On Synthesis of Resynchronizers for Transducers

Sougata Bose
LaBRI, University of Bordeaux, France

Shankara Narayanan Krishna
Department of Computer Science & Engineering IIT Bombay, India

Anca Muscholl
LaBRI, University of Bordeaux, France

Vincent Penelle
LaBRI, University of Bordeaux, France

Gabriele Puppis
CNRS, LaBRI, University of Bordeaux, France

—— Abstract

We study two formalisms that allow to compare transducers over words under origin semantics:
rational and regular resynchronizers, and show that the former are captured by the latter. We then
consider some instances of the following synthesis problem: given transducers 71,72, construct a
rational (resp. regular) resynchronizer R, if it exists, such that T3 is contained in R(7%) under the
origin semantics. We show that synthesis of rational resynchronizers is decidable for functional,
and even finite-valued, one-way transducers, and undecidable for relational one-way transducers. In
the two-way setting, synthesis of regular resynchronizers is shown to be decidable for unambiguous
two-way transducers. For larger classes of two-way transducers, the decidability status is open.

2012 ACM Subject Classification Theory of computation — Transducers

Keywords and phrases String transducers, resynchronizers, synthesis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.69

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.08688.

Funding DeLTA project (ANR-16-CE40-0007)

1 Introduction

The notion of word transformation is pervasive in computer science, as computers typically
process streams of data and transform them between different formats. The most basic form
of word transformation is realized using finite memory. Such a model is called finite-state
transducer and was studied from the early beginnings of automata theory. Differently from
automata, the expressiveness of transducers is significantly affected by the presence of non-
determinism (even when the associated transformation is a function), and by the capability of
processing the input in both directions (one-way vs two-way transducers). Another difference
is that many problems, notably, equivalence and containment, become undecidable when
moving from automata to transducers [11, 14].

An alternative semantics for transducers, called origin semantics, was introduced in [4]
in order to obtain canonical two-way word transducers. In the origin semantics, the output
is tagged with positions of the input, called origins, that describe where each output element
was produced. According to this semantics, two transducers may be non-equivalent even
when they compute the same relation in the classical semantics. From a computational
viewpoint, the origin semantics has the advantage that it allows to recover the decidability
of equivalence and containment of non-deterministic (and even two-way) transducers [6].

© Sougata Bose, Shankara Krishna, Anca Muscholl, Vincent Penelle, and Gabriele Puppis;
37 licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).

Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 69; pp. 69:1-69:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.69
https://arxiv.org/abs/1906.08688
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2

On Synthesis of Resynchronizers for Transducers

It can be argued that comparing two transducers in the origin semantics is rather
restrictive, because it requires that the same output is generated at precisely the same place.
A natural approach to allow some ’distortion’ of the origin information when comparing
two transducers was proposed in [10]. Rational resynchronizers allow to compare one-way
transducers (hence, the name ’rational’) under origin distortions that are generated with
finite control. A rational resynchronizer is simply a one-way transducer that processes
an interleaved input-output string, producing another interleaved interleaved input-output
string with the same input and output projection. For two-way transducers (or equivalently,
streaming string transducers [1]) a different formalism is required to capture origin distortion,
since the representation of the origin information through interleaved input-output pairs
does not work anymore. To this purpose, reqular resynchronizers were introduced in [6] as a
logic-based transformation of origin graphs, in the spirit of Courcelle’s monadic second-order
logic definable graph transductions [8]. In [6] it was shown that containment of two-way
transducers up to a (bounded) regular resynchronizer is decidable.

In this paper we first show that bounded regular resynchronizers capture the rational
ones. This result is rather technical, because rational resynchronizers work on explicit origin
graphs, encoded as input-output pairs, which is not the case for regular resynchronizers.
Then we consider the following problem: given two transducers 77,75, we ask whether some
rational, or bounded regular, resynchronizer R exists such that T} is origin-contained in 75
up to R. So here, the resynchronizer R is not part of the input, and we want to synthesize
such a resynchronizer, if one exists.

Our main contributions can be summarized as follows:

1. synthesis of rational resynchronizers for functional (or even finite-valued) one-way trans-
ducers is decidable,

2. synthesis of rational resynchronizers for unrestricted one-way transducers is undecidable,

3. synthesis of bounded regular resynchronizers for unambiguous two-way transducers is
decidable.

Somewhat surprisingly, for both decidable cases above the existence of a resynchronizer turns

out to be equivalent to the classical inclusion of the two transducers.

Full proofs of the results presented in this paper can be found in the extended version
https://arxiv.org/abs/1906.08688.

2 Preliminaries

One-way transducers

One of the simplest transducer model is the one-way non-deterministic finite-state transducer
(hereafter, simply one-way transducer), capturing the class of so-called rational relations.
This is basically an automaton in which every transition consumes one letter from the input
and appends a word of any length to the output.

Formally, a one-way transducer is a tuple T = (X,T,Q, I, E, F, L), where X, T are finite
input and output alphabets, () is a finite set of states, I, F' € () are subsets of initial and
final states, £ € Q x X x Q is a finite set of transition rules, and L: EFw F — 21 is a function
specifying a regular language of partial outputs for each transition rule and each final state.
The relation defined by T contains pairs (u,v) of input and output words, where u =ay ...a,
and v = vy ...V, Upns1, for which there is a run gq a1lvs q1 ozl vz .o Qn [onan such that
q €1, q, € F (gi-1,ai,q:;) € E, v; € L(qi-1,0,¢;), and vp41 € L(qn) The transducer is

called functional if it associates at most one output with each input, namely, if it realizes a
partial function. For example, Figure 1 shows two one-way transducers with input alphabet

https://arxiv.org/abs/1906.08688

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis

C

o

C

c

a|l"a
PN C)
—>ob\). —_— >
T O
b|I*b

Figure 1 Examples of functional and relational one-way transducers.

3 ={a,b} and output alphabet I' 2 X.. The first transducer is functional, and realizes the
cyclic rotation f : cu = uc, for any letter c € {a,b} and any word u € {a,b}*. The second
transducer is not functional, and associates with an input u € ¥* any possible word v € I'* as
output such that u is a sub-sequence of v.

Two-way transducers

Allowing the input head to move in any direction, to the left or to the right, gives a more
powerful model of transducer, which captures e.g. the relation {(u,u™)
To define two-way transducers, we adopt the convention that, for any given input u € X%,

u(0) =+ and u(|u|+1) = 4, where -, ¢ 3 are special markers used as delimiters of the input.

In this way, a transducer can detect when an endpoint of the input has been reached.

A two-way transducer is a tuple T = (X,T,Q, I, E, F, L), whose components are defined
just like those of a one-way transducer, except that the state set @) is partitioned into two
subsets, Q< and @), the set I of initial states is contained in ()., and the set E of transition
rules is contained in (Q x X x Q) w (Q<x{-} xQ.) v (Q- x {4} x Q<). The partitioning
of the set of states is useful for specifying which letter is read from each state: states from
Q< read the letter to the left, whereas states from @, read the letter to the right. Given
an input v € ¥*, a configuration of a two-way transducer is a pair (g¢,7), with ¢ € @ and
i€{1,...,Jul+1}. Based on the types of source and target states in a transition rule, we can
distinguish four types of transitions between configurations (the output v is always assumed
to range over the language L(q,a,q")):

(0.4) =5 (¢, +1) if (¢,0.¢) € E, 0.q € Q-, and a = u(i),

(0.0) —% (¢0) if (¢.0.0") € E, ¢ € Q- ' € Q, and a = u(i),

(gq,1) el (¢',i-1)if (¢,a,¢') € E, q,q' € Q<, and a =u(i-1),

(gq,1) _alv, (¢',i) if (¢,a,¢') e E, g Q<, ¢ €@, and a =u(i-1).

Note that, when reading a marker + or -, the transducer is obliged to make a U-turn, either
left-to-right or right-to-left. The notions of successful run, realized relation, and functional
transducer are naturally generalized from the one-way to the two-way variant, (we refer to
[6] for more details).

In [5], a slight extension of two-way transducers, called two-way transducers with common
guess, was proposed. Before processing its input, such a transducer can non-deterministically
guess some arbitrary annotation of the input over a fixed alphabet. Once an annotation is
guessed, it remains the same during the computation. Transitions may then depend on the
input letter and the guessed annotation at the current position. For example, this extension
allows to define relations of the form {(u,vv) | w e X%, v € T |u| = |v|}. Note that the
extension with common guess does not increase the expressiveness of one-way transducers,
since these are naturally closed under input projections. Likewise, common guess does not
affect the expressive power of functional two-way transducers, since one can guess a canonical
annotation at runtime.

:ueX* neN}

69:3

MFCS 2019

69:4

On Synthesis of Resynchronizers for Transducers

aaa---aaa a‘i-n;a
AR o
bbb---bbb bbb---bbb

Figure 2 Input-output pairs annotated with origin information.

Classical vs origin semantics

In the previous definitions, we associated a classical semantics to transducers (one-way
or two-way), which gives rise to relations or functions between input words over ¥ and
output words over I'. In [4] an alternative semantics for transducers, called origin semantics,
was introduced with the goal of getting canonical transducers for any given word function.
Roughly speaking, in the origin semantics, every position of the output word is annotated
with the position of the input where that particular output element was produced. This yields
a bipartite graph, called origin graph, with two linearly ordered sets of nodes, representing
respectively the input and the output elements, and edges directed from output nodes to
input nodes, representing the so-called origins. Figure 2 depicts an input-output pair (a”,b™)
annotated with two different origins: in the first graph, a position ¢ in the output has its
origin at the same position ¢ in the input, while in the second graph it has origin at position
n—1.

Formally, the origin semantics of a transducer is a relation S, ¢ ¥* x (I' x N)* consisting
of pairs (u,v), where u = ay ...a, € X* is a possible input and v = vy ... vp41 € (TxN)* is the
corresponding output tagged with input positions, as induced by a successful run of the form
(qo,70) _ealm, (q1,31) —22 . (Gmsim) ﬂ), with each v; € (I'x {i;})*. We identify a
pair (u,r) with the origin graph obtained by arranging the input elements and the output
elements along two lines (we omit the successor relation in the graph notation), and adding
edges from every output element (a,i) to the i-th element of the input. Given an origin
graph G = (u,v), we denote by in(G), out(G), and orig(G) respectively the input word w,
the output word obtained by projecting v onto the finite alphabet I', and the sequence of
input positions (origins) obtained by projecting v onto N.

For one-way transducers, there is a simpler presentation of origin graphs in the form
of interleaved words. Assuming that the alphabets 3 and I are disjoint, we interleave the
input and output word by appending after each input symbol the output word produced
by reading that symbol. For example, if ¥ = {a} and T" = {b}, then a word of the form
abb...abb represents an origin graph (a™,v), where |v| = 2n and v(2i - 1) = v(2¢) = (b,4), for
alli=1,...,n. Words over X w I are called synchronized words. Just as every synchronized
word represents an origin graph, a regular language over ¥ w I represents a rational relation
with origins, or equally the origin semantics of a one-way transducer.

In general, when comparing transducers, we can refer to one of the two possible semantics.
Clearly, two transducers that are equivalent in the origin semantics are also equivalent in the
classical semantics, but the converse is not true.

3 Resynchronizations

The central concept of this paper is that of resynchronization, which is a transformation
of origin graphs that preserves the underlying input and output words. The concept was
originally introduced in [10], and mostly studied in the setting of rational relations. Here we
use the concept in the more general setting of relations definable by two-way transducers.

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis

Formally, a resynchronization is any relation R ¢ (X% x (I' x N)*)? that contains only
pairs (G,G") of origin graphs such that in(G) =in(G’) and out(G) = out(G"), namely, with
the same projections onto the input and output alphabets.!
be used to modify the origin information of a relation, while preserving the underlying

A resynchronization R can

input-output pairs. Formally, for every relation S, € ¥* x (I' x N)* with origins, we define
the resynchronized relation R(S,) ={G" €S, | (G,G") € R, G € S,}. Note that if the origin
information is removed from both R(S,) and S,, then R(S,) € S,. Moreover, R(S,) = S,
when R is the universal resynchronization, that is, when R contains all pairs (G, G"), with
G,G eX* x (I'xN)* in(G) =in(G"), and out(G) = out(G’).

Definability of resynchronized relations

An important property that we need to guarantee in order to enable some effective reasoning
on resynchronizations is the definability of the resynchronized relations. More precisely, given
a class C of transducers, we say that a resynchronization R preserves definability in C if for
every transducer T € C, the relation R(T) is realized by some transducer T" € C, that can
be effectively constructed from R and T'. The class C will usually be the class of one-way
transducers or the class of two-way transducers, and this will be clear from the context.

Below, we recall the definitions of two important classes of resynchronizations, called
rational [10] and regular resynchronizers [6], that preserve definability by one-way transducers
and by two-way transducers, respectively. We will then compare the expressive power of
these two formalisms, showing that rational resynchronizers are strictly less expressive than
regular resynchronizers.

Rational resynchronizers

A natural definition of resynchronizers for one-way transducers is obtained from rational
relations over the disjoint union ¥ wI' of the input and output alphabets. Any such relation
consists of pairs of synchronized words (w,w"), and thus represents a transformation of origin
graphs. In addition, if the induced synchronized words w and w’ have the same projections
over the input and output alphabets, then the relation represents a resynchronization. We
also recall that rational relations are captured by one-way transducers, so, by analogy, we
call rational resynchronizer any one-way transducer over X w I that preserves the input and
output projections.

It is routine to see that rational resynchronizers preserve definability of relations by one-way
transducers. It is also worth noting that every rational resynchronizer is a length-preserving
transducer. By a classical result of Elgot and Mezei [9] every rational resynchronizer can be
assumed to be a letter-to-letter one-way transducer, namely, a transducer with transitions of

alb , .
the form ¢ —— ¢/, with a,be X wT.

» Example 1. Consider the functional one-way transducers 77,75 in Figure 3. The domain
of both transducers is (aa)*. An origin graph of T} is a one-to-one mapping from the output
to the input (each a produces one b). On the other hand, in an origin graph of T, every a at
input position 2i+ 1 is the origin of two b’s at output positions 2i+1,2i+2. The transducer R
depicted to the right of the figure transforms synchronized words while preserving their input
and output projections. It is then a rational resynchronizer. In particular, R transforms
origin graphs of T3 to origin graphs of T5.

! n [10], resynchronizers were further restricted to contain at least the pairs of identical origin graphs. Here
we prefer to avoid this additional restriction and reason with a more general class of resynchronizations.

69:5

MFCS 2019

69:6

On Synthesis of Resynchronizers for Transducers

h alb T2 a|bb R \? e b/p
N T, N T, \.V\.
P N~ N
~ o) ° v
alb ale /a 2\
aaaa---aa aaaa---aa abababab ... abab
trrro1t NN N 7
bbbb---bb bbbb---bb abbaabba ... abba

Figure 3 Two functional INFT T1, 75, their origin graphs, and a rational resynchronizer R.

Regular resynchronizers

While languages of synchronized words are a faithful representation of rational relations, this
notation does not capture regular relations, so relations realized by two-way transducers. An
alternative formalism for resynchronizations of relations defined by two-way transducers was
proposed in [6] under the name of MSO resynchronizer (here we call it simply “resynchron-
izer”). The formalism describes pairs (G, G’) of origin graphs by means of two relations
move, and next, .+ (7,7’ € ') in the spirit of MSO graph transductions. More precisely:
move,, describes how the origin y of an output position z labeled by v is redirected to
a new origin z (for short, we call y and z the source and target origins of). Formally,
move, is a relation contained in ¥* x N x N that induces resynchronization pairs (G, G")
such that, for all output positions z, if out(G)(x) =, orig(G)(x) = y, and orig(G")(z) = z,
then (in(G),y, z) € move,.
next. .- constrains the target origins z and z’ of any two consecutive output positions
x and x + 1 that are labelled by v and 7/, respectively. Formally, next, / is a relation
contained in ¥* x N x N that induces resynchronization pairs (G,G") such that, for all
output positions x and z + 1, if out(G)(z) =+, out(G)(z + 1) =+', orig(G')(z) = z, and
orig(G')(xz +1) = 2', then (in(G),z,2") € next, .
A resynchronizer is a tuple ((movev)vep, (nextﬂmr)wﬁzep), and defines the resynchronization
R with pairs (G,G") induced by the relations move, and next, .-, where v,~7" €T
In order to obtain a well-behaved class of resynchronizations, that in particular preserves
definability by two-way transducers, we need to enforce some restrictions. First, we require
that the relations move, and next, . are described by regular languages (or equally, definable
in monadic second-order logic). By this we mean that we encode the input positions y, z, 2’
with suitable annotations over the binary alphabet B = {0,1}, so that we can identify the
relations move, and next, . with some regular languages over the expanded alphabet ¥ x B2
We call regular resynchronizer a resynchronizer where the relations move, and next, . are
given by regular languages. In addition, we also require that regular resynchronizers are
k-bounded, for some k € N, in the sense that for every input u, every output letter v, and
every target origin z, there are at most k positions y such that (u,y, z) € move,.

» Example 2. Consider the resynchronization R of Figure 4, containing the pairs (G, G’),
where G (resp. G') is the origin graph that maps every output position to the first (resp. last)
input position. R is “one-way”, in the sense that it contains only origin graphs that
are admissible outcomes of runs of one-way transducers. However, R is not definable by
any rational resynchronizer, since, in terms of synchronized words, it should map avu
to auwv, for every a € 3, u € ¥*, and v € I'*, which is clearly not a rational relation.
The resynchronization R can however be defined by a 1-bounded regular resynchronizer,
e.g. ((movey)qer, (nexty 4)y, yer), with move, = {(u,y,2) | uw € &%,y = 1,z = |ul} and

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis

Figure 4 A 1-bounded, regular resynchronization that is not rational.

next, = 2% x Nx N.

One can observe that, in the previous example, next is not restricting the resynchronization
further. For other examples that use next in a non-trivial way see for instance [6, Example 13].

The notion of resynchronizer can be slightly enhanced in order to allow some additional
amount of non-determinism in the way origin graphs are transformed (this enhanced notion
is indeed the one proposed in [6]). The principle is very similar to the idea of enhancing
two-way transducers with common guess. More precisely, we allow additional monadic
parameters that annotate the input and the output, thus obtaining words over expanded
alphabets of the form ¥ x ¥’ and I" x I'V. A resynchronizer with parameters is thus a tuple
(ipar, opar, (move,), (next%,yz).wr)7 where ipar ¢ (X xX')* describes the possible annotations
of the input, opar € (I' x I')* describes the possible annotations of the output, and, for every
7,7 €' xI”, move, ¢ (¥ x X' x B?)* describes a transformation from source to target origins
of y-labelled output positions, and next, , € (X x X' x B?) constraints the target origins of
consecutive output positions labelled by v and 4. The resynchronization pairs (G,G’) in
this case are induced by ((move,y)%pxpr, (next%.yf)%,yzepxp/) and are obtained by projecting
the input and output over the original alphabets ¥ and I', under the assumption that the
annotations satisfy ipar and opar. A resynchronizer with parameters is called regular if all its
relations are regular. A regular resynchronizer is called bounded if is k-bounded for some k.

In [6] it was shown that, given a bounded regular resynchronizer R with parameters and
a two-way transducer T' with common guess, one can construct a two-way transducer 7"
with common guess such that 77 =, R(T"). The notation 7" =, R(T) is used to represent the
fact that 7" and R(T') define the same relation in the origin semantics.

Unless otherwise stated, hereafter we assume that two-way transducers are enhanced with
common guess, and reqular resynchronizers are enhanced with parameters.

Rational vs regular resynchronizers

Our first result shows that bounded, regular resynchronizers are more expressive than
rational resynchronizers. Consider for instance Example 1: it can be captured by the regular
resynchronizer with opar annotating even/odd positions. The resynchronizer shifts the origins
of the even positions of the output by one to the left and keeps the origins of the odd positions
unchanged. So here move, can be described by a regular language. On the other hand,
Example 2 shows that there are bounded, regular resynchronizers that cannot be captured
by rational resynchronizers.

» Theorem 3. For every rational resynchronizer, there is an equivalent 1-bounded reqular
resynchronizer.

The proof of the above result is rather technical and can be found in the extended
version. Here we only provide a rough idea. Consider a rational resynchronizer R, that is,
a one-way transducer that transforms synchronized words while preserving the input and
output projections. For example, Figure 5 represents a possible pair of synchronized words,

69:7

MFCS 2019

69:8

On Synthesis of Resynchronizers for Transducers

p---
~
p---
p---
o —0

o
[V

Figure 5 A 1-bounded, regular resynchronization that is not rational.

denoted w and w’, shown in blue and in red, respectively, such that (w,w’) € R. We assume
that ¥ = {a} and T = {b}.

From the given rational resynchronizer R we construct an equivalent 1-bounded, regular
resynchronizer R’. The natural approach is to encode a successful run p of R over a
synchronized word w. By measuring the differences between the partial inputs and the
partial outputs that are consumed and produced along the run p, we obtain a partial bijection
on the input letters that represents a mapping from source origins to target origins. This
mapping determines the relation move, of R’, and in fact depends on a suitable additional
annotation v of the underlying output position. The additional annotation is needed in order
to distinguish output elements with the same origin in the source, but with different origins
in the target.

For example, by referring again to the figure above, consider the first occurrence of b in
w. Its origin in w is given by the closest input letter to the left (follow the blue arrow). To
find the origin in w’, one finds the same occurrence of b in w’ (solid line), then moves to the
closest input letter to the left (red arrow), and finally maps the latter input position in w’
back to w (dashed line). The resulting position determines the new origin (w.r.t. w’) of the
considered output element.

The remaining components ipar, opar, and next, . of R’ are used to guarantee the
correctness of the various annotations (notably, the correctness of the encoding of the run p
and that of the output annotations).

4 Synthesis of Resynchronizers

Recall that containment between transducers depends on the adopted semantics. More
precisely, according to the classical semantics, 77 is contained in T (denoted T3 ¢ T5) if all
input-output pairs realized by 77 are also realized by T5; according to the origin semantics,
T; is contained in T5 (denoted T3 €, T») if all origin graphs realized by T} are also realized
by T5. In this section, we study the following variant of the containment problem:

Resynchronizer synthesis problem.
Input: two transducers 17, T5.
Question: does there exist some resynchronization R such that T} €, R(T%).

In fact, the above problem comes in several variants, depending on the model of transducers
considered (one-way or two-way) and the class of admissible resynchronizations R (rational
or bounded regular). Moreover, for the positive instances of the above problem, we usually
ask to compute a witnessing resynchronization R from the given 77 and T5 (this is the reason
for calling the problem a synthesis problem).

Clearly, the synthesis problem for unrestricted resynchronizers is equivalent to a clas-
sical containment, that is, 77 € T» if and only if T} €, R(T3) for some resynchronizer R.
Therefore, the synthesis problem for unrestricted resynchronizers is undecidable. Thus we

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis

will consider the synthesis problem of rational (resp. bounded regular) resynchronizers for
one-way (resp. two-way) transducers.

We also recall that rational resynchronizers preserve definability of relations by one-
way transducers [10], while bounded regular resynchronizers (which, by Theorem 3, are
strictly more expressive than rational resynchronizers) preserve definability by two-way
transducers [6]. For the sake of presentation, we shall first consider the synthesis of rational
resynchronizers in the functional one-way setting, that is, for instances given by functional
one-way transducers. We show that in this setting the problem collapses again to the
classical containment problem, which is however decidable now, that is: T; € Ts if and only
if Ty ¢, R(T>) for some rational resynchronizer R. The decidability result can be slightly
extended to some non-functional transducers. More precisely, we will show that synthesis
of rational resynchronizers for finite-valued one-way transducers is still decidable. When
moving to the relational case, however, the problem becomes undecidable.

The decidability status in the one-way setting could be also contrasted with the two-way
setting. In this respect, we observe that, in the functional case, the synthesis problem does not
collapse anymore to classical containment, as there are functional two-way transducers 77,75
such that Tj ¢ Ty, but for which no bounded regular resynchronizer R satisfies T} €, R(T3)
(an example can be found at the beginning of Section 4.3). We are able to prove decidability
of synthesis of bounded, regular resynchronizers for unambiguous two-way transducers. The
decidability status, however, remains open in the functional two-way case, as well as in the
unrestricted (non-functional) two-way case.

4.1 Resynchronizing functional, one-way transducers

Recall that it can be decided in PSPACE whether a transducer (be it one-way or two-way) is
functional [2], and that the classical containment problem for functional (one-way/two-way)
transducers is also in PSPACE [3]. The following result shows that, for functional one-way
transducers, classical containment and rational resynchronizer synthesis are inter-reducible.

» Theorem 4. Let Ty, T5 be two functional one-way transducers. The following conditions
are equivalent, and decidable:

1. T cTs,

2. Th1 S, R(T) for some resynchronization R,

3. T1 =, R(T») for some rational resynchronizer R.

Proof sketch. The implications from 2. to 1. and 3. to 2. are trivial. The implication from
1. to 3. is proved by constructing a rational resynchronizer R as a product of T1,T5: at each
step, R consumes a symbol a € ¥ and a word v; € I'* from a transition of T} and produces
the same symbol a and possibly a different word vs € I'* from a corresponding transition of
Ty. The fact that R preserves the outputs relies on functionality of 77 and T5. <

A natural question arises: can a characterization similar to Theorem 4 be obtained for
transducers that compute arbitrary relations, rather than just functions? The example below
provides a negative answer to this question. Later in Section 4.2, we will see that synthesis
of rational resynchronizers for unrestricted one-way transducers is an undecidable problem.

» Example 5. Consider a one-way transducer Tj that checks that the input is from (aa)* and
produces a single output letter b for each consumed input letter a, and another transducer
T5 that works in two phases: during the first phase, it produces two b’s for each consumed a,
and during the second phase consumes the remaining part of the input without producing
any output. We have Ty ¢ Ty, but T} ¢, T>. The only resynchronization R that satisfies
T) S, R(T3) must map synchronized words from (ab)* to (abb)*(a)*, while preserving the

69:9

MFCS 2019

69:10

On Synthesis of Resynchronizers for Transducers

number of a’s and b’s. Such a transformation cannot be defined by any rational resynchronizer,
nor by a bounded regular resynchronizer.

There is however an intermediate case, between the functional and the full relational
case, for which a generalization of Theorem 4 is possible. This is the case of finite-valued
one-way transducers, that is, transducers that realize finite unions of partial functions.
The generalization exploits a result from [10], stated just below, that concerns synthesis
of bounded-delay resynchronizers. Formally, given two origin graphs G and G’ with the
same input and output projections, and given an input position y, we denote by delays /()
the difference between the largest x € dom(out(G)) such that orig(G)(x) = y and the
largest x’ € dom(out(G’)) such that orig(G')(z') = y. Given d € N, we define the d-delay
resynchronizer as the resynchronization that contains all pairs (G, G’) with the same input
and output projections and such that delayg o/ (y) € [—d, +d] for all input positions y. It is
easy to see that the d-delay resynchronizer is a special case of a rational resynchronizer.

» Theorem 6 (Theorem 13 in [10]). Let T1,T> be one-way transducers, where Ty is k-

ambiguous.® One can compute a d-delay resynchronizer Ry, for some d € N, such that Ty € T
implies Th S, Rq(T2).

As a corollary we can generalize Theorem 4 to k-valued one-way transducers, with the
only difference that the witnessing rational resynchronizer now satisfies Ty ¢, R(T%) rather
than Ty =, R(T2). We also recall that classical containment remains decidable for k-valued
one-way transducers, thanks to the fact that these can be effectively transformed to finite
unions of functional transducers [15]:

» Corollary 7. Let T1,Ts be k-valued one-way transducers. The following conditions are
equivalent, and decidable:

1. Ty ¢ Ts,

2. T1 <, R(Ty) for some resynchronization R,

3. T1 <, R(T») for some rational resynchronizer R.

Proof. We prove the only interesting implication from 1. to 3. Suppose that 77,75 are
k-valued one-way transducers such that 77 ¢ Tz. Using the decomposition theorem from [15],
we can construct a k-ambiguous one-way transducer Ty that is classically equivalent to Th
and such that Ty €, Ts. Since T} € Ty, by Theorem 6 we can compute a d-delay (in particular,
rational) resynchronizer R4 such that 77 €, R4(T5). Finally, since Ty S, To, T1 S, Ra(T3),
and Rq(T5) So Ra(T3), we get Th So Ra(T2). <

4.2 Resynchronizing arbitrary one-way transducers

In the previous section we saw how to synthesize a rational resynchronizer for functional, or
even finite-valued, one-way transducers. One may ask if finite-valuedness is necessary. We
already know that classical containment T ¢ T3 is undecidable [11, 12] for arbitrary one-way
transducers, whereas origin-containment T <, T5 is decidable [6]. Synthesis of a rational
resynchronizer R such that T} ¢, R(T») is a question that lies between the two questions
above. We show in this section that in the case of real-time transducers with unary output
alphabet, the latter question is equivalent to language-boundedness of one-counter automata,
a problem that we define below.

A transducer is said to be real-time if it produces bounded outputs for each consumed
input symbol. A one-counter automaton (OCA) is a non-deterministic pushdown automaton

2" A transducer is k-ambiguous if each input admits at most k successful runs.

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis

with a single stack symbol, besides the bottom stack symbol. In the definition of the
language-boundedness problem, we assume that the OCA recognizes a universal language;
this assumption is used in the reduction to the synthesis problem.

Language-boundedness of OCA.

Input: An OCA A over alphabet Q that recognizes the universal language L(A) = Q*.

Question: Does there exist some bound k such that every word over €2 can be accepted by
A with a run where the counter never exceeds k7

Our reductions between language-boundedness of OCA and synthesis of rational resynchron-
izers rely on the following result from [10], that implies that bounded-delay resynchronizers
are enough for synthesizing resynchronizers of real-time transducers:

» Theorem 8 (Theorem 11 in [10]). Let T1,T5 be real-time, one-way transducers and R a
rational resynchronizer such that Ty ¢, R(T2). One can compute a d-delay resynchronizer

Ry such that Ty €, Ra(Ts).

» Proposition 9. Synthesis of rational resynchronizers for real-time one-way transducers
with unary output alphabet and language-boundedness of OCA are inter-reducible problems.
Moreover, in the reductions, one can assume that the left hand-side transducer is functional.

Proof sketch. Given some real-time transducers 77,75, one constructs an OCA A that,
when the input encodes a successful run of 77, guesses and simulates an equivalent successful
run of T5. The OCA A keeps track in its counter, how ahead or behind is the partial output
produced by the encoded run of T} compared to the partial output produced by the simulated
run Ty, and accepts with an empty counter. Moreover, A accepts all inputs that do not
encode successful runs of T7: as soon as an error is detected, the counter is reset and frozen.
Thus, badly-formed encodings do not affect language-boundedness. Then, using Theorem
8, one shows that A is language-bounded if and only if T} €, R(T») for some rational (and
w.l.o.g. bounded-delay) resynchronizer R.

In the opposite reduction, one has to construct some real-time transducers 71,75 from a
given OCA A. Both transducers receive inputs over the same alphabet as A. T is a simple
functional transducer that outputs one symbol for each consumed input symbol. T5, instead,
guesses and simulates a run of A, and ouputs two symbols when the counter of the OCA
increases, and no symbol when it decreases. As before, one argues using Theorem 8 that A
is language-bounded if and only if 77 ¢, R(T%) for some rational resynchronizer R. |

The status of the problem of language-boundedness of OCA was open, to the best of our
knowledge. Piotr Hofman communicated to us the following unpublished result, which can
be obtained by a reduction from the undecidable boundedness problem for Minsky machines
(the proof is in the extended version of this paper):

» Theorem 10 ([13]). The language-boundedness problem for OCA is undecidable.

» Corollary 11. Synthesis of rational resynchronizers for (real-time) one-way transducers is
undecidable, and this holds even when the left hand-side transducer is functional.

4.3 Resynchronizing unambiguous, two-way transducers

We now focus on the resynchronizer synthesis problem for two-way transducers. Here the
appropriate class of resynchronizations is that of regular resynchronizers, since, differently
from rational resynchronizer, they can handle origin graphs induced by two-way transducers.

69:11

MFCS 2019

69:12

On Synthesis of Resynchronizers for Transducers

The situation is more delicate, as the synthesis problem does not reduce anymore to classical
containment. As an example, consider the transducer 77 that consumes an input of the
form a* from left to right, while copying the letters to the output, and a two-way transducer
T, that realizes the same function but while consuming the input in reverse. We have
that T} € T», but there is no resynchronizer R that satisfies 77 ¢, R(7T%) and that is
bounded and regular at the same time. As we will see, extending Theorem 4 to two-way
transducers is possible if we move beyond the class of regular resynchronizers and consider
bounded resynchronizers defined by Parikh automata. The existence of bounded regular
resynchronizers between functional two-way transducers can thus be seen as a strengthening
of the classical containment relation. Unfortunately, we are only able to solve the synthesis
problem of bounded regular resynchronizers for unambiguous two-way transducers, so the
problem remains open for functional two-way transducers.

First we introduce resynchronizers definable by Parikh automata. Formally, a Parikh
automaton is a finite automaton A = (X,Q, I, E, F, Z,S) equipped with a function Z : E - Z*
that associates vectors of integers to transitions and a semi-linear set S € Z*. A successful
run of A is a run starting in I, ending in F' and such as the sum of the weights of its
transitions belongs to S. We say that A is unambiguous if the underlying finite automaton
is. In this case, we can associate with each input u the vector A(u) € Z* associated with the
unique accepting run of the underlying automaton of A on w, if this exists, otherwise A(u)
is undefined. By taking products, one can easily prove that unambiguous Parikh automata
are closed under pointwise sum and difference, that is, given A; and As, there are A, and
A_ such that A,(u) = A1 (u) + Az(u) and A_(u) = A1(u) — A2(u) for all possible inputs w.
Hereafter, we will only consider languages recognized by unambiguous Parikh automata with
the trivial semilinear set S = {0%}.

By a slight abuse of terminology, we call Parikh resynchronizer any resynchronizer with
parameters whose relations move, and next, ., are recognizable by unambiguous Parikh
automata, and ipar and opar are regular. We naturally inherit from regular resynchronizers
the notion of boundedness. Moreover, we introduce another technical notion, that will be
helpful later. Given a resynchronizer R, we define its target set as the set of all pairs (u, 2)
where w is an input, z is a position in it, and (w,y, z) € move, for some annotation w of u
with input parameters, some input position y, and some output type . Similarly, we define
the target set of a two-way transducer T as the set of all pairs (u, z), where u = in(G) and
z € orig(G)(z) for some x € dom(out(G)) and some origin graph G realized by T'.

» Theorem 12. Let T, T5 be two unambiguous two-way transducers. The following conditions

are equivalent:

1. ThcTs,

2. Ty <, R(Ts) for some resynchronization R,

3. T1 =, R(T») for some 1-bounded Parikh resynchronizer R whose target set coincides with
that of T1 and where, each relation next. .+ is regular if move, and move,: are regular.

Proof sketch. We focus on the implication from 1. to 3., as the other implications are trivial.
Similarly to the one-way case, to synthesize a resynchronizer, we need to annotate the input
with the (unique) successful runs of 77 and T5 (if these runs exist). Since 77,75 are two-way,
the natural way of doing it is to use crossing sequences. Thanks to the encoding of runs by
means of crossing sequence, we can describe any output position x with a pair (y,), where
y is the origin of x (according to Ty or T5) ¢ is the number of output positions before x with
the same origin y. Note that ¢ is bounded, as the transducers here are unambiguous, and
hence every input position is visited at most a bounded number of times.

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis

Given T =T} or T =T5 and an index 7, one can construct a unambiguous Parikh automaton
Ar; that, when receiving as input a word u with a marked position y, produces the unique
position z that is encoded by the pair (y,), according to the transducer T. It follows that, for
every output element correctly annotated with v = (a, 1,), the relation move, can be defined
as {(y,2) | An,,i(y) — Ar, j(2) = 0}, which is a unambiguous Parikh language. This almost
completes the definition of the Parikh resynchronizer R. The remaining components of R
consists of suitable relations next, ., that check correctness of the annotations. In particular,
the relations next, ., are obtained by pairing a regular property with properties defined in
terms of the prior relations move, and move,, and hence next, . is regular whenever move,
and move,: are. <

We now explain how to exploit the above characterization to decide bounded regular
resynchronizer synthesis problem. We provide the following characterization, whose proof
follows from the previous theorem:

» Theorem 13. Let T1,Ty be two unambiguous two-way transducers such that Ty € T5,
and let R be the bounded Parikh resynchronizer obtained from Theorem 12. The following
conditions are equivalent:

1. Risa reqular resynchronizer,

2. T1 S, R(T>) for some bounded regular resynchronizer R,

3. T1 ¢, R(T») for some 1-bounded regular resynchronizer R,

4. Ty =, R(Ty) for some 1-bounded regular resynchronizer R with the same target set as T1.

Theorems 12 and 13 together provide a characterization of those pairs of unambiguous
two-way transducers 77,75 for which there is a bounded regular resynchronizer R such
that T1 €, R(T%). The effectiveness of this characterization stems from the decidability of
regularity of languages recognized by unambiguous Parikh automata [7]. This result requires
unambiguity and uses Presburger arithmetics to determine for each (simple) loop a threshold
such that iterating the loop more than the threshold always satisfies the Parikh constraint.
The language of the Parikh automaton is regular if and only if every (simple) loop has such
a threshold. We thus conclude:

» Corollary 14. Given two unambiguous two-way transducers Ty, T, one can decide whether
there is a regular resynchronizer R such that Ty €, R(T3).

5 Conclusions

We studied two notions of resynchronization for transducers with origin, called rational
resynchronizer and regular resynchronizer. Rational resynchronizers are suited for transform-
ing origin graphs of one-way transducers, while regular resynchronizers can be applied also
to origin graphs of two-way transducers. We showed that the former are strictly included
in the latter, even when restricting the origin graphs to be one-way. We then studied the
following variant of containment problem for transducers: given two transducers 17,75,
decide whether T} ¢, R(T») for some (rational or regular) resynchronizer R. That is, if
all origin graphs of 77 can be seen as some origin graph of 75 transformed according to R,
then compute such a resynchronizer R. This problem can be seen as a synthesis problem
of resynchronizers. It is shown that the synthesis problem is decidable when 77,75 are
finite-valued one-way transducers and the resynchronizer is constrained to be rational, as well
as when 77,75 are unambiguous two-way transducers and the resynchronizer is allowed to
be regular (and bounded). In the one-way setting, the problem turns out to be undecidable

69:13

MFCS 2019

69:14

On Synthesis of Resynchronizers for Transducers

already for unrestricted (non-functional) transducers and rational resynchronizers. In the
two-way setting, the decidability status remains open already when the transducers are not
unambiguous (be them functional or not). Concerning this last point, however, we recall that
the synthesis problem becomes undecidable as soon as we consider regular resynchronizers

that are unbounded, as in this case the problem is at least as hard as classical containment.

—— References

1

10

11

12

13
14

15

Rajeev Alur and Pavel Cerny. Expressiveness of streaming string transducer. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), volume 8 of LIPIcs, pages 1-12. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2010.

Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput.
Seci., 292:45-63, 2003.

Meera Blattner and Tom Head. Single-valued a-transducers. J. Comput. and System Sci.,
15:310-327, 1977.

Mikolaj Bojanczyk. Transducers with origin information. In International Colloguium on
Automata, Languages and Programming (ICALP’14), number 8572 in LNCS, pages 26-37.
Springer, 2014.

Mikolaj Bojanczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which Classes of
Origin Graphs Are Generated by Transducers? In International Colloquium on Automata,
Languages and Programming (ICALP’17), volume 80 of LIPIcs, pages 114:1-114:13, 2017.
Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-Equivalence of
Two-Way Word Transducers Is in PSPACE. In TARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’18), volume 122 of LIPIcs,
pages 1-18. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2018.

Michaél Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained Automata.
Int. J. Found. Comput. Sci., 24(7):109971116, 2013. doi:10.1142/50129054113400339.
Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language- Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

Calvin C. Elgot and Jorge E. Mezei. On Relations Defined by Generalized Finite Automata.
IBM Journal of Research and Development, 9(1):47-68, 1965. doi:10.1147/rd.91.0047.
Emmanuel Filiot, Ismaél Jecker, Christof Léding, and Sarah Winter. On Equivalence and
Uniformisation Problems for Finite Transducers. In International Colloquium on Automata,
Languages and Programming (ICALP’16), volume 55 of LIPIcs, pages 125:1-125:14, 2016.
Patrick C. Fischer and Arnold L. Rosenberg. Multi-tape one-way nonwriting automata. J.
Comput. and System Sci., 2:88-101, 1968.

T. V. Griffiths. The unsolvability of the equivalence problem for lambda-free nondeterministic
generalized machines. J. ACM, 15(3):409-413, 1968.

Piotr Hofman. Personal communication.

Oscar H. Ibarra. The unsolvability of the equivalence problem for e-free NGSM’s with unary
input (output) alphabet and applications. SIAM J. of Comput., 7(4):524-532, 1978.
Andreas Weber. Decomposing a k-Valued Transducer into k& Unambiguous Ones. ITA,
30(5):379-413, 1996.

https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1147/rd.91.0047

	Introduction
	Preliminaries
	Resynchronizations
	Synthesis of Resynchronizers
	Resynchronizing functional, one-way transducers
	Resynchronizing arbitrary one-way transducers
	Resynchronizing unambiguous, two-way transducers

	Conclusions

