
A Golden Age of Hardware Description Languages:
Applying Programming Language Techniques to
Improve Design Productivity
Lenny Truong
Stanford University, USA
lenny@cs.stanford.edu

Pat Hanrahan
Stanford University, USA
hanrahan@cs.stanford.edu

Abstract
Leading experts have declared that there is an impending golden age of computer architecture. During
this age, the rate at which architects will be able to innovate will be directly tied to the design and
implementation of the hardware description languages they use. Thus, the programming languages
community stands on the critical path to this new golden age. This implies that we are also on the
cusp of a golden age of hardware description languages. In this paper, we discuss the intellectual
challenges facing researchers interested in hardware description language design, compilers, and
formal methods. The major theme will be identifying opportunities to apply programming language
techniques to address issues in hardware design productivity. Then, we present a vision for a
multi-language system that provides a framework for developing solutions to these intellectual
problems. This vision is based on a meta-programmed host language combined with a core embedded
hardware description language that is used as the basis for the research and development of a sea of
domain-specific languages. Central to the design of this system is the core language which is based
on an abstraction that provides a general mechanism for the composition of hardware components
described in any language.

2012 ACM Subject Classification Hardware → Hardware description languages and compilation

Keywords and phrases Hardware Description Languages

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.7

Funding The authors would like to thank the DARPA DSSoC program (contract # FA8650-18-
2-7861), the AHA and SystemX affiliate programs, and Intel’s Agile ISTC for supporting this
work.

Acknowledgements The authors would like to thank the anonymous reviewers and Will Crichton
for providing feedback on paper drafts. They would also like to thank their colleagues at Stanford,
particularly members of the HardwarePL Reading Group and the AHA Agile Hardware Center, as
many of the ideas in this paper are the direct or indirect result of the many intellectual discussions
that they have collectively participated in. Finally, the authors would like to thank the organizers of
SNAPL for creating a venue for visionary papers on programming languages.

© Lenny Truong and Pat Hanrahan;
licensed under Creative Commons License CC-BY

3rd Summit on Advances in Programming Languages (SNAPL 2019).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lenny@cs.stanford.edu
mailto:hanrahan@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 A Golden Age of Hardware Description Languages

1 Introduction

Turing award winners John Hennessy and David Patterson recently declared that we are
on the cusp of a new golden age of computer architecture [29, 30]. Current trends in
silicon manufacturing are signaling the end of Moore’s law and Dennard scaling. This,
combined with the inherent inefficiencies in general-purpose processor design, indicates that
new innovations in computer architecture will come from the design of domain-specific
architectures. The recent proliferation of application accelerators, such as Apple’s neural
engine for the A12 and Google’s Tensor Processing Unit, support the idea that the hardware
community is transitioning to specialized chip design. This shift signals a new golden age
because researchers have an opportunity to develop radically different architectures rather
than incremental improvements to existing processor designs.

Domain-specific chips necessarily target smaller markets which implies that design teams
will become smaller and demand more of their tools in order to be productive. This
indicates that we are also on the cusp of a new golden age of hardware description languages
(HDLs) because hardware designers are actively seeking radically new technologies that will
dramatically reduce design time and cost. A major impediment to design productivity is the
fact that the hardware ecosystem is a monoculture comprised of a few chip designs from a
small number of manufacturers. It is essential that the hardware community shifts towards a
diverse ecosystem of easily accessible intellectual property blocks that can be composed to
construct new chip designs. Underlying this shift will be advances in HDLs that promote the
proliferation of hardware libraries.

The development of HDL abstractions that promote reuse, correctness, and performance
represents the main challenge for this new golden age of HDLs. Fortunately, the programming
languages (PL) community has enjoyed a rich history of success in developing techniques to
address these issues. HDL researchers have already started to tackle the reuse problem by
applying standard software programming language techniques such as meta-programming,
polymorphism, and abstract data types [4, 11]. Evidently HDL researchers stand to benefit
greatly from the lessons learned by their software language counterparts.

This paper identifies three problem domains that lie at the intersection of programming
languages and hardware: language design, compiler infrastructure, and formal methods. For
those unfamiliar with the hardware design process or HDLs, Section 2 covers the essential
concepts required to understand the intellectual challenges discussed in Section 3. Section 4
presents a vision of a multi-language system for constructing hardware that is designed to
address these intellectual challenges. With this impending golden age of HDLs, it is an
exciting time to be interested in programming languages and hardware.

2 Background

A hardware description language (HDL) is an instance of a programming language that has
been designed to provide abstractions for describing circuits. This paper will focus on the
discussion of digital hardware, where circuits are described as logic operating on discrete,
binary signals. Digital hardware can be further divided into two categories: synchronous and
asynchronous. In a synchronous circuit, state changes are synchronized by a clock signal.
In contrast, asynchronous circuits can contain state elements that change at any time. A
majority of modern digital designs are synchronous, but the increasing demand for efficiency
has renewed interest in asynchronous designs or hybrid models such as globally asynchronous,
locally synchronous [58]. A digital HDL is defined to be expressively complete if it can be
used to express both synchronous and asynchronous designs.

L. Truong and P. Hanrahan 7:3

inputs outputsCombinational
Logic

State

Figure 1 An abstract depiction of a sequential logic circuit constructed as the composition of
combinational logic with state. Notice that the outputs could depend on the inputs, implying that
the circuit could describe a Mealey machine [43]. Depending on the mechanism chosen for storing
state, the circuit could be synchronous or asynchronous. See Section 2.1 for more details.

2.1 Digital Design
In digital circuit theory, combinational logic refers to circuits where the output is a pure and
total function of the inputs. In contrast, sequential logic refers circuits where the outputs are
dependent on the sequence of past inputs. Figure 1 depicts the canonical design pattern for
using combinational logic circuits composed with state to construct sequential logic circuits.
Sequential logic circuits are used to implement finite-state machines (FSMs), a fundamental
component of building digital systems.

When discussing FSMs in the context of hardware design, it is important to recognize
the distinction between Mealey [43] and Moore [45] machines. For a Mealey machine, the
output of the circuit is a function of the state and the inputs, while for a Moore machine, the
output of the circuit is purely dependent on the state. The differences between these classes
of FSMs are more pronounced in hardware than in software because they exhibit different
timing characteristics. When using registers to store state, a Moore machine can be viewed
as a purely synchronous entity where changes to the state and output values are triggered
by a clock, while a Mealey machine can exhibit asynchronous behavior where output values
immediately respond to changes to input values. An expressively complete HDL will be able
to describe and compose both Moore and Mealey machines.

2.2 Verilog
The Verilog language is the dominant HDL used in practice today [23]. The language was
originally developed as a commercial verification and simulation product [24] and was later
adopted as a basis for logic synthesis. As a result, the semantics of the language are defined
in terms of a hardware simulation being executed as a software program [57]. The design
of the language is directly inspired by C, exhibiting many of the same features including a
preprocessor, control flow, and operators. Like C, Verilog has become the lingua franca of
the HDL ecosystem and is used as the common interchange format for design tools.

The core of Verilog’s semantics is based on a module abstraction which shares many
similarities to function abstraction from software languages. A module has an interface and
a definition. An interface is a set of typed ports. A port is similar to a function argument
or return value and represents a named entity that is used to consume or produce data. A
definition is a list of statements that describe the module behavior using various language
features such as the wiring and module instancing operators. Verilog designs are comprised
of hierarchically composed modules that are simulated using a dataflow execution model.
Figure 2 shows an edge detector FSM written in Verilog.

SNAPL 2019

7:4 A Golden Age of Hardware Description Languages

1 module edge_detector (input in , output out , input clk);
2 localparam A=0, B=1, C=2;
3
4 reg [1:0] state , // Current state
5 nextState ; // Next state
6
7 always @(posedge clk) begin
8 if (reset) begin
9 state <= A; // Initial state

10 end else begin
11 state <= nextState ;
12 end
13 end
14
15 always @(*) begin
16 nextState = state;
17 out = 0;
18 case (state)
19 A : if (in) nextState = C;
20 else nextState = B;
21 B : if (in) begin
22 out = 1;
23 nextState = C;
24 end
25 C : if (~in) begin
26 out = 1;
27 nextState = B;
28 end
29 default : begin
30 out = 1’bX;
31 nextState = 3’bX;
32 end
33 endcase
34 end
35 endmodule

Figure 2 Verilog implementation of an edge detector FSM adapted from the University of
Washington CSE370 course materials [20]. The circuit has two inputs and one output and is designed
as a Mealey machine where the output is 1 if the current value of in is the inverse of the previous
value of in (i.e., the input is changing from 1 to 0 or from 0 to 1). Line 1 declares the module name
and interface. The ports have an implicit width of 1 bit and are qualified with a direction input or
output. Line 2 declares a set of constants that are used to abstract the encoding of the FSM states.
Lines 4 and 5 declare variables to hold the current and next state. Lines 7-13 describe the state
update logic inside a Verilog always block. This block of code defines a procedure to run when a
posedge clk event occurs. That is, on a positive clock edge, update or reset the state variable.
Lines 15-34 define another always block that is sensitive to changes to any input signal, denoted
by the @(*). This means that if any input value changes, this block of code will fire. The block
encodes the combinational logic for computing the output and next state values as a function of the
input and current state values. Because the second always block is sensitive to any input change,
the semantics are defined asynchronously. Contrast this with the first always block which enforces
the state updates to be synchronous by only executing on the positive edge of the clock. On lines
30 and 31, the values of out and nextState are assigned the value X to explicitly indicate they are
undefined and can be any value. See Section 2.2 for more details.

L. Truong and P. Hanrahan 7:5

1 acc1 :: Stream Word -> Stream Word
2 acc1 in = out
3 where
4 out = (delay out 0) + in
5
6 -- input -> current state -> (new state , output)
7 acc2 :: Word -> Word -> (Word , Word)
8 acc2 in s = (s’, out)
9 where

10 out = s + in
11 s’ = out

Figure 3 An example of two mechanisms for encoding state in a Haskell embedded HDL adapted
from the Clash documentation [39]. Both functions describe an accumulator architecture that stores
a running count of the input values over time. The function acc1 shows the first approach which
is based on a Stream data structure with a delay operator. The delay operator returns the input
stream with the values shifted by one cycle. The second argument to delay is used to specify the
first value of the stream. The function acc2 uses a different approach where the current state is
passed as an argument and the next state is returned as an output. See Section 2.3 for more details.

2.3 Functional HDLs
HDL development has a long tradition in the functional languages community [46]. Functional
HDLs leverage the idea that a pure function can be used to model combinational logic. The
fundamental problem these languages face is integrating the concepts of time and state in
order to enable the description of sequential logic.

µFP [55] and Daisy [35] both introduced a technique based on reactive programming
where a stream data structure is used to describe circuits where the output can depend on
the history of the inputs. µFP extends the FP language with a recursively defined µ operator
which takes a function and produces a new function with internal state. The essence of the
µ operator is that it supplies the current value of the state as an input to the function, and
it uses an output of the function to set the next value of the state. Daisy uses a different
approach by modeling sequential logic using recursive equations. Both these approaches
required the development of a new language in order to implement their ideas. The designers
of Clash [39] recognized that Haskell’s lazy evaluation can be used to construct infinite
streams, indicating that it could serve as a host for an embedded HDL. Figure 3 shows how
Haskell’s semantics enable the description of sequential logic circuits.

One interesting technique applied to functional HDLs is the use of combinators to describe
circuit structure. Hydra [50] showed that a recursive, stream-based abstraction enabled the
use of higher-order functions to capture structural patterns. Lava [11] extended the use of
recursive data types with the ability to describe general circuit networks rather than just
tree-like structures. This technique provides powerful facilities for code reuse by enabling
the description of circuits as a regular pattern of components. In practice, this approach has
proved particularly useful when applied to the problem of circuit layout [56].

2.4 Term Rewriting Systems
Another lineage of work [32] has explored the application of term rewriting systems (TRS) [52]
to the description of hardware. In these systems, circuits are described as a set of rewrite
rules which are applied to the inputs and state values to produce the outputs and next

SNAPL 2019

7:6 A Golden Age of Hardware Description Languages

1 module mkCounter (Counter);
2 Reg #(Bit #(8)) value <- mkReg (0);
3
4 method Bit #(8) read ();
5 return value;
6 endmethod
7
8 method Action load(Bit #(8) newval);
9 value <= newval ;

10 endmethod
11
12 method Action increment ();
13 value <= value + 1;
14 endmethod
15 endmodule

Figure 4 Implementation of a synchronous counter adapted from the Bluespec tutorial [12] with
the module interface specification omitted. Line 2 declares an 8-bit register named value. Lines 4-14
define the implementation of the read, load, and increment methods which define the behavior of
the module. Notice that the compiler must handle the data race between load and increment on
value. See Section 2.4 for more details.

state values. An important quality of TRS is that they model the non-determinism and
concurrency that are intrinsically present in hardware. For example, a conflict could occur
when two rules match the same input data and try to update the same state element. The
development of schemes for detecting and arbitrating conflicts represents the main intellectual
challenge for these systems. Figure 4 shows a synchronous counter written in Bluespec [47],
an established HDL based on TRS.

2.5 High-level Synthesis

High-level synthesis (HLS) is a technique that is broadly defined as compiling general software
programs to hardware [65]. This paper will eschew the use of the term HLS due to the
ambiguity of what is considered high-level. For example, a recent survey evaluated HLS
tools using benchmarks written in C [46]. However, the PL community would consider C
to be a low-level language. Instead, this paper will use the concept of the virtual machine
abstraction to encompass the languages used as input to HLS systems. Languages based
on a virtual machine abstraction provide some notion of unbounded resources such as an
infinite register space. Section 3.1.3 discusses this in more detail.

A hardware compiler for a general purpose programming language relies on a strategy for
mapping a program that may be unbounded in time and space into a finite set of resources.
Typically this involves exploring the trade-offs between scheduling computation in space
or time. If the compiler can determine parallelism in some computation, this logic can be
mapped into concurrently executing hardware modules. However, data dependencies, finite
resources, and suboptimal cost models complicate the task for larger applications. The
compiler must use heuristics to schedule computation into the time dimension and insert
the requisite logic to orchestrate the sequencing of the computation. Figure 5 shows a
synchronous counter implemented in SystemC [22], a subset of the C language used for HLS.

L. Truong and P. Hanrahan 7:7

1 SC_MODULE (counter) {
2 sc_in_clk clock;
3 sc_in <bool > reset;
4 sc_out <sc_uint <4> > counter_out ;
5
6 sc_uint <4> count;
7
8 void incr_count () {
9 if (reset.read () == 1) {

10 count = 0;
11 counter_out .write(count);
12 } else {
13 count = count + 1;
14 counter_out .write(count);
15 }
16 }
17
18 SC_CTOR (counter) {
19 SC_METHOD (incr_count);
20 sensitive << reset;
21 sensitive << clock.pos ();
22 }
23 };

Figure 5 Example of a 4-bit counter defined in SystemC adapted from EDAplayground [1]. Lines
2-4 declare the interface of the module. Line 6 declares an internal state variable. Lines 8-16 define
a method incr_count which implements the behavior of the counter using the SystemC data types.
Notice that input ports are read using the read method and outputs are written using the write
method. The rest of the body of the definition is interpreted as normal C code. Lines 18-22 define a
constructor for the counter object and is mainly responsible for defining the sensitivity of the module
to the reset input as well as the positive edge of the clock input. See Section 2.5 for more details.

3 Intellectual Challenges

This section divides the concerns of HDL research into three intellectual domains: language
design, compiler infrastructure, and formal methods. Each of these domains represents a
subset of a more general research area that is of interest to the broader PL community.

3.1 Language Design
The general discipline of programming language design revolves around the development
of abstractions. A language designer will employ abstractions to enable the user to ignore
certain details about a program. Well-designed abstractions make the development and
maintenance of programs easier. In some cases, such as in domain-specific languages (DSLs),
abstractions also serve as a basis for the development of compiler optimizations. In this
impending golden age, the main challenge for HDL designers will be devising and composing
abstractions that enable code reuse, improve correctness of programs, and that can be used
to construct designs that produce high quality results from a compiler.

There are three major levels of abstractions employed in modern HDL design. The
lowest level is the circuit abstraction where hardware is modeled as a graph of connected
components. The next level is the register-transfer abstraction where hardware is described

SNAPL 2019

7:8 A Golden Age of Hardware Description Languages

as the computation on data flowing between registers. The highest level is the virtual machine
abstraction where hardware is modeled as a set of instructions for an abstract machine. Many
HDLs incorporate abstractions from multiple levels. For example, the Verilog language is
based on the circuit abstraction but also provides various facilities for describing hardware
using the register-transfer abstraction.

3.1.1 Circuit Abstraction
In the circuit abstraction, hardware is described as a graph of connected components. The
abstraction consists of three primitive concepts: circuits, ports, and wires. A circuit has an
interface and a definition. An interface consists of a set of ports. A port is a named entity
that is used to consume or produce data. A definition contains a set of circuit instances and
wires. A wire connects two ports. In the hardware community, language features based on
the circuit abstraction are described as structural. For example, a design written in structural
Verilog will only use the language features for defining, instancing and wiring up Verilog
modules. Purely structural designs are called netlists.

The dominant structural HDL in use today is Verilog. Chisel [4] and Magma [27] are
examples of an emerging subclass of structural languages called Hardware Construction Lan-
guages. These languages embed the circuit abstraction into a general purpose programming
language which provides a mechanism for meta-programming circuit definitions. This ap-
proach exhibits a distinct advantage over Verilog; moving features related to parametrization
and code generation to the host language simplifies the precise specification of the HDL.

In theory, a purely structural HDL is expressive enough to capture any real world digital
hardware design. This is argued by the fact that the physical result from manufacturing
hardware is always a component that is composed of connected sub-components, recursing all
the way down to the transistors. Based on this fact, we posit that the circuit abstraction is the
fundamental primitive upon which all other HDL abstractions can be constructed. Remark
that the abstraction is agnostic as to whether the behavior of the circuit is synchronous or
asynchronous which indicates that it is expressively complete.

The main challenge for the circuit abstraction is determining whether the connection
between two ports is semantically correct with respect to the intended behavior of the design.
Most HDLs attach a notion of direction to ports which enables the use of a type system to
check that only an output can be connected to an input. An interesting research direction
moving forward will be increasing the expressiveness of the types used for circuit ports.
Ideally these types are able to capture the semantics of the protocols used to communicate
between two components. Section 3.3.2 provides a more detailed discussion on how session
types might be used to address this issue.

An interesting quality of the circuit abstraction is that, while it is based on the low-level
details of hardware design, it can be used to compose black box modules at any level in
the design hierarchy. This makes it a compelling basis for the development of hardware
libraries. As discussed in Section 2.3, functional HDLs with a circuit abstraction can leverage
combinator patterns to construct reusable circuit structures. Further research on language
facilities that enable the construction of hardware libraries based on the circuit abstraction
will be an essential component of this new golden age of HDLs.

3.1.2 Register-Transfer Abstraction
The register-transfer abstraction models hardware as computation on data flowing between
registers. Registers are defined as primitive data storage elements that update their values
based on a clock signal. Because register semantics are intrinsically tied to a clock, this

L. Truong and P. Hanrahan 7:9

abstraction is concerned with the description synchronous digital circuits. However, it
important to note that this abstraction could be composed with other abstractions for
describing asynchronous logic. In the hardware community, languages using the register-
transfer abstraction are described as register-transfer level (RTL) languages.

A structural HDL that includes a notion of a register provides a register-transfer ab-
straction; the computation on data flowing between registers is described using circuit
instances and connections. However, the register-transfer level of abstraction encompasses a
broader set of concepts such as functions and operators. In practice, most HDLs combine
the register-transfer abstraction with the circuit abstraction by extending the concept of a
circuit definition to include constructs such as expressions, statements, and procedures. This
technique raises the level of abstraction by removing the need to explicitly define, instance,
and wire up register circuits. Instead registers are treated as language primitives that behave
similarly to variables in a standard software programming language.

The fundamental issue in RTL language design is the precise choice of semantics for
abstracting the concept of a register. For example, the Verilog always block provides a
procedural abstraction for describing the simulation behavior of a component. To model a
register, the designer uses variables to store data across clock events. The Verilog specification
is explicit in stating that a variable does not imply a hardware register [57], instead it is
left to the synthesis tool to determine how the simulation behavior of an always block can
be mapped into an implementation using concrete hardware registers. This design choice
raises the level of abstraction by enabling the user to ignore details about how the program
is concretely implemented in hardware. However, it also removes the ability for the user to
explicitly specify the registers used in the synthesized design. In practice, this choice can
result in a mismatch between the results of register synthesis and the designer’s intent. To
remedy this, Verilog design teams enforce style guidelines that restrict the usage of always
blocks such that the synthesis results are transparent. An alternative design could use
qualifiers to explicitly declare variables that should be hardware registers.

Choosing how to map the concept of a variable to a register is a fundamental design
issue for all imperative RTL HDLs. A related issue is reconciling the synchronous update
semantics of registers with the asynchronous update semantics of standard variables. For
example, given standard imperative evaluation semantics, writing to two different variables in
a procedure would happen at different steps in the evaluation. However, if both variables are
mapped to hardware registers, they would be updated at the same time in the synthesized
hardware. One design choice would be to explicitly model the synchronized temporal update
semantics of a register variable in the evaluation semantics of the language, ensuring that the
user’s model of the computation exactly matches the behavior of the synthesized hardware.

Verilog’s non-blocking assignments provide the capability to explicitly model synchronous
storage. In Verilog, a blocking assignment is executed before the subsequent statements in a
block of sequential code. In contrast, a non-blocking assignment does not block procedural
flow and is performed near the end of a time-step. When combined with clock events, the
non-blocking assignment can be used to model the synchronous update semantics of hardware
registers by delaying variable updates until the end of a clock period.

The interplay between these two forms of assignments comprise a major component of the
complexity of the Verilog specification. One might think that the semantics of non-blocking
assignment could be simply to delay the evaluation until all blocking assignments have
been completed. However, the evaluation of a non-blocking assignment will trigger an event
on the variable being assigned, which in turn may trigger an event involving a blocking
assignment. To handle this, Verilog’s semantics include a loop for each time step that moves

SNAPL 2019

7:10 A Golden Age of Hardware Description Languages

between blocking and non-blocking assignments until there are no events left to process.
The complexity of these evaluation semantics can make it difficult to reason about a Verilog
design involving both forms of assignment. In practice, Verilog design teams will follow style
guides that enforce the usage of assignments in a reasonable to understand manner.

The functional HDLs described in Section 2.3 demonstrate two more techniques for
abstracting the concept of a register. One approach is to encode the state in the interface of
a function. This is done by describing a circuit as a function that consumes the current state
as one of its inputs and produces the next state as one of its outputs. A function of this
form describes the transition function of a finite-state transducer (FST), providing a basis
for a simple hardware synthesis algorithm where the current state is stored in registers. This
technique necessarily implies a synchronized state update because the next values of the
state are produced at the end of the evaluation of a function. There is no means to specify a
state update at any other time.

The second approach uses a stream-based abstraction to encode state. The inputs and
outputs of a function are a Stream data structure with a special delay operator that allows
the user to look into the past values of a Stream. Given this operator, the user may describe
a circuit where the values of an output stream depend on the values of an input stream
at a prior clock cycle. The simplest compilation algorithm for this approach will insert
registers to implement the behavior specified by the delay operator. This approach provides
a convenient abstraction for working with the past values of the input, but prevents the user
from explicitly managing state. For example, the output of a circuit could depend on some
computation on a window values of the input. In this case, it may be most efficient to store a
partial computation on the input value as the state, but the stream-based abstraction forces
the user to describe the computation as a function of the delayed input stream values. The
compiler is then responsible for discovering the fact that the intermediate computation can
be stored as opposed to storing just the stream values and redoing computation.

Term rewriting systems for hardware [32] abstract registers by mapping terms to syn-
chronous storage elements and rewrite rules to combinational logic. This approach shares
many similarities to the functional HDLs that encode state in the interface of a function.
However, TRS faces a unique challenge because the technique introduces the possibility of
conflicts during state updates. Two rules may fire and try to update the same register which
means the compiler must be sophisticated enough to detect conflicts and insert arbitration
logic when possible. This issue is compounded when considering the modular composition of
rules. The compiler could schedule the rules for each module separately, or it could lift the
rules into a single top-level module which is then scheduled as a single unit. Prior work has
shown that both approaches could be viable depending on the input design [36]. Minimizing
the overhead of the compiler generated logic for scheduling rewrite rules is the key challenge
for applying term rewriting systems as a register-transfer abstraction.

Devising abstractions for FSMs is another essential design problem for RTL languages.
For example, Verilog provides abstractions that enable logic synthesis to generate optimized
implementations of FSMs. A key issue for FSM synthesis is choosing the best representation
for state. Consider a design where the state of an FSM is being consumed by a circuit
performing an arithmetic operation. In this case, using a non-binary state encoding would
require the insertion of decode logic. On the other hand, if the target platform is an FPGA,
a one-hot state encoding often maps more efficiently to a lookup table architecture. As
shown in Figure 2, Verilog designers can use parameters to abstract the encoding of the state.
Control logic dispatches on the abstract parameters, and the concrete parameter values can
be easily changed or selected by an automated tool.

L. Truong and P. Hanrahan 7:11

Related to the abstraction of state encoding is the synthesis of control logic for the
FSM. The canonical pattern for describing a Verilog FSM, shown in Figure 2, uses a case
statement that dispatches on a state variable. The semantics of the Verilog case statement
introduces complexity for the synthesis tool because cases are not necessarily mutually
exclusive. Furthermore, the tool must also synthesize logic to handle behavior for cases that
have not been listed. For example, consider a binary encoded FSM with 12 states. The
state will be stored in a 4-bit quantity that is used to dispatch a case statement. Without
guidance, the synthesis tool must be sophisticated enough to prove that there are only 12
possible values of the 4-bit quantity, otherwise it must insert extra logic to handle the illegal
values. The SystemVerilog language avoids this issue by introducing the unique qualifier for
indicating that all legal cases have been listed and are mutually exclusive.

One major issue in the canonical design pattern for Verilog FSMs is that for large FSMs
with complex transitions, the description exhibits a serious lack of structure. For example,
a simple SDRAM controller in Verilog contains 25 states with the entire FSM transition
behavior defined in a single case statement [21]. Understanding the code requires the
reader to follow large jumps between arbitrary cases. This design pattern incurs a significant
cognitive load on the designer who must manage a large amount of complex temporal behavior
to read the code. There is a direct relation between the use of large case statements to the
use of goto statements, and we consider this design pattern to be similarly harmful [19].

It is important to remark that this program structuring issue is not restricted to the
description of hardware FSMs, but is in fact an instance of a more general problem for
imperative languages. Fortunately, the software community has found a promising solution
based on coroutines [10]. Recent work is investigating the application of this technique to
hardware FSMs by restricting the semantics of a coroutine so it can be precisely compiled to
a circuit [60]. The main challenge is restricting the coroutine semantics to be only able to
describe FSMs while still enabling the use of coroutine composition.

The essence of this technique is to augment the semantics of the Verilog always block
to describe a coroutine. The designer may suspend the procedure in arbitrary locations to
incorporate more structure in the code. For example, the sequencing of two states can be
achieved by separating the logic with a yield statement, and the looping of a state can
be described using a while loop containing a yield. Compare this to the case statement
pattern where the structure of sequences and loops are not explicit in the flat list of cases.

A related issue is the description of the sequential composition of FSMs. Using just
the circuit abstraction composed with a basic RTL abstraction, the sequential composition
of distinct FSM circuits is achieved by using wires between the two circuits. These wires
are used to relay signals indicating that an FSM should start or that an FSM has ended.
In order to abstract away these wires and the accompanying control logic, the creators of
Lava developed the Pace [13] language. Blarney, a modern variant Lava, provides a similar
concept in the form of Recipes [44]. The developers of Bluespec also created similar language
called STMTFSM [48]. Underlying all these languages is a notion of modular, sequential
composition of program fragments. Early work on the Silica language [60] is exploring the
use of coroutine composition as another abstraction for modular, sequential composition.

3.1.3 Virtual Machine Abstraction
The virtual machine abstraction models hardware as a set of instructions for an abstract
machine. This technique hides certain details found in lower levels of abstraction such as
the finiteness of resources. For example, the C language provides an abstraction over a
virtual machine that can store an infinite number of variables. In order to synthesize a

SNAPL 2019

7:12 A Golden Age of Hardware Description Languages

hardware implementation of a C program, the compiler must perform a variant of register
allocation that maps variables to registers depending on a set of constraints provided by the
user. Historically, this approach has been mostly applied to the synthesis of hardware from
traditional software languages such as C, but an emerging body of work is exploring the
application of this technique to software DSLs.

The major advantage of this approach is that it greatly improves the productivity of the
user by enabling them to design hardware as if they were developing software. However, in
practice, the user is required to have deep knowledge of the hardware they are trying to
generate in order to achieve the desired performance [46]. This negates much of the advantage
of using a traditional software language because instead of simply reasoning about a software
program, the user must break the virtual machine abstraction and reason about how the
program will be mapped to hardware. The central challenge for designing languages based
on the virtual machine abstraction is to find what aspects of hardware can be abstracted in
order to improve productivity without weakening the performance of the compiler.

The problem of compiling a general software program into hardware shares many of
qualities found in the problem of automatically parallelizing a general software program.
Fortunately, recent work has mirrored the domain of parallel computing by leveraging DSLs
to facilitate better compiler mappings to hardware. DSLs are able to provide productivity
and performance by leveraging domain-specific abstractions.

For example, recent work on Halide, a DSL for high performance array and image pro-
cessing code, extended the compiler to support hardware synthesis by introducing directives
for hardware-specific optimizations [53]. This approach maintains the virtual machine ab-
straction for describing image processing algorithms while giving the user a level control over
how the compiler synthesizes hardware. While this technique still requires the user to think
about the hardware they are designing, it avoids changing the original source input in order
to effect change in the compiler output. The main advantage of this approach is that the
user can achieve the desired synthesis results by guiding the compiler rather than relying on
optimizations based on heuristics.

The Spatial [38] DSL takes another approach to simplifying the problem by introducing
a virtual machine abstraction with an alternative design for memory. Instead of using
the uniformly accessible address space abstraction presented by standard CPUs, Spatial
programs explicitly interact with the memory hierarchy. This design choice is motivated
by the fact that a major challenge for compiling a general software program to hardware
is determining an optimal memory architecture. Spatial allows the user to explicitly set a
memory architecture using a template while still leveraging the compiler to schedule other
aspects of the computation. Spatial is an example of discarding the traditional virtual
machine abstraction used by most modern software languages and replacing it with a new
abstraction that is tailored to the problem of hardware compilation.

Underlying both the Halide and Spatial approaches is a technique that involves identifying
a key problem for the compiler and developing a language abstraction to simplify this problem.
Moving forward, researchers interested in developing HDLs based on a virtual machine
abstraction should explore techniques that balance the productivity of the user with the
quality of the hardware synthesized by the compiler.

3.2 Compiler Infrastructure
The proliferation of software languages based on LLVM [40] demonstrates the value of
shared compiler infrastructure for both industrial and academic purposes. For researchers,
LLVM provides a means for rapidly prototyping languages without having to implement

L. Truong and P. Hanrahan 7:13

standard compiler passes or create backends for standard architectures. Efforts to develop
common infrastructure for hardware compilers are underway and have elucidated key issues
when compared to their software compiler counterparts [34, 15]. There is a clear need for
the development of hardware-specific compiler passes. Optimization passes are of critical
importance because new ideas in HDLs will see no practical use unless they can be compiled
into high performance implementations.

While some standard compiler passes, such as constant folding, can be directly applied
to HDLs, there exists an entire class of passes that are specific to hardware. As an example,
hardware computations are always predicated in the sense that if a computation is mapped
to physical components, those components will be continuously executing. Conditional logic
is implemented using multiplexers on the flow of data. In order to simplify the lowering of
conditional logic, programs can be rewritten into single-static assignment form. In software,
leaving it in this form would incur a cost because instructions in a non-traversed branch
would always be executed. However, this is already the case for hardware, so leaving the
program description in this form incurs no cost. In fact, this simplifies the synthesis stage
of the compiler by enabling a one-to-one mapping from phi nodes to multiplexers. The key
challenge facing researchers interested in developing HDL compiler infrastructure will be
devising reusable, hardware-specific analysis and transformation passes.

Another impediment to design productivity is the development of software compilers
that target a novel architecture. For example, developing an extension to the RISC-V
ISA [3, 64] would require extending an existing compiler backend to target the new instructions.
This means that hardware design teams must include compiler experts, which in turn
indicates a need for the ability to automatically synthesize compiler backends for new
hardware architectures. The Tensilica processor generator [25] demonstrated the feasibility of
automatically generating a compiler that targets new instructions. However, this capability
required that the user conform to a fixed processor architecture. Future work should explore
extending this technique to support the extension of a broader class of architectures.

Given that many software compilers have converged on the ISA abstraction for backend
targets, it is essential that the HDL community converge on an ISA specification language that
is machine readable. Convergence would allow researchers to experiment with automatically
synthesizing compiler backends for a new ISA described using a standard input format.
ISP [7] is an older example of a processor specification language that could describe ISAs.
Early stage research on the Peak language [28] is exploring the use of smt-lib [9] to develop
a modern variant of ISP with formal semantics.

Finally, a critical issue facing hardware compiler developers is performance of the compiler
itself. For example, a recent paper [37] touting a new methodology for high productivity
hardware design reported that compiling their RTL design to an integrated circuit layout took
only 12 hours. This is an obvious bottleneck in the design space exploration process. Their
technique for reducing the runtime of the compiler was based on reducing the complexity
of place and route, a stage in the compiler where logical components of the design are
placed into physical space. Optimizing the place and route phase of hardware compilers
is just one opportunity for researchers interested in improving the runtime performance of
HDL compilers.

3.3 Formal Methods
Programming languages have long enjoyed an abundance of elegant theories that form the
basis of useful formal methods. In the style of Grothendieck [42], researchers working on
foundational theories have created a sea of techniques for developing practical solutions to

SNAPL 2019

7:14 A Golden Age of Hardware Description Languages

difficult problems. The recent development and proliferation of WebAssembly [26] demon-
strates the utility of designing a new language with formal specification in mind. Rather
than face the challenge of retrofitting formal methods to old language designs, researchers
in this new golden age of HDLs should leverage the opportunity to develop new languages
specifically designed for the application of advanced formal methods.

3.3.1 Execution Semantics
Formalizing the execution semantics of an HDL is essential requirement for the integration
with formal tools such as model checkers [14]. The major challenge is capturing the intrinsic
concurrency and parallelism in hardware. Process calculi [5], specifically with a notion of
time [6] present one approach. Real and discrete time could be used to describe the semantics
of analog and digital circuits respectively. One issue is the integration of real and discrete
time for the modeling of mixed-signal circuits. A similar issue is the modeling of synchronous
and asynchronous digital logic. Communicating sequential processes [31] are one technique
that have been applied to modeling of asynchronous circuits [62].

The existence of the circuit abstraction as an expressively complete primitive is reminiscent
of function abstraction from the domain of software languages. This raises the question as to
whether a core calculus can be constructed that captures the execution semantics of the circuit
abstraction in the same way that the lambda calculus [8] captures the semantics of function
abstraction. While function abstraction presents a compelling basis for the development
of this calculus, there are two key issues that must be addressed: circuits can hold state
and must have finite size. Contrast this with the basic definition of function abstraction
which can be used to describe infinite computation through recursion. A type system can
be used to enforce the finiteness of computation [49], which leaves the issue of managing
state. Section 2.3 discusses two techniques for encoding state in a functional HDL. One of
the key challenges with using these techniques is that it restricts the language to describing
synchronous circuits. An essential contribution to the community will be the development of
a state encoding mechanism that can capture both synchronous and asynchronous logic.

3.3.2 Type Systems
The fact that Verilog is the dominant HDL indicates that the hardware community has not
enjoyed the benefits of the latest advances in type systems. The consequences of this is
demonstrated by the fact that the ARM Advanced Peripheral Bus (APB) interface [41] uses
special prefixes in port names to indicate that they are part of the protocol. This requires
users to manage interface connections using name matching, which is considerably less safe
than what embedding this in the type system could offer.

One major issue is that the Verilog type system does not provide a concept of algebraic
data types. Introducing the concept of a finite size product type would enable the APB
interface specification to be defined as a tuple or record type rather than using a naming
convention. The use of a product type offers the same benefits to HDL designers as it does
to software developers. They are also an example of an abstraction without overhead [61]
because they can be compiled out of a design by flattening the types into their leaf elements.
Compare this to sum types which would require inserting extra logic into the generated design
to distinguish between variants. Despite this cost, sum types still provide the same useful
static guarantees as they do for software. They also provide a mechanism for abstracting away
the details of the control logic, which creates an opportunity for the compiler to synthesize
an optimized implementation.

L. Truong and P. Hanrahan 7:15

Another interesting avenue of research is the application of behavioral types [2], specifically
session types [33], to hardware interfaces. Hardware communication protocols exhibit many of
the same characteristics as the software protocols that session types have already been applied
to. The core problem will be weaving the session type semantics into HDL execution semantics.
Researchers interested in this problem should consider how the domain of hardware protocols
differ from more general software protocols, with the intention of finding opportunities to
make the problem simpler. One crucial aspect of hardware protocols is the use of magic
bit patterns to encode portions of the protocol. More generally, hardware protocols can
involve data-dependent communication. This reveals an opportunity for the application of
dependent type techniques to specify properties on the values of data moving through an
interface. While this is a generally difficult problem, restricting the domain to hardware
protocols might provide opportunities for practical applications of these ideas.

4 Vision: A Multi-Language System for Hardware Construction

A golden age of HDLs presents an opportunity to experiment with alternative HDL designs.
This section presents a vision for a multi-language system where a meta-programmed host
language is used to implement embedded DSLs for hardware construction. The multi-
language approach is directly inspired by Lua/Terra [17, 16, 18], a two-language system that
integrates a statically typed, low-level programming language with a dynamically typed,
high-level language. Much like software development, hardware design involves components
written in multiple languages. For example, a software model of a specific component could
be implemented in C and used by a test written in Verilog. Furthermore, the hardware
implementation of the module may be defined using Verilog generated by a Perl meta-program.

Rather than treat an HDL as a standalone language like Verilog, this vision adopts the
approach of embedding an HDL in a general purpose programming language. This vision
is based on a core structural embedded DSL that is used as a common compilation target
for a sea of DSLs each targeting various aspects of the hardware design process. Unifying
all aspects of the hardware design process into subsets of the same language reduces the
cognitive load on the hardware designer. They are only required to learn a single syntax and
integration via embedding enables DSLs to be composed without requiring glue code.

4.1 Meta-programmed Host Language
The vision of this multi-language system is based on a meta-programmed host language. The
extent to which it may be meta-programmed must enable the implementation of rich DSLs.
For example, Magma [27] uses Python’s metaclass features to embed a circuit abstraction, and
Silica [60] inspects the Python AST to compile coroutines to hardware finite-state machines.
The implementation of these DSLs require language support for meta-programming that
is much richer than simple preprocessing. A side-effect of this requirement is that the
meta-programming features of the host language will become meta-programming features for
the embedded DSLs.

A standard multi-stage programming approach is sufficient for supporting the flexible
code generation required for implementing hardware generators [51]. A hardware generator
is a program that consumes a set of parameters and produces an instance of a hardware
design [54]. Embedding an HDL in a meta-programmed host language enables hardware
generators to be implemented using standard meta-programming techniques. Applying the
technique of multi-stage programming to hardware generators is somewhat easier than in
the software domain because, in practice, the interaction between the meta-language and

SNAPL 2019

7:16 A Golden Age of Hardware Description Languages

the HDL is one directional. Compare this to Lua/Terra where control can be transferred
between both languages. In hardware generators, meta-programs construct fragments of
HDL programs, but the generated HDL code does not typically invoke code in the host
language. In theory this might be possible given a reconfigurable hardware system, but in
practice this is limited by the slow performance of hardware compilers. Improving compiler
performance could enable the construction of JIT compiler systems for hardware, which
could then leverage two way interaction between generator code and generated hardware.

One key issue is whether the host language is statically or dynamically typed. The
major trade-off is between productivity and correctness. A statically typed host language
would provide increased safety, which could be viable for large, complex systems. However,
a dynamically typed language would promote rapid design space exploration and provide
the flexibility required for more complex hardware generators. For example, generators in
dynamically typed languages can employ dynamically constructed types. Another important
issue is the cognitive load placed on the user by the type system. Hardware designers are not
experts in software engineering and therefore stand to benefit greatly from a type system that
is simple and easy to understand. Furthermore, the correctness of the generated hardware
design is of greater importance than the correctness of the generators used to construct the
design fragments. These requirements suggest that a system based on a dynamically typed
host language such as Python composed with a statically typed embedded DSL presents
a compelling solution that balances productivity and correctness. A ubiquitous language
like Python has the added benefit that many hardware engineers are likely to have already
encountered it for scripting purposes. Compare this to a language like Scala; while it provides
many compelling language features for building DSLs, it is highly unlikely that a hardware
engineer has encountered the language in their schooling or professional work.

4.2 The Core Structural DSL
After the host language, the second essential ingredient of the vision is an embedded DSL
that provides a structural circuit abstraction. The definition of this core DSL should be
simple and precise because many of the complexities of a traditional HDL will be offloaded
to other DSLs or the host language. As discussed in Section 3.1.1, a circuit abstraction is
expressively complete, which means that this structural DSL can serve as a common compiler
target for all other languages in the system. This design enables the structural abstraction to
be used to compose modules defined in different DSLs. This is achieved by performing staged
execution where in the final stage, all program fragments have been compiled to the core
DSL. During this final phase of execution, the user defines a program to structurally compose
the various components. Magma [27] and Chisel [4] are concrete examples of embedded
structural languages that could serve this purpose. An important requirement is that this
core language be formally specified, which then provides a consistent basis for the formal
specification of other DSLs in the system.

4.3 A Sea of Hardware DSLs
The combination of a host language with an embedded core structural HDL serves as the
basis for the research and development of other DSLs to address the intellectual challenges
discussed in Section 3. For example, recent work has used Magma [27] and Python as the
basis for developing the Peak language [28] for specifying processing elements. Peak supports
compilation to Magma, which can then be composed with other components written in
other DSLs such as a Silica [60], a DSL for describing hardware finite-state machines using

L. Truong and P. Hanrahan 7:17

coroutines. A major theme in this design is separation of concerns through separation of
languages. That is, the description of different hardware components may benefit from being
described using a different set of abstractions. If this is the case, these components can be
implemented using different DSLs and composed through a well-defined structural interface.

The aforementioned DSLs address issues specific to the design of concrete hardware.
This vision includes another class of DSLs that target accelerating specific applications. For
example, a DSL based on Numpy [63] could be used to compile numerical computation
algorithms into hardware circuits. While these languages should be designed primarily to
provide application specific abstractions to the user, they should also be designed to interop-
erate with the core structural DSL. This would enable code written in application oriented
DSLs to be integrated with libraries that generate harnesses for application accelerators. In
this case, a library routine could instance the compiled version of the algorithm and wire it
up to other components using the core structural DSL.

4.4 Verification
Because the host language is a general purpose programming language, it provides the
necessary facilities for performing verification tasks. Underlying this will be a connection
between general purpose code in the host language and circuits defined in the core structural
DSL. Recent work on fault [59] has explored solutions to this by developing an embedded
DSL that allows users to interact with circuits through a set of actions. A key advantage of
this approach is that it enables verification components, such as random number generation,
to be implemented as libraries in the host language. Also, the tests can be meta-programmed
in the same fashion as the hardware, which reduces verification cost through more flexible
testing infrastructure. Compare this approach to SystemVerilog, where the core language for
describing hardware was extended with abstractions specifically for verification such as a class
system and string data type. Overtime, this has resulted in feature creep and complexity in
the SystemVerilog specification. This is another example of the vision’s fundamental design
pattern based on decoupling features that are not hardware specific from the HDL.

5 Conclusion

The PL community stands on the critical path to a new golden age of computer architecture.
Fortunately, there is an abundance of intellectual challenges that indicate that we are on
the cusp of a new golden age of HDLs. This paper develops a vision for a multi-language
system for hardware construction that will provide the productivity gains required to induce
this new golden age of computer architecture. This is an exciting time to be a researcher
interested in PL and hardware.

References

1 A 4 bit up-counter with synchronous active high reset, 2009 (accessed April 5, 2019). URL:
https://www.edaplayground.com/x/3cf.

2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J Gay, Nils Gesbert, Elena Giachino, Raymond Hu, et al. Behavioral
types in programming languages. Foundations and Trends® in Programming Languages,
3(2-3):95–230, 2016.

3 Krste Asanović and David A Patterson. Instruction sets should be free: The case for risc-v.
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.

SNAPL 2019

https://www.edaplayground.com/x/3cf

7:18 A Golden Age of Hardware Description Languages

4 Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in a scala embedded
language. In Proceedings of the 49th Annual Design Automation Conference, pages 1216–1225.
ACM, 2012.

5 Jos CM Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2-
3):131–146, 2005.

6 Josephus Cornelis Maria Baeten and Cornelis Adam Middelburg. Process algebra with timing:
real time and discrete time. In Handbook of process algebra, pages 627–684. Elsevier, 2001.

7 M Barbacci, C Gordon Bell, and Allen Newell. ISP: A language to describe instruction sets
and other register transfer systems. Citeseer, 1972.

8 H.P. BARENDREGT. Chapter 1 - Introduction. In H.P. BARENDREGT, editor, The Lambda
Calculus, volume 103 of Studies in Logic and the Foundations of Mathematics, pages 3–21.
Elsevier, 1984. doi:10.1016/B978-0-444-87508-2.50009-5.

9 Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), volume 13, page 14, 2010.

10 Eli Bendersky. Co-routines as an alternative to state machines. https://eli.thegreenplace.
net/2009/08/29/co-routines-as-an-alternative-to-state-machines, 2009.

11 Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware design in
Haskell. In ACM SIGPLAN Notices, volume 34(1), pages 174–184. ACM, 1998.

12 Inc. Bluespec. BSV 101: DESIGNING A COUNTER Using the Bluespec Develop-
ment Workstation, 2009 (accessed April 5, 2019). URL: http://wiki.bluespec.com/Home/
Getting-Started/Tutorials.

13 K Claessen and M Sheeran. A slightly revised tutorial on lava: A hardware description and
verification system, 2007.

14 Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction.
ACM transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–1542,
1994.

15 Ross Daly, Lenny Truong, and Pat Hanrahn. Invoking and Linking Generators from Multiple
Hardware Languages using CoreIR. In Proceedings of the 1st Workshop on Open-Source EDA
Technology, 2018.

16 Zachary DeVito. Terra: Simplifying High-performance Programming Using Multi-stage Pro-
gramming. PhD thesis, Stanford University, 2014.

17 Zachary DeVito and Pat Hanrahan. The Design of Terra: Harnessing the best features of
high-level and low-level languages. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

18 Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: a multi-
stage language for high-performance computing. In ACM SIGPLAN Notices, volume 48(6),
pages 105–116. ACM, 2013.

19 Edgar Dijkstra. Edgar Dijkstra: Go To Statement Considered Harmful, 1968 (accessed February
6, 2019). URL: https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf.

20 Carl Ebeling. CSE370 - XV - Verilog for Finite State Machines (Spring 2010), 2010 (accessed
April 5, 2019). URL: https://courses.cs.washington.edu/courses/cse370/10sp/pdfs/
lectures/15-VerilogIIPrint.pdf.

21 Mike Field. Simple SDRAM Controller (Verilog Memory controller v0.1), 2014 (accessed April
5, 2019). URL: http://hamsterworks.co.nz/mediawiki/index.php/File:Verilog_Memory_
controller_v0.1.zip.

22 Frank Ghenassia et al. Transaction-level modeling with SystemC, volume 2. Springer, 2005.
23 Steve Golson and Leah Clark. Language Wars in the 21st Century: Verilog versus

VHDL–Revisited. In Synopsys Users Group (SNUG), 2016.

http://dx.doi.org/10.1016/B978-0-444-87508-2.50009-5
https://eli.thegreenplace.net/2009/08/29/co-routines-as-an-alternative-to-state-machines
https://eli.thegreenplace.net/2009/08/29/co-routines-as-an-alternative-to-state-machines
http://wiki.bluespec.com/Home/Getting-Started/Tutorials
http://wiki.bluespec.com/Home/Getting-Started/Tutorials
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://courses.cs.washington.edu/courses/cse370/10sp/pdfs/lectures/15-VerilogIIPrint.pdf
https://courses.cs.washington.edu/courses/cse370/10sp/pdfs/lectures/15-VerilogIIPrint.pdf
http://hamsterworks.co.nz/mediawiki/index.php/File:Verilog_Memory_controller_v0.1.zip
http://hamsterworks.co.nz/mediawiki/index.php/File:Verilog_Memory_controller_v0.1.zip

L. Truong and P. Hanrahan 7:19

24 Steve Golson, Gardner Hendrie, and Philip Moorby. Moorby, Phil (Philip Raymond) oral his-
tory, 2013 (accessed April 5, 2019). URL: https://www.computerhistory.org/collections/
catalog/102746653.

25 Ricardo E Gonzalez. Xtensa: A configurable and extensible processor. IEEE micro, 20(2):60–70,
2000.

26 Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
WebAssembly. In ACM SIGPLAN Notices, volume 52(6), pages 185–200. ACM, 2017.

27 Pat Hanrahan. magma, 2019 (accessed February 6, 2019). URL: https://github.com/
phanrahan/magma.

28 Pat Hanrahan. peak, 2019 (accessed February 6, 2019). URL: https://github.com/phanrahan/
peak.

29 John Hennessy and David Patterson. A new golden age for computer architecture: Domain-
specific hardware/software co-design, enhanced security, open instruction sets, and agile
chip development. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 27–29, June 2018. doi:10.1109/ISCA.2018.00011.

30 John L Hennessy and David A Patterson. A new golden age for computer architecture.
Communications of the ACM, 62(2):48–60, 2019.

31 Charles Antony Richard Hoare. Communicating sequential processes. In The origin of
concurrent programming, pages 413–443. Springer, 1978.

32 James C Hoe et al. Hardware synthesis from term rewriting systems. In VLSI: Systems on a
chip, pages 595–619. Springer, 2000.

33 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
ACM SIGPLAN Notices, 43(1):273–284, 2008.

34 Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu
Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and transformations. In Proceedings
of the 36th International Conference on Computer-Aided Design, pages 209–216. IEEE Press,
2017.

35 Steven Dexter Johnson. Synthesis of digital designs from recursion equations. PhD thesis,
Indiana University, 1983.

36 Michal Karczmarek et al. Synthesis of multi-cycle circuits from guarded atomic actions. PhD
thesis, Massachusetts Institute of Technology, 2011.

37 Brucek Khailany, Evgeni Khmer, Rangharajan Venkatesan, Jason Clemons, Joel S. Emer,
Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney, Yakun Sophia Shao,
Shreesha Srinath, Christopher Torng, Sam (Likun) Xi, Yanqing Zhang, and Brian Zimmer.
A Modular Digital VLSI Flow for High-productivity SoC Design. In Proceedings of the 55th
Annual Design Automation Conference, DAC ’18, pages 72:1–72:6, New York, NY, USA, 2018.
ACM. doi:10.1145/3195970.3199846.

38 David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben
Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al. Spatial: a
language and compiler for application accelerators. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 296–311. ACM,
2018.

39 M. Kooijman. Haskell as a higher order structural hardware description language, December
2009. URL: http://essay.utwente.nl/59381/.

40 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, page 75. IEEE Computer Society,
2004.

SNAPL 2019

https://www.computerhistory.org/collections/catalog/102746653
https://www.computerhistory.org/collections/catalog/102746653
https://github.com/phanrahan/magma
https://github.com/phanrahan/magma
https://github.com/phanrahan/peak
https://github.com/phanrahan/peak
http://dx.doi.org/10.1109/ISCA.2018.00011
http://dx.doi.org/10.1145/3195970.3199846
http://essay.utwente.nl/59381/

7:20 A Golden Age of Hardware Description Languages

41 Arm Limited. Arm AMBA (Advanced Microcontroller Bus Architecture) Protocols, 2019
(accessed February 6, 2019). URL: https://developer.arm.com/products/architecture/
system-architectures/amba.

42 Colin McLarty. The Rising Sea: Grothendieck on simplicity and generality, 2007.
43 G. H. Mealy. A method for synthesizing sequential circuits. The Bell System Technical Journal,

34(5):1045–1079, September 1955. doi:10.1002/j.1538-7305.1955.tb03788.x.
44 mn416. Blarney – Example 7: Recipes, 2019 (accessed April 6, 2019). URL: https://github.

com/mn416/blarney#example-7-recipes.
45 Edward F Moore. Gedanken-experiments on sequential machines. Automata studies, 34:129–

153, 1956.
46 Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,

Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. A survey and evaluation
of FPGA high-level synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10):1591–1604, 2016.

47 Rishiyur Nikhil. Bluespec System Verilog: efficient, correct RTL from high level specifications.
In Proceedings. Second ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, 2004. MEMOCODE’04., pages 69–70. IEEE, 2004.

48 Rishiyur S Nikhil and Kathy R Czeck. BSV by Example. Createspace Independent Publishing
Platform, 2010.

49 Russell O’Connor. Simplicity: a new language for blockchains. In Proceedings of the 2017
Workshop on Programming Languages and Analysis for Security, pages 107–120. ACM, 2017.

50 John O’Donnell. Hydra: hardware description in a functional language using recursion
equations and high order combining forms. The Fusion of Hardware Design and Verification,
pages 309–328, 1988.

51 Gordon J Pace and Christian Tabone. Multi-Stage Languages in Hardware Design, 2008.
52 Gordon D Plotkin. A structural approach to operational semantics, 1981.
53 Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley,

and Mark Horowitz. Programming heterogeneous systems from an image processing DSL.
ACM Transactions on Architecture and Code Optimization (TACO), 14(3):26, 2017.

54 Ofer Shacham, Omid Azizi, Megan Wachs, Wajahat Qadeer, Zain Asgar, Kyle Kelley, John P
Stevenson, Stephen Richardson, Mark Horowitz, Benjamin Lee, et al. Rethinking digital
design: Why design must change. IEEE micro, 30(6):9–24, 2010.

55 Mary Sheeran. muFP, a language for VLSI design. In Proceedings of the 1984 ACM Symposium
on LISP and functional programming, pages 104–112. ACM, 1984.

56 Satnam Singh and Philip James-Roxby. Lava and JBits: From HDL to bitstream in seconds.
In The 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’01), pages 91–100. IEEE, 2001.

57 IEEE Computer Society and the IEEE Standards Association Corporate Advisory Group.
IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification
Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1–1315, February
2018. doi:10.1109/IEEESTD.2018.8299595.

58 Paul Teehan, Mark Greenstreet, and Guy Lemieux. A survey and taxonomy of GALS design
styles. IEEE Design & Test of Computers, 24(5), 2007.

59 Lenny Truong. fautl, 2019 (accessed February 6, 2019). URL: https://github.com/leonardt/
fault.

60 Lenny Truong. silica, 2019 (accessed February 6, 2019). URL: https://github.com/leonardt/
silica.

61 Aaron Turon. Abstraction without overhead: traits in Rust, 2015 (accessed April 5, 2019).
URL: https://blog.rust-lang.org/2015/05/11/traits.html.

https://developer.arm.com/products/architecture/system-architectures/amba
https://developer.arm.com/products/architecture/system-architectures/amba
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://github.com/mn416/blarney#example-7-recipes
https://github.com/mn416/blarney#example-7-recipes
http://dx.doi.org/10.1109/IEEESTD.2018.8299595
https://github.com/leonardt/fault
https://github.com/leonardt/fault
https://github.com/leonardt/silica
https://github.com/leonardt/silica
https://blog.rust-lang.org/2015/05/11/traits.html

L. Truong and P. Hanrahan 7:21

62 Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij. The VLSI-
programming language Tangram and its translation into handshake circuits. In Proceedings of
the conference on European design automation, pages 384–389. IEEE Computer Society Press,
1991.

63 S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy Array: A Structure for
Efficient Numerical Computation. Computing in Science Engineering, 13(2):22–30, March
2011. doi:10.1109/MCSE.2011.37.

64 Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi. The RISC-V
Instruction Set Manual. Volume 1: User-Level ISA, Version 2.0. Technical report, CALIFOR-
NIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER
SCIENCES, 2014.

65 Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong. AutoPilot:
A platform-based ESL synthesis system. In High-Level Synthesis, pages 99–112. Springer,
2008.

SNAPL 2019

http://dx.doi.org/10.1109/MCSE.2011.37

	Introduction
	Background
	Digital Design
	Verilog
	Functional HDLs
	Term Rewriting Systems
	High-level Synthesis

	Intellectual Challenges
	Language Design
	Circuit Abstraction
	Register-Transfer Abstraction
	Virtual Machine Abstraction

	Compiler Infrastructure
	Formal Methods
	Execution Semantics
	Type Systems

	Vision: A Multi-Language System for Hardware Construction
	Meta-programmed Host Language
	The Core Structural DSL
	A Sea of Hardware DSLs
	Verification

	Conclusion

