
A Fine-Grained Analogue of Schaefer’s Theorem
in P: Dichotomy of ∃k∀-Quantified First-Order
Graph Properties
Karl Bringmann
Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbrücken, Germany

Nick Fischer
Max Planck Institute for Informatics, Saarbrücken Graduate School of Computer Science,
Saarbrücken, Germany

Marvin Künnemann
Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbrücken, Germany

Abstract
An important class of problems in logics and database theory is given by fixing a first-order
property ψ over a relational structure, and considering the model-checking problem for ψ. Recently,
Gao, Impagliazzo, Kolokolova, and Williams (SODA 2017) identified this class as fundamental
for the theory of fine-grained complexity in P, by showing that the (Sparse) Orthogonal Vectors
problem is complete for this class under fine-grained reductions. This raises the question whether
fine-grained complexity can yield a precise understanding of all first-order model-checking problems.
Specifically, can we determine, for any fixed first-order property ψ, the exponent of the optimal
running time O(mcψ ), where m denotes the number of tuples in the relational structure?

Towards answering this question, in this work we give a dichotomy for the class of ∃k∀-quantified
graph properties. For every such property ψ, we either give a polynomial-time improvement over
the baseline O(mk)-time algorithm or show that it requires time mk−o(1) under the hypothesis that
MAX-3-SAT has no O((2− ε)n)-time algorithm. More precisely, we define a hardness parameter
h = H(ψ) such that ψ can be decided in time O(mk−ε) if h ≤ 2 and requires time mk−o(1) for
h ≥ 3 unless the h-uniform HyperClique hypothesis fails. This unveils a natural hardness
hierarchy within first-order properties: for any h ≥ 3, we show that there exists a ∃k∀-quantified
graph property ψ with hardness H(ψ) = h that is solvable in time O(mk−ε) if and only if the
h-uniform HyperClique hypothesis fails. Finally, we give more precise upper and lower bounds
for an exemplary class of formulas with k = 3 and extend our classification to a counting dichotomy.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases Fine-grained Complexity, Hardness in P, Hyperclique Conjecture, Constrained
Triangle Detection

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.31

1 Introduction

One of the most expressive problems in complexity theory is the model-checking problem for
first-order definable properties over relational structures. Any such property can be written
as a formula of the form

(Q1x1) . . . (Qkxk)φ(x1, . . . , xk),

whereQi ∈ {∃,∀}, φ is an arbitrary Boolean formula defined over an arbitrary set of predicates
and the relational structure is given by explicitly listing all tuples defining the predicates.
This problem encompasses, e.g., the hugely diverse set of constraint satisfaction problems and

© Karl Bringmann, Nick Fischer, and Marvin Künnemann;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 31; pp. 31:1–31:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 A Fine-Grained Analogue of Schaefer’s Theorem in P

it is fundamental for database theory as query evaluation problem over relational structures.
In this context, the relational structure is a relational database and the first-order definable
property corresponds to queries to the database, see, e.g., [9] for an overview.

Given its expressiveness, it is no surprise that the complexity of this problem has been
extensively studied under various angles: Among others, one distinguishes between the
combined complexity (where both the first-order property and the relational structure are
part of the input) and the data complexity (where the first-order property is fixed and the
input only contains the relational structure) [54]. After classical works covered various aspects
of these complexities (see, e.g., [31, 10, 30, 44]), later research turned towards parameterized
analyses of such problems, see, e.g., [55, 37, 50] and the overview in [40, Section 4.3]. In this
work, we pursue an even finer-grained complexity analysis of the data complexity of bounded-
variable formulas, which capture a rich complexity landscape of low-degree polynomial-time
problems [58, 41].

Consider the following examples for first-order properties, where the relational structure
consists of the binary edge relation E(x, x′) over vertices in V , defining an (undirected)
graph G:

Triangle: (∃x1 ∈ V ) (∃x2 ∈ V ) (∃x3 ∈ V ) (E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1))
(determine whether G contains a triangle)
TwinFree: (∀x1 ∈ V ) (∀x2 ∈ V ) (∃x3 ∈ V ) (E(x1, x2) ∨ (E(x1, x3) 6↔ E(x2, x3)))
(determine whether G contains no adjacent vertices x1, x2 sharing the same neighborhood)

Such properties are called graph properties. Another example for a graph property (although
we do not call the binary relation “edges” in this case) is a version of the Hitting Set
problem, in which we are given an explicitly represented set family S = {S1, . . . , Sn} over
some universe U . The explicit representation here is a list of tuples fulfilling the relation
s ∈ Si, i ∈ {1, . . . , n}:

HittingSet: (∃H ∈ S) (∀S ∈ S) (∃u ∈ U) (u ∈ H ∧ u ∈ S)
(determine whether there is some input set H that hits all (other) input sets)

A simple baseline algorithm solves the model-checking problem for any first-order formula
in prenex normal form with (k + 1) quantifiers in time O(mk), where m denotes the size of
the relational structure (i.e., the number of tuples satisfying the relations). This has recently
been improved to mk/2Ω(

√
logm) [41]. However, we can surpass this bound significantly

for specific formulas. In particular, TwinFree has a simple O(m)-time algorithm [42]
and Triangle can be solved in time O(m

2ω
ω+1 ) = O(m1.41) [12] (where ω ≤ 2.373 denotes

the matrix multiplication exponent), while for HittingSet we do not know of any faster
algorithm than the m2/2Ω(

√
logm)-solution of Gao et al. [41] (in fact, this barrier has been

used as a hardness assumption in its own right [6]). This raises the question: How can we
determine the constant cψ > 0 in the optimal running time mcψ±o(1) for specific formulas ψ?
In particular, when is a close-to-baseline time mk±o(1) the best possible?

1.1 Complete Problem: (Sparse) k-OV
Remarkable progress to this question has been made by Gao, Impagliazzo, Kolokolova, and
Williams [41]. In the sense of admitting polynomial improvements over the O(mk)-baseline,
they identified the following problem as complete for the class of model-checking problems for
(k+1)-quantifier formulas: (here, the input is a (k+1)-partite graph G = (X1]· · ·]Xk]Y,E))

Sparse k-OV: (∃x1 ∈ X1) . . . (∃xk ∈ Xk) (∀y ∈ Y ) (E(x1, y) ∨ . . . ∨ E(xk, y))



K. Bringmann, N. Fischer, and M. Künnemann 31:3

More precisely, Gao et al. show that Sparse k-OV has an O(mk−ε)-time algorithm for
some constant ε > 0 if and only if for all (k + 1)-quantifier formulas in prenex normal form,
the model-checking problem can be solved in time O(mk−ε′) for some constant ε′ > 0. This
identifies Sparse k-OV as one of the hardest problems in this class of problems.

Note that Sparse k-OV is a sparsely represented variant1 of the following problem:

I Problem 1 (k-OV). Given k sets of 0-1 vectors A1, . . . , Ak ⊆ {0, 1}d, where |Ai| = n,
determine whether there is a tuple a1 ∈ A1, . . . , ak ∈ Ak such that

∏k
i=1 ai[`] = 0 for

all ` ∈ [d].

It is conjectured that for any constant k, k-OV cannot be solved in time O(nk−ε poly(d))
for any constant ε > 0, which is called the k-OV conjecture. Assuming this lower bound only
for k = 2 is known simply as OV conjecture – this has been used as a hardness assumption
for a number of conditional lower bounds in the quadratic-time regime [52, 18, 8, 13, 4, 20,
14, 6, 19, 21, 59, 2]. Likewise, the stronger k-OV conjecture has found uses to derive further
polynomial-time lower bounds of different degree [51, 4, 1, 15, 48].

For almost a decade, the main support for the k-OV hypothesis was given by a reduction by
Williams [57] using the so-called split-and-list technique to show that the Strong Exponential
Time Hypothesis [45] implies the k-OV hypothesis. Only recently, Abboud et al. [5] show
that the OV hypothesis is also implied by the weighted k-Clique hypothesis. Interestingly,
the work by Gao et al. [41] gives additional evidence, as they show that existence of an
O(nk−ε poly(d))-time algorithm for k-OV for constant ε > 0 is equivalent to the existence
of an O(mk−ε′)-time model-checking algorithm for all (k + 1)-quantifier formulas in prenex
normal form for some constant ε′ > 0. The study of first-order properties is thus tightly
connected to the study of hardness and structure within P. In particular, our aim is to
understand which properties make a first-order formula expressive enough to capture the
hardest model-checking problems, i.e., Sparse k-OV, and which properties make a first-order
formula easier to evaluate.

1.2 Classification à la Schaefer
Our questions ask for fine-grained analogues of classical results in computational complexity
theory. Specifically, consider the case of Boolean constraint satisfaction problems (CSPs). As
each Boolean CSP is in NP, Cook’s theorem establishes that every CSP reduces to 3-SAT.
Schaefer’s Theorem [53] proves a dichotomy for reductions in the reverse direction: Assuming
P 6= NP, every Boolean CSP either is polynomial-time solvable or requires superpolynomial
time via a reduction from 3-SAT.

Translated to our setting, where first-order properties correspond to the class NP, Gao
et al. give an analogue of Cook’s Theorem: They give a fine-grained reduction from the
model-checking problem of any (k + 1)-quantifier first-order formula to Sparse k-OV. This
raises the question:

Can we give a dichotomy analogous to Schaefer’s classification, i.e.,
for each such formula either give an O(mk−ε)-time algorithm or show “Sparse

k-OV-hardness”?

1 To see the correspondence, let the vertex sets Xi, i ∈ {1, . . . , k} represent the vector sets Ai, let Y
denote the dimensions {1, . . . , d} and let the binary relation E(xi, y) with xi ∈ Xi and y ∈ Y hold
if and only if xi[y] = 1. We call this representation sparse as the relational structure only lists the
1-entries of the k-OV instance.

CCC 2019



31:4 A Fine-Grained Analogue of Schaefer’s Theorem in P

Our aim in this work is to initiate the investigation of such fine-grained classifications
into hardest and easier first-order properties. Note that in the case of CSPs over finite
domains, this line of research proved to be an effort requiring four decades of research in
complexity, logic and algebra (see e.g., [34] for an early overview and the surveys [32, 25]
for an introduction to the algebraic approach). In particular, after Schaefer’s classification
of the Boolean domain, Feder and Vardi raised the dichotomy conjecture that such a
dichotomy also exists for CSPs over arbitrary finite domains [38, 39]. After a series of works
developing an algebraic view on CSPs [47, 46, 26], and classifications of larger classes of
CSPs (e.g., [43, 22, 23]), only very recently, Bulatov [24] and Zhuk [60] could finally resolve
the conjecture.

Given the close connection to CSPs, we do not expect a full dichotomy for bounded-
quantifier first-order properties to be within immediate reach of current techniques – thus,
we focus on expressive fragments first. In particular, we focus on formulas with the quantifier
structure ∃k∀, as it is the quantifier structure of the known complete problem Sparse k-OV
(in fact, under a nondeterministic variant of SETH, ∃k∀ and the symmetric ∀k∃ are the
only quantifier structure containing complete problems for first-order properties [28]). Note
also that this quantifier structure is analogous to the quantifier structure for CSP solvability
(existential quantifiers for variable assignments and a universal quantifier to check that all
constraints are satisfied; this correspondence is best illustrated by Williams’ split-and-list
reduction from CNF satisfiability to OV [57]). We leave the remaining quantifier structures
(analogous to the classification of quantified CSPs [53, 35, 34]) to be addressed in future work.

1.3 Further Related Work
Note that related work in database theory gives further flavors of fine-grained dichotomies
for first-order properties: For the related setting of query enumeration, Bagan, Durand and
Grandjean [16] classify each acyclic conjunctive query as either admitting constant-delay
enumeration following linear-time precomputation or as hard under the assumption that
Boolean matrix multiplication requires superquadratic time. This classification was recently
extended to incorporate functional dependencies between attributes [27]. Further work gives
fine-grained dichotomies under the OMv and OV hypotheses for dynamic databases [17].

1.4 Our Results
Our main result is a dichotomy for ∃k∀-quantified formulas over graphs under a plausible
assumption about the complexity of MAX-3-SAT. Formally, ∃k∀-quantified first-order graph
properties are formulas of the form

ψ = (∃x1 ∈X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φ(x1, . . . , xk, y), (1)

where φ is an arbitrary Boolean formula defined over the atoms E(v, v′) with v, v′ ∈
{x1, . . . , xk, y} and v 6= v′. Let MC(ψ) denote the corresponding model-checking problem:
Check whether ψ holds for a given a (k + 1)-partite2 graph with vertex parts X1, . . . , Xk, Y .

I Theorem 1 (Dichotomy). For any ∃k∀-quantified graph property ψ, deciding MC(ψ) either
requires time mk−o(1) under the assumption that MAX-3-SAT has no O((2 − ε)n)-time
algorithm for any ε > 0, or we give an O(mk−ε)-time algorithm for some ε > 0.

2 A discussion on this assumption follows in Section 2.



K. Bringmann, N. Fischer, and M. Künnemann 31:5

In fact, we base our hardness results even on the weaker 3-uniform HyperClique
assumption as introduced in [5, 49]. Formally, the h-uniform HyperClique hypothesis
states for any parameter h ≥ 3:

I Hypothesis (h-uniform HyperClique). For no ε > 0 and k ≥ h + 1, there is an
O(nk−ε)-time algorithm for detecting a k-clique in h-uniform hypergraphs.

We defer a discussion of the plausibility of the MAX-3-SAT and h-uniform HyperClique
hypotheses to Section 2.2 and the detailed treatment in [49, Section 7].

Beyond Theorem 1, we gain deeper insights into the complexity landscape of first-order
graph properties. In particular, we expose a fine-grained hardness hierarchy purely depending
on a hardness parameter h = H(ψ) which we define below (illustrated in Figure 1): if
h = k, then a lower bound of mk−o(1) can be derived from the k-OV conjecture, and thereby
from SETH. On the other extreme, if h ≤ 2, we give O(mk−ε)-time algorithms (for some
ε > 0) – here, the difference between hardness 1 and 2 is precisely whether or not fast matrix
multiplication techniques are likely to be necessary. For the remaining cases of 3 ≤ h < k,
we can derive a lower bound of mk−o(1) under the 3-uniform HyperClique conjecture.
In fact, we obtain increasing levels of hardness, as the lower bound for hardness-h formulas
follows from the h-uniform HyperClique conjecture.

For the definition of our hardness parameter, it turns out that the decisive information is
given by the atoms E(xi, y) for some existentially quantified variable xi and the universally
quantified y. Specifically, consider the formula φ0 obtained by setting all atoms E(xi, xj), 1 ≤
i < j ≤ k in φ to false. Observe that we can view φ0 as a Boolean function {0, 1}k → {0, 1}
which maps the values (E(x1, y), . . . , E(xk, y)) to a truth value. The hardness h of ψ is
then given by the following hardness parameter H(φ0). To state its definition, we need the
following notation: For a propositional formula f(z1, . . . , zk) and an index set I ⊆ [k], an
I-restriction of f is a formula obtained from f after substituting all variables zi, i ∈ I, by
constant values from {0, 1}.

I Definition 2. We call a propositional formula f(z1, . . . , zk) h-hard, 0 ≤ h ≤ k, if, for any
index set I ∈

( [k]
k−h
)
, there exists some I-restriction of f with exactly one falsifying assignment.

Further define the hardness H(ψ) as the maximum number h for which ψ is h-hard (for
constant-valued f , we set H(f) = 0).

Intuitively, H(f) is the largest arity k such that whenever we fix an arbitrary subset of all
but k variables, we can still obtain a “k-OV-like” function (a function with only a single
falsifying assignment) as a restriction.

The following theorem is a fine-grained version of our dichotomy in Theorem 1.

I Theorem 3 (Hardness levels). For a first-order property ψ as in (1), let φ0 : {0, 1}k → {0, 1}
denote the formula obtained from φ by replacing all occurrences of E(xi, xj) by false. We
call H(ψ) := H(φ0) the hardness of ψ. For h = H(ψ), it holds that

If h ≤ 1, then MC(ψ) is decidable in time O(mk−ε) for some ε > 0 combinatorially3.
If h ≤ 2 < k, then MC(ψ) is decidable in time O(mk−ε) for some ε > 0 using fast matrix
multiplication. (Furthermore, MC(ψ) cannot be decided by a combinatorial O(mk−ε)-time
algorithm unless the combinatorial k-Clique hypothesis4 is false.)

3 Informally, by combinatorial algorithms we mean algorithms that do not rely on algebraic methods like
fast matrix multiplication [3].

4 The combinatorial k-Clique hypothesis as stated in, e.g., [3, 49] postulates that – even though an
O(n

ω
3 k)-time algorithm is known for k-Clique – no such polynomial improvement over the naïve O(nk)

solution can be achieved by a combinatorial algorithm.

CCC 2019



31:6 A Fine-Grained Analogue of Schaefer’s Theorem in P

k = 5k = 4k = 3k = 2

h ≤ 1

h = 2

h = 3

h = 4

h = 5

Lemma 11

Lemma 14

Lifting Lemma

Lifting Lemma

· · ·

· · ·

· · ·

· · ·
· · ·

decidable in
time O(mk−ε)

decidable in
time O(mk−ε)
using fast MM

mk−o(1)-
hard under
h-uniform
HyperClique

mk−o(1)-hard
under k-OV,
SETH

Figure 1 Visualizes the hardness of MC(ψ) for ∃k∀-quantified graph properties ψ of hardness
h = H(ψ). The green-hatched areas designate instances that allow polynomial improvements over
the baseline algorithm, while the red regions turn out to be provably hard.

If 3 ≤ h ≤ k, then MC(ψ) cannot be decided in time O(mk−ε) for any ε > 0 unless the
h-uniform HyperClique hypothesis fails.
If h = k, then MC(ψ) cannot be decided in time O(mk−ε) for any ε > 0 unless the k-OV
hypothesis fails.

Note that under the plausible assumption that h-uniform HyperClique gets strictly
harder for increasing arity h, our classification exposes increasing levels of hardness within
the first-order graph properties. This claim is substantiated by the following observation
(whose proof is deferred to the full version of the paper).

I Proposition 4. Let h ≥ 3. There exist k > h, ε > 0, and an ∃k∀ graph property ψ of
hardness h that can be decided in time O(mk−ε) if and only if the h-uniform HyperClique
hypothesis fails.

To give a specific illustration of our results, consider the first-order property TwinFree.
By negating the formula, we obtain an equivalent graph property as in (1) where φ0 is the
constant false formula. As such, our classification yields that TwinFree is decidable in time
O(m2−ε) (in fact, it is even decidable by an O(m)-time algorithm [42]).

Another interesting family of examples is the following k-Not-All-Equal Problem.

I Example 5. Let NAE(z1, . . . , zk) be falsified only by the all-zero or all-one assignment.
The k-Not-All-Equal (k-NAE) problem is given by the query

(∃x1 ∈ X1) . . . (∃xk ∈ Xk) (∀y ∈ Y ) NAE(E(x1, y), . . . , E(xk, y)).

It is easy to check that H(k-NAE) = k − 1. Thus, by Theorem 3,
2-NAE is decidable in time O(m2−ε) for some ε > 0.
(In fact, we give an O(m)-time algorithm.)
3-NAE is decidable in time O(m3−ε) for some ε > 0 using fast matrix multiplication,
k-NAE takes time mk−o(1) for any k > 3 unless the (k − 1)-uniform HyperClique
hypothesis fails.

Finally, we extend our results and discuss further directions in Section 7: In particular,
we extend Theorem 3 to a counting dichotomy. Furthermore, we give tighter bounds on the
running time exponent for properties that admit polynomial improvements over the baseline,
using k = 3 as a case study.



K. Bringmann, N. Fischer, and M. Künnemann 31:7

1.5 Outline
After setting up notation and detailing the hardness assumptions used in this work in
Section 2, we give a technical overview of our proof and introduce our main algorithmic
tools in Section 3. Following the outline described in Section 3, we prove our main result in
Sections 4, 5 and 6. Finally, we discuss our extensions and give an outlook for future work in
Section 7. The proofs of our extensions are deferred to the full version of this paper.

2 Preliminaries

Let us clarify some notation first. For a non-negative integer k, let [k] := {1, . . . , k}. By ] we
denote the disjoint union of sets and for any set I, by

(
I
k

)
we address the set of all k-element

subsets of I. For a 0-1 vector x, we write x̄ for the complement of x and ‖x‖ to denote the
Hamming weight (that is, the `1-norm) of x. Occasionally, we apply bit-wise binary operations
to vectors understood as component-wise application. We further employ the Iverson bracket
notation, that is, we write [P ] to denote the truth value of a proposition P . Let f(z1, . . . , zk)
be a propositional formula and let I ⊆ [k]. For any assignment α : I → {0, 1}, we write f |α
to denote the formula obtained from f after substituting zi by αi, for all i ∈ I. Finally, by
ω ≤ 2.373 we denote the exponent of matrix multiplication.

2.1 Model-Checking
A relational structure consists of n objects and predicates of arbitrary arity relating these
objects. These predicates are explicitly given as lists of records; let m denote the total
number of such facts. Without loss of generality we assume n ≤ O(m) by ignoring objects
not occurring in any relation. A first-order property is given by a quantified formula

(Q1x1) . . . (Qkxk)φ(x1, . . . , xk),

where each quantifier Qi ∈ {∃,∀} ranges over all objects of the relational structure. The
proposition φ is allowed to contain Boolean connectives and its atoms are given by predicates
relating the quantified objects. The problem MC(ψ) of checking whether a fixed first-order
property ψ holds on a given sparse structure is called the model-checking problem (or query
evaluation problem) for ψ.

In this paper, we consider a fragment that we call ∃k∀-quantified graph properties: Here
the input is a (k+ 1)-partite graph G = (X1 ] · · · ]Xk ]Y,E) and the task is to model-check
the fixed formula

ψ = (∃x1 ∈X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φ(x1, . . . , xk, y),

where φ is an arbitrary Boolean formula formed from a single edge predicate E of arity 2
(i.e., the atoms of φ are of the form E(v, v′) with v, v′ ∈ {x1, . . . , xk, y}). We assume the
edge predicate to be symmetric (i.e., G to be a symmetric graph). We adopt the convention
that xi (respectively y) ranges over Xi (respectively Y ) and therefore omit to explicit state
membership xi ∈ Xi when it is clear from the context. Borrowing the notation from the
definition of Sparse OV, we let d := |Y | denote the number of objects in the range of the
universally quantified variable. Since MC(ψ) is solvable in time O(m) for k ≤ 2, we assume
throughout the paper that k ≥ 2.

Let us explicitly highlight a subtle point: An alternative natural formalization of graph
properties would be to omit the assumption that the given graph is (k+1)-partite. This alters
the flavor of model-checking problems slightly: While all of our upper bounds would also

CCC 2019



31:8 A Fine-Grained Analogue of Schaefer’s Theorem in P

hold for this alternative formulation (by replicating the vertex set), the assumption cannot
be neglected for the lower bounds. In fact, there exist examples of first-order properties
that we prove hard if each quantifier ranges over its own part, and which turn out as easy if
instead each quantifier ranges over the whole vertex set.5 We leave open an investigation of
this alternative formulation for future work.

2.2 Hardness Assumptions
We briefly collect the hardness assumptions used in our classification result.

I Hypothesis (k-OV). For no k and ε > 0, k-OV on n vectors with dimension d can be
solved in time O(nk−ε poly d).

The fastest known algorithm solves k-OV in time n2−Ω(1/ log(d/ logn)) [7, 29]. On the hardness
side, the k-OV hypothesis is implied by SETH [57], the weighted k-Clique hypothesis [5],
and the hypothesis that not all (k + 1)-quantifier first-order properties can be solved in time
O(mk−ε) [41]. We remark that we use the moderate-dimensional k-OV hypothesis here (in
fact, SETH even implies a stronger version postulating hardness just above logarithmic
dimension).

The most important hypothesis for this work concerns the HyperClique problem: Given
an h-uniform hypergraph H, the h-uniform k-HyperClique problem asks to find vertices
v1, . . . , vk ∈ V (H) so that any size-h subset of {v1, . . . , vk} is contained in E(H). This gives
rise to the following hypothesis for any h ≥ 3.

I Hypothesis (h-uniform HyperClique). For no ε > 0 and k ≥ h + 1, there is an
O(nk−ε)-time algorithm for h-uniform k-HyperClique.

The restriction h ≥ 3 is indeed essential: The 2-uniform k-HyperClique problem – i.e., the
k-Clique problem on ordinary graphs – is known to admit faster solutions. Lincoln et al. [49]
provides a detailed analysis on why to believe that the h ≥ 3 case should be significantly
harder: As a main argument, any improvement over the O(nk)-time k-Clique algorithm
traces back to fast matrix multiplication, however, Strassen-like algebraic techniques can
provably not be applied to the HyperClique setting [49]. Moreover, there is a reduction
from MAX-3-SAT to h-uniform k-HyperClique (h ≥ 3), showing that the h-uniform
HyperClique conjecture is entailed by the following MAX-3-SAT hypothesis, which is the
simplest justification for our hardness results.

Specifically, consider the MAX-3-SAT problem, which asks, given a 3-SAT instance, to
find an assignment maximizing the number of satisfied clauses.

I Hypothesis (MAX-3-SAT). For all ε > 0, MAX-3-SAT cannot be solved in time
O((2− ε)n).

The currently fastest known algorithm for MAX-3-SAT runs in time 2n−o(n) [11]. This
assumption implies both the 3-uniform k-HyperClique [49] and the OV [5] hypotheses,
and thus provides the currently easiest barrier for algorithmic improvements upon formulas
that we classify as hard.

5 Consider the property ψ = (∃x1 ∈ V ) . . . (∃xk ∈ V ) (∀y ∈ V )
∨k

i=1 E(xi, y), which is equivalent to the
k-Dominating Set problem. It is easy to see that MC(ψ) can be decided in time O(mk−1): For any
solution (x1, . . . , xk), there must exist one “heavy” vertex xi dominating at least n/k vertices y. However,
there can be at most O(m/n) many such vertices xi. It is feasible to explicitly enumerate all heavy
vertices and solve the remaining k-quantifier problem in O(nk−2m) time using the baseline algorithm.
The total running time is O(m/n · nk−2m) = O(mk−1). However, if the quantifiers of ψ range over
separate sets X1, . . . , Xk, Y , then deciding MC(ψ) requires time mk−o(1) (Theorem 3).



K. Bringmann, N. Fischer, and M. Künnemann 31:9

3 Technical Overview

To prove our result, we introduce the following type of ∃k∀-quantified graph properties, in
which we interpret the input graph G = (V = (X1 ] · · · ] Xk ] Y ), E) as sets of vectors
X1, . . . , Xk, by setting the entry xi[y] ∈ {0, 1} to be 1 if and only if the edge (xi, y) is present
in G, i.e, xi[y] =

[
E(xi, y)

]
(for any xi ∈ Xi, i ∈ [k], and y ∈ Y ). For any Boolean function

φ : {0, 1}k → {0, 1}, we define the corresponding Vector Problem VP(φ)

(∃x1 ∈X1) . . . (∃xk ∈ Xk) (∀y ∈ Y )φ(x1[y], . . . , xk[y]).

Intuitively, Vector Problems are a proper subclass of ∃k∀-quantified graph properties, since
the latter additionally considers the edges E(xi, xj). Note that Sparse k-OV coincides with
VP(φ) for φ(z1, . . . , zk) =

∨k
i=1 z̄i; in particular, this function only has a single falsifying

assignment.
We prove our main dichotomy (Theorems 1 and 3) by first proving an analogous dichotomy

for Vector Problems (see Theorem 6) and then showing an equivalence between Vector
problems and general ∃k∀-quantified graph properties (see Theorem 7).

For the first step, we show that the complexity of a Vector Problem VP(φ) is determined
by the parameter H(φ) as defined in Definition 2:

I Theorem 6. Let φ be a k-variable formula of hardness h = H(φ).
If h ≤ 1, then VP(φ) is decidable in time O(mk−1) combinatorially.
If h ≤ 2 < k, then VP(φ) is decidable in time O(mk−ε) for some ε > 0 using fast matrix
multiplication. (Furthermore, VP(φ) cannot be decided by a combinatorial O(mk−ε)-time
algorithm unless the combinatorial k-clique hypothesis is false.)
If 3 ≤ h ≤ k, then VP(φ) cannot be solved in time O(mk−ε) for any ε > 0 unless the
h-uniform HyperClique hypothesis fails.
If h = k, then VP(φ) cannot be solved in time O(mk−ε) for any ε > 0 unless the k-OV
hypothesis fails.

This result is established as follows (see Figure 1 for an illustration). On the algorithmic
side, we show that:

1. For any 2-variable formula φ of hardness 1, VP(φ) can be solved in time O(m) (Sec-
tion 4.1).

2. For any 3-variable formula φ of hardness 2, VP(φ) can be solved in time O(m3−ε) for
some ε > 0 (Section 4.2). This is our technically most demanding contribution, for which
we introduce a framework of Constrained Triangle problems solvable in subcubic time
(Section 3.1).

3. These algorithms can be lifted to higher number of variables k (Section 4.3). The idea is
to brute force over all but 2 or 3 variables and to apply the algorithms above. However,
these algorithms are not directly applicable, since the brute-forcing step does not reduce
to solving a single VP(φ) instance, but to solving a mixture of VP(φi) instances for
a constant number of formulas φ1, . . . , φ`. To overcome this issue, we consider Hybrid
Vector Problems VP(Φ) for a set of formulas Φ and show that our algorithms from above
apply whenever max{H(φ) | φ ∈ Φ} ≤ 1 or 2, respectively. This extension to Hybrid
Vector Problems is made possible by the generality of our Constrained Triangle framework
that allows for a surprisingly simple combination of constraints for different formulas.

On the hardness side, for any k-variable hardness-h formula φ, we give a fine-grained reduc-
tion from finding a k′-clique in h-uniform hypergraphs to the model-checking problem for φ,
where k′ is a sufficiently large constant. Intuitively (and somewhat oversimplified), the vari-
ables x1, . . . , xk choose a k-clique in a k-partite hypergraph and the (∀y)φ(x1[y], . . . , xk[y])-
part verifies that (x1, . . . , xk) indeed forms a clique. To this end, y ranges over the non-edges

CCC 2019



31:10 A Fine-Grained Analogue of Schaefer’s Theorem in P

of the hypergraph and verifies that the vertices v1, . . . , vh of such a non-edge are not included
in x1, . . . , xk. Specifically, let J denote the parts containing v1, . . . , vk. Then by our hardness
definition, we find a way to assign values to xi[y] for all xi ∈ Xi with i ∈ [k] \ J such that we
can exclude exactly the vertices v1, . . . , vh by finding suitable values for xi[y] for all i ∈ Xi

with i ∈ J . The proof is given in Section 5.

In the second step, we extend our classification from Vector Problems to all ∃k∀ graph
properties by the following equivalence.

I Theorem 7. Let ψ = (∃x1) . . . (∃xk) (∀y)φ(x1, . . . , xk, y) be an ∃k∀ graph property and
let φ0 denote the formula φ after substituting each predicate E(xi, xj) by false.

If MC(ψ) is decidable in time T (m), then VP(φ0) is decidable in time O(T (m)).
If VP(φ0) is decidable in time O(mk−ε) for some ε > 0, then MC(ψ) is decidable in time
O(mk−ε′) for some ε′ > 0.

For an intuition for the proof of the non-trivial direction from general properties to Vector
Problems, let us call (x1, . . . , xk) a solution if (∀y ∈ Y )φ(x1, . . . , xk, y) holds. We reduce
the problem of detecting a solution (x1, . . . , xk) such that for some 1 ≤ i < j ≤ k, the edge
E(xi, xj) is present to the problem of counting triangles in a (sparse) graph. The remaining
solutions almost correspond to solutions of the Vector Problem φ0 – however, we need to
additionally ensure that no edge E(xi, xj) is present in such a solution. We overcome this
technical issue using a counting argument that there are few solutions with at least one edge
E(xi, xj) present.

Theorems 1 and 3 then follow by combining Theorem 6 and 7.

3.1 Constrained Triangles Framework
Let us detail our main algorithmic tool in advance. We develop a convenient framework to
detect triangles subject to an arbitrary combination of some well-behaved constraints. We
achieve subcubic-time algorithms by employing fast matrix multiplication in combination
with a careful constraint-specific analysis.

The problem of detecting three pairwise adjacent vertices in a tripartite graph G =
(V1 ] V2 ] V3, E), is referred to as Triangle. It serves us as a combinatorial intermediate
problem that immediately benefits from the significantly improved running time of fast matrix
multiplication over the O(n3)-time naïve approach. However, Triangle is of relatively little
expressiveness as the only way to encode information into a Triangle instance is to customize
the edge set E. We therefore strengthen Triangle by allowing certain constraints to further
restrict the set of feasible solutions (v1, v2, v3). Specifically, we make use of two types
of constraints:

Sum: For edge weights w : E → Z, where
∑
e∈E |w(e)| ≤ O(n2), and a target t ∈ Z, we

require that w(v1, v2) + w(v2, v3) + w(v3, v1) = t.
Equal: For edge weights w : E → Z, we require that w(v1, v2) = w(v1, v3).

This prepares us to introduce Constrained Triangle problems in an inductive fashion: As
the base case, Triangle is viewed as a Constrained Triangle problem. In addition, for
any Constrained Triangle problem ∆ and any constraint C ∈ {Sum,Equal}, by ∆[C] we
understand the Constrained Triangle problem which is – on top of all constraints restricting
∆ – constrained by C. We remark that each constraint features its own weight function
(which is given as part of the input), so in particular an instance of the Constrained Triangle
problem Triangle[C1] · · · [Cr] is equipped with r weight functions corresponding to the
respective Sum and Equal constraints Ci.



K. Bringmann, N. Fischer, and M. Künnemann 31:11

Arguably, Constrained Triangle problems seem to be a convenient “interface” to the
algorithmic power of fast matrix multiplication, as we can specifically tailor constraints
in the desired manner. Indeed, even subject to any constant number of Sum and Equal
constraints, finding triangles remains subcubic.

I Lemma 8. Let ∆ be a Constrained Triangle problem. Then ∆ can be decided in time
O(n3−ε) for some ε > 0.

The proof of Lemma 8 is by induction on the structure of ∆; we consider the three possible
cases below in Fact 1, Lemma 9 and Lemma 10. A crucial observation which we will exploit
often, is that for any Constrained Triangle problem ∆, given (v1, v2, v3), we can test in
constant time whether (v1, v2, v3) is a solution of ∆.

By applying fast (Boolean) matrix multiplication, it is well-known that Triangle is
decidable in subcubic time:

I Fact 1. Triangle is decidable in time O(nω).

This settles the induction base. In the following two lemmas, we assume efficient algorithms
for ∆ and aim to find algorithms for ∆[Sum] and ∆[Equal], respectively.

We focus on ∆[Sum] first. Note that the restriction
∑
e∈E |w(e)| ≤ O(n2) is indeed

necessary: For unbounded weights, the problem of finding an exact-weight triangle is not
known and in fact conjectured not to be decidable significantly faster than O(n3) [56].
Nevertheless, under this condition we achieve an efficient ∆[Sum] algorithm:

I Lemma 9. If ∆ is decidable in time O(n3−ε) for some ε > 0, then ∆[Sum] is decidable in
time O(n3−ε′) for some ε′ > 0.

Proof. We call an edge large-weight if its weight exceeds nδ in absolute value (where δ is yet
to be fixed) and small-weight otherwise. Our first step is to eliminate all large-weight edges.
By assumption, since

∑
e∈E |w(e)| ≤ O(n2), there can be at most O(n2/nδ) = O(n2−δ) many

such edges. Thus, it is feasible to enumerate all large-weight edges (xi, xj) and all vertices x`
in the remaining part X`, for all distinct i, j, `. For each triple considered in that way, we
explicitly check that

(xi, xj , x`) forms a triangle, and
(xi, xj , x`) satisfies all constraints of ∆, and
w(xi, xj) + w(xj , x`) + w(x`, xi) = t.

Since all these tests run in constant time, this whole step takes time O(n2−δ · n) = O(n3−δ).
We accept if a solution was found, and otherwise continue by safely removing all large-weight
edges from the graph.

So from now on, we can assume that all remaining edges are small-weight. For any
combination of weights w12, w23, w31 ∈ {−nδ, . . . , nδ} summing exactly to t, we create a ∆
instance that only includes edges (vi, vj) of the weight w(vi, vj) = wij . We proceed to solve
all these instances and report if a solution was found. By construction, any solution to an
instance created in that way satisfies all constraints of ∆ and the additional Sum constraint.

Solving a single ∆ subinstance takes time O(n3−ε) by assumption. There are O(n2δ)
many combinations of weights w12, w23, w31 ∈ {−nδ, . . . , nδ} with w12 + w23 + w31 = t, so
we need time O(n2δ · n3−ε) = O(n3+2δ−ε) to solve all instances. By setting δ := ε

3 , the
claim follows. J

I Lemma 10. If ∆ is decidable in time O(n3−ε) for some ε > 0, then ∆[Equal] is decidable
in time O(n3−ε′) for some ε′ > 0.

CCC 2019



31:12 A Fine-Grained Analogue of Schaefer’s Theorem in P

Proof. For any vertex v1 ∈ V1, we define degi(v1) as the number of edges of weight i incident
to v1. First, we enumerate all edges (v1, v3), and if degw(v1,v3)(v1) ≤ n1−δ (where δ is a
parameter to be chosen later), then enumerate all edges (v1, v2) of the same weight w(v1, v3).
When finding a triple (v1, v2, v3) forming a triangle and fulfilling all constrained imposed by ∆,
we accept. Otherwise, we can safely remove all edges (v1, v3) where degw(v1,v3)(v1) ≤ n1−δ.
We can similarly remove all edges (v1, v2) with degw(v1,v2)(v1) ≤ n1−δ. So we can assume
that for all weights i, and all vertices v1, degi(v1) is either 0 or at least n1−δ. This step takes
time O(n2 · n1−δ) = O(n3−δ).

Since each vertex v1 is incident to at most n edges, each v1 can be incident to edges of at
most n/n1−δ = nδ different weights; we denote these weights by wv1

1 , . . . , w
v1
nδ

in an arbitrary
order. Our strategy is as follows: We create nδ many ∆ instances, where the i-th instance
contains, for each vertex v1, only those edges incident to v1 which are of weight wv1

i . Notice
that in each instance, all edges incident to one fixed v1 are of the same weight, even though
edges incident to different v1’s are in general of different weights. In this way, we can now
simultaneously search for all triangles (v1, v2, v3) satisfying ∆’s constraints and satisfying
w(v1, v2) = w(v1, v3) = wv1

i . Solving all instances takes time O(nδ · n3−ε) = O(n3+δ−ε),
under the assumption that ∆ can be solved in time O(n3−ε).

In total, the running time is bounded by O(n3−δ + n3+δ−ε), which is subcubic, namely
O(n3− ε2 ), for δ := ε

2 . J

4 Algorithmic Results

In this section, we show the algorithmic part of Theorem 6. In particular, we show that for
an k-variable hardness-h formula φ the Vector Problem VP(φ) is easy if k = 2 and h ≤ 1
(Section 4.1), or if k = 3 and h ≤ 2 (Section 4.2). In fact, for both scenarios, we demonstrate
how to solve the following more general version of Vector Problems that discriminates among
dimensions in such a way that we can assert different formulas φ for different dimensions.

For a set of k-variable formulas Φ, and given a sparse structure over the vertex set
X1 ] . . .]Xk ]Y , where each dimension y ∈ Y is associated to a formula φy ∈ Φ, the Hybrid
Vector Problem VP(Φ) is to check

(∃x1 ∈X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φy(x1[y], . . . , xk[y]).

Our hardness notion is generalized to sets of formulas Φ by H(Φ) := max{H(φ) : φ ∈ Φ}.
(Observe that we could equivalently define Hybrid Vector Problems as Vector Problems
tolerating a multi-valued unary predicate on Y .)

4.1 Algorithms for k = 2
We first introduce a useful tool: partition refinement [42]. There exists a (simple) data
structure which, once initialized with a universe U , explicitly maintains a partition

⊎
P P of

U . It supports an operation Refine(S) that splits each part P into P ∩ S and P \ S and
runs in time O(|S|). In addition, we can always query, for each universe element u ∈ U , its
current part P (with u ∈ P ) and iterate over all elements in P in time O(|P |).

I Lemma 11. Let Φ be a set of 2-variable formulas of hardness H(Φ) ≤ 1. Then VP(Φ) is
decidable in time O(m).

Proof. Let φ ∈ Φ. We first prove that VP(φ) is linear-time decidable, and later show the
same for VP(Φ). Since we consider k = 2 variables, we have a function φ : {0, 1}2 → {0, 1}.
We exhaustively discriminate all possible shapes of φ:



K. Bringmann, N. Fischer, and M. Künnemann 31:13

Case 0: φ has 0 or 4 satisfying assignments. Then VP(φ) is constantly rejecting or ac-
cepting and trivially decidable.

Case 1: φ has 1 satisfying assignment. Then φ is of the shape φ(z1, z2) = φ1(z1) ∧ φ2(z2).
Deciding VP(φ) is equivalent to asserting the satisfiability of (∃x1) (∀y)φ1(x1[y]) and
(∃x2) (∀y)φ2(x2[y]) separately, which we do by removing all vectors x1 and x2 violating
(∀y)φ1(x1[y]) and (∀y)φ2(x2[y]), respectively. Focus on the former problem: We first
precompute all values ‖x1‖ by iterating over the edge set once. Then we exclude all
vectors x1 with ‖x1‖ < d in case that φ1(z1) = z1 or ‖x1‖ > 0 in case that φ1(z1) = z̄1.
In the remaining cases φ1(z1) = true and φ1(z1) = false we keep all or no vectors x1,
respectively.

Case 2: φ has 2 satisfying assignments.
Case 2a: φ(z1, z2) = (z1↔ z2). Our algorithm relies on the partition refinement tech-

nique: Initialize the partition refinement structure with U = X1 ]X2. Then, for each
y ∈ Y , invoke Refine(N(y)), where N(y) ⊆ X1 ]X2 denotes the neighborhood of y. We
claim two vectors x1 and x2 lie in the same partition if and only if (∀y)x1[y]↔ x2[y].
Indeed, assume that x1 and x2 are equal (as vectors). Then for any dimension y ∈ Y , we
have x1 ∈ N(y) if and only if x2 ∈ N(y). Hence, there exists no entry y ∈ Y separating
x1 from x2. On the other hand, if x1[y]↔ x2[y] does not hold for some y ∈ Y , then
x1 ∈ N(y) but x2 6∈ N(y) (or vice versa), so N(y) splits any part containing both x1 and
x2. This approach takes time

∑
y∈Y O(|N(y)|) = O(m) for the refinement steps and time∑

P O(|P |) ≤ O(n) (where P ranges over all parts) to ultimately check whether some
pair (x1, x2) was not separated.

Case 2b: φ(z1, z2) = z1 ⊕ z2. Our goal is to reduce to the Case 2a by transforming all
vectors x1, x2 into x′1, x′2 in such a way that we have x1[y]⊕x2[y] if and only if x′1[y]↔x′2[y],
for all y ∈ Y . The naive way to achieve this is to negate all vectors x2 ∈ X2; however, we
then potentially increase the total number of 1-entries inordinately, so that we do not
obtain an O(m)-time algorithm. We circumvent this issue as follows. Let us call a vector
x heavy if ‖x‖ > d/2, and light otherwise. Observe that in any solution (x1, x2), we must
have that precisely one of x1 and x2 is heavy (assuming without loss of generality that d
is odd). Now, assign x′i := xi if xi is light and x′i := x̄i otherwise. Then, for any solution
(x1, x2), where, say, x1 is heavy, (x′1, x′2) = (x̄1, x2) is a solution of VP(x′1↔x′2). The other
direction is not immediate as there could exist light vectors x1, x2 with x′1 = x1 = x2 = x′2.
To avoid these false positives, we introduce a fresh dimension y with x′1[y] = [x1 is heavy]
and x′2[y] = [x2 is light], for all vectors x1, x2. In doing so, we achieve that for any
solution (x′1, x′2) exactly one of the vectors x1, x2 is heavy.
It remains to bound the running time of the complementations. Since there exist at most
O(m/d) heavy vectors, and complementing a single vector takes time O(d), this step
takes time O(m/d · d) = O(m). Furthermore, notice that m cannot increase by replacing
heavy vectors with light ones.

Case 3: φ has 3 satisfying assignments. Then φ would have exactly one falsifying assign-
ment, so it would have hardness 2. Since φ has hardness at most 1 by assumption, this
case cannot occur.

To arrive at an algorithm solving the hybrid problem, we take a close look at the preceding
arguments: Either VP(φ) reduces to an instance of VP(z1↔ z2) over the original vertex set
(Case 2) or we remove certain vertices and accept if afterwards both parts X1 and X2 are
still non-empty (Cases 0 and 1). In the same way, we can solve the Hybrid Vector Problem
VP(Φ): For all formulas φ ∈ Φ falling into the latter category, we identify and remove all bad
vertices x1 and x2. Then, for all remaining φ ∈ Φ, we invoke the reduction to VP(z1↔ z2)
and concatenate all vectors corresponding to the same vertex xi. Finally, it remains to solve
the combined VP(z1↔ z2) instance as shown in Case 2a. J

CCC 2019



31:14 A Fine-Grained Analogue of Schaefer’s Theorem in P

4.2 Algorithms for k = 3
Next, we will show that, for k = 3, any Vector Problem of hardness at most 2 reduces to a
Constrained Triangle problem ∆. The reduction is always of the following form: Given a
VP(φ) instance G with vertices V (G) = X1 ]X2 ]X3 ] Y , the corresponding Constrained
Triangle instance is a graph G′ over the vertex set V (G′) = X1 ]X2 ]X3. Moreover, we
wish to satisfy that, for all (x1, x2, x3):

(∀y)φ(x1[y], x2[y], x3[y])⇐⇒ (x1, x2, x3) is a solution of ∆ on G′.

To this end, the following sections describe how to encode φ by Equal and Sum constraints
step-by-step. More precisely, each constraint “covers” a pair of falsifying assignments
of φ. Let (α1, β1), . . . , (αr, βr) be pairs of falsifying assignments of φ containing each
falsifying assignment at least once. Then we reduce VP(φ) to a Constrained Triangle
problem ∆ = Triangle[C1] · · · [Cr] with Ci ∈ {Equal,Sum} such that for all i and for all
(x1, x2, x3):

(∀y) (x1[y], x2[y], x3[y]) 6∈ {αi, βi} ⇐⇒ (x1, x2, x3) satisfies the constraint Ci.

Note that we indeed need the restriction H(φ) ≤ 2, since we can only cover the falsifying
assignments of φ by pairs (αi, βi) if φ does not have exactly one falsifying assignment.

Recall that in Section 3.1, we measured the complexity of Constrained Triangles in terms
of the number of vertices n. By viewing G′ as a graph of m vertices (by potentially adding
isolated nodes), we obtain algorithms whose running time solely depends on m. Furthermore,
in the special case of Sum constraints, we thereby allow a total edge weight of up to O(m2)
instead of O(n2).

4.2.1 Equal Constraints
We start by covering falsifying assignments α, β of Hamming distance 2 using Equal
constraints.

I Lemma 12. Let α, β ∈ {0, 1}3 be of Hamming distance 2. In time Õ(m2), we can determine
the edge weights of an Equal constraint C such that (∀y) (x1[y], x2[y], x3[y]) 6∈ {α, β} holds
if and only if (x1, x2, x3) satisfies C.

Proof. Let α = (α1, α2, α3) and β = (β1, β2, β3). Without loss of generality, we assume that
α equals β exactly in the first position. An Equal constraint is employed as follows by
choosing each weight to be a dimension-d bit-vector (for the moment). Let w(x1, x2)[y] := 1
if and only if (x1[y], x2[y]) = (α1, α2) and analogously let w(x1, x3)[y] := 1 if and only if
(x1[y], x3[y]) = (β1, β3).

Let y be arbitrary. It is easy to check that we have w(x1, x2)[y] 6= w(x1, x3)[y] if and only
if (x1[y], x2[y], x3[y]) ∈ {α, β}. Indeed, suppose that 1 = w(x1, x2)[y] 6= w(x1, x3)[y] = 0. By
our choice of w(x1, x2), we must have x1[y] = α1 and x2[y] = α2. But w(x1, x3)[y] = 0, hence
x3[y] = β̄3 = α3. In summary: (x1[y], x2[y], x3[y]) = α. Symmetrically, 0 = w(x1, x2)[y] 6=
w(x1, x3)[y] = 1 entails (x1[y], x2[y], x3[y]) = β. The converse direction is immediate.

However, computing the vectors w(x1, xi) explicitly would take time O(m3), since there
are O(m2) weights and each vector is of dimension d = O(m). We therefore employ the
following succinct computation and compression:
1. Compute all weights w(x1, xi), i = 2, 3, stored in run-length encoding. That is, for each

weight w(x1, xi) we store a sequence of numbers RLE(w(x1, xi)) := `1`2 · · · `r indicating
the positions of 0-1 alternations in w(x1, xi), i.e., w(x1, xi) = 0`1 1`2 · · · 0`r−1 1`r written
as a bit-string.



K. Bringmann, N. Fischer, and M. Künnemann 31:15

2. Interpret the run-length encoded weight vectors as strings, sort these strings to combine
equal weight vectors, and replace every weight vector by its rank in the resulting sorted
sequence. This replaces each weight vector by a number in {0, . . . , O(m2)} so that two
edges share the same label if and only if their weights are equal.

To implement the first step, we identify Y with [d] in an arbitrary order. Fix some i = 2, 3 and
some edge (x1, xi) and let a 0-1 alternation occur at y, i.e. w(x1, xi)[y] 6= w(x1, xi)[y+1]. We
observe that, for any choice of α, β, at least one of the entries x1[y], xi[y], x1[y+1] or xi[y+1]
is 1. Thus, it is feasible to explicitly consider all “event points” y with x1[y] = 1 or xi[y] = 1
in increasing order. Whenever an alternation is detected at w(x1, xi)[y − 1] or w(x1, xi)[y]
we appropriately append the run-length encoding of w(x1, xi). For a fixed pair (x1, xi), this
approach takes time O(‖x1‖ + ‖xi‖). In total, we obtain time

∑
x1,xi

O(‖x1‖ + ‖xi‖) =
O(n2 +m2) = O(m2). By the same argument, it follows that the total length of all run-length
encoding

∑
x1,xi

|RLE(w(x1, xi))| is bounded by O(m2).
In spirit, the proof ends here. However, in requiring the edge labels of Equal constraints

to be integers instead of arbitrary objects (here, vectors in run-length encoding), we did not
have to worry about the bit-size of the edge weights in Section 3.1. So our second step is to
associate all vectors w(x1, xi) with integers in {0, . . . , O(m2)}. We interpret each run-length
encoded weight RLE(w(x1, xi)) := `1`2 · · · `r as a string of length r over alphabet Σ = [d].
We sort these strings, which leaves all equal weights as contiguous intervals in the sorted
sequence. Finally, we replace each weight by its rank in this sorted sequence (i.e., by the
number of distinct weights preceding it in the sorted sequence). It is well-known that M
strings of total length N over an alphabet of size poly(N) can be sorted in time Õ(N) using
tries. This yields time Õ(m2) in our application. J

4.2.2 Sum Constraints
It remains to cover falsifying assignments α, β of odd Hamming distance, for which we will
use Sum constraints. We start with some useful observations.

We aim to check whether some vectors (x1, . . . , xk) satisfy (∀y)φ(x1[y], . . . , xk[y]). Say φ
is falsified only by the all-ones input. Then, clearly, it is sufficient to check that there exists
no vertex y connected to all vertices x1, . . . , xk – we call such a configuration a [k]-star. More
generally, by an I-star, I ⊆ [k], we understand a subgraph centered at a vertex y ∈ Y such
that all edges (xi, y), i ∈ I, are present. Notice that, for any vectors (x1, . . . , xk), ‖

∧
i∈I xi‖

exactly counts the number of I-stars. So, in the above example of φ, we can decide whether
(∀y) (x1[y], . . . , xk[y]) by checking whether the number of [k]-stars ‖

∧k
i=1 xi‖ equals zero.

But what about other formulas φ? For each falsifying assignment α ∈ {0, 1}k, the obvious
generalization is to require ‖

∧k
i=1 x

αi
i ‖ = 0; here, and for the remainder of this section, we

write x1 := x and x0 := x̄. The following observations suggest how to transform an arbitrary
expression of this form into a linear combination of terms ‖

∧
i∈I xi‖ without complemented

occurrences:

I Observation 1. For all vectors x, x′, ‖x ∧ x̄′‖ = ‖x‖ − ‖x ∧ x′‖.

By induction, we obtain the following generalization:

I Observation 2. For all vectors x, x1, . . . , xk, ‖x∧
∧k
i=1 x̄i‖ =

∑
I⊆[k](−1)|I|‖x∧

∧
i∈I xi‖.

Thus, if we could precompute the number of I-stars ‖
∧
i∈I xi‖, then we could efficiently test

whether (∀y)φ(x1[y], . . . , xk[y]) holds:

CCC 2019



31:16 A Fine-Grained Analogue of Schaefer’s Theorem in P

I Observation 3. Given vertices (x1, . . . , xk) and the number of I-stars ‖
∧
i∈I xi‖ for all

I ⊆ [k], for any formula φ we can decide in constant time whether (∀y)φ(x1[y], . . . , xk[y]).

As an example, consider the 3-Not-All-Equal problem VP(NAE), where NAE(x1, x2, x3)
has two falsifying assignments: 111 and 000. Equivalently, we could require that the triple
(x1, x2, x3) satisfies ‖x1 ∧ x2 ∧ x3‖ = 0 and ‖x̄1 ∧ x̄2 ∧ x̄3‖ = 0. By Observation 2, the second
equation is rewritten in an inclusion-exclusion fashion as

d− ‖x1‖ − ‖x2‖ − ‖x3‖+ ‖x1 ∧ x2‖+ ‖x1 ∧ x3‖+ ‖x2 ∧ x3‖ − ‖x1 ∧ x2 ∧ x3‖ = 0

(here, d = ‖
∧
i∈∅ xi‖).

However, even though we can efficiently determine all values ‖
∧
i∈I xi‖ in time O(m|I|),

computing ‖
∧k
i=1 xi‖ is infeasible if we want to beat the baseline algorithm. Therefore,

our next algorithm makes use of another trick: When combining two equations – as in the
NAE example – we can sometimes exploit cancellations to decide instances without actually
computing ‖

∧k
i=1 xi‖: Because the Hamming weight of all vectors is always non-negative,

instead of testing ‖x1∧x2∧x3‖ = 0 and ‖x̄1∧ x̄2∧ x̄3‖ = 0, we can equivalently test whether
‖x1∧x2∧x3‖+‖x̄1∧ x̄2∧ x̄3‖ = 0. By expanding ‖x̄1∧ x̄2∧ x̄3‖ as above, the ‖x1∧x2∧x3‖
term cancels and it suffices to know the numbers of all I-stars, for I ( [3].

I Lemma 13. Let α, β ∈ {0, 1}3 be of odd Hamming distance. In time O(m2), we can
determine the edge weights of a Sum constraint C such that (∀y) (x1[y], x2[y], x3[y]) 6∈ {α, β}
holds if and only if (x1, x2, x3) satisfies C.

Proof. Let α = (α1, α2, α3) and β = (β1, β2, β3). Without loss of generality, we may assume
that, for some i∗ ∈ {1, 3}, αi 6= βi for all i ≤ i∗ and αi = βi for all i > i∗.

As argued before, any triple (x1, x2, x3) satisfies (∀y) (x1[y], x2[y], x3[y]) 6∈ {α, β} if and
only if (x1, x2, x3) satisfies ‖xα1

1 ∧ x
α2
2 ∧ x

α3
3 ‖ = ‖xβ1

1 ∧ x
β2
2 ∧ x

β3
3 ‖ = 0. Since both sides of

the left equation are always non-negative, we can equivalently demand that their sum be
zero. This condition simplifies to:

0 = ‖xα1
1 ∧ x

α2
2 ∧ x

α3
3 ‖+ ‖xβ1

1 ∧ x
β2
2 ∧ x

β3
3 ‖

= ‖(
∧
i>i∗

xαii ) ∧ (
∧
i≤i∗

xαii )‖+ ‖(
∧
i>i∗

xαii ) ∧ (
∧
i≤i∗

x̄αii )‖

= ‖(
∧
i>i∗

xαii ) ∧ (
∧
i≤i∗

xαii )‖+
∑
I⊆[i∗]

(−1)|I|‖(
∧
i>i∗

xαii ) ∧ (
∧
i∈I

xαii )‖ Observation 2

=
∑
I([i∗]

(−1)|I|‖(
∧
i>i∗

xαii ) ∧ (
∧
i∈I

xαii )‖. i∗ is odd

Notice that (possibly after applying Observation 2 again to get rid of complemented occur-
rences) this expression is a weighted sum of values d, ‖x1‖, ‖x2‖, ‖x3‖, ‖x1 ∧ x2‖, ‖x1 ∧ x3‖
and ‖x2 ∧ x3‖. In particular, the problematic term ‖x1 ∧ x2 ∧ x3‖ canceled in the equation
above due to i∗ being an odd number. In summary, we can express the above constraint by
0 =

∑
I([3] λI‖

∧
i∈I xi‖ for some constants λI .

It is easy to compute the values ‖
∧
i∈I xi‖ for all I ( [3]: ‖

∧
i∈∅ xi‖ = d is a constant

and each number ‖xi‖ is obtained by once enumerating all edges between Xi and Y . Any
value ‖xi ∧ xj‖ is determined in time O(m2) by iterating over all pairs of edges between Xi

and Y , and between Xj and Y , respectively. Finally, we annotate each edge of the Sum
constraint accordingly. To this end, each edge (xi, xj) is labeled with the contribution of



K. Bringmann, N. Fischer, and M. Künnemann 31:17

‖xi ∧ xj‖ and additionally, we distribute the node-weights ‖x1‖, ‖x2‖ and ‖x3‖ to the edges:

w(x1, x2) := λ{1,2}‖x1 ∧ x2‖+ λ{1}‖x1‖,
w(x2, x3) := λ{2,3}‖x2 ∧ x3‖+ λ{2}‖x2‖,
w(x3, x1) := λ{3,1}‖x3 ∧ x1‖+ λ{3}‖x3‖.

The target t is set to −λ∅d.
It is left to show that

∑
e∈E |w(e)| ≤ O(m2) as in the definition of Sum. It is clear that

‖x1‖, ‖x2‖ and ‖x3‖ only account for O(m). Each edge (xi, y) contributes to at most m
values ‖xi∧xj‖, thus

∑
xi,xj

‖xi∧xj‖ ≤ O(m2). The values λI are fixed constants depending
only on α, β. J

4.2.3 Combined Algorithm for k = 3

By combining the previous reductions from VP(φ) to Constrained Triangle problems, we
find the desired algorithm for 3-variable Vector Problems of hardness at most 2:

I Lemma 14. Let Φ be a set of 3-variable formulas of hardness H(Φ) ≤ 2. Then VP(Φ) is
decidable in time O(m3−ε) for some ε > 0 using fast matrix multiplication.

Proof. Let φ ∈ Φ. Given an VP(φ) instance, we can obtain an equivalent Constrained
Triangle formulation by covering each pair of falsifying assignments by an Equal or Sum
constraint using Lemmas 12 and 13 (any pair of distinct 3-variable assignments is either of
Hamming distance 2 or of odd Hamming distance).

The hybrid problem VP(Φ) is now solved by rephrasing each subproblem VP(φ), φ ∈ Φ,
as a Constrained Triangle problem Triangle[Cφ1 ] · · · [Cφrφ ] with Cφi ∈ {Equal,Sum}, and
by “stacking” all constraints. Since Φ = {φ1, . . . , φ`} is of constant size, we are left to solve an
instance of Triangle[Cφ1

1 ] · · · [Cφ1
rφ1

] · · · [Cφ`1 ] · · · [Cφ`rφ` ]. Lemma 8 yields an O(m3−ε)-time
algorithm for some ε > 0 for any constant number of adjunct Equal and Sum constraints. J

4.3 Algorithms for Arbitrary k

For large k, we will tackle Vector Problems by first brute-forcing over a number of variables
before solving the remaining k′ = 2 or k′ = 3 problem. To this end, we establish the following
lemmas in order to lift fast algorithms from fewer quantifiers to more quantifiers:

I Lemma 15. Let φ be a k-variable formula. Then, for any k′ ≤ k, there exists some
I ′ ∈

( [k]
k−k′

)
such that for any I ′-restriction φ′ of φ we have H(φ′) ≤ H(φ).

Proof. Let h = H(φ). The statement is clear for k′ ≤ h, so suppose h < k′ ≤ k. From
H(φ) < h + 1, it follows by definition that there exists some I ∈

( [k]
k−h−1

)
such that any

I-restriction φ′ of φ has not exactly one falsifying assignment. Choose an arbitrary I ′ ∈
(

I
k−k′

)
and let φ′ be any I ′-restriction of φ. Then any (I \ I ′)-restriction of φ′ has not exactly one
falsifying assignment. Hence, H(φ′) < k′ − |I \ I ′| = k′ − (k − h− 1) + (k − k′) = h+ 1 and
thus H(φ′) ≤ h = H(φ). J

I Lemma 16 (Lifting). Let k′ ≤ k, let φ be a k-variable formula and let Φ′ contain all
k′-variable formulas φ′ of hardness H(φ′) ≤ H(φ). If VP(Φ′) is decidable in time T (m),
then VP(φ) is decidable in time O(mk−k′T (m)).

CCC 2019



31:18 A Fine-Grained Analogue of Schaefer’s Theorem in P

Proof. The idea is to appropriately brute-force over k − k′ variables x1, . . . , xk−k′ and use
the VP(Φ′) algorithm to decide the remaining instance. Here, it is crucial that we can indeed
solve the Hybrid Vector Problem! This is because we have to specialize φ to the values of the
brute-forced vectors (x1, . . . , xk−k′), however, in general (x1[y], . . . , xk−k′ [y]) takes different
values for different y’s, so we have to instantiate φ “per dimension”. This leads to queries
allowing several formulas φy – exactly as permitted by Hybrid Vector Problems.

More formally, by Lemma 15, there exists some index set I ′ of size k − k′, such that any
I ′-restriction φ′ of φ satisfies H(φ′) ≤ H(φ). By interchanging the order of the existential
variables, we can assume that I ′ = {1, . . . , k − k′}. Our first step is to enumerate all nk′−k
choices for the first k − k′ variables (x1, . . . , xk−k′); fix such a tuple (x1, . . . , xk−k′). It
remains to solve the problem

(∃xk−k′+1) . . . (∃xk) (∀y)φy(xk−k′+1[y], . . . , xk[y]),

where φy denotes the I ′-restriction of φ(x1[y], . . . , xk[y]) in which all occurrences of x1[y], . . . ,
xk−k′ [y] are fixed as specified by the brute-forced vectors x1, . . . , xk−k′ . In other words, we
are left to solve a Hybrid Vector Problem over the formula set

⋃
y{φy}. Recall that φy is an

I ′-restriction of φ, and therefore, as guaranteed by Lemma 15, H(φy) ≤ H(φ). Thus φy ∈ Φ′,
by the definition of Φ′. By the assumption that we can solve VP(Φ′) in time T (m), the total
running time is O(nk−k′T (m)), which is bounded by O(mk−k′T (m)). J

By the Lifting Lemma, we conclude the following consequences of Lemma 11 and Lemma 14.
This concludes the algorithmic part of Theorem 6.

I Corollary 17. Let φ be a k-variable formula of hardness H(φ) ≤ 1. Then VP(φ) is
decidable in time O(mk−1).

I Corollary 18. Let φ be a k-variable formula of hardness H(φ) ≤ 2 < k. Then VP(φ) is
decidable in time O(mk−ε) for some ε > 0 using fast matrix multiplication.

5 Hardness Results

In this section, we prove the hardness part of Theorem 6, see Lemmas 19 and 20, below.
Let φ be a k-variable formula with exactly one falsifying assignment, or equivalently, let φ

be of hardness H(φ) = k. The model-checking query (∃x1) . . . (∃xk) (∀y)φ(x1[y], . . . , xk[y]) –
that is, VP(φ) – is equivalent to the k-Orthogonal Vectors problem with respect to polynomial
improvements over the O(mk)-time baseline algorithm as shown by Gao et al. [41] (the
authors of [41] refer to Vector Problems of hardness k as Basic Problems). This shows the
k-OV hardness part of Theorem 6:

I Lemma 19 ([41, Lemma 1.1, Lemma 5.1]). Let H(φ) = k. If VP(φ) is decidable in time
O(mk−ε) for some ε > 0, then k-OV is decidable in time O(nk−ε′ poly d) for some ε′ > 0.

It remains to show the HyperClique hardness. Recall that given a k-partite h-uniform
hypergraph (V1 ] . . .]Vk, E), the h-uniform k-HyperClique problem asks to find vertices
(v1, . . . , vk) ∈ V1 × . . .× Vk, so that any h vertices in {v1, . . . , vk} form a hyperedge in E.

I Lemma 20. Let φ be a k-variable formula and let 2 ≤ h ≤ H(φ). If VP(φ) is decidable
in time O(mk−ε) for some ε > 0, then the h-uniform HyperClique hypothesis fails.

For h ≥ 3, Lemma 20 shows the hardness part of Theorem 6. Moreover, the special case
h = 2 is also informative: The 2-uniform k-HyperClique problem is simply the k-Clique
problems on ordinary graphs. It is well-known that k-Clique can be solved in time O(nωk3 )



K. Bringmann, N. Fischer, and M. Künnemann 31:19

using fast matrix multiplication. However, no combinatorial solution which is significantly
faster than the O(nk)-time exhaustive search approach is known. The combinatorial k-
Clique hypothesis speculates that no polynomial improvement is possible without relying
on algebraic methods [3], which in turn, confirms the need to fall back on fast matrix
multiplication in Lemma 14.

Proof. We will fix k′ = k′(k, h, ε) later such that k divides k′. Given an h-uniform
k′-HyperClique instance G′, we can assume that G′ is k′-partite by copying the ver-
tex set k′ times and by keeping only edges spanned between distinct copies. So let
V (G′) = V ′1,1 ] . . . ] V ′1,k′/k ] . . . ] V

′
k,1 ] . . . ] V ′k,k′/k. We proceed in a split-and-list fashion:

First, we split V (G′) into the k parts V ′i := V ′i,1 ] . . . ] V ′i,k′/k. Then, for i = 1, . . . , k, we let
Xi ⊆ V ′i,1 × . . .× V ′i,k′/k be all tuples of vertices that form an h-uniform clique in G′. We
refer to the elements of Xi as bundles. Let Y ⊆

(
V (G′)
h

)
contain all non-edges of G′. We say a

vertex bundle xi ∈ Xi avoids a non-edge y ∈ Y if not all vertices in y∩V ′i are contained in xi.
Our next step is to assign the entries xi[y], for all xi ∈ Xi and y ∈ Y . Let y =

{v1, . . . , vh} ∈ Y and collect all indices J = {j : vi ∈ V ′j for some i ∈ [h]}. Since φ is of
hardness H(φ) ≥ h, it holds for all index sets I of size at least k − h that there exists an
I-restriction φ′ of φ having exactly one falsifying assignment. Picking I = [k] \J , there exists
an I-restriction φ′ = φ|α, for some α : I → {0, 1}, such that φ′ is falsified only by a single
assignment β : J → {0, 1}. For all i ∈ I and all vectors xi ∈ Xi, we define xi[y] := αi. For all
j ∈ J and all vectors xj ∈ Xj , we define xj [y] := β̄j if xj avoids y, and xj [y] := βj otherwise.

We claim that there exists a tuple of vectors (x1, . . . , xk) with (∀y ∈Y )φ(x1[y], . . . , xk[y])
if and only if G′ contains a k′-hyperclique. Suppose there exists some k′-hyperclique
(v1,1, . . . , v1,k′/k, . . . , vk,1, . . . , vk,k′/k) in G′. Since each tuple (vi,1, . . . , vi,k′/k) by itself forms
a hyperclique, we have that xi := (vi,1, . . . , vi,k′/k) ∈ Xi. We aim to prove that (x1, . . . , xk)
satisfies φ(x1[y], . . . , xk[y]) for all y ∈ Y . Let y ∈ Y be arbitrary, and let J, I, α and β as
above. After plugging in all values xi[y] = αi for i ∈ I, there remains only one falsifying
assignment of φ(x1[y], . . . , xk[y]), given by β. Since we started from a hyperclique, xj must
avoid y for some j ∈ J , and thus xj = β̄j for some j ∈ J . The vectors (x1, . . . , xk) thus
satisfy φ(x1[y], . . . , xk[y]), for any y. The converse argument is essentially symmetric. This
finishes the correctness proof.

Finally, we turn to the running time analysis. Observe that |Xi| ≤ O(nk′/k) for all i and
|Y | ≤ O(nh). Furthermore, constructing the Xi’s and Y takes time O(nk′/k). Assigning
the entries xi[y] takes time O(

∑
i |Xi| · |Y |) = O(nk′/k+h). In particular, it follows that the

number of edges is bounded by m ≤ O(nk′/k+h). By assumption, solving VP(φ) is in time
O(mk−ε) for some ε > 0. Hence, in total we solve h-uniform k′-HyperClique in time
O(n(k′/k+h)(k−ε)). By setting k′ ≥ hk2/ε this is bounded by O(nk′−hε), contradicting the
h-uniform HyperClique hypothesis. J

We remark that for h = k, Lemma 20 can also be derived in an alternative way: Abboud et
al. [5] show that the k-OV hypothesis is implied by the h-uniform HyperClique hypothesis
for all h ≥ 3. So all we need to do is combine Lemma 19 with that reduction:

I Lemma 21 ([5]). If k-OV is decidable in time O(nk−ε poly d) for some ε > 0, then, for
any h, the h-uniform HyperClique hypothesis fails.

This finishes the proof of Theorem 6.

CCC 2019



31:20 A Fine-Grained Analogue of Schaefer’s Theorem in P

6 Equivalence of Vector Problems and ∃k∀ Graph Properties

This section is devoted to proving that Vector Problems VP(φ) capture the core difficulty of
model-checking ∃k∀ graph properties. Specifically, we will prove Theorem 7, which together
with Theorem 6 proves Theorems 1 and 3.

I Theorem 7 (Restated). Let ψ = (∃x1) . . . (∃xk) (∀y)φ(x1, . . . , xk, y) be an ∃k∀ graph
property and let φ0 denote the formula φ after substituting each predicate E(xi, xj) by false.

If MC(ψ) is decidable in time T (m), then VP(φ0) is decidable in time O(T (m)).
If VP(φ0) is decidable in time O(mk−ε) for some ε > 0, then MC(ψ) is decidable in time
O(mk−ε′) for some ε′ > 0.

Recall that ∃k∀ graph properties are strictly more general than Vector Problems in the sense
that graph properties are sensitive to edges E(xi, xj). We will continue to interchangeably
interpret the xi’s as vertices and vectors depending on the context. For the remainder of
this section, let ψ, φ and φ0 be as in Theorem 7.

We start by demonstrating the following preliminary lemma:

I Lemma 22. Given a set of two-element subsets ∅ 6= I ⊆
([k]

2
)
, we say that vertices

(x1, . . . , xk) respect I if for any i < j we have E(xi, xj) if and only if {i, j} ∈ I. We
can compute the values ‖

∧k
i=1 xi‖ for all vectors (x1, . . . , xk) respecting I in time O(mk− 1

2 ).

Proof. Since I is non-empty, there exists at least some element {i, j} ∈ I. We start by
brute-forcing over all k− 2 vectors x`, ` 6∈ {i, j}. As in the statement, we only care about the
combinations that respect I. In the same manner, we only keep the vertices xi, xj consistent
with I. In particular, for all xi, xj overcoming this step, (xi, xj) indeed forms an edge. It is
enough to compute ‖xi ∧ xj‖ for these (xi, xj) in time O(m 3

2 ), because thereby we achieve
a total running time of O(nk−2m

3
2 ) = O(mk− 1

2 ). In other words, we are left to count, for
each pair (xi, xj), the number of triangles containing (xi, xj) in the remaining graph with
partitions Xi, Xj and Y . For the sake of completeness, we proceed to sketch the well-known
procedure of counting triangles in sparse tripartite graphs [12].

We call a vertex heavy if it is of degree at least mδ (where δ is yet to be fixed), and
light otherwise. All light vertices can be eliminated as follows: Enumerate all edges {u, v}
and if v is light, then further iterate over all edges {v, w} such that u, v and w stem from
different partitions. Remember each triangle found in that manner and remove all light
vertices afterwards. This step accounts for O(m ·mδ) = O(m1+δ) time.

The remaining graph consists only of heavy vertices, and, since there are only m edges, at
most O(m/mδ) = O(m1−δ) such. We may apply the naïve algorithm by explicitly considering
each triple of vertices. This step takes time O(m3(1−δ)), so in total the algorithm runs in
time O(m1+δ +m3(1−δ)). The claim follows by setting δ := 1

2 .
We remark that using fast matrix multiplication to solve the instance including only heavy

vertices, we can achieve a slightly faster algorithm running in total time O(mk−2+ 2ω
ω+1 ). J

Proof of Theorem 7. The first part is easy to see: The Vector Problem VP(φ0) constitutes
a special case of model-checking ψ.

So let us focus on the second part. For a set I ⊆
([k]

2
)
, let φI denote φ after substituting

each predicate E(xi, xj) by true if {i, j} ∈ I and by false otherwise. In particular, φ∅ = φ0.
Furthermore, we define

ψI := (∃x1) . . . (∃xk)


 ∧
{i,j}∈([k]

2 )
E(xi, xj)↔

[
{i, j} ∈ I

] ∧ (∀y)φI(x1[y], . . . , xk[y])

 .



K. Bringmann, N. Fischer, and M. Künnemann 31:21

Then clearly ψ =
∨
I⊆([k]

2 ) ψI . So we can check the satisfiability of ψ by separately model-
checking all properties ψI .

We claim that model-checking ψI for any I 6= ∅ is in time O(mk− 1
2 ): Observation 3 shows

how to test, for a fixed tuple (x1, . . . , xk) and given the values ‖
∧
j∈J xj‖ for all J ⊆ [k],

whether it holds that (∀y)φI(x1[y], . . . , xk[y]). We thus start by precomputing all values
‖
∧
j∈J xj‖ for all sets J ( [k]. To this end, enumerate all |J |-tuples of edges between Xj

and Y , j ∈ J ; this step takes time O(mk−1). Using Lemma 22 we can further precompute
‖
∧
j∈[k] xj‖ for all vertices (x1, . . . , xk) respecting I in time O(mk− 1

2 ). Together, we now
know ‖

∧
j∈J xj‖ for all J and all vertices (x1, . . . , xk) respecting I. Hence, it suffices to

enumerate all vertices (x1, . . . , xk) respecting I and to test as in Observation 3 whether
(∀y)φI(x1[y], . . . , xk[y]) holds (this check takes constant time). Since there are at most
O(mk−1) many tuples (x1, . . . , xk) respecting I, the running time is dominated by O(mk− 1

2 ).
It remains to find a model-checking procedure for ψ∅, i.e., for I = ∅. Note that MC(ψ∅)

is not directly equivalent to VP(φ∅), since an arbitrary solution (x1, . . . , xk) of φ∅ does not
necessarily meet the condition that none of the edges (xi, xj) are present. The following
reduction enforces this constraint.

Consider a given MC(ψ∅) instance G over the vertex partitions X1, . . . , Xk and Y and
let δ > 0 be a parameter to be fixed later. We call a vertex xi heavy if it is of degree ≥ mδ,
and light otherwise. The first step is to eliminate all heavy vertices; there can exist at most
O(m/mδ) = O(m1−δ) many such vertices. By interchanging the order of the existential
quantifiers, we can always assume that x1 is heavy and solve the remaining problem over
X2, . . . , Xk in time O(mk−1) using the model-checking baseline algorithm. If a solution
(x1, . . . , xk) is found in that manner, we accept. It thus takes time O(mk−δ) to safely remove
all heavy vertices.

Next, partition each set Xi into several groups Xi,1, . . . , Xi,g such that the total degree
of all vectors is bounded by mδ ≤

∑
xi∈Xi,j deg(xi) ≤ 2mδ, for all groups Xi,j , except for

possibly the last non-empty groups. This is implemented by greedily inserting vectors into
Xi,j until its total degree exceeds mδ. As each vector inserted in that way is light, we can
overshoot by at most mδ. It follows that g ≤ O(m/mδ) = O(m1−δ).

We assume that VP(φ0) = VP(φ∅) is decidable in time O(mk−ε) for some ε > 0. Then
we continue as follows:

1. For all combinations (j1, . . . , jk) ∈ [g]k, solve the Vector Problem VP(φ∅) with input
X1,j1 , . . . , Xk,jk . If we find a solution, we call (j1, . . . , jk) a successful combination.

2. If there are more than mk−1 successful combinations, we accept.
3. Otherwise, for any successful combination (j1, . . . , jk), solve MC(ψ∅) using the baseline

algorithm on X1,j1 , . . . , Xk,jk and accept iff one of these invocations accepted.

We claim the above algorithm is correct. First of all, any solution (x1, . . . , xk) of MC(ψ∅)
is also a solution of VP(φ∅). It is therefore safe to only consider those subinstances in step 3
for which we received a positive output in step 1. It remains to argue why step 2 is correct.
How many tuples (x1, . . . , xk) can be solutions of VP(φ∅) but not of MC(ψ∅)? At most
mnk−2 ≤ mk−1, since at least one edge (xi, xj) must exist for any such tuple. Thus, if
we witness > mk−1 solutions of VP(φ∅), among these there exists at least one solution of
MC(ψ∅) by guarantee.

Finally, let us bound the running time of the above algorithm. Recall that removing
heavy vertices accounts for O(mk−δ) time. In step 1, the VP(φ∅) algorithm is applied gk =
O(mk−δk) times on instances of size O(mδ), which takes time O(mk−δk+δ(k−ε)) = O(mk−δε).
Step 3 becomes relevant only if there are at most mk−1 successful combinations. For any

CCC 2019



31:22 A Fine-Grained Analogue of Schaefer’s Theorem in P

such combination, the model-checking baseline algorithm takes time O((mδ)k) = O(mδk). In
total, our running time is O(mk−δ + mk−δε + mk−1+δk). By picking δ so that 0 < δ < 1

k ,
the claim follows.

This finishes the proof of Theorem 7, and thus completes the proof of our main result. J

7 Extensions and Outlook

Beyond our results of Theorems 1 and 3, we discuss several natural directions for extensions,
present first results along these lines and give open problems for future work. In particular,
we extend our results to a counting dichotomy and investigate the optimal exponent of
low-complexity properties.

7.1 Determining the Optimal Exponent for Low-Complexity Properties
For the optimal exponent cψ for any ∃k∀-quantified graph property ψ, Theorems 1 and 3
establish either a (conditionally) tight value of cψ = k or an upper bound of cψ < k. This
begs the question: Can we obtain the (conditionally) exact value on cψ also in the latter case?

As an interesting exemplary case, we study Vector Problems (∃x1 ∈X1) (∃x2 ∈X2) (∃x3 ∈
X3) (∀y ∈ Y )φ(x1[y], x2[y], x3[y]) where φ is symmetric, i.e., φ(x1, x2, x3) is invariant under
interchanging the variables’ order. Equivalently, φ is symmetric if its output depends only
on the number of 1-inputs. We therefore identify a 3-variable symmetric formula with its
symmetric type, a zero-based length-4 string t ∈ {0,1}4 where ti = 1 exactly if φ holds true
on all inputs of i 1’s and (3− i) 0’s.

For symmetric formulas φ, we find a more immediate criterion to read off the hardness
H(φ). Namely, H(φ) equals the maximum number h, such that 1h0 or 01h is a substring6
of φ’s symmetric type (and H(φ) = 0 if neither constitutes a substring).

I Theorem 7. Let φ(x1, x2, x3) be symmetric. The complexity of VP(φ) is as stated in
Table 1.

We prove Theorem 7 in the full version of this paper. As detailed there (and illustrated by
Table 1), already in this exemplary case some interesting gaps remain and offer potential
starting points for future work.

7.2 Counting Classification
For first-order graph properties with our quantifier structure ∃k∀, it is natural to ask if
we can count the number of its witnesses. Specifically, for a given property ψ = (∃x1 ∈
X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φ(x1, . . . , xk, y), we might ask to output the number of tuples
(x1, . . . , xk) such that (∀y)φ(x1, . . . , xk, y) holds (instead of merely detecting existence of at
least one such tuple) – we call this problem the counting model-checking problem #MC(ψ).
Especially in the context of database queries, one often would like to report this number
or even enumerate all such tuples. Indeed, related work [36] considers such questions for
more general quantifier structures, but under other restrictions on the formulas and when
the running time is measured in terms of the number of objects n rather than m.

Note that the analogous question for Boolean constraint satisfaction properties is resolved:
For every Boolean CSP, we can either count the number of solutions in polynomial-time, or
this task is #P-complete [33]. In our case, this dichotomy is a surprisingly simple consequence
of our techniques. In particular, we achieve the same dichotomy as for the decision version.

6 A contiguous sequence of characters within φ’s symmetric type



K. Bringmann, N. Fischer, and M. Künnemann 31:23

Table 1 Lists all symmetric 3-variable formulas φ and the complexities of the respective Vector
Problems VP(φ).

hardness H(φ) symmetric type of φ upper bound lower bound

0 0000 trivial trivial
0 1111 trivial trivial

1 0001, 1000 O(m) Ω(m)
1 0010, 0100 O(m2) Ω(m)
1 0101, 1010 O(m2) m2−o(1) under 3-XOR
1 1001 O(m) Ω(m)

2 0011, 1100 O(mω) mω−o(1) under k-Clique
2 0110 Õ(m

3+ω
2 ) mω−o(1) under k-Clique

2 1011, 1101 O(m
9+ω

4 ) mω−o(1) under k-Clique

3 0111, 1110 m3/2Ω(
√

log m) m3−o(1) under 3-OV

I Theorem 7. Let ψ be an ∃k∀ graph property of hardness h = H(ψ).

If h ≤ 1, then #MC(ψ) is solvable in time O(mk−ε) for some ε > 0 combinatorially.

If h ≤ 2 < k, then #MC(ψ) is solvable in time O(mk−ε) for some ε > 0 using fast matrix
multiplication. (Furthermore, #MC(ψ) cannot be solved by a combinatorial O(mk−ε)-time
algorithm unless the combinatorial k-Clique hypothesis is false.)

If 3 ≤ h ≤ k, then #MC(ψ) cannot be solved in time O(mk−ε) for any ε > 0 unless the
h-uniform HyperClique hypothesis fails.

If h = k, then #MC(ψ) cannot be solved in time O(mk−ε) for any ε > 0 unless the k-OV
hypothesis fails.

We defer the proof of this theorem to the full version of this paper.

7.3 Open Problems

Among the natural remaining challenges is, first and foremost, the following: Can we
generalize or strengthen our dichotomy to larger fragments of first-order properties?

Specifically, one direction is to extend our results beyond graph properties: Allowing
more than a single predicate or allowing a single predicate of higher arity already yields
further very expressive classes. While our algorithmic techniques conveniently generalize,
unfortunately, they do not yet seem to be sufficient to establish a complete dichotomy.

A second direction is to investigate other quantifier structures than ∃k∀ (and the equivalent
∀k∃). Note that establishing such a dichotomy might require different plausible hardness
assumptions than the ones used in this work – in particular, it follows from the work of
Carmosino et al. [28] that any such hardness assumption must have a lower nondeterministic
and co-nondeterministic complexity than its deterministic complexity.

Finally, it is interesting to explore whether Proposition 4 can be strengthened: In
particular, assume that for some hardness level h ≥ 3, there is an algorithm that allows us
to detect a k-clique in h-uniform hypergraphs in time O(nk−ε) for all k ≥ h + 1. Can we
then solve all hardness-h ∃k∀ graph properties in time O(mk−ε′)?

CCC 2019



31:24 A Fine-Grained Analogue of Schaefer’s Theorem in P

References
1 Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-Grained

Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-and-
Solve. In Proceedings of the 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science, FOCS ’17, pages 192–203, 2017. doi:10.1109/FOCS.2017.26.

2 Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Or Zamir. Subtree Isomorphism Revisited. ACM Trans. Algorithms, 14(3):27:1–27:23, 2018.
doi:10.1145/3093239.

3 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Current Clique
Algorithms Are Optimal, So is Valiant’s Parser. In Proceedings of the 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS ’15, pages 98–117, 2015.
doi:10.1109/FOCS.2015.16.

4 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results
for LCS and Other Sequence Similarity Measures. In Proceedings of the 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS ’15, pages 59–78, 2015.
doi:10.1109/FOCS.2015.14.

5 Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More Consequences of
Falsifying SETH and the Orthogonal Vectors Conjecture. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 253–266. ACM, 2018.
doi:10.1145/3188745.3188938.

6 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and
Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. In
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16,
pages 377–391, 2016. doi:10.1137/1.9781611974331.ch28.

7 Amir Abboud, Ryan Williams, and Huacheng Yu. More Applications of the Polynomial
Method to Algorithm Design. In Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’15, pages 218–230, 2015. URL: http://dl.acm.org/citation.
cfm?id=2722129.2722146.

8 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of Faster
Alignment of Sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, Automata, Languages, and Programming, pages 39–51. Springer Berlin
Heidelberg, 2014.

9 Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Databases: The
Logical Level. Addison-Wesley Longman Publishing Co., Inc., 1st edition, 1995.

10 Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalences Among Relational
Expressions. SIAM J. Comput., 8(2):218–246, 1979. doi:10.1137/0208017.

11 Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial Representations of
Threshold Functions and Algorithmic Applications. In Proceedings of the 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS ’16, pages 467–476, 2016.
doi:10.1109/FOCS.2016.57.

12 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and Counting Given Length Cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

13 Arturs Backurs and Piotr Indyk. Edit Distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the 47th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2015, pages 51–58. ACM, 2015. doi:10.1145/2746539.2746612.

14 Arturs Backurs and Piotr Indyk. Which Regular Expression Patterns Are Hard to Match? In
Proceedings of the 2016 IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS ’16, pages 457–466, 2016. doi:10.1109/FOCS.2016.56.

15 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Towards tight approximation bounds for graph diameter and eccentricities. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
267–280, 2018. doi:10.1145/3188745.3188950.

https://doi.org/10.1109/FOCS.2017.26
https://doi.org/10.1145/3093239
https://doi.org/10.1109/FOCS.2015.16
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/3188745.3188938
https://doi.org/10.1137/1.9781611974331.ch28
http://dl.acm.org/citation.cfm?id=2722129.2722146
http://dl.acm.org/citation.cfm?id=2722129.2722146
https://doi.org/10.1137/0208017
https://doi.org/10.1109/FOCS.2016.57
https://doi.org/10.1007/BF02523189
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1145/3188745.3188950


K. Bringmann, N. Fischer, and M. Künnemann 31:25

16 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries
and Constant Delay Enumeration. In Jacques Duparc and Thomas A. Henzinger, editors,
Computer Science Logic, pages 208–222. Springer Berlin Heidelberg, 2007.

17 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries
Under Updates. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS ’17, pages 303–318. ACM, 2017. doi:10.1145/3034786.
3034789.

18 Karl Bringmann. Why Walking the Dog Takes Time: Fréchet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In Proceedings of the 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, FOCS ’14, pages 661–670, 2014. doi:
10.1109/FOCS.2014.76.

19 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A Dichotomy for Regular
Expression Membership Testing. In Proceedings of the 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science, FOCS ’17, pages 307–318, 2017. doi:10.1109/FOCS.2017.
36.

20 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In Proceedings of the 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS ’15, pages 79–97, 2015. doi:10.1109/
FOCS.2015.15.

21 Karl Bringmann and Marvin Künnemann. Multivariate Fine-Grained Complexity of Longest
Common Subsequence. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’18, pages 1216–1235, 2018. doi:10.1137/1.9781611975031.79.

22 Andrei A. Bulatov. A Dichotomy Theorem for Constraints on a Three-Element Set. In
Proceedings of the 2002 IEEE 43rd Annual Symposium on Foundations of Computer Science,
FOCS ’02, pages 649–658, 2002. doi:10.1109/SFCS.2002.1181990.

23 Andrei A. Bulatov. Tractable conservative Constraint Satisfaction Problems. In 18th IEEE
Symposium on Logic in Computer Science, page 321, 2003. doi:10.1109/LICS.2003.1210072.

24 Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In Proceedings of the 2017
IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS ’17, pages 319–330,
2017. doi:10.1109/FOCS.2017.37.

25 Andrei A. Bulatov. Constraint satisfaction problems: complexity and algorithms. SIGLOG
News, 5(4):4–24, 2018. doi:10.1145/3292048.3292050.

26 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the Complexity of
Constraints Using Finite Algebras. SIAM J. Comput., 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

27 Nofar Carmeli and Markus Kröll. Enumeration Complexity of Conjunctive Queries with
Functional Dependencies. In ICDT, volume 98 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

28 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic Extensions of the Strong Exponential Time Hypothesis and
Consequences for Non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, pages 261–270, 2016. doi:10.1145/2840728.2840746.

29 Timothy M. Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and More:
Quickly Derandomizing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1246–1255, 2016. URL: http:
//dl.acm.org/citation.cfm?id=2884435.2884522.

30 Ashok K. Chandra and David Harel. Structure and Complexity of Relational Queries. J.
Comput. Syst. Sci., 25(1):99–128, 1982. doi:10.1016/0022-0000(82)90012-5.

31 Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Queries
in Relational Data Bases. In Proceedings of the 9th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 1977, pages 77–90, 1977. doi:10.1145/800105.803397.

CCC 2019

https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1109/SFCS.2002.1181990
https://doi.org/10.1109/LICS.2003.1210072
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3292048.3292050
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1145/2840728.2840746
http://dl.acm.org/citation.cfm?id=2884435.2884522
http://dl.acm.org/citation.cfm?id=2884435.2884522
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1145/800105.803397


31:26 A Fine-Grained Analogue of Schaefer’s Theorem in P

32 Hubie Chen. A rendezvous of logic, complexity, and algebra. SIGACT News, 37(4):85–114,
2006. doi:10.1145/1189056.1189076.

33 Nadia Creignou and Miki Hermann. Complexity of Generalized Satisfiability Counting
Problems. Inf. Comput., 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.

34 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean
Constraint Satisfaction problems. SIAM, 2001. doi:10.1137/1.9780898718546.

35 Víctor Dalmau. Some dichotomy theorems on constant free Boolean formulas. Technical
Report LSI-97-43-R, Departament LSI, Universitat Politècnica de Catalunya, 1997.

36 Holger Dell, Marc Roth, and Philip Wellnitz. Counting Answers to Existential Questions.
arXiv e-prints, February 2019. arXiv:1902.04960.

37 Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The Parameterized Complexity
of Relational Database Queries and an Improved Characterization of W[1]. In First Conference
of the Centre for Discrete Mathematics and Theoretical Computer Science, pages 194–213,
1996.

38 Tomás Feder and Moshe Y. Vardi. Monotone monadic SNP and constraint satisfaction. In
Proceedings of the 25th Annual ACM SIGACT Symposium on Theory of Computing, STOC
1993, pages 612–622, 1993. doi:10.1145/167088.167245.

39 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

40 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

41 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
First-order Properties on Sparse Structures with Algorithmic Applications. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 2162–2181,
2017. URL: http://dl.acm.org/citation.cfm?id=3039686.3039827.

42 Michel Habib, Christophe Paul, and Laurent Viennot. A Synthesis on Partition Refinement:
A Useful Routine for Strings, Graphs, Boolean Matrices and Automata. In STACS 98,
15th Annual Symposium on Theoretical Aspects of Computer Science, pages 25–38, 1998.
doi:10.1007/BFb0028546.

43 Pavol Hell and Jaroslav Nesetril. On the complexity of H -coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

44 Neil Immerman. Upper and Lower Bounds for First Order Expressibility. J. Comput. Syst.
Sci., 25(1):76–98, 1982. doi:10.1016/0022-0000(82)90011-3.

45 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

46 Peter Jeavons. On the Algebraic Structure of Combinatorial Problems. Theor. Comput. Sci.,
200(1-2):185–204, 1998. doi:10.1016/S0304-3975(97)00230-2.

47 Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997. doi:10.1145/263867.263489.

48 Robert Krauthgamer and Ohad Trabelsi. Conditional Lower Bounds for All-Pairs Max-Flow.
ACM Trans. Algorithms, 14(4):42:1–42:15, 2018. doi:10.1145/3212510.

49 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight Hardness for
Shortest Cycles and Paths in Sparse Graphs. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’18, pages 1236–1252, 2018. URL: http:
//dl.acm.org/citation.cfm?id=3174304.3175350.

50 Christos H. Papadimitriou and Mihalis Yannakakis. On the Complexity of Database Queries.
J. Comput. Syst. Sci., 58(3):407–427, 1999. doi:10.1006/jcss.1999.1626.

51 Mihai Patrascu and Ryan Williams. On the Possibility of Faster SAT Algorithms. In
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,
pages 1065–1075, 2010. doi:10.1137/1.9781611973075.86.

https://doi.org/10.1145/1189056.1189076
https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1137/1.9780898718546
http://arxiv.org/abs/1902.04960
https://doi.org/10.1145/167088.167245
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1007/3-540-29953-X
http://dl.acm.org/citation.cfm?id=3039686.3039827
https://doi.org/10.1007/BFb0028546
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1016/0022-0000(82)90011-3
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1145/263867.263489
https://doi.org/10.1145/3212510
http://dl.acm.org/citation.cfm?id=3174304.3175350
http://dl.acm.org/citation.cfm?id=3174304.3175350
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1137/1.9781611973075.86


K. Bringmann, N. Fischer, and M. Künnemann 31:27

52 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings of the 45th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2013, pages 515–524, 2013. doi:10.1145/2488608.
2488673.

53 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 1978, pages 216–226, 1978.
doi:10.1145/800133.804350.

54 Moshe Y. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In
Proceedings of the 14th Annual ACM SIGACT Symposium on Theory of Computing, STOC
1982, pages 137–146, 1982. doi:10.1145/800070.802186.

55 Moshe Y. Vardi. On the Complexity of Bounded-Variable Queries. In Proceedings of the
14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
266–276, 1995. doi:10.1145/212433.212474.

56 Virginia Vassilevska and Ryan Williams. Finding, Minimizing, and Counting Weighted
Subgraphs. In Proceedings of the 41st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2009, pages 455–464. ACM, 2009. doi:10.1145/1536414.1536477.

57 Ryan Williams. A New Algorithm for Optimal 2-constraint Satisfaction and Its Implications.
Theor. Comput. Sci., 348(2):357–365, December 2005. doi:10.1016/j.tcs.2005.09.023.

58 Ryan Williams. Faster decision of first-order graph properties. In Joint Meeting of the
23rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 80:1–80:6, 2014. doi:
10.1145/2603088.2603121.

59 Ryan Williams. On the Difference Between Closest, Furthest, and Orthogonal Pairs: Nearly-
Linear vs Barely-Subquadratic Complexity. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’18, pages 1207–1215, 2018. doi:10.1137/1.
9781611975031.78.

60 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In Proceedings of the 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science, FOCS ’17, pages 331–342, 2017.
doi:10.1109/FOCS.2017.38.

CCC 2019

https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/212433.212474
https://doi.org/10.1145/1536414.1536477
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1145/2603088.2603121
https://doi.org/10.1145/2603088.2603121
https://doi.org/10.1137/1.9781611975031.78
https://doi.org/10.1137/1.9781611975031.78
https://doi.org/10.1109/FOCS.2017.38

	Introduction
	Complete Problem: (Sparse) k-OV
	Classification à la Schaefer
	Further Related Work
	Our Results
	Outline

	Preliminaries
	Model-Checking
	Hardness Assumptions

	Technical Overview
	Constrained Triangles Framework

	Algorithmic Results
	Algorithms for k=2
	Algorithms for k=3
	Equal Constraints
	Sum Constraints
	Combined Algorithm for k=3

	Algorithms for Arbitrary k

	Hardness Results
	Equivalence of Vector Problems and Graph Properties
	Extensions and Outlook
	Determining the Optimal Exponent for Low-Complexity Properties
	Counting Classification
	Open Problems


