - existing stream
cudaGraph_t graph0 = cudaGraphFromStreamCapture (&s);
// graph instantiation
cudaGraphInstantiate (& graphExec , graph0 ,);
// and launch

50 cudaGraphLaunch (graphExec , sGraph);
// wait for finish
// ALTERNATIVE METHOD 2:
// create and define graph from node structures
cudaGraph_t graph1 = cudaGraphCreation ();

55 // graph instantiation
cudaGraphInstantiate (& graphExec , graph1 ,);
// and launch
cudaGraphLaunch (graphExec , sGraph);
// ...

60 }

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:9

The improved control over the thin driver layer exploited by a Vulkan application comes
at the cost of a significantly increased implementation complexity. While in the CUDA
runtime API establishing a context occurs transparently when the first CUDA API call is
performed, a Vulkan context involves the explicit creation of a vkInstance object2. Such
object stores global states information at application level. A vkInstance is created by default
with no added debug/validation layers: in order to minimize the impact of driver level
runtime checks and hidden optimizations (which are always performed in traditional APIs,
such as CUDA), the application programmer has to explicitly add/activate third-party API
layers at vkInstance creation time.

The layer-based mechanism is also one of the novel features enabled by these next
generation APIs. Once the instance is created, the programmer retrieves a handle to the
physical device(s) to use: from a single physical device (vkPhysicalDevice object), one or more
logical devices (as software constructs able to interface with the chosen physical device) are
created. From the logical device, memory for a vkCommandPool is allocated: a command pool
in Vulkan is used to amortize the cost of resource creation across multiple command buffers.
Finally, the programmer has to create one or more command buffers (vkCommandBuffer),
which are objects that allow storing commands to be later sent to the GPU via a vkQueue. A
vkQueue is the Vulkan abstraction of a queue of commands, with each set of created queues
belonging to specialized family of capabilities (compute, graphics, data transfer etc...). A
vkQueue is roughly the equivalent of a CUDA stream, but with a much finer granularity in
terms of CPU-GPU and intra/inter queue synchronizations.

Compute kernels (more specifically, Vulkan compute shaders) are stored in Khronos’s
SPIR-V (Standard Portable Intermediate Representation [19]) binary cross-compatible format
and compiled at runtime into device specific code (vkShaderModule). Then, the programmer
has to explicitly describe how resources are bound to the compute shader, i.e. how input,
output and constant buffers are mapped to the shader arguments. Vulkan descriptor sets
are allocated within descriptor pools and further specified thorough descriptor layouts. This
allows the developer to efficiently re-use the same bindings in different compute shaders.

For what refers to kernel arguments, constants are specified and updated through Vulkan
push and specialization constants. Associating constants and descriptor layouts to one or
more compute shaders occurs at pipeline creation time. During this phase, different pipeline
stages are defined to allow associating different vkShaderModules to different pre-allocated
descriptor sets. The pipelines are then “baked” into static Pipeline State Objects (PSOs)
for later use within a command buffer recording phase. Recording a command buffer allows
the programmer to switch different pre-constructed PSOs, so to set in advance a plurality
of compute kernels, each with its own descriptor set(s)/layout(s). Recorded commands are
then executed when calling the vkQueueSubmit function. Once such function is called, little
to no other driver interaction is necessary.

This long sequence of operations happens behind a context creation and subsequent kernel
invocations in a Vulkan application, and it gives a very plausible overview of the lower-level
details that are instead transparently managed in CUDA applications. The hidden handling
of these aspects in the closed CUDA implementation makes it less suitable for predictable
settings. Instead, we argue that the explicit handling allowed by Vulkan may make this API
much more suitable for real-time systems, especially considering that aspects like bindings,
sequence of kernel invocations and launch parameters are known in advance for predictable
real-time applications. The Vulkan model is thus a perfect fit in this setting, since all these
parameters are taken into account in pre-compiled structures such as PSOs.

2 We use the term object for brevity, but this has nothing to do with object oriented programming: being
the Vulkan client driver implemented in C, such objects are actually non dispatchable handles to C structs.

ECRTS 2019

22:10 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

Figure 4 Schematic representation of the operations and modeling artifacts involved in a simplified
Vulkan Compute pipeline. Shaded elements are external to the Khronos Vulkan specifications.

5 VkComp: an open-source wrapper for the Vulkan predictable
compute pipeline

One of the strongest point of the CUDA model is its ease of use, which, as mentioned,
is substantially better than Vulkan. We therefore decided to create a C++ wrapper to
the Vulkan API that easily allows setting up operations such as context creation, buffer
allocations, memory transfers and kernel invocations, to make these operations as easy as
they were using the CUDA runtime API. Our wrapper allows the developer to instantiate
pipeline creation blocks and command buffer recording blocks. These functionalities (roughly
similar to CUDA graphs), are responsible for creating in advance reusable resources such
as PSOs and pre-recorded command buffers. We plan to release this wrapper as an open-
source contribution.

5.1 Wrapper structure

Our C++ wrapper to the Vulkan API exposes the functionalities described by the interface
class represented in Figure 5. The figure shows the member functions are going to be
called within a pipeline creation block, as opposed to command buffer recording blocks and
application initialization.

In our experiments, we only use a single command buffer enqueued in a single queue.
A generic application composed of many kernel invocations and multiple buffers can be
summarized as shown in Pseudo-Algorithm 1.

In the pipeline creation block, a compute kernel is specified together with its launch
configuration (set as specialization constants) and descriptor layouts. Argument buffers
are pointers to SSBOs (Shader Storage Buffer Objects), whereas constants are specified as
Vulkan push constants. Recording a command buffer allows us to order the sequence of kernel
invocations (by selecting previously baked PSOs), data movements between CPU-GPU (any
direction) and constant values updates.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:11

Figure 5 Vulkan based compute interface describing the exposed functionalities of our model.

Algorithm 1 Pseudocode of our VkComp Vulkan wrapper example application.
{application initialization:}
createContext

for each buffer do
buffer ← deviceSideAllocation

end for
{pipeline creation block}
for each kernel do
program ← loadAndCompileProgram

startCreatePipeline(program)
setArgBuffer(buffer...) for each related buffer
setConstant for each related constant
setLaunchConfiguration

PSO ← finalizePipeline
end for
{Record command list block:}
startRecordCommandList

for each PSO do
selectP ipeline(PSO) for each related PSO
synchBuffer(buffer) for each related buffer
copyConstant for each related constant
launchProgram(kernel)

end for
cmdbuf ← finalizeCommandList
submitWork(cmdbuf)
deviceSynch

5.2 Buffers and programs

At context creation, a persistently mapped staging buffer is allocated. Its allocation size
is large enough to contain all the data used by the application. This persistently mapped
buffer is a driver-owned CPU-side buffer in which we can store buffer data to be later sent
to the GPU. This allows the programmer to avoid mapping and unmapping buffers from
CPU-only visible addresses to GPU-visible memory areas. An allocation table takes care of
sub-allocation segmentation. In our interface, this is transparent to the application designer.

ECRTS 2019

22:12 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

A compute kernel (called program in Figure 5 and Algorithm 1) is written in GLSL3 [20]
(OpenGL Shading Language) and translated into SPIR-V using the glslangValidator program
that is provided by Valve’s LunarG Vulkan SDK4. Then, a vkShaderModule (see section 5) is
created and bound to a pipeline.

6 Experimental setting

In this section, we validate the proposed considerations on a representative hardware platform.
We adopted an NVIDIA Jetson AGX Xavier development board, featuring a host processor
with 8 NVIDIA Carmel cores, an ARM-based superscalar architecture with aggressive out-
of-order execution and dynamic code optimizations. Carmel Instruction Set Architecture
(ISA) is compatible with ARMv8.2. The Carmel CPU complex presents 4 islands of 2
cores each: each core has a dedicated L1, while each island presents a shared L2 Cache (2
MiB). Moreover, a L3 cache (4 MiB) is contended by all the CPU cores. In this SoC, the
main accelerator is represented by an integrated GPU designed with the NVIDIA Volta
architecture, featuring 512 CUDA cores distributed in 8 SMs. Each SM has a 128 KiB L1
cache, and a shared L2 Cache (512 KiB) is shared among all the SMs. Other application
specific accelerators are present in this SoC, such as the DLA (Deep Learning Accelerator)
and the PVA (Programmable Vision Accelerator): further discussions about these additional
accelerators are beyond the scope of this paper.

The software stack used in our experiments is mostly contained within the latest version
of the NVIDIA Jetpack (4.1.1). It contains the L4T (Linux For Tegra) Operating System
(version 31.1), which is an NVIDIA custom version of Ubuntu, featuring a linux kernel version
4.9. The CUDA SDK version is 10, whereas the Vulkan driver is updated to version 1.1.76.
Lunarg SDK for glslangValidator is updated to version 1.1.97.0.

6.1 Experimental use case
The application we selected for our tests relates to one of the most peculiar workloads to be
accelerated on a GPU: Deep Neural Networks (DNNs). Inference of DNNs is an extremely
common use case for heterogeneous SoCs. For example, latest Advanced Driving Assitance
Systems (ADAS) and Autonomous Driving (AD) prototypes make a heavy use of neural
networks for the detection/classification of objects on the road, making inferencing latencies
a critical aspect of the system.

Analyzing the layers of a DNN, breaking them down into algorithmic steps, each layer
presents algebraic computations that are typical of other generic signal processing tasks: basic
algebraic operations such as matrix/matrix and matrix/vector multiplications, convolution
filters and element-wise linear and/or non-linear functions are perfect example of compute
building blocks for a wide variety of embarrassingly parallel computations.

For these reasons, we believe that parameterizing neural network topologies provides a
synthetic benchmark that is realistic and general enough for our proposed approaches. More
specifically, we characterize our neural network as a sequence of kernel invocations, with each
invocation corresponding to a different layer. We therefore parameterize both the length of
this sequence of kernels and the size of the input data, as shown in Figure 6.

3 Our Vulkan compute wrapper allows the user to write compute shaders in GLSL. This facilitates porting
from CUDA or OpenCL pre-existing kernels.

4 https://www.lunarg.com/vulkan-sdk/

https://www.lunarg.com/vulkan-sdk/

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:13

Figure 6 Schematic description of the application used for benchmarking the different submission
models. Matrix multiplications are used to compute fully connected layers, as we assume dense
matrices. The 3x3 convolution represents a convolutional layer. Simple activation functions (RELU
and sigmoid) conclude the sequence.

In the DAG in Figure 6, copy-in operations are implemented as Copy Engine operations
in which input layers, DNN weights and convolutional filters are made visible to the GPU
(CUDA memcpy host to device). The copy-out operations only relates to the output buffer
(CUDA memcpy device to host). Input and output buffers for each layer are switched between
subsequent kernel calls. We also alternate RELU and sigmoid activation functions between
subsequent iterations. For statistical analysis, the entire sequence of operations is periodically
repeated. Input size matrices for both input and output buffers are (k ∗ block)× (k ∗ block),
with k ∈ [1, 2, 4, 8] and block = 16 and the total sequence length of kernel launches is given
by the number of kernel launches for a single iteration (three) multiplied by the length of
the sequence: 3× l, l ∈ [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000].

Trivially, by increasing the length of the sequence of kernel launches, the CPU is forced
to increase its interactions with the GPU driver. By adjusting the data size, it is possible to
change the ratio between CPU and GPU compute latencies. In our experiments, the range
in which we vary the kernel iterations is compliant with the layer count of known neural
networks, as deployed in real world applications: YOLO [26] is composed of 26 convolutional
layers and 2 fully connected layers, whereas tiny-YOLO has 9 layers in total. Google’s
MobileNet [18] also features 28 layers, whereas larger networks can feature up to hundreds of
layers (e.g. ImageNet [22], R-FCN [11] and latest YOLO versions).

For Vulkan, compute shader implementations are derived from CUDA device kernel
code, that is then converted to GLSL compute shader with a line-by-line exact translation.
Operating this translation is easy, as only the name of the built-in variables used for
thread/block indexing differs between the two languages.

The Volta GPU architecture features application specific circuitry (i.e. tensor cores) for
further acceleration of matrix-multiply-accumulate operations. However, we are not aware of
any Vulkan/GLSL support for tensor core operations. To allow a fair comparison, also our
CUDA kernel implementation uses only regular CUDA cores.

All the experiments have been performed with the highest supported frequency and
voltage for the whole SoC with no dynamic frequency and voltage scaling (i.e. nvpmodel -m
0 && jetson_clocks.sh). Processes are pinned to one CPU core and set to FIFO99 priority.
Display servers/compositors or any other GPU application other than our benchmarks are
not permitted to execute. Code for our experiments can be found at https://git.hipert.
unimore.it/rcavicchioli/cpu_gpu_submission.

ECRTS 2019

https://git.hipert.unimore.it/rcavicchioli/cpu_gpu_submission
https://git.hipert.unimore.it/rcavicchioli/cpu_gpu_submission

22:14 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

Figure 7 Simplified visualization of the submission and execution metrics evaluated in our
experiments. Depending on the submission model, both the CPU and GPU tasks might be
represented as a variable number of small blocks.

7 Results

We assume that context set up, memory allocations and kernel compiling procedures are
operations performed only once, during the whole system initialization phase. Therefore, we
did not characterize these phases, as they do not impact the runtime latencies of recurring
real-time workloads. For CUDA graphs and Vulkan, we considered graph creation, command
buffer recording and pipeline creation as part of the initialization phase. CUDA graph is
created by capturing the same memory and kernel operations enqueued in the baseline stream.

For this experimental setting, we measured two response times: submission completion
time (submission) and total execution time (execution). The submission time is the time
spent on the CPU submitting thread between the asynchronous submission of a task to the
time in which the control is given back to the CPU submitting thread. In the baseline scenario,
this translates in measuring the time taken for enqueuing all the necessary operations in
the CUDA stream. For CDP, this latency is only observed for submitting the parent kernel
launch, whereas for CUDA graphs we only measure the latency of the cudaGraphLaunch
call. Similarly, for Vulkan we only measure the submission of the pre-recorded command
buffer (VkQueueSubmit function call, equivalent to submitWork in our VkComp wrapper).
The total execution time is the time taken for completing the submitted job. As shown in
Figure 7, this latter measure includes both the CPU submission work and the GPU sequence
of copy and compute kernel operations.

The results are shown in Figure 8 and 9 (pp. 15, 16) and are quite surprising (please note
the logarithmic scale of the plots). In the leftmost column, where the submission time is
shown, a drastic reduction can be noticed for Vulkan compared to all the CUDA alternatives.
With Vulkan, the worst-case time needed to regain control of the CPU submitting thread
can be orders of magnitude smaller than in the CUDA-based approaches. More specifically,
comparing Vulkan with CDP (the best performing among the CUDA methodologies), the
improvement ranges from 4× to 11×.

Even more interestingly from a predictability perspective, while increasing the sequence
length causes significant variations in submission times for CUDA baseline and graphs,
such variations in Vulkan are almost negligible. Figure 10a shows the measured jitter for
different sequence lengths, i.e. the difference between recorded maximum and minimum
submission times.

When comparing the three CUDA methodologies, we see a consistent behaviour through-
out all the tested configurations and data block sizes. As expected, the CUDA baseline
performance are lower then the other two methodologies when considering both average and
worst cases.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:15

10−5

10−4

10−3

k
=

1
R

es
po

ns
e

tim
e

[s
]

10−4

10−3

10−5

10−4

10−3

k
=

2
R

es
po

ns
e

tim
e

[s
]

10−4

10−3

10−5

10−4

10−3

k
=

4
R

es
po

ns
e

tim
e

[s
]

10−4

10−3

1 2 5 10 20 50
10−5

10−4

10−3

Submission length l

Submission

k
=

8
R

es
po

ns
e

tim
e

[s
]

1 2 5 10 20 50
10−4

10−3

10−2

Submission length l

Execution
Baseline CDP Graph Vulkan

Figure 8 Results of response time for submission (left) and execution (right) for l ∈
[1, 2, 5, 10, 20, 50], block = 16 and k ∈ [1, 2, 4, 8]. Y-scale is logarithmic and different between
left and right column.

ECRTS 2019

22:16 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

10−5

10−4

10−3

10−2

10−1
k

=
1

R
es

po
ns

e
tim

e
[s

]

10−3

10−2

10−1

10−5

10−4

10−3

10−2

10−1

k
=

2
R

es
po

ns
e

tim
e

[s
]

10−3

10−2

10−1

10−5

10−4

10−3

10−2

10−1

k
=

4
R

es
po

ns
e

tim
e

[s
]

10−3

10−2

10−1

100 200 500 1000 2000
10−5

10−4

10−3

10−2

10−1

Submission length l

Submission

k
=

8
R

es
po

ns
e

tim
e

[s
]

100 200 500 1000 2000

10−2

10−1

Submission length l

Execution
Baseline CDP Graph Vulkan

Figure 9 Results of response time for submission (left) and execution (right) for l ∈
[100, 200, 500, 1000, 2000], block = 16 and k ∈ [1, 2, 4, 8]. Y-scale is logarithmic and different
between left and right column.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:17

1 2 5 10 20 50 10
0

20
0

50
0
10

00
20

00

10−4

10−3

Sequence length l

Ji
tt

er
[s

]
Baseline CDP Graph Vulkan

(a) Difference between maximum and minimum
submission times for each model, k = 1.

1 2 5 10 20 50 10
0
20
0

50
0
10
00
20
00

0

0.5

1

1.5

2

2.5

·10−2

Sequence length l

R
es
po

ns
e
tim

e
[s

]

Pipeline creation
Command buffer recording

(b) Job-creation overheads for Vulkan.

Figure 10 Submission jitter and Vulkan creation latencies. X-Axis scale is logarithmic.

We now discuss the right side of Figures 8 and 9 detailing the total response times.
The Vulkan approach still outperforms the other three methodologies. Increasing l, the
measured response times increase in all the tested methodologies, as expected. However,
Vulkan performance improvement over CUDA becomes more evident and stabilizes with
larger l values (same slope observable in Figure 9), starting from 2× for l = 1 up to ∼ 6×
for l ≥ 10. CDP always performs worse then the other two CUDA based approaches and
the deterioration of CDP performance gets more noticeable when increasing k and l. CUDA
graphs execution times are comparable to the baseline implementation.

7.1 Discussion
The Vulkan design philosophy is responsible for such surprisingly short submission times.
More specifically, by forcing the application developer to explicitly instantiate a pre-recorded
version of the command pipeline and by avoiding any runtime validation checks, it manages
to drastically reduce the interactions between the CPU and the GPU. On the contrary, by
the time a CUDA runtime function is called to when it is actually enqueued in the command
buffer, an overhead is added in terms of validation and error checking: such operations act as
added overhead on the CPU side as they operate in an undisclosed and uncontrolled fashion.

An experiment with just four lines of code can serve as an example to reveal validation
mechanisms at API level: let us create a CUDA runtime application that creates a host and
a device pointer (respectively a pointer to CPU-visible memory region, and a GPU-only
visible pointer). We allocate memory for both and we use pinned (cudaMallocHost) memory
for the host pointer. We then set up a DMA transfer indicating the host pointer as the
source, the device pointer as destination, and we wrongfully flag this to be a device to host
memory copy. This program compiles, runs and – according to nvprof, the NVIDIA CUDA
profiler – executes a host to device to memory copy, hence indicating that pointers were
validated with respect to their address spaces, setting the actual DMA transfer differently
than originally specified. The experiment suggests that calls were checked, validated and (if
necessary) corrected. It is reasonable to assume that heavier driver mechanisms are also in
place for kernel invocations.

Recall that kernels are identical in both the CUDA and Vulkan version. The performance
improvement shown by Vulkan is higher for submission intensive workloads, where CPU times
are not negligible with respect to GPU compute times. In these cases, minimizing submission

ECRTS 2019

22:18 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

Table 1 Tracing result summary by tracing NVIDIA GPU kernel module: number of submissions,
average duration, number of additional calls required to increment l by 1, memory management calls.

Submission
model

Number of
submit calls

Average
time [s] ∆ Number of

MM operations
Baseline 611 2.66776 · 10−6 3 1,484
CDP 610 1.92295 · 10−6 0 1,484
Graph 635 2.15276 · 10−6 27 1,484
Vulkan 24 2.05 · 10−5 0 1,110

times allows drastically decreasing the total execution time. If the examined workload is
characterized by few kernel calls and reasonably sized data buffers, total execution times
between Vulkan and CUDA would not present such significant differences. This is partially
visible in our results for smaller l and larger k.

A way to avoid paying the price of driver hidden mechanisms is to relieve the CPU from
heavy submission work. The CDP methodology moves the responsibility of future kernel calls
to threads that run on the GPU. From our results, we discovered that this is actually a very
effective approach for minimizing CPU interactions for submission, at least for reasonable
sequence lengths. However, the device-side overhead for nested kernel invocations causes
significant performance deterioration with respect to GPU response time. This effect was
already observed in older GPU architectures [6]. Likely, the CDP model cannot provide
benefits to the kind of GPU workloads used in our tests: a sequence of kernel invocations,
with little variations to their launch configuration, does not resemble a tree-like structure of
nested kernel invocations. We however argue that the tree-like kernel invocations suitable
to CDP are not as common as simpler sequential kernel invocations, at least for typical
embedded workloads.

CUDA graphs performed below our expectations for both submission and execution
metrics. We assumed that this recently-introduced CUDA feature would make it behave
similarly to the Vulkan API – the idea of capturing stream operations strongly resembles
Vulkan’s command buffer recording. Despite launching a CUDA graph involves only calling
a single CUDA runtime function, the hidden driver overhead is comparable to the one
observed in the baseline methodology. Since our measurements only considered user space
runtime functions, the performance of CUDA graph motivated us to further examine kernel
driver overheads.

7.2 Tracing the kernel driver
Although the NVIDIA GPU runtime is proprietary and closed source, its kernel driver module
is open source and freely available at the NVIDIA official website. In order to understand
the submission mechanisms below the user space application that we implemented for our
previous tests, we can thus analyze kernel driver operations with all the tested methodologies.
Basic GPU kernel driver tracing allows us to obtain initial and final timestamps of the GPU
command submission into the actual command push buffer, which is a memory region written
by the CPU and read by the GPU [7, 8]. By enabling the debug interface of the gk20a module,
we discover that command push buffer writes are delimited by gk20a_channel_submit_gpfifo
and gk20a_channel_submitted_gpfifo function traces. We also traced driver functions
related to memory management gk20a_mm_* to understand their impact in the kernel
submission process. We recorded those traces using the trace-cmd-record utility, reporting
our findings in Table 1.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:19

The second column of Table 1 shows the number of submit operations when l = 1
and k = 1, accounting for both context initialization and actual work submission. The
average time for these submission calls has been calculated by subtracting the timestamps of
gk20a_channel_submitted_gpfifo and its respective gk20a_channel_submit_gpfifo function
trace. The ∆ column is simply the difference of submit calls when l = 2, and represents the
number of additional submit calls required by any submission after the first one. The last
column is the counter of memory management operations.

In terms of sheer number, submit calls show no significant difference among the CUDA
methods. Regarding CUDA graphs, despite the fact that launching a graph only involves a
single user space runtime function, the number of submit calls is even larger than the baseline.
This explains the reason why CUDA graphs response times are comparable to the baseline.
Vulkan is characterized by a 25× reduction in submit calls compared to CUDA. However,
Vulkan submit duration is a magnitude larger than all the other approaches. The ∆ column
shows the results we expected for baseline, CDP and Vulkan: by increasing l by a single unit,
the baseline presents 3 additional submit calls (1 per additional kernel invocation), whereas
CPD does not present any additional calls, as nested invocations are operated inside the
GPU. Vulkan driver activity continues to follow the user space application model: increasing
l leads to a larger recorded command buffer, but this does not cause an increased number
of submit calls as every additional invocation is prerecorded in the same Vulkan command
buffer/queue. We are unable to explain the 9×∆ for the CUDA graph value compared to
the baseline, as if we assume that driver interactions for CUDA graphs would resemble the
baseline, having the same ∆ as the baseline.

The captured traces for memory operations are identical in all the CUDA methodologies
and do not increase with l, with Vulkan presenting 25% less memory management operations
compared to CUDA. For what we were able to infer from a mostly closed source system,
it is safe to assume that Vulkan is able to cache and pre-record GPU commands to then
minimize CPU and GPU interactions (both in user and kernel space) when offloading periodic
workloads. This implies spending a significant amount of time for initialization procedures
(i.e. pipeline creation and command buffer recording) to then utilize the CPU for the
bare minimum for submitting an already well-formatted sequence of operations. For the
sake of completeness, we profiled the time taken by the CPU for creating pipelines and
recording a command buffer of variable size. These metrics are reported in Figure 10b,
where we characterized the time spent on the CPU during the initialization phase of a
Vulkan application.

Recall that pipeline creation manages the binding of each distinct compute program with
its input/output buffer layouts: these do not change when increasing l. On the contrary,
the command buffer should record all the kernel invocations in advance. As a consequence,
larger invocation sequences lead to larger command buffers, with a proportional increase in
recording time. Pipeline creation is the most expensive operation (tens of ms). However, if
the number of invocations reaches unrealistically large values (i.e. thousands of invocation in
a single batch), recording times tend to dominate over pipeline creation.

Our findings show that no matter which submission model is selected for CUDA, Vulkan
bare metal approach manages to minimize and better distribute the CPU overhead, especially
for pathological workloads in which the CPU offloading times tend to dominate over the
actual GPU compute and DMA transfer times.

ECRTS 2019

22:20 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

8 Conclusion and future work

In this work, we aimed at characterizing and modeling CPU-to-GPU submission latencies for
real-time systems executing on heterogeneous embedded platforms. We compared recently
released CUDA submission models and the novel open standard Vulkan API for GPU
accelerated workloads. In an extensive set of experiments, we considered typical workloads,
consisting of inferencing on a neural network of parameterized topology, to profile GPU
command submission times and total execution times. The results show that CPU offloading
latencies can act as a bottleneck for performance, negatively impacting predictability and
jitter, and making the schedulability analysis significantly more complex due to the large
number of CPU-GPU interactions.

Considering CUDA approaches, recently introduced CUDA submission models can slightly
improve performance (both on submission and execution times) compared to the commonly
utilized baseline approach. However, considering a deeper neural network and buffer data
size, the performance penalties during the actual kernel computations reduce or invalidate
the benefits of a reduced CPU activity gained for submission operations, especially for the
CDP approach.

On the other hand, the Vulkan API was able to minimize and better distribute the CPU
overhead in all the tested configurations. This led to significant improvements, i.e. up to 11×
faster submissions and from 2× to 6× faster GPU operations, with almost negligible jitter.
Moreover, the significant reduction of CPU-GPU interactions significantly simplifies the
topology of the DAG to consider for deriving an end-to-end response-time analysis, allowing
a tighter characterization of the system schedulability. For these reasons, we argue that the
Vulkan API should be seriously considered by real-time systems designers for dispatching
periodic workloads upon predictable heterogeneous SoCs.

Despite the closed nature of the NVIDIA runtime, we traced the relevant GPU driver
kernel module calls to explain the performance gap between CUDA and Vulkan. In this
latter, driver interactions between application and GPU driver are kept to the bare minimum,
hence providing the surprising results we discussed. Moreover, it is worth noticing that
Vulkan is a cross platform API, with no hardware vendor or operating system restrictions and
specified as an open standard, whose importance has been recently stressed [33]. Limitations
for the Vulkan approach, when compared to CUDA, are to be found in the substantially
higher implementation complexity for the developer, in the notable time needed to pre-record
commands/pipelines, and in the lack of an ecosystem of utility libraries (e.g. cuDNN for
Deep Neural Network operations, cuBLAS for linear algebra, etc.)

As a future work, we aim to include OpenCL in this comparison to experiment on
different hardware platforms. We are also in the process of investigating different use cases,
in which multiple concurrent and parallel kernels overlap in time, described by DAGs with
parametrized breadth. This analysis is important when considering recurrent neural network
such as R-FCN [11], which includes loops among different layers. This aspect differs from
the feed-forward networks that inspired the use case in our experiments. Finally, we plan
to benchmark the energy consumption for all the tested approaches. We speculate that the
reduced CPU-GPU interaction might bring substantial benefits to the power consumption, a
crucial aspect for the considered platforms.

R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna 22:21

References
1 Mohammed Alandoli, Mahmoud Al-Ayyoub, Mohammad Al-Smadi, Yaser Jararweh, and

Elhadj Benkhelifa. Using Dynamic Parallelism to Speed Up Clustering-Based Community
Detection in Social Networks. In Future Internet of Things and Cloud Workshops (FiCloudW),
IEEE International Conference on, pages 240–245. IEEE, 2016.

2 Waqar Ali and Heechul Yun. Work-in-progress: Protecting real-time GPU applications on
integrated CPU-GPU SoC platforms. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017 IEEE, pages 141–144. IEEE, 2017.

3 Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and F Donelson Smith.
GPU scheduling on the NVIDIA TX2: Hidden details revealed. In 2017 IEEE Real-Time
Systems Symposium (RTSS), pages 104–115. IEEE, 2017.

4 Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling for Real-
Time Systems. Springer, 2015.

5 Jens Breitbart. Static GPU threads and an improved scan algorithm. In European Conference
on Parallel Processing, pages 373–380. Springer, 2010.

6 Nicola Capodieci and Paolo Burgio. Efficient implementation of Genetic Algorithms on GP-
GPU with scheduled persistent CUDA threads. In Parallel Architectures, Algorithms and
Programming (PAAP), 2015 Seventh International Symposium on, pages 6–12. IEEE, 2015.

7 Nicola Capodieci, Roberto Cavicchioli, and Marko Bertogna. Work-in-Progress: NVIDIA
GPU Scheduling Details in Virtualized Environments. In 2018 International Conference on
Embedded Software (EMSOFT), pages 1–3. IEEE, 2018.

8 Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Paramakuru. Deadline-
based Scheduling for GPU with Preemption Support. In 2018 IEEE Real-Time Systems
Symposium (RTSS), pages 119–130. IEEE, 2018.

9 Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory Interference Charac-
terization between CPU cores and integrated GPUs in Mixed-Criticality Platforms. In 22nd
IEEE International Conference on Emerging Technologies And Factory Automation (ETFA),
2017.

10 Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. EffiSha: A software framework for
enabling effficient preemptive scheduling of GPU. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 3–16. ACM, 2017.

11 Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully
convolutional networks. In Advances in neural information processing systems, pages 379–387,
2016.

12 Glenn A Elliott and James H Anderson. Real-world constraints of GPUs in real-time systems.
In Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011 IEEE 17th
International Conference on, volume 2, pages 48–54. IEEE, 2011.

13 Glenn A Elliott and James H Anderson. Robust real-time multiprocessor interrupt handling
motivated by GPUs. In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on,
pages 267–276. IEEE, 2012.

14 Glenn A Elliott, Bryan C Ward, and James H Anderson. GPUSync: A framework for real-time
GPU management. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 33–44.
IEEE, 2013.

15 Kshitij Gupta, Jeff A Stuart, and John D Owens. A study of persistent threads style GPU
programming for GPGPU workloads. In Innovative Parallel Computing (InPar), 2012, pages
1–14. IEEE, 2012.

16 Islam Harb and Wu-Chun Feng. Characterizing Performance and Power towards Efficient
Synchronization of GPU Kernels. In Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2016 IEEE 24th International Symposium on, pages
451–456. IEEE, 2016.

17 Cheol-Ho Hong, Ivor Spence, and Dimitrios S Nikolopoulos. GPU virtualization and scheduling
methods: A comprehensive survey. ACM Computing Surveys (CSUR), 50(3):35, 2017.

ECRTS 2019

22:22 Novel Methodologies for Predictable CPU-To-GPU Command Offloading

18 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint, 2017. arXiv:1704.04861.

19 Khronos Group Khronos. Khronos SPIR-V Registry. Khronos Group, 2016. URL: https:
//www.khronos.org/registry/spir-v/#spec.

20 Khronos Group Khronos. The OpenGL Shading Language Language Version: 4.50. Khronos
Group, 2016. URL: https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.
50.pdf.

21 Khronos Group Khronos. Vulkan 1.0.98 - A Specification. Khronos Group, 2019. URL:
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html.

22 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

23 B Neelima, Bharath Shamsundar, Anjjan Narayan, Rithesh Prabhu, and Crystal Gomes. Kepler
GPU accelerated recursive sorting using dynamic parallelism. Concurrency and Computation:
Practice and Experience, 29(4):e3865, 2017.

24 CUDA Nvidia. Programming Guide Version 10.0. Nvidia Corporation, 2018. URL: https:
//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

25 Ignacio Sañudo Olmedo, Nicola Capodieci, and Roberto Cavicchioli. A Perspective on Safety
and Real-Time Issues for GPU Accelerated ADAS. In IECON 2018-44th Annual Conference
of the IEEE Industrial Electronics Society, pages 4071–4077. IEEE, 2018.

26 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788, 2016.

27 Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. arXiv preprint, 2016.
arXiv:1612.08242.

28 Davesh Shingari, Akhil Arunkumar, and Carole-Jean Wu. Characterization and throttling-
based mitigation of memory interference for heterogeneous smartphones. In 2015 IEEE
International Symposium on Workload Characterization (IISWC), pages 22–33. IEEE, 2015.

29 Joseph A Shiraef. An exploratory study of high performance graphics application programming
interfaces. Master’s thesis, University of Tennessee at Chattanooga, 2016.

30 Jan-Philipp Stauffert, Florian Niebling, and Marc Erich Latoschik. Towards comparable
evaluation methods and measures for timing behavior of virtual reality systems. In Proceedings
of the 22nd ACM Conference on Virtual Reality Software and Technology, pages 47–50. ACM,
2016.

31 Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang. FLEP: Enabling Flexible and Efficient
Preemption on GPUs. In Proceedings of the 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2017.

32 Ming Yang, Tanya Amert, Kecheng Yang, Nathan Otterness, James H Anderson, F Donelson
Smith, and Shige Wang. Making OpenVX Really "Real Time". In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 80–93. IEEE, 2018.

33 Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H Anderson, and F Donel-
son Smith. Avoiding pitfalls when using NVIDIA GPUs for real-time tasks in autonomous
systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

34 Peter Zhang, Eric Holk, John Matty, Samantha Misurda, Marcin Zalewski, Jonathan Chu,
Scott McMillan, and Andrew Lumsdaine. Dynamic parallelism for simple and efficient GPU
graph algorithms. In Proceedings of the 5th Workshop on Irregular Applications: Architectures
and Algorithms, page 11. ACM, 2015.

http://arxiv.org/abs/1704.04861
https://www.khronos.org/registry/spir-v/#spec
https://www.khronos.org/registry/spir-v/#spec
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://arxiv.org/abs/1612.08242

Generating and Exploiting Deep Learning Variants
to Increase Heterogeneous Resource Utilization in
the NVIDIA Xavier
Roger Pujol
Universitat Politecnica de Catalunya (UPC), Spain
Barcelona Supercomputing Center (BSC), Spain

Hamid Tabani
Barcelona Supercomputing Center (BSC), Spain

Leonidas Kosmidis
Barcelona Supercomputing Center (BSC), Spain

Enrico Mezzetti
Barcelona Supercomputing Center (BSC), Spain

Jaume Abella
Barcelona Supercomputing Center (BSC), Spain

Francisco J. Cazorla
Barcelona Supercomputing Center (BSC), Spain

Abstract
Deep learning-based solutions and, in particular, deep neural networks (DNNs) are at the heart of
several functionalities in critical-real time embedded systems (CRTES) from vision-based perception
(object detection and tracking) systems to trajectory planning. As a result, several DNN instances
simultaneously run at any time on the same computing platform. However, while modern GPUs offer
a variety of computing elements (e.g. CPUs, GPUs, and specific accelerators) in which those DNN
tasks can be executed depending on their computational requirements and temporal constraints,
current DNNs are mainly programmed to exploit one of them, namely, regular cores in the GPU.
This creates resource imbalance and under-utilization of GPU resources when executing several
DNN instances, causing an increase in DNN tasks’ execution time requirements. In this paper, (a)
we develop different variants (implementations) of well-known DNN libraries used in the Apollo
Autonomous Driving (AD) software for each of the computing elements of the latest NVIDIA Xavier
SoC. Each variant can be configured to balance resource requirements and performance: the regular
CPU core implementation that can run on 2, 4, and 6 cores; the GPU regular and Tensor core
variants that can run in 4 or 8 GPU’s Streaming Multiprocessors (SM); and 1 or 2 NVIDIA’s Deep
Learning Accelerators (NVDLA); (b) we show that each particular variant/configuration offers
a different resource utilization/performance point; finally, (c) we show how those heterogeneous
computing elements can be exploited by a static scheduler to sustain the execution of multiple and
diverse DNN variants on the same platform.

2012 ACM Subject Classification Computer systems organization → Neural networks; Computer
systems organization → System on a chip; Computing methodologies → Graphics processors

Keywords and phrases Deep Neural Network (DNN), GPU, Heterogenous Resources

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.23

Funding This work has been partially supported by the Spanish Ministry of Economy and Com-
petitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 772773), and the HiPEAC Network of Excellence. MINECO partially supported Jaume Abella
under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717), Enrico Mezzetti under Juan de la
Cierva-Incorporación postdoctoral fellowship (IJCI-2016-27396), and Leonidas Kosmidis under Juan
de la Cierva-Formación postdoctoral fellowship (FJCI-2017-34095).

© Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella, and Francisco J.
Cazorla;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1960-6358
https://orcid.org/0000-0002-6061-7470
https://orcid.org/0000-0001-9751-1058
https://orcid.org/0000-0002-1886-2931
https://orcid.org/0000-0001-7951-4028
https://orcid.org/0000-0002-3344-376X
https://doi.org/10.4230/LIPIcs.ECRTS.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 DL Variants to Increase Utilization in NVIDIA Xavier

1 Introduction

Motivated by the higher accuracy achieved by deep learning (DL) solutions over traditional
algorithms based on shallow learning, the use of DL in the mainstream computing domain has
rapidly widespread. This covers a variety of areas ranging from pattern recognition to natural
language processing. Critical real-time embedded systems (CRTES) are not an exception to
this trend, with DL-based algorithms used in areas like robotics and autonomous driving
(AD). In fact, DL has emerged as the reference algorithmic solution for the realization of
several functionalities in AD such as computer vision (e.g., object detection and tracking),
path planning, driver-monitoring systems, and voice-based command and control [11].

The other side of the coin is that DL increased accuracy comes at the cost of a substan-
tial increase in the required computational demands. At software level, highly optimized
frameworks, tools, and low-level libraries are deployed to improve the hardware utilization
significantly, and also to facilitate the software development process [1, 26, 13, 27]. At
hardware level, high-performance hardware is used to satisfy the massive computation needs
of DL workloads [5, 2, 4], with GPUs at the forefront of those solutions and being extensively
evaluated by OEMs and TIER companies in the automotive domain [3]. Despite these efforts,
autonomous driving – the target domain of our work – still challenges the computational
capabilities of existing solutions. Just for advanced driver-assistance systems (ADAS), which
arguably require much lower performance than AD, ARM projects an 100x increase in
computation needs from 2016 to 2024 [17]. Capturing these demands requires a computation
capacity of tens of tera operations per second (TOPS), which can theoretically be achieved
by having a variety of specialized computing elements (accelerators) in the GPU platforms
and automotive system-on-chips (SoC), e.g., Tensor cores and deep learning accelerators.

Problem statement. Since DL is used in a variety of modules for different AD functionalities,
several DL instances will be running simultaneously on the underlying SoC. For instance,
while the object detector module analyzes the current frame, the tracking module processes
the objects recognized in previous frames and matches them with the objects in the current
frame. At the same time, the planning module calculates the best path trajectory. To make
things worse, (i) each module can require several DNN instances to implement the required
functionality, and (ii) the module can be instantiated several times, once per each input
sensor, e.g. camera, LiDAR, and radar. However, while modern GPUs offer a powerful
heterogeneous platform with several type of (accelerating) computing elements (CE), current
DL libraries are implemented to mostly exploit one of them, which at the time of writing this
paper are the regular cores in a GPU. Regardless of the specific CE, the fact that just one
CE is used, heavily under-exploits modern heterogeneous SoC computation capacity. Our
view is that the ability to run DL-based variants, each using different CEs, would improve
timing and throughput, and would pay off the extra effort required to implement those
different variants. As a matter of fact, recently, NVIDIA integrated powerful deep learning
accelerators (NVDLA) designed and specialized for DL workloads, and Tensor cores for DL
inference, which are capable of different data type operations, from int8 to fp16 and fp32,
and provide massive and flexible computation capacity.

Contributions. In this paper, with focus on the Xavier SoC and the Apollo AD framework [9],
we make the following main contributions:
1. DNN usage in Apollo. We perform an analysis of the number of DNN instances that

can be active during the execution of Apollo. We show that at least seven instances can
be active at the same time and each instance comes with different computation needs
and different time constraints. Also, based on observed indicators, we conclude that the
number of DNN instances is expected to increase in future AD systems.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:3

2. We implement distinct variants of different DL libraries so that each DL application can
be executed on different CEs in the NVIDIA’s Xavier SoC: CPU, GPU regular cores, GPU
Tensor cores, and NVDLA. Our variants are programmed such that they can be executed
under different thread-level parallelism (TLP) degrees. This allows more flexibility when
exploiting the existing CEs.

3. We make an in-depth analysis of the implications of running the different variants of the
DL libraries on the NVIDIA’s Xavier SoC and show that each implementation/TLP-setup
offers a different design point in terms of used resources and performance.

4. We model a multicore cyclic executive scheduler as a linear programming (LP) problem
to assess the increase in guaranteed performance enabled by heterogeneous resources.
We show how the variable execution requirements exhibited by tasks on the different
heterogeneous computing elements can be exploited to increase the number of advanced
neural network based functionalities on the same SoC, with clear advantages in terms of
reduction in procurement costs and reliability concerns.

The rest of this paper is structured as follows. Section 2 introduces DNNs and Apollo.
Section 3 analyzes the DNNs used in Apollo and the projection in the use of DNN in
CRTES. Section 4 presents the main details of our target platform, the NVIDIA’s Xavier
SoC. Section 5 details the different implementations we developed for different DL libraries
and their resource usage and performance in the Xavier SoC. Section 6 shows how scheduling
can benefit from this TLP-configurable implementations to increase system load or adapt
DL execution time requirements to its allocated time budget. Section 7 presents the most
relevant related works, and, finally, Section 8 summarizes the main conclusions of this work.

2 Deep Neural Networks and their use in AD

2.1 Introduction to DNN
Deep Neural Networks (DNNs) [35] provide high accuracy solutions in several domains
including computer vision for functions such as image classification and object detection.
Nowadays, DNNs are widely used in a variety of areas and CRTES are not an exception to
this. Recurrent neural networks (RNNs) are another class of artificial neural networks with
internal state that are very successful for history-based workloads such as speech recognition,
path planning and machine translation. RNNs are used as the state-of-the-art approach for
path planning in industrial autonomous driving systems.

2.2 Apollo Autonomous Driving Software
We study Apollo [9], arguably the most sophisticated open-source autonomous driving
framework available and already deployed on a variety of prototype vehicles (including
autonomous trucks). Apollo supports state-of-the-art hardware such as latest LIDARs and
cameras from Velodyne and other vendors, as well as GPU acceleration. Apollo comprises
8 main modules and several sub-modules, as shown in Figure 1. These software modules
operate in a software-pipelined fashion and work in general at frame level.
M0 Speech recognizer processes the voice-based commands from the driver/passengers and

transmit them to the control unit.
M1 Perception identifies the surrounding area around the autonomous car.

M1.d The detection submodule is in charge of detecting obstacles and objects from
different sensors.

ECRTS 2019

23:4 DL Variants to Increase Utilization in NVIDIA Xavier

Figure 1 Modules, sub-modules and input sensors of Apollo.

M1.f fusion takes the results of all detected objects from different sensors and combines
them by a sensor fusion algorithm.

M1.t tracker follows the detected objects and matches them with the objects detected
in previous frames.

M2 The Planning plans the spatio-temporal trajectory for the vehicle to take.
M3 Localization leverages information received from different input sensors to estimate the

precise position of the vehicle.
M4 The Map provides ad-hoc structured information regarding the roads.
M5 Prediction anticipates the future motion trajectories of perceived obstacles/objects.
M6 Control generates control commands such as accelerating/braking and steering.
M7 CAN Bus passes all the control commands to the vehicle hardware and provides

information back to the autonomous system.

In this paper, we used Apollo default input data sets which are real data from sensors of
an AD car collected and provided by the Apollo team. In addition, we used similar neural
network architectures that Apollo employs in its different stages.

3 Analysis of the DL elements in Apollo

In the literature, we can find a wide range of DNNs and other DL algorithms. In this paper,
we focus on those normally used for DL-based solutions in AD systems. In this line, Table 1
shows different types of (state-of-the-art) neural networks widely used in key domains for AD
functionalities. We can observe that three modules (M0, M1, and M5) and 2 sub-modules
(M1.d and M1.t) use neural networks, DNNs and RNNs in particular. Table 1 shows:

The perception module, M1, relies on different DNNs for detecting (M1.d) obstacles and
objects from different sensors. The results of all detected objects are fused by a sensor
fusion algorithm (M1.f) that does not use DNNs. As a last step, an object tracker (M1.t)
deploys a DNN to track and follow detected objects.
The prediction module, M5, uses RNNs to build a model to predict the target lane that
the vehicle should take. One RNN model is for lane sequences and another RNN model
for the associated object states. The concatenation of these two RNNs is fed into another
neural network to estimate the probability for each lane sequence. Interestingly, the
modules using neural networks, Perception and Prediction, are the most compute-intensive
modules: they consume more than 70% of the time Apollo uses to process each frame.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:5

Table 1 Neural networks used in different modules of the Apollo autonomous driving system.

Deep Learning Software Description
M0. Speech Voice Command A DNN-based accurate speech recognition
Recognition and Control application to process speech commands

Camera Object Detection A DNN-based algorithm to identify objects
and traffic signals from camera sensors

M1. Perception LiDAR object Detection A DNN-based algorithm to identify objects
from LiDAR sensors

Object Tracker A DNN-based algorithm to track identified
objects in consecutive frames

Lane sequences (RNN1) A RNN for lane sequence-based prediction
Obstacle status (RNN2) A RNN for obstacle status

M5. Prediction A RNN using the output A RNN to compute the probability of each
produced by RNN1 and RNN2 lane sequence based on RNN1 and RNN2

Some AD systems suggest to deploy AI-assistant applications to be implemented inside
the cabin, which are all based on neural networks [11]. Such applications are proposed
for driver-monitoring, and command and control using gestures and voice. and RNNs.

Table 2 summarizes the modules using DNNs and RNNs.

Table 2 Modules of Apollo using DNNs (~) and RNNs (}).

M1 (Perception) Other Modules
Input M1.d M1.f M1.t M0 M2 M3 M4 M5 M6 M7
Camera ~
LiDAR ~ ~ ~ } } }
Radar

3.1 Real Execution Trace

Figure 2 shows a trace collected from an actual execution of Apollo when all DNN and RNN
instances in the different modules/sub-modules use the regular GPU cores in the Jetson
AGX Xavier. Each rectangle shows the span of execution of each DNN/RNN instance, i.e.
since it starts running (i.e. it is executable) until its execution finishes.

As Figure 2 shows, at a given time ti, several instances of different neural networks
are executed concurrently. Also, each particular DNN/RNN has diverse computational
requirements with more than 12× variability among them: the voice command runs for
4.5ms, whereas the different RNNs in the prediction module range from 48.61ms to 61.06ms;
finally in the perception module DNN instances span goes from 38.96ms to 50.18ms. It is
also the case that temporal constraints vary up to 10x across DNN/RNN instances. This
comes from the fact that the rate at which frames arrive across different input sensors can
vary from 10ms for Radars to 100ms for LiDARs.

3.2 DNN instances

Current trends show that the number of concurrent neural network instances can easily
reach dozens:

ECRTS 2019

23:6 DL Variants to Increase Utilization in NVIDIA Xavier

Figure 2 Concurrent execution of different modules or instances of a module in Apollo, an
industrial autonomous driving software.

More input sensors. Moving toward fully autonomous driving (Level 5 [8]) will naturally
require to increase the number of sensors to cover the car’s surrounding more accurately.
Today, some of the AD systems, which are still far from a Level 5 system, use more
than 8 cameras and radars (e.g., Telsa [28] uses 8 cameras and 12 ultrasonic sensors, and
NVIDIA autopilot [11] uses 8 high-resolution cameras, 8 radars and optionally up to 3
LiDARs). Therefore, more DNN-based workloads will have to be processed, increasing
the computation demand significantly.
More sophisticated algorithms. Perception submodules tend to use more sophisticated
DNNs, with larger number of layers and, therefore, higher computational needs for
further improvements in the accuracy of object and obstacle detection, specially in
conditions with reduced visibility such as fog, night, rain, and snow. The Prediction
module already uses 3 different neural networks either to achieve higher accuracy or to
cover more complex scenarios. Indeed, this type of modules normally use sophisticated
neural network architectures [44, 45].
More functionalities. Besides the main functions of an AD system, extra features are
introduced to improve the quality and safety of driving: from gesture detection and speech-
based command and control up to driver-monitoring to predict take-over readiness [30].

This trend towards exploiting multiple neural networks running in parallel and the
increasing number and type of accelerators we witness in modern GPUs motivate our idea of
assessing the benefits of DNN/RNN variants in modern GPUs.

4 Main Computing Elements in The Jetson AGX Xavier

NVIDIA has recently introduced the Xavier SoC as the cornerstone of its automotive
platforms. Xavier delivers over 30 TOPS for DL applications while consuming less than 30
Watts. Xavier comprises four main computing elements (CEs) capable of processing deep
learning workloads: traditional CPU cores, GPU cores, GPU Tensor cores, and the NVDLAs.
The Xavier SoC also integrates several other accelerators such as vision accelerator, video
encoder, etc. However, these accelerators cannot be used for DNN/RNN inference, due to
their limited programmability. Therefore, in this paper, we focus only on CPU, GPU (regular
and Tensor) cores, and the NVDLA.
1. CPU cores. The CPU complex (CCPLEX) comprises eight homogeneous carmel ARMv8.2

processors. Each core has its private instruction and data caches. In each cluster of two
cores (4 clusters in total), an L2 cache is shared between both cores. An L3 cache is
shared between all CPU cores.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:7

Figure 3 CEs in the Xavier SoC and granularity at which we exploit them.

2. GPU regular and Tensor cores. The Volta GPU microarchitecture comprises 512 regular
cores (CUDA cores in NVIDIA terminology) and 64 Tensor cores. The GPU is structured
in 8 Streaming Multiprocessors (SMs) each containing 64 regular and 8 Tensor cores.
Tensor cores [12] accelerate large matrix operations, which are at the heart of many
AI functions. While each regular core can perform up to one single precision multiply-
accumulate operation per 1 GPU clock, each Tensor core can perform one matrix multiply-
accumulate operation per 1 GPU clock. The Tensor core can multiply two fp16 4× 4
matrices and adds the multiplication product fp32 matrix to the accumulator, which is
also a fp32 4× 4 matrix.
In each SM, threads can use either the regular cores or the Tensor cores. Hence, at most,
512 regular or 64 Tensor cores can be used in parallel.

3. NVDLA provides a flexible, robust inference acceleration solution. Xavier SoC has two
NVDLAs which can be configured to run deep learning workloads. To the best of our
knowledge, this is the very first work that considers NVDLAs in the real-time domain.

Overall, the NVIDIA Xavier SoC offers four different CEs that we will use to illustrate the
benefits of our proposal. In order to reduce the exploration space we reduce the granularity
at which we explore each CE, see the table on the right in Figure 3.

At the CCPLEX level, we restrict our approach to core clusters. Also, since all DNN/RNN
instances using the GPU or the NVDLA are initiated from the CPU, we reserve 2 CPUs
for them. Overall, at the CPU level, a DNN/RNN instance can use 2, 4, or 6 of the
remaining cores.
At the GPU level, we setup a minimum granularity of 4 SMs. Hence, a DNN/RNN task
can use either 4/8 SMs to exploit 256/512 GPU regular or 32/64 tensor cores, respectively.
Each task can use one or two NVDLA accelerators.

5 Diverse DNN Implementations

This work started with a massive effort to port Apollo to the Jetson AGX Xavier. In fact,
to our knowledge, this is the first work showing results of Apollo industrial framework on
NVIDIA GPUs. To that end, we change the implementation in the baseline source code which
is based on x86 and GPU. Depending on the target CE, we need to use appropriate libraries
and re-implement Apollo modules. Deep learning workloads, in general, are implemented
layer by layer by defining specific functions for each layer. Then, depending on the layer
and on the highly-optimized low-level target library (e.g., cuBLAS) input data needs to be
transformed to match the proper format expected by the low-level library function.

ECRTS 2019

23:8 DL Variants to Increase Utilization in NVIDIA Xavier

The current version of Apollo exploits only regular cores in the GPU for inferencing
DNNs. The most computationally-intensive part of inference, such as convolution or fully
connected layers, are usually reduced to GEneral Matrix Multiplication (GEMM), which are
implemented with cuBLAS 1. It is worth mentioning that, to our knowledge, the version of
Apollo that we studied in this paper does not use TensorRT.

5.1 Specialized per-CE libraries
Table 3 presents the optimized libraries that we have used to implement our software. As it
can be seen, for each specific CE, we used different libraries. In addition, we modified the
baseline code in order to run the optimized code. Recently, as part of the introduction of
Tensor cores, NVIDIA provided some low-level libraries to support their use. NVDLA, which
can be accessed through TensorRT [6], is a platform for high-performance deep learning
inference. TensorRT offers a deep learning inference optimizer and runtime that can deliver
low latency and high-throughput for DL inference applications.

Table 3 Optimized libraries used to implement the Apollo software for each particular CE.

CE Optimized Libraries
CPU We used openMP [29] to implement all the functions to run on the CPU cores.

Our implementation allows fixing the maximum number of cores that can be used.
GPU Regular The baseline implementation targets regular cores to run the kernels.

Cores
GPU Tensor We used specific libraries and adapted our code to exploit the Tensor cores.

Cores Some of our target deep neural networks consist of 100+ layers.
The implementations of all the layers had to be modified.

NVDLA We adapted each neural network configuration to be compatible with TensorRT [6],
except the RNNs as they are not supported by NVDLA [7]. We use the TensorRT
framework to launch applications on the NVDLAs.

5.2 Implementation for different CEs
We illustrate the required effort to modify all the functions in the source code to run the
entire workload on a specific CE, by focusing on a small function performing a matrix
multiplication (GEMM) operation without transposing the operand matrices. It is worth
noting that each of the functions that implement the different layers of the neural networks
are functionally different and therefore, each of them requires different modifications.

In this example, the matrix multiplication function builds on the following formulation,
in which A, B, and C are matrices and α and β are floating-point coefficients.

C = αA×B + βC (1)

5.2.1 CPU implementation
Figure 4 shows the CPU version of the matrix multiplication operation presented in Equation 1.
As input parameters the function takes ALPHA and BETA as shown in Equation 1; M , N ,
and K that are the dimensions of the matrices; and lda, ldb, and ldc are leading dimensions

1 For completeness, we have performed several experiments comparing the same DNN operations using
cuDNN and cuBLAS. Our results show that cuBLAS achieves very competitive results w.r.t. cuDNN.
However, note that main idea of the paper, i.e. having diverse DNN implementations, does not depend
on the particular library used.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:9

of matrices A, B, and C respectively. In other words, lda, ldb, and ldc determine the forward
move in memory when is reached the end of a row (in row-major order) or column (in column
major). In fact, these parameters define strides that provide plenty of flexibility to work with
smaller tile sizes inside a larger matrix.

In the first loop, lines 4-8, the βC operation is executed according to Equation 1. In
lines 10-17, the main loops are implemented to perform the matrix operations. The openMP
pragma at line 9 will automatically parallelize the outer loop so that independent loop
iterations can be executed in parallel.

1 void OpenMPgemmNN(in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A, in t lda , f l o a t
const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc)

2 {
3 i n t i , j , k ;
4 f o r (i = 0 ; i < M; ++i) {
5 f o r (j = 0 ; j < N; ++j) {
6 C[i ∗ l dc + j] ∗= BETA;
7 }
8 }
9 #pragma omp p a r a l l e l f o r

10 f o r (i = 0 ; i < M; ++i) {
11 f o r (k = 0 ; k < K; ++k){
12 r e g i s t e r f l o a t A_PART = ALPHA∗A[i ∗ lda+k] ;
13 f o r (j = 0 ; j < N; ++j) {
14 C[i ∗ l dc+j] += A_PART∗B[k∗ ldb+j] ;
15 }
16 }
17 }
18 }

Figure 4 CPU implementation of the reference matrix multiplication (gemm) operation.

5.2.2 GPU regular core implementation
Figure 5 shows the implementation for the GPU regular cores, with the function requiring
the same parameters as for CPU version. Also note that in this example, we assume that
the matrices are already in the device’s memory space.

1 void GRCSgemmNN(in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A,
2 i n t lda , f l o a t const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc)
3 {
4 s t a t i c i n t i n i t [1 6] = {0}; // Vector f o r i n i t i a l i z e d handles
5 s t a t i c cublasHandle_t handle [1 6] ; // Vector o f ac tua l handles
6 i n t i ;
7 cudaGetDevice(& i) ; // Get cur rent dev i ce
8 i f (! i n i t [i]) { // I f not i n i t i a l i z e d
9 cublasCreate (&handle [i]) ; // Creates the handle

10 i n i t [i] = 1 ;
11 }
12 cudaError_t s t a tu s = cublasSgemm(handle [i] ,
13 CUBLAS_OP_N, CUBLAS_OP_N, // S e l e c t the non−t ranspose matr i ce s
14 N, M, K, // S i z e s o f the matr i ce s
15 &ALPHA,
16 B, ldb , // B and i t ’ s l e ad ing s i z e
17 A, lda , // A and i t ’ s l e ad ing s i z e
18 &BETA,
19 C, ldc) ; // C and i t ’ s l e ad ing s i z e
20 i f (s t a tu s != cudaSuccess) // Check i f the re i s any e r r o r
21 p r i n t f ("CUDA Error : %s\n" , cudaGetErrorStr ing (s t a tu s)) ;
22 }

Figure 5 GPU implementation for regular cores.

ECRTS 2019

23:10 DL Variants to Increase Utilization in NVIDIA Xavier

First, we get the device ID and we check whether we have initialized a cuBLAS handle for
it. If it is not the case we create a new one. Once we obtain the handle, we call cublasSgemm
but with the matrices in reversed order. This is because C/C++ assumes a row major
layout whereas CUDA assumes column major layout, which means that CUDA is reading
the matrices in a transposed manner. Then, since everything is transposed, we can simply
reverse the operators:

A×B = C ⇐⇒ B′ ×A′ = C ′

Finally, we check whether cuBLAS triggered any error during the GEMM.

5.2.3 GPU Tensor core implementation
Reprogramming the GPU code to be run on the Tensor cores only requires to change the
math mode to CUBLAS_TENSOR_OP_MATH. Nonetheless, this implementation builds on some
preconditions to run on the Tensor cores: K, lda, ldb and ldc have to be multiple of 8 and
N has to be multiple of 4. Figure 6 shows the implementation for the GPU Tensor cores.

1 void GTCSgemmNN(in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A, in t lda , f l o a t
const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc)

2 {
3 s t a t i c i n t i n i t [1 6] = {0}; // Vector f o r i n i t i a l i z e d handles
4 s t a t i c cublasHandle_t handle [1 6] ; // Vector o f ac tua l handles
5 i n t i ;
6 cudaGetDevice(& i) ; // Get cur rent dev i ce
7 i f (! i n i t [i]) { // I f not i n i t i a l i z e d
8 cublasCreate (&handle [i]) ; // Creates the handle
9 i n i t [i] = 1 ;

10 }
11 cublasSetMathMode (handle [i] , CUBLAS_TENSOR_OP_MATH) ; // Set math mode to

enable Tensor co r e s
12 cudaError_t s t a tu s = cublasSgemm(handle [i] ,
13 CUBLAS_OP_N, CUBLAS_OP_N, // S e l e c t the non−t ranspose matr i ce s
14 N, M, K, // S i z e s o f the matr i ce s
15 &ALPHA,
16 B, ldb , // B and i t ’ s l e ad ing s i z e
17 A, lda , // A and i t ’ s l e ad ing s i z e
18 &BETA,
19 C, ldc) ; // C and i t ’ s l e ad ing s i z e
20 i f (s t a tu s != cudaSuccess) // Check i f the re i s any e r r o r
21 p r i n t f ("CUDA Error : %s\n" , cudaGetErrorStr ing (s t a tu s)) ;
22 }

Figure 6 GPU implementation for Tensor cores.

5.2.4 NVDLA
The steps we have followed to run the neural network workload on the NVDLAs, are shown
in Figure 7. As a first step, the DNN configuration needs to be in the proper format, prototxt
that is compatible with TensorRT. To that end, we developed a script that goes layer by
layer in the configuration file of the neural network and changes its format to prototxt.
It is worth mentioning that some layers in the original format are translated into several
layers in prototxt. For instance, a Convolutional layer that has Batch Normalization and an
activation of type Leaky is divided into four different layers: a regular convolution, a Batch
Normalization, a scale, and a ReLU (Rectified Linear Unit) with negative slope.

Following this step, we obtain a functional configuration file in the proper format. However,
in most cases, some layers are not supported yet by TensorRT. At the time of writing this
paper, several types of layers, especially for RNNs, are not implemented, and therefore, cannot

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:11

Figure 7 The steps required to specify neural network layers in order to be run on the NVDLAs.

be executed on the NVDLA. To overcome this limitation, we adapted some of the available
layers using equivalent and currently supported methods. The conflicting layers in our neural
networks are Upsample layer and Leaky ReLU layer. To solve this issue, we implemented the
layers according to TensorRT specification. After this modifications, configuration files are
in the correct format required by TensorRT. Using the generated configurations, TensorRT
can parse and build the model of neural network and run it in the NVDLAs. Note that
TensorRT can allow unimplemented layers to fallback and run on the GPU cores. In our
experiments for this paper, we avoid any fallback by adapting all the unimplemented layers
using other equivalent layers (this process does not include RNN layers which, as stated
before, are not supported) and the entire neural network is running on the NVDLA.

5.3 Timing Analysis Results
We analyse the results obtained for each DNN variant under different CE and TLP levels:
CPU cores (2 cores, 4 cores, and 6 cores), GPU regular cores (4 SMs, 8 SMs), GPU Tensor
cores (4 SMs, 8 SMs), and NVDLAs (1 or 2 NVDLAs). Note that we always reserve 2 cores
of the CPU for managing the operating system tasks and the tasks that are running in the
GPU or NVDLA, since they are also triggered by their corresponding CPU processes.

Figure 8 shows the timing results of different neural network instances of Apollo running
on each CE. Timing characterization has been performed with other DNN/RNN instances run
in parallel. While we did not run specific experiments to hit the worst-case timing interference
among computing elements, we assume the obtained results also factor in contention effects.
We can derive the following conclusions.

For the camera object detector (M1.d), Figure 8 (a) shows that using more CPU cores
significantly improves the performance. Regarding the timings on GPU CEs, as expected
for this workload, Tensor cores provide better performance in comparison to the regular
cores, with 8 SMs providing significantly higher performance in comparison to 4 SMs.
Also, the NVDLA accelerates this NN achieving the best performance results.
Figure 8 (b) shows the results for (M1.d) under another configuration for the object
detector with the same neural network architecture, but with a higher camera resolution.
As the results show, we have the same trends as in Figure 8 (a), however, due to the
increase in the workload size, execution times increase.
Figure 8 (c) shows the results for the LiDAR object detector, M1.d. Similarly to the
previous results, GPU CEs provide better performance than CPU cores, though this time
Tensor cores do not result in significant improvements over GPU regular cores. NVDLA
again provides the best results. As the workload is smaller than for camera detector, the
times are proportionally reduced.
Figure 8 (d) shows the timing results for object tracker, M1.t. For this specific workload,
GPU regular cores provide higher performance than the Tensor cores. After a detailed
analysis and designing some experiments, we find out that Tensor cores achieve worse

ECRTS 2019

23:12 DL Variants to Increase Utilization in NVIDIA Xavier

(a) M1.d normal camera resolution (b) M1.d high camera resolution (c) M1.d LIDAR

(d) M1.t (e) M5 (RNN1) (f) M5 (RNN2)

(g) M5 (RNN3) (h) M0 (Speech and comm. control)

Figure 8 Timing results of different Apollo neural network instances on different CEs.

performance than regular cores whenever we run a GEMM of AM×KBK×N , in which N
has a very small value. More specifically as Figure 9(a) shows for N ≤ 12 Tensor cores
exhibit worse performance than regular cores. This particular case directly affects the
Object Tracker (M1.t) since all the GEMMs that are performed by this DNN have N = 1.
However, by increasing the value of N , (in this particular experiment, for N > 12) Tensor
cores provide considerably better performance, see Figure 9 (b).
Figures 8 (e), (f), and (g) show the timing results for the three recurrent neural networks
in the prediction module. Due to the nature of the RNNs, these workloads cannot highly
benefit from increased parallelization. Also GPUs provide up to an order of magnitude
better performance in comparison with CPUs. However, this is too far from highly
utilizing the GPU resources. In terms of the NVDLA, since several key layers of the RNN
networks are not implemented in the TensorRT, we are unable to run these workloads on
the NVDLA [10].
Finally, Figure 8 (h) shows the speech recognizer module (M0) which uses a DNN as
discussed in previous sections. This DNN network improves performance by one order
of magnitude with GPU cores. Instead the NVDLA, while better than the CPU cores,
performs significantly worse than the GPU cores.

Overall we can see that, (i) for some DNNs the NVDLA variant and the GPUrc (regular
cores) and GPUtc (Tensor cores) variants offer comparable performance. (ii) Some times
the GPUrc variant provides better results than GPUtc. (iii) It is also the case that in some
cases the performance of CPU is relatively close (≈ 2x) of that obtained with the GPUtc

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:13

(a) N ranging from 1 to 20. (b) N ranging from 1 to 211.

Figure 9 Time spent in a GEMM (AM×KBK×N) where M = K = 1024.

and GPUrc variants. (iv) Across the different neural networks, we see that the CPU time
requirements for some of them (e.g. (e), (f), (g), (h)) is comparable to that required by others
in the GPU and NVDLA (e.g. (a), (b), (c), (d)). This makes it worth exploiting all CEs.

5.4 Other Considerations

TLP controllability. Fully exploiting variants requires exercising control on TLP as provided
by NVIDIA’s MPS (Multiprocessing Service), which allows multiple kernels from different
processes to be executed concurrently in the GPU, while limiting their resource usage i.e.,
how many SMs each kernel will be using. The use of MPS has been shown to provide positive
results in real-time systems [42], which paves the way for its ubiquitous adoption in all GPUs.
Furthermore, MPS only requires driver updates. As this feature is not present in the Xavier
SoC, we emulate its effect in our experiments by executing the GPU tasks in isolation and
using the Xavier’s capability to enable only a certain number of SMs in the GPU.

Contention effects on timing behavior is a widely studied topic in the real-time community
mainly for CPUs, with few techniques proposed for GPUs [25] to reduce contention bounds.
Contention bounding techniques, e.g. [38, 31] produce a factor ∆cont to be added on top of
the in-isolation timing estimates. In the scope of this paper we assume that the observed
execution time factor in relevant contention effects.

Accuracy. Different implementations may use different standards for floating-point (FP)
number representation (e.g. 16-bit or 32-bit representations), different FP operations or,
at least, different FP operation orders. Due to rounding effects, this may lead to slightly
different numerical results, whose impact on the system-level functionality needs to be
assessed. However, functional results (i.e. objects detected, driving decisions, etc.) match
since those tiny numerical variations have no impact in the semantics of the framework. For
instance, whether the probability of recognizing an object varies by ±0.1% makes no practical
difference in general (e.g. 90.7% vs 90.8%). Hence, despite the different implementations
across CEs, the results of all implementations match functionally.

Multi-CE variants. In our current implementation, each neural network instance exploits
a single CE. As future work, we consider adding a multi-CE capability, so that a single
instance can exploit several CEs, e.g. 4 cores, 1 SM, and 1 NVDLA. While this offers
more flexibility, our current single-CE per neural network instance approach already shows
significant improvements over the baseline in which all instances use the same CE.

ECRTS 2019

23:14 DL Variants to Increase Utilization in NVIDIA Xavier

6 Exploiting Diversity to Increase Schedulability

With platforms supporting “diverse” computing elements and TLP degrees, the timing
behavior of an application is inherently dependent on the deployed configuration. Applications
will exhibit different execution time bounds depending on the actual CE they are mapped
to. The overall mapping strategy is thus fundamental to determine the schedulability of
a given set of applications as a whole. The identification of optimal mapping strategy, is
not a specific requirement for heterogeneous platforms [19], but is a well-studied problem
at the basis of several scheduling approaches for homogeneous systems, from partitioned to
cyclic-executive scheduling approaches (e.g., [36, 23]). Computing an optimal partitioning is
NP-hard in the general case: depending on the complexity of the problem instance, provided
solutions range from exact optimization frameworks to heuristic-based approaches.

In this paper, we are interested in assessing the benefits, in terms of system schedulability,
that can be enjoyed with execution platforms supporting diverse CE/TLP configurations. As
a common characteristic, the different DNN instances realizing the functionalities of the AD
framework can be modeled as recurrent applications that are periodically executed according
to a given frame rate. The frame rate depends on the frequency at which inputs need to
be elaborated. Static scheduling or cyclic-executive approaches are particularly suitable for
this kind of systems: despite their known limitations in term of flexibility and scalability,
they are relatively easy to implement and provably predictable, even on multicores. For this
reasons, cyclic-executive is still widely adopted in the critical embedded real-time system
domains, and is at the basis of standard frameworks (e.g., AUTOSAR [18], ARINC [16]) in
critical embedded real-time system domains.

A static schedule results in the repeated execution of a sequence of intervals or frames.
Tasks associated to a frame must execute and complete within that frame (i.e., performance
guarantees are enforced at each frame boundary). A sequence of frames is then periodically
repeated as part of a major frame, corresponding to the hyperperiod. The recurrent behavior
of the diverse DNN instances (and the relative independence between them) is naturally
modeled with a static schedule. Constructing a schedule for a cyclic executive consists in
finding a task-to-core mapping that allows all tasks to complete within their frame (or,
reciprocally, that the cumulative utilization of all tasks in a frame does not exceed 1). While
there exist specific rules to define appropriate frame number and size, the schedulability of a
cyclic executive systems reduces to showing that all computations have completed within the
frame. A common approach to construct a valid static schedules consists in formulating the
scheduling problem as a linear programming (LP) model.

In the scope of our evaluation, we model the problem of scheduling an heterogeneous
workload of several diverse DNN instances as a cyclic executive system. We exploit a LP-
based representation of the problem to assess the increase in schedulability that can arise
when multiple CE/TLP configurations are supported. Without loss of generality, we assume
in this paper that all DNN/RNN variants share a common time frame: the ILP formulation
allows intercepting those deployment scenarios where it is impossible to schedule all the DNN
variant within a frame. In the following we first discuss our assumptions in terms of schedule
constraints and LP formulation, and then we present the experimental set-up.

6.1 Task Model and Linear Programming Model
We consider a periodic task system T and we model DNN variants as a set of n independent
periodic tasks τ1, . . . , τn ∈ T that have to be statically scheduled on a multiprocessor platform,
comprising a set of heterogeneous m cores. We assume an implicit-deadline periodic task
model where each task τi is characterized by a period pi and a relative deadline di (in this
work we assume implicit-deadline tasks, thus di = pi).

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:15

Given the heterogeneous nature of the platform, a task cannot be associated to a single-
valued computational requirement. Moreover, it is not even sufficient to model the variation
in the time as a function of the specific core the task is executing on. As an example, the
GPU in the Xavier SoC include 8 Streaming Multiprocessors, which can be used as regular
(CUDA) cores or can be configured to exploit also the Tensor cores, and an application (e.g.,
a DNN instance) may be executed on a variable number of SMs. Therefore, each task may
exhibit different time bounds depending on the computational element (and mode) it is
executed, and the TLP degree it is granted. We capture this dimensions as a set of CE/TLP
configurations CE := {ce1, . . . , cek} so that each task is associated a set of time bound
C = {ci,1, ci,2, . . . ci,k} with ci,j denoting the time of task τi under configuration cej ∈ CE .

In line with our assessment objective, we are not interested in modeling a full static
schedule over a full major frame. We limit our scope to the problem of finding a feasible
schedule (if it exists) at the smallest time interval (frame) at which timing constraints are
enforced. Given a set of tasks T ′ ⊆ T to be statically scheduled on a set of CE/TLP
configurations CE within a frame f , a static schedule for T ′ in f under configuration cej ∈ CE
is valid only if the cumulative task utilization does not exceed f .

We modeled the cyclic executive scheduling problem on multiple CE/TLP configurations
as an LP problem. LP-based approaches have been exploited for deriving static schedules in
both homogeneous [23] and heterogeneous [19] multiprocessor systems. While the considered
optimization problem is NP-hard [37], LP approaches have been shown to be effective in
most cases; heuristic-based methods have been proposed to overcome scalability concerns.

An LP model comprises a set of decision variables (possibly constrained to assume only
integer values), a set of linear constraints, and an objective function. Constraints and
objective function are expressed as (linear) inequalities over the decision variables. The
cyclic executive schedule can be modeled as an instance of a 0/1 optimization, as the sought
solution will model whether or not a task is mapped to a given computational element.
Intuitively, the objective function aims at minimizing the total utilization and failing to
find a solution to the LP problem means that the task set is not schedulable under any
feasible configuration. Other criteria can be specified in the form of weights to guide mapping
decisions. It is worth noting that, in our particular case, we are not interested in finding an
optimal solution, but only in proving or disproving the task set schedulability.

To instantiate the task model to the Xavier SoC, and consistently with the investiga-
tion conducted in the paper, we consider a sub-set of all the supported CE/TLP config-
urations CEXavier = {CPU, GPURC, GPURC−comb, GPUTC, GPUTC−comb, GPURC+TC, NVDLA, NVDLAcomb}.
Here comb configurations for the NVDLA and GPU cores hints at the possibility of being
constrained to always use the multiple instances of the CE as a block. The set of tasks’
timing bounds per configuration is given in input to the ILP as a static bi-dimensional
matrix U [τi ∈ T][cej ∈ CE] holding the timing budget of task τi when deployed to node cej .
The main decision variable consists in a bi-dimensional boolean matrix B[τi ∈ T][cej ∈ CE]
representing whether τi is deployed to cej . Accordingly, the objective function would consist
in minimizing the cumulative utilization,

∑
τi∈T , cej∈CE U [τi][cej] ∗B[τi][cej]. A set of LP

constraints has been defined to guarantee a task can only be mapped to one CE/TLP (we
assume tasks cannot be deployed to multiple CEs) and to enforce the maximum utilization
on a CE/TLP configuration not to exceed 100% [23]. Constraints also handle the inter-
correlations between CE/TLP, such as the fact that while two applications can be mapped to
NVDLA at the same time, NVDLAcomb is a configuration that implies exclusive use of the NVDLA.

ECRTS 2019

23:16 DL Variants to Increase Utilization in NVIDIA Xavier

6.2 Experimental setup

In our experiments we assess the impact that supporting different CE and thread-level
parallelism (TLP) may have on the schedulability of several DNN instances on the same
platform. We build on the information we derived from the Apollo software to perform a
scenario-based evaluation. We used the timing profile of the applications analyzed in Section 5
to derive a predefined set of DNN (or RNN) applications (DNN1−5, RNN1−3), with varying
computational and timing requirements under the different CE/TLPs configuration (where
the set of CE/TLP configurations matches the one considered in Section 5). Each application
is represented as a recurrent task with a worst-case execution time distribution, in the range
[Umax, Umin] milliseconds, which depends on the concrete CE/TLP configuration. The time
interval has been derived by applying a ±15% inflation factor to the values observed on the
Xavier SoC reported in Figure 8. As observed in Section 5.3 those reference values also factor
in contention effects and we assume the timing requirements are not changing depending on
the deployment configuration of corunning applications.

Table 4 Utilization distributions for the DNN/RNN types and CE/TLP.

CPU
GPU

NVDLA
GPURC GPUTC

2 4 6 4 8 4 8 1 2

DNN1
Umax × × × 83.95 49.45 44.85 33.35 20.70 12.65
Umin × × × 62.05 36.55 33.15 24.65 15.30 9.35

DNN3
Umax × × × 27.60 17.25 25.30 17.25 12.65 8.05
Umin × × × 20.40 12.75 18.70 12.75 9.35 5.95

DNN4
Umax × × × 67.85 65.55 81.65 72.45 19.55 11.50
Umin × × × 50.15 48.45 60.35 53.55 14.45 8.50

RNN1
Umax 68.19 34.38 23.80 2.30 2.19 2.19 2.19 - -
Umin 50.41 25.42 17.60 1.70 1.62 1.62 1.62 - -

RNN2
Umax 21.05 11.62 8.28 2.19 2.07 2.19 2.07 - -
Umin 15.56 8.59 6.12 1.62 1.53 1.62 1.53 - -

RNN3
Umax 6.44 3.57 2.53 1.50 1.38 1.50 1.38 - -
Umax 4.76 2.64 1.87 1.11 1.02 1.11 1.02 - -

DNN5
Umax 24.50 13.46 10.35 1.50 1.27 1.50 1.15 4.72 3.45
Umax 18.11 9.95 7.65 1.11 0.94 1.11 0.85 3.49 2.55

For each CE/TLP configuration, we generated 16,000 synthetic task sets under different
overall utilization thresholds (with a mechanism similar to UUnifast [22]). Task set were
generated by randomly selecting several instances of the diverse DNN/RNN types. The
utilization of each DNN (RNN) is drawn from the intervals reported in Table 4 above (values
are in milliseconds), which is in turn built on the timing characterization results in Section 5.3.
DNN2, the object detector version working with high resolution images in Figure 8, was not
included in the evaluation as it is corresponds to a high-resolution variant of object detection
application that is clearly over-demanding for the target platform. We use instead DNN1,
the object detector working with standard resolution images. Still on Table 4, it is also
worth noting that applications (DNN1, DNN3, DNN4) could not be scheduled on CPU cores
(utilization larger than 100%), and RNNs execution is not supported on NVDLA). This is
supported in the ILP model by forcing B[τi][cej] = 0 for specific combinations.

As commented above, focusing on a single scheduling frame is sufficient to fulfill our
evaluation objective. We therefore assumed all applications to fit in the same frame, with a
reference size of 100ms.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:17

6.3 Schedulability results

We used our LP formulation to assess the schedulability of the task sets under specific
CE/TLP configurations. All DNNs (RNNs) are required to run concurrently on the same
system, as observed in the case of Apollo. A task set is considered to be infeasible if the LP
problem admits no solution. We consider different CE/TLP setting, ranging from single-CE
configurations (CPU, GPURC, GPUTC, and NVDLA only), to mixture configuration, up to the most
flexible setting where all CE/TLP configurations are supported. The experiments aim
at confirming that being able to configure and exploit different computing elements with
different task-level parallelism is a fundamental enabler for successfully deploying multiple
DNN variants on the same system. We asses how support for different CE/TLP can be
leveraged to sustain the schedulability of systems that would have been not schedulable
otherwise. Also, when a system admits multiple feasible schedules, the ILP could be also
instructed to identify, among the existing feasible CE/TLP configuration, the one satisfying
a predefined criterion, such as maximizing performance.

In order to analyze the benefits of our neural network variant proposal, we use, as a
baseline reference, single-CE setups, where only one CE is exploited. We create several
scenarios in which an increasing subset of all CEs are used (CPU, GPURC, GPUTC, NVDLA). In
each scenario, the utilization thresholds considered for the experiments are computed on the
reference utilization of the CE providing the highest performance.

The scenarios we addressed are the following:
nvdla+gpu_rc+gpu_tc+cpu: takes NVDLAcomb as reference highest-performance CE, and
considers the CE/TLP configurations CPU, GPUTC, GPURC+TC, NVDLAcomb, NVDLA;
gpu_tc+gpu_rc+cpu: takes GPUTC as reference highest-performance CE, and considers
the CE/TLP configurations CPU, GPUTC, GPURC+TC;
gpu_rc+cpu: only uses CPU and GPURC, with the latter being the highest-performing CE.

This approach lets us assess our variants approach under different scenarios with increasing
number of supported CEs, each with its specific performance characteristics. Additionally,
we assess the flexibility of considering all the units of the highest-performing CE as a single
element with their combined performance (NVDLAcomb) versus providing the scheduler the
flexibility to allocate NN instances to independent CE units (NVDLA).

As explained in Section 6.2, a large set of workloads with different NN instances has been
generate for each scenario, using the cumulative utilization relative to the highest-performing
CE as a threshold. In all scenarios we considered such threshold to vary in 100% to 400%
utilization over the scheduling interval.

NVDLA. Figure 10 shows the ratio of feasible task sets under the considered utilization
thresholds (relative to NVDLA) and CE/TLP configurations in the nvdla+gpu_rc+gpu_tc+cpu
scenario. Under 100% NVDLA utilization, the NVDLA alone can always schedule the task set:
both in the NVDLAcomb and NVDLA setups we observed a 100% success ratio. This is obviously
the case for NVDLAcomb, as it is the scenario used to compute the utilization threshold. But it
also normally holds for two separate instances of NVDLA as the combined use of the NVDLAcomb

does not necessarily exploit full parallelism. Clearly, with increasing utilization, NVDLAcomb

cannot schedule any workload. NVDLA instead still exhibits a high success ratio at 120%
utilization, that only falls rapidly at 140% and becomes zero after 160%. This is explained by
the fact that the utilization is relative to the combined use of NVDLA which is not providing
exactly double performance when compared to a single NVDLA instance.

ECRTS 2019

23:18 DL Variants to Increase Utilization in NVIDIA Xavier

Figure 10 Percentage of schedulable workload when the NVDLA is the highest-performance CE.

Table 5 Average DNN/RNNs per workload in nvdla+gpu_rc+gpu_tc+cpu scenarios.

NVDLA NVDLA NVDLA
NVDLAcomb NVDLA GPUTC GPUTC+RC GPUTC+RC CPU

1.0 12.16 12.16 12.16 12.16 12.16
1.2 × 14.66 14.66 14.66 14.66
1.4 × 16.50 17.23 17.23 17.23
1.6 × × 19.83 19.83 19.83
1.8 × × 22.46 22.46 22.46
2.0 × × 24.93 24.93 24.93
2.2 × × 27.56 27.56 27.56
2.4 × × 30.13 30.13 30.13
2.6 × × 32.63 32.63 32.63
2.8 × × 35.29 35.29 35.24
3.0 × × 38.46 38.31 38.13
3.2 × × 43.30 43.22 42.72
3.4 × × × × 49.50

Analyzing the benefits of our variants approach, we can see that enabling the use of other
CEs allows to sustain the execution of all NN instances (100% success ratio) for loads up
to 2.8, significantly beyond what is observed with NVDLAs only. In between 2.8 and 3.4,
the flexibility of CE/TLP deployment is exploited at most, allowing to successfully schedule
some task sets. The average numbers of NN-base functionalities successfully scheduled under
the considered workloads and CE/TLP configurations are reported in Table 5. Within the
feasibility region, all scenarios behaves quite similarly as the average task set population
grows as long as the computational load increases. Still within the feasibility region, the
average number of instances does not increase when adding more CEs. The only minimal
variation happens at 140% utilization, where enabling the GPU allows for one additional
NN-based functionality to be successfully deployed in the average case. When the NVDLAs
are saturated, the GPU elements alone are capable of providing up to 340% utilization
(NVDLA-defined) and changing the GPU configuration (enabling regular CUDA cores) or
introducing the CPUs is slightly affecting both schedulability and number of allocated DNNs.

GPU Tensor cores. The ratio of feasible task sets under the gtc+grc+cpu scenario is
reported in Figure 11. The considered utilization thresholds are relative to the use of 8 GPUTC

as a block. Similarly to the NVDLA, the more flexible configuration, where GPU cores are
used as two separate clusters, guarantees an improved schedulability ratio.

The improvement in terms of schedulability is even larger than in the NVDLA case, as
the flexible use of the GPU allows to schedule almost 80% of the task sets even under a 150%
workload. When other CEs are enabled, as suggested by our approach, the schedulability ratio
further improves and reaches 85% at 160% utilization. It is interesting to note the performance
improvement obtained by moving from using only GPUTC as two independent clusters to using
potentially both GPUTC and GPURC. In fact, one would expect regular cores not to bring any
improvement over the Tensor cores scenario, being the Tensor a more advanced accelerator

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:19

Figure 11 Percentage of schedulable workload when GPUTC is the highest-performance CE.

Table 6 Average DNN/RNNs per workload in gpu_tc+gpu_rc+cpu scenarios.

GPUTC+RC

GPUTC−comb GPUTC GPUTC+RC CPU
1.0 10.52 10.52 10.52 10.52
1.2 × 11.27 11.27 11.27
1.4 × 11.55 11.58 11.60
1.6 × 11.41 11.72 12.45
1.8 × 11.33 11.90 12.47
2.0 × × 13.00 14.10
2.2 × × × 9.00

than regular GPU cores. However, while being more advanced, Tensor cores are also more
specialized and their use can be counter-productive for generic applications, as can be also
observed in Table 4. Exploiting the CPU, instead, allows a comparatively smaller increase
in computational power, as expected. The average numbers of NN-based functionalities
successfully scheduled under the considered workloads and CE/TLP configurations (see
Table 6) show substantially similar values for all configurations. The configuration using
Tensor cores in clusters of four shows slightly different values than those observed when
enabling the regular cores and the CPU. Similarly to the NVDLA scenario, a flexible use of
the GPUTC alone allows sustaining up to 200% utilization. Again, introducing the CPUs is
not affecting schedulability and is not allowing a larger number of DNN instances.

GPU Regular cores. As final step in our incremental evaluation, we assess the benefits
of our approach in an CE/TLP configuration where only the CPU and the GPU regular
cores are made available. In this case, the benefit of the flexible approach GPURC over the
combined GPURC−comb is remarkable. Conversely, the benefit offered by enabling additional
CEs is less consistent, when compared to the flexible use of the reference CE. The reason
is that regular GPU cores do not seem to be able to support a good degree of parallelism
for NN-based functionalities, as confirmed by relatively close performance between using 4
or 8 GPU cores in Table 4. Enabling the use of CPUs only makes a negligible difference in
the success ratio, which is explained by the relatively small increase in computational power
provided by the CPU cores. The average number of NN-based functionalities scheduled
under these configurations (see Table 7), confirms the trend observed for the NVDLA and
Tensor cores scenarios. The number of scheduled instances increases with the utilization.
Only few DNN instances are added in the average after enabling the use of CPUs.

7 Related Works

DL techniques are increasingly used in critical domains for they deliver substantially more
precise functional results compared to other approaches. GPUs are being considered for
the execution of DL software because of their capability of performing massively-parallel

ECRTS 2019

23:20 DL Variants to Increase Utilization in NVIDIA Xavier

Figure 12 Percentage of schedulable workload when GPURC is the highest-performance CE.

Table 7 Average DNN/RNNs per workload in gpu_rc+cpu scenarios.

GPURC

GPURC−comb GPURC CPU
1.0 9.59 9.59 9.59
1.2 × 10.54 10.54
1.4 × 11.35 11.45
1.6 × 11.96 12.08
1.8 × 12.49 12.65
2.0 × 12.88 13.39
2.2 × 14.01 14.71
2.4 × 18.00 18.35

general-purpose computations and efficiency supporting DL libraries [21]. However, the use
of GPUs in CRTES, such as vehicles, brings plenty of challenges for safety [14, 40] and timing.
The latter, which can be categorized into three groups, have been addressed by different
works: (i) some works focus on the implications of GPUs in the real-time properties of the
system, (ii) others aim at improving utilization and efficiency of the existing DL and machine
vision software, and (iii) other works propose low-level modifications to support DL such as
scheduling algorithms or hardware support.

Research on the real-time properties of GPUs has been conducted for almost a decade.
Initial works focused on scheduling proposals for the special timing behavior of GPUs, which
is based on interrupts [32], and deal with their non-preemptive nature, which requires task
synchronization [34]. Multiple CPU-GPU allocation strategies have been considered in [33],
where the authors evaluate different partitioning and clustering schemes to enable sharing
multiple instances of the same GPU across multiple cores. In our work we deal with a
heterogeneous set of accelerators, and GPU regular/Tensor cores. We consider a set of
diverse parallel tasks that can be scheduled under varying TLP through multiple CPUs, GPU
SMs, as well as on other specialized accelerators; we study how their execution requirements
varies depending on the computing element they are scheduled on. More recent works have
focused on exposing undocumented or mis-documented features of NVIDIA GPUs and their
benchmarking [15, 42, 39]. Moreover, [42] is the first real-time paper evaluating NVIDIA’s
MPS system, which allows multiple processes to execute kernels concurrently in the GPU,
containing their SM usage, which is an essential feature for our work. Similarly to our work,
[41] considers fine-grained vision-related schedulable entities that can be executed on CPU
or GPU, but it does not consider several accelerators beyond the GPU’s SMs.

Authors in [43] apply sensor fusion and propose a supervised scheduling algorithm for
multiple DNN layers, considering each one as a separate dynamically schedulable entity on a
GPU. Similarly to our work, the proposed approach focuses on multiple DNN instances. The
focus, however, is limited to a single computational element and does not include the use of
multiple elements and thread-level parallelism configurations. Bateni et al. [20] proposed

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:21

ApNet, an approximation-aware real-time neural network, to guarantee that DNN workloads
meet their deadlines by using an efficient approximation. Despite their proposal can incur some
accuracy loss, it can guarantee the timing predictability. Our work is orthogonal to the ApNet
and applying both approaches can further improve resource utilization and performance. In
another work, Bateni et al. [21] proposed Predjoule, which is a timing predictable energy
optimization framework. Predjoule targets DNN workloads and guarantees the latency
and energy efficiency of such workloads. We believe that this work can be extended to
support various hardware resources and, in combination with our work, could provide better
improvements in latency and energy consumption.

Capodieci et al. [24] presented a real-time scheduler for GPU activities on SoC systems such
as NVIDIA Jetson TX2. They implement and test Earliest Deadline First (EDF) for GPU
tasks, which is enhanced with a Constant Bandwith Server (CBS) based timing isolation
mechanism. On the contrary, our work allows the co-scheduling of different computing
resources such as CPU cores, GPU cores and Tensor cores, and DL accelerators.

Overall, to the best of our knowledge, this is the first work to study the performance
variability of diverse DNN/RNN variants with different computing elements and TLP setups
in the Xavier SoC. Also, we exploit a LP model of a heterogeneous static scheduler to assess
the capability of the platform to sustain the execution of multiple DNN/RNN instances.

8 Conclusions

As the number of DNN/RNN instances running in parallel continues to increase in future
AD systems, so does the ability to exploit the heterogeneous computing elements in modern
computing SoCs. In this paper, in support to the first claim, we have analyzed the neural
networks concurrently running in the Apollo AD and the current projections in their number.
To sustain the latter claim, instead, we have created distinct variants of the different neural-
network libraries used in Apollo. Our results show high diversity in the performance obtained
by each variant in each of the computing elements of the Jetson AGX Xavier. This diversity
provides an opportunity for exploiting the scheduling strategy to simultaneously deploy
multiple NN-based instances on the same platform. We used an LP formulation for a multicore
cyclic executive scheduler to demonstrate the performance increase potentially enabled by
different heterogeneous computing elements, and to show how this allows deploying multiple
advanced NN-based functionalities on the same SoC.

References

1 Implementation of BLAS (Basic Linear Algebra Subprograms) on top of the NVIDIA CUDA
runtime. URL: http://docs.nvidia.com/cuda/cublas/.

2 Intel® GO™ Automated Driving Solution Product Brief. URL: https://www.intel.es/
content/dam/www/public/us/en/documents/platform-briefs/go-automated-accelerated
-product-brief.pdf.

3 NVIDIA DRIVE PX. Scalable supercomputer for autonomous driving. URL: http://www.
nvidia.com/object/drive-px.html.

4 QUALCOMM Snapdragon 820 Automotive Processor. URL: https://www.qualcomm.com/
products/snapdragon/processors/820-automotive.

5 RENESAS R-Car H3. URL: https://www.renesas.com/en-us/solutions/automotive/
products/rcar-h3.html.

6 TensorRT: A platform for high-performance deep learning inference. URL: https://developer.
nvidia.com/tensorrt.

ECRTS 2019

http://docs.nvidia.com/cuda/cublas/
https://www.intel.es/content/dam/www/public/us/en/documents/platform-briefs/go-automated-accelerated-product-brief.pdf
https://www.intel.es/content/dam/www/public/us/en/documents/platform-briefs/go-automated-accelerated-product-brief.pdf
https://www.intel.es/content/dam/www/public/us/en/documents/platform-briefs/go-automated-accelerated-product-brief.pdf
http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html
https://www.qualcomm.com/products/snapdragon/processors/820-automotive
https://www.qualcomm.com/products/snapdragon/processors/820-automotive
https://www.renesas.com/en-us/solutions/automotive/products/rcar-h3.html
https://www.renesas.com/en-us/solutions/automotive/products/rcar-h3.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

23:22 DL Variants to Increase Utilization in NVIDIA Xavier

7 TensorRT Support Matrix. URL: https://docs.nvidia.com/deeplearning/sdk/
tensorrt-support-matrix/index.html.

8 AUTOMATED DRIVING, Levels of driving automation are deined in new SAE International
standard J3016., 2014. URL: https://www.sae.org/standards/content/j3016_201609/.

9 APOLLO, an open autonomous driving platform., 2018. URL: http://apollo.auto/.
10 Deep Learning SDK Documentation, 2018. URL: https://docs.nvidia.com/deeplearning/

sdk/tensorrt-archived/tensorrt-504/tensorrt-support-matrix/index.html.
11 Self-driving Safety Report, 2018. URL: https://www.nvidia.com/en-us/self-driving-cars

/safety-report/.
12 Tensor Core, The Next Generation of Deep Learning., 2018. URL: https://www.nvidia.com/

en-us/data-center/tensorcore/.
13 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL:
https://www.tensorflow.org/.

14 Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez, Jaume Abella, and
Francisco J Cazorla. Safety-Related Challenges and Opportunities for GPUs in the Automotive
Domain. IEEE Micro, 38(6):46–55, 2018.

15 Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson Smith.
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. In IEEE Real-Time Systems
Symposium (RTSS), 2017.

16 ARINC. Specification 651: Design Guide for Integrated Modular Avionics. Aeronautical Radio,
Inc, 1997.

17 ARM. ARM Expects Vehicle Compute Performance to Increase 100x in Next Decade, 2015.
URL: https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance
-to-increase-100x-in-next-decade.php.

18 AUTOSAR. Specification of RTE Software - AUTOSAR CP Release 4.3.1, 2017.
19 Sanjoy K. Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-Spaccamela. ILP

models for the allocation of recurrent workloads upon heterogeneous multiprocessors. Journal
of Scheduling, pages 1–15, 2018.

20 Soroush Bateni and Cong Liu. ApNet: Approximation-Aware Real-Time Neural Network. In
IEEE Real-Time Systems Symposium (RTSS), 2018.

21 Soroush Bateni, Husheng Zhou, Yuankun Zhu, and Cong Liu. PredJoule: A Timing-Predictable
Energy Optimization Framework for Deep Neural Networks. In IEEE Real-Time Systems
Symposium (RTSS), 2018.

22 Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30(1):129–154, 2005.

23 Alan Burns, C Deutschbein, Thomas David Fleming, and S Baruah. Multi-core Cyclic
Executives for Safety-Critical Systems. Dependable Software Engineering Theories, Tools and
Application, 172:94–109, 2017.

24 Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Paramakuru. Deadline-
based Scheduling for GPU with Preemption Support. In IEEE Real-Time Systems Symposium
(RTSS), 2018.

25 Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory interference charac-
terization between CPU cores and integrated GPUs in mixed-criticality platforms. In IEEE
Emerging Technologies and Factory Automation (ETFA), 2017.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://www.sae.org/standards/content/j3016_201609/
http://apollo.auto/
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/tensorrt-504/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-archived/tensorrt-504/tensorrt-support-matrix/index.html
https://www.nvidia.com/en-us/self-driving-cars/safety-report/
https://www.nvidia.com/en-us/self-driving-cars/safety-report/
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.tensorflow.org/
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla 23:23

26 Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv preprint,
2014. arXiv:1410.0759.

27 François Chollet. Keras, 2015. URL: https://github.com/fchollet/keras.
28 Tesla Corp. Tesla Autopilot, 2018. URL: https://www.tesla.com/autopilot.
29 Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for shared-memory

programming. IEEE Computational Science and Engineering (CiSE), 5(1):46–55, 1998.
30 Nachiket Deo and Mohan M Trivedi. Looking at the Driver/Rider in Autonomous Vehicles to

Predict Take-Over Readiness. arXiv preprint, 2018. arXiv:1811.06047.
31 Enrique Díaz, Enrico Mezzetti, Leonidas Kosmidis, Jaume Abella, and Francisco J. Cazorla.

Modelling multicore contention on the AURIXTM TC27x. In ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018.

32 Glenn A. Elliott and James H. Anderson. Robust Real-Time Multiprocessor Interrupt Handling
Motivated by GPUs. In Euromicro Conference on Real-Time Systems (ECRTS), 2012.

33 Glenn A. Elliott and James H. Anderson. Exploring the Multitude of Real-Time Multi-GPU
Configurations. In IEEE Real-Time Systems Symposium (RTSS), 2014.

34 Glenn A. Elliott, Bryan C. Ward, and James H. Anderson. GPUSync: A Framework for
Real-Time GPU Management. In IEEE Real-Time Systems Symposium (RTSS), 2013.

35 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE Computer Vision and Pattern
Recognition (CVPR), 2014.

36 Joël Goossens, Pascal Richard, Markus Lindström, Irina Iulia Lupu, and Frédéric Ridouard.
Job Partitioning Strategies for Multiprocessor Scheduling of Real-time Periodic Tasks with
Restricted Migrations. In ACM Real-Time and Network Systems (RTNS), 2012.

37 Richard Karp. Reducibility Among Combinatorial Problems. Complexity of Computer
Computations, 40:85–103, 1972.

38 Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Simon Wegener, and Michael
Schmidt. Multi-core Interference-Sensitive WCET Analysis Leveraging Runtime Resource
Capacity Enforcement. In Euromicro Conference on Real-Time Systems (ECRTS), 2014.

39 Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H. Anderson, F. Donelson
Smith, Alex Berg, and Shige Wang. An Evaluation of the NVIDIA TX1 for Supporting
Real-Time Computer-Vision Workloads. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2017.

40 Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Guillem Bernat, and Francisco J Cazorla.
Assessing the Adherence of Industrial Autonomous Driving Software to ISO-26262 Guidelines
for Software. In ACM/ESDA/IEEE Design Automation Conference (DAC), 2019.

41 Ming Yang, Tanya Amert, Kecheng Yang, Nathan Otterness, James H. Anderson, F. Donelson
Smith, and Shige Wang. Making OpenVX Really "Real Time". In IEEE Real-Time Systems
Symposium (RTSS), 2018.

42 Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H. Anderson, and
F. Donelson Smith. Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time Tasks in
Autonomous Systems. In Euromicro Conference on Real-Time Systems (ECRTS), 2018.

43 Husheng Zhou, Soroush Bateni, and Cong Liu. S3DNN: Supervised Streaming and Schedul-
ing for GPU-Accelerated Real-Time DNN Workloads. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2018.

44 Alex Zyner, Stewart Worrall, and Eduardo Nebot. A Recurrent Neural Network Solution for
Predicting Driver Intention at Unsignalized Intersections. IEEE Robotics and Automation
Letters (RA-L), 3(3):1759–1764, 2018.

45 Alex Zyner, Stewart Worrall, and Eduardo Nebot. Naturalistic Driver Intention and Path
Prediction Using Recurrent Neural Networks. arXiv preprint, 2018. arXiv:1807.09995.

ECRTS 2019

http://arxiv.org/abs/1410.0759
https://github.com/fchollet/keras
https://www.tesla.com/autopilot
http://arxiv.org/abs/1811.06047
http://arxiv.org/abs/1807.09995

A Bandwidth Reservation Mechanism for
AXI-Based Hardware Accelerators on FPGAs
Marco Pagani
Scuola Superiore Sant’Anna, Pisa, Italy
Université de Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL, Lille, France
marco.pagani@santannapisa.it

Enrico Rossi
Scuola Superiore Sant’Anna, Pisa, Italy
enrico.rossi@santannapisa.it

Alessandro Biondi
Scuola Superiore Sant’Anna, Pisa, Italy
alessandro.biondi@santannapisa.it

Mauro Marinoni
Scuola Superiore Sant’Anna, Pisa, Italy
mauro.marinoni@santannapisa.it

Giuseppe Lipari
Université de Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL, Lille, France
giuseppe.lipari@univ-lille.fr

Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy
giorgio.buttazzo@santannapisa.it

Abstract
Hardware platforms for real-time embedded systems are evolving towards heterogeneous architectures
comprising different types of processing cores and dedicated hardware accelerators, which can be
implemented on silicon or dynamically deployed on FPGA fabric. Such accelerators typically access
a shared memory to exchange a significant amount of data with other processing elements. Existing
COTS solutions focus on maximizing the overall throughput of the system, rather than guaranteeing
the timing constraints of individual hardware accelerators. This paper presents the AXI budgeting
unit (ABU), a hardware-based solution to implement a bandwidth reservation mechanism on top of
the AMBA AXI standard infrastructure for hardware accelerators deployed on FPGAs. An accurate
and tractable model, as well as the corresponding analysis, are also proposed to bound the response
time of hardware accelerators in the presence of ABUs, in order to verify whether they can complete
before their deadlines. Finally, a set of experiments are reported to evaluate the proposed approach
on a state-of-the-art platform, namely the Zynq-7020 by Xilinx. The resource consumption of the
ABU has been quantified to be less than 1% of the total FPGA resources of the Zynq-7020.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → System on a chip; Hardware → Reconfigurable logic and FPGAs

Keywords and phrases AXI Bus, Bandwidth Reservation, Hardware Acceleration, FPGA

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.24

1 Introduction

Current computer architectures are evolving towards heterogeneous platforms consisting of
different processing elements including general-purpose processing cores, graphics processing
cores with general-purpose capabilities, and dedicated hardware accelerators [13]. Moreover,
some popular modern SoCs platforms, like Altera’s Stratix 10 SX [20] and Xilinx’s Zynq

© Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and Giorgio
Buttazzo;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 24; pp. 24:1–24:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.pagani@santannapisa.it
mailto:enrico.rossi@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:giuseppe.lipari@univ-lille.fr
mailto:giorgio.buttazzo@santannapisa.it
https://doi.org/10.4230/LIPIcs.ECRTS.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

HW-Accel1

BUS

Memory

HW-Accel2

HW-Accel3

HW-Accel4

MemCtrl

L1
L2

CPU0

L1 CPU1

Figure 1 Block diagram of a custom system deployed on a SoC-FPGA platform.

UltraScale+ [39], include a reconfigurable FPGA fabric tightly coupled with general purpose
processing elements. This feature vastly extends the capability of these platforms to allow
offloading intensive computational activities from the general-purpose processing elements to
custom hardware accelerators deployed on the FPGA fabric.

With respect to other types of hardware acceleration, like GPU co-processing, FPGA
acceleration allows for precise control of the logic design, resulting in a very predictable
behavior of the accelerators and allowing for an accurate estimation of the worst-case
execution time [14, 28]. Such characteristics have made FPGA-based acceleration attractive
in several safety-critical domains for signal processing and many other computationally-
intensive dataflow applications [19, 21]. To name a relevant application of FPGA-based
acceleration, these features enable the efficient execution of machine learning algorithms and
convolutional neural networks [38] on embedded devices for safety-critical applications, as
robotics and automotive.

Hardware accelerators are typically memory-intensive, high-performance units capable of
autonomously retrieving data from the system memory using direct memory access (DMA)
or bus mastering techniques. Each hardware accelerator is implemented using a subset of
the FPGA’s logic resources that are reserved only to that specific accelerator. Therefore the
execution units of accelerators are completely independent from each other and can operate
in parallel. For this reason, the execution time of a hardware accelerator depends only on the
input data and the available bus and memory bandwidth. Clearly, in the context of a system
comprising multiple hardware accelerators, like the one shown in Figure 1, bus/memory
contention becomes the dominant factor in determining the response time of the accelerators.
If the effects of such a contention are not taken into account, the system execution becomes
unpredictable and hardware accelerators may introduce interferences that can jeopardize the
entire system.

This scenario is worsened by the fact that often it is not possible for a designer to control
the actual bus demand rate of each accelerator deployed on the system. For instance, if
the accelerator is available in the form of a closed IP, it may be impossible to tune the
actual rate at which bus transactions are issued. Another aspect to consider is the increasing
relevance that high-level synthesis (HLS) is gaining in the design of hardware accelerators
for FPGAs [26, 11]. While these tools allow for a significant speedup of the hardware design
process, they lack the precise control over the design that a register-transfer level (RTL)
implementation can achieve. This effectively reduces the possibility for the designer to
precisely tune the rate of bus transactions. Finally, hardware accelerators can be plagued by
design issues and bugs that may lead to execution overruns or illegal memory accesses.

To mitigate these issues, some hardware vendors typically integrate traditional priority-
based arbitration in their interconnect implementations. More recent FPGA platforms also
include (limited) mechanisms for QoS-aware arbitration [40]. However, the closed source
nature of these implementations, often paired with an opaque description of the internals,

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:3

makes it difficult to model such closed IPs and derive formal properties. In fact, the limited
flexibility of those mechanisms and the lack of a proper reservation policy make them unsuited
for safety-critical environments.

These challenges could be tackled by a methodology that enforces a more predictable
environment, allowing for a controlled integration of first and third-party accelerators.
As modern operating systems provide isolation and supervision mechanisms for software
processes, it is worth providing supervision and reservation mechanisms also for the hardware
activities performed by accelerators. This would enhance system predictability and enable
the FPGA acceleration paradigm to be effectively used in safety-critical applications.

1.1 Contributions
This paper makes the following contributions.

First, it proposes the AXI Budgeting Unit (ABU), which is a custom hardware component
realized in programmable logic that provides bus bandwidth reservation for hardware
accelerators deployed on FPGAs. An ABU shields a hardware accelerator from possible
misbehaviors of other accelerators (in terms of exceeding bus data transfers) by predictably
enforcing a given bus bandwidth. The ABU is not a bus arbiter but a traffic shaper
component to be placed between hardware accelerators and a standard AMBA AXI
bus infrastructure. ABUs can seamlessly be integrated into any FPGA design on top
of the proprietary AXI Interconnect provided by vendors. This approach reduces the
development costs and enhances portability and compatibility with any future releases
of AXI-compliant IPs. ABUs have been implemented and tested upon state-of-the-art
FPGA-based system-on-chips. The resource consumption of an ABU has also been
quantified in less than 1% of the total FPGA resources on a Zynq-7020 platform by
Xilinx.
Second, after presenting a model for hardware accelerators based on the characteristics of
realistic implementations (from Xilinx IP libraries and OpenCV), the paper proposes an
analysis to bound the response times of hardware accelerators. The analysis is performed
in the bus bandwidth domain and results to be tractable, as well as accurate to study
FPGA-based hardware accelerators.
Third, the paper reports a set of experimental results conducted on the Zynq-7020 aimed
at demonstrating (i) the effectiveness of the reservation mechanism implemented by
ABUs, even in the presence of misbehaving hardware accelerators, and (ii) the validity
of the proposed analysis.

The rest of the paper is organized as follows. Section 2 presents the system model and
the essential background. Section 3 presents the ABUs. Section 4 illustrates the problem of
analyzing hardware tasks in the bandwidth domain and highlights crucial analysis issues.
Section 5 shows how ABUs can be leveraged to analyze the system. Section 6 reports on the
experimental evaluation. Section 7 reviews the related work and finally Section 8 states our
conclusions.

2 System model and Background

This work focuses on FPGA-based system-on-chips and considers an AXI system composed
of an interconnect, a set Γ = {τ1, . . . , τn} of hardware accelerators, and a shared sink module
(e.g., a memory controller). The hardware accelerators are implemented as AXI memory-
mapped master modules capable of autonomously accessing data in a shared memory, which

ECRTS 2019

24:4 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

is reachable through the sink. Each accelerator performs a specific computational activity,
therefore, from now on, they will be referred to as hardware tasks (HW-tasks). All HW-tasks
are connected to an Interconnect block, which in turn is connected to the sink module.

The next subsections introduce a model for the Interconnect together with some essential
background related to the AXI bus, a model of the HW-tasks, and a model of the sink
module. It is important to note that most of the assumptions reported in this section are
only adopted for the purpose of analyzing the system (Section 4), while the system-level
mechanism proposed in this paper (Section 3) – i.e., the ABU – is independent of most of
the adopted modeling strategies.

2.1 AXI Interconnect
The central element of an AXI-based system is the AXI Interconnect, which acts like a
“switch” connecting one or more AXI master devices to one or more slave devices. The
Interconnect performs crucial activities such as protocol conversions and the arbitration of
memory transactions. In this work, the Interconnect is assumed to be configured in a N -to-1
mode, i.e., it connects N ≥ 1 masters to a single slave device such as a memory controller.
Under this setting, the Interconnect is in charge of arbitrating the transactions issued by the
master modules.

2.1.1 Arbitration policy
The AXI specification [5] does not mandate any specific arbitration protocol for the Intercon-
nect. Some implementations of the Interconnect, such as the Xilinx standard Interconnect
IP [41], provide two arbitration modes: (i) fixed-priority scheduling, in which the user
configures static priorities for the slave ports, and (ii) a fair allocation using round robin. In
recent releases of the Vivado suite, Xilinx provides the new SmartConnect IP [45] (meant to
replace the current Interconnect IP in new designs) in which the fixed-priority arbitration
has been dropped retaining the round-robin arbitration only. Hence, to match realistic
modern designs, this work only focuses on round-robin arbitration. In addition, it is assumed
that the Interconnect (i) implements ideal round-robin scheduling with reclaiming, i.e., the
unused bandwidth is fairly re-distributed by the contenders that demand more than the
fair bandwidth share, and (ii) does not introduce any overhead. Note that the actual
implementation of the round-robin policy is typically not known, e.g., as it is the case of the
Xilinx IPs, which are closed-source and lack of a proper detailed documentation concerning
arbitration policies. As a result, a more accurate modeling of the arbitration may be difficult
to obtain and may introduce inconsistencies among different versions of the IPs. Nevertheless,
the experimental results carried out in this work surprisingly revealed a marginal deviation
of behavior of the Xilinx Interconnects with respect to the ideal case (see Section 6).

2.1.2 AXI Links
An AXI link provides a bidirectional connection between a master and a slave interface. Each
AXI link comprises five independent transaction channels: two channels (read address and
read data) for read transactions, and three channels (write address, write data, and write
response) for write transactions. Each channel implements a two-way handshake mechanism
by using a pair of VALID and READY signals. The producer generates the VALID signal to
indicate when the address or data are available. The consumer generates the READY signal
to indicate that it can accept the information. The actual transfer occurs only when both

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:5

the VALID and READY signals are asserted. In this paper, to distinguish between READY
and VALID signals of read and write transactions, the letters R and W are appended before
their names (e.g., RREADY and WREADY).

Read and write channels of a link can operate independently one from each other, i.e.,
each HW-task may perform read and write transactions concurrently. However, the AXI
specification [5] does not mandate how the Interconnect should manage such a level of
concurrency among channel groups. In this work, it is assumed that the Interconnect
arbitrates read and write channel groups independently, thus permitting concurrent read
and write transactions from master modules. For instance, note that both the standard and
smart Interconnect IPs provided by Xilinx can operate in this mode [41], [45].

Figure 2 Screenshots of bus signals for read and write memory transactions of two HW-tasks
(FIR and SOBEL filters), taken from the Vivado tool by Xilinx. The HW-tasks are implemented
with High Level Synthesis upon a Xilinx Zynq-7020 platform. The figure also reports a zoom of
about 10 clock cycles.

2.2 HW-tasks
All HW-tasks are periodically activated, and thus generate a potentially-infinite sequence of
execution instances (also referred to as jobs). Each HW-task operates like a DMA module,
generating an equal number of read and write transactions. The transactions issued by
each HW-task are assumed to be uniformly distributed during its execution and hence
issued at a fixed rate. Please observe that, despite this modeling strategy may seem coarse,
many real-world hardware accelerators that perform data-parallel operations (e.g., video,
image, and signal processing on raw data) present regular memory access patterns that can
be modeled with a uniform demand. As a representative example, Figure 2 reports the bus
signals for memory transactions of two state-of-the-art HW-tasks, namely a FIR filter (slot0
in the figure) and a Sobel filter from the OpenCV library (slot1 in the figure). The trace at
the top of the figure reports the execution of the 0.76% and the 0.6% of a job of the two
HW-tasks, respectively. The HW-tasks have been implemented with high-level synthesis
(HLS) upon a Xilinx Zynq-7020 platform. As it can be noted from the figure, the FIR filter
exhibits a uniform pattern of transactions (one 32-bit word per clock cycle); the same holds
for the Sobel filter, with the exception of a few clock cycles every about 600 clock cycles
(the stop is attributed to the end of the processing of a row of the input image). Across
all its execution, the amount of clock cycles in which the Sobel filter does not issue bus
transactions corresponds to less than the 10%. Nevertheless, please observe that for the
purpose of analysis the Sobel filter can still be pessimistically modeled by assuming that bus
transactions are issued even in the last 600 clock cycles: further details on this strategy are
discussed in Section 6.3.

ECRTS 2019

24:6 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

Formally, each HW-task τi is characterized by the following three parameters: (i) a
demand rate Di, which represents the rate of memory transactions (both reads and writes),
(ii) the maximum number Ni of memory transactions issued by each job, and (iii) its period
Ti. Due to the presence of separate channels for reads and writes, the demand rate of
each HW-task is bounded by two transactions per clock cycle. Demand rates are typically
expressed as number of transactions per clock cycle; when needed, a word size (such as
32-bit) may also be used in place of the number of transactions. It is very important to
note that HW-tasks have very different characteristics with respect to classical software tasks.
Indeed, HW-tasks have an intrinsic parallel execution and are usually implemented such that
they can perform computations while issuing memory transactions (i.e., computations and
memory accesses are overlapped in time). For instance, this fact can also be observed from
Figure 2, as the hardware accelerators issue memory transactions at (almost) every clock
cycle. For this reason, computations times are not modeled and HW-tasks are assumed to
be completed when they complete all their Ni memory transactions.

2.3 Sink module
The sink module models an endpoint block like a memory controller or a downstream
AXI Interconnect (e.g., in the presence of multiple Interconnects that are connected in a
hierarchical manner). Formally, the sink module is modeled with a supply bandwidth S that
denotes the total rate of transactions it can accept, i.e., the maximum ratio of read and write
transactions served per clock cycle.

It is worth mentioning that the size, in bytes, of a single transaction may vary even on
the same system depending on how the AXI logic has been implemented on each module.
Actually, the AXI standard allows connecting multiple hardware modules with different
transaction word sizes, or even protocol version; the Interconnect is then responsible to
convert the format of transactions. For instance, the High-Performance ports included in
the Zynq platforms by Xilinx to access DDR memories dispose of a supply rate of two
double-word (64-bit) transactions per clock cycle, while the default configuration of AXI
master ports for hardware accelerators uses single-word transactions. In this paper, when it
is necessary to avoid possible inconsistencies, demand and supply rates are always expressed
by using the smallest word in the system.

3 AXI Budgeting Unit

This work proposes an infrastructure that comprises a set A = {A1, . . . , An} of ABU modules
controlled by a central unit named ABU controller. Each ABU module is conceived to be
placed between a hardware accelerator and the remainder of the bus infrastructure. A sample
setup is shown in Figure 3. The purpose of each ABU module is to supervise the bus traffic
generated by the corresponding hardware accelerator providing both temporal and spatial
isolation. Specifically, the objectives of ABUs are:

implementing a memory bandwidth reservation mechanism by (i) keeping track of the
number of bus transactions issued by HW-tasks, and (ii) enforcing a maximum budget of
transaction within periodic time windows; and
as a side feature, implementing a memory protection mechanism that restricts the address
space accessible by HW-tasks to a set of configurable regions.

The ABU controller serves as a central control point that allows programming the ABU
modules by means of memory-mapped registers exposed through a single AXI slave interface.
In its typical usage, such memory-mapped registers are controlled by the CPU (e.g., by

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:7

HW-Task1 ABU1

 Sink

Interconnect

M S M S

HW-Task2 ABU2M S M S

HW-TaskN ABUNM S M S

M S

 ABU ControllerSFrom CPU

Figure 3 Illustration of an AXI system with hardware accelerators protected by ABUs. The
boxes labeled with M and S denote master and slave AXI ports, respectively.

a driver at the level of the operating system or a hypervisor). The ABU modules are in
turn connected to the ABU controller through a custom bus, which is used to transfer
configuration parameters and signals. As it is illustrated in Figure 3, each ABU module
also exports one AXI master and one AXI slave interface. The AXI slave interface serves
as the access point for the hardware accelerator, while the AXI master port is meant to be
connected to the remainder of the bus. These components are implemented in VHDL using
a RTL behavioral description and deployed onto the FPGA fabric.

Working principle. According to the AXI standard, the master modules are the ones in
charge of initiating bus transactions. Consequently, the HW-tasks drive the system by
concurrently performing requests for bus transactions to the Interconnect, which in turn
selects which pending transactions need to be propagated to the sink. The main idea behind
the budgeting mechanism of ABUs is to act as a proxy between HW-tasks and the Interconnect
by monitoring and altering the AXI signals. An example of a ABU in action is shown in
Figure 4 for the case of a HW-task that performs a set of write transactions. The figure
reports the state of the AXI signals that are relevant for the considered examples, namely
WVALID in output from the HW-task and the ABU (first and second rows, respectively),
WREADY in output from the Sink and the ABU (third and fourth rows, respectively), and
WDATA to show the data traffic on the bus (last row). The evolution of the ABU budget
over time is also reported at the top of the figure. As it can be observed from the figure,
when the ABU budget ends at time t1, write transactions are blocked despite the HW-task
is ready to transmit data (WVALID in output from the HW-task is up) and the Sink is
ready to receive it (WREADY in output from the Sink is up). This is accomplished by
masking signals WVALID and WREADY forcing their logic state to zero, as it is illustrated
in the second and fourth rows in the figure within time interval [t1, t2]. Note that, when no
budget exhaustion occurs, the ABU has a transparent behavior mirroring all signals (see
time window [t2, t3] in the figure).

Budgeting mechanism. For each ABU Ai, the proposed solution allows configuring (i) a
maximum budget Bi of number of transactions, and (ii) a period Pi with which the budget
is replenished. Each ABU also keeps track of a variable parameter denoted as instantaneous
budget bi. At the system startup, bi = Bi,∀i = 1, . . . , n. Then, as a HW-task performs bus
transactions, the instantaneous budget is decremented until it reaches zero (budget depletion).
As long as its instantaneous budget is zero, an ABU forbids bus transactions by acting on
(R/W)VALID and (R/W)READY data and address signals. The instantaneous budget is
recharged in a periodic and synchronous manner, i.e., if the system startup corresponds to

ECRTS 2019

24:8 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

WVALID
(HW-task)

WREADY
(ABU SI)

WDATA
(ABU MI-SI)

Budget

ABU Period

WVALID
(ABU MI)

WREADY
(Sink)

B i

b(t)
i

t0 t1 t3t2 Time

Figure 4 Example of ABU in action: impact on the AXI bus signals.

time t = 0, the instantaneous budget of Ai is set to bi = Bi at every time t = kTi, k ∈ N.
From the perspective of memory bandwidth, note that each ABU enforces a transaction rate
Bi/Pi for the corresponding HW-task independently of the behavior of the latter.

Memory protection. The ABU controller allows configuring X memory address regions
for each ABU Ai to which the corresponding HW-task is allowed to access. Each of such
regions ri,j (with j = 1, . . . , X) is identified with a base memory address and a size, which
are configurable by means of memory-mapped registers offered by the controller. Whenever
a HW-task τi performs an access outside one of the regions r1,1, . . . , ri,X , the corresponding
ABU Ai blocks all memory transactions of τi, as it would be disconnected from the bus;
consequently, the ABU controller raises an interrupt signal. The HW-task that triggered the
fault can be identified by reading a status register of the controller. The normal operation
of the ABU can be restored by acting on another control register offered by the controller.
This feature is particularly useful in the context of virtualized systems, where a hypervisor
running on the CPU of the system-on-chip can configure the memory regions and react to
illegal memory accesses.

ABU internals. The internal architecture of an ABU module is illustrated in Figure 5.
The communication channels on the AXI link between the master and the slave interfaces
are routed through a decoupler block that can stop the master from issuing transactions.
The decoupler works by acting on the ready and valid signals to temporarily suspend the
handshake procedure. The budgeting mechanism is implemented by means of a transaction
counter that keeps track of each read/write transaction and, when the budget is exhausted,
sends a signal to activate the decoupler block. The ABU controller provides a pair of registers
for configuring the budget and the period of each ABU. Such registers are accessible as
memory-mapped via the AXI slave interface of the controller. The memory protection
function is implemented by comparing the values on the read and write address channels
with the range of addresses specified for each region ri,j .

Note that the core logic of ABUs is implemented with lightweight mechanisms (counters,
comparators, and switches) and hence no extra clock cycles are needed to traverse ABUs.
Therefore, ABUs do not introduce delays: the cost of using them is only attributed to the
additional FPGA resources required to be deployed. The resource utilization of one ABU
and the ABU controller when implemented upon a Xilinx Zynq-7020 platform is reported in
Table 1. The table also reports the percentage of resources occupied by the two modules
with respect to the total amount resources available on the Zynq-7020. As it can be noted
from the table, ABUs have a very marginal impact on resource consumption.

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:9

HW-Accelerator

M

Interconnect /
Sink

S

Budget and
period

registers

Buffers bases
registers

Buffers offsets
registers

Transaction
Counter

Write address channel
Read address channel
Write data channel
Read data channel

Decoupler

Read address
comparator

Write address
comparator

EMEM

Figure 5 Internal functional block diagram of an ABU.

Table 1 Resource utilization for an ABU unit and the ABU controller on a Zynq-7020 platform.

Resource type One ABU ABUs Controller
LUT 436/53200 (0.82%) 279/53200 (0.56%)
FF 379/106400 (0.36%) 529/106400 (0.50%)
DSP 0/140 (0%) 0/140 (0%)
BRAM 0/220 (0%) 0/220 (0%)

4 Bandwidth-driven response-time analysis

This section studies the effect of bandwidth contention on HW-tasks under the considered
modeling strategy, and presents a methodology to guarantee the system predictability using
the ABU. Differently from most proposals in the literature, the analysis proposed in this
paper does not aim at accounting for possible interleaves of bus transactions over time (e.g.,
like the analysis of classical periodic real-time tasks), but aims at studying the contention
incurred by HW-tasks in the bandwidth domain, i.e., considering the actual rates at which the
transactions make progress in the presence of other interfering tasks. Why this approach?
As mentioned in Section 2.2, real-world hardware accelerators typically perform uniformly-
distributed bus transactions at a constant rate, and, in particular, they even issue transactions
at every clock cycle (see Figure 2). These characteristics make possible to treat HW-tasks
as fluid computational activities that make progress at a given rate (e.g., similarly to fair
multiprocessor scheduling [4]), and hence allow studying the system in bandwidth domain.

To better illustrate this peculiarity of the problem studied in this work, a simple example
is firstly reported to show the effect of the contention introduced by round-robin arbitration
(Sec. 4.1) in the bandwidth domain. Then, an observation concerning the critical instant
for a set of HW-tasks is presented together with an illustrative example (Sec. 4.2). Finally,
a strategy to enhance the system predictability by making HW-tasks prone for worst-case
response-time analysis is presented (Sec. 5).

4.1 Illustrative example
To illustrate the effect of bandwidth contention incurred by HW-tasks subject to round-robin
arbitration, consider a system composed of (i) a sink module providing a supply of S = 6,
(ii) an interconnect directly connected to the sink module, and (iii) three HW-tasks, namely
τ1, τ2, and τ3, directly connected to the interconnect. The HW-tasks have the same demand
D1 = D2 = D3 = S/2 = 3 corresponding to half of the supply. The first HW-task (τ1) needs
to perform N1 = 6 transactions and has a period of T1 = 9 time units. The second HW-task
(τ2) performs N2 = 24 transactions within a period of T2 = 11 time units. Finally, the third
HW-task (τ3) performs N3 = 30 transactions within a period of T3 = 15 time units.

ECRTS 2019

24:10 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

To avoid possible misunderstanding, please bear in mind that HW-tasks are statically
allocated onto the FPGA area and hence do not contend the logical resources of the FPGA.
For this reason, HW-tasks operate in a parallel fashion using their own (private) logic
resources and can incur in contention only when issuing bus transactions.

0 time

τ1

τ2

τ3

τ1

τ2

τ3

3 9 11 13

0-2 3 7 9 12

 S
 =

 6

 S
 =

 6

time

(a)

(b)

Figure 6 Examples of HW-task scheduling in the bandwidth domain with (a) synchronous release
and (b) without synchronous release. In (b), HW-task τ3 experiences a longer response time with
respect to the schedule in (a).

Consider the case in which all HW-tasks are synchronously released at the same instant
t = 0. Figure 6(a) illustrates the resulting schedule of the three HW-tasks by showing the
intervals of time in which they are operating (on the top of the figure) and the repartition of
the bandwidth over time (on the bottom of the figure). Each square unit of the bandwidth
supply in the figure represents a transaction unit. At time t = 0, since the total bandwidth
demanded by all HW-tasks D1 +D2 +D3 = 9 exceeds the available bandwidth supply S = 6,
the Interconnect limits the bandwidth of the three HW-tasks to a fair share of S/3 = 2.
This bandwidth allocation continues up to t = N1/(S/3) = 3, when τ1 finishes its execution.
Once τ1 completes, τ2 and τ3 can proceed at their full rate of S/2 = 3 without suffering any
contention. At time t = 9, τ2 completes but a new periodic instance of τ1 is also released.
Again, both τ1 and τ3 can progress at their full rate without contention. At time t = 11,
τ1 and τ3 complete at the same time and a new instance of τ2 is activated. The latter can
then proceed to operate while no other HW-task is active. Since τ2 demands a bandwidth of
D2 = 3, half of the supply is left unused up to the next activation of τ3 (which will occur
at time t = 15).

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:11

4.2 Analysis issues

As it can be noted from Figure 6(a), HW-tasks are “slowed down” only when the total
bandwidth demanded by active HW-tasks exceeds the supply (as it happens in [0, 3) in the
figure), i.e., when they make progress at a rate that is lower than their demand. Clearly, this
phenomenon affects the worst-case response times of the HW-tasks.

Unfortunately, a bandwidth-driven response-time analysis cannot be accomplished by
leveraging classical techniques for periodic real-time tasks. In particular, when studying the
problem, we identified a set of issues (in some way similar to those identified in the analysis
of multiprocessor real-time systems under global scheduling [16]) that prevent to analyze the
system by looking at a single scheduling scenario.

To provide a taste of the identified issues, this section demonstrates that the classical
critical instant theorem for periodic real-time tasks under uniprocessor scheduling does not
hold for the problem studied in this work. Indeed, the longest response time of a HW-task
may not occur when it is synchronously released together with all other HW-tasks.

To this end, consider the same system setup used for the previous example (Sec. 4.1).
This time, assume that τ2 is released before τ1 and τ3 at time t = −2, as shown in Figure 6(b).
In this way, the first job of τ2 can issue six transactions without suffering contention before τ1
and τ3 are activated at time t = 0. Hence the first job of τ2 completes early (time t = 7) with
respect to the case of synchronous release, leaving half of the bandwidth supply unused in
time interval [7, 9). Since τ2 has been released earlier, also its next instance will be released
earlier at time t = 9. The second job of τ2 interferes with both τ1 and τ3 causing τ3 to finish
at time t = 12, i.e., one unit of time later than in the case of synchronous release. Hence τ3
misses its deadline at time t = 11.

Proving a correct critical instant for the general case resulted a challenging problem that
is still open for the authors. Nevertheless, as it is shown in the following section, ABUs
can be extremely useful to make the system far more prone to analysis, hence increasing
its predictability.

5 Response-time analysis with ABUs

Besides ABUs implement resource reservation, hence protecting the system from misbehaving
HW-tasks, they can also be leveraged at the stage of analysis to help bounding the response
times of the HW-tasks. Indeed, under the assumption that the ABU periods are orders of
magnitude smaller then the periods of the HW-tasks, i.e., Pi � mini=1,...,n {Ti}, ABUs can
act as bandwidth regulators limiting the maximum demand rate of HW-tasks.

Differently to software-based reservation techniques, for which a short reservation period
determines a high overhead, the assumption on ABUs’ periods is practical because ABUs
are realized in hardware and hence do not introduce relevant issues when adopted with short
reservation periods. Specifically, as mentioned in Section 3, ABUs are built with counters
and signal switches that do not introduce delays and do not represent bottlenecks for the
logic circuits deployed onto the FPGA such that the operating frequency of the latter has to
be limited.

Under this setting, each ABU offers to the corresponding HW-task a virtual, dedicated
supply of bus bandwidth Bi/Pi, which is independent of the behavior of the other HW-tasks
as long as the ABU budgets are guaranteed. Therefore, the problem of analyzing a set of
HW-tasks protected by ABUs can be decomposed into two independent steps:

ECRTS 2019

24:12 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

1. guaranteeing that a set of ABUs can provide the corresponding bandwidths in the worst
case, i.e., their entire budgets can be safely provided in every period; and

2. guaranteeing that the bandwidth provided by each ABU is sufficient for the corresponding
HW-task to meet its deadline.

These steps are addressed in the following two sub-sections, respectively.

5.1 Analyzing ABUs

As long as the sum of the bandwidths provided by a set of ABUs does not exceed the total
supply S, i.e.,

∑n
i=1 Bi/Pi ≤ S, no contention can occur; therefore, it is guaranteed that

their budgets can be provided within every periodic instance. However, in the general case,
this condition may not hold, and hence the analysis of ABUs must account for contention
exactly as discussed in the example of Section 4.1.

Nevertheless, differently from a direct analysis of HW-tasks, two observations can be
leveraged to make the analysis of ABUs tractable. First, as mentioned in Section 3, ABUs are
synchronously activated at the system startup. Second, due to the assumption on the ABUs’
periods (Pi � mini=1,...,n {Ti}), there is no particular advantage in assigning heterogeneous
periods to ABUs, and hence to act as fluid bandwidth regulators they can be all configured
with the same period P . How to configure a suitable value for the period P is discussed in
the experimental evaluation reported in Section 6.

Under this setting, it is then sufficient to study the case of synchronously released ABUs
by analyzing a single problem window of length P that contains a single periodic instance of
each ABU. In other words, it is enough to verify that all ABUs can provide their budget
before time t = P assuming that they are all released at time t = 0.

When contention occurs, it is not straightforward to compute how the available bandwidth
supply is distributed between a set of active HW-tasks. In fact, considering n arbitrary
HW-tasks and a supply S, they can be classified in (i) those that demand less (or the same)
bandwidth than the fair share S/n, and (ii) those that demand more bandwidth than S/n,
with the result that the spare bandwidth left by HW-tasks of type (i) is fairly re-distributed
between the HW-tasks of type (ii). Algorithm 1 is presented to account for this phenomenon
and computes the actual share of bandwidth of a supply S for each HW-task in a set CHW

of contending HW-tasks.

Algorithm 1: Computing bandwidth shares.
Input: A set of HW-tasks: CHW = {τ1, . . . , τm}
Input: Sink supply: S
Output: A set of bandwidth shares: D = {D1, . . . , Dm}

1 begin
2 Srem ← S

3 M ← |CHW |
4 for τhwi ∈ CHW by increasing Di do
5 Di ← min (Di, Srem/M)
6 Srem ← Srem −Di

7 M ←M − 1
8 end
9 return D

10 end

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:13

The correctness of the algorithm is stated by the following lemma.

I Lemma 1. Given a sink with supply S and a set of HW-tasks CHW that contend for the
supply, Algorithm 1 computes the correct share of bandwidth Di assigned to each HW-task
τi ∈ CHW under a fair arbitration.

Proof. The proof is by induction on the iterative steps of the algorithm. Base case (first
iteration, M = |CHW |): Let τi be the HW-task considered at the first iteration. If Di ≥ S/M ,
then by line 5 τi is assigned a bandwidth share Di = S/M , which is correct, as it corresponds
to the fair share. Since the set of HW-tasks is explored in order of increasing Di (see line 4),
then all the following iterations will consider HW-tasks with Di ≥ S/M and, for the same
reason, will be assigned a bandwidth equal to the fair share. Otherwise, if Di < S/M , then
the HW-task will be assigned a bandwidth share equal to the required demand Di = Di.
Note that this cannot affect the bandwidth assignment of the other HW-tasks as Di is lower
than the fair share S/M . Inductive case (M < |CHW |): Suppose that the algorithm assigned
a correct bandwidth to the first |CHW | −M + 1 HW-tasks and that it remains to distribute a
supply bandwidth Srem to M < |CHW | HW-tasks. Let τi be the HW-task considered at the
current iteration. Similarly to the base case, if Di ≥ Srem/M , then by line 5 τi is assigned a
bandwidth share Di = Srem/M , which is correct, as it corresponds to the fair share with
respect to the remaining M − 1 HW-tasks. Again, since the set of HW-tasks is explored
in order of increasing Di, the same will hold for all the following iterations. Otherwise, if
Di < Srem/M , then the HW-task will be assigned a bandwidth share equal to the required
demand Di = Di, which again cannot affect a fair distribution for the following M − 1
HW-tasks. Hence the lemma follows. J

Leveraging Algorithm 1, it is finally possible to build a schedulability test that verifies
whether a set of ABUs can provide their budget within their period P . This is accomplished
by Algorithm 2, which unrolls the execution of a set of HW-tasks protected by ABUs within
an analysis window [0, P].

The algorithm inputs the set of HW-tasks THW and the corresponding set of ABUs A (the
i-th ABU is connected to the i-th HW-task), and returns a boolean predicate that indicates
whether the ABUs are schedulable or not. The algorithm keeps track of the analysis time
t (initialized to t = 0) and the instantaneous budget bi available for each ABU Ai, which
is initialized to Bi (full budget). At the system startup (t = 0), all ABUs have available
budget and hence all HW-tasks are considered active, i.e., they can generate transactions.
Consequently, at line 4, the set of active HW-tasks, denoted with CHW , is initialized to
THW . Then, the procedure enters a loop at line 5. At each iteration, the algorithm computes
the distribution of the supply S among the active HW-tasks by means of Algorithm 1, so
obtaining the share of bandwidth Di for each HW-task τi ∈ CHW . Subsequently, it computes
the amount of time ∆ needed by at least one ABU Ai to provide all the available budget
bi, which is given by ∆ = min(bi /Di). If a HW-task is not able to complete within the
period P , then the system is deemed unschedulable and the algorithm terminates (lines 8-9).
Otherwise, the algorithm proceeds by updating the budget of each ABU accounting for a
lower-bound on the transactions performed in an interval of length ∆ (line 12). Also, if the
budget of an ABU is depleted (bi = 0), then the corresponding HW-task is prevented to issue
transactions and hence is removed from the set of active HW-tasks CHW (line 14). Finally,
the algorithm advances the time t by ∆ and continues to iterate until the set CHW is empty.
If the algorithm completes without never detecting a deadline miss at lines 8-9, then the
system is deemed schedulable.

ECRTS 2019

24:14 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

Algorithm 2: Analysis of ABUs.
Input: A set of HW-tasks: THW = {τ0, . . . , τn}
Input: A set of ABUs: A = {A0, . . . , An}
Output: Result of the schedulability test (true/false)

1 begin
2 t← 0
3 bi ← Bi ∀i = 1, . . . , n
4 CHW ← THW
5 while CHW 6= ∅ do
6 D← Algorithm 1(CHW , S)
7 ∆← minτi∈CHW (bi /Di)
8 if ∆ + t ≥ P then
9 return false

10 end
11 for τi ∈ CHW do
12 bi ← bi − bDi ·∆c
13 if bi = 0 then
14 CHW ← CHW \ {τi}
15 end
16 end
17 t← t+ ∆
18 end
19 return true
20 end

Finally, the following lemma states that the analysis of Algorithm 2 is sustainable, i.e.,
increasing the ABU budgets can only worsen the schedulability of a set of ABUs (and, vice
versa, a set of schedulable ABUs remains schedulable if the budgets are decreased).

I Lemma 2. The schedulabiliy test provided by Algorithm 2 is sustainable with respect to
budgets Bi.

Proof. Suppose that a set of ABUs is not schedulable according to Algorithm 2. Hence,
there exists a certain time t at which the condition at line 8 holds. Consider an arbitrary
ABU Ai (associated to task τi) and let [0, t′) be the interval of time in which τi is in set
CHW during [0, t), i.e., t′ ≤ t. There are two cases: (i) τi is still in set CHW at time t (i.e.,
t′ = t), (ii) τi left set CHW before time t (i.e., at time t′ < t).

Case (i): In [0, t), τi always contributed to the bandwidth distribution by means of
Algorithm 1. Hence, if the budget Bi is increased, the bandwidth shares Di assigned during
[0, t) are the same and therefore the schedulability result cannot change. If ∆ = bi/Di (i.e.,
at time t, τi is the task detected to miss its deadline), then, by increasing the budget Bi, ∆
can only increase and hence the condition at line 8 would hold too.

Case (ii): Similarly to the previous case, τi always contributed to the bandwidth distri-
bution in [0, t′) and hence, if Bi is increased, the execution of Algorithm 2 cannot change
up to time t′. If the budget Bi is increased to Bi + ε, at time t′ it can be either that the
value of ∆ remains the same, or that it increases too by ε. Consequently, τi will remain for
more time into set CHW , contributing to the bandwidth distribution also after time t′, or
still leaves set CHW at time t′. In both these cases the schedulability result cannot change.

Hence the lemma follows. J

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:15

5.2 Assigning ABU budgets
As ABUs act as bandwidth regulators for HW-tasks, they enforce a specific rate at which
transactions are issued. Specifically, a HW-task τi protected by ABU Ai issues transactions
at rate Bi/P as long as the ABU is guaranteed to be schedulable according to the analysis
presented in the previous section. Therefore, to guarantee that τi is capable of performing
Ni transactions within its implicit deadline Ti, it is sufficient that the following inequality is
satisfied: Ni

Bi/P ≤ Ti. By rewriting the latter equation, it is possible to derive a constraint on
the ABU budgets to ensure the schedulability of a set THW of HW-tasks, i.e.,

∀τi ∈ THW , Bi ≥
Ni · P
Ti

. (1)

Note that the same constraint can be generalized to the case of constrained deadlines by
simply replacing Ti with the relative deadline of the HW-task.

I Lemma 3. If a set of HW-tasks THW = {τ0, . . . , τn} respectively protected by a set of
ABUs A = {A0, . . . , An} is not schedulable (according to Algorithm 2) by setting the ABU
budgets as Bi = Ni·P

Ti
, then it is not schedulable with any other budget assignment.

Proof. Given the constraint of Equation (1), Bi = Ni·P
Ti

is the minimum budget for each ABU
Ai such that the schedulability of τi can be guaranteed. Hence, feasible budget configurations
can include only budget values larger than Ni·P

Ti
. By Lemma 2, if a set of ABUs is not

schedulable by assigning such minimum budgets, then it is also not schedulable by assigning
larger budgets. Hence the lemma follows. J

6 Experimental evaluation

To assess the effectiveness of the ABUs on a real hardware system, an experimental evaluation
has been conducted on the Zynq-7020 SoC platform by Xilinx. The Zynq-7020 belongs to the
Zynq-7000 SoCs family, which comprises a collection of SoCs mainly differing for the size and
class of the FPGA fabric. Almost all SoCs of the Zynq-7000 family include a dual-core ARM
Cortex-A9 processor with a set of integrated peripherals (PS subsystem) tightly coupled
with a 7-series FPGA fabric (PL subsystem) that can be used to extend the system with
custom hardware modules. The experimental evaluation is structured in two parts: the first
part aims at evaluating the effectiveness of the reservation mechanism enforced by the ABUs
using DMA-like HW-tasks; the second part evaluates the ABUs with a case study application
that comprises a finite impulse response (FIR) HW-task for signal processing and a Sobel
HW-task for image processing from OpenCV.

All HW-tasks used in this evaluation have been designed with the Vivado high-level
synthesis (HLS) tool by Xilinx. The choice of utilizing HLS comes from the steadily increasing
relevance that high-level synthesis is assuming in the design of hardware accelerators. For
instance, a HLS tool can also be used to synthesize a HW-task implementing a custom
compute unit for executing an OpenCL kernel. The hardware-level interface of the HW-tasks
used in this evaluation consists of (i) two AXI4 master interfaces for accessing the system
memory; (ii) an AXI4-lite slave control interface, to expose a set of memory-mapped registers
through which the software can control the HW-task; and (iii) an interrupt signal to notify
the processor when the computation of the HW-task is completed.

Each HW-task is controlled by a periodic software task running on top of the FreeRTOS
kernel, which in turn runs upon one the Cortex-A processors of the Zynq-7020. The software
task relies on a device driver for managing the HW-task, feeding the addresses of the source

ECRTS 2019

24:16 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

and destination memory buffers as arguments. The driver controls the HW-tasks through the
set of control registers exported via the AXI4-lite slave interface. Each job of each software
task starts the corresponding HW-task and then self-suspends waiting for the HW-task to
complete the execution. When the HW-task has completed, it sends an interrupt signal,
which is caught by the interrupt service routine included in the driver. The service routine,
in turn, wakes up the software task, which can then complete its job. This evaluation is
focused on the timing properties of HW-tasks only.

Evaluation of the reservation mechanism. The first part of the experimental evaluation
aims at validating the effectiveness of the reservation mechanism when one or more HW-tasks
deviate from the nominal behavior by demanding a higher transaction rate and issuing more
transactions than expected. Note that, from the perspective of bus contention, the bus
transactions issued by HW-tasks are the only relevant aspect. Therefore, this evaluation
employs a set of DMA-like HW-tasks, which allows for an almost-arbitrary control of the bus
transactions that are generated. Nevertheless, also note that several hardware accelerators
for FPGAs, including those of the Xilinx’s IPs library such as FFT [43], FIR filter [44], and
Convolution Encoder [42], require the support of a DMA for accessing the system memory.

Variants of HW-tasks. To simulate the effect of a misbehaving HW-task, three variants of
the same DMA-like HW-task have been designed. Each variant differs by the amount of data
Ni and the demand rate Di. The parameters of these variants, referred to as modes, are
summarized in Table 2. The demand value in MB/s is calculated by considering that each
bus transaction involves a 32-bit word and that the clock rate of the FPGA is set to 100
MHz. All the HW-tasks issue 16-word burst transactions. On the Zynq-7020, the maximum
supply bandwidth S available to access the memory from the PS through a high performance
(HP) port is four transactions per clock for each port, as they operate in 64-bit mode (the
DRAM clock is set to 525 MHz).

Table 2 Configuration of HW-tasks. The demand Di is expressed in both transactions per clock
cycle and in megabytes per second.

HW-task mode Di Ni

[tr/clk] [MB/s] [tr] [MB]
1 2 763 524288 2
2 1 381 262144 1
3 2/3 254 131072 0.5

Description of the experimental setting. The system setup used for this evaluation com-
prises four DMA-like HW-tasks allocated on the Zynq’s PL and connected to a single HP
port through an AXI Interconnect. The Interconnect is set in performance mode to maximize
the bandwidth available to the HP port. An ABU module is placed between each HW-task
and the Interconnect. The baseline configuration includes two HW-tasks, τ1 and τ2, set
in mode 1, a HW-task, τ3, operating in mode 2, and the last HW-task τ4 set in mode 3.
This configuration represents the system operating in nominal conditions, i.e., when all the
HW-tasks respect their nominal demand Di and data length Ni values, and is referred to as
nom. To study the effect of misbehaving HW-tasks, two additional variants of the baseline
configuration have been defined. In the first misbehaving configuration, referred to as misb-3,
τ3 operates in mode 1 instead of mode 2. This configuration, represents the case in which a

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:17

single HW-task exceeds its nominal values, demanding a higher transaction rate and length.
In the second misbehaving configuration, named misb-3-4, τ3 and τ4, normally operating
in mode 2 and mode 3 respectively, now operate in mode 1. This configuration aims at
reproducing the scenario in which two HW-tasks exceed their nominal values.

6.1 Profiling HW-tasks

The first set of experiments has been carried out to characterize the system configurations
without ABUs. To this end, a separate profiling experiment has been conducted for each
configuration of the system: the base configuration nom, and two misbehaving configurations
misb-3 and misb-3-4. These experiments allow evaluating the impact of one or more
misbehaving HW-tasks on the response times of the other HW-tasks when using the default
round-robin arbitration policy of the Interconnect. For this set of experiments, τ1 is activated
every 10 ms, τ2 every 15 ms, τ3 every 25 ms, and τ4 every 50 ms. Measurements on the
hardware have been conducted with multiple runs by testing random activation offsets of
the HW-tasks, for a total of about 30 minutes of execution (collecting data for hundreds of
thousands of jobs). Figure 7 presents the results of these experiments by reporting the longest-
observed response times on the real hardware as solid color bars. The results corresponding to
the misbehaving HW-tasks are highlighted with different colors and patterns. Comparing the
response times observed under nominal conditions (nom) with the response times obtained
under misbehaving configurations, it is evident that even a single misbehaving HW-task
(misb-3) could have a significant impact on the response time of the other HW-tasks. This
effect becomes even more tangible when taking into account the configuration misb-3-4 in
which two HW-tasks misbehave. For instance, the response time of τ1 in misb-3-4 increases
by more than 50% with respect to nominal conditions.

0 2 4 6

nom

misb-3

misb-3-4

2.98

2.98

2.98

3.63

4.27

5.53

τ1’s response times [ms]
0 2 4 6

nom

misb-3

misb-3-4

5.89

5.89

5.89

3.66

4.27

5.53

τ2’s response times [ms]

0 5 10 15 20

misb-3

misb-3-4

nom

19.75

19.75

9.88
4.32

5.53

2.67

τ3’s response times [ms]
0 10 20 30 40

misb-3-4

nom

misb-3

37.3

9.33

9.33
5.53

1.97

1.97

τ4’s response times [ms]

With reservation Without reservation

Misbehaving with reservation Misbehaving without reservation

Figure 7 Response times of four HW-tasks without and with ABUs under multiple configurations.

ECRTS 2019

24:18 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

6.2 Evaluating the reservation mechanism
The following set of experiments analyzes what happens when the ABUs are present. These
experiments serve two purposes: first, to test the effectiveness of temporal isolation between
HW-tasks; second, to confirm that the assumptions made in Sections 2 and 4 to model and
analyze the system are realistic. To this end, the longest-observed response times on the
hardware have been compared with the response-time bounds computed by the analysis of
Section 4. The ABUs have been configured according to the minimum budgets provided
by Lemma 3 under nominal conditions. The period of ABUs has been selected according
to the following rationale. Since the ABUs count integer transactions, the period must be
chosen as the smallest value that can can ensure that all the minimum budgets provided
by Lemma 3 are integers. Furthermore, to avoid splitting transaction bursts, it is worth
choosing a period such that the budget is a multiple of the burst size. Such a period can be
easily obtained with a binary search. The resulting ABU configuration for this experimental
setting is reported in Table 3. The table also reports the response times, both observed on
the hardware and obtained by the analysis proposed in this work, under configuration nom.

As it can be noted from Figure 7, ABUs allow controlling the longest-observed response
times (e.g., fixed to 2.98 for τ1) independently of the behavior of the other HW-tasks; indeed,
the response times are the same even in the misbehaving configurations misb-3 and misb-3-4.
Clearly, this improvement is achieved at the expenses of the misbehaving tasks (τ3 and τ4):
in fact, their response times in misbehaving configurations is penalized.

Table 3 Configuration parameters for the ABUs and response times for the corresponding
HW-tasks under the nominal configuration.

HW-Task ABU Response times [ms]
Bi [tr] P [clk] Longest observed By analysis

τ1 224

128

2.982 2.995
τ2 112 5.893 5.991
τ3 32 9.876 10.485
τ4 16 9.328 10.485

6.3 A case study
The second part of the experimental evaluation considers a case-study application that
comprises a FIR filter HW-task for signal processing, a Sobel HW-task for image processing,
and two DMA-like HW-tasks operating in mode 1. The FIR filter implements a 12th
order low-pass filter designed to process 16kHz audio samples with a cutoff frequency of
4 kHz. Internally, the FIR filter uses fixed-point representations to take advantage of the
FPGA’s DSP blocks. Each instance of the FIR filter processes 1 MB of samples. The
Sobel filter processes 640x480 RGB images with 24-bit color depth, resulting in a size of
1200 KB. Table 4 summarizes the characteristics of these accelerators, which both issue
16-word burst transactions.

As visible from the trace shown in Figure 2, the access pattern generated by the Sobel
filter HW-task is not strictly uniform due to a short pause occurring between two image lines.
Such a signal analysis has been performed on the real hardware by instrumenting the design
with an integrated logic analyzer (ILA) module. Clearly, the access pattern of the Sobel
HW-task violates the uniform transaction hypothesis made in Section 2 to model the system.
However, by performing the pessimistic assumption that the Sobel HW-task continues issuing

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:19

Table 4 Parameters of the Sobel and FIR hardware accelerators.

HW-task Di Ni

[tr/clk] [MB/s] [tr] [KB]
Sobel 1.9 725 614400 2400
FIR 2 763 524288 2048

transactions even during the brief pause between a line and the next, it is still possible to
safely model it as a uniform access accelerator. Such a model can be used to assign the ABU
budget and compute safe upper bounds on the response time of the Sobel HW-task. The case
study application has been tested with a set of four experiments considering different HW-task
periods and ABU budgets. Table 5 summarizes the parameters used for the experiments.
The ABU period P is set to 128 clock cycles in all of the experiments. The results are
reported in Figure 8, which compares the response times calculated using the response-time
analysis presented in this paper, plotted as solid bars, with the longest-observed response
times obtained on the real hardware, illustrated with striped bars. Measurements on the
hardware have been performed as described in the previous section.

The experimental results show that the ABU is indeed effective even considering a
case-study application comprising a realistic hardware workload suited for signal and image
processing. The response times bounds obtained with the analysis are close to the longest-
observed values with a maximum relative error of 3% in the case of HW-tasks with uniform
demand. As expected, the maximum difference between the bound and the measurements
(13%) occurs for the Sobel HW-task, since it has been pessimistically modeled by assuming
a continuous bus access at its maximum rate.

Table 5 Configuration parameters for the case study (HW-task periods and ABU budgets).

Task
Experiment

1 2 3 4
Ti [ms] Bi [tr] Ti [ms] Bi [tr] Ti [ms] Bi [tr] Ti [ms] Bi [tr]

FIR 6 176 6 160 8 96 6 160
Sobel 7 160 8 144 9 112 12 96
DMA-2 10 80 12 64 6 144 7 128
DMA-1 12 64 7 112 7 128 10 80

7 Related work

Resource reservation techniques have been introduced in the context of real-time systems
for CPUs scheduling [31, 1, 8] and applied to share other computational resources like
programmable GPUs [23, 22]. Essentially, the idea is assigning to each entity (e.g., task) a
fraction of a shared resource under contention (e.g., processor) in order to provide temporal
isolation. Similarly, this work adjusts the same approach to the contention of the AMBA
AXI bus in the context of hardware-programmable SoC FPGA platforms.

Many research efforts have been dedicated to the problem of bus contention in real-time
systems. Schliecker et al. [33] use an event-based model to estimate delays for communications
and computation activities on a multicore SoC platform. Pellizzoni and Caccamo [29] analyzed
the interaction between CPU and peripherals while contending a shared main memory within
a theoretical framework and proposed a conceptual solution based on a hardware server
to control the unpredictable behavior of COTS peripherals. Betti et al. [6] presented a

ECRTS 2019

24:20 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

0 5 10

FIR

Sobel

DMA-2

DMA-1

3.81

5.46

8.39

10.49

3.81

4.96

8.19

10.17

response times [ms]

Experiment 1

0 5 10

FIR

Sobel

DMA-2

DMA-1

4.19

6.07

10.49

5.99

4.19

5.53

10.18

5.9

response times [ms]

Experiment 2

0 2 4 6 8

FIR

Sobel

DMA-2

DMA-1

6.99

7.8

4.66

5.24

6.85

6.97

4.65

5.19

response times [ms]

Experiment 3

0 2 4 6 8 10

FIR

Sobel

DMA-2

DMA-1

4.19

9.1

5.24

8.39

4.19

8.07

5.18

8.19

response times [ms]

Experiment 4

By analysis Longest observed

Figure 8 Response times for the case study.

framework for providing real-time guarantees in a COTS platform. Each peripheral within
the platform is supervised by a “real-time bridge” controlled by a system-wide peripheral
scheduler. Their framework has been developed and evaluated on PC platforms with PCI
Express bus while our approach considers on-chip buses for integrated SoC-FPGA platforms.

In the context of memory contention on multicore platforms, Agrawal et al. [2] presented a
technique to perform the analysis both WCETs and schedulability of real-time activities under
dynamic memory scheduling. Yum et al. [47] proposed a memory bandwidth reservation
mechanism named MemGuard. The system provides memory performance isolation employ-
ing a bandwidth regulator for each core. The bandwidth regulators enforce a budgeting
mechanism and are implemented using performance counters. Our approach is somehow
related to this work since both consider bandwidth regulation of bus master agents. However,
while MemGuard considers inter-core interference on an Intel chip multiprocessor, our work
considers bus interference generated by hardware accelerators on the AMBA AXI bus.

In the domain of packet switching networks, many efforts have been dedicated to the
modeling and the analysis of traffic scheduling algorithms to provide quality of service (QoS)
guarantees [15, 37]. Such methodologies have also been employed on SoCs platforms to develop
and analyze arbiters for heavily-contented resources like the system memory [3, 17]. The ABU
can be improved by leveraging the results of these works. Concerning the development of
on-chip communication infrastructures for SoC platforms, transaction-based buses and packet-
based networks on chip (NoC) remain the dominant approaches [32]. Typically, arbitration
for on-chip interconnects is performed using Fixed Priority, Round Robin, and Time-Division
Multiple Access (TDMA). Poletti et al. presented a performance analysis comparing different
arbitration policies for SoCs platforms in [30]. A TDMA-based arbitration scheme with
dynamic timeslot allocation is employed in [32, 10] to improve system predictability while

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:21

providing good average-case performance. Lahiri et al. [24] proposed a statistical approach
to arbitration using a ticket-based random selection which was further extended by other
works [12, 25] to improve predictability. Steine et al. [36] proposed a TDMA budget based
scheduler for data flow applications, which has been used by Staschulat et al. [35] for memory
arbitration. However, while the latter work is explicitly targeted at embedded systems, it
is still limited to dataflow applications. Bourgade [9] proposed a bus arbitration scheme
for multicore platforms designed to ease the estimation of the tasks’ worst-case execution
times. Reconfigurable bus arbiters [46, 34] can be dynamically configured to change the
arbitration policy depending on the application requirements. Likewise, several papers
in the literature addressed the problem of designing predictable memory controllers for
multi-core architectures. Guo et al. [18] presented a comparative analysis of predictable
DRAM controllers.

8 Conclusions

This paper presented the ABU, a hardware-based reservation mechanism for the AMBA
AXI bus aimed at isolating hardware accelerators implemented on FPGAs. After describing
the internal architecture of the ABU, a response-time in the bandwidth domain has been
presented to verify the schedulability of a set of hardware accelerators under real-time
constraints. The proposed mechanism has been implemented and validated on the Xilinx
Zynq-7020 platform to demonstrate its practical applicability. An substantial experimental
evaluation confirmed the effectiveness of the proposed solution, showing that it can efficiently
be implemented by consuming less than 1% of the total FPGA resources. As a future work,
we plan to evaluate the possibility of including a reclaiming mechanism for the unused supply
and extend the analysis to support for dynamic workloads by taking advantage of partial
reconfiguration [7, 27].

References
1 Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time

systems. In Real-Time Systems Symposium, 1998. Proceedings. The 19th IEEE, pages 4–13.
IEEE, 1998.

2 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of Dynamic
Memory Bandwidth Regulation in Multi-core Real-Time Systems. In 2018 IEEE Real-Time
Systems Symposium (RTSS). IEEE, December 2018.

3 Benny Akesson, Liesbeth Steffens, and Kees Goossens. Efficient service allocation in hardware
using credit-controlled static-priority arbitration. In 2009 15th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages 59–68. IEEE, 2009.

4 James H. Anderson, Philip Holman, and Anand Srinivasan. Fair Scheduling of Real-Time
Tasks on Multiprocessors. In Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC, 2004.

5 ARM. AMBA AXI and ACE Protocol Specification, 2011.
6 E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-Time I/O Management

System with COTS Peripherals. IEEE Transactions on Computers, 62(1):45–58, January 2013.
doi:10.1109/TC.2011.202.

7 Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni, and Giorgio
Buttazzo. A Framework for Supporting Real-Time Applications on Dynamic Reconfigurable
FPGAs. In Real-Time Systems Symposium (RTSS), pages 1–12, 2016.

8 Alessandro Biondi, Alessandra Melani, and Marko Bertogna. Hard constant bandwidth server:
Comprehensive formulation and critical scenarios. In Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014), pages 29–37. IEEE, 2014.

ECRTS 2019

http://dx.doi.org/10.1109/TC.2011.202

24:22 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

9 Roman Bourgade, Christine Rochange, and Pascal Sainrat. Predictable bus arbitration schemes
for heterogeneous time-critical workloads running on multicore processors. In Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference on, pages 1–4. IEEE,
2011.

10 Paolo Burgio, Martino Ruggiero, Francesco Esposito, Mauro Marinoni, Giorgio Buttazzo, and
Luca Benini. Adaptive TDMA bus allocation and elastic scheduling: A unified approach for
enhancing robustness in multi-core RT systems. In Computer Design (ICCD), 2010 IEEE
International Conference on, pages 187–194. IEEE, 2010.

11 Andrew Canis, Jongsok Choi, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin Calagar, Marcel
Gort, Jia Jun Qin, Mark Aldham, Tomasz Czajkowski, et al. From software to accelerators with
legup high-level synthesis. In Proceedings of the 2013 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, page 18. IEEE Press, 2013.

12 Chien-Hua Chen, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou. A real-time and band-
width guaranteed arbitration algorithm for SoC bus communication. In Design Automation,
2006. Asia and South Pacific Conference on, pages 6–pp. IEEE, 2006.

13 Eric S Chung, Peter A Milder, James C Hoe, and Ken Mai. Single-chip heterogeneous
computing: Does the future include custom logic, FPGAs, and GPGPUs? In Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, pages
225–236. IEEE Computer Society, 2010.

14 Ben Cope, Peter YK Cheung, Wayne Luk, and Lee Howes. Performance comparison of
graphics processors to reconfigurable logic: A case study. IEEE Transactions on computers,
59(4):433–448, 2010.

15 Rene L Cruz et al. A calculus for network delay, part I: Network elements in isolation. IEEE
Transactions on information theory, 37(1):114–131, 1991.

16 Robert I. Davis and Alan Burns. A Survey of Hard Real-time Scheduling for Multiprocessor
Systems. ACM Comput. Surv., 43(4), 2011.

17 Manil Dev Gomony, Jamie Garside, Benny Akesson, Neil Audsley, and Kees Goossens. A
globally arbitrated memory tree for mixed-time-criticality systems. IEEE Transactions on
Computers, 66(2):212–225, 2017.

18 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study of
predictable dram controllers. ACM Transactions on Embedded Computing Systems (TECS),
17(2):53, 2018.

19 Dominik Honegger, Helen Oleynikova, and Marc Pollefeys. Real-time and low latency embedded
computer vision hardware based on a combination of fpga and mobile cpu. In Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages 4930–4935.
IEEE, 2014.

20 Intel. Stratix 10 GX/SX Device Overview, October 2017.
21 Jan Moritz Joseph, Morten Mey, Kristian Ehlers, Christopher Blochwitz, Tobias Winker, and

Thilo Pionteck. Design space exploration for a hardware-accelerated embedded real-time pose
estimation using vivado HLS. In ReConFigurable Computing and FPGAs (ReConFig), 2017
International Conference on, pages 1–8. IEEE, 2017.

22 Shinpei Kato, Karthik Lakshmanan, Yutaka Ishikawa, and Ragunathan Rajkumar. Resource
sharing in GPU-accelerated windowing systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2011 17th IEEE, pages 191–200. IEEE, 2011.

23 Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. TimeGraph: GPU
scheduling for real-time multi-tasking environments. In Proc. USENIX ATC, pages 17–30,
2011.

24 Kanishka Lahiri, Anand Raghunathan, and Ganesh Lakshminarayana. The LOTTERYBUS
on-chip communication architecture. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(6):596–608, 2006.

25 Bu-Ching Lin, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou. A precise bandwidth
control arbitration algorithm for hard real-time SoC buses. In Proceedings of the 2007 Asia

M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. Buttazzo 24:23

and South Pacific Design Automation Conference, pages 165–170. IEEE Computer Society,
2007.

26 Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,
Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. A survey and evaluation
of fpga high-level synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10):1591–1604, 2016.

27 Marco Pagani, Alessio Balsini, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. A
linux-based support for developing real-time applications on heterogeneous platforms with
dynamic fpga reconfiguration. In 2017 30th IEEE International System-on-Chip Conference
(SOCC), pages 96–101. IEEE, 2017.

28 Karl Pauwels, Matteo Tomasi, Javier Diaz Alonso, Eduardo Ros, and Marc M Van Hulle. A
comparison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image
features. IEEE Transactions on Computers, 61(7):999–1012, 2012.

29 R. Pellizzoni and M. Caccamo. Impact of Peripheral-Processor Interference on WCET Analysis
of Real-Time Embedded Systems. IEEE Transactions on Computers, 59(3):400–415, March
2010. doi:10.1109/TC.2009.156.

30 Francesco Poletti, Davide Bertozzi, Luca Benini, and Alessandro Bogliolo. Performance
analysis of arbitration policies for SoC communication architectures. Design Automation for
Embedded Systems, 8(2-3):189–210, 2003.

31 Ragunathan Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi Oikawa. Resource
kernels: A resource-centric approach to real-time and multimedia systems. In Multimedia
Computing and Networking 1998, volume 3310, pages 150–165. International Society for Optics
and Photonics, 1997.

32 Thomas D Richardson, Chrysostomos Nicopoulos, Dongkook Park, Vijaykrishnan Narayanan,
Yuan Xie, Chita Das, and Vijay Degalahal. A hybrid SoC interconnect with dynamic TDMA-
based transaction-less buses and on-chip networks. In VLSI Design, 2006. Held jointly with 5th
International Conference on Embedded Systems and Design., 19th International Conference
on, pages 8–pp. IEEE, 2006.

33 Simon Schliecker, Mircea Negrean, Gabriela Nicolescu, Pierre Paulin, and Rolf Ernst. Reliable
performance analysis of a multicore multithreaded system-on-chip. In Proceedings of the
6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system
synthesis, pages 161–166. ACM, 2008.

34 Éricles Sousa, Deepak Gangadharan, Frank Hannig, and Juergen Teich. Runtime reconfigurable
bus arbitration for concurrent applications on heterogeneous MPSoC architectures. In Digital
System Design (DSD), 2014 17th Euromicro Conference on, pages 74–81. IEEE, 2014.

35 Jan Staschulat and Marco Bekooij. Dataflow models for shared memory access latency analysis.
In Proceedings of the seventh ACM international conference on Embedded software, pages
275–284. ACM, 2009.

36 Marcel Steine, Marco Bekooij, and Maarten Wiggers. A priority-based budget scheduler with
conservative dataflow model. In Digital System Design, Architectures, Methods and Tools,
2009. DSD’09. 12th Euromicro Conference on, pages 37–44. IEEE, 2009.

37 Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for analysis of
traffic scheduling algorithms. IEEE/ACM Transactions on networking, 6(5):611–624, 1998.

38 Stylianos I Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. Toolflows for Mapping
Convolutional Neural Networks on FPGAs: A Survey and Future Directions. ACM Computing
Surveys (CSUR), 51(3):56, 2018.

39 Xilinx. Zynq UltraScale+ Device - Technical Reference Manual, December 2017. UG1085.
40 Xilinx Inc. Using Quality of Service (QoS) Capabilities in Zynq-7000 AP SoC Devices, July

2015. XAPP1266.
41 Xilinx Inc. AXI Interconnect, LogiCORE IP Product Guide, 2018. PG059.
42 Xilinx Inc. Convolutional Encoder, LogiCORE IP Product Guide, 2018. PG026.
43 Xilinx Inc. Fast Fourier Transform, LogiCORE IP Product Guide, 2018. PG109.

ECRTS 2019

http://dx.doi.org/10.1109/TC.2009.156

24:24 A Bandwidth Reservation Mechanism for AXI-Based Accelerators

44 Xilinx Inc. FIR Compiler, LogiCORE IP Product Guide, 2018. PG149.
45 Xilinx Inc. SmartConnect, LogiCORE IP Product Guide, 2018. PG247.
46 Ching-Chien Yuan, Yu-Jung Huang, Shih-Jhe Lin, and Kai-hsiang Huang. A reconfigurable

arbiter for SOC applications. In Circuits and Systems, 2008. APCCAS 2008. IEEE Asia
Pacific Conference on, pages 713–716. IEEE, 2008.

47 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55–64,
April 2013.

Hiding Communication Delays in Contention-Free
Execution for SPM-Based Multi-Core
Architectures
Benjamin Rouxel
Univ Rennes, Inria, CNRS, IRISA, France
benjamin.rouxel@irisa.fr

Stefanos Skalistis
Univ Rennes, Inria, CNRS, IRISA, France
stefanos.skalistis@irisa.fr

Steven Derrien
Univ Rennes, Inria, CNRS, IRISA, France
steven.derrien@irisa.fr

Isabelle Puaut
Univ Rennes, Inria, CNRS, IRISA, France
isabelle.puaut@irisa.fr

Abstract
Multi-core systems using ScratchPad Memories (SPMs) are attractive architectures for executing
time-critical embedded applications, because they provide both predictability and performance. In
this paper, we propose a scheduling technique that jointly selects SPM contents off-line, in such
a way that the cost of SPM loading/unloading is hidden. Communications are fragmented to
augment hiding possibilities. Experimental results show the effectiveness of the proposed technique
on streaming applications and synthetic task-graphs. The overlapping of communications with
computations allows the length of generated schedules to be reduced by 4% on average on streaming
applications, with a maximum of 16%, and by 8% on average for synthetic task graphs. We further
show on a case study that generated schedules can be implemented with low overhead on a predictable
multi-core architecture (Kalray MPPA).

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Real-time systems

Keywords and phrases Real-time Systems, Contention-Free Scheduling, SPM multi-core architecture

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.25

Funding This work was partially supported by ARGO (http://www.argo-project.eu/), funded by
the European Commission under Horizon 2020 Research and Innovation Action, Grant Agreement
Number 688131.

1 Introduction

The race for computer performance has always been limited by the memory bottleneck.
To overcome this issue, hardware [28], software [23] and hybrid [20] prefetching methods
have been proposed in the past to bring data closer to the processor before it is needed.
However, most prefetchers are not designed for time-critical applications, where predictability
is essential.

Compared to cache-based architectures, multi-cores with a private ScratchPad Memory
(SPM) per core are a very attractive alternative for time-critical embedded applications.
Via software-managed SPMs, they offer sufficient computational power and the necessary
predictability. Software-managed SPMs enable data-movement decisions, from/to main

© Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 25; pp. 25:1–25:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7178-4768
mailto:benjamin.rouxel@irisa.fr
https://orcid.org/0000-0002-5758-3804
mailto:stefanos.skalistis@irisa.fr
mailto:steven.derrien@irisa.fr
https://orcid.org/0000-0001-9310-9651
mailto:isabelle.puaut@irisa.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2019.25
http://www.argo-project.eu/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Hiding Communication Delays in SPM-Based Multi-Cores

memory, to be scheduled at design time (off-line), thus restricting or avoiding contention on
shared resources. Examples of such architectures are the Cell multi-core architecture [19],
the academic core Patmos [32] or the Kalray MPPA [11].

Efficient and predictable management of SPMs are facilitated by application models that
offer a high-level view of parallel programs. We focus on applications modelled as directed
acyclic task-graphs (DAGs), consisting of dependent tasks that exchange data through shared
FIFO channels. In such application models, tasks are executed in three phases: 1) they read
data from their input FIFOs, 2) execute their computation, and 3) write the results to their
output FIFOs. This order of execution is in accordance with the PRedictable Execution
Model (PREM) [29, 2] and the Acquisition Execution Restitution (AER) execution model [26].
Such execution models are well-suited for SPM-based architectures, as tasks can prefetch their
input FIFOs from the shared memory into the private SPM and, after the task’s execution,
write-back the produced data to their output FIFOs. Using proper scheduling techniques,
this can result in contention-free execution. These DAGs do not necessarily need to be built
from scratch, which would require an important engineering effort. Automatic extraction of
parallelism, for instance from a high level description of applications in model based design
workflows [12], seems a much more promizing direction.

We believe that this combination of software (DAG with PREM) and hardware (SPM-
based multi-cores) is essential to build efficient and predictable systems. In this paper,
we propose a scheduling strategy that hides such delays by executing communications in
parallel with computation. Our scheduling strategy relies in advancing (resp. postponing) the
execution of read (resp. write) phase of a task such that it overlaps with the execution phase
of another task, thus hiding the communication delay. The proposed scheduling strategy
aims at minimizing the makespan of the total execution and includes an SPM allocation
strategy ensuring that there is enough space in SPM at all times. The resulting schedules
are contention-free to the shared bus, similarly to [3]. Additionally, and in comparison with
most related works (such as [30, 8, 24, 37]), we fragment communication phases to augment
communication hiding possibilities. In contrast with most other works dealing with SPM,
e.g. [13, 4], that allow some information to stay in global main memory, our SPM allocation
scheme imposes that all information accessed by a task is prefetched into SPM beforehand.
In summary, the contributions of this work are the following:
1. We propose a strategy to map and schedule a task graph onto cores coupled with an

SPM allocation scheme. The generated static contention-free non-preemptive schedules
allow, when possible, to overlap communications and computations, through non-blocking
loading/unloading of information into/from SPM. Communication phases are fragmented
to maximize the duration of overlapping between communications and computations.
The proposed strategy is formulated as a heuristic based on list-scheduling to produce
schedules very fast.

2. We provide an experimental evaluation showing our method improves the overall makespan,
up to 16%, compared to equivalent schedules generated with blocking communications.

3. We evaluate the impact of different granularities for communication fragments on the
schedule makespan.

4. We experimentally show on a use case that generated schedules can be implemented with
a low overhead on a predictable multi-core architecture (Kalray MPPA [11]).
The rest of this paper details the proposed strategy and is organized as follows. A

motivating example is presented in Section 2, as well as the assumptions made on the
hardware and software. Then, Section 3 presents the basic principles of the SPM allocation
scheme. The scheduling/mapping/allocation heuristic technique is then detailed in Section 4.
Section 5 presents experimental results, including an implementation on the Kalray MPPA
platform. Finally, Section 6 presents related works, before concluding in Section 7.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:3

2 Motivating Example and assumptions

2.1 Architecture Model
We consider multi-core architectures, where every core has access to a private dual-ported
ScratchPad memory (SPM). Cores are connected through an arbitrated bus to a global
external shared memory. Access requests are enqueued (one queue per core) and served
according to the bus arbitration policy. While in the rest of the paper, we will assume a FAIR-
round-robin arbitration [21], the proposed method is directly applicable for other policies
with arbitration based on requests (e.g. first-come-first-served, fixed priority, etc.) and not
on time (e.g. time division multiple accesses). All communications are non-preemptable and
go through the shared global memory (no SPM to SPM communication). We further assume
that the architecture supports loading of information in the dual-ported SPM, in parallel
with computations. Provided support may be a hardware Direct Memory Access (DMA)
engine or a specific core acting as a DMA software engine as in [9]. These assumptions are
met in both academic and commercial processors (e.g. Patmos [32], Kalray MPPA [11]).

Communications can be implemented in blocking mode or non-blocking mode. In blocking
mode, the CPU is in charge of transfers between SPM and the shared memory, and is then
stalled during every transfer. In non-blocking mode, transfers are managed asynchronously,
allowing the CPU to execute other jobs during memory transfers.

2.2 Application Model
We consider applications modeled as directed acyclic graphs (DAGs). A graph G is a pair
(V,E) where the vertices in V represent the application’s tasks and the edges in E represents
the data dependencies between the tasks. This work supports multiple DAGs with same period
as is, which is omitted due to space limitations. Extending our work to applications with
different periods is deemed as a rather direct transposition, by making schedule generation
operate on the hyperperiod. This extension is however left for future work.

Figure 1 An example of a task-graph.

According to the semantics defined in PREM [29, 1] or AER [26], each task is divided in
three phases, namely read, exec and write. The read phase reads/receives the mandatory
code and/or data from the main memory to the SPM, such that the exec phase can proceed
without access to the shared bus. Finally, the write phase writes the resulting data back from
the SPM to the main memory. Using such an application and execution model is central
in our method, as it allows to perform offline scheduling which precisely controls resource
contention. The exec phase of tasks does not access the shared bus, and thus contentions
when accessing the shared bus do not exist between exec phases and read/write phases; the
off-line scheduler is in charge of scheduling communication phases in such a way that they

ECRTS 2019

25:4 Hiding Communication Delays in SPM-Based Multi-Cores

do not conflict with one another; finally, the presence of a dual-ported SPM per core allows
calculations and communications to proceed in parallel, provided that they access different
address ranges.

Note that considered DAGs with read-exec-write semantics need not be built from scratch.
They can be extracted automatically either from a high-level description of applications in
model based design workflows [12], or from legacy code with [27].

As an extension to the original PREM/AER model, we split each communication into
fragments. A fragment is some division of the total amount of data that a task produces
or consumes. How the data are divided into fragments is determined by the fragmentation
scheme. The default fragmentation scheme assumed throughout this paper is to have
one fragment for each task communication (edges in the graph). Thus, instead of a task
reading/writing all of its inputs/outputs at once, it is done on a per-task basis with the size
of the fragment being as the size of the communication. Other fragmentation strategies will
be detailed in Section 5.4. A task τi is a tuple τi =< F ri , τ

e
i , F

w
i >, where τei is the exec

phase, and F ri (resp. Fwi) is the set of fragments read (resp. written) by the task. The f -th
fragment of τi that is read (resp. written) is denoted as τ r(i,f) ∈ F

r
i (resp. τw(i,f) ∈ F

w
i).

An example of a task-graph is illustrated in Figure 1. The figure gives for each task its
name, the Worst Case Execution Time (WCET) of its exec phase, and for each edge the
amount of data exchanged, among the tasks, in bytes. The WCET of the exec phase, denoted
Ci, can be estimated in isolation from the other tasks considering a single-core architecture,
as there is no access to the main memory (all the required data and code have been loaded
into the SPM before the task’s execution). In general, read and write fragments could suffer
from contentions caused by concurrent accesses to the shared bus, however in this paper the
proposed technique produces contention-free schedules.

Since the code in our experimental evaluation, is generally small and likely to be reused
along the execution of the application, for simplicity reasons we assume that the code is
preloaded in the SPM at startup.

For simplicity when presenting the motivational example, we will assume the SPM to be
large enough to store all information (code, data, communication buffers), this assumption
will be relaxed in Section 3.

2.3 Motivating Example
Figure 2 motivates the use of non-blocking, fragmented communications for the application
from Figure 1 assuming a dual-core architecture. Sub-figure 2b depicts the schedule obtained
using non-blocking fragmented communications, with one fragment per outgoing edge in the
graph, whereas sub-figure 2a depicts the schedule obtained using blocking communications.
For each core, the top time-line depicts the scheduling of exec phases (grey boxes) and the bot-
tom one depicts the scheduling of communications (read: white boxes, black font, write: dark
boxes, white font). The communication cost is indicated below each communication phase.

In Figure 2a (blocking mode), all parts of the same task are scheduled contiguously
on the same core, and the CPU is stalled when accessing the bus. The read and write
phases are not fragmented as it would not bring any benefit in blocking mode. Precedence
constraints are respected by ordering read phases after their preceding write phases, e.g. τ rC
is scheduled after the completion of τwA . There is no read phase for tasks A and B as they
do not have predecessors, hence no data to fetch. The resulting schedule makespan (time at
which the last task ends) is 76 time units. In Figure 2b (non-blocking mode), fragmented
communication and exec phases overlap, e.g. τ r(H,2) and τ r(H,3) overlap with τeF , thus hiding
the communication delay. Having prefetched all required data into SPM, the exec phase of
τH can start right after τF .

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:5

(a) Schedule in blocking mode (makespan of 76 time units).

(b) Schedule in non-blocking mode (makespan of 61 time units).

Figure 2 Schedules for the example task-graph on a dual-core. For each core, the top time-line
depicts the schedule of exec phases (in grey), the bottom one depicts the schedule of read (in white)
and write (in black) phases. The communication cost is indicated below each communication phase.

The gain in schedule length from Figure 2b is obtained by introducing the following
flexibilities in the scheduling of communication fragments, while respecting read-exec-write
phase’s order: 1) communication phases of different tasks can have a different order than
their respective exec phases, as long as there is no data dependencies between them, e.g.
τ r(D,1) is scheduled before τw(E,1), in reverse order compared to τeD and τeE . 2) communication
phases and exec phase of the same task, do not need to be contiguous in time, e.g. τ r(D,1)
and τeD are not. 3) communications are fragmented, a task with multiple successors does not
write all its data at once, e.g. τB has two successors, thus writing two fragments.

The last point (fragmented communications) is new compared to related work. Considering
each fragment individually allows additional overlaps between communications and task
execution that were impossible without fragmentation. In the example, it allows to hide part
of the write phase of τA, and part of the read phase of τJ , which was not possible without
fragmentation. Thus, splitting communications allows each source/sink of the task graph to
hide part of its communications. However, in the example from Figure 2b, the remaining
first part Aw (τw(A,1)) can still not be hidden, but is however smaller than in Figure 2a. The
overall makespan of the resulting schedule in non-blocking mode (Figure 2b) is 61 time units,
resulting in a gain of 20%.

3 Principle of SPM allocation scheme

In our motivational example, we assumed the SPM large enough to store all information
required to execute the entire application (code, data, communication buffers). To account
for limited SPM capacity, our scheduling strategy comes with a SPM allocation strategy
that allocates an SPM area (called hereafter region) to each communication fragment and
execution phase. Fragment-to-region mapping is performed by the scheduler off-line. However,
the same region can be used successively by different fragments, and the scheduler guarantees
that the live ranges of the concerned fragments do not overlap. Region sizes vary according
to the data stored by fragments/exec phases.

ECRTS 2019

25:6 Hiding Communication Delays in SPM-Based Multi-Cores

To isolate bus accesses from computation, we impose that all information accessed by
a task is loaded into SPM beforehand. This comes in opposition to most SPM allocation
policies that decide which information should be stored in the SPM and which information
should remain in the global main memory (e.g. [13]). Our fragment-to-region mapping is
inspired by the method proposed in [22].

The regions assigned to fragments F ri contain the input data, fetched from the main
memory, which are required by the task’s exec phase. These regions contain the data produced
by all predecessor tasks. The unique region assigned to τei contains any kind of information
used locally by the task (code, constants, local data, usually stack-allocated). The regions
assigned to Fwi contain the data produced by the task.

The size of a region obviously depends on the amount of data required by the associated
fragment (i.e. amount of data produced by a predecessor in case of a read fragment).
Considering a mapping of tasks to cores and a mapping of fragments to SPM regions, the
sum of the sizes of regions on a core must not exceed the SPM size.

Let us consider the example of Figure 2b, in which for simplicity we concentrate
on the communication fragments and ignore the execution phases. If the size of the
SPM is 1 Kbytes then on processor P2 the SPM can be partitioned in seven regions
SPM = {τw(B,1), τ

w
(B,2), τ

r
(E,1), τ

w
(E,1), τ

r
(D,1), τ

r
(G,1), τ

w
(G,1)} with respective sizes in bytes {1, 2, 1,

1, 1, 2, 5} (according to the amount of data exchanged between tasks, taken from Figure 1).
The sum of the regions’ sizes is 13 bytes, which is less than the SPM size. If we now restrict
the SPM size to 10 bytes, the previous partitioning of SPM in regions is not valid anymore.
However, once τw(B,1) is completed, the data produced by τB has been committed to the global
shared memory, therefore its assigned region can be reused. In this example, τ r(G,1) starts
after the completion of τw(B,1), as it is the case for τw(B,2) and τw(G,1). Thus, the fragments
τw(B,1),τ r(G,1) and τw(B,2),τw(G,1) can be assigned to the same SPM region, leaving a partitioning
of five regions: SPM = {{τw(B,1), τ

r
(G,1)}, {τ

w
(B,2), τ

w
(G,1)}, τ

r
(E,1), τ

w
(E,1), τ

r
(D,1)} with respective

sizes (in bytes) {max(1, 2),max(2, 5), 1, 1, 1}. The sum of all regions sizes is 10 bytes, which
can fit in the SPM.

In the example, both pairs (τw(B,1), τ
r
(G,1)) and (τw(B,2), τ

w
(G,1)) could share the same region,

because their lifespan does not overlap. On the other hand, in Figure 2b, τ r(D,1) can not share
the same region as τ r(E,1), because the data consumed by τE are in use from the start of the
read phase F rE up to the end of the execution of τeE . This leads to define the live range of
regions for each type of fragment. Definition 1 defines the live range for a region assigned to
a read fragment, while Definitions 2 and 3 give live ranges for regions assigned respectively
to an exec and a write fragment.

I Definition 1. Data fetched from the main memory by a read fragment are alive from its
start time to the end of the corresponding exec phase.

I Definition 2. Local information used by an exec phase (code, stack data area) are alive
for the whole execution time of the application.

I Definition 3. Data written back to main memory by a write fragment are alive from the
start time of the corresponding exec phase to its transmission end time.

We assume read/written data can be consumed/produced at any time in the exec phase of
the task. Therefore, the live range in Definitions 1 and 3 include the duration of the exec phase.

The scheduler maps fragments to regions, but does not decide the addresses of the
regions in the SPM, which is left to the compiler/code generator. Since the number and
size of regions is decided off-line, address assignment is straightforward, and does cause

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:7

external fragmentation. Fragmentation of the SPM can only arise inside regions (internal
fragmentation) when two (or more) phases are assigned to the same region but store different
amounts of data.

4 Joint-mapping/scheduling and SPM allocation

This section presents a heuristic algorithm based on forward list scheduling that integrates
fragmented non-blocking communication and SPM allocation. The main outcome of the
proposed algorithm is a static mapping, scheduling and SPM fragment-to-region allocation,
for a single application represented as a DAG. The objective is minimizing the overall
schedule’s makespan. The generated schedule is free from contention. According to the
terminology given in [10], the proposed scheduling techniques are partitioned, time-triggered
and non-preemptive. Schedule generation operates at task-level (as opposed to job-level as
defined in [10]).

Heuristics based on forward list scheduling first order input elements (in our specific
case exec and communication phases), then add them one by one in the schedule without
backtracking. We experimented with three topological sorting algorithms. The first algorithm
is a vanilla Depth First Search (DFS) algorithm to walk-through the task graph. Second, we
use the same DFS algorithm but we postpone read fragments to avoid too early reading that
might delay other fragments in the schedule (further details will be given when describing
Algorithm 4.1). The last algorithm is a vanilla Breath First Search (BFS) algorithm. For all
three sortings, we used the element memory footprint as tie breaking rule (larger footprint
to be scheduled first). Since no sorting algorithm consistently outperforms the others, we
generate three schedules, each resulting from one sorting algorithm, and selected the one
resulting in the shortest schedule makespan as the heuristic’s solution.

4.1 Notations and assumptions
Table 1 summarizes the notations that will be used to describe the scheduling algorithm
(sets, utility functions and constants).

Calculation of constants DELAY r(i,f) and DELAY w(i,f) requires knowledge of the bus
arbitration strategy and of concurrent accesses to the bus. The considered bus is characterized
by a maximum duration of Tslot allocated to each core in a round-robin fashion, with a
writing rate of Dslot data word per time unit. Tslot defines the duration a core is granted the
bus, and Dslot defines the amount of data transmittable in a Tslot duration. For the scope of
this paper, we generate contention-free schedules, thus no contention delay is paid, and the
duration of a data transfer of d bytes is trivially calculated by equation (1). This equation
could be refined to account for DRAM access cost, as done in [22].

delay = dd/Dslote · Tslot (1)

In the description of the scheduling algorithm, the cost for setting up non-blocking
memory transfers (DMA initialization in case of a hardware DMA engine) will not appear
explicitly and is considered included in the WCET of the exec phase. Determination of this
cost will be described in Section 5.5.

4.2 Scheduling algorithm
The scheduling algorithm is sketched in Algorithm 4.1. It uses the task graph as input,
sorts the elements to schedule (exec phases and communication fragments) to create the
list (line 2). Then a loop iterates on each element while there exists elements to schedule

ECRTS 2019

25:8 Hiding Communication Delays in SPM-Based Multi-Cores

Table 1 Notations.

Se
ts

T set of tasks
P set of processors/cores
R set of regions
F ri , F

w
i sets of τi fragments

F = F ri ∪ Fwi , ∀i ∈ T sets of all fragments from all tasks in T
Fu

nc
s i = task(f) utility to retrieve the task of a fragment,

fragment f belongs to τi

(j, q) ∈ pred((i, f)) (j, q) means τX(j,q) is a direct predecessor
of τX(i,f)

C
on

st
an

ts

SSi local (stack) data size of τei
CSi code size of τei

Ci
τi execute phase WCET computed
in isolation as stated in Section 2

Dr
(i,f), D

w
(i,f) size in bytes of τr(i,f)

DELAY r(i,f) fragment f of τi, read/write
DELAY w(i,f) latency from Equation (1)
SPMSIZEc SPM size of core c

Va
ria

bl
es

ρr(i,p), ρei , ρw(i,q) start times of τr(i,p), τei and τw(i,q)

(lines 5-20). This heuristic uses an As Soon As Possible (ASAP) strategy when mapping
an element. If the element to schedule is a communication fragment (line 8), then there is
no need to map it on a core, but it still must be scheduled to avoid interference. If it is
an exec phase, then a core is selected and the mapping with the shorter the makespan is
selected (line 15).

SPM regions can be assigned to elements (exec phases and communication fragments)
only when all of its phases are properly scheduled and mapped to a core (lines 18-20).
When scheduling the read fragments, the core mapping information is not yet available.
Additionally, when mapping the exec phase, we still do not have the information regarding
the write fragments that have not been scheduled yet. While assigning the region (lines
18-20), the exec phase goes first then the communication phases. This order is motivated to
better handle resident code in SPM and avoid SPM space to be stolen by communication
fragments. For example, if there are 5 units of free space (not assigned yet) and the exec
needs 5 units while a read/write need 2 units each. Then the task can still be mapped. The
exec phase will take the remaining free space, while the communication fragments can share
an already created, but available (in time), region (see Definitions 1 and 3).

Scheduling an element

Algorithm 4.2 sketches the method to determine the start time of the considered element
(exec phase or communication fragment). First, each element must start after its causal
predecessors (line 2) Then, lines 3-9 enforce that no exec phases overlap on the same core
and no fragments overlap on the bus. Condition at line 4 enforces the type of cur_elt and e
to be identical, and if both are exec phases then they must be mapped on the same core.
Finally, line 9 postpones cur_elt start time if overlapping with e.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:9

Algorithm 4.1: Scheduling algorithm.
Input :A task graph G and a set of processors
Output :A schedule

1 Function ListSchedule(G = (T,E), P)
2 Qready ← Topological_Sort_Elements(G)
3 Qdone← ∅
4 schedule← ∅
5 while elt ∈ Qready do
6 Qdone← Qdone ∪ {elt}
7 Qready ← Qready\{elt}

/* tmpSched contain the best schedule for the current task */
8 if elt is a read fragment ∨ elt is a write fragment then
9 Schedule_Element(Qdone, elt, null)

10 else if elt is an exec phase then
11 tmpSched← ∅ with makespan =∞
12 foreach p ∈ P do
13 copy ← schedule

/* Set τe in copy on p the earliest in the schedule */
14 Schedule_Element(Qdone, elt, p)
15 tmpSched← minmakespan(tmpSched, copy)
16 schedule← tmpSched

17 if all fragments and exec phase of τi containing elt are in Qdone then
18 Assign_Region(schedule,Qdone, τei , SSt + CSt, 0, infinity)
19 ∀f ∈ F ri ,Assign_Region(schedule,Qdone, f,Dr

(i,f), ρ
r
(i,f), ρ

e
i + Ci)

20 ∀f ∈ Fwi ,Assign_Region(schedule,Qdone, f, ρei , ρw(i,f) +DELAY w(i,f))

21 return schedule

Allocation of SPM regions

Algorithm 4.3 associates a SPM region to an element (exec phase, fragment). If there is data
to store in the SPM (line 2), then it first tries to reuse an existing region (lines 4-6), thus
minimizing the required memory size. If no existing region can be shared, then a new one is
created (lines 7-8). Sharing a region imposes that the selected region is big enough to handle
the current amount of data and free for use at the required time interval (line 4).

5 Experimental evaluation

The first presented experiments (Section 5.2) aim at validating the quality of the proposed
scheduling technique as compared to a scheduling strategy based on Integer Linear Program-
ming (ILP, see Section 5.1) that provides the optimal solution (shortest schedule makespan).
Then, we validate the benefits of hiding communications using the heuristic technique (Sec-
tion 5.3). In the above-mentioned experiments, the default fragmentation strategy (one
fragment per edge in the task graph) is used. We subsequently compare different ways to
fragment communications (Section 5.4). Finally, we show in Section 5.5 on a case study that
generated schedules can be implemented with low overhead on a Kalray MPPA platform [11].
In Sections 5.2 to 5.4, scheduler and communication implementation overheads are neglected,
but they are considered in Section 5.5.

Experiments have been conducted both on real code, in the form of the open-source
Refactored StreamIT benchmark suite STR2RTS [31] and on synthetic task graphs, generated
using Task-Graph For Free (TGFF) [14].

ECRTS 2019

25:10 Hiding Communication Delays in SPM-Based Multi-Cores

Algorithm 4.2: Scheduling of an element (exec, fragment).
Input : the list of scheduled element, the current element to schedule, the current core or

null if the element is a fragment
Output :

1 Function Schedule_Element(Qdone, cur_elt, cur_proc)
/* wct → Worst-Case Timing, DELAY αβ or Cβ */
/* X and Y depend on the type of the corresponding element */

2 ρXcur_elt ← maxp∈pred(cur_elt)(ρYp + wctp)
3 foreach e ∈ Qdone do
4 if cur_elt is a fragment and e is not a fragment
5 ∨ cur_elt is an exec phase and e is not an exec phase
6 ∨ cur_elt is an exec phase and e is not mapped on core cur_proc then
7 continue

8 if e overlaps in time with cur_elt then
9 ρXcur_elt ← ρYe + wcte

Algorithm 4.3: Allocation of a SPM region to a phase.
Input :A schedule, the list of scheduled element, the current task and properties of the

phase to map on a region
Output :A schedule

1 Function Assign_Region(schedule, Qdone, cur_elt, dataSize, start, end)
2 if data == 0 then return
3 proc← getCore(schedule, cur_elt)

/* Get the set of existing regions on core proc where : size ≥ dataSize ∧
last reservation time ends before start */

4 existing ← getExistingRegions(schedule, proc, dataSize, start)
5 if existing 6= ∅ then
6 Assign the smallest existing region to cur_elt
7 else if free SPM size in proc ≥ dataSize then

/* Create SPM region for cur_elt on proc with size data where the
reservation time is [start; end] */

8 CreateRegion(cur_elt, proc, dataSize, start, end)
9 else

10 Throw Unschedulable

The STR2RTS applications1 are modeled using fork-join graphs and come with timing
estimates for each task and amount of data exchanged between them. We did not use all the
benchmarks and applications provided in the suite as some are not parallel, they are made
of a linear chain of tasks (i.e. CFAR, FIR, ComplexFIR, FTT6), making them uninteresting
for multi-core platforms. This leaves us 18 benchmarks with 73 tasks in average and average
memory footprint of 4 KB.

The synthetic task-graphs were generated with the latest version of the TGFF generation
software. Generated task-graphs include chains of tasks with different lengths and widths,
fork-join graphs and more evolved structures (e.g. multi-DAGs). The resulting task graph
characteristics are presented in Table 2. The table includes the number of task-graphs, their

1 A table describing each used benchmark is available in the appendix.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:11

number of tasks, the maximum width of the task-graph, the range of WCET values for
each task and the range of amount of exchanged data in bytes between pairs of tasks, the
range of code size and stack size for each task, and the global ratio of WCET per amount of
exchanged data. The TGFF parameters (average and indicator of variability) are set in such
a way that the average values for task WCETs and volume of data exchanged between pairs
of tasks correspond to the analogous average values for the STR2RTS benchmarks.

Table 2 Task-graph characteristics for synthetic task-graphs.

#Task-graphs 50
#Tasks 5, 69, 22

Max. width 3, 17,8
Exchanged

data [0; 192]

WCET [5; 6000[
Code size [3; 3920[
Local size [1; 60]

Ratio WCET
data

10

All reported experiments have been conducted on several nodes from an heterogeneous
computing grid with 138 computing nodes (1700 cores). In all experiments, the duration a
core is granted the bus (Tslot) is set to 3 as in [21] and shown in [30] to have little impact on
the schedule length. The transfer rate is one word (4 bytes) per time unit.

5.1 Baseline: Integer Linear Programming scheduling
An Integer Linear Programming (ILP) formulation consists of a set of integer variables, a set
of constraints and an objective function. Constraints describe the problem to solve in the
form of linear inequalities. Solving a problem consists in finding a valuation for each variable
satisfying all constraints with the goal of minimizing/maximizing the objective function.
Table 3 summarizes the variables used in the ILP formulation. For a concise presentation of
constraints, the two logical operators ∨,∧ are directly used in the text of constraints. These
operators can be transformed into linear constraints in order to properly use ILP solvers
using simple transformation rules from [5].

Objective function

The objective is to obtain the shortest schedule, and so to minimize the makespan Θ,
Equation (2a). Equation (2b) constrains the completion time of all tasks (starting of all write
fragment ρw(i,f), plus its latency DELAY w(i,f)) to be inferior or equal to the schedule makespan.

minimize Θ (2a)
∀i ∈ T ;∀f ∈ Fwi ; ρw(i,f) +DELAY w(i,f) ≤ Θ (2b)

Problem constraints

Some basic rules of a valid schedule are expressed in the following equations. Equation (3a)
ensures the unicity of a task mapping (pi,c = 1 τi is mapped on core c). Equation (3b)
defines if two tasks are mapped on the same core (mi,j = 1). When aeei,j = 1 then τei is
scheduled before τej , thus Equation (3d) forbids an order of phases (resp. fragments) and
its reversed order to be both active but imposes to choose one; one of the aeei,j , aeej,i must
be equal to 1, but both can not be equal to 1. Equations (3e) unifies Equations (3b) and
(3d) to order exec phases only on the same core. In Equation (3d), no equation enforces

ECRTS 2019

25:12 Hiding Communication Delays in SPM-Based Multi-Cores

Table 3 ILP variables.

In
t.

va
ria

bl
es Θ schedule makespan

ρr(i,p), ρei , ρw(i,q) start times of τr(i,p), τei and τw(i,q)
spmsrcz computed size of SPM region z on core c
σ(i,f), σi spm reservation start times of τX(i,f), τei
ω(i,f), ωi spm reservation end times of τX(i,f), τei

B
in
ar
y
va
ria

bl
es

pi,c = 1 τei is mapped on core c
mi,j = 1 τei & τej are mapped on the same core
aeei,j = 1 τei is scheduled before τej (ρei ≤ ρej)

aXY(i,f),(j,g) = 1
τX(i,f) is scheduled before τY(j,g),
in the sense ρX(i,f) ≤ ρY(j,g)
XY ∈ {rr, ww, rw,wr}

amee
i,j = 1 same as aeei,j but on the same core

amXY
i,j = 1 same as aXYi,j but on the same core

XY ∈ {rr, ww, rw,wr}
spmpz,i = 1 τei is allocated to SPM region z
spmpz,(i,f) = 1 τX(i,f) is allocated to SPM region z

spmm(i,f),(j,g) = 1 τX(i,f) and τX(j,g) are assigned to the same
region (similar to mi,j)

spma(i,f),(j,g) = 1 τX(i,f) is causally before τX(j,g)
(similar to ai,j)

spmam(i,f),(j,g) = 1
τX(i,f) is causally before τX(j,g), and both
are assigned to the same region
(similar to ami,j)

to have the same ordering for exec phases as for with read phases, because the solver does
not have to chose an order between them (see Section 2). The same remark applies to exec
phases and write phases.
∀(i, j) ∈ T × T ;XY ∈ {rr, ww, rw,wr};∀f ∈ FXi ;∀g ∈ FYj ; i 6= j∑

c∈P
pi,c = 1 (3a)

mi,j =
∑
c∈P

(pi,c ∧ pj,c) and mi,j = mj,i (3b)

aeei,j + aeej,i = 1 (3c)
aXY(i,f),(j,g) + aXY(j,g),(i,f) = 1 (3d)

amee
i,j = aeei,j ∧mi,j (3e)

ρei + Ci ≤ ρej +M× (1− amee
i,j) (3f)

ρX(i,f) +DELAY X(i,f) ≤ ρ
Y
(j,g) +M× (1− aXY(i,f),(j,g)) (3g)

Equation (3f) forbids the overlapping of two exec phases when mapped on the same core
by forcing one to execute after the other. Equation (3g) forbids to have more than one active
memory transfer at a time to produce contention-free schedules. Equations (3f) and (3g) must
be activated only if the two elements are scheduled in a specific order. Thus, a nullification
method is applied by using the classical big-M notation (the big-M notation allows to force a
constraint to hold depending on a condition as further explained in [18]). The selected value
for the big-M constant is the makespan of a sequential schedule on 1 core, the sum of tasks’
WCETs and communication delays, which is the worst scenario that can arise.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:13

Read-exec-write semantics constraints

Equations (4a) and (4b) constrain the order of all phases of a task to be read phase, then
exec phase, then write phase. But, these phases will not necessarily be scheduled contiguously.
The start date of τei (ρei) must be some time after the completion of all read fragments (start
of read fragment ρr(i,f) + latency DELAY r(i,f)). Similarly, each write fragment starts (ρw(i,f))
some time after the end of the exec phase (start of exec phase ρei + WCET Ci).
∀i ∈ T,

∀f ∈ F ri , ρei ≥ ρr(i,f) +DELAY r(i,f) (4a)

∀f ∈ Fwi , ρw(i,f) ≥ ρ
e
i + Ci (4b)

Data dependencies in the task-graph

Equation (5) enforces data dependencies by constraining all read fragments to start after the
completion of all their respective predecessors. For a read fragment its predecessor is the
write fragment of the task that produced the corresponding data.

∀i ∈ T, ∀f ∈ F ri ,∀(j, g) ∈ pred(i, f) ρw(j,g) +DELAY w(j,g) ≤ ρ
r
(i,f) (5)

Assigning SPM regions

Equations (6a) & (6b) force every element (exec phase and fragments) from τi to be mapped
on one and only one region z. Identically to [22], we initially consider the number of regions
to be equal to the number of elements (number of exec phase + number of fragments). With
the limited capacity of the SPM, the solver will then be able to minimize the number of
effectively used regions.

∀i ∈ T ;
∑
z∈R

spmpz,i = 1 (6a)

f ∈ F, i = task(f);
∑
z∈R

spmpz,(i,f) = 1 (6b)

Equations (7a) and (7b) set the size (spmsrcz) of region z on core c to be the largest
amount of data that will be stored in it. The data stored by an exec phase includes the code
size (CSt) and local data (SSt, stack data). The data stored by a read or write fragment
(DX

(i,f)) includes all data consumed (or produced) by a task from one predecessor (or one
successor). To store data into a given region of a core, both mapping variables for the region
spmpz,(i,f) and the core pi,c must be set to 1.
∀c ∈ P,∀z ∈ R,∀i ∈ T,

spmsrcz ≥ (SSi + CSi) (spmpz,i ∧ pi,c) (7a)
∀χ ∈ {r, w},∀f ∈ Fχi ; spmsrcz ≥ Dχ

(i,f) (spmpz,(i,f) ∧ pi,c) (7b)

Equation (8) limits the sum of size for each region for a core to the available SPM size.

∀c ∈ P,
∑
z∈R

spmsrcz ≤ SPMSIZEc (8)

ECRTS 2019

25:14 Hiding Communication Delays in SPM-Based Multi-Cores

Delimiting the usage time of a region by an element relies on Definitions 1, 2 and 3.
Equation (9a) sets the allocation start time σ(i,f) of τ r(i,f) to be equal to its schedule start time
and the allocation end time ω(i,f) to be the end of the corresponding exec phase. Equation
(9b) forces the lifetime of the region used by the exec phase to be the whole duration of the
schedule (recall that Θ represents the overall makespan). Equation (9c) sets the allocation
start time σ(i,f) of τw(i,f) equal to the beginning of the exec phase and the allocation end time
ω(i,f) equal to its start time.
∀i ∈ T

∀f ∈ F ri ; σ(i,f) = ρr(i,f) and ωi = ρei + Ci (9a)
σi = 0 and ωi = Θ (9b)

∀f ∈ Fwi ; σ(i,f) = ρei and ω(i,f) = ρw(i,f) +DELAY w(i,f) (9c)

Mapping elements (exec phases and communication fragments) to SPM regions is very
similar to mapping tasks on cores. Therefore, following equations (10a), (10b), (10c) and
(10d) mimic the behaviour of respectively (3b), (3d), (3e) and (3f) by replacing variables
mi,j , ai,j and ami,j with spmmi,j , spmai,j and spmami,j . As a reminder, (10a) detects if
two fragments are assigned to the same region from the same core, (10b) represents the
causality of a fragment compare to another, and (10c) represents this causality on the same
region. Finally, (10d) imposes the mutual exclusion of the reservation time.
∀(f, g) ∈ F × F, f 6= g, i = task(f), j = task(g)

spmm(i,f),(j,g) =
∑
z∈R

(mi,j ∧ spmpz,(i,f) ∧ spmpz,(j,g)) (10a)

spma(i,f) + spma(j,g) = 1 (10b)
spmam(i,f),(j,g) = spma(i,f) ∧ spmm(i,j),(j,g) (10c)
ω(i,f) ≤ σ(j,g) +M× (1− spmam(i,f),(j,g)) (10d)

5.2 Quality of the heuristic compared to the ILP
The following experiments aim at estimating the gap between makespans of schedules
generated by the heuristic opposed to the optimal solutions provided by the ILP solver.
We expect this gap to be small. Due to the intrinsic complexity of solving our scheduling
problem using ILP, we need for these experiments a large number of small task-graphs, such
that the ILP is solved in reasonable time. We thus used synthetic task graphs generated
using TGFF (see Table 2). For each graph, we varied the number of cores in {2, 4, 8, 12} and
the sizes of the SPM vary in {2KB, 4KB}. SPM sizes allow to cover three situations: 1)
all test-cases fit in the SPM (4KB size), 2) some test-cases do not entirely fit in SPM (2KB
size), 3) some test-cases are too large, hence unschedulable (2KB size, biggest benchmarks).

The ILP solver used is CPLEX v12.7.1 configured with a timeout of 24 hours. The
heuristic is implemented in C++ with a 60 minutes timeout.

Table 4 Degradation of the heuristic compared to the ILP on the synthetic task-graphs.

% of exact results degradation
(ILP only) <min,max,avg> %

68% 0%, 20%, 3%

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:15

Table 4 presents the combined results for all different configurations. First, it shows
the number of optimal (including infeasible) results the ILP solver is able to find in the
given timeout – 68%. The remaining 32% includes all other cases where the solver reaches
the timeout without neither an optimal solution nor an infeasibility verdict. Then Table 4
presents the minimum/maximum and the average degradation induced by the heuristic over
the ILP. As displayed, the average degradation is low thus showing the quality of our heuristic.

Figure 3 Average ILP solving time for all configurations per number of tasks.

Figure 3 shows that solving an ILP problem does not scale with the growing number of
tasks. In contrast, we believe that the proposed scheduling technique does, given its low
running times: for the synthetic graphs the average schedule generation times are always less
than one second, while for the SRT2RTS benchmarks (up to 340 tasks), the heuristic needs
4 minutes on average.

5.3 Blocking vs non-blocking communications
To compare the benefit of hiding communication latency, the proposed scheduling technique
must be opposed to a scheduler that does not hide it. We preferred to modify our heuristic to
implement both the blocking and non-blocking methods instead of reusing a state-of-the-art
algorithm. The main reason, as detailed in Section 6, is that related work have characteristics
that are hardly compatible with our proposal: different task model [35], SPM big enough to
store all code/data [30, 3], lack of information on SPM management [4], different interconnect
[16]. Another reason for this choice is to guarantee that the deviation between the results from
the two communication modes will not be affected by any other technical implementation
decision (e.g.: sorting algorithm).

To summarize the modifications applied to the heuristic in order to get the blocking
mode: 1) we forbid to have more than one phase active at a time (both communication and
computation as in the example of Figure 2a) 2) we do not fragment communications. We
varied the number of cores in {2, 4, 8, 12}, and the SPM sizes in {4KB, 2MB} (2MB is the
SMEM (Shared MEMory) size in one cluster of the Kalray MPPA [11]). All aforementioned
three situations regarding the SPM size are covered with these configurations. Note that
STR2RTS benchmarks are larger in term of memory space than synthetic benchmarks.
We then calculate the gain of the non-blocking mode versus the blocking mode that we
expect to be positive.

ECRTS 2019

25:16 Hiding Communication Delays in SPM-Based Multi-Cores

Figure 4 Gain of non-blocking communications over blocking on STR2RTS benchmarks per
cores/SPM configuration – avg: 4%.

Figure 4 presents the average gain per benchmark for all configurations, e.g. 2c-2MB
stands for 2-cores and SPM size of 2MB. Unfeasible configurations are denoted by the
symbol “x”. The maximum gain is 16% (FIRBank on 2 cores with 2MB SPM), whereas the
average is 4%.

Figure 4 shows that some benchmarks are unschedulable for some configurations, e.g.
FFT2 with 2c-4KB. This comes from a lack of SPM space to place all code and all data.
This might be relaxed with code pre-fetching in read phase, which is left for future work.

Lower gains are observed when the amount of parallelism is low due to the lack of
opportunity to hide communications. For example, Serpent is a chain of fork-joins containing
2 concurrent tasks only, as opposed to FIRBank which includes only one fork-join construct
with several long chains of tasks. In addition, higher gains are observed on hardware
configurations with lower number of cores – i.e. 6% on average with 2-cores as opposed to
4% with 12-cores.

Figure 5 Gain of non-blocking communications over blocking on TGFF benchmarks.

To evaluate the impact of graph shapes on gains, we experimented our heuristic technique
on synthetic task graphs, the ones used previously to validate the heuristic. In contrast to
STR2RTS graphs, that are fork-join graphs, synthetic task graphs are arbitrary directed
acyclic graphs. Results are depicted in Figure 5. We observe these graphs offer more
opportunities to hide communication, with an average gain of 8% in total.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:17

5.4 Impact of fragmentation strategy
Through the paper, we have split read/write phases according to tasks dependencies (one
fragment per edge in the task). We experimented with two more fine-grain splitting strategies:

splitting by Dslot: each fragment will fit in a Tslot bus period, each transmitting Dslot

bytes – a task transmitting 5 floats (20 bytes) with a Tslot ∗Dslot of 3∗4 bytes per request
will result to 2 fragments, generating 2 communications.
splitting by data-type unit (DTU): an application exchanging only floats will have a DTU
of 1 float (4 bytes). If a task produces 5 floats, then there is 5 fragments.

We conducted the experiments by applying our heuristic on the STR2RTS benchmarks, with
the very same experimental setup as before. We include in the comparison scheduling in
non-blocking mode without communication fragmentation (label no frag in Figure 6). We
expect the gain to increase as the fragment granularity gets smaller.

Figure 6 Average gain of non-blocking over blocking depending on fragmentation strategy.

Figure 6 presents the results with four granularities: no frag, edge (default configuration),
Dslot (12 bytes) and DTU (4 bytes). Fragmenting communications always result in shorter
schedules than the no frag configuration. In addition, in most cases the smaller granularity
results in higher gains. However the better the results are, the higher the schedule generation
time is, as given in the legend of the figure. Schedules are generated in less than 1 second
on average for no frag and edge, whereas several minutes are required on average for fine-
grain fragments.

5.5 Schedule implementation on a Kalray MPPA platform
We successfully implemented schedules generated with our heuristic targeting one cluster of a
Kalray MPPA Bostan platform [11]. The final code is largely auto-generated (only the code
of the exec phase of each task has to be inserted manually in the generated code). At the
time of writing, we managed to run benchmark BeamFormer_12ch_4b from the STR2RTS
benchmark suite [31]. Benchmark BeamFormer_12ch_4b is made of 56 tasks with a DAG
width of 12. The Kalray MPPA platform includes 16 clusters, each containing 16 cores and
a SMEM of 2MB. Four I/O clusters, containing 4 cores each, access either the off-chip global
memory or the Ethernet. Clusters are connected through a Network On Chip (NoC).

ECRTS 2019

25:18 Hiding Communication Delays in SPM-Based Multi-Cores

Following is a summary of the implementation on the Kalray MPPA. Implementation
was done at the bare metal level. The SMEM is configured in banked address mapping mode
(consecutive addresses are mapped to the same memory bank), with memory banks are split
between computing cores at compile time to have a single-bank considered as SPM per core,
as assumed in Section 2.

Data exchanges between cores and the off-chip memory walk through the architecture’s
NoC, which in our experiments is free from interferences as we only use one cluster of
the architecture2. Communications are implemented using the Kalray channel connectors
(one channel for reading, one channel for writing), kept open for the whole execution
of the application.

Each core runs one thread, in charge of implementing the schedule of exec phases generated
off-line, by interleaving a sched function between exec phases. The sched uses busy-waiting
(reads the local clock of the core to wait for tasks’ start time). The worst-case measured
overhead of the sched function due to clock reading is 32 cycles. An ad hoc protocol
using barriers is used to re-synchronize local clocks at application start. A specific core is
reserved to act as a software DMA engine and is in charge of implementing the schedule of
communications (read and write phases) determined off-line, in a contention-free manner.
Implementation of communication phases schedule is identical to the one of computation
phases. Moreover, the I/O receiving core follows the schedule to receive and store data to
the main memory or to send it to the cluster.

We were able to generate the following versions of the benchmark: 1) blocking mode
(Sbl), 2) non-blocking mode without communication fragmentation (Snbl), 3) non-blocking
mode with fragmentation by edges (Sedgenbl), 4) non-blocking mode with fragmentation by
Dslot (12 bytes) (Sdslotnbl), 5)non-blocking mode with fragmentation by DTU, fragment size is
one 4-bytes word (1 float) (Sdtunbl).

In terms of implementation overheads, there is no overhead to set up the software-
implemented DMA at run-time, since channel connectors are initialized only once at ap-
plication start. The overhead of 32 cycles due to the scheduler implementation is taken
into account.

For this experiments, WCETs of computations and communications were estimated using
measurements, adding an arbitrarily chosen margin of 20% for safety. Taking into account
implementation overheads, as expected, the overall schedule makespans are: Sbl > Snbl >

Sedgenbl > Sdslotnbl . The gain of Snbl schedule over the Sbl schedule is 1%, the gain of Sedgenbl

schedule over the Snbl schedule is 36%, and the gain of Sdslotnbl over Snbl is 22%.

However, the finer fragmentation policy suffers from an overhead on this platform. The
degradation of Sdtunbl over Sedgenbl is 24%. The source of this overhead mainly originates from
read phases measured time where reading one float takes as much time as reading four floats.
Nevertheless, we observe a small decrease in write phases measured time depending on the
amount of data exchanged (approximately 1000 cycles on average).

2 Note that our abstract architecture model from Section 2 uses a bus. Using a NoC in the Kalray
MPPA only changes the overall communication delay computed in Equation 1 since the NoC is free
from contentions.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:19

6 Related work

Accessing the global shared memory has always been a performance bottleneck. To overcome
this issue, prefetching mechanisms bring information closer to the processor before it is
actually needed. Hardware prefetchers will speculatively request data or instructions based
on memory access patterns [28]. Software prefetchers give control to the developer or compiler
to introspect the code and add prefetching instructions [23]. In this paper we propose a
software prefetcher that adds prefetching based on a schedule generated off-line.

Most of other works considering SPM aim at deciding what should be stored into the
SPM and when to evict data, and in cases some information cannot be stored in SPM it
stays in main memory. Considered metrics for SPM allocation are average-case performance
[15, 25], power consumption [36], WCET [13], or schedule makespan [4]. In contrast to these
studies, our work, in order to control resource contention, requires all information to be
stored in SPM.

Wasly and Pellizzoni [38] add a hardware component, named RSMU, to manage the
SPM. This RSMU acts similarly as a Memory Management Unit (MMU), except it also
uses a previously computed schedule for loads/unloads of code/data from mixed-critical
tasks. To use our method, no specific hardware component needs to be added. Giorgi et
al. [17] introspect the code to add control of the RSMU, in order to prefetch global data
from the global external memory into a local memory on a many-core architecture. They
modified the compiler to isolate loads into specific basic blocks and added synchronization if
the mandatory data are not yet ready for use. However, their study does not include any
real-time guarantee on blocking times. We can guarantee the data will be ready for use
without blocking time.

Kim et al. [22] present an algorithm to map a function to a specific SPM region, that
inspired our phase to region mapping step. They aim at storing the basic blocks into the
SPM in order to improve the WCET of an application on a single-core. We improve their
work to map multiple tasks on multi-cores.

Cheng et al. [7] derive a speed-up factor and a resource augmentation factor when
partitioning memory banks with minimum interference. At the opposite we have a complete
off-line schedule with phase to region allocation on single bank SPM memory.

The PRedictable Execution Model (PREM) from Pellizzoni et al. [29, 1] exposes par-
allelism by splitting tasks in communication/computation phases. PREM has been widely
used – e.g. [38, 3, 39, 4] – because it increases the predictability of an application by isolating
memory accesses. Coupling this principle with a software-managed memory (SPM) drastically
improves the predictability of the application and so improves its estimated WCET. The
authors of [27] present a method to automatically adapt any application to the PREM model,
which then allows the application of any SPM load/unload technique including ours. The
studies we could find exploiting both the SPM and the PREM model usually fuse the write
phase of a task with the next activated read phase on the same core [38, 39, 2]. As opposed
to them, we follow the Acquisition-Execution-Restitution principle from [26] which adds
more freedom to schedule generation.

On a single-core, using PREM, Soliman et al. [34] hide the communication latency at
the basic-block level thanks to a modification of the LLVM compiler toolchain. Wastly and
Pellizzoni [39] proposed to dynamically co-schedule, without preemption, DMA accesses and
sporadic tasks on a SPM-based single-core. The SPM is split in 2 parts: one assigned to the
currently executing task, while the other load information for the next scheduled task. Our
work makes a better use of the SPM by allowing more than two regions alive at the same
time. This last work has been extended to multi-core in [2].

ECRTS 2019

25:20 Hiding Communication Delays in SPM-Based Multi-Cores

Rouxel et al. [30] presented a co-scheduling and mapping of computation and com-
munication phases from task-graph for multi-cores. They limited their work to blocking
communication whereas we use non-blocking ones and we fragment them to add flexibility
in the schedule. They assume an infinite SPM size, which looks to us unrealistic, therefore
we relaxed this assumption in our scheduling method. In addition, they showed that their
scheduling method with an accurate contention model exhibits similar gain and a larger
solving times than contention-free ones. Hence, we use a contention-free model in this paper.

The technique proposed in [4] generates contention-free off-line schedules with periodic
dependant tasks. Dealing with the SPM, they aim at deciding if a task should be resident
in SPM or be fetched before each execution from the global memory. Unfortunately they
do not provide information on SPM allocation, raising questions about address allocation
and SPM fragmentation. With our region allocation scheme, an SPM allocation scheme that
manages fragmentation is proposed.

A technique to hide transfers behind calculations is presented in [35]. Similarly to [39]
and [2], the SPM is split in two regions, one used by the application while the other is being
loaded. Our work differs from the work in [35] by the task model under use (dependant tasks
in our work, sporadic independent tasks in their work). Moreover, our work make better use
of SPM by allowing more than two SPM regions to be alive simultaneously.

The work presented in [16] proposes an off-line scheduling scheme for flight management
systems using a PREM-like task model. The proposed schedule avoid interferences to access
the communication medium. However, in contrast to our work, there are still interferences
in their schedule, due to communications between tasks assigned to different cores.

Other works very close to our research, such as [24, 9, 37, 33], statically schedule
applications represented by synchronous data flow graphs with some form of buffer checking.
However, they do not use the PREM/AER model like us [37, 33], and none of them fragment
the communications, which allows us to drastically increase the hiding opportunities. The
research presented in [6] proposes a feasibility test that verifies whether scratchpad memories
are large enough to contain the maximum memory backlog that may be generated by an
application modeled as a task graph. In contrast to [6], our work focuses not only on memory
usage feasibility but also on timing feasibility.

7 Conclusion

In this work, we have shown how to minimize the impact of the communication latency
when mapping/scheduling a task graph on a multi-core, by overlapping communications and
computations. We also argued this kind of technique should always be coupled with a memory
allocation scheme to guarantee the integrity of the accessed data. Thus we formulated such
allocation scheme in our scheduler. Our experimental results show that, compared to a
scenario not overlapping communications and computations, our approach improves the
schedule makespan by 4% on average on streaming application (8% on synthetic task graphs).
As future work, we plan to improve the accesses of the global main memory such as the
DRAM where the scheduler accounts for the locality in this memory. For example, the
fragments could be designed to exploit DRAM row locality and read/write switching of the
communications. In the near future, we intend to extend this work to applications integrating
multiple DAGs. Finally, we plan to strengthen our implementation on the Kalray MPPA
platform, especially on the SMEM management.

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:21

References

1 Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multithreaded
applications on multicore systems. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

2 Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global scheduling of
real-time tasks. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
2015 IEEE, pages 285–296. IEEE, 2015.

3 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and
Thomas Nolte. Contention-free execution of automotive applications on a clustered many-core
platform. In Real-Time Systems (ECRTS), 2016 28th Euromicro Conference on, pages 14–24.
IEEE, 2016.

4 Matthias Becker, Saad Mubeen, Dakshina Dasari, Moris Behnam, and Thomas Nolte. Schedul-
ing multi-rate real-time applications on clustered many-core architectures with memory
constraints. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 560–567, January 2018. doi:10.1109/ASPDAC.2018.8297382.

5 Gerald G Brown and Robert F Dell. Formulating integer linear programs: A rogues’ gallery.
INFORMS Transactions on Education, 7(2):153–159, 2007.

6 Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C. Buttazzo. Memory
Feasibility Analysis of Parallel Tasks Running on Scratchpad-Based Architectures. In 2018
IEEE Real-Time Systems Symposium, RTSS 2018, Nashville, TN, USA, December 11-14,
2018, pages 312–324, 2018.

7 Sheng-Wei Cheng, Jian-Jia Chen, Jan Reineke, and Tei-Wei Kuo. Memory Bank Partitioning
for Fixed-Priority Tasks in a Multi-core System. In Real-Time Systems Symposium (RTSS),
2017 IEEE, pages 209–219. IEEE, 2017.

8 Junchul Choi, Hyunok Oh, Sungchan Kim, and Soonhoi Ha. Executing synchronous dataflow
graphs on a spm-based multicore architecture. In Proceedings of the 49th Annual Design
Automation Conference, pages 664–671. ACM, 2012.

9 Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge. Stream compilation
for real-time embedded multicore systems. In Code generation and optimization, 2009. CGO
2009. International symposium on, pages 210–220. IEEE, 2009.

10 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling algorithms for
multiprocessor systems. in ACM Computing Surveys, 2011.

11 Benoît Dupont De Dinechin, Duco Van Amstel, Marc Poulhi‘es, and Guillaume Lager. Time-
critical computing on a single-chip massively parallel processor. In Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

12 Steven Derrien, Isabelle Puaut, Panayiotis Alefragis, Marcus Bednara, Harald Bucher, Clément
David, Yann Debray, Umut Durak, Imen Fassi, Christian Ferdinand, Damien Hardy, Angeliki
Kritikakou, Gerard Rauwerda, Simon Reder, Martin Sicks, Timo Stripf, Kim Sunesen, Timon
ter Braak, Nikolaos Voros, and Jürgen Becker. WCET-Aware Parallelization of Model-Based
Applications for Multi-Cores: the ARGO Approach. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2017. IEEE, 2017.

13 Jean-Francois Deverge and Isabelle Puaut. WCET-directed dynamic scratchpad memory
allocation of data. In Real-Time Systems, 2007. ECRTS’07. 19th Euromicro Conference on,
pages 179–190. IEEE, 2007.

14 Robert P Dick, David L Rhodes, and Wayne Wolf. TGFF: task graphs for free. In Proceedings of
the 6th international workshop on Hardware/software codesign, pages 97–101. IEEE Computer
Society, 1998.

15 Boubacar Diouf, Can Hantacs, Albert Cohen, "Ozcan "Ozturk, and Jens Palsberg. A decoupled
local memory allocator. ACM Transactions on Architecture and Code Optimization (TACO),
9(4):34, 2013.

ECRTS 2019

http://dx.doi.org/10.1109/ASPDAC.2018.8297382

25:22 Hiding Communication Delays in SPM-Based Multi-Cores

16 Guy Durrieu, Madeleine Faugere, Sylvain Girbal, Daniel Gracia P’erez, Claire Pagetti, and
Wolfgang Puffitsch. Predictable flight management system implementation on a multicore
processor. In Embedded Real Time Software (ERTS’14), 2014.

17 Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic. Exploiting DMA to enable non-blocking
execution in Decoupled Threaded Architecture. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–8. IEEE, 2009.

18 Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and Nonlinear Optimization, Second
Edition. Society for Industrial Mathematics, 2008.

19 James A Kahle, Michael N Day, H Peter Hofstee, Charles R Johns, Theodore R Maeurer,
and David Shippy. Introduction to the cell multiprocessor. IBM journal of Research and
Development, 49(4.5):589–604, 2005.

20 Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Inter-core Prefetching for Multicore
Processors Using Migrating Helper Threads. SIGPLAN Not., 46(3):393–404, March 2011.
doi:10.1145/1961296.1950411.

21 Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk. Evaluation of resource arbitration
methods for multi-core real-time systems. In WCET, pages 1–10, 2013.

22 Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastaval. WCET-aware dynamic code
management on scratchpads for software-managed multicores. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages 179–188. IEEE, 2014.

23 Alexander C Klaiber and Henry M Levy. An architecture for software-controlled data prefetch-
ing. In ACM SIGARCH Computer Architecture News, volume 19, pages 43–53. ACM, 1991.

24 Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of stream programs on
multicore platforms. In ACM SIGPLAN Notices, volume 43, pages 114–124. ACM, 2008.

25 Lian Li, Jingling Xue, and Jens Knoop. Scratchpad memory allocation for data aggregates via
interval coloring in superperfect graphs. ACM Transactions on Embedded Computing Systems
(TECS), 10(2):28, 2010.

26 Cl’audio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia P’erez. A closer look
into the aer model. In Emerging Technologies and Factory Automation (ETFA), 2016 IEEE
21st International Conference on, pages 1–8. IEEE, 2016.

27 Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated software
refactoring for predictable execution on COTS embedded systems. In Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2014 IEEE 20th International Conference on,
pages 1–10. IEEE, 2014.

28 Pierre Michaud. Best-Offset Hardware Prefetching. In International Symposium on High-
Performance Computer Architecture, Barcelona, Spain, March 2016. doi:10.1109/HPCA.2016.
7446087.

29 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
269–279. IEEE, 2011.

30 Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening contention delays while
scheduling parallel applications on multi-core architecture. In Embedded Software (EMSOFT),
2017 International Conference on. ACM, 2017.

31 Benjamin Rouxel and Isabelle Puaut. STR2RTS: Refactored StreamIT Benchmarks into
Statically Analyzable Parallel Benchmarks for WCET Estimation & Real-Time Scheduling.
In Jan Reineke, editor, 17th International Workshop on Worst-Case Execution Time Analysis
(WCET 2017), volume 57 of OpenAccess Series in Informatics (OASIcs), pages 1–12, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.
WCET.2017.1.

32 Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and Daniel Prokesch.
Patmos reference handbook. Technical University of Denmark, Tech. Rep, 2015.

http://dx.doi.org/10.1145/1961296.1950411
http://dx.doi.org/10.1109/HPCA.2016.7446087
http://dx.doi.org/10.1109/HPCA.2016.7446087
http://dx.doi.org/10.4230/OASIcs.WCET.2017.1
http://dx.doi.org/10.4230/OASIcs.WCET.2017.1

B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:23

33 Stefanos Skalistis and Alena Simalatsar. Near-optimal deployment of dataflow applications
on many-core platforms with real-time guarantees. In 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 752–757. IEEE, 2017.

34 Muhammad Refaat Soliman and Rodolfo Pellizzoni. WCET-Driven Dynamic Data Scratchpad
Management With Compiler-Directed Prefetching. In Marko Bertogna, editor, 29th Eur-
omicro Conference on Real-Time Systems (ECRTS 2017), volume 76 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 24:1–24:23, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2017.24.

35 Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak, Rodolfo
Pellizzoni, and Marco Caccamo. A real-time scratchpad-centric os for multi-core embedded
systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016
IEEE, pages 1–11. IEEE, 2016.

36 Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada. Partitioning and allocation of
scratch-pad memory for priority-based preemptive multi-task systems. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2010, pages 1124–1129. IEEE, 2010.

37 Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler. Many-core
scheduling of data parallel applications using SMT solvers. In Digital System Design (DSD),
2014 17th Euromicro Conference on, pages 615–622. IEEE, 2014.

38 Saud Wasly and Rodolfo Pellizzoni. A dynamic scratchpad memory unit for predictable real-
time embedded systems. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference
on, pages 183–192. IEEE, 2013.

39 Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority scheduling. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th,
pages 75–86. IEEE, 2014.

ECRTS 2019

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.24

25:24 Hiding Communication Delays in SPM-Based Multi-Cores

A STR2RTS benchmark suite

Following Table 5 characterise the used benchmarks from STR2RTS benchmark suite. The
first column presents the number of tasks and the second column the width of the graph.
Then it gives the average data in bytes sent along all edges. Following is the average memory
footprint of all tasks withing a benchmark, it includes the code size and the stack size. Last
column shows the average, among all tasks, of WCET estimates. All this information are
shipped with the benchmark suite and target a Patmos single core architecture [32].

Table 5 Benchmarks characteristics.

Name #
Ta

sk
s

W
id
th

av
g
da

ta
(b
yt
es
)

av
g
ta
sk
’s

m
em

or
y
fo
ot
pr
in
t

av
g
ta
sk
’s

W
C
E
T

Audiobeam 20 15 12 B 108 B 41
Beamformer 56 12 18 B 246 B 2718
BitonicSort 122 8 49 B 109 B 30
DCTverify 7 2 513 B 506 B 10045
FFT2 26 2 551 B 2 KB 618
FFT3 82 16 84 B 208 B 120
FFT4 10 2 6 B 32 B 11
FFT5 115 16 52 B 1 KB 38
Firbank 340 12 505 B 2 KB 670
FMRadio 67 20 6 B 191 B 235
FilterbankNew 53 8 35 B 180 B 144
MP3 116 36 3502 B 19 KB 12222
MatrixMultiBlock 23 2 793 B 1 KB 726
Serpent 234 2 1013 B 709 B 922
dcalc 84 4 106 B 685 B 174
IDCTcompare 13 3 454 B 685 B 4557
perftest 16 4 8267 B 21 KB 5269
tde_pp 55 2 25344 B 16 KB 2931

Slot-Based Transmission Protocol for Real-Time
NoCs – SBT-NoC
Borislav Nikolić
Institute of Computer and Network Engineering, TU Braunschweig, Germany
nikolic@ida.ing.tu-bs.de

Robin Hofmann
Institute of Computer and Network Engineering, TU Braunschweig, Germany
hofmann@ida.ing.tu-bs.de

Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract
Network on Chip (NoC) interconnects are some of the most challenging-to-analyse components of
multiprocessor platforms. This is primarily due to the following two reasons: (i) NoCs contain
numerous shared resources (e.g. routers, links), and (ii) the network traffic often concurrently
traverses multiple of those resources. Consequently, complex contention scenarios among traffic
flows might occur, some of the important implications being significant performance limitations,
and difficulties when performing the real-time analysis.

In this work, we propose a slot-based transmission protocol for NoCs (called SBT-NoC), and an
accompanying analysis method for deriving worst-case traffic latencies. The cornerstone of SBT-NoC
is a contention-less slot-based transmission, arbitrated via a protocol running on a dedicated network
medium. The main advantage of SBT-NoC is that, while not requiring any sophisticated hardware
support (e.g. virtual channels, a flit-level arbitration), it makes NoCs amenable to real-time analysis
and guarantees bounded low latencies of high-priority time-critical flows, which is a sine qua non for
the inclusion of NoCs, and multiprocessors in general, in the real-time domain. The experimental
evaluation, including both synthetic workloads and a use-case of an autonomous driving vehicle
application, reveals that SBT-NoC offers a plethora of configuration opportunities, which makes it
applicable to a wide range of diverse traffic workloads.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded systems

Keywords and phrases Real-Time Systems, Embedded Systems, Network-on-Chip, Protocols

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.26

1 Introduction

Even though multiprocessors are now ubiquitous in almost all computing areas, they are
still often considered as a new frontier technology in the real-time domain. Traditionally,
in the real-time analysis of multiprocessors, the emphasis is on a single type of shared
resources – processing elements (cores). However, due to the core proliferation trend in
the multiprocessor area, contentions for other shared resources, such as an interconnect
medium, become more apparent. This implies that, in order to perform the timing analysis
of real-time applications deployed on multiprocessors, it is no longer sufficient to only take
their computation requirements into account, but communication and memory traffic need
to be considered as well. Therefore, the real-time analysis of network interconnects became a
crucial prerequisite for the integration of multiprocessors in the real-time domain.

© Borislav Nikolic, Robin Hofmann, and Rolf Ernst;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 26; pp. 26:1–26:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nikolic@ida.ing.tu-bs.de
mailto:hofmann@ida.ing.tu-bs.de
mailto:ernst@ida.ing.tu-bs.de
https://doi.org/10.4230/LIPIcs.ECRTS.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Slot-Based NoC

The Network-on-Chip architecture [2] (NoC) is among the prevalent choices for intercon-
nects in contemporary multiprocessors, mostly due to its good performance and scalability
potential [14]. However, the real-time analysis of NoCs is a challenging topic. This is
primarily due the following two reasons: (i) NoCs are composed of numerous shared resources
(e.g. routers, links), and (ii) network traffic flows often concurrently traverse multiple of
those resources. As a consequence, infamous contention scenarios among traffic flows might
occur (e.g. head of line blocking [5] and backpressure [27]), causing significant performance
degradations as well as making the worst-case timing analysis difficult to perform.

Interestingly, the worst-case timing analysis of NoCs with single-channel ports and a
fixed-priority packet-level arbitration (referred to as basic NoCs hereafter) is still an open
research topic. This can be largely attributed to the aspects from the previous paragraph,
implying that basic NoCs “out-of-the-box” (i.e. without any enhancements) are not amenable
to real-time analysis, and hence do not represent satisfactory solutions for the real-time
domain. This is discussed in more detail in Section 6 (Experiment 1).

How to make NoCs viable interconnect choices for the real-time domain? Intuitively,
mechanisms are needed to ensure that a low priority traffic interferes with a high priority
one only slightly (ideally not at all), thus effectively providing low latencies for high-priority
time-critical flows, and big latencies for low-priority ones – which may not even have any
timing requirements.

One promising solution to these problems is to use sophisticated hardware support and
advanced router functionalities (e.g. virtual channels [5, 6] and a flit-level arbitration [23]),
and in that way make NoCs both more performant and more amenable to the real-time
analysis (e.g. [11,17,26]). Some other notable solutions revolve around (i) organising NoC
accesses in a time-division-multiplexing manner (e.g. [18]), (ii) explicitly reserving entire
paths before transmissions, called the virtual circuit method (e.g. [4]), and (iii) utilising
single-cycle multihop transfers to bypass intermediate routers (e.g. [8]). All these approaches
suffer from one or more of the following limitations: complex and/or pessimistic timing
analysis, expensive hardware requirements, inefficient use of resources, limited applicability
to certain workload types, and finally, inability to meet real-time requirements (e.g. bounded
low latencies of time-critical flows). This is discussed in more detail in Section 2.

Contribution. In this work, we propose a novel approach for making NoCs more applicable to
the real-time domain. Specifically, we propose a slot-based transmission protocol, called SBT-
NoC, and an accompanying analysis method for deriving worst-case traffic latencies. SBT-NoC
ensures a contention-less slot-based transmission, arbitrated via a protocol running over a
dedicated communication medium. By explicitly separating arbitration and data transmission
domains, infamous contention scenarios are prevented by design, which contributes to a less
complex and less pessimistic worst-case analysis, and perhaps even more importantly, to a
better utilisation of network resources. At the same time, a slot-based transmission represents
an efficient means to protect high priority flows from the lower-priority interference, thus
guaranteeing their bounded low latencies, which is an essential real-time requirement. Finally,
it is worth mentioning that besides a dedicated arbitration medium, SBT-NoC does not
require any sophisticated router functionalities, nor any additional hardware support (e.g.
virtual channels, flit-level arbitration), which implies that SBT-NoC can be easily adopted
by next-generation commercial multiprocessors.

2 Related Work

All approaches for the integration of NoCs in the real-time domain can be broadly classified
into two categories: contention-less and contention-aware. The former category supports
uninterrupted transmissions by implementing a temporal and/or spatial allocation of NoC

B. Nikolic, R. Hofmann, and R. Ernst 26:3

resources to individual traffic flows. One popular strategy is to allocate resources in a
time-division multiplexing (TDM) manner (e.g. [9, 10,13,18,20]). The three limitations of
TDM-based approaches are: (i) it might be challenging to find an efficient slots assignment
configuration, (ii) significant buffer space might be required to store flits in traversed routers,
and (iii) providing bounded low latencies for time-critical flows might require either resource
over-provisioning (large slots for those flows), or workload type restrictions (e.g. strictly
periodic traffic sources). The other approach from this category is a virtual circuit method.
It achieves contention-less transmissions by reserving an entire path before a transmission
(e.g. [4]). One downside is that a path establishing stage might be time consuming, and
hence assuring bounded low latencies for time-critical flows might be non-trivial.

On the other hand, contention-aware approaches allow contentions among traffic flows,
which are resolved via in-router arbitration mechanisms. One such method called round-
robin is particularly popular among hardware manufacturers (e.g. [1, 25]). Its popularity
comes from the fact that it offers a fair treatment to all traffic flows, thus promoting good
performance. Several worst-case analysis methods for NoCs with the round-robin mechanism
have been proposed, including the Network Calculus framework (e.g. [19]), the Compositional
Performance Analysis framework (e.g. [24]) and the Recursive Calculus framework (e.g. [15]).
However, one limitation of this mechanism is that it does not have any means to establish a
notion of priorities, and it may be difficult to achieve low latencies of time-critical flows.

Another class of contention-aware approaches uses a priority-based flit-level arbitration
via dedicated virtual channels. Currently, there exist several worst-case analysis methods,
e.g. [11,17,26]. Although this type of NoCs fulfils almost all requirements of the real-time
domain, its biggest limitations are substantial hardware requirements in a form of dedicated
virtual channels to each traffic flow within each router along its path. Another relevant point
is that dedicated virtual channels and the accompanying logic elevate power requirements,
thus rendering such NoCs inapplicable in scenarios where low power consumption is required
(e.g. embedded domain). Moreover, these approaches require routing mechanisms that
guarantee a single continuous contention domain between any two interfering flows (e.g.
dimension-ordered routing), which may be a limiting factor in some scenarios.

Recently, a novel type of interconnect architecture called SMART NoC [8] was introduced.
This approach aims to avoid complex in-network interference patterns by utilising a router
bypass mechanism which allows single-cycle multihop transmissions. However, one limitation
of this approach is that it does not have a means to enforce prioritisation among traffic flows,
and hence it may be challenging to achieve low latencies of time-critical flows.

Finally, it is worth mentioning that the arbitration protocol of SBT-NoC is, to an extent,
inspired by CAN [7], Byteflight [3] and FlexRay [16] technologies, which are used for bus-
based communication, predominantly in automotive in-vehicle networks. The common aspect
of these approaches is that, during the arbitration phase, all traffic sources indicate their
transmission requests, and at the end of the arbitration cycle one of them is granted the
permission to transmit. The arbitration in SBT-NoC is performed in a similar way, with the
following two fundamental distinctions: (i) instead of being interleaved with transmission
phases, the arbitration is performed continuously over a dedicated arbitration medium, and
(ii) instead of concluding the arbitration phase with a single transmission permission, multiple
traffic sources are able to gain the transmission permission and subsequently concurrently
transmit. The second aspect is of particular importance, because it allows to exploit the
full potential of an underlying NoC architecture. More details on the SBT-NoC arbitration
protocol (and the approach in general) are available in Section 5.

ECRTS 2019

26:4 Slot-Based NoC

Figure 1 Illustrative example of assumed platform architecture.

3 System Model

3.1 Platform Architecture

The assumed platform architecture is a multiprocessor systemM, comprising: (i) a compu-
tation plane, (ii) a data transmission plane and (iii) an arbitration plane. One example of
the assumed platform is illustrated in Figure 1.

A computation plane consists of m · n potentially heterogeneous processing elements
(cores) {µ1, µ2, ..., µm·n}.

A data transfer plane consists of m · n interconnected mutually synchronised routers
{ρ1, ρ2, ..., ρm·n}, with identical physical characteristics. Routers are connected in a way to
form a 2-D mesh topology, and each router ρi is, depending on its position, directly connected
with 2, 3 or 4 neighbouring ones. Each two neighbouring routers ρi and ρj are connected
via two unidirectional links of opposite directions, and it is assumed that all network links
have the same capacity, where dL stands for the transmission latency of one flit across one
link. The connection between the computation and the data transfer plane is also organised
in the form of two unidirectional links between each core µi and its corresponding router
ρi. These links have the same physical characteristics as router-to-router links. As in the
vast majority of NoCs, a data transfer is organised with the wormhole switching technique;
prior to transmission, a packet is divided into small elements of fixed size called flits, which
are successively injected into the NoC, where they travel to their destination in a pipelined
manner. Moreover, routers have single-channel ports (no virtual channels necessary), where
per-port buffers have the capacity to store at least two flits, so as to ensure a pipelined
transmission. Buffer overflows are prevented with credit-based flow control. As a routing
mechanism, any static technique can be applied (including source routing), with the only
requirement that a flow should not put itself in a deadlock. The packet routing overhead is
denoted by dR, and only the first flit of the packet (header) experiences this delay. Finally, all
routers have the same constant frequency ψ. Note that the link transfer latency dL and the
routing latency dR are typically expressed as a number of cycles (e.g. in Intel’s SCCC [12]
dL = 1 and dR = 3).

B. Nikolic, R. Hofmann, and R. Ernst 26:5

An arbitration plane1 consists of a bus system, to which all routers of the data transmission
plane are connected. The bus frequency is assumed to be the same as the frequency of the
routers. The term dB denotes the worst-case latency of one router writing one bit on the
bus, and all connected routers reading it. Similar to dR and dL, we also assume that dB can
be expressed as a number of cycles.

3.2 Workload
In this work, we take a communication-centric approach, and model the workload as a
sporadic traffic flow-set Φ, which is a collection of z flows Φ = {φ1, ..., φz}. Each flow φi is
characterised by: (i) a source core/router µsrci /ρsrci , (ii) a destination core/router µdsti /ρdsti ,
(iii) a path Li, expressed as a set of traversed network links (including those connecting µsrci
and µdsti to the NoC), (iv) a payload size σi, expressed as a number of bytes, (v) a minimum
inter-arrival time Ti, (vi) a constrained deadline2 Di ≤ Ti, and (vii) a unique priority Pi.

During each inter-arrival time, a flow may release at most one packet (consisting of a
header flit, payload flit(s) and a tail flit). If it can be analytically proven that each packet of
φi can complete its transfer before its deadline, even in the worst-case conditions, then φi is
considered to be schedulable. If all flows of Φ are schedulable, then Φ itself is considered to
be schedulable.

4 Problem Formulation

Given a platformM and workload Φ, propose a transmission protocol, and an accompanying
worst-case timing analysis method, such that the schedulabtility of Φ onM can be evaluated.
Additional requirements are as follows:

The transmission protocol should exploit the full potential of the underlying platform by
accommodating concurrent transmissions of multiple flows, whenever possible.
The transmission protocol should ensure low worst-case traversal times (WCTT) of high
priority time-critical flows, possibly at the expense of increased WCTTs of low priority
ones.
The timing analysis method should provide safe and tight upper-bounds on WCTTs, so
as to avoid resource over-provisioning.

5 SBT-NoC

In this section, we introduce a slot-based transmission protocol for real-time NoCs, called
SBT-NoC. As already mentioned, SBT-NoC provides contention-less packet transmissions.
Before explaining how the contentions are prevented, let us first discuss inter-flow relations.

5.1 Inter-flow Relations
NoC routers and links are shared resources, and it often happens that two packets, belonging
to different flows, simultaneously request to access the same resource. In such cases, a higher
priority packet should be transmitted as soon as possible, while the lower priority one should

1 An arbitration plane can be implemented in many different ways. In this work, we focus on one possible
implementation strategy – a bus system. Investigating other options is a potential future work.

2 Extending our approach to include arbitrary deadlines is a potential future work.

ECRTS 2019

26:6 Slot-Based NoC

be deferred until the shared resource is available. When reasoning about the interference
that packets of one flow may suffer, it is important to consider all potentially interfering
flows, i.e. all flows that share at least one link3 with the analysed one.

Let φi ∈ Φ be the analysed flow. We classify all its interfering flows into two disjoint sets,
namely FHi and FLi . The former set is formally introduced with Definition 1.

I Definition 1 (Set of directly interfering flows – FH). Consider fi ∈ Φ. Set FHi is a set of
directly interfering flows of fi, iff (if and only if) FHi contains all flows from Φ that have
higher priorities than fi, and share at least one link with it.

Set FHi can be formally described as follows:

∀fi, fj ∈ Φ | Pj > Pi ∧ Lj ∩ Li 6= ∅ ⇐⇒ fj ∈ FHi

Analogously, the latter set of flows FLi is formally introduced with Definition 2.

I Definition 2 (Set of directly interfered flows – FL). Consider fi ∈ Φ. Set FLi is a set of
directly interfered flows of fi, iff FLi contains all flows from Φ that have lower priorities than
fi, and share at least one link with it.

Set FLi can be formally described as follows:

∀fi, fj ∈ Φ | Pj < Pi ∧ Lj ∩ Li 6= ∅ ⇐⇒ fj ∈ FLi

In order to achieve low latencies of packets of φi, it is essential to ensure that: (i) a
transmission of any packet of φi can be delayed only by flows from FHi , and (ii) a transmission
of any packet of φi can delay transmissions of all flows from FLi . These two aspects are the
cornerstone of SBT-NoC.

5.2 Basic SBT-NoC
After defining flow relations, let us introduce a basic SBT-NoC variant. The advanced SBT-
NoC variants have additional configuration possibilities, and they are described in Section 5.3.

5.2.1 Arbitration Mechanism (Basic SBT-NoC)
The arbitration process for SBT-NoC is a continuous activity comprising a potentially infinite
sequence of arbitration slots. During one arbitration slot, all flows indicate their intentions
to transmit packets. An arbitration slot concludes with transmission permissions granted
to highest priority flows with pending requests, whose transmissions can be concurrently
accommodated without causing any mutual in-network contentions. Upon the completion of
one arbitration slot, and before the beginning of the next one, optionally, there might exist
a short pause termed ∆ of duration d∆. During the pause, all entities participating in the
arbitration should make sure that the decisions derived during the previous arbitration slot
have been implemented (e.g. flows that are granted a transmission permission should inject
their packets), and that everything is ready for the next arbitration slot. An illustrative
example of the basic SBT-NoC arbitration is illustrated in Figure 2.

3 Due to the crossbar switching fabric inside routers, router sharing is only a necessary condition for
interference between two flows, because two packets from different input ports can be transferred to
different output ports simultaneously. Conversely, link sharing (and hence port sharing) is both a
necessary and a sufficient condition for interference.

B. Nikolic, R. Hofmann, and R. Ernst 26:7

𝛽𝑧𝛽1 …𝛽2 𝛽𝑧−1

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼 = 𝑧 ∙ 𝑑𝐵

∆

𝑑∆

𝛽𝑧𝛽1 …𝛽2 𝛽𝑧−1

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼 = 𝑧 ∙ 𝑑𝐵

∆

𝑑∆

…

arbitration slot arbitration slot

time

Figure 2 Illustrative example of basic SBT-NoC arbitration.

Each arbitration slot has a fixed duration termed α, and it contains a sequence of z
dedicated arbitration intervals {β1, β2, ..., βz}, one for each flow (recall that z denotes the
number of flows in the flow-sets). All arbitration intervals have an equal duration dB, and
they are assigned to flows in order, with respect to their priorities, non-decreasingly, i.e. β1
to the highest priority flow, and βz to the lowest priority one. For the ease of exposition, let
us assume that flow indexes are also assigned in the same manner, i.e. φ1 and φz are the
highest and the lowest priority flows, respectively.

During the arbitration interval βi, a transmission of packets of φi is assessed. Similar
to the CAN protocol, we assume a dominant “0” and a recessive “1” on the arbitration
bus. At the beginning of βi, the bus is in the recessive state. If φi has packets ready for
transmission, its source router ρsrci will not attempt to change the state of the bus. The
recessive “1” indicates a transmission request. In the opposite case (no packets of φi ready
for transmission), ρsrci will, on behalf of φi, change the state of the bus to “0”, and in that
way indicate that it does not have packets ready for transmission.

However, φi (via ρsrci) is not the only flow that can manipulate the bus state during βi.
In fact, all flows from FHi can do that. The fact that these flows have higher priorities than
φi implies that their respective arbitration intervals have already concluded, and that these
flows are already either granted or denied transmission permissions. If flow φh ∈ FHi was
granted a transmission permission (manifested by a recessive “1” on the bus during βh),
then it will enforce, via ρsrch , a dominant “0” on the bus during βi, and in that way deny
transmission requests of φi. Conversely, if φh does not have packets ready for transmission,
it will not manipulate the bus state during βi. Additionally, if φi and φh originate from the
same core, and φh already has a transmission permission, then during βi the precedence will
be given to φh to set the dominant state “0” on the bus via the common router, regardless
of transmission intentions of φi.

In summary, from the perspective of flow φi, during arbitration interval βi, only φi and
flows from FHi are able to manipulate the bus state. Additionally, if the resulting bus state at
the end of βi is a recessive “1” (φi received a permission to transmit), φi will also manipulate
the bus state during arbitration intervals dedicated to flows from FLi by setting a dominant
state “0” (transmission denied).

5.2.2 Transmission Mechanism (Basic SBT-NoC)
All transmissions granted during one arbitration slot should start during a subsequent pause
∆, and should occur concurrently with the next arbitration slot. Granted transmissions must
complete before the next pause. Large packets, which cannot complete an entire transfer
during one arbitration slot, are transmitted in several stages. During the first transmission
stage, the maximum number of flits that could complete the transfer before the next pause
are selected, and those flits are transmitted as one sub-packet. A transmission of remaining

ECRTS 2019

26:8 Slot-Based NoC

slot n+1
∆

slot n+2
∆

slot n+3
∆

φ𝑖 (1/3) φ𝑖 (2/3) φ𝑖 (3/3)

φ𝑗

φ𝑘 (1/2) φ𝑘 (2/2)
ar

b
it

ra
ti

o
n

p
la

n
e

tr
an

sm
is

si
o

n
p

la
n

e

𝑪𝒋

𝑪𝒌

𝑪𝒊

time𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

1 11 1 1

slot n
∆

1 0

𝑡2𝑡1

0 0 0 00

𝛽𝑖 𝛽𝑗 𝛽𝑘 𝛽𝑖 𝛽𝑗 𝛽𝑘 𝛽𝑖 𝛽𝑗 𝛽𝑘 𝛽𝑖 𝛽𝑗 𝛽𝑘 …

Figure 3 Illustrative example of basic SBT-NoC transmission.

flits is requested during the current arbitration slot. If the permission is granted, during the
second transmission stage the maximum number of remaining flits that could complete the
transfer before the next pause are selected, and those flit are transmitted as one sub-packet.
This process is repeated until eventually the entire packet is transferred.

An illustrative example of a transmission process in SBT-NoC is presented in Figure 3.
Three flows φi, φj and φk have packets ready for transmission at time instant t1 (illustrated
with three upward arrows). A packet of φi is the largest and it requires 3 transmission slots,
a packet of φk requires 2 slots, while a packet of φj requires only one slot. Flow φi does not
interfere with the remaining two flows, while φj ∈ FHk .

During arbitration slot n, all three flows try to indicate their transmission requests by
setting a recessive “1” during their intervals βi, βj and βk. In cases of φi and φj , the recessive
value remains, i.e. βi = βj = 1, while in the case of φk, due to a potential contention, φj
overrides the value with a dominant “0”, i.e. βk = 0. Consequently, during slot n+ 1, the
first sub-packet of φi and a packet of φj are transmitted.

During slot n+ 1, flow φj does not participate because it does not have packets ready
for transmission, and just sets a dominant “0” during βj . Flows φi and φk have sub-packets
ready for transmission, so they set recessive “1” during βi and βk. The bus remains in the
recessive state during those intervals. Consequently, during slot n+ 2, the second sub-packet
of φi and the first one of φk are being transmitted.

A similar scenario occurs during slot n+ 2, and therefore, during slot n+ 3, the third
sub-packet of φi and the second sub-packet of φk are being transmitted.

Finally, during slot n+ 3, all three flows yield transmission opportunities to other flows by
setting a dominant “0” during their respective intervals, because none of them have packets
ready for transmission during slot n+ 4.

In Figure 3, we also illustrated the transmission latencies of the analysed flows, denoted by
Ci, Cj and Ck. These latencies are formally introduced in the next section, and they represent
the basic components for deriving the worst-case timing analysis method for SBT-NoC.

5.2.3 Packet Splitting and Transmission Latencies (Basic SBT-NoC)
In the previous section, it was mentioned that transmissions of large packets are performed
in several stages, each including a transfer of one sub-packet. Before we discuss the process
of packet splitting, let us introduce NoC transmission latency.

B. Nikolic, R. Hofmann, and R. Ernst 26:9

I Definition 3 (NoC transmission latency). Consider one packet of flow φi. NoC transmission
latency of φi, termed Ci, is the time interval between the injection of a header flit from
µsrci into the NoC, and the arrival of a tail flit at µdsti , where a packet traversed its path
without interference.

NoC transmission latency is often also called the isolation latency. It can be computed
by solving Equation 1.

Ci =
header routing︷ ︸︸ ︷

(|Li| − 1) · dR +
header traversal︷ ︸︸ ︷
|Li| · dL +

payload and tail traversal︷ ︸︸ ︷(⌈
σi
σF

⌉
+ 1
)
· dL (1)

Term |Li| denotes the number of elements of Li, also called the number of hops, σF
represents a size of a flit, in bytes, while dL and dR and σi were introduced in Section 3.
NoC transmission latency is equal to the latency of a header flit reaching a destination (the
first two terms of Equation 1), augmented by a traversal of payload flits and a tail flit across
the last link, due to the pipelined transmission (the last term of Equation 1).

In SBT-NoC, each transmission needs to start during the pause, and complete before the
end of the subsequent arbitration slot, which imposes a limit on the amount of payload that
can be transferred within a single (sub-)packet. That limit, denoted by σ̂i, can be computed
by solving Equation 2.

σ̂i =
(
α− (|Li| − 1) · dR

dL
− |Li| − 1

)
· σF (2)

Equation 2 was derived from Equation 1 by substituting σi with σ̂i and Ci with α. Recall
that α denotes a slot duration.

Now we can obtain the minimum number of sub-packets ωi, which are needed to transfer
one packet of φi (Equation 3).

ωi =
⌈
σi
σ̂i

⌉
(3)

In SBT-NoC, large packets are transmitted with the minimum number of sub-packets
in the following way: the first ωi − 1 sub-packets have the maximum payload size σ̂i, and
the last sub-packet has the payload size σi − (ωi − 1) · σ̂i, also denoted by σai . Incidentally,
these packet splitting and transmission rules also apply to flows φi, φj and φk from Figure 3,
where a packet of φi is transmitted via 3 sub-packets, a packet of φj via a single sub-packet,
and a packet of φk via 2 sub-packets.

In order to reason about transmission latencies in SBT-NoC, we need to slightly revise
Definition 3, so as to account for large packets transmitted in several stages (Definition 4).

I Definition 4 (SBT-NoC transmission latency). Consider one packet of flow φi. SBT-NoC
transmission latency of φi is the time interval between the injection of the header flit of the
first sub-packet from µsrci into the NoC, and the arrival of the tail flit of the last sub-packet
at µdsti , where all transmission requests of φi during that interval were granted.

Now we can express transmission latencies of flows in SBT-NoC. If an entire packet
of a flow can be transmitted during α, then its transmission latency can be computed by
solving Equation 1, i.e., a packet is transmitted in the same way as if it was a regular NoC.
This is the case for flow φj from Figure 3. Conversely, if a packet of a flow is large and
its transmission cannot finish during α, then its transmission latency can be computed by
solving Equation 4. This is the case for flows φi and φk from Figure 3.

ECRTS 2019

26:10 Slot-Based NoC

Ci =

transmission of first ωi−1 sub-packets︷ ︸︸ ︷
(ωi − 1) · (α+ d∆) +

transmission of the last sub-packet︷ ︸︸ ︷
(|Li| − 1) · dR + |Li| · dL +

(⌈
σai
σF

⌉
+ 1
)
· dL (4)

5.2.4 Worst-case Analysis (Basic SBT-NoC)
In this section, we provide a method to obtain upper bounds on WCTTs of flows in SBT-NoC.
Several factors can contribute to the WCTT of the analysed flow, and in order to derive a
safe upper bound, we need to cover all of them.

First, a packet release of φi may occur after its arbitration interval, in which case its
router ρsrci must wait for the next arbitration slot to indicate the transmission request. In
the worst case, a packet may arrive just after its arbitration interval and will have to wait for
the remaining part of the slot, augmented by the pause, before it will be able to participate
in the arbitration process. This delay is denoted by Oi.

Oi = α− i · dB + d∆ (5)

Moreover, before a packet can start traversing the NoC, a recessive “1” must be indicated
during βi in one of the subsequent arbitration slots. Once φi gains a transmission permission,
during the next pause its packet is injected into the network. Assuming no higher priority
interference, the worst-case delay of acquiring a transmission permission and preparing a
packet for transmission is denoted by Ai (Equation 6).

Ai = α+ d∆ (6)

Note, regardless of a packet size, only the delay of obtaining the first transmission
permission needs to be considered. For large packets, remaining permissions are acquired
concurrently with transmissions of preceding sub-packets (e.g. φi and φk in Figure 3).

Finally, a transmission of a packet of φi can be delayed by higher priority flows. This
happens when φh ∈ FHi also has a packet ready for transmission and participates in the
same arbitration slot as φi. Consequently, φh prevents a transmission of φi by setting a
dominant “0” during the βi arbitration interval, and φi has to wait for the next arbitration
slot to again attempt to gain a transmission permission.

The delay that higher priority flows inflict on φi is equal to the cumulative duration of
full arbitration slots (augmented with respective pauses), in which a transmission request of
φi was denied with a dominant “0” during βi. Incidentally, each of these arbitration slots
corresponds to one subsequent (sub-)packet transmission of higher priority flows. Therefore,
the delay that one packet of a higher priority flow φh can cause to φi can be computed by
multiplying the number of sub-packets of φh, with the full number of slots (augmented with
respective pauses), i.e. ωh · (α+ d∆).

After computing the interference that one packet of φh can cause to φi, now we need to
compute the maximum number of packets of φh that can interfere with one packet of φi. An
assumption that each two consecutive packets of φh interfering with φi must be at least Th
apart may be unsafe. This is due to the indirectly interfering flows (Definition 5).

IDefinition 5 (Indirectly interfering flow). Consider three flows φg, φh and φi, where φg ∈ FHh
and φh ∈ FHi , but φg 6∈ FHi . Flow φg is an indirectly interfering flow of φi.

B. Nikolic, R. Hofmann, and R. Ernst 26:11

slot n+1
∆

slot n+2
∆

slot n+3
∆

φ𝑖

φ𝑗

ar
b

it
ra

ti
o

n
p

la
n

e
tr

an
sm

is
si

o
n

p
la

n
e

𝑪𝒊

𝑪𝒋

time𝑡5 𝑡6 𝑡7 𝑡9 𝑡10𝑡2 𝑡11

1 00

slot n
∆

0

𝑡4𝑡1

0 1 0 0

𝛽𝑖 𝛽𝑗 𝛽𝑖 𝛽𝑗 𝛽𝑖 𝛽𝑗 𝛽𝑖 𝛽𝑗 …

𝑡3 𝑡8

𝑨𝒋𝑰𝒊→𝒋𝑶𝒋

𝑹𝒋

𝑨𝒊𝑶𝒊

𝑹𝒊

Figure 4 Illustrative example of transmissions of two flows.

Even though φg cannot cause direct interference to φi (no common parts of the path),
φg can still cause indirect interference to φi in the following way: by interfering with φh, it
may cause two consecutive packets of φh to interfere with φi within a time interval which is
shorter than Th.

In order to take indirect interference effects into account, from the perspective of φi, the
first occurrence of φh should be assumed as late as possible, while remaining occurrences
should be assumed as early as possible. Under the assumption that φh is schedulable, the
effects of indirect interference on φi can be modelled with jitter Jh→i (Equation 7), which
corresponds to the difference between the latest and the earliest time instants when a packet
of φh can interfere with φi.

Jh→i =

latest occurrence︷ ︸︸ ︷
Rh − Ch −

earliest occurrence︷ ︸︸ ︷
Ah − d∆ , if ∃φg | φg ∈ FHh ∧ φg 6∈ FHi

0, otherwise
(7)

Now, the worst-case interference that φh causes to one packet of φi, termed Ih→i, can be
obtained from Equation 8.

Ih→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri + Jh→i

Th

⌉
·

per-packet interference︷ ︸︸ ︷
ωh · (α+ d∆) (8)

In Equation 7 and Equation 8, the terms Rh and Ri denote the WCTTs of φi and φh,
respectively.

Finally, the WCTT of φi can be obtained from Equation 9, which should be solved
iteratively, until reaching a fixed converging point (if it exists).

Ri = Oi +Ai + Ci +
∑

∀φh∈FH
i

Ih→i (9)

An illustrative example of transmissions of two flows φi and φj , and their WCTT
components are shown in Figure 4.

ECRTS 2019

26:12 Slot-Based NoC

5.3 Advanced SBT-NoC Variants
From the previous discussion it is noticeable that Ri is to a large extent affected by the
duration of the arbitration slot α. This is because Oi and Ai directly depend on α, while the
interference from higher priority flows is inflicted in multiples of α+ d∆ intervals. Shorter α
would lead to shorter Oi and Ai, but also to increased transmission times due to sequential
transmissions of numerous sub-packets. On the other hand, longer α would increase Oi and
Ai, but would lead to fewer sub-packets and more efficient transmissions.

Basic SBT-NoC operates under the assumption that an arbitration slot size α is fixed, and
consists of z arbitration intervals, each dedicated to a single flow, i.e. α = z · dB . However,
based on the workload characteristics, in some scenarios it may be beneficial to either increase
or decrease the duration of the arbitration slot. In this section, we present and discuss two
advanced SBT-NoC variants, which allow to modify the size of the arbitration slot.

5.3.1 Advanced SBT-NoC with Slot Extension
One viable strategy to extend the duration of the arbitration slot is to introduce empty
(non-used) arbitration intervals. These intervals should be added after the used, per-flow
dedicated intervals. Therefore, assuming that γ intervals are added, the extended arbitration
slot αE consists of z + γ intervals, of which only the first z are being used. The duration of
the extended arbitration slot is αE = (z + γ) · dB .

Regardless of the number of added arbitration intervals, the worst-case analysis can be
performed in the same way as for the basic SBT-NoC, with the only difference that instead of
the basic arbitration slot α, the extended arbitration slot αE should be used. This SBT-NoC
variant is evaluated in Section 6 (Experiment 3).

Note that, an alternative approach for increasing the duration of the arbitration slot to a
desired value αE is to reduce the bus frequency and in that way increase the bus read/write
latency to d∗B > dB. Such an approach can in fact be perceived as the basic SBT-NoC,
because in this case the equality αE = z · d∗B would remain valid.

5.3.2 Advanced SBT-NoC with Slot Reduction
One viable strategy to reduce the duration of the arbitration slot is to allow arbitration
interval sharing among different lower-priority flows. This allows to achieve αR < z · dB,
where αR denotes the desired arbitration slot length. This SBT-NoC variant is explained in
detail in the reminder of this section and evaluated in Section 6 (Experiment 2).

5.3.2.1 Arbitration Mechanism (Advanced SBT-NoC with Slot Reduction)

In this variant, each flow φi has two additional parameters. The first is νi, which defines how
frequently φi participates in the arbitration. For example, νi = 1 means that φi participates
in every arbitration slot, νi = 1

2 every second, νi = 1
4 every fourth, etc. The closer νi is to 1,

the more frequently φi is able to participate in the arbitration, and consequently, the smaller
its WCTT is (analysed in Section 5.3.2.3). Therefore, we assume that ν values are assigned
to flows according to their priorities (and indexes) non-increasingly. Note that the basic
variant is a special case of this advanced variant where νi = 1,∀φi ∈ Φ.

The second parameter is θi ∈ [0, 1, ... 1
νi

), and together with νi, it defines exactly in which
arbitration slots φi participates. The arbitration eligibility condition for φi is expressed with
Equation 10, where n denotes the number of an arbitration slot.

n− bn · νic ·
1
νi

= θi (10)

B. Nikolic, R. Hofmann, and R. Ernst 26:13

𝛽1 𝛽2

𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

slot n

time

𝛽3
∗

ν = 1 ν = ൗ1 2 ν = ൗ1 4

𝛽4
∗ 𝛽5

∗ 𝛽6
∗

2 flows 4 flows 8 flows

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ3 φ5 φ7 φ11

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ4 φ6 φ8 φ12

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ3 φ5 φ9 φ13

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ4 φ6 φ10φ14

𝑑𝐵 𝑑𝐵 𝑑𝐵

slot 1 slot 2 slot 3 slot 4

…

𝜃1 = 𝜃2 = 𝜃4 = 𝜃6 = 𝜃10 = 𝜃14 = 0

𝜃3 = 𝜃5 = 𝜃7 = 𝜃11 = 1

𝜃8 = 𝜃12 = 2

𝜃9 = 𝜃13 = 3

arbitration eligibility condition for φ𝑖:

𝑛 − 𝑛 ∙ ν𝑖 ∙
1

ν𝑖
= 𝜃𝑖

Figure 5 Illustrative arbitration example of advanced SBT-NoC with slot reduction.

In Figure 5 is illustrated an example of 14 flows φ1 − φ14. Flows φ1 and φ2 have
ν1 = ν2 = 1. The next four flows φ3−φ6 have ν3 = ν4 = ν5 = ν6 = 1

2 . Finally, the remaining
eight flows φ7 − φ14 have ν7 = ... = ν14 = 1

4 . Moreover, θ values are also illustrated in
Figure 5. Flows participate only in slots for which their arbitration eligibility condition is
fulfilled. For example, φ1 and φ2 participate in all slots, φ3 and φ5 in odd ones, φ4 and φ6 in
even ones, φ7 and φ11 in slots {1, 5, 9, 13, ...}, φ8 and φ12 in slots {2, 6, 10, 14, ...}, etc.

5.3.2.2 Packet Splitting, Transmission Mechanism and Transmission Latencies
(Advanced SBT-NoC with Slot Reduction)

The packet splitting in this variant is similar to that of the basic one. For flow φi, the
maximum sub-packet payload size σ̂i and the number of sub-packets ωi can be obtained from
Equations 2-3 (Section 5.2.3), where α is replaced by αR.

The transmission mechanism in this variant is also very similar to the one from the basic
variant. After a flow receives a transmission permission during one arbitration slot, a transfer
of one of its (sub-)packets is accommodated in the subsequent slot. One important difference
from the basic variant is that, for flows with ν < 1, two successive arbitration slots are
separated from each other by 1

νi
−1 slots, and hence the corresponding transmission slots will

be separated from each other as well. This implies that transmission latencies between the
basic and this variant may differ, and assuming the latter case, the transmission latency of φi
can be obtained from Equation 11. For flows with ν = 1, Equation 11 becomes Equation 4.

Ci =

transmission of first ωi−1 sub-packets︷ ︸︸ ︷
(ωi − 1) · (αR + d∆) · 1

νi
+

transmission of the last sub-packet︷ ︸︸ ︷
(|Li| − 1) · dR + |Li| · dL +

(⌈
σai
σF

⌉
+ 1
)
· dL (11)

5.3.2.3 Worst-case Analysis (Advanced SBT-NoC with Slot Reduction)

In this section, we provide a method to obtain upper-bounds on WCTTs of flows in advanced
SBT-NoC with slot reduction. Several components constitute the WCTT, and in order to
derive a safe upper bound, we need to cover all of them.

Recall from Section 5.2.4 that Oi corresponds to the time interval between a packet
release and a beginning of the next slot when φi can participate in the arbitration. In the
worst-case, a packet may arrive just after its arbitration interval, and has to wait until the

ECRTS 2019

26:14 Slot-Based NoC

next slot in which it can participate in the arbitration. This is covered with Equation 12,
where i stands for the index of the arbitration interval of φi in αR. For flows with ν = 1,
Equation 12 becomes Equation 5.

Oi =
until beginning of next slot︷ ︸︸ ︷
αR − i · dB + d∆ +

until beginning of next φi-eligible slot︷ ︸︸ ︷(
1
νi
− 1
)
· (αR + d∆) (12)

The worst-case delay of acquiring a transmission permission and preparing a packet for
transmission, denoted by Ai, requires a single slot (augmented by the pause). This term is
the same as in basic SBT-NoC (Equation 6), where α is replaced by αR.

The last component contributing to the WCTT of φi is the higher priority interference.
Let us first discuss the effects of indirect interferences. Similar to the basic variant, the effects
of the indirect interference from indirectly interfering flows to φi via φh can be modelled
with jitter Jh→i. The term Jh→i can be computed as before (Equation 7), because, relative
to a packet release of φh, terms Rh − Ch and Ah − d∆ cover the latest and the earliest time
instants, respectively, when a packet of φh may interfere with φi.

Now, let us obtain the interference that one packet of higher-priority flow φh can cause
to φi. We have to analyse several cases:
Case 1 (νh = νi = 1): In this scenario, φi can suffer interference only from flows with

ν = 1. From the perspective of φi, the system behaves in the same way as the basic
SBT-NoC, and the maximum interference caused by φh to a packet of φi can be obtained
from Equation 8, where α is replaced by αR.

Case 2 (νh = 1 ∧ νi < 1 ∧ 6 ∃φg | φg ∈ FH
h ∧ φg 6∈ FH

i): In this scenario, φi does
not suffer indirect interference via φh. Therefore, apart from flows in FHi , there exist no
other flows which can disrupt successive transmission requests of sub-packets of φh. This
allows to compute the maximum interference from φh to a packet of φi by considering
that sub-packets of φh traverse in consecutive slots (Equation 13).

Ih→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri
Th

⌉
·

per-packet interference︷ ︸︸ ︷
dωh · νie ·

1
νi
· (αR + d∆) (13)

In Equation 13, a multiplication by νi, a ceiling operator, and a division by νi are needed,
because φi participates in the arbitration in every 1

νi
th slot.

Case 3 (νh = νi ∧ θh 6= θi): In this scenario, φi and φh participate in different arbitration
slots and hence φh cannot cause interference to φi (Equation 14).

Ih→i = 0 (14)

Case 4 (All other scenarios): In these scenarios, it is not safe to assume that sub-packets of
φh are transmitted in consecutive slots, either due to the existence of indirectly interfering
flows, or due to νh < 1. Separated transmissions of successive sub-packets of φh may
cause more interference to φi, than what would otherwise be caused by their transmissions
in consecutive slots. A safe assumption is that, as long as φh has sub-packets ready for
transmission, it will participate in the same arbitration slots with φi, and after each of
them, transmit a single sub-packet. By following this reasoning, an upper-bound on the
interference from φh to a packet of φi can be obtained by solving Equation 15.

I◦h→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri + Jh→i

Th

⌉
·

per-packet interference︷ ︸︸ ︷
ωh ·

1
νi
· (αR + d∆) (15)

B. Nikolic, R. Hofmann, and R. Ernst 26:15

slot 4
∆

slot 5
∆

slot 6
∆

φ𝑖

φ𝑗

ar
b

it
ra

ti
o

n
p

la
n

e
tr

an
sm

is
si

o
n

p
la

n
e

𝑪𝒋

time𝑡9 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15

0 00

slot 3
∆

1

𝑡8𝑡7

1 0

𝛽𝑖
∗ 𝛽𝑗

∗ 𝛽𝑖
∗ 𝛽𝑖

∗ 𝛽𝑗
∗ 𝛽𝑖

∗ …

𝑨𝒋𝑰𝒊→𝒋

𝑹𝒋

𝑪𝒊𝑨𝒊

𝑹𝒊

𝑡10

∆

00

∆

0

𝛽𝑖
∗ 𝛽𝑗

∗ 𝛽𝑖
∗

𝑶𝒊

𝑶𝒊

𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

slot 1 slot 2

𝑡1

Figure 6 Illustrative example of transmissions of two flows.

Additionally, assuming that φh is schedulable, the distance between the first and the
last sub-packets of its one packet is limited by Rh. Thus, by considering that sub-packets
of φh may interfere with φi during the entire interval Rh, yet another upper bound on the
interference can be derived (Equation 16).

I•h→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri + Jh→i

Th

⌉
·

per-packet interference︷ ︸︸ ︷⌈⌈
Rh

αR + d∆

⌉
· νi
⌉
· 1
νi

(αR + d∆) (16)

Note that Equation 16 is derived using similar reasoning to that of Equation 13. The
difference is that instead of ωh slots, it is conservatively assumed that

⌈
Rh

αR+d∆

⌉
slots are

needed to transfer one packet of φh.
Since both these bounds are safe, the minimum of them can be used (Equation 17).

Ih→i = min{I◦h→i, I•h→i} (17)

Finally, the WCTT of φi can be computed by summing all components, as in the basic
variant (Equation 9).

In Figure 6 are shown transmissions of two flows φi and φj for the advanced SBT-NoC
with slot reduction, where φi ∈ FHj , νi = 1, νj = 1

2 and θj = 1. Moreover, the components
contributing to the WCTTs of φi and φj are also illustrated.

6 Experimental Evaluation

In this section, we present the results of the experimental evaluation of SBT-NoC. The relevant
NoC parameters which are common to all experiments are summarised in Table 1. The
experiment-specific parameters are separately introduced in the context of each experiment.
An asterisk sign denotes a randomly generated value, assuming a uniform distribution. Flow
source and destination cores/routers are assigned randomly, with a restriction that they have
to be different entities, i.e. ∀φi ∈ Φ : µsrci 6= µdsti ∧ ρsrci 6= ρdsti .

6.1 Experiment 1: SBT-NoC Run-time Performance Evaluation
In order to evaluate the performance of SBT-NoC, we have implemented a simulator of a
multiprocessor platform. The simulator supports two different types of NoCs: (i) a regular
NoC architecture with single-channel ports and 2-flit buffers, utilising the fixed-priority

ECRTS 2019

26:16 Slot-Based NoC

Table 1 Analysis and simulation parameters.

NoC topology 2-D mesh
Routing mechanism X-Y
Router frequency (ψ) 100MHz

Router latency (dR) + link latency (dL) 3 + 1 cycles
Bus writing/reading latency (dB) 1 cycle

Pause between arbitration slots (d∆) 0 cycles
Link width = flit size (σF) 4B

Flow source core/router (µsrc
i / ρsrc

i) Random
Flow destination core/router (µdst

i / ρdst
i) Random

Flow deadline (Di) = flow period (Ti) [10ms - 50ms]*
Flow priority assignment policy Rate monotonic

1 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Flow priority

F
lo

w
 W

C
T

T
 (

in
 µ

s
)

SBT NoC (simulation)
Regular NoC (simulation)

Figure 7 WCTTs of regular NoC (simulation) and basic SBT-NoC (simulation).

packet-level arbitration mechanism (in Section 1 referred to as the basic NoC), and (ii) the
SBT-NoC with the basic arbitration variant (introduced in Section 5.2). In both cases, NoC
parameters are identical to those from Table 1. The assumed NoC size is 4× 4.

The workload characteristics are as follows. There exist 200 flows with unique priorities
assigned with the rate-monotonic policy. Smaller numbers represent higher priorities. The
flow periods and deadlines are as specified in Table 1. Regarding flow sizes, the following
trend applies: higher priority flows have smaller sizes. The highest priority flow has the
smallest payload size of 500B, the lowest priority flow has the biggest payload size of 10kB,
and the sizes of intermediate flows are assigned equidistantly.

We run the simulations of the two aforementioned approaches, each for 100 seconds of
simulated time. For each approach, we recorded the observed WCTTs of all 200 flows.

The results are illustrated in Figure 7. It is evident that basic NoCs do not have efficient
mechanisms to leverage high priorities to achieve low WCTTs, which is one of the basic
real-time requirements. In fact, when a lower priority flow starts its transmission through
a shared router, it can block any later arriving higher priority flow for the duration of
its entire traversal through that router. During a single transmission, a higher priority
flow can experience blocking from multiple lower priority flows across different routers.
Consequently, there exists an almost negligible difference in WCTTs of flows with highest
and lowest priorities, despite the fact that higher priority ones have significantly smaller

B. Nikolic, R. Hofmann, and R. Ernst 26:17

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Flow priority

F
lo

w
 W

C
T

T
 (

in
 µ

s
)

SBT NoC (analysis)
SBT NoC (simulation)
Regular NoC (simulation)

(a)

1 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Flow priority

F
lo

w
 W

C
T

T
 (

in
 µ

s
)

SBT NoC (analysis)
SBT NoC (simulation)
Regular NoC (simulation)

(b)

Figure 8 WCTTs of regular NoC (simulation) and basic SBT-NoC (simulation & analysis).

sizes. This result coincides with the statement from Section 1 that basic NoCs without any
enhancements do not represent satisfactory solutions for the real-time domain, and further
motivates research activities in the area of real-time oriented NoCs.

SBT-NoC demonstrates a significantly different behaviour. For high priority flows, SBT-
NoC provides substantially smaller WCTTs than a regular NoC, and for the highest priority
ones WCTTs are even several times smaller. These WCTT reductions are achieved at the
expense of the lower priority traffic, and for low priority flows SBT-NoC provides bigger
WCTTs than a regular NoC. The observed WCTTs suggest that SBT-NoC does not have
negative effects on the run-time performance (no unusual and unexpected spikes in WCTTs),
thus we conclude that SBT-NoC fulfils the first two objectives from Section 4.

Additionally, we derived the analytical WCTT upper-bounds by applying the method
proposed in Section 5.2.4. A comparison of analytical and simulation results is illustrated
in Figure 8a, where the focus is on 30% of flows with high priorities, (priorities 1 to 60).
Interestingly, for the highest priority flows, even the SBT-NoC analytical method provides
smaller WCTTs than the regular NoC simulations. The trends remain until priority 30, and
imply that SBT-NoC, in conjunction with an analysis method, can produce low bounded4
WCTTs of high priority flows. This means that the third objective from Section 4 is fulfilled.

For completeness, we have extended the observation interval to include all flows (Figure 8b).
Unsurprisingly, as priorities decrease (i.e. bigger numbers on the X-axis), a difference between
analytical and simulation results grows. This can be attributed to the fact that simulations
are performed for only a limited time, which makes it unlikely that all worst-case scenarios
were indeed captured. Moreover, the analysis method might contain a certain degree of
pessimism, and reducing it is a potential future work activity.

Summary. SBT-NoC provides efficient means to achieve low WCTTs of high-priority flows
at the expense of increased WCTTs of low priority ones. SBT-NoC does not have a negative
effect on the run-time performance, which makes it a promising solution for soft real-time
systems, where good performance might also be one of the requirements. Perhaps even more
importantly, SBT-NoC provides low bounded WCTTs of high priority flows, which makes it
a viable choice for hard real-time systems as well.

4 Recall that for a regular NoC there exists no worst-case analysis method.

ECRTS 2019

26:18 Slot-Based NoC

1−5 45−50 95−100 145−150 195−200
−80

−60

−40

−20

0

20

40

60

80
W

C
T

T
 r

e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(a) C1: σi ∈ [8B − 256B],∀φi ∈ Φ.

1−5 45−50 95−100 145−150 195−200

−80

−60

−40

−20

0

20

40

60

W
C

T
T

 r
e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(b) C2: σi ∈ [1kB − 4kB],∀φi ∈ Φ.

1−25 225−250 475−500 725−750 975−1000

−60

−40

−20

0

20

40

60

W
C

T
T

 r
e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(c) C3: σi ∈ [8B − 256B],∀φi ∈ Φ.

1−25 225−250 475−500 725−750 975−1000

−80

−60

−40

−20

0

20

40

60

W
C

T
T

 r
e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(d) C4: σi ∈ [1kB − 4kB],∀φi ∈ Φ.

Figure 9 Relative ruction in analytically derived WCTTs of the advanced SBT-NoC with slot
reduction – “A” against the basic SBT-NoC – “B”.

6.2 Experiment 2: SBT-NoC Analytical Evaluation (Synthetic
Workload)

In this experiment, we compare analytical results of the basic SBT-NoC variant – “B”, and the
advanced SBT-NoC variant with slot reduction – “A”, for different workload configurations.
“A” is configured as follows: 12.5% flows with the highest priorities have ν = 1, the next
12.5% have ν = 1

2 , the next 25% have ν = 1
4 and the remaining 50% have ν = 1

8 . Phases (θ
values) are derived from flow priorities in the following way: θi = Pi − bPi · νic · 1

νi
.

The NoC size is extended to 8x8. Flow deadlines, periods, priorities, source and destination
cores are assigned in the same way as in Experiment 1 (Table 1). Moreover, the evaluation
includes 2 different setups for the workload size: (i) z = 200 flows and (ii) z = 1000 flows, as
well as 2 different setups for the payload size: (i) σi ∈ [8B− 256B] and (ii) σi ∈ [1kB− 4kB].
Assuming a certain payload size range, flow payloads are randomly generated values (a
uniform distribution). The combinations of payload and workload size setups produce 4
distinctive evaluation configurations (C1-C4). For each of them, we generate 1000 flow-sets
and analytically obtain WCTT upper-bounds with both evaluated SBT-NoC variants. We
compare derived bounds by calculating the relative reduction in WCTTs achieved by “A”
against “B”. In cases where “B” outperforms “A”, the WCTT reduction has negative values.

The results are illustrated in Figure 9. It is visible that a selection of the parameter
ν has a significant impact on WCTTs. Therefore, let us analyse different sub-domains
independently. For ν = 1 (highest priority flows), in all configurations except C2, “A” derives

B. Nikolic, R. Hofmann, and R. Ernst 26:19

tighter bounds. This is expected, because “A” utilises shorter arbitration slots, and as
discussed in Section 5.3.2.3, this reduces several WCTT components. As a number of flows
increases, so do the improvements, because the difference in the durations of arbitration
slots of “A” and “B” also grows. On the other hand, the increase in payload sizes leads to
reduced improvements. This is because shorter slots yield more sub-packets, which limits
the effects of a pipelined flit traversal and increases transmission overheads (more header
and tail flits). These factors cause longer transmission latencies of analysed flows, and also
inflate the interference they suffer from higher priority flows.

For flows with ν = 1
2 , the observations regarding the effects of flow numbers and payload

sizes on WCTT improvements are similar to those for flows with ν = 1. In configurations
C1 and C3, “A” is beneficial for flows with ν = 1

2 . This implies that in scenarios with
numerous flows and relatively small payload sizes, a strategy of assigning ν = 1

2 to flows with
intermediate priorities may still lead to more favourable conditions for them, than what they
could experience in “B”. Another interesting observation from all evaluated configurations is
that, within an observed sub-domain (ν = 1

2), improvements of “A” over “B” increase with
decreasing priorities. This is because in “B” a flow can suffer interference from all higher
priority flows sharing a part of the path with it, while in “A” that is not the case. In fact, if
two flows in “A” have the same parameter ν, they can interfere only if they have the same θ.
For ν = 1

4 , “A” outperforms “B” only in C3, and in rare cases in C1.
Finally, for flows with ν = 1

8 , in none of scenarios “A” produces smaller WCTTs than
“B”. This is expected, because the improvements of “A” over “B” for high priority flows were
in fact achieved at the expense of increased latencies of the low priority traffic.

Summary. Variant “A” allows to even further reduce WCTTs of highest priority flows by
decreasing a duration of an arbitration slot via an arbitration interval sharing among low
priority flows. The improvements against variant “B” are the most significant for the highest
priority flows (ν = 1), while depending on the nature of the workload, significant WCTT
reductions can also be achieved for flows with ν < 1. Of course, WCTT reductions for high
priority flows are achieved at the expense of increased WCTTs of the low priority traffic.

6.3 Experiment 3: SBT-NoC Analytical Evaluation (Use Case of
Autonomous Driving Vehicle Application)

In this experiment, we perform the analytical evaluation of SBT-NoC. The workload is
modeled after the use-case of the autonomous driving vehicle application [22]. The use-case
consists of 33 functionalities producing 38 traffic flows in total. For a more detailed description
of the use-case, a reader is advised to consult the work of Shi et al. [22].

The evaluation is performed in the following way. First, assuming the basic SBT-NoC
variant – “B”, the WCTT upper bounds of all flows are analytically obtained. Then, the
same is performed for the two configurations of the advanced SBT-NoC with slot extension.
The first one, referred to as “E10”, has the slot length αE10 which is 10 times bigger than
the slot length αB of the basic variant, i.e. αE10 = 10 · αB. The second one, referred to
as “E100”, has the slot length αE100, where αE100 = 10 · αE10 = 100 · αB. The incentive
to evaluate “E10” and “E100” comes from the fact that there exist only 38 flows in this
use-case, and the approach “B” is likely to lead to inefficient sequential transmissions of lots
of small sub-packets, causing large WCTTs. Finally, in order to compare the performance
of SBT-NoC with some other available approaches for real-time NoCs, we included priority
preemptive NoCs with flit-level arbitration and per flow dedicated virtual channels in this
evaluation [21], hereafter referred to as “PP”. The WCTTs of all flows are obtained using the
latest available analysis for such NoCs [17].

ECRTS 2019

26:20 Slot-Based NoC

0

0.5

1

1.5

2

2.5

Flows

F
lo

w
 W

C
T

T
 (

in
 m

s
)

F
B

U
3

 →
 V

O
D

1
F

B
U

8
 →

 V
O

D
2

F
B

U
1

 →
 B

F
E

1
F

B
U

2
 →

 B
F

E
2

F
B

U
3

 →
 B

F
E

3
F

B
U

4
 →

 B
F

E
4

F
B

U
5

 →
 B

F
E

5
F

B
U

6
 →

 B
F

E
6

F
B

U
7

 →
 B

F
E

7
F

B
U

8
 →

 B
F

E
8

F
D

F
1

 →
 S

T
P

H
F

D
F

2
 →

 S
T

P
H

S
T

P
H

 →
 O

B
M

G
B

F
E

1
 →

 F
D

F
1

B
F

E
2

 →
 F

D
F

1
B

F
E

3
 →

 F
D

F
1

B
F

E
4

 →
 F

D
F

1
B

F
E

5
 →

 F
D

F
2

B
F

E
6

 →
 F

D
F

2
B

F
E

7
 →

 F
D

F
2

B
F

E
8

 →
 F

D
F

2
V

O
D

1
 →

 N
A

V
C

V
O

D
2

 →
 N

A
V

C
N

A
V

C
 →

 T
H

R
C

U
S

O
S

 →
 O

B
M

G
S

P
E

S
 →

 S
T

A
C

S
T

A
C

 →
 T

H
R

C
N

A
V

C
 →

 D
IR

C
S

P
E

S
 →

 N
A

V
C

V
IB

S
 →

 S
T

A
C

O
B

D
B

 →
 N

A
V

C
O

B
D

B
 →

 O
B

M
G

N
A

V
C

 →
 O

B
D

B
T

P
M

S
 →

 S
T

A
C

P
O

S
I

→
 N

A
V

C
P

O
S

I
→

 O
B

M
G

O
B

M
G

 →
 O

B
D

B
S

T
A

C
 →

 T
P

R
C

NoC with VCs & flit−level preemptions

SBT−NoC with α
B

SBT−NoC with α
E10

SBT−NoC with α
E100

Figure 10 Analytically derived WCTTs of flows of the autonomous driving vehicle application [22].

The evaluation results are illustrated in Figure 10. As expected “B” displays the worst
performance. Even though it offers short arbitration slots and short out-of-interval-arrival
penalties (the first two terms in Equation 9), the transmissions are performed via numerous
short sequentially transmitted sub-packets, thus causing large transmission latencies of
entire packets (the third term in Equation 9). On the other hand, “E10” utilises 10 times
longer arbitration slots, which may lead to 10 times longer out-of-interval-arrival penalties.
However, “E10” performs transmissions with fewer sub-packets, which causes significantly
shorter transmission latencies of entire packets. Consequently, “E10” produces 17.47−43.75%
smaller WCTTs than “B”. The average WCTT reduction is 26.25%.

In the case of “E100”, arbitration slots and out-of-interval-arrival penalties are 10 times
larger than in “E10”. On the other hand, “E100” performs more efficient (shorter) packet
transmissions via fewer larger sub-packets, however, the achieved gains cannot compensate for
the penalties arising from the increased slot size. Therefore, “E100” produces 8.72− 233.28%
larger WCTTs than “E10”. The average WCTT increase is 39.37%.

Finally, compared to the priority-preemptive approach “PP”, the best performing SBT-
NoC scheme “E10” produces 1.17− 31.21% larger WCTTs. The average WCTT increase is
7.33%. However, it is fair to point out that “PP” has more substantial hardware requirements
than SBT-NoC schemes. Specifically, it operates under the assumption that there exist
per-flow dedicated virtual channels in each of the traversed router ports, and that the
arbitration is performed on a flit level. Implementing these features requires a sophisticated
in-router logic and buffer space, which are typically not available in commercial NoCs. On
the other hand, SBT-NoC requires a dedicated bus-based arbitration mechanism, which we
believe is less costly and less demanding to implement.

Please note that “E10” may not be the most efficient SBT-NoC configuration for this
use-case. It is only the best performing of the three SBT-NoC variants covered in this
preliminary evaluation. In order to uncover the full potential of SBT-NoC, more detailed
evaluations are necessary, and these activities are a potential future work.

B. Nikolic, R. Hofmann, and R. Ernst 26:21

Summary. A decision regarding arbitration slot sizes should be thoughtfully derived, because
it significantly impacts the efficiency of SBT-NoC. The important aspects are platform
architecture properties and a workload structure. Too short slots may lead to packet
fragmentation into numerous sequentially transmitted sub-packets, which may cause longer
WCTTs. On the other hand, too large slots may lead to significantly longer arbitration
procedures, and longer out-of-interval-arrival penalties, both contributing to longer WCTTs.
When compared with the priority-preemptive NoC scheme, the best of the three evaluated
SBT-NoC approaches shows comparable results, and given the substantially higher hardware
requirements associated with the former scheme, we believe that SBT-NoC is an attractive
alternative, and a promising communication solution for real-time NoCs.

7 Conclusions and Future Work

In this work, we presented SBT-NoC – a slot-based transmission protocol for NoCs, and the
accompanying worst-case analysis. SBT-NoC features contention-less slot-based transmissions,
arbitrated via a protocol running on a dedicated network medium. SBT-NoC provides
bounded low latencies of high-priority time-critical flows, at the expense of low priority ones.
In this work, an SBT-NoC implementation via a dedicated bus medium was presented.

Moreover, this work includes a preliminary experimental evaluation of SBT-NoC. The
initial results suggest that the proposed approach fulfils several important requirements of
the real-time domain, and that it presents a viable choice for interconnect mediums in next-
generation real-time-oriented multiprocessors. SBT-NoC offers a plethora of configuration
options, of which only few have been evaluated in this work. Our future work plans include
investigations of alternative technologies for an arbitration medium (e.g. a NoC interconnect),
a practical implementation, and a design space exploration for deriving the most efficient
SBT-NoC configurations for given platform and workload characteristics. This includes
finding answers to the following questions: how to assign priorities, configure slot durations
and assign parameters ν and θ?

References

1 Adapteva. Epiphany Architecture. URL: www.adapteva.com/docs/epiphany_arch_ref.pdf.
2 L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm. The Comp. J.,

35(1):70–78, January 2002.
3 Josef Berwanger, Martin Peller, and Robert Griessbach. byteflight - A new protocol for

safety-critical applications. In FISITA World Automotive Congress, 2000.
4 T. Bjerregaard and J. Sparso. Implementation of guaranteed services in the MANGO clockless

network-on-chip. IEE Proc. - Computers & Digital Techniques, 153(4):217–229, July 2006.
5 W.J. Dally. Virtual-channel flow control. Trans. Parall. & Distr. Syst., 3(2):194–205, March

1992.
6 W.J. Dally and C.L. Seitz. Deadlock-Free Message Routing in Multiprocessor Interconnection

Networks. Trans. Computers, 1987.
7 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller Area Network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Syst. J., 2007.
8 K. Duraisamy and P. P. Pande. Enabling High-Performance SMART NoC Architectures Using

On-Chip Wireless Links. Trans. Very Large Scale Integration Syst., 2017.
9 K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network on chip: concepts, architec-

tures, and implementations. IEEE Design & Test Computers, 2005.

ECRTS 2019

www.adapteva.com/docs/epiphany_arch_ref.pdf

26:22 Slot-Based NoC

10 Tim Harde, Matthias Freier, Georg von der Brüggen, and Jian-Jia Chen. Configurations and
Optimizations of TDMA Schedules for Periodic Packet Communication on Networks on Chip.
In 26th RTNS, 2018.

11 Leandro Soares Indrusiak, Alan Burns, and Borislav Nikolić. Buffer-aware bounds to multi-
point progressive blocking in priority-preemptive NoCs. In 21st DATE, 2018.

12 Intel. Single-Chip-Cloud Computer, 2010. URL: www.intel.com/content/dam/www/public/us
/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf.

13 E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and J. Sparsø. Argo: A
Real-Time Network-on-Chip Architecture With an Efficient GALS Implementation. Trans.
Very Large Scale Integration Syst., 2016.

14 N. K. Kavaldjiev and G. J. M. Smit. A Survey of Efficient On-Chip Communications for SoC.
In 4th Symp. Emb. Syst., 2003.

15 M. Liu, M. Becker, M. Behnam, and T. Nolte. A tighter recursive calculus to compute the
worst case traversal time of real-time traffic over NoCs. In 22nd ASPDAC, 2017.

16 R. Makowitz and C. Temple. Flexray - A communication network for automotive control
systems. In Int. WS Factory Comm. Syst., 2006.

17 Borislav Nikolić, Sebastian Tobuschat, Leandro Soares Indrusiak, Rolf Ernst, and Alan Burns.
Real-time analysis of priority-preemptive NoCs with arbitrary buffer sizes and router delays.
Real-Time Syst. J., 2018.

18 C. Paukovits and H. Kopetz. Concepts of Switching in the Time-Triggered Network-on-Chip.
In 14th RTCSA, pages 120–129, 2008.

19 Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case delay bounds for best-effort
communication in wormhole networks on chip. In NOCS, 2009.

20 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp,
Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, Andrć Rocha, Cláudio Silva, Jens Sparsø, and
Alessandro Tocchi. T-CREST: Time-predictable multi-core architecture for embedded systems.
J. Syst. Arch., 2015.

21 Zheng Shi and A. Burns. Real-Time Communication Analysis for On-Chip Networks with
Wormhole Switching. In NOCS, 2008.

22 Zheng Shi, Alan Burns, and Leandro Soares Indrusiak. Schedulability Analysis for Real Time
On-Chip Communication with Wormhole Switching. Int. J. Emb. & Real-Time Comm. Syst.,
2010.

23 Hyojeong Song, Boseob Kwon, and Hyunsoo Yoon. Throttle and preempt: a new flow control
for real-time communications in wormhole networks. In 1997 Int. Conf. Parall. Processing,
August 1997.

24 S. Tobuschat and R. Ernst. Real-time communication analysis for Networks-on-Chip with
backpressure. In 20th DATE, 2017.

25 D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C. Miao,
J. F. Brown III, and A. Agarwal. On-Chip Interconnection Architecture of the Tile Processor.
MICRO, 2007.

26 Q. Xiong, F. Wu, Z. Lu, and C. Xie. Extending Real-Time Analysis for Wormhole NoCs.
Trans. Computers, 66(9), 2017.

27 Qin Xiong, Zhonghai Lu, Fei Wu, and Changsheng Xie. Real-Time Analysis for Wormhole
NoC: Revisited and Revised. In 26th ACM Great Lakes Symp. VLSI, 2016.

Designing Mixed Criticality Applications on
Modern Heterogeneous MPSoC Platforms
Giovani Gracioli
Technical University of Munich, Germany
Federal University of Santa Catarina, Brazil
g.gracioli@tum.de

Rohan Tabish
University of Illinois at Urbana-Champaign, IL, USA
rtabish@illinois.edu

Renato Mancuso
Boston University, MA, USA
rmancuso@bu.edu

Reza Mirosanlou
University of Waterloo, Canada
rmirosan@uwaterloo.ca

Rodolfo Pellizzoni
University of Waterloo, Canada
rpellizz@uwaterloo.ca

Marco Caccamo
Technical University of Munich, Germany
mcaccamo@tum.de

Abstract
Multiprocessor Systems-on-Chip (MPSoC) integrating hard processing cores with programmable
logic (PL) are becoming increasingly common. While these platforms have been originally designed
for high performance computing applications, their rich feature set can be exploited to efficiently
implement mixed criticality domains serving both critical hard real-time tasks, as well as soft
real-time tasks.

In this paper, we take a deep look at commercially available heterogeneous MPSoCs that
incorporate PL and a multicore processor. We show how one can tailor these processors to support
a mixed criticality system, where cores are strictly isolated to avoid contention on shared resources
such as Last-Level Cache (LLC) and main memory. In order to avoid conflicts in last-level cache, we
propose the use of cache coloring, implemented in the Jailhouse hypervisor. In addition, we employ
ScratchPad Memory (SPM) inside the PL to support a multi-phase execution model for real-time
tasks that avoids conflicts in shared memory. We provide a full-stack, working implementation on a
latest-generation MPSoC platform, and show results based on both a set of data intensive tasks, as
well as a case study based on an image processing benchmark application.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded systems; Computer systems organization → Other architectures

Keywords and phrases Mixed-criticality systems, SoC Heterogeneous platforms, FPGA, real-time
computing

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.27

Funding This work has been supported in part by the NSF under grant number CNS-1646383, by
ONR N00014-17-1-2783, by NSF grant number CNS 18-15891, by NSERC and by CMC Microsystems.
Marco Caccamo was also supported by an Alexander von Humboldt Professorship endowed by the
German Federal Ministry of Education and Research. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the sponsors.

© Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and Marco
Caccamo;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 27; pp. 27:1–27:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.gracioli@tum.de
mailto:rtabish@illinois.edu
mailto:rmancuso@bu.edu
mailto:rmirosan@uwaterloo.ca
mailto:rpellizz@uwaterloo.ca
mailto:mcaccamo@tum.de
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback,
and our shepherd for helping to significantly improve this paper.

1 Introduction

Recently there has been an uptrend in the demand for high-performance real-time applica-
tions. The increasing interest in emerging technologies like self-driving cars, drones, cube
satellites, and smart manufacturing, to name a few, has determined a shift in the type
of workload that has to be considered “real-time” [5]. Traditional CPU-intensive tasks
comprise a small percentage of the real-time workload in modern high-criticality systems,
while increasingly more memory- and I/O-intensive applications have been brought into
the picture. Additionally, hardware manufacturers have anticipated the demand for high-
performance embedded systems by introducing increasingly more feature-rich multiprocessor
systems-on-chip (MPSoC) platforms.

In the race to provide the future de-facto standard for pervasive high-performance
embedded systems, hardware manufacturers have experimentally introduced a plethora
of architectural features. A number of these features have a proven track record in the
general-purpose computing domain and multiple indicators suggest their long-term adoption
in the embedded market [10]. Such features include hardware support for virtualization,
the presence of multiple, potentially heterogeneous processing elements, a rich ecosystem of
high-bandwidth I/O devices and communication channels, and more recently the co-location
of traditional CPUs and programmable logic (PL) implemented using Field Programmable
Gate Array (FPGA) technology.

The presence of on-chip “soft” PL, tightly coupled with a group of “hard” embedded
CPUs, represents a game-changer for systems that need to be tailored to a well-known
application scenario [21]. This is indeed often the case for real-time systems. In fact, this
new class of platforms offers the unprecedented ability to define new hardware components
to complement the high-performance profile of the embedded cores. If it is possible to devise
PL-defined components that mitigate the non-determinism in high-performance CPUs; the
result can be an ideal trade-off between processing power and real-time guarantees [21].

In this paper, we study how it is possible to leverage latest-generation partially reconfig-
urable embedded platforms for a system design that combines high-performance and strict
real-time requirements. In our approach, we define multiple criticality domains to be intended
as subsystems of the computing system. Each criticality domain may be designed with a
different trade-off between high-performance and strict temporal determinism. For instance,
a high-performance domain may run a general-purpose OS with a complex I/O infrastructure.
Conversely, a high-criticality domain is comprised of a Real-Time Operating System (RTOS)
supporting time-sensitive applications.

We demonstrate that it is possible to instantiate a critical core of PL-defined components
to (i) relieve interference on the shared memory hierarchy and achieve temporal isolation
among criticality domains; (ii) support efficient inter-domain communication; (iii) co-locate
a traditional task execution model with a multi-phase execution model; and (iv) overcome
typical limitations of traditional memory partitioning techniques. In summary, this paper
makes the following contributions:
1. We demonstrate that it is possible to leverage partially reconfigurable embedded platforms

to instantiate a system where high-performance and time-sensitive applications co-exist
under strict temporal isolation. Compared to the ideal case (i.e., task running alone
in the system), our set of hardware/software techniques ensures that execution time of

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:3

a time-sensitive task does not suffer from the potentially large interference caused by
memory-intensive tasks running on different cores (only 6% of an increase in the execution
time, instead of a large interference).

2. We design and implement a hardware block, named address translator, that prevents the
problem of memory waste when cache partitioning based on page coloring is used.

3. We provide a working implementation on one of the latest-generation partially recon-
figurable embedded MPSoCs. Our implementation is full-stack, with adaptations at an
OS- and application-level, extensions to a partitioning hypervisor, and generation of
PL-defined hardware blocks. We demonstrate the feasibility of the implementation by
using a case study on image processing and show the hard real-time bounds achieved by
our system design.

Organization of the paper. The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the adopted system model and assumptions.
Section 4 discusses the design principles and overviews the proposed approaches. Section 5
presents a design space exploration of a modern MPSoC platform through a set of experi-
ments. It also shows the proposed hardware and software design to support mixed-criticality
applications on top of the platform. Section 6 details the system implementation with mul-
tiple criticality domains. Section 7 presents some experimental results carried out to evaluate
the proposed real-time computing framework. Finally, Section 8 states the conclusions and
outlines some future work.

2 Related Work

Several recent works have proposed techniques to deal with shared resources in multicore
real-time systems at both OS and hypervisor levels. Mancuso et al. profiled the source code
to extract memory access patterns for each task, allowing frequently-used pages to be locked
in cache in order to avoid cache evictions [19]. Combined with cache partitioning based on
page coloring, their approach significantly improves predictability. Following the same line,
some works used coloring to partition the cache in multicore real-time systems [15, 13, 11].
Other works focused on making DRAM accesses more predictable [38, 14, 17]. MemGuard
regulates each core’s memory request rate by using hardware performance counters to account
for the memory access usage [39]. The work defines a threshold and when the number of
memory accesses reaches the threshold, an overflow interrupt is generated to keep the specified
memory bandwidth. One assumption for MemGuard is that all cores have access to the
same memory bus, while in our work we explore the existence of the programmable logic to
define dedicated memory interfaces. We also show how page coloring can co-exist with the
programmable logic memories and how to prevent wasting cache space due to page coloring.

The use of hypervisors in multicore real-time systems is a recent trend. Modica et al.
proposed a hypervisor-based architecture targeting critical systems similar to ours [22]. Cache
partitioning provided spatial isolation, while a DRAM bandwidth reservation mechanism
provided temporal isolation. Both cache partitioning and memory reservation mechanisms
were implemented in the XVISOR open-source hypervisor [24] and tested in a quad-core
ARM A7 processor. Our proposed hypervisor-based approach, instead, uses an MPSoC
platform, which gives us the ability to explore other features, such as specific FPGA direct
memory access (DMA) blocks (for instance, to handle data transfers between the processing
system and programmable logic sides) and data prefetching.

ECRTS 2019

27:4 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

MARACAS addressed shared cache and memory bus contention through multicore schedul-
ing and load-balancing on top of the Quest OS [37]. MARACAS used hardware performance
counters information to throttle the execution of threads when memory contention exceeded a
certain threshold. The counters were also used to derive an average memory request latency to
reduce bus contention. vCAT used the Intel’s Cache Allocation Technology (CAT) to achieve
core-level cache partitioning for the hypervisor and virtual machines running on top of it [36].
vCAT was implemented in Xen and LITMUSRT . Although interesting, this approach is
architecture dependent and uses non-real-time basic software support (Linux and Xen).

Kim and Rajkumar proposed a predictable shared cache framework for multicore real-time
virtualization systems [16]. The proposed framework introduced two hypervisor techniques
(vLLC and vColoring) that enabled cache-aware memory allocation for individual tasks
running in a virtual machine. CHIPS-AHOy is a predictable holistic hypervisor [23]. It
integrates shared hardware isolation mechanisms, such as memory partitioning, with an
observe-decide-adapt loop to achieve predictability and energy and thermal management.

Crespo et al. used hardware performance counters within the hypervisor to regulate the
memory bandwidth of critical and non-critical cores [6]. The work used control theory to do
the regulation and presented a set of experiments to tune the controller parameters. Awan et
al. proposed a memory regulation mechanism for mixed-criticality applications [2]. Mendez
et al. also proposed to use FPGA together with a processing system to reduce interference of
mixed-criticality applications. However, in their system model, the authors did not consider
multicore processors or shared caches [21].

SPM-centric OS combined scratchpad, resource specialization, scheduling of shared
resources as well as a three-phase model to achieve predictability in multicore real-time
systems [28]. The three-phase model is also used in this work. It consists of a load phase,
in which code/data is loaded from main memory to the scratchpad (SPM), an execution
phase, and an unload phase in which code/data is unloaded from the SPM to main memory.
The model relies on a DMA engine to support the load/unload phases. The idea is to load
data/code for a task using a DMA before it starts and to unload it after completion, as
depicted in Figure 1. Because the SPM is divided into two halves, while one task is executing
in one half, DMA is active on the another one. Up arrows in the figure represent the release
times of three tasks. While for simplicity we draw the figure assuming that all load and
unload phases take an equal amount of time to complete, in reality, their length can vary on
a per-task basis. Note that each job starts executing on the core after it is loaded in the
scratchpad and the previous job finishes executing, whichever happens last. Also note that
while load phases have higher priority over unloads, at time t = 3 (and t = 5) an unload
must be performed first in order to free Partition A for the successive load phase of task
τ3. If there are multiple ready tasks, the decision of which task to schedule is made when
starting a load phase; hence, while τ1 has a higher priority than τ3, the latter is executed
at time 5 because τ1 is released right after the start of another load phase at t = 4. This
behavior causes blocking time on the higher priority task and must be accounted for in a
schedulability analysis.

The work in [28] used a time division multiple access (TDMA) arbitration among cores
based on a fixed slot size for DMA transfers. Only a single DMA operation (either a task
load or unload) was carried out during a slot. The TDMA slot size length was designed so
that it was possible to load or unload an entire scratchpad partition within one slot. Hence,
it always allowed to transfer an amount of data equal to the largest scratchpad size, which is
undesirable if the SPM size is different per-core. On the contrary, in this work the DMA
scheduling employs variable memory phase sizes, similarly to what has been described in [33].
Notice, though, that the work in [33] mainly targets single-core processors, and it does not
provide a working implementation for multi-core systems.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:5

DMA	

⌧1
<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧2
<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>

⌧3
<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>

t	
0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

⌧1
<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧2
<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>

⌧1
<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧1
<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧1
<latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit><latexit sha1_base64="mOwgojc1IW8qdR3uRjcojoKfEi4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/aBfrvhVfwGyToKcVCBHo1/+6g00yxKukElqbTfwUwyn1KBgks9KvczylLIxHfKuo4om3IbTxbUzcuGUAYm1caWQLNTfE1OaWDtJIteZUBzZVW8u/ud1M4xvwqlQaYZcseWiOJMENZm/TgbCcIZy4ghlRrhbCRtRQxm6gEouhGD15XXSqlUDvxrcX1XqtTyOIpzBOVxCANdQhztoQBMYPMIzvMKbp70X7937WLYWvHzmFP7A+/wBRC2O3A==</latexit>

⌧2
<latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit><latexit sha1_base64="EkBHZgF4MM0bJLGkY4HioILnJdA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY8BLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZxptMS206EbVcCsWbKFDyTmo4TSLJ29H4du63n7ixQqsHnKQ8TOhQiVgwik5q9ZBm/Vq/XPGr/gJknQQ5qUCORr/81RtoliVcIZPU2m7gpxhOqUHBJJ+VepnlKWVjOuRdRxVNuA2ni2tn5MIpAxJr40ohWai/J6Y0sXaSRK4zoTiyq95c/M/rZhjfhFOh0gy5YstFcSYJajJ/nQyE4QzlxBHKjHC3EjaihjJ0AZVcCMHqy+ukVasGfjW4v6rUa3kcRTiDc7iEAK6hDnfQgCYweIRneIU3T3sv3rv3sWwtePnMKfyB9/kDRbGO3Q==</latexit>

⌧3
<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>

⌧3
<latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit><latexit sha1_base64="G3C1RXbcZiS8XlS/Oq5RcZ7C54A=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZ77JXKvsVfw6ySoKclCFHvVf66vY1yxKukElqbSfwUwwn1KBgkk+L3czylLIRHfCOo4om3IaT+bVTcu6UPom1caWQzNXfExOaWDtOIteZUBzaZW8m/ud1MoxvwolQaYZcscWiOJMENZm9TvrCcIZy7AhlRrhbCRtSQxm6gIouhGD55VXSrFYCvxLcX5Vr1TyOApzCGVxAANdQgzuoQwMYPMIzvMKbp70X7937WLSuefnMCfyB9/kDRzWO3g==</latexit>

Par66on	A	

Par66on	B	

Load	Phase	

Unload	Phase	

Execu6on	Phase	

Figure 1 Example of a schedule using the three-phase model.

3 System Model and Assumptions

In this section we summarize the system model and assumptions of the proposed architecture.

3.1 Criticality Domains

Our goal is to implement multiple criticality domains on a single multicore SoC. Given C,
the total number of cores in the SoC, we target a system with up to C criticality domains, so
that each criticality domain is statically assigned to at least one core. One of the key design
principles is that criticality domains are isolated from each other, both in time and space [5].
In other words, we minimize the impact that the activity of applications in one criticality
domain can have on tasks in a different criticality domain.

Domain Types. Albeit strong isolation exists between criticality domains, each domain
may have different requirements in terms of performance, amount of memory resources, and
runtime environment. We envision three types of criticality domains. First, a low-criticality
domain is used to perform I/O with complex devices, processing of large amounts of data,
using general-purpose libraries and applications. A low-criticality domain may run a generic
operating system (OS) – e.g. Linux – and require a large amount of memory with fast-
on-average performance. While applications in this domain are shielded from interference
from the rest of the system, no strong temporal guarantees can be expressed due to the
best-effort nature of the software stack. Second, a high-criticality domain consolidates all the
hard real-time tasks of the system and interfaces with simple I/O devices. In this domain,
applications have strong timing guarantees. Finally, a third mid-criticality domain is used to
process tasks with intermediate criticality. Within this domain, and unlike the low-criticality
domain, temporal guarantees for real-time tasks are still provided; however, the degree of
hardware resource isolation offered to the mid-criticality domain is lower when compared
to the high-criticality one. The number of cores allocated to high- and mid-criticality
domains is M ≤ C.

3.2 Processor and Programmable Logic

We consider an embedded MPSoC platform with two main subsystems, the processor
subsystem (PS) and the programmable logic (PL), and a communication engine, as exemplified
by Figure 2.

ECRTS 2019

27:6 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Figure 2 Overview of the platform with the main components..

Processor Subsystem (PS). The PS has a multicore embedded processor with C cores.
Each core has a private Level-1 (L1) cache, and all the cores share a Level-2 (L2) cache
which is also the last-level cache (LLC). While other organizations for the memory hierarchy
are possible, we adopt a widespread model in modern multicore embedded systems. A key
difference in the considered class of partially reconfigurable systems is the following. A miss
in LLC causes a memory transaction to be performed towards either the main memory (PS
DRAM) or the Programmable Logic (see Figure 2). This behavior depends on the exact
physical memory address being accessed. Because our goal is to define strongly isolated
criticality domains, we assume that hardware support for virtualization exists in the PS.

Programmable Logic (PL). The PL is an on-chip block of Field-Programmable Gate Array
(FPGA) cells that coexists with the embedded PS cores. We consider systems where high-
bandwidth, low-latency memory interfaces connect the PS to the PL and vice-versa, as
demonstrated in Figure 2. Such a feature for the emerging class of partially reconfigurable
embedded systems is of crucial importance, and manufacturers [35] are well aware of it.
While we assume that one or more PS-PL interfaces exist, it cannot be assumed that at least
C interfaces are available. The number and capacity, in terms of memory throughput, of the
PL-PS interfaces directly impact the performance and degree of temporal isolation that can
be enforced among criticality domains. The FPGA can also provide different memory blocks,
such as scratchpad (SPM) and PL-side DRAM. Examples of existing MPSoC platforms that
fit into our system model are the Intel Stratix 10 SoC FPGA, Intel Arria 10 SoC FPGA,
Intel Cyclone SoC FPGA, Xilinx Ultrascale+ ZCU102, and Xilinx Zynq-7000.

Communication Engine. We assume that a communication engine capable of accessing and
transferring memory from/to PL and PS memories is available. Usually, a Direct Memory
Access (DMA) component is available in either the PS or the PL and it can act as the
communication engine. Its main role is to provide means for the load and unload phases
of the three-phase task model. Differently from the previously implemented three-phase
solution in [28], which used TDMA arbitration with fixed slot sizes, we propose a TDMA
mechanism with finer granularity and per-core slots of different sizes. In this scheme, each
real-time core j is assigned a slot size σj , with Σ =

∑M
j=1 σj being the length of the TDMA

round. We do not require the slots to be sized based on the SPM dimension; instead, if a
DMA phase cannot finish within a slot, we break it down into multiple transfers and perform
them over multiple TDMA rounds. The price we pay is extra overhead: since it takes some

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:7

time to re-program the DMA controller, during each slot we can only perform DMA transfers
for a maximum of σ̄j time. Hence, (σj − σ̄j) represents the DMA overhead. Assume that
two consecutive unload/load phases (refer to Figure 1) require k TDMA slots. Then it is
easy to see that the total transfer time ∆ is upper bounded by:

∆ = k · Σ + σj ; (1)

the core receives one slot every Σ time, but its initial slot can be wasted if the first memory
phase arrives just after the beginning of the slot.

3.3 Application Model
Because multiple criticality domains exist in the system, we make different assumptions on
applications in different domains. We make no assumption on the behavior of applications
operating in low-criticality domains. They can perform complex I/O operations and they
can be arbitrarily memory intensive.

Conversely, we assume that mid- and high-criticality applications adhere to more con-
servative assumptions. Mid-/high-criticality applications are structured as real-time tasks:
a sequence of jobs whose activation is time- (periodic) or event-triggered (sporadic). Mid-
/high-criticality applications are also statically assigned to cores, and locally scheduled using
non-preemptive rate-monotonic scheduling (RM). Inter-task communication is performed via
message passing. Only input data – from other tasks or devices – available by a given job’s
activation instant are used by the job itself. Similarly, output data are produced by a job
only at its completion.

We assume that the memory footprint of mid-/high-criticality tasks is limited. On one
hand, this allows to place code and data of real-time applications onto local memories of
constrained size. On the other hand, it allows to load and unload applications in and out
of local memories – following scheduling decisions – without incurring into high overheads.
Tasks follow the three-phase model, as discussed in Section 2. Since we employ similar
scheduling rules with variable time memory phases, we argue that the analysis in [33] can be
adapted to provided scheduling guarantees for our proposed system, after using Equation 1
to bound the length of memory phases. Due to space limitations, we defer a complete
schedulability evaluation to future work, while in this paper we focus on the hardware and
software design of the computing platform.

4 Design Principles and Approach Overview

Our design revolves around the idea of freedom from interference among criticality domains [5].
The ideal software stack and assignment of resources to domains is depicted in Figure 3. We
hereby provide a short description of the main challenges and techniques used to achieve a
close approximation of what is depicted in Figure 3 by using a commercially available MPSoC
embedded platform. We describe additional important implementation details in Section 6.

Inter-domain Interference. Temporal interference between criticality domains should be
limited. More specifically, it is fundamental that any interference from a lower-criticality
domain towards a higher-criticality domain is prevented – solid vertical lines in Figure 3. It
is desirable that higher-criticality applications do not interfere with lower-criticality domains.
But some degree of interference is acceptable in this case – dashed vertical lines in Figure 3.
The paradigm follows traditional safety-critical systems certification guidelines [21]. High-
criticality applications need to be certified regardless of the behavior of lower-criticality
workload. Conversely, some degree of knowledge of higher-criticality applications can be
assumed when certifying lower-criticality applications.

ECRTS 2019

27:8 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Figure 3 Ideal software and hardware stack organization.

Partitioning Hypervisor. Applications in different domains operate in self-contained address
spaces, with inter-domain communication channels handled at the hypervisor level. Hardware
resources (e.g., cores, cache partitions, main memory storage, I/O devices) are statically
assigned to criticality domains. As such, we employ a thin partitioning hypervisor which
does not perform any online scheduling. The partitioning hypervisor has a number of roles,
including (1) providing spatial isolation for RTOSes that do not support virtual memory; (2)
partitioning cores to criticality domains; (3) enforcing LLC partitioning via memory coloring;
(4) performing tasks’ relocation to/from DRAM into local memories; and (5) providing
message-passing channels for inter-domain communication.

LLC Partitioning. We rely on LLC partitioning based on page coloring1 [10]. Hypervisor-
level coloring has been proposed in [4, 16, 18]. An extensive discussion of the subtle practical
challenges to enforce coloring at the hypervisor level is provided in [18]. In this work, we use
the same hypervisor as in [18].

Preventing Memory Waste. A well known drawback of cache partitioning via coloring is
memory waste. Coloring enforces a restriction on the physical addresses, and hence actual
memory, that can be assigned to applications. For instance, if one wants to assign one-fourth
of a shared LLC to a guest OS, then one-fourth of available main memory cannot be assigned
to any other OS. This represents a significant drawback. The problem is even more severe
when local memories like scratchpads are used. In fact, the size of scratchpads is typically
very limited – a few hundreds of kilobytes to a few megabytes. Enforcing coloring essentially
cripples the ability of applications to access the majority of an already limited memory
resource. In this work, we leverage the Programmable Logic (PL) and propose a technique
to prevent coloring-induced memory waste. Specifically, we introduce a bus translator that
acts on transactions forwarded to local memories. In short, the component redirects colored –
and hence scattered – memory accesses to contiguous memory locations.

1 In this work we use the terms cache coloring and page coloring interchangeably.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:9

Main Memory Partitioning. Partitioning main memory among guest OSes is necessary due
to the problem of shared memory contention. Allowing the access to the same memory bank
from cores allocated to different criticality domains would violate the requirement of enforcing
strict isolation. Additionally, multiple domains can saturate the shared bus and/or memory
controller, experiencing significant contention and delays. Both problems are well known.
Solutions based on coloring have been proposed for the former [38, 18, 14]. Software [20, 1]
and hardware [40] solutions based on bandwidth regulation have been explored to address
the latter. In this work, we propose and explore an alternative approach to both issues.
Our approach is made possible by the capability of defining new hardware components in
the Programmable Logic (PL). First, we instantiate dual-ported memories that are only
accessible by a single criticality domain. Next, we dedicate a PL-PS interface to criticality
domains, and on each PL-PS interface we instantiate two memory controllers inside the PL.
The first controller is used for memory accesses generated by applications running on the
processor. Whereas, the second controller is used for memory transactions originated by the
communication engine.

Handling Tasks’ Relocation. As described in Section 3, tasks’ code and data are moved
to/from local memories defined in the PL by the communication engine. To implement task
relocation (for loading/unloading), a possible approach consists in compiling applications
using position-independent code (PIC) [28]. However, compilation as PIC results in less
optimized binaries [28]. Additionally, migrating a running task to a different memory region
is challenging 2. In this work, we propose to compile tasks against absolute intermediate
physical addresses (IPA). Then, after the communication engine has located a new task at a
potentially new physical location in local memory, a hypervisor routine is invoked to map
the new physical addresses (PAs) to the set of IPAs against which tasks have been compiled.

5 Design Space Exploration for Mixed-Criticality in a Modern
MPSoC

In this section, we first describe the architectural overview of the considered platform. We
then describe the experimental setup and different scenarios that were evaluated to justify
our final design.

5.1 Architectural Overview of the Chosen Platform

For our implementation, we have used the Xilinx UltraScale+ ZCU102 MPSoC [34]. On this
platform, the PS comprises two ARM Cortex-R5 cores, each having its own tightly coupled
memory of 128 KB. There are also four application (ARM Cortex-A53) cores, each having
its own local instruction and data cache (32 KB each). The Last-Level Cache (LLC) of 1 MB
is shared by all application cores. There is no dedicated SPM provided for the application
cores. This is in line with many high-performance embedded multicore processors. The PS
includes a DDR4-2666 (main memory) controller with a data bus width of 64-bit, which on
our reference board is connected to a 4GB DDR4 memory module. The PL also includes a
separate, 16-bit synthesized memory controller, which on our board is wired to a 512 MB
DDR4 memory module.

2 This is because registers and stack in a saved context may contain absolute addresses.

ECRTS 2019

27:10 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Multiple interfaces between the PL and the processor subsystem (PS) exist. There are
three interfaces going from the PS 3 to the PL. Out of the three, two are high performance
master interfaces (HPM0 and HPM1) whereas the third interface is the low performance
domain (LPD) interface. There are also interfaces from the PL to the PS, specifically the
high-performance coherent (HPC) and high-performance (HP – non-coherent). Finally, there
are 3 MB of block RAM (BRAM) inside the PL. For the rest of the paper we will use BRAM
and SPM interchangeably.

5.2 Experiments
When exploring the characteristics of modern MPSoC platforms, it is easy to realize that
there are many possible designs one can create to achieve predictability for mixed criticality
domains. For the Xilinx ZCU102, for instance, the communication between the PL and the
PS can have one or two high performance master ports (HPM0 and HPM1). Tasks running
on the application cores (A53) can use the PS or PL DRAMs or even access the block RAM
(BRAM) in the FPGA. We have designed a set of experiments to evaluate the behavior of
different configurations under stress. Based on the related work [31, 28, 20], we chose two
memory-intensive applications (disparity and mser) from the San Diego Visual Benchmark
Suite (SD-VBS) [32] to be used in the evaluations. We chose the SD-VBS benchmark suite,
because it provides vision applications similar to those used in autonomous cars. Thus, they
represent real-time applications that demand both predictability and performance. We then
ported disparity and mser to Erika RTOS/Jailhouse (we describe Erika and Jailhouse
later in Section 6) and executed them with SQCIF (128×96) input data size. To stress the
memory subsystem, we used a bandwidth benchmark (BW) from [12]. This benchmark is
tailored to issue writes to the main memory (DRAM) or SPM (i.e., block RAM in the PL)
by ensuring that every write is a miss in the LLC.

Using the memory intensive and bandwidth benchmarks, we evaluate the scenarios
described in Table 1. We consider two legacy (Lcy) scenarios, and three scenarios in which
our solution is used (Our). In the first legacy scenario (Lcy-Solo), the benchmark under
analysis (disparity or mser) runs solo from the PS DRAM without cache coloring on top
of Linux (kernel 4.14). Note that it does not use any high performance master (HPM) port,
because it does not access the PL. In the second legacy scenario (Lcy-Stress), contention
is added. Specifically, three bandwidth benchmark instances access the PS DRAM also
from different cores in Linux. This scenario represents the simplest possible design in the
platform since no special technique is used to avoid contention. Next, we consider our
solution. In scenario Our-Solo, the benchmark under analysis runs alone in the system
using a dedicated HPM port and accessing an SPM in FPGA. In this and the following cases,
the cache has also been partitioned via coloring. In scenario Our-Mid, the benchmark under
analysis runs from the mid-criticality domain and three contending bandwidth benchmark
instances are added. The first runs in the low-criticality domain (Linux), the second in
the high-criticality domain, and the third in the mid-criticality domain. The latter shares
an HPM port with the benchmark under analysis. Finally, in scenario Our-High, the
benchmark under analysis executes from a high-criticality domain, using a dedicated HPM
port. Two contending bandwidth benchmark instances run from a mid-criticality domain
and share a single HPM port, while an additional contending bandwidth benchmark instance
runs in the low-criticality domain.

3 Here the direction of the interface indicates which side of the system can initiate transactions towards
the other side. On an interface from PS to PL, the PS is the master of the interface, while the PL is
the slave.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:11

Table 1 Summary of the five scenarios considered for the evaluation.

Scenario Experiment Accessed
Memory Coloring HPM Port Contention Type

Lcy-Solo Solo PS DRAM No Not used None
Lcy-Stress Contention PS DRAM No Not used 3× BW
Our-Solo Solo SPM Yes Dedicated None

Our-Mid Contention SPM Yes Shared
1× BW from low-crit.
1× BW from mid-crit.
1× BW from high-crit.

Our-High Contention SPM Yes Dedicated 1× BW from low-crit.
2× BW from mid-crit.

Figure 4 and Figure 5 depict the results for the mser and disparity applications,
respectively, under the five aforementioned scenarios. Each experiment reports the result of
1000 executions. In both figures, the x-axis reports the execution time in clock cycles4. On
the left y-axis we present the experimentally derived execution time distribution, while on
the right y-axis we show the cumulative distribution function (CDF). The vertical dashed
line shows the average, while the vertical dotted line corresponds to the observed WCET.
The annotation in each plot provides the numerical values for average, WCET, best-case
execution time (BCET), and variability window – which is a metric of predictability and is
computed as (WCET − BCET)/WCET .

A few important trends can be highlighted in the results for mser (Figure 4). First, for
the two legacy scenarios, in Lcy-Stress (Figure 4b) the application exhibits a drastic 1.73×
increase in WCET compared to Lcy-Solo (Figure 4a) due to added contention. Moreover,
the execution time in the Lcy-Stress case becomes unstable, with a variability window
of 27.8%. Next, when executing in a mid-criticality (or high-criticality) domain without
contention (Our-Solo case – Figure 4c), the performance of the application under analysis
is comparable to the Lcy-Solo case. If the application is deployed in a mid-criticality
domain (Our-Mid case – Figure 4d), a sharp improvement in predictability and WCET is
observed compared to the Lcy-Stress case. In fact, the variability window is reduced by
42% and the WCET is reduced by 31%. Finally, in Figure 4e, the application is run inside
a high-criticality domain, and hence with a dedicated HPM port – Our-High case. By
considering the Lcy-Stress case as the baseline, we observe a 58% reduction in variability
window, as well as a 37% reduction in WCET. Additionally, note that in the Our-High case
the application performance is remarkably close to what is observed in the Our-Solo case.

The results for disparity reported in Figure 5 follow similar trends. First, the WCET
shows a 1.27× increase between Lcy-Solo and Lcy-Stress, reported in Figure 5a and
Figure 5b respectively. When the benchmark is executed alone in the system in a mid-
criticality (or high-criticality) domain (case Our-Solo in Figure 5c), its WCET and average
execution time increases only slightly by 1.04× and 1.07× respectively. Intuitively, this
is because the SPM is a slower memory compared to the PS DRAM. Next, consider the
Our-Mid (Figure 5d) case where disparity is executed in a mid-criticality domain with
contention from the rest of the system. Compared to the Lcy-Stress case, we observe a
8% reduction in WCET and a 32% decrease in variability. When the application runs in a
high-criticality domain (case Our-High in Figure 5e), its WCET is minimally affected by
contending workload, with a 1.06× increase compared to the Our-Solo case. Notably, the
variability window in the Our-High case is lower than in the Lcy-Solo case.

4 1 clock cycle is equal to 0.01 us.

ECRTS 2019

27:12 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

500000 550000 600000 650000 700000 750000 800000 850000
0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y Avg. = 4.84E + 05
WCET = 5.05E + 05
BCET = 4.82E + 05
Var. Win. = 4.68%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) LCY-SOLO

500000 550000 600000 650000 700000 750000 800000 850000
0.00

0.02

0.04

0.06

Pr
ob

ab
ilit

y Avg. = 6.65E + 05
WCET = 8.72E + 05
BCET = 6.30E + 05
Var. Win. = 27.82%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) LCY-STRESS

500000 550000 600000 650000 700000 750000 800000 850000
0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y Avg. = 4.76E + 05
WCET = 5.11E + 05
BCET = 4.72E + 05
Var. Win. = 7.55%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) OUR-SOLO

500000 550000 600000 650000 700000 750000 800000 850000
0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y Avg. = 5.22E + 05
WCET = 6.01E + 05
BCET = 5.04E + 05
Var. Win. = 16.18%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(d) OUR-MID

500000 550000 600000 650000 700000 750000 800000 850000
Execution Time (cycles)

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y Avg. = 4.92E + 05
WCET = 5.50E + 05
BCET = 4.85E + 05
Var. Win. = 11.72%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(e) OUR-HIGH

Exec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCET

Figure 4 Results for mser application. See the summary of the scenarios in Table 1.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:13

6250000 6500000 6750000 7000000 7250000 7500000 7750000 8000000
0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y Avg. = 6.13E + 06
WCET = 6.31E + 06
BCET = 6.12E + 06
Var. Win. = 2.98%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) LCY-SOLO

6250000 6500000 6750000 7000000 7250000 7500000 7750000 8000000
0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y Avg. = 7.77E + 06
WCET = 8.03E + 06
BCET = 7.57E + 06
Var. Win. = 5.76%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) LCY-STRESS

6250000 6500000 6750000 7000000 7250000 7500000 7750000 8000000
0.00

0.01

0.02

0.03

Pr
ob

ab
ilit

y Avg. = 6.57E + 06
WCET = 6.59E + 06
BCET = 6.56E + 06
Var. Win. = 0.46%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) OUR-SOLO

6250000 6500000 6750000 7000000 7250000 7500000 7750000 8000000
0.00

0.01

0.02

0.03

Pr
ob

ab
ilit

y Avg. = 7.24E + 06
WCET = 7.39E + 06
BCET = 7.10E + 06
Var. Win. = 3.94%

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
(d) OUR-MID

6250000 6500000 6750000 7000000 7250000 7500000 7750000 8000000
Execution Time (cycles)

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y Avg. = 6.97E + 06
WCET = 7.04E + 06
BCET = 6.83E + 06
Var. Win. = 2.94%

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(e) OUR-HIGH

Exec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCETExec. Time Distrib. CDF Average WCET

Figure 5 Results for disparity application. See the summary of the scenarios in Table 1.

ECRTS 2019

27:14 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Based on the evaluated scenarios, we can conclude that the hardware isolation provided
by a dedicated memory interface, a dedicated SPM memory, together with cache coloring
(Our-High case), is able to deliver better predictability and performance close to the ideal
case (Our-Solo). We present and discuss the final hardware design in the next section.

6 Support for Mixed-Criticality Applications on MPSoCs

In this section we present a general overview of the implementation carried out in the
ZCU102 platform to provide predictability for mixed-criticality applications. We start
giving an overview of the implementation in Section 6.1, then we present the details for
each implemented component (hypervisor, cache coloring, address translator, RTOS, and
code/data relocation).

6.1 Overview of Implementation
Based on the experiments described in the previous section, our final hardware design is
depicted in Figure 6. We assign one of the A53 cores to be a low-criticality core, two of
them to be mid-criticality cores, and one of them to be a high-criticality core. The mid- and
high-criticality cores run their own Real-Time Operating System (RTOS). A few noticeable
features of our proposed design are: (i) the low-criticality domain is assigned direct access to
DRAM because this domain features applications with sizable footprints; (ii) each mid- and
high-criticality domain is assigned a private SPM; (iii) each of these SPMs is dual-ported
and a controller is instantiated on each port to prevent contention between DMA and core
at the SPM controller; and (iv) the high-criticality domain also occupies a dedicated PS-PL
interface to access its private SPM. It should be noted that the SPM (BRAM) memories
in the Xilinx FPGA are dual-ported and thus there is no extra overhead (which may not
be the case when using dual-ported memories in Application Specific Integrated Circuits).
Moreover, the size of each SPM can be defined according to the applications and RTOS
requirements for each criticality domain. Since in our platform the maximum size of all
SPMs is 3 MB, the size of the SPM used by the high-criticality domain was set to 2 MB,
while the size of the other two SPMs used by mid-criticality domains was set to 512 KB each.

The low-criticality core is also responsible for booting a hypervisor (Jailhouse). Jailhouse
allows us to partition shared memory resources, especially the LLC and DRAM by imple-
menting cache coloring. We have two partitions in the DRAM; one dedicated to run Linux
and another one to place the code/data of the tasks running on the A53 application cores
(to support the three-phase model as will be discussed below).

We propose creating separate SPM in the PL for all the mid- and high-criticality cores.
Thus, a dedicated or fast interface such that each core can access its own SPM without seeing
a delay from another core is required. Unfortunately, there are only two high performance
interfaces between PL and PS available in the platform and three A53 application cores.
Therefore, in our design we assign one shared high performance interface to two A53 cores
while the third core has a dedicated interface to its own SPM memory (see Figure 6).

Although there is another interface between PS and PL called low performance domain
(LPD) that can be used for the third A53 core, we opt not to use it. We have used a latency
benchmark [12] to measure the performance when one single core is accessing the LPD
interface and when two cores access the same HPM interface under stress. The obtained
latency for the HPM interface under stress was 202 ns, while for the LPD was 220 ns. Thus,
the LPD interface is used to carry DMA transfers to/from the SPM/DRAM on the behalf
of the A53 application cores, as part of the TDMA-based scheduling. The TDMA-based

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:15

Figure 6 PS-PL interface and design.

scheduling of the DMA is handled by the R5 core. To pipeline the execution of a currently
running task with the load of the next task, we divide the SPM into two halves. A dual
ported SPM was used so that a DMA and an application core can both write/read to/from
SPM at the same time.

In order to avoid the contention between A53 cores in different criticality domains, we
partition the LLC via coloring. Coloring is used since no hardware support is available to
partition the LLC. The use of coloring generally results in portions of physical memory being
unusable to applications. This is generally acceptable for main memory, because its size is
not constrained (few GBs). Conversely, SPMs in the PL are usually limited in size (few KBs
or MBs). For instance, if coloring is used to define four equally sized LLC partitions, this
would reduce the size of each SPM to 1/4. To avoid this side effect of coloring, we introduce
an address translator between the A53 and the SPM. Since the cache is physically indexed,
coloring both the PS DRAM and SPM is required to avoid interference (otherwise there
would be a cache interference at every SPM access).

In the following subsections, we provide a detailed discussion on each of the main
components including Jailhouse, page coloring, address translator, how the A53 cores in
different criticality domains communicate using the hypervisor, RTOS support for the system
model, and task relocation to support the three-phase model.

6.2 Jailhouse to Partition the Shared Resources

As the hypervisor we use Jailhouse. Jailhouse is a partitioning hypervisor which can be used
to transform a symmetric multiprocessing (SMP) system into an asymmetric multiprocessing
(AMP) system [25]. Jailhouse is bootstrapped via a Linux driver and favors simplicity and
low-overhead over sophisticated (para-)virtualized techniques, which is ideal for real-time
systems [25]. It requires at least one core to be assigned to Linux – the root cell. Once the
driver is loaded, it takes control of the entire hardware and reassigns a partitioned view of the
hardware resources back to Linux, based on a configuration file. Then, to create additional
domains (called non-root cells), Jailhouse removes hardware resources assigned to Linux
(such as a processor core or a specific I/O device) and reassigns them to the new cell [25].
The idea is to have non-critical tasks running on the Linux cell and critical tasks running on
isolated partitions on top of an RTOS.

ECRTS 2019

27:16 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

The A53 cores support a two-stage virtual memory translation. User-space applications
in a guest-OS, such as Linux or an RTOS, are assigned virtual addresses (VA). The first stage
of translation uses page tables maintained by the guest OS to translate VAs into intermediate
physical addresses (IPA). The second stage of translation is in control of the hypervisor, and
it is used to translate IPAs to physical addresses (PAs) via a second set of page tables.

The RTOS used for mid-/high-criticality domains is Erika Enterprise version 3, which is
open-source and OSEK/VDX certified [9, 7]. Erika supports fixed-priority scheduling and a
porting for Xilinx Ultrascale+ platform is available.

6.3 Page Coloring

To enforce strong inter-domain (inter-cell) and hence inter-core performance isolation, we
leverage page coloring (see [18, 10] for a complete overview of the technique). We use the
virtualization extensions of the processor to implement coloring by enforcing appropriate
restrictions on the color of pages that Jailhouse maps to IPAs of virtualized cells. Specifically,
we impose that physical pages with non-overlapping colors are assigned to cells activated on
different cores. The advantage of this approach is twofold. On the one hand, it allows us to
localize the changes required to implement coloring-based partitioning in a single software
component (Jailhouse). On the other hand, it allows deploying unmodified and possibly
closed-source OS inside our criticality domains. A similar technique was used in [22, 16, 18].

6.4 Address Translator to Overcome Limitations of Cache Coloring

To overcome the problem of memory waste imposed by coloring, we designed an address
translation hardware IP. The component performs physical address translation for memory
transactions originating from the PS towards the PL. To better understand how the component
operates, let us consider our specific setup. To access an SPM with a size of 2 MB, 21
bits of the address are provided for requests originated from the PS. With cache coloring
enabled (and four colors, one for each core), only one in four memory pages can be used,
with addresses aligned at 16 KB boundaries (each page has a size of 4 KB). The adopted
solution is the following. Instead of receiving 21 bits of an address, the translator IP receives
23 bits (8 MB) from the PS, removes the specific color bits from that, and passes it to
the SPM controller.

Given the geometry of the LLC (1 MB, 16 ways) the color bits that can be used to
perform partitioning are bits 12 to 15 of each physical address. To create 4 partitions, one
could use bits 12 and 13. Pages with bits [12, 13] = 0b0 would be assigned to partition 1;
pages with bits [12, 13] = 0b1 to partition 2; and so on. In this way, four sequential physical
pages will be assigned to four different partitions. This is not ideal, however, because the
L1-Data cache in this platform is Physically Indexed, Physically Tagged (PIPT) and fits 2
pages per way. If a CPU is only given access to one every four pages, only half of the L1-D
cache will be utilized. To avoid this problem, we use bits 14 and 15 as the LLC color bits. In
this configuration, each partition is given 4 consecutive pages.

Let us assume that the address of the translator in Figure 6 responds under the address
range 0xA0000000 to 0xA07FFFFFF (8 MB). Following the discussion above, bits 14 and
15 are used as LLC coloring bits. Figure 7 shows an example where a request address
of 0xA0023456 (offset 0x023456) from a core arrives to the translator IP. Bits 14 and 15
of the offset are dropped by the translator and the resulting offset is 0x0B456 in a 2 MB
non-colored space.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:17

0xA0023456

0 2 3 4 5 6

00110010

1011

0 B 4 5 6

Offset (0x)

0xA00B456

Translator IP

Figure 7 Translator IP operation. The two most significant bits from the fourth byte (in red) of
the input address are dropped..

In our design (Figure 6), there are three translators to handle the requests coming from
each core. With this mapping mechanism, the SPM capacity is not affected by the cache
coloring (we do not lose space) and since the translator IP is burst-capable, we do not lose
bandwidth nor increase latency in accessing the SPMs. Besides that, the area overhead of
the module in terms of the numbers of Flip-Flops (FF) and Lookup tables (LUTs) compared
with the design without any translation IP are 0.57% and 0.41% respectively, while the block
RAM cell count remains the same.

6.5 Communication among Jailhouse Cells
Usually, communication among processors is done by sharing memory buffers and Inter-
Processor Interrupts (IPIs). Jailhouse allows to issue direct IPIs only among processors that
are assigned to the same cell, and hence the same criticality level. To avoid a low-criticality
domain (i.e., Linux) to interfere with higher-criticality domains (by sending an unlimited
number of IPIs), currently we do not allow issuing IPIs among processors with different
criticality levels. In the future, the communication among tasks from different criticality
levels will be performed through the Jailhouse shared memory mechanism, based on the
creation of virtual PCI devices and their legacy interrupts in the static configuration for
each cell [25]. This means that the system designer could specify which criticality level
(i.e., Jailhouse cell) can communicate with other criticality levels. As future work, we will
investigate how to enhance Jailhouse with a server-based scheduling mechanism for IPIs [8],
such that real-time guarantees can be preserved in the event that a low-criticality domain
tries to send an unlimited number of IPIs to a higher-criticality one. Also, we propose the use
of FIFO buffers implemented in the shared memory (which can also be colored) to support
the communication among OSes.

6.6 Erika RTOS Running on Real-Time Cores
All the A53 application cores run a partitioned fixed priority scheduler, provided by the
Erika RTOS, and always execute from dedicated SPM memory assigned to them. Both the
dedicated SPMs and the PS DRAM assigned to Linux are colored to avoid cache evictions in
the shared cache. Erika does not support virtualization on ARMv8 CPUs, as such it would
not use virtual addresses (VAs). By default, however, Jailhouse performs the setup of a
flat 1:1 stage-one (virtual address to intermediate physical address – VA→IPA) addressing
space before booting any non-root cell. This is required to support cacheable memory. An
application in the Erika RTOS is always statically compiled against VA/IPA addresses. As
shown in Figure 8, the task running on the Erika core can be in one of the following states:

ECRTS 2019

27:18 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Running: The tasks is executing from SPM.
Ready Loaded: The task is loaded and is ready to execute from SPM.
Ready Unloaded: The task is released but it is not yet loaded to SPM.
Completed: A task has completed.
Waiting on Event (Unloaded): The task is waiting on a timer or on an event.

Figure 8 Overview of the different states of a task in Erika RTOS.

Note that the transition from Waiting on Event Unloaded to Ready Loaded is performed
when there is no other ready task and the waiting task that was unloaded receives all the
events it needs. The state transition also encompasses the loading phase. To allow the
load and unload of code and data of Erika’s tasks, we use the support for virtual memory
implemented in Jailhouse, described in the next subsection.

6.7 Code/Data Relocation
Relocation is the process of assigning addresses to position-independent code and data. We
use code/data relocation to support the loading and unloading of Erika tasks’ code and data.
Relocation is initiated by the Erika RTOS when its scheduler decides to load or unload a task
as required. Recall, however, that applications in Erika are statically compiled against a set
of virtual addresses (or intermediate physical addresses, since Erika does not support virtual
memory). As such, relocation is performed by modifying the mapping from intermediate
physical addresses to physical addresses (IPA→PA) managed by Jailhouse.

Erika first informs Jailhouse that a relocation must be performed. This is done via a
hypercall (i.e., hvc assembly instruction), which was added to Erika. Hypercalls in Jailhouse
are services provided by the hypervisor to its cells. A Jailhouse hypercall receives three
arguments; the hypercall code or ID and two arguments that are specific to the hypercall. We
added to Jailhouse two new hypercall IDs, indicating either load or unload operations. The
second argument is used to encode (i) the source/destination address in DRAM (page-aligned,
least-significant 12 bits are zero); and (ii) the offset in pages from the beginning of the
SPM where the task needs to be loaded to/unloaded from (the largest SPM is 2 MB, so
the maximum offset is 512 - 1 pages, and it takes the 9 least-significant bits). The third
argument encodes the size of the task that needs to be loaded/unloaded. As shown in [3],
the overhead of a hypercall in Jailhouse on the ZCU102 platform is around 400 ns.

Once Jailhouse receives a request to relocate a task’s code/data, it performs the following
steps. First, it determines the absolute source (resp., destination) in DRAM and destination
(resp., source) in SPM for a load (resp., unload) operation. Next, it modifies the IPA→PA

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:19

mapping so that the range of intermediate physical addresses starting at the provided source
address (resp., destination), and spanning for the number of pages specified by the size
parameter, map to the destination address. After the remapping is completed, Jailhouse
returns control to the calling environment (Erika RTOS). The effective copy of the task
into/from SPM is performed by the DMA engine.

7 Evaluation

In this section, we present the evaluation of our system design. We start showing an evaluation
of the DMA performance, including the time to transfer different data sizes from PS DRAM
to the SPM and its programming overhead. We then demonstrate the limits in terms of hard
real-time guarantees of our system through a case study on image processing.

7.1 DMA Evaluation

In order to move data between the PS DRAM and the SPM memory inside the PL, we
use the PS-side DMA. Because only one DMA is used to move data on behalf of three A53
cores, we propose a fine granularity TDMA-based scheduling of the DMA. When activated,
the DMA transfers data between PS DRAM and SPMs using the low-power domain (LPD)
interface. In our design, a dedicated LPD port is used instead of a shared HPM port to
avoid contending with the application cores when performing DMA transfers. The TDMA
schedule is handled by one of the ARM Cortex-R5 cores. For this purpose, a bare-metal
firmware was deployed on the R5, created using the Xilinx SDK 2018/02. The SDK uses
the armr5-none-eabi-gcc compiler. The following compilation flags were used: -DARMR5
-W -Wall -O0 -g3.

We measured the DMA transfer time for different data sizes, extracting the average
transfer time, standard deviation (STD), and the worst-case transfer time among 1000
samples. Table 2 shows the obtained results. Recall that 1 MB represents half the size
of the largest SPM in our design. The results show that the standard deviation remains
within the range [0.057, 0.1]. It can also be noted that the achievable bandwidth increases
proportionally to the amount of contiguous memory transferred, peaking at around 870 MB/s
with transfers of 1 MB in size.

We also measured the DMA programming overhead (i.e., the time to program and
start a DMA transfer). The worst-case DMA programming overhead obtained from all
the experiments was 3.89 µs. For small data sizes (2 and 4 KB for instance), the relation
between the programming overhead and the transfer time is significant. In this case, it may
be beneficial to avoid small data transfer whenever possible or use the own task’s core instead
of the DMA. We plan to fully analyze the impact of the DMA programming overhead into
the schedulability of real-time tasks in future work. However, based on insights provided by
previous work on the three-phase model [28, 33], we would like to point out that the model
behaves well as long as task execution times are longer than the time required to reload
an SPM partition. As an example, if we consider a partition of 256 KB (half the size of
a 512 KB scratchpad), and a TDMA slot with transfer size of 32 KB for each core, then
based on Equation 1 we obtain σj = 38.81 + 3.89 = 42.7 us, Σ = 3 · 42.7 = 128.1 us, and
k = 2 · 256/32 = 16 as the number of slots required to unload/load the partition. This results
in a memory reload time ∆ = 2092.3 us, meaning that tasks should execute for at least 2 ms
to hide the memory time.

ECRTS 2019

27:20 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

Table 2 DMA transfer time (in us) and bandwidth for different data sizes.

Transfer Size Transfer Time Bandwidth (MB/s)
Average (µs) STD Worst-case (µs)

2 KB 4.92 0.057 5.11 397.0
4 KB 7.15 0.04 7.27 546.3
8 KB 11.63 0.01 12.01 671.8
9.1 KB 12.91 0.05 13.11 688.4
16 KB 20.62 0.08 20.96 757.8
22 KB 27.42 0.10 27.72 783.5
32 KB 38.52 0.05 38.81 811.3
1 MB 1149.44 0.05 1149.78 870.0

7.2 Case Study: Image Processing

To evaluate our system design we consider a system where video frames captured from a
camera are processed in a high-criticality domain. Video frames are processed using the
disparity benchmark from the SD-VBS suite [32]. Disparity computes depth information
for objects represented in two input images, obtaining relative positions of objects in the
scene. This kind of algorithm is useful in applications such as cruise control, pedestrian
tracking, and collision control [32]. The objective of this evaluation is to demonstrate how
the proposed system behaves in a realistic setup and to show its limits in terms of achievable
hard real-time guarantees.

To this end, the disparity benchmark is executed as a periodic task. During each
activation, it computes the disparity of two input images. At every new period, disparity
reuses one image from the previous iteration and uses a new image transferred by the
communication engine. We performed two experiments with two different image resolutions,
i.e., 64x48 and 128x96 (SQCIF). We only used these image resolutions due to limitations
in the size of the SPM. Also, disparity requires input images to be in the bitmap image
file (BMP) format, which is uncompressed. Thus, for a resolution of 64x48, an image has a
size of around 9.1 KB, while for 128x96 an image has a size of 22 KB. We use a set of 20
images of a scene from the KITTI vision benchmark suite dataset [27]. In particular, we
used 20 frames from the 2015 stereo multiview dataset. The original images had a resolution
of 1241x376. We converted the frames to the lower resolutions described above. We move
the I/O data of the tasks from/to DRAM to/from the SPM at load/unload phase of the task
using the same approach as described in [29]. Table 2 shows the DMA transfer time for both
image resolutions (9.1 KB and 22 KB). Erika RTOS consumes 294 KB of memory (including
data and code) and it is fixed on the SPM (we do not load nor unload code/data of the
RTOS). Disparity using image resolution of 64x48 consumes 349 KB, while for 128x96 it
consumes 745 KB, also including data and code. Although not required in this case study,
note that when input data is too large to fit into the SPM, it is possible to use compiler-level
techniques to break the load/unload phases into small chunks [26].

We considered four out of the five scenarios described in Table 1. We run disparity
alone in the system from the PS DRAM on top of Linux (Lcy-Solo), next disparity
runs from the PS DRAM with three bandwidth (BW) benchmark instances (see Section 5)
also executing and accessing the PS DRAM (Lcy-Stress). The disparity benchmark is
then executed from SPM on top of Erika/Jailhouse with coloring and using our hardware
design without (Our-Solo) or with (Our-Stress) interference from the rest of the system.
Ideally, when disparity runs with contention from the SPM (Our-Stress) it should exhibit

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:21

comparable performance with respect to the case when disparity runs without interference
from the SPM (Our-Solo). The case when disparity runs solo from PS DRAM (Lcy-
Solo) serves as a baseline, while the case when it runs from PS DRAM under contention
(Lcy-Stress) provides an idea of what we gain in terms of isolation and performance thanks
to the proposed set of software/hardware techniques. Periodic execution of the disparity
task was achieved under Linux by using a CLOCK_REALTIME timer to invoke a handler at the
desired frequency. The handler then releases the disparity thread using a semaphore. The
disparity benchmark, Erika OS, and the BW benchmark instances were compiled using
gcc version 5.4 for the ARM64 architecture with the -O2 flag.

First, we present the execution time of disparity in each of the four cases using an
image resolution of 64x48 in Table 3, and a resolution of 128x96 in Table 4. We measured
the execution time of 1000 individual processing jobs and extracted the average execution
time, standard deviation (STD), BCET, WCET, and variability window. The variability
window is calculated as (WCETstress −BCETsolo)/WCETstress. Time measurements were
taken using the processor cycle counter and converted to ms. Note that when working at
64x48 resolution, the two input images (9 KB each) fit into the L1 cache (32 KB). Thus,
the observed worst-case when disparity is running alone is similar for both memories
(PS DRAM and SPM). However, when contention is introduced, the benchmark suffers
visible interference in the Lcy-Stress setup. Note that there is still some contention when
disparity uses the dedicated HPM interface and cache coloring in the Our-Stress setup.
This may be due to contention over Miss Status Holding Registers (MSHRs) in the last level
cache [30]. The results for 128x96 (SQCIF size) input images were presented in Section 5
and correspond to the cases analyzed in Figure 5(a), 5(b), 5(c), and 5(e).

Table 3 Average, standard deviation, BCET, and WCET obtained from 1000 executions for the
considered four cases with input image size of 64x48. All values in ms. Highlighted values in bold
are used to calculate the variability window.

Lcy-Solo Lcy-Stress Our-Solo Our-High
Average 15.89 17.86 15.94 16.49

STD 0.01 0.07 0.01 0.06
BCET 15.88 17.69 15.92 16.34
WCET 16.00 18.18 15.96 16.73

Var. Window 12.6% 4.8%

Table 4 Average, standard deviation, BCET, and WCET obtained from 1000 executions for the
considered four cases with input image size of 128x96. All values in ms. Highlighted values in bold
are used to calculate the variability window.

Lcy-Solo Lcy-Stress Our-Solo Our-High
Average 61.50 75.09 66.04 69.80

STD 0.02 0.34 0.07 0.26
BCET 61.45 74.32 65.79 69.04
WCET 61.80 77.09 66.30 70.59

Var. Window 20.2% 6.8%

Based on the observed WCET in the various experiments, we vary the image processing
task period and study when disparity starts missing deadlines in each case. Table 5 presents
the obtained results for image size of 64x48. We vary the frequency from 55 Hz (18.18 ms
period) to 63 Hz (15.87 ms period). A tick mark in the table indicates that the desired image

ECRTS 2019

27:22 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

processing rate was sustainable. In other words, that no instance of disparity missed its
relative deadline (equal to the period). Whereas a cross mark indicates that the desired rate
was not sustainable. From the results in Table 5, we can see that by running disparity
without any interference, the maximum sustainable rate is 62 Hz. However, when running
under contention and no isolation enforcement (Lcy-Stress case) the sustainable image
processing rate drops to 55 Hz. Conversely, a rate of 59 Hz is sustainable if disparity
executes from within a high-criticality domain defined using the proposed software/hardware
techniques. Note that in this setup each image processing job has to wait for an image to
be transferred in input by the DMA before it can start execution. Because DMA accesses
to DRAM can experience contention, a decrease in sustainable rate is visible between
the Lcy-Solo and the Lcy-Stress cases. Nonetheless, this experiment shows that our
design provides better predictability and enables higher processing rates when the system is
under heavy load.

Table 5 Supported frequencies for image size of 64x48.

Freq. (Hz) Period (ms) Lcy-Solo Lcy-Stress Our-Solo Our-High
55 18.18 3 3 3 3

56 17.86 3 7 3 3

57 17.54 3 7 3 3

58 17.24 3 7 3 3

59 16.95 3 7 3 3

60 16.67 3 7 3 7

62 16.13 3 7 3 7

63 15.87 7 7 7 7

Table 6 shows results for input images with resolution 128x96 when running the disparity
benchmark. The average execution time for disparity with image resolution of 128x96 when
running solo from PS DRAM is 61.5 ms – see Table 4, Lcy-Solo case. Thus, we vary the
frequency from 10 Hz until 17 Hz and observe that the image processing task starts missing
deadlines when activated at 17 Hz. With 128x96 input images, the disparity benchmark
under contention can sustain a rate of 14 Hz in spite of heavy system load when isolated
in a high-criticality container (Our-High case). Conversely, the sustainable rate decreases
to 12 Hz when no isolation is enforced. In the Our-Solo case, disparity can run at a
maximum frequency of 15 Hz, which is slightly lower than what can be achieved in the
Lcy-Solo case (16 Hz). The drop arises from the fact that the SPM memory in PL is a bit
slower than the PS DRAM [34]. We did not see the same behavior for an image resolution of
64x48 due to the cache. Importantly, however, the sustainable rate in the Our-Solo case is
very close to the Our-Stress case. Thus, it can be concluded that our software/hardware
co-design is able to deliver performance to highly critical applications that are close to the
best-case. It is also important to highlight the low performance achieved by disparity for
higher resolution images. We plan to investigate how to achieve better processing rates for
image applications on top of the platform in future work.

8 Conclusion and Future Work

In this paper, we have shown how one can define multiple criticality domains by exploiting the
rich hardware features provided by a modern heterogeneous SoC that incorporates multiple
CPUs and PL. Following the proposed design, the PL is used to define dedicated portions
of scratchpad memory for mid-/high-criticality applications. Additionally, we ensure that

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:23

Table 6 Supported frequencies for image size of 128x96.

Freq. (Hz) Period (ms) Lcy-Solo Lcy-Stress Our-Solo Our-High
10 100.00 3 3 3 3

11 90.91 3 3 3 3

12 83.33 3 3 3 3

13 76.92 3 7 3 3

14 71.43 3 7 3 3

15 66.67 3 7 3 7

16 62.50 3 7 7 7

17 58.82 7 7 7 7

no contention exists for high-criticality applications by routing their memory transactions
using a dedicated high-performance memory interface inside the PL. Similarly, mid-criticality
applications access their SPM using a memory interface shared only with other mid-criticality
applications. External I/O and communication data from the rest of the system is transferred
to the mid-/high-criticality domains by a TDMA-scheduled DMA engine using a real-time R5
core. We described our full-stack implementation of the proposed techniques and evaluated
the system using realistic SD-VBS benchmarks.

As a part of future work, we plan to investigate how to enhance Jailhouse with a
server-based scheduling mechanism for limiting the number of IPIs between processors from
different criticality levels, how to integrate compiler code generation to automatically generate
load/unload requests for tasks following the three-phase model, to discuss the schedulability
analysis of the proposed fine-granularity DMA transfer based on TDMA, how to guarantee
that the communication engine executes safely, since if it fails (due to a security attack for
instance) the entire system also fails, and how to achieve higher computational power for
image processing applications without giving up on the relatively strong isolation achieved
by the current design.

References
1 A. Agrawal, R. Mancuso, R. Pellizzoni, and G. Fohler. Analysis of Dynamic Memory Bandwidth

Regulation in Multi-core Real-Time Systems. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 230–241, December 2018. doi:10.1109/RTSS.2018.00040.

2 Ali Awan, Konstantinos Bletsas, Pedro F. Souto, Benny Akesson, and Eduardo Tovar. Mixed-
Criticality Scheduling with Dynamic Memory Bandwidth Regulation. In IEEE 24th Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pages 111–117, August 2018.

3 Maxim Baryshnikov. FPGA-based support for predictable execution model in multi-core CPU.
Master’s thesis, Czech Technical University in Prague, Prague, Czech Republic, May 2018.

4 Alessandro Biondi, Mauro Marinoni, Giorgio Buttazzo, Claudio Scordino, and Paolo Gai.
Challenges in Virtualizing Safety-Critical Cyber-Physical Systems. In Proceedings of Embedded
World Conference 2018, pages 1–5, February 2018.

5 Alan Burns and Robert I. Davis. A Survey of Research into Mixed Criticality Systems. ACM
Comput. Surv., 50(6):82:1–82:37, November 2017. doi:10.1145/3131347.

6 A. Crespo, P. Balbastre, J. Simó, J. Coronel, D. Gracia Pérez, and P. Bonnot. Hypervisor-
Based Multicore Feedback Control of Mixed-Criticality Systems. IEEE Access, 6:50627–50640,
2018.

7 Evidence. Erika Enterprise RTOS v3, October 2018. Online; accessed 16 October 2018. URL:
http://www.erika-enterprise.com/.

ECRTS 2019

http://dx.doi.org/10.1109/RTSS.2018.00040
http://dx.doi.org/10.1145/3131347
http://www.erika-enterprise.com/

27:24 Designing Mixed Crit. Apps. on Modern Heterogeneous MPSoCs

8 T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi. Non-preemptive interrupt scheduling
for safe reuse of legacy drivers in real-time systems. In 17th Euromicro Conference on Real-Time
Systems (ECRTS’05), pages 98–105, July 2005. doi:10.1109/ECRTS.2005.21.

9 Paolo Gai, Enrico Bini, Giuseppe Lipari, Marco Di Natale, and Luca Abeni. Architecture For
A Portable Open Source Real Time Kernel Environment. In In Proceedings of the Second
Real-Time Linux Workshop and Hand’s on Real-Time Linux Tutorial, 2000.

10 G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni. A Survey on Cache
Management Mechanisms for Real-Time Embedded Systems. ACM Comput. Surv., 48(2),
November 2015.

11 G. Gracioli and A. A. Fröhlich. Two-phase colour-aware multicore real-time scheduler. IET
Computers Digital Techniques, 11(4):133–139, 2017.

12 Heechul Yun. Latency and Bandwidth Utilities. https://github.com/heechul/misc, February
2019.

13 C. Kenna, J. Herman, B. Ward, and J. H. Anderson. Making shared caches more predictable
on multicore platforms. In ECRTS ’13, pages 157–167, 2013.

14 H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory
interference delay in COTS-based multi-core systems. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 145–154, April 2014.

15 Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. A Coordinated Approach for
Practical OS-Level Cache Management in Multi-core Real-Time Systems. In Proc. of the
ECRTS 2013, pages 80–89, 2013.

16 Hyoseung Kim and Ragunathan (Raj) Rajkumar. Predictable Shared Cache Management for
Multi-Core Real-Time Virtualization. ACM Trans. Embed. Comput. Syst., 17(1):22:1–22:27,
December 2017.

17 N. Kim, B. C. Ward, M. Chisholm, C. Fu, J. H. Anderson, and F. D. Smith. Attacking
the One-Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-
Criticality Provisioning. In 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12, April 2016.

18 T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In 2019
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Montreal,
Canada, April 2019.

19 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time cache
management framework for multi-core architectures. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 45–54. IEEE, 2013.

20 R. Mancuso, R. Pellizzoni, M. Caccamo, Lui Sha, and Heechul Yun. WCET(m) estimation
in multi-core systems using single core equivalence. In 2015 27th Euromicro Conference on
Real-Time Systems (ECRTS), pages 174–183, July 2015.

21 M. Mendez, J.L.G. Rivas, D.F. Garca-Valdecasas, and J. Diaz. Open platform for mixed-
criticality applications. In Proc. of the Conference on Design, Automation and Test in Europe,
WICERT (DATE), pages 1–7, 2013.

22 P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting Temporal and Spatial Isolation
in a Hypervisor for ARM Multicore Platforms. In Proceedings of the IEEE International
Conference on Industrial Technology (ICIT 2018), pages 1–7, February 2018.

23 T. Mück, A. A. Fröhlich, G. Gracioli, A. Rahmani, and N. Dutt. CHIPS-AHOy: A Predictable
Holistic Cyber-Physical Hypervisor for MPSoCs. In International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS), pages 1–8, Samos
Island, Greece, 2018.

24 A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi. Embedded Hypervisor Xvisor:
A Comparative Analysis. In 2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 682–691, March 2015.

http://dx.doi.org/10.1109/ECRTS.2005.21

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo 27:25

25 R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look Mum, no VM Exits! (Almost).
In Proc. of the 13th Annual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT 2017), pages 13–18, 2017.

26 M. R. Soliman and R. Pellizzoni. PREM-based optimal task segmentation under fixed priority
scheduling. In 2019 31st Euromicro Conference on Real-Time Systems (ECRTS), pages 1–24,
July 2019.

27 The KITTI Vision Benchmark Suite. KITTI, October 2019. Online; accessed 20 April 2019.
URL: http://www.cvlibs.net/datasets/kitti/.

28 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Caccamo.
A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Systems. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11, April
2016.

29 R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo. A Real-Time Scratchpad-
centric OS with Predictable Inter/Intra-Core Communication for Multi-core Embedded Systems.
Real Time Systems, 2019.

30 P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-Blocking Caches to Improve Isolation
in Multicore Real-Time Systems. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1–12, April 2016. doi:10.1109/RTAS.2016.7461361.

31 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016 IEEE, pages 1–12. IEEE, 2016.

32 S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.
SD-VBS: The San Diego Vision Benchmark Suite. In 2009 IEEE International Symposium on
Workload Characterization (IISWC), pages 55–64, October 2009.

33 S. Wasly and R. Pellizzoni. Hiding memory latency using fixed priority scheduling. In Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages
75–86. IEEE, 2014.

34 Xilinx. Zynq UltraScale+ Device - technical reference manual. URL: https://www.xilinx.
com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf.

35 Xilinx. Versal: The First Adaptive Compute Acceleration Platform (ACAP). URL:
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf,
2018. [Online; accessed 16-January-2019].

36 M. Xu, L. Thi, X. Phan, H. Y. Choi, and I. Lee. vCAT: Dynamic cache management using
CAT virtualization. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 211–222, April 2017.

37 Y. Ye, R. West, J. Zhang, and Z. Cheng. MARACAS: A real-time multicore VCPU scheduling
framework. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 179–190, November
2016.

38 H. Yun, R. Mancuso, Z.P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

39 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55–64.
IEEE, 2013.

40 Y. Zhou and D. Wentzlaff. MITTS: Memory Inter-arrival Time Traffic Shaping. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pages
532–544, June 2016. doi:10.1109/ISCA.2016.53.

ECRTS 2019

http://www.cvlibs.net/datasets/kitti/
http://dx.doi.org/10.1109/RTAS.2016.7461361
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
http://dx.doi.org/10.1109/ISCA.2016.53

	p000-Frontmatter
	Preface
	Committees

	p001-Pazzaglia
	Introduction
	Methodology
	Overview and Terminology

	System Model and Problem Definition
	Taskset Model
	Plant and Controller Model
	Handling Deadline Misses

	Controller Behavior with Deadline Misses
	Defining Delay and Hold
	Computing Delay and Hold
	Hold Interval with Kill Strategy
	Hold Interval with Skip-Next Strategy
	Hold Interval with Queue(1) Strategy

	Synthesis of Deadline-Miss-Aware Controllers
	Clairvoyant Controller Synthesis
	Robust Controller Synthesis
	Controller Synthesis Example

	Stochastic Analysis
	Scenario Theory
	Formal Guarantees
	Application and Threats to Validity

	Experimental Evaluation
	Setup
	Results

	Related Work
	Conclusion

	p002-Walls
	Introduction
	Background and Related Work
	Control Flow Integrity
	Real-Time Embedded Systems
	Real-time Security
	ARM Architecture

	Design of RECFISH
	Threat Model
	RECFISH for Bare-Metal Execution
	Basic Memory Protections
	Forward-Edge Checks
	Shadow Stack
	Implementation

	RECFISH for FreeRTOS
	Task Creation Modifications
	Scheduler Modifications

	Evaluation
	Security Evaluation
	Basic Memory Protections
	Label Assignment
	Forward-edge Instrumentation Without Context Switching
	Backward-edge Instrumentation With Shadow Stack
	Forward-edge Instrumentation With Context Switching

	Performance Impact
	CPU Benchmarks
	Additional Resource Use

	Microbenchmarks
	Microbenchmark Design
	Results

	Schedulability Study
	Schedulability
	RECFISH Schedulability
	Experimental Design
	Schedulability Results and Observations
	Optimization Opportunities

	Conclusions
	ARM Indirect Jumps
	Selected Source Code

	p003-Osborne
	Introduction
	What is a SMART Task?
	SMT Basics
	Task Model

	Scheduling Physical and Threaded Tasks
	Sub-Problem 3: Scheduling Task Subsystems
	Sub-Problem 2: Dividing the Tasks

	Sub-Problem 1: SMT and Execution Times
	 Benchmark Experiments
	Benchmark Characterization
	Reliability of Measured Worst-Case Costs

	Schedulability Experiments
	Experimental Procedure
	Results

	Conclusion

	p004-Soliman
	Introduction
	Background and Related Work
	Memory and Processor Schedule
	Program Transformation

	Task Model and Schedulability Analysis
	Schedulability Analysis and Preliminaries

	Program Segmentation
	Program Structure
	Valid Segmentation
	Segmentation Algorithm
	Tiling Algorithm
	Region Sequence Segmentation

	Optimal Task Set Segmentation
	Evaluation
	Conclusions and Future Work

	p005-Cinque
	Introduction
	Contributions of the paper

	Related work
	High-level architecture
	Design alternatives

	System model
	Implementation details
	RT-CASE engine
	RT-lib
	RT-CASE monitoring
	Discussion

	Case study
	Experiments
	Results with no monitoring
	Results and considerations with the proposed monitor

	Conclusions

	p006-Casini
	Introduction
	Background
	ROS
	Resource Reservations
	Compositional Performance Analysis

	ROS Scheduling
	System Model
	Response-Time Analysis for Processing Chains
	High-Level Overview
	Analysis for Individual Callbacks
	Bounding the Search Space
	Analysis for Processing Chains
	Analysis Summary

	Case Study
	Related Work
	Limitations, Extensions, and Conclusions

	p007-Rivas
	Introduction
	Background and Related Work
	Memory Centric Scheduling
	Alternative approaches
	Multi-core real-time operating system: HIPPEROS RTOS

	System Model
	Hardware Assumptions
	Task Model

	Implementation of Memory Centric Scheduling
	Overview and Goals
	Kernel-level: memory phases scheduler (MPS)
	User level API
	Synchronous Memory Phases (S-MP)
	Asynchronous Memory Phases (A-MP)

	Implementation Details

	Schedulability Analysis
	Evaluation
	Conclusions and Future Work

	p008-Law
	Introduction
	Background
	Related Work
	System Model
	Static Schedulability Analysis
	Existing Control System

	Achieving Sufficient Temporal Isolation
	Certification Requirements
	Target Processor
	Partitioning

	Extending AMC+ Analysis to Allow for Overheads
	Clustering to Reduce the Overheads of a Pre-Emptive Mixed Criticality System
	Evaluation & Results
	``Current'' Rolls-Royce Engine Control System Example
	Public Domain Engine Control System Example
	Random Task Set Generation Assessment

	Conclusion

	p009-Gujarati
	Introduction
	Motivation
	System Model
	PMC: Markov Chain Analysis
	Mart: The Martingale Approach
	SAp: An Approximate Analysis
	Evaluation
	Implementation Choices
	Evaluating PMC Model Types
	The Scalability vs. Accuracy Tradeoff
	Discussion

	Related Work
	Conclusion

	p010-Millnert
	Introduction
	The system model
	Model of the nodes
	Model of the flows
	Model of the dynamic network

	Static networks
	Example – issues with dynamic deadlines
	Guaranteeing end-to-end deadlines
	Example – fixed by applying Theorem 6

	Dynamic networks
	Protocol allowing dynamic networks
	Example – dynamic network topology

	Evaluation: trade-offs with alpha
	System used for evaluation
	Trade-off: alpha and time to accept a new flow
	Trade-off: alpha and quality of service

	Related work
	Conclusion and future works

	p011-Gong
	Introduction
	Preliminaries
	System Model and Problem Definition
	Overview of the RD-PaS Framework

	Reliable Scheduling for TBS
	Reliable Static Scheduling
	Reliable Dynamic Scheduling

	Reliable Scheduling for PBS
	Testbed Implementation and Validation
	Validation of reliable static scheduling
	Validation of reliable dynamic scheduling

	Simulation-based Performance Evaluation
	Comparison of Packet Delivery Ratio
	Comparison of Network Bandwidth Usage
	Comparison of Required Numbers of Slots
	Effectiveness in Handling Rhythmic Events

	Conclusion and Future Work

	p012-Pourmohseni
	Introduction
	Related Work
	Preliminaries
	Mapping Optimization Problem Specification
	Application Model
	Architecture Model
	Mapping Edges

	Arbitration Tuple

	Isolation-Aware Design Space Exploration (DSE)
	Mapping Creation
	Isolation-Aware Scheduling
	Resource Budget Calculation
	Arbitration Tuple Calculation

	Isolation-Aware Timing Analysis
	Worst-Case Response Time
	Memory Bus Interference
	Core Preemption Delay

	Worst-Case Traversal Time
	TX/RX Latency
	NoC Latency

	Worst-Case Throughput and Latency

	Experimental Results
	Experiment Setup
	Result Discussion

	Conclusion

	p013-Tang
	Introduction
	Background
	Multiprocessor Platform Models
	Lag

	General Lag Properties
	Tardiness Bounds for HP-LAG-Compliant Schedulers
	GEDF Tardiness Bounds under the Uniform Model
	Refining GEDF for the Uniform Model
	HP-LAG-Compliance for UG-GEDF

	GEDF Tardiness Bounds under the Identical Model with Affinities
	Refining GEDF for the Identical Model with Affinities
	HP-LAG-Compliance for IA-GEDF

	Extending to the Sporadic Task Model
	Problems with Extending to the Uniform Model with Affinities
	Conclusion

	p014-Ekberg
	Introduction
	System model and definitions
	Related work and conjectures

	Counterexamples
	On searching for counterexamples
	Conclusions and open problems

	p015-Tessler
	Introduction
	Discussion of Related Research
	Model
	Dividing and Task Parts
	Worst-Case Execution Time Function Growth

	Non-Preemptive EDF Schedulability
	Non-Preemptive Chunks
	Improving the Non-Preemptive Chunk Size
	Threads per Job (TPJ) Scheduling Algorithm
	Non-Preemptive Feasibility of TPJ and DIVIDE

	Evaluation
	Generating Task Sets
	Applicability of Parameters

	Case Study
	Evaluation Metrics
	Results

	Conclusion

	p016-Chen
	Introduction
	Model, Terminology, and Assumptions
	Master-Slave Problem and Complexity
	Speedup Factors: Uniprocessor
	Suspension-Coherent Speedup Factors
	Speedup Factors
	Makespan and Schedulability Tests

	Speedup Factors: Multiprocessor Systems
	Suspension-Coherent Speedup Factors
	Speedup Factors

	Evaluation
	Conclusion and Discussions

	p017-Mancuso
	Introduction
	Background
	Deterministic Memory Abstraction
	DM-LRU Cache Replacement Policy
	Cache Analysis via Abstract Interpretation

	Cache Model and Terminology
	DM-LRU Model
	Terminology and notations

	DM-LRU Analysis
	Must-analysis
	May-analysis

	Analysis Example
	Analogies and Differences with Cache Locking
	Evaluation
	Implementation
	Setup
	Results

	Related Work
	Conclusion
	Appendix: May Analysis

	p018-Sensfelder
	Introduction
	Cache Coherence Protocols
	Protocols

	MSI Snooping-Based Protocol
	A Few Caveats
	From Abstract to Concrete Behaviour
	Detailed Snooping-Based MSI Protocol
	Coherency Manager

	Interference
	Formal Modeling of Real-Time Systems with Timed Automata
	Model of the Cache Coherence
	Modeling Strategy
	Core
	Coherency Manager and Memory Controller
	Interconnect
	Cache Controller
	Message Queues

	Checking Properties
	Exposing Interference
	Model Validation

	Related Works
	Conclusion and Future Work

	p019-Hebbache
	Introduction
	System Architecture
	Task Model
	Hardware Architecture
	Scheduling Policy

	Background
	TDM-Based Dynamic Memory Arbitration
	Worst-Case Response Time Analysis

	Arbitration-Induced Preemption Delays
	Preemption Costs for strict TDM Arbitration
	Preemption Costs for Dynamic TDM-based Arbitration

	Arbitration-Aware Preemption Techniques
	TDM Schedule and Preemption
	Scheduling with Request Waiting (SHDw)
	Scheduling with Request Preemption (SHDp)
	Scheduling with Criticality Inheritance (SHDi)
	Misalignment Delays
	Response-Time Analysis

	Experiments
	Experimental Setup
	Task Set Generation
	Traffic Generator
	TDM Schedule
	Simulation Setup

	Results for Preemption Schemes
	Results for (Preemptive) Arbitration Schemes

	Related work
	Conclusion

	p020-Peng
	Introduction
	Related Work
	The Generalized Multiframe Model
	The Self-Suspending Task Model

	Model
	Problem Statement
	The MILP Algorithm
	The Concave Approximation Algorithm
	The Concave Functions
	Speed-Up Factor Analysis

	The Linear Programming-Based Heuristic Algorithm and its Application to One-Suspension Self-Suspending Tasks
	The Linear Programming-Based Heuristic Algorithm
	The Application of the LP-Based Algorithm to One-Suspension Self-Suspending Tasks

	Experiments
	The Experiments for One-Suspension Self-Suspending Tasks
	The Experiments for Multiple-Suspension Self-Suspending Tasks

	Conclusions

	p021-Nasri
	Introduction
	Related Work
	System Model and Definitions
	Schedulability Analysis
	Job Finish Times and System-Availability Intervals
	Graph Definition
	Graph-Generation Algorithm
	Expansion Phase
	Creating a New State
	Merge Phase
	Correctness of the Proposed Solution

	Empirical Evaluation
	Conclusion

	p022-Cavicchioli
	Introduction
	CPU-to-GPU interaction

	Related Work
	Alternative submission models for CUDA
	CDP
	CUDA Graphs

	The Vulkan API
	VkComp: an open-source wrapper for the Vulkan predictable compute pipeline
	Wrapper structure
	Buffers and programs

	Experimental setting
	Experimental use case

	Results
	Discussion
	Tracing the kernel driver

	Conclusion and future work

	p023-Pujol
	Introduction
	Deep Neural Networks and their use in AD
	Introduction to DNN
	Apollo Autonomous Driving Software

	Analysis of the DL elements in Apollo
	Real Execution Trace
	DNN instances

	Main Computing Elements in The Jetson AGX Xavier
	Diverse DNN Implementations
	Specialized per-CE libraries
	Implementation for different CEs
	CPU implementation
	GPU regular core implementation
	GPU Tensor core implementation
	NVDLA

	Timing Analysis Results
	Other Considerations

	Exploiting Diversity to Increase Schedulability
	Task Model and Linear Programming Model
	Experimental setup
	Schedulability results

	Related Works
	Conclusions

	p024-Pagani
	Introduction
	Contributions

	System model and Background
	AXI Interconnect
	Arbitration policy
	AXI Links

	HW-tasks
	Sink module

	AXI Budgeting Unit
	Bandwidth-driven response-time analysis
	Illustrative example
	Analysis issues

	Response-time analysis with ABUs
	Analyzing ABUs
	Assigning ABU budgets

	Experimental evaluation
	Profiling HW-tasks
	Evaluating the reservation mechanism
	A case study

	Related work
	Conclusions

	p025-Rouxel
	p026-Nikolic
	Introduction
	Related Work
	System Model
	Platform Architecture
	Workload

	Problem Formulation
	SBT-NoC
	Inter-flow Relations
	Basic SBT-NoC
	Arbitration Mechanism (Basic SBT-NoC)
	Transmission Mechanism (Basic SBT-NoC)
	Packet Splitting and Transmission Latencies (Basic SBT-NoC)
	Worst-case Analysis (Basic SBT-NoC)

	Advanced SBT-NoC Variants
	Advanced SBT-NoC with Slot Extension
	Advanced SBT-NoC with Slot Reduction

	Experimental Evaluation
	Experiment 1: SBT-NoC Run-time Performance Evaluation
	Experiment 2: SBT-NoC Analytical Evaluation (Synthetic Workload)
	Experiment 3: SBT-NoC Analytical Evaluation (Use Case of Autonomous Driving Vehicle Application)

	Conclusions and Future Work

	p027-Gracioli
	Introduction
	Related Work
	System Model and Assumptions
	Criticality Domains
	Processor and Programmable Logic
	Application Model

	Design Principles and Approach Overview
	Design Space Exploration for Mixed-Criticality in a Modern MPSoC
	Architectural Overview of the Chosen Platform
	Experiments

	Support for Mixed-Criticality Applications on MPSoCs
	Overview of Implementation
	Jailhouse to Partition the Shared Resources
	Page Coloring
	Address Translator to Overcome Limitations of Cache Coloring
	Communication among Jailhouse Cells
	Erika RTOS Running on Real-Time Cores
	Code/Data Relocation

	Evaluation
	DMA Evaluation
	Case Study: Image Processing

	Conclusion and Future Work

