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—— Abstract

We consider the following variant of the Mortality Problem: given k& X k matrices A1, Aa, ..., As,
does there exist nonnegative integers m1, ma, ..., m¢ such that the product A7*"* A7*2 - .- A7 is equal
to the zero matrix? It is known that this problem is decidable when ¢ < 2 for matrices over algebraic
numbers but becomes undecidable for sufficiently large ¢t and k even for integral matrices.

In this paper, we prove the first decidability results for ¢ > 2. We show as one of our central
results that for ¢t = 3 this problem in any dimension is Turing equivalent to the well-known Skolem
problem for linear recurrence sequences. Our proof relies on the Primary Decomposition Theorem for
matrices that was not used to show decidability results in matrix semigroups before. As a corollary
we obtain that the above problem is decidable for ¢ = 3 and k£ < 3 for matrices over algebraic
numbers and for t = 3 and k = 4 for matrices over real algebraic numbers. Another consequence is
that the set of triples (m1,m2, m3) for which the equation A7"' A}*? A3"® equals the zero matrix is
equal to a finite union of direct products of semilinear sets.

For t = 4 we show that the solution set can be non-semilinear, and thus it seems unlikely that
there is a direct connection to the Skolem problem. However we prove that the problem is still
decidable for upper-triangular 2 x 2 rational matrices by employing powerful tools from transcendence
theory such as Baker’s theorem and S-unit equations.
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1 Introduction

A large number of naturally defined matrix problems are still unanswered, despite the long
history of matrix theory. Some of these questions have recently drawn renewed interest in
the context of the analysis of digital processes, verification problems, and links with several
fundamental questions in mathematics [11, 7, 37, 39, 38, 35, 17, 14, 15, 36, 5, 41, 27].

One of these challenging problems is the Mortality Problem of whether the zero matrix
belongs to a finitely generated matrix semigroup. It plays a central role in many questions
from control theory and software verification [44, 10, 8, 36, 2]. The mortality problem has been
known to be undecidable for matrices in Z3*3 since 1970 [40] and the current undecidability
bounds for the M (d, k x k) problem (i.e. the mortality problem for semigroups generated
by d matrices of size k x k) are M (6,3 x 3), M (4,5 x 5), M(3,9 x 9) and M(2,15 x 15),
see [13]. It is also known that the problem is NP-hard for 2 x 2 integer matrices [4] and is
decidable for 2 x 2 integer matrices with determinant 0,41 [34]. In the case of finite matrix
semigroups of any dimension the mortality problem is known to be PSPACE-complete [26].

In this paper, we study a very natural variant of the mortality problem when matrices
must appear in a fixed order (i.e. under bounded language constraint): Given k x k matrices
Ay, Ay, ..., Ay over aring F, do there exist my, ma,...,m; € N such that AT AJ? .. A" =
Oy, 1, where Oy i, is k x k zero matrix?

In general (i.e. replacing Oy, j by other matrices) this problem is known as the solvability
of multiplicative matrix equations and has been studied for many decades. In its simplest
form, when k = 1, the problem was studied by Harrison in 1969 [21] as a reformulation of
the “accessibility problem” for linear sequential machines. The case t = 1 was solved in
polynomial time in a celebrated paper by Kannan and Lipton in 1980 [25]. The case t = 2,
i.e. A*BY = C where A, B and C are commuting matrices was solved by Cai, Lipton and
Zalcstein in 1994 [12]. Later, in 1996, the solvability of matrix equations over commuting
matrices was solved in polynomial time in [1] and in 2010 it was shown in [3] that A*BY = C
is decidable for non-commuting matrices of any dimension with algebraic coefficients by
a reduction to the commutative case from [1]. However, it was also shown in [3] that the
solvability of multiplicative matrix equations for sufficiently large natural numbers ¢ and k is
in general undecidable by an encoding of Hilbert’s tenth problem and in particular for the
mortality problem with bounded language constraint. In 2015 it was also shown that the
undecidability result holds for such equations with unitriangluar matrices [31] and also in
the case of specific equations with nonnegative matrices [23].

The decidability of matrix equations for non-commuting matrices is only known as
corollaries of either recent decidability results for solving membership problem in 2 x 2 matrix
semigroups [41, 42] or in the case of quite restricted classes of matrices, e.g. matrices from
the Heisenberg group [27, 28] or row-monomial matrices over commutative semigroups [30].
In the other direction, progress has been made for matrix-exponential equations, but again
in the case of commuting matrices [36].

In this paper, we prove the first decidability results for the above problem when ¢t = 3
and t = 4. We will call these problems the ABC-Z and ABCD-Z problems, respectively.
More precisely, we will show that the ABC-Z problem in any dimension is Turing equivalent
to the Skolem problem (also known as Skolem-Pisot problem) which asks whether a given
linear recurrence sequence ever reaches zero. Our proof relies on the Primary Decomposition
Theorem for matrices (Theorem 2) that was not used to show decidability results in matrix
semigroups before. As a corollary, we obtain that the ABC-Z problem is decidable for 2 x 2
and 3 x 3 matrices over algebraic numbers and also for 4 x 4 matrices over real algebraic
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numbers. Another consequence of the above equivalence is that the set of triples (m,n,¢)
that satisfy the equation A™B"C* = Oy} can be expressed as a finite union of direct
products of semilinear sets.

In contrast to the ABC-Z problem, we show that the solution set of the ABCD-Z problem
can be non-semilinear. This indicates that the ABCD-Z problem is unlikely to be related
to the Skolem problem. However we will show that the ABCD-Z problem is decidable for
upper-triangular 2 x 2 rational matrices. The proof of this result relies on powerful tools from
transcendence theory such as Baker’s theorem for linear forms in logarithms, S-unit equations
from algebraic number theory and the Frobenius rank inequality from matrix analysis. More
precisely, we will reduce the ABCD-Z equation for upper-triangular 2 x 2 rational matrices
to an equation of the form ax + by 4+ cz = 0, where z, y, z are S-units, and then use an upper
bound on the solutions of this equation (as in Theorem 5). On the other hand, if we try to
generalize this result to arbitrary 2 x 2 rational matrices or to upper-triangular matrices
of higher dimension, then we end up with an equation that contain a sum of four or more
S-units, and for such equations no effective upper bounds on their solutions are known. So,
these generalizations seems to lie beyond the reach of current mathematical knowledge.

2 Preliminaries

We denote by N, Z, Q and C the sets of natural, integer, rational and complex numbers,
respectively. Further, we denote by A the set of algebraic numbers and by Ag the set of real
algebraic numbers.

For a prime number p we define a valuation v,(z) for nonzero z € Q as follows: if
T = pk%, where m,n € Z and p does not divide m or n, then v,(z) = vp(pk%) =k.

Throughout this paper F will denote either the ring of integers Z or one of the fields Q,
A, A or C. We will use the notation F™*™ for the set of n X m matrices over F.

We denote by e; the i’th standard basis vector of some dimension (which will be clear
from the context). Let O, ,, be the zero matrix of size n x m, I,, be the identity matrix
of size n x n, and 0,, be the zero column vector of length n. Given a finite set of matrices
G C F™*" we denote by (G) the multiplicative semigroup generated by G.

If Ae F™*™ and B € F**", then we define their direct sum as A® B = {0 5

n,m
Let C € F*** be a square matrix. We write det(C) for the determinant of C. We call C
singular if det(C) = 0, otherwise it is said to be invertible (or non-singular). Matrices A and
B from F¥*¥ are called similar if there exists an invertible k x k matrix S (perhaps over a
larger field containing F) such that A = SBS~!. In this case, S is said to be a similarity
matrix transforming A to B.

We will also require the following inequality regarding ranks of matrices, known as the
Frobenius rank inequality, see [24] for further details.

» Theorem 1 (Frobenius Rank Inequality). Let A, B,C € F***. Then
RK(AB) + RK(BC) < RK(ABC) + RK(B)

In the proof of our first main result about the ABC-Z problem we will make use of the
primary decomposition theorem for matrices.

» Theorem 2 (Primary Decomposition Theorem [22]). Let A be a matriz from F"*", where
F is a field. Let ma(x) be the minimal polynomial for A such that

ma(r) = pi(x)™ - pr(z)™,

A Omm]
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where the p;(x) are distinct irreducible monic polynomials over F and the r; are positive
integers. Let W; be the null space of p;(A)" and let S; be a basis for W;. Then

(1) S1U---USg is a basis for F* and F* =W, & --- & Wy,

(2) each W; is invariant under A, that is, Ax € W; for any x € W,

(3) let S be a matriz whose columns are equal to the basis vectors from S; U---U Sk, then

STIAS = A1 @ - @ Ay,

where each A; is a matriz over F of the size |S;| x |S;|, and the minimal polynomial of
A; is equal to p;(x)".

The next two propositions are well-known facts.

» Proposition 3. If p(z) is a polynomial over a field F, where F is either Q, A or Ag, then
the primary decomposition of p(x) can be algorithmically computed.

» Proposition 4. Let A € F™*" and ma(x) be the minimal polynomial of A. Then A is
invertible if and only if ma(x) has nonzero free coefficient, i.e., ma(x) is not divisible by x.

Our proof of the decidability of ABCD-Z problem for 2 x 2 upper-triangular rational
matrices relies on the following result which is proved using Baker’s theorem on linear forms
in logarithms (see Corollary 4 in [16] and also [18]).

» Theorem 5. Let S = {p1,...,ps} be a finite collection of prime numbers and let a,b, c be
relatively prime nonzero integers, that is, ged(a, b, c) = 1.

If x,y, z are relatively prime nonzero integers composed of primes from S that satisfy the
equation ax + by + cz = 0, then

max{|z],|y|,]2|} < exp(s©*P*3log A)
for some constant C, where P = max{p1,...,ps} and A = max{|al, |b],]|c|,3}.

» Remark. Rational numbers whose numerator and denominator are divisible only by the
primes from S are called S-units.

3 Linear recurrence sequences and semilinear sets

There is a long history in computer science and mathematics of studying sequences of numbers
defined by some recurrence relation, where the next value in the sequence depends upon some
“finite memory” of previous values in the sequence. Possibly the simplest, and certainly the
most well known of these, is the Fibonacci sequence, which may be defined by the recurrence
F(n) = F(n—1)+ F(n—2) with F(0) = F(1) = 1 being given as the initial conditions
of the sequence. We may generalise the Fibonacci sequence to define a linear recurrence
sequence, which find application in many areas of mathematics and other sciences and for
which many questions remain open. Let F be a ring; a sequence (u,)5 is called a linear
recurrence sequence (1-LRS) if it satisfies a relation of the form:

Up = Akg—1Un—1 + -+ C1Up—k+1 + AOUn—k,

for any n > k, where each ag,as,...,ax—1 € F are fixed coefficients!. Such a sequence
(un )L is said to be of depth k if it satisfies no shorter linear recurrence relation (for any

! In the literature, such a sequence is ordinarily called an LRS; we use the nomenclature 1-LRS since we
will study a multidimensional variant of this concept. Also, 1-LRS are usually considered over integers,
but in the present paper we will consider such sequences over algebraic numbers.
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k' < k). We call the initial k values of the sequence ug,uy,...,ur—; the initial conditions of
the 1-LRS. Given the initial conditions and coefficients of a 1-LRS, every element is uniquely
determined.

The zero set of a 1-LRS is defined as follows: Z(u,) = {j € N | u; = 0}.

There are various questions that one may ask regarding Z(u,). One notable example
relates to the famous “Skolem’s problem” which is stated in the following way:

» Problem 6 (Skolem’s Problem). Given the coefficients and initial conditions of a depth k
1-LRS (un)22, determine if Z(uy,) is the empty set.

n=0>

Skolem’s problem has a long and rich history, see [19] for a good survey. We note here
that the problem remains open despite properties of zero sets having been studied even since
1934 [43]. It is known that the Skolem problem is at least NP-hard [9] and that it is decidable
for depth 3 over A and for depth 4 over Ag, see [44] and [33]2. Other interesting questions
are related to the structure of Z(u,). We remind the reader the definition of semilinear sets.

» Definition 7 (Semilinear set). A set S C N s called semilinear if it is the union of a finite
set and finitely many arithmetic progressions.

A seminal result regarding 1-LRSs is that there zero sets are semilinear.

» Theorem 8 (Skolem, Mahler, Lech [32, 43, 29] and [19, 20]). The zero set of a 1-LRS over
C (or more generally over any field of characteristic 0) is semilinear.

In particular, if (un)5 s a 1-LRS whose coefficients and initial conditions are algebraic
numbers, then one can algorithmically find a number L € N such that for everyi =0,...,L—1,
if we let ul, = U;ymr, then
(1) the sequence (u'))S_, is a 1-LRS of the same depth as (u,)>, and

m=0

(2) either Z(ut,) =N or Z(u')) is finite.

Note that in the above theorem we can decide whether Z(uf,) is finite or Z(uf,) = N
because Z(ul,) = N if and only if uf = --- =u}_, = 0, where k is the depth of (uf,)_,.
We will also consider a stronger version of the Skolem problem.

» Problem 9 (Strong Skolem's Problem). Given the coefficients and initial conditions of a
1-LRS (un)$> over A, find a description of the set Z(uy). That is, find a finite set F' such
that Z(uy) = F if Z(uy) is finite or, if Z(uy,) is infinite, find a finite set F, a constant
L € N and numbers iy, ...,4 € {0,...,L — 1} such that

Z(up)=FU{is+mL:meN}U---U{iy +mL:m e N}

Using the Skolem-Mahler-Lech theorem we can prove an equivalence between the strong

version of the Skolem problem and the standard version®.

» Theorem 10. Skolem’s problem of depth k over A is Turing equivalent to the strong
Skolem’s problem of the same depth.

Proof. Obviously, Skolem’s problem is reducible to the strong Skolem’s problem. We now
show a reduction in the other direction.

Let (u,)$2 be a depth-k 1-LRS over A. By Theorem 8, we can algorithmically find a
number L such that, for every i = 0,..., L — 1, the sequence ul, = ;4 is a 1-LRS of

2 A proof of decidability for depth 5 was claimed in [19], although there is possibly a gap in the proof [37].
3 This result was announced in [44] without a proof, probably with a similar construction in mind.

83:5
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depth k which is either everywhere zero, that is, Z(u!,) = N or Z(u!,) is finite. Recall that

we can decide whether Z(u!,) is equal to N by considering the first k terms of (uf,)SS

m=0"

L—1
By definition, we have Z(u,) = |J {i+LZ(u,)}. So, if Z(ul,) = N, then {i+LZ(ul,)}
i=0

=
{i+ mL :m € N}, and if Z(u’,) is finite, then so is {i + L-Z(ul,)}.

To finish the proof we need to show how to compute Z(u!,), and hence {i + L-Z(u,)},
when it is finite. For this we will use an oracle for the Skolem problem. Let m’ be the smallest
number such that Z(uf, ) is empty. Such m’ exists because Z(uf,) is finite. Furthermore,
(Umtm )20, is a 1-LRS of depth k for any m’. So, we ask the oracle for the Skolem problem
to decide whether Z(uf, ,,.,) = 0 for each m’ € N starting from 0 until we find one for which
Z(uy, ) is empty. Note that we do not have any bound on m’ because we do not even
know the size of Z(u?,). All we know is that Z(u?)) is finite, and hence the above algorithm
will eventually terminate. Since Z(ul,) is a subset of {0,...,m’}, then we can compute it by
checking whether u! =0 for m =0,...,m’. |

Linear recurrence sequences can also be represented using matrices [19]:

» Lemma 11. Let F be a ring; for a sequence (u,)S2, over F the following are equivalent:
(1) (un)22y is a I-LRS of depth k.
(2) There are vectors u,v € F* and a matriv M € F*** such that u,, = uT M"™v for n € N.

Moreover, for any matriz M € F**% the sequence u, = (M")[Lk] is a 1-LRS of depth
at most k. On the other hand, if (u,)22, is a 1I-LRS of depth k, then there is a matriz
M ¢ FRtOXEED sych that u, = (M™) 1 jyq) for allm € N.

Lemma 11 motivates the following definition of n-dimensional Linear Recurrence Sequences
(n-LRSs) which as we show later are related to the mortality problem for bounded languages.

» Definition 12 (n-LRS). A multidimensional sequence U, ms.....m, is called an n-LRS of
depth k over F if there exist two vectors u,v € F* and matrices My, M, ..., M, € FF**
such that

_ T mi mao m
Uy ma,...om, = W MM - My

4  The mortality problem for bounded languages
We remind the reader the definition of the mortality problem for bounded languages.

» Problem 13 (Mortality for bounded languages). Given k X k matrices Ay,...,As over a
ring F, do there exist my,ma,...,my € N such that

ATTAT2 AT = O

Recall that for ¢ = 3 and ¢ = 4 this problem is called the ABC-Z and ABCD-Z problem,
respectively. Our first main result is that the ABC-Z problem is computationally equivalent
to the Skolem problem for 1-LRS. Our reduction holds in any dimension and over the same
number field which means that any new decidability results for the Skolem problem will
automatically extend the decidability of ABC-Z equations and can immediately lead to new
decidability results for equations in dimensions 2, 3 and 4. For the proof we will need the
following technical lemma.
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» Lemma 14. Let F be a field, and suppose A, B,C € F*** are matrices of the form

As,s ‘ Os,k—s :l B = |: Bs,t ‘ Xs,k—t :| C = |: Ct,t ‘ Ot,k—t

A =
Ok—ss ‘ Of—sk—s Yi—or ‘ Lh—s kit Op—t ‘ Ot k—t

for some s,t <k, where Ag s, Bs+, Xsp—t, Yost, Zk—sk—t and Cry are matrices over F
whose dimensions are indicated by their subscripts (in particular, A = As s & Op_s k—s and
C=C1®O0k_rk—t). If As s and Cyy are invertible matrices, then the equation ABC = Oy j,
is equivalent to Bsy = Og4.

Proof. It is not hard to check that

AB — |: As,s ‘ Os,krfs :| . |: Bs,t ‘ Xs,kft :| _ |:As,sBs,t ‘ As,sXs,kt:|
Op_ss ‘ Op—sims| |Yi—s: ‘ Llms —t Op_st ‘ Op—s,ii—t
and hence
As,sBs,t ‘ As,sXs,kt:| l: Ct,t ‘ Ot,kft :| l:As,sBs,tCt,t ‘ Os,kft :l
A = . = .
(4B)C |:Oks,t ‘ Op—s k-t Op_tt ‘ Ot k-t Op_st ‘ Op—s k-t

So, if Bs+ = Oy ¢, then ABC = Oy, ;. Conversely, if ABC' = Oy, i, then A; ;Bs :Cit = Os .
Using the fact that A, s and C;; are invertible matrices, we can multiply the equation
As sBs1Cip = Og by A7 ! on the left and by C;’tl on the right to obtain that B, ; = O, ;. <«

,8

» Theorem 15. Let F be the ring of integers Z or one of the fields Q, A or Ag. Then the
ABC-Z problem for matrices from F*** is Turing equivalent to the Skolem problem of depth
k over F.

Proof. First, we show reduction from the ABC-Z problem to the Skolem problem.

Clearly, the ABC-Z problem over Z is equivalent to the ABC-Z problem over Q (by
multiplying the matrices A, B, C by a suitable integer number). It is also not hard to see
that the Skolem problem for 1-LRS over Q is equivalent to the Skolem problem over Z for
1-LRS of the same depth. Indeed, by Lemma 11 we can express any 1-LRS (u,,)5%, over Q
as u, = u? M™v for some rational vectors u and v and a rational matrix M. If we multiply
u, v and M by a suitable natural number ¢, then (t"*2w,)2° ; will be an integer 1-LRS,
which has the same zero set as (u,)52,. Hence, without loss of generality, we will assume
that F is one of the fields Q, A or Ag.

Consider an instance of the ABC-Z problem: A™B"C*¢ = Oy i, where A, B,C € Fhk,
Let x4 (z) be the characteristic polynomial of A. By Proposition 3, we can find a primary
decomposition x4 (z) = p1(z)™ - - ps(x)™t, where p1(z),...,pi(x) are distinct irreducible
monic polynomials. From this decomposition we can find the minimal polynomial m4(x) of
A because m4(x) is a factor of x4(z), and we can check all divisors of x 4(x) to find m(z).

Let ma(x) = p1(z)™ -+ pu(x)™, where p1(z),...,p,.(z) are distinct irreducible monic
polynomials. Now we apply the Primary Decomposition Theorem (Theorem 2) to A. Let S;
be a basis for the null space of p;(A)™, which can be found, e.g., using Gaussian elimination.
Let S be a matrix whose columns are the vectors of the basis Sy U---U.S,. Then

STTAS =A@ @ Ay,

where the minimal polynomial of A; is p;(A)™ for ¢ = 1,...,u. Similarly, we can compute a
primary decomposition m¢(z) = g1(x)*! - - ¢, (x)* of the minimal polynomial for C, where
q1(x), ..., qy(x) are distinct irreducible monic polynomials, and a matrix 7" such that

Ticr=Ci®---®C,,
where the minimal polynomial of C; is ¢;(C)% fori=1,...,v.

MFCS 2019
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Note that if p(z) is an irreducible monic polynomial, then either p(z) = z or z does not
divide p(x). So, among the polynomials p;(x),...,p,(x) in the primary decomposition of
ma(x) at most one is equal to x, and the same holds for the polynomials ¢ (x),...,g,(z) in
the primary decomposition of me(z).

Suppose, for example, that p, () = . In this case ma(x) = p1(x)™ - py—1(x) ™1™,
and ST1AS = A, @---® Ay_1 ® A, where the minimal polynomial of A, is ™, and hence
A, is a nilpotent matrix of index r,. Recall that, for ¢ = 1,...,u — 1, the polynomial p;(z)
is not divisible by «, and so is p;(z)", which is the minimal polynomial for A4;. Hence, by
Proposition 4, A; is invertible. Let A,y = A1 ®--- @ Ay_1 and A,y = A,. Then we obtain

S_IAS = Ainv S Ani17 (1)

where Aj,, is invertible, and Ay is nilpotent. If p;(z) = z for some i < u, then we need
in addition to permute some rows and columns of matrix S to obtain one that gives us
Equation (1) above. If none of the p;(x) is equal to x, then we assume that A; is the empty
matrix of size 0 x 0.

The same reasoning can be applied to matrix C, that is, we can compute an invertible
matrix Ci,y, a nilpotent (or empty) matrix Cy;;, and an invertible matrix 7' such that

TﬁlOT = Oinv S Cnil-

Note that the indices of the nilpotent matrices An; and Cy; are at most k, and hence Aﬁﬂ
and C¥, are zero (or empty) matrices.

Our goal is to find all triples (m,n, £) € N® for which A™B"C* = Oy . In order to do
this we will consider four cases: (1) m > kand £ >k, (2) m < k and £ < k, (3) m > k and
¢ <k,and (4) m <k and £ > k.

Before dealing with each of these cases, we note that the equation A™B"C* = Oy, is

equivalent to

S(A™ @ Am)STIBT(CL, ® CL)T™ ! = 0y, orto

(A" @ AT)STIBT(CL, @ CL) = Oy

inv nil

because S and T are invertible matrices.
Now suppose Aj,, has size s x s, and Cjy, has size t x ¢ for some s,t < k.

Case 1: m > k and £ > k. Since m,¢ > k, we have A" = Oj_s_s and C,; =
Oj;—t,k—+, and hence the equation AmBrCt = Oy, 1 is equivalent to

(A, @ Op—s k—s)S ' B"T(Cfy ® Ok—ti—t) = Op k. (2)

Bet | Xewt ] o
= = . Since A", and
Yi—st ‘ Ll—s ki—t

are invertible matrices, Lemma 14 implies that Equation (2) is equivalent to B, ; = O ;.

Suppose the matrix S™!B"T has a form S™'B"T =

ct

Therefore, we obtain the following equivalence: A™B"C* = Oy, i, if and only if

sid = (e] STHB™(Te;) =0 foralli=1,...,sand j=1,...,t (3)

By Lemma 11, the sequence (s57)22 is a 1-LRS of order k over F. As in the proof of

Theorem 10, we can use an oracle for the Skolem problem for 1-LRS of depth k over F to
compute the descriptions of the semilinear sets Z(s%7). Hence we can compute a description of

the intersection Z; = (|  Z(s%7), which is also a semilinear set. An important observation
i=1,...,s
j=1,t

is that the set Z; does not depend on m and /.
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Below is a brief description of the remaining cases. The detailed proof of Cases 2, 3 and
4 can be found in the full version [6].

Case 2: m < k and £ < k. Fix some m < k and ¢ < k. For this particular choice of
m and ¢, we can compute a description of the semilinear set Z(m,¢) which is equal to all
values of n for which AmB"C*¢ = Oy, holds for fixed m, ¢ < k.

Case 3: m > k and £ < k and Case 4: m < k and £ > k. To solve these cases we
will combine ideas from Cases 1 and 2. Namely, we can compute the descriptions of the
semilinear sets Z3(¢) and Zy(m) such that

Z3(l) ={n : AmB"C* =0y, forallm >k}.

Zy(m)={n : AmB"C* =0y, forall £ >Fk}.

Combining all the above cases together, we conclude that the set of all triples (m,n,f) € N3
that satisfy the equation A™B"C* = Oy is equal to the following union

{(m,n,?) :n € Z; and m, £ > k}U U {(m,n,?) :n e Zg(m,é)}U

m <k 4
J{m,n,0) :n € Zs() and m >k} |J {(m,n,€) : n € Zy(m) and £ > k}. W
<k m<k

Having a description for the above set, we can decide whether is it empty or not, that is,
whether there exist m,n, ¢ € N such that A™B"C* = (O J

We now show the reduction in the other direction. Let (u,)32, be a 1-LRS that satisfies
a relation

Up = Q—1Up—1 + -+ A1Up—k+41 + AoUn—k,

where ag # 0. Let A, B and C be the following matrices of size k x k:

Uk —1 up  Ug A1 1 0 0 0 0 0 0

0 0 0 : 00 - 00

A= 0 O 0l B=4 o0 ... 1 0C=] 1
: A ap 0 -~ 0 1 00 - 00

0 - 0 0 a0 0 0 0 0 0 1

A straightforward computation shows that the product A™B"C* is equal to a matrix where all
entries equal zero except for the entry in the upper-right corner which is equal to u’;:ll Uy S0,
if we assume that uj_; # 0, then we have the following implications: (1) if A™B"C* = Ok
for some m,n,¢ € N with m,¢ > 1, then u, = 0; and (2) if uw,, = 0, then the equation
AmBrCt = Oy, holds for any m, ¢ > 1.

The assumption that ug_; # 0 is not a serious restriction because we can shift the original
sequence by at most k positions to ensure that ui_; # 0. In other words, instead of (u,)22,
we can consider a sequence (un4+¢)5> for some ¢t > 0. It is easy to check that a 1-LRS of
depth k is identically zero if and only if it contains k consecutive zeros. Hence if (u,)22, is
not identically zero, then we can find ¢ < k such that the sequence (u,1+)22, satisfies the
condition that ug_14¢ # 0. <

» Corollary 16. The set of triples (m,n, £) that satisfy an equation A™B"C* = Oy, is equal
to a finite union of direct products of semilinear sets.

Proof. The corollary follows from Equation (4) above that describes all triples (m, n, ) that
satisfy the equation A™B"C* = Oy ;. By construction and the Skolem-Mahler-Lech theorem,
the sets Z1, Za(m, 0), Z5(£) and Z,(m) are semilinear. In Equation (4) we take direct product

83:9

MFCS 2019



83:10

On the Mortality Problem

of these sets either with singleton sets or with sets of the form Ny = {n € N: n > k},
which are also semilinear sets, and then take a finite union of such products. In other words,
Equation (4) can be rewritten as follows

NexZixNg () | {m}xZa(m, 0)x {6} |J | Nex Zs(0)x {¢} | |J {m} x Za(m) xNy.

m <k 1<k m<k

The main corollary of Theorem 15 is the following result. <

» Corollary 17. The ABC-Z problem is decidable for 3 x 3 matrices over algebraic numbers
and for 4 X 4 matrices over real algebraic numbers.

Proof. By Theorem 15, the ABC-Z problem for 3 x 3 matrices over A is equivalent to the
Skolem problem of depth 3 over A, and the ABC-Z problem 4 x 4 matrices over Ay is
equivalent to the Skolem problem of depth 4 over Ag. Now the corollary follows from the
fact that the Skolem problem is decidable for linear recurrence sequences of depth 3 over A
and of depth 4 over Ag [44, 33]. <

5 The ABCD-Z problem in dimension two

Recall that the ABCD-Z problem in dimension two asks whether there exist natural numbers
k,m,n,f € N such that

AFB™C" D! = 04 5. (5)

In this section we will show that this problem is decidable for 2 x 2 upper-triangular matrices
with rational coefficients. In the proof we will use the following simple lemmas which show
how to diagonalise and compute powers of an upper-triangular 2 X 2 matrix.

b
» Lemma 18. Given an upper triangular matric (g c) such that a # c then:

a b\ _ (1 =%\ (¢ 0\ (1 X
0 ¢ 1 0 ¢/\0 1
. a b a b
» Lemma 19. For any matrices of the form (0 c> and <O a>’ such that a # ¢, and any

k X ak _ Ck & i s
k € N we have <a b> —|a bﬁ and (a b) _ (a kbak > .
0 ¢ 0 k 0 a 0 a

C

o

» Theorem 20. The ABCD-Z problem is decidable for 2 X 2 upper-triangular matrices over
rational numbers.

Proof. First, note that if one of the matrices A, B, C or D is nilpotent, then Equation (5)
obviously has a solution. So from now on we assume that none of A, B, C' or D is nilpotent.
Furthermore, if A or D is invertible, then the ABCD-Z problem reduces to the ABC-Z
problem for rational matrices of dimension two that is decidable by Theorem 15. So, without
loss of generality, we will assume that both A and D are singular matrices.

Now suppose we are given an instance of the ABCD-Z problem which satisfies the above-
mentioned requirements. We will show that if Equation (5) has a solution, then it has a
solution with k& = ¢ = 1. Indeed, assume Equation (5) has a solution, and let (k, m,n,£) be a
solution of minimal length, where the length of a solution is the sum k& + m + n + £. Using
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Theorem 15 we can exclude the case when & = 0 or £ = 0 since in this case our problem
is just an instance of the ABC-Z for 2 x 2 matrices. So we will assume that in the above
solution k, ¢ > 1.

By the Frobenius rank inequality (Theorem 1), we have that:

Rk(A*B™C"D*=1) + Rk(A*~1B™C"D*) < Rk(A*~1B™C" D).

This follows since Rk(A* B"C"D*) = Rk(Oz5) = 0. In the above inequality, notice that
neither A¥B™C" D! nor A*~1B™C" D! is the zero matrix by the assumption that the
solution has minimal length. Hence the ranks of the matrices on the left hand side are at
least 1. Therefore, Rk(A*~1B™C"D*~1) = 2. Since we assumed that A and D are singular,
it is necessary that k = £ = 1. Also notice that if Rk(B) = 1 or Rk(C') = 1, then we must
have m = 0 or n = 0, respectively. Again these cases can be excluded by Theorem 15.

Thus, using the Frobenius rank inequality and the assumption that the solution is of
minimal length, we reduced the ABCD-Z problem to an equation of the form:

AB™C"D = Oy,

where Rk(A) = Rk(D) =1 and Rk(B) = Rk(C) = 2.

We assumed that A and D have rank one but are not nilpotent. This means that they
have one zero and one nonzero element on the diagonal, in particular, they satisfy the
condition of Lemma 18. Hence we can find invertible rational matrices S, and Sp such that

A=8;" (8 S)SA and D =Sy (d 0) Sp,

where a, d are nonzero rational numbers. Applying Lemma 14 with matrix S AB"‘C’”S’E)1
in place of B, we conclude that AB™C"D = Og 5 holds if and only if the (1,1)-entry of
SABmC"S,51 equals zero. In other words, the equation AB™C"D = Oy is equivalent
t0 Smn = u! B"C™v = 0, where u' = e/ S4 and v = Sp;'e; are vectors with rational
coefficients.

We will consider three cases: (1) both B and C have distinct eigenvalues, (2) both B and
C have a single eigenvalue of multiplicity 2 and (3) one matrix has distinct eigenvalues and
the other has a single eigenvalue of multiplicity 2.

Case (1): B and C have distinct eigenvalues, that is, B = (lg Zi) and C' = <001 zz>,
where by # by and ¢; # co. By Lemma 19 we have

bm b b;n — b’éﬂ Cn c C? - Cg
Bm: 1 3b1—b2 and Cn: 1 361—62
0 by" 0 cy

Multiplying these matrices we obtain: B™C"™ =

e byt — by E cy —Cy B e by bi"cy — by'ch toes bi'cl — b1'cy
= by — bo Cc1 —C2 = b1 — b2 C1 — C2
0 by 0 3 0 bs'cy

From this formula one can see that the entries of B"C"™ are linear combinations of bi"cf,
b"cy and by'cy with rational coefficients. Notice that the term b5'c} does not appear in the
entries of B™C". Since u and v are rational vectors we conclude that

Sm.n =1 BMCO™v = abct + Bb ey 4+ by ey,
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where «, 5,7 € Q. Multiplying the equation s,, , = abic{ + Bbi*cy + vby'cy = 0 by the
product of denominators of «, 8,y and by, ba, c1, co we can rewrite it in the following form

as™r™ +bs"t" + cg™t" =0

where a,b,c,q,r,s,t are integers and a, b, c are relatively prime. Recall that we want to
find out if there exist m,n € N that satisfy the above exponential Diophantine equation.
If one of the coefficients a, b, ¢ is zero, then this problem is easy to solve. For instance, if
b = 0 then the above equation is equivalent to as™r"™ = —cq™t"™. This equality holds if
and only if as™r™ and —cg™t™ have the same sign and v,(as™r™) = v,(—cqg™t") for every
prime divisor p of a,c,s,7r,q or t. Each of these conditions can be expressed as a linear
Diophantine equation. For instance, the sign of as™r™ or —cq¢"t"™ depends on the parity of
m and n. So, the requirement that as
a linear congruence equation in m and n modulo 2, which in turn can be expressed as a linear

mr™ and —cq™t™ have the same sign can be written as

Diophantine equation. Since a system of linear Diophantine equations can be effectively
solved, we can find out whether there exist m and n that satisfy as™r™ = —cq™t".

Now suppose that a, b, c are relatively prime nonzero integers. Let T be all primes that
appear in s,r,q or t. Theorem 5 gives an upper bound on nonzero relatively prime integers
x,y, z that are composed of the primes from T and satisfy the equation ax + by + cz = 0.
Therefore, we can algorithmically compute the following set

U={(x,y,2) : ax+by+cz=0, x,y,z# 0 and ged(x,y,z) =1}.
Next for each triple (z,y, z) € U we want to find out if there exist m,n € N such that
(s™r", sMt", q"t") = (29,9, 29) (6)

for some g € N that is composed of the primes from T'. It is not hard to see that Equation (6)
holds if and only if for every p € T

0p(s™™) = () = vy (™) — 0y (y) = (@™ E") — y(2)

and s™r", s™t", ¢"t" have the same signs as x, y, z, respectively. Since these conditions can
be expressed as a system of linear Diophantine equations, we can algorithmically find if
there are m,n € N that satisfy Equation (6). If such m and n exist for at least one triple
(z,y,z) € U, then the original equation s, , = 0 has a solution. Otherwise, the equation
Sm,n = 0 does not have a solution.

To finish the proof we also need to consider the following cases:

Case (2): both B and C have a single eigenvalue of multiplicity 2.

Case (3): one matrix has distinct eigenvalues and the other has a single eigenvalue of
multiplicity 2.

Case (2) is the easiest one in the sense that in this case we can reduce the ABCD-Z
problem to a single linear Diophantine equation without using Baker’s theorem. In Case (3)

we will reduce the ABCD-Z problem to a linear-exponential Diophantine equation of the
m

form c% = a + bn, where a,b,¢,s,t € Z, t > 0 and ged(s,t) = 1, which is not hard solve.
Again, this case does not require the use of Baker’s theorem. All the necessary details for
the proof of Cases (2) and (3) are given in the full version [6]. <

» Remark. It is interesting to note that in Cases (1) and (2) the solutions (m,n) of the
equation s, , = 0 are described by linear Diophantine equations, and only in Case (3)
we have a linear-exponential equation. This agrees with an example from Proposition 23,
in which matrix A has a single eigenvalue 1 of multiplicity 2 and matrix B has distinct
eigenvalues 1 and 2.
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» Remark. In the above argument we used Theorem 5 to obtain a bound on the solutions

of the equation as™r™ + bs™t"™ + cq™t™ = 0, which is a special type of an S-unit equation.

This leaves open an interesting question of whether any S-unit equation can be encoded into
the ABCD-Z problem.

The obvious question is how hard would it be to solve n-LRSs, or in general multiplicative
matrix equations, in low dimensions. In fact we can show that the Skolem problem for
n-LRSs of depth 2 is NP-hard. It is not direct but an easy corollary following the hardness
proof of the mortality problem for 2 x 2 matrices [4].

» Theorem 21 ([4]). The mortality problem for integer matrices of dimension two is NP-hard.
» Corollary 22. Determining if the zero set of an n-LRS of depth 2 is empty is NP-hard.

Proof. The main idea of the proof is to reuse the NP-hardness result for the mortality
problem in 2 x 2 integral matrices from [4] by replacing the simulation of alternatives in
subset sum problem defined by a state structure (which is guaranteed by specific order of
unique cancellations) by the equation structure in which avoiding alternatives corresponds
to the elements in the equation with zero power. See the formal construction in the full
version [6]. <

Another interesting observation is that the zero set of a 2-LRS is not necessarily semilinear,
in contrast to the situation for 1-LRSs, which indicates that the Skolem problem for 2-LRSs
is likely to be significantly harder than the Skolem problem for 1-LRSs even for sequences of
small depth.

» Proposition 23. There exists a 2-LRS of depth 2 for which the zero set is not semilinear.

Proof. Let u = (0,1)T,v = (1,—1)T, A — (1 0) and B — (1 0), Define

1 1 0 2
1 0\ /1 0\"/1
_ T Anpm,, __ 0 om
Spm =u" A"B 11—(0,1)(1 1) <0 2) (_1)—n 2m,
Then s, ,, = 0 if and only if n = 2™. Clearly, the zero set is not semilinear. <
—— References

1 L. Babai, R. Beals, J-Y. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over
commuting matrices. In Proc. of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 96, 1996.

2 C. Baier, S. Kiefer, J. Klein, S. Kliippelholz, D. Miiller, and J. Worrell. Markov Chains
and Unambiguous Biichi Automata. In Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, pages
23-42, 2016.

3 P.C. Bell, V. Halava, T. Harju, J. Karhuméki, and I. Potapov. Matrix equations and Hilbert’s
tenth problem. International Journal of Algebra and Computation, 18:1231-1241, 2008.

4 P. C. Bell, M. Hirvensalo, and I. Potapov. Mortality for 2 x 2 matrices is NP-hard. In
Mathematical Foundations of Computer Science (MFCS 2012), volume LNCS 7464, pages
148-159, 2012.

5 P. C. Bell, M. Hirvensalo, and I. Potapov. The identity problem for matrix semigroups in
SL2(Z) is NP-complete. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’17), pages 187-206, 2017.

83:13

MFCS 2019



83:14

On the Mortality Problem

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Paul C. Bell, Igor Potapov, and Pavel Semukhin. On the Mortality Problem: from multiplicative
matrix equations to linear recurrence sequences and beyond. CoRR, abs/1902.10188, 2019.
arXiv:1902.10188.

V. Blondel, E. Jeandel, P. Koiran, and N. Portier. Decidable and undecidable problems about
quantum automata. SIAM Journal on Computing, 34:6:1464-1473, 2005.

V. D. Blondel, O. Bournez, P. Koiran, C. Papadimitriou, and J. N. Tsitsiklis. Deciding
stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science,
255(1-2):687-696, 2001.

V. D. Blondel and N. Portier. The presence of a zero in an integer linear recurrent sequence is
NP-hard to decide. Linear Algebra and its Applications, pages 91-98, 2002.

V. D. Blondel and J. N. Tsitsiklis. Complexity of stability and controllability of elementary
hybrid systems. Automatica, 35:479-489, 1999.

Jin-yi Cai, Wolfgang H. J. Fuchs, Dexter Kozen, and Zicheng Liu. Efficient Average-Case
Algorithms for the Modular Group. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 143-152, 1994.

Jin-yi Cai, Richard J. Lipton, and Yechezkel Zalcstein. The Complexity of the Membership
Problem for 2-generated Commutative Semigroups of Rational Matrices. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 135-142, 1994.

J. Cassaigne, V. Halava, T. Harju, and F. Nicolas. Tighter Undecidability Bounds for Matrix
Mortality, Zero-in-the-Corner Problems, and More. CoRR, abs/1404.0644, 2014.

V. Chonev, J. Ouaknine, and J. Worrell. On the Complexity of the Orbit Problem. Journal
of the ACM, 63(3):1-18, 2016.

Ventsislav Chonev, Joél Ouaknine, and James Worrell. On the Skolem Problem for Continuous
Linear Dynamical Systems. In 48rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 100:1-100:13, 2016.

J.-H. Evertse, K. Gyéry, C. L. Stewart, and R. Tijdeman. S-unit equations and their
applications. In New advances in transcendence theory (Durham, 1986), pages 110-174.
Cambridge Univ. Press, Cambridge, 1988.

E. Galby, J. Ouaknine, and J. Worrell. On matrix powering in low dimensions. In 32nd
International Symposium on Theoretical Aspects of Computer Science (STACS’15), pages
329-340, 2015.

K. Gyéry. On the abe conjecture in algebraic number fields. Acta Arith., 133(3):281-295, 2008.
V. Halava, T. Harju, M. Hirvensalo, and J. Karhumé&ki. Skolem’s problem - on the border
between decidability and undecidability. In TUCS Technical Report Number 683, 2005.

G. Hansel. Une démonstration simple du théoréme de Skolem-Mahler-Lech. Theoret. Comput.
Sci., 43(1):91-98, 1986.

Michael A. Harrison. Lectures on Linear Sequential Machines. Academic Press, Inc., Orlando,
FL, USA, 1969.

K. Hoffman and R. Kunze. Linear algebra. Second edition. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1971.

Juha Honkala. Products of matrices and recursively enumerable sets. Journal of Computer
and System Sciences, 81(2):468-472, 2015.

R. Horn and C. Johnson. Matrixz Analysis. Cambridge University Press, 1990.

Ravindran Kannan and Richard J. Lipton. The Orbit Problem is Decidable. In Proceedings
of the Twelfth Annual ACM Symposium on Theory of Computing, STOC 80, pages 252261,
New York, NY, USA, 1980. ACM.

J.-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or both.
Theor. Comput. Sci., 410(47-49):5010-5021, 2009.

S.-K. Ko, R. Niskanen, and I. Potapov. On the Identity Problem for the Special Linear Group
and the Heisenberg Group. In 45th International Colloquium on Automata, Languages, and


http://arxiv.org/abs/1902.10188

P.C. Bell, I. Potapov, and P. Semukhin

28

29
30

31
32

33

34

35

36

37

38

39

40

41

42

43

44

Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 132:1-132:15,
2018.

Daniel Koénig, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems
in nilpotent, polycyclic, and co-context-free groups. CoRR, abs/1507.05145, 2015. arXiv:
1507 .05145.

C. Lech. A note on recurring series. Ark. Mat. 2, 1953.

Alexei Lisitsa and Igor Potapov. Membership and Reachability Problems for Row-Monomial
Transformations. In Jifi Fiala, Vaclav Koubek, and Jan Kratochvil, editors, Mathematical
Foundations of Computer Science 2004, pages 623-634, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

Markus Lohrey. Rational subsets of unitriangular groups. IJAC, 25(1-2):113-122, 2015.

K. Mahler. Eine arithmetische Eigenschaft der Taylor-Koeffizienten rationaler Funktionen. In
Akad. Wet. Amsterdam 38, pages 50—60, 1935.

M. Mignotte, T. N. Shorey, and R. Tijdeman. The distance between terms of an algebraic
recurrence sequence. J. Reine Angew. Math., 349:63-76, 1984.

C. Nuccio and E. Rodaro. Mortality Problem for 2 x 2 Integer Matrices. In SOFSEM 2008:
Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and
Practice of Computer Science, Novy Smokovec, Slovakia, January 19-25, 2008, Proceedings,
pages 400-405, 2008. doi:10.1007/978-3-540-77566-9_34.

J. Ouaknine, J. Sousa Pinto, and J. Worrell. On termination of integer linear loops. In
Proceedings of the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pages 957-969, 2015.

J. Ouaknine, A. Pouly, J. Sousa-Pinto, and J. Worrell. Solvability of Matrix-Exponential
Equations. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’16), pages 798-806, 2016.

Joél Ouaknine and James Worrell. Decision Problems for Linear Recurrence Sequences. In
Reachability Problems - 6th International Workshop, RP 2012, Bordeaux, France, September
17-19, 2012. Proceedings, pages 21-28, 2012.

Joél Ouaknine and James Worrell. On the Positivity Problem for Simple Linear Recurrence
Sequences,. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 201/, Proceedings, Part II, pages 318-329,
2014.

Joél Ouaknine and James Worrell. Positivity Problems for Low-Order Linear Recurrence
Sequences. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 366-379, 2014.
M. S. Paterson. Unsolvability in 3 x 3 matrices. Studies in Applied Mathematics, 49(1):105-107,
1970.

Igor Potapov and Pavel Semukhin. Decidability of the Membership Problem for 2 x 2 integer
matrices. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 170-186,
2017.

Igor Potapov and Pavel Semukhin. Membership Problem in GL(2, Z) Extended by Singular
Matrices. In 42nd International Symposium on Mathematical Foundations of Computer Science,
MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 44:1-44:13, 2017.

T. Skolem. Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophant-
ischer Gleichungen. Skand. Mat. Kongr., 8:163—-188, 1934.

N. K. Vereshchagin. The problem of the appearance of a zero in a linear recursive sequence.
Mat. Zametki 38, 347(2):609-615, 1985.

83:15

MFCS 2019


http://arxiv.org/abs/1507.05145
http://arxiv.org/abs/1507.05145
https://doi.org/10.1007/978-3-540-77566-9_34

	Introduction
	Preliminaries
	Linear recurrence sequences and semilinear sets
	The mortality problem for bounded languages
	The ABCD-Z problem in dimension two

