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Abstract
We propose a new pumping technique for 2-dimensional vector addition systems with states (2-VASS)
building on natural geometric properties of runs. We illustrate its applicability by reproving an
exponential bound on the length of the shortest accepting run, and by proving a new pumping lemma
for languages of 2-VASS. The technique is expected to be useful for settling questions concerning
languages of 2-VASS, e.g., for establishing decidability status of the regular separability problem.
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1 Introduction

Vector addition systems [8] are a widely accepted model of concurrency equivalent to Petri
nets. Another equivalent model, called vector addition systems with states (VASS) [7], is
an extension of finite automata with integer counters, on which the transitions can perform
operations of increment or decrement (but no zero tests), with the proviso that counter
values are 0 initially and must stay non-negative along a run. The number of counters d
defines the dimension of a VASS. For brevity, we call a VASS of dimension d a d-VASS.
Formally, every transition of a d-VASS V has adjoined a vector v ∈ Zd describing the effect of
executing this transition on counter values; thus a transition is a triple (q, v, q′) ∈ Q×Zd×Q,
where Q is the set of control states of V . A finite path, i.e., a sequence of transitions of the
form π = (q0, v1, q1), (q1, v2, q2), . . . , (qn−1, vn, qn), induces a run if the counter values stay
non-negative, i.e., v1 + . . .+ vi ∈ Nd for every i.

In this paper we concentrate on pumping, i.e., techniques exploiting repetitions of states
in runs. Pumping is an ubiquitous phenomenon which typically provides valuable tools in
proving short run properties, or showing language inexpressibility results. It seems to be
particularly relevant in case of VASS, as even the core of the seminal decision procedure for
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62:2 New Pumping Technique for 2-Dimensional VASS

the reachability problem in VASS by Mayr and Kosaraju [11, 9] is fundamentally based on
pumping: briefly speaking, the decision procedure decomposes a VASS into a finite number
of VASS, each of them admitting a property that every path can be pumped up so that
it induces a run. Pumping techniques are used even more explicitly when dealing with
subclasses of VASS of bounded dimension. The PSpace upper bound for the reachability
problem in 2-VASS [2] relies on various un-pumping transformations of an original run,
leading to a simple run of at most exponential length, in the form of a short path with
adjoined short disjoint cycles. A smart surgery on those simple runs was also used to obtain
a stronger upper bound (NL) in case when the transition effects are represented in unary [6].
Un-pumping is also used in [3] to provide a quadratic bound on the length of the shortest
run for 1-VASS, also known as one counter automata without zero tests, and for unrestricted
one counter automata. See also [1, 10] for pumping techniques in one counter automata.

Figure 1 Thin (above) and thick run (below). Points correspond to counter values, and control
states along a run are ignored.

Contribution. The above-mentioned techniques are mostly oriented towards reachable
sets, and henceforth may ignore certain runs as long as the reachable set is preserved. In
consequence, they are not very helpful in solving decision problems formulated in terms
of the whole language accepted by a VASS, like the regular separability problem (cf. the
discussion below). Our primary objective is to design a pumping infrastructure applicable to
every run of a 2-VASS. Therefore, as our main technical contribution we perform a thorough
classification of runs, in the form of a dichotomy (see the illustrations on the right): for every
run π of a 2-VASS, whose initial and final values of both counters are 0,

either π is thin, by which we mean that the counter values along the run stay within
belts, whose direction and width are all bounded polynomially in the number of states
and the largest absolute value of vectors of the 2-VASS;
or π is thick, by which we mean that a number of cycles is enabled along the run, the effect
vectors of these cycles span (slightly oversimplifying) the whole plane, and furthermore
the lengths of cycles and the extremal factors of π are all bounded polynomially in M
and exponentially in n. (For the sake of simplicity some details are omitted here; the
fully precise statement of the dichotomy is Theorem 3.1 in Section 3).

The dichotomy immediately entails a pumping lemma for 2-VASS by using, essentially, the
pumping scheme of 1-VASS in case of thin runs, and the cycles enabled along a run in case
of thick runs (cf. Theorem 4.1). As a more subtle application of the dichotomy, we derive an
alternative proof of the exponential run property (shown originally in [2]), which immediately
implies PSpace-membership of the reachability problem (cf. Theorem 4.2).
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Further applications. We envisage other possible applications of the dichotomy. One
important case can be the regular separability problem: given two labeled 2-VASS V1 and V2,
decide if there is a regular language separating languages of V1 and V2, i.e., including one of
them and disjoint from the other. The problem is decidable in PSpace for 1-VASS [5] while
the decidability status for 2-VASS is still open. A cornerstone of the decision procedure
of [5] is a well-behaved over-approximation of a language of a 1-VASS V by a sequence of
regular languages (Vn)n∈N, where the precision of approximation increases with increasing
n. In case of 1-VASS, the language Vn is obtained by abstraction of V modulo n; on the
other hand, as argued in [5], the very same approach necessarily fails for dimensions larger
than 1. It seems that our dichotomy classification of runs of a 2-VASS prepares the ground
for the right definition of abstraction Vn modulo n. Indeed, intuitively speaking, as long as
the run stays within belts, 1-dimensional counting modulo n along the direction of a belt
is sufficient; otherwise, a 2-dimensional abstraction modulo n can be applied as soon as a
sufficient number of pumpable cycles has been identified along a run.

As our approach builds on natural geometric properties of runs, we believe that it can
be generalized to dimensions larger than 2. However, one should not expect efficient length
bounds from this generalization itself, as already in dimension 3 the prefix of a run preceding
the first pumpable cycle has non-elementary length (the length can be as large as tower of n
exponentials in the composition of n copies of the Hopcroft and Pansiot example [7]).

2 Preliminaries

2-dimensional vector addition systems with states. We use standard symbols Q,Z,N for
the sets of rationals, integers, and non-negative integers, respectively. Whenever convenient
we use subscripts to specify subsets, e.g., Q≥0 for non-negative rationals. We refer to elements
of Z2 briefly as vectors. Non-negative vectors are elements of N2, and positive vectors are
elements of Z2

>0. A vector with only non-negative coordinates and at least one positive
coordinate is called semi-positive; it is either positive, or vertical of the form (0, a), or
horizontal of the form (a, 0), for a ∈ Z>0.

A 2-dimensional vector addition system with states (2-VASS) V consists of a finite set
of control states Q and a finite set of transitions T ⊆ Q× Z2 ×Q. We refer to the vector
v as the effect of a transition (p, v, q). A path in V from control state p to q is a sequence
of transitions π = (q0, v1, q1), (q1, v2, q2), . . . , (qn−1, vn, qn) ∈ T ∗ where p = q0 and q = qn; it
is called a cycle whenever the starting and ending control states coincide (q0 = qn). The
effect of a path is defined as eff(π) = v1 + . . .+ vn ∈ Z2, and its length is n. A cycle is called
non-negative, semi-positive or positive, if its effect is so.

A configuration of V is an element of Conf = Q×N2. A transition t = (p, v, q) is enabled
in a configuration c = (p′, u) if p = p′ and u+ v ∈ N2. Analogously, a path π is enabled in a
configuration c = (p′, u) if q0 = p′ and ui = u+ v1 + . . .+ vi ∈ N2 for every i. In such case
we say that π induces a run of the form

ρ = (c0, t1, c1), (c1, t2, c2), . . . , (cn−1, tn, cn) ∈ (Conf× T × Conf)∗

with intermediate configurations ci = (qi, ui), from the source configuration src(ρ) = c0 to
the target one trg(ρ) = cn. If the source configuration c0 is clear from the context, we do not
distinguish between a path enabled in c0 and a run with source c0, and simply say that the
path is the run. A (0, 0)-run is a run whose source and target are (0, 0)-configurations, i.e.,
a configuration whose vector is (0, 0).

MFCS 2019



62:4 New Pumping Technique for 2-Dimensional VASS

We will sometimes relax the non-negativeness requirement on some coordinates: For
j ∈ {1, 2}, we say that a path π is {j}-enabled in a configuration c = (p′, u) if q0 = p′ and
(u+ v1 + . . .+ vi)[j] ∈ N for every i. We also say that π is ∅-enabled in c if just q0 = p′.

The reversal of a 2-VASS V = (Q,T ), denoted rev(V ), is a 2-VASS with the same control
states and with transitions {(q,−v, p) | (p, v, q) ∈ T}. We sometimes speak of the reversal
rev(ρ) of a run ρ of V , implicitly meaning a run in the reversal of V .

As the norm of v = (v1, v2) ∈ Q2, we take the largest of absolute values of v1 and v2,
‖v‖ := max{|v1|, |v2|}. By the norm of a configuration c = (q, v) we mean the norm of its
vector v, and by the norm ‖V ‖ of a 2-VASS V we mean the largest among norms of effects
of transitions.

u1

u2

u3

u4
u5

u6

u7

u8

u9u10
u11

Figure 2 Above u1 � u2 � . . . � u11 � u1. Also, u4 � u9, but u4 6� u11 and u11 � u4. Pairs of
vectors ui, ui+6 are contralinear, for i = 1, . . . , 5.

Sequential cones. For a vector v ∈ Z2, define the half-line induced by v as `v := Q≥0 · v =
{αv | α ∈ Q≥0}. We call two vectors v, w colinear if `v = `w, and contralinear if `v = `−w.
For two vectors u, v ∈ Z2 \ {(0, 0)}, define the angle ][u, v] ⊆ Q2 as the union of all half-lines
which lie clock-wise between `u and `v, including the two half-lines themselves. In particular,
][v, v] = `v. Analogously we define the sets ][u, v), ](u, v] and ](u, v) which exclude one
or both of the half-lines. We refer to an angle of the form ][v,−v] as half-plane. We write
v � u when u ∈ ](v,−v), i.e., u is oriented clock-wise with respect to v (see Figure 2 for an
illustration). Note that � defines a total order on pairwise non-colinear non-negative vectors.

By the cone of a finite set of vectors {v1, . . . , vk} ⊆ Z2 we mean the set of all non-negative
rational linear combinations of these vectors:

Cone(v1, . . . , vk) := {Σkj=1 ajvj ∈ Q2 | a1, . . . , ak ∈ Q≥0}.

We call the cone of a single vector Cone(v) = `v trivial, and the cone of zero vectors
Cone(∅) = {(0, 0)} degenerate. Two non-zero vectors v1 and v2 can be in four dis-
tinct relations: (i) they are colinear, (ii) they are contralinear, (iii) v1 � v2 and hence
Cone(v1, v2) = ][v1, v2], (iv) v2 � v1 and hence Cone(v1, v2) = ][v2, v1].

I Lemma 2.1. Every cone either equals the whole plane Q2, or is included in some half-plane.

Proof. Assume, w.l.o.g. that the vectors v1, . . . , vk are non-zero and include no colinear
pair. Suppose there is a contralinear pair vi, vj among v1, . . . , vk. If all other vectors vh
satisfy vi � vh � vj then Cone(v1, . . . , vk) is included in the half-plane ][vi, vj ]. Otherwise
Cone(v1, . . . , vk) is the whole plane.

Now suppose there is no contralinear pair among v1, . . . , vk. If some three vi, vj , vh of
them satisfy vi � vj � vh � vi then Cone(v1, . . . , vk) includes the three angles ][vi, vj ],
][vj , vh] and ][vh, vi], the union of which is the whole plane. Otherwise, the relation � is
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transitive and hence defines a (strict) total order on {v1, . . . , vk}. The minimal and maximal
element vi and vj w.r.t. the order satisfy vi � vj , and hence Cone(v1, . . . , vk) = ][vi, vj ] is
included in the half-plane ][vi,−vi]. J

The sequential cone of vectors v1, . . . , vk ∈ Z2 imposes additional non-negativeness
conditions, namely for every i, the partial sum a1v1 + . . .+ aivi must be non-negative (this
is required later, when pumping cycles in a run whose effects are v1, . . . , vk in that order):

SeqCone(v1, . . . , vk) := {Σkj=1 ajvj ∈ Q2
≥0 | a1, . . . , ak ∈ Q≥0, ∀i Σij=1 ajvj ∈ Q2

≥0}.

Note that v1 may be assumed w.l.o.g. to be semi-positive, but other vectors vi are not
necessarily non-negative; and that every sequential cone is a subset of the non-negative
orthant Q2

≥0. Importantly, contrarily to cones, the order of vectors v1, . . . , vk matters for
sequential cones. In fact, sequential cones are just convenient syntactic sugar for cones of
pairs of non-negative vectors:

I Lemma 2.2. For all vectors v1, . . . , vk, the sequential cone SeqCone(v1, . . . , vk), if not
degenerate, equals Cone(u, v), for two non-negative vectors u, v, and each of them either
belongs to {v1, . . . , vk}, or is horizontal, or vertical.

Proof. We proceed by induction on k. For k = 1 we have SeqCone(v1) = `v1 =
Cone(v1, v1). Let v0 and h0 denote some fixed vertical and horizontal vector, respectively.
For the induction step we assume SeqCone(v1, . . . , vk−1) = Cone(u, v) for non-negative
vectors u, v; and compute the value of SeqCone(v1, . . . , vk), separately in each of the
following distinct cases (assume w.l.o.g. u � v):

I II
III

IVV

VI

v0

h0

u

v

SeqCone(v1, . . . , vk) =



Cone(vk, v) if vk ∈ ][v0, u)
Cone(u, v) if vk ∈ ][u, v]
Cone(u, vk) if vk ∈ ](v, h0]
Cone(u, h0) if vk ∈ ](h0,−u]
Cone(v0, h0) if vk ∈ ](−u,−v)
Cone(v0, v) if vk ∈ ][−v, v0).

J

3 Thin-Thick Dichotomy

The main result of this section (cf. Theorem 3.1 below) classifies (0, 0)-runs in a 2-VASS
into thin and thick ones. Throughout this section we consider an arbitrary fixed 2-VASS
V = (Q,T ).
Let n = |Q| and M = ‖V ‖.

MFCS 2019
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A

W

Figure 3 Thin run within belts Bv,W .

Thin runs. The belt of direction v ∈ N2 and width W is the set

Bv,W = {u ∈ N2 | dist(u, `v) ≤W},

where dist(u, `v) denotes the Euclidean distance between the point u and the half-line `v.
For A ∈ N, we call Bv,W an A-belt if ‖v‖ ≤ A and W ≤ A. We say that a run ρ of V is
A-thin if for every configuration c in ρ there exists an A-belt B such that c ∈ Q×B.

Thick runs. Let A ∈ N. Four cycles π1, π2, π3, π4 ∈ T ∗ are A-sequentially enabled in a run
ρ if their lengths are at most A, and the run ρ factors into ρ = ρ1 ρ2 ρ3 ρ4 ρ5 so that (denote
by v1, v2, v3, v4 the effects of π1, π2, π3, π4, respectively):

The effect v1 is semi-positive, the cycle π1 is enabled in c1 := trg(ρ1), and both coordinates
are bounded by A along ρ1.
If v1 is positive then π2 is ∅-enabled in c2 := trg(ρ2). Otherwise (let j be the coordinate
s.t. v1[j] = 0) π2 is {j}-enabled in c2 := trg(ρ2), and jth coordinate is bounded by A
along ρ2.
The cycle πi is ∅-enabled in ci := trg(ρi), for i = 3, 4.

We also say that the four vectors v1, v2, v3, v4 are A-sequentially enabled in ρ, quantifying
the cycles existentially. A (0, 0)-run τ is called A-thick if it partitions into τ = ρ ρ′ so that
1. some vectors v1, v2, v3, v4 are A-sequentially enabled in ρ,
2. some vectors v′1, v′2, v′3, v′4 are A-sequentially enabled in rev(ρ′),
3. SeqCone(v1, v2, v3, v4) ∩ SeqCone(v′1, v′2, v′3, v′4) is non-trivial.

Figure 4 illustrates the geometric ideas underlying these three conditions for A-thick runs.
Concerning condition 1, a cycle π1 depicted by a dotted line, with vertical effect v1, can
be used to increase the second (vertical) coordinate arbitrarily, which justifies the relaxed
requirement that a cycle π2 with effect v2 is only {1}-enabled. Note that the norm of
the configuration enabling π1, as well as the first coordinate of the configuration enabling
π2, are bounded by A. Concerning condition 2, a cycle π′1 with positive effect v′1 can be
used to increase both coordinates arbitrarily; therefore a cycle π′2 with effect v′2 is only
required to be ∅-enabled, and no coordinate of the configuration enabling π′2 is required to
be bounded by A. In the illustrated example, vectors v′3 and v′4 are not needed; formally,
one can assume v′2 = v′3 = v′4 and ρ′3 = ρ′4 = ε. Condition 3 ensures that the cycles
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A

ρ

ρ′
v′2

v1

v2

v4

v3

v′1

Figure 4 Thick run. Blue angles denote sequential cones SeqCone(v1, v2), SeqCone(v1, v2, v3)
and SeqCone(v1, v2, v3, v4), respectively, and green angle denotes SeqCone(v′

1, v
′
2).

π1, . . . , π4 and π′1, . . . , π′4 can be pumped such that the pumped versions of ρ and ρ′ are still
connected. In the illustrated example, observe that SeqCone(v1, v2) ∩ SeqCone(v′1) = ∅.
Intuitively, both coordinates in the target of ρ can be increased arbitrarily using v1 and v2,
and similarly both coordinates of the target of rev(ρ′) can be increased arbitrarily using
v′1, but “directions of increase” are non-crossing. Adding v3 and v′2 is not sufficient, as still
SeqCone(v1, v2, v3) ∩ SeqCone(v′1, v′2) = ∅. When vector v4 is adjoined, condition 3 holds
as SeqCone(v1, v2, v3, v4) = Q2

≥0. Finally, the four vectors are really needed here, e.g.,
vector v3 can not be omitted as SeqCone(v1, v2, v4) = SeqCone(v1, v2).

Here is the main result of this section:

I Theorem 3.1 (Thin-Thick Dichotomy). There is a polynomial p such that every (0, 0)-run
in a 2-VASS V is either p(nM)n-thin or p(nM)n-thick.

For the proof of Theorem 3.1 we need the following core fact (for space reasons, the proof is
only in the full version of the paper):

I Lemma 3.2 (Non-negative Cycle Lemma). There is a polynomial P such that every run
ρ in V from a (0, 0)-configuration to a target configuration of norm larger than P (nM)n,
contains a configuration enabling a semi-positive cycle of length at most P (nM).

Proof of Theorem 3.1. Let P be the polynomial from Lemma 3.2. The polynomial p
required in Theorem 3.1 can be chosen arbitrarily as long as p(x) ≥

√
2 ·
(
P (x) + (x+ 1)3) ·x.

for all x; note that the following inequality follows:

p(nM)n ≥
√

2 ·
(

(P (nM))n + (nM + 1)3) · nM. (1)

In the sequel we deliberately confuse configurations c = (q, v) with their vectors v:
whenever convenient, we use c to denote the vector v, hoping that this does not lead to any
confusion.

Let τ be a (0, 0)-run of V which is not p(nM)n-thin, i.e., τ contains therefore a configura-
tion t which lies outside of all the p(nM)n-belts. We need to demonstrate points 1–3 in the

MFCS 2019



62:8 New Pumping Technique for 2-Dimensional VASS

definition of thick run. To this aim we split τ into τ = ρ ρ′ where trg(ρ) = t = src(ρ′), and
are going to prove the following two claims (a) and (a’). Let D := P (nM)n + (nM + 1)3.
For x, y ∈ Q2, let dist(x, y) denote their Euclidean distance.

(a) Some vectors v1, v2, v3, v4 are P (nM)n-sequentially enabled in ρ, and the sequential cone
SeqCone(v1, v2, v3, v4) contains a point u ∈ Q2

≥0 with ‖u− t‖ ≤ D.
(a’) Some vectors v′1, v′2, v′3, v′4 are P (nM)n-sequentially enabled in rev(ρ′), and the sequential

cone SeqCone(v′1, v′2, v′3, v′4) contains a point u ∈ Q2
≥0 with ‖u− t‖ ≤ D.

In simple words, instead of proving point 3, we prove that both sequential cones contain a
point v which is sufficiently close to t.

B Claim 3.3. The conditions (a) and (a’) guarantee that τ is thick.

Indeed, points 1–2 in the definition of thick run are immediate as P (nM) ≤ p(nM). For point
3, observe that the inequality (1) implies p(nM)n ≥

√
2 ·D, which guarantees that the circle

{u ∈ Q2
≥0 | dist(u, t) ≤

√
2 ·D} does not touch any half-line `w induced by a non-negative

vector w with ‖w‖ ≤ p(nM)n. In consequence, neither does the square X := {u ∈ Q2
≥0 | ‖u−

t‖ ≤ D} inscribed in the circle, and henceX lies between two consecutive half-lines `w induced
by a non-negative vector w with ‖w‖ ≤ p(nM)n. Hence, as SeqCone(v1, v2, v3, v4) contains
some point of X, by Lemma 2.2 it includes the whole X, and likewise SeqCone(v′1, v′2, v′3, v′4).
In consequence, the whole X is included in SeqCone(v1, v2, v3, v4)∩SeqCone(v′1, v′2, v′3, v′4)
which entails point 3. Claim 3.3 is thus proved.

As condition (a’) is fully symmetric to (a), we focus exclusively on proving condition (a),
i.e., on constructing sequentially enabled vectors v1, v2, v3, v4.

Vector t lies outside of p(nM)n-belts, hence outside of all the P (nM)n-belts, therefore
its norm ‖t‖ > P (nM)n. Relying on Lemma 3.2, let c1 be the first configuration in the run
ρ which enables a semi-positive cycle π1 of length bounded by P (nM), and let v1 = eff(π1).
We start with the following obvious claim (let v0 be some vertical vector, e.g. v0 = (0, 1)):

B Claim 3.4. SeqCone(v0) contains a point u ∈ Q2
≥0 such that ‖u− c1‖ ≤ P (nM)n + nM .

Indeed, due to Lemma 3.2 we may assume ‖c1‖ ≤ P (nM)n +M and hence u = (0, 0) does
the job.
Recall that the relation � defines a total order on pairwise non-colinear non-negative vectors.

B Claim 3.5. We can assume w.l.o.g. that v1 � t.

Indeed, if v1 and t were colinear then t ∈ Cone(v1) and hence condition (a) would hold.
Split ρ into the prefix ending in c1 and the remaining suffix: ρ = ρ1 σ, where trg(ρ1) =

c1 = src(σ). As the next step we will identify a configuration c2 in σ which satisfies Claim 3.6
(which will serve later as the basis of induction) and enables a cycle π2 with effect v2 (as
stated in Claim 3.7).

B Claim 3.6. SeqCone(v0, v1) contains a point u ∈ Q2
≥0 such that ‖u− c2‖ ≤ P (nM)n +

2nM .

The proof of Claim 3.6 depends on whether v1 is positive. If v1 is so, we simply duplicate
the first cycle: c2 := c1 and π2 := π1, and use Claim 3.4. Otherwise v1 is vertical due to
Claim 3.5. If t[1] ≤ W = P (nM)n + (n + 1)M then condition (a) holds immediately as
SeqCone(v1) = `v1 contains a point u ∈ Q2

≥0 with ‖u − t‖ ≤ P (nM)n + (n + 1)M ≤ D.
Therefore suppose t[1] > P (nM)n + (n + 1)M , and define the sequence d1, . . . , dm of
configurations as follows (cf. Figure 5): let d1 := c1, and let di+1 be the first configuration in
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W

c1 = d1

d2

d3

τ

d4

π2 d5

Figure 5 Proof of Claim 3.6.

σ with di+1[1] > di[1]. Recall that d1[1] ≤ P (nM)n+M , and observe that di+1[1] ≤ di[1]+M .
Thus by the pigeonhole principle m > n and hence for some i < j ≤ n+ 1 the configurations
di and dj must have the same control state. The infix σij of the path σ from di to dj is
thus a cycle, enabled in di, whose effect is positive on the first (horizontal) coordinate. Let
c2 := di. As c2[1] ≤ P (nM)n + (n + 1)M , SeqCone(v0, v1) = `v0 contains necessarily a
point u ∈ Q2

≥0 such that ‖u− c2‖ ≤ P (nM)n + (n+ 1)M , which proves Claim 3.6.

B Claim 3.7. The configuration c2 {1}-enables a cycle π2 of length bounded by p(nM)n,
such that the first coordinate of eff(π2) is positive.

Recalling the proof of the previous claim, observe that the first (horizontal) coordinate in the
infix σij is bounded by P (nM)n + (n+ 1)M , and think of the second (vertical) coordinate
as irrelevant. Let π2 be the path inducing σij . For bounding the length of π2, as long as π2
contains a cycle α with vertical effect (0, w), remove α from π2. This process ends yielding a
cycle π2 of length at most (P (nM)n + (n + 1)M) · n, and hence at most p(nM)n (by the
inequality (1)), which is {1}-enabled in c2, but not necessarily enabled. Let v2 := eff(π2).

B Claim 3.8. We can assume w.l.o.g. that v2 � t.

Indeed, if v1 = v2 then Claim 3.5 does the job; otherwise v1 is vertical and then t � v2 (or t
colinear with v2) would imply t ∈ SeqCone(v1, v2), hence condition (a) would hold again.

Split σ further into the prefix ending in c2 and the remaining suffix: σ = ρ2σ
′, where

trg(ρ2) = c2 = src(σ′). If σ′ contains a configuration which ∅-enables a simple cycle whose
effect w belongs to ][t,−v2) then t ∈ SeqCone(v2, w) and hence condition (a) holds. We
aim at achieving this objective incrementally (cf. Figure 6).

For i ≥ 2, let ci+1 be the first configuration in σ′ after ci that ∅-enables a simple cycle
πi+1 with effect vi+1 ∈ ](vi,−vi). As discussed above, if vi+1 ∈ ][t,−vi) for some i then
t ∈ SeqCone(vi, vi+1) and hence condition (a) holds. Assume therefore that the sequence
v1, . . . , vm so defined satisfies vi+1 ∈ ](vi, t) for all i ≥ 2. Let cm+1 := t. As vectors
v3, . . . , vm are pairwise different, semi-positive and, being effects of simple cycles, have norms
at most nM , we know that m ≤ (nM + 1)2 + 1.

B Claim 3.9. For every i = 1, . . . ,m, SeqCone(v0, vi) contains a point u ∈ Q2
≥0 such that

‖u− ci+1‖ ≤ P (nM)n + (i+ 1)nM .

MFCS 2019



62:10 New Pumping Technique for 2-Dimensional VASS

v2

v3
v4

t

c2

c3

c4

Figure 6 Incremental construction of v1, . . . , vm.

Proof. By induction on i. The induction base is exactly Claim 3.6. For the induction step,
we are going to show that SeqCone(v0, vi) contains a vector u such that ‖u − ci+1‖ ≤
P (nM)n + (i + 1)nM . Decompose the infix of σ′ which starts in ci and ends in ci+1 into
simple cycles, plus the remaining path ρ̄ of length at most n. The norm of the effect v̄ of ρ̄ is
hence bounded by nM , and we have

ci+1 = ci + s+ v̄,

where s is the sum of effects of all the simple cycles. By the definition of vi+1, the effects
of all the simple cycles belong to the half-plane ][−vi, vi], and hence there belongs s. By
induction assumption there is u′ ∈ SeqCone(v0, vi−1) such that ‖u′− ci‖ ≤ P (nM)n+ inM .
As vi−1 � vi, we also have u′ ∈ SeqCone(v0, vi). Consider the point

u := u′ + s

which necessarily belongs to the half-plane ][−vi, vi] but not necessarily to SeqCone(v0, vi) =
][−vi, vi] ∩Q2

≥0. Ignoring this issue, by routine calculations we get

‖u−ci+1‖ = ‖u′+s−ci−s−v̄‖ ≤ ‖u′−ci‖+‖v̄‖ ≤ ‖u′−ci‖+nM ≤ P (nM)n+(i+1)nM

as required for the induction step. Finally, if u /∈ Q2
≥0, translate u towards ci+1 until it

enters the non-negative orthant Q2
≥0; clearly, the translation can only decrease the value of

‖u− ci+1‖. J

Applying the claim to i = m, and knowing that m ≤ (nM + 1)2 + 1, we get some point u ∈
SeqCone(v0, vm) such that ‖u−t‖ ≤ P (nM)n+((nM+1)2+1)·nM ≤ P (nM)n+(nM+1)3.
Furthermore, relying on the assumptions that t lies outside of all p(nM)n-belts and that
v1 � t we prove, similarly as in the proof of Claim 3.3, that v1 � u and hence the point u
belongs also to SeqCone(v1, vm). This completes the proof of Theorem 3.1. J

4 Dichotomy in Action

This section illustrates applicability of Theorem 3.1. As before, we use symbols n and M for
the number of control states, and the norm of a 2-VASS, respectively. As the first corollary
we provide a pumping lemma for 2-VASS: in case of thin runs apply, essentially, pumping
schemes of 1-VASS, and in case of thick runs use the cycles enabled along a run. As another
application, we derive an alternative proof of the exponential run property for 2-VASS.
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I Theorem 4.1 (Pumping). There is a polynomial p such that every (0, 0)-run τ in a
2-VASS of length greater that p(nM)n factors into τ = τ0 τ1 . . . τk (k ≥ 1), so that for
some non-empty cycles α1, . . . , αk of length at most p(nM)n, the path τ0 α

i
1 τ1 α

i
2 . . . , α

i
k τk

is a (0, 0)-run for every i ∈ N. Furthermore, the lengths of τ0 and τk are also bounded by
p(nM)n.

I Theorem 4.2 (Exponential run). There is a polynomial p such that for every (0, 0)-run τ
in a 2-VASS, there is a (0, 0)-run of length bounded by p(nM)n with the same source and
target as τ .

We fix from now on a 2-VASS V = (Q,T ) and the polynomial p of Theorem 3.1. Let
A = p(nM)n. Both proofs proceed separately for thin and thick runs τ . The former (fairly
standard) case is treated in the full version of the paper, so assume below τ to be A-thick.
The polynomials required in Theorems 4.1 and 4.2 can be read out from the constructions.

We rely on the standard tool, cf. Prop. 2 in [4] (the norm of a system of inequalities is
the largest absolute value of its coefficient, and likewise we define the norm of a solution):

I Lemma 4.3. Let U be a system of d linear inequalities of norm M with k variables. Then
the smallest norm of a non-negative-integer solution of U is in O(k ·M)d.

Consider a split τ = ρρ′, where ρ = ρ1 ρ2 ρ3 ρ4 ρ5 and ρ′ = ρ′5 ρ
′
4 ρ
′
3 ρ
′
2 ρ
′
1, as well as cycles

π1, . . . , π4 and π′1, . . . , π′4 given by the definition of thick run. Let v1, . . . , v4 and v′1, . . . , v′4
be the respective effects of π1, . . . , π4 and π′1, . . . , π′4. For j = 1, . . . , 4 let cj = trg(ρj) and
for j = 2, . . . , 4 let ej ∈ N2 be the minimal non-negative vector such that the configuration
cj + ej enables cycle πj . We define the following system U of linear inequalities with 6
variables a1, a2, a3, a4, x, y (max is understood point-wise):

a1v1 ≥ e2 (2)
a1v1 + a2v2 ≥ max(e2, e3) (3)

a1v1 + a2v2 + a3v3 ≥ max(e3, e4) (4)
a1v1 + a2v2 + a3v3 + a4v4 = (x, y) ≥ e4 (5)

(Observe that when v1[j] = 0, i.e., in case when v1 is vertical or horizontal, ej = 0 and therefore
one of the two first inequalities is always satisfied, namely a1v1[j] ≥ e2[j].) Likewise, we have
a system of inequalities U ′ with 6 variables a′1, a′2, a′3, a′4, x′, y′. Observe that the sequential
cone SeqCone(v1, v2, v3, v4) contains exactly (projections on (x, y) of) non-negative rational
solutions of the modified system U (0,0) obtained by replacing all the right-hand sides with
(0, 0). Likewise we define U ′(0,0). Finally, we define the compound system C by enhancing
the union of U and U ′ with two additional equalities (likewise we define the system C(0,0))

(x, y) = (x′, y′). (6)

B Claim 4.4. C admits a non-negative integer solution (a1, a2, a3, a4, x, y, a
′
1, a
′
2, a
′
3, a
′
4, x
′, y′).

Proof. The system C(0,0) admits a non-negative rational solution as the intersection of the
cones SeqCone(v1, v2, v3, v4) and SeqCone(v′1, v′2, v′3, v′4) is non-empty by assumption. As
intersection of cones is stable under multiplications by non-negative rationals, the solution
can be scaled up arbitrarily, to yield a non-negative integer one, and even a non-negative
integer solution of the stronger system C. J

B Claim 4.5. For every non-negative integer solution of C, for the cycles defined as αj := π
aj

j

and α′j := (π′j)
a′

j , for j = 1, 2, 3, 4, the following path is a (0, 0)-run:

ρ1 α1 ρ2 α2 ρ3 α3 ρ4 α4 ρ5 ρ
′
5 α
′
4 ρ
′
4 α
′
3 ρ
′
3 α
′
2 ρ
′
2 α
′
1 ρ
′
1.
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Proof. The first two inequalities (2) enforce that the first cycle π1 is repeated sufficiently many
a1 times so that π2 is enabled in configuration trg(ρ1 α1 ρ2). Then the next two inequalities (3)
enforce that π1 and π2 are jointly repeated sufficiently many a1, a2 times so that π2 is still
enabled after its last repetition (which guarantees that every of intermediate repetitions of π2
is also enabled), and that π3 is enabled in configuration trg(ρ1 α1 ρ2 α2 ρ3). Likewise for (4).
Finally, the inequalities (5) enforce that π1, . . . , π4 are jointly repeated sufficiently many times
so that π4 is still enabled after its last repetition. Analogous argument, but in the reverse
order, applies for the repetitions of π′4, . . . , π′1. Finally, equalities (6) ensure that the total
effect of α1, . . . , α4 is precisely compensated by the total effect of rev(α′1), . . . , rev(α′4). J

Proof of Theorem 4.1. Consider a solution of C. In particular the sum eff(α1)+ . . .+eff(αj),
as well as eff(rev(α′1)) + . . .+ eff(rev(α′j)), is necessarily non-negative for every j = 1, . . . , 4.
Therefore, as a direct corollary of Claim 4.5, for every i ∈ N the path

ρ1 α
i
1 ρ2 α

i
2 ρ3 α

i
3 ρ4 α

i
4 ρ5 ρ

′
5 (α′4)i ρ′4 (α′3)i ρ′3 (α′2)i ρ′2 (α′1)i ρ′1

is also a (0, 0)-run. For bounding the lengths of cycles we use Claim 4.4 and apply Lemma 4.3
to C, to deduce that C admits a non-negative integer solution of norm polynomial in
A = p(nM)n. This, together with the bounds on lengths of cycles π1, . . . , π4 and π′1, . . . , π′4
in the definition of A-thick run, entails required bounds on the lengths of the pumpable
cycles. Finally, the lengths of the extremal factors ρ1 and ρ′1 can be also bounded: if ρ1
(resp. ρ′1) is long enough it must admit a repetition of configuration, we add one more cycle
determined by the first (resp. last) such repetition, thus increasing k from 8 to 10. J

For proving Theorem 4.2 we will need a slightly more elaborate pumping. By the definition
of thick run, both coordinates are bounded by A along ρ1 and ρ′1. W.l.o.g. assume that no
configuration repeats in each of the two runs, and hence their lengths are bounded by A2.

Let Cδ denote the union of of U and U ′ enhanced, this time, by the two equalities

(x, y) + (δx, δy) = (x′, y′).

The two additional variables δx, δy describe, intuitively, possible differences between the total
effect of πa1

1 , . . . , πa4
4 and the total effect of rev(π′1)a′

1 , . . . , rev(π′4)a′
4 . The projection of any

solution of Cδ on variables (δx, δy) we call below a shift.

B Claim 4.6. For some non-negative integer m bounded polynomially with respect to A, all
the four vectors (0,m), (m, 0), (0,−m) and (−m, 0) are shifts.

Proof. We reason analogously as in the proof of Claim 4.4, but this time we rely on the
assumption that intersection of the cones SeqCone(v1, v2, v3, v4) and SeqCone(v′1, v′2, v′3, v′4)
is non-trivial, and hence contains, for some v ∈ Q2

>0 and a ∈ Q>0, the points v and v+ (0, a).
By scaling we obtain an integer point v′ ∈ N2 and a non-negative integer m1 ∈ N so that
v′ and v′ + (0,m1) both belong to the intersection of cones. Therefore the vector (0,m1)
is a shift. Likewise we obtain three other non-negative integers m2,m3,m4 ∈ N such that
(m2, 0), (0,−m3) and (−m4, 0) are all shifts. Each of the integers m1, . . . ,m4 can be bounded
polynomially in A using Lemma 4.3. As shifts are stable under multiplication by non-negative
integers, it is enough to take as m the least common multiple of the four integers. J

Proof of Theorem 4.2. We use m from the last claim to modify all factors of τ except for
ρ1 and ρ′1, in order to reduce their lengths to at most n · m2. W.l.o.g. assume m to be
larger than A (take a sufficient multiplicity of m otherwise); this assumption allows us to
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v′2

v1

v2

v4

v3

v′1
v′2

v1

v2

v4

v3

v′1

Figure 7 Contracted paths ρ̃, ρ̃′ (left) and reconstructed (0, 0)-run τ̄ = ρ̄ ρ̄′ (right).

proceed uniformly, irrespectively whether v1 is positive or not. Observe that any path longer
than n ·m2 must contain two configurations with the same control state whose vectors are
coordinate-wise congruent modulo m. As long as this happens, we remove the infix; note
that this operation changes the effect of the whole path by a multiplicity of m on every
coordinate. If this operation is performed on factors ρ2, ρ3, ρ4, ρ5, ρ

′
5, ρ
′
4, ρ
′
3, ρ
′
2, the paths

ρ, ρ′ are transformed into contracted paths (see the left picture in Figure 7) of the form:

ρ̃ = ρ1 ρ̃2 ρ̃3 ρ̃4 ρ̃5, ρ̃′ = ρ̃′5 ρ̃
′
4 ρ̃
′
3 ρ̃
′
2 σ1,

each of total length at most 5n ·m2. Importantly, their effects eff(ρ̃) and eff(ρ̃′) are bounded
polynomially in A, and their difference is (coordinate-wise) divisible by m:

eff(ρ̃)− eff(rev(ρ̃′)) = (am, bm) for some integers a, b ∈ Z polynomial in A.

Our aim is now to pump up the cycles π1, . . . , π4 and rev(π′1), . . . , rev(π′4) (see the right
picture in Figure 7), to finally end up with the paths of the form

ρ̄ = ρ1 π
a1
1 ρ̃2 π

a2
2 ρ̃3 π

a3
3 ρ̃4 π

a4
4 ρ̃5, ρ̄′ = ρ̃′5 (π′4)a

′
4 ρ̃′4 (π′3)a

′
3 ρ̃′3 (π′2)a

′
2 ρ̃′2 (π′1)a

′
1 ρ′1, (7)

such that τ̄ = ρ̄ ρ̄′ is a (0, 0)-run. In other words, we aim at eff(ρ̄) = eff(rev(ρ̄′)). We are
going to use Lemma 4.3 twice. For j = 2, . . . , 5 let cj := eff(ρ1ρ̃2 . . . ρ̃j) ∈ Z2, and let fj
be the minimal non-negative vector such that the configuration cj−1 + fj enables ρ̃j . For
j = 2, . . . , 4 let ej ∈ N2 be the minimal non-negative vector such that the configuration cj+ej
enables πj . Finally, let e5 be the minimal non-negative vector such that c5 + e5 ≥ (0, 0).
Analogously to the system U (2)–(5), we define the system Ũ of linear inequalities:

a1mv1 ≥ max(e2, f2)
a1mv1 + a2mv2 ≥ max(e2, e3, f3)

a1mv1 + a2mv2 + a3mv3 ≥ max(e3, e4, f4)
a1mv1 + a2mv2 + a3mv3 + a4mv4 ≥ max(e4, e5, f5)

In words, Ũ requires that every prefix of ρ̄ is enabled in the source (0, 0)-configuration,
and that the number of repetitions of every cycle πi is divisible by m. Clearly Ũ has a
non-negative integer solution, as v1 is either positive, or vertical or horizontal in which case
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v2 is positive on the relevant coordinate. Likewise we define a system of inequalities Ũ ′ that
requires that every prefix of rev(ρ̄′) is enabled in the target (0, 0)-configuration. Consider
some fixed solutions of Ũ and Ũ ′ bounded, by the virtue of Lemma 4.3, polynomially in A.
We have thus two fixed runs ρ̄ and rev(ρ̄′) of the form (7), with source vector (0, 0); the
number of repetitions of each cycles is divisible by m, and the difference of their effects is
(coordinate-wise) divisible by m:

eff(ρ̄)− eff(rev(ρ̄′)) = (am, bm) for some integers a, b ∈ Z polynomial in A.

As shifts are closed under addition, by Claim 4.6 we know that (am, bm) is a shift. Substituting
(am, bm) for (δx, δy) in the system Cδ yields a system which admits, again by Lemma 4.3,
a solution bounded polynomially in A. We use such a solution to increase the numbers of
repetitions of respective cycles a1, . . . , a4 and a′4, . . . , a′1 in ρ̄ and ρ̄′, respectively. This turns
the path τ̄ = ρ̄ ρ̄′ into a (0, 0)-run of length bounded polynomially in A. J
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