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Abstract
A new ecosystem of machine-learning driven applications, titled Software 2.0, has arisen that
integrates neural networks into a variety of computational tasks. Such applications include image
recognition, natural language processing, and other traditional machine learning tasks. However,
these techniques have also grown to include other structured domains, such as program analysis
and program optimization for which novel, domain-specific insights mate with model design. In
this paper, we connect the world of Software 2.0 with that of traditional software – Software 1.0 –
through overparameterization: a program may provide more computational capacity and precision
than is necessary for the task at hand.

In Software 2.0, overparamterization – when a machine learning model has more parameters than
datapoints in the dataset – arises as a contemporary understanding of the ability for modern, gradient-
based learning methods to learn models over complex datasets with high-accuracy. Specifically, the
more parameters a model has, the better it learns.

In Software 1.0, the results of the approximate computing community show that traditional
software is also overparameterized in that software often simply computes results that are more
precise than is required by the user. Approximate computing exploits this overparameterization to
improve performance by eliminating unnecessary, excess computation. For example, one – of many
techniques – is to reduce the precision of arithmetic in the application.

In this paper, we argue that the gap between available precision and that that is required for
either Software 1.0 or Software 2.0 is a fundamental aspect of software design that illustrates the
balance between software designed for general-purposes and domain-adapted solutions. A general-
purpose solution is easier to develop and maintain versus a domain-adapted solution. However, that
ease comes at the expense of performance.

We show that the approximate computing community and the machine learning community
have developed overlapping techniques to improve performance by reducing overparameterization.
We also show that because of these shared techniques, questions, concerns, and answers on how to
construct software can translate from one software variant to the other.
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1 Software 2.0

Software 2.0 is the vision that future software development will consist largely of developing
a data processing pipeline and then streaming the pipeline’s output into a neural network
to perform a given task [25]. The implication is then that Software 1.0 – the development
of software using traditional data structures, algorithms, and systems – will move lower in
the software stack, with less of the overall software engineering effort dedicated to building
software in this traditional way.

In domains such as image recognition and natural language processing, this Software 2.0
vision has been largely realized: neural networks have replaced hand-engineered models for
vision, natural language processing, and other traditional, machine learning tasks. The key
observation in these domains is that building models by hand is labor-intensive, requires
significant expertise in domain-specific modeling, and is difficult to adapt across similar tasks.
Such engineering can include both hand-developing analytical models as well as engineering
features to use as inputs to machine learning models, such as Support Vector Machines.

The promise of Software 2.0 is that neural networks have the capability to automatically
learn high-dimensional representations of the system’s inputs from raw data alone. For
example, the word2vec [33] model automatically learns high-dimensional vector-valued repre-
sentations of natural language words that capture semantic meaning and can automatically
be used in a variety of natural language tasks. This stands in contrast to traditional ap-
proaches that require experts to develop algorithms that manually identify important words
or subwords within a piece of text. With this opportunity, Software 2.0 – in its most extreme
form – holds out the promise of replacing large, hand-developed components of traditional
software systems with neural networks.

1.1 Overparameterization
A key component of the success of Software 2.0 is overparameterization. Contemporary
explanations for the relative ease of training neural networks on large, complicated datasets
with relatively simple optimization methods such as gradient descent posit that overparame-
terization is a key ingredient. Specifically, overparameterization results in improved learning
both in total accuracy and accuracy as a function of data points of training [29, 1, 15, 2].

Overparameterization is a condition in which a machine learning model – such as a
neural network – has more parameters than datapoints. In such a regime, the contemporary
understanding is that a learning algorithm can identify parameters for the model that can
perfectly memorize the data. The connotation of the term overparameterization is therefore
a note that – in principle, for well-posed datasets – it is possible to design a model that has
fewer parameters than the number of datapoints for which a learning algorithm can identify
an effective setting for those parameters for the task at hand.

Although overparameterization seems uniquely restricted to the domain of machine
learning models and Software 2.0, in this paper we argue that overparameterization is a key
ingredient in the development of Software 1.0 and that therefore overparameterization is
binding force to relate Software 1.0 and Software 2.0.

1.2 Overparmeterization in Software 1.0
We define overparameterization in Software 1.0 as a condition in which the system performs
more computation than is necessary for the task at hand. As a simple example, the traditional
software development practice of uniformly choosing single- or double-precision for all real-like
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numbers in a system is a simplifying assumption that ignores the fact that different quantities
in the program may require different precisions. Choosing precision in this regime requires
the precision of all operations to be that of the operation that the program needs to be the
most precise. However, for some applications, data and operations may require only limited
precision, such as half-precision or even less, while still enabling the application to produce
an acceptable result.

The difference between selecting uniform precision and selecting an appropriate precision
per operation is an inherent trade-off: uniformly selecting a high-precision is easier than the
detailed numerical analysis required to soundly select a precision per operation [12]. However,
uniformly selecting precision may not yield optimal performance: more precise floating-point
operations are more computationally and memory intensive than less precise operations.

1.3 Reducing Overparameterization (Approximate Computing)
In both Software 1.0 and Software 2.0, researchers have sought techniques to address the fact
that overparameterization results in reduced performance, increased energy consumption,
and decreased ubiquity (requiring significant resources from the user to execute the software).

For Software 1.0, the approximate computing community has shown that it is possible
to eliminate unnecessary computation and, correspondingly, improve performance. Specific
techniques have included floating-point precision tuning (i.e., choosing less precise arith-
metic) [12, 11, 44, 10, 34], loop perforation (eliding computations entirely) [36, 35, 49], and
function substitution (replacing entire sub-computations whole cloth with less expensive,
approximate implementations) [23], and more [13, 16, 17, 27, 38, 39, 45, 9].

For Software 2.0, the machine learning community has developed a variety of new
techniques to reduce overparameterization in neural networks. Quantization chooses new,
low-precision representations of the parameters and arithmetic in neural networks [40].
Pruning ignores subsets of a neural network’s parameters [26, 21, 41]. Distillation trains
a new, smaller network to mimic the behavior of a large, well-trained network [5, 22].
Each of these techniques have direct analogues to techniques in approximate computing:
precision-tuning, loop perforation, and function substitution, respectively.

1.4 Shared Questions
The core premise of this paper is that overparameterization in both Software 1.0 and Software
2.0 and the overlap in techniques for reducing overparameterization in both, enable us to
interpolate between Software 1.0 and Software 2.0, mapping observations and questions from
one software construction methodology to the other and vice-versa.

For example, the first question we ask is, is overparameterization is necessary? For
Software 1.0, it is assumed that developers – perhaps with significant effort – can develop
optimized implementations from the outset given a specification of the system’s requirements.
The analogous question for Software 2.0 is if it is possible to train – from scratch – a neural
network with significantly fewer parameters to model a given problem. We recount our
results on the Lottery Ticket Hypothesis [18] that demonstrate that from scratch training
for standard problems is possible.

Second, a claim for Software 2.0 is that the parameters of its design – such as the specific
neural network architecture – can be optimized alongside the system’s objective, provided
that these parameters are differentiable. The second question we therefore ask is, can we
integrate approximation transformations from the start – and throughout the lifetime – of a
Software 1.0 system? We survey our recent results on noise-based sensitivity analysis for
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programs by showing that if we embrace Software 2.0’s aim to minimize its expected behavior
– versus its worst-case behavior – then it is possible to integrate approximations into the
optimization of the system’s overall objective using gradient descent.

Finally, we discuss several questions on the compositionality and correctness of future of
Software 1.0 and Software 2.0 systems and propose directions forward.

1.5 Directions
Software 1.0 and Software 2.0 share the phenomenon of overparameterization, share the same
approaches for reducing overparameterization, and – once connected – share overlapping
challenges to their construction. By drawing these connections, we hope to identify principled
techniques to approach software design, correctness, and performance jointly for both Software
1.0 and Software 2.0.

2 Reducing Overparameterization

Researchers in both approximate computing and machine learning have sought techniques to
automatically eliminate overparameterization. In the machine learning setting, there are a
variety of techniques that reduce parameter counts by more than 90% while still maintaining
the accuracy of the neural network on the end task. The goal of reducing parameter
counts is multi-fold: 1) reducing the representation size of the network reduces storage and
communication costs [21, 22], 2) reducing parameters eliminates computation, and 3) the
combination of effects overall improves performance and energy consumption [50, 37, 31].

For example, the following code implements a neural network layer that computes a
matrix-vector product of its internal weights (weights) with its m-dimensional input (x). The
result is an n-dimensional vector passed through a Rectified Linear Unit activation function
(max(0, output)). The n-dimensional result denotes the output of n neurons.

1 float x[] = { ... };
2 float weights [][] = { ... };
3 float output [] = { ... };
4 for (int i = 0; i < n; ++i)
5 {
6 for (int j = 0; j < m; ++j)
7 {
8 output [i] += weights [i][j] * x[j];
9 }

10 }
11 return max (0, output );

Quantization reduces the number of bits used to represent each weight and compute each
operation within the neural network’s computation. We can capture this optimization as
classic precision selection where, for example, this program could be written to use 16-bit
precision floating-point instead of 32-bit float types.

Pruning takes a trained large model and eliminates weights by, for example, removing the
weights of the smallest magnitude. For this example program, this is equivalent to eliding a
subset of the loop iterations – i.e., loop perforation – based upon a pre-determined mask.
Eliding iterations of the loop over j, elides individual weights in each of the n neurons while
eliding iterations of the loop over i elides neurons in their entirety. Both options have been
explored in the literature [21].
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Distillation takes a large, trained model and trains a smaller network to mimic the outputs
of this model. In this example, this entire layer could be substituted with an alternative
implementation. For example, this computation is no more than a matrix-vector product
and therefore it is to possible accelerate this computation by instead learning a fast, low-rank
approximation of weights and computing with that instead [14].

3 Fewer Parameters from the Start

The standard conceptualization of the approximate computing workflow applies approximation
transformations after an initial, end-to-end development of a system. Specifically, the standard
workflow requires that a developer write an additional quality-of-service specification [36]
after developing their program. This specification states how much error – measured with
respect to the ground truth – that the user can tolerate in their program’s output. Given this
specification, an approximate computing system then searches the space of approximation
transformations to produce a program that meets the quality-of-service specification.

Reducing overparameterization in Software 2.0 follows a similar methodology. Standard
methodologies apply pruning, quantization, and distillation to a fully trained neural network.
However, the reality that these techniques can be applied lends itself to the question: why
not simply use a smaller, more efficient neural network from the start?

Until our recent results [18], contemporary understanding in the machine learning com-
munity was that small neural networks are harder to train, reaching lower accuracy than
the original networks when trained from the start. Alternatively, overparameterization is
required for effective learning.1 Figure 1 illustrates this phenomenon. In this experiment,
we randomly sample and train small networks. These networks are sampled from the set of
subnetworks of several different neural network architectures for the MNIST digit recognition
benchmark and the CIFAR10 image recognition benchmark. Across various sizes relative to
the original reference networks, the sparser the network (fewer parameters), the slower it
learned and the lower its eventual test accuracy.

However, this figure also shows the results of our techniques for identifying winning
tickets [18]: small networks that do in fact train as well (or better) than the original network.
The solid lines in the graph are winning tickets, for which these graphs show that even down
to a small size, these networks achieve high-accuracy as well as train quickly.

We identify winning tickets by pruning: randomly initialize a neural network f(x;W0),
train it to completion, and prune the weights with the lowest magnitudes (and repeat over
multiple iterations). To initialize the winning ticket, we reset each weight that survives the
pruning process back to its value in W0.

The success of this technique has lead us to pose and test the lottery ticket hypothesis:
any randomly-initialized, neural network contains a subnetwork that is initialized such that –
when trained in isolation – it can learn to match the accuracy of the original network after at
most the same number of training iterations. In our work, we have supported this hypothesis
through experimental evidence on a variety of different neural network architectures. However,
our approach to identify winning ticket still requires training the full network: the remaining
science is to determine a technique to identify winning tickets earlier in the training process.

1 “Training a pruned model from scratch performs worse than retraining a pruned model, which may
indicate the difficulty of training a network with a small capacity.” [28] “During retraining, it is better
to retain the weights from the initial training phase for the connections that survived pruning than it is
to re-initialize the pruned layers...gradient descent is able to find a good solution when the network is
initially trained, but not after re-initializing some layers and retraining them.” [21]
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Figure 1 The iteration at which early-stopping would occur (left) and the test accuracy at that
iteration (right) of the lenet architecture for MNIST and the conv2, conv4, and conv6 architectures
for CIFAR10 ([18] Figure 2) when trained starting at various sizes. Dashed lines are randomly
sampled sparse networks (average of ten trials). Solid lines are winning tickets (average of five trials).

4 Approximation from the Start

Recent work has investigated techniques to introduce pruning, quantization, early in the
training process with limited success [40, 30, 19]. The key idea behind these approaches is
that the parameters of these techniques can be designed to be differentiable. Notably, in the
standard Software 2.0 methodology, a learning algorithm identifies settings of the system’s
parameters that minimize the system’s expected error with respect to a ground truth given
by a training dataset. Within this umbrella, an error specification is therefore builtin to
this methodology and – typically – the learning algorithm selects the system’s parameters
through gradient descent. Therefore, if the parameters of these reduction techniques are
differentiable, then they can be learned alongside the system’s standard parameters.

Approach

Inspired by Software 2.0, in recent results we have developed a sensitivity and precision
selection technique for traditional numerical programs that is differentiable. Our approach
models sensitivity as random noise – e.g., sampled from a gaussian distribution – added to
each operation in the program such that the standard deviation of the noise’s distribution
indicates the sensitivity of the program’s expected error to changes in the operation’s output.

If an operation’s noise distribution can have large standard deviation without perturbing
the expected error of the program, then the program is relatively less sensitive to perturbations
in that operation’s results. On the other hand, if an operation’s noise distribution must have
small standard deviation to avoid perturbing the expected error of the program, then the
program is relatively more sensitive to changes in that operation’s result.
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Table 1 We compare the absolute error bound from FPTuner against the empirically determined
root mean squared error from our approach. Mean bits is the average number of bits in the mantissa
of the approximate program in contrast to FPTuner’s 52-bit mantissa (from doubles).

Benchmarks FPTuner RMSE Mean Bits
verlhulst 3.79e-16 1.13e-16 51
sineOrder3 1.17e-15 7.64e-16 50
predPrey 1.99e-16 1.90e-16 50
sine 8.73e-16 8.34e-17 51
doppler1 1.82e-13 3.30e-14 53
doppler2 3.20e-13 3.30e-14 53
doppler3 1.02e-13 8.22e-14 53
rigidbody1 3.86e-13 1.37e-13 51
sqroot 7.45e-16 4.00e-16 50
rigidbody2 5.23e-11 6.08e-12 51
turbine2 4.13e-14 2.57e-14 50
carbon gas 1.51e-08 3.01e-09 49
turbine1 3.16e-14 8.69e-15 51
turbine3 1.73e-14 5.09e-15 52
jet 2.68e-11 2.45e-11 54

The goal of our approach is to identify the maximum standard deviations for the distri-
bution of each operator such that the resulting program still delivers acceptable expected
error. Our technique poses this goal as an optimization problem and solves the problem
through stochastic gradient descent. We have shown that these sensitivities are informative
by developing a precision selection approach that takes as input the set of sensitivities for
the operations in the program and produces an assignment of precision to each operator.

Case Study

We have applied our approach to a set of scientific computing benchmarks used by FPTuner’s
developers to develop and evaluate FPTuner [10]. FPTuner is a tool that can identify
an assignment of precisions to operators such that the resulting program satisfies a user-
provided worst-case error. FPTuner uses a combination of static error analysis and quadratic
programming to automatically identify an assignment that satisfies the provided bound. To
evaluate our sensitivity analysis, we have devised a technique to map the sensitivity of each
operator to the number of bits to use in an arbitrary precision library (i.e., MPFR).

Table 1 presents our preliminary results of our approach. We configured our approach to
produce sensitivities such that expected error of the program is less than FPTuner’s absolute
error. The results are that our approach generates tighter expected error bounds using
fewer bits than FPTuner for 10 out of 15 benchmarks. For the remaining 5 benchmarks, our
approach requires at most 2 extra bits on average than in FPTuner.

Sensitivity analysis provides critical information to an approximate computing system –
the sensitivity of the program’s output to changes in semantics of an operation. By embracing
expected error and working within a differentiable setting, we have arrived at an approach
that mates Sofware 1.0 (approximate computing) with Software 2.0.
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5 Discussion

Software 2.0 – replacing core components of traditional-developed software systems with
learned components – is a lofty goal. A particular challenge to this goal is that an integral
component of Software 2.0 – neural networks – have so far proved to be difficult to interpret
and reason about for the purposes of validating the resulting system’s behavior. However, the
approximate computing community has faced similar difficulties with 1) understanding the
composition of approximation with the original system, 2) giving the resulting approximate
system a useful behavioral specification, and 3) developing analysis frameworks for reasoning
about that behavioral specification. Through the shared tie of overparameterization, Software
2.0 and approximate computing can share techniques to solve their common challenges.

Compositionality

In a Software 2.0 system that composes both neural networks and traditional computa-
tion, reasoning about the behavior of the resulting system is challenging. Specifically, the
high-dimensional representations that neural networks learn are not necessarily directly
interpretable by humans. For example, word2vec represents words as n-dimensional vectors,
where n is often large (i.e., greater than 256), with limited semantic meaning assigned to each
dimension. Moreover, interpreting the composed behavior of the neural network with the
larger system is challenging because the network’s task may not easily permit a compositional
specification of its behavior for which global faults can be reduced to local reasoning.

The approximate computing community has faced similar challenges. In its most idealized
form, the community’s agenda has advocated for a variety of techniques that are together
composed with the program in a blackbox manner with limited interaction with the developer
or user. Techniques such as loop perforation and function substitution may remove or replace
large fractions of a system’s computation with the result being limited understanding of the
system’s semantics. As a consequence, a developer may receive an approximate system for
which failures are hard to address because it is not clear if they are resident in the original,
non-approximate program program or a created anew through approximation [6].

One avenue for Software 2.0 to follow is the direction of our work in approximate
computing to apply the concept of non-interference to support compositional reasoning [6].
Our proposed programming methodology argues that a developer should develop a program
and establish its acceptability properties – the basic invariants that must be true of the
program to ensure that its execution and ultimate results are acceptable for the task at
hand [42]. Example invariants include standard safety properties – such as memory safety –
but also include application-specific integrity properties [6, 7]. For example, a computation
that computes a distance metric between two values should return a nonnegative result,
regardless of the extent of its approximation.

Given a program and its acceptability properties, the developer communicates to the
approximate computing system points in the application at which approximation opportunities
are available and do not interfere with the properties established for the original program.
Therefore by non-interference, we mean that if the original program satisfies these properties,
then the approximate program satisfies these properties. Reasoning about non-interference
can include reasoning about information flow to ensure that approximations do not change
the values of data and computations that are involved in the invariants. For Software 2.0,
this methodology could enable existing software components to be replaced with learned
variants that do not interfere with the program’s acceptability properties. This framework
can, for example, underpin recent work on adding assertions to machine learning models [24].
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Correctness

The act of developing a specification of the full functional correctness of a software system
as can be done for traditional software does not directly translate to either Software 2.0 or
approximate systems. For many Software 2.0 systems – such as those in computer vision
and natural language processing – the correctness specifications for these problems is either
not known or not well posed. For example, specifying that the system correctly classifies
an image of a cat as a cat does not have a declarative, logical specification. Therefore
developers typically evaluate a Software 2.0 system based on its expected error over a sample
of data from its input distribution. The correctness specification for approximate systems is
challenging in that – by definition – an approximate system returns different results from its
original implementation. By this nature, an approximate system’s natural measure of its
behavior is its error with respect to the original program.

In both domains, there has developed a shared understanding that statistically bounding
the error of the system is a potential direction for improving the confidence in a system. The
core conceptual challenge is that while the error of either type of system can be measured on
a test set drawn as a sample of the system’s input distribution to give confidence, the key
property to bound is the system’s generalization: its error on unseen data.

In the statistics and machine learning community, such bounds are known as generalization
bounds. A simplified structure for these bounds is that for δ ∈ (0, 1), with probability 1− δ
over a random sample s from an input distribution D, L ≤ B(L̂(s), δ). Here L is the
expected error (or loss) of the system on unseen data, L̂(s) is the observed error of the system
on s, and B denotes a function that computes the bound. The computed bound is at least
L̂(s) – i.e., the error on unseen data is no better the error on observed data – and decreasing
in δ – the less confidence one requires of the bound, the closer it is to the observed error.

The approximate computing community has also developed statistical bounds on the
behavior of approximate systems. These analyses include bounding the probability the
system produces the correct result [8, 34], bounding the probability it produces a result
exceeding a specified distance from that of the original program [43, 35], and bounding its
expected error [51]. The shared focus and results on statistical bounds between Software 2.0
and approximate computing suggests that these bounds may be integral specifications for
ensuring the behavior of future systems, including both Software 2.0 and Software 1.0.

Analysis

If Software 2.0 takes hold, then the reasoning methods we have used to build software will
need to change. Traditional software construction methodologies have been designed around
the classic building blocks of Computer Science: discrete and deterministic math, algorithms,
and systems. However, the basic analysis that underpins reasoning about Software 2.0 is
based on continuous math and statistics: neural networks are formalized as functions on real
numbers and formalizing generalization relies on statistical analysis. The required analysis
for approximate systems also relies on continuous math and statistics: these systems compute
on reals in their idealized mathematical specification and statistical bounds are the preferred
framework for reasoning about their correctness.

A resulting challenge is that the formal methods, programming languages, and systems
communities – communities that are major contributors to the mission to formalize and
deliver automated reasoning systems – has invested less in understanding real-valued and/or
probabilistic computations than for discrete computations. The result is that there is a
significant gap between the needs of future systems and the capabilities of existing analysis.
Therefore, the next generation of systems will need new computational building blocks.
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For example, our work on programming with continuous values makes it possible to
soundly compute on real numbers to arbitrary precision as well as soundly combine real-valued
computation with discrete computation [47, 46]. Specifically, discrete computations on the
reals – e.g., testing if two real numbers are equal – is undecidable in general. This fact
stands as a contradiction to modern programming languages that expose floating-point as an
approximation of the reals and permit developers to test them for equality.

As another example, many of the reasoning tasks for future software – such as profiling
or computing bounds on their behavior – will be probabilistic computations. One can pose
these analyses as queries on the behavior of probabilistic models, as currently captured
by the community around probabilistic programming: representing probabilistic models as
programs with stochastic choices [20]. In these systems, the supporting programming system
can perform inference to compute answers to questions such as, what’s the probability that
the program produces a value that exceeds a given bound?

However, beneath the covers of these programming systems lies a space of inference
algorithms, which are algorithms that manipulate probability distributions. If probabilistic
computations are to be integral to future software, then future and developers and systems will
need to understand and manipulate inference algorithms and therefore need to understand
and manipulate probability distributions as first-class values. In this space, there are
open questions about the architecture of programming systems for implementing inference
algorithms that we – along with others – are exploring [4, 3, 32, 48].

In sum, the future of Software 2.0 – and the extent to which we can reason about
its behavior – critically depends on the development of new programming models and
abstractions for continuous math and statistics.

6 Conclusion

Software 1.0 and Software 2.0 appear radically different. The development methodology
for Software 1.0 revolves around developers manually architecting the overall structure and
constituent algorithms of a system. In contrast, the mantra of Software 2.0 is to delegate
much of the system’s algorithms and – perhaps – even its structure to neural networks or
other machine learning methods. However, overparameterization is a shared connection
between both methodologies.

In the case of Software 1.0, developers rely on coarse, general-purpose abstractions that
are easy to program with but that perform more computation than is necessary for the task
at hand. In the case of Software 2.0, results have shown that larger neural networks learn
more easily than their smaller counterparts, but – in principle – smaller networks are capable
of representing the task. The trade-off for both of these methodologies is that the increased
ease in development comes at the expense of performance.

To address this problem, both the approximate computing community and the machine
learning community have coalesced on techniques to reduce overparameterization in Software
1.0 and Software 2.0, respectively, while still preserving ease of development. Based on this
shared goal, this paper offers the viewpoint that questions, challenges, and techniques from
both communities can translate from one to the other. As the Software 2.0 future unfolds,
new questions about the composition and correctness of these systems will arise. However,
these questions can be addressed jointly within both Software 1.0 and Software 2.0.
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