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—— Abstract

Today’s availability of open-source software is overwhelming, and the number of free, ready-to-use
software components in package repositories such as NPM, Maven, or SBT is growing exponentially.
In this paper we address two straightforward yet important research questions: would it be possible
to develop a tool to automate dynamic program analysis on public open-source software at a large
scale? Moreover, and perhaps more importantly, would such a tool be useful? We answer the first
question by introducing NAB, a tool to execute large-scale dynamic program analysis of open-source
software in the wild. NAB is fully-automatic, language-agnostic, and can scale dynamic program
analyses on open-source software up to thousands of projects hosted in code repositories. Using
NAB, we analyzed more than 56K Node.js, Java, and Scala projects. Using the data collected by
NAB we were able to (1) study the adoption of new language constructs such as JavaScript Promises,
(2) collect statistics about bad coding practices in JavaScript, and (3) identify Java and Scala
task-parallel workloads suitable for inclusion in a domain-specific benchmark suite. We consider
such findings and the collected data an affirmative answer to the second question.
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1 Introduction

Analyzing today’s large code repositories! has become an important research area for
understanding and improving different aspects of modern software systems. Static and
dynamic program analyses are complementary approaches to this end. Static program
analysis is the art of reasoning about the behavior of computer programs without actually
running them, which is useful not only in optimizing compilers for producing efficient code, but
also for automatic error detection and other tools that help programmers [45]. Complementary
to static analysis is dynamic program analysis (DPA), which employs runtime techniques
(such as instrumentation and profiling) to explore the runtime behavior of applications under
specific workload conditions and input.

In contrast to the large body of work on mining code repositories through static program
analysis [39, 52, 37, 53, 38, 7, 11, 51], studies applying DPA to large public code repositories
are scarce [35, 42]. Moreover, all such studies are limited at narrow, specific aspects of a
particular programming language or framework, and none of them scales to the overwhelming
amount of available projects that could potentially be analyzed.

In this paper, we tackle two basic yet important research questions: can we create a
tool for automated DPA that can scale to the vast amount of available public open-source
projects, and would such a tool be of practical interest?

Given the constant growth of the number of projects in public code repositories and
the increasing popularity of different programming languages and runtimes — e.g., Java-
Script/Node.js and the many languages targeting the Java Virtual Machine (JVM) — such
a tool not only should be scalable, but should also be language-agnostic and resilient to
malicious or buggy code. Such aspects already correspond to non-trivial technical challenges.
Beyond these technical aspects, developing such a tool would require answering one more
fundamental question: how should the tool execute code from repositories that are not
designed to enable DPA?

Our answer to the question is pragmatic: the tool should automatically look for the
available executable code in a repository, and try to execute anything that could potentially
be executed. Such executable code could correspond to existing benchmarks (e.g., workloads
defined by the developers via the Java Microbenchmark Harness (JMH) [48]) or software
tests (e.g., defined in the default test entry of a Node.js project managed by Node Package
Manager (NPM), or based on popular testing frameworks such as JUnit [63]). By replicating
the process on the massive size of public repositories, such a tool should be able to identify a
very high amount of (automatically) executable code.

With the tool, would running massive DPA on publicly available repositories be of any
scientific interest? Our insight is that such a tool can be useful to collect statistics and
evidence about code patterns and application characteristics that may benefit language
designers, software system designers, and programming-language researchers at large.

I In this paper, the term repository denotes a code hosting site (such as GitHub, GitLab, or BitBucket),
containing multiple projects (i.e., open-source code subjected to version control).
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One concrete application for such a tool could be the study of the adoption (by a
wide open-source community) of new programming-language constructs involving dynamic
behavior (i.e., where pure static analysis cannot give any concrete insight). For example,
it is currently unclear how the recently-introduced JavaScript Promise API [29] is being
used by Node.js developers: while some recent research seems to suggest that developers are
frequently mis-using the APT [40, 1], its growing adoption by the Node.js built-in modules
(e.g., Node.js’ file-system module) could result in a more disciplined usage. In this context, a
massive analysis of Node.js projects would be of great help to assess the adoption of the API,
and to drive its future evolution. Measuring aspects such as the size of a so-called promise
chain [1] (i.e., the number of promises that are linked together) requires DPA.

A second practical application of a tool for massive DPA is the study of problematic
code patterns in dynamic languages. For example, several studies [12, 46, 17] focus on JIT-
unfriendly code patterns [17], i.e., code that may obstacle dynamic optimizations performed
by a Just-In-Time (JIT) compiler. While these studies have shown that such bad code
patterns can impair the performance of modern language execution runtimes, none of them
has investigated how common problematic coding practices are. Identifying such bad code
patterns and assessing their use on the high number of open-source Node.js projects as well
as the NPM modules they depend on could be very useful in practice, as it would provide
a “bird’s-eye view” over the quality of the NPM ecosystem. Similarly to the previous case,
DPA is needed to identify such patterns in several runtime-dependent scenarios.

A final useful application for a massive DPA tool is the search for workloads suitable to
conduct experimental evaluations. For many domain-specific evaluation needs (e.g., concur-
rency on the JVM), there is a lack of suitable benchmarks, and creating new benchmark
suites requires non-trivial effort for finding proper workload candidates [69]. For example,
existing general-purpose benchmark suites including Java and Scala benchmarks (e.g., Da-
Capo [64] and ScalaBench [56]) have only few task-parallel workloads [5, 58, 61]. Ideally, a
fully automated system could discover relevant workloads by massively analyzing the open-
source projects in public code repositories. Such a system could find real-world concurrent
applications that spawn numerous tasks of diverse granularities, suitable for inclusion in a
benchmark suite targeting concurrency on the JVM. Similarly to our previous examples,
profiling all parallel tasks spawned by an application and measuring each task’s granularity
requires DPA.

To support the diversity of DPA scenarios that we have described at the scale of public
code repositories, in this paper we present NAB,? a novel, distributed, container-based
infrastructure for massive DPA on code repositories hosting open-source projects, which
may be implemented in different programming languages. NAB resorts to containerization
for efficient sandboxing, for the parallelization of DPA execution, and for simplifying the
deployment on clusters or in the Cloud. Sandboxing is important to isolate the underlying
execution environment and operating system, since NAB executes unverified projects that
may contain buggy or even harmful code. Also, parallelizing DPA execution is an important
feature for massive analysis, as sequential analysis of massive code repository would take
prohibitive time. NAB features both crawler and analyzer components, which are deployed
in lightweight containers and can be replicated. They are governed by NAB’s coordination
component, which ensures scalability and elasticity, facilitating the provisioning of new
container images through simple configuration settings. NAB includes a plugin mechanism
for the integration of existing DPA tools and the selection of different build systems, testing
frameworks, and runtimes for multi-language support.

2 NAB'’s recursive name stands for “NAB is an Analysis Box”.
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Our work makes the following contributions:

We present NAB, a novel, distributed infrastructure for custom DPA in the wild. To
the best of our knowledge, NAB is the first scalable, container-based infrastructure for
automated, massive DPA on open-source projects, supporting multiple programming
languages.

We present a novel analysis to collect runtime statistics about the usage of promises
in Node.js projects, which focuses on the size of promise chains. The analysis sheds
light on the usage of the Promise API in open-source Node.js projects. We present an
implementation of the analysis called Deep-Promise, which relies on NodeProf [62], an
open-source dynamic instrumentation framework for Node.js based on GraalVM [68].
We conduct a large-scale study on Node.js projects, searching for JIT-unfriendly code
that may impair the effectiveness of optimizations performed by the JavaScript engine’s
JIT compiler. To this end, we apply JITProf [17], an open-source DPA.

We perform a large-scale analysis on Java and Scala projects searching for task-parallel
workloads suitable for inclusion in a benchmark suite. To this end, we apply tgp [54], an
open-source DPA for task-granularity profiling on the JVM.

Our work confirms (1) that NAB can be used for applying DPA massively on public code
repositories, and (2) that the large-scale analyses enabled by NAB provide insights that are
of practical interest, thus affirmatively answering to our research questions.

This paper is structured as follows. Section 2 describes NAB’s architecture and imple-
mentation. Section 3 details the experimental setup for our studies. Sections 4, 5, and 6
present the results of our three case studies. Section 7 discusses important aspects such as
safety, extensibility, scalability, as well as the limitations of NAB. We discuss related work in
Section 8 and conclude in Section 9.

2 NAB

This section presents our tool for massive DPA, NAB. First, we introduce NAB’s architecture
(Section 2.1); then, we describe how NAB’s main components interact (Section 2.2). We
continue by detailing the crawling (Section 2.3) and analysis (Section 2.4) process. Finally,
we describe NAB’s plugin mechanism supporting different DPA tools (Section 2.5), as well as
the implementation technologies used to support containerization (Section 2.6).

2.1 Architecture

At its core, NAB features a microservice architecture based on a master-worker pattern
relying on a publish-subscribe communication layer, allowing asynchronous events to be
exchanged between its internal components. Figure 1 depicts the overall NAB architecture
based on Docker containers [22]. NAB uses existing containerized services (marked in gray)
and introduces four new components, three of them running in containers: NAB-Crawler,
NAB-Analyzer, and NAB-Master; as well as one external service, NAB-Dashboard.

The NAB-Crawler instances are responsible for mining and crawling code repositories,
collecting metadata that allows making a decision on which projects to analyze. The NAB-
Analyzer instances are responsible for downloading the code, applying some filtering and
eventually running the DPA tool. The results generated by the DPA (such as profiles
containing various dynamic metrics) are stored in a NoSQL MongoDB [26] database. NAB
provides a plugin mechanism to integrate different DPA tools in NAB-Analyzer instances.
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Figure 1 Overview of NAB. The three core NAB containerized services (NAB-Master, NAB-
Crawler, and NAB-Analyzer) are shown as white boxes inside the Docker Swarm, whereas existing
containerized services are marked in gray. A third-party DPA tool (not shown) is invoked by
NAB-Analyzer through a plugin and generates profiles.

NAB-Master orchestrates the distribution of crawling and DPA activities with NAB-
Crawler and NAB-Analyzer instances. Finally, NAB-Dashboard is responsible for the de-
ployment of the NAB components through the Docker Swarm [23] orchestration service and
monitors the progress of an ongoing DPA.

NAB communication service is based on MQTT (Message Queuing Telemetry Transport),
an ISO-standard, lightweight publish-subscribe protocol [14]. The MQTT Broker is the core
communication service that receives subscription requests from NAB components to different
topics and redistributes messages that are published on such topics. This ensures that the
communication between NAB components is implemented in a loosely-coupled manner, as
they only need to agree on specific topics without knowing each other beforehand.

Some NAB services expose ports (represented as black circles in Figure 1) to allow
interaction with them from outside the Docker Swarm. For example, NAB-Dashboard uses
the exposed ports to access the MQTT communication service and subscribes to all topics used
by the other NAB components. This information allows monitoring the distributed execution
of a DPA. Similarly, the NAB-Dashboard can query the MongoDB database to collect
execution results of previous runs, e.g., for post-mortem performance analysis, for visualizing
the detailed distributed execution, for finding load imbalances, or for debugging purposes.

To improve scalability, NAB can be configured to use several MQTT Brokers through
HAProxy [19] (a high-performance TCP load balancer that distributes the exchanged MQTT
messages) as well as multiple distributed and replicated MongoDB instances through a
mongos router [25] coordinating a MongoDB Shard [27] (not shown in Figure 1).

2.2 Interactions between NAB Components

When NAB is started, NAB-Dashboard initializes (through Docker Swarm) all the container-
ized services shown in Figure 1, passing user-defined specifications about the analysis to
be executed to NAB-Master. Such specifications depend on the DPA to use, as well as on
the code repository where crawling should be performed. While NAB provides supports for
crawling different repositories (e.g., GitHub [24], GitLab [16], Bitbucket [2]), in this paper
we focus on GitHub, which is the one providing the most advanced search API.
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When performing a DPA on GitHub, the specifications sent to NAB-Master include
crawling and analysis settings, the DPA plugin configuration, and a set of user-defined time
intervals (which restricts the crawling to specific ranges of dates). The time intervals refer to
the dates where the projects had the most recent activity (i.e., commits made to any branch).
Since Docker Swarm does not provide a mechanism to enforce a given order for starting
containers, we implement a synchronization mechanism such that all NAB components wait
for the MQTT Broker container to be ready, since it is the core communication-related
component, responsible for receiving and dispatching messages.

NAB-Master handles four lists: timeIntervals (storing the time intervals to crawl and
initialized according to the specifications set by the user), projects (storing the name
of the projects to analyze, initially empty), crawlers and analyzers (storing the IDs of
available and ready NAB-Crawlers and NAB-Analyzer instances, respectively, both initially
empty). During the initialization, NAB-Master subscribes to three topics: availableCrawler
(to receive messages from NAB-Crawler instances that are ready), availableAnalyzer
(same purpose of availableCrawler, but reserved for ready NAB-Analyzer instances, and
projectFound (to receive the name of the projects to analyze from NAB-Crawler instances).
Then, NAB-Master simply waits for messages on these topics to arrive. Thanks to the loosely
coupled and asynchronous architecture, NAB-Crawler and NAB-Analyzer instances can start
at any moment or be spawned on demand.

Figure 2 depicts the interaction between NAB components for crawling and analysis (note
that topic subscription is now shown in the figure). Whenever a NAB-Crawler instance
starts, it subscribes to the crawlerAssignment topic to receive crawling tasks from NAB-
Master. To announce that it is ready for crawling, the NAB-Crawler publishes a message
to the availableCrawler topic together with its ID. NAB-Master stores the received ID
in the crawlers list. Then, it verifies if there are available time intervals to crawl in the
timeIntervals list, and, if so, publishes a message to the crawlerAssignment topic to start
the crawling process, including the ID of the NAB-Crawler that should perform the crawling.
Each NAB-Crawler instance receives the message, and verifies if its own ID corresponds to
the ID included in the message. In this case, it processes the request and starts crawling.

The NAB-Crawler performs the query on GitHub’s search API, and filters out the projects
matching the analysis criteria (more details are given in Section 2.3). For each matching
project (see the loop frame in Figure 2), a message is published to the projectFound topic
such that NAB-Master can collect all projects amenable to analysis in the projects list.
Once the crawling is terminated, a message is sent to the availableCrawler topic to signal
the availability to crawl projects in a new time interval.

Following a procedure similar to the one employed for NAB-Crawlers, when a NAB-
Analyzer instance starts, it subscribes to the analyzerAssignment topic and publishes
a message to the availableAnalyzer topic specifying its ID. Such ID is stored in the
analyzers list handled by NAB-Master. If there are entries in the projects list, NAB-
Master publishes a message to the analyzerAssignment topic, specifying the ID of the
NAB-Analyzer that should execute the DPA and the project to analyze. The corresponding
NAB-Analyzer, upon verifying that its ID matches the one contained in the message, starts the
DPA activity, by first cloning the project and then running the DPA tool though the selected
plugin (more details on the DPA execution are given in Section 2.4). Upon completion,
the NAB-Analyzer collects the generated results as well as statistics on the DPA execution
(shown as results and stats in the figure, respectively), and stores them in the MongoDB
database. Finally, the NAB-Analyzer discards the temporary data needed for running the
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Figure 2 Interactions between NAB’s components during crawling and analysis (after component
initialization).

DPA, initializes a fresh execution environment and announces that is ready for a new DPA
activity by publishing a message to the availableAnalyzer topic. NAB-Master stops when
no further time intervals to crawl and projects to analyze are in the corresponding lists.

2.3 Crawling

Each NAB-Crawler instance receives (from NAB-Master) a set of specifications describing
the characteristics of projects to be crawled, including the time intervals to consider during
crawling (which can express either the date of project creation or the last update), the
programming language(s) or the build system(s) to match, and the maximum number of
results per request. This information is used to query the GitHub’s search API to collect
metadata of the matching projects. Additionally, NAB-Crawler can filter the metadata
resulting from the query according to various criteria, such as selecting only projects with a
specific entry in the build file (useful for discarding projects that are unrelated to a given
DPA), or those with a minimum number of forks, watchers, stars, or contributors. Such

criteria are set by the user, and are sent to the NAB-Crawler instance by NAB-Master.

Finally, the NAB-Crawler sends the matching projects’ names to NAB-Master.
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Since the GitHub API has a limit® of 1,000 results per search query (independently from
the selected time intervals), NAB-Master automatically subdivides the user-defined search
intervals such that each NAB-Crawler instance is assigned fewer projects to crawl than the
aforementioned limit, thus eventually crawling all the projects in the specified time intervals.

2.4 Executing DPA

The analysis starts with cloning the source code of the project from GitHub. NAB provides
support for different build systems, e.g., NPM for Node.js, SBT for Scala, or Maven (MVN)
for Java and Scala. NAB-Analyzer spawns a process to run the automatic build system, which
typically downloads dependencies and compiles the required code. Finally, the project’s
testing code is executed, applying a DPA through a plugin (see Section 2.5). Upon DPA
completion, the NAB-Analyzer instance stores the analysis results and the execution statistics
in the database. By default, the DPA is run on the most recent revision of the default branch
(as set up by the manager of the project on GitHub).

Apart from the results of the DPA, NAB collects different statistics on the analysis
execution, such as start and end timestamps for every performed activity, and the exit code of
the spawned process (indicating success or failure). Such statistics are stored in the database
along with the analysis results. NAB-Analyzer sets a timeout (called analysis timeout) for
the spawned process running the DPA to prevent buggy, malicious, or non-terminating
application code (or DPA code) from excessively consuming resources. DPAs exceeding the
analysis timeout are forcibly terminated.

NAB also reports projects that fail to build. Build failures are usually caused by developers
assuming the presence of pre-installed software or specific settings (e.g., variables or paths)
in the environment, which instead are not present. For example, in a Node.js project, some
module dependencies may be missing in its configuration. Similar issues can occur in Java
projects, where some Maven-managed projects may fail to build due to missing libraries or
tools (e.g., parsers or pre-processors).

Since NAB uses a two-level orchestration (i.e., an external orchestration handled by Docker
Swarm and an internal one handled by NAB-Master), it can happen that NAB-Analyzer
containers are restarted by Docker Swarm without NAB-Master being notified. To handle
this case, NAB implements a fault-tolerance mechanism using a timer that is started for
each scheduled DPA. If a result arrives before the analysis timeout, the timer is stopped;
otherwise, the DPA is re-scheduled for execution for a configurable number of times. Users
can configure how NAB should handle multiple results in the case of a restarted DPA (e.g.,
keep only the first result, keep all results, combine the set of results.)

2.5 NAB Plugins and DPA Tools

To run massive analyses, NAB provides a plugin mechanism for different analysis frameworks
to run DPA tools.* To integrate a third-party DPA tool into NAB, the user needs to provide
three shell scripts: (1) to set up the execution environment for the analysis framework, (2) to
execute the DPA tool, and (3) to post-process the DPA results. NAB allows one to select a
build system and a runtime, and takes care of executing the provided scripts and applying
the DPA tools to the projects under analysis. Integrating existing DPA tools into NAB does
not require much effort. Typically, creating a new plugin requires about 100 lines of code,
divided into the three aforementioned shell scripts. The post-processing script is usually the
longest, as it needs to format the DPA results in JSON for storing them in the NAB database.

3 https://developer.github.com/v3/search/
4 NAB plugins can also directly integrate DPA tools that do not depend on any analysis framework.
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Table 1 NAB supported languages, build systems, analysis frameworks, DPA tools, and runtimes.

The sign | indicates those used in the following case studies.

Build Analysis )
Language System | Framework DPA Tool Runtime
. Deep-Promisef
T T T
JavaScript” | NPM NodeProff[62] JITProfi[17] GraalVM'[68]
iSLT T T
Javat MVNT DiSL'[41] tgp'[54] HotSpot VMT[9]
AspectJ [34] | JavaMOP [31] | GraalVM
SBTt HotSpot VM
T iSLT T
Scala MVN DiSL tgp GraalVM

For the supported build systems, NAB captures the exact entry point where the runtime
is invoked, and plugs in the corresponding DPA tool. For example, to run a DPA tool with a
plugin for a weaver or instrumentation framework working at the Java bytecode level (e.g.,
AspectJ’s load-time weaver [34] or the DiSL [41] dynamic instrumentation framework) the user
can select the MVN build system and Oracle’s HotSpot JVM [9] as runtime; NAB takes care
of passing all the required parameters (e.g., instrumentation agents, libraries, or generated
harness bytecode) to the JVM, to start the analysis. Existing DPA tools that can run in a
containerized environment are suitable for NAB. On the contrary, DPA tools that require
access to special OS- or hardware-layer features that are not supported in containerized
environments (e.g., hardware performance counters or NUMA-specific CPU/memory policy
control) are not candidates for a NAB plugin. Table 1 shows the currently supported
programming languages, build systems, analysis frameworks, DPA tools, and runtimes.

Extending NAB to support other languages, build systems and testing frameworks is
To extend NAB, one needs to modify the
NAB-Analyzer component (generating new scripts wrapping the build system to set NAB-
specific variables and to invoke the selected plugin) and its building configuration (updating
the Dockerfile, to install the new build system and to deploy the runtime within the
NAB-Analyzer image). All other core NAB components remain unchanged.

mostly a straightforward engineering effort.

2.6 Implementation Technologies for Containerization

NAB-Master, NAB-Crawler, and NAB-Analyzer are implemented in Node.js and are deployed
in containers in a Docker Swarm. NAB uses an overlay network inside the Swarm to optimize
the communication between the NAB components and to leverage the internal DNS service (to
reach NAB services by name, avoiding complex settings). NAB relies on Docker Compose [21],
which simplifies the deployment of the whole analysis infrastructure on a cluster or in the
Cloud. Since all NAB services are based on Docker container technology, NAB can be easily
migrated to other Docker-friendly orchestration engines, such as Kubernetes [4] or Mesos [20],
which provide similar functionalities as Docker Swarm. NAB has been tested on Azure
Cloud [44] and on a shared cluster with hundreds of nodes.

3 Experimental Setup

Here, we present the experimental setup used for running NAB to analyze massive collections
of open-source projects in our case studies. Even though crawling and analysis can be done
at the same time in NAB, we separate both processes to first generate a list of projects that
is then used for different DPAs.

20:9
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Table 2 Number of selected GitHub projects. For each programming language
(JavaScript/Node.js, Java, Scala), the first row lists the amount of all GitHub projects. Sub-
sequent rows show the number of surviving projects after applying filters (i.e., the predicates in
the leftmost column). The number of projects considered in our case studies is shown in the row
“> 2 Contrib.”.

2013 | 2014 | 2015 2016 2017 Total

All Node.js | 226,879 | 380,607 | 620,211 | 1,055,799 | 1,708,261 | 3,991,757
NPM Build | 226,858 | 332,399 | 363,181 | 364,871 | 363,898 || 1,651,207
Test Entry 22,956 | 65,018 | 100,581 | 134,017 | 158,547 | 482,019
> 2 Contrib. | 4,311 | 11,415 | 20,593 30,889 42,078 || 109,286
All Java 164,208 | 321,290 | 636,316 | 1,001,370 | 1,477,473 || 3,600,657
MVN Build | 164,146 | 301,632 | 362,061 | 364,861 | 363,898 || 1,556,598
Test Entry 17,569 | 28,411 | 32,005 32,048 35,773 || 146,706
> 2 Contrib. | 2,748 | 4,361 | 5,583 6,112 7114 | 25,918
All Scala 7875 | 11,670 | 18,692 25,501 33,463 97,201
SBT Build 7,853 | 11,640 | 18,618 25,402 33,188 96,701
Test Entry 1,802 | 3,222 | 5,991 9,217 11,971 32,203
> 2 Contrib. 222 404 706 1,021 1,723 4,076

3.1 NAB Configuration and Deployment

We run NAB in a shared cluster, composed of 176 nodes (each requiring reservation), where
each node is equipped with a 16-core AMD Opteron CPU (2.6 GHz) and 128 GB RAM. We
run 1,024 NAB-Analyzer instances using 64 nodes, i.e., 16 NAB-Analyzer instances per node.
The nodes are connected to a 10 Gb/s internal network and to a 1 Gb/s external network.

We configure the NAB core services with V8 Node.js 10.9 deployed with Docker-CE 1.18.
The NAB containers are built using a Linux Ubuntu 16.04 Docker image. We deploy Eclipse
Mosquitto MQTT 1.4 broker and MongoDB 4.0.

For all the analyses performed in the three case studies, the NAB-Analyzer instances are
configured with an analysis timeout of one hour.

3.2 Crawling and Project Selection

We crawl 5 years of Node.js,> Java, and Scala projects from GitHub (from 2013-01-01 to
2017-12-31). To minimize the number of (typically small) personal projects crawled, we only
collect projects with a minimum of 2 contributors, as suggested by [33]. For each crawled
project, we check whether an automatic build configuration file is present (i.e., NPM’s
package. json file for Node.js, SBT’s build.sbt file for Scala, or MVN’s pom.xml file for
Java), such that the project can be automatically built. The analyses presented in this paper
are conducted on the unit tests in the projects that can be run by automatic means (e.g.,
in case of NPM, by executing “npm test”). For this reason, we also check whether a test
entry exists.

Table 2 shows the total number of crawled and selected projects per year (i.e., projects
that existed and whose most recent commit made on any branch occurred that year). For

5 Node.js projects are identified as JavaScript projects in GitHub, as JavaScript is used as programming
language in the project description, but can be recognized thanks to the presence of Node.js-specific
configuration files.
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each programming language considered, the table reports the number of projects that can
be built, that contain a test entry, and those with at least 2 contributors (such filters are
applied in cascade). Only projects passing all filters (i.e., 109,286 Node.js projects, 25,918
Java projects, and 4,076 Scala projects, as reported in the last row) are considered in the
following case studies.

4 Case Study I: Analyzing the Use of Promises in Node.js

In our first study, we present a novel dynamic analysis (called Deep-Promise) to collect
insights on how developers use JavaScript’s Promise API, allowing one to understand its
actual adoption to handle asynchronous executions. The Promise API is a key novel language
feature introduced in the ECMA specification to enable better handling of asynchronous
interactions in JavaScript applications. Promises greatly simplify the way asynchronous code
can be expressed, by introducing the notion of promise chain, i.e., a sequence of asynchronous
events with logical dependencies.

The goal of this study is to provide a better understanding of the popularity and usage
trend of the API in real-world projects and in the modules they depend on, which can be
useful for the Node.js community. To the best of our knowledge, this is the first large-scale
study on the use of promises in Node.js projects and the NPM modules they depend on,
enabled by NAB.

4.1 Monitoring Promises in JavaScript

The introduction of promises since ECMAScript 6 [29] greatly simplifies the development of
asynchronous applications in JavaScript. With promises, asynchronous executions can be
implemented elegantly, avoiding the so-called “callback hell” problem, by enabling chaining
of (asynchronous) functions [1]. The value that resolves or rejects a promise can be used
as the input of the reacting promise(s). The latter promise(s) depend on the previous one,
forming a promise chain.

In [40], the authors introduce the notion of promise graph, a formal graph-based model
for understanding and debugging code developed using the Promise API. A promise graph is
composed of several promise chains. Each promise chain is an acyclic data structure showing
the dependencies among promises and the values that resolve or reject each promise. The
size of a promise chain, i.e., the number of promises inside the chain, gives us insights about
the use of promise constructs. As promise chains of size one have no subsequent reactions to
be executed asynchronously, such chains are not used to handle asynchronous executions.
Hence, we denote as trivial a promise chain of size one, as opposed to a non-trivial promise
chain, which size is greater than one.

Building a DPA to accurately capture all promise chains requires an instrumentation
framework capable of intercepting every use of the Promise API. Before explaining Deep-
Promise, we first introduce the underlying instrumentation framework NodeProf, integrated
in NAB through a dedicated analysis plugin.

4.1.1 NodeProf Framework

NodeProf [62] is an open-source® dynamic instrumentation framework for Node.js based on
GraalVM [68]. NodeProf relies on the dynamic instrumentation of the Abstract Syntax Tree
(AST) interpreter of the GraalVM JavaScript engine. In contrast to other dynamic analysis

6 https://github.com/Haiyang-Sun/nodeprof.js
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frameworks for Node.js (e.g., Jalangi [57]), NodeProf is compatible with ECMAScript 8, and
supports JavaScript constructs such as promises and async/await, which are not supported
in other frameworks. An additional advantage of NodeProf is that it instruments only loaded
code, while other frameworks typically rely on source-code instrumentation, which usually
needs to instrument all source code files in advance before execution, even if they are not
used. NodeProf’s approach can significantly reduce the time needed for the instrumentation,
as the NPM modules a project depends on can contain thousands of source code files (while
only a small portion of them may be used by the project).

4.1.2 Deep-Promise DPA

Deep-Promise is a DPA implemented on top of NodeProf that constructs the full promise
graph of any Node.js application at runtime. Deep-Promise tracks the creation of all promises
and the dependent relations between them. There can be three different dependencies
between two promises: (1) fork, where a promise has one or more reactions registered, e.g.,
via Promise.then or Promise.catch; (2) join, where multiple promises join into one promise
via Promise.all or Promise.race; (3) delegate, where a promise is used as a value to resolve
or reject another promise. Additionally, Deep-Promise also tracks usages of async/await,
which deal with implicit promises.

Deep-Promise directly instruments the built-in promise implementation, capturing the
creation of every promise and the dependency between promises. Upon program termination,
the promise graph is dumped and stored in the database by the NAB-Analyzer instance
executing the analysis. The resulting promise chains are later analyzed with an offline tool
to compute statistics.

4.2 Executing Deep-Promise with NAB

For every project to analyze, we run the automatic build system through NPM, by executing
“npm install”, which downloads, compiles, and installs dependencies, including third-party
testing frameworks such as mocha, unitest, or grunt. If the installation succeeds, we run the
default test program in the project by executing “npm test” with Deep-Promise enabled.

From the 109,286 executed Node.js projects (see Table 2 on page 10), NAB reports
23,297 successfully analyzed projects with Deep-Promise. Unsuccessful projects include
those with broken tests (e.g., wrong test settings or assuming non-standard pre-installed
software), projects with failing tests, and those exceeding the 1-hour analysis timeout of our
cluster-based experimental setup.

The total execution time reported by NAB is 7.1 hours. Running the analysis sequentially
in a single NAB-Analyzer would take up to about 2.7 months.”

4.3 Promise API Adoption for Asynchronous Executions

First, we measure how widely promises are used in project tests by identifying the usage of
the Promise API in either application code (i.e., code exercised by tests) or the dependent
NPM modules. From the 23,297 successfully analyzed projects, we find that 5,971 projects
(i.e., 25.6%) make use of the Promises API. In our analysis, we differentiate trivial promise
chains (that are not used to handle asynchronous executions) from non-trivial ones.

7 This estimation is calculated as the sum of the execution times reported for the analysis of each project
by a NAB-Analyzer instance.
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Overall: 2373 (5971)
App: 609 (641) Module: 2216 (5871)

157 (100) 452 (541) 1764 (5330)

Figure 3 Distribution of projects that use promises only in application code (blue circle), only in
modules (green circle), or in both (intersection). The left-side values indicate the number of projects
excluding trivial promises, while the right-side values in parentheses include trivial promises.

Figure 3 shows the overall distribution of projects that use promises in the application code
(blue circle), in the dependent NPM modules (green circle), or in both (their intersection).
The right-side values in parentheses show the total number of projects making use of promises
(before excluding trivial promise chains), while the left-side values indicate the number of
projects after the exclusion. Overall, 5,971 projects use promises, while only 2,373 projects
use non-trivial promise chains. The left-side numbers (after excluding trivial promises) are
smaller than the right-side numbers in parentheses, except for the application-only part,
because some projects use promises in both application code and in modules, but only trivial
promises in modules. After excluding trivial promises, such projects are found using promises
only in the application code.

From the figure, we can observe that out of 23,297 projects, only 157 (0.6%) of them use
promises only in application code, while 2,216 (9.5%) use promises also indirectly, i.e., in the
modules they depend on. Our findings suggest that many projects do not directly depend
on promises, but rather rely on the promise support introduced by other modules that they
depend on.

Our analysis also reveals that from the 5,971 projects that use the Promise API, a total
of 440 different dependent NPM modules use promises, out of which 41 modules create
only trivial ones. Figure 4 shows the most frequently used NPM modules that make use of
promises on the x-axis (used by at least 100 projects), and the number of projects using
such NPM modules on the y-axis. Each bar represents the number of projects and is further
divided into two parts according to the maximum size of the promise chain (i.e., showing
trivial and non-trivial promise chain usages). Modules lodash and prettier contain only trivial
promise chains, as they use promises only for version detection.® The other modules use
promises for different purposes. For example, jest and mocha are test harnesses widely used
by NPM modules, which use promises to run tests, while pify is a library used to “promisify”
a callback by returning a promise-wrapped version of it.

8 Such modules execute Promise.resolve and check whether the returned object is a promise object or
not, to detect whether the current JavaScript version is ECMAScript 6 or higher. Such a promise usage
is unrelated to asynchronous executions.
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Figure 4 Most frequently used NPM modules that make use of promises, and the number of
projects using such modules.

Our results suggest that such modules (i.e., with non-trivial promises) should be preferred
over the others (i.e., without promises or with only trivial ones) by researchers as well as
language implementers who might want to evaluate and optimize the usage of promises in
real-world Node.js applications. Specifically, identifying and optimizing a popular promise
usage pattern in one of such modules might have a positive performance impact on several
existing applications.

4.4 Frequency of Promise API usage

We further study the frequency of Promise API usages among the 2,373 projects with
non-trivial promise chains. The Promise constructor and the Promise.then method are the
most used ones (in 2,287 and 2,363 projects, respectively), as they are the most common
way to create and use promises. Promise.catch is used less frequently (in 1,732 projects),
which reveals that not all programmers add a catch statement when programming with
promises (which is considered a best practice when using promises in JavaScript [55]). Other
APIs, such as Promise.all and Promise.race, are used even less frequently (in 1,488 and
233 projects, respectively). Finally, only 47 projects use await for asynchronous functions,
as the async/await feature was introduced in ECMAScript 8 [30] (mid 2017).

The size of a promise chain is an important characteristic for understanding how applica-
tions use promises. Figure 5 shows the distribution of different maximum promise-chain sizes
among the 2,373 projects that use non-trivial promise chains. 50.5% of the projects create
only promise chains sized within 10; in 38.3% of the projects the longest promise-chain has a
size between 11 and 100; and 11.2% of the projects have at least one promise chain with
size greater than 100. We observe the longest promise chain (5,002 promises) in the project
lahmatiy/postcss-csso.

Our findings suggest that the number of projects with long promise chains is relatively high.
As the length of the promise chain is a potential indicator of a long-living application, such
projects could be considered as potentially interesting for the development of microbenchmarks
stressing the Promise API.
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/ >100: 11.2%

2-10: 50.5%

T 11-100: 38.3%

Figure 5 Statistics for the maximum promise-chain size observed in the 2,373 projects that make
use of non-trivial promise chains. Percentages indicate projects with maximum chain size between 2
and 10, between 11 and 100, and more than 100.

In conclusion, this study demonstrates how NAB can be used for analyzing the usage of a
particular programming-language construct (here, asynchronous executions via promises in
Node.js projects) in the wild. The results of our analysis could be useful for Node.js developers
to find projects and popular modules that use promises for asynchronous executions. In
particular, evaluating and optimizing such modules could be beneficial to several existing
applications. Moreover, we found many projects with long promise chains; such projects
might be considered as potentially interesting for benchmarking promises on Node.js.

In future work, we plan to re-execute our analysis on new versions of the considered
modules, and to track the adoption of the Promise API over time. In this way, the analysis
could also indicate which specific parts of the API are gaining more adoption (if any).

5 Case Study lI: Finding JIT-unfriendly Code Patterns in Node.js

Our second massive study of public repositories using NAB deals with the quality of the
JavaScript code available on the NPM package repository. Specifically, our goal is to execute a
comprehensive DPA to identify bad coding practices that are known to affect the performance
of Node.js applications. Such coding patterns — also called JIT-unfriendly code patterns — may
prevent typical JIT compiler optimizations, such as function inlining, on-stack replacement,
and polymorphic inline caching.

To this end, we resort to an existing DPA for JavaScript, called JITProf [17], which can
identify and collect a variety of JIT-unfriendly code patterns otherwise impossible to identify
using static analysis. JITProf is open-source,” and relies on the Jalangi [57] instrumentation
framework. Since Jalangi does not support the latest ECMAScript standard, we adapt the
analysis to run on the NodeProf framework (see Section 4.1.1) for the GraalVM.

This yields the benefits of supporting up-to-date language features (as NodeProf is
compatible with ECMAScript 8), and also reduces the time needed for the instrumentation.

JITProf can identify seven different categories of JIT-unfriendly code patterns, namely:
AccessUndefArrayElem, tracking accesses to undefined array elements; BinaryOpOnUndef,
to track when undefined is used in binary operations; InconsistentObjectLayout, to

9 https://github.com/Berkeley-Correctness-Group/JITProf
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Table 3 Amount of projects where at least a JIT-unfriendly code pattern in found (out of 26,938
analyzed Node.js projects). Dependent NPM modules are excluded from the analysis.

JIT-unfriendly Pattern # Projects %

AccessUndefArrayElem 1,253 4.7%
BinaryOpOnUndef 757 2.8%
InconsistentObjectLayout 9,509  35.3%
NonContiguousArray 194 0.7%
PolymorphicOperation 3,073  11.4%
SwitchArrayType 81 0.3%
TypedArray 546 2.0%
At least one 9,969 37.0%

find object access patterns that lead to inline-cache misses; NonContiguousArray, to locate
non-contiguous array accesses; PolymorphicOperation, to identify polymorphic (including
megamorphic) binary and unary operations; SwitchArrayType, to find unexpected transitions
in arrays internal backing storage (i.e., array strategies [6]); TypedArray, to account for
unnecessary usages of generic arrays where typed arrays could be used (e.g., to replace
contiguous numeric arrays). A detailed description of the analyses required to identify such
patterns can be found in [17].

5.1 Executing JITProf with NAB

We run JITProf with NodeProf in two settings, i.e., (1) profiling only application code, and
(2) profiling also dependent NPM modules. Out of the 109,286 Node.js projects executed (see
Table 2 on page 10), NAB reports 26,938 successfully analyzed projects with application-only
profiling, and 3,940 projects when profiling also dependent NPM modules. The analyses in
JITProf that identify JIT-unfriendly patterns require heavy instrumentation (as they track
object creation, accesses and operations), which may significantly slow down application
execution (leading to failures due to the presence of timeouts in the code, or increasing the
execution time past the 1-hour analysis timeout) or cause out-of-memory errors, particularly
when profiling NPM modules, due to the large amount of code that is instrumented and
analyzed in all dependent NPM modules in each project. For this reason, JITProf does not
complete on several projects, which are ignored in our analysis. Similarly to the previous use
case, we exclude projects with broken or failing tests.

The total execution time reported by NAB is 25.3 hours, whereas a sequential execution
in a single NAB-Analyzer would take up to about 8.4 months.

5.2 JIT-unfriendly Patterns in Application Code

We first focus on application code disregarding the dependent NPM modules. The results of
the analyses are shown in Table 3. As shown in the second column (“# Projects”), a total of
9,969 projects result in at least one JITProf warning, i.e., 37.0% of the successfully analyzed
projects suffer from at least one JIT-unfriendly code pattern. The most common pattern
found is InconsistentObjectLayout, occurring in 9,509 projects. This result implies that
these projects perform read or write accesses to objects in a sub-optimal way that may prevent
compiler optimizations, and may therefore pay a performance penalty when performing such
accesses in frequently executed code.
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Table 4 Top 3 dependent NPM modules suffering from JIT-unfriendly code. Column “# Modules”
indicates the number of unique modules where a given pattern occurs. For each module, the values
in parentheses indicate the number of projects using that module.

JIT-unfriendly Pattern # Modules Top 3 NPM Modules
AccessUndefArrayElem 252 conzg;e;r)lder (ilgé)) a(bll;; e)V
BinaryOpOnUndef 33 strip-jso(fll-lcoo)mmems é] ff(l)l) S(j g:(; )n
InconsistentObjectLayout 523 Conzgisa%l)lder (;,}é?)l) (?576;
NonContiguousArray 49 S(eln:;‘;;r (J ffg ) e(séjll;t
PolymorphicOperation 453 1?;18‘15)}1 (gil_?g) mm(qf%i})’PeS

. babylon lodash eslint
SwitchArrayType 16 (Z’) 3) )
TypedArray 144 10(‘;?;11 J‘?Z;I;t regt(?;lg)rate
At least one 900 conz;fézl;der (ilg; l?f;;)h

5.3 JIT-unfriendly Patterns in NPM Modules (top 3)

We also collect statistics on JIT-unfriendly code in the NPM modules used by the exercised
tests, which is reported in Table 4. From the set of 3,940 Node.js projects successfully
analyzed, 900 dependent NPM modules execute at least one JIT-unfriendly code pattern, as
shown in the second column (“# Modules”). The most common JIT-unfriendly code pattern
is InconsistentObjectLayout (in 523 modules), while only 16 modules show occurrences
of SwitchArrayType. For each code pattern, we also identify the top 3 modules (i.e., the
3 NPM modules used most frequently among projects where we found the pattern). The
values in parentheses below a module name in Table 4 show the number of projects using
that module. For example, as shown in the first row of the table, there are 637 projects using
the NPM module commander, 569 projects using glob, and 178 projects using abbrev.

Several modules suffer from more than one JIT-unfriendly code pattern. For example,
the popular NPM module lodash frequently executes 3 kinds of JIT-unfriendly code patterns
(i.e., PolymorphicOperation, SwitchArrayType and TypedArray). The 3 top modules with
at least one JIT-unfriendly code pattern are commander, glob and lodash (as reported in
the last row of the table). These modules are very popular, being imported by almost 130K
other distinct NPM modules overall.'®

In summary, our study reveals that Node.js developers frequently use code patterns that
could prevent or jeopardize dynamic optimizations and have a potential negative impact on
applications performance. Such patterns occur both in application code and in dependent
NPM modules used by a project.

10The estimation of the number of dependent modules is taken from the global NPM registry
(https://www.npmjs.com/) and dated November 2018.
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6 Case Study lll: Discovering Task-parallel Workloads

For many specific evaluation needs, there is a lack of suitable domain-specific benchmarks,
forcing researchers to resort to less appropriate general-purpose benchmarks. In our third
case study, we focus on discovering workloads that can fulfill the needs of a domain-specific
evaluation. We consider a researcher requiring task-parallel applications on the JVM
exhibiting diverse task granularities, to analyze concurrency-related aspects. Currently, only
few task-parallel workloads can be found in well-known benchmark suites [5, 58, 61, 60]
targeting the JVM. Moreover, except for DaCapo,'! such suites were last updated several years
ago, thus they may be not representative of state-of-the-art applications using task parallelism.

6.1 Executing tgp with NAB

tgp [54] is an open-source!? DPA for detecting the granularity of tasks spawned by multi-
threaded, task-parallel applications running on the JVM. tgp profiles all tasks spawned
by an application (defined as subtypes of the Java interfaces/classes java.lang.Runnable,
java.util.concurrent.Callable, and java.util.concurrent.ForkJoinTask), collecting
their granularity, i.e., the amount of work carried out by each parallel task, in terms of the
number of executed bytecode instructions. The DPA runs on top of DiSL [41], a dynamic
analysis framework for the JVM that ensures complete instrumentation coverage (i.e., it can
instrument every method with a bytecode representation), thus enabling the detection of
tasks used inside the Java class library.

For this case study, we run tgp on top of DiSL (which can be attached to NAB via a
dedicated plugin) to measure the granularity of all tasks spawned during the execution
of testing code in Java and Scala projects from GitHub. Our goal is to discover projects
with a high diversity of task granularities, which could be good workload candidates for
benchmarking task parallelism on the JVM.

The total execution times reported by NAB for this DPA are 9.5 hours (Java projects)
and 1.8 hours (Scala projects), whereas a sequential execution in a single NAB-Analyzer
instance would take up to about 1.9 months (Java) and 12.5 days (Scala).

6.2 Results for Java Projects

Out of the 25,918 Java projects analyzed (see Table 2 on page 10), 1,769 projects make use
tasks and successfully complete all tests within the 1-hour analysis timeout, thus they are
considered for the following analysis.

The total number of tasks spawned by the analyzed projects is 1,406,802. The minimum
granularity found is 1 and the maximum granularity is 187,673,879,636. Table 5 (Java section)
shows the distribution of tasks wrt. their granularities. The first column shows all ranges of
task granularities found. The second column reports the number of tasks with granularity in
the corresponding range. The third column indicates the number of projects having at least
one task with a granularity in the considered range.

The analysis results obtained with NAB reveal that test methods in project https:
//github.com/rolfl/MicroBench (a Java harness for building and running microbench-
marks written in Java 8) spawn a total of 55 tasks with granularities spanning all ranges

M Dacapo 9.12-MR1-bach was released on January 2018. However, the workloads were not significantly
modified since the previous release (dated 2009) and no new workload has been added.
2nttps://github.com/Fithos/tgp
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Table 5 Distribution of all tasks spawned in the considered Java and Scala projects wrt. their
granularities.

Granularity Java Scala
Range Tasks Projects Tasks Projects

[10° - 10%) 137,468 686 301,066 771
[10! - 10?) 278,765 466 280,244 710
[102 - 10%) 215,211 673 2,795,702 860
[103 - 10%) 285,196 1,092 1,278,974 769
[10% - 105) 247,284 1,367 124,473 771
[105 - 106) 128,992 1,492 74,989 769
[106 - 107) 89,710 1,327 13,002 806
[107 - 10%) 17,178 1,046 4,555 677
[108 - 109) 5,696 581 1,789 619
[109 - 10%0) 1,164 177 430 276
[1010 - 1011 120 53 22 20
[10t - 1012) 18 8 1 1

except [10* - 10%). In addition, the project https://github.com/47Billion/netty-http
(a library to develop HTTP services with Netty [65]) makes use of a total of 123 tasks in
its tests, with granularities in all ranges except [10'! - 10'2). Both Java projects can be
good candidate workloads for task benchmarking, as they exhibit a high diversity of task
granularities.

6.3 Results for Scala Projects

Out of the 4,076 Scala projects analyzed (see Table 2 on page 10), 860 projects contain
task-parallel workloads and successfully complete all tests within the analysis timeout. Such
projects spawn a total of 4,875,247 tasks. The minimum granularity found is 2 while
the maximum is 204,418,653,894. Table 5 (Scala section) shows the distribution of tasks
wrt. their granularities.

The analysis results pinpoint three candidate workloads spawning tasks with gran-

ularities spanning all ranges except [10*! - 10'?). First, the project https://github.

com/iheartradio/asobu (a library for building distributed REST APIs for microservices
based on Akka cluster [36]) spawns a total of 19,880 tasks in its tests. Second, project
https://github.com/TiarkRompf/virtualization-1lms-core (a library for building high
performance code generators and embedded compilers in Scala) executes a total of 5,759 tasks.
Finally, tests inside project https://github.com/ryanlsg/gbf-raidfinder (a library for
tracking gaming-related tweets from Twitter) run a total of 20,934 tasks. This set of projects
provides candidate Scala workloads for benchmarking task execution on the JVM, due to
their high diversity of task granularities.

Overall, our analysis results show that NAB can help discover good candidate workloads
satisfying domain-specific benchmarking needs. Moreover, this study demonstrates NAB’s
support for multiple programming languages.

7 Discussion

In this section, we discuss the strengths and limitations of our approach, focusing on different
aspects of massive DPA; including safety, extensibility, scalability, and code evolution.
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7.1 Safety

As NAB is executing unknown projects, sandboxing is crucial to protect the execution
platform from malicious or erroneous code. NAB relies on Docker containers to isolate the
execution of DPAs from the host environment. Thus, a project may only crash a NAB-
Analyzer instance running in a Docker container, without harming the underlying platform.
Such crashes are handled by NAB’s fault-tolerance mechanism. A project that repeatedly
crashes or takes excessive time to execute will be excluded from any further DPA. The
fault-tolerance mechanism also mitigates problems caused by unstable third-party DPA tools
or by experimental runtimes.

7.2 Extensibility

NAB has been designed for extensibility, as code repositories have different search APIs, and
projects may use different version-control systems, programming languages, build systems,
and testing frameworks. Moreover, third-party DPA tools may require specific execution
environments, such as a modified JVM. NAB uses a plugin mechanism to handle the large
variety of systems it needs to interact with. The currently supported analysis settings are
listed in Table 1 on page 9. It is straightforward to implement additional plugins; each
existing NAB plugin has only about 100 lines of code.

We plan to add support for other version-control systems such as Mercurial [43], and
for other programming languages and their ecosystems. Moreover, supporting the Java
Microbenchmark Harness (JMH) [48] is straightforward, allowing leveraging existing bench-
marks in open-source projects that use MVN. Furthermore, we are extending NodeProf to
support additional dynamic languages offered by GraalVM, such as Python, Ruby, and R.
These extensions will enable studies on an even larger code base, targeting many popular
programming languages.

Finally, in addition to the direct interaction with the standard GitHub search API, NAB
can be extended to interact with offline mirrors and metadata archive dataset of GitHub,
such as GHTorrent [18] and GHArchive [15], which may improve the crawling time. However,
the suitability of using such offline services strongly depends on the type of DPA and required
metadata. For example, for the case studies presented in this paper, we found that GHTorrent
and GHArchve lack part of the required metadata (e.g., information about build system and
the number of contributors).

7.3 Scalability

NAB’s analysis infrastructure has been designed with scalability as a driving principle,
leveraging a container-based microservice architecture. We executed NAB in clusters varying
the number of nodes (16, 32, 48, and 64) with a constant number of containers per node (16),
observing close to linear scalability when testing the core analysis infrastructure, i.e., running
a test project with fixed execution time and without any analysis plugin, thus confirming the
low overhead of NAB’s distributed infrastructure.

Although NAB features load-balancing mechanisms for its publish-subscribe communica-
tion infrastructure and for database accesses, during massive DPA (as in our case studies) we
started observing some performance degradation with more than 1K NAB-Analyzer contain-
ers, when the number of messages exchanged for analysis coordination, result notification
and result storing increases significantly. This is due to the limits reached by Docker Swarm’s
internal overlay network, which will be improved as Docker evolves. This issue can be
mitigated by running several NAB deployments (i.e., running in separate Docker Swarms)
that coordinate themselves using external MQTT brokers.
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The optimal number of NAB-Analyzer instances to run on each host depends on the
resource demands of the DPA tool to be executed. Even though Docker Swarm’s scheduler
tries to distribute the load fairly, it cannot distinguish the containers’ roles and may stop and
restart them without making any difference. While the restart of NAB services is handled
by the fault-tolerance mechanism, it is important to avoid deploying critical NAB services
(notably NAB-Master and the MQTT Brokers) on the same host where high-demanding
NAB-Analyzer instances are deployed, so as to avoid performance penalties in running the
analysis. NAB provides configurable deployment settings to properly place the core services.

7.4 DPA Reproducibility and Code Evolution

NAB can differentiate between different versions of a DPA (e.g., when an existing DPA
is updated, it results in a new version). Moreover, NAB can apply an arbitrary DPA
version to an arbitrary project revision. When a DPA completes, NAB stores provenance
metadata, which identifies the DPA version and project revision. This metadata makes DPAs
reproducible, as NAB allows one to re-execute a specific DPA version on a specific project
revision even if they have been updated.

For version dependency management supporting wildcards, as in the case of Node.js, since
many versions may match a given wildcard for a single dependency, it would be extremely
costly (and thus impractical) to test each valid version for every dependency. NAB follows
the default behavior of “npm install”, which installs only the latest version of a dependent
module matching the wildcard. Thus, provenance metadata includes the exact dependency
version installed.

NAB enables the analysis of multiple revisions of the same project, which helps gain
insight into the changing runtime behavior during project evolution. NAB supports this
through incremental analysis: the user may request the analysis of only those project revisions
that have not been analyzed yet, avoiding to re-analyze projects that have not changed
since the last run of the same DPA. While such studies would significantly increase the
number of analyses to run, NAB enables such computationally expensive analyses thanks to
its distributed and scalable architecture, allowing the deployment of an analysis on a large
cluster or in the Cloud.

Preserving provenance metadata is also useful to understand the evolution of a DPA. The
user may apply the new version of a DPA to exactly the same project revisions analyzed
previously (with an older version of the DPA). Exploring the differences between the analysis
results can help identify bugs in the DPA implementation.

7.5 Limitations

In the following text, we outline the main limitations of our approach.

7.5.1 Low-level Metrics

One inherent limitation when running in a virtualized environment (which container tech-
nology is based on) is that low-level performance counters such as hardware performance
counters [28] are restricted or not accessible. Thus, low-level dynamic metrics related to
the CPU or memory subsystem cannot be collected when running the NAB components in
Docker containers. Moreover, if multiple NAB components are deployed on the same machine,
performance interference will prevent the collection of accurate time-based metrics.

This limitation is due to the trade-off between the safety offered by Docker containers and
the flexibility of collecting arbitrary low-level metrics. While NAB also supports a deployment
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setting without containerization, such a setting would sacrifice the safety properties needed
when automatically executing the code of unknown (and hence untrusted) projects. Thus,
for the measurements presented in this paper, we always use NAB with containerization.

7.5.2 Security Vulnerabilities and OS/Kernel Dependencies

NAB relies on Docker’s default sandboxing (i.e., it does not use any privileged setting).
However, DPA tools that require host’s kernel system calls (e.g., the linux “perf” tool) will
need to run NAB with privileged access (thus, potentially insecure). Furthermore, since the
real host kernel is used by such tools, this setting will not work in virtualized environments.
This is a well-known limitation of hardware-specific and OS-dependent profilers running on
Docker.!?

7.5.3 Representativeness of Testing Code

A general limitation of the presented use cases is that DPAs are applied only to the existing
testing code of open-source projects. Such workloads may not be representative for a real
usage scenario of an application in production. However, since testing code in projects also
exercises library code extensively (as is the case of Node.js projects executing dependent
NPM modules), significant information on the dynamic behavior of library code can be
collected and analyzed. Thus, our approach ensures that the analyzed code stems from real
applications and libraries, and the analyses presented in this paper yield relevant results.
Moreover, in [69] the authors point out that many projects have relatively long-running
testing code, different from simple and short unit tests.

As mentioned before, we will provide a plugin for JMH to analyze existing benchmarks in
open-source projects, in addition to testing code. Furthermore, we plan to apply techniques
for automated test-case generation [50, 59] to yield executable (and hence dynamically
analyzable) code that maximizes various coverage metrics [42].

7.5.4 Analyzed Codebase and Analysis Timeout

The cluster used for obtaining our evaluation results requires a reservation and is heavily
booked. For this reason, the projects considered in our use cases cover only the period
2013—-2017. An extension of the use cases to cover also year 2018 is already scheduled. The
choice of 1 hour as analysis timeout for DPAs also stems from the need of limiting the
computational effort of the DPAs, to complete them within the limited timeframe of the
cluster reservation.

8 Related Work

In this section, we provide an overview of the most significant related work. First, we review
massive analysis of code repositories. Next, we discuss DPAs targeting JavaScript. Finally,
we focus on previous approaches for generating benchmarks.

Bnttps://docs.docker.com/engine/security/seccomp/
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8.1 Massive Analysis of Code Repositories

Analyzing publicly available code repositories has become an important research area for
understanding and improving different characteristics of software. Most related work relies
on static analysis, notably for evaluating code quality [39, 52], predicting program proper-
ties [53], detecting code duplication [37], checking contracts in Java [11], identifying effects of
software scale [38], automatically documenting code modifications [7], and summarizing bug
reports [51]. Although static analyses can shed light on several aspects of software, there is a
large body of properties that can be observed only when applications are executed [8], as
DPA exposes the system’s actual behavior. Our work facilitates the application of third-party
DPAs to the projects in large code repositories.

Studies massively applying DPA are scarce. Legunsen et al. [35] use the JavaMOP [31]
runtime-verification tool to check the correct usage of Java APIs. Even though the authors
target 200 projects, their evaluation does not rely on any automated system enabling
massive DPA. Marinescu et al. [42] present a framework to analyze how open-source projects
evolve in terms of code, tests, and coverage by collecting both static and dynamic metrics.
Although the authors apply DPA using containers to easily deploy several versions of the
studied applications, their evaluation is limited to only 6 open-source projects. Overall,
the aforementioned work dynamically analyzes a small and fixed set of projects, lacking an
automatic and scalable system supporting massive custom DPA in the wild, as offered by NAB.

8.2 DPA for JavaScript

Dynamic analysis of JavaScript and Node.js applications is an active area of research. In [40]
the authors introduce the notion of promise graph, a graph-based model to reason about the
usage of JavaScript Promise objects through graphical visualization. Promise graphs are
built using DPA; and can be used to identify bugs and API misuses in Node.js. A follow-up
paper [1] from the same authors expands the work on promise graphs to perform automatic
bug detection on real-world Node.js applications. The main focus of promise graphs is bug
detection, while our DPA Deep-Promise focuses on the characterization of the Promise API
usage and on asynchronous application behaviors (non-trivial promise chains) in the wild.
To the best of our knowledge, no other large-scale study on the usage of the Promise API on
Node.js projects and the NPM modules they depend on has been conducted.

Beyond JavaScript promises, DPA has been applied to JavaScript and Node.js in a variety
of forms. As an example, JITProf [17] is a DPA tool that can identify JIT-unfriendly code
patterns in JavaScript programs. JITProf lacks the ability to perform analyses on large code
bases, and the JITProf paper evaluates only 50 client-side JavaScript applications. With
NAB, we are able to scale analyses similar to those of JITProf up to a significantly higher
number of JavaScript applications, enabling more representative results.

8.3 Benchmark Generation

Several studies focus on the creation of hand-coded synthetic benchmarks [10, 67], synthetic
workload traces [49, 47, 13], and automatically synthesized benchmarks [3, 66, 32]. Overall,
these techniques generate short workloads exhibiting a set of desired behaviors (e.g., intensive
use of CPU, memory, I/0) to enable estimating and comparing the performance of hardware
and applications. In contrast, our approach massively applies DPAs to existing testing code
at the scale of public code repositories, as a technique for automatically discovering potential
workload candidates satisfying domain-specific benchmarking needs.
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To the best of our knowledge, NAB is the first system that can automatically run third-
party DPAs in the wild. Similar in spirit, the AutoBench [69] toolchain can be used to look for
potential benchmarks in Java workloads. In comparison to NAB, AutoBench lacks scalability,
multi-language support, failure handling, sandboxing, and parallel code-repository crawling
and analysis on clusters or in the Cloud. Moreover, AutoBench only supports MVN projects,
relies exclusively on JUnit, and lacks any plugin mechanism for integrating third-party DPA
tools that are fundamental for conducting analyses in the wild.

9 Conclusions

Motivated by the vast amount of today’s public open-source code and available ready-to-use
software components, this paper tackles two important research questions: whether it would
be possible to develop a tool to automate large-scale DPA on public open-source software at
a large scale, and whether such a tool would be useful for the community.

To positively answer the first question, we develop NAB, a novel, distributed infrastruc-
ture for executing massive custom DPA on open-source code repositories. NAB resorts to
containerization for efficient DPA parallelization (fundamental to obtain analysis results in
reasonable timeframes), sandboxing (to isolate buggy or malicious code) and for simplify-
ing the deployment on clusters or in the Cloud. NAB features both crawler and analyzer
components, which are deployed in lightweight containers that can be efficiently replicated.
Moreover, NAB supports different build systems, testing frameworks, runtimes for multi-
language support, and can easily integrate existing DPA tools. To the best of our knowledge,
NAB is the first scalable, container-based infrastructure for automated, massive DPA on
open-source projects, supporting multiple programming languages.

To positively answer the second question, we present three case studies where NAB enables
massive DPA on more than 56K open-source projects hosted on GitHub, leveraging unit tests
that can be automatically executed and analyzed. We present a novel analysis that sheds
light on the usage of the Promise API in open-source Node.js projects. We find many projects
with long promise chains, which can potentially be considered for benchmarking promises
on Node.js. Moreover, the results of our analysis could be useful for Node.js developers to
find projects and popular modules that use promises for asynchronous executions, which
optimization could be beneficial to several existing applications. We conduct a large-scale
study on the presence of JIT-unfriendly code on Node.js projects. Our study reveals that
Node.js developers frequently use code patterns that could prevent or jeopardize dynamic
optimizations and have a potential negative impact on applications performance. Finally, we
perform a large-scale analysis on Java and Scala projects, searching for task-parallel workloads
suitable for inclusion in a benchmark suite. We identify five candidate workloads (two in
Java and three in Scala) that may be used for benchmarking task parallelism on the JVM.

Regarding ongoing research, we are exploring to which extent the testing code executed
by NAB is representative for real-world usage scenarios of applications. We are applying
automated test-case-generation techniques to increase the amount of dynamically analyzable
code. Finally, we are also extending NAB to different repositories (including offline mirrors
and datasets) and programming languages.
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