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Abstract
The spectra of signed matrices have played a fundamental role in social sciences, graph theory,
and control theory. In this work, we investigate the computational problems of finding symmetric
signings of matrices with natural spectral properties. Our results are the following:
1. We characterize matrices that have an invertible signing: a symmetric matrix has an invertible

symmetric signing if and only if the support graph of the matrix contains a perfect 2-matching.
Further, we present an efficient algorithm to search for an invertible symmetric signing.

2. We use the above-mentioned characterization to give an algorithm to find a minimum increase
in the support of a given symmetric matrix so that it has an invertible symmetric signing.

3. We show NP-completeness of the following problems: verifying whether a given matrix has
a symmetric signing that is singular or has bounded eigenvalues. However, we also illustrate
that the complexity could differ substantially for input matrices that are adjacency matrices of
graphs.

We use combinatorial techniques in addition to classic results from matching theory.
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1 Introduction

The spectra of several graph-related matrices such as the adjacency and the Laplacian
matrices have become fundamental objects of study in computer science. In this work, we
undertake a systematic and comprehensive investigation of the spectrum and the invertibility
of symmetric signings of matrices. We study natural spectral properties of symmetric signed
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matrices and address the computational problems of finding and verifying the existence of
symmetric signings with these spectral properties.

For a real-valued symmetric n× n matrix M and a {±1}-valued n× n matrix s – which
we refer to as a signing – we define the signed matrix M(s) to be the matrix obtained by
taking entry-wise products of M and s. Signed adjacency matrices (respectively, Laplacians)
correspond to signed matricesM(s) whereM is the adjacency matrix (respectively, Laplacian)
of a graph. We say that s is a symmetric signing if s is a symmetric matrix and an off-
diagonal signing if all the diagonal entries of s are +1. In this work we consider the following
computational problems:

BOUNDEDEVALUESIGNING: Given a real symmetric matrix M and a real number λ, verify
if there exists an off-diagonal symmetric signing s such that the largest eigenvalue
λmax(M(s)) is at most λ.

INCLUDESIGNING: Given a real symmetric matrix M and a real number λ, verify if there
exists an off-diagonal symmetric signing s such that M(s) has λ as an eigenvalue.

AVOIDSIGNING: Given a real symmetric matrix M and a real number λ, verify if there exists
a symmetric signing s such that M(s) does not have λ as an eigenvalue.

It suffices to focus on instances where λ is 0. Indeed, solving an instance of one of the
above problems on input (M,λ) corresponds exactly to solving the same problem on input
(M − λI, 0). Hence, we focus our attention on the corresponding specialized problems:

NSDSIGNING: Given a real symmetric matrix M , verify if there exists a symmetric signing
s such that M(s) is negative semi-definite.

SINGULARSIGNING: Given a real symmetric matrix M , verify if there exists an off-diagonal
symmetric signing s such that M(s) is singular.

INVERTIBLESIGNING: Given a real symmetric matrix M , verify if there exists a symmetric
signing s such that M(s) is invertible (that is, non-singular).

1.1 Motivations
Spectra of Signed Matrices and Expanders. Let G be a connected d-regular graph on n
vertices and let d = λ0 > λ1 ≥ · · · ≥ λn−1 be the eigenvalues of its adjacency matrix. Then
G is a Ramanujan expander if max|λi|<d |λi| ≤ 2

√
d− 1. Efficient construction of Ramanujan

expanders of arbitrary degrees remains an important open problem.1 A combinatorial
approach to this problem, initiated by Friedman [9], is to obtain larger Ramanujan graphs
from smaller ones while preserving the degree. A 2-lift H of G is obtained as follows:
Introduce two copies of each vertex u of G, say u1 and u2, as the vertices of H and for each
edge {u, v} in G, introduce either {u1, v2}, {u2, v1} or {u1, v1}, {u2, v2} as edges of H. There
is a bijection between 2-lifts and symmetric signed adjacency matrices of G. Furthermore,
the eigenvalues of the adjacency matrix of a 2-lift H are given by the union of the eigenvalues
of the adjacency matrix of the base graph G (also called the “old” eigenvalues) and the
signed adjacency matrix of G that corresponds to the 2-lift. (the “new” eigenvalues).

Marcus, Spielman, and Srivastava [16] showed that every d-regular bipartite graph has a
2-lift whose new eigenvalues are bounded in absolute value by 2

√
d− 1. However, this result

[16] is not constructive and their work raises the question of whether there is an efficient

1 While efficient construction of bipartite Ramanujan multi-graphs of all degrees is known [5], it still
remains open to efficiently construct bipartite Ramanujan simple graphs of all degrees.
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algorithm to find a symmetric signing that minimizes the largest eigenvalue. This motivates
investigating BoundedEvalueSigning which is the decision variant of the computational
problem. More precisely, it motivates investigating BoundedEvalueSigning when the
input matrix is an adjacency matrix.

It is also natural to investigate the complexity of several related problems. As we will
see in the next section, BoundedEvalueSigning is NP-hard for arbitrary symmetric
matrices. The reduction which shows BoundedEvalueSigning is NP-hard suggests a
close relationship with AvoidSigning which is also NP-hard. Hoping to make progress
on BoundedEvalueSigning for adjacency matrices, we investigate AvoidSigning for
adjacency matrices. IncludeSigning arises naturally as the complement of AvoidSigning.

Solvability Index of a Signed Matrix. The notion of balance of a symmetric signed matrix
has been studied extensively in social sciences [14, 11, 13, 17]. A signed adjacency matrix
is balanced if there is a partition of the vertex set such that all edges within each part are
positive, and all edges in between two parts are negative (one of the parts could be empty).
A number of works [3, 10, 18, 17, 19, 20] have explored the problem of minimally modifying
signed graphs (or signed adjacency matrices) to convert it into a balanced graph.

In this work, we introduce a related problem regarding symmetric signed matrices: Given
a symmetric matrix M , what is the smallest number of non-diagonal zero entries of M whose
replacement by non-zeroes gives a symmetric matrix M ′ that has an invertible symmetric
signing? We define this quantity to be the solvability index2. Knowing this number might be
helpful in studying systems of linear equations in signed matrices that might be ill-defined,
and thus do not have a (unique) solution and in minimally modifying such matrices so
that the resulting linear system becomes (uniquely) solvable. We use classic graph-theoretic
techniques to show that solvability index is indeed computable efficiently.

1.2 Our Results
Intriguingly, the complexity of BoundedEvalueSigning has not been studied in the
literature even though it is widely believed to be a difficult problem in the graph sparsification
community. We shed light on this problem by showing that it is NP-complete.

I Theorem 1. NsdSigning and SingularSigning are NP-complete.

Theorem 1 also implies that BoundedEvalueSigning and AvoidSigning are NP-
complete. In contrast to SingularSigning, we show that InvertibleSigning admits an
efficient algorithm. In fact, we show a stronger result: there exists an algorithm to efficiently
solve the search variant of InvertibleSigning, which we denote by SearchInvertible-
Signing (here the goal is to find an invertible signing if it exists).

I Theorem 2. There exists a polynomial-time algorithm to solve SearchInvertibleSig-
ning.

Theorem 2 also implies that the search variant of IncludeSigning is solvable efficiently.
Our proof of Theorem 2 leads to a structural characterization for the existence of invertible
signings through the existence of perfect 2-matchings in the support graph of the matrix.

2 Our definition of solvability index is similar to the notion of frustration index [12, 1]. The frustration
index of a matrix M is the minimum number of non-zero off-diagonal entries of M whose deletion results
in a balanced signed graph. Computing the frustration index of a signed graph is NP-hard [15].

MFCS 2019
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We believe that this structural characterization could be of independent interest and hence,
discuss it in detail in Section 1.2.1.

The hard instances generated by our proof of Theorem 1 are real symmetric matrices
with non-zero diagonal entries and hence, it does not resolve the computational complexity of
the problem of finding a signing of a given graph-related matrix (for example, the adjacency
matrix) that minimizes its largest eigenvalue. Our next result provides some evidence that
one might be able to design efficient algorithms to solve the NP-complete problems appearing
in Theorem 1 for graph-related matrices. In particular, we show that SingularSigning
and its search variant admit efficient algorithms when the input matrix corresponds to the
adjacency matrix of a bipartite graph.

I Theorem 3. There exists a polynomial-time algorithm to verify if the adjacency matrix
AG of a given bipartite graph G has a symmetric signing s such that AG(s) is singular; and
if so, find such a signing.

Finally, we define the solvability index of a real symmetric matrix M to be the smallest
number of non-diagonal zero entries that need to be converted to non-zeroes so that the
resulting symmetric matrix has an invertible symmetric signing. We emphasize that the
support-increase operation that we consider preserves symmetry, that is, if we replace the
zero entry A[i, j] by α, then the zero entry A[j, i] is also replaced by α. We give an efficient
algorithm to find the solvability index of a given symmetric matrix M .

I Theorem 4. There exists a polynomial-time algorithm to find the solvability index of a
given real symmetric matrix.

1.2.1 Structural Characterization for Invertible Signings
Theorem 2, in particular, implies that InvertibleSigning is solvable efficiently. In fact, our
proof-technique gives an efficient characterization for the existence of an invertible signing.
This characterization also leads to an alternative algorithm to solve InvertibleSigning.
We believe that this characterization might be of independent interest and hence describe it
here.

The support graph of a real symmetric n×n matrixM is an undirected graph G where the
vertex set of G is [n] := {1, . . . , n}, and the edge set of G is

{
{u, v} |M [u, v] 6= 0

}
. We note

that G could have self-loops depending on the diagonal entries of M . A perfect 2-matching in
a graph G with edge set E is an assignment x : E → {0, 1, 2} of values to the edges such that∑
e∈δ(v) xe = 2 holds for every vertex v in G (where δ(v) denotes the set of edges incident to

v). Equivalently, a perfect 2-matching in a graph G is a vertex-disjoint union of edges and
cycles (cycles could be loop edges) in G such that each vertex is incident to at least one edge.
We show the following characterization:

I Theorem 5. Let M be a symmetric n × n matrix and let G be the support graph of M .
The following are equivalent:

(i) There exists a symmetric signing s such that the signed matrix M(s) is invertible.
(ii) The support graph G contains a perfect 2-matching.

I Remark 1. The structural characterization of Theorem 5 leads to a polynomial-time
algorithm to solve InvertibleSigning – it suffices to verify if the support graph of the
input matrix contains a perfect 2-matching which can be done in polynomial-time.
I Remark 2. We present a constructive proof of Theorem 5 via a generalization (see Theorem
8 in Section 2). Our proof of Theorem 5 is constructive but we are aware of a non-constructive
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proof using Combinatorial Nullstellensatz. This alternative non-constructive proof is available
online in an earlier arXiv version of this [4].

1.3 Related Work
Skew Symmetric Matrix of Indeterminates. A square skew-symmetric matrix of indeter-
minates with zeroes on the diagonal is known as the Tutte matrix of its support graph. A
well-known result by Tutte shows that the determinant polynomial of the Tutte matrix is
non-zero if and only if the corresponding support graph has a perfect matching. Our result
in Theorem 5 can be interpreted as a variant of Tutte’s result to square symmetric matrices
of indeterminates with zeros on the diagonal.

Cunningham and Geelen [6] extended Tutte’s work along a different direction by giving a
characterization of invertible submatrices of the Tutte matrix using path-matchings. Given
a graph G with vertex set V and vertex subsets R,L ⊆ V , a (R,L)-path-matching in G is
a collection of vertex-disjoint paths from R to L and edges in G[V \ (R ∪ L)]. A perfect
(R,L)-path-matching is a (R,L)-path-matching in which every vertex in G is incident to
some edges of the vertex-disjoint paths. They showed that the determinant polynomial of
a square submatrix of the Tutte matrix of G with column set R and row set L is non-zero
if and only if there exists a perfect (R,L)-path-matching in G. The notion of cycle-covers
that we introduce in Section 2 and our result in Theorem 8 can be interpreted as variants of
Cunningham and Geelen’s result to square symmetric matrices of indeterminates with zeros
on the diagonal.

Our results in Theorems 5 and 8 go further than Cunningham and Geelen’s result by not
only giving similar characterizations for the determinant to be a non-zero polynomial but
also by giving polynomial-time algorithms to find a point in {±1}E at which the polynomial
is non-zero.

Minimum Rank Problems. A line of work seemingly related to ours is the minimum rank
problem (e.g., see [8, 7]): given a graph G, the goal is to compute the minimum rank of the
weighted adjacency matrix of a graph obtained by giving non-zero real-valued weights to
the edges of G. We emphasize that the allowed weights in the minimum rank problem are
arbitrary and are not simply signs of the given adjacency matrix as in the case of our work.
A signed variant of the minimum rank problem has also been addressed in the literature:
given a sign pattern matrix S, the goal is to compute the minimum rank of a matrix with
real-valued entries whose sign pattern is identical to S. Once again, we emphasize the
distinction between the signed variant of the minimum rank problem and the problems
studied in our work: in the signed variant of the minimum rank problem, the sign pattern is
the input and the goal is to find a matrix with real-valued entries matching the input sign
pattern and achieving minimum rank. In contrast, the problems studied in our work have
real-valued entries as inputs and the goal is to find a symmetric sign pattern of the entries to
achieve the specified spectral properties.

A year after posting our work on arXiv [4], Akbari, Ghafari, Kazemian, and Nahvi [2] also
posted an article addressing InvertibleSigning3. They show the same characterization
as Theorem 5 with a proof identical to the non-constructive proof appearing in the early
arXiv version of our work [4]. We emphasize that in addition to showing the structural
characterization in Theorem 5, this work resolves the search problem in Theorem 2, and

3 Our arXiv post dated Nov, 2016: https://arxiv.org/abs/1611.03624; the post by Akbari, Ghafari,
Kazemian, and Nahvi dated Aug, 2017: https://arxiv.org/abs/1708.07118.
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moreover shows a much more general structural characterization in Theorem 8 with a
constructive proof.

1.4 Organization
In Section 1.5, we review definitions and notations. In Section 2, we describe an efficient
algorithm to find an invertible signing (Theorem 2). Due to space constraints, we refer the
reader to the full version of the paper for all missing proofs [4].

1.5 Preliminaries
Unless otherwise specified, all matrices are symmetric and take values over the reals. Since
all of our results are for symmetric signings, we will just use the term signing to refer to a
symmetric signing in the rest of this work. We denote the entry-wise product of two n× n
matrices M and s as M(s) (even when s is not necessarily a signing).

Let Sn be the set of permutations of n elements, M be a real symmetric n× n matrix,
and s be a symmetric n× n signing. Then, the permutation expansion of the determinant of
a signed matrix M(s) is given by

detM(s) =
∑
σ∈Sn

sgn(σ) ·
n∏
i=1

M(s)[i, σ(i)].

A permutation σ in Sn has a unique cycle decomposition and hence corresponds to a vertex-
disjoint union of directed cycles on n vertices. Removing the orientation gives an undirected
graph which is a vertex disjoint union of cycles, self-loops, and matching edges.

2 Finding Invertible Signings

In this section, we focus on invertible signings and the proof of Theorem 2. We prove a much
more general statement in comparison to the one given in Theorem 5, which we believe could
be of independent interest. We start by introducing the background needed to state the
general version.

Symmetric signings of asymmetric sub-matrices. Let M be a symmetric n × n matrix.
For X,Y ⊆ [n] being a subset of row and column indices of the same cardinality, let M [X,Y ]
denote the submatrix of M obtained by picking the rows in X and the columns in Y . We
note that M [X,Y ] is a square matrix, but it may not be symmetric even though M is
symmetric. We are interested in finding a symmetric n × n signing s so that the square
submatrix M(s)[X,Y ] is invertible. We emphasize that for a symmetric signing s, the
(possibly asymmetric) matrix M(s)[X,Y ] is symmetric on X ∩ Y , that is, the [i, j]’th and
the [j, i]’th entries of the matrix M(s)[X,Y ] are the same for every i, j ∈ X ∩ Y .

Perfect 2-matchings in subgraphs. Let G be a simple undirected graph, possibly containing
self-loops. Let X,Y be vertex subsets of G. We consider the subgraph G[X ∪ Y ] induced by
X ∪ Y . An (X,Y )-cycle-cover is a collection of edges of the subgraph G[X ∪ Y ] that induce
a vertex-disjoint union of paths and cycles (cycles could be loop edges) in G[X ∪Y ] such that
(1) every cycle is a subgraph of G[X ∩Y ], (2) every vertex of X ∪Y is incident to at least one
edge, and (3) every path either has one end-vertex in X \ Y , the other end-vertex in Y \X,
and all intermediate vertices in X ∩ Y , or has both end-vertices in X ∩ Y with only one
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edge (see Figure 1 for an example). We note that (X,X)-cycle-covers correspond to perfect
2-matchings in G[X] and hence, (V, V )-cycle-covers correspond to perfect 2-matchings in G.
It follows that in (X,X)-cycle-covers all paths are only a single edge in G. Furthermore, the
existence of an (X,Y )-cycle-cover is possible only if |X| = |Y |. The following lemma states
that the existence of an (X,Y )-cycle-cover in a given graph can be verified efficiently.

Figure 1 An (X, Y )-cycle-cover F . Furthermore, by our definitions below, the edge {a, b} is in
Paths(F ) while the edge {u, v} is in Matchings(F ).

I Lemma 6. There exists a polynomial-time algorithm that decides if there is an (X,Y )-
cycle-cover in a given graph G for given vertex subsets X,Y of G.

The key observation to prove Lemma 6 is that finding an (X,Y )-cycle-cover can be
reduced to finding a perfect matching in an auxiliary bipartite graph.

Let M ∈ Rn×n be a symmetric matrix, X,Y ⊆ [n] with |X| = |Y | and s be a symmetric
n × n matrix. Recall that we are interested in finding a symmetric n × n signing s so
that the square submatrix M(s)[X,Y ] is invertible. We derive a convenient expression
for det(M(s)[X,Y ]) that is based on (X,Y )-cycle-covers. For an (X,Y )-cycle-cover F , let
Cycles(F ), Paths(F ), and Matchings(F ) denote the set of cycles in F , paths in F with
end-vertices in X \Y and Y \X, and paths in F that are contained in G[X ∩Y ], respectively.
Moreover, let Loops(F ) and NTCs(F ) denote the set of self-loops and non-trivial-cycles in
F . We emphasize that Cycles(F ) = Loops(F ) ∪ NTCs(F ). We also note that Cycles(F ),
Paths(F ), and Matchings(F ) are all vertex-disjoint from one another and if X = Y then
Paths(F ) = ∅. We define

M(s)Cycles(F ) :=
∏

C∈Cycles(F )

∏
{u,v}∈C

M(s)[u, v],

M(s)Paths(F ) :=
∏

P∈Paths(F )

∏
{u,v}∈P

M(s)[u, v], and

M(s)Matchings(F ) :=
∏

{u,v}∈Matchings(F )

M(s)[u, v]2.

With this notation, we have the following claim that the determinant of M(s)[X,Y ] is a
{±1}-linear combination of terms corresponding to (X,Y )-cycle-covers in G.

MFCS 2019
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I Lemma 7 ((X, Y )-cycle-cover expansion). Let M ∈ Rn×n be a symmetric n× n matrix,
X,Y ⊆ [n] with |X| = |Y |, and s be a symmetric n× n matrix. Let G be the support graph
of M and F be the set of all (X,Y )-cycle-covers in G. Then, there exists λF ∈ {±1} for all
F ∈ F such that

det(M(s)[X,Y ]) =
∑
F∈F

λF · 2|NTCs(F )| ·M(s)Cycles(F ) ·M(s)Paths(F ) ·M(s)Matchings(F ).

Moreover, if there are F1, F2 ∈ F such that Cycles(F1) = Cycles(F2) and Paths(F1) =
Paths(F2) then λF1 = λF2 .

Proof. For simplicity, we denote M ′ = M [X,Y ]. Let k := |X| and let Sk denote the set of
permutations on k elements. Then, by the permutation expansion of the determinant, we
have

det(M ′(s)) =
∑
σ∈Sk

sgn(σ) ·
k∏
i=1

s[i, σ(i)] ·M ′[i, σ(i)].

We recall that sgn(σ) ∈ {±1}. Moreover, if σ1, σ2 ∈ Sk such that σ1 and σ2 have the
same cycle structure then sgn(σ1) = sgn(σ2). Now, we note that there is a one-to-one
correspondence between Sk and bijections from X to Y . So, we may view σ ∈ Sk as a
bijection σ′ : X → Y . Now, consider the graph Hσ′ on vertex set X ∪ Y and edge set
Fσ′ := {{u, v} | σ′(u) = v}. Since σ′ is a bijection, it follows that Fσ′ is an (X,Y )-cycle-cover
in the complete graph on vertex set X ∪ Y . Moreover, since each non-trivial-cycle in an
(X,Y )-cycle-cover can take one of two orientations in any corresponding permutation, there
are 2|NTCs(F )| distinct permutations which map to each (X,Y )-cycle-cover F . Hence,

n∏
i=1

s[i, σ(i)] ·M ′[i, σ(i)] =
∏
u∈X

s[u, σ(u)] ·M [u, σ′(u)]

= M(s)Cycles(Fσ′ ) ·M(s)Paths(Fσ′ ) ·M(s)Matchings(Fσ′ ).

The above-term is non-zero only if Fσ′ is an (X,Y )-cycle-cover in the support graph of G.
Furthermore, if F1, F2 ∈ F such that Cycles(F1) = Cycles(F2) and Paths(F1) = Paths(F2)
then λF1 = λF2 since the corresponding permutations would have the same cycle structure. J

To prove Theorems 5 and 2, we show the following theorem which gives a generalized
structural characterization: it characterizes the existence of invertible symmetric signings for
(potentially asymmetric) submatrices of symmetric matrices.

I Theorem 8. Let M be a real symmetric n×n matrix with support graph G and X,Y ⊆ [n]
with |X| = |Y |. The following are equivalent:
(i) There exists an (X,Y )-cycle-cover in G.
(ii) There exists a symmetric signing s such that M(s)[X,Y ] is invertible.

Moreover, there exists a polynomial-time algorithm that takes a real symmetric n× n matrix
M and X,Y ⊆ [n] as input and verifies if there exists a symmetric signing s such that
M(s)[X,Y ] is invertible and if so, find such a signing.

Notation. Let M be a real symmetric n × n matrix with support graph G. Let A and
B be vertex subsets of G. We define E[A,B] to be the set of edges with one end-vertex
in A and the other end-vertex in B. We use E[A] to denote E[A,A]. Let e be an edge in
G corresponding to the non-zero entry M [u, v] (= M [v, u]). We define Me as the matrix
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obtained by setting M [u, v] and M [v, u] to 0. For a signing s and row and column indices
u, v ∈ [n], we can obtain another signing s′ such that s′[u, v] := −s[u, v], s′[v, u] := −s[v, u]
and s′[i, j] := s[i, j] for every entry (i, j) ∈ [n]× [n] \ {(u, v), (v, u)}. We call this operation
as s′ obtained from s by flipping on {u, v}.

Proof of Theorem 8. We first present a constructive proof of the characterization. We will
then use the proof to design the algorithm.

Lemma 7 immediately shows that (ii) implies (i): If we have a symmetric signing s
such that M(s)[X,Y ] is invertible, then at least one of the terms in the (X,Y )-cycle-cover
expansion of det(M(s)[X,Y ]) is non-zero. Hence, there exists an (X,Y )-cycle-cover in G.

We show that (i) implies (ii). Suppose not. Among the counterexamples, consider
the ones with |X| minimum and among these, pick a matrix M with minimum number of
non-zero entries. Without loss of generality, let M be an n× n matrix with support graph G
and let X,Y ⊆ [n] with |X| = |Y |. Since we chose a counterexample, we have that
(A) there exists an (X,Y )-cycle-cover in G, but
(B) there is no symmetric signing s such that M(s)[X,Y ] is invertible.
We will arrive at a contradiction by showing that a signing s satisfying (ii) exists. We begin
with the following claim about the counterexample.

B Claim 9. E[X \ Y, Y ] = ∅ and E[Y \X,X] = ∅.

Proof. Suppose there exists an edge e ∈ E[X \ Y, Y ]. Let e := {u, v} with u ∈ X \ Y and
v ∈ Y . Then there exists α ∈ {±1} such that the determinant ofM(s)[X,Y ] can be expressed
as a linear function of s[u, v]:

det(M(s)[X,Y ]) = α · s[u, v] ·M [u, v] · det(M(s)[X − u, Y − v]) + det(Me(s)[X,Y ]). (1)

Case 1: Suppose there exists an (X,Y )-cycle-cover F containing e. We observe that F − e
is an (X − u, Y − v)-cycle-cover in G. Since we have a smallest counterexample, it follows
that there exists a symmetric signing s such that det(M(s)[X − u, Y − v]) 6= 0. Since
det(M(s)[X,Y ]) is a linear function of s[u, v], it follows that det(M(s)[X,Y ]) 6= 0 or
det(M(s′)[X,Y ]) 6= 0 where s′ is a signing obtained from s by flipping on {u, v}. Hence,
we have a contradiction to assumption B about the counterexample.

Case 2: Suppose that every (X,Y )-cycle-cover in G does not contain e. Then there is no (X−
u, Y −v)-cycle-cover in G. Since (ii) implies (i), it follows that det(M(s)[X−u, Y −v]) = 0
for every symmetric signing s. Let F be an (X,Y )-cycle-cover in G (as promised to exist
by A). Then F is an (X,Y )-cycle-cover in G−e. Since we have a smallest counterexample,
it follows that there exists a symmetric signing s such that det(Me(s)[X,Y ]) 6= 0. By (1),
we observe that det(M(s)[X,Y ]) 6= 0. Thus, the symmetric signing s is a contradiction
to assumption B about the counterexample.

Hence, E[X \ Y, Y ] = ∅. Similarly E[Y \X,X] = ∅. C

Now, if X \ Y 6= ∅ and there is no edge e ∈ E[X \ Y, Y ], then there is no (X,Y )-cycle-
cover in G, a contradiction to assumption A about the counterexample. Hence, X \ Y = ∅.
Similarly, Y \X = ∅. Thus, we have X = Y in the counterexample. We next show that the
counterexample cannot have any self-loop edges.

B Claim 10. There are no self-loop edges in E[X].
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Proof. Suppose there exists a self-loop edge in E[X]. Let e = {u, u} for some u ∈ X. Then,
we again have that det(M(s)[X,Y ]) is a linear function of s[u, u]:

det(M(s)[X,X]) = s[u, u] ·M [u, u] · det(M(s)[X − u,X − u]) + det(Me(s)[X,X]). (2)

We arrive at a contradiction by proceeding similar to the proof of the previous claim. We
avoid restating the proof in the interests of brevity. C

By Claim 10, the counterexample has no self-loop edges in E[X]. Our next claim
strengthens this further by showing that the counterexample has no (X,Y )-cycle-cover with
cycle edges.

B Claim 11. Every (X,X)-cycle-cover in G has no cycles.

Proof. Suppose there exists an (X,X)-cycle-cover F in G with a cycle C induced by F . Let
e = {u, v} be an edge in the cycle. By Claim 10, we know that u 6= v. We observe that
det(M(s)[X,X]) is a quadratic function of s[u, v], i.e., there exists α ∈ {±1} such that the
determinant of M(s)[X,X] can be expressed as

det(M(s)[X,X]) = −s[u, v]2 ·M [u, v]2 · det(M(s)[X − {u, v}, X − {u, v}])
+ 2α · s[u, v] ·M [u, v] · det(Me(s)[X − u,X − v]) (3)
+ det(Me(s)[X,X]).

Furthermore, F − e is an (X − u,X − v)-cycle-cover in G. Since we have a smallest
counterexample, it follows that there exists a symmetric signing s such that det(Me(s)[X −
u,X − v]) 6= 0. We now define the quadratic function

f(x) := −x2 ·M [u, v]2 · det(M(s)[X − {u, v}, X − {u, v}])
+ 2αx ·M [u, v] · det(Me(s)[X − u,X − v]) + det(Me(s)[X,X]),

and consider the roots of the quadratic equation f(x) = 0. Since det(Me(s)[X−u,X−v]) 6= 0,
the sum of the roots of this quadratic equation is non-zero. Since the real roots of a quadratic
function are symmetric about the extreme point of the parabola defined by the function
(i.e., symmetric about arg min f(x)), there exists x ∈ {±1} that is not a root of f(x). Hence,
either det(M(s)[X,Y ]) 6= 0 or det(M(s′)[X,Y ]) 6= 0 where s′ is a signing obtained from s by
flipping on {u, v}. Thus, either s or s′ contradict assumption B about the counterexample.

C

By Claims 9 and 10, the counterexample has X = Y with no loop edges in E[X].
Furthermore, by Claim 11, every (X,X)-cycle-cover in G has no cycles. By definition of
(X,X)-cycle-covers, it follows that each (X,X)-cycle-cover in G corresponds to a perfect
matching in G[X]. Let N be an (X,X)-cycle-cover in G.

B Claim 12. N is the unique (X,X)-cycle-cover in G.

Proof. Let e be an arbitrary edge in N . Suppose there exists an (X,X)-cycle-cover N ′ in
G − e. Then, Claims 10 and 11 imply that N ′ is also a perfect matching in G[X]. We
consider N ′′ := N ∪N ′. Since N and N ′ are perfect matchings in G[X], the set of edges
N ′′ induces a vertex-disjoint union of edges and cycles of even length in G[X]. Hence, N ′′
is an (X,X)-cycle-cover in G. Furthermore, since e ∈ N \N ′, it follows that N ′′ contains
at least one cycle. This contradicts Claim 11. Thus, every edge e ∈ N belongs to every
(X,X)-cycle-cover in G. Consequently, N is the unique (X,X)-cycle-cover in G. C
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Since N is the unique (X,X)-cycle-cover in G, by Lemma 7, we have that

det(M(s)[X,X]) = (−1)|N |
∏

{u,v}∈N

M(s)[u, v]2

which is non-zero for every signing s. Thus, there exists a symmetric signing s such that
det(M(s)[X,X]) 6= 0, a contradiction to assumption B about the counterexample. This
completes the proof of the characterization. We note that the above proof of the character-
ization is constructive and immediately leads to the algorithm FindSigning(M,X, Y ) in
Algorithm 1.

Algorithm 1 The algorithm FindSigning(M, X, Y ).

FindSigning(M, X, Y ):
Input: M ∈ Rn×n with support graph G, and X, Y ⊆ [n] satisfying |X| = |Y |.
Output: A symmetric signing s ∈ {±1}n×n such that M(s)[X, Y ] is invertible if

such a signing exists.
1. If |X| = |Y | ≤ 1, then brute-force search for a symmetric signing s for

which det(M(s))[X, Y ] 6= 0:
1.1. If such a signing exists, return s.
1.2. Else return “No Invertible Signing”.

2. If there exists no (X, Y )-cycle-cover then return “No Invertible Signing”.
3. If E[X \ Y, Y ] ∪ E[Y \X, X] 6= ∅:

3.1. Pick e := {u, v} ∈ E[X \ Y, Y ] such that u ∈ X \ Y and v ∈ Y .
3.2. If there is no (X − u, Y − v)-cycle-cover in G:

3.2.1 s← FindSigning(Me, X, Y ).
3.3. Else: (when there is an (X − u, Y − v)-cycle-cover in G)

3.3.1 s← FindSigning(M, X − u, Y − v).
3.4. If M(s)[X, Y ] is invertible then return s.
3.5. Else return s′ obtained from s by flipping on {u, v}.

4. Else: (when sets X and Y are identical)
4.1. If there exists an (X, Y )-cycle-cover in G with a cycle edge {u, v}:

4.1.1. s← FindSigning(M, X − u, Y − v).
4.1.2. If M(s)[X, Y ] is invertible then return s.
4.1.3. Else return s′ obtained from s by flipping on {u, v}.

4.2. Else: (when all (X, Y )-cycle-covers are perfect matchings in G[X])
4.2.1 Return 1 (the all-positive signing).

We now describe an efficient implementation of the non-trivial steps in FindSigning.
In Step 1, the algorithm performs a brute-force search. We note that the search needs
to be conducted only for the entries s[u, v] where u, v ∈ X ∪ Y since det(M(s)[X,Y ]) is
independent of the remaining entries of the signing s. Since |X ∪ Y | ≤ 2, the search can be
conducted in constant time by picking an arbitrary sign for the remaining entries.

Lemma 6 implies that Steps 2 and 3.2 can be implemented to run in polynomial time.
We recall that any cycle edge in an (X,X)-cycle-cover must be a cycle edge in some perfect
2-matching in G[X]. Claim 13 shows that Step 4.1 can be implemented to run in polynomial
time. Finally, the recursive algorithm terminates in polynomial time since each recursive call
reduces either |X ∪ Y | or the number of non-zero entries in M . J

B Claim 13. There is a polynomial-time algorithm that given a graph, finds an edge that
belongs to a cycle in some perfect 2-matching of the graph or decides that no such edge
exists.
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Algorithm 2 The algorithm FindCycleEdge(G).

FindCycleEdge(G):
Input: A graph G with vertex set V .
Output: An edge e that is a cycle edge in some perfect 2-matching in G if one exists.
1. If there exists no perfect 2-matching in G then return “No edge”.
2. Let F be a perfect 2-matching in G.
3. If F contains a cycle C then return any edge in C.
4. For e ∈ F :

4.1. Let Ne be a perfect 2-matching in G− e if one exists.
4.2. If Ne exists and has a cycle C then return any edge in C.

5. If Step 4 finds Ne for some e ∈ F , then return e.
6. Else return “No edge”.

Proof. To prove the claim we consider the algorithm FindCycleEdge(G) in Algorithm 2. If
at any point we find a perfect 2-matching with a cycle then we return an edge from it. Hence,
it only remains to show the correctness of Steps 5 and 6. Let F be a perfect 2-matching
with no cycle edge. Suppose there exists a perfect 2-matching Ne for some edge e with no
cycle edge. Then Ne and F are both perfect matchings in G. It follows that Ne ∪ F will
be a perfect 2-matching where e is in a cycle and hence Step 5 is correct to return e. Now
suppose that for all e there is no perfect 2-matching Ne. It follows that G has one unique
perfect 2-matching F that is a perfect matching and hence Step 6 correctly returns that no
cycle edge exists.

Using the algorithm from Lemma 6 we can perform Steps 1, 2, and 4.1 in polynomial
time. Thus, FindCycleEdge(G) runs in polynomial time. C
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