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—— Abstract

We study pure Nash equilibria in infinite-duration games on graphs, with partial visibility of actions
but communication (based on a graph) among the players. We show that a simple communication
mechanism consisting in reporting the deviator when seeing it and propagating this information
is sufficient for characterizing Nash equilibria. We propose an epistemic game construction, which
conveniently records important information about the knowledge of the players. With this abstraction,
we are able to characterize Nash equilibria which follow the simple communication pattern via
winning strategies. We finally discuss the size of the construction, which would allow efficient
algorithmic solutions to compute Nash equilibria in the original game.
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1 Introduction

Multiplayer concurrent games over graphs allow to model rich interactions between players.
Those games are played as follows. In a state, each player chooses privately and independently
an action, defining globally a move (one action per player); the next state of the game is
then defined as the successor (on the graph) of the current state using that move; players
continue playing from that new state, and form a(n infinite) play. Each player then gets
a reward given by a payoff function (one function per player). In particular, objectives of
the players may not be contradictory: those games are non-zero-sum games, contrary to
two-player games used for controllers or reactive synthesis [15, 12].

Using solution concepts borrowed from game theory, one can describe interactions among
the players, and in particular rational behaviours of selfish players. One of the most basic and
classically studied solution concepts is that of Nash equilibria [13]. A Nash equilibrium is a
strategy profile where no player can improve her payoff by unilaterally changing her strategy.
The outcome of a Nash equilibrium can therefore be seen as a rational behaviour of the
system. While very much studied by game theorists, e.g. over (repeated) matrix games, such
a concept (and variants thereof) has been only rather recently studied over infinite-duration
games on graphs. Probably the first works in that direction are [9, 8, 16, 17]. Several series
of works have followed. To roughly give an idea of the existing results, pure Nash equilibria
always exist in turn-based games for w-regular objectives [19] but not in concurrent games,
even with simple objectives; they can nevertheless be computed [19, 4, 7, 3] for large classes
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of objectives. The problem becomes harder with mixed (that is, stochastic) Nash equilibria,
for which we often cannot decide the existence [18, 5].

Computing Nash equilibria requires to (i) find a good behaviour of the system; (ii) detect
deviations from that behaviour, and identify deviating players; (iii) punish them. This simple
characterization of Nash equilibria is made explicit in [10]. Variants of Nash equilibria require
slightly different ingredients, but they are mostly of a similar vein.

Many of those results are proven using the construction of a two-player game, in which
winning strategies correspond (in some precise sense) to Nash equilibria in the original game.
This two-player game basically records the knowledge of the various players about everything
which can be uncertain: (a) the possible deviators in [4], and (b) the possible states the
game can be in [3]. Extensions of this construction can be used for other solution concepts
like robust equilibria [7] or rational synthesis [11].

In this work, we consider infinite-duration games on graphs, in which the game arena
is perfectly known by all the players, but players have only a partial information on the
actions played by the other players. The partial-information setting of this work is inspired
by [14]: it considers repeated games played on matrices, where players only see actions of
their neighbours. Neighbours are specified by a communication graph. To ensure a correct
detection of deviators, the solution is to propagate the identity of the deviator along the
communication graph. A fingerprint (finite sequence of actions) of every player is agreed at
the beginning, and the propagation can be made properly if and only if the communication
graph is 2-connected, ensuring large sets of Nash equilibria (formalized as a folk theorem).
Fingerprints are not adapted to the setting of graphs, since they may delay the time at which
a player will learn the identity of the deviator, which may be prohibitive if a bad component
of a graph is then reached.

We therefore propose to add real communication among players. Similarly to [14], a
player can communicate only with her neighbours (also specified by a communication graph),
but can send arbitrary messages (modelled as arbitrary words over alphabet {0,1}). We
assume that visited states are known by the players, hence only the deviator (if any) may be
unknown to the players. In this setting, we show the following results:

We show that a very simple epidemic-like communication mechanism is sufficient for

defining Nash equilibria. It consists in (a) reporting the deviator (for the neighbours

of the deviator) as soon as it is detected, and (b) propagating this information (for the
other players).

We build an epistemic game, which tracks those strategy profiles which follow the above

simple communication pattern. This is a two-player turn-based game, in which Eve (the

first player) suggest moves, and Adam (the second player) complies (to generate the main
outcome), or not (to mimic single-player deviations). The correctness of the construction
is formulated as follows: there is a Nash equilibrium in the original game of payoff p if

and only if there is a strategy for Eve in the epistemic game which is winning for p.

We analyze the complexity of this construction.

Note that we do not assume connectedness of the communication graph, hence the
particular case of a graph with no edges allows to recover the setting of [4] while a complete
graph allows to recover the settings of [19, 7].

In Section 2, we define our model and give an example to illustrate the role of the
communication graph. In Section 3, we prove the simple communication pattern. In
Section 4, we construct the epistemic game and discuss its correctness. In Section 5, we
discuss complexity issues. All proofs are available in the technical report [6].
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2 Definitions

We use the standard notations R (resp. Q, N) for the set of real (resp. rational, natural)
numbers. If S is a subset of R, we write S for S U {—o0, +00}.

Let S be a finite set and R C S. If m is an S-vector over some set X, we write m(R) (resp.
m(—R)) for the vector composed of the R-components of m (resp. all but the R-components).

We also use abusively the notations m(i) (resp. m(—i)) when i is a single element of S, and
may sometimes even use m; if this is clear in the context. Also, if s € S and a € ¥, then
m[s/a] is the vector where the value m(s) is replaced by a.

If S is a finite set, we write S* (resp. ST, S¢) for the set of words (resp. non-empty
word, infinite words) defined on alphabet S.

2.1 Concurrent games and communication graphs

We use the model of concurrent multi-player games [4], based on the two-player model of [1].

» Definition 1. A concurrent multiplayer game is a tuple G = (V, Vinit, Act, P, 2, Allow,
Tab, (payoff,)ace), where V is a finite set of vertices, vinr € V' is the initial verter, Act is
a finite set of actions, P is a finite set of players, ¥ is a finite alphabet, Allow: V x ? —
28N\ L0V is a mapping indicating the actions available to a given player in a given verter,'
Tab: V x Act” — V associates, with a given vertex and a given action tuple the target vertex,
for every a € P, payoff,: V¥ — D is a payoff function with values in a domain D C R.

An element of Act” is called a move. Standardly (see [1] for two-player games and [4]
for the multiplayer extension), concurrent games are played as follows: from a given vertex
v, each player selects independently an action (allowed by Allow), which altogether form a
move m; then, the game proceeds to the next vertex, given by Tab(v, m); the game continues
from that new vertex.

Our setting will refine this model, in that at each round, each player will also broadcast
a message, which will be received by some of the players. The players that can receive a
message will be specified using a communication graph that we will introduce later. The role
of the messages will remain unclear until we commit to the definition of a strategy.

Formally, a full history h in G is a finite sequence

vo - (mo, mesg) - vy - (my, mesy) - va ... (ms_1, mes,_q) -vs € V- ((Act” x ({0,1})") - V)*
such that for every 0 < r < s, for every a € 2, m,(a) € Allow(v,,a), and v, 41 = Tab(v,, m,).
For every 0 < r < s, for every a € P, the set mes,(a) is the message appended to action
m,(a) at step r + 1, which will be broadcast to some other players. For readability we will
also write h as

mo,mesg mi,mesy Ms—1,MeSs 1
() V1 Vg ... Vs

We write vertices(h) = vg-vy - - - vs, and last(h) for the last vertex of h (that is, vs). If r < s, we
also write h>, (resp. h<,) for the suffix v,.-(m,., mes,)-v,y1-(My11, Mes, 1) ... (Ms_1, Mess_1)-
vs (resp. prefix vg - (mg, mesg) - vy - (my, mesy) ... (Mp_1,mes,._1) - v,.). We write Histg(vo)
(or simply Hist(vg) if G is clear in the context) for the set of full histories in G that start at
vo. If h € Hist(vg) and h’ € Hist(last(h)), then we write h - A’ for the obvious concatenation
of histories (it then belongs to Hist(vg)).

! This condition ensures that the game is non-blocking.
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We add a communication (directed) graph G = (?, E) to the context. The set of vertices
of G is the set of players, and edges define a neighbourhood relation. An edge (a,b) € E
(with @ # b) means that player b can see which actions are played by player a together with
the messages broadcast by player a. Later we write a—b whenever (a,b) € E or a = b, and
n(b) = {a € P | a—b} for the so-called neighbourhood of b (that is, the set of players about
which player b has information). If a,b € P, we write distg(a, b) for the distance in G from a
to b (+oo if there is no path from a to b).

Let a € P be a player. The projection of h for a is denoted 7, (h) and is defined by

vo - (mo(n(a)), mesp(n(a))) - v1 - (Mm1(n(a)), mesi(n(a))) - va ...

. (ms_1(n(a)), mess_1 (n(a))) - vy € V - ((Actm(a) x ({0, 1}*)m(a)) -V)*

This will be the information available to player a. In particular, messages broadcast by
the players are part of this information. Note that we assume perfect recall, that is, while
playing, player a will remember all her past knowledge, that is, all of m,(h) if h has been
played so far. We define the undistinguishability relation ~, as the equivalence relation over
full histories induced by 7,: for two histories h and h', h ~, b’ iff 7,(h) = 7o(h'). While
playing, if h ~, I/, a will not be able to know whether i or h’ has been played. We write
Histg (vo) for the set of histories for player a (also called a-histories) from wvy.

We extend all the above notions to infinite sequences in a straightforward way and to the
notion of full play. We write Playsg(vo) (or simply Plays(vg) if G is clear in the context) for
the set of full plays in G that start at vg.

A strategy for a player a € P from vertex vy is a mapping o, : Histg(vg) — Act x {0,1}*
such that for every history h € Histg(vg), o4 (h)[1] € Allow(last(h),a), where the notation
04(h)[1] denotes the first component of the pair o(h). The value o,(h)[1] represents the
action that player a will do after h, while o,(h)[2] is the message that she will append to her
action and broadcast to all players b such that a—b. The strategy o, is said G-compatible
if furthermore, for all histories h,h’ € Hist(vg), h ~, B’ implies o4(h) = o4(R’). In that
case, 0, can equivalently be seen as a mapping Histg ,(vo) — Act x {0,1}*. An outcome
of o, is a(n infinite) play p = v - (g, mesg) - v1 - (M1, mesy) ... such that for every r > 0,
oa(p<r) = (my(a), mes,(a)). We write out(o,, vg) for the set of outcomes of o, from vy.

A strategy profile is a tuple op = (04)ace, Where, for every player a € P, g, is a strategy
for player a. The strategy profile is said G-compatible whenever each o, is G-compatible.
We write out(cyp, vg) for the unique full play from vg, which is an outcome of all strategies
part of op.

When o, is a strategy profile and o/; a player-d G-compatible strategy, we write op[d/c”]
for the profile where player d plays according to ¢/, and each other player a (# d) plays
according to o,. The strategy o/, is a deviation of player d, or a d-deviation w.r.t. op.

Such a d-deviation is said profitable w.r.t. o, whenever payoff, <vertices(out(o¢,v0))) <
payoff, (vertz’ces(out(og)[d/cf&], vo))> .

» Definition 2. A Nash equilibrium from vy is a G-compatible strategy profile op such that
for every d € P, there is no profitable d-deviation w.r.t. op.

In this definition, deviation ¢/, needs not really to be G-compatible, since the only meaningful
part of ¢/, is along out(c[d/c’], vo), where there are no ~g4-equivalent histories: any deviation
can be made G-compatible without affecting the profitability of the resulting outcome.
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Figure 1 A five-player game (left) and three communication graphs (right); self-loops a—a
omitted from the picture. The action alphabet is {a, }. The transition function is represented as
arrows from one vertex to another labeled with the action profile(s) allowing to go from the origin
vertex to the destination one. We write action profiles with length-5 words. Convention: no label
means complementary labels (e.g. one goes from vy to v using any action profile that is not in
o’ + (aff + BB + Ba)Act’ + o?(Ba® + afia + a®p)).

» Remark 3. Before pursuing our study, let us make clear what information players have: a
player knows the full arena of the game and the whole communication graph; when playing
the game, a player sees the states which are visited, and see actions of and messages from her
neighbours (in the communication graph). When playing the profile of a Nash equilibrium,
all players know all strategies, hence a player knows precisely what is expected to be the
main outcome; in particular, when the play leaves the main outcome, each player knows that

a deviation has occurred, even though she didn’t see the deviator or received any message.

Note that deviations which do not leave the main outcome may occur; in this case, only the
neighbours of the deviator will know that such a deviation occurred; we will see that it is
useless to take care of such deviations.

2.2  An example

We consider the five-player game described in Figure 1 in which we denote the players
P ={0,1,2,3,4}. The action alphabet is Act = {«, 8}, and the initial vertex is assumed to
be vg. We suppose the payoff function vector is defined as (to be read as the list of payoffs
of the players):

,1) if p visits vy infinitely often

,2) if p visits vy finitely often and v} infinitely often
00022) if p ends up in vy

,2) if p ends up in vg

,0) if p ends up in vy
00333) if p ends up in v}

(0,
(0,
payoff(p) = E
(0,
(
(

We consider a (partial) strategy profile ¢ whose main outcome is:
p= (vo - (a®,mes,) - v1 - (a°, mese))w

where mes.(a) = € for every a € ?. Note that players 0 and 1 cannot benefit from any
deviation since their payoffs is uniformly 0. Then notice that no one alone can deviate from
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p to vj. Now, the three players 2, 3 and 4 can alone deviate to v] and (try to) do so infinitely
often. We examine those deviations. If players 0 and 1 manage to learn who is the deviator,
then, together, they can punish the deviator: if they learn that player 2 (resp. 3, 4) is the
deviator, then they will enforce vertex vy (resp. vs, vy4). If they do not manage to learn who
is the deviator, then they will not know what to do, and therefore, in any completion of the
strategy profile, there will be some profitable deviation for at least one of the players (hence
there will not be any Nash equilibrium whose main outcome is p).

We examine now the three communication graphs G, G2 and G3 depicted in Figure 1.
Using communication based on graph G7, if player 4 deviates, then player 0 will see this
immediately and will be able to communicate this fact to player 1; if player 3 deviates, then
player 4 will see this immediately and will be able to communicate this fact to player 0,
which will transmit to player 1; if player 2 deviates, then no one will see anything, hence
they will deduce the identity of the deviator in all the cases.

Using communication based on graph G, if either player 3 or player 4 deviates, then
player 0 will see this immediately and will be able to communicate this fact to player 1 using
the richness of the communication scheme (words over {0,1}). Like before, the identity of
deviator 2 will be guessed after a while.

Using communication based on graph G, if player 4 deviates, then player 0 will see this
immediately and will be able to communicate this fact to player 1 (as before); now, no one
(except players 2 and 3) will be able to learn who is deviating, if player 2 or player 3 deviates.

We can conclude that there is a Nash equilibrium with graph G; or G3 whose main
outcome is p, but not with graph Gs.

2.3 Two-player turn-based game structures

Two-player turn-based game structures are specific cases of the previous model, where at
each vertex, at most one player has more than one action in her set of allowed actions. But
for convenience, we will give a simplified definition, with only objects that will be useful.

A two-player turn-based game structure is a tuple G = (S, Sgve, Sadan, Sinit, 4, Allow, Tab),
where S = Sgye LI Spaan is a finite set of states (states in Sgye belong to player Eve whereas
states in Sygan belong to player Adam), siw € S is the initial state, A is a finite alphabet,
Allow: S — 24\ {()} gives the set of available actions, and Tab: S x A — S is the next-state
function. If s € Sgye (resp. Sagam), Allow(s) is the set of actions allowed to Eve (resp. Adam)
in state s.

In this context, strategies will use sequences of states. That is, if a denotes Eve or Adam,
an a-strategy is a partial function o, : S* - S, — A such that for every H € S* - S, such
that o,(H) is defined, o,(H) € Allow(last(H)). Note that we do not include any winning
condition or payoff function in the tuple, hence the name structure.

2.4 The problems we are looking at

We are interested in the constrained existence of a Nash equilibrium. For simplicity, we
define rectangular threshold constraints, but could well impose more complex constraints,
like Boolean combinations of linear constraints.

» Problem 1 (Constrained existence problem). Given a concurrent game G =
(V, Vinit, P, Act, =, Allow, Tab, (payoff,)ace), a communication graph G for P, a predicate P
over RI?I
payoff(vertices(out(op, vinit))) € P? If so, compute one. If the predicate P is trivial, we

simply speak of the existence problem.

, can we decide whether there exists a Nash equilibrium op from vine such that
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The case where the communication graph has no edge was studied in depth in [4], with
a generic two-player construction called the suspect construction, allowing to decide the
constrained existence problem for many kinds of payoff functions. The case where the
communication graph is a clique was the subject of the work [7]. The general case of a
communication graph has not been investigated so far, but induces interesting developments.
In the next section, we show that we can restrict the search of Nash equilibria to the search
of so-called normed strategy profiles, where the communication via messages follows a very
simple pattern. We also argue that deviations which do not impact the visited vertices should
not be considered in the analysis. Given those reductions, we then propose the construction
of a two-player game, which will track those normed profiles. This construction is inspired
by the suspect-game construction of [4] and of the epistemic game of [3].

3 Reduction to profiles following a simple communication mechanism

We fix a concurrent game G = (V, vinit, Act, P, 2, Allow, Tab, (payoff, ) 4c») and a communica-
tion graph G. We assume that vj,i; = vg. We will reduce the search for Nash equilibria to
the search for strategy profiles with a very specific shape. In particular, we will show that
the richness of the communication offered by the setting is somehow useless, and that a very
simple communication pattern will be sufficient for characterizing Nash equilibria.

In the following, we write mes, for the vector assigning the empty word € to every player
a € P. Furthermore, for every d € P, we pick some word idg € {0, 1} which are all distinct
(and different from ¢).

We first define restrictions for deviations. Let o, be a strategy profile. A player-d
deviation o7 is said immediately visible whenever, writing h for the longest common prefix
of out(op, vg) and out(os[d/clj],vo), Tab(last(h), m) # Tab(last(h),m’), where m = o,(h)[1]
and m’ = (op[d/0}](h))[1] are the next moves according to o, and o[d/c})]. That is, at
the first position where player d changes her strategy, it becomes public information that a
deviation has occurred (even though some players know who deviated — all the players a
with d—a — , and some other don’t know). It is furthermore called honest whenever for every
B € out(op[d/olj],v0) such that h is a (non-strict) prefix of h’, o/ (h')[2] = idy. Somehow,
player d admits she deviated, and does so immediately and forever.

The simple communication mechanism that we will design consists in reporting the
deviator (role of the direct neighbours of the deviator), and propagating this information
along the communication graph (for all the other players). Formally, let o, be a strategy
profile, and let p be its main outcome. The profile o, will be said normed whenever the
following conditions hold:

1. for every h € out(os) U Uyep, o out(op[d/d))],vo), if vertices(h) is a prefix of vertices(p),
then for every a € 2, 0, (h)[2] = ¢

2. for every d € P, for every d-strategy o}, if h - (m, mes) - v € out(cp[d/0})], vo) is the first
step out of vertices(p), then for every d—a, o,(h - (m, mes) - v)[2] = idg;

3. for every d € P, for every d-strategy o7, if h - (m, mes) - v € out(op[d/0))], vo) has left the
main outcome for more than one step, then for every a € 2, o4(h - (m, mes) - v)[2] = ¢
if for all b—a, mes(b) = e and o,(h - (m, mes) - v)[2] = idg if there is b—a such that
mes(b) = id4; note that this is well defined since at most one id can be transmitted.

The first condition says that, as long as a deviation is not visible, then no message needs to

be sent; the second condition says that as soon as a deviation becomes visible, then messages

denouncing the deviator should be sent by “those who know”, that is, the (immediate)
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neighbours of the deviator; the third condition says that the name (actually, the id) of the
deviator should propagate according to the communication graph in an epidemic way.
Note that the profiles discussed in Section 2.2 were actually normed.

» Theorem 4. The existence of a Nash equilibrium o, with payoff p is equivalent to the
existence of a normed strategy profile o), with payoff p, which is resistant to immediately
visible and honest single-player deviations.

The proof of this theorem, which is rather technical, can be found in [6]. We only give
some intuition here. First, we explain why being resistant to immediately visible and honest
deviations is enough. Notice that as long as the sequence of vertices follows the main outcome,
then one can simply ignore the deviation and act only when the deviation becomes visible, in
a way as if the deviator had started deviating only at this moment. This will be enough to
punish the deviator. The “honest” part comes from the fact that one should simply ignore
the messages sent by the deviator as it can be only in her interest to not ignore them (if it
was not, then why would she send any message at all?).

Second, we show why no one should communicate as long as the sequence of vertices
follows the main outcome. The reason is that if no one has deviated then any message is
essentially useless, and if a deviation has happened, as explained earlier it can just be ignored
as long as it has not become visible.

Finally, we demonstrate why the richness of the communication mechanism is in a way
useless. Intuitively, one can understand that the only factors that should matter when playing
are the sequence of the vertices that have been visited (because payoff functions only take
into account the visited vertices) and the identity of the deviator. Thus the messages should
only be used so that players can know of the identity of the deviator in the fastest possible
way, and we show that nothing is faster than a sort of epidemic mechanism where one simply
broadcasts the identity of the deviator whenever one received the information.

4 The epistemic game abstraction

We fix a concurrent game G = (V| vinit, Act, P, 3, Allow, Tab, (payoff, )sce) for the rest of the
section, and G be a communication graph for 2. We will implement an epistemic abstraction,
which will track normed strategy profiles, and check that there is no profitable immediately
visible and honest single-player deviations.

4.1 Description of the epistemic game

A situation is a triple (d, I, K) in ? x 2% x <2?)P, which consists of a deviator d € P, a list
of players I having received the information that d is the deviator, and a knowledge function
K that associates to every player a a list of suspects K (a); in particular, it should be the
case that d € I and for every a € I, K(a) = {d}. We write Sit for the set of situations.

The epistemic game 5gG of G and G is defined as a two-player game structure (S, Sgye,
Shdam, Sinit; 2, Allow’, Tab’). We describe the states and the transitions leaving those states;
in particular, components ¥/, Allow’, Tab’ of the above tuple will only be implicitely defined.

Eve’s states Sgye consist of elements of V x 25 such that if (v, X) is a state then for all
a € P the set {(d,I,K) € X | d = a} is either a singleton or empty (there is at most one
situation associated with a given player a). We write dev(X) the set {d € 2| 3(d, I, K) € X}
of agents which are a deviator in one situation of X. If d € dev(X), we write (d, I, K;X) for
the unique triple belonging to X having deviator d. Hence, X = {(d, I, K) | d € dev(X)}.



P. Bouyer and N. Thomasset

Intuitively, an Eve’s state (v, X') will correspond to a situation where the game has proceeded
to vertex v, but, if dev(X) # 0, several players may have deviated. Each player d € dev(X)
may be responsible for the deviation; some people will have received a message denouncing d
(those are in the set I;¥), and some will deduce things from what they observe (this is given
by K j( ). Note that the (un)distinguishability relation of a player a will be deduced from X:
if d deviated and a € I f , then a will know d deviated; if a is neither in I j( nor in [ jf , then
a will not be able to know whether d or d’ deviated (as we will prove later, in Lemma 5).

First let us consider the case where X = (), which is to be understood as the case where
no deviation has arisen yet. In state (v, (), Eve’s actions are moves in G enabled in v. When
she plays move m € Act”, the game progresses to Adam’s state ((v,0)),m) € Spgan Where
Adam’s actions are vertices v’ € V such that there exists a player d € ? and an action § € Act
such that Tab(v, (m[d/d])) = v'. When Adam plays v’, either v/ = Tab(v,m) and the game
progresses to Eve’s state (v/,0) or v’ # Tab(v,m) and the game progresses to Eve’s state
(v', X') where:

d € dev(X') if and only if there is § € Act such that Tab(v, (m[d/d])) = v’. It means that

given the next state v/, d is a possible deviator;

if d € dev(X”’), then:

IX' = {a e |d—a);

for every a € IX', KX'(a) = {d};

for every a ¢ IX', KX'(a) = {b € ® | 38 € Act s.t. Tab(v, (m[b/8])) = v’} \ {b e |
b—a}. Those are all the players that can be suspected by a, given the vertex v’, and
the absence of messages so far.

We write X’ = upd((v,0), m,v’). Note that X’ = () whenever (and only when) Tab(v,m) = v'.

In a state (v, X) € Sgye where X # (), Eve’s actions consist of functions from dev(X) to
Act” that are compatible with players’ knowledge, that is: f : dev(X) — Act” is an action
enabled in (v, X) if and only if (i) for all d € dev(X), for each a € 2, f(d)(a) € Allow(v, a),
(ii) for all d,d’ € dev(X), for all @ € 2, if a ¢ I UIX and K (a) = K (a) then
f(d)(a) = f(d")(a);? that is, if a player has not received any message so far but has the
same knowledge about the possible deviators in two situations, then Eve’s suggestion for
that player’s action must be the same in both situations. When Eve plays action f in (v, X),
the next state is ((v, X), f) € Sadan, where Adam’s actions correspond to states of the game
that are compatible with (v, X) and f, that is states v’ such that there exists d € dev(X)
and ¢ € Act such that Tab(v, f(d)[d/d]) = v'.

When Adam chooses the action v in ((v, X), f), the game progresses to Eve’s state (v, X'),
where:

d € dev(X') if and only if d € dev(X) and there exists & € Act such that Tab(v, f(d)[d/d]) =

v’. It corresponds to a case where d was already a possible deviator and can continue

deviating so that the game goes to v';

if d € dev(X’), then:

IX =1 u{ac®|3be I st b—»a}. New players receive a message with the
deviator id;

for every a € IX', KX (a) = {d};

2 Note in particular that “K3 (a) singleton” does not imply a € Iy, those are two distinguishable
situations: the message with the identity of the deviator may not have been received in the first case,
while it has been received in the second case.
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Eve

v
V1, @
rion o1, 0]
0 Eve

M (o]
Eve
o2 v
(2,{2}, {0~ {2,3}, 1 {2,3,4},3 > {2,4}, 4 {2}}),)
X ={(3,{3,4}, {0 {2,3},1 > {2,3,4},2 > {3,4}}),
(4,{0,4}, {1~ {2,3,4},2 — {3,4},3 — {2,4}})

Figure 2 Part of the epistemic game corresponding to the game described in Figure 1 (with
graph G1). This does not represent the whole epistemic game and a lot of actions accessible in the
states we show here are not written. In situations (d, I, K') we describe K by the list of its values
for players a ¢ I, as for all a in I we have K(a) = {d} by definition.

for every a ¢ IX', KX (a) = {b € K (a) | 38 € Act s.t. Tab(v, f(b)[b/B]) = v'} \ {c €
P | distg(c,a) < max{distg(c,c’) | ¢ € IX} + 1}. Those are the players that could
have deviated but for which player a would not have received the signal yet.

We write X’ = upd((v, X), f,v’). Note that X’ # () and that dev(X’) C dev(X).

We let R = (vg, Xo)- ((vo, X0), fo)- (v1, X1) ... be an infinite play from (vy, Xg) = (Vinit, 0).
We write visited(R) for vy - -+ € V¥ the sequence of vertices visited along R. We also define
dev(R) = 0 if X, = () for every r, and dev(R) = lim,_, ; o, dev(X,.) otherwise. This is the set
of possible deviators along R.

4.1.1 Winning condition of Eve

A zero-sum game will be played on the game structure SgG , and the winning condition of
Eve will be given on the branching structure of the set of outcomes of a strategy for Eve,
and not individually on each outcome, as standardly in two-player zero-sum games. We
write Sinit = (Vinit, @) for the initial state. Let p = (pg)ace € R?, and ¢ be a strategy for Eve
in EQG ; it is said winning for p from s, whenever payoff(visited(R)) = p, where R is the
unique outcome of ¢ from si,i;y where Adam complies to Eve’s suggestions, and for every other
outcome R’ of ¢, for every d € dev(R’), payoff,(visited(R')) < pg.

4.2 An example

In Figure 2 we present a part of the epistemic game corresponding to the game we described in
Figure 1 with graph G. In state (v, (), Eve can play the action profile o® and make the game
go to ((vg, ), a®) where Adam can either play v; = Tab(vg, a®) (we say that Adam complies with
Eve) or choose a different state accessible from vy and an action profile that consists in a single-
player deviation from «, for instance v} = Tab(vg, a?Ba?) = Tab(vg, a®Ba) = Tab(vg, a*f3).
If Adam chooses v}, then three players are possible deviators: 2, 3 and 4. We write X for the
corresponding set of situations, and we already know that dev(X) = {2,3,4} .
If player 2 is the deviator, then no one (except himself) directly receives this information.
Player 0 knows that player 4 did not deviate (since 4—0 in G), hence K5<(0) = {2,3};
Player 1 has no information hence K5%(1) = {2,3,4}; Player 3 knows that he is not the
deviator but cannot know more, hence K5 (3) = {2,4}; Finally, player 4 can deduce many
things: he knows he is not the deviator, and he saw that player 3 is not the deviator
(since 3—+4 in G1), hence K5< (4) = {2}.
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If player 3 is the deviator, then both players 3 and 4 get the information, hence I5X = {3, 4}.

Other players can guess some things, for instance player 0 sees that player 4 cannot be

the deviator, this is why K3 (0) = {2,3}. Etc.

The reasoning for player 4 is similar.
In the situation we have just described, when the game will proceed to v, then either player
0 knows that player 4 has deviated, or he knows that player 4 didn’t deviate but he suspects
both 2 and 3. On the other hand, player 4 will precisely know who deviated. And player 3
knows whether he deviated or not, but if he didn’t, then he cannot know whether it was
player 2 or player 4 who deviated. This knowledge is stored in situation X we have described,
and which is fully given in Figure 2.

Let us now illustrate how actions of Eve are defined in states with a non-empty set of
situations. Assume we are in Eve’s state (vg, X), with X as previously defined. From that
state, an action for Eve is a mapping f : {2,3,4} — Act” such that:

The intuition behind these constraints is the following: Player 0 knows whether Player
4 deviated or not, but in the case she did not cannot know whether Player 2 or Player 3
deviated; Player 1 does not know who deviated, hence should play the same action in the
three cases (that she cannot distinguish); Player 2 does only know whether she deviated
hence in the case she did not cannot know whether Player 3 or Player 4 deviated; the case for
Player 3 is similar; finally Player 4 knows for sure who deviated: she saw if Player 3 deviated
and knows whether she herself deviated, thus can distinguish between the three cases.

4.3 Correctness of the epistemic game construction

When constructing the epistemic game, we mentioned that Eve’s states will allow to properly
define the undistinguishability relation for all the players. Towards that goal, we show by an
immediate induction the following result:

» Lemma 5. If (v, X) is an Eve’s state reachable from some (vo,0) in £, then for all
d € dev(X):

for alla € IF, K (a) = {d};

foralla ¢ IF, K (a) = dev(X) \ {d’ € dev(X) | a € I} }.
In particular, for all d,d’ € dev(X), for alla ¢ I ULy, KX(a) = K3 (a).

So, either a player a will have received from a neighbour the identity of the deviator, or
she will not have received any deviator identity yet, and she will have a set of suspected
deviators that she will not be able to distinguish.

This allows to deduce the following correspondence between G and 5QG :

» Proposition 6. There is a winning strategy for Eve in Eg for payoff p if and only if there
is a mormed strategy profile in G, whose main outcome has payoff p and which is resistant to
single-player immediately visible and honest deviations.

The proof of correctness of the epistemic game then goes through the following steps,
which are detailed in [6]. First, given an Eve’s strategy ¢, we build a function E. associating
with a-histories (for every a € P) in the original game Eve’s histories in the epistemic game
such that Eve plays according to ¢ along F.

Then we use this function to create a strategy profile Q(¢) for the original game where
the action prescribed by this profile to player a after history h corresponds in some sense to
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C(E¢(h))(d)(a), where d is a suspected deviator according to player a. This works because,
thanks to Lemma 5, we know that either player a knows who the deviator is, or player a has
a subset of suspect deviators and Eve’s suggestion for a (by construction of EgG ) is the same
for all those possible deviators.

Finally we prove that if ¢ is a winning strategy for Eve then Q((¢) is both normed and
resistant to single-player immediately visible and honest deviations in G.

To prove the converse proposition we build a function A associating with Eve’s histories
in the epistemic game families of single-player histories in the original game. We then use
this correspondence to build a function T associating with normed strategy profiles Eve’s
strategies in a natural way.

Finally we prove that if ¢ is normed and resistant to single-player immediately visible
honest deviations, then Y(c) is a winning strategy for Eve.

Gathering results of Theorem 4 and of this proposition, we get the following theorem:

» Theorem 7. There is a Nash equilibrium with payoff p in G if and only if there is a
winning strateqy for Eve in EgG for payoff p.

» Remark 8. Note that all the results are constructive, hence if one can synthesize a winning
strategy for Eve in Eg , then one can synthesize a correponding Nash equilibrium in G.

5 Complexity analysis

We borrow all notations of previous sections. A rough analysis of the size of the epistemic
game SgG gives an exponential bound. We will give a more precise bound, pinpointing
the part with an exponential blowup. We write diam(G) for the diameter of G, that is
diam(G) = max{distg(a, b) | distg(a,b) < +o0}.

» Lemma 9. Assuming that Tab is given explicitely in G, the number of states in the reachable
part of 5gG from sinit = (Vinit, 0) is bounded by

|Seve| < V| + |V - |Tab|? - (diam(G) + 2) and  |Shaam| < |Sevel - |Act]?”

The number of edges is bounded by |Sngan| + |Sadan| * |SEve]-
If || is assumed to be a constant of the problem, then the size of Eg is polynomial in the

size of G.

We will not detail algorithmics issues, but the winning condition of Eve in €gG is very
similar to the winning condition of Eve in the suspect-game construction of [4] (for Boolean
or ordered objectives), or in the deviator-game construction of [7] (for mean-payoff), or
in a closer context to the epistemic-game construction of [3]. Hence, when the size of the
epistemic game is polynomial, rather efficient algorithms can be designed to compute Nash
equilibria. For instance, in a setting where the size of EgG is polynomial, using a bottom-up
labelling algorithm similar to that of [2, Sect. 4.3], one obtains a polynomial space algorithm
for deciding the (constrained) existence of a Nash equilibrium when payoffs are Boolean
payoffs corresponding to parity conditions.

6 Conclusion

In this paper, we have studied multiplayer infinite-duration games over graphs, and focused on
games where players can communicate with neighbours, given by a directed graph. We have
shown that a very simple communication mechanism was sufficient to describe Nash equilibria.



P. Bouyer and N. Thomasset

This mechanism is sort of epidemic, in that if a player deviates, then his neighbours will see it
and transmit the information to their own neighbours; the information then propagates along
the communication graph. This framework encompasses two standard existing frameworks,
one where the actions are invisible (represented with a graph with no edges), and one where
all actions are visible (represented by the complete graph). We know from previous works that
in both frameworks, one can compute Nash equilibria for many kinds of payoff functions. In
this paper, we also show that we can compute Nash equilibria in this generalized framework,
by providing a reduction to a two-player game, the so-called epistemic game construction.
Winning condition in this two-player game is very similar to winning conditions encountered
in the past, yielding algorithmic solution to the computation of Nash equilibria. We have
also analyzed the size of the abstraction, which is polynomial when the number of players is
considered as a constant of the problem.

The current framework assumes messages can be appended to actions by players, allowing
a rich communication between players. The original framework of [14] did not allow additional
messages, but did encode identities of deviators by sequences of actions. This was possible
in [14] since games were repeated matrix games, but it is harder to see how we could extend
this approach and how we could encode identities of players with actions, taking into account
the graph structure. For instance, due to the graph, having too long identifiers might be
prohibitive to transmit in a short delay the identity of the deviator. Nevertheless, that could
be interesting to see if something can be done in this framework.
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