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Abstract
What approximation ratio can we achieve for the Facility Location problem if whenever a client
u connects to a facility v, the opening cost of v is at most θ times the service cost of u? We show
that this and many other problems are a particular case of the Activation Edge-Cover problem.
Here we are given a multigraph G = (V,E), a set R ⊆ V of terminals, and thresholds {teu, tev} for
each uv-edge e ∈ E. The goal is to find an assignment a = {av : v ∈ V } to the nodes minimizing∑

v∈V
av, such that the edge set Ea = {e = uv : au ≥ teu, av ≥ tev} activated by a covers R. We

obtain ratio 1 + max
x≥1

ln x
1 + x/θ

≈ ln θ − ln ln θ for the problem, where θ is a problem parameter. This

result is based on a simple generic algorithm for the problem of minimizing a sum of a decreasing
and a sub-additive set functions, which is of independent interest. As an application, we get the
same ratio for the above variant of Facility Location. If for each facility all service costs are
identical then we show a better ratio 1 + max

k∈N

Hk − 1
1 + k/θ

, where Hk =
∑k

i=1 1/i. For the Min-Power

Edge-Cover problem we improve the ratio 1.406 of [4] (achieved by iterative randomized rounding)
to 1.2785. For unit thresholds we improve the ratio 73/60 ≈ 1.217 of [4] to 1555

1347 ≈ 1.155.
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1 Introduction

Let G = (V,E) be an undirected multigraph where each edge e ∈ E has an activating
function fe from some range Le ⊆ R2

+ to {0, 1}. Given a non-negative assignment
a = {av : v ∈ V } to the nodes, we say that a uv-edge e ∈ E is activated by a if
fe(au, av) = 1. Let Ea = {e ∈ E : fe(au, av) = 1} denote the set of edges activated by
a. The value of an assignment a is a(V ) =

∑
v∈V av. In Activation Network Design

problems the goal is to find an assignment a of minimum value, such that the edge set Ea
activated by a satisfies a prescribed property. We make the following two assumptions, which
are standard in the literature; see the paper of Panigrahi [20] that introduced the problem,
and a recent survey [19] on various activation problems.

1 Part of this work was done as a part of author’s M.Sc. thesis done at the Open University of Israel.
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20:2 Approximating Activation Edge-Cover and Facility Location Problems

Monotonicity Assumption. For every e ∈ E, fe is monotone non-decreasing, namely,
fe(xu, xv) = 1 implies fe(yu, yv) = 1 if yu ≥ xu and yv ≥ xv.

Polynomial Domain Assumption. Every v ∈ V has a polynomial size in n = |V | set Lv of
“levels” and Le = Lu × Lv for every uv-edge e ∈ E.

Given a set R ⊆ V of terminals we say that an edge set J is an R-cover or that J
covers R if every v ∈ R has some edge in J incident to it. In Edge-Cover problems
we seek an R-cover J that minimizes a given value function, e.g., the edge cost of J . The
min-cost Edge-Cover problem can be solved in polynomial time [9], and it is one of the
most fundamental problems in Combinatorial Optimization, cf. [23].

We consider the Activation Edge-Cover problem. Since we consider multigraphs,
e = uv means that e is a uv-edge, namely, that u, v are the endnodes of e; e = uv ∈ E means
that e is a uv-edge that belongs to E. Under the two assumptions above, the problem can
be formulated without activating functions. For this, replace each edge e = uv by a set of at
most |Lu| · |Lv| uv-edges {e(tu, tv) : (tu, tv) ∈ Lu × Lv, fe(tu, tv) = 1}. Then for any J ⊆ E
the optimal assignment a activating J is given by au = max{teu : e ∈ J is incident to u};
here and everywhere a maximum or a minimum taken over an empty set is assumed to be
zero. Consequently, the problem can be restated as follows.

Activation Edge-Cover
Input: A graph G = (V,E), a set of terminals R ⊆ V , and thresholds {teu, tev} for each
uv-edge e ∈ E.
Output: An assignment a of minimum value a(V ) =

∑
v∈V av, such that the edge set

Ea = {e = uv ∈ E : au ≥ teu, av ≥ tev} activated by a covers R.

As we will explain later, Activation Edge-Cover problems are among the most
fundamental problems in network design, that include NP-hard problems such as Set-Cover,
Facility Location, covering problems that arise in wireless networks (node weighted/min-
power/installation problems), and many other problems. The Activation Edge-Cover
problem admit ratio O(ln |R|) by a factor 2 reduction to the Facility Location problem.

To state our main result we define assignments q and c, where cv = qv = 0 if v ∈ V \R
and for u ∈ R:

qu = min
e=uv∈E

teu is the minimum threshold at u of an edge in E incident to u.

cu = min
e=uv∈E

(teu + tev)− qu, so cu + qu is the minimum value of an edge in E incident to u.
Following [19], the quantity maxu∈R cu/qu is called the slope of the instance. We say that
an Activation Edge-Cover instance is θ-bounded if the instance slope is at most θ,
namely if cu ≤ θqu for all u ∈ R; moreover, we assume by default that θ = maxu∈R cu/qu is
the instance slope. Let opt denote the optimal solution value of a problem instance at hand.
For each u ∈ R let eu be some minimum value edge covering u. Then {eu : u ∈ R} is an
R-cover of value at most

∑
u∈R(cu + qu) = (c + q)(R). From this and the definition of θ we

get

0 ≤ opt− q(R) ≤ c(R) ≤ θq(R) ≤ θopt

In particular, (c + q)(R) ≤ (θ + 1)opt. Using this, it is possible to design a greedy algorithm
with ratio 1 + ln(θ + 1). We will show how to obtain a better ratio (the difference is quite
significant when θ ≤ 104 – see Table 1). In what follows, let Hk denote the k-th harmonic
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number. Our approximation ratios are expressed in the terms of the following two functions
ω(θ) and ω̄(θ) defined for θ > 0, where ω̄ can be viewed as a “discrete version” of ω:

ω(θ) = max
x≥1

ln x
1 + x/θ

ω̄(θ) = max
k∈N

Hk − 1
1 + k/θ

Table 1 Some numerical bounds on 1 + ω(θ), 1 + ω̄(θ), ln θ − ln ln θ, and 1 + ln(θ + 1).

θ 1 2 3 5 10 100 1000 10000 1000000
1 + ω(θ) 1.2785 1.4631 1.6036 1.8146 2.1569 3.6360 5.4214 7.3603 11.4673
1 + ω̄(θ) 1.2167 1.3667 1.4834 1.6637 1.9645 3.3428 5.0808 6.9967 11.0820

ln θ − ln ln θ - 1.0597 1.0046 1.1336 1.4686 3.0780 4.9752 6.9901 11.1898
1 + ln(θ + 1) 1.6932 2.0987 2.3863 2.7918 3.3979 5.6152 7.9088 10.2105 14.8156

In Lemma 8 we show that ω(θ) = W (θ/e), where W (z) is the Lambert W Function
(a.k.a. ProductLog Function), which is the inverse function of z(W ) = WeW , c.f. [7, 15].
We are not aware of any known formula for ω̄(θ), but since Hk − 1 ≤ ln k, ω̄(θ) < ω(θ)
for θ > 0. We also observe in Section 4 that in the definition of ω̄(θ) the maximum is
attained for the smallest integer k such that Hk ≥ 2 + θ−1

k+1 . It follows from [15] that
limθ→∞[1 +W (θ/e)− (ln θ − ln ln θ)] = 0, so 1 + ω(θ) (and it seems that also 1 + ω̄(θ)) is
close to ln θ − ln ln θ for large values of θ, although the convergence is very slow; see Table 1.

These functions were implicitly used before to bound approximation ratios. E.g., Robins &
Zelikovsky [22] proved that their algorithm for the Steiner Tree problem in quasi-bipartite
graph achieves ratio 1 + ω(1) + ε < 1.2785; this was improved to 1 + ω̄(1) + ε = 73

60 + ε in [3].
See also [12] and a survey on the Steiner Tree problem in [13]. In [4] is established ratio
73
60 for the Min-Power Edge-Cover problem in bipartite graphs and for unit thresholds.

Our main result is:

I Theorem 1. Activation Edge-Cover admits ratio 1 + ω(θ) for θ-bounded instances.
The problem also admits ratio 1 + ln(∆ + 1), and ratio 1 + ln ∆ if R is an independent set in
G, where ∆ is the maximum number of terminal neighbors of a node in G.

This result is based on a generic simple approximation algorithm for the problem of
minimizing a sum of a decreasing and a sub-additive set functions, which is of independent
interest; it is described in the next section. This result is inspired by the algorithm of Robins
& Zelikovsky [22] for the Steiner Tree problem, and the analysis in [13] of this algorithm.

We note that Slavik [25] proved that the greedy algorithm for Set-Cover achieves
ratio lnn− ln lnn+ Θ(1), while our ratio for Activation Edge-Cover is asymptotically
ln θ − ln ln θ + Θ(1); but we do not see an immediate relation between the two results.

Let us say that v ∈ V is a steady node if the thresholds tev of the edges e incident to
v are all equal to the same number wv, which we call the weight of v. Note that we may
assume that all non-terminals are steady, by replacing each v ∈ V \R by Lv new nodes; see
the so called “Levels Reduction” in [19]. This implies that no two parallel edges are incident
to the same non-terminal. Clearly, we may assume that V \R is an independent set in G. Let
Bipartite Activation Edge-Cover be the restriction of Activation Edge-Cover to
instances when also R is an independent set, namely, when G is bipartite with sides R, V \R.
Note that in this case G is a simple graph and all non-terminals are steady.

We now mention some threshold types in Activation Edge-Cover problems, known
problems arising from these types, and some implications of Theorem 1 for these problems.

MFCS 2019
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Weighted Set-Cover.
This is a particular case of Bipartite Activation Edge-Cover when all nodes are steady
and nodes in R have weight 0. Note that in this case θ is infinite, and we can only deduce
from Theorem 1 the known ratio 1 + ln ∆. Consider a modification of the problem, which we
call θ-Bounded Weighted Set-Cover: when we pick a set v ∈ V \R, we pay wv for v,
and also pay wv/θ for each element in R covered by v that was not yet covered. Then the
corresponding Activation Edge-Cover instance is θ-bounded.

Facility Location.
Here we have a bipartite graph with sides R (clients) and V \R (facilities), weights (opening
costs) w = {wv : v ∈ V \R}, and distances (service costs) d = {duv : u ∈ R, v ∈ V \R}. We
need to choose S ⊆ V \R with w(S) +

∑
u∈R d(u, S) minimal, where d(u, S) = minv∈S duv

is the minimal distance from u to S. This is equivalent to Bipartite Activation Edge-
Cover. Note however that if for some constant θ we have wv ≤ θduv for all uv ∈ E with
u ∈ R and v ∈ V \R, then the corresponding Bipartite Activation Edge-Cover instance
is θ-bounded, and achieves a low constant ratio even for large values of θ, by Theorem 1.

Installation Edge-Cover.
Suppose that the installation cost of a wireless network is proportional to the total height of
the towers for mounting antennas. An edge uv is activated if the towers at u and v are tall
enough to overcome obstructions and establish line of sight between the antennas. This is
modeled as each pair u, v ∈ V has a height demand huv and constants γuv, γvu, such that
a uv-edge is activated by a if the scaled heights γuvau, γvuav sum to at least huv. In the
Installation Edge-Cover problem, we need to assign heights to the antennas such that
each terminal can communicate with some other node, while minimizing the total sum of the
heights. The problem is Set-Cover hard even for 0, 1 thresholds and bipartite G [20]. But
in a practical scenario, the quotient of the maximum tower height over the minimum tower
height is a small constant; say, if possible tower heights are 5, 15, 20, then θ = 4.

Min-Power Edge-Cover.
This problem is a particular case of Activation Edge-Cover when teu = tev for every edge
e = uv ∈ E; note that θ = 1 in this case (in fact, the case θ = 1 is much more general). The
motivation is to assign energy levels to the nodes of a wireless network while minimizing the
total energy consumption, and enabling communication for every terminal. The Min-Power
Edge-Cover problem is NP-hard even if R = V , or if R is an independent set in the input
graph G and unit thresholds [14]. The problem admits ratio 2 by a trivial reduction to
the min-cost case. This was improved to 1.5 in [17], and then to 1.406 in [4], which also
establishes the ratio 73/60 for the bipartite case and for unit thresholds.

From Theorem 1 and the discussion above we get:

I Corollary 2. Min-Power Edge-Cover admits ratio 1 + ω(1) < 1.2785, and the θ-
bounded versions of each of the problems Weighted Set-Cover, Facility Location, and
Installation Edge-Cover, admits ratio 1 + ω(θ).

Let us illustrate this result on the Facility Location problem. One might expect a
constant ratio for any θ > 0, but our ratio 1+ω(θ) is surprisingly low. Even if θ = 100 (service
costs are at least 1% of opening costs) then we get a small ratio 1 + ω(100) < 3.636. Even
for θ = 104 we still get a reasonable ratio 1 + ω(104) < 7.3603. All previous results for the
problem are usually summarized by just two observations: the problem is Set-Cover hard
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(so has a logarithmic approximation threshold by [21, 10]), and that it admits a matching
logarithmic ratio 1 + ln |R| [6]; see surveys on Facility Location problems by Vygen
[26] and Shmoys [24]. Due to this, almost all work focused on the more tractable Metric
Facility Location problem. Our Theorem 1 implies that many practical non-metric
Facility Location instances admit a reasonable small constant ratio.

Note that our Theorem 1 ratio 1.2785 for θ = 1 significantly improves the previous best
ratio 1.406 of [4] for Min-Power Edge-Cover on general graphs achieved by iterative
randomized rounding; we do not match the ratio 73/60 of [4] for the bipartite case, but note
that the case θ = 1 is much more general than the min-power case considered in [4].

For the case of “locally uniform” thresholds – when for each non-terminal (facility) all
thresholds (service costs) are identical, we show a better ratio, see also Table 1.

I Theorem 3. Bipartite Activation Edge-Cover with locally uniform thresholds admits
ratio 1 + ω̄(θ).

In addition, we consider unit thresholds, and using some new ideas in addition to [4],
improve the “natural” previous best ratio 73/60 ≈ 1.217 of [4] as follows.

I Theorem 4. Activation Edge-Cover with unit thresholds admits ratio 1555
1347 < 1.155.

We note that the proofs of some of our results are non-trivial, although we invested an
effort to simplify matters. In any case, the focus in this paper is not technical, but rather
conceptual. Our main contribution is giving a unified algorithm for a large class of problems
that we identify – θ-Bounded Activation Edge-Cover problems, either substantially
improving known ratios, or showing that many seemingly Set-Cover hard problems may
be tractable in practice. Let us also point out that our main result is more general than
the applications listed in Corollary 2. The generalization to θ-bounded Activation Edge-
Cover problems is different from earlier results; besides finding a unifying algorithmic idea
that generalizes and improves previous results, we are also able to find tractable special cases
in a new direction.

The rest of this paper is organized as follows. In Section 2 we define the Generalized
Min-Covering problem and analyze a greedy algorithm for it, see Theorem 5. In Section 3
we use Theorem 5 to prove Theorem 1. Theorems 3 and 4 are proved using a modified
method in Sections 4 and 5, respectively.

2 The Generalized Min-Covering problem

A set function f is increasing if f(A) ≤ f(B) whenever A ⊆ B; f is decreasing if −f is
increasing, and f is sub-additive if f(A ∪ B) ≤ f(A) + f(B) for any subsets A,B of the
ground-set. Let us consider the following algorithmic problem:

Generalized Min-Covering
Input: Non-negative set functions ν, τ on subsets of a ground-set U such that ν is
decreasing, τ is sub-additive, and τ(∅) = 0.
Output: A ⊆ U such that ν(A) + τ(A) is minimal.

The “ordinary” Min-Covering problem is min{τ(A) : ν(A) = 0}; it is a particular case
of the Generalized Min-Covering problem when we seek to minimize Mν(A) + τ(A) for
a large enough constant M . Under certain assumptions, the Min-Covering problem admits
ratio 1 + ln ν(∅) [16]. Various generic covering problems are considered in the literature,
among them the Submodular Covering problem [27], and several other types, cf. [5].

MFCS 2019
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The variant we consider is inspired by the algorithms of Robins & Zelikovsky [22] for the
Steiner Tree problem, and the analysis in [13] of this algorithm; but, to the best of our
knowledge, the explicit formulation of the Generalized Min-Covering problem given
here is new. Interestingly, our ratio for Activation Edge-Cover with θ = 1 is the same as
that of [22] for Steiner Tree in quasi-bipartite graphs.

We call ν the potential and τ the payment. The idea behind this interpretation and
the subsequent greedy algorithm is as follows. Given an optimization problem, the potential
ν(A) is the value of some “simple” augmenting feasible solution for A. We start with an
empty set solution, and iteratively try to decrease the potential by adding a set B ⊆ U \A
of minimum “density” – the price paid for a unit of the potential. The algorithm terminates
when the price ≥ 1, since then we gain nothing from adding B to A. The ratio of such an
algorithm is bounded by 1 + ln ν(∅)

opt (assuming that during each iteration a minimum density
set can be found in polynomial time). So essentially the greedy algorithm converts ratio
α = ν(∅)

opt into ratio 1 + lnα. However, sometimes a tricky definition of the potential and the
payment functions may lead to a smaller ratio.

Let opt be the optimal solution value of a problem instance at hand. Fix an optimal
solution A∗. Let ν∗ = ν(A∗), τ∗ = τ(A∗), so opt = τ∗ + ν∗. The quantity τ(B)

ν(A)−ν(A∪B) is
called the density of B (w.r.t. A); this is the price paid by B for a unit of potential. The
Greedy Algorithm (a.k.a. Relative Greedy Heuristic) for the problem starts with A = ∅
and while ν(A) > ν∗ repeatedly adds to A a non-empty augmenting set B ⊆ U that satisfies
the following condition, while such B exists:

Density Condition: τ(B)
ν(A)− ν(A ∪B) ≤ min

{
1, τ∗

ν(A)− ν∗

}
.

Note that since ν is decreasing ν(A)− ν(A ∪A∗) ≥ ν(A)− ν(A∗) = ν(A)− ν∗; hence if
ν(A) > ν∗, then τ(A∗)

ν(A)−ν(A∪A∗) ≤
τ∗

ν(A)−ν∗ and there exists an augmenting set B that satisfies
the condition τ(B)

ν(A)−ν(A∪B) ≤
τ∗

ν(A)−ν∗ , e.g., B = A∗. Thus if B∗ is a minimum density set
and τ(B∗)

ν(A)−ν(A∪B∗) ≤ 1, then B∗ satisfies the Density Condition; otherwise, the density of B∗
is larger than 1 so no set can satisfy the Density Condition.

I Theorem 5. The Greedy Algorithm achieves approximation ratio

1 + τ∗

opt ln ν0 − ν∗

τ∗
= 1 + τ∗

opt · ln
(

1 + ν0 − opt
τ∗

)
.

Proof. Let ` be the number of iterations. Let A0 = ∅ and for i = 1, . . . , ` let Ai be the
intermediate solution at the end of iteration i and Bi = Ai\Ai−1. Let νi = ν(Ai), i = 0, . . . , `.
Then:

τ(Bi)
νi−1 − νi

≤ min
{

1, τ∗

νi−1 − ν∗

}
i = 1, . . . , `

Since ν is decreasing

∑̀
i=1

τ(Bi) ≤
∑̀
i=1

min
{

1, τ∗

νi−1 − ν∗

}
(νi−1 − νi)

This is the lower Darboux sum of the function f(ν) =
{

1 if ν ≤ τ∗ + ν∗

τ∗

ν−ν∗ if ν > τ∗ + ν∗
in the

interval [ν`, ν0] w.r.t. the partition ν` < ν`−1 < · · · < ν0. We claim that τ∗ + ν∗ ≥ ν`. Since
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the algorithm stopped with A`, at least one of the following holds: (i) A` = U ; (ii) ν` ≤ ν∗;
(iii) A∗ has density > 1. If (i) holds then (ii) holds (by the monotonicity of ν), but case (ii) is
trivial. So assume that only (iii) holds. Then τ(A∗)

ν(A`)−ν(A`∪A∗) > 1, thus since ν is decreasing
τ(A∗) ≥ ν` − ν(A ∪A∗) ≥ ν` − ν(A∗). Consequently,

∑`
i=1 τ(Bi) is bounded by∫ ν0

ν`

f(ν)dν =
∫ τ∗+ν∗

ν`

1dν +
∫ ν0

τ∗+ν∗

τ∗

ν − ν∗
dν = τ∗ + ν∗ − ν` + τ∗ ln ν0 − ν∗

τ∗

Let A = A` =
⋃`
i=1Bi be the set computed by the algorithm. Since τ is sub-additive

τ(A) ≤
∑̀
i=1

τ(Bi) ≤ τ∗ + ν∗ − ν(A) + τ∗ ln ν0 − ν∗

τ∗

Thus the approximation ratio is bounded by τ(A)+ν(A)
opt ≤ 1 + τ∗

opt ln ν0−ν∗

τ∗ . J

3 Algorithm for general thresholds (Theorem 1)

Given an instance G = (V,E), t, R of Activation Edge-Cover define the corresponding
Generalized Min-Covering instance U, τ, ν as follows. We put at each node u ∈ V a
large set of “assignment units”, and let U be the union of these sets of “assignment units”.
Note that to every A ⊆ U naturally corresponds the assignment a where au is the number of
units in A put at u. It would be more convenient to define ν and τ in terms of assignments,
by considering instead of a set A ⊆ U the corresponding assignment a.

To define ν and τ , let us recall the assignments q and c from the Introduction. We have
cv = qv = 0 if v ∈ V \R and for u ∈ R:

qu = min
e=uv∈E

teu is the minimum threshold at u of an edge in E incident to u.
cu = min

e=uv∈E
(teu + tev)− qu, so cu + qu is the minimum value of an edge in E incident to u.

We let Q = q(V ) = q(R) and C = c(R). Note that c(R′) ≤ θq(R′) for any R′ ⊆ R; in
particular, C ≤ θQ. For an assignment a that “augments” q let Rq+a denote the set of
terminals covered by the edge set Eq+a activated by the assignment q+a. A natural definition
of the potential and the payment functions would be τ(a) = a(V ) and ν(a) = (c+q)(R\Rq+a)
but this enable us to prove only ratio 1 + ln(θ + 1). We show a better ratio by adding to the
potential in advance the “fixed” part Q. We define

τ(a) = a(V ) ν(a) = Q+ c(R \Rq+a)

It is easy to see that ν is decreasing, τ is sub-additive, and τ(0) = 0.
The next lemma shows that the obtained Generalized Min-Covering instance is

equivalent to the original Activation Edge-Cover instance.

I Lemma 6. If q+a is a feasible solution for Activation Edge-Cover then τ(a)+ν(a) =
Q+a(V ). If a is a feasible solution for Generalized Min-Covering then one can construct
in polynomial time a feasible solution for Activation Edge-Cover of value at most
τ(a) + ν(a). In particular, both problems have the same optimal value, and Generalized
Min-Covering has an optimal solution a∗ such that ν(a∗) = Q and thus opt = τ(a∗) +Q.

Proof. If q + a is a feasible Activation Edge-Cover solution then Rq+a = R and thus
ν(a) = Q. Consequently, τ(a) + ν(a) = a(V ) +Q.

Let now a be a Generalized Min-Covering solution. The assignment q + a has value
Q + a(V ) and activates the edge set Eq+a that covers Rq+a. To cover R \ Rq+a, pick for

MFCS 2019
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every u ∈ R \Rq+a an edge uv with tuvu + tuvv minimum. Let b be an assignment defined by
bu = cu if u ∈ R \Rq+a and bu = 0 otherwise. The set of picked edges can be activated by
an assignment q + b that has value Q+ c(R \Rq+a). The assignment q + a + b activates
both edge sets and has value Q+ a(V ) + c(R \Rq+a) = τ(a) + ν(a), as required. J

For the obtained Generalized Min-Covering instance, let us fix an optimal solution
a∗ as in Lemma 6, so ν∗ = Q and opt = τ∗ +Q. Denote ν0 = ν(0) = Q+ c(R), and note
that c(R) ≤ θQ. To apply Theorem 5 we need several bounds given in the next lemma.

I Lemma 7. opt
τ∗
≥ 1 + 1

θ
, ν0

τ∗
≤ (θ + 1)

(opt
τ∗
− 1
)
, and ν0 − ν∗

τ∗
≤ ∆ + 1.

Proof. Note that

τ∗ +Q = opt ≤ ν0 ≤ (θ + 1)Q .

In particular, τ∗ ≤ θQ, and this implies the first bound of the lemma

opt
τ∗

= 1 + Q

τ∗
≥ 1 + 1

θ
.

The second bound of the lemma holds since ν0 ≤ (θ + 1)Q = (θ + 1)(opt− τ∗).
The last bound of the lemma is equivalent to the bound c(R) ≤ τ∗(∆ + 1). Let J be an

inclusion minimal edge cover of R activated by q + a∗. Then J is a collection S of node
disjoint rooted stars with leaves in R. Let S ∈ S. By the definition of c, a∗(S) ≥ max

u∈R∩S
cu,

thus c(R ∩ S) ≤ |R ∩ S|a∗(S) ≤ (∆ + 1)a∗(S). Consequently, c(R) =
∑
S∈S

c(R ∩ S) ≤

(∆ + 1)
∑
S∈S

a∗(S) ≤ (∆ + 1)a∗(V ). J

We will show later that the Greedy Algorithm can be implemented to run in polynomial
time; now we focus on showing that it achieves the approximation ratios stated in Theorem 1.
Denote x = θ

( opt
τ∗ − 1

)
and f(x) = ln x

1+x/θ . By Lemma 7 first bound, x ≥ 1. Substituting
Lemma 7 second bound in Theorem 5 second bound we get that the ratio is bounded by

1 + τ∗

opt · ln
(

1 + ν0

τ∗
− opt

τ∗

)
≤ 1 + ln x

1 + x/θ
= 1 + f(x)

Consequently, the ratio is bounded by 1 + max{f(x) : x ≥ 1} = 1 + ω(θ).
Substituting Lemma 7 third bound in Theorem 5 first bound and observing that τ∗ ≤ opt

we get that the ratio is bounded by 1 + ln(∆ + 1). In the case when R is an independent set
in G, it is easy to see that the third bound in Lemma 7 improves to ν0 − ν∗

τ∗
≤ ∆, and we

get ratio 1 + ln ∆ in this case.
In the next lemma we show that ω(θ) = W (θ/e), where W (z) is the Lambert W Function,

which is the inverse function of z(W ) = WeW .

I Lemma 8. For any θ > 0, the equation y + 1 = ln(θ/y) has a unique (real) root y(θ), and
0 < y(θ) ≤ θ. Furthermore, ω(θ) = y(θ) = W (θ/e) for any θ > 0.

Proof. Since the function y + 1 is strictly increasing and the function ln(θ/y) is strictly
decreasing, the equation has at most one root; we claim that this root exists and is in the
interval (0, θ]. To see this consider the function h(y) = y + 1− ln(θ/y), and note that h is
continuous and that h(θ) = θ+ 1 > 0 while h(ε) = ε+ 1− ln(θ/ε) < 0 for ε > 0 small enough.
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Let f(x) = ln x
1+x/θ . Since f(1) = 0 and lim

x→∞
f(x) = 0 (by L’Hospital’s Rule), f(x) attains

a maximum when

f ′(x) = (1 + x/θ)/x− (ln x)/θ
(1 + x/θ)2 = 1 + x/θ − (x/θ) ln x

x(1 + x/θ)2 = 0 .

So f ′(x) = 0 if and only if 1 + x/θ = (x/θ) ln x, and then f(x) = θ/x. Substituting y ← θ/x

we get the equation y + 1 = ln(θ/y), where 0 < y ≤ θ. Thus ω(θ) = y(θ).
To prove that W (θ/e) = y(θ) we show that W (θ/e) + 1 = ln(θ/W (θ/e)), namely, that

W (θ/e) is the root of the equation y+1 = ln(θ/y) that defines y(θ). We haveW (z)eW (z) = z

for any z > 0 (c.f. Eq. 1.5 in [7]), which is equivalent to W (z) + lnW (z) = ln z . Thus
W (θ/e) + lnW (θ/e) = ln(θ/e), which gives W (θ/e) + 1 = ln(θ/W (θ/e)), as claimed. J

Finally, we show that the Greedy Algorithm algorithm can be implemented in
polynomial time. As was mentioned in Section 2 before Theorem 5, we just need to perform
in polynomial time the following two operations for any assignment a: to check the condition
ν(a) > ν∗, and to find an augmenting assignment b of minimum density.

The assignments q and c can be computed in polynomial time, and thus the potential
ν(a) = Q + c(R \ Rq+a) can be computed in polynomial time, for any a. Let a∗ be an
optimal solution as in Lemma 6, and denote τ∗ = τ(a∗) and ν∗ = ν(a∗) = Q. Then the
condition ν(A) > ν∗ is equivalent to ν(a) ≥ Q and thus can be checked in polynomial time.

Now we show how to find an augmenting assignment b of minimum density. Note that
the density of an assignment b w.r.t. a is

τ(b)
ν(a)− ν(a + b) = b(V )

c(R \Rq+a)− c(R \Rq+a+b) = b(V )
c(Rq+a+b \Rq+a) .

I Lemma 9. There exists a polynomial time algorithm that given an instance of Activation
Edge-Cover and an assignment a finds an assignment b of minimum density.

Proof. A star is a rooted tree S = (VS , ES) with at least one edge such that only its root
s may have degree ≥ 2. We say that a star S is a proper star if all the leaves of S are
terminals. We denote the terminals in S by RS = R ∩ VS .

Since q,a are given assignments, we simplify the notation by assuming that R← R\Rq+a
is our set of terminals, and that a ← q + a is our given assignment. Then the density of
b is just b(V )

c(Ra+b) . Let b∗ be an assignment of minimum density, and let J∗ ⊆ Ea+b∗ be an
inclusion minimal Ra+b∗-cover. Then J∗ decomposes into a collection S of node disjoint
proper stars that collectively cover Ra+b∗ . For S ∈ S let bS be the optimal assignment such
that a + bS activates S. Since the stars in S are node disjoint∑

S∈S
bS(V ) ≤ b∗(V ) and

∑
S∈S

c(RS) = c(Ra+b∗) .

By an averaging argument, bS(V )
c(RS) ≤

b∗(V )
c(Ra+b∗ ) holds for some S ∈ S, and since b∗ is a

minimum density assignment, so is bS , and bS(V )
c(RS) = b∗(V )

c(Ra+b∗ ) holds. Consequently, it is
sufficient to show how to find in polynomial time an assignment b such that a + b activates
a proper star S and b(V )

c(RS) is minimal.
We may assume that we know the root v and the value w = bv of an optimal density pair

S,b; there are at most |V ||E| choices and we can try all and return the best outcome. Let
Rw = {u ∈ R : there is a uv-edge e with tev ≤ av + w}. For u ∈ Rw let bu be the minimal
non-negative number for which there is a uv-edge e with av + w ≥ tev and au + bu ≥ teu.
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Then our problem is equivalent to finding RS ⊆ Rw with σ(RS) = w+b(RS)
c(RS) minimum. This

problem can be solved in polynomial time, by starting with RS = ∅ and while there is
u ∈ Rw \RS with σ(RS + u) < σ(RS), adding u ∈ Rw \RS to RS with bu/cu minimum. J

The proof of Theorem 1 is complete.

4 Locally uniform thresholds (Theorem 3)

Here we consider the Bipartite Activation Edge-Cover problem with locally uniform
thresholds. This means that each non-terminal v ∈ V \R has weight wv and all edges incident
to v have the same threshold tv; in the θ-bounded version wv ≤ θtv. We consider a natural
greedy algorithm that repeatedly picks a star S that minimizes the average price paid for
each terminal (the quotient of the optimal activation value of S over |RS |), and then removes
RS . Each time we choose a star S we distribute its activation value uniformly among its
terminals, paying in the computed solution the average price for each terminal of S.

We now apply a standard “set-cover” analysis, cf. [28]. In some optimal solution fix an
inclusion maximal star S∗ with center v and terminals RS∗ covered by the algorithm in the
order rk, rk−1, ..., r1, where rk is covered first and r1 last; we bound the algorithm payment
for covering RS∗ . Note that 1 ≤ k ≤ ∆. Denote w = wv and let t be the threshold of the
terminals in S∗. Let S∗i be the substar of S∗ with leaves ri, . . . , r1. At the start of the iteration
in which the algorithm covers ri, the terminals of S∗i are uncovered. Thus the algorithm
pays for covering ri at most the average price paid by S∗i , namely (w+ it)/i = w/i+ t. Over
all iterations, the algorithm pays for covering RS∗ at most wHk + kt, while the optimum
pays w + kt. Thus the quotient between them is bounded by

wHk + kt

w + kt
= w/tHk + k

w/t+ k
≤ θHk + k

θ + k
= 1 + θ(Hk − 1)

θ + k
≤ 1 + max

1≤k≤∆

Hk − 1
1 + k/θ

≤ 1 + ω̄(θ) .

Since any optimal solution decomposes into node disjoint stars, the last term bounds the
approximation ratio, concluding the proof of Theorem 3.

Let g(k) = Hk−1
1+k/θ where k ∈ N, so ω̄(θ) = maxk∈N g(k). We have

g(k + 1)− g(k) = θ

(k + θ)(k + 1 + θ)

(
2−Hk + θ − 1

k + 1

)
.

Thus g(k + 1) ≥ g(k) if and only if 2−Hk + θ−1
k+1 > 0. Consequently, ω̄(θ) = g(k(θ)) where

k(θ) be the smallest integer k such that Hk ≥ 2 + θ−1
k+1 .

For θ = 1 we have k(θ) = 4, so 1 + ω̄(1) = 73/60. The greedy algorithm cannot do better
even for unit thresholds, as shows the example in Fig. 1. The instance has 48 terminals (in
black), and two sets of covering nodes: the upper 12 nodes that form an optimal cover, and
the bottom 13 nodes. The bottom nodes have 3 nodes of degree 4, 4 of degree 3, and 6 of
degree 2. The algorithm may start taking all bottom nodes, and only then add the upper
ones, thus creating a solution of value 73, instead of the optimum 60.

5 Unit thresholds (Theorem 4)

Here we consider the case of unit thresholds when teu = tev = 1 for every uv-edge e. By
a reduction from [4], we may assume that the instance is bipartite. Specifically, for any
optimal assignment a we have au = 1 for all u ∈ R, hence we can consider the residual
instance obtained by removing the terminals covered by edges with both ends in R; in the
new obtained instance R is an independent set, and recall that we may assume that V \R is
an independent set.



Z. Nutov, G. Kortsarz, and E. Shalom 20:11

Figure 1 Tight example of ratio 73
60 for unit thresholds.

One can observe that in the obtained bipartite instance, a is an optimal solution if and
only if av ∈ {0, 1} for all v ∈ V , av = 1 for all v ∈ R, and the set C = {v ∈ V \R : av = 1}
covers R, meaning that R is the set of neighbors of C. Namely, our problem is equivalent
to min{|C|+ |R| : C ⊆ V \R,C covers R}. On the other hand the problem min{|C| : C ⊆
V \R,C covers R} is essentially the (unweighted) Set-Cover problem, and C is a feasible
solution to this Set-Cover instance if and only if C ∪ R is the characteristic set of a
feasible assignment for the Activation Edge-Cover instance. Note that both problems
are equivalent w.r.t. their optimal solutions but may differ w.r.t. approximation ratios, since
if C∗ is an optimal Set-Cover solution then |C|+|R|

|C∗|+|R| may be much smaller than |C|
|C∗| .

Recall that a standard greedy algorithm for Set-Cover repeatedly picks the center
of a largest star and removes the star from the graph. This algorithm has ratio Hk for
k-Set-Cover, where k = ∆ is the maximum degree of a non-terminal (the maximum size
of a set). However, the same algorithm achieves a much smaller ratio 73

60 for Activation
Edge-Cover with unit thresholds; the ratio 73

60 was established in [4], and it also follows
from the case θ = 1 in Theorem 3. In what follows we denote by αk the best known ratio for
k-Set-Cover. We have α1 = α2 = 1 (k = 2 is the Edge-Cover problem) and α3 = 4/3 [8].
The current best ratios for k ≥ 4 are due to [11] (see also [18, 1]). We summarize the current
values of αk for k ≤ 7 in the following table.

Table 2 Current values of αk for k ≤ 7.

α1 α2 α3 α4 α5 α6 α7

1 1 4
3

73
48

26
15

28
15

212
105

We now show how these ratios for k-Set-Cover can be used to approximate the
Activation Edge-Cover problem with unit costs. We start by describing a simple
algorithm with ratio 1 67

360 <
73
60 , that uses only the k = 2 case.

Algorithm 1 ratio 1 67
360

1 A← ∅
1 while there exists a star with at least 3 terminals do
2 add to A and remove from G the node-set of a maximum size star
3 add to A an optimal solution of the residual instance

We claim that the above algorithm achieves approximation ratio 1 67
360 for Activation

Edge-Cover (a similar analysis implies ratio Hk − 1
6 for Set-Cover). In some optimal

solution fix a star S∗ with terminals covered in the order rk, rk−1, ..., r1, where rk is covered
first and r1 last; we bound the algorithm payment to cover these terminals. Let S∗i be the
substar of S∗ with leaves ri, . . . , r1. At the start of the iteration when ri is covered, the
terminals of S∗i are uncovered. Thus the algorithm pays for covering ri at most the density
of S∗i , namely, (i + 1)i = 1 + 1/i. Over all iterations, the algorithm pays for covering RS
at most k +Hk, while the optimum pays k + 1. If k = 1 then the algorithm pays at most
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the amount of the optimum. We claim that if k ≥ 2 then in fact the payment is at most
k +Hk − 1/6. If k = 2 then the payment is at most 3 < 3 +H3 − 1/6 (we pay 3 if the star
“survives” all the iterations before the last). For k ≥ 3, the pay for the last 3 terminals is
either: 4/3 for each of for r3, r2 and 2 for r1 (a total of 14/3), or 4/3 for r3 and 3 for r2, r1 (a
total of 13/3). The maximum is 14/3 = 3 +H3 − 1/6. Consequently, the ratio is bounded by

max
k≥2

k +Hk − 1/6
k + 1 = 1 + max

k≥2

Hk − 7/6
k + 1 = 1 + max

k≥2
g(k)

By fundamental computations we have g(k + 1) − g(k) = 13/6−Hk

(k+1)(k+2) . Thus g(k) is in-
creasing if and only if Hk <

13
6 . Since H4 = 23

12 < 13
6 and H5 = 137

60 > 13
6 , we get that

maxk≥2 g(k) = g(5) = 67
360 , so we have ratio 1 67

360 .

We now show ratio 8
7 < 1555

1347 < 7
6 . As in the greedy algorithm for Set-Cover, we

repeatedly remove an inclusion maximal set of disjoint stars with maximum number of leaves
and pick the set of roots of these stars. The difference is that each time stars with more
than k leaves are exhausted, we compute an αk-approximate solution Ak for the remaining
k-Set-Cover instance; we let A0 = ∅. This gives many Set-Cover solutions, each is a
union of the centers of stars picked and Ak; we choose the smallest one, and together with R
this gives a feasible Activation Edge-Cover solution. Formally, the algorithm is:

Algorithm 2 ratio ρ = 1555
1347 < 1.1545

1 for k ← ∆ downto 0 do
2 remove from G a maximal collection of node disjoint (k + 1)-stars

let Ck+1 be the set of the roots of the stars removed so far
3 compute an αk-approximate k-Set-Cover solution Ak in G
4 return the smallest set Ck+1 ∪Ak, k ∈ {∆, . . . , 0}

Since we claim ratio 1555
1347 > 1.15 > 8

7 , at iterations when k ≥ 7 step 3 can be skipped,
since then we can apply a standard “local ratio” analysis [2]. Indeed, when a star with
k ≥ 7 terminals is removed, the partial solution value increases by k + 1 while the optimum
decreases by at least k. Hence for k ≥ 7 it is a k+1

k ≤
8
7 local ratio step. Consequently, we

may assume that ∆ ≤ 6, provided that we do not claim ratio better than 8/7.
Let r = |R|. Let τ be the optimal value to the initial Set-Cover instance. At iteration

k the algorithm computes a solution of value at most αkτ + r + |Ck+1|. Thus we get ratio ρ
if ρ(r + τ) ≥ αkτ + r + |Ck+1| holds for some k ≤ 6. Otherwise,

ρ(r + τ) < α6τ + r

ρ(r + τ) < α5τ + r + |C6|
ρ(r + τ) < α4τ + r + |C5|
ρ(r + τ) < α3τ + r + |C4|
ρ(r + τ) < α2τ + r + |C3|
ρ(r + τ) < α1τ + r + |C2|
ρ(r + τ) < r + |C1|

Denote σ = α1 + · · · + α5 = 1581
240 . Note that |C1| + · · · + |C6| = r, since in this sum the

number of stars with k leaves is summed exactly k times, k = 1, . . . , 6. The first inequality,
and the inequality obtained as the sum of the other six inequalities gives the following two
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inequalities:

ρ(r + τ) < α6τ + r

6ρ(r + τ) < στ + 7r

Dividing both inequalities by τ and denoting x = r/τ gives:

ρ(x+ 1) < α6 + x

6ρ(x+ 1) < σ + 7x

Since ρ > 1 and 7 > 6ρ this is equivalent to:

6ρ− σ
7− 6ρ < x <

α6 − ρ
ρ− 1

We obtain a contradiction if ρ is the solution of the equation 6ρ−σ
7−6ρ = α6−ρ

ρ−1 , namely

ρ = 7α6 − σ
6α6 − σ + 1 = 1 + α6 − 1

6α6 − σ + 1 = 1 + 208
1347 = 1555

1347 .

This concludes the proof of Theorem 4.
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