
From Macros to DSLs: The Evolution of Racket
Ryan Culpepper
PLT
ryanc@racket-lang.org

Matthias Felleisen
PLT
matthias@racket-lang.org

Matthew Flatt
PLT
mflatt@racket-lang.org

Shriram Krishnamurthi
PLT
sk@racket-lang.org

Abstract
The Racket language promotes a language-oriented style of programming. Developers create many
domain-specific languages, write programs in them, and compose these programs via Racket code.
This style of programming can work only if creating and composing little languages is simple and
effective. While Racket’s Lisp heritage might suggest that macros suffice, its design team discovered
significant shortcomings and had to improve them in many ways. This paper presents the evolution
of Racket’s macro system, including a false start, and assesses its current state.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases design principles, macros systems, domain-specific languages

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.5

Funding Over 20 years, this work was partially supported by our host institutions (Brown University,
Northeastern University, Prague Technical University, and University of Utah) as well as several
funding organizations (AFOSR, Cisco, DARPA, Microsoft, Mozilla, NSA, and NSF).

Acknowledgements The authors thank Michael Ballantyne, Eli Barzilay, Stephen Chang, Robby
Findler, Alex Knauth, Alexis King, and Sam Tobin-Hochstadt for contributing at various stages to
the evolution of Racket’s macro system and how it supports language-oriented programming. They
also gratefully acknowledge the suggestions of the anonymous SNAPL ’19 reviewers, Sam Caldwell,
Will Clinger, Ben Greenman and Mitch Wand for improving the presentation.

© Ryan Culpepper, Matthias Felleisen, Matthew Flatt, and Shriram Krishnamurthi;
licensed under Creative Commons License CC-BY

3rd Summit on Advances in Programming Languages (SNAPL 2019).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryanc@racket-lang.org
mailto:matthias@racket-lang.org
mailto:mflatt@racket-lang.org
mailto:sk@racket-lang.org
https://doi.org/10.4230/LIPIcs.SNAPL.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 From Macros to DSLs: The Evolution of Racket

1 Macros and Domain-Specific Languages

The Racket manifesto [20, 21] argues for a language-oriented programming (LOP) [13, 45]
approach to software development. The idea is to take Hudak’s slogan of “languages [as]
the ultimate abstractions” [33] seriously and to program with domain-specific languages
(DSLs) as if they were proper abstractions within the chosen language. As with all kinds
of abstractions, programmers wish to create DSLs, write programs in them, embed these
programs in code of the underlying language, and have them communicate with each other.

According to the Lisp worldview, a language with macros supports this vision particularly
well. Using macros, programmers can tailor the language to a domain. Because programs in
such tailored languages sit within host programs, they can easily communicate with the host
and each other. In short, creating, using, and composing DSLs looks easy.

Macros alone do not make DSLs, however, a lesson that the Racket team has learned
over 20 years of working on a realization of language-oriented programming. This paper
recounts Racket’s history of linguistic mechanisms designed to support language-oriented
programming; it formulates desiderata for DSL support based on, and refined by, the Racket
team’s experiences; it also assesses how well the desiderata are met by Racket’s current
capabilities. The history begins with Scheme’s hygienic macros, which, in turn, derive
from Lisp (see sec. 2). After a false start (see sec. 4), the Racket designers switched to
procedural, hygienic macros and made them work across modules; they also strictly separated
expansion time from run time (see sec. 5). Eventually, they created a meta-DSL for writing
macros that could properly express the grammatical constraints of an extension, check them,
and synthesize proper error messages (see sec. 6). A comparison between general DSL
implementation desiderata (see sec. 3) and Racket’s capabilities shows that the language’s
support for a certain class of DSLs still falls short in several ways (see sec. 7).

I Note. This paper does not address the safety issues of language-oriented programming. As a
similar set of authors explained in the Racket Manifesto [20], language-oriented programming
means programmers use a host language to safely compose code from many small pieces
written in many different DSLs and use the very same host language to implement the DSLs
themselves. Hence language-oriented programming clearly needs the tools to link DSLs safely
(e.g., via contracts [22] or types [41]) and to incorporate systems-level protection features
(e.g., sandboxes and resource custodians [30]).

Some Hints For Beginners on Reading Code

We use Racket-y constructs (e.g., define-syntax-rule) to illustrate Lisp and Scheme macros.
Readers familiar with the original languages should be able to reconstruct the original ideas;
beginners can experiment with the examples in Racket.

Lisp’s S-expression construction Racket’s code construction
’ S-expression quote #’ code quote
‘ Quine quasiquote #‘ code quasiquote
, Quine unquote #, code unquote
@, list splicing #@, code splicing

Figure 1 Hints on strange symbols.

For operations on S-expressions, i.e., the nested and heterogeneous lists that represent
syntax trees, Lisp uses car for first, cdr for rest, and cadr for second. For the convenient
construction of S-expressions, Lisp comes with an implementation of Quine’s quasiquotation



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:3

idea that uses the symbols shown on the left of fig. 1 as short-hands: quote, quasiquote,
unquote, and unquote-splicing. By contrast, Racket introduces a parallel data structure
(syntax objects). To distinguish between the two constructions, the short-hand names are
prefixed with #.

2 The Lisp and Scheme Pre-history

Lisp has supported macros since 1963 [32], and Scheme inherited them from Lisp in 1975 [43].
Roughly speaking, a Lisp or Scheme implementation uses a reader to turn the sequence of
characters into a concrete tree representation: S-expressions. It then applies an expander to
obtain the abstract syntax tree(s) (AST). The expander traverses the S-expression to find
and eliminate uses of macros. A macro rewrites one S-expression into a different one, which
the expander traverses afresh. Once the expander discovers a node with a syntax constructor
from the core language, say lambda, it descends into its branches and recursively expands
those. The process ends when the entire S-expression is made of core constructors.

A bit more technically, macros are functions of type
S-expression −→ S-expression

The define-macro form defines macros, which are written using operators on S-expressions.
Each such definition adds a macro function to a table of macros. The expander maps an
S-expression together with this table to an intermediate abstract syntax representation:

S-expression × TableOf[MacroId, (S-expression −→ S-expression)] −→ AST

The AST is an internal representation of an S-expression of only core constructors.
See the left-hand side of fig. 2 for the simple example of a let macro. As the comments

above the code say, the let macro extends Racket with a block-structure construct for local
definitions. The macro implementation assumes that it is given an S-expression of a certain
shape. Once the definition of the let macro is recognized, the expander adds the symbol
’let together with the specified transformer function to the macro table. Every time the
macro expander encounters an S-expression whose head symbol is ’let, it retrieves the
macro transformer and calls it on the S-expression. The function deconstructs the given
S-expression into four pieces: decl, lhs, rhs, body. From these, it constructs an S-expression
that represents the immediate application of a lambda function.

;; PURPOSE extend Racket with block-oriented, local bindings
;;
;; ASSUME the given S-expression has the shape
;; (let ((lhs rhs) ...) body ...)
;; FURTHERMORE ASSUME:
;; (1) lhs ... is a sequence of distinct identifiers
;; (2) rhs ..., body ... are expressions
;; PRODUCE
;; ((lambda (lhs ...) body ...) rhs ...)

(define-macro (let e)
(define decl (cadr e))
(define lhs (map car decl))
(define rhs (map cadr decl))
(define body (cddr e))
;; return
‘((lambda ,lhs ,@body) ,@rhs))

(define-syntax-rule
(let ((lhs rhs) ...) body ...)
;; rewrites above pattern to template below
((lambda (lhs ...) body ...) rhs ...))

Figure 2 Macros articulated in plain Lisp vs Kohlbecker’s macro DSL.

SNAPL 2019



5:4 From Macros to DSLs: The Evolution of Racket

Macros greatly enhance the power of Lisp, but their formulation as functions on S-
expressions is both error-prone and inconvenient. As fig. 2 shows, the creator of the function
makes certain assumption about the shape of the given S-expression, which are not guaranteed
by the macro expansion process. Yet even writing just a transformation from the assumed
shape of the S-expression to the properly shaped output requires bureaucratic programming
patterns, something a macro author must manage and easily causes omissions and oversights.

For concreteness, consider the following problems in the context of let macro:
1. The S-expression could be an improper list. The transformer, as written, does not notice

such a problem, meaning the compilation process ignores this violation of the implied
grammar of the language extension.

2. The S-expression could be too short. Its second part might not be a list. If it is a list, it
may contain an S-expression without a cadr field. In these cases, the macro transformer
raises an exception and the compilation process is aborted.

3. The S-expression has the correct length but its second part may contain lists that contain
too many S-expressions. Once again, the macro transformer ignores this problem.

4. The S-expression may come with something other than an identifier as the lhs part of a
local declaration. Or, it may repeat the same identifier as an lhs part of the second clause.
In this case, the macro generates code anyways, relying on the rest of the compilation
process to discover the problems. When these problems are discovered,
a. it may have become impossible to report the error in terms of source code, meaning a

programmer might not understand where to look for the syntax error.
b. it has definitely become impossible to report errors in terms of the language extension,

meaning a programmer might not comprehend the error message.
5. The author of the macro might forget the unquote , to the left of lhs. In many members

of the Lisp family, the resulting code would be syntactically well formed but semantically
rather different from the intended one. In particular, conventional Lisp would generate
a function that binds all occurrences of lhs in body via this newly created lambda – a
clear violation of the intended scoping arrangements expressed in the comments.

In short, if the S-expression fails to live up to the stated assumptions, the macro transformation
may break, ignore code, or generate code that some later step in the compilation process
recognizes as an error but describes in inappropriate terms. If the programmer makes even a
small mistake, strange code may run and is likely to cause inexplicable run-time errors.

Kohlbecker’s dissertation research on macros greatly improves this situation [35,36,37].
His macro system for Scheme 84 adds two elements to the macro writer’s toolbox. The first
is a DSL for articulating macro transformations as rewriting rules consisting of a pattern
and a template. The revised macro expander matches S-expressions against the specified
patterns; if there is a match, the template is instantiated with the resulting substitution. This
DSL removes programming patterns from macro definitions and, to some extent, eliminates
problems 1 through 3 from above. For an example, see the right-hand side of fig. 2.

I Note. We call Lisp-style macros procedural and Kohlbecker’s approach declarative.

The second novel element is hygienic expansion. By default, Kohlbecker’s macro expander
assumes that identifiers contained in the source must be distinct from macro-generated
identifiers in binding positions. As such, it eliminates the need to explicitly protect against
accidental interference between the macro’s lexical scopes and those of its use contexts –
that is, yet another programming pattern from macro code. At a minimum, this hygienic
expander would not bind lhs in body as indicated in problem 5 above.



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:5

Further work [2, 8, 15] refined and improved the pattern-oriented approach to specifying
macros as well as hygienic macro expansion. The define-syntax-rule construct and
hygienic expansion became part of the Scheme standard by the late 1990s [1]. Starting
in 1988 and in parallel to the Scheme standardization process, Dybvig et al. [15] designed
and implemented a macro definition construct, define-syntax-cases (in actual code it
requires a combination of define-syntax and syntax-case) that merged the procedural
and declarative elements of the Lisp world. Dybvig et al. also switched from S-expressions
to trees of syntax objects. These trees included source locations so that the error handling
code could try to point back to the surface code (problem 4a above).

Starting in the late 80s, researchers explored other ways to facilitate the work of macro
authors, including two relevant to creating DSLs from macros. Dybvig et al. [14] invented
expander-passing macros. Macro authors would write their own expanders and use different
ones in different macros. At an abstract level, expansion-passing style anticipates the need
for checking static attributes. Blume [3] as well as Kelsey and Reese [34] added modules that
could export and import macros. Such modules allow macro programmers to encapsulate
bundles of macros, a first step towards encapsulating a DSL’s design and implementation.

3 DSLs Require More than Bunches of Macros

Scheme-style macros greatly improve on Lisp’s as far as the extension of an existing language
is concerned. A developer can add concise and lexically correct macros to a program and may
immediately use them, for writing either ordinary run-time code or additional macros. This
immediacy is powerful and enticing because a programmer never has to leave the familiar
programming environment, use external tools, or mess with scaffolding setups.

The idea of macros is also easy to comprehend at the abstract level. Conceptually, a macro
definition adds a new alternative to one of Racket’s grammatical productions: definitions
or expressions. The declarative approach makes it easy to specify simple S-expression
transformers in a straightforward manner; hygienic macro expansion guarantees the integrity
of the program’s lexical scope.

The problem is that a language extension provides only a false sense of a purpose-tailored
language. On one hand, a programmer who uses a bunch of macro-based language extensions
as if it were a self-contained DSL must code with an extreme degree of self-discipline. On
the other hand, the macro system fails to support some of the traditional advantages of
using DSLs: catching mistakes in the parsing or type-checking stage; exploiting constraints
to generate optimized code; or link with/target tailor-made run-time functions.

Conventionally, the creation of DSLs demands a pipeline of compiler passes:
1. a parser, based on explicit specification of a domain-specific vocabulary and a grammar,

that reports errors at the DSL’s source level;
2. a static semantics, because one goal of migrating from an application interface to a DSL

is to enforce certain constraints statically;
3. a code generation and optimization pass, because another goal of introducing DSLs is to

exploit the static or linguistic constraints for improved performance; and,
4. a run-time system, because (1) the host language may lack pieces of functionality or (2)

the target language might be distinct from the host language.
Scheme macros per se do not support the creation of such pipelines or its proper encapsulation.

The Racket designers noticed some of these problems when they created their first
teaching languages [18, 19]. In response, they launched two orthogonal efforts to support the
development of DSLs via language-extension mechanisms with the explicit goal of retaining
the ease of use of the latter:

SNAPL 2019



5:6 From Macros to DSLs: The Evolution of Racket

One concerned the encapsulation of DSLs and support for some traditional passes. This
idea was to develop a module system that allows the export and import of macros and
functions while also retaining a notion of separate compilation for modules.
The other aimed at a mechanism for easily expressing a macro’s assumptions about its
input and synthesizing error messages at the appropriate level, i.e., the problems from
sec. 2. The results would also help with implementing DSLs via modules.

While sec. 4 reports on an ambitious, and abandoned, attempt to address these problems all
at once, secs. 5 and 6 describe the tools that Racket eventually provided to DSL designers
and implementors.

4 Ambitious Beginnings

When the Racket designers discovered the shortcomings of a traditional Scheme macro system,
they decided to address them with three innovations. First, they decided to move beyond
the traditional S-expression representation of syntax and instead use a richly structured
one (see sec. 4.1). Second, they realized that macros needed to work together to implement
context-sensitive checks. To this end, they supplemented declarative macros with procedural
micros that could deal with attributes of the expansion context (see sec. 4.2). Finally they
decided to use modules as the containers of macro-based DSL implementations as well as the
units of DSL use (see sec. 4.3).

4.1 From S-expressions to Syntax Objects
To track source locations across macro expansion, Racket – like Dybvig’s Chez Scheme –
introduced a syntax object representation of the surface code, abandoning the conventional
S-expression representation. Roughly speaking, a syntax object resembles an S-expression
with a structure wrapped around every node. At a minimum, this structure contains source
locations of the various tokens in the syntax. Using this information, a macro expander can
often pinpoint the source location of a syntax error, partially solving problem 4a from sec. 3.

4.2 The Vocabularies of Micros
Recall that a macro is a function on the syntax representation. Once this representation
uses structures instead of just S-expressions, the signature of a macro has to be adapted:

Syntax-Object −→ Syntax-Object

Of course, this very signature says that macros cannot naturally express1 communication
channels concerning attributes of the expansion context.

Krishnamurthi et al.’s work [39] supplements macros with micros to solve this issue. Like
define-macro, define-micro specifies a function that consumes the representation of a
syntax. Additionally, it may absorb any number of Attribute values so that collections of
micros can communicate contextual information to each other explicitly:

Syntax-Object −→ (Attribute ... −→ Output)

1 A macro author could implement this form of communication via a protocol that encodes attributes as
syntax objects. We consider an encoding unnatural and therefore use the phrase “naturally express.”



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:7

As this signature shows, a micro also differs from a macro in that the result is some arbitrary
type called Output. This type must be the same for all micros that collaborate but may
differ from one collection of micros to another. For macro-like micros, Output would equal
Syntax-Object. By contrast, for an embedded compiler Output would be AST, meaning the
type of abstract syntax trees for the target language. This target language might be Racket,
but it could also be something completely different, such as GPU assembly code. The Racket
team did not explore this direction at the time.

As this explanation points out, micros for DSLs must be thought of as members of a
collection. To make this notion concrete, Krishnamurthi et al. also introduce the notion of
a vocabulary. Since collections of macros and micros determine the “words” and “sentence
structure” of a DSL, a vocabulary represents the formal equivalent of a dictionary and
grammar rules. The micros themselves transform “sentences” in an embedded language into
meaningful – that is, executable – programs.

In Krishnamurthi et al.’s setting, a vocabulary is created with (make-vocabulary) and
comes with two operations: define-micro, which adds a micro function to a given vocabulary,
and dispatch, which applies a micro to an expression in the context of a specific vocabulary.

;; type Output = RacketAST

(define compiler (make-vocabulary))

_ _ _ elided _ _ _

(define-micro compiler
(if cond then else)
==>
(lambda ()

(define (expd t)
((dispatch t compiler)))

(define cond-ir (expd cond))
(define then-ir (expd then))
(define else-ir (expd else))
(make-AST-if

cond-ir then-ir else-ir)))

_ _ _ elided _ _ _

(define compiler-language
(extend-vocabulary

base-language
compiler))

;; type Output = RacketType
(define type-check (make-vocabulary))

_ _ _ elided _ _ _

(define-micro type-check
(if cond then else)
==>
(lambda (Γ)

;; first block
(define (tc t)

((dispatch t type-check) Γ))
(define cond-type (tc cond))
(unless (type-== cond-type Boolean)

(error _ _ _ elided _ _ _))
(define then-type (tc then))
(define else-type (tc else))
(unless (type-== then-type else-type)

(error _ _ _ elided _ _ _))
then-type))

_ _ _ elided _ _ _

Figure 3 Micros and vocabularies.

Fig. 3 collects illustrative excerpts from a vocabulary-micro code base. The left-hand
column sets up a compiler vocabulary, which expresses transformations from the surface
syntax into Racket’s core language. Among other micros, the if micro is added to compiler
because it is a core construct. The final definition shows how to construct a complete
language implementation by mixing in vocabularies into the common base language.

Like Scheme’s macro definitions, micro definitions use a pattern DSL for specifying inputs.
As for the Attribute ... sequence, micros consume those via an explicit lambda. To
create its output, the if micro allocates an AST node via make-AST-if. The pieces of this
node are the results of expanding the three pieces that make up the original if expression.
The expansions of these sub-expressions employ dispatch, a function that consumes the
expression to be expanded together with the contextual vocabulary and the attributes (none
here) in a staged fashion.

SNAPL 2019



5:8 From Macros to DSLs: The Evolution of Racket

The right-hand side of fig. 3 shows how to add an if micro for a type-checking variant of
the DSL. The code introduces a second vocabulary for the type checker. The if micro for
this additional vocabulary implements the type checking rule for if in a standard manner,
reporting an error as soon it is discovered.

Once the type-check vocabulary is in place, a developer can use it independently or
in combination with the compiler vocabulary. For example, Racket’s soft typing sys-
tem [24] needed a distinct interpretation for the language’s letrec construct, i.e., a distinct
type-check vocabulary unrelated to the actual compiler. A variant of Typed Racket [44]
could be implemented via the composition of these two vocabularies; in this context, the
composition would discard the result of the pass based on the type-check vocabulary.

In general, DSL creators get two advantages from vocabularies and micros. First, they
can now specify the syntax of their languages via explicit collections of micros. Each micro
denotes a new production in the language’s expression language, and the input patterns
describe its shape. Second, they can naturally express and implement static checking. The
micro’s secondary arguments represent “inherited” attribute, and the flexible Output type
allows the propagation of “synthesized” ones.

Implementing complete DSLs from vocabularies becomes similar to playing with Legos:
(1) vocabularies are like mixins [31], (2) languages resemble classes, and (3) dispatch is
basically a method invocation. Hence creating a variety of similar DSLs is often a game of
linking a number of pieces from a box of language-building blocks. For the team’s rapid
production and modification of teaching languages in the mid 1990s, vocabularies were a
critical first step.

4.3 Languages for Semantic Modules
According to sec. 3 the implementation of any language combines a compiler with a run-time
system. This dictum also applies to DSLs, whether realized with macros or micros. Both
translate source code to target code, which refers to run-time values (functions, objects,
constants, and so on). Such run-time values often collaborate “via conspiracy,” meaning their
uses in target code satisfies logical statements – invariants that would not hold if all code
had free access to these values. That is, the implementor of a DSL will almost certainly wish
to hide these run-time values and even some of the auxiliary compile-time transformations.
All of this suggests that macros, micros and vocabularies should go into a module, and such
modules should make up a DSL implementation.

Conversely, the implementors of DSLs do not think of deploying individual constructs
but complete languages. Indeed, conventional language implementors imagine that DSL
programmers create self-contained programs. By contrast, Lispers think of their language
extensions and imagine that DSL programmers may wish to escape into the underlying host
language or even integrate constructs from different DSL-like extensions at the expression
level. The question is whether a macro-micro based approach can move away from the “whole
program” thinking of ordinary DSLs and realize a Lisp-ish approach of deploying languages
for small units of code.

Krishnamurthi’s dissertation [38] presents answers to these two questions and thus
introduces the first full framework for a macro-oriented approach to language-oriented
programming. It combines macros with the first-class modules of the 1990s Racket, dubbed
units [29], where the latter becomes both the container for DSL implementations as well as
the one for DSL deployment. Technically, these units have the shape of fig. 4. They are
parameterized over a Language and link-time imports, and they export values in response.



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:9

(unit/lang Language
(ImportIdentifier ...)
(ExportIdentfier ...)
Definitions-and-Expressions ...)

Figure 4 Language-parameterized, first-class units.

A DSL implementation is also just a unit/lang that combines macros, micros, and
run-time values. It is not recognized as a valid Language until it is registered with a language
administrator . The latter compiles unit/lang expressions separately to plain units. For
this compilation, the language administrator expands all uses of macros and micros and then
resolves all the names in the generated code – without exposing any of them to other code.
In particular, the developer does not need to take any action, such as adding the names of
run-time values to export specifications of Languages or to unit/langs that use a Language.
The result of a compilation is a collection of plain Racket units, and the Racket compiler
turns this collection into a running program.

In principle, Krishnamurthi’s unit/lang system addresses all four DSL criteria listed
in sec. 3. The micro-vocabulary combination can enforce syntax constraints beyond what
macros can do. They are designed to express static processing in several passes and explicitly
accommodate target languages distinct from Racket. And, the implementations of DSLs as
unit/langs encapsulates the compiler component with a run-time component.

What this system fails to satisfy is the desire to synthesize DSL implementation techniques
with Lisp’s incremental language-extension approach. The main problem is that a programmer
has to parameterize an entire unit over a complete language. It is impossible to selectively
import individual macros and micros from a unit/lang, which is what Racket developers
truly want from a modular macro system. After a few years of using plain units, the Racket
team also realized that first-class units provided more expressive power than they usually
needed, meaning the extra complexity of programming the linking process rarely ever paid
off in the code base.

Additionally, the unit/lang system was a step too far on the social side. Racket – then
called PLT Scheme – was firmly in the Scheme camp and, at the time, the Scheme community
had developed and open-sourced a new syntax system [15] that quickly gained in popularity.
This macro system combined the declarative form of Krishnamurthi’s macros with the proce-
dural form of his micros into a single define-syntax-cases form. Furthermore, this new
macro system came with the same kind of syntax-object representation as Krishnamurthi’s,
allowing source tracking, hygienic expansion, and other cross-expansion communication. In
other words, the new system seemed to come with all the positive aspects of Krishnamurthi’s
without its downsides. Hence, the Racket team decided to adapt this macro system and
create a module system around it.

5 Languages From Syntactic Modules

The Racket designers started this rebuilding effort in 2000. The goal was to create a module
system where a developer could write down each module in a DSL that fit the problem
domain and where a module could export/import individual macros to/from other modules –
and this second point forced them to reconsider the first-class nature of modules.

Flatt’s “you want it when” module-macro system [25] realizes this goal. It introduces a
module form, which at first glance looks like unit/lang. Like the latter, module explicitly
specifies the language of a module body, as the grammar in fig. 5 shows. Otherwise the

SNAPL 2019



5:10 From Macros to DSLs: The Evolution of Racket

(module Name Language

{ ProvideSpecification
| RequireSpecification
| Definition
| Expression }∗

)

#lang Language Name.rkt

{ ProvideSpecification
| RequireSpecification
| Definition
| Expression }∗

Figure 5 Language-parameterized, first-order modules and their modern abbreviation.

grammar appears to introduce a new expression form whose internals consist of a sequence
of exports, imports, definitions and expressions. A small difference concerns the organization
of the module body. The import and export specifications no longer need to show up as
the first element of the module; they can appear anywhere in the module. Appearances
are deceiving, however, and the Name part suggests the key difference. A module is not an
expression but a first-order form, known to the expander.

When the expander encounters module, it imports the Language’s provided identifiers.
This step establishes the base syntax and semantics of the module’s expressions, definitions,
imports, and exports. Next the expander finds the imported and locally-defined macros in
the module body. The search for imported macros calls for the expansion and compilation of
the referenced modules. It is this step that requires the restriction to first-order modules,
because the expander must be able to identify the sources of imported macros and retrieve
their full meaning. Finally, the expander adds those imported and local macros to the
language syntax and then expands the module body properly, delivering an abstract-syntax
representation in the Racket core language.

One consequence of this arrangment is that the expansion of one module may demand
the evaluation of an entire tower of modules. The first module may import and use a macro
from a second module, whose definition relies on code that also uses language extensions.
Hence, this second module must be compiled after expanding and compiling the module that
supplies these auxiliary macros.

#lang racket loop.rkt

(provide inf-loop)

(define-syntax-cases
[(inf-loop e)
(begin

(displayln "generating inf-loop")
#’(do-it (lambda () e)))])

(define (do-it th)
(th)
(do-it th))

#lang racket use-loop.rkt

(provide display-infinitely-often)

(require "loop.rkt")

(define (display-infinitely-often x)
(inf-loop (do-it x)))

(define (do-it x)
(displayln x))

Figure 6 Exporting macros from, and importing them into, modules.

The right-hand side of fig. 5 also shows the modern, alternative syntax for modules.
The first line of code specifies only the language of the module via a #lang specification;
the name of the file (boxed) determines the name of the module. Fig. 6 illustrates how
two modules interact at the syntax and run-time level. The module on the left defines the
language extension inf-loop, whose implementation generates code with a reference to the
function do-it. The module on the right imports this language extension via the require
specification. The Racket compiler retrieves the macro during compile time and uses it to



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:11

expand the body of the display-infinitely-often function – including a reference to the
do-it function in module loop.rkt. Cross-module hygienic expansion [25,27] ensures that
this macro-introduced name does not conflict in any way with the do-it function definition
of the use-loop.rkt module. Conceptually, the expansion of display-infinitely-often
looks like the following definition:

(define (display-infinitely-often x)
(loop.rkt-do-it (lambda () (use-loop.rkt-do-it x))))

with the two distinct, fully-resolved names guaranteeing the proper functioning of the code
according to the intuitive surface meaning.

Flatt’s module-macro system allows the use of both declarative and procedural language
extensions. To illustrate the latter kind, the inf-loop macro uses define-syntax-cases.
If the expander can match a piece of syntax against one of the left-hand-side patterns
of define-syntax-cases, it evaluates the expression on the right. This evaluation must
produce code, which is often accomplished via the use of templates (introduced by #’) whose
pattern variables are automatically replaced by matching pieces of syntax. But, as the
definition of inf-loop suggests, the right-hand side may contain side-effecting expressions
such as displayln. While these expressions do not become a part of the generated code as
the above snippet shows, their side effects are observable during compile time.

To enable separate compilation, Racket discards the effects of the expansion phase before
it moves on to running a module. Discarding such effects reflects the Racket designers’ under-
standing that language-extensions are like compilers, which do not have to be implemented
in the same language as the one that they compile and which are not run in the same phase
as the program that they translate. Phase separation greatly facilitates reasoning about
compilation, avoiding a lot of the pitfalls of Lisp’s and Chez Scheme’s explicit eval-when
and compile-when instructions [5, 25,42].

#lang racket math.rkt

(provide Ack)

;; Number Number -> Number
(define (Ack x y)

(cond
[(zero? x) (+ y 1)]
[(and (> x 0) (zero? y))
(Ack (- x 1) 1)]

[else
(Ack (- x 1) (Ack x (- y 1)))]))

#lang racket use-acker.rkt

(require (for-syntax "math.rkt")))

(define-syntax-cases ()
[(static-Ack x y)
;; rewrites the pattern to a template
;; via some procedural processing
(let* ((x-e (syntax-e #’x))

(y-e (syntax-e #’y)))
(unless (and (number? x-e) (number? y-e))

(raise-syntax-error #f "not numbers"))
(define ack (Ack x-e y-e))
#‘(printf "the Ack # is ~a" #,ack))])

(static-Ack 1 2)

Figure 7 Importing at a different phase.

Phase separation imposes some cost on developers, however. If a module needs run-
time functions for the definition of a language construct, the import specification must
explicitly request a phase shift. For an example, see fig. 7. The module on the right defines
static-Ack, which computes the Ackermann function of two numbers at compile time. Since
the Ackermann function belongs into a different library module, say math, the use-ack
module most import it from there. But, because this function must be used at compile time,
the require specification uses the (underlined) for-syntax annotation to shift the import to
this early phase. The Racket designers’ experience shows that phase-shifting annotations are
still significantly easier to work with than Lisp’s and Scheme’s expand-when and eval-when
annotations.

SNAPL 2019



5:12 From Macros to DSLs: The Evolution of Racket

Like Krishnamurthi’s unit/langs, Flatt’s modules allow developers to write different
components in different languages. In the case of modules, the Language position points
to a module itself. The exports of this Language module determine the initial syntax and
semantics of a client module.

In contrast to an ordinary module, a Language module must export certain macros, called
interposition points; it may export others. An interposition point is a keyword that the
macro expander adds to some forms during its traversal of the source tree. Here are the two
most important ones for Language modules:

#%module-begin is the (invisible) keyword that introduces the sequence of definitions
and expressions in a module body. A Language module must export this form.
#%top-interaction enables the read-eval-print loop for a Language, i.e., dynamic loading
of files and interactive evaluation of expressions.

Other interposition points control different aspects of a Language’s meaning:
#%app is inserted into function applications. In source code, an application has the shape
(fun arg ...), which expands to the intermediate form (#%app fun arg ...).
#%datum is wrapped around every literal constant.
#%top is used to annotate module-level variable occurrences.

In practice, a developer creates a Language by adding features to a base language,
subtracting others (by not exporting them), and re-interpreting some. Here “features” covers
both macros and run-time values. The #%module-begin macro is commonly re-interpreted
for a couple of reasons. Its re-definition often helps with the elimination of boilerplate
code but also the communication of context-sensitive information from one source-level
S-expression (including modules) to another during expansion.

#lang racket lazy.rkt

(provide
(except-out (all-from-out racket) #%app)
(rename-out [lazy-app #%app]))

(define-syntax-rule
(lazy-app f a ...)
(#%app f (lambda () a) ...))

#lang "lazy.rkt" no-error.rkt

; a constant function
(define (f x y)

10)

; called on two erroneous terms
(f (/ 1 0) (first ’()))
; evaluates to 10

Figure 8 Building an embedded DSL from modules and macros.

Fig. 8 indicates how a developer could quickly build a language that looks like Racket but
uses call-by-name instead of call-by-value. The module on the left is the language implemen-
tation. It starts from Racket and re-exports all of its features, including #%module-begin,
except for function application. The module re-interprets function application via the second
part of provide. Technically, a re-interpretation consists of a macro definition that is
re-named in a provide. The lazy module comes with a lazy-app macro, which rewrites
(lazy-app fun arg ...) to (#%app fun (lambda () arg) ...). By static scope, the
#%app in the expansion refers to the function application form of Racket. Since this macro is
provided under the name #%app, a client module’s function applications – into which the
expander inserts #%app – eventually expand according to lazy-app. In particular, the two
exception-raising expressions in the no-error module are wrapped in lambda; because f is a
constant function that does not evaluate its arguments, these errors are never reported. (For
additional details on lazy, see the last chapter of Realm of Racket [16].)



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:13

#lang racket all-in-one.rkt

(module lazy-impl racket

(provide
(except-out (all-from-out racket) #%app)
(rename-out [lazy-app #%app]))

(define-syntax-rule
(lazy-app f a ...)
(#%app f (lambda () a) ...)))

(module lazy-client (submod ".." lazy-impl)

(define (f x y)
10)

(f (/ 1 0) (first ’())))

(require (submod "." lazy-client))

(a) DSL development in one module. (b) Algol 60 as a Racket DSL.

Figure 9 Developing and deploying DSLs in Racket.

Modules and macros jointly make DSL development an interactive activity in the Racket
ecosystem. A programmer can open two tabs or windows in an IDE to use one for the
DSL implementation and another for a DSL program. Or, a programmer can place a DSL-
implementing submodule [26] and a DSL-using submodule into a single file, which can then
be edited and executed within a single editor window of the preferred IDE. Fig. 9a shows
how to combine the modules of fig. 8 into a single file. This program consists of three pieces.
The first one is a submodule that implements the lazy language, while the second uses the
first one in the Language position. Hence the first submodule is the programming language
of the second. The last piece of the program requires and thus evaluates the client module.
Any change to the first submodule is immediately visible in the second.

A developer may also equip a DSL with any desired syntax, not just build on top of
Racket’s beautiful parentheses. To support this kind of syntax, a Language module may
export a new reader. Recall from sec. 2 that a Lisp reader turns the stream of characters
into a sequence of S-expressions (or Syntax-Objects, in the case of Racket). The rest of the
implementation can then use the usual mix of macros and functions. Butterick’s Beautiful
Racket [4] is a comprehensive introduction to this strategy and comes with a powerful library
package for lexing and parsing.

In the context of modular macros, a developer may also create a conventional compiler
with the macro infrastructure. Instead of just expanding to Racket, a DSL implementation
may use a combination of macros and compile-time functions to perform conventional type
checking or other context-sensitive checks.

Fig. 9b presents a simple example of a Racket DSL program in conventional syntax.
Except for the first line, the code represents a standard Algol 60 program. The first line
turns this program into a Racket DSL and thus allows Racket to parse, type check, compile,
and run this program. Because the DSL implementation turns the Algol 60 program into
syntax objects and implements its semantics via macro expansion, DrRacket (the Racket
IDE [23]) automatically adapts itself to this new language. For example, fig. 9b illustrates
how DrRacket connects the binding occurrence of INVERSE’s parameter to its bound ones.

SNAPL 2019



5:14 From Macros to DSLs: The Evolution of Racket

In sum, Racket’s modules simultaneously allow the incremental and interactive construc-
tion of language extensions as well as the construction of complete DSLs with their own
vocabulary. The key design decision is to turn macros into entities that first-order modules
can export, import, hide, and re-interpret. It does necessitate the introduction of strict phase
separation between the expansion phase and run-time phase to obtain separate compilation.

6 Syntax Done Properly With Parsing Macros

The implementation of a DSL’s syntax consists of two essential parts: parsing syntactically
legitimate sentences, and reporting violations of the syntactic rules. Both aspects are equally
important, but for 40 years, the macro community mostly neglected the second one.

Sec. 2 lists five problems with parsing via Lisp-style macros. Kohlbecker’s rewriting DSL –
based on patterns and templates – eliminates all of them except for problem 4. To appreciate
the complexity of this particular problem, consider the actual grammatical production of
let expressions in classical BNF notation:

(let ({[id expression]}∗) expression+)

Kohlbecker’s pattern-based meta-DSL addresses this context-free shape specification with
the elegant trick of using ellipses (. . . ) for ∗ and unrolling for +:

(let ([id expression] ...) expression expression ...)

What Kohlbecker’s notation cannot express is the side condition of fig. 2:

id ... is a sequence of distinct identifiers

Indeed, Kohlbecker’s notation cannot even specify that id must stand for an identifier.
So now imagine a programmer who writes

(let (((+ 1 2) x)) (* x 3)) ;; => ((lambda ((+ 1 2)) (* x 3)) x)

or

(let ((x 1) (x 2)) (* x 3)) ;; => ((lambda (x x) (* x 3)) 1 2)

In either case, a pattern-oriented language generates the lambda expression to the right of
the => arrow. Hence, the resulting syntax errors speak of lambda and parameters, concepts
that the grammatical description of let never mentions. While a reader might be tempted
to dismiss this particular error message as “obvious,” it is imperative to keep in mind that
this let expression might have been generated by the use of some other macro, which in
turn might be the result of some macro-defining macro, and so on.

Dybvig’s define-syntax-cases slightly improves on Kohlbecker’s DSL. It allows the
attachment of of fenders – Boolean expressions – to a macro’s input patterns. With such
fenders, a macro developer can manually formulate conditions that check such side conditions.
Even in such simple cases as let, however, the error-checking code is many times the size of
the rewriting specification. And this is why most macro authors fail to add this code or, if
they do, fail to write comprehensive checks that also generates good error messages.

Culpepper’s DSL for defining macros solves this problem with two innovations [9,10,11,12].
The first is an augmentation of the pattern-matching DSL with “words” for articulating
classification constraints such as those of the let macro. The second is a DSL for specifying
new classifications. Together, these innovations allow programmers to easily enforce assump-
tions about the surface syntax, synthesize error messages in terms of the specification, and
deconstruct the inputs of a macro into relevant pieces.



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:15

(define-syntax-class distinct-bindings
#:description "sequence of distinct binding pairs"
(pattern (b:binding ...)
#:fail-when (check-duplicate-id #’(b.lhs ..))

"duplicate variable name"
#:with (lhs* ...) #’(b.lhs ...)
#:with (rhs* ...) #’(b.rhs ...)))

(define-syntax-class binding
#:description "binding pair"
(pattern (lhs:id rhs:expr)))

Figure 10 Syntax classifications.

Following our discussion above, the specification of let needs two syntax classifications:
one to say that the second part of let’s input is a sequence and another one to say that the
elements of this sequence are identifier-expression pairs. Fig. 10 shows how a programmer
can define these classifications in Culpepper’s meta-DSL. A classification must come with at
least one pattern clause, which spells out the context-free shape of the form and names its
pieces. For example, the binding class uses the pre-defined classifications id (for identifier)
and expr (for expression) to say that a binding has the shape (id expr) and that the name
of the id is lhs and the name of expr is rhs. Any use of such a syntax class, for example the
one in the definition of distinct-bindings, may refer to these attributes of the input via a
dot notation. Thus, b.lhs ... in distinct-bindings denotes the sequence of identifiers.
As this example also shows, a syntax-class definition may also defer to procedural code, such
as check-duplicate-id to process the input. A fail-when clause allows macro developers
to specify a part of the synthesized error message (when the default is not sufficiently clear).

(define-syntax-parser let
[(_ bs:distinct-bindings body:expr ...+)
;; rewrites the pattern to a template
#’((lambda (bs.lhs* ...) body ...) bs.rhs* ...)])

Figure 11 Macros via parsing macros.

Using these two syntax classes, specifying the complete shape of let is straightforward;
see fig. 11. The :distinct-bindings classification of bs introduces names for two pieces
of the input syntax: a sequence of identifiers (bs.lhs*) and a sequence of right-hand-side
expressions (bs.rhs*), one per variable. The syntax template uses these pieces to generate
the same target code as the macros in fig. 2.

A comparison of figs. 2 and 11 illustrates the advantages as well as the disadvantages of
Culpepper’s DSL for writing macros. On the positive side, the size of the Culpepper-style
macro definition appears to remain the same as the one for the Kohlbecker-style one. The
revised definition merely adds classifications to the macro’s pattern and attribute selections
to the macro’s template. This shallow size comparison camouflages that these small changes
cause the macro to check all constraints on the shape of let and formulate syntax errors in
terms of the specified surface syntax. As Culpepper [10, page 469] explains, implementing
the same level of assumption checking and error reporting via procedural macros increases
the code size by “several factors.” Furthermore the “primary benefit [of this meta-DSL] . . .
is increased clarity” of a macro’s input specification and its code template.

On the negative side, macro programmers are now expected to develop syntax classi-
fications such as those in fig. 10 and use them properly in macro definitions, as in fig. 11.
While the development of syntax classifications clearly poses a new obstacle, their use comes
with a significant payoff and most end up as reusable elements in libraries. Hence the cost
of developing them is recouped through reuse. As for the use of syntax classifications in
macro templates and patterns, experience shows that most macro programmers consider the
annotations as type-like notions and the attribute selections as a natural by-product.

SNAPL 2019



5:16 From Macros to DSLs: The Evolution of Racket

In short, Culpepper’s meta-DSL completely replaces the define-syntax-cases meta-
DSL for macro definitions. By now, the large majority of Racket programmers develop macros
in Culpepper’s DSL and contribute to the ever-expanding collection of syntax classifications.

lang. lexical classify error separate run-time code gen.
extens. scope syntax messages compil. encaps. opt.
(sec. 3) (2) (1) (1) (4) (4) (3)

Lisp macros X – – – – – –
Scheme
– syntax-rules X X patterns – – – –
– syntax-case X X patterns & – – – –

fenders –
Racket X X patterns & X X& X module
– syntax-parse syn. classes phases only

– means programmers have the tools to design manual solutions

Figure 12 A concise overview of Lisp-family language extension features.

7 DSL Creators Need Still More Than Modular, Parsing Macros

Racket has made great progress in improving the state of the art of macros with an eye
toward both language extension and DSL implementation. Fig. 12 surveys the progress
in roughly the terms of sec. 3’s criteria. The syntax-parse DSL for defining macros can
express almost every context-free and -sensitive constraint; macro developers get away with
a few hints and yet get code that reports syntax errors in terms of the macro-defined variant.
The module system supports both the fine-grained export/import of macros for language
extensions and the whole-cloth implementation of DSLs.

At this point, implementing DSLs is well within reach for Racket beginners [4, 16] and
easy for experts. While beginners may focus on module-based DSLs, experts use macros
to create fluidly embedded DSLs. Examples are the DSL of pattern-matching for run-time
values, the syntax-parse DSL itself, and Redex [17,40]. In this domain, however, the macro
framework falls short of satisfying the full list of desiderata for from sec. 3.

To explain this gap, let us concisely classify DSLs and characterize Racket’s support:
stand-alone DSLs
These are the most recognized form in the real world. Racket supports those via module
languages with at least the same conveniences as other DSL construction frameworks.
embedded DSLs with a fixed interface
All programming languages come with numerous such sub-languages. For example,
printf interprets the format DSL – usually written as an embedded string – for rendering
some number of values for an output device. In Racket, such DSLs instead come as a
new set of expression forms with which programmers compose domain-specific programs.
Even in Racket, though, such DSLs allow only restricted interactions with the host.
embedded and extensible DSLs with an expression-level interface
Racket’s DSLs for pattern matching and structure declarations are illuminating examples
of this kind. The former allows programmers to articulate complex patterns, with
embedded Racket expressions. The latter may contain patterns, which contain expressions,
etc. The pattern DSL is extensible so that, for example, the DSL of structure definitions
can automatically generate patterns for matching structure instances. Naturally, this
DSL for structure declarations can also embed Racket expressions at a fine granularity.

With regard to the third kind of DSL, Racket’s macro approach suffers from several
problems. A comparison with the criteria in sec. 3 suggests three obvious ones.



R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:17

(define-typed-syntax (if cond then else)
[` cond >> cond-ir =⇒ cond-type]
[` then >> then-ir =⇒ then-type]
[` else >> else-ir ⇐= else-type]
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -

[(AST-if cond-ir then-ir else-ir) −→ then-type])

Figure 13 Type-checking from macros.

The first concerns DSLs that demand new syntactic categories and, in turn, good parsing
and error reporting techniques. While syntax classes allow DSL creators to enumerate
the elements of a new syntactic category, this enumeration is fixed. Experienced DSL
implementors can work around this restriction, just like programmers can create extensible
visitor patterns in object-oriented languages to allow the blind-box extension of data types.

The second problem is about context-sensitive language processing. The existing macro
framework makes it difficult to implement context-sensitive static checking, translations, and
optimizing transformations – even for just Racket’s macros, not to mention those that define
new syntactic categories. Chang and his students [6, 7] have begun to push the boundaries
in the realm of type checking, a particular rich form of context-sensitivity. Specifically,
the team has encoded the rich domain of type checking as a meta-DSL. In essence, this
meta-DSL enables DSL creators to formulate type checking in the form of type elaboration
rules from the literature (see fig. 13), instead of the procedural approach of fig. 3. However,
their innovation exploits brittle protocols to make macros work together [28]. As a result,
it is difficult to extend their framework or adapt it to other domains without using design
patterns for macro programming.

Finally, the DSL framework fails to accommodate languages whose compilation target is
not Racket. Consider an embedded DSL for Cuda programming that benefits from a fluid
integration with Racket. Such a DSL may need two interpretations: on computers with
graphical co-processors it should compile to GPU code, while on a computer without such a
processor it may need to denote a plain Racket expression. Implementing a dependent-type
system in the spirit of Chang et al.’s work supplies a second concrete example. The language
of types does not have the semantics of Racket’s expressions and definitions. Although it is
possible to expand such DSLs through Racket’s core, it forces DSL developers to employ
numerous macro-design patterns.

The proposed work-arounds for these three problems reveal why the Racket team does
not consider the problem solved. Racket is all about helping programmers avoid syntactic
design patterns. Hence, the appearance of design patterns at the macro level is antithetical to
the Racket way of doing things, and the Racket team will continue to look for improvements.

References
1 H. Abelson, R.K. Dybvig, C.T. Haynes, G.J. Rozas, N.I. Adams, D.P. Friedman, E. Kohlbecker,

G.L. Steele, D.H. Bartley, R. Halstead, D. Oxley, G.J. Sussman, G. Brooks, C. Hanson, K.M.
Pitman, and M. Wand. Revised5 Report on the Algorithmic Language Scheme. Higher-Order
and Symbolic Computation, 11(1):7–105, August 1998.

2 Alan Bawden and Jonathan Rees. Syntactic Closures. In Symposium on Lisp and Functional
Programming, pages 86–95, 1988.

3 Matthias Blume. Refining Hygienic Macros for Modules and Separate Compilation. Technical
report tr-h-171, ATR Human Information Processing Research Laboratories, Kyoto, Japan,
1995. URL: people.cs.uchicago.edu/~blume/papers/hygmac.pdf.

SNAPL 2019

people.cs.uchicago.edu/~blume/papers/hygmac.pdf


5:18 From Macros to DSLs: The Evolution of Racket

4 Matthew Butterick. Beautiful Racket, 2013. URL: https://beautifulracket.com/.
5 Cadence Research Systems. Chez Scheme Reference Manual, 1994.
6 Stephen Chang, Alex Knauth, and Ben Greenman. Type Systems as Macros. In Symposium

on Principles of Programming Languages, pages 694–705, 2017.
7 Stephen Chang, Alex Knauth, and Emina Torlak. Symbolic Types for Lenient Symbolic

Execution. In Symposium on Principles of Programming Languages, pages 40:1–40:29, 2018.
8 William Clinger and Jonathan Rees. Macros That Work. In Symposium on Principles of

Programming Languages, pages 155–162, 1991.
9 Ryan Culpepper. Refining Syntactic Sugar: Tools for Supporting Macro Development. PhD

thesis, Northeastern University, 2010.
10 Ryan Culpepper. Fortifying macros. Journal of Functional Programming, 22(4–5):439–476,

2012.
11 Ryan Culpepper and Matthias Felleisen. Taming Macros. In Generative Programming and

Component Engineering, pages 225–243, 2004.
12 Ryan Culpepper and Matthias Felleisen. Fortifying Macros. In International Conference on

Functional Programming, pages 235–246, 2010.
13 Sergey Dmitriev. Language-oriented Programming: the Next Programming Paradigm, 2004.
14 R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. Expansion-Passing Style: A

General Macro Mechanism. Lisp and Symbolic Computation, 1(1):53–75, January 1988.
15 R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp

and Symbolic Computation, 5(4):295–326, December 1993.
16 Matthias Felleisen, Forrest Bice, Rose DeMaio, Spencer Florence, Feng-Yun Mimi Lin, Scott

Lindeman, Nicole Nussbaum, Eric Peterson, Ryan Plessner, David Van Horn, and Conrad
Barski. Realm of Racket. No Starch Press, 2013. URL: http://www.realmofracket.com/.

17 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

18 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How
to Design Programs. Second Edition. MIT Press, 2001–2018. URL: http://www.htdp.org/.

19 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. The
Structure and Interpretation of the Computer Science Curriculum. Journal of Functional
Programming, 14(4):365–378, 2004.

20 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,
Jay McCarthy, and Sam Tobin-Hochstadt. The Racket Manifesto. In First Summit on Advances
in Programming Languages, pages 113–128, 2015.

21 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzi-
lay, Jay McCarthy, and Sam Tobin-Hochstadt. A Programmable Programming Language.
Communications of the ACM, 61(3):62–71, February 2018.

22 R. Findler and M. Felleisen. Contracts for higher-order functions. In International Conference
on Functional Programming, pages 48–59, 2002.

23 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishna-
murthi, Paul Steckler, and Matthias Felleisen. DrScheme: A programming environment for
Scheme. Journal of Functional Programming, 12(2):159–182, 2002.

24 Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich, and Matthias
Felleisen. Catching bugs in the web of program invariants. In Conference on Programming
Language Design and Implementation, pages 23–32, 1996.

25 Matthew Flatt. Composable and Compilable Macros: You Want it When? In International
Conference on Functional Programming, pages 72–83, 2002.

26 Matthew Flatt. Submodules in Racket: you want it when, again? In Generative Programming
and Component Engineering, pages 13–22, 2013.

27 Matthew Flatt. Binding As Sets of Scopes. In Symposium on Principles of Programming
Languages, pages 705–717, 2016.

https://beautifulracket.com/
http://www.realmofracket.com/
http://www.htdp.org/


R. Culpepper, M. Felleisen, M. Flatt, and S. Krishnamurthi 5:19

28 Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. Macros that
Work Together: Compile-time bindings, partial expansion, and definition contexts. Journal of
Functional Programming, 22(2):181–216, March 2012.

29 Matthew Flatt and Matthias Felleisen. Cool Modules for HOT Languages. In Conference on
Programming Language Design and Implementation, pages 236–248, 1998.

30 Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias Felleisen. Pro-
gramming Languages as Operating Systems (or, Revenge of the Son of the Lisp Machine). In
International Conference on Functional Programming, pages 138–147, September 1999.

31 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and Mixins. In
Symposium on Principles of Programming Languages, pages 171–183, 1998.

32 Timothy P. Hart. MACROS for LISP. Technical Report 57, MIT Artificial Intelligence
Laboratory, 1963.

33 Paul Hudak. Modular Domain Specific Languages and Tools. In Fifth International Conference
on Software Reuse, pages 134–142, 1998.

34 Richard Kelsey and Jonathan Rees. A Tractable Scheme Implementation. Lisp and Symbolic
Computation, 5(4):315–335, 1994.

35 Eugene E. Kohlbecker. Syntactic Extensions in the Programming Language Lisp. PhD thesis,
Indiana University, 1986.

36 Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. Hygienic
Macro Expansion. In Symposium on Lisp and Functional Programming, pages 151–161, 1986.

37 Eugene E. Kohlbecker and Mitchell Wand. Macros-by-Example: Deriving Syntactic Transfor-
mations from their Specifications. In Symposium on Principles of Programming Languages,
pages 77–84, 1987.

38 Shriram Krishnamurthi. Linguistic Reuse. PhD thesis, Rice University, 2001.
39 Shriram Krishnamurthi, Matthias Felleisen, and Bruce F. Duba. From Macros to Reusable

Generative Programming. In International Symposium on Generative and Component-Based
Software Engineering, pages 105–120, 1999.

40 Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. A Visual En-
vironment for Developing Context-Sensitive Term Rewriting Systems. In Rewriting Techniques
and Applications, pages 2–16, 2004.

41 Daniel Patterson and Amal Ahmed. Linking Types for Multi-Language Software: Have Your
Cake and Eat It Too. In Summit on Advances in Programming Languages, pages 12:1–12:15,
2017.

42 Guy Lewis Steele Jr. Common Lisp – The Language. Digital Press, 1984.
43 Gerald L. Sussman and Guy Lewis Steele Jr. Scheme: An interpreter for extended lambda

calculus. Technical Report 349, MIT Artificial Intelligence Laboratory, 1975.
44 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed

Scheme. In Symposium on Principles of Programming Languages, pages 395–406, 2008.
45 Martin P. Ward. Language Oriented Programming. Software Concepts and Tools, 15:147–161,

April 1994.

SNAPL 2019


	Macros and Domain-Specific Languages
	The Lisp and Scheme Pre-history
	DSLs Require More than Bunches of Macros
	Ambitious Beginnings
	From S-expressions to Syntax Objects
	The Vocabularies of Micros
	Languages for Semantic Modules

	Languages From Syntactic Modules
	Syntax Done Properly With Parsing Macros
	DSL Creators Need Still More Than Modular, Parsing Macros

