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—— Abstract

Counting problems in general and counting graph homomorphisms in particular have numerous

applications in combinatorics, computer science, statistical physics, and elsewhere. One of the
most well studied problems in this area is #GraphHom(H) — the problem of finding the number
of homomorphisms from a given graph G to the graph H. Not only the complexity of this basic
problem is known, but also of its many variants for digraphs, more general relational structures,
graphs with weights, and others. In this paper we consider a modification of #GraphHom(H), the
#p,GraphHom(H) problem, p a prime number: Given a graph G, find the number of homomorphisms
from G to H modulo p. In a series of papers Faben and Jerrum, and Gé&bel et al. determined
the complexity of #2GraphHom(H) in the case H (or, in fact, a certain graph derived from H)
is square-free, that is, does not contain a 4-cycle. Also, Gobel et al. found the complexity of
#,GraphHom(H) when H is a tree for an arbitrary prime p. Here we extend the above result to
show that the #,GraphHom(H) problem is #,P-hard whenever the derived graph associated with
H is square-free and is not a star, which completely classifies the complexity of #,GraphHom(H)
for square-free graphs H.
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1 Introduction

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the
vertex set of G to that of H. Graph homomorphisms provide a powerful framework to
model a wide range of combinatorial problems in computer science, as well as a number
of phenomena in combinatorics and graph theory, such as graph parameters [13, 14]. Two
of the most natural problems related to graph homomorphisms is GraphHom(H): Given
a graph G, decide whether there is a homomorphism from G to a fixed graph H, and its
counting version #GraphHom(H) of finding the number of such homomorphisms. Special
cases of these problems include the k-Colouring and #k-Colouring problems (H is a k-clique),
Bipartiteness (H is an edge), counting independent sets (H is an edge with a loop at one
vertex) and many others.

In general the GraphHom(H) and #GraphHom(H) problems are NP-complete and #P-
complete, respectively. However, for certain graphs H these problems are significantly easier.
Hell and Nesetril [12] were the first to address this phenomenon in a systematic way. They
proved that the GraphHom(H) problem is polynomial time solvable if and only if H has a loop
or is bipartite, and GraphHom(H) is NP-complete otherwise. In the counting case a similar
result was obtained by Dyer and Greenhill [3], in this case the #GraphHom(H) problem
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is solvable in polynomial time if and only if H a complete graph with all loops present or
a complete bipartite graph, otherwise the problem is #P-complete. This result was later
generalized to computing partition functions for weighted graphs with nonnegative weights
by Bulatov and Grohe [1], graphs with real weights by Goldberg et al. [10], and finally for
complex weights by Cai et al. [2]. There have also been major attempts to find approximation
algorithms for the number of homomorphisms and other related graph parameters, see,
c.g. 5, 6, 11].

The modification of the #GraphHom(H) problem we consider in this paper concerns find-
ing the number of homomorphisms modulo a natural number k. The corresponding problem
will be denoted by #GraphHom(H). Although modular counting has been considered by
Valiant [17] in the context of holographic algorithms, Faben and Jerrum [4] were the first
who systematically considered the problem #,GraphHom(H). In particular, they posed a
conjecture stating that this problem is polynomial time solvable if and only if a certain graph
H*? derived from H (to be defined later in this section) contains at most one vertex, and is
complete in the class P = #25P otherwise. Note that hardness results in this area usually
show completeness in a complexity class #;P of counting the number of accepting paths
in polynomial time nondeterministic Turing machines modulo k. The standard notion of
reduction in this case is Turing reduction. Faben and Jerrum proved their conjecture in the
case when H is a tree. This result has been extended by Gobel et al. first to the class of
cactus graphs [7] and then to square-free graphs [8] (a graph is a square-free if it does not
contain a 4-cycle).

In this paper we follow the lead of Gobel et al. [9] and consider the problem
#,GraphHom(H) for a prime number p. We only consider loopless graphs without par-
allel edges. There are similarities with the (mod 2) case. In particular, the derived graph
constructed in [4] can also be constructed following the same principles, it is denoted H*P,
and it suffices to study #,GraphHom(H) for this only. On the other hand, the problem is
richer, as, for example, the polynomial time solvable cases include complete bipartite graphs.
Gobel et al. [9] considered the case when H is a tree. Recall that a star is a complete
bipartite graph of the form K ,,. Stars are the only complete bipartite graphs that are trees,
and also the only complete bipartite graphs that are square-free. The main result of [9]
establishes that #,GraphHom(H), H is a tree, is polynomial time solvable if and only if H*P
is a star. We generalize this result to arbitrary square-free graphs.

» Theorem 1. Let H be a square-free graph and p a prime number. Then the
#,GraphHom(H) problem is solvable in polynomial time if and only if the graph H*P is
a star, and is #,P-complete otherwise.

We now explain the main ideas behind our result, as well as, the majority of results in
this area. As it was observed by Faben and Jerrum [4], the automorphism group Aut(H) of
graph H plays a very important role in solving the #,GraphHom(H) problem. Let ¢ be a
homomorphism from a graph G to H. Then composing ¢ with an element from Aut(H) we
again obtain a homomorphism from G to H. The set of all such homomorphisms forms the
orbit of ¢ under the action of Aut(H). If Aut(H) contains an automorphism 7 of order p
(that is, p is the smallest number such that 7P is the identity permutation), the cardinality
of the orbit of ¢ is divisible by p, unless m o ¢ = ¢, that is, the range of ¢ is the set of
fixed points Fix(w) of 7 (a € V(H) is a fixed point of 7 if 7(a) = a). Let H™ denote the
subgraph of H induced by Fix(7). We write H =, H' if there is m € Aut(H) such that H' is
isomorphic to H™. We also write H =7 H' if there are graphs Hq, ..., Hy such that H is
isomorphic to Hy, H' is isomorphic to Hy, and Hy =, Hy = - - =, Hj.
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» Lemma 2 ([4]). Let H be a graph and p a prime. Up to an isomorphism there is a unique
smallest (in terms of the number of vertices) graph H*P such that H =7 H*?, and for any
graph G it holds

[Hom(G, H)| = [Hom(G, H*?)| (mod p).
Moreover, H*P does not have automorphisms of order p.

The easiness part of Theorem 1 follows from the classification of the complexity of
#GraphHom(H) by Dyer and Greenhill [3]. Since whenever #GraphHom(H) is polynomial
time solvable, so is #,GraphHom(H) for any p, Lemma 2 implies that if H*? is a complete
graph with all loops present or a complete bipartite graph the problem #,GraphHom(H)
is also solvable in polynomial time. We restrict ourselves to loopless square-free graphs,
therefore, as H*P is isomorphic to an induced subgraph of H, [3] only guarantees polynomial
time solvability when H*P is a star.

Another ingredient in our result is the #,P-hard problem we reduce to #j,GraphHom(H).

In most of the cited works the hard problem used to prove the hardness of #2GraphHom(H)
is the problem #-15 of finding the parity of the number of independent sets. This problem
was shown to be #;P-complete by Valiant [17]. We use a slightly different problem. For
two positive real numbers A1, Ag, let #,B1S5), 5, denote the following problem of counting
weighted independent sets in bipartite graphs

Name: #;DBIS)\],)Q
Input: a bipartite graph G
Output: Zx, x,(G) = X1ezs(6) AVEINYEAE (mod p).

It was shown by Gobel et al. in [9] that #,BIS), x, is #,P-complete for any A1, Az,
unless one of them is equal to 0 (mod p). The main technical statement we prove here is the
following

» Theorem 3. Let H be a square-free graph such that H*P is not a star. Then there are
M, A2 # 0 (modp) such that #,BISx x, s polynomial time reducible to the
#,GraphHom(H) problem.

We note that the requirement of being square-free is present in all results on modular
counting of graph homomorphisms, explicitly or implicitely (when the graph class in question
consists of square-free graphs). Clearly, this is an artifact of the techniques used in all these
works, and so overcoming this requirement would be a substantial achievement.

2 Preliminaries

We use [n] to denote the set {1,2,3,...,n}. Also, we usually abbreviate A\ {z} to A — z.

Let k be a positive integer, then for a function f its k-fold composition is denoted by

f(k):fofo---of,

Graphs. In this paper, graphs are undirected, and have no parallel edges or loops. For a
graph G, the set of vertices of G is denoted by V(G), and the set of edges is denoted by
E(G). We use uv to denote an edge of G. The set of neighbours of a vertex v € V(G) is
denoted by Ng(v) = {u € V(G) : uv € E(G)}, and the degree of v is denoted by deg(v).

A set I C V(G) is an independent set of G if and only if wv is an edge of G for no u,v € I.

The set of all independent sets of G is denoted by ZS(G). If G is a bipartite graph, the parts
of a bipartition of V(G) will be denoted Vi(G) and Vi, (G) in no particular order.
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Homomorphisms. A homomorphism from a graph G to a graph H is a mapping ¢ from
V(G) to V(H) which preserves edges, i.e. for any uwv € E(G) the pair p(u)p(v) is an edge of
H. The set of all homomorphisms from G to H, is denoted by Hom(G, H). For a graph H
the problem of counting homomorphism from a graph G to H is denoted by #GraphHom(H).
The problem of finding the number of homomorphisms from a given graph G to H modulo k&
is denoted by #jGraphHom(H):

Name: #j;GraphHom(H)
Input: a graph G
Output: |[Hom(G, H)| (mod k).

It will be convenient to denote the vertices of the graph H by lowercase Greek letters.

A homomorphism ¢ from G to H is an isomorphism if it is bijective and for all u, v € V(G),
wv € E(QG) if and only if o(u)p(v) € E(H). An automorphism of G is an isomorphism from
graph G to itself. The automorphism group of G is denoted by Aut(G). An automorphism
7 is an automorphism of order k if k is the smallest positive integer such that 7(*) is the
identity transformation. A fized point of an automorphism 7 of G is a vertex v € V(G) such
that v = 7 (v).

Partially labelled graphs. A partial function from X to Y is a function f : X’ — Y for
a subset X’ C X. For a graph H, a partial H-labelled graph G is a graph G (called the
underlying graph of G) equipped with a pinning function 7, which is a partial function from
V(G) to V(H). A homomorphism from a partial H-labelled graph G = (G, 7) to a graph H is
a homomorphism o : G — H that extends the pinning function 7, that is, for all v € dom(7),
o(v) = 7(v). The set of all such homomorphisms is denoted by Hom(G, H).

In certain situations it will be convenient to use a slightly different view on collections of
homomorphisms of H-labelled graphs. A set of homomorphisms ¢ from a graph G to H that
maps vertices 1,2, ..., Z, € V(G) to the vertices y1,ys, ..., y» € V(H) such that p(z;) = y;
for i € [r] is denoted by Hom((G, x1, z2, ..., ), (H, Y1, Y25 -, Yr))-

Counting complexity classes. The class #P is defined to be the class of problems of
counting the accepting paths in a polynomial time nondeterministic Turing machine. This
means every problem in NP has an associated counting problem in #P, so for A € NP,
an associated counting problem will be denoted by #A. (Strictly speaking for every such
problem the corresponding counting one is not uniquely defined, but in our case there will
always be the “natural” one.) Classes #;P, where k is a natural number are defined in a
similar way, as counting the accepting paths in a polynomial time nondeterministic Turing
machine modulo k. For A € NP the corresponding problem in #P is denoted by #A.

Several kinds of reductions between counting problems have appeared in the literature.
The first one, parsimonious, was introduced in the foundational papers [15, 16] by Valiant. A
counting problem A is parsimoniously reducible to a counting problem B, denoted A < B, if
there is a polynomial time algorithm that, given an instance I of A, produces an instance J
of B such that the answers to I and J are the same. The other type of reduction frequently
used for counting problems is Turing reduction. Counting problem A is Turing reducible
to problem B, denoted A <7 B, if there exists a polynomial time algorithm solving A and
using B as an oracle.

These two types of reductions can be applied to modular counting as well. Turing
reduction does not require any modifications. For parsimonious reduction we say that a
problem A from #;P is parsimoniously reducible to a problem B from #;P if there is a
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polynomial time algorithm that, given an instance I of A, produces an instance J of B
such that the answers to I and J are congruent modulo k. In this paper we mostly claim

Turing reducibility, although our main technical result constructs a parsimonious reduction.
However, the proof of Theorem 1 involves other reductions that are not always parsimonious.

Problem #( A is said to be #P-complete if it belongs to #;P and every problem from #;P
is Turing reducible to #A.

3  Outline of the proof

In this section we outline our proof strategy and formally introduce all the necessary
intermediate problems and existing results. Fix a prime number p.

As it was observed in the introduction, Lemma 2 proved by Faben and Jerrum [4] combined
with the classification by Dyer and Greenhill [3] proves the easiness part of Theorem 1. We
therefore focus on proving the hardness part. Again, by Lemma 2 we may assume that H
does not have automorphisms of order p.

For the hardness part, we use two auxiliary problems. The first one is the problem
#,BI1S), », mentioned in the introduction. Let A1, A2 € {0,...p—1}, andlet G = (VL,UVR, E)
be a bipartite graph. Define the following weighted sum over independent sets of G:

Zn, 0, (G) = Z >\|1Vm1\)\|2v3m|.
1€ZS(G)

The problem of computing function Zj, x,(G) for a given bipartite graph G, prime number
p and A, A2 € {0,...p — 1}, is defined as follows:

Name: #,BIS5), »,
Input: a bipartite graph G
Output: Z), ,(G) (mod p).

The complexity of #,BIS), », was determined by Gobel, Lagodzinski and Seidel [9].

» Theorem 4. [9] If \; = 0 (mod p) or A\ = 0 (mod p) then the problem #,BIS\, x, is
solvable in polynomial time, otherwise it is #,P-complete.

The second auxiliary problem has been used in all works on #,GraphHom(H) starting
from the initial paper by Faben and Jerrum [4]. Tt is the problem of counting homomorphisms
from a given partially H-labelled graph G to a fixed graph H modulo prime p.

Name: #,PartHom(H)
Input: a partial H-labelled graph G = (G, 1)
Output: |Hom(G, H)| (mod p).

The chain of reductions we use to prove the hardness part of Theorem 1 is the following:
#,BIS\, », <1 #pPartHom(H™?) <p #,GraphHom(H*?) <p #,GraphHom(H). (1)

The last reduction is by Lemma 2. Acually, the two last problems in the chain are
polynomial time interreducible through (modular) parsimonious reduction. The second step,
the reduction from #,PartHom(H) to #,GraphHom(H) was proved by Gobel, Lagodzinski
and Seidel [9].

» Theorem 5. [9] Let p be a prime number and let H be a graph that does not have any
automorphism of order p. Then #,PartHom(H) can be reduced to #,GraphHom(H) through
a polynomial time Turing reduction.
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Finally, the first reduction in the chain is our main contribution. We show it in three steps.
Recall that we are reducing the problem of finding of the number of (weighted) independent
sets in a bipartite graph to the problem of finding the number of extensions of a partial
homomorphism from a given graph to H. First, in Section 4 starting from a bipartite graph
G we replace its vertices and edges with gadgets, whose exact structure we do not specify
at that point. We call those gadget the verter and edge gadgets. Then we show that if the
vertex and edge gadgets satisfy certain conditions, in terms of the number of homomorphisms
of certain kind from the gadgets to H (Theorem 7), then Zy, »,(G) (mod p) can be found
in polynomial time from |Hom(G, H)| (mod p), where G is the partially H-labelled graph
constructed in the reduction. In the second step, Section 5, we introduce several variants
of vertex and edge gadgets and show some of their properties. Finally, in Section 6 we
consider several cases depending on the degree sequence of the graph H. In every case we
construct vertex and edge gadgets that satisfy the conditions of Theorem 7, thus completing
the reduction.

4 Hardness gadgets

Our goal in this section is to describe a general scheme of a reduction from #,B1S5), », to
#,PartHom(H), where p is prime and H is a square-free graph.

The general idea is, given a bipartite graph G = (V, U Vg, F), where Vi, Vg is the
bipartition of G, to construct a new partially H-labelled graph G’, which is obtained from
G by adding a copy of a vertex gadget J to every vertex of GG, and replacing every edge
from E with a copy of an edge gadget . The gadgets are partially H-labelled graphs and
their pinning functions will define the pinning function of G’. Since G is a bipartite graph,
the vertex gadget comes in two versions, left, Jr,, and right, Jg. Also, both vertex gadgets
have a distinguished vertex, s for J;, and ¢ for Jr. The edge gadget K has two distinguished
vertices, s and ¢t. These distinguished vertices will be identified with the vertices of the
original graph G, as shown in Fig. 1.

u./‘z 'vv"jL(U)yR(I)i*.
N v oy .’ “»,_.71.(1') - ,OJR(?/)“"v
G e

Figure 1 The structure of graph G’. The original graph G is on the left. The resulting graph
G’ is on the right: vertex gadgets Jr, Jr are added to every vertex, and the only edge vz of G is
replaced with a copy of gadget K.

The gadgets Jr,, Jr are associated with sets A1, Ag C V(H) and vertices §; € Ay, 5 € Ag,
respectively. The pinning functions of J, Jr will be defined in such a way that for any
homomorphism ¢ of Jr, (Jr) to H, vertex s (respectively, t) is forced to be mapped to A
(respectively, As). For x € VI, let Jr.(z) denote the copy of J1 connected to z, that is, s
in Jr(z) is identified with z. For y € Vg the copy Jr(y) is defined in the same way. The
vertices d1, 2 will help to encode independent sets of G. Specifically, with every independent
set I of G we will associate a set of homomorphisms ¢ : G — H such that for every vertex
x € Vi, x € I if and only if ¢(x) # §; (recall that z is also a vertex of G’ identified with s
in Jr(x)); and similarly, for every y € Vg, y € I if and only if ¢(y) # d2. Finally, the edge
gadgets K(x,y) replacing every edge xy € E make sure that every homomorphism from G’
to H is associated with an independent set.
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Note that just an association of independent sets with collections of homomorphisms is
not enough, the number of homomorphisms in those collections have to allow one to compute
the function Zj, x,(G).

Next we introduce conditions such that if for the graph H there are vertex and edge
gadgets satisfying these conditions, then #,BIS), x, for some nonzero (modulo p) A1, A2 is
reducible to #,PartHom(H).

» Definition 6 (Hardness gadget). A graph H has hardness gadgets if there are Ay, Ay C
V(H), vertices 61 € A1 and do € Ag, and three partially H-labelled graphs Jr,, Jr, and K
that satisfy the following properties:
(i) 1A1] — 120 (mod p) , Ao —1 £ 0 (mod p);
(ii) for any homomorphism o : J, — H (o : Jr — H ) it holds that o(s) € Ay (respectively,
o(t) € Ag); for any homomorphism o : K — H it holds that o(s) € Ay, 0(t) € Ag;
(iii) for any y1 € Ay, y2 € Ag, it holds |[Hom((JL, s), (H,71))| = |Hom((Tr,t), (H,v2))| =1
(mod p), and
for any y1 & A1,7v2 € Ag, it holds Hom((J1, s), (H,v1)) = Hom((J%, s), (H,71)) = 0;
(iv) for any a1 € Ay — 1,9 € Ay — b2, it holds Hom((K, s,t), (H, a1, 2)) = 0;
(v) for any aq € Ay — b1, it holds |Hom((K, s,t), (H, a1,d2))| =1 (mod p);
(vi) for any s € Ag — b2, it holds [Hom((K, s,t), (H,d1,a2))| =1 (mod p);
(vii) |Hom((K, s,t), (H,d1,92))| =1 (mod p).

Now we are ready to state the main result of this section.

» Theorem 7. If H has hardness gadgets, then for some A1, Ao Z 0 (mod p) the problem
#,BIS\, 5, is polynomial time reducible to #,PartHom(H). In particular, #,PartHom(H)
is #p P-complete.

5 Hardness gadgets and nc-walks

In this section we make the next iteration in constructing hardness gadgets and give a generic
structure of such gadgets that will later be adapted to specific types of the graph H.

These gadgets make use of the square-freeness of graph H that we will apply in the
following form.

» Observation 8. Let H be a square-free graph. Then for any o, f € H, |[Ng(a)NNg(B)] < 1.

Proof. If there are two different elements ~,d in Ngy(a) N Ng(8), then «,~,5,d form a
4-cycle. |

We call a walk in H a non-consecutive-walk or nc-walk, if it does not traverse an edge
forth and then immediately back. More formally, an nc-walk is a walk vg, v1, ..., v, such
that for no i € [k — 1] we have v;_1 = v;41.

5.1 Edge gadget
Let W = 971 -+ - 7% be an nc-walk in H of length at least one. Then the edge gadget K is a

path svjvy - - - vi_1t, where each v; is connected to another vertex w; which is pinned to ~;.

More formally, the gadget I = (K, 1) is defined as follows

V(K) = {s,t}U{v;,u; :i € [k —1]},
E(K) = {vivit1 11 € [k = 2]} U{vu; i € [k — 1]} U {sv1, vp—1t}.
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The pinning function is 7(u;) = =, for all ¢ € [k — 1].
The next two lemmas give some of the properties listed in Definition 6.

» Lemma 9 (Shifting). Let H, W = 971 - - - Yk, and K be as above. Then

(1) For every 6 € Ni(v0) —v1 and o € Hom((K, s), (H,0)), we have o(v;) = ;-1 for all
iek—1].

(2) For every 0 € Ny (k) — vk—1 and o € Hom((K,t), (H,H0)), we have o(v;) = ;41 for all
iek—1].

Proof. If k = 1, then both cases are trivial. We prove item (1) by induction on j € [k — 1],
item (2) can be proved using yxvk—1 - - Yo instead of yoy1 - - - Y&-

For j =1, the vertex v; must be mapped to a common neighbour of 6 and ~; because
T(u1) = v1. It means o(v1) € Ng(0) N Ny (v1) = {0}, because v € Ny (6) N Ny (1) and
H is a square-free graph.

Now assume that o(v;_1) = 7;_2. Similar to the base case, o(v;) € Nu(v;-2) N Nu(v;).
By the same argument, the only member of this intersection is ;1. Thus, o(v;) = v;-1. <

» Lemma 10 (Counting). Let H be a square-free graph and let W = voy1 -+ Yk, k > 1 be

an ne-walk in H. For any as € Ni(vo) — 71 and o € N (Vi) — k-1 the following equalities

hold

(1) Hom((K,s,t), (H, as,a)) =0,

(2) [Hom((K,s,1), (H,m, )| =1,

(3) [Hom((K,s,1), (H, s, vk-1))| = 1,
(

(4) [Hom((K, s, 1), (H,y1,7k-1))| = 1+Z(deg(%) - 1).

5.2 Vertex gadgets

In this section we construct a vertex gadget. The main role of these gadgets is to restrict the
possible images of the designated vertices s and ¢ as required in Definition 6(ii), and then do
it in such a way that property (iii) in Definition 6 is also satisfied. We present vertex gadgets
of two types.

For the graph H and vertices o, € V(H), we define gadgets J, = (Jp,71) and
Jr = (Jr,Tr) as follows: Graphs Jy,, Jr are just edges sz and ty, respectively. The pinning
functions are given by 7 (z) = «, Tr(y) = 8.

The next lemma follows straightforwardly from the definitions and guarantees that these
gadgets satisfy items (iii) and (ii) of Definition 6 (note that (1) is a direct implication of (3)).

» Lemma 11. For graph H, vertices o, € V(H), and Ay = Ng(a),Ay = Ny (B) the

following hold

(1) if 0 € Hom(Ty, H) then o(s) € Ay, and if 0 € Hom(Jr, H) then o(t) € Aq,

(2) for any 1 € Ay and v2 € Ay, it holds that |Hom((JL,s),(H,v1)) =
‘Hom((jR7t)’ (H’ 72))‘ =1

(3) for any v ¢ Ay and 5 & Ag, it holds that Hom((Jr,s),(H,v,)) =
Hom((Jg, 1), (H,73)) = 0.

The other type of a vertex gadget uses a cycle in H.

Let C' = 0172 - - - v0 be a cycle in H of length at least three. Gadgets Jor, = (Jor, ToL)
and Jor = (Jor, Tor) are defined as follows

V(Jer) = {s} U{v;,u; : i € [k]}U{z},

E(Jor) = {vivig1 1 € [k — 1]} U {vu; 1 i € [k]} U {sv1,vgs, sz}
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The pinning function is given by 7(u;) = ~; for all ¢ € [k] and 7(x) = 0.
The gadget Jog is defined in the same way, except s is replaced with ¢.

» Lemma 12. For a square-free graph H, a cycle C = 0v1y3 -+ -0 in H of length at least

three, and A = {v1,v} the following hold

(1) if 0 € Hom(Jcr, H) or o € Hom(Jcr, H), then o(s) € {y1,v} and o(t) € {7,7},
respectively;

(2) for any v € A it holds [Hom((Jcr, s), (H,7))| = |

Y | = Om((JCRat)v (H7
(3) for any~' € A it holds Hom((Jcr, s), (H,v")) =

H v
HOI'T'I((jCR, t)a (H7 Y

6 The hardness of #,PartHom(H)

In this section we prove the hardness part of Theorem 1. More specifically we will apply
Theorem 7 and the constructions from Section 5 to show that #,BI1S), », is Turing reducible
to #pPartHom(H).

We consider three cases depending on the existence of vertices of certain degree in H. In
each of the three cases we use slightly different variations of vertex and edge gadgets.

Case 1. The graph H has at least two vertices « and 8 such that deg(a),deg(5) # 1
(mod p).

Let S ={y € V(H) :deg(y) #1 mod p}; we know that S contains at least two elements.
Pick o, 8 € S such that the distance between them is minimal. Let W = ary; - - - y—17:/5 be
a shortest path between «, 5. By the choice of W, deg(;) =1 (mod p) for all i € [k].

We make an edge gadget K = (K, 7) for this case based on this path as defined in
Section 5.1. More precisely,

V(K) ={s,t} U{vi,u; : i € [k]},
E(K) ={{vi,vit1} i € [k =1} U {{vi,u;} i € [k]} U {{s,v1}, {vw, t}}.

The labelling function is given by 7(u;) = ; for all i € [k].

Any path is a nc-walk, so we can apply Lemma 10 to W. For the gadgets we use
A; = Ng(a),As = Ng(B) and 61 = 71,92 = 7,. This satisfies property (i) of hardness
gadgets, because deg(a),deg(f8) Z 1 (mod p). Then for any oy € Ay — 01 and ay € A — 09
we have
(1) [Hom((K, s,1), (H, s, 0n))| = 0;
(2) Hom((KC, 5,1), (H,m,a0))| = 1 (mod p);
(3) Hom((KC, 1), (H, a5, %)) = 1 (mod p)

Also, for any i € [k] we have deg(y;) =1 (mod p), and so

k
|[Hom((KC, s, 1), (H,v1,7))| =1+ Z(deg(%‘) —1)=1+0=1 (modp).

i=1

Hence,
(4) |[Hom((K,s,t),(H,v1,v))| =1 (mod p).

Thus K satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.

For a vertex gadget we use the first type, that is Jr, Jr are just edges sx and ty,
respectively, see Fig. 2. By Lemma 11 these gadgets satisfy properties (ii) and (iii) of
hardness gadgets.

Thus Theorem 7 yields a required reduction.
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Figure 2 Vertex and edge gadgets based on the path W = av; - - - v 8. The vertex gadgets Jr,
and Jr are shown as dot-dashed boxes. The pinning function is shown by dashed lines.

Case 2. Graph H has exactly one vertex 6 such that deg(f) Z 1 (mod p).

In this case we further split into two subcases. However, before we proceed with that we
rule out the case of trees.

» Lemma 13. Let H be a tree that has no automorphism of order p and is not a star. Then
H has at least two vertices o and B such that deg(a),deg(8) #1 (mod p).

Thus, we may assume that H is not a tree.

Case 2.1. The vertex 6, deg(f) Z 1 (mod p), is on a cycle C.

In this case the edge gadget is based on the cycle C. More precisely, let C' = 0v1v2 - - - 10
be a cycle in H of length at least 3 and such that for all ¢ € [k] it holds that deg(v;) =1
(mod p) and deg(#) # 1 (mod p). We define gadget K = (K, 7) as follows:

V(K) ={s,t} U{v,u; : i € [k]};

E(K) ={vvit1 19 €[k — 1} U{vu; : i € [k]} U {sv1,vit};

the labeling function is given by 7(u;) = ; for all i € [k].

Set Ay = Ay = Ng(0) and 61 = 71,02 = ;. These parameters satisfy property (i)
of a hardness gadget, because deg(6) £ 1 (mod p). A cycle is a nc-walk, so we can apply
Lemma 10 to obtain the following

» Lemma 14. Let H be a square-free graph and K an edge gadget based on the cycle
C =0v17vs-- b in H. For any as € A1 — 01 and ap € Ag — do,

(1) |[Hom((K,s,t),(H,as,a4))| = 0;

(2) |Hom((K,s,t), (H,01,a:))] =1 (mod p);

(3) |[Hom((K,s,t), (H,as,02))] =1 (mod p);

(4) |Hom((K,s,t),(H,d1,02))] =1 (mod p).

Proof. The cycle C' is a nc-walk. Therefore by Lemma 10 items (1), (2), and (3) hold. For
item (4) note that deg(v;) =1 (mod p) for all i € [k], therefore

k
[Hom ((KC, 5, ¢), (H, 71, 7))l = 1+ ) (deg(y;) =1) =1+0=1 (mod p). <

i=1

By Lemma 14 gadget K satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.

For vertex gadgets we take Jr, Jr (which are just edges) defined in Section 5.2, with
a =8 =0, see Fig 3. By Lemma 11, these gadgets satisfy properties (ii) and (iii) of hardness
gadgets.

Finally, by Theorem 7 #,BISj, , is Turing reducible to #,PartHom(H).
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Figure 3 Hardness gadgets corresponding to a cycle C' = 0~; - - - y,0. The vertex gadgets Jr and
Jr are shown by dot-dashed lines. The pinning function is shown by dashed lines.

Case 2.2. The vertex 6 is not on any cycle.

Since H is not a tree, it contains at least one cycle; let C be such a cycle. Let P =
YoYk+1Vk+2 * - Vi+k 0 be a shortest path from a vertex v on cycle C' = vyy1y2 -+ - Y&Y0 to 6.
Note that deg(y;) =1 (mod p) for all 7;, i € {0,...,k + k’'}. Edge gadget K in this case is
based on the walk W' = 0ygix/ - - Y2 Ve+170Y1Y2 - - - Ve Vh+1Vk+2 - - - Vit 0. Note that, W
is an nc-walk. More precisely, the gadget K = (K, 7) is defined as follows:

V(K) = {s,t} U{v;,u; : 1 € [k + 2K +2]};

E(K) ={vvit1 11 € [k + 2K + 1]} U{vu; i € [k + 2K + 2]} U {sv1, Vgpor+1t};

the pinning function is given by

V+k+1—i 1<i<K,

7(u;) = Vimk'—1 K+1<i<k+k+1,
' Yo i=k+k +2,
Viek'—2 E+E+3<i<k+2K +2.

Set 61 = d3 = Y4 and Ay = Ay = Np(6). These parameters satisfy property (i) of
hardness gadgets, because deg(f) Z 1 (mod p). As W is an nc-walk, by Lemma 10 for any
a € Ng(0) — yitrr, we have
(1) |Hom((K,s,t), (H,a, )| = 0;

(2) |Hom((K, s,1), (H,Yk+k> )| =1 (mod p);
(3) [Hom((KC, 5, £), (H, c, ypie))| = 1 (mod p).
Also, deg(y;) =1 (mod p) for all ¢ € [k + k'] U {0}. Therefore

k+k'

|Hom((lC, S,t), (H, 7k+k’77k+k’))| =1+ Z (deg(fyi) — 1) =140=1 (mod p).
i=1

Hence,
(4) |Hom((K,s,t), (H, Vk+x, Ve+k))| =1 (mod p).
Thus the gadget K satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.

Finally, for vertex gadgets we again use gadgets Jr,, Jr introduced in Section 5.2, with
a = [ =06, see Fig 4. By Lemma 11, these gadgets satisfy properties (ii) and (iii) of hardness
gadgets. Thus, by Theorem 7 #,BISx, x,, A1 = A2 = |[Ng(0)| — 1 is Turing reducible to
#,PartHom(H).
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Figure 4 Gadget K based on the nc-walk W = Ovypip - Yer2Ve+r17Y0Y1Y2 " Vi
YUk+1Vk+2 - - - Ye+k' 0. The vertex gadgets Jr, and Jr corresponding to 6 are shown by dot-dashed
lines. The pinning function is shown by dashed lines.

Case 3. For every vertex v € V(H) it holds deg(y) =1 (mod p).

By Lemma 13, H is not a tree, therefore it contains a cycle C' = 017y - - - 10 such that
k> 3. Set 61 = 71,02 =y, and Ay = Ay = {71, }. These parameters satisfy property (i)
of hardness gadget, because |A1| = |Az| # 1 (mod p). An edge gadget K is based on this
cycle C. Since deg(y) =1 (mod p) for every v € V(H), as in Lemma 14 by Lemma 10 £
satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.

For vertex gadgets we choose Jor, Jogr defined in Section 5.2, see Fig 5. By Lemma 12,
these gadgets satisfy properties (ii) and (iii) of hardness gadgets. Therefore, by Theorem 7,
#pBISx, x,, M1 = A2 = [{71,%}| —1 =1 is Turing reducible to #,PartHom(H).

Figure 5 Hardness gadgets based on cycle C' = 071 - - - y1.0.
On the left are the vertex gadgets Jor and Jcor shown by dot-dashed lines. Jcr is the cycle
containing vertex s, and Jcr is the cycle containing vertex t. The remaining vertices of the gadgets
are not labelled. The pinning function is shown by dashed lines.
On the right, the edge gadget K is highlighted. Again, the pinning function is represented by dashed
lines.

Note that the reduction in Case 3 can also be used to prove the result in Case 2.2, as it
only depends on the existence of a cycle all of whose vertices have degrees = 1 (mod p). We,
however, believe that the construction in Case 2.2 is simple, more transparent and deserves
being considered.
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