Distributed Minimum Vertex Coloring and
Maximum Independent Set in Chordal Graphs

Christian Konrad
Department of Computer Science, University of Bristol, UK
christian.konrad@bristol.ac.uk

Viktor Zamaraev
Department of Computer Science, Durham University, UK
viktor.zamaraev@durham.ac.uk

—— Abstract

We give deterministic distributed (1 + €)-approximation algorithms for Minimum Vertex Coloring

and Maximum Independent Set on chordal graphs in the LOCAL model. Our coloring algorithm
runs in O(logn) rounds, and our independent set algorithm has a runtime of O(log(1)log* n)
rounds. For coloring, existing lower bounds imply that the dependencies on é and logn are best
possible. For independent set, we prove that Q(é) rounds are necessary.

Both our algorithms make use of the tree decomposition of the input chordal graph. They
iteratively peel off interval subgraphs, which are identified via the tree decomposition of the input
graph, thereby partitioning the vertex set into O(logn) layers. For coloring, each interval graph
is colored independently, which results in various coloring conflicts between the layers. These
conflicts are then resolved in a separate phase, using the particular structure of our partitioning. For
independent set, only the first O(log %) layers are required as they already contain a large enough
independent set. We develop a (1 + ¢)-approximation maximum independent set algorithm for
interval graphs, which we then apply to those layers.

This work raises the question as to how useful tree decompositions are for distributed computing.

2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases local model, approximation algorithms, minimum vertex coloring, maximum
independent set, chordal graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.21

Related Version This work has previously been presented as a Brief Announcement at PODC
2018 [28]. A full version of the paper is available at [29], https://arxiv.org/abs/1805.04544.

Funding Christian Konrad: C.K. carried out most work on this paper while being at the University
of Warwick. He was supported by the Centre for Discrete Mathematics and its Applications (DIMAP)
at Warwick University and by EPSRC award EP/N011163/1.

Viktor Zamaraev: V.Z. is supported by EPSRC award EP/P020372/1.

1 Introduction

The LOCAL Model. In the LOCAL model of distributed computation [31], the input graph
G = (V, E) with n = |V| represents a communication network, where every network node
hosts a computational entity. Nodes have unique IDs. A distributed algorithm is executed
on all network nodes simultaneously and proceeds in discrete rounds. Initially, besides
their own IDs, nodes only know their neighbors. Each round consists of a computation
and a communication phase. In the computation phase, nodes are allowed to perform
unlimited computations. In the communication phase, nodes can send individual messages of
unbounded sizes to all their neighbors (and receive messages from them as well). The runtime
of the algorithm is the total number of communication rounds, and the objective is to design
algorithms that run in as few rounds as possible. The output is typically distributed: For
? Christian Konrad gnd Viktor Zam.araev;

5v icensed under Creative Commons License CC-BY
44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 21; pp.21:1-21:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
mailto:viktor.zamaraev@durham.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.21
https://arxiv.org/abs/1805.04544
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2

Distributed Coloring and Independent Set in Chordal Graphs

vertex colorings, it is required that upon termination of the algorithm, every node knows
its own color, and for independent sets, every node knows whether it participates in the
independent set.

Network Decompositions. Network decompositions (see for example [3, 35, 32]) are a
widely employed tool in distributed computing. They allow us to partition the vertex set of
a graph into connected clusters of bounded diameter such that the cluster graph, i.e., the
graph obtained by contracting the clusters into vertices, has small chromatic number. The
Linial-Saks network decomposition method [32] guarantees that the cluster graph can be
colored with O(logn) colors (and provides such a coloring), and no better method is known
with regards to the number of colors. When employing a network decomposition algorithm
for the MINIMUM VERTEX COLORING (MVC) problem, the chromatic number of the cluster
graph directly translates to the achieved approximation factor: Iterate through the color
classes of the cluster graph and make each cluster color itself optimally using exponential
time computations (recall that MV C is NP-hard) and using a color palette that is disjoint to
the colors employed by already colored neighboring clusters. Indeed, this techniques yields
the currently best known distributed algorithm for MVC (with approx. factor O(logn)) [4].

Tree Decompositions. Our objective is to obtain distributed coloring algorithms with
improved approximation guarantees, i.e., sub-logarithmic in n. To this end, we follow a route
that at a first glance is very similar to the approach outlined above. However, instead of
employing network decompositions, we make use of the tree decomposition of the input graph.
A tree decomposition is a decomposition of the vertex set into (not necessarily disjoint) bags
that are arranged in a tree such that every edge of the input graph is contained in the induced
subgraph of at least one bag, and all bags that contain a specific vertex form a subtree in
the tree decomposition. The key advantage of employing tree decompositions rather than
network decompositions is that trees have small chromatic number and can efficiently be
colored distributively. There are however multiple obstacles: First, there are graphs whose
tree decompositions necessarily contain at least one bag whose diameter (maximum distance
in the original graph between any two nodes in the bag) is (n) (e.g. on a ring [16]). In
these graphs, network nodes thus cannot learn the set of bags they are contained in in a
small number of rounds and it appears impossible that nodes can obtain a local view of a
coherent global tree decomposition. Second, the fact that every node may appear in multiple
bags renders the coloring process more difficult since we cannot simply color independent
parts of the tree simultaneously as some nodes may appear in multiple parts.

Our Results. Despite these obstacles, in this paper we show that the tree decomposition
route can successfully be taken for the class of chordal graphs. A graph is chordal, if every
cycle on at least four nodes contains a chord, i.e., an edge different from the edges of the cycle
connecting two nodes of the cycle. Chordal graphs admit a tree decomposition where every
bag has diameter 1, i.e., every bag is a clique. We first show that the tree decomposition
of a chordal graph can efficiently be computed in the distributed setting. We then employ
a peeling process on the tree decomposition that partitions the chordal graph into interval
subgraphs, which can be colored efficiently distributively using a line of work by Halldérsson
and Konrad [24, 25]. Particular care needs to be taken where these subgraphs meet, and
we employ a color rotation technique to correct the colors at their boundaries. Perhaps
surprisingly, this approach allows us to obtain a (14 ¢)-approximation algorithm on this graph
class, which constitutes our main result (Theorem 14). Our algorithm runs in O(Z logn)
rounds and prior work shows that the dependencies on both % and logn are optimal.

C. Konrad and V. Zamaraev

We further adapt this approach to the MAXIMUM INDEPENDENT SET (MIS) problem. In

general graphs, a (1+ ¢)-approximation to MIS can be obtained in O(% logn) rounds [11, 21].

We show that using the tree decomposition approach outlined above, a (1 + ¢)-approximation
on chordal graphs can be obtained in O(1log(1)log*n) rounds (Theorem 16), and we

prove that (1) rounds are necessary (Theorem 17).

Related Work: Distributed Vertex Coloring. Distributed vertex coloring has been studied
since more than 30 years (e.g. [14, 23]). Given a graph G = (V, E), a (legal) c-coloring of G
is an assignment v : V' — {1,2,..., ¢} of at most ¢ colors to the nodes of G such that every
pair of adjacent nodes receives different colors. The algorithmic challenge lies in computing
colorings with few colors. The chromatic number x(G) is the smallest ¢ such that there
is a c-coloring. The MVC problem asks to find a x(G)-coloring. This is a difficult task,
even in the centralized setting: In general graphs, MVC is NP-complete [27] and hard to
approximate within a factor of n'=¢, for any ¢ > 0 [39].

Most research papers on distributed vertex coloring address the problem of computing
a (A + 1)-coloring (e.g. [14, 38, 37, 5, 8, 26, 18, 12]) (other objectives, such as A-colorings
[36, 20] and other degree-based objectives [1] have been studied as well). Only few research
papers address the MVC problem in a distributed model itself. On general graphs, the best
distributed algorithm computes a O(logn)-approximation in O(log® n) rounds [4] and is based
on the network decomposition of Linial and Saks [32]. This algorithm uses exponential time

computations, which due to the computational hardness of MV C is necessary unless P = N P.
Barenboim et al. [7] gave a O(n®)-approximation algorithm that runs in exp(O(1/¢)) rounds.

Both the exponential time computations and the relatively large best known approximation
factor of O(logn) on general graphs motivate the study of special graph classes. Besides
results on graph classes with bounded chromatic number (planar graphs [23] and graphs of
bounded arboricity [6, 22]), the only natural graph class with unbounded chromatic number
that has been addressed in the literature are interval graphs, which are the intersection graphs
of intervals on the line. Halldérsson and Konrad gave a (1 + €)-approximation algorithm for
MVC on interval graphs that runs in O(2 log* n) rounds [25] (see also [24]). This work is
the most relevant related work to our results.

Related Work: Distributed Independent Sets. An independent set in a graph G = (V, E)
is a subset of non-adjacent nodes I C V. Algorithms for independent sets are usually designed
with one of the following two objectives in mind: (1) Compute a mazimal independent set,
i.e., an independent set I that cannot be enlarged by adding a node outside I to it, or (2)
Compute a MAXIMUM INDEPENDENT SET (MIS) (or an approximation thereof), i.e., an
independent set of maximum size, which is the variant studied in this paper. Similar to
MVC, the MIS problem is NP-complete [27] and hard to approximate within a factor of
n'=¢, for every € > 0 [39]. In the distributed setting, Luby [33] and independently Alon
et al. [2] gave distributed O(logn) rounds maximal independent set algorithms more than
30 years ago. Improved results are possible for graphs with bounded maximum degree
([8, 19]) or on specific graph classes (e.g. [14, 38]). Using exponential time computations,
a (1 + ¢)-approximation to MIS can be computed in general graphs in O(Z logn) rounds
[11] (see also [21]). Deterministic distributed MIS algorithms may be inferior to randomized
ones: It is known that every deterministic MIS O(1)-approximation algorithm on a path
requires Q(log™ n) rounds [30, 15], while a simple randomized O(1)-round O(1)-approximation
algorithm exists [15].

21:3

MFCS 2019

21:4

Distributed Coloring and Independent Set in Chordal Graphs

Outline. In Section 2, we give notation and definitions. We then discuss in Section 3 how
network nodes can obtain coherent local views of the tree decomposition. A centralized
(1 + e)-approximation MVC algorithm is then presented in Section 4, and distributed
implementation of this algorithm is given in Section 5. Due to space restrictions, we only
briefly sketch our results on MIS in Section 6 and defer a complete exposition to the full
version of this paper [29]. Finally, we conclude in Section 7.

2 Preliminaries

Basic Notation and Definitions. Let G = (V, E) be a graph. For a node v € V| we denote
by I'¢(v) the neighborhood of v in G. The degree of v in G is defined as degq(v) := |Tg(v)].
By T'¢[v] we denote the set T'g(v) U {v}. Similarly, for a set of nodes W C V we write
Fa(W) := (Uyew F'a(v)) \ W, and Tg[W] := I'c(W) UW. The distance-k neighborhood
of v in G, i.e., the set of nodes at distance at most k from v in G, is denoted I'%(v). The
subgraph of G induced by a set of nodes U is denoted by G[U]. A set of pairwise adjacent
(resp., non-adjacent) nodes in G is called a clique (resp., an independent set). A clique (resp.,
an independent set) S is mazimal if S U {v} is not a clique (resp., an independent set), for
every v € V\'S. A mazimum independent set in G is an independent set of maximum size.
The cardinality of a maximum independent set is called the independence number of G. A
graph is chordal if every cycle of length at least four contains a chord, i.e., an edge that
connects two non-consecutive nodes of the cycle. It is a well-known fact that an n-node
chordal graph has at most n maximal cliques.

Tree Decomposition. A iree decomposition of an n-node graph G = (V, E) is a forest
T = (S, &) whose vertex set S = {S1,Sa,...,5,} is a family of subsets of V', and:

1. every node! v € V belongs to at least one subset in S;
2. for every edge uv € E, there is a subset S; € S containing both nodes v and v;

3. for every node v € V the family ¢(7,v) C S of subsets containing v induces a tree in T,
which we denote T (v), i.e., T(v) := T[o(T,v)].

When the tree decomposition is clear from the context we will write ¢(v) instead of ¢(7,v).
It follows from the definition that G is a subgraph of the intersection graph of the trees T (v).

Tree Decomposition of Chordal Graphs. It is well known (see, e.g., [10]) that a graph G
is chordal if and only if it has a tree decomposition 7 = (C,E) whose vertex set C is the
family of maximal cliques of G. We call such a tree decomposition a clique forest of chordal
graph G. Since every vertex of the clique forest is a clique, G coincides with the intersection
graph of the subtrees 7 (v) of clique forest 7. In other words, a clique forest of a chordal
graph G is a forest T = (C, £) whose vertex set C is the family of maximal cliques of G, such
that T[¢(v)] is a tree for every v. If a clique forest of a chordal graph is linear, i.e., a forest
with every component being a path, then the graph is interval.

» Theorem 1 ([17]). A chordal graph G is interval iff its clique forest is a linear forest.

L For convenience, throughout the paper, we say node when referring to a vertex of an underlying graph,
and we say verter when referring to a vertex of its tree decomposition.

C. Konrad and V. Zamaraev

Binary Paths. We say that a path vy,...,v, in G is binary, if degg(v;) < 2, for every
i € [k] (note that this implies that degg(v;) = 2, for every i € {2,3,...,k—1}). We say that
a binary path v, ..., v is a pendant path, if either deg(v1) =1 or deg(vx) =1 (or both).
For convenience, we consider an isolated vertex as a pendant path. A binary path vy,..., v
is an internal path, if degs(v;) = 2, for every ¢ € [k]. A binary/pendant/internal path is
mazximal if it cannot be enlarged by adding a vertex outside the path to it.

Let G = (V, E) be a chordal graph with clique forest 7 = (C,&). Let P = C1,...,Cy be
a binary path in 7. We define the diameter of P to be the maximum distance in G between

nodes in C1 U...U CY, that is, diam(P) = max distg(u,v). Similarly, we define
ueC;,velCy,i,jE[k]

the independence number of P to be the independence number of G[Cy U...U Cg].

Distributed Algorithms for Interval Graph. Halldérsson and Konrad [25] gave a determin-
istic distributed algorithm for coloring interval graphs. For every € > ﬁ, their algorithm

computes a (1+¢)-approximation to MVC in O(< log* n) rounds. We will reuse this algorithm
and denote it by COLINTGRAPH(g).

3 Computing Local Views of the Clique Forest

Our algorithms make use of the clique forest of the input chordal graph. For network nodes
to obtain a coherent view of the clique forest, we make use of the following mazimum weight
spanning forest characterization: With a chordal graph G we associate the weighted clique
intersection graph Wg whose vertex set is the family C of maximal cliques of G, and any
two cliques C1, Cs € C with a nonempty intersection are connected by an edge with weight
|Cl n CQ| Then:

» Theorem 2 ([9]). A forest T = (C,&) is a clique forest of a chordal graph G if and only if
it is a maximum weight spanning forest of We.

Observe that while the vertex set of a clique forest is unique, i.e., the family of maximal
cliques of G, the edge set is not necessarily unique as there may be multiple different maximum
weight spanning forests in W¢g. To obtain coherent local views of a clique forest, it is thus
necessary that nodes agree on a unique maximum weight spanning forest in Wg. We achieve
this by defining a linear order < on the edges of W¢ that respects the partial order given by
the edge weights, and preferring edges that are larger with respect to <. To this end, we
first assign to every maximal clique C € C a word o(C) over the alphabet of the identifiers
of nodes, where o(C) consists of the identifiers of the nodes in C listed in increasing order.
Further, we associate with every edge e = C;C}; a triple (we, le, he), where w, is the weight
of e, i.e., we = |C; N Cj|, lo = lexmin{c(C;),o(C;)}, and he = lexmax{o(C;),o(C;)}. Now
for two edges e and f we define e < f if and only if either w. < wy, or we = wy and lo < Iy,
or we = wy, lo = Iy and h, < hy, where < is the lexicographical order. Clearly, < orders the
edges of Wg linearly while preserving the weight order.

In what follows, when we say that T is the clique forest of a chordal graph G, we implicitly
assume that it is the clique forest uniquely specified by the above mechanism. Figure 2
demonstrates the weighted clique intersection graph and the clique forest of the chordal
graph presented in Figure 1. A maximum weight spanning forest has the following easily
verifiable local optimality property:

» Lemma 3. Let G = (V, E) be a weighted graph with a unique maximum weight spanning
forest F', and let U CV be a set of nodes inducing a tree T in F. Then G[U] has a unique
mazximum weight spanning tree, which coincides with T'.

21:5

MFCS 2019

21:6 Distributed Coloring and Independent Set in Chordal Graphs

ClZ

Figure 2 The weighted clique intersection graph Wg of chordal graph G presented in Fig. 1.
The vertices of Wg are the maximal cliques of G, and two vertices Cj, C; of Wg with a nonempty
intersection are connected by an edge with weight |C1 N C3|. The bold edges are the edges of
the clique forest T of G., i.e., the edges of the unique maximum weight spanning forest of Wg
corresponding to the linear order of edges <.

Figure 3 Local view of graph G from node 10. The non-gray nodes are the nodes in I'§,[10], and
the black nodes are the nodes in T'%[10].

Figure 4 Local view of the graph Wg from node 10. The cliques in C' =
{C1,C>,C3,C5,Cs,Cr7,Cs,Co} are exactly the maximal cliques of G that contain at least one
node from I'4[10]. The bold edges are the edges of the unique maximum weight spanning forest of
We|C'], which coincides with the subtree of 7 induced by C’.

C. Konrad and V. Zamaraev

Applied to a chordal graph and its clique forest, we thus obtain:

» Lemma 4. Let G = (V, E) be a chordal graph and T = (C, E) its clique forest. Then for any
v € V the unique mazimum weight spanning forest in Wa[p(v)] equals to tree T (v) = T[¢(v)].

This suggests a method for a node v € V' to compute a local view T’ of clique forest T
Suppose that v knows its distance d-neighborhood I'%[v]. For every u € I“é_l[v], v computes
the family ¢(u) of maximal cliques containing « (notice that a maximal clique that contains
a node at distance d — 1 from v may include nodes at distance d). Then, v computes the
maximum weight spanning forest in every Wg[é(u)] and adds the edges of this forest to
T'. Figures 3 and 4 illustrate construction of a local view of the clique forest of the chordal
graph presented in Figure 1.

4 Minimum Vertex Coloring: Centralized Algorithm

In this section, we give a centralized (1 + ¢)-approximation algorithm for MVC on chordal
graphs. This algorithm will later be implemented in the LOCAL model in Section 5.

4.1 Algorithm

Algorithm 1 A centralized (1 + ¢)-approximation coloring algorithm for chordal graphs.

Input: G = (V, E) is an n-node chordal graph with clique forest 7 = (C, £); a parameter € > ﬁ

Set k=2/e.

(1) Pruning Phase.
Let h=7T,U,=V.
for i =1,2,...,[logn] do:
a. Let £; be the set that contains all maximal pendant paths of 7;, and all maximal internal
paths of 7; of diameter at least 3k.
b. Let V; C U; be such that for each v € V;, T (v) is a subpath of a path in £;.
c. Let Usx1 =U; \ Vi, and let Ti+1 be the forest obtained from 7; by removing all paths in
L;. As proved in Lemma 5, 7,11 is the clique forest of G[U;41].

(2) Coloring Phase.
for i =1,2,...,[logn] do: Color G[V;] with at most (1 + 1/k)x(G[Vi]) + 1 colors.

(3) Color Correction Phase.
for i = [logn] — 1, [logn] — 2,...,1 do:
for each path P € L, do:
(a) Let W CV; be the set of nodes w such that 7 (w) is a subpath of P.
(b) Let W' C J,., Vi be the subset of nodes that have neighbors in W.
(c) As we will show, G[W U W’] is an interval graph. Using Lemma 8, we recolor those
nodes of W that are at distance at most k + 3 from a node in W’ using at most
(14 1/k)x(G[V4]) + 1 colors to resolve all coloring conflicts between W and W”’.

Our algorithm (Alg. 1) consists of the pruning, the coloring, and the color correction
phases: In the pruning phase, the node set V is partitioned into at most [logn]| layers
Vi, ..., Vliogn] such that, for every i € [[logn]], G[Vi] constitutes an interval graph. In each
step of the pruning phase, we remove every node v € U; from the current graph G[U;] (we set
U, =V and hence G[U;] = G) whose corresponding subtree 7 (v) in the clique forest 7; of
G|U;] is a subpath of a pendant path or an internal path of diameter at least 3k. The set of
removed nodes is denoted V;, and G[V;] forms an interval graph (which follows from Lemma 7,
[29]). We prove in Lemma 5 that the clique forest 7;+1 of the resulting graph G[U;11], where

21:7

MFCS 2019

21:8

Distributed Coloring and Independent Set in Chordal Graphs

Uiy1 = U; \ Vi, can be obtained by removing all pendant paths and all internal paths of
diameter at least 3k from 7;. We also show in Lemma 6 that the pruning process ends after
at most [logn] iterations and thus creates at most [logn| layers.

In the coloring phase, each interval graph G[V;] is colored with at most (141/k)x(G[V;])+1
colors. In the centralized setting, it would be easy to color these interval graphs optimally.
However, since we will implement the algorithm later in the distributed setting, and an
optimal coloring on interval graphs cannot be computed distributively in few rounds, we
impose a weaker quality guarantee that can be achieved distributively. The colorings of
different layers are computed independently from each other and do not give a coherent
coloring of the entire input graph.

In the color correction phase, these incoherences are corrected. To this end, the colors of
Viiogn] remain unchanged and we correct the layers iteratively, starting with layer [logn] —1
and proceeding downwards to layer V;. In a general step, for every path P € L;, we show
that the subgraph induced by the nodes W C V; whose subtrees are subpaths of P forms an
interval graph together with those nodes in | J i>it1 Vj that have coloring conflicts towards
W (Lemma 8, [29]). Notice that each path P connects to at most two maximal cliques in
T:. The neighborhood of W thus consists of subsets of these (at most two) cliques, which
further implies that all conflicting nodes in |J i>iq1 v are included in these cliques as well.
We then reuse a recoloring result previously proved by Halldérsson and Konrad [25], which
shows that we can resolve all conflicts by changing the colors of those nodes in W that are
at distance at most k + 3 from the (at most) two conflicting cliques.

4.2 Analysis

The analysis of our algorithm relies on various technical lemmas that are given in the full
version of this paper [29]. We now give the most important lemmas that allow us to prove
correctness of our algorithm. Concerning the pruning step, we show that 7; is indeed the
clique forest of G[U;] in Lemma 5, and we prove that at most [logn] iterations are required
to complete the pruning process? in Lemma 6.

» Lemma 5. For every i, T; is the clique forest of G[U;].
» Lemma 6. Phase 1 in Alg. 1 requires at most [logn] iterations, i.e., UlgigﬂogM Vi=V.

Next, we address the color correction phase. In each iteration of the phase we consider
every path P € L; independently. The subgraph induced by the set of nodes W C V; whose
corresponding trees are subpaths of P is legally colored in the coloring phase. This coloring
may be inconsistent with the coloring of subgraph G[U;+1]. However, we prove in Lemma 8,
[29], that the set W' C |J,.,; Vs = Ui41 of neighbors of W in G[U;11] (i.e., the nodes in Uy
that could potentially cause conflicts) is the union of at most two cliques, which are included
in the end vertices of the clique forest of interval graph G[W U W']. In order to resolve these
conflicts we carry out a recoloring process on interval graph G[W U W'] with fixed colorings
of its “boundary” cliques. To this end, we reuse a result by Halldérsson and Konrad [25]:

» Lemma 7 (Halldérsson and Konrad [25]). Let G = (V, E) be an interval graph with its
clique forest T = (C,&) being a path P = C1,Cy, ..., Cy such that distg(u,v) > r for every
pair of nodes u € C1,v € Cy, for an integer r > 5. Suppose that cliques C7 and Cy are
legally colored using at most ¢ colors. Then the coloring of G[C1 U Cy] can be extended to a
legal coloring of G with at most max{[(1 + —25)x(G)] + 1, ¢} colors.

2 Recently, inspired by Miller and Reif’s parallel tree contraction [34], a very similar procedure was
developed by Chang and Pettie [13].

C. Konrad and V. Zamaraev

Equipped with Lemma 7, we now prove correctness of the color correction phase.

» Lemma 8 (Recoloring Lemma). Consider the color correction phase (Step 3) of Algorithm
1. Let P € L; be a path and let W C V; be the subset of nodes whose corresponding subtrees
are included in P. Further, let W' C Us>i Vs = U;41 be the nodes in U; 41 that have neighbors
in W. Suppose that W' is colored using colors from the set [| (1 + 1/k)x(G) + 1]]. Then, we
can recolor those nodes of W that are at distance at most k + 4 from W' in G with colors

from the set [[(1+ 1/k)x(G) + 1]] so that GIW UW'] is legally colored.

Proof. By Lemma 8, [29], G[W UW'] is an interval graph and its clique forest is a path. Let
P =C1,C4,...,C, denote this path. The same lemma also states that W’ C C; U C,..

Let ¢ be the minimum index such that dist(u,v) > k + 3, for every u € W/ N Cy and
v € C;. Then, by Lemma 7, the nodes of the cliques C,...,C;_1 can be recolored using at
most [(1+ 1/k)x(G)]| + 1 colors to resolve the coloring conflicts between W/ N Cy and W.
Similarly, let j be the maximum index such that dist(u,v) > k + 3, for every u € W' N C,
and v € C;. Then, by Lemma 7, the nodes of the cliques Cj;1,...,C,_1 can be recolored
using at most |(1+1/k)x(G)] +1 colors to resolve the conflicts between W/ NC, and W. <«

» Theorem 9. For any ¢ > ﬁ, Algorithm 1 is a (1 + ¢)-approzimation MVC algorithm
on chordal graphs.

Proof. First, we show by induction that the algorithm uses at most (1 + 1/k)x(G) + 1 colors.
This is clearly true for Gogy1- The induction step follows from Lemma 8. Now, using the
assumption € > ﬁ, we obtain: (1+1/k)x(G)+1 < (1+¢/2)x(G)+ex(G)/2 = (14+¢)x(G),
which proves the approximation factor of the algorithm. <

5 Minimum Vertex Coloring: Distributed Algorithm

We give now a LOCAL model implementation of Algorithm 1 that runs in O (% log n) rounds.

5.1 Algorithm

The global behavior of our distributed algorithm, Algorithm 2, is identical to that of our

centralized Algorithm 1. The main challenge lies in the coordination of the network nodes.

One particular difficulty stems from the fact that network nodes are not aware of n, the total
number of nodes, and thus do not know when the [logn] iterations of the pruning phase have
completed. For this reason, nodes execute the three phases of Algorithm 1 asynchronously.
We will first present the pseudocode of our distributed algorithm, which is executed
independently on every node v. Then we will describe each of the three phases in detail.

Algorithm 2 A distributed (1 + £)-approximation algorithm, code for node v.

Input: a parameter €, let k = [2/¢]
1. Pruning Phase. (I, parent,, children,) < PRUNETREE()
2. Coloring Phase. Run COLINTGRAPH(%) on layer [, and store color in ¢,

3. Color Correction Phase.
if parent, # 1 then
Wait until message SETCOLOR(c) received from parent,; Set ¢, < ¢;

end if
CORRECTCHILDREN(children,, k)

21:9

MFCS 2019

21:10

Distributed Coloring and Independent Set in Chordal Graphs

The Pruning Phase. In the pruning phase, the subroutine PRUNETREE is invoked and
returns parameters [,,, parent,, and children,, where [, is the layer of node v, and parent,
and children, are variables necessary for the coordination of the color correction phase and
are defined and explained later. The pseudocode of PRUNETREE is given in Algorithm 3.

Algorithm 3 PRUNETREE(), code for node v.

Initialization:
Let ¢ =1, l, = —1, children, = {}, and parent, = L
while [, = —1 do:
1. Collect T¢*(v) together with variables I, and 1D, for every u € I'e?*(v)
2. Compute local view of the clique forest T; = (C;, ;) of the subgraph of G induced by the
nodes u € T&*(v) with I, = —1
3. if 7;(v) is a subpath of a pendant path in 7;, or 7;(v) is a subpath of a binary path in 7; of
diameter at least 3k then
ly, =14; parent, = parent of v;
else
Add children in layer ¢ (if there are any) to children,[i]
end if
4. i=i+1

return (I, parent,, children.)

In each iteration of the while loop of PRUNETREE, one layer is removed from the clique
forest of the input graph. To describe the global behavior of the algorithm, we will reuse the
naming conventions already used in Algorithm 1. Let U; =V, and let V; C U; be the set of
nodes removed in iteration i, i.e., assigned layer index i. Let also U, 11 = U; \ V;, and let £;
be the set of maximal paths removed from the clique forest 7; of G[U,].

In each iteration 4, first, each node v collects its distance-10k neighborhood. Then, v
computes its local view of the clique forest 7; of the graph induced by the nodes that have
not yet been removed from the graph, i.e., of G[U;] (as in Section 3). Next, node v is removed
from G[U;] and added to the current layer V; if its corresponding subtrees 7;(v) is entirely
contained in either a pendant path or a binary path of large enough diameter. This step
is identical to Algorithm 1, and the exact same partitioning is computed. Node v that is
removed in the current iteration stores its parent in parent,, and nodes that remain in the
graph potentially store some of the removed nodes as their children in children,.

» Definition 10 (Parent, Child). Let v € V; and let P be the mazimal binary path in T; that
contains T;(v). If P is a component of T; then we define parent, := L. Otherwise, let C' be
the vertex outside P in T; such that C is adjacent to an end vertex of P and distg(v,C) is
minimal. Let ¢ be the node with mazximum ID in C. Then the parent of v is defined to be c,
if distg(v,C) < k+3, and L otherwise. If ¢ is the parent of v, then v is a child of c.

The parent of node v is responsible for recoloring v in the color correction phase. Notice
that a node v does not have a parent if the closest maximal clique outside v’s path P is at
least at distance k + 4 from v. In this case, the color that v will receive in the coloring phase
is final and no color correction is needed for v. Recall that in the color correction phase
of Algorithm 1, we only need to recolor nodes that are at distance at most k + 3 from the
cliques that contain nodes with color conflicts. Finally, the subroutine returns the node’s
level 1, its parent parent,, and its children children.,,.

C. Konrad and V. Zamaraev

The Coloring Phase. Notice that all nodes of layer ¢ return from PRUNETREE in the same
round. They can hence invoke the coloring phase simultaneously. They run the algorithm
CoLINTGRAPH of Halldérsson and Konrad [25] and compute a coloring on G[V;] that uses
at most [(14 +)x(G[Vi]) + 1] colors. This algorithm runs in O(klog" n) rounds.

While some nodes execute the coloring phase, others still execute PRUNETREE. These
nodes repeatedly collect their distance-10k neighborhood. This requires all other network
nodes to continuously forward messages, which can be taken care of in the background.

The Color Correction Phase. In color correction phase, nodes with assigned parents (i.e.,

nodes v with parent, # L) first wait until they received their final color from their parents.

Only then they proceed and correct the colors of their children. To this end, each such node
v runs subroutine CORRECTCHILDREN, which processes children, layer by layer, starting
with layer [, — 1 down to 1. If v has children in layer V;, then it waits until all nodes adjacent
to children,[i] which are contained in layers > ¢ have received their final colors. This can be
done by repeatedly collecting its local distance-(k + 5) neighborhood and checking whether
the colors of all nodes in 'y, (children,[i]) are final. Then, v locally computes the color
correction for children,[i] and notifies them about their new colors.

Algorithm 4 CORRECTCHILDREN(children,, k), code for node v.

forl«+1,—1,l,—2,...,1do:
if children,[l] # {} then
a. Wait until all neighbors of children,[l] in G[U;] have received their final color
b. Compute color correction as in Lemma 8
c. For each u € children,[l], send message SETCOLOR(c) to u, where ¢ is u’s new color

5.2 Analysis

To ensure correctness of our algorithm, we need to show that the parent of a node v € V; is
contained in a layer j > 4. This is shown via the following lemma.

» Lemma 11. Let P € L;, and let W C V; be the set of nodes whose corresponding subtrees
are included in P. Then every node u € Ugy,)(W) is contained in a layer V; with j > i.

It follows from the definition that the parent of a node v € V; belongs to I'gjy,1(W). Hence:
» Corollary 12. The parent of a node v € V; is contained in a layer V; with j > 4.

The following lemma demonstrates that Algorithm 2 mimics the behavior of our centralized
algorithm and uses O(% logn) rounds. This establishes our main result, stated in Theorem 14.

» Lemma 13. The global behavior of Algorithm 2 is identical to the behavior of Algorithm 1.
Furthermore, Algorithm 2 runs in O(% logn) rounds.

» Theorem 14. For everye > ﬁ, there is a deterministic (1+ ¢)-approzimation algorithm
for MVC on chordal graphs that runs in O(é logn) rounds in the LOCAL model.

6 Maximum Independent Set

Maximum Independent Set on Interval Graphs. Let H = (V, E) be an interval graph, i.e.,
a chordal graph whose clique forest is a collection of paths. We first observe that the subset
of nodes V! C V, with u € V' iff there exists a node v € V with T'g[v] C I'g[u], is not needed

21:11

MFCS 2019

21:12

Distributed Coloring and Independent Set in Chordal Graphs

for the computation of a large maximum independent set: If a maximum independent set I*
in H contains a node u € V’, then it can simply be replaced by a node v with I'yy[v] C T'g[u].
We thus only need to consider graph H' := H[V \ V'], which constitutes a unit interval
graph. We first compute a distance-k maximal independent set I in O(klog™ n) rounds, for
some k = ©(1), by simulating the maximal independent set O(log* n) rounds algorithm for
bounded-independence graphs [38] on H'’*. Then, every (vi,vs) € P, where P is the set
of pairs of nodes of I that are of mutual distance at most 2k — 1, computes a maximum
independent set I, ., among the nodes located between them but outside of I' g+ (v1) UT g (v2)
in O(k) rounds. Set I U (U, ,v,)ep Lo, v,) has the desired size.

» Theorem 15. For every e > 0, there is a deterministic (1 + €)-approzimation algorithm
for MIS on interval graphs that operates in O(é log* n) rounds in the LOCAL model.

Maximum Independent Set on Chordal Graphs. Our distributed MIS algorithm uses an
adapted version of the peeling process used in our coloring algorithm. The key observation
that allows us to obtain a runtime of o(logn) is the fact that the first O(log 1) layers
computed by our peeling process already contain a large enough independent set. Our
algorithm proceeds as follows: In each iteration i =1,..., O(%) of the peeling process, we
remove set £; of all pendant paths and all internal paths of large enough diameter from
the clique forest 7; of the graph induced by the remaining nodes. Next, we compute large
independent sets among the nodes whose trees are included in each path P € £;. If P has a
large independence number then we run our (1 + ¢)-approximation algorithm for interval
graphs in O(% log* n) rounds. If P has small independence number we need to compute an
optimal independent set in order to locally stay within a (1 + ¢)-approximation guarantee.
This can be achieved using only O(%) rounds, since paths with small independence number
necessarily have small diameter. The runtime is dominated by the product of the number of
iterations O(log %) and the O(% log* n) runtime of our MIS algorithm for interval graphs.

» Theorem 16. For any e € (0,1/2), there is a deterministic (1+¢)-approzimation algorithm
for MIS on chordal graphs that runs in O(é log(é) log* n) rounds in the LOCAL model.
When implementing this idea, care needs to be taken when combining the computed independ-
ent sets of different levels. Indeed, our algorithm bases the computation of the independent
set in level 7 on the outcome of the computations of the independent sets of levels < i and it
seems difficult to avoid this. We therefore cannot execute the independent set computations
of different levels simultaneously, which would reduce the runtime to O((log* n + log 1)).

Lower Bound. Our lower bound is established on a path P, of length n and uses an
indistinguishability argument: Consider a k rounds MIS algorithm that operates on P,, and
let v be an arbitrary node that is not too close to an end point of the path. Suppose that
v is selected into the independent set. Let u; be a node at distance 2k + 1 from v and let
us be the adjacent node to u; that is at distance 2k 4+ 2 from v. Since the runtime of the
algorithm is k, the outputs computed by u; and uy are independent from v. Since in average
it is equally likely that w; or us are selected, the expected size of an independent set in the
subpath starting at v and ending at wuo is thus strictly smaller than k + 2, while a maximum
independent set in this subpath is of size k + 2. Based on this insight, we obtain

» Theorem 17. For every € > 0 and n large enough, every randomized algorithm in the
LOCAL model with expected approzimation factor at most 1+¢ for MIS requires Q(%) rounds.

C. Konrad and V. Zamaraev

7

Conclusion

In this paper, we gave distributed (1 + ¢)-approximation algorithms for MVC and MIS on
chordal graphs. We showed that in chordal graphs network nodes can obtain coherent views
of a global tree decomposition, which enabled us to exploit the tree structure of the input
graph for the design of algorithms. How can we extend the class of graphs on which we can
solve MVC and MIS within a small approximation factor even further? In particular, how
can we handle graphs that contain longer induced cycles, such as k-chordal graphs (for some
integer k)?

—— References

1

10

11

12

Pierre Aboulker, Marthe Bonamy, Nicolas Bousquet, and Louis Esperet. Distributed Coloring in
Sparse Graphs with Fewer Colors. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’18, pages 419-425, New York, NY, USA, 2018. ACM.
doi:10.1145/3212734.3212740.

Noga Alon, Laszlé Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms, 7(4):567-583, 1986. doi:
10.1016/0196-6774(86)90019-2.

Baruch Awerbuch, Michael Luby, Andrew V Goldberg, and Serge A Plotkin. Network
Decomposition and Locality in Distributed Computation. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, SFCS ’89, pages 364-369, Washington, DC,
USA, 1989. IEEE Computer Society. doi:10.1109/SFCS.1989.63504.

Leonid Barenboim. On the Locality of Some NP-complete Problems. In Proceedings of
the 39th International Colloguium Conference on Automata, Languages, and Programming -
Volume Part II, ICALP’12, pages 403-415, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-31585-5_37.

Leonid Barenboim. Deterministic (A + 1)-Coloring in Sublinear (in A) Time in Static,
Dynamic and Faulty Networks. In Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC ’15, pages 345-354, New York, NY, USA, 2015. ACM.
doi:10.1145/2767386.2767410.

Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Computing, 22(5):363-379, 2010.
Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A Fast Network-Decomposition Al-
gorithm and Its Applications to Constant-Time Distributed Computation. In Post-Proceedings
of the 22nd International Colloquium on Structural Information and Communication Complez-
ity - Volume 9439, SIROCCO 2015, pages 209-223, New York, NY, USA, 2015. Springer-Verlag
New York, Inc. doi:10.1007/978-3-319-25258-2_15.

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. J. ACM, 63(3):20:1-20:45, June 2016. doi:10.1145/2903137.
Philip A Bernstein and Nathan Goodman. Power of natural semijoins. SIAM Journal on
Computing, 10(4):751-771, 1981.

Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Graph theory and sparse matrix computation, pages 1-29. Springer, 1993.

Marijke H.L. Bodlaender, Magntis M. Halldérsson, Christian Konrad, and Fabian Kuhn. Brief
Announcement: Local Independent Set Approximation. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC ’16, pages 93-95, New York, NY,
USA, 2016. ACM. doi:10.1145/2933057.2933068.

Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (A + 1)-coloring
algorithm? In Proceedings 50th ACM Symposium on Theory of Computing (STOC), pages
445-456, 2018.

21:13

MFCS 2019

https://doi.org/10.1145/3212734.3212740
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1007/978-3-642-31585-5_37
https://doi.org/10.1007/978-3-642-31585-5_37
https://doi.org/10.1145/2767386.2767410
https://doi.org/10.1007/978-3-319-25258-2_15
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2933057.2933068

21:14

Distributed Coloring and Independent Set in Chordal Graphs

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. STAM
Journal on Computing, 48(1):33-69, 2019.

Richard Cole and Uzi Vishkin. Deterministic Coin Tossing with Applications to Optimal
Parallel List Ranking. Inf. Control, 70(1):32-53, July 1986. doi:10.1016/50019-9958(86)
80023-7.

Andrzej Czygrinow, Michal Hani¢kowiak, and Wojciech Wawrzyniak. Fast Distributed Approx-
imations in Planar Graphs. In Gadi Taubenfeld, editor, Distributed Computing, pages 78-92,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Yon Dourisboure and Cyril Gavoille. Tree-decompositions with Bags of Small Diameter.
Discrete Math., 307(16):2008-2029, July 2007. doi:10.1016/j.disc.2005.12.060.

Peter C Fishburn. Interval orders and interval graphs: A study of partially ordered sets. John
Wiley & Sons, 1985.

Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In IEFEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 625—634, 2016.

Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set. In
Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’16, pages 270-277, Philadelphia, PA, USA, 2016. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=2884435.2884455.

Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved Distributed Delta-
Coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC ’18, pages 427-436, New York, NY, USA, 2018. ACM. doi:10.1145/3212734.3212764.
Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the Complexity of Local Distributed
Graph Problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pages 784-797, New York, NY, USA, 2017. ACM. doi:10.1145/
3055399.3055471.

Mohsen Ghaffari and Christina Lymouri. Simple and Near-Optimal Distributed Coloring for
Sparse Graphs. In Distributed Computing: 31th International Symposium, DISC 2017, Vienna,
Austria, October 16-20, 2017. Proceedings, 2017.

Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel Symmetry-Breaking
in Sparse Graphs. SIAM J. Discrete Math., 1(4):434-446, 1988. doi:10.1137/0401044.
Magnts M. Halldérsson and Christian Konrad. Distributed Algorithms for Coloring Interval
Graphs, pages 454—468. Springer, 2014. doi:10.1007/978-3-662-45174-8_31.

Magnus M. Halld6rsson and Christian Konrad. Improved Distributed Algorithms for Coloring
Interval Graphs with Application to Multicoloring Trees. In Post-Proceedings of the 24th In-
ternational Colloquium on Structural Information and Communication Complexity, SIROCCO
2017, 2017.

David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (A + 1)-coloring in
Sublogarithmic Rounds. In Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 465-478, New York, NY, USA, 2016. ACM. doi:
10.1145/2897518.2897533.

Richard M Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W.
Thatcher, editors, Complezity of Computer Computations, pages 85-103. Plenum Press, 1972.
Christian Konrad and Viktor Zamaraev. Brief Announcement: Distributed Minimum Vertex
Coloring and Maximum Independent Set in Chordal Graphs. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 159-161, 2018. doi:10.1145/3212734.3212787.

Christian Konrad and Viktor Zamaraev. Distributed Coloring and Independent Set in Chordal
Graphs. arXiv preprint arXiv:1805.04544., 2018.

Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s Locality Limit. In Gadi
Taubenfeld, editor, Distributed Computing, pages 394-407, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/j.disc.2005.12.060
http://dl.acm.org/citation.cfm?id=2884435.2884455
https://doi.org/10.1145/3212734.3212764
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1137/0401044
https://doi.org/10.1007/978-3-662-45174-8_31
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1145/3212734.3212787

C. Konrad and V. Zamaraev

31

32

33

34

35

36

37

38

39

Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193-201,
February 1992. doi:10.1137/0221015.

Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441-454, December 1993. doi:10.1007/BF01303516.

Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. STAM
J. Comput., 15(4):1036-1053, 1986. doi:10.1137/0215074.

Gary L. Miller and John H. Reif. Parallel Tree Contraction—Part I: Fundamentals. In
Randomness and Computation, volume 5, pages 47-72. JAI Press, 1989.

Alessandro Panconesi and Aravind Srinivasan. Improved Distributed Algorithms for Coloring
and Network Decomposition Problems. In Proceedings of the Twenty-fourth Annual ACM

Symposium on Theory of Computing, STOC 92, pages 581-592, New York, NY, USA, 1992.

ACM. doi:10.1145/129712.129769.

Alessandro Panconesi and Aravind Srinivasan. The Local Natur of Delta-Coloring and its
Algorithmic Applications. Combinatorica, 15(2):255-280, 1995. doi:10.1007/BF01200759.
Johannes Schneider and Roger Wattenhofer. A New Technique for Distributed Symmetry
Breaking. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, PODC ’10, pages 257-266, New York, NY, USA, 2010. ACM.

doi:10.1145/1835698.1835760.

Johannes Schneider and Roger Wattenhofer. An optimal maximal independent set algorithm
for bounded-independence graphs. Distributed Computing, 22(5):349-361, August 2010. doi:
10.1007/s00446-010-0097-1.

David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103-128, 2007.

21:15

MFCS 2019

https://doi.org/10.1137/0221015
https://doi.org/10.1007/BF01303516
https://doi.org/10.1137/0215074
https://doi.org/10.1145/129712.129769
https://doi.org/10.1007/BF01200759
https://doi.org/10.1145/1835698.1835760
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1007/s00446-010-0097-1

	Introduction
	Preliminaries
	Computing Local Views of the Clique Forest
	Minimum Vertex Coloring: Centralized Algorithm
	Algorithm
	Analysis

	Minimum Vertex Coloring: Distributed Algorithm
	Algorithm
	Analysis

	Maximum Independent Set
	Conclusion

