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Abstract
We provide an algorithm that uses Bayesian randomized benchmarking in concert with a local
optimizer, such as SPSA, to find a set of controls that optimizes that average gate fidelity. We
call this method Bayesian ACRONYM tuning as a reference to the analogous ACRONYM tuning
algorithm. Bayesian ACRONYM distinguishes itself in its ability to retain prior information from
experiments that use nearby control parameters; whereas traditional ACRONYM tuning does not
use such information and can require many more measurements as a result. We prove that such
information reuse is possible under the relatively weak assumption that the true model parameters
are Lipschitz-continuous functions of the control parameters. We also perform numerical experiments
that demonstrate that over-rotation errors in single qubit gates can be automatically tuned from 88%
to 99.95% average gate fidelity using less than 1kB of data and fewer than 20 steps of the optimizer.
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1 Introduction

Tuning gates in quantum computers is a task of fundamental importance to building a
quantum computer. Without tuning, most quantum computers would have insufficient
accuracy to implement a simple algorithm let alone achieve the stringent requirements on
gate fidelity imposed by quantum error correction [12, 4]. Historically, qubit tuning has
largely been done by experimentalists refining an intelligent initial guess for the physical
parameters by hand to account for the ideosyncracies of the device. Recently, alternatives
have been invented that allow devices to be tuned in order to improve performance on
real-world estimates of gate quality. These methods, often based on optimizing quantities
such as average gate fidelities, are powerful but come with two drawbacks. At present all such
methods require substantial input data to compute the average gate fidelity and estimate its
gradient, and at present no method can use information from the history of an optimization
procedure to reduce such data needs. Our approach, which we call Bayesian ACRONYM
tuning (or BACRONYM), addresses these problems.

BACRONYM is based strongly on the ACRONYM protocol invented by Ferrie and
Moussa [11]. There are two parts to the ACRONYM gate tuning protocol. The first uses
randomized benchmarking [25] to obtain an estimate of gate fidelity as a function of the
controls. The second optimizes the average gate fidelity using a local optimizer such as Nelder-
Mead or stochastic gradient descent. While many methods can be used to estimate the average
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7:2 Bayesian ACRONYM Tuning

gate fidelity, randomized benchmarking is of particular significance because of its ability
to give an efficient estimate of the average gate fidelity under reasonable assumptions [30],
and because of its amenability to experimental application [17]. The algorithm then uses a
protocol, similar to SPSA (Simultaneous Perturbation Stochastic Approximation) [33], to
optimize the estimate of the gate fidelity by changing the experimental controls and continues
to update the parameters until the desired tolerance is reached.

The optimization used in ACRONYM simply involves varying a parameter slightly and
applying the fidelity estimation protocol from scratch every time. When the a quantum system
is evaluated at two nearby points in parameter space, an operation performed repeatedly in
descent algorithms, the objective function does not typically change much in practice. Since
ACRONYM does not take this into account, it requires more data than is strictly needed.
Thus, if ACRONYM could be modified to use prior information extracted from the previous
iteration in SPSA, the data needed to obtain an estimate of the gradient can be reduced.

Bayesian methods provide a natural means to use prior information within parameter
estimation and have been used previously to analyze randomized benchmarking experiments.
These methods, yield estimates of the average gate fidelity based on prior beliefs of about the
randomized benchmarking parameters as well as the evidence obtained experimentally [13].
To use a Bayesian approach, we begin by taking as input a probability distribution for the
average gate fidelity (AGF) as function of the control parameters θ, Pr(AGF|θ). This is our
prior belief about the average gate fidelity. In addition to a prior, we need a method for
computing the likelihood of witnessing a set of experimental evidence E. This is known as the
likelihood function; in the case of Bayesian randomized benchmarking, it is Pr(E|AGF;θ).
Given these as input, we then seek to output an approximation to the posterior probability
distribution, i.e., the probability with which the AGF takes a specific value conditioned on
our prior belief and E. To accomplish this, we use Bayes’ theorem, which states that

Pr(AGF|E;θ) = Pr(AGF|θ) Pr(E|AGF; θ)
Pr(E|θ) , (1)

where Pr(E|θ) is just a normalization constant. From the posterior distribution Pr(AGF|E;θ)
we can then extract a point estimate of the AGF (by taking the mean) or estimate its
uncertainty (by computing the variance).

Our work combines these two ideas to show that provided the quantum channels that
describe the underlying gates are continuous functions of the control parameters then the
uncertainty in parameters like AGF that occurs from transitioning from θ → θ′ in the
optimization process is also a continuous function of ‖θ − θ′‖. This gives us a rule that
we can follow to argue how much uncertainty we have to add to our posterior distribution
Pr(AGF|E;θ) to use it as a prior Pr(AGF|θ′) at the next step of the gradient optimization
procedure.

1.1 Notation
The notation that we use in this paper necessarily spans several fields, most notably Bayesian
inference and randomized benchmarking theory. Here we will introduce the necessary notation
from these fields in order to understand our results. For any distribution Pr(x) over a vector
x of random variables, we write supp(Pr(x)) to mean the set of vectors x such that Pr(x) > 0.
When it is clear from context, we will write supp(x|y) in place of supp(Pr(x|y)).

LetH = Cd be a finite-dimensional Hilbert space describing the states of a quantum system
of interest, and let L(H) be the set of linear operators acting on H. Let Herm(H) ( L(H) and
U(H) ( L(H) be the sets of Hermitian and unitary operators acting onH, respectively. For the
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most part, however, we are not concerned directly with pure states |ψ〉 ∈ H, but with classical
distributions over such states, described by density operators ρ ∈ D(H) ( Herm(H) ( L(H).
Whereas H transforms under U(H) by left action, D(H) transforms under U(H) by the
group action • : U(H) × L(H) → L(H), given by U • ρ := UρU†. We note that • is linear
in its second argument, such that for a particular U ∈ U(H), U• : L(H) → L(H) is a
linear function. We thus write that U • ∈ L(L(H)). Moreover, since U • is a completely
positive and trace preserving map on L(H), we say that U • is a channel on H, written
C(H) ( L(L(H)) ( L(H)→ L(H). More generally, we take C(H) to be the set of all such
completely positive and trace preserving maps acting on L(H).

1.2 Problem Description
Before proceeding further, it is helpful to carefully define the problem that we address
with BACRONYM. In particular, let G = 〈V0, . . . , V`−1〉 ( U(H) be a group and a unitary
2-design [5], such that G is appropriate for use in standard randomized benchmarking. Often,
G will be the Clifford group acting on a Hilbert space of dimension d, but smaller twirling
groups may be chosen in some circumstances [18]. We will consider that the generator T is
a gate, which we would like to tune to be V0 without loss of generality, as a function of a
vector θ of control parameters, such that T = T (θ). We write that Vi ⊥⊥ θ for all i ≥ 0 to
indicate that the generators {V0, . . . , V`−1} are not functions of the controls θ (note that V0 is
manifestly not a function of the controls because it represents the ideal action). Nonetheless,
it is often convenient to write that Vi = Vi(θ)) with the understanding that ∂θjVi = 0 for all
i ≥ 0 and for all control parameters θj .

In order to reason about the errors in our implementation of each generator, we will write
that the imperfect implementation Ṽ ∈ C(H) of a generator V ∈ {V0, . . . , V`−1} is defined as

Ṽ = ΛV (V • ) (2)

which acts on ρ as

Ṽ [ρ] = ΛV [V ρV †], (3)

where ΛV is the discrepancy channel describing the errors in V . Note that for an ideal
implementation, ΛV is the identity channel.

We extend this definition to arbitrary elements of G in a straightforward fashion. Let
U :=

∏
i∈i(U) Vi, where i(U) is the sequence of indices of each generator in the decomposition

of U . For instance, if G = 〈H,S〉 for the phase gate S = diag(1, i), then
√
X = HSH is

represented by i(U) = (0, 1, 0). Combining the definition of U with Eq. (2), the imperfect
composite action Ũ is

Ũ =
∏

i∈i(U)

Ṽi =
∏

i∈i(U)

ΛVi(Vi • ) := ΛU (U•), (4)

where the final point defines the composite discrepancy channel ΛU . By rearranging the
equation above, we obtain

ΛU = Ũ(U† • ) =

 ∏
i∈i(U)

ΛVi(Vi • )

(U† • ) . (5)

TQC 2019
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Returning to the example
√
X = HSH, we thus obtain that

Λ√X = ΛH(H • )ΛS(S • )ΛH(H • )((H†S†H†) • ) (6)

is the discrepancy channel describing the noise incurred if we implement
√̃
X as the se-

quence H̃S̃H̃.
Equipped with the discrepancy channels for all elements of G, we can now concretely

state the parameters of interest to randomized benchmarking over G. Standard randomized
benchmarking without sequence reuse [13], in the limit of long sequences [35], depends only
on the state preparation and measurement (SPAM) procedure and on the average gate fidelity
AGF(Λref), where

Λref := EU∼Uni(G)[ΛU ] = 1
|G|

∑
U∈G

ΛU (7)

is the reference discrepancy channel, obtained by taking the expectation value of the discrep-
ancy channel ΛU over U sampled uniformly at random from G, and where the average gate
fidelity is given by the expected action of a channel Λ over the Haar measure dψ,

AGF(Λ) :=
∫

dψ〈ψ | Λ(|ψ〉〈ψ|) | ψ|.〉 (8)

When discussing the quality of a particular generator, say T := Ṽ0, we unfortunately cannot
directly access AGF(ΛT ) experimentally. However, interleaved randomized benchmarking
allows us to rigorously estimate AGF(ΛTΛref) in the limit of long sequences and without
sequence reuse.

Our goal here is to find a set of control parameters that optimizes AGF(ΛTΛref). To
state this more formally, suppose that T is a function of a vector θ of control parameters
such that T = T (θ). For all ideal generators, we write that Vi ⊥⊥ θ for all i ≥ 0 to indicate
that the other generators {V0, . . . , V`−1} are not functions of the controls θ. We also assume
that Ṽi ⊥⊥ θ for all i > 0, so that T (θ) = ΛV0(θ)V0 is the sole generator we are optimizing.
We therefore aim to find θ such that θ = argmax

(
AGF(ΛT (θ)Λref)

)
.

This problem has previously been considered by [7] and later by [22], who proposed
the use of interleaved randomized benchmarking with least-squares fitting to implement an
approximate oracle for AGF(ΛT (θ)Λref(θ)). Taken together with the bounds showed by
[26] and later improved by [23], this approximate oracle provides an approximate lower bound
on AGF(Λref(θ)). This lower bound can then be taken as an objective function for standard
optimization routines such as Nelder–Mead to yield a “fix-up” procedure that improves gates
based on experimental evidence. [11] showed an improvement in this procedure by the use
of an optimization algorithm that is more robust to the approximations incurred by the
use of finite data in the underlying randomized benchmarking experiments. In particular,
the simultaneous pertubative stochastic approximation (SPSA) [33], while less efficient for
optimizing exact oracles, can provide dramatic improvements in approximate cases such as
that considered by [11]. This advantage has been further shown in other areas of quantum
information, such as in tomography [10, 2].

We improve this result still further by using a Lipschitz continuity assumption on the
dependence of ΛT on θ to propagate prior information between optimization iterations. This
assumption is physically well-motivated: it reflects a desire that our control knobs have a
smooth (but not known) influence on our generators. Since small gradient steps cannot
greatly modify the average gate fidelity of interest under such a continuity assumption, the
prior distribution for each randomized benchmarking experiment is closely related to the
posterior distribution from the previous optimization iteration.
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Recent work has shown, however, that this approach faces two significant challenges. First,
the work of [30] has shown explicit counterexamples in which reconstructing AGF(ΛT (θ))
from AGF(ΛT (θ)Λref(θ)) can yield very poor estimates due to the gauge dependence of this
inverse problem. Second, the work of [19] has shown that the statistical inference problem
induced by randomized benchmarking becomes considerably more complicated with sequence
reuse, and in particular, depends on higher moments such as the unitarity [34]. While
the work of [19] provides the first concrete algorithm that allows for learning randomized
benchmarking parameters with sequence reuse, we will consider the single-shot limit to
address the [30] argument, as this is the unique randomized benchmarking protocol that
provides gauge invariant estimates of AGF(ΛT (θ)Λref(θ)) [31], and as this model readily
generalizes to include the effects of error correction [3].

In this work, we adopt as our objective function

F (θ) := AGF(ΛT (θ)Λref(θ)). (9)

This choice of objective represents that we want to see improvements in the interleaved
average gate fidelity, regardless of whether they occur from a more accurate target gate or a
more accurate reference channel. In practice, these two contributions to our objective function
can be teased apart by the use of more complete protocols such as gateset tomography [27, 1].
We proceed in three steps. First, we demonstrate that the Lipschitz continuity of ΛT (θ)
implies the Lipschitz continuity of F (θ). We then proceed to show that this implies an
upper bound on Var[F (θ + δθ)|data] in terms of Var[F (θ)|data], such that we can readily
produce estimates F̂ (θ) at each step of an optimization procedure, while reusing much of
our data to accelerate the process. Finally, we conclude by presenting a numerical example
for a representative model to demonstrate how BACRONYM may be used in practice.

2 Lipschitz Continuity of F (θ)

Proving Lipshitz continuity of the objective function is an important first step towards
arguing that we can reuse information during BACRONYM’s optimization process. We need
this fact because if the objective function were to vary unpredictably at adjacent values of
the controls then finding the optima would reduce to an unstructured search problem, which
cannot be solved efficiently. Our aim is to first argue that continuity of Λ implies continuity
of F . We then will use this fact to argue about the maximum amount that the posterior
variance can grow as the control parameters are updated, which will allow us to quantify how
to propagate uncertainties of F at adjacent points later. We begin by recalling the definition
of Lipschitz continuity for functions acting on vectors.

I Definition 1 (Lipschitz continuity). Given a Euclidean metric space S, a function f : S → R
is said to be Lipschitz continuous if there exists L ≥ 0 such that for all x,y ∈ S,

|f(x)− f(y)| ≤ L‖x− y‖. (10)

If not otherwise stated, we will assume ‖ · ‖ on vectors to be the Euclidean norm ‖ · ‖2.

As an example, f(x) =
√
x is not Lipschitz continuous on [0,1], but any differentiable

function on a closed, bounded interval of the real line is. We now generalize the notion of
Lipschitz continuity to channels. Let L(H) be the set of all linear operators acting on the
Hilbert space H, and let L(L(H)) be the set of linear operators acting on all such linear
operators (often referred to as superoperators).

TQC 2019
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I Definition 2 (Lipschitz continuity of channels). Given a metric space S and a Hilbert space
H, we say that a function Λ : S → L(L(H)) is L-continuous or Lipschitz continuous in the ?
distance if there exists L ≥ 0 such that for all x,y ∈ S and ρ ∈ D(H),

‖Λ(x)[ρ]− Λ(y)[ρ]‖? ≤ L‖x− y‖. (11)

If not specified explicitly, the trace norm ‖ · ‖ = ‖ · ‖Tr is assumed for operators in L(H).

From the definition, we immediately can show the following:

I Lemma 3 (Composition of Lipschitz continuous channels). Let Λ,Φ : S → L(L(H)) be
Lipschitz continuous in the trace distance with constants L and M, respectively. Then,
(ΦΛ) : x 7→ Φ(x)Λ(x) is Lipschitz continuous in the trace distance with constant L+M.

Proof. The proof of the lemma follows immediately after a few applications of the triangle
inequality under the assumption of continuity of the individual channels.

‖(ΦΛ)(x)[ρ]− (ΦΛ)(y)[ρ]‖Tr = ‖Φ(x)[Λ(x)[ρ]]− Φ(y)[Λ(y)ρ]]‖Tr
= ‖Φ(x)[Λ(x)[ρ]]− Φ(x)[Λ(y)[ρ]]

+ Φ(x)[Λ(y)[ρ]]− Φ(y)[Λ(y)[ρ]]‖Tr
≤ ‖Φ(x)[Λ(x)[ρ]]− Φ(x)[Λ(y)[ρ]]‖Tr

+ ‖Φ(x)[Λ(y)[ρ]]− Φ(y)[Λ(y)[ρ]]‖Tr
≤ ‖Φ(x)[Λ(x)[ρ]]− Φ(x)[Λ(y)[ρ]]‖Tr +M‖x− y‖
≤ ‖Λ(x)[ρ]− Λ(y)[ρ]‖Tr +M‖x− y‖
≤ L‖x− y‖+M‖x− y‖,

where the second-to-last line follows from contradiction on Helstrom’s theorem [36]. J

We note that the above lemma immediately implies that if Λ(θ) is Lipschitz continuous
in the trace distance with constant L, then so is (ΦΛ)(θ) for any channel Φ ⊥⊥ θ, since Φ can
be written as a channel that is Lipschitz continuous in the trace distance with constant 0.

I Corollary 4 (Composition of multiple Lipschitz continuous functions and channels). Let
Λ0,Λ1, ...,Λk : S → L(L(H)) be Lipschitz continuous in the trace distance with constants Li
with i ∈ [0, 1, ..., k]. Then, (Λ0Λ1 · · ·Λk) : x 7→ Λ0(x)Λ1(x) · · ·Λk(x) is Lipschitz continuous
in the trace distance with constant

∑k
i=0 Li.

I Lemma 5. Let Λ : S → L(L(H)) be a convex combination of channels,

Λ(θ) =
∑
i

piΛi(θ), (12)

where {pi} are nonnegative real numbers such that
∑
i pi = 1, and where each Λi : S →

L(L(H)) is Lipschitz continuous in a norm ‖ · ‖? with constant Li. Then, Λ is Lipschitz
continuous with constant L̄ =

∑
i piLi.

Proof. Consider an input state ρ ∈ D(H). Then,

‖Λ(θ)[ρ]− Λ(θ′)[ρ]‖? =

∥∥∥∥∥∑
i

pi
(
Λi(θ)[ρ]− Λi(θ′)[ρ]

)∥∥∥∥∥
?

≤
∑
i

pi
(∥∥Λi(θ)[ρ]− Λi(θ′)[ρ]

∥∥
?

)
≤
∑
i

piLi‖θ − θ′‖

= L̄‖θ − θ′‖. J
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Table 1 A partitioning of the twirling group G = 〈H,S〉 based on the number of occurrences of
the target gate T = S in the expansion of each element.

G0 {11, H}
G1 {S,HS, SH,HSH}
G2 {SS,HSS, SHS, SSH,HSHS,HSSH}
G3 {SSS,HSSS, SHSS, SSHS,HSHSS,HSSHS, SHSSH,HSHSSH}
G4 {SHSSS, SSHSS,HSHSSS,HSSHSS}

The above lemmas can then be used to show that AGF(ΛT (θ)) is Lipschitz continuous
with constant L when ΛT (θ) is Lipschitz continuous in the trace distance with constant L,
as we formally state in the following theorem.

I Theorem 6. Let Λ(θ) be Lipschitz continuous in the trace distance with constant L. Then
AGF(Λ(θ)) is Lipschitz continuous with constant L.

Proof. Recall that

AGF(Λ(θ)) :=
∫

dψ〈ψ|Λ [|ψ〉〈ψ|] |ψ|, 〉 (13)

so

|AGF(Λ(θ))−AGF(Λ(θ′))| =
∣∣∣∣∫ dψ〈ψ|Λ(θ)[|ψ〉〈ψ|]− Λ(θ′)[|ψ〉〈ψ|]|ψ|

〉
| (14)

≤
∫

dψ
∣∣〈ψ|Λ(θ)[|ψ〉〈ψ|]− Λ(θ′)[|ψ〉〈ψ|]|ψ|

〉
| (15)

≤
∫

dψ
∥∥Λ(θ)[|ψ〉〈ψ|]− Λ(θ′)[|ψ〉〈ψ|]

∥∥
Tr (16)

≤
∫

dψL‖θ − θ′‖ (17)

= L‖θ − θ′‖. J

As noted in the introduction, we do not have direct access to AGF(ΛT (θ)), but rather to
AGF(ΛT (θ)Λref(θ)). In particular, F (θ) := AGF(ΛT (θ)Λref(θ)) may be estimated from the
interleaved randomized benchmarking parameters:

p(θ) := dF (θ)− 1
d− 1 , (18a)

A(θ) := Tr(EΛref(θ)[ρ− 11
d

]), (18b)

and B(θ) := Tr(EΛref(θ)[11
d

]), (18c)

where d = dim(H), ρ is the state prepared at the start of each sequence, and E is the
measurement at the end of each sequence. We consider A and B later, but note for now
that up to a factor of d/(d− 1), Lipschitz continuity of F (θ) immediately implies Lipschitz
continuity of p(θ). Thus, we can follow the same argument as above, but using the channel
ΛT (θ)Λref(θ) instead to argue the Lipschitz continuity of experimentally accessible estimates.

We proceed to show the Lipschitz continuity of F and hence of p by revisiting the
definition Equation 7 of Λref . In particular, we partition the twirling group as G =

⋃∞
n=0Gn,

where Gn is the set of elements of G whose decomposition into generators {T, V1, . . . , V`−1}

TQC 2019
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requires at least n instances of the target gate T . For instance, if G = 〈S,H〉 and the target
gate is T = S, then Z ∈ G2 since Z = SS is the decomposition of Z requiring the least
copies of S. The partition of G in this example is shown as Table 1.

Using this partitioning of G, we can define an analogous partition on the terms occuring
in the definition of Λref(θ),

Λref(θ) =
∞∑
n=0

|Gn|
|G|

Λref,n(θ), (19)

where Λref,n(θ) := 1
|Gn|

∑
U∈Gn

ΛU (θ). (20)

I Theorem 7. If ΛT (θ) is Lipschitz continuous in the trace distance with constant L, then
Λref,n(θ) is Lipschitz continuous in the trace distance with constant nL. Furthermore Λref(θ)
is Lipshitz continuous with constant n̄ :=

∑∞
n=0 n

|Gn|
|G| .

Proof. Consider one of the summands from Equation 20, and without loss of generality let
U = Vi0Vi1 · · ·Vik for the sequence of integer indices i = (i0, i1, . . . , ik). Then, by Equation 5,

ΛU (θ) = ΛVi0
(θ)(Vi0 • ) · · ·ΛVik

(θ)(Vik • )(U† • ). (21)

Note that, ∀i, Vi ⊥⊥ θ since these are ideal channels and hence independent of the control
vector θ; these channels are Lipschitz continuous in the trace distance with constant 0.
Further, each ΛVi ⊥⊥ θ for i > 0; these channels are also Lipschitz continuous in the trace
distance with constant 0. By assumption, we have ΛV0 is Lipschitz continuous in the trace
distance with constant L. Hence, each factor in ΛU is Lipschitz continuous in the trace
distance with constant L or 0, as detailed above.

By Corollary 4, ΛU is Lipschitz continuous in the trace distance with constant mL, where
m counts the number of 0s in i (corresponding to the number of times the target gate occurs
in the decomposition of U). By construction, m ≤ n, so ΛU is also Lipschitz continuous in
the trace distance with constant nL.

Using Lemma 5 to, we now have that Λref,n(θ) is Lipschitz continuous in the trace
distance with constant 1

|Gn|
∑
U∈Gn

nL = nL, which is what we wanted to show.
We thus have that Λref(θ) is Lipschitz continuous in the trace distance with constant n̄L,

wherein

n̄ :=
∞∑
n=0

n
|Gn|
|G|

(22)

is the average number of times that the target gate T appears in decompositions of elements
of the twirling group G. J

I Corollary 8 (Lipschitz continuity of Λref(θ)). Let

n̄ :=
∞∑
n=0

n
|Gn|
|G|

(23)

be the average number of times that the target gate V0 appears in decompositions of elements
of the twirling group G. Then, Λref(θ) is Lipschitz continuous in the trace distance with
constant n̄L.

Combining with the previous argument, we thus have our central theorem.
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I Theorem 9. Let ΛT (θ) be Lipschitz continuous in the trace distance with constant L.
Then, F (θ) = AGF(θ) is Lipschitz continuous with constant (1 + n̄)L, and p(θ) is Lipschitz
continuous with constant d(1 + n̄)L/(d− 1), and A(θ) and B(θ) are Lipschitz continuous
with constant n̄L.

Proof. First, F (θ) = AGF(ΛT (θ)Λref(θ)). By assumption, ΛT (θ) is Lipschitz continuous
with constant L, and by Corollary 8, Λref(θ)) is Lipschitz continuous with constant n̄L.
Hence, by Theorem 6, F (θ) is Lipschitz continuous with constant (1 + n̄)L.

Next, recall that p(θ) = dF (θ)−1
d−1 . Then, it follows that p(θ) is Lipschitz continuous with

constant d(1+n̄)L
d−1 .

For B(θ), we have

|B(θ′)−B(θ)| =
∣∣Tr(EΛref(θ′)[11/d])− Tr(EΛref(θ)[11/d])

∣∣ (24)
=
∣∣Tr(E(Λref(θ′)− Λref(θ))[11/d])

∣∣ . (25)

Letting (ε0, ε1, ..., εd) be the ordered singular values of E and (λ0, λ1, ..., λd) be the ordered
singular values of (Λref(θ′)− Λref(θ))[11/d], we have

|B(θ′)−B(θ)| ≤
d∑
i=1

εiλi ≤ max(ε)
d∑
i=1

λi = max(ε)‖(Λref(θ′)− Λref(θ))[11/d]‖Tr ≤ n̄L,

(26)

Since E and C are both Hermitian, EC is also Hermitian, and thus ‖EC‖Tr = Tr(|EC|) ≥
|Tr(EC)|. The argument is completed by Hölder’s inequality [36], which states that for all
X and Y , ‖XY ‖Tr ≤ ‖X‖Tr‖Y ‖spec, where ‖ · ‖spec is the spectral norm (a.k.a. the induced
(2→ 2)-norm or Schatten ∞-norm). In particular, we note that since E is a POVM effect,
‖E‖spec ≤ 1, such that ‖EC‖Tr ≤ ‖C‖Tr ≤ 1.

Finally, we note that this argument goes identically for the state ρ− 11
d , as we did not use

any special properties of 11
d . Hence, we also have that |A(θ′)−A(θ)| ≤ n̄L. J

We are thusly equipped to return to the problem of estimating F (θ+δθ) from experimental
data concerning F (θ).

I Theorem 10. Suppose that f(θ,y) is a Lipschitz continuous function of θ with constant
L where y is a variable in a measurable set S with corresponding probability distribution on
that set of Pr(y) and for any function g : S 7→ R define Ey(g(y)) =

∫
S
g(y) Pr(y)dy and

Vary(g(y)) = Ey
(
g(y)−Ey(g(y)

)2. For all θ and θ′ such that L‖θ′−θ‖ <
√
Vary(f(θ,y)),

it holds that

Vary[f(θ′,y)] ≤ Vary[f(θ,y)]
(

1 + 2L‖θ′ − θ‖√
Vary[f(θ,y)]

)
. (27)

Proof. Note that since f is Lipschitz continuous as a function of θ,∣∣f(θ′,y)− f(θ,y)
∣∣ ≤ L‖θ′ − θ‖, (28)

so there exists a function c such that |c(θ,θ′,y)| ≤ 1 for all θ, θ′ and y:

f(θ′,y) = f(θ,y) + L‖θ′ − θ‖c(θ,θ′,y). (29)
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Figure 1 The objective function F (θ) and the average gate fidelity versus the overrotation angle
θ for Example 11 is given in the left figure. The right figure gives the calculated RB parameters as a
function of θ where the optimal solution θ = 0 is unknown to the optimizer a priori.

Thus, Vary[c] ≤ 1, and by addition of variance, we have that

Vary[f(θ′,y)] = Vary[f(θ,y)] + L2‖θ − θ′‖2Vary(c(θ,θ′,y))
+2L‖θ − θ′‖Covy(f(θ,y), c(θ, θ′,y))

≤ Vary[f(θ,y)] + L2‖θ − θ′‖2 + L‖θ − θ′‖
√
Vary(f(θ,y).

≤ Vary[f(θ,y)] + 2L‖θ − θ′‖
√

Vary(f(θ,y). (30)

The result then follows from elementary algebra. J

2.1 Examples

I Example 11 (Lipschitz Continuity of Unitary Overrotation). Consider G = 〈S,H〉, where
T = S is the target gate. For a control parameter vector consisting of a single overrotation
parameter θ = (δθ), suppose that ΛT [ρ] = (e−i δθ σz ) • ρ. Since this is a unitary channel, its
Choi–Jamiłkowski rank1 is 1. Thus, the AGF of ΛT can be calculated as the trace [28, 21, 8]

AGF(ΛT (δθ)) = |Tr(e
−i δθ σz )|2 + 2

4 + 2 = 2
3 + 1

3 cos(2 δθ). (31)

On the other hand, F (δθ) isn’t as straightforward, and so we will consider its Lipschitz
continuity instead. To do so, we note that for all ρ ∈ D(C2), we wish to bound the trace
norm

∆ = ‖ΛT (δθ)[ρ]− ΛT (δθ′)[ρ]‖Tr. (32)

1 Sometimes informally called a “Kraus rank.”
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Expanding ρ in the unnormalized Pauli basis as ρ = 11/2 + r · σ/2, we note that since
ΛT (δθ)[11] = 11 and ΛT (δθ)[σz] = σz for all δθ, the above becomes

∆ = 1
2‖ΛT (δθ)[rxσx + ryσy + rzσz]− ΛT (δθ′)[rxσx + ryσy + rzσz]‖Tr (33)

= 1
2‖ΛT (δθ)[rxσx + ryσy]− ΛT (δθ′)[rxσx + ryσy]‖Tr (34)

= 4| sin(δθ − δθ′)|
√
r2
x + r2

y (35)

≤ 4| sin(δθ − δθ′)| (36)
≤ 4|δθ − δθ′|, (37)

where the last line follows from that | sin(x)| ≤ |x|. Thus, we conclude that ΛT is Lipschitz
continuous in the trace distance with constant 4.

We can then find n̄ for occurrences of T in decompositions of elements of G to find the
Lipschitz constant for F (δθ) in this example. In particular, as shown in the Supplementary
Material, n̄ = 13/6 for the presentation of the Clifford group under consideration, such that
F is Lipschitz continuous with constant (d/(d− 1))× 4× (19/6) = 76/3 in this case.

We note that a more detailed analysis of the Lipschitz continuity of ΛT or a presentation of
G that is less dense in T would both yield smaller Lipschitz constants for F , and hence better
reuse of prior information. Thus by Theorem 9, a change in overrotation of approximately
1/100 the current standard deviation in F would result in at most a doubling of the current
standard deviation.

We can easily include the effects of noise in other generators in numerical simulations. In
particular, suppose that ΛH is a depolarizing channel with strength 0.5%. Then, simulating
F (θ) for this case shows that F is Lipschitz continuous with a constant of approximately
1.48, as illustrated in Figure 1.

3 Approximate Bayesian Inference

An important implication of Theorem 10 is that the uncertainty quantified by the variance of
the posterior distribution yielded by Bayesian inference grows by at most a constant factor.
However, while the theorem specify how the variance should grow in the worst case scenario
it does not give us an understanding of what form the posterior distribution should take.
Our goal in this section is to provide an operationally meaningful way to think about how
the posterior distribution evaluated at θ changes as the control parameters transition to θ′.

Let the posterior probability distribution for the objective function F evaluated at
parameters θ be Pr (F (θ)). In practice, we do not generally estimate the objective function
F directly, but estimate F from a latent variable y, such as the RB parameters Equation 18.
Marginalizing over this latent variable, we obtain the Bayesian mean estimator for F ,

F̂ =
∫
F Pr (F |θ) dF =

∫
F Pr (F |θ,y) Pr(y)dy. (38)

For the RB case in particular, the objective function F does not depend on the control
parameters θ if we know the RB parameters y exactly. That is, we write that F ⊥⊥ θ|y for the
RB case, such that Pr(F |θ,y) = Pr(F |y). Moreover, Pr(F |y) is a δ-distribution supported
only at F = (dp + 1)/(d + 1) where y = (p,A,B). We may thus abuse notation slightly
and write that F = F (y) is a deterministic function. Doing so, our estimator simplifies
considerably, such that

F̂ =
∫
F Pr (F |θ,y) Pr(y)dy =

∫
F (y) Pr(y)dy. (39)
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In exact Bayesian inference, the probability density Pr(y) is an arbitrary distribution,
but computation of the estimator Equation 39 is in general intractable. Perhaps the most
easily generalizable distribution is the sequential Monte Carlo (SMC) approximation [6], also
known as a particle filter, which attempts to approximate the probability density as

Pr (F |θ,y) Pr(y|θ) = Pr(F,y|θ) ≈
Np∑
j=1

wjδ(y − yj)δ(Fi − F ), (40)

where δ is the Dirac-delta distribution and
∑
j wj = 1. This representation is convenient for

recording on a computer, as it only needs to store (wi,yi, Fi) for each particle. If F = F (y)
is a deterministic function of the RB parameters then we need not even record F with each
particle, such that

Pr (F |θ,y) Pr(y|θ) ≈
Np∑
j=1

wjδ(y − yj)δ(F (y)− F ). (41)

More generally, the SMC approximation allows us to approximate expectation values
over the probability distribution using a finite number of points, or particles, such that the
expectation value of any continuous function can be approximated with arbitrary accuracy
as Np →∞. In particular, we can approximate the estimator F̂ within arbitrary accuracy.

The uncertainty (mean squared error) of this estimator is given by the posterior variance,

V(F ) =
∫
F 2 Pr(F |θ,y) Pr(y)dy − F̂ 2. (42)

The posterior variance can be computed as the variance over the variable y induced from
the sequential Monte Carlo approximation to the probability distribution,

V(F ) ≈
∑
i

wiF (yi)2 −

(∑
i

wiF (yi)
)2

, (43)

where we have assumed that F ⊥⊥ θ|y and that Pr(F |θ) is a δ-distribution, as in the RB
case. This observation is key to our implementation of Bayesian ACRONYM tuning.

A final note regarding approximate Bayesian inference is that the learning process can
be easily implemented. From Equation 1 if Pr(F |θ,y) Pr(y) =

∑Np

j=1 wjδ(y − yj) and if
evidence E is obtained in an experiment, then Bayes’ theorem when applied to the weights
wj yields

wj ←
Pr(E|yj)wj∑
j Pr(E|yj)wj

. (44)

This update procedure is repeated iteratively over all data that is collected from a set of
experiments. In practice, if an accurate estimate is needed then an enormous number of
particles may be needed because the weights shrink exponentially with the number of updates.
This causes the effective number of particles in the approximation to shrink exponentially and
with it the accuracy of the approximation to the posterior. We can address this by moving
the particles to regions of high probability density. In practice, we use a method proposed by
[24] to move the particles but other methods exist and we recommend reviewing [6, 15, 20]
for more details. Here, we will use the implementation of particle filtering and Liu–West
resampling provided by the QInfer package [14].
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3.1 Reusing Priors from Nearby Experiments
We have argued above that the posterior variance of the probability distribution is Lipshitz
continuous, which allows us to reason that the variance of the probability distribution at most
expands by a fixed multiplicative constant when transitioning information between different
points. Operationally though, it is less clear how we should choose the posterior distribution
over the average gate fidelity in Bayesian ACRONYM training given prior information at
a single point. Theorem 9 provides us with an intuition that can be used for this: each
element in the support of the probability distribution is shifted by at most a fixed amount
that is dictated by the Lipshitz constants for the channels. Here, we build on this intuition
by showing that the prior at each step in a Bayesian ACRONYM tuning protocol can be
related to the previous step in terms of the Minkowski sum and convex hull.

I Definition 12 (Convex hull). Let A be a set of vectors. Then the convex hull of A, written
Conv(A) is the smallest convex set containing A,

Conv(A) := {λa+ (1− λ)b : a, b ∈ A, 0 ≤ λ ≤ 1} . (45)

I Definition 13 (Minkowski sum). Let A and B be sets of vectors. Then the Minkowski sum
A+B is defined as the convolution of A with B,

A+B := {a+ b : a ∈ A, b ∈ B} . (46)

With these concepts in place we can now state the following Corollary, which can be used
to define a sensible prior distribution for y(θ + δθ) given a posterior distribution for y(θ).

I Corollary 14. Let ΛT (θ) be Lipshitz continuous in the trace distance with constant L,
and let Pr(y|θ) be a probability distribution over the RB parameters y = (p,A,B) for ΛT
evaluated at some particular θ. Then, for any δθ ∈ Rn, let

∆ := ‖δθ‖, (47)

D :=
{
±∆dL(1 + n̄)

d− 1

}
×

{
±∆(1 + n̄)L

}
×

{
±∆(1 + n̄)L

}
, (48)

and Pr(y|θ + δθ) := 1
8
∑
s∈S

Pr(y − s|θ). (49)

The following statements then hold:
1. Pr(y|θ + δθ) is a valid prior probability distribution for y(θ + δθ).
2. ŷ =

∫
yPr(y|θ)dy =

∫
yPr(y|θ + δθ)dy.

3. If Pr(y|θ) has support only on A ⊂ R3, then Pr(y|θ+ δθ) has support only on Conv(A+
D).

4. If ytrue(θ) ∈ A then ytrue(θ + δθ) ∈ Conv(A+D).

Proof. The proof of the first claim is trivial and follows immediately from the fact that
Pr(y|θ) is a probability distribution. The proof of the second claim is also straightforward.
Note that

ŷ :=
∫
yPr(y|θ + δθ)dy =1

8

∫ ∑
s∈{y}+D

yPr(y − s|θ)dy

=1
8

∫ ∑
s∈{y}+D

(y + s) Pr(y|θ)dy

=
∫
yPr(y|θ)dy. (50)
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To consider the third claim, let c = (cp, cA, cB) be a vector such that |cp| ≤ dL(1 +
n̄)/(d− 1) and max{|cA|, |cB |} ≤ L(1 + n̄). The convex hull Conv(D) consists of a convex
region of identical dimensions. Since the set is convex it then follows that c ∈ Conv(D).

Put differently, we can express Definition 1 and Definition 2 in terms of the Minkowski
sum, such that

y(ΛT (θ + δθ)) ∈ Conv ({y(ΛT (θ)}+D) . (51)

Taking the union over all vectors a in the support of Pr(y|θ), we obtain that

supp(y|θ + δθ) ⊆ Conv (supp(y|θ) +D) . (52)

From the linearity of convex hulls under Minkowski summation,

Conv(supp(y|θ) +D) = Conv(supp(y|θ)) + Conv(D). (53)

The fourth and final statement then immediately follows from Equation 53. J

This shows that if we follow the above rule to generate a prior distribution for the RB
parameters at θ + δθ then the resultant distribution does not introduce any bias into the
current estimate of the parameters, which is codified by the mean of the posterior distribution.
We also have that if the true model is within the support of the prior distribution at θ then
it also will be at θ + δθ. This is important because it states that we can use the resulting
distribution to give a credible region for the RB parameters. Thus this choice of prior is well
justified and furthermore if the measurement process reduces the posterior variance faster
than it expands when θ is updated, it will allow us to get very accurate estimates of the true
RB parameters without needing to extract redundant information.

4 Numerical Experiments

The above analysis shows that, under assumptions of Lipshitz continuity of the likelihood
function, the posterior distribution found at a given step of the algorithm can be used to
provide a prior for the next step. This holds provided that we form a new prior that expands
the variance of the posterior distribution.

While the above analysis shows that prior information can be reused in theory, we will
now show in practice that this ability to re-use prior information can reduce the information
needed to calibrate a simulated quantum device. The Clifford gates in the device, which we
take to be the generators of the single-qubit Clifford group, are H and S. We assume that
H can be implemented exactly but that S has an over-rotation error such that

S(θ) = e−iθZS, (54)

for some value of θ. While this is called an “over-rotation” we make no assumption that
θ > 0. We further apply depolarizing noise at a per-gate level to the system with strength
0.005 meaning that we apply the channels

ΛH : ρ 7→ 0.995HρH + 0.005(11/2),
ΛS(θ) : ρ 7→ 0.995e−iθZSρS†eiθZ + 0.005(11/2). (55)

We assume that the user has control over the parameter θ but we do not assume that
they know the functional form and thus do not know that setting θ = 0 will yield optimal
performance. The goal of our Bayesian ACRONYM algorithm is then to allow the method
to discover that θ = 0 yields the optimal performance via local search.
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Figure 2 Observed survival probabilities as a function of sequence lengths using 20 measurements
(shots) per length for an overrotation model with θ = 0.04. Solid orange line represents the true
value for the survival probability, (A−B)pL +B, as a function of the sequence length L and the
dashed line represents the estimate of the survival probability. The prior was set to be uniform for p
and A on [0, 1] and the prior B was set to be the normal distribution N (0.5, 0.052).

Figure 2 shows the impact that using Bayesian inference to estimate RB parameters can
have in data limited cases of the over-rotation problem. Specifically, we apply Bayesian
ACRONYM training to calibrate the over–rotation to within an error of 0.005 which is
equal to the dephasing error that we included in the channels in Equation 55. A broad
prior was taken and despite the challenges that we would have learning a good model
from least-squares fitting, we are able to accurately learn the survival probability. We
can then learn the parameters A, B and p, the latter of which gives us the average gate
fidelity needed for ACRONYM training via Equation 18a. As the required accuracy for the
estimate of p increases, the advantages gleaned from using Bayesian methods relative to
fitting disappear [19]. However, in our context this observation is significant because we wish
to tune the performance of quantum devices in the small data limit rather than the large
data limit and use prior information from previous experiments to compensate.

Local search is implemented using SPSA with learning rate 0.05, a step of 0.05 used to
compute approximate gradients and a maximum step size of 0.1. We repeat the method
until the posterior variance in the average gate fidelity is less than 0.0052. We use a
Lipshitz constant of 1.48, which was numerically computed as a bound to give an appropriate
amount of diffusion for the posterior distribution during an update. Bayesian inference is
approximated using a particle filter with 256 000 particles and Liu–West resampling with
a resample threshold of 1/256 as implemented by QInfer [14]. Single shot experiments are
used with a maximum number of sequences of 500 per set of parameters.

Perhaps the key observation is that throughout the tuning process the true parameters
for the overrotation error remain within the 70% credible region reported by QInfer, which
suggests if anything that the credible region is pessimistic. The estimate of F also closely
tracks the true throughout the learning process and also the amount of data required for the
tuning process is minimal, less than 1 kB.
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Figure 3 Over-rotation angle and objective function values for an over-rotation model with a
0.35 radian over-rotation initially with a target error of 0.005 in F as measured by the posterior
standard-deviation. (Left) Over-rotation angle as a function of number of iterations of SPSA taken.
(Right) Estimated Average gate infidelity as a function of the number of SPSA iterations and the
total number of sequences used to achieve that level of infidelity. The shaded region represents a
70% credible region for the infidelity.

5 Conclusion

The main result of our work is to show that, under weak assumptions of Lipshitz continuity,
Bayesian inference can be used to piece together evidence gained from experiments at nearby
experimental settings to accelerate learning of optimal control parameters for quantum
devices. We further demonstrate the success of this approach numerically by using a Bayesian
ACRONYM tuning protocol (BACRONYM) to tune a rotation gate that suffers from an
unknown overrotation. We find that by use of evidence from nearby experimental settings for
the gate, we can learn optimal controls with fewer than 1 kilobit of data which is a reduction
of nearly a factor of 20 relative to the best known non-Bayesian approach [22].

Looking forward, there are a number of ways in which this work can be built upon.
Firstly, upper bounds on the Lipshitz constant and variance are needed to properly use
evidence from nearby points within the optimization loop; however, tight estimates are not
known a priori for either quantity. Finding approaches that yield useful empirical bounds
would be an important contribution beyond what we provide here. Secondly, an experimental
demonstration of Bayesian ACRONYM tuning would be useful to demonstrate the viability
of such tuning parameters in real-world applications. Finally, while we have picked SPSA as
an optimizer for convenience, there may be better choices within the literature. This raises an
interesting issue because the number of times that the objective function needs to be queried is
not the best metric when information is reused. This point is important not just for choosing
the best optimizer to minimize experimental costs for tuning hardware, it also potentially
reveals a new way of optimizing parameters in variational quantum eigensolvers [29], as well
as QAOA [9] and quantum machine learning algorithms [32].
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A Pseudocode for BACROYNM Tuning

Algorithm 1 Bayesian ACRONYM tuning procedure.
function BACRONYM
θ0: initial control parameters
nshots: number of measurements per seq. length
σreq: required accuracy for F
(a, b, s, t): SPSA1 parameters
largest allowed step in the parameter θ
Ftarget: target objective function value
π0: initial prior
L: Lipschitz continuity assumed for F // Initialization
π ← π0, θ ← θ0
collect RB data at θ until Var[F ] ≤ σ2

req
F̂ ← E[F (θ)|data]
iiter ← 0
� Main body
while F̂ ≤ Ftarget do

iiter ++
� SPSA1
∆← a random ±1 vector the same length as θ
step← a/(1 + isiter)
gain← b/(1 + ititer)
δθ ← step ·∆
estimate F̂ (θ + δθ) using Corollary 14
u← gain ·∆(F̂ (θ + δθ)− F̂ (θ))
if any component of u larger than max update then
u← u/maxu∈u |u|

if |F̂ (θ + δθ)− F̂ (θ)| ≥ Var[F (θ + δθ)] then
θ+= u // Complete the SPSA step.

else if F̂ (θ + δθ) < F̂ (θ) then
θ−= step ·∆

else
θ+= step ·∆

� Final estimate
return θ, F̂
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