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Abstract
Petri nets, also known as vector addition systems, are a long established model of concurrency
with extensive applications in modelling and analysis of hardware, software and database systems,
as well as chemical, biological and business processes. The central algorithmic problem for Petri
nets is reachability: whether from the given initial configuration there exists a sequence of valid
execution steps that reaches the given final configuration. The complexity of the problem has
remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory
of verification. In this presentation, we overview decidability and complexity results over the last
fifty years about the Petri net reachability problem.
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1 Outline

The presentation focuses on the reachability problem for vector addition systems with states
given as multi-dimensional weighted automata. Main results about 1) reachability in small
dimensions, 2) boundedness problems, and 3) decidability and complexity results for the
reachability problem in any dimension will be overviewed.

For small dimensions, the complexity of the reachability problem depends on the dimension
and on the way weights are encoded (in unary or in binary). In dimension one, the
reachability problem can be easily shown to be NL-complete when weights are written in
unary thanks to a hill-cutting argument (the same argument that applies on pushdown
automata). When updates are given in binary, this argument can only provide a complexity
in between NP and PSPACE. Nevertheless, by using some additional arguments, the
problem was proved to be NP-complete in [5]. The complexity of the reachability problem
is also known in dimension two. Thanks to a precise analysis of the algorithm introduced
in [12], the problem was proved to be PSPACE-complete in [1] for binary updates. This
last result was extended later in [4] to show that the problem is NL-complete for unary
updates. In dimension three the complexity of the reachability problem is nowadays open
whatever the encoding of the weights.
The Karp and Miller algorithm introduced in [6] is central for deciding the reachability
problem in general dimension. It provides a way for computing the maximal value of
a bounded counter. Notice that even if this value can be Ackermannian [16], deciding
the boundedness of a counter is known to be EXPSPACE-complete [3] by extending the
Rackoff’s proof [17].
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5:2 Petri Net Reachability Problem

The reachability problem was first proved to be decidable by Mayr [14, 15] in 1981. This
proof was improved later by Kosaraju [7] and Lambert [8] by introducing an algorithm
that decompose the set of executions. We call this decomposition the KLM decomposition
(following the initials of the contributed authors). In [10] we proved that the KLM
decomposition can be interpreted as ideal decompositions for a natural well-quasi order
on the set of executions. In that paper we also provided a cubic-Ackermaninan complexity
upper-bound of the reachability problem; the very first complexity upper-bound for the
reachability problem. This bound was recently improved in [11], by proving that there
exists a KLM decomposition algorithm that works in time primitive recursive in fixed
dimension, and at most Ackermannian in general. Concerning lower-bounds, recently
in [2], the complexity of the problem was shown to be TOWER-hard, improving the
best-known EXPSPACE complexity lower-bound given by Lipton [13] in 1976. Nowadays,
the exact complexity of the reachability problem is still open between TOWER and
ACKERMANN. In order to close that problem, either we need to improve the recent
TOWER lower bound, or we need to design an algorithm improving the ACKERMANN
upper bound. The very simple algorithm introduced in [9], based on Presburger inductive
invariant seems to be a good candidate for that late direction.
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