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Abstract
This paper investigates induced Steiner subgraphs as a variant of the classical Steiner trees, so as to
compactly represent the (exponentially many) Steiner trees sharing the same underlying induced
subgraph. We prove that the enumeration of all (inclusion-minimal) induced Steiner subgraphs is
harder than the well-known Hypergraph Transversal enumeration problem if the number of terminals
is not fixed. When the number of terminals is fixed, we propose a polynomial delay algorithm for
listing all induced Steiner subgraphs of minimum size. We also propose a polynomial delay algorithm
for listing the set of minimal induced Steiner subgraphs when the number of terminals is 3.

2012 ACM Subject Classification Mathematics of computing → Graph enumeration

Keywords and phrases Graph algorithms, enumeration, listing and counting, Steiner trees, induced
subgraphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.73

Funding This work was partially supported by JST CREST grant number JPMJCR1401 and
JPMJCR18K3 Japan, by JSPS KAKENHI Grant Number JP19K20350 Japan, and by MIUR,
Italy. Mamadou M. Kanté is supported by French Agency for Research under the GraphEN
project (ANR-15-CE40-0009).

1 Introduction

Paths and cycles are the basic components for connecting nodes in undirected graphs. It is
natural to ask, for a given subset of nodes, how to connect them in a component of minimal
cost, where the cost is, e.g., the total sum of the weights on the edges or the number of nodes.

Classical instances of this problem follow two main patterns [7]. Some are edge-centric com-
ponents in (usually) weighted graphs, such as shortest paths/cycles, spanning trees, Steiner
trees, k-edge-connected components. Others are node-centric components in unweighted
graphs, such as induced paths, chordless cycles (holes), k-node-connected components.
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The above is not actually a dichotomy of edge- vs. node-centric components as, for
example, node-weighted Steiner trees lay at the cross of the two. Nevertheless, it seems that
most of the literature has been devoted to edge-centric components.

For instance, in the rich research area on Steiner trees, the online compendium in [12]
reports over 60 variations of the Steiner tree problem, but just a couple are node-centric
(survivable network design problem [3] and node weighted generalized Steiner tree [11]). The
interest in the Steiner tree problem and its variants is well rooted in real world applications.
Some examples can be seen in the 11th DIMACS challenge [8], which aimed at identifying
a benchmark for algorithms and data generators, with emphasis on network optimization,
computer-aided design, phylogenetic tree reconstruction and other applications. It is also of
great interest in implementation challenges of the parameterized community, e.g., [16], thus
we believe it is worth investigating its natural extensions in node-centric scenarios.

Induced Steiner subgraphs. Special node-centric components have been introduced by
Telle and Villanger [17] as a generalization of the induced paths.1 In this paper, we study
these components, hereafter renamed induced Steiner subgraphs as they seem to us a natural
extension to the scenario of Steiner trees. Given an undirected graph G = (V (G), E(G)) and
a subset W ⊆ V (G) of t = |W | nodes, called terminals, we want a set of nodes, minimal
under inclusion, that connects all nodes in W .

I Definition 1 (Induced Steiner Subgraph). Given W ⊆ V (G), an Induced Steiner Subgraph
of G is a set of nodes S ⊆ V (G) \W such that the induced subgraph G[S ∪W ] is connected.
We say that S is a (inclusion wise) Minimal Induced Steiner Subgraph (miss) if there is no
S′ ⊂ S such that G[S′ ∪W ] is connected. The nodes in S are called Steiner points.2

An example of a miss is given in Figure 1, where we illustrate also its connection with the
classical notion of Steiner tree. Similarly to how Steiner trees generalize paths between two
nodes, it can be noted that miss’s generalize induced paths, which correspond to miss’s for
|W | = 2. On the other extreme, for W = V (G), Steiner trees correspond to spanning trees
of the graph, while there would be a single empty miss corresponding to the whole graph.

Definition 1 makes sense in domains where nodes are preferred to edges in components,
for example in network design [11] and graph database query optimization [2,14]. In these
cases, rather than a minimal set of edges that ensures connection (i.e. a tree), a minimal
set of connected nodes and their induced subgraph (i.e. a miss) are sought for. Note that
the notion of induced Steiner subgraph can be easily extended to graphs with weights on
the nodes, and miss’s correspond to solutions of minimal cost (otherwise their cost could be
reduced by removing nodes). Our approach focuses on unweighted graphs, where Steiner
trees also have many applications [12].

Results. In this paper we consider the problem of output-sensitive enumeration of miss’s,
which corresponds to bounding the cost to a polynomial of the input and output size.

In Section 3 we show that the problem is harder than the well-known Trans-Enum
problem [10] for an arbitrary number of terminals. To classify its output-sensitive

1 In [17], these are called minimal T-connecting Sets and are motivated by the study of the 2-Disjoint
Connected Subgraphs problem which is the following: given a connected graph G = (V, E) and two
disjoint subsets of terminal vertices Z1, Z2 ⊆ V , decide whether there exists a partition A1, A2 of V (G),
with Z1 ⊆ A1, Z2 ⊆ A2 and G[A1], G[A2] both connected.

2 We abuse the terminology a bit and refer by S also to the induced subgraph G[S ∪W ], as we enumerate
all feasible S’s while keeping the same set W . This simplifies notation in the rest of the paper.
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Figure 1 A miss (left) and two Steiner trees corresponding to the same miss (center and right).
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Figure 2 Left: A graph with Ω(3n/3) minimum Steiner trees and miss’s. Right: A graph with 1
miss and nn−2 minimum Steiner trees (by Cayley’s formula).

enumeration complexity, we consider the problem when the number of terminals t = |W |
is fixed. Concerning this, we show that the Extension problem (see Section 3.2) is
NP-complete already for t ≥ 2, meaning that the sub-problems of any backtracking
algorithm [10] should be carefully designed to avoid incurring instances of NP-complete
problems.
In this scenario, we propose a polynomial delay algorithm in Section 4 when the number
of terminals is t = 3. (Note that the delay is the time required to list the “next” solution.)
This is the first non-trivial case, as for t = 1 the problem is not defined, and for t = 2 it
is the well-known problem of listing induced paths.
Furthermore, we investigate in Section 2 the relationships of miss’s and Steiner trees,
proving properties which allow us to use the algorithm of Dourado et al. [9] as a subroutine
in order to list just the miss’s of minimum size with output-sensitive guarantees, for a
bounded number t of terminals.

Discussion. Given a miss S for W , we observe that each spanning tree in the induced
subgraph G[S ∪W ] is a Steiner tree for W . Also the vice versa holds, so this could be
useful for the packing edge-disjoint Steiner tree problem, which received attention in recent
years [1, 4, 13] and consists of finding a largest possible set of Steiner trees that do not share
edges or nodes.

If we look for an individual min-size Steiner subgraph for W (i.e., with the least number
of nodes), it can be obtained as the subgraph induced by the Steiner points of a min-size
Steiner tree for W . A different situation occurs instead if we look for all min-size induced
Steiner subgraphs for W . A number of deep results for Steiner trees could be employed:
for example, [9] proposes an algorithm for listing them with linear delay, assuming that
the number t = |W | of terminals is O(1); [15] introduces a general enumeration framework
for matroids with certain properties, which can be applied to generalized Steiner trees,
containing as special cases minimal Steiner trees and minimal Steiner forests. Unfortunately,
this approach gives rise over and over to the same min-size Steiner subgraph in our case, as
there can be exponentially many Steiner trees for the same set of Steiner points (Fig. 2(left)).

Here comes an interesting feature of a miss, as it is a compact representation of many
Steiner trees. Observing that a min-size Steiner subgraph for W is a miss for W of minimum
size, we can thus list the miss’s for W twice: the first time to discover the minimum size, and
the second time to single out the miss’s of that size (i.e. min-size induced Steiner subgraphs).

MFCS 2019
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This approach can be dramatically more efficient than listing min-size Steiner trees to catch
min-size induced Steiner subgraphs (see Fig. 2 (right)). On the other hand, the results in
this paper (see Section 2.2) show the latter to be a viable approach if W has bounded size.

As for weighted graphs, we observe that the min-edge-weight Steiner tree problem reduces
to min-node-weight Steiner subgraph problem.3 Once we can list miss’s efficiently, we can
also find min-node-weight induced Steiner subgraphs and thus min-edge-weight Steiner trees.

In summary, finding miss’s subsumes finding min-node-weight, min-edge-weight, and min-
size Steiner trees, and becomes a sort of “universal” problem for this family of connectivity
problems on graphs that compactly represent these trees. This motivates the problem of
listing miss’s efficiently, which is central to this paper.

Previous results on miss enumeration were already obtained in [17] from an input-sensitive
point of view:4 the authors proved that the number of miss’s for t terminals, in any graph
of n nodes, is at most

(
n−t
t−2
)
· 3 n−t

3 , and propose an input-sensitive algorithm running in
O∗(

(
n−t
t−2
)
· 3 n−t

3 ) total time, where the O∗ notation ignores factors polynomial in n. Here we
consider the opposite direction, i.e., output-sensitive enumeration.

Preliminaries. We refer to [7] for our graph terminology. Let G = (V (G), E(G)) be an
undirected graph, where V (G) is its node set and E(G) its edge set. N(v) is the set of
neighbors of a node v. When G is clear from the context we will refer to node and edge
sets simply as V and E. For a set of nodes A ⊆ V (G), let E[A] ⊆ E(G) be the set of edges
whose endpoints are both in A, and denote by G[A] = (A,E[A]) the graph thus obtained,
also called the subgraph induced by A. A subgraph is a forest if it is acyclic, and a tree if it
is a connected forest. A node v ∈ I is a leaf if v has degree 1 in G[I]. Removing a leaf from
a tree yields a tree. Regarding the Steiner Tree/Subgraph problem, we will refer to the set
of terminal nodes as W , and to its size |W | as t. We recall that an induced Steiner subgraph
is a set of nodes S such that G[S ∪W ] is connected, and is minimal if inclusion-minimal.
For a miss S, we call junctions the nodes in S ∪W which, in G[S ∪W ], have either degree
≥ 3, or are terminals with degree ≥ 2.

The notions for induced Steiner subgraphs and miss given in Definition 1 can be applied
to any subset of the terminals in W : for example, S is a miss for X ⊆ W if G[S ∪X] is
connected and so on. Without loss of generality, we can assume that no two terminals in
W are connected by an edge: otherwise we can contract that edge into a single node and
eliminate the resulting duplicated edges, preserving a one-to-one correspondence between
solutions of the old graph and the new. In the following, given a set of nodes S, let W (S)
be the set of terminals in W that have neighbors in S. Note that S is an induced Steiner
subgraph for X = W (S) as long as G[S ∪W (S)] is connected. Let us make the following
observation before continuing.

I Fact 1. Let S be a miss for a set W of terminals. Then, G[S ∪W ] is not 2-connected.
Moreover, G[S ∪W ] cannot contain a leaf vertex v ∈ S.

Proof. Because no two terminals are adjacent, if G[S ∪W ] is 2-connected, then |S| ≥ 2.
By definition of 2-connectedness, for any vertex v ∈ S, we have that G[(S \ {v}) ∪W ] is
connected, contradicting the minimality of S.

If G[S ∪W ] contains a leaf vertex v ∈ S, then G[(S \ {v}) ∪W ] is still connected as no
path can contain v as an internal vertex, contradicting the minimality of S. J

3 It suffices to replace each each edge {x, y} with weight w by two edges {x, z} and {z, y} where z is a
new node of weight w and x and y have weight zero [11]

4 In exact exponential-time algorithms, a input-sensitive cost measures the running time in the input
length.
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2 Properties of Steiner Subgraphs and Listing Minimum Steiner
Subgraphs

We are interested in this section in the enumeration of miss’s of minimum size, and refer
to them as minimum miss’s. In this section we prove some useful properties of miss’s in
general, and some special properties of minimum miss’s, to outline the relationship between
minimum Steiner trees and miss’s (Section 2.1) and to get an output-sensitive algorithm for
minimum miss’s (Section 2.2).

2.1 Relationship with minimum Steiner trees
We first prove that, for a given set W of terminals, one minimum miss corresponds to many
Steiner trees (Lemma 2). We then prove an upper bound (in terms of t) for the number
of junctions and the degree of the nodes involved in a miss. We highlight here that both
upper bounds hold for any miss, minimum or not. Aside of telling that miss’s have strong
topological properties, these bounds allow us to obtain the converse of Lemma 2, that is how
to turn miss’s into Steiner trees (Lemma 5).

One-to-many correspondence to minimum Steiner trees. A minimum Steiner tree T for
the set W of terminals is clearly a spanning tree of the subgraph G[M ∪W ] induced by the
set M = V (T ) \W of nodes plus the terminals, and thus M is a minimum miss for W . On
the other hand, consider any minimum miss M for W : each spanning tree T of G[M ∪W ] is
actually a minimum Steiner tree for W . For example, the two trees in Figure 1 correspond
to the same miss.

I Lemma 2. Given a set W of terminals and a minimum miss M for W , any spanning tree
T of the induced subgraph G[M ∪W ] is a minimum Steiner tree for W .

Proof. All the terminals in W are connected through T by definition of spanning tree, so
T is a Steiner tree, not necessarily of minimum size (and the terminals are not necessarily
all in its leaves). Suppose by contradiction that there exists another Steiner tree T ′ of size
smaller than T (where T ′ can use nodes or edges outside G[M ∪W ]). Then the subgraph
G[M ′ ∪W ] induced by the set M = V (T ′) \W of nodes of T ′ would be a miss with fewer
nodes than G[M ∪W ], contradicting the fact that the latter is a minimum miss. J

Upper bound on the number of junctions. Consider a miss S (not necessarily minimum),
and recall that a junction is either a node of S with degree at least 3 in the induced subgraph
G[S ∪W ], or a terminal in W with degree at least 2 in G[S ∪W ]. Although S is minimal, it
can contain arbitrarily long induced paths independently of the number t of terminals. Still,
we can bound the number of junctions in terms of t.

I Lemma 3. Given a set W of terminals, any miss S contains at most 3t junctions.

Proof. By induction on the number of terminals. Recalling that t = |W |, if t ≤ 3 then the
claim is trivially true (see also Fact 2). Assume then that t ≥ 4.

Consider the induced subgraph G[S ∪W ] ignoring the rest of G. In order to prove our
claim, we replace each junction terminal v′ with a new node v, and link v′ and v together
with an edge, so that v′ becomes a leaf terminal and v is a junction. Now, as no junction
can have degree 2, we replace each induced path x1, x2, . . . , x` by an edge {x1, x`} when x1
and x` have degree 6= 2.

MFCS 2019
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Figure 3 A miss with 12 terminals and 30 junctions. Suitably enlarging the structure sets the
junctions/terminals ratio arbitrarily close to 3.

Let G′ be the resulting graph. Note that G′ and G[S ∪W ] have the same number of
terminals and junctions by construction. As a result, it suffices to prove our claim using G′.
Note also that each node v in G′ has degree 1 if and only if it is a terminal, and at least 3
otherwise. If G′ is a tree, then the claim holds as the number of internal nodes of degree 3 in
a tree is upper bounded by the number of leaves.

Let us assume that G′ is not a tree. By Fact 1 we know that G[S ∪W ] is not 2-connected
and by construction G′ is also not 2-connected. Let T be the tree of bi-connected components
of G′ (called blocks). Because all non-terminal nodes in G′ are junctions, each leaf block
C of T is an edge {v, w} with v a junction node and w a terminal because all the terminal
nodes are non-adjacent and a leaf block has at most one non-terminal node. Let C be a
block all of whose neighbors, except possibly 1, are leaf blocks. Such a block always exists,
e.g., we could take a non-leaf block of maximum depth after rooting the tree arbitrarily. If
except C, all the other blocks are leaf blocks (meaning that T is a star), then we are done
because C is 2-connected, meaning any node removal does not disconnect it, meaning in
turn any node must be connected to a leaf-terminal in order for it not to be redundant, so C
contains at most t nodes. Otherwise, T is not a star and then for all possible choices for C
let us take the one with biggest size. Let w1, . . . , wp be the terminals adjacent to junction
nodes in C. Clearly, by the choice of C, p ≥ 2 because either C has size ≥ 3, and at least
two of the junction nodes are adjacent to terminals, or C has size 2 and at least one of the
junction nodes is adjacent to two terminals. Let v be the junction node of C belonging to
another block that is not a leaf block (v exists by the choice of C). Notice that C has size at
most p+ 1 because except possibly v, all the junction nodes in C are adjacent to at least
one terminal. Let G′′ = G′ \ ({w1, . . . , wp} ∪ (C \ {v})) and consider v as a terminal in G′′.
It is not hard to check that G′′ is a miss for (W \ {w1, . . . , wp}) ∪ {v}. By induction G′′ has
at most 3(t− p+ 1) junctions because G′′ has t− p+ 1 terminals. And then G has at most
3(t− p+ 1) + (p+ 1) junctions, which is bounded by 3t. J

Furthermore, Figure 3 shows Lemma 3 to be tight (up to constant additive factors).

Upper bound on the node degree. Although any miss S can be arbitrarily large independ-
ently of the number t of terminals, we prove that any node cannot have degree larger than t
in G[S ∪W ].

I Lemma 4. Given a set W of terminals and any miss S for W and any node v ∈ S ∪W ,
|N(v) ∩ (S ∪W )| ≤ t.
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Proof. Let G′ be the induced subgraph G[S ∪W ]. Let us start with the case v ∈ S. For
each w ∈ W , consider one shortest path between v and w in G′, and let S′ be the set of
nodes containing all the nodes on these t shortest paths, excluding the nodes in W . Note
that S′ ⊆ S by definition. As they are all shortest paths (hence induced paths with no
shortcut edges), v can only be adjacent to the next node in each such path, and no other:
thus |N(v)∩ (S′ ∪W )| ≤ t. Since all terminals are connected to each other using these paths,
clearly S′ is a Steiner induced subgraph. Since S is minimal, the only option is S′ = S. The
case v ∈W follows along the same lines. J

Removing edges to get a minimum Steiner trees. Consider any miss S and select a subset
of edges in the induced subgraph G[S ∪W ] to obtain a Steiner tree T . Lemma 3 and 4 imply
the result that any T can be obtained from S by removing at most 3t2 edges from G[S ∪W ].
Note that the number of edges in G[S ∪W ] could be much larger, but most of them are
incident to degree-2 nodes of G[S ∪W ], and should be taken to form T (otherwise some
terminals in W would be disconnected from the others). This property holds for the special
case of minimum miss, and hence minimum Steiner tree, immediately giving the following
result.

I Lemma 5. Given a set W of terminals and any miss S for W , every Steiner tree T
contained in G[S ∪W ] can be obtained by removing at most 3t2 edges.

2.2 Listing minimum Steiner subgraphs
The properties of Steiner subgraphs seen so far allow us to design an algorithm for listing
minimum Steiner subgraphs, parameterized in t. Consider a minimum miss M , and the
subgraph GM = G[M ∪W ]. By Lemma 2 each spanning tree of GM is a minimum Steiner
tree. By Lemma 5, GM is turned into a spanning tree by removing α edges, for some α ≤ 3t2.
A closer look gives a suggestion on how to do that: even if the number of nodes and edges in
GM can be much larger than 3t2, there are at most 3t junctions by Lemma 3, with degree
greater than 2; the rest of the (possibly many) nodes have all degree 2, and thus their
incident edges must be taken to keep GM connected. Hence, the α edges are incident to
these junctions, each of degree at most t in GM by Lemma 4, thus giving at most 3t2 edges
to select from. As there are at most 23t2 possible choices for the α edges, there are O(23t2)
minimum Steiner trees yielding the same minimum Steiner subgraph M .

We exploit this observation by using [9] to list minimum Steiner trees of G with O(n2m+
nt−2) preprocessing time and space, and O(n) delay. To avoid duplications, as the same
minimum miss M can be obtained O(23t2) times with distinct minimum Steiner trees, we
simply define a “canonical spanning tree” T ∗ of M as an arbitrary spanning tree obtained
from GM with some deterministic procedure: when the algorithm in [9] yields T , we output
its corresponding minimum miss only if T = T ∗, and discard it otherwise (note that this
computation takes an additional O(m) time per solution).

I Theorem 6. Minimum Steiner subgraphs of G for a terminal set W can be listed with
O(n2m+ nt−2) preprocessing time and space, in O(m · 23t2) time per solution.

3 Negative Results on Minimal Steiner Subgraphs

As for the classical Steiner tree problem, finding just one miss is easy, but finding the smallest
miss, i.e., the one having minimum number of nodes, is NP-hard: as we saw in Section 2 any
spanning tree of a miss with k nodes is a Steiner tree with exactly k − 1 edges. This means

MFCS 2019
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that there is a one-to-many correspondence between miss and Steiner trees of smallest size,
and that finding a smallest miss solves the unweighted Steiner tree problem.

Concerning listing miss’s, in Section 3.1 we show that this problem is actually harder
than listing minimal hypergraph transversals. In particular, this result implies that an
output-polynomial algorithm for miss’s enumeration would imply an output-polynomial
algorithm for minimal hypergraph transversals, which is a long-standing open problem (see
the survey [10] for more information on the problem).

In Section 3.2 we investigate the reason behind the difficulty of listing miss’s, showing
that classical techniques for listing algorithms which make use of the so-called extension
problem are difficult to apply, as the extension problem for miss’s is actually NP-complete.
In particular, we prove that deciding whether a partial miss can be completed into a miss is
NP-complete. Surprisingly, our reduction shows that this result holds even if the number of
terminals, i.e. t, is bounded. This means that a general output-polynomial algorithm for
miss’s enumeration which works for any number of terminals and which is polynomial both
in the size of the graph and the number of terminals should rely on different techniques.

3.1 Listing reduction from Hypergraph Transversal Enumeration

We show that the problem of listing miss’s is at least as hard as a well-known problem,
known as Hypergraph Transversal Enumeration (in short Trans-Enum). The latter
problem deals with a hypergraph H = (X,H), where H ⊆ 2X is the set of hyperedges. A
transversal for H is a hitting set S ⊆ X for the hyperedges in H, namely, S ∩ e 6= ∅ for
each hyperedge e ∈ H. A transversal S is (inclusion-wise) minimal if no other S′ ⊂ S is a
transversal. The Trans-Enum problem asks to list all the minimal transversals for H, and
the existence of an output-polynomial algorithm for it is a long-standing open question in
the area of enumeration algorithms. Indeed, the latter would provide also the solutions for
many enumeration problems arising in several diverse areas such as data-mining, integer
programming, biology, databases, game theory, learning theory, and so on (see [10]).

In the following we show how to transform an instance of Trans-Enum, i.e. an hyper-
graph H, to an instance of miss’s enumeration, i.e. a graph G = (V,E) and a set W ⊆ V of
terminals, so for each minimal transversal of H there is a miss for W in G, and vice versa.

I Lemma 7. There is a one-to-one reduction from Trans-Enum to miss’s enumeration
(even in split graphs).

Proof. We refer to the bipartite formulation of Trans-Enum, that is we consider the
bipartite graph B whose vertices are partitioned into X and H, and whose edges represent
the membership of each vertex of X in the hyperedges of H in which it is involved, and
we look at the minimal subsets of X hitting all the vertices of H. We transform B into an
instance of miss’s enumeration, i.e. a graph G and a set W , in the following way: choose
G as a copy of B, add to G edges between all pairs of vertices of X, i.e., forming a clique,
and choose as W the vertices in H. G is by construction a split graph. A minimal hitting
set S ⊆ X hits all the vertices in H and is such that there is no S′ ⊂ S doing the same. As
G[S ∪W ] is connected, while G[S′ ∪W ] is not, S corresponds to a miss. Conversely, consider
a miss S in G. Thus G[S ∪W ] is connected and each S′ ⊂ S is such that G[S′ ∪W ] is not.
This means that for each vertex in W , i.e., a vertex in H, one of its neighbor is in S, i.e.,
an element hitting the vertex. Moreover, as S is a clique, each subset S′ is still connected,
meaning that G[S′ ∪W ] disconnects some terminal in W , that is S′ does not hit some vertex
in W . Hence, S corresponds to a minimal hitting set. J
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3.2 Hardness of the extension problem for miss’s
Providing an output-polynomial algorithm for miss’s seems to be a challenging problem, even
for a small number of terminals. As the Extension problem is a core block of many classical
output-sensitive algorithms such as those based on binary partition or backtracking, we argue
whether we can follow this path: roughly speaking, this is the problem of deciding whether
a partial solution, e.g., a subset of nodes, can be completed into a final solution. In this
section we show the hardness of the Extension problem for miss’s.

I Problem 1 (Extension problem for miss’s). Given a graph G, a terminal set W , and
P ⊆ V (G) \W , is there a minimal induced Steiner subgraph (miss) S such that P ⊆ S?

Note that, if P = ∅, the answer is trivially always yes, as we can find a miss by simply
setting S = V (G) \W , and removing nodes from it until it is possible to do so without
disconnecting W . For t = 1 the problem is not well defined (or could be considered trivially
true if and only if P = ∅). One may think that the hardness would be influenced by the size
of W , or that of P , however, this is not the case.

For t = 2 and |P | = 1, the smallest non-trivial sizes, the problem is already hard: let
W = {w0, w1} and P = {p}; as miss’s for t = 2 are induced paths, we obtain the problem of
finding an induced path between w0 and w1 passing through p. Finding such an induced
path has been proved to be NP-complete in [6]. This immediately yields the following result.

I Theorem 8. The extension problem for miss’s is NP-complete, even for two terminals.

The difficulty of the extension problem excludes the possibility of applying some well
known general techniques, motivating the interest in this combinatorial structure and in
ad-hoc techniques for its enumeration.

4 Listing Minimal Steiner Subgraphs with Three Terminals

The problem of listing miss’s seems to be a challenging one as we have shown that the
extension problem, which is a core block of many output-sensitive listing algorithms based on
the backtracking and binary partition techniques, is NP-complete for miss’s already when the
number of terminals is 2 (see Section 3.2). Indeed, in the case of t = 2, if the partial solution
is just an arbitrary node which is not a terminal, deciding whether there is an induced path
involving that node is NP-complete [6]. However, the problem can be solved with polynomial
delay [18]: since we are listing induced paths from a source to a target, this limitation can
be overcome by suitably defining the partial solution; in this case, a partial solution always
includes a terminal, i.e. the source. The same strategy, i.e. forcing each partial solution
to include a terminal, clearly does not apply when t > 2, as extending that solution will
lead again to the hard problem of deciding whether there is an induced path involving that
terminal. We show in this section that a workaround is still possible for the special case
t = 3.

We will characterize some special instances of the extension problem, extending what we
will call a partial Steiner subgraph (pss for short), showing that we can indeed find a solution
in polynomial time, and that it is possible to obtain a complete binary partition algorithm
by just relying on these restricted instances.

To characterize a partial Steiner subgraph, let us define a removable node:

I Definition 9. Let S be a Steiner subgraph for W (S), the set of terminals in W that have
neighbors in S. Then v ∈ S is a removable node for S if G[S ∪W (S) \ {v}] is connected.
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Note that if v ∈ S is a removable node then W (S) = W (S \ {v}) (i.e., S \ {v} is still a
Steiner subgraph for W (S)).

As an example, consider Figure 1 (left), with W = {w0, w1, w2, w3}: S = {2, 3, 4, 6, 7}
has no removable node, as W (S) = W and each removal of a node of S would disconnect
at least one of the terminals from the others. On the other hand, S′ = {3, 4, 6, 7} has 4 as
removable node, since W (S) = {w1, w2, w3}.

We can now define a pss:

I Definition 10 (Partial Steiner Subgraph). S 6= ∅ is a partial Steiner subgraph (pss) if
W (S) 6= ∅,
S is a Steiner subgraph for W (S),
there is at most 1 removable node in S.

Note that a miss is also a partial Steiner subgraph, as it has no removable nodes. We
can now detail the listing procedure in Algorithm 1:

Algorithm 1 List all miss’s of G with t = 3.
Input :A graph G = (V (G), E(G)) and a terminal set W ⊆ V (G) with t = |W | = 3
Output :All miss’s of G and W

1 Call 3-enum(G, W, ∅)
2 Function 3-enum(G, W, S)
3 if W (S) = W then
4 output S // S 6= ∅
5 else
6 X ← ∅
7 foreach v ∈ V (G) \ (S ∪W ) : S ∪ {v} is a pss do
8 if ∃S′ ⊇ (S ∪ {v}) : S′ is a miss in G then
9 3-enum(G \X, W, S ∪ {v})

10 X ← X ∪ {v}

In essence, every recursive node of Algorithm 1 considers a partial Steiner subgraph S:
at each step, it identifies all nodes v for which S ∪ {v} is also a partial Steiner subgraph, and
check whether it is possible to eventually extend it into a solution, if so, it recurs adding v to
S; afterwards, v is removed from the graph in subsequent recursive calls to avoid duplication
(this is modeled by the set X).

To prove that the algorithm is correct, we will use the following fact and lemma.

I Fact 2. Let S be a miss for W with t = |W | = 3. Then G[S∪W ] is either (1) a subdivision
of the claw, (2) a triangle with 3 pending paths or (3) an induced path.

Proof. Assume that G[S ∪W ] is neither an induced path nor a subdivision of the claw and
let P be an induced path in G[S ∪W ] from two terminals wa and wb. Let P ′ be the shortest
path in G[S ∪W ] from wc to P , and let v be the penultimate vertex of P ′ not in P . Because
G[P ∪ P ′ ∪W ] is connected, we can conclude that S = P ∪ P ′, and no vertex of P ′, but
v, is adjacent to a vertex in P . If v is adjacent to two non-adjacent vertices x and x′ of
P ′, then any vertex in P between x and x′ can be removed without disconnecting the rest,
contradicting the minimality of S. Therefore, S is as stated. J
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I Lemma 11. Given a graph G and a set of terminals W ⊆ V (G) with t = |W | = 3, let S
be a pss and S′ a miss such that S ⊂ S′. Then there exists v ∈ S′ \ S such that S ∪ {v} is a
pss.

Proof. Since S ∪W (S) and S′ ∪W are connected subgraphs, and recalling from the prelim-
inaries that no two terminals are adjacent, there must exist at least a node x ∈ S′ \ S such
that S ∪ {x} ∪W (S) is connected. Let P be the set of all such nodes, and let us consider
the possible cases. To complete the proof, we need to show that for some node v ∈ P we
have that S ∪ {v} has at most one removable node, meaning it meets all conditions of a pss.
We separately prove 3 comprehensive cases:

S has no removable node. Then it must be thatW (S) = 2 and S is exactly an induced
path between two terminals wa and wb.5 Consider a shortest path from the third terminal
wc to S ∪ {wa, wb} in G[S′ ∪W ], and let v be the last vertex of the path not belonging
to S ∪ {wa, wb}. It clearly belongs to P . Consider now S ∪ {v}: either v is connected to
wc, so S ∪ {v} is a miss, i.e., S′ = S ∪ {v}, or v is removable and S′ 6= S ∪ {v}. If v is
removable in S ∪ {v} and makes another vertex x removable in S ∪ {v}, then x is in a
path between two non-adjacent neighbors of v in S ∪ {wa, wb}. But then S′ \ {x} would
be a Steiner subgraph of W , a contradiction. Thus S ∪ {v} is a pss.
|P| = 1. Then all other nodes of S′ may reach S only via the single node v ∈ P . This
means that if any node of S ∪ {v} other than v is removable, i.e., does not disconnect v
from the rest of S and W (S), then it is also removable in S′, contradicting the minimality
of S′. Thus the only possible removable node in S ∪ {v} is v and S ∪ {v} is a pss.
|P| ≥ 2 and S has a removable node b. We first note that |W (S)| = 1. Indeed, if
|W (S)| = 2, then in any case of Fact 2, a connected subset S connecting two terminals
cannot be extended into a connected subset with more than one vertex from S′ \ S.
Therefore, we can conclude that S is a path from a vertex b to a terminal w, with b the
removable node of S. Because |W (S)| = 1 and b ∈ S′, then again by Fact 2 b should have
a neighbor v not adjacent to any vertex in S \ {b}. Therefore, S ∪ {v} is a path included
in S′, and is then a pss. J

Furthermore, let us prove that the extension problem for psss is solvable in polynomial
time when t = 3.

I Lemma 12. Given a graph G, terminal set W ⊆ V (G) with t = |W | = 3 and a pss S, the
question “is there a miss S′ of G such that S ⊆ S′?” can be answered in O(mn) time.

Proof. Let us consider the three possible cases based on W (S):
|W(S)| = 1. Let W (S) = {wa}; as S 6= ∅, S consists of a path from wa to the only
removable node b of S. Let R be the set of nodes not in S orW that are neighbors of either
wa or some node in S \{b}, i.e., R = {v ∈ V (G)\ (S ∪W ) : N(v)∩ (W (S)∪S \{b}) 6= ∅}.
Note that connecting terminals via nodes of R makes b redundant, as such nodes can
reach wa without using b; thus we must connect at least one terminal to wa without using
nodes of R, i.e., we may use at most one node of R. Consider G \R: note that b is the
only node in S ∪ {wa} with neighbors outside the solution. How many terminals distinct
from wa are in the same connected component of G \R as b? If zero, we can answer no,
as we will need to connect the remaining two terminals via R, making b redundant (thus
the result not minimal). If two, we can answer yes, as the three terminals are in the
same connected component, and any miss of G \R will fully contain S. Finally, if one,

5 If W (S) = 1, S is an induced path from a terminal, and the node opposite to it is always removable.
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let us call it wb and let C1 be the connected component of G \R containing wa, b and
wb, and C2 the one containing the final terminal wc; recall that we may use one node
c ∈ R, and this node must connect S to C2. We try all possible choices for c, noting
that c cannot make any node of S removable other than b (otherwise it would remain
removable in S′), and when testing c we must remove all its neighbors in C1 \ S ∪W
from the graph (otherwise we may use them to bypass b, making b redundant). If any
such suitable c exists, we get a miss S′ by taking any induced path from c to wc in C2
and any induced path from b to wb in C1 \ (N(c) \ (S ∪W )), and adding them to S, and
thus we can answer yes. Otherwise, there is no other possibility of minimally connecting
wb and wc to wa without making b or some other node redundant, so we answer no.
|W(S)| = 2. Let W (S) = {wa, wb}. If there is a removable node b in S, define as before
R = {v ∈ V (G) \ (S ∪W ) : N(v) ∩ (W (S) ∪ S \ {b}) 6= ∅}. In this case, we may not use
any node of R to connect the remaining terminal wc, as this would allow us to bypass
b, making it redundant. Thus if wc is in the same connected component as b in G \R,
we can answer yes, as any induced path between b and wc in this graph yields a miss
when added to S. Otherwise, there is no connection without using some node of R and
making b redundant, so we can answer no. Otherwise, if there is no removable node in S,
define R′ = {v ∈ V (G) \ (S ∪W ) : N(v) ∩ (W (S) ∪ S) 6= ∅}: clearly any miss extending
S must contain at least one (actually, exactly one) node from R′, and for any v ∈ R′, v is
removable in S ∪ {v}, so we can test all possible nodes in R′ as above, since S ∪ {v} has
a removable node (trivially accounting for the special cases where v directly connects to
the third terminal resulting directly in a miss, or where v makes some other node in S
removable and thus cannot be added to S).
|W(S)| = 3. Then either S is a miss and the answer is yes, or it has removable nodes
and the answer is no.

As for the time complexity, removing a set of nodes and computing the connected
components of a graph can be done in O(m) time. The cost is dominated by cases |W(S)| = 1
and |W(S)| = 2, where we need to perform such a test for each node in R or R′, respectively.
As these sets have size O(n) we can answer the question in O(mn) time. J

We can finally claim correctness and complexity of the algorithm:

I Theorem 13. Given G and a set of terminals W ⊆ V (G) with t = |W | = 3, Algorithm 1
lists all miss’s of G for W in O(mn3) time per solution.

Proof. Firstly, the initial call with S = ∅ clearly does not trigger the output in Line 4
as W (S) = ∅. On all other recursive calls, S is a pss such that there exist some miss S′
including S (due to Line 8 in the parent call). Whenever W (S) = W , it follows that S′ = S

because S′ is minimal and cannot contain other (redundant) nodes. So the algorithm only
outputs miss’s.

Furthermore, let S∗ be an arbitrary miss, we show that it is found: let X be any recursion
node of Algorithm 1 such that no node of S∗ has been removed from G, and the current
S, called here SX , is fully contained in S∗ (X exists as both conditions are met in the
beginning, when no node has been removed from G and S = ∅). Let x be the first node of
S∗ \ SX considered on Line 7 such that SX ∪ {x} is a pss (x exists by Lemma 11): when
x is considered, clearly no node of S∗ has yet been removed from G; furthermore, the
condition in Line 8 is true by the existence of S∗, so a child recursive call is generated with
SY = SX ∪ {x} and G still fully containing S∗. By induction, the algorithm will, in some
path of the recursion tree, at each step add one more node of S∗ without removing any from
G, until eventually S∗ is found.
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Finally, duplication is impossible by the binary partition argument, as all solutions
generated from a recursive call on Line 9 will contain v, and all subsequent recursive calls
will remove v from G (see Line 10), thus will find different solutions.

As for the cost per solution, since all leaves of the recursion tree output solutions, it is
bound by the cost of the recursion nodes of a root-to-leaf path in the recursion tree, which
are O(n) as each node adds a node to S when recurring. In each node, we must identify
all v such that S ∪ {v} is a pss: some trivial case analysis (using Fact 2) can reveal that
this is true only when v is a neighbor only of the removable node of S, or when S has no
removable node and v has at most two neighbors in S, adjacent to each other, thus this takes
O(|N(v)|), for a total of O(

∑
v∈V (G) |N(v)|) = O(m) time. Furthermore, the test in Line 8

takes O(mn) time by Lemma 12 and is performed O(n) times, for a total cost per recursion
node of (mn2). The cost per solution of Algorithm 1 is thus O(mn3). J

5 Conclusions

We considered minimal Steiner induced subgraphs, a natural variant of Steiner trees, shifting
our focus on a node-centric view. We studied these combinatorial objects providing an
output-sensitive algorithm for minimum miss’s. On the other hand, getting all miss’s with an
output-sensitive algorithm seems to be more challenging for unbounded number of terminals,
as we have shown that this problem is actually harder than listing all the minimal hypergraph
transversals. Moreover, the fact that the extension problem is actually NP-complete, even
with bounded number of terminals, makes us thinking that an ad hoc strategy should be
thought for different sizes of W . For t = 2, the problem can be solved by known listing
algorithm for induced paths. In this paper we have provided an output-sensitive algorithm
for the case t = 3.

As a final remark, we observe that for many problems, like, for instance, listing maximum
size and maximal independent sets [5], listing minimum/maximum solutions is harder than
listing minimal/maximal solutions. In contrast, in the case of miss’s with a bounded number
of terminals, listing minimum size miss’s seems to be easier than getting all miss’s, as we
could efficiently solve the former case for t = O(1), while the latter only for t ≤ 3.
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