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Abstract
We consider notions of freeness and ambiguity for the acceptance probability of Moore-Crutchfield
Measure Once Quantum Finite Automata (MO-QFA). We study the distribution of acceptance
probabilities of such MO-QFA, which is partly motivated by similar freeness problems for matrix
semigroups and other computational models. We show that determining if the acceptance probabilities
of all possible input words are unique is undecidable for 32 state MO-QFA, even when all unitary
matrices and the projection matrix are rational and the initial configuration is defined over real
algebraic numbers. We utilize properties of the skew field of quaternions, free rotation groups,
representations of tuples of rationals as a linear sum of radicals and a reduction of the mixed
modification Post’s correspondence problem.
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1 Introduction

Measure-Once Quantum Finite Automata (MO-QFA) were introduced in [24] as a natural
quantum variant of probabilistic finite automata. The model is defined formally in Section 3,
but briefly a MO-QFA over an alphabet Σ is defined by a three tuple Q = (P, {Xa|a ∈ Σ}, u)
where P is a projection matrix, Xa is a complex unitary matrix for each alphabet letter
a ∈ Σ and u is a unit length vector with respect to the Euclidean (`2) norm. Given an input
word w = w1 · · ·wk ∈ Σ∗, then the acceptance probability fQ : Σ∗ → R of w under Q is
given by

fQ(w) = ||PXwk
· · ·Xw1u||

2
.

The related model of Probabilistic Finite Automata (PFA) with n states over an alphabet
Σ is defined as P = (x, {Ma|a ∈ Σ},y) where y ∈ Rn is the initial probability distribution
(unit length under `1 norm); x ∈ {0, 1}n is the final state vector and each Ma ∈ Rn×n is a
stochastic matrix. For a word w = w1w2 · · ·wk ∈ Σ∗, we define the acceptance probability
fP : Σ∗ → R of P as:

fP(w) = xTMwk
Mwk−1 · · ·Mw1y.

For any λ ∈ [0, 1] and automaton A (either PFA or QFA) over alphabet Σ, we define a
cut-point language to be: L≥λ(A) = {w ∈ Σ∗|fA(w) ≥ λ}, and a strict cut-point language
L>λ(A) by replacing ≥ with >. The (strict) emptiness problem for a cut-point language is
to determine if L≥λ(A) = ∅ (resp. L>λ(A) = ∅).
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The MO-QFA model is very restricted due to unitarity constraints and can recognize
only group languages (those regular languages whose syntactic monoid is a group [10]).
Whereas the emptiness question for a strict cut-point stochastic languages is undecidable,
it surprisingly becomes decidable for MO-QFA [9]. The decidability is established via the
compactness of the group generated by unitary matrices: a compact algebraic group has
a finite polynomial basis, and the decision procedure is then based on Tarski’s quantifier
elimination theorem [9].

Another surprising undecidability result was already manifested in [9]: The emptiness
problem for non-strict (allowing equality) cut-point languages is undecidable. The sizes
of the automata exhibiting undecidability were subsequently improved in [17]. As the
aforementioned examples illuminate, the border between decidability and undecidability may
be crossed with a minor modification to the model or premises.

Underlying each linear automata model are matrices, which represent the dynamics of the
computational model as input symbols are read. For deterministic/nondeterministic finite
automata, the underlying matrices are binary matrices; for weighted automata, the matrices
are integer; for probabilistic automata the matrices are stochastic (the set of columns of each
matrix should be a probability distribution); and for quantum finite automata, the matrices
are unitary (the set of columns of each matrix should be orthonormal).

Reachability problems for matrix semigroups have attracted a great deal of attention
over the past few years. Typically in such problems we are given a finite set of generating
matrices G forming a semigroup S = 〈G〉 and we ask some question about S. As an example,
it was shown even back in 1970 by M. Paterson that the mortality problem for integer matrix
semigroups is undecidable in dimension three [25]. In this problem, G ⊆ Z3×3 and we ask
whether the zero matrix belongs to S = 〈G〉. It was later shown that the similar identity
problem (does the identity matrix belong to the semigroup generated by a given set of
generating matrices) is also undecidable for four-dimensional integral matrices [5].

A related problem is the freeness problem for integer matrices – given a set G ⊆ Fn×n,
where F is a semiring, determine if G is a code for the semigroup generated by G (i.e., if every
element of 〈G〉 has a unique factorization over elements of G). It was proven by Klarner et al.
that the freeness problem is undecidable over N3×3 in [20] and this result was improved by
Cassaigne et al. to hold even for upper-triangular matrices over N3×3 in [11].

There are many open problems related to freeness in 2× 2 matrices; see [12, 13, 14] for
good surveys. The freeness problem over H2×2 is undecidable [4], where H is the skew-field
of quaternions (in fact the result even holds when all entries of the quaternions are rationals).
The freeness problem for two upper-triangular 2× 2 rational matrices remains open, despite
many partial results being known [13].

The freeness problem for matrix semigroups defined by a bounded language was recently
studied. Given a finite set of matrices {M1, . . . ,Mk} ⊆ Qn×n, we define a bounded language
of matrices to be of the form: {M j1

1 · · ·M
jk

k |ji ≥ 0 where 1 ≤ i ≤ k}.
The freeness problem for such a bounded language of matrices asks if there exists a choice

of these variables such that j1, . . . , jk, j′1, . . . , j′k ≥ 0, where at least one ji 6= j′i such that
M j1

1 · · ·M
jk

k = M
j′1
1 · · ·M

j′k
k in which case the bounded language of matrices is not free. This

problem was shown to be decidable when n = 2, but undecidable in general [13].
In a similar vein, we may study the vector freeness and ambiguity problems, where we

are given a finite set of matrices G ⊆ Fn×n and a vector u ∈ Fn. The ambiguity problem
is to determine whether there exists two matrices M1,M2 ∈ S = 〈G〉 with M1 6= M2 such
that M1u = M2u and the freeness problem is to determine the uniqueness of factorizations
of {Mu|M ∈ S} i.e., does Mi1 · · ·Miku = Mj1 · · ·Mjk′u, where each Mt ∈ G, imply that
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k = k′ and Mir = Mjr for 1 ≤ r ≤ k? It should be noted that these (related but distinct)
problems are more difficult to solve than freeness for matrix semigroups, since by multiplying
matrix M1 and M2 with u, some information may be lost. The motivation for such a problem
is that many linear dynamic systems/computational models are defined in this way. The
freeness question now asks whether starting from some initial point, we have two separate
computational paths which coincide at some later point, or else whether every configuration
starting from u is unique. Such vector ambiguity and freeness questions were studied in [3]
and the problems were shown to be undecidable when S ⊆ Z4×4, or when S ⊆ Q3×3. The
NP-completeness of the vector ambiguity and freeness problems for SL(2,Z) was recently
shown in [21] (where SL(2,Z) is the special linear group of 2× 2 matrices).

Whilst vector reachability questions are interesting from the point of view of dynamical
systems, many computational models have the notion of a projection being taken at the
end, in order to determine whether a computation path is successful or not. This usually
takes the form of defining a partition of configurations into accepting or nonaccepting states.
This leads to the notion of scalar reachability (also known as half-space reachability [15]),
which may be defined in terms of two vectors, u and v, where we now study the set of
scalars {uTMv|M ∈ S}. The scalar ambiguity question then asks whether or not this set
of scalars is unique i.e., does there exist two matrices M1,M2 ∈ S with M1 6= M2 such
that uTM1v = uTM2v? The difficulty with extending the undecidability result for vector
reachability is that all information about each matrix M needs to be stored within a single
scalar value uTMv in a unique way.

In [1], the freeness problem (defined formally in Section 3.1) for 4-state weighted and
6-state probabilistic automata was shown to be undecidable together with results concerning
the related ambiguity problem. The undecidability result was shown to hold even when
the input words come from a bounded language, thus the matrices appear in some fixed
order, and are taken to an arbitrary power. The problem can also be stated in terms of
formal power series: given a formal power series r, determine if r has two equal coefficients.
This problem was studied in [22] and Theorem 3.4 of [18]. As mentioned above, several
reachability problems for PFA (such as emptiness of cut-point languages) are known to be
undecidable [26], even in a fixed dimension [8, 17]. The reachability problem for PFA defined
on a bounded language (i.e., where input words are from a bounded language which is given
as part of the input) was shown to be undecidable in [2]. We may note that the scalar
freeness and ambiguity problems are a similar concept to the threshold isolation problem
which asks whether a given cutpoint may be approached arbitrarily closely and which is
known to be undecidable [6, 8].

It is therefore natural to ask whether the freeness and ambiguity problems are undecidable
for MO-QFA. This problem appears more difficult to prove than for weighted/probabilistic
automata, since the acceptance probability of a MO-QFA Q has the form fQ(w) =

∣∣∣∣PXRu
∣∣∣∣2

and it is thus difficult to encode sufficient information about the matrix X within fQ(w)
to guarantee uniqueness of matrices from G. We show that freeness and ambiguity are
undecidable for 32 (resp. 33) state MO-QFA by using an encoding of the mixed modification
Post’s Correspondence Problem and a result related to linear independence of rationals of
a basis of squarefree radicals as well as techniques from linear algebra and properties of
quaternions.

MFCS 2019
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2 Notation

Let Σ = {x1, x2, . . . , xk} be a finite set of letters called an alphabet. A word w is a finite
sequence of letters from Σ, the set of all words over Σ is denoted Σ∗ and the set of nonempty
words is denoted Σ+. The empty word is denoted by ε. We use |u| to denote the length
of a word u and thus |ε| = 0. For two words u = u1u2 · · ·ui and v = v1v2 · · · vj , where
u, v ∈ Σ∗, the concatenation of u and v is denoted by u · v (or by uv for brevity) such that
u · v = u1u2 · · ·uiv1v2 · · · vj . Word uR = ui · · ·u2u1 denotes the mirror image or reverse of
word u. A subset L of Σ∗ is called a language. A language L ⊆ Σ∗ is called a bounded
language if and only if there exist words w1, w2, . . . , wm ∈ A+ such that L ⊆ w∗1w

∗
2 · · ·w∗m.

Given an alphabet Σ as above, we denote by Σ−1 the set {x−1
1 , . . . , x−1

k }, where each x−1
i is

a new letter with the property that xix−1
i = x−1

i xi = ε are the only identities of the group
〈Σ ∪ Σ−1〉. A word w = w1w2 · · ·wi ∈ (Σ ∪ Σ−1)∗ is called reduced if there does not exist
1 ≤ j < i such that wj+1 = w−1

j ; i.e., no two consecutive letters are inverse.
Given any two rings R1 and R2 we use the notation R1 ↪→ R2 to denote a monomorphism

i.e., an injective homomorphism between R1 and R2. Given a finite set G, we use the notation
〈G〉 (resp. 〈G〉gp) to denote the semigroup (resp. group) generated by G.

Semirings and quaternions
We denote by N the natural numbers, Z the integers, Q the rationals, C the complex numbers
and H the quaternions. We denote by C(Q) the complex numbers with rational parts, by
H(Q) the quaternions with rational parts and by AR the real algebraic numbers.

Given any semiring F we denote by Fi×j the set of i× j matrices over F. We denote by
ei the i’th basis vector of some dimension (which will be clear from the context).

In a similar style to complex numbers, a rational quaternion ϑ ∈ H(Q) can be written
ϑ = a+bi+cj+dk where a, b, c, d ∈ Q. To ease notation let us define the vector: µ = (1, i, j,k)
and it is now clear that ϑ = (a, b, c, d) · µ where · denotes the inner or “dot” product.

Quaternion addition is simply the componentwise addition of elements. It is well known
that quaternion multiplication is not commutative (hence they form a skew field). Multiplic-
ation is completely defined by the equations i2 = j2 = k2 = −1 , ij = k = −ji, jk = i = −kj
and ki = j = −ki. Thus for two quaternions ϑ1 = (a1, b1, c1, d1)µ and ϑ2 = (a2, b2, c2, d2)µ,
we can define their product as ϑ1ϑ2 = (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 −
d1c2)i + (a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k.

In a similar way to complex numbers, we define the conjugate of ϑ = (a, b, c, d) · µ by
ϑ = (a,−b,−c,−d) · µ. We can now define a norm on the quaternions by ||ϑ|| =

√
ϑϑ =√

a2 + b2 + c2 + d2. Any non zero quaternion has a multiplicative (and obviously an additive)
inverse [23]. The other properties of being a skew field can be easily checked.

A unit quaternion (norm 1) corresponds to a rotation in three dimensional space [23].

Linear Algebra
Given A = (aij) ∈ Fm×m and B ∈ Fn×n, we define the direct sum A ⊕ B and Kronecker
product A⊗B of A and B by:

A⊕B =
[
A 0m,n

0n,m B

]
, A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...
am1B am2B · · · ammB

 ,
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where 0i,j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are
commutative in general. Given a finite set of matrices G = {G1, G2, . . . , Gm} ⊆ Fn×n, 〈G〉 is
the semigroup generated by G. We will use the following notations:

m⊕
j=1

Gj = G1 ⊕G2 ⊕ · · · ⊕Gm,
m⊗
j=1

Gj = G1 ⊗G2 ⊗ · · · ⊗Gm.

Given a single matrix G ∈ Fn×n, we inductively define G⊗k = G ⊗ G⊗(k−1) ∈ Fnk×nk

with G⊗1 = G as the k-fold Kronecker power of G. Similarly, G⊕k = G⊕G⊕(k−1) ∈ Fnk×nk

with G⊕1 = G. The following properties of ⊕ and ⊗ are well known; see [19] for proofs.

I Lemma 1. Let A,B,C,D ∈ Fn×n. We note that:
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) and (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C), thus A ⊗ B ⊗ C and
A⊕B ⊕ C are unambiguous.
Mixed product properties: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and (A ⊕ B)(C ⊕ D) =
(AC)⊕ (BD).
If A and B are unitary matrices, then so are A⊕B and A⊗B.

Given two vectors u ∈ Fn1 and v ∈ Fn2 , we define u ⊕ v ∈ Fn1+n2 as u ⊕ v =
(u1, . . . , un1 , v1, . . . , vn2).

3 Quantum Finite Automata and Undecidability

I Definition 2. A measure-once n-state quantum automaton (MO-QFA) over a k-letter
alphabet Σ is a triplet (P, {Xa | a ∈ Σ}, u), where P ∈ Cn×n is a projection, each Xa ∈ Cn×n
is a unitary matrix (where rows form an orthonormal set), and u ∈ Cn is a unit-length vector.

A morphism Σ∗ → 〈Xa〉 is defined as w = ai1 . . . ait 7→ Xw
def= Xi1 . . . Xit and the

acceptance probability of a MO-QFA Q is defined as fQ(w) = ||PXwRu||2. We use the
reverse of the word w, denoted wR, so that w1 is applied first, then w2 etc.

3.1 Ambiguity and Freeness for QFA
Consider a finite set of unitary matrices G = {X1, X2, . . . , Xk} ⊂ Cn×n, a projection matrix
P ∈ Zn×n and a unit column vector u ∈ Cn. Let Q = (P,G, u) be a QFA and define Λ(Q)
be the set of scalars such that Λ(Q) = {||PXu||2 ;X ∈ 〈G〉}. If for λ ∈ Λ(Q) there exists
a unique matrix X ∈ 〈G〉 such that λ = ||PXu||2, then we say that λ is unambiguous with
respect to Q. We call Λ(Q) unambiguous if every λ ∈ Λ(Q) is unambiguous.

An acceptance probability λ ∈ Λ(Q) is called free with respect to Q if

λ = ||PXi1Xi2 · · ·Ximu||
2 =

∣∣∣∣PXj1Xj2 · · ·Xjm′u
∣∣∣∣2 ,

where each Xik , Xjk′ ∈ G for 1 ≤ k ≤ m and 1 ≤ k′ ≤ m′ implies that m = m′ and each
ik = jk for 1 ≤ k ≤ m. We call Λ(Q) free if every λ ∈ Λ(Q) is free.

I Problem 3 (QFA Scalar Ambiguity). Given a Quantum Finite Automaton Q, is Λ(Q)
unambiguous?

I Problem 4 (QFA Scalar Freeness 1). Given a Quantum Finite Automaton Q, is Λ(Q) free?

1 We may also call this the injectivity problem for QFA; does there exist two distinct words w1, w2 ∈ Σ∗
such that fQ(w1) = fQ(w2)?

MFCS 2019
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I Example 5. Let A =
( 3

5
4
5

− 4
5

3
5

)
, P =

(
1 0
0 0

)
and u = (1, 0)T . We thus see that

Q = (P, {A}, u) is a unary 2-state QFA. Note that A represents rotations of the Euclidean
plane of angle arccos(3/5), and thus we see that fQ(ak) = ||PAku||2 is dense in [0, 1] for
k ∈ N. Since the angle of rotation of A is an irrational multiple of π, then every acceptance
probability of Q is unique, and thus Q is both free and unambiguous.

We show that freeness and ambiguity are undecidable for MO-QFA in Section 5. The
reduction is from the Mixed Modification Post’s Correspondence Problem, now defined.

I Problem 6 (Mixed Modification PCP (MMPCP)). Given set of letters Σ = {s1, . . . , s|Σ|},
binary alphabet Σ2, and pair of homomorphisms h, g : Σ∗ → Σ∗2, the MMPCP asks to decide
whether there exists a word w = x1 · · ·xk ∈ Σ+, xi ∈ Σ such that

h1(x1)h2(x2) · · ·hk(xk) = g1(x1)g2(x2) · · · gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj 6= gj .

I Theorem 7. [11] - The Mixed Modification PCP is undecidable for |Σ| ≥ 9.

I Definition 8. We call an instance of the (MM)PCP a Claus instance if the minimal
solution words are of the form w = s1x2x3 · · ·xk−1s|Σ|, where x2, . . . , xk−1 ∈ Σ− {s1, s|Σ|},
i.e., the minimal solution words must start with letter s1, end with letter s|Σ|, and all other
letters are not equal to s1 or s|Σ|.

In fact most proofs of the undecidability of (MM)PCP have this property [16]. Claus instances
can be useful for decreasing the resources required for showing certain undecidability results,
and we use this property later.

I Theorem 9. [16] - Mixed Modification PCP is undecidable for Claus instances, when
|Σ| ≥ 9.2

4 A mapping from arbitrary words to rational unitary matrices

Let Σn = {x1, x2, . . . , xn} be an n-letter alphabet for some n > 0. We begin by deriving a
monomorphism γ : Σ∗n ↪→ Q4×4 such that γ(w) is a unitary matrix for any w ∈ Σ∗n. The
mapping γ will be a composition of several monomorphisms.

Given alphabet Σn = {x1, x2, . . . , xn}, we now show that there exists a monomorphism
γ : Σ∗n ↪→ Q4×4 where γ(w) is unitary for all w ∈ Σ∗n.

We first describe a monomorphism γ1 from an arbitrary sized alphabet to a binary
alphabet. We then show monomorphism γ2 from a binary alphabet to unit quaternions, and
conclude by injectively mapping such quaternions to unitary matrices.

γ1: Let Σ2 = {a, b} be a binary alphabet. We define γ1 : Σ∗n ↪→ Σ∗2 by γ1(xk) = akb for
1 ≤ k ≤ n. It is immediate that γ1 is injective.

γ2: Define mapping γ2 : Σ∗2 ↪→ H(Q) by γ2(a) =
( 3

5 ,
4
5 , 0, 0

)
· µ and γ2(b) =

( 3
5 , 0,

4
5 , 0
)
· µ.

It is known that γ2 is an injective homomorphism [4] since such quaternions represent
rotations about perpendicular axes by a rational angle (not equal to 0,± 1

2 ,±1), thus
γ2 : Σ∗2 ↪→ H(Q) and γ2(w1) = γ2(w2) for w1, w2 ∈ Σ∗2 implies that w1 = w2 [27].

2 The result in [16] states undecidability for |Σ| ≥ 7 since they fix the first/last letters of a potential
solution.
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γ3: Define γ3 : H(Q) ↪→ Q4×4 by:

γ3((r, x, y, z) · µ) =


r x y z

−x r z −y
−y −z r x

−z y −x r

 . (1)

It is well known that γ3 is a monomorphism in this case. Injectivity is clear, and using
the rules of quaternion multiplication shows that γ3 is a homomorphism.

We finally define γ = γ3 ◦ γ2 ◦ γ1 and thus by the above reasoning γ : Σ∗n ↪→ Q4×4 is an
injective homomorphism. Note that the matrix γ(w) for a word w ∈ Σ∗n contains quite a lot
of redundancy, and in fact can be uniquely described by just four elements (the top row)
as is shown by the matrix in Eqn. (1). Of course, these four elements simply correspond to
the four elements of the quaternion used in the construction of γ. Note also that γ(w) is a
unitary matrix since γ2 generates a unit quaternion (of norm 1) in each case.

Using γ, we can now find matrices A,B ∈ Q4×4, such that γ(w) ∈ 〈{A,B}〉gp for all
w ∈ Σ∗; i.e., the value of γ(w) lies within the semigroup generated by {A,B}. This will
prove useful later since we may reason about the structure of this freely presented semigroup.

I Definition 10. Given Σ2 = {a, b}, then let:

A = γ3(γ2(a)) =


3
5

4
5 0 0

− 4
5

3
5 0 0

0 0 3
5

4
5

0 0 − 4
5

3
5

 , B = γ3(γ2(b)) =


3
5 0 4

5 0
0 3

5 0 − 4
5

− 4
5 0 3

5 0
0 4

5 0 3
5

 ,

and define Γ′ = 〈{A,B}〉 ⊂ Q4×4, which is a free semigroup (freely generated by {A,B}).
All elements in the range of γ thus belong to Γ′. We define Γ ⊂ Γ′ by Γ = {γ(w)|w ∈ Σ∗n}.

5 Freeness and ambiguity for QFA with radicals

In order to prove that the ambiguity and freeness problems are undecidable for QFA defined
over rationals (with real algebraic initial vector), we require the following (folklore) theorem.
This will essentially allow us to uniquely represent a tuple of rationals as a linear sum of
radicals. For completeness, we will show a simple proof of this theorem using the theory of
field extensions.

I Theorem 11 ([7]). The (finite) set

S = {
√
m1, . . . ,

√
mn : mi are coprime square-free numbers}

is linearly independent over Q.

Proof. Define Ek = Q(√m1, . . . ,
√
mk), so E0 = Q and E1 = Q(√m1). Clearly [E0 : Q] =

1 = 20, and [E1 : Q] = 21. As each element √mi satisfies a quadratic equation over Q, the
field extension degree [En : Q] is at most 2n. The theorem is proven if we can show that
[En : Q] = 2n.

Assume the induction hypothesis true for values less than k. We will prove it true for
k + 1, as well, i.e., [Ek+1 : Ek] = 2. For this aim, we must demonstrate that √mk+1 /∈ Ek,
so let us assume the contrary, that
√
mk+1 ∈ Ek = Ek−1(

√
mk),

MFCS 2019
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hence √mk+1 = a+ b
√
mk, where a, b ∈ Ek−1 Then

mk+1 = a2 +mkb
2 + 2ab

√
mk.

If ab 6= 0, then √mk ∈ Ek−1, which implies that [Ek : Ek−1] = 1, a contradiction.
If a = 0, then √mk+1 = b

√
mk, and hence √mk

√
mk+1 = bmk ∈ Ek−1. By the induction

hypothesis we then have

[Q(
√
m1, . . . ,

√
mk−1,

√
mkmk+1) : Q] = 2k,

but since the last extending element belongs to Ek−1, the extension degree cannot be more
than 2k−1, a contradiction. Here we actually need the assumption that the numbers are
coprime, since otherwise mkmk+1 would not necessarily be squarefree.

If b = 0, then √mk+1 ∈ Ek−1, and as above, the induction hypothesis gives

[Q(
√
m1, . . . ,

√
mk−1,

√
mk+1) : Q] = 2k,

but as the last extending element belongs to Ek−1, the extension degree cannot be more
than 2k−1, a contradiction. J

For example, given p1, p2, q1, q2 ∈ Q, then the equality p1
√

2 + q1
√

3 = p2
√

2 + q2
√

3 is
true iff p1 = p2 and q1 = q2.

The following technical lemma concerns the free group S generated by G = {γ2(a), γ2(b)}
and will crucially allow us to characterise elements of S which differ only in the signs of one
or more of their imaginary components. To define this lemma we require a nonstandard
inversion function defined on elements of S = 〈G〉gr. Since S is free, any reduced (i.e., not
containing consecutive inverses) qw ∈ S can be uniquely written in the form

qw = γ2(a)k0γ2(b)k1γ2(a)k2 · · · γ2(a)kn−2γ2(b)kn−1γ2(a)kn ,

where k0, kn ∈ Z and k1, . . . , kn−1 ∈ Z−{0}, i.e., an alternating product of either positive or
negative powers of γ2(a) and γ2(b) which may start and end with either element. We define
the following three functions:
i) λa(qw) = γ2(a)−k0γ2(b)k1γ2(a)−k2 · · · γ2(a)−kn−2γ2(b)kn−1γ2(a)−kn ;
ii) λb(qw) = γ2(a)k0γ2(b)−k1γ2(a)k2 · · · γ2(a)kn−2γ2(b)−kn−1γ2(a)kn ;
iii) λa,b(qw) = γ2(a)−k0γ2(b)−k1γ2(a)−k2 · · · γ2(a)−kn−2γ2(b)−kn−1γ2(a)−kn .
These three functions thus invert all γ2(a) elements in a product for λa, all γ2(b) ele-
ments in a product for λb and both γ2(a) and γ2(b) elements in a product for λa,b. As
an example, if qw = γ2(a)3γ2(b)2γ2(a)−4γ2(b), then λa(qw) = γ2(a)−3γ2(b)2γ2(a)4γ2(b),
λb(qw) = γ2(a)3γ2(b)−2γ2(a)−4γ2(b)−1 and λa,b(qw) = γ2(a)−3γ2(b)−2γ2(a)4γ2(b)−1. Biz-
zare as such a definition may appear, it allows us to exactly characterize those elements of S
which differ only in the sign of one or more of their imaginary components, as we now show.

I Lemma 12. Given a quaternion qw = γ2(w) = (r, x, y, z) · µ ∈ 〈γ2(a), γ2(b)〉gr with
w = w1w2 · · ·w|w|, each wi ∈ (Σ2 ∪ Σ−1

2 ) and Σ2 = {a, b}, then:
i) qwR = γ2(wR) = (r, x, y,−z) · µ;
ii) λa(qw) = (r,−x, y,−z) · µ;
iii) λb(qw) = (r, x,−y,−z) · µ;
iv) λa,b(qw) = (r,−x,−y, z) · µ.
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Proof. We proceed via induction. For the base case, when w = ε, then qw = (1, 0, 0, 0) · µ
and qwR = λa(qw) = λb(qw) = λa,b(qw) = (1, 0, 0, 0) · µ and so the properties (trivially) hold.
For the induction hypothesis, assume i) – iv) are true for qw. We handle each property
individually.
i) By assumption, qwR = (r, x, y,−z)·µ. Since γ2(a) =

( 3
5 ,

4
5 , 0, 0

)
·µ and γ2(b) =

( 3
5 , 0,

4
5 , 0
)
·µ,

by the rules of quaternion multiplication, we see that:

γ2(a) · qw = 1
5 (3r − 4x, 3x+ 4r, 3y − 4z, 3z + 4y) · µ,

qwR · γ2(a) = 1
5 (3r − 4x, 3x+ 4r, 3y − 4z,−3z − 4y) · µ

Note that the fourth component is negated as expected. In a similar way, we also see that:

γ2(b) · qw = 1
5 (3r − 4y, 3x+ 4z, 3y + 4r, 3z − 4x) · µ,

qwR · γ2(b) = 1
5 (3r − 4y, 3x+ 4z, 3y + 4r,−3z + 4x) · µ

with negated fourth element. Since γ2(a−1) =
( 3

5 ,−
4
5 , 0, 0

)
·µ and γ2(b−1) =

( 3
5 , 0,−

4
5 , 0
)
·µ,

then the property of the fourth element being negated is also clearly true for γ2(c−1) · qw and
qwR · γ2(c−1) for c ∈ {a, b}. The other properties are similar, we give a brief proof of each.
ii) By the induction hypothesis, λa(qw) = (r,−x, y,−z) · µ and thus:

qw · γ2(a) = 1
5 (3r − 4x, 3x+ 4r, 3y + 4z, 3z − 4y) · µ,

λa(qw) · γ2(a)−1 = 1
5 (3r − 4x,−3x− 4r, 3y + 4z,−3z + 4y) · µ,

with the second and fourth components negated as required. Also,

qw · γ2(a)−1 = 1
5 (3r + 4x, 3x− 4r, 3y − 4z, 3z + 4y) · µ,

λa(qw) · γ2(a) = 1
5 (3r + 4x,−3x+ 4r, 3y − 4z,−3z − 4y) · µ,

as expected. Right multiplication of qw and λa(qw) by either γ2(b) or γ2(b)−1 retains the
given structure, as is not difficult to calculate.
iii) By the induction hypothesis, λb(qw) = (r, x,−y,−z) · µ and thus:

qw · γ2(b) = 1
5 (3r − 4y, 3x− 4z, 3y + 4r, 3z + 4x) · µ,

λb(qw) · γ2(b)−1 = 1
5 (3r − 4y, 3x− 4z,−3y − 4r,−3z − 4x) · µ,

with the third and fourth components negated as required. Also,

qw · γ2(b)−1 = 1
5 (3r + 4y, 3x+ 4z, 3y − 4r, 3z − 4x) · µ,

λb(qw) · γ2(b) = 1
5 (3r + 4y, 3x+ 4z,−3y + 4r,−3z + 4x) · µ,

as expected. Right multiplication of qw and λb(qw) by either γ2(a) or γ2(a)−1 retains the
given structure, as is not difficult to calculate.
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iv) By the induction hypothesis, λa,b(qw) = (r,−x,−y, z) · µ and thus:

λa,b(qw) · γ2(a) = 1
5 (3r + 4x,−3x+ 4r,−3y + 4z, 3z + 4y) · µ,

λa,b(qw) · γ2(b) = 1
5 (3r + 4y,−3x− 4z,−3y + 4r, 3z − 4x) · µ,

λa,b(qw) · γ2(a)−1 = 1
5 (3r − 4x,−3x− 4r,−3y − 4z, 3z − 4y) · µ,

λa,b(qw) · γ2(b)−1 = 1
5 (3r − 4y,−3x+ 4z,−3y − 4r, 3z + 4x) · µ,

with the second and third components of each product negated with relation to qw · γ2(a)−1,
qw · γ2(b)−1, qw · γ2(a) and qw · γ2(b) (resp.) as required. J

The following lemma allows us to represent a quaternion (and its corresponding rotation
matrix) by using only absolute values and will be crucial later.

I Lemma 13. Given a word w ∈ Σ∗k, then γ2(γ1(w)) = (r, x, y, z) · µ is uniquely determined
by (|r|, |x|, |y|, |z|). All matrices γ(w) ∈ Γ are similarly uniquely determined by

(|γ(w)1,1|, |γ(w)1,2|, |γ(w)1,3|, |γ(w)1,4|),

i.e., by the absolute values of each element of the top row of the matrix.

Proof. Another way to state this Lemma is that if we have u = u1u2 · · ·ut and v = v1v2 · · · vt′
with each ui, vi ∈ Σ∗k, such that γ2(γ1(u)) = (a1, b1, c1, d1) · µ, γ2(γ1(v)) = (a2, b2, c2, d2) · µ
and (|a1|, |b1|, |c1|, |d1|) = (|a2|, |b2|, |c2|, |d2|), then t = t′ and ui = vi for all 1 ≤ i ≤ t. A
similar property holds for the top row of the unitary matrices when applying γ3 to these
elements. We shall now prove this.

By definition, γ2 : Σ∗2 ↪→ H(Q) maps to a free monoid S of H(Q) generated by G =
{γ2(a), γ2(b)} with γ2(a) =

( 3
5 ,

4
5 , 0, 0

)
· µ and γ2(b) =

( 3
5 , 0,

4
5 , 0
)
· µ. As shown in Section 4,

γ2 ◦ γ1 : Σ∗n ↪→ H(Q); i.e., γ2 ◦ γ1 is an injective homomorphism. Let Γ′ = {γ2(γ1(w′))|w′ ∈
Σ∗n} ⊆ H(Q). Clearly then, Γ′ is freely generated by {γ2(γ1(w′))|w′ ∈ Σn} by the injectivity
of γ2 ◦ γ1.

Let qw = γ2(γ1(w)) = (r, x, y, z) · µ ∈ Γ′ ⊆ S and define Qw = {(±r,±x,±y,±z) · µ},
thus |Qw| = 16. We will now show that for all q′ ∈ Qw − {qw} then q′ 6∈ Γ′ which proves the
lemma.

Since (unit) quaternion inversion simply involves negating all imaginary components,
then using the identities of Lemma 12, we can derive that q−1

w = (r,−x,−y,−z), λa(qw)−1 =
(r, x,−y, z) and λb(qw)−1 = (r,−x, y, z) which we summarize in the following table.

qw (r, x, y, z)µ q−1
w (r,−x,−y,−z)µ

λa(qw) (r,−x, y,−z)µ λa(qw)−1 (r, x,−y, z)µ

λb(qw) (r, x,−y,−z)µ λb(qw)−1 (r,−x, y, z)µ

λa,b(qw) (r,−x,−y, z)µ qwR (r, x, y,−z)µ

We might also notice other identites, such as qwR = λa,b(qw)−1 which is clear from the
definition of λa,b. Note that this table covers 8 elements of Qw.

Note qw belongs (by definition) to Γ′ = (γ2(a)+γ2(b))+ = {γ2(γ1(w′))|w′ ∈ Σn} ⊆ S.
Since 〈γ2(a), γ2(b)〉gr generates a free group, this means that no reduced element of S is
equal to a product with a nontrivial3 factor γ2(a)−1 or γ2(b)−1. Each element in the above

3 Reduced meaning the element contains no consecutive inverse elements and nontrivial meaning we
ignoring any such element adjacent to its multiplicative inverse.
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table contains at least one nonreducible factor γ2(a)−1 or γ2(b)−1, excluding qw and qwR .
Note however that qwR trivially does not belong to Γ′ = (γ2(a)+γ2(b))+ since it necessarily
begins with nonreducible factor γ2(b).

Finally, to cover the remaining 8 elements of Qw, we consider the free group Sgr =
〈{γ2(a), γ2(b)}|∅〉gr. For any q′w ∈ Sgr then −q′w 6∈ Sgr since Sgr is free. This holds since if
−q′w ∈ S, then −1 ∈ S (because (q′w)−1 ∈ S), which gives a nontrivial identity −12 = 1 in
Sgr (a contradiction).

This covers all sixteen possible elements of Qw and shows that qw is the only member of
Qw belonging to Γ′. By the definition of γ3 : H(Q) ↪→ Q4×4, then also all matrices γ(w) ∈ Γ
are uniquely determined by (|γ(w)1,1|, |γ(w)1,2|, |γ(w)1,3|, |γ(w)1,4|) as required. J

I Theorem 14. The freeness problem for measure-once quantum finite automata is undecid-
able for 32 states over an alphabet of size 17.

Proof. We will encode an instance (h, g) of the mixed modification Post’s Correspondence
Problem into a finite set of matrices so that if there exists a solution to the instance then
there exists some scalar which is nonfree, otherwise every scalar is free.

Let Σ = {x1, x2, . . . , xn−2} and ∆ = {xn−1, xn} be distinct alphabets and h, g : Σ∗ → ∆∗
be an instance of the mixed modification PCP and let Σn = Σ ∪∆. The naming convention
will become apparent below, but intuitively we will be applying γ, from Section 4 to both
the input and output alphabets.

Recall that we showed the injectivity of γ in Section 4, and thus have a monomorphism
γ : Σ∗n ↪→ Q4×4. We define a function ϕ : Σ∗n × Σ∗n ↪→ Q32×32 by

ϕ(w1, w2) =
4⊕
j=1

γ(w1)⊕
4⊕
j=1

γ(w2).

We may note that ϕ(w1, w2) remains a unitary matrix since γ(wi) is unitary and the direct
sum of unitary matrices is unitary. Define G = {ϕ(xi, h(xi)), ϕ(xi, g(xi))|xi ∈ Σ} ⊂ Q32×32.

Let pi denote the i’th prime number and define ui = 4
√
pi · ei ∈ AR

4, vi = 4
√
p4+i · ei ∈ AR

4

for 1 ≤ i ≤ 4 (AR
4 denotes a 4-tuple of elements from AR) and u′ =

⊕4
j=1 uj⊕

⊕4
j=1 vj ∈ AR

32.
Now, we normalise this vector so that u = u′√∑8

i=1
√
pi

∈ AR
32, with u a unit vector. Note

that each element of u is a real algebraic number. Let P1 = 1 ⊕ 03 where 03 is the 3 × 3
zero matrix, thus P1 has a 1 in the upper left element and zero elsewhere. Then define
P = P⊕8

1 ∈ Q32×32. Note that P 2 = P and P is a projection matrix.

We are now ready to define our QFA Q by the triple Q = (P,G, u) and prove the claim
of the theorem.

Let X = Xi1 · · ·Xip = ϕ(xi1 , fi1(xi1)) · · ·ϕ(xip , fip(xip)), with fik ∈ {g, h} for 1 ≤ k ≤ p
be one factorization of a matrix X ∈ G. Define x = xi1 · · ·xip and f(x) = fi1(xi1) · · · fip(xip).
Then we see that:
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||PXu||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⊕4

j=1(P1γ(x)uj)⊕
⊕4

j=1(P1γ(f(x))vj)√∑8
i=1
√
pi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
⊕4

j=1(P1γ(x) 4
√
pj · ej)⊕

⊕4
j=1(P1γ(f(x)) 4

√
p4+j · ej)√∑8

i=1
√
pi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3)

=


√√√√√∑4

j=1(γ(x)1,j 4
√
pj)2 +

∑4
j=1(γ(f(x))1,j 4

√
p4+j)2√∑8

i=1
√
pi


2

(4)

=
∑4
j=1 γ(x)2

1,j
√
pj +

∑4
j=1 γ(f(x))2

1,j
√
p4+j√∑8

i=1
√
pi

. (5)

Assume that matrix X has two distinct factorizations X = Xi1 · · ·Xip = Xj1 · · ·Xjq
∈ G+

and p 6= q or Xik 6= Xjk
for some 1 ≤ k ≤ p, such that

||PXu||2 =
∣∣∣∣PXi1 · · ·Xipu

∣∣∣∣2 =
∣∣∣∣PXj1 · · ·Xjq

u
∣∣∣∣2 ,

and thus Λ(Q) is not free. Let X = Xj1 · · ·Xjq
= ϕ(xj1 , f

′
j1

(xj1)) · · ·ϕ(xjq
, f ′jq

(xjq
)), with

f ′jk
∈ {g, h} for 1 ≤ k ≤ q and define x′ = xj1 · · ·xjq and f ′(x′) = f ′j1

(xj1) · · · f ′jq
(xjp)

with each f ′jk
∈ {g, h}. Note that in Eqn. (5) the denominator is constant and thus when

determining equality
∣∣∣∣PXi1 · · ·Xipu

∣∣∣∣2 =
∣∣∣∣PXj1 · · ·Xjq

u
∣∣∣∣2 we may ignore it. By Lemma 13,

each γ(w) is uniquely determined by the absolute value of the top four elements of the matrix
(e.g. |γ(w)1,j | for 1 ≤ j ≤ 4). Since each pj is squarefree, for 1 ≤ j ≤ 8, then by Theorem 11,
the following equation is satisfied if and only if |γ(x)| = |γ(x′)| and |γ(f(x))| = |γ(f ′(x′))|:

4∑
j=1

γ(x)2
1,j
√
pj +

4∑
j=1

γ(f(x))2
1,j
√
p4+j

=
4∑
j=1

γ(x′)2
1,j
√
pj +

4∑
j=1

γ(f ′(x′))2
1,j
√
p4+j .

Finally, note that γ(x) = γ(x′) if and only if x = x′. As before, let x = xi1 · · ·xip , then
γ(f(x)) = fi1(xi1) · · · fip(xip) = fj1(xi1) · · · fjp

(xip) = γ(f ′(x′)) with some fik 6= fjk
for

1 ≤ k ≤ p if and only if the instance of the MMPCP has a solution.
If the MMPCP is undecidable for Claus instances with an alphabet of size n′ (see

Theorem 9), then the undecidability of the current theorem holds for |G| ≥ 2n′. We now
prove that the result holds for |G| ≥ 2n′ − 1. Let Σ = {x1, . . . , xn′}. Since h, g is a Claus
instance, any solution word w is of the form w = x1w

′xn′ , with w′ ∈ (Σ− {x1, xn′})∗. By
symmetry, we may assume that h1 = h and by the proof in [16], gi = g and hi = h for all
1 ≤ i ≤ t. Clearly then, one of h(xn′) and g(xn′) is a proper suffix of the other (assume that
g(xn′) is a suffix of h(xn′); the opposite case is similar). Now, redefine u′ = γ(xn′ , g(xn′))u,
remove the matrix corresponding to g(xn′) from G and redefine the matrix corresponding
to h(xn′) by h′(xn′) = γ(xn′ , h(xn′)g(xn′)−1). Since g(xn′) is a proper suffix of h(xn′), then
h(x′n)g(x′n)−1 is the prefix of h(xn′) after removing the common suffix with g(xn′). This
means that an ambiguous scalar only exists if there exists a solution to the instance of
MMPCP and we had reduced the alphabet size by 1. MMPCP is undecidable for instances
of size 9 (Theorem 9), thus the undecidability holds for MO-QFA with 32 states and an
alphabet size of 17. J
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I Corollary 15. The ambiguity problem for measure-once quantum finite automata is unde-
cidable for 33 states over an alphabet of size 17.

Proof. The corollary follows from the proof of Theorem 14. We notice that if there exists
a solution to the encoded instance of the MMPCP, then some matrix X has two distinct
factorizations over G and therefore there exists two distinct matrix products giving the
same scalar. Our technique in this corollary is to make these two factorizations produce
distinct matrices X1 and X2, such that they still lead to the same scalar. This is simple to
accomplish by redefining the projection matrix P as P ′ = P ⊕ 0, redefining the initial vector
u as u′ = u⊕ 0 and for each matrix M ∈ G − {ϕ(x1, h(x1))}, we redefine M as M ′ = M ⊕ 1
and let ϕ(x1, h(x1)) be redefined as ϕ(x1, h(x1)) ⊕ −1. In this case, any matrix product
containing ϕ(x1, h(x1))⊕−1 will have −1 in the bottom right element, otherwise the bottom
right element is 1. Since we encode a Claus instance of MMPCP, one factorization has −1
in this case, and the other has 1, and thus we always have distinct matrices. If no solution
exists, then each matrix leads to a unique scalar anyway.

Note that we increased the number of states of the MO-QFA by 1 and also note that the
acceptance probability is unaffected by the above modifications since the projection matrix
was increased by a zero row/column. J

6 Conclusion

An interesting question is whether Theorem 14 can be shown to hold when the initial vector is
rational, rather than real algebraic. We can prove this result if a certain open problem related
to rational packing functions holds (does there exist a polynomial which maps n-tuples of
rationals to a single rational injectively). Such a function is well known for integer values
(the Cantor polynomial), but not for rational n-tuples. This seems a difficult problem to
approach however, and thus we leave the following open problem.

I Open Problem 16. Can undecidability of the ambiguity and freeness problems for MO-
QFA be shown when the initial vector, projection matrix and all unitary matrices are over
rationals?

We also note that in [1] the ambiguity and freeness problems for weighted finite automata
and probabilistic finite automata were shown to be undecidable even when the input words
were restricted to come from a given letter monotonic language, which is a restriction of
bounded languages of the form x∗1x

∗
2 · · ·x∗k where each xi is a single letter of the input

alphabet. The undecidability result of [1] used an encoding of Hilbert’s tenth problem, which
seems difficult to encode into unitary matrices and thus we pose the following open problem.

I Open Problem 17. Can the undecidability of the ambiguity and freeness problems for
MO-QFA be shown when the input word is necessarily from a given letter monotonic language?
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