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Abstract
The concept of matrix rigidity was first introduced by Valiant in [12]. Roughly speaking, a matrix is
rigid if its rank cannot be reduced significantly by changing a small number of entries. There has
been extensive interest in rigid matrices as Valiant showed in [12] that rigidity can be used to prove
arithmetic circuit lower bounds.

In a surprising result, Alman and Williams showed that the (real valued) Hadamard matrix,
which was conjectured to be rigid, is actually not very rigid. This line of work was extended by [3]
to a family of matrices related to the Hadamard matrix, but over finite fields. In our work, we take
another step in this direction and show that for any abelian group G and function f : G→ C, the
matrix given by Mxy = f(x− y) for x, y ∈ G is not rigid. In particular, we get that complex valued
Fourier matrices, circulant matrices, and Toeplitz matrices are all not rigid and cannot be used to
carry out Valiant’s approach to proving circuit lower bounds. This complements a recent result of
Goldreich and Tal [5] who showed that Toeplitz matrices are nontrivially rigid (but not enough for
Valiant’s method). Our work differs from previous non-rigidity results in that those works considered
matrices whose underlying group of symmetries was of the form Fnp with p fixed and n tending to
infinity, while in the families of matrices we study, the underlying group of symmetries can be any
abelian group and, in particular, the cyclic group ZN , which has very different structure. Our results
also suggest natural new candidates for rigidity in the form of matrices whose symmetry groups are
highly non-abelian.

Our proof has four parts. The first extends the results of [1,3] to generalized Hadamard matrices
over the complex numbers via a new proof technique. The second part handles the N ×N Fourier
matrix when N has a particularly nice factorization that allows us to embed smaller copies of
(generalized) Hadamard matrices inside of it. The third part uses results from number theory to
bootstrap the non-rigidity for these special values of N and extend to all sufficiently large N . The
fourth and final part involves using the non-rigidity of the Fourier matrix to show that the group
algebra matrix, given by Mxy = f(x− y) for x, y ∈ G, is not rigid for any function f and abelian
group G.
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1 Introduction

1.1 Background
A major goal in complexity theory is to prove lower bounds on the size and depth of arithmetic
circuits that compute certain functions. One specific problem that remains open despite
decades of effort is to find functions for which we can show super-linear size lower bounds
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for circuits of logarithmic depth. In [12], Valiant introduced the notion of matrix rigidity
as a possible method of proving such lower bounds for arithmetic circuits. More precisely,
over a field F, an m × n matrix M is said to be (r, s)-rigid if any m × n matrix of rank
at most r differs from M in at least s entries. Valiant showed that for any linear function
f : Fn → Fn that can be computed by an arithmetic circuit of size O(n) and depth O(logn),
the corresponding matrix can be reduced to rank O( n

log logn ) by changing O(n1+ε) entries for
any ε > 0. Thus, to prove a circuit lower bound for a function f , it suffices to lower bound
the rigidity of the corresponding matrix at rank O( n

log logn ). We call a matrix Valiant-rigid if

it is
(
O( n

log logn ), O(n1+ε)
)
-rigid for some ε > 0, i.e. sufficiently rigid for Valiant’s method to

yield circuit lower bounds. Over any infinite field, Valiant shows that almost all n×n matrices
are (r, (n− r)2)-rigid for any r, while over a finite field one can get a similar result with a
logarithmic loss in the sparsity parameter. Despite extensive work, explicit constructions of
rigid matrices have remained elusive.

Over infinite (or very large) fields, there are ways to construct highly rigid matrices using
either algebraically independent entries or entries that have exponentially large description
(see [7–9]) 1. However, these constructions are not considered to be fully explicit as they
do not tell us anything about the computational complexity of the corresponding function.
Ideally, we would be able to construct rigid 0, 1-matrices, but even a construction where
the entries are in a reasonably simple field (such as the Fourier matrix) would be a major
breakthrough. The best known constructions of such matrices are (r,O(n

2

r log n
r ))-rigid

(see [4, 11]). There has also been work towards constructing semi-explicit rigid matrices,
which require O(n) bits of randomness (instead of the usual O(n2)), as such a construction
would still yield circuit lower bounds through Valiant’s approach 2. The best result in this
realm (see [5]) shows that random Toeplitz matrices are (r, n3

r2 logn )-rigid with high probability.
Note that both of these bounds become trivial when r is n

log logn .

Many well-known families of matrices, such as Hadamard matrices and Fourier transform
matrices, have been conjectured to be Valiant-rigid [10]. However, a recent line of works
(see [1, 3]) shows that certain well-structured matrices are not rigid. Alman and Williams
show in [1] that the 2n × 2n Hadamard matrix, given by Hxy = (−1)x·y as x and y range
over {0, 1}n, is not Valiant-rigid over Q. Along similar lines, Dvir and Edelman show in [3]
that group algebra matrices for the additive group Fnp , given by Mxy = f(x − y) where
f : Fnp → Fp and x, y range over Fnp , are not Valiant-rigid over Fp (where we view p as fixed
and n goes to infinity). The Hadamard matrix and the group algebra matrices for Fnp satisfy
the property that for any ε > 0, there exists an ε′ > 0 such that it is possible to change at
most N1+ε entries and reduce the rank to N1−ε′ (where N denotes the size of the matrix).
The proofs of both results rely on constructing a matrix determined by a polynomial P (x, y)
that agrees with the given matrix on almost all entries and then arguing that the constructed
matrix has low rank.

1 It remains open to construct a matrix that is Valiant-rigid, even if we only require that the entries live
in a number field of dimension polynomial in the size of the matrix.

2 Note however, that it is easy to construct rigid matrices with O(n1+ε) bits of randomness for any ε > 0
(for example by taking a random matrix with at most nε non-zeros per row) but this is not sufficient for
Valiant’s approach.
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1.2 Our Contribution
In this paper, we show that several broad families of matrices, including Fourier, circulant
and Toeplitz matrices3, are all not Valiant-rigid. The families of matrices we consider in
our work have very different underlying group structure than those considered in previous
works. Both [1, 3] analyze matrices constructed from an underlying group of the form Fnp
with p fixed and n tending to infinity. Fourier and circulant matrices, which we focus on,
are analogs of the Hadamard and group algebra matrices4 for a cyclic group ZN . Since any
abelian group can be decomposed into simple building blocks of the form ZN , our results
extend to all abelian groups (see details below). While most natural constructions of matrices
are highly symmetric, our results suggest that matrices that are symmetric under abelian
groups are not rigid and that perhaps we should look toward less structured matrices, or
matrices whose symmetry group is non-abelian, as candidates for rigidity.

We now move into a more technical overview of our paper. Define the regular-rigidity
of a matrix A, rA(r), as the minimum value of s such that it is possible to change at most
s entries in each row and column of A to obtain a matrix of rank at most r. The notion
of regular-rigidity is weaker than the usual notion of rigidity (and is also weaker than the
commonly used notion of row-rigidity) as if A is an n× n matrix and A is (r, ns)-rigid then
rA(r) ≥ s. Note that this actually makes our results stronger as we will show that the
matrices we consider are not regular-rigid.

All matrices that we deal with will be over C. The dn × dn generalized Hadamard
matrix Hd,n has rows and columns indexed by Znd and entries Hxy = ωx·y where ω = e

2πi
d .

Throughout this paper, we use the term Hadamard matrix to refer to any generalized
Hadamard matrix. We use FN = HN,1 to denote the N ×N Fourier transform matrix. Our
main result, that all Fourier matrices are not rigid enough to carry out Valiant’s approach, is
stated below.

I Theorem 1 (Fourier Matrices are Not Rigid). Let FN denote the N ×N Fourier transform
matrix. For any fixed 0 < ε < 0.1 and N sufficiently large,

rFN
(

N

2ε4(logN)0.0004

)
≤ N9ε

One key idea in our work is the observation that, if a large family of matrices A are
all diagonalizable by a single matrix M then, the rigidity of any matrix A ∈ A implies
the rigidity of the single matrix M . This situation happens, e.g., when A is the family of
circulant matrices and M is the Fourier matrix. This simple, yet crucial observation allows
us to deduce the non-rigidity of a larger family of matrices.

I Corollary 2 (Circulant Matrices are not Rigid). Let 0 < ε < 0.1 be fixed. For all sufficiently
large N , if M is an N ×N circulant matrix over C,

rM
(

N

2ε4(logN)0.0003

)
≤ N20ε

3 It is not hard to see that rigidity of circulant and Toeplitz matrices is essentially the same question
so for the sake of consistency with our (group theoretic) approach we will primarily consider circulant
matrices.

4 While group algebra matrices are supposed to be defined as Mxy = f(x − y), we will work with
Mxy = f(x+ y) in the body of our paper for technical reasons. Note that the two definitions differ only
in a permutation of the rows and thus have the same rigidity.

CCC 2019
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Also notice that since any Toeplitz matrix of size at most N
2 can be embedded in an N ×N

circulant matrix, the above implies an analogous result for all Toeplitz matrices. While [5]
shows nontrivial rigidity lower bounds for rank much smaller than N , our results imply that
there are actually no nontrivial rigidity lower bounds for rank close to N .

With a bit more work, it is possible to prove the non-rigidity of group algebra matrices
for any abelian group.

I Theorem 3. Let 0 < ε < 0.1 be fixed. Let G be an abelian group and f : G → C be a
function. Let M be a matrix with rows and columns indexed by elements x, y ∈ G and entries
Mxy = f(x− y). If |G| is sufficiently large then

rM
(

2|G|
2ε6(log |G|)0.0001

)
≤ |G|26ε

1.3 Proof Overview
We now take a more detailed look at the techniques used in the proof of Theorem 1.

1.3.1 Generalized Hadamard Matrices
The first step in the proof of Theorem 1 is proving the following result that all Hadamard
matrices are not rigid.

I Theorem 4 (Hadamard Matrices are not Rigid). For fixed d and 0 < ε < 0.1, there exists
an ε′ such that for all sufficiently large n, rHd,n

(
dn(1−ε′)

)
≤ dnε

Note that Theorem 4 generalizes the main result of [1] (which only deals with d = 2).
Also, given any dn×dn matrix of the form Mxy = f(x−y) with f : Znd → C, we can permute
its rows so that it is diagonalized by Hd,n. Thus, we can apply the diagonalization trick
mentioned above and obtain the following result, which extends the work in [3] to matrices
over C.

I Corollary 5. Let f be a function from Znd → C and let M be a dn × dn matrix with
Mxy = f(x− y). Then for any fixed d and 0 < ε < 0.1, there exists an ε′ > 0 such that for
all sufficiently large n, rM

(
dn(1−ε′)

)
≤ dnε

1.3.2 Fourier Matrices
Equipped with the machinery for Hadamard matrices, we can complete the proof of Theorem
1. Our proof consists of two steps. First we show that for integers N of a very special form,
the N ×N Fourier matrix is not rigid because it can be decomposed into submatrices with
Hadamard-type structure. We say an integer N is well-factorable if it is a product of distinct
primes q1, . . . , ql such that for all i, qi − 1 has no large prime power divisors. We will make
this notion more precise later, but informally, the first step is as follows:

I Theorem 6. Let FN denote the N×N Fourier transform matrix. For any fixed 0 < ε < 0.1
and well-factorable integer N , we have

rFN
(

N

2ε4(logN)0.0005

)
≤ N4ε
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The main intuition is that if N is a product of distinct primes q1, . . . , ql, then within the
Fourier matrix FN , we can find submatrices whose rows and columns can be indexed by
Z∗q1
⊗ · · · ⊗ Z∗ql . This multiplicative structure can be replaced by the additive structure

of Zq1−1 ⊗ · · · ⊗ Zql−1. We can then factor each additive group Zqi−1 into prime power
components. If q1 − 1, . . . , ql − 1 all have no large prime power divisors, we expect prime
powers to be repeated many times when all of the terms are factored. This allows us to find
submatrices with Zld additive structure for which we can apply tools such as Theorem 4 and
Corollary 5 to reduce the rank while changing a small number of entries. We then bound the
rank and total number of entries changed over all submatrices to deduce that FN is not rigid.

The second step of our proof that Fourier matrices are not rigid involves extending
Theorem 6 to all values of N . The diagonalization trick gives that N ×N circulant matrices
are not rigid when N is well-factorable. We then show that for N ′ < N

2 , we can rescale the
columns of the N ′ ×N ′ Fourier matrix and embed it into an N ×N circulant matrix. As
long as N ′ is not too much smaller than N (say N ′ > N

(logN)2 ), we get that the N ′ × N ′
Fourier matrix is not rigid. Thus, for each well-factorable N and all N ′ in the range

N
(logN)2 < N ′ < N

2 , the N ′×N ′ Fourier transform matrix is not rigid. We then use a number
theoretic result of [2] to show that the gaps between well-factorable integers are not too
large. Thus, the above intervals cover all integers as N runs over all well-factorable numbers,
finishing the proof.

1.4 Organization
In Section 2, we introduce notation and prove several basic results that we will use throughout
the paper. In Section 3, we show that Hadamard and several closely related families of
matrices are not rigid. In Section 4, we show that N ×N Fourier matrices are not rigid when
N satisfies certain number-theoretic properties. In Section 5, we complete the proof that all
Fourier matrices are not rigid. We then deduce that all Toeplitz matrices are not rigid. In
Section 6, we use the results from the previous section to show that group algebra matrices
for abelian groups are not rigid. Finally, in Section 7, we discuss a few open questions and
possible directions for future work.

2 Preliminaries

Throughout this paper, we let d ≥ 2 be an integer and ω = e
2πi
d be a primitive dth root of

unity. When we consider an element of Znd , we will view it as an n-tuple with entries in the
range [0, d− 1]. When we say a list of dn elements x1, . . . , xdn is indexed by Znd , we mean
that each xi is labeled with an element of Znd such that all labels are distinct and the labels
of x1, . . . , xdn are in lexicographical order.

2.1 Basic Notation
We will frequently work with tuples, say I = (i1, . . . , in) ∈ Znd . Below we introduce some
notation for dealing with tuples that will be used later on.

I Definition 7. For a tuple I, we let Ii denote its ith entry. For instance if I = (i1, . . . , in)
then Ik = ik.

I Definition 8. For an n-tuple I = (i1, i2, . . . , in), define the polynomial over n variables
xI = xi11 . . . xinn .

CCC 2019
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I Definition 9. For ω a dth root of unity and an n-tuple I = (i1, i2, . . . , in) ∈ Znd , we define
ω[I] = (ωi1 , . . . , ωin).

I Definition 10. For a function f : Znd → C, define the n-variable polynomial Pf as

Pf =
∑
I∈Zn

d

f(I)xI

I Definition 11. For an n-tuple I = (i1, i2, . . . , in), we define the set perm(I) to be a set of
n-tuples consisting of all distinct permutations of the entries of I. Similarly, for a set of
n-tuples S, we define perm(S) to be the set of all n-tuples that can be obtained by permuting
the entries of some element of S.

I Definition 12. We say a set S ⊆ Znd is symmetric if for any I ∈ S, perm(I) ⊆ S.

I Definition 13. For a set of n-tuples S, let red(S) denote the set of equivalence classes
under permutation of entries in S. Let rep(S) be a set of n-tuples formed by taking one
representative from each equivalence class in red(S) (note rep(S) is not uniquely determined
but this will not matter for our use).

Note that if rep(S) = {I1, . . . , Ik}, then the sets perm(I1), perm(I2), . . . , perm(Ik) are disjoint
and their union contains S. If the set S is symmetric then their union is exactly S.

2.2 Special Families of Matrices

We now define notation for working with a few special families of matrices.

I Definition 14. An N ×N matrix M is called a Toeplitz matrix if Mij depends only on
i− j. An N ×N matrix M is called a Hankel matrix if Mij depends only on i+ j. Note that
the rows of any Toeplitz matrix can be permuted to obtain a Hankel matrix so any non-rigidity
results we show for one family also hold for the other.

I Definition 15. For an abelian group G and a function f : G→ C, let MG(f) denote the
|G| × |G| matrix (over C) whose rows and columns are indexed by elements x, y ∈ G and
whose entries are given by Mxy = f(x + y). When it is clear what G is from context, we
will simply write M(f). We let VG denote the family of matrices MG(f) as f ranges over
all functions from G to C. We call VG the family of adjusted group algebra matrices for the
group G. When G is a cyclic group, we call the matrices in VG adjusted-circulant.

Compared to the usual group algebra (and circulant) matrices defined by Mxy = f(x− y),
the matrix MG(f) differs only in a permutation of the rows. In the proceeding sections,
we will work with MG(f) for technical reasons, but it is clear that the same non-rigidity
results hold for the usual group algebra matrices. Similarly, we will use adjusted-circulant
and Hankel matrices as it is clear that the same non-rigidity results hold for circulant and
Toeplitz matrices. Also note that adjusted-circulant matrices are a special case of Hankel
matrices.

I Definition 16. Let Hd,n denote the dn × dn Hadamard matrix, i.e. the matrix whose rows
and columns are indexed by n-tuples I, J ∈ Znd and whose entries are HIJ = ωI·J where
ω = e

2πi
d . When n = 1, we define Fd = Hd,1 and call Fd a Fourier matrix.
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2.3 Matrix Rigidity
Here, we review basic notation for matrix rigidity.

I Definition 17. For a matrix M and a real number r, we define RM (r) to be the smallest
number s for which there exists a matrix A with at most s nonzero entries and a matrix B
of rank at most r such that M = A+B. If RM (r) ≥ s, we say M is (r, s)-rigid.

I Definition 18. For a matrix M and a real number r, we define rM (r) to be the smallest
number s for which there exists a matrix A with at most s nonzero entries in each row and
column and a matrix B of rank at most r such that M = A+B. If rM (r) ≥ s, we say M is
(r, s)-regular rigid.

It is clear that if a matrix is (r, ns)-rigid, then it must be (r, s)-regular rigid. In proceeding
sections, we will show that various matrices are not ( N

log logN , N
ε)-regular rigid for any ε > 0

and this will imply that Valiant’s method for showing circuit lower bounds in [12] cannot
be applied.

2.4 Preliminary Results
Next, we mention several basic results that will be useful in the proofs later on.

B Claim 19. Hd,n = Fd ⊗ · · · ⊗ Fd︸ ︷︷ ︸
n

where ⊗ denotes the Kronecker product.

Proof. This can easily be verified from the definition. C

B Claim 20. Hd,nH
∗
d,n = dnI where H∗d,n is the conjugate transpose of Hd,n and I is the

identity matrix.

Proof. We verify that FdF ∗d = dI, and then using the previous claim, we deduce that
Hd,nH

∗
d,n = dnI. C

B Claim 21. Let f : Znd → C be a function. Let ω be a dth root of unity and set
Pf =

∑
I∈Zn

d
f(I)xI . Let D = Hd,nMZn

d
(f)Hd,n. Then D is a diagonal matrix with diagonal

entries dnPf (ω[J]) as J ranges over Znd .

Proof. First, we analyze the product MZn
d
(f)Hd,n. This is a dn× dn matrix and its rows and

columns can naturally be indexed by tuples I, J ∈ Znd . The entry with row indexed by I and
column indexed by J is∑

I′∈Zn
d

f(I + I ′)ωI
′·J = ω−I·J

∑
I′∈Zn

d

f(I + I ′)ω(I′+I)·J = ω−I·JPf (ω[J])

Therefore, the columns of MZn
d
(f)Hd,n are multiples of the columns of H∗d,n. In fact, the

column of MZn
d
(f)Hd,n indexed by J is Pf (ω[J]) times the corresponding column of H∗d,n.

Since Hd,nH
∗
d,n = dnI, D must be a diagonal matrix whose entries on the diagonal are

dnPf (ω[J]) as J ranges over Znd . C

Plugging n = 1 into the above gives:

B Claim 22. Let M be a d× d adjusted-circulant matrix. Then FdMFd is a diagonal matrix.

Claim 21 gives us a characterization of the rank of matrices of the form MZn
d
(f).

CCC 2019
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B Claim 23. Let f : Znd → C be a function. Let ω be a dth root of unity and say
Pf =

∑
I∈Zn

d
f(I)xI has C roots among the set {(ωi1 , . . . , ωin)|(i1, . . . , in) ∈ Znd}. Then

rank(MZn
d
(f)) = dn − C.

Proof. Consider the product D = Hd,nMZn
d
(f)Hd,n. Note that Hd,n is clearly invertible by

Claim 20. Therefore, it suffices to compute the rank of D. By Claim 21, D must be a
diagonal matrix whose entries on the diagonal are dnPf (ω[J]) as J ranges over Znd . The rank
of D is the number of nonzero diagonal entries which is simply dn − C C

As mentioned in the introduction, we can relate the rigidity of a matrix to the rigidity of
matrices that it diagonalizes.

I Lemma 24. If B = A∗DA where D is a diagonal matrix and rA(r) ≤ s then rB(2r) ≤ s2.
The same inequality holds also for B′ = ADA.

Proof. Let E be the matrix with at most s nonzero entries in each row and column such
that A− E has rank at most r. We have

B − E∗DE = A∗D(A− E) + (A∗ − E∗)DE

Since rank(A− E) ≤ r, rank(B − E∗DE) ≤ 2r. Also, E∗DE has at most s2 nonzero entries
in each row and column so rB(2r) ≤ s2. The second part can be proved in the exact same
way with A∗ replaced by A. J

In light of Lemma 24, Claim 22, and Claim 21, proving non-rigidity for d×d circulant matrices
reduces to proving non-rigidty for Fd and proving non-rigidity for group algebra matrices
for Znd reduces to proving non-rigidity for Hd,n. Below, we show that these statements are
actually equivalent.

B Claim 25. It is possible to rescale the rows and columns of Hd,n to get a matrix of the
form MZn

d
(f) for some symmetric function f : Znd → C. In particular, it is possible to rescale

the rows and columns of Fd to get an adjusted-circulant matrix.

Proof. Let ζ be such that ζ2 = ω. Multiply each row of Hd,n by ζ(I·I) and each column by
ζ(J·J) to get a matrix H ′. We have

H ′IJ = ζ(I+J)·(I+J)

For a tuple x = (x1, . . . , xn) ∈ Znd , we define f(x) = ζx
2
1+···+x2

n . To complete the proof, it
suffices to show that f : Znd → C is well defined. To do this, we will show that ζx2 depends
only on the residue of x mod d. If d is odd, we can choose ζ to be a dth root of unity and
the claim is clear. If d is even ζ(x+d)2 = ζx

2
ζ2dx+d2 but since 2dx+ d2 is a multiple of 2d,

ζ2dx+d2 = 1 and thus ζ(x+d)2 = ζx
2 . C

3 Non-rigidity of Generalized Hadamard Matrices

In this section, we show that the Hadamard matrix Hd,n becomes highly non-rigid for large
values of n. The precise result is stated below.

I Theorem 26. Let N = dn for positive integers d, n. Let 0 < ε < 0.1 and assume
n ≥ d2(log d)2

ε4 . Then rHd,n(N1− ε4
d2 log d ) ≤ N ε.

First we prove a few lemmas about symmetric polynomials that we will use in the proof
of Theorem 26.
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I Lemma 27. Let Tm denote the set of tuples in Znd such that at least m entries are equal to
0. Say rep(Tm) = {I1, . . . , Ik}. Consider the polynomials P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn)
defined by

Pi(x1, . . . , xn) =
∑

I∈perm(Ii)

xI

For any complex numbers y1, . . . , ym, and any polynomial Q(xm+1, . . . xn) that is symmetric
and degree at most d− 1 in each of its variables, there exist coefficients c1, . . . , ck such that

Q(xm+1, . . . , xn) =
∑

ciPi(y1, . . . ym, xm+1, . . . , xn)

Proof. It suffices to prove the statement for all Q of the form∑
I′′∈perm(I′)

xI
′′

where I ′ ∈ Zn−md . We will prove this by induction on the degree. Clearly one of the Ii is
(0, 0 . . . 0), so one of the polynomials Pi(x1, . . . , xn) is constant. This finishes the case when
Q has degree 0. Now we do the induction step. Note that we can extend I ′ to an element of
Tm by setting the first m entries equal to 0. Call this extension I and say that I ∈ perm(Ii).
We have∑

I′′∈perm(I′)

xI
′′

= Pi(y1, . . . , ym, xm+1, . . . , xn)−R(y1, . . . , ym, xm+1, . . . xn)

R(y1, . . . , ym, xm+1, . . . xn), when viewed as a polynomial in xm+1, . . . , xn (since y1, . . . , ym
are complex numbers that we can plug in), is symmetric and of lower degree than the left
hand side. Thus, using the induction hypothesis, we can write R in the desired form. This
completes the induction step. J

The key ingredient in the proof of Theorem 26 is the following lemma which closely
resembles the main result in [3], but deals with matrices over C instead of matrices over a
finite field.

I Lemma 28. Let f : Znd → C be a symmetric function on the n variables. Let N = dn. Let
0 < ε < 0.1 and assume n ≥ d2(log d)2

ε4 . Then rM(f)(N
1− ε4

d2 log d ) ≤ N ε.

Let δ = ε2, m = dn
( 1−δ

d

)
e and let S denote the set of all tuples (i1, i2, . . . , in) ∈ Znd such

that the entries indexed 1, 2, . . .m are equal to 0, the entries indexed m+ 1, . . . , 2m are equal
to 1 and in general for 0 ≤ i ≤ d− 1, the entries indexed im+ 1, . . . , (i+ 1)m are equal to i.
Note |S| = dn−dm ≈ dδn = N ε2 (since n− dm is approximately δn).

The main idea will be to change f in a small number of locations so that it has many
zeros in the set {ω[I]|I ∈ Znd} in order to make use of Claim 23. More precisely, first we will
change f to f ′ by changing its values in at most N ε places so that f ′ is still symmetric in all
of the variables and

Pf ′
(
ω[I]
)

= 0 ∀I ∈ S

Note that although the size of S is small, the fact that f ′ is symmetric implies that f ′ also
vanishes on perm(S), which covers almost all of Znd . Once we have shown the above, we
quantitatively bound the number of entries changed between M(f) and M(f ′) and also the
rank of M(f ′) to complete the proof of Lemma 28. To do the first part, we need the following
sub-lemma.
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17:10 Fourier and Circulant Matrices Are Not Rigid

I Lemma 29. Let T denote the set of all tuples (i1, i2, . . . , in) ∈ Znd such that at least
n
(
1− δ

)
of the entries are 0. By changing the values of f only on elements of T , we can

obtain f ′ satisfying

Pf ′
(
ω[I]
)

= 0 ∀I ∈ S (1)

Proof. We interpret (1) as a system of linear equations where the unknowns are the values
of f ′ at various points. Let rep(T ) = {J1, J2, . . . , Jk} for J1, J2, . . . Jk ∈ T . Since we must
maintain that f ′ is symmetric, there are essentially k variables each corresponding to an
equivalence class of tuples under permutations. Each equivalence class is of the form perm(Jj)
and we denote the corresponding variable by mj . The system of equations in (1) can be
rewritten in the form

k∑
j=1

mj

∑
J∈perm(Jj)

ωI·J +
∑
J′ /∈T

f(J ′)ωI·J
′

= 0 ∀I ∈ S

If we let rep(S) = {I1, I2, . . . , Il}, the system has exactly l distinct equations corresponding to
each element of rep(S) due to our symmetry assumptions. Let M denote the l× k coefficient
matrix represented by Mij =

∑
J∈perm(Jj) ω

Ii·J . To show that the system has a solution, it
suffices to show that the column span of M is full. This is equivalent to showing that for
each i = 1, 2, . . . l there exist coefficients a1, a2, . . . , ak such that

k∑
j=1

aj ·
∑

J∈perm(Jj)

ωIi·J 6= 0

k∑
j=1

aj ·
∑

J∈perm(Jj)

ωIi′ ·J = 0 ∀i′ 6= i

Fix an index i0. We can view each equation above as a polynomial in ω[Ii] given by

P (x1, . . . , xn) =
k∑
j=1

aj
∑

J∈perm(Jj)

xJ

and the problem becomes equivalent to constructing a polynomial that vanishes on ω[Ii] if
and only if i 6= i0. Note that only the entries xdm+1, . . . , xn matter as we have x1 = · · · =
xm = 1, . . . , x(d−1)m+1 = · · · = xdm = ωd−1 for all points we consider.

For Ii = (i1, i2, . . . in), let I ′i denote the sub-tuple (idm+1, . . . , in). The problem is equivalent
to constructing a polynomial

Q(xdm+1, . . . , xn) = P (1, 1, . . . , ωd−1, . . . , ωd−1, xdm+1, . . . xn)

such that Q vanishes on ω[I′i] if and only if i 6= i0.

Lemma 27 implies that by choosing the coefficients a1, . . . , ak, we can make Q be any
polynomial that is symmetric in xdm+1, . . . , xn and degree at most d − 1 in each of the
variables.

Now consider the polynomial

Qi0(xdm+1, . . . , xn) =
∑

I′∈perm(I′
i0

)

(
xddm+1 − 1
xdm+1 − ωI′0

)
. . .

(
xdn − 1

xn − ωI′(n−dm)

)
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(note this is a polynomial with coefficients in C since each of the factors reduces to a degree
d− 1 polynomial).

It is clear that the above polynomial is symmetric in all of the variables and satisfies the
degree constraint so we know we can choose suitable coefficients a1, . . . , ak. We claim that
the polynomial we construct does not vanish on ω[I′i0 ] but vanishes on ω[I′i] for i 6= i0. Indeed,
the product(

xddm+1 − 1
xdm+1 − ωI′0

)
. . .

(
xdn − 1

xn − ωI′(n−dm)

)
is 0 if and only if (xdm+1, . . . , xn) 6= I ′. However, there is exactly one I ′ ∈ perm(I ′i0) with
I ′ = I ′i0 and none with I ′ = I ′i for i 6= i0 since I1, I2, . . . , Il are representatives of distinct
equivalence classes under permutation of entries. This means that the polynomial Qi0 we
constructed has the desired properties and completes the proof that the system is solvable. J

Proof of Lemma 28. Since M(f) = (M(f) −M(f ′)) + M(f ′), to complete the proof of
Lemma 28, it suffices to bound the number of nonzero entries in M(f) −M(f ′) and the
rank of M(f ′).

The number of nonzero entries in each row and column of (M(f)−M(f ′)) is at most |T |.
This is exactly the number of elements of Znd with at least n

(
1− δ

)
entries equal to 0. Using

standard tail bounds on the binomial distribution, the probability of a random n-tuple having
at least that many 0s is at most

e−nD(1−δ|| 1d ) = e−n
(

(1−δ) log(d(1−δ))+δ log( dδ
d−1 )

)
= d−n(1−δ)e−n

(
(1−δ) log(1−δ)+δ log( dδ

d−1 )
)

where D(·||·) denotes KL-divergence. For δ < 0.01, the above is at most d−n(1−
√
δ) and thus

we change at most dεn entries in each row and column.
By Claim 23, the rank of M(f ′) is at most dn − |perm(S)|. Equivalently, this is the

number of n-tuples such that some element in {0, 1, . . . , d − 1} appears less than
( 1−δ

d

)
n

times. We use Hoeffding’s inequality and then union bound over the d possibilites to get the
probability that a randomly chosen n-tuple in Znd is outside S is at most

de−2 δ2n
d2 = e−2 δ2n

d2 +log d

When n > d2(log d)2

δ2 , the above is at most d−
ε4n

d2 log d and thus the rank of M(f ′) is at most

d

(
1− ε4

d2 log d

)
n, completing the proof of Lemma 28. J

Proof of Theorem 26. Applying Claim 25 and Lemma 28 we immediately get the desired.
J

Using Theorem 26, Lemma 24, and Claim 21, we get the following result which extends
Lemma 28 to matrices where f is not symmetric.

I Corollary 30. For any function f : Znd → C and any 0 < ε < 0.1 such that n ≥ d2(log d)2

ε4 ,
we have

rM(f)(2N
1− ε4

d2 log d ) ≤ N2ε

where N = dn.
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4 Non-rigidity for Fourier Matrices of Well-Factorable Size

Our goal in this section is to show that we can find infinitely many values of N for which the
Fourier matrix FN is highly non-rigid. The integers N we analyze will be products of many
distinct primes qi with the property that qi − 1 is very smooth (has all prime factors small).
For these values of N , we can decompose the matrix FN into several submatrices that are
closely related to Hadamard matrices. We then apply the results from the previous section
to show that each submatrix is non-rigid and aggregate over the submatrices to conclude
that FN is non-rigid.

We first show precisely how to construct N . The properties that we want N to have are
stated in the following two definitions.

I Definition 31. We say a prime q is (α, x)-good if the following properties hold.
x0.999 ≤ q ≤ x
All prime powers dividing q − 1 are at most xα

I Definition 32. We say an integer N is (l, α, x)-factorable if the following properties hold.
N = q1 . . . ql where q1, . . . , ql are distinct primes
q1, . . . , ql are all (α, x)-good

To show the existence of (l, α, x)-factorable integers, it suffices to show that there are
many (α, x)-good primes. This is captured in the following lemma.

I Lemma 33. There exists a fixed constant C0 such that for any parameter α > 0.2961 and
sufficiently large x (possibly depending on α), there are at least x

(log x)C0 distinct (α, x)-good
primes.

The proof of Lemma 33 relies on the following result from analytic number theory, found
in [2], that allows us to find a large set of primes qi for which qi − 1 is very smooth.

I Definition 34. For a positive integer m, let P+(m) denote the largest prime factor of m.
For a fixed positive integer a, let

πa(x, y) = |{p|a < p ≤ x, P+(p− a) ≤ y}|

where p ranges over all primes. In other words, πa(x, y) is the number of primes at most x
such that p− a is y-smooth.

I Theorem 35 ([2]). There exist constants x0, C such that for β = 0.2961, x > x0 and
y ≥ xβ we have 5

π1(x, y) > x

(log x)C

Proof of Lemma 33. Let y = xβ where β = 0.2961. By Theorem 35, for sufficiently large x,
we can find at least d x

(log x)C − x
0.999e primes p1, . . . , pl between x0.999 and x such that all

prime factors of pi − 1 are at most xβ . Eliminate all of the pi such that one of the prime
powers in the prime factorization of pi − 1 is more than xα. Note that there are at most
xβ distinct primes that divide pi − 1 for some i. Thus, there are at most xβ log x different
prime powers bigger than xα that divide some pi − 1. Each of these prime powers can divide

5 [2] proves the same inequality with πa(x, y) for any integer a where x0 may depend on a and C is an
absolute constant.
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at most x1−α of the elements {p1, . . . , pl}, so in total, we eliminate at most x1−α+β log x of
the pi. Thus, for sufficiently large x, the number of (α, x)-good primes is at least

x

(log x)C − x
0.999 − x1−α+β log x ≥ x

2(log x)C J

For simplicity, we will set α = 0.3 by default.

I Definition 36. A prime is said to be x-good if it is (0.3, x)-good. An integer N is said to
be (l, x)-factorable if it is (l, 0.3, x)-factorable.

Lemma 33 implies that for all sufficiently large x and l ≤ x
(log x)C0 , we can find (l, x)-

factorable integers. We now show that if we choose x sufficiently large and N to be
(l, x)-factorable for some x0.99 ≤ l ≤ x0.993, then FN is highly non-rigid.

I Theorem 37. Let 0 < ε < 0.1 be given. For x sufficiently large and N a (l, x)-factorable
number for x0.99 ≤ l ≤ x0.993, we must have

rFN
(

N

2ε4(logN)0.0005

)
≤ N4ε

In order to prove Theorem 37, we will first prove a series of preliminary results that
characterize the structure of Fourier and Hadamard matrices.

4.1 Structure of Hadamard and Fourier Matrices
I Lemma 38. Let n = x1x2 . . . xj for pairwise relatively prime positive integers x1, . . . , xj.
There exists a permutation of the rows and columns of Fn, say F ′ such that

F ′ = Fx1 ⊗ · · · ⊗ Fxj

where ⊗ denotes the Kronecker product.

Proof. Let γ be a primitive nth root of unity. For i = 1, 2, . . . j, let γi = γ
ci
n
xi where ci

is chosen such that ci nxi ≡ 1 mod xi. Note this is possible since x1, . . . , xj are pairwise
relatively prime. γi is a primitive xith root of unity.

Now by the Chinese remainder theorem, there is a ring isomorphism between Zn and
Zx1 × · · · × Zxj . We can thus view Fn as a matrix whose rows and columns are indexed
by elements of Zx1 × · · · × Zxj and such that the entry Fn|AB corresponding to tuples
A = (a1, . . . , aj) and B = (b1, . . . , bj) is γc where c is the unique element of Zn with c ≡ aibi
mod xi for all i.

For each matrix Fxi its rows and columns are labeled with elements of Zxi and its entries
are Fxi|ab = γa·bi . Thus in the Kronecker product, the rows and columns are labeled with
elements of Zx1 × · · · × Zxj such that the entry corresponding to tuples (a1, . . . , aj) and
(b1, . . . , bj) is

γa1b1
1 . . . γ

ajbj
j = γ

c1a1b1
n
x1

+···+cjajbj nxj

For each xi, we compute the residue of the exponent in the above expression mod xi. The
term ciaibi

n
xi

is congruent to aibi by definition and all other terms are 0 so the sum is
congruent to aibi mod xi. Thus, for some permutation of the rows and columns of Fn, it is
equal to the Kronecker product Fx1 ⊗ · · · ⊗ Fxj , as desired. J
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I Lemma 39. Let M = A⊗B where A is an m×m matrix and B is an n× n matrix. For
any two integers r1, r2 we have

rM (r1n+ r2m) ≤ rA(r1)rB(r2)

Proof. The proof of this lemma is similar to the proof of Lemma 24. There are matrices
E,F with atmost rA(r1) and rB(r2) nonzero entries respectively such that rank(A+E) ≤ r1
and rank(B + F ) ≤ r2. We will now show that rank(M − E ⊗ F ) ≤ r1n+ r2m. Indeed

M − E ⊗ F = (A+ E)⊗B − E ⊗ (B + F )

and the right hand side of the above has rank at most r1n+ r2m since rank multiplies under
the Kronecker product. Clearly E ⊗ F has at most rA(r1)rB(r2) nonzero entries in each row
and column so we are done. J

I Lemma 40. Consider the matrix

A = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
an

)

Let 0 < ε < 0.1 be some chosen parameter. Assume ai ≥ t2i (log ti)2

ε4 for all i. Let P = ta1
1 . . . tann .

Then

rA

P n∑
i=1

 1

t

aiε
4

t2
i

log ti
i


 ≤ P ε

Proof. Note Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

= Ht
a1
1
. Now we apply Theorem 26 to each of the n terms. Let

Tti,ai = Fti ⊗ · · · ⊗ Fti︸ ︷︷ ︸
ai

. We have

rTti,ai

tai
(

1− ε4
t2
i

log ti

)
i

 ≤ taiεi
Now we combine the above estimates over all i by repeatedly applying Lemma 39. We get

rA

 n∑
i=1

t
ai

(
1− ε4

t2
i

log ti

)
i

(
P

taii

) ≤ P ε
This easily rearranges into the desired. J

4.2 Proof of Theorem 37
To complete the proof of Theorem 37, we will break FN into submatrices, show that
each submatrix is non-rigid using techniques from the previous section, and then combine
our estimates to conclude that FN is non-rigid. Recall that N is (l, x)-factorable with
x0.99 ≤ l ≤ x0.993, meaning N = q1q2 . . . ql for some distinct primes q1, . . . , ql where qi − 1
has no large prime power divisors for all i. Let γ be a primitive N th root of unity.

I Definition 41. For a subset S⊂ [l] define multN (S)=
∏
s∈S qs and factN (S)=

∏
s∈S(qs−1).
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I Definition 42. For all S ⊂ [l] we will define TS as the subset of [N ]× [N ] indexed by (i, j)
such that

ij 6≡ 0 mod qs ∀s ∈ S
ij ≡ 0 mod qs ∀s /∈ S

Note that as S ranges over all subsets of [l], the sets TS form a partition of [N ]× [N ].

For each S, we will divide the set TS into submatrices such that when filled with the
corresponding entries of FN , we can apply Lemma 40 to show that each submatrix is nonrigid.
The key intuition is that for a given prime qi, once we restrict to nonzero residues, the
multiplicative subgroup actually has the additive structure of Zqi−1. Since qi − 1 is smooth,
Zqi−1 is a direct sum of cyclic groups of small order.

I Definition 43. For all S ⊂ [l], we define the factN (S)× factN (S) matrix M(S) as follows.
Let RS be the set of residues modulo multN (S) that are relatively prime to multN (S). Note
that |RS | = factN (S). Each row and each column of M(S) is indexed by an element of RS
and the entry in row i and column j is θi·j where θ is a primitive multN (S) root of unity.
The exact order of the rows and columns will not matter for our uses. Note that replacing θ
with θk for k relatively prime to multN (S) simply permutes the rows so it does not matter
which root of unity we choose.

I Lemma 44. Consider the set of entries in FN indexed by elements of TS. We can partition
this set into

∏
s/∈S(2qs − 1) submatrices each of size factN (S)× factN (S) that are equivalent

to M(S) up to some permutation of rows and columns.

Proof. In TS , for each prime qs with s /∈ S, there are 2qs − 1 choices for what i and j are
mod qs. Now fix the choice of i, j mod qs for all s /∈ S. Say we restrict to indices with i ≡ c1
mod

∏
s/∈S qs and j ≡ c2 mod

∏
s/∈S qs.

We are left with a factN (S)× factN (S) matrix, call it A, where i and j run over all residues
modulo multN (S) that are relatively prime to multN (S). Naturally, label all rows and
columns of this matrix by what the corresponding indices i and j are modulo multN (S). For
a row labeled a and a column labeled b, we compute the entry Aab. The value is γa′·b′ where
a′ is the unique element of ZN such that a′ ≡ a mod multN (S) and a′ ≡ c1 mod

∏
s/∈S qs

and b′ is defined similarly. We have

a′ · b′ ≡ ab mod multN (S)

a′ · b′ ≡ c1c2 ≡ 0 mod
∏
s/∈S

qs

Therefore

a′b′ ≡ k
∏
s/∈S

qsab mod multN (S)

where k is defined as an integer such that k
∏
s/∈S qs ≡ 1 mod multN (S). Note that k

clearly exists since
∏
s/∈S qs and multN (S) are relatively prime. Since γk

∏
s/∈S

qs is a primitive
multN (S) root of unity, the matrix A is equivalent to M(S) up to some permutation,
as desired. J
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I Lemma 45. For a subset S ⊂ [l] with |S| = k and M(S) (as defined in Definition 43) a
factN (S)× factN (S) matrix as described above, we have

rM(S)

(
factN (S)
2ε4x0.01

)
≤ (factN (S))3ε

as long as k ≥ x0.95

Proof. WLOG S = {1, 2, . . . , k}. Consider the factorizations of q1 − 1, . . . , qk − 1 into prime
powers. For each prime power peii ≤ x0.3, let c(peii ) be the number of indices j for which peii
appears (exactly) in the factorization of qj − 1. Note that

(q1 − 1) . . . (qk − 1) =
∏
t

tc(t)

where t ranges over all prime powers at most x0.3. Consider all prime powers peii for which
c(peii ) < x0.62.∏

t,c(t)≤x0.62

tc(t) ≤
(

(x0.3)x
0.62
)x0.3

≤ xx
0.92

Now consider all prime powers say t1, . . . , tn for which c(ti) ≥ x0.62. Let P = t
c(t1)
1 . . . t

c(tn)
n .

From the above and the assumption that k ≥ x0.95, qi ≥ x0.999, we know that

P ≥ factN (S)
xx0.92 ≥ (factN (S))(1−ε)

We will use the prime powers ti and Theorem 26 to show that M(S) is not rigid. Note that
we can associate each row and column of M(S) to a k-tuple (a1, . . . , ak) where ai ∈ Zqi−1 as
follows. First, it is clear that each row and column of M(S) can be associated to a k-tuple
(z1, . . . , zk) ∈ Z∗q1

× · · · × Z∗qk . Now Z∗qi can be viewed as a cyclic group on qi − 1 elements.
This allows us to create a bijection between the rows and columns of M(S) and elements of
Zq1−1 × · · · × Zqk−1.

Also note that for a row indexed by A = (a1, . . . , ak) and a column indexed by B = (b1, . . . , bk),
the entry M(S)AB is dependent only on A+B. We will now decompose M(S) into several
P × P submatrices. In particular, we can write qi − 1 = diTi where Ti is a product of
some subset of {t1, . . . , tn} and di is relatively prime to Ti. We have T1T2 . . . Tk = P . For
each A′, B′ ∈ Zd1 × · · · × Zdk , we can construct a P × P submatrix M(S,A′, B′) consisting
of all entries M(S)AB of M(S) such that A ≡ A′, B ≡ B′ (where the equivalence is over
Zd1 × · · · × Zdk). This gives us d2 different submatrices where d = d1 . . . dk. Naturally,
we can associate each row and column of a submatrix M(S,A′, B′) with an element of
ZT1×· · ·×ZTk such that for a row labeled I and a column labeled J , the entryM(S,A′, B′)IJ
only depends on I + J . In particular, this means that X (M(S,A′, B′))X is diagonal where
X = FT1 ⊗ · · · ⊗ FTk . Now, using Lemma 38, we can rewrite

X = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
c(t1)

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
c(tn)

)

Since for x sufficiently large, c(ti) ≥ x0.62 ≥ t2i (log ti)2

ε4 , we can use Lemma 40 and get that

rX

P n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i


 ≤ P ε
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Let E be the matrix of changes to reduce the rank of X according to the above. We have
that E has at most P ε nonzero entries in each row and column and

rank(X − E) ≤ P
n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i


We can write M(S) in block form as

M(S,A1, B1) M(S,A1, B2) . . . M(S,A1, Bd)
M(S,A2, B1) M(S,A2, B2) . . . M(S,A1, Bd)

...
...

. . .
...

M(S,Ad, B1) M(S,Ad, B2) . . . M(S,Ad, Bd)


where A1, . . . , Ad and B1, . . . , Bd range over the elements of Zd1×· · ·×Zdk . We can rearrange
the above asM(S,A1, B1) . . . M(S,A1, Bd)

...
. . .

...
M(S,Ad, B1) . . . M(S,Ad, Bd)

 =

XD11X . . . XD1dX
...

. . .
...

XDd1X . . . XDddX


where the Dij are diagonal matrices. Now consider the matrix

E(S) =

ED11E . . . ED1dE
...

. . .
...

EDd1E . . . EDddE


We have

M(S)− E(S) =

XD11X − ED11E . . . XD1dX − ED1dE
...

. . .
...

XDd1X − EDd1E . . . XDddX − EDddE

 =

XD11(X − E) . . . XD1d(X − E)
...

. . .
...

XDd1(X − E) . . . XDdd(X − E)

+

(X − E)D11E . . . (X − E)D1dE
...

. . .
...

(X − E)Dd1E . . . (X − E)DddE


In the above expression, each of the two terms has rank at most

dP

n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i

 = factN (S)
n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i

 ≤ 1
2

(
factN (S)
2ε4x0.01

)

Note that when computing the rank, we only multiply by d (and not d2) because the small
blocks are all multiplied by the same low rank matrix on either the left or right. The
number of nonzero entries in each row and column of E(S) is at most P 2εd = factN (S)

P 1−2ε . Since
P ≥ (factN (S))1−ε, we conclude

rM(S)

(
factN (S)
2ε4x0.01

)
≤ (factN (S))3ε J

We are now ready to complete the analysis of the non-rigidity of the Fourier transform
matrix FN .
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Proof of Theorem 37. Set the threshold k0 = l
(

1− ε4

x0.985

)
. The sets TS , as S ranges over

all subsets of [l], form a partition of [N ]× [N ]. For each S ⊂ [l] with |S| ≥ k0, we will divide
TS into factN (S)× factN (S) submatrices using Lemma 44 and change entries to reduce the
rank of every submatrix according to Lemma 45. We will not touch the entries in sets TS
for |S| < k0. Call the resulting matrix M ′. We now estimate the rank of M ′ and then the
maximum number of entries changed in any row or column.

Let m = l−k0 = ε4

x0.985 l. Note since l ≥ x0.99, m ≥ ε4x0.005. We remove all rows and columns
corresponding to integers divisible by at least m

2 of the primes q1, . . . , ql. Since l ≤ x0.993.
The number of rows and columns removed is at most

N

 ∑
S⊂[l],|S|=m

2

∏
i∈S

1
qi

 ≤ N

x0.999m2

(
l
m
2

)
<

N

x0.999m2
l
m
2 ≤ N

x0.003m

The remaining entries must be subdivided into matrices of the form M(S) for various
subsets S ⊂ [l], |S| ≥ k0. Say q1 < q2 < · · · < ql. The number of such submatrices is at most

N2

((q1 − 1) . . . (qk0 − 1))2 ≤ (qk0+1 . . . ql)2
(

q1 . . . qk0

(q1 − 1) . . . (qk0 − 1)

)2
≤ 3(qk0+1 . . . ql)2 ≤ 3x2m

Each one of the submatrices has rank at most
N

2ε4x0.01

so in total the rank is at most

N
3x2m

2ε4x0.01 ≤
N

2ε4x0.002

Combining the two parts we easily get

rank(M ′) ≤ N

2ε4x0.001

Now we bound the number of entries changed. The number of entries changed in each
row or column is at most

N

((q1 − 1) . . . (qk0 − 1))N
3ε ≤ (qk0+1 . . . ql)

(
q1 . . . qk0

(q1 − 1) . . . (qk0 − 1)

)
N3ε ≤ 3N3ε+1.1ml ≤ N4ε

As 2ε4x0.001 ≥ 2ε4(logN)0.0005 for sufficiently large x, we conclude

rFN
(

N

2ε4(logN)0.0005

)
≤ N4ε J

5 Non-rigidity of All Fourier Matrices

In the previous section, we showed that there exists an infinite set of Fourier matrices that
are not Valiant-rigid. In this section, we will bootstrap the results from Section 4 to show
that in fact, all sufficiently large Fourier matrices are not rigid.

The first ingredient will be a stronger form of Lemma 33. Recall that a prime q is defined to
be x-good if x0.999 ≤ q ≤ x and all prime powers dividing q − 1 are at most x0.3 and that an
integer N is defined to be (l, x)-factorable if it can be written as the product of l distinct
x-good primes.
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I Lemma 46. For all sufficiently large integers K, there exist l, x,N such that x0.99 ≤ l ≤
x0.993, N is (l, x)-factorable, and K < N < K(logK)2.

Proof. Call an N well-factorable if it is (l, x)-factorable for some x and x0.99 ≤ l ≤ x0.993.
Let N0 be the largest integer that is well-factorable with N0 ≤ K. Say N0 is (l, x)-factorable.

We have N0 = q1 . . . ql where q1, . . . , ql are distinct, x-good primes. If l < bx0.993c then by
Lemma 33, we can find another x-good prime ql+1. We can then replace N0 with ql+1N0.
ql+1N0 > K by the maximality of N0 and also ql+1N0 ≤ N0x ≤ N0(logN0)2 so ql+1N0
satisfies the desired properties.

We now consider the case where l = bx0.993c. First, if q1, . . . , ql are not the l largest x-good
primes then we can replace one of them say q1 with q′1 > q1. The number N ′ = q′1q2 . . . ql is
well-factorable and between N0 and N0x

0.001. Using the maximality of N0, we deduce that
N ′ must be in the desired range.

On the other hand if q1, . . . , ql are the l largest x-good primes, we know they are actually
all between x0.9995 and x. This is because by Lemma 33, there are more than x0.9995 + l

distinct x-good primes. Let C be the constant in Theorem 35 and let x′ = x(log x)C0+1.
The above implies that q1, . . . , ql are x′-good and clearly x′0.99 ≤ l < x′0.993. By Lemma 33,
there are more than x distinct x′-good primes so there exists some q > x that is x′-good.
The product N ′ = q1 . . . ql−1q is well-factorable and larger than N0 so N ′ > K. Also
N ′ ≤ N0x

0.001(log x)C0+1 < K(logK)2 so N ′ is in the desired range. J

Also note that as a consequence of Theorem 37 we have:

I Lemma 47. Let 0 < ε < 0.1 be fixed, x sufficiently large, and N0 a (l, x)-factorable integer
with x0.99 ≤ l ≤ x0.993. If N0

(logN0)2 ≤ N ≤ N0
2 then any N ×N adjusted-circulant matrix M

satisfies

rM
(

N

2ε4(logN)0.0004

)
≤ N9ε

Proof. By Claim 22, Lemma 24 and Theorem 37, any adjusted-circulant matrix M0 of size
N0 satisfies

rM0

(
2N0

2ε4(logN0)0.0005

)
≤ N8ε

0

Any adjusted-circulant matrix of size at most N0
2 can be embedded (in the upper left corner)

of an adjusted-circulant matrix of size N0 so we have the same inequality for the matrix M .
Rewriting the bounds in terms of N , we get the desired. J

We now have all of the parts to prove that all Fourier matrices are highly non-rigid.

I Theorem 48. For any fixed 0 < ε < 0.1 and N sufficiently large,

rFN
(

N

2ε4(logN)0.0004

)
≤ N9ε

Proof. By Lemma 46, we can find an integer N0 such that 2N < N0 < 2N(log 2N)2 and N0
is (l, x) factorable for some x and x0.99 ≤ l ≤ x0.993. We have N0

(logN0)2 ≤ N ≤ N0
2 . Thus, by

Lemma 47, all N ×N adjusted-circulant matrices satisfy.

rM
(

N

2ε4(logN)0.0004

)
≤ N9ε
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Note that by Claim 25, the rows and columns of FN can be rescaled to obtain an adjusted-
circulant matrix so FN also satisfies the above inequality, completing the proof. J

We can now conclude that all adjusted-circulant and Hankel matrices are not Valiant-rigid.

I Corollary 49. Let 0 < ε < 0.1 be fixed. For all sufficiently large N , if M is an N × N
adjusted-circulant (or Hankel) matrix

rM
(

N

2ε4(logN)0.0003

)
≤ N20ε

Proof. The result for circulant matrices follows immediately from the above and Lemma 24.
For Hankel matrices, note that it is possible to embed any Hankel matrix of size N into the
top left corner of a circulant matrix of size 2N . J

6 Non-rigidity of Group Algebra Matrices for Abelian Groups

Using the results from the previous section, we can show that group algebra matrices for any
abelian group are not Valiant-rigid.

I Theorem 50. Let 0 < ε < 0.1 be fixed. Let G be an abelian group and f : G → C be a
function. Let M = MG(f) be the adjusted group algebra matrix. If |G| is sufficiently large
then

rM
(

2|G|
2ε6(log |G|)0.0001

)
≤ |G|26ε

Proof. By the fundamental theorem of finite abelian groups, we can write G = Zn1⊕· · ·⊕Zna .
In light of Lemma 24, it suffices to bound the rigidity of F = Fn1 ⊗ · · · ⊗ Fna .

WLOG, n1 ≤ n2 ≤ · · · ≤ na. We will choose k to be a fixed, sufficiently large positive
integer. By Theorem 48, we can ensure that for N > k

rFN
(

N

2ε4(logN)0.0004

)
≤ N9ε

Consider the ranges I1 = [k, k2), I2 = [k2, k4), . . . Ij = [k2j−1
, k2j ) . . . and so on. Let Sj

be a multiset defined by Sj = Ij ∩ {n1, . . . , na}. Fix a j and say the elements of Sj are
x1 ≤ · · · ≤ xb. By Theorem 48, for each xi, there are matrices Exi and Axi such that
Fxi = Axi + Exi , Exi has at most x9ε

i nonzero entries in each row and column, and

rank(Axi) ≤
xi

2ε4(log xi)0.0004

Now we can write

Mj = Fx1 ⊗ · · · ⊗ Fxb = (Ax1 + Ex1 )⊗ · · · ⊗ (Axb + Exb) =
∑
S⊂[b]

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′
i

)

=
∑

S⊂[b],|S|≥εb

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′
i

)
+

∑
S⊂[b],|S|<εb

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′
i

)
Let the first term above be N1 and the second term be N2. We will bound the rank of N1
and the number of nonzero entries in each row and column of N2. Note that by grouping the
terms in the sum for N1 we can write it in the form∑

S⊂[b],|S|=dεbe

⊗
i∈S

Axi ⊗ ES



Z. Dvir and A. Liu 17:21

where for each S, ES is some matrix. This implies that

rank(N1) ≤
(

b

dεbe

)
x1 . . . xb(

2ε4(log x1)0.0004)dεbe
≤ bdεbe

( εb3 )dεbe
x1 . . . xb(

2ε4(log x1)0.0004)dεbe = x1 . . . xb

(
3

ε2ε4(log x1)0.0004

)dεbe
As long as k is sufficiently large, we have

rank(N1) ≤ x1 . . . xb

(
3

ε2ε4(log x1)0.0004

)dεbe
≤ x1 . . . xb

(
1

2ε4(log x1)0.0003

)dεbe
≤ x1 . . . xb

2ε5(log x1...xb)0.0002

where in the last step we used the fact that xi ≤ x2
1 for all i. The number of nonzero entries

in each row or column of N2 is at most

2bxb . . . xb−bεbc+1(xb−bεbc . . . x1)9ε = 2b(x1 . . . xb)9ε(xb . . . xb−bεbc+1)1−9ε ≤ (x1 . . . xb)12ε

Note in the last step above, we used the fact that xi ≤ x2
1.

For each integer c between 2 and k, let nc be the number of copies of c in the set {n1, . . . , na}.
If nc ≥ k2(log k)2

ε4 then by Theorem 26, if we define Ac = Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

then

rAc
(
c
nc(1− ε4

k2 log k
)
)
≤ cncε

Let L = d2 log log |G|e and ensure that |G| is sufficiently large so that L > k. Let T be the
set of integers c between 2 and k such that cnc ≥ |G| ε2L (note that as long as |G| is sufficiently
large, all elements of T must satisfy nc ≥ k2(log k)2

ε4 ). Let R be the set of indices j for which∏
x∈Sj x ≥ |G|

ε
2L . Since Sj is clearly empty for j ≥ L, the matrix F can be written as

F =

 ⊗
2≤c<k

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
 ⊗

1≤j≤L
Mj


Define

B =

⊗
c/∈T

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
⊗
j /∈R

Mj


Note that the size of B is at most

(
|G| ε2L

)k+L ≤ |G|ε. Also F = B ⊗D where

D =

⊗
c∈T

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
⊗
j∈R

Mj


For any rank r, rM (|B|r) ≤ |B|rD(r). Applying Lemma 39 iteratively, we get

rD

 |G|
|B|

∑
c∈T

1

c
nc

ε4
k2 log k

+
∑
j∈R

1

2
ε5(log

∏
x∈Sj

x)0.0002

 ≤ ( |G|
|B|

)12ε
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Note that(∑
c∈T

1

c
nc

ε4
k2 log k

+
∑
j∈R

1

2
ε5(log

∏
x∈Sj

x)0.0002

)
≤ k

|G|
ε5

2Lk2 log k

+ L

2ε
6
(

log |G|
2L

)0.0002 ≤
1

2ε6(log |G|)0.0001

Overall, we conclude

rF
(

|G|
2ε6(log |G|)0.0001

)
≤ |B|

(
|G|
|B|

)12ε
≤ |G|13ε

Since FMF is diagonal, Lemma 24 gives the desired. J

7 Final Remarks

7.1 Rigidity over Fields and Extensions
The proofs in the previous sections actually tell us slightly more about the non-rigidity
of Fourier and circulant matrices than what is stated in our results. Firstly, our proof of
Theorem 48 easily generalizes to any field where the necessary roots of unity (for the Fourier
matrix and the generalized Hadamard matrices we embed into it) exist. Over a finite field of
characteristic p, it is not difficult to adapt our proof in order to avoid using roots of unity of
order p (as xp− 1 = (x− 1)p). Also note that in our proof of non-rigidity for FN (the N ×N
Fourier matrix), the changes we make to the entries all live in a number field of dimension
polynomial in N . Combining this insight with Lemma 24 gives us:

I Corollary 51. Let 0 < ε < 0.1 be fixed. Let M be an N ×N circulant matrix with entries
in a field F. For N sufficiently large, there exists an algebraic extension of F with dimension
polynomial in N , say E, such that over E

rM
(

N

2ε4(logN)0.0003

)
≤ N20ε

In particular, M is not rigid over the algebraic closure of F.

In fact, we get a slightly stronger result, that for any circulant matrix M , the locations of
the entries that need to be changed is fixed and the changes are fixed linear combinations of
the entries. This is important because when following Valiant’s graph-theoretic approach for
proving circuit lower bounds in [12], this slightly weaker notion of rigidity is exactly what
is necessary to prove lower bounds. Our result is thus a strong indication that Valiant’s
overall graph-theoretic approach cannot be used to prove circuit lower bounds for computing
convolutions (which correspond to circulant matrices).

Corollary 51 naturally raises the question of whether matrices can be rigid over some
small field F but non-rigid over some extension. While it seems unlikely to expect the rigidity
over any field F to equal the rigidity over any extension, we think it is an interesting open
question to consider when it might be possible to relate (asymptotically) the rigidity of a
family of matrices over F to their rigidity over various extensions of F.

7.2 Group Algebra Matrices
Theorem 50 naturally raises the question of what happens when G is a non-abelian group.
When G is non-abelian, it is no longer possible to diagonalize the matrix MG(f) but there is
a change of basis matrix A such that AMG(f)A∗ is block-diagonal where the diagonal blocks
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correspond to the irreducible representations of G. When all of the irreducible representations
of G are small, it may be possible to use similar techniques to the ones used here. On the
other hand, this suggests that perhaps MG(f) is a candidate for rigidity when all irreducible
representations of G are large (for instance quasi-random groups [6]).
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