
44th International Symposium
on Mathematical Foundations of
Computer Science

MFCS 2019, August 26–30, 2019, Aachen, Germany

Edited by

Peter Rossmanith
Pinar Heggernes
Joost-Pieter Katoen

LIPIcs – Vo l . 138 – MFCS 2019 www.dagstuh l .de/ l ip i c s

Editors

Peter Rossmanith
RWTH Aachen University, Germany
rossmani@cs.rwth-aachen.de

Pinar Heggernes
University of Bergen, Norway
pinar.heggernes@uib.no

Joost-Pieter Katoen
RWTH Aachen University, Germany
katoen@cs.rwth-aachen.de

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-117-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-117-7.

Publication date
August, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.MFCS.2019.0

ISBN 978-3-95977-117-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-0177-8028
mailto:rossmani@cs.rwth-aachen.de
https://orcid.org/0000-0001-9460-4355
mailto:pinar.heggernes@uib.no
https://orcid.org/0000-0002-6143-1926
mailto:katoen@cs.rwth-aachen.de
https://www.dagstuhl.de/dagpub/978-3-95977-117-7
https://www.dagstuhl.de/dagpub/978-3-95977-117-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.MFCS.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-117-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

MFCS 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen . 0:xi

Conference Organization
. 0:xiii–0:xvi

Invited Talks

Trustworthy Graph Algorithms
Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow . 1:1–1:22

Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in
Nearly Linear Time

Alexandra Silva . 2:1–2:1

Picking Random Vertices
Daniel Lokshtanov . 3:1–3:1

Popular Matchings: Good, Bad, and Mixed
Telikepalli Kavitha . 4:1–4:1

Petri Net Reachability Problem
Jérôme Leroux . 5:1–5:3

Regular Papers

An Improved Online Algorithm for the Traveling Repairperson Problem on a Line
Marcin Bienkowski and Hsiang-Hsuan Liu . 6:1–6:12

Query-Competitive Sorting with Uncertainty
Magnús M. Halldórsson and Murilo Santos de Lima . 7:1–7:15

Better Bounds for Online Line Chasing
Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Christian Coester,
Łukasz Jeż, and Elias Koutsoupias . 8:1–8:13

Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism
Patricia Bouyer and Nathan Thomasset . 9:1–9:14

Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time
Paweł Parys . 10:1–10:13

Bidding Mechanisms in Graph Games
Guy Avni, Thomas A. Henzinger, and Ðorđe Žikelić . 11:1–11:13

Cluster Deletion on Interval Graphs and Split Related Graphs
Athanasios L. Konstantinidis and Charis Papadopoulos . 12:1–12:14

Constrained Representations of Map Graphs and Half-Squares
Hoang-Oanh Le and Van Bang Le . 13:1–13:15

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Colouring H-Free Graphs of Bounded Diameter
Barnaby Martin, Daniël Paulusma, and Siani Smith . 14:1–14:14

Distance Labeling Schemes for Cube-Free Median Graphs
Victor Chepoi, Arnaud Labourel, and Sébastien Ratel . 15:1–15:14

One-Dimensional Guarded Fragments
Emanuel Kieroński . 16:1–16:14

Finite Satisfiability of Unary Negation Fragment with Transitivity
Daniel Danielski and Emanuel Kieroński . 17:1–17:15

The Fluted Fragment with Transitivity
Ian Pratt-Hartmann and Lidia Tendera . 18:1–18:15

Counting of Teams in First-Order Team Logics
Anselm Haak, Juha Kontinen, Fabian Müller, Heribert Vollmer, and Fan Yang . . . 19:1–19:15

Approximating Activation Edge-Cover and Facility Location Problems
Zeev Nutov, Guy Kortsarz, and Eli Shalom . 20:1–20:14

Distributed Minimum Vertex Coloring and Maximum Independent Set in
Chordal Graphs

Christian Konrad and Viktor Zamaraev . 21:1–21:15

Multistage Knapsack
Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller . 22:1–22:14

Recursion Schemes, Discrete Differential Equations and Characterization of
Polynomial Time Computations

Olivier Bournez and Arnaud Durand . 23:1–23:14

On the Coalgebra of Partial Differential Equations
Michele Boreale . 24:1–24:13

Random Subgroups of Rationals
Ziyuan Gao, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, Alexander Melnikov,
Karen Seidel, and Frank Stephan . 25:1–25:14

Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness
Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz 26:1–26:14

Packing Arc-Disjoint Cycles in Tournaments
Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh,
Jocelyn Thiebaut, and Meirav Zehavi . 27:1–27:14

A Sub-Exponential FPT Algorithm and a Polynomial Kernel for Minimum
Directed Bisection on Semicomplete Digraphs

Jayakrishnan Madathil, Roohani Sharma, and Meirav Zehavi . 28:1–28:14

The Quantifier Alternation Hierarchy of Synchronous Relations
Diego Figueira, Varun Ramanathan, and Pascal Weil . 29:1–29:14

Two variable fragment of Term Modal Logic
Anantha Padmanabha and R. Ramanujam . 30:1–30:14

Choiceless Logarithmic Space
Erich Grädel and Svenja Schalthöfer . 31:1–31:15

Contents 0:vii

Faster FPT Algorithm for 5-Path Vertex Cover
Radovan Červený and Ondřej Suchý . 32:1–32:13

Parameterized Complexity of Fair Vertex Evaluation Problems
Dušan Knop, Tomáš Masařík , and Tomáš Toufar . 33:1–33:16

A Complexity Dichotomy for Critical Values of the b-Chromatic Number of Graphs
Lars Jaffke and Paloma T. Lima . 34:1–34:13

Parameterized Complexity of Conflict-Free Matchings and Paths
Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, and Saket Saurabh 35:1–35:15

On the Strength of Uniqueness Quantification in Primitive Positive Formulas
Victor Lagerkvist and Gustav Nordh . 36:1–36:15

Resolution Lower Bounds for Refutation Statements
Michal Garlík . 37:1–37:13

Tangles and Single Linkage Hierarchical Clustering
Eva Fluck . 38:1–38:12

Approximating the Orthogonality Dimension of Graphs and Hypergraphs
Ishay Haviv . 39:1–39:15

Domination Above r-Independence: Does Sparseness Help?
Carl Einarson and Felix Reidl . 40:1–40:13

Reducing the Domination Number of Graphs via Edge Contractions
Esther Galby, Paloma T. Lima, and Bernard Ries . 41:1–41:13

Measuring what Matters: A Hybrid Approach to Dynamic Programming
with Treewidth

Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon 42:1–42:15

The Power Word Problem
Markus Lohrey and Armin Weiß . 43:1–43:15

Upper Bounds on the Length of Minimal Solutions to Certain Quadratic Word
Equations

Joel D. Day, Florin Manea, and Dirk Nowotka . 44:1–44:15

The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs
Sandra Kiefer and Daniel Neuen . 45:1–45:15

The Domino Problem is Undecidable on Surface Groups
Nathalie Aubrun, Sebastián Barbieri, and Etienne Moutot . 46:1–46:14

P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs
Relative to an Oracle

Titus Dose . 47:1–47:14

Semicomputable Points in Euclidean Spaces
Mathieu Hoyrup and Donald M. Stull . 48:1–48:13

Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs
Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova 49:1–49:15

MFCS 2019

0:viii Contents

On the Expressivity of Linear Recursion Schemes
Pierre Clairambault and Andrzej S. Murawski . 50:1–50:14

Uniform Random Expressions Lack Expressivity
Florent Koechlin, Cyril Nicaud, and Pablo Rotondo . 51:1–51:14

Lower Bounds for Multilinear Order-Restricted ABPs
C. Ramya and B.V. Raghavendra Rao . 52:1–52:14

On the Symmetries of and Equivalence Test for Design Polynomials
Nikhil Gupta and Chandan Saha . 53:1–53:16

The Complexity of Homomorphism Indistinguishability
Jan Böker, Yijia Chen, Martin Grohe, and Gaurav Rattan . 54:1–54:13

SZX-Calculus: Scalable Graphical Quantum Reasoning
Titouan Carette, Dominic Horsman, and Simon Perdrix . 55:1–55:15

On the Stretch Factor of Polygonal Chains
Ke Chen, Adrian Dumitrescu, Wolfgang Mulzer, and Csaba D. Tóth 56:1–56:14

Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks
Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev 57:1–57:15

Constant Delay Enumeration with FPT-Preprocessing for Conjunctive Queries
of Bounded Submodular Width

Christoph Berkholz and Nicole Schweikardt . 58:1–58:15

Counting Homomorphisms Modulo a Prime Number
Amirhossein Kazeminia and Andrei A. Bulatov . 59:1–59:13

Approximate Counting CSP Seen from the Other Side
Andrei A. Bulatov and Stanislav Živný . 60:1–60:14

Uniformisation Gives the Full Strength of Regular Languages
Nathan Lhote, Vincent Michielini, and Michał Skrzypczak . 61:1–61:13

New Pumping Technique for 2-Dimensional VASS
Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski 62:1–62:14

Computational Complexity of Synchronization under Regular Constraints
Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer,
Mikhail V. Volkov, and Petra Wolf . 63:1–63:14

A Constant-Time Colored Choice Dictionary with Almost Robust Iteration
Torben Hagerup . 64:1–64:14

Fault Tolerant and Fully Dynamic DFS in Undirected Graphs: Simple Yet Efficient
Surender Baswana, Shiv Gupta, and Ayush Tulsyan . 65:1–65:16

RLE Edit Distance in Near Optimal Time
Raphaël Clifford, Paweł Gawrychowski, Tomasz Kociumaka, Daniel P. Martin, and
Przemysław Uznański . 66:1–66:13

Indexing Graph Search Trees and Applications
Sankardeep Chakraborty and Kunihiko Sadakane . 67:1–67:14

Contents 0:ix

Additive Cellular Automata Over Finite Abelian Groups: Topological and
Measure Theoretic Properties

Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara 68:1–68:15

On Synthesis of Resynchronizers for Transducers
Sougata Bose, Shankara Narayanan Krishna, Anca Muscholl, Vincent Penelle, and
Gabriele Puppis . 69:1–69:14

Acceptance Ambiguity for Quantum Automata
Paul C. Bell and Mika Hirvensalo . 70:1–70:14

From Regular Expression Matching to Parsing
Philip Bille and Inge Li Gørtz . 71:1–71:14

Solving Systems of Equations in Supernilpotent Algebras
Erhard Aichinger . 72:1–72:9

Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees
in Graphs

Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino,
Takeaki Uno, and Kunihiro Wasa . 73:1–73:14

Enumeration of Preferred Extensions in Almost Oriented Digraphs
Serge Gaspers and Ray Li . 74:1–74:15

Determinisation of Finitely-Ambiguous Copyless Cost Register Automata
Théodore Lopez, Benjamin Monmege, and Jean-Marc Talbot . 75:1–75:15

Aperiodic Weighted Automata and Weighted First-Order Logic
Manfred Droste and Paul Gastin . 76:1–76:15

A Congruence-based Perspective on Automata Minimization Algorithms
Pierre Ganty, Elena Gutiérrez, and Pedro Valero . 77:1–77:14

Finding Optimal Solutions With Neighborly Help
Elisabet Burjons, Fabian Frei, Edith Hemaspaandra, Dennis Komm, and
David Wehner . 78:1–78:14

Reconfiguration of Minimum Steiner Trees via Vertex Exchanges
Haruka Mizuta, Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou 79:1–79:11

The Perfect Matching Reconfiguration Problem
Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi,
Arnaud Mary, Moritz Mühlenthaler, and Kunihiro Wasa . 80:1–80:14

Spectral Aspects of Symmetric Matrix Signings
Charles Carlson, Karthekeyan Chandrasekaran, Hsien-Chih Chang,
Naonori Kakimura, and Alexandra Kolla . 81:1–81:13

Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques
Stefan Kiefer and Cas Widdershoven . 82:1–82:13

On the Mortality Problem: From Multiplicative Matrix Equations to Linear
Recurrence Sequences and Beyond

Paul C. Bell, Igor Potapov, and Pavel Semukhin . 83:1–83:15

MFCS 2019

Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a well-established venue for presenting research papers in theoretical
computer science. The broad scope of the conference encourages interactions between
researchers who might not meet at more specialized venues. The first MFCS conference
was organized in 1972 in Jabłonna (near Warsaw, Poland). Since then, the conference
traditionally moved between the Czech Republic, Slovakia, and Poland. A few years ago,
the conference started traveling around Europe: in 2018 it was held in Liverpool, United
Kingdom. MFCS 2019, the 44th edition of MFCS, is the first MFCS being held in Germany.

Out of 198 submitted papers, 78 have been finally accepted. The authors of the submitted
papers represent nearly 40 countries. Each paper was assigned to three PC members, who
reviewed and discussed them thoroughly over a period of nearly seven weeks. As the co-chairs
of the program committee, we would like to express our deep gratitude to all the committee
members for their hard, dedicated work. The quality of the submitted papers was very high
and many good papers had to be rejected.

MFCS 2019 features five invited talks, by Kurt Mehlhorn (Max-Plack Institute Saar-
brücken, Germany), Alexandra Silva (University College London, UK), Daniel Lokshtanov
(University of California at Santa Barbara, USA), Kavitha Telikepalli (Tata Institute of
Fundamental Research, India) and Jérôme Leroux (LaBRI, France). We are looking forward
to their excellent talks.

Since 2016, the MFCS 2019 proceedings are published in the Dagstuhl/LIPIcs series. We
would like to thank Michael Wagner and the LIPIcs team for all their kind help and support.
We also like to thank Birgit Willms for her dedicated support in the local organization of
MFCS 2019 in Aachen.

Peter Rossmanith
Pigar Heggernes

Joost-Pieter Katoen

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

Program Commitee

Nathalie Bertrand INRIA
Benedikt Bollig LSV, ENS Cachan, CNRS
Marthe Bonamy CNRS, LaBRI, Bordeaux
Flavia Bonomo Universidad de Buenos Aires – CONICET
Véronique Bruyère University of Mons
Tiziana Calamoneri Sapienza University of Rome
Supratik Chakraborty IIT Bombay
Christophe Crespelle Université Claude Bernard Lyon 1
Pedro R. D’Argenio Universidad Nacional de Córdoba – CONICET
Konrad Kazimierz Dabrowski Durham University
Khaled Elbassioni Masdar Institute
Edith Elkind University of Oxford
Leah Epstein University of Haifa
Henning Fernau University of Trier
Dana Fisman Ben-Gurion University
Fedor Fomin University of Bergen
Serge Gaspers UNSW Sydney and Data61, CSIRO
Archontia Giannopoulou TU Berlin
Pinar Heggernes University of Bergen
Joost-Pieter Katoen RWTH Aachen University
Eun Jung Kim CNRS - Paris Dauphine
Ramanujan M. S. University of Warwick
Radu Mardare Aalborg University
Arnaud Mary University of Lyon
Roland Meyer TU Braunschweig
Martin Milanič UP IAM and UP FAMNIT, University of Primorska
Neeldhara Misra Indian Institute of Science
Andrzej Murawski University of Oxford
Michał Pilipczuk University of Warsaw
Dieter Rautenbach University of Ulm
Felix Reidl University of London
Peter Rossmanith RWTH Aachen University
Davide Sangiorgi University of Bologna
Ignasi Sau CNRS, LIRMM, Montpellier
Lutz Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg
Hadas Shachnai Technion
Mahsa Shirmohammadi CNRS
Pawel Sobocinski University of Southampton
B Srivathsan Chennai Mathematical Institute
Ryuhei Uehara Japan Advanced Institute of Science and Technology
Tarmo Uustalu Reykjavik University
Franck van Breugel York University
Erik Jan van Leeuwen Utrecht University

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Conference Organization

Igor Walukiewicz CNRS, LaBRI
Mingsheng Ying University of Technology, Sydney
Meirav Zehavi Ben-Gurion University

External Reviewers

Ábrahám, Erika Adsul, Bharat Agrawal, Akanksha
Akshay, S. Almagor, Shaull Amarilli, Antoine
Antoniadis, Antonios Ashok, Pradeesha Backurs, Arturs
Bamas, Étienne Bampis, Evripidis Banik, Aritra
Barmpalias, George Barrington, David A. Mix Barto, Libor
Baste, Julien Belardinelli, Francesco Bell, Paul
Ben Basat, Ran Ben-David, Shai Benedikt, Michael
Bergougnoux, Benjamin Berwanger, Dietmar Bhangale, Amey
Blondin, Michael Blumensath, Achim Bodlaender, Hans L.
Boiret, Adrien Bonchi, Filippo Bonnet, Edouard
Bougeret, Marin Brazdil, Tomas Bresolin, Davide
Bressan, Marco Buchin, Kevin Bulteau, Laurent
Cadilhac, Michaël Çağirici, Onur Cao, Yixin
Capobianco, Silvio Carlucci, Lorenzo Carton, Olivier
Carvalho, Marcelo Catalano, Costanza Chadha, Rohit
Chakraborty, Shantanav Chalopin, Jérémie Chaplick, Steven
Chiarelli, Nina Chini, Peter Chistikov, Dmitry
Chitnis, Rajesh Courcelle, Bruno Dallard, Clément
Damian, Mirela Dantchev, Stefan Day, Adam
Day, Joel de Haan, Ronald de Lima, Paloma
de Rezende, Susanna F. de Wolf, Ronald Defrain, Oscar
Deligkas, Argyrios Denkinger, Tobias Dennunzio, Alberto
Dibek, Cemil Disser, Yann Doczkal, Christian
Domaratzki, Mike Doumane, Amina Dürr, Christoph
Eftekhari, Mahsa Ehard, Stefan Eiben, Eduard
Enright, Jessica Erlebach, Thomas Faliszewski, Piotr
Fang, Wang Fearnley, John Feghali, Carl
Feldmann, Andreas Emil Fervari, Raul Feuerstein, Esteban
Fici, Gabriele Fieux, Etienne Fijalkow, Nathanaël
Fortin, Marie Freer, Cameron Furber, Robert
Földvári, Attila Fürst, Maximilian Gajarský, Jakub
Galesi, Nicola Gan, Jiarui Ganian, Robert
Gao, Yihan Gavazzo, Francesco Gavinsky, Dmitry
Georgieva, Lilia Ghilezan, Silvia Gimbert, Hugo
Golovach, Petr Gonzalez, Carolina Gonçalves, Daniel
Goodman-Strauss, Chaim van Gool, Sam Gorain, Barun
Graça, Daniel Gupta, Sid Gutierrez, Julian
Göbel, Andreas Gözüpek, Didem Haase, Christoph
Hadzihasanovic, Amar Hanh, Michel Harju, Tero
Hatzel, Meike He, Meng Heindel, Tobias
Hellerstein, Lisa Hermann, Miki Hershberger, John
Hirvensalo, Mika Hoang, Duc A. Hoffmann, Stefan

Conference Organization 0:xv

Holub, Stepan Horn, Florian Huang, Shenwei
Hughes, Andrew Idziak, Pawel Ikenmeyer, Christian
Iljazović, Zvonko Jaffke, Lars Jain, Pallavi
Jones, Mark Kanté, Mamadou Moustapha Kari, Jarkko
Katoh, Takashi Kazakov, Yevgeny Kelmendi, Edon
Khaniki, Erfan Kiefer, Stefan Kissinger, Aleks
Klauck, Hartmut Klivans, Adam Knop, Alexander
Kociumaka, Tomasz Kolay, Sudeshna Kortsarz, Guy
Koucky, Michal Kowalik, Lukasz Krnc, Matjaž
Kulik, Ariel Kuperberg, Denis Kwon, O-Joung
Kötzing, Timo Künnemann, Marvin Laekhanukit, Bundit
Lampis, Michael Langetepe, Elmar Lee, Barton
Levin, Asaf Li, Qin Limaye, Nutan
Limouzy, Vincent Loebl, Martin Loff, Bruno
Lohrey, Markus Lubiw, Anna Löding, Christof
Madathil, Jayakrishnan Madeira, Alexandre Magnien, Clemence
Mailler, Cécile Marino, Andrea Martin, Barnaby
Marx, Dániel Matheja, Christoph Mayr, Peter
Mazowiecki, Filip McCarty, Rose Melgratti, Hernan
Melnikov, Alexander Mendes de Oliveira, Rafael Mestre, Julian
Michaliszyn, Jakub Mikhailin, Ivan Mikulas, Szabolcs
Milius, Stefan Misra, Pranabendu Mkrtchyan, Vahan
Mnich, Matthias Mohr, Elena Morak, Michael
Moreira, Nelma Mouatadid, Lalla Mouawad, Amer
Mudrinski, Nebojša Mukhopadhyay, Partha Muskalla, Sebastian
Müller, Moritz Natarajan Ramamoorthy,

Sivaramakrishnan
Nekrashevych, Volodymyr

Neves, Renato Ng, Kang Feng Nilsson, Bengt J.
Niskanen, Reino Nisse, Nicolas Nitay, Dolav
Nogueira, Loana Tito Nutov, Zeev Ochem, Pascal
Ochremiak, Joanna Ordyniak, Sebastian Orlandelli, Eugenio
Otachi, Yota Ozols, Māris Pankratov, Denis
Paoletti, Nicola Parreau, Aline Paschos, Vangelis
Pasechnik, Dmitrii Paul, Erik Peleg, David
Penelle, Vincent Perez, Anthony Perez, Guillermo
Pieterse, Astrid Piribauer, Jakob Pirogov, Anton
Posobin, Gleb Potapov, Igor Protti, Fábio
Raffinot, Mathieu Ramamoorthi, Vijayaragunathan Ramanujam, R.
Rampersad, Narad Ramyaa, Ramyaa Rao B V, Raghavendra
Rao, Michael Rattan, Gaurav Ravi, S. S.
Rawitz, Dror Reitzner, Daniel Renken, Malte
Richomme, Gwenaël Rivas, Exequiel Riveros, Cristian
Roggenbach, Markus Romashchenko, Andrei Rot, Jurriaan
Roth, Marc S, Krishna S. Thinniyam, Ramanathan
Saar, Guy Saikawa, Takafumi Saivasan, Prakash
Sajenko, Andrej Sakai, Yoshifumi Sampaio Rocha, Leonardo
Sangnier, Arnaud Sarma, Jayalal Sarpatwar, Kanthi
Saurabh, Nitin Scheideler, Christian Schewior, Kevin

MFCS 2019

0:xvi Conference Organization

Schmid, Markus L. Schmidt, Christiane Schnoebelen, Philippe
Schoeters, Jason Schroeder, Matthias Schwartz, Roy
Schwoon, Stefan Scquizzato, Michele Semanišin, Gabriel
Semukhin, Pavel Shalom, Mordechai Sharma, Roohani
Shirley, Morgan Shkatov, Dmitry Siebertz, Sebastian
Simon, Sunil Simonov, Kirill Sinaimeri, Blerina
Sivaraman, Vaidy Skrzypczak, Michał Slivovsky, Friedrich
Sokolov, Dmitry Solomon, Shay Sonar, Chinmay
Souto, André Souza, Uéverton Sprunger, David
Sreejith, A V Srinivasan, Srikanth Strehler, Martin
Strozecki, Yann Subramanyan, Pramod Suchy, Ondrej
Takaoka, Asahi Talbot, Jean-Marc Tamaki, Suguru
Tendera, Lidia Thaler, Justin Toruńczyk, Szymon
Torán, Jacobo Tsukada, Takeshi Turetsky, Daniel
Uchizawa, Kei Veltri, Niccolò Verbitsky, Oleg
Vihrovs, Jevgēnijs Vijayaraghavan, Aravindan Vocca, Paola
Voigt, Marco Volk, Ben Lee Vyas, Nikhil
Wang, Yishu Wasa, Kunihiro Wiederrecht, Sebastian
Worrell, James Wrochna, Marcin Xie, Ning
Yuster, Raphael Zamaraev, Viktor Zantema, Hans
Zanuttini, Bruno Zeume, Thomas Zhuk, Dmitriy
Ziemianski, Krzysztof Zoros, Dimitris

Trustworthy Graph Algorithms
Mohammad Abdulaziz
TU München, Germany

Kurt Mehlhorn
MPI for Informatics, Saarbrücken, Germany

Tobias Nipkow
TU München, Germany

Abstract
The goal of the LEDA project was to build an easy-to-use and extendable library of correct and
efficient data structures, graph algorithms and geometric algorithms. We report on the use of formal
program verification to achieve an even higher level of trustworthiness. Specifically, we report on an
ongoing and largely finished verification of the blossom-shrinking algorithm for maximum cardinality
matching.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Software and its engineering→ Formal software verification; Software and its engineering→ Software
libraries and repositories

Keywords and phrases graph algorithms, formal correct proofs, Isabelle, LEDA, certifying algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.1

Category Invited Talk

1 Introduction

This talk is a follow-up on two previous invited MFCS-talks given by the second author:
LEDA: A Library of Efficient Data Types and Algorithms in MFCS 1989 [31], and
From Algorithms to Working Programs: On the Use of Program Checking in LEDA in
MFCS 1998 [33].

After a review of these papers, we discuss the further steps taken to reach even higher
trustworthiness of our implementations.

Formal correctness proofs of checker programs [5, 39], and
Formal verification of complex graph algorithms [1].

The second item is the technical core of the paper: it reports on the ongoing and largely
finished verification of the blossom-shrinking algorithm for maximum cardinality matching
in Isabelle/HOL by the first author.

Personal Note by the Second Author. As this paper spans 30 years of work, the reader
might get the impression that I followed a plan. This is not the case. As a science, in this
case computer science, progresses, there are logical next steps. I took these steps. I did not
know 30 years ago, where the journey would lead me.

2 Level One of Trustworthiness: The LEDA Library of Efficient Data
Types and Algorithms

In 1989, Stefan Näher and the second author set out to build an easy-to-use and extendable
library of correct and efficient data structures, graph algorithms and geometric algorithms.
The project was announced in an invited talk at MFCS 1989 [31] and the library is available
from Algorithmic Solutions GmbH [27]. LEDA, the library of efficient data types and

© Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Trustworthy Graph Algorithms

template <class NT>
void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& cost,

node_array<NT>& dist, node_array<edge>& pred)
{

node_pq<NT> PQ(G); // a priority queue for the nodes of G
node v; edge e;
dist[s] = 0; // distance from s to s is zero
PQ.insert(s,0); // insert s with value 0 into PQ
forall_nodes(v,G) pred[v] = nil; // no incoming tree edge yet
while (!PQ.empty()) // as long as PQ is non-empty
{ node u = PQ.del_min(); // let u be the node with minimum dist in PQ

NT du = dist[u]; // and du its distance
forall_adj_edges(e,u) // iterate over all edges e out of u
{ v = G.opposite(u,e); // makes it work for ugraphs

NT c = du + cost[e]; // distance to v via u
if (pred[v] == nil && v != s) // v already reached?

PQ.insert(v,c); // first path to v
else if (c < dist[v]) PQ.decrease_p(v,c); // better path

else continue;
dist[v] = c; // store distance value
pred[v] = e; // and incoming tree edge

}
}

}

Figure 1 The LEDA implementation of Dijkstra’s algorithm: Note that the executable code
above is similar to a typical pseudo-code presentation of the algorithm.

algorithms, offers a flexible data type graph with loops for iterating over edges and nodes
and arrays indexed by nodes and edges. It also offers the data types required for graph
algorithms such as queues, stacks, and priority queues. It thus created a framework in which
graph algorithms can be formulated easily and naturally, see Figure 1 for an example. The
design goal was to create a system in which the difference between the pseudo-code used to
explain an algorithm and what constitutes an executable program is as small as possible.
The expectation was that this would ease the burden of the implementer and make it easier
to get implementations correct.

3 Level Two of Trustworthiness: Certifying Algorithms

Nevertheless, some implementations in the initial releases were incorrect, in particular, the
planarity test1; it declared some planar graphs non-planar. At around 1995, we adopted the
concept of certifying algorithms [33, 30] for the library and reimplemented all algorithms [34].
A certifying algorithm computes for each input a easy-to-check certificate (witness) that
demonstrates to the user that the output of the program for this particular input is correct;
see Figure 2. For example, the certifying planarity test returns a Kuratowski subgraph if it

1 Most of the implementations of the geometric algorithms were also incorrect in their first release as
we had naïvely used floating point arithmetic to implement real arithmetic and the rounding errors
invalidated the implementations of the geometric primitives. This lead to the development of the exact
computation paradigm for geometric computing by us and others [20, 45, 14, 44, 32]. In this paper, we
restrict to graph algorithms.

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:3

Program for IO-
behavior (ϕ,ψ)x y

Certifying
program for IO-
behavior (ϕ,ψ)

Checker C
x

x y

w

accept y

reject

Figure 2 The top figure shows the I/O behavior of a conventional program for IO-behavior (ϕ,ψ);
here ϕ is the precondition and ψ is the postcondition. The user feeds an input x satisfying ϕ(x)
to the program and the program returns an output y satisfying ψ(x, y). A certifying algorithm for
IO-behavior (ϕ,ψ) computes y and a witness w. The checker C accepts the triple (x, y, w) if and
only if w is a valid witness for the postcondition ψ(x, y), i.e., it proves ψ(x, y). (reprinted from [5])

declares the input graph non-planar and a (combinatorial) planar embedding if it declares the
input graph planar, and the maximum cardinality matching algorithm computes a matching
and an odd-set-cover that proves its optimality; see Figures 3 and 4. The state of the art of
certifying algorithms is described in [30]. We also implemented checker programs that check
the witness for correctness and argued that the checker programs are so simple that their
correctness is evident. From a pragmatic point of view, the goals of the project were reached
by 2010. The library was easy-to-use and extendable, the implementations were efficient,
and no error was discovered in any of the graph algorithms for several years despite intensive
use by a commercial and academic user community.

Note that, most likely, errors would not have gone undiscovered because of the use of
certifying algorithms and checker programs. Only if a module produced an incorrect output
and hence an invalid certificate and the checker program missed to uncover the invalidity of
the certificate would an error go unnoticed. Of course, the possibility is there and the phrase
“most likely” in the preceding sentence has no mathematical meaning.

Alternative libraries such as Boost and LEMON [43, 28] are available now and some
of their implementations are slightly more efficient than ours. However, none of the new
libraries pays the same attention to correctness. For example, all libraries allow floating
point numbers as weights and capacities in network algorithms, but only LEDA ensures that
the intricacies of floating point arithmetic do not invalidate the implementations; see [6]
and [34, Section 7.2].

4 Level Three of Trustworthiness: Formal Verification of Checkers

We stated above that the checker programs are so simple that their correctness is evident.
Shouldn’t they then be amenable to formal verification? Harald Ganzinger and the second
author attempted to do so at around 2000 and failed. About 10 years later (2011 – 2014)
Eyad Alkassar from the Verisoft Project [42], Sascha Böhme and Lars Noschinski from
Tobias Nipkow’s group at TU München, and Christine Rizkallah and the second author
succeeded in formally verifying some of the checker programs [5, 39]. In order to be able to
talk about formal verification of checker programs, we need to take a more formal look at
certifying algorithms.

MFCS 2019

1:4 Trustworthy Graph Algorithms

A matching in a graph G is a subset M of the edges of G such that no two share an endpoint.

An odd-set cover OSC of G is a labeling of the nodes of G with non-negative integers such that
every edge of G (which is not a self-loop) is either incident to a node labeled 1 or connects two
nodes labeled with the same i, i ≥ 2.

Let ni be the number of nodes labeled i and consider any matching N . For i, i ≥ 2, let Ni be
the edges in N that connect two nodes labeled i. Let N1 be the remaining edges in N . Then
|Ni| ≤ bni/2c and |N1| ≤ n1 and hence

|N | ≤ n1 +
∑
i≥2

bni/2c

for any matching N and any odd-set cover OSC . It can be shown that for a maximum cardinality
matching M there is always an odd-set cover OSC with

|M | = n1 +
∑
i≥2

bni/2c,

thus proving the optimality of M . In such a cover all ni with i ≥ 2 are odd, hence the name.

list<edge> MAX_CARD_MATCHING(graph G, node_array<int>& OSC)
computes a maximum cardinality matching M in G and returns it as a list of edges.
The algorithm ([12], [15]) has running time O(nm · α(n,m)).
An odd-set cover that proves the maximality of M is returned in OSC .

bool CHECK_MAX_CARD_MATCHING(graph G, list<edge> M, node_array<int> OSC)
checks whether M is a maximum cardinality matching in G and OSC is a proof of
optimality. Aborts if this is not the case.

Figure 3 The LEDA manual page for maximum cardinality matchings (reprinted from [33]).

We consider algorithms which take an input from a set X and produce an output in a set
Y and a witness in a set W . The input x ∈ X is supposed to satisfy a precondition ϕ(x),
and the input together with the output y ∈ Y is supposed to satisfy a postcondition ψ(x, y).
A witness predicate for a specification with precondition ϕ and postcondition ψ is a predicate
W ⊆ X × Y ×W , where W is a set of witnesses with the following witness property:

ϕ(x) ∧W(x, y, w) −→ ψ(x, y). (1)

The checker program C receives a triple2 (x, y, w) and is supposed to check whether it fulfills
the witness property. If ¬ϕ(x), C may do anything (run forever or halt with an arbitrary
output). If ϕ(x), C must halt and either accept or reject. It is required to accept ifW(x, y, w)
holds and is required to reject otherwise. This results in the following proof obligations.

Checker Correctness: We need to prove that C checks the witness predicate assuming that
the precondition holds, i.e., on input (x, y, w):
(i) If ϕ(x), C halts.
(ii) If ϕ(x) and W(x, y, w), C accepts (x, y, w), and if ϕ(x) and ¬W(x, y, w), C rejects

the triple.
Witness Property: We need to prove implication (1).

2 We ignore the minor complication that X, Y , and W are abstract sets and programs handle concrete
representations.

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:5

static bool return_false(string s)
{ cerr << "CHECK_MAX_CARD_MATCHING: " << s << "\n"; return false; }

bool CHECK_MAX_CARD_MATCHING(const graph& G, const list<edge>& M,
const node_array<int>& OSC)

{ int n = Max(2,G.number_of_nodes());
int K = 1;
array<int> count(n);
for (int i = 0; i < n; i++) count[i] = 0;
node v; edge e;

forall_nodes(v,G)
{ if (OSC[v] < 0 || OSC[v] >= n)

return_false("negative label or label larger than n - 1");
count[OSC[v]]++;
if (OSC[v] > K) K = OSC[v];

}

int S = count[1];
for (int i = 2; i <= K; i++) S += count[i]/2;
if (S != M.length())

return_false("OSC does not prove optimality");

forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);

if (v == w || OSC[v] == 1 || OSC[w] == 1 ||
(OSC[v] == OSC[w] && OSC[v] >= 2)) continue;

return_false("OSC is not a cover");
}
return true;

}

Figure 4 The checker for maximum cardinality matchings (reprinted from [33]).

In case of the maximum cardinality matching problem, the witness property states that
an odd-set cover OSC as defined in Figure 3 with |M | = n1 +

∑
i≥2bni/2c proves that the

matching M has maximum cardinality. Checker correctness amounts to the statement that
the program shown in Figure 4 is correct.

We proved the witness property using Isabelle/HOL [37]; see Section 5.1 for more
information on Isabelle/HOL. For the checker correctness, we used VCC [9] and later
Simpl [41] and AutoCorres [16]. The latter approach has the advantage that the entire
verification can be performed within Isabelle. Simpl is a generic imperative programming
language embedded into Isabelle/HOL, which was designed as an intermediate language
for program verification. We implemented checkers both in Simpl and C. Checkers written
in Simpl were verified directly within Isabelle. For the checkers written in C, we first
translated from C to Isabelle using the C-to-Isabelle parser that was developed as part of
the seL4 project [21], and then used the AutoCorres tool developed at NICTA that simplifies
reasoning about C in Isabelle/HOL. Christine spent several months at NICTA to learn how
to use the tool. We verified the checkers for connectivity, maximum cardinality matching,
and non-planarity. In particular, for the non-planarity checker it was essential that Lars
Noschinski in parallel formalized basic graph theory in Isabelle [38].

MFCS 2019

1:6 Trustworthy Graph Algorithms

A disclaimer is in order here. We did not verify the C++ program shown in Figure 4.
Rather we verified a manual translation of this program into Simple or C, respectively. For
this translation, we assumed a very basic representation of graphs. The nodes are numbered
from 0 to n−1, the edges are numbered from 0 to m−1 with the edges incident to any vertex
numbered consecutively and arrays of the appropriate dimension are used for cross-referencing
and for encoding adjacency lists.

The verification attempt for the maximum cardinality checker shown in Figure 4 discovered
a flaw. Note that the program does not check whether the edges in M actually belong to G.
When we wrote the checker, we apparently took this for granted. The verification attempt
revealed the flaw.

We also considered going further and briefly tried to verify the LEDA maximum cardinality
matching algorithm [34, Section 7.7]. The program has 330 lines of code and the description
of the algorithm, its implementation and its correctness proof spans over 20 pages. We found
the task too daunting and, extrapolating from the effort required for the verification of the
checkers, estimated the effort as several man-years.

5 Level Four of Trustworthiness: Formal Verification of Complex
Algorithms

A decade later, we perform the formal verification of the blossom-shrinking algorithm for
maximum cardinality. We give a short account of the verification which will be described
in detail in our forthcoming publication [1]. On a high-level Edmond’s blossom-shrinking
algorithm [12] works as follows. The algorithm repeatedly searches for an augmenting path
with respect to the current matching. Initially, the current matching is empty. Whenever an
augmenting path is found, augmentation of the path increases the size of the matching by
one. If no augmenting path exists with respect to the current matching, the current matching
has maximum cardinality.

The search for an augmenting path is via growing alternating trees rooted at free vertices,
i.e. vertices not incident to an edge of the matching. The search is initialised by making
each free vertex a root of an alternating tree; the matched nodes are in no tree initially. In
an alternating tree, vertices at even depth are entered by a matching edge, vertices at odd
depth are entered by a non-matching edge, and all leaves have even depth. In each step of
the growth process, one considers a vertex, say u1, of even depth that is incident to an edge
{u1, u2} not considered before. If u2 is not in a tree yet, then one adds u2 (at odd level) and
its mate (at even level) under the current matching to the tree. If u2 is already in a tree and
has odd level then one does nothing as one simply has discovered another odd length path to
u2. If u2 is already in a tree and has even level then one has either discovered an augmenting
path (if u2 is in a different tree than u1) or a blossom (if u2 and u1 are in the same tree). In
the latter case, consider the tree paths from u2 and u1 back to their common root and let u3
be the lowest common ancestor of u2 and u1. The edge {u1, u2} plus the tree paths from u1
and u2 to u3 form an odd length cycle. One collapses all nodes on the cycle into a single node
and repeats the search for an augmenting path in the quotient (= shrunken) graph. If an
augmenting path is found in the quotient graph, it is lifted (refined) to an augmenting path
in the original graph. If no augmenting path exists in the quotient graph, no augmenting
path exists in the original graph. In this section, we describe in detail the algorithm outlined
above, and the process of formalising and verifying it in Isabelle/HOL.

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:7

5.1 Isabelle/HOL
Isabelle/HOL [40] is a theorem prover for classical Higher-Order Logic. Roughly speaking,
Higher-Order Logic can be seen as a combination of functional programming with logic.
Isabelle’s syntax is a variation of Standard ML combined with (almost) standard mathematical
notation. Application of function f to arguments x1 . . . xn is written as f x1 . . . xn instead
of the standard notation f(x1, . . . , xn). We explain non-standard syntax in the paper where
it occurs.

Isabelle is designed for trustworthiness: following the LCF approach [35], a small kernel
implements the inference rules of the logic, and, using encapsulation features of ML, it
guarantees that all theorems are actually proved by this small kernel. Around the kernel,
there is a large set of tools that implement proof tactics and high-level concepts like algebraic
data types and recursive functions. Bugs in these tools cannot lead to inconsistent theorems
being proved since they all rely on the kernel only, but only to error messages when the
kernel refuses a proof. Isabelle/HOL comes with a rich set of already formalized theories,
among which are natural numbers and integers as well as sets and finite sets.

5.2 Preliminaries
An edge is a set of vertices with size 2. A graph G is a set of edges. A set of edgesM is a
matching iff ∀e, e′ ∈M. e ∩ e′ = ∅. In Isabelle/HOL that is represented as follows:

matching M ←→ (∀ e1 ∈ M. ∀ e2 ∈ M. e1 6= e2 −→ e1 ∩ e2 = {})

In may cases, a matching is a subset of a graph, in which case we call it a matching w.r.t.
the graph. For a graph G,M is a maximum matching w.r.t. G iff for any matchingM′ w.r.t.
G, we have that |M′| ≤ |M|.

5.3 Formalising Berge’s Lemma
A list of vertices u1u2 . . . un is a path w.r.t. a graph G iff every {ui, ui+1} ∈ G. A path
u1u2 . . . un is a simple path iff for every 1 ≤ i 6= j ≤ n, ui 6= uj . A list of vertices u1u2 . . . un

is an alternating path w.r.t. a set of edges E iff for some E′ (i) E′ = E or E′ = {e | e 6∈ E},
(ii) {ui, ui+1} ∈ E′ holds for all even numbers i, where 1 ≤ i < n, and (iii) {ui, ui+1} 6∈ E′
holds for all odd numbers i, where 1 ≤ i ≤ n. We call a list of vertices u1u2 . . . un an
augmenting path w.r.t. a matchingM iff u1u2 . . . un is an alternating path w.r.t. M and
u1, un 6∈

⋃
M. It is often the case that an augmenting path γ w.r.t. to a matchingM is

also a simple path w.r.t. a graph G, in which case we call the path an augmenting path w.r.t.
to the pair 〈G,M〉. Also, for two sets s and t, s⊕ t denotes the symmetric difference of the
two sets. We overload ⊕ to arguments which are lists in the obvious fashion.

I Theorem 1 (Berge’s Lemma). For a graph G, a matchingM is maximum w.r.t. G iff there
is not an augmenting path γ w.r.t. 〈G,M〉.

Our proof of Berge’s lemma is shorter than the standard proof. The standard proof consists
of three steps. First, for any two matchingsM andM′, every connected component of the
graphM⊕M′ is either (i) a singleton vertex, (ii) a path, or (iii) a cycle. Second, for a set
of edges C ⊆M⊕M′ s.t. |C ∩M| < |C ∩M′|, the edges from C form a path. Third, such
a set C of edges exists, if |M| < |M′|. We observe that it is easier to directly show that
such a C exists and that all its edges can be arranged in a path, without having to prove
the first step about all connected components. We found this different proof during the
process of formalising the theorem, and finding this shorter proof was primarily motivated

MFCS 2019

1:8 Trustworthy Graph Algorithms

by making the formalisation shorter and more feasible. The discovery of simpler proofs or
more general theorem statements is one potential positive outcome of verifying algorithms,
and mathematics in general, in interactive theorem provers [3, 2, 10].

Algorithm 1 Find_Max_Matching(G,M).

γ := Aug_Path_Search(G,M)
if γ is some augmenting path

return Find_Max_Matching(G,M⊕ γ)
else

return M

Now consider Algorithm 1. Berge’s lemma implies the validity of that algorithm as a
method to compute maximum matchings in graphs. The validity of Algorithm 1 is stated in
the following corollary.

I Corollary 1. Assume that Aug_Path_Search(G,M) is an augmenting path w.r.t.
〈G,M〉, for any graph G and matching M, iff G has an augmenting path w.r.t. 〈G,M〉.
Then, for any graph G, Find_Max_Matching(G, ∅) is a maximum matching w.r.t. G.

As shown in Corollary 1, Algorithm 1 depends on the function Aug_Path_Search which
is a sound and a complete procedure to compute augmenting paths in graphs.

In Isabelle/HOL, the first step is to formalise the path concepts from above. Paths and
alternating paths are defined recursively in a straightforward fashion. An augmenting path
is defined as follows:

augmenting_path M p ≡ (length p ≥ 2) ∧ alt_path M p
∧ hd p /∈ Vs M ∧ last p /∈ Vs M

The formalised statement of Berge’s lemma is as follows:

theorem Berge:
assumes

finite M and matching M and M ⊆ E
and
(∀ e∈E. ∃ u v. e = {u,v} ∧ u 6= v) and finite (Vs E)

shows (∃ p. augmenting_path M p ∧ path E p ∧ distinct p) ←→
(∃ M’ ⊆ E. matching M’ ∧ card M < card M’)

Note that in the formalisation when the paths need to be simple, such as in Berge’s lemma
above, we have the additional assumption that all vertices are pairwise distinct, denoted by
the Isabelle/HOL predicate distinct. Just to clarify Isabelle’s syntax: the lemma above has
two sets of assumptions, one on the matching and the other on the graph. The matching has
to be a finite set, which is a matching w.r.t. the given graph. The graph has to have edges
which only have two vertices, and its set of vertices has to be finite.

In Isabelle/HOL Algorithm 1 is formalised within the following locale.

locale find_max_match =
fixes aug_path_search::’a set set ⇒ ’a set set ⇒ (’a list) option and

E
assumes

aug_path_search_complete:
matching M ∧ M ⊆ E ∧ finite M ∧

(∃ p. path E p ∧ distinct p ∧ augmenting_path M p)

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:9

=⇒ (∃ p. aug_path_search E M = Some p)
and
aug_path_search_sound:
matching M ∧ M ⊆ E ∧ finite M ∧ aug_path_search E M = Some p =⇒

path E p ∧ distinct p ∧ augmenting_path M p
and
graph: ∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v finite (Vs E)

A locale is a named context: definitions and theorems proved within locale find_max_match
can refer to the parameters and assumptions declared there. In this case, we need the
locale to identify the parameter aug_path_search of the locale, corresponding to the function
Aug_Path_Search, which is used in Algorithm 1. The function aug_path_search should
take as input a graph and a matching. It should return an (’a list) option typed value.
Generally speaking, the value of an ’a option valued term could be in one of two forms:
either Some x, or None, where x is of type ’a. In the case of aug_path_search, it should return
either Some p, where p is a path in case an augmenting path is found, or None, otherwise.
There is also the function the, which given a term of type ’a option, returns x, if the given
term is Some x, and which is undefined otherwise. Within that locale, the definition of
Algorithm 1 and its verification theorem are as follows. Note that the verification theorem
has four conclusions: the algorithm returns a subset of the graph, that subset is a matching,
that matching is finite and the cardinality of any other matching is bounded by the size of
the returned matching.

find_max_matching M =
(if (∃ p. aug_path_search E M = Some p) then

(find_max_matching (M ⊕ (set (edges_of_path (the (aug_path_search E M))))))
else M)

lemma find_max_matching_works:
shows (find_max_matching {}) ⊆ E

matching (find_max_matching {})
finite (find_max_matching {})
∀ M. matching M ∧ M ⊆ E ∧ finite M −→ card M ≤ card (find_max_matching {})

Functions defined within a locale are parameterised on the constants which are declared
in the locale’s definition. When a function is used outside a locale, these parameters
must be specified. So, if find_max_matching is used outside the locale above, it should
take a function which computes augmenting paths as a parameter. Similarly, theorems
proven within a locale implicitly have the assumptions of the locale. So if we use the
lemma find_max_matching_works, we would have to prove that the functional argument to
find_max_matching satisfies the assumptions of the locale, i.e. that argument is a sound and
complete procedure for computing augmenting paths. The way theorems from locales are
used will be clearer in the next section when we refer to the function find_max_matching and
use the lemma find_max_matching_works outside of the locale find_max_match. The use of
locales for performing gradual refinement of algorithms allows to focus on the specific aspects
of the algorithm relevant to a refinement stage, with the rest of the algorithm abstracted away.

5.4 Verifying that Blossom Contraction Works
In Corollary 1, which specifies the soundness of Find_Max_Matching, we have not
explicitly specified the function Aug_Path_Search. Indeed, we have only specified what its
output has to conform to. We now refine that specification and describe Aug_Path_Search
algorithmically.

MFCS 2019

1:10 Trustworthy Graph Algorithms

Firstly, for a function f and a set s, let fLsM denote the image of f on s. Also, for a set
of edges E, and a function f , the quotient E/f is the set {fLeM | e ∈ E}. We now introduce
the concepts of a blossom. A list of vertices u1u2 . . . un is called a cycle if 3 < n and un = u1,
and we call it an odd cycle if n is even. A pair 〈u1u2 . . . ui−1, uiui+1 . . . un〉 is a blossom
w.r.t. a matching M iff (i) uiui+1 . . . un is an odd cycle, (ii) u1u2 . . . un is an alternating
path w.r.t.M, and (iii) u1 6∈

⋃
M. We also refer to u1u2 . . . ui as the stem of the blossom.

In many situations we have a pair 〈u1u2 . . . ui−1, uiui+1 . . . un〉 which is a blossom w.r.t. a
matchingM where u1u2 . . . ui−1uiui+1 . . . un−1 is also a simple path w.r.t. a graph G and
{un−1, un} ∈ G. In this case we call it a blossom w.r.t. 〈G,M〉.

Based on the above definitions, we prove that contracting (i.e. shrinking) the odd cycle
of a blossom preserves the existence of an augmenting path, which is the second main result
needed to prove the validity of the blossom-shrinking algorithm, after Berge’s lemma.

I Theorem 2. Consider a graph G and a vertex u 6∈
⋃
G. Let for a set s, the function Ps

be defined as Ps(x) = if x ∈ s then u else x. Then, for a blossom 〈γ,C〉 w.r.t. 〈G,M〉, if s
is the set of vertices in C, then we have an augmenting path w.r.t. 〈G,M〉 iff there is an
augmenting path w.r.t. 〈G/Ps,M/Ps〉.

Theorem 2 is used in most expositions of the blossom-shrinking algorithm. In our proof
for the forward direction (if an augmenting path exists w.r.t. 〈G,M〉, then there is an
augmenting path w.r.t. 〈G/Ps,M/Ps〉, i.e. w.r.t. the quotients), we follow a standard
textbook approach [22]. In our proof for the backward direction (an augmenting path w.r.t.
the quotients can be lifted to an augmenting path w.r.t. the original graph) we define an
(almost) executable function refine that does the lifting.3 We took the choice of explicitly
defining that function with using it in the final algorithm in mind. This is similar to the
approach used in the informal proof of soundness of the variant of the blossom-shrinking
algorithm used in LEDA [34].

Now, using Theorem 2, one can show that Algorithm 2 is a sound and complete procedure
for computing augmenting paths.

Algorithm 2 Aug_Path_Search(G,M).

if Compute_Blossom(G,M) is a blossom 〈γ,C〉 w.r.t. 〈G,M〉
return refine(Aug_Path_Search(G/PC ,M/PC))

else if Compute_Blossom(G,M) is an augmenting path w.r.t. 〈G,M〉
return Compute_Blossom(G,M)

else
return no augmenting path found

The soundness and completeness of this algorithm assumes that Compute_Blossom
can successfully compute a blossom or an augmenting path in a graph iff either one exists.
This is formally stated as follows.

I Corollary 2. Assume that, for a graph G and a matchingM w.r.t. G, there is a blossom or an
augmenting path w.r.t. 〈G,M〉 iff Compute_Blossom(G,M) is a blossom or an augmenting
path w.r.t. 〈G,M〉. Then for any graph G and matching M, Aug_Path_Search(G,M)
is an augmenting path w.r.t. 〈G,M〉 iff there is an augmenting path w.r.t. 〈G,M〉.

3 The function refine, as defined later, is executable except for a choice operation.

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:11

To formalise that in Isabelle/HOL, an odd cycle and a blossom are defined as follows:

odd_cycle p ≡ (length p ≥ 3) ∧ odd (length (edges_of_path p)) ∧ hd p = last p

blossom M stem C ≡ alt_path M (stem @ C) ∧
distinct (stem @ (butlast C)) ∧ odd_cycle C ∧ hd (stem @ C) /∈ Vs M ∧
even (length (edges_of_path (stem @ [hd C])))

In the above definition @ stands for list concatenation and edges_of_path is a function which,
given a path, returns the list of edges constituting the path.

To define the function refine that refines a quotient augmenting path to a concrete one or
to formalise the theorems showing that contracting blossoms preserves augmenting paths we
first declare the following locale:

locale quot =
fixes P s u
assumes ∀ v∈s. P v = v and u /∈s and (∀ v. v /∈s −→ P v = u)

That locale fixes a function P, a set of vertices s and a vertex u. The function P maps all
vertices from s to the given vertex u.

Now, we formalise the function refine which lifts an augmenting path in a quotient graph
to an augmenting path in the concrete graph. The function refine takes an augmenting path
p in the quotient graph and returns it unchanged if it does not contain the vertex u and
deletes u and splits p into two paths p1 and p2 otherwise. In the latter case, p1 and p2
are passed to replace_cycle. This function first defines two auxiliary paths stem2p2 and
p12stem using the function stem2vert_path. Let us have a closer look at the path stem2p2.
stem2vert_path with last argument hd p2 uses choose_con_vert to find a neighbor of hd p2
on the cycle C. It splits the cycle at this neighbor and then returns the path leading to the
base of the blossom starting with a matching edge. Finally, replace_cycle glues together p1,
p2 and either stem2p2 and p12stem to obtain an augmenting path in the concrete graph.

choose_con_vert vs E v ≡ (SOME v’. v’ ∈ vs ∧ {v, v’} ∈ E)

stem2vert_path C E M v ≡
let find_pfx’ = (λC. find_pfx ((=) (choose_con_vert (set C) E v)) C) in

if (last (edges_of_path (find_pfx’ C)) ∈ M) then
(find_pfx’ C)

else
(find_pfx’ (rev C))

replace_cycle C E M p1 p2 ≡
let stem2p2 = stem2vert_path C E M (hd p2);

p12stem = stem2vert_path C E M (last p1) in
if p1 = [] then

stem2p2 @ p2
else

(if p2 = [] then
p12stem @ (rev p1)

else
(if {u, hd p2} /∈ quotG M then

p1 @ stem2p2 @ p2
else

(rev p2) @ p12stem @ (rev p1)))

MFCS 2019

1:12 Trustworthy Graph Algorithms

refine C E M p ≡
if (u ∈ set p) then

(replace_cycle C E M (fst (pref_suf [] u p)) (snd (pref_suf [] u p)))
else p

In Isabelle/HOL the two directions of the equivalence in Theorem 2 are formalised as
follows:

theorem quot_apath_to_apath:
assumes

odd_cycle C and alt_path M C and distinct (tl C) and path E C
and
augmenting_path (quotG M) p’ and distinct p’ and path (quotG E) p’
and
matching M and M ⊆ E
and
s = (Vs E) - set C
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v

shows augmenting_path M (refine C E M p’) ∧ path E (refine C E M p’) ∧
distinct (refine C E M p’)

theorem aug_path_works_in_contraction:
assumes

path E (stem @ C) and blossom M stem C
and
augmenting_path M p and path E p and distinct p
and
matching M and M ⊆ E and finite M
and
s = (Vs E) - set C and u /∈ Vs E
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v and finite (Vs E)

shows ∃ p’. augmenting_path (quotG M) p’ ∧ path (quotG E) p’ ∧ distinct p’

A main challenge with formalising Theorem 2 in Isabelle/HOL is the lack of automation
for handling symmetries in its proof.

To formalise Algorithm 2 we use a locale to assume the existence of the function which
computes augmenting paths or blossoms, iff either one exist. That function is called
blos_search in the locale declaration. Its return type and the assumptions on it are as
follows:
datatype ’a blossom_res =

Path (aug_path: "’a list") | Blossom (stem_vs: "’a list") (cycle_vs: "’a list")

bloss_algo_complete:
(((∃ p. path E p ∧ distinct p ∧ augmenting_path M p)

∨ (matching M ∧ (∃ stem C. path E (stem @ C) ∧ blossom M stem C))))
=⇒ (∃ blos_comp. blos_search E M = Some blos_comp)

bloss_algo_sound:
(∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v) ∧ blos_search E M = Some (Path p)

=⇒ (path E p ∧ distinct p ∧ augmenting_path M p)
blos_search E M = Some (Blossom stem C)

=⇒ (path E (stem @ C) ∧ (matching M −→ blossom M stem C))

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:13

The locale also fixes a function create_vert which creates new vertex names to which vertices
from the odd cycle are mapped during contraction. Within that locale, we define Algorithm 2
and prove its soundness and completeness theorems, which are as follows:

quotG E ≡ (quot_graph P E) - {{u}}

find_aug_path E M =
(case blos_search E M of Some blossom_res ⇒

case blossom_res of Path p ⇒ Some p
| Blossom stem cyc ⇒

let u = create_vert (Vs E);
s = Vs E - (set cyc);
quotG = quot.quotG (quot_fun s u) u;
refine = quot.refine (quot_fun s u) u cyc E M

in (case find_aug_path (quotG E) (quotG M) of Some p’ ⇒ Some (refine p’)
| _ ⇒ None)

| _ ⇒ None)

lemma find_aug_path_sound:
assumes

matching M and M ⊆ E and finite M
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v and finite (Vs E)
and
find_aug_path E M = Some p

shows augmenting_path M p ∧ path E p ∧ distinct p

lemma find_aug_path_complete:
assumes

augmenting_path M p and path E p and distinct p
and
matching M and M ⊆ E and finite M
and
∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v and finite (Vs E)"

shows ∃ p’. find_aug_path E M = Some p’

Note that in find_aug_path, we instantiate both arguments P an s of the locale quot to
obtain the quotienting function quotG and the function for refining augmenting path refine.

Lastly, what follows shows the validity of instantiating the functional argument of
find_max_matching with find_aug_path, which gives us the following soundness theorem of
the resulting algorithm.

lemma find_max_matching_works:
assumes

finite (Vs E) and ∀ e∈E. ∃ u v. e = {u, v} ∧ u 6= v
shows

find_max_match.find_max_matching find_aug_path E {} ⊆ E
matching (find_max_match.find_max_matching find_aug_path E {})
finite (find_max_match.find_max_matching find_aug_path E {})
∀ M. matching M ∧ M ⊆ E ∧ finite M

−→ card M ≤ card (find_max_match.find_max_matching find_aug_path E {})

MFCS 2019

1:14 Trustworthy Graph Algorithms

5.5 Computing Blossoms and Augmenting Paths
Until now, we have only assumed the existence of the function Compute_Blossom, which
can compute augmenting paths or blossoms, if any exist in the graph. We now refine that
to an algorithm which, given two alternating paths resulting from the ascent of alternating
trees, returns either an augmenting path or a blossom.

We first introduce some notions and notation. For a list l, let |l| be the length of l. For a
list l and a natural number n, let drop n l denote the list l, but with the first n elements
dropped. For a list l, let h :: l denote adding an element h to the front of a list l. For a
non-empty list l, let first l and last l denote the first and last elements of l, respectively.
Also, for a list l, let rev l denote its reverse. For two lists l1 and l2, let l1_l2 denote their
concatenation. Also, let longest_disj_pref l1 l2 denote the pair of lists 〈l′1, l′2〉, where l′1 and
l′2 are the longest disjoint prefixes of l1 and l2, respectively, s.t. last l′1 = last l′2. Note:
longest_disj_pref l1 l2 is only well-defined if there is are l′1, l′2, and l s.t. l1 = l′1_l and
l2 = l′2_l, and if both l′1 and l′2 are disjoint except at their endpoints.

We now are able to state the following two lemmas concerning the construction of a
blossom or an augmenting path given paths resulting from alternating trees search.

I Lemma 1. If γ1 and γ2 are both (i) simple paths w.r.t. G, (ii) alternating paths w.r.t.
M, and (iii) of odd length, and if we have that (iv) last γ1 = last γ2, (v) last γ1 6∈

⋃
M,

(vi) {first γ1, first γ2} ∈ G, (vii) {first γ1, first γ2} 6∈ M, and (viii) longest_disj_pref γ1 γ2 is
well-defined and 〈γ′1, γ′2〉 = longest_disj_pref γ1 γ2, then 〈rev(drop (|γ′1|− 1) γ1), (rev γ′1)_γ′2〉
is a blossom w.r.t. 〈G,M〉.

I Lemma 2. If γ1 and γ2 are both (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M,
(iii) of odd length, and (iv) disjoint, and if we have that (v) last γ1 6∈

⋃
M, (vi) last γ2 6∈

⋃
M,

(vii) last γ1 6= last γ2, (viii) {first γ1, first γ2} ∈ G, and (ix) {first γ1, first γ2} 6∈ M, then
(rev γ1)_γ2 is an augmenting path w.r.t. 〈G,M〉.

Based on the above lemmas we refine the algorithm Compute_Blossom as shown in
Algorithm 3.

Algorithm 3 Compute_Blossom(G,M).

if ∃e ∈ G.e ∩
⋃
M = ∅

return Augmenting path choose {e | e ∈ G ∧ e ∩
⋃
M = ∅}

else if compute_alt_path(G,M) = 〈γ1, γ2〉
if last γ1 6= last γ2

return Augmenting path (rev γ1)_γ2
else
〈γ′1, γ′2〉 = longest_disj_pref γ1 γ2
return Blossom 〈rev(drop (|γ′1| − 1) γ1), (rev γ′1)_γ′2〉

else
return No blossom or augmenting path found

The following corollary shows the conditions under which Compute_Blossom works.

I Corollary 3. Assume the function compute_alt_path(G,M) returns two lists of vertices
〈γ1, γ2〉 s.t. both lists are (i) simple paths w.r.t. G, (ii) alternating paths w.r.t.M, and (iii) of
odd length, and also (iv) last γ1 6∈

⋃
M, (v) last γ2 6∈

⋃
M, (vi) {first γ1, first γ2} ∈ G, and

(vii) {first γ1, first γ2} 6∈ M, iff two lists of vertices with those properties exist. Then there is
a blossom or an augmenting path w.r.t. 〈G,M〉 iff Compute_Blossom(G,M) is a blossom
or an augmenting path w.r.t. 〈G,M〉.

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:15

In Isabelle/HOL, to formalise the function Compute_Blossom, we firstly defined a function,
longest_disj_pfx, which finds the longest common prefix in a straightforward fashion with a
quadratic wort-case runtime. The formalised versions of Lemma 1 and 2, which show that
the output of longest_disj_pfx can be used to construct a blossom or an augmenting path
are as follows:

lemma common_pfxs_form_blossom:
assumes

(Some pfx1, Some pfx2) = longest_disj_pfx p1 p2"
and
p1 = pfx1 @ p and p2 = pfx2 @ p"
and
alt_path M p1 and alt_path M p2 and last p1 /∈ Vs M and {hd p1, hd p2} ∈ M"
and
hd p1 6= hd p2"
and
even (length p1) and even (length p2)
and
distinct p1 and distinct p2
and
matching M

shows blossom M (rev (drop (length pfx1) p1)) (rev pfx1 @ pfx2)

lemma construct_aug_path:
assumes

set p1 ∩ set p2 = {}
and
p1 6= [] and p2 6= []
and
alt_path M p1 and alt_path M p2 and last p1 /∈ Vs M and last p2 /∈ Vs M
and
{hd p1, hd p2} ∈ M and
and
even (length p1) and even (length p2)

shows augmenting_path M ((rev p1) @ p2)

The function Compute_Blossom is formalised as follows:

"compute_blossom G M ≡
(if (∃ e. e ∈ unmatched_edges G M) then

let
singleton_path =

(SOME p. ∃ v1 v2. p = [v1 ,v2] ∧ {v1, v2} ∈ unmatched_edges G M)
in

Some (Path singleton_path)
else
case compute_alt_path G M

of Some (p1,p2) ⇒
(if (set p1 ∩ set p2 = {}) then

Some (Path ((rev p1) @ p2))
else

(let
(pfx1, pfx2) = longest_disj_pfx p1 p2;
stem = (rev (drop (length (the pfx1)) p1));
cycle = (rev (the pfx1) @ (the pfx2))

MFCS 2019

1:16 Trustworthy Graph Algorithms

in
(Some (Blossom stem cycle))))

| _ ⇒ None)"

We use a locale again to formalise that function. That locale parameterises it on a function
that searches for alternating paths and poses the soundness and completeness assumptions for
that alternating path search function. This function is equivalent to the unspecified function
compute_alt_path in Corollary 3 and locale’s assumptions on it are formalised statements of
the seven assumptions on compute_alt_path in Corollary 3.

5.6 Computing Alternating Paths
Lastly, we refine the function compute_alt_path to an algorithmic specification. The algorith-
mic specification of that function performs the alternating tree search, see Algorithm 4. If the
function positively terminates, i.e. finding two vertices with even labels, returns two alternat-
ing paths by ascending the two alternating trees to which the two vertices belong. This tree
ascent is performed by the function follow . That function takes a functional argument f and
a vertex, and returns the singleton list [u] if f(u) = None, and u :: (follow f (f(u))) otherwise.

Algorithm 4 compute_alt_path(G,M).

ex = ∅ // Set of examined edges

foreach u ∈
⋃
G

label u = None
parent u = None

U =
⋃
G \

⋃
M // Set of unmatched vertices

foreach u ∈ U
label u = 〈u, even〉

while (G \ ex) ∩ {e | ∃u ∈ e, r ∈
⋃
G.label u = 〈r, even〉} 6= ∅

// Choose a new edge and labelled it examined

{u1, u2} = choose (G \ ex) ∩ {{u1, u2} | ∃r.label u1 = 〈r, even〉}
ex = ex ∪ {{u1, u2}}
if label u2 = None

// Grow the discovered set of edges from r by two

u3 = choose {u3 | {u2, u3} ∈ M}
ex = ex ∪ {{u2, u3}}
label u2 = 〈r, odd〉; label u3 = 〈r, even〉; parent u2 = u1; parent u3 = u2

else if ∃s ∈
⋃
G.label u2 = 〈s, even〉

// Return two paths from current edge’s tips to unmatched vertex(es)

return 〈follow parent u1, follow parent u2〉
return No paths found

The soundness and completeness of Algorithm 4 is stated as follows.

I Theorem 3. The function compute_alt_path(G,M) returns two lists of vertices 〈γ1, γ2〉
s.t. both lists are (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M, and (iii) of
odd length, and also (iv) last γ1 6∈

⋃
M, (v) last γ2 6∈

⋃
M, (vi) {first γ1, first γ2} ∈ G, and

(vii) {first γ1, first γ2} 6∈ M, iff two lists of vertices with those properties exist.

The primary difficulty with proving this theorem is identifying the loop invariants, which
are as follows:

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:17

(i) For any vertex u, if for some r, label u = 〈r, even〉, then the vertices in the list
follow parent u have labels that alternate between 〈r, even〉 and 〈r, odd〉.

(ii) For any vertex u1, if for some r and some l, we have label u1 = 〈r, l〉, then the vertex list
u1u2 . . . un returned by follow parent u1 has the following property: if label ui = 〈r, even〉
and label ui+1 = 〈r, odd〉, for some r, then {ui, ui+1} ∈ M, otherwise, {ui, ui+1} 6∈ M.

(iii) The relation induced by the function parent is well-founded.
(iv) For any {u1, u2} ∈ M, label u1 = None iff label u2 = None.
(v) For any u1, if label u1 = None then parent u2 6= u1, for all u2.
(vi) For any u, if label u 6= None, then last (follow parent u) 6∈

⋃
M.

(vii) For any u, if label u 6= None, then label (last (follow parent u)) = 〈r, even〉, for some r.
(viii) For any {u1, u2} ∈ M, if label u1 6= None, then {u1, u2} ∈ ex.
(ix) For any u, follow parent u is a simple path w.r.t. G.
(x) Suppose we have two vertex lists γ1 and γ2, s.t. both lists are (i) simple paths w.r.t. G,

(ii) alternating paths w.r.t.M, and (iii) of odd length, and also (iv) last γ1 6∈
⋃
M, (v)

last γ2 6∈
⋃
M, (vi) {first γ1, first γ2} ∈ G, and (vii) {first γ1, first γ2} 6∈ M. Then there

is at least an edge from the path rev γ1_γ2 which is a member of neitherM nor ex.4

To formalise Algorithm 4 in Isabelle/HOL, we first define the function which follows a
vertex’s parent as follows:

follow v = (case (parent v) of Some v’ ⇒ v # (follow v’) | _ ⇒ [v])

Again, we use a locale to formalise that function, and that locale fixes the function parent.
Note that the above function is not well-defined for all possible arguments. In particular, it
is only well-defined if the relation between pairs of vertices induced by the function parent is
a well-founded relation. This assumption on parent is a part of the locale’s definition.

Then, we then formalise compute_alt_path as follows:

compute_alt_path ex par flabel =
(if (∃ v1 v2. {v1, v2} ∈ G - ex ∧ (∃ r. flabel v1 = Some (r, Even))) then

let
(v1,v2) = (SOME (v1,v2). {v1, v2} ∈ G - ex ∧

(∃ r. flabel v1 = Some (r, Even)));
ex’ = insert {v1, v2} ex;
r = (SOME r. flabel v1 = Some (r, Even))

in
(if flabel v2 = None ∧ (∃ v3. {v2, v3} ∈ M) then

let
v3 = (SOME v3. {v2, v3} ∈ M);
par’ = par(v2 := Some v1, v3 := Some v2);
flabel’ = flabel(v2 := Some (r, Odd), v3 := Some (r, Even));
ex’’ = insert {v2, v3} ex’;
return = compute_alt_path ex’’ par’ flabel’

in
return

else if ∃ r. flabel v2 = Some (r, Even) then
let

r’ = (SOME r’. flabel v2 = Some (r’, Even));
return = Some (parent.follow par v1, parent.follow par v2)

4 The hypothesis of this invariant is equivalent to the existence of an augmenting path or a blossom w.r.t.
〈G,M〉.

MFCS 2019

1:18 Trustworthy Graph Algorithms

in
return

else
let

return = None
in

return)
else

let
return = None

in
return)

Note that we do not use a while combinator to represent the while loop: instead we
formalise it recursively, passing the context along recursive calls. In particular, we define it
as a recursive function which takes as arguments the variables representing the state of the
while loop, namely, the set of examined edges ex, the parent function par, and the labelling
function flabel.

5.7 Discussion
The algorithm in LEDA differs from the description above in one aspect. If no augmenting
path is found, an odd-set cover is constructed proving optimality. Also the correctness proof
uses the odd-set cover instead of the fact that an augmenting path exists in the original
graph if and only if one exists in the quotient graph.

For an efficient implementation, the shrinking process and the lifting of augmenting paths
are essential. The shrinking process is implemented using a union-find data structure and
the lifting is supported by having each node in a contracted cycle point to the edge that
closes the cycle in a blossom [34].

6 Level Five of Trustworthiness: Extraction of Efficient Executable
Code

In this section we examine the process of obtaining trustworthy executable and efficient code
from algorithms verified in theorem provers. First we discuss the problem in general and
then we examine our formalization of the blossom-shrinking algorithm.

Most theorem provers are connected to a programming language of some sort. Frequently,
as in the case of Isabelle/HOL, that programming language is a subset of the logic and
close to a functional programming language. The theorem prover will usually support the
extraction of actual code in some programming language. Isabelle/HOL supports Standard
ML, Haskell, OCaml and Scala.

To show that code extraction “works”, here are some random non-trivial examples of
verifications that have resulted in reasonably efficient code: Compilers for C [29] and for
ML [23], a SPIN-like model checker [13], network flow algorithms [26] and the Berlekamp-
Zassenhaus factorization algorithm [11].

We will now discuss some approaches to obtaining code from function definitions in a
theorem prover. In the ACL2 theorem prover all functions are defined in a purely functional
subset of Lisp and are thus directly executable. In other systems, code generation involves
an explicit translation step. The trustworthiness of this step varies. Probably the most
trustworthy code generator is that of HOL4, because its backend is a verified compiler for

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:19

CakeML [23], a dialect of ML. The step from HOL to CakeML is not verified once and for
all, but every time it is run it produces a theorem that can be examined and that states
the correctness of this run [36]. The standard code generator in Isabelle/HOL is unverified
(although its underlying theory has been proved correct on paper [18]). There is ongoing
work to replace it with a verified code generator that produces CakeML [19].

So far we have only considered purely functional code but efficient algorithms often
make use of imperative features. Some theorem provers support imperative languages
directly, e.g. Java [4]. We will now discuss how to generate imperative code from purely
functional one. Clearly the code generator must turn the purely functional definitions
into more imperative ones. The standard approach [7, 36] is to let the code generator
recognize monadic definitions (a purely functional way to express imperative computations)
and implement those imperatively. This is possible because many functional programming
languages do in fact offer imperative features as well.

Just as important as the support for code extraction is the support for verified stepwise
refinement of data types and algorithms by the user. Data refinement means the replacement
of abstract data types by concrete efficient ones, e.g. sets by search trees. Algorithm
refinement means the stepwise replacement of abstract high-level definitions that may not
even be executable by efficient implementations. Both forms of refinement are supported
well in Isabelle/HOL [17, 24, 25].

We conclude this section with a look at code generation from our formalization of the
blossom-shrinking algorithm. It turns out that our formalization is almost executable as is.
The only non-executable construct we used is SOME x. P that denotes some arbitrary x that
satisfies the predicate P. Of course one can hide arbitrarily complicated computations in such
a contruct but we have used it only for simple nondeterministic choices and it will be easy
to replace. For example, one can obtain an executable version of function choose_con_vert
(see Section 5.4) by defining a function that searches the vertex list vs for the first v’ such
that {v, v’} ∈ E. This is an example of algorithm refinement. To arrive at efficient code for
the blossom-shrinking algorithm as a whole we will need to apply both data and algorithm
refinement down to the imperative level. At least the efficient implementations referred to
above, just before Section 5.1, are intrinsically imperative.

Finally let us note that instead of code generation it is also possible to verify existing
code in a theorem prover. This was briefly mentioned in Section 4 and Charguéraud [8] has
followed this approach quite successfully.

7 The Future

The state of the art in the verification of complex algorithms has improved enormously over
the last decade. Yet there is still a lot to do on the path to a verified library such as LEDA.
Apart from the shere amount of material that would have to be verified there is the challenge
of obtaining trustworthy code that is of comparable efficiency. This requires trustworthy
code generation for a language such C or C++, including the memory management. This
is a non-trivial task, but some of the pieces of the puzzle, like a verified compiler, are
in place already.

MFCS 2019

1:20 Trustworthy Graph Algorithms

References
1 Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow. A Correctness Proof of Edmonds’

Blossom Shrinking Algorithm for Maximum Matchings in Graphs. forthcoming.
2 Mohammad Abdulaziz, Michael Norrish, and Charles Gretton. Formally Verified Algorithms

for Upper-Bounding State Space Diameters. J. Autom. Reasoning, 61(1-4):485–520, 2018.
doi:10.1007/s10817-018-9450-z.

3 Mohammad Abdulaziz and Lawrence C. Paulson. An Isabelle/HOL Formalisation of Green’s
Theorem. Archive of Formal Proofs, 2018, 2018. URL: https://www.isa-afp.org/entries/
Green.html.

4 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,
and Mattias Ulbrich, editors. Deductive Software Verification - The KeY Book - From
Theory to Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016.
doi:10.1007/978-3-319-49812-6.

5 E. Alkassar, S. Böhme, K. Mehlhorn, and Ch. Rizkallah. A Framework for the Verification
of Certifying Computations. Journal of Automated Reasoning (JAR), 52(3):241–273, 2014.
A preliminary version appeared under the title “Verification of Certifying Computations” in
CAV 2011, LCNS Vol 6806, pages 67 – 82. arXiv:1301.7462.

6 E. Althaus and K. Mehlhorn. Maximum Network Flow with Floating Point Arithmetic.
Info. Proc. Lett., 66:109–113, 1998.

7 Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and John Matthews.
Imperative Functional Programming with Isabelle/HOL. In Theorem Proving in Higher
Order Logics, 21st International Conference, TPHOLs 2008, pages 134–149, 2008. doi:
10.1007/978-3-540-71067-7_14.

8 Arthur Charguéraud. Characteristic formulae for the verification of imperative programs. In
Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 418–430, 2011. doi:10.1145/2034773.
2034828.

9 Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for verifying concurrent
C. In Theorem Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of LNCS, pages
23–42. Springer, 2009. doi:10.1007/978-3-642-03359-9_2.

10 Sander R Dahmen, Johannes Hölzl, and Robert Y Lewis. Formalizing the Solution to the Cap
Set Problem. arXiv, 2019. arXiv:1907.01449.

11 Jose Divasón, Sebastiaan J. C. Joosten, René Thiemann, and Akihisa Yamada. A Verified
Implementation of the Berlekamp-Zassenhaus Factorization Algorithm. J. Autom. Reasoning,
2019. published online.

12 J. Edmonds. Maximum Matching and a polyhedron with 0,1 - vertices. Journal of Research
of the National Bureau of Standards, 69B:125–130, 1965.

13 Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and
Jan-Georg Smaus. A Fully Verified Executable LTL Model Checker. In Computer Aided
Verification - 25th International Conference, CAV 2013, pages 463–478, 2013. doi:10.1007/
978-3-642-39799-8_31.

14 S. Fortune. Robustness Issues in Geometric Algorithms. In Proceedings of the 1st Workshop
on Applied Computational Geometry: Towards Geometric Engineering (WACG’96), volume
1148 of LNCS Series, pages 9–13, 1996.

15 H. N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum matching on
graphs. J. ACM, 23:221–234, 1976.

16 David Greenaway, June Andronick, and Gerwin Klein. Bridging the Gap: Automatic Verified
Abstraction of C. In Interactive Theorem Proving, volume 7406 of LNCS, pages 99–115, 2012.

17 Florian Haftmann, Alexander Krauss, Ondvrej Kunvcar, and Tobias Nipkow. Data Refinement
in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving (ITP 2013), volume 7998 of LNCS Series, pages 100–115, 2013.

https://doi.org/10.1007/s10817-018-9450-z
https://www.isa-afp.org/entries/Green.html
https://www.isa-afp.org/entries/Green.html
https://doi.org/10.1007/978-3-319-49812-6
http://arxiv.org/abs/1301.7462
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Althaus-Mehlhorn-maxflow.ps
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-642-03359-9_2
http://arxiv.org/abs/1907.01449
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31

M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:21

18 Florian Haftmann and Tobias Nipkow. Code Generation via Higher-Order Rewrite Systems. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming (FLOPS
2010), volume 6009 of LNCS, pages 103–117. Springer, 2010.

19 Lars Hupel and Tobias Nipkow. A Verified Compiler from Isabelle/HOL to CakeML. In
A. Ahmed, editor, European Symposium on Programming (ESOP 2018), volume 10801 of
LNCS, pages 999–1026. Springer, 2018.

20 L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom Examples of Robustness
Problems in Geometric Computations. Computational Geometry: Theory and Applications
(CGTA), 40:61–78, 2008. a preliminary version appeared in ESA 2004, LNCS 3221, pages 702
– 713.

21 Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal verification of an operating-system kernel.
CACM, 53(6):107–115, 2010.

22 B. Korte and J.Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 2012.
23 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a verified

implementation of ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, pages 179–192. ACM, 2014.

24 Peter Lammich. Automatic Data Refinement. In Interactive Theorem Proving - 4th Interna-
tional Conference, ITP 2013, pages 84–99, 2013. doi:10.1007/978-3-642-39634-2_9.

25 Peter Lammich. Refinement to Imperative HOL. J. Autom. Reasoning, 62(4):481–503, 2019.
doi:10.1007/s10817-017-9437-1.

26 Peter Lammich and S. Reza Sefidgar. Formalizing Network Flow Algorithms: A Re-
finement Approach in Isabelle/HOL. J. Autom. Reasoning, 62(2):261–280, 2019. doi:
10.1007/s10817-017-9442-4.

27 LEDA (Library of Efficient Data Types and Algorithms). www.algorithmic-solutions.com.
28 LEMON graph library. COIN-OR project.
29 Xavier Leroy. A Formally Verified Compiler Back-end. Journal of Automated Reasoning,

43:363–446, 2009.
30 R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer

Science Review, 5(2):119–161, 2011.
31 K. Mehlhorn and S. Näher. LEDA: A library of efficient data types and algorithms. In

MFCS’89, volume 379 of LNCS Series, pages 88–106, 1989.
32 K. Mehlhorn and S. Näher. The implementation of geometric algorithms. In Proceedings

of the 13th IFIP World Computer Congress, volume 1, pages 223–231. Elsevier Science B.V.
North-Holland, Amsterdam, 1994.

33 K. Mehlhorn and S. Näher. From Algorithms to Working Programs: On the Use of Program
Checking in LEDA. In MFCS’98, volume 1450 of LNCS Series, pages 84–93, 1998.

34 K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

35 Robin Milner. Logic for computable functions: description of a machine implementation.
Technical report, Stanford University, 1972.

36 Magnus O. Myreen and Scott Owens. Proof-producing translation of higher-order logic
into pure and stateful ML. J. Funct. Program., 24(2-3):284–315, 2014. doi:10.1017/
S0956796813000282.

37 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS Series. Springer, 2002.

38 Lars Noschinski. A Graph Library for Isabelle. Mathematics in Computer Science, 9:22–39,
2015.

39 Lars Noschinski, Christine Rizkallah, and Kurt Mehlhorn. Verification of Certifying Compu-
tations through AutoCorres and Simpl. In NASA Formal Methods, volume 8430 of Lecture
Notes in Computer Science, pages 46–61. Springer, 2014.

MFCS 2019

http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/ClassRoomExample.ps
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/ClassRoomExample.ps
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
www.algorithmic-solutions.com
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/ifip94.ps
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282

1:22 Trustworthy Graph Algorithms

40 Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer, 1994.
41 Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD

thesis, Technische Universität München, 2006.
42 Verisoft. http://www.verisoft.de/, 2007.
43 Andrew Lumsdaine von Jeremy G. Siek, Lie-Quan Lee. The Boost Graph Library: User Guide

and Reference Manual. Addison-Wesley Professional, 2001.
44 C.-K. Yap. Towards Exact Geometric Computation. CGTA: Computational Geometry: Theory

and Applications, 7, 1997.
45 C.-K. Yap. Robust geometric computation. In J.E. Goodman and J. O’Rourke, editors,

Handbook of Discrete and Computational Geometry, chapter 41. CRC Press LLC, Boca Raton,
FL, 2nd edition, 2003.

http://www.verisoft.de/

Guarded Kleene Algebra with Tests: Verification
of Uninterpreted Programs in Nearly Linear Time
Alexandra Silva
University College London, UK
alexandra.silva@ucl.ac.uk

Abstract
Guarded Kleene Algebra with Tests (GKAT) is a variation on Kleene Algebra with Tests (KAT)
that arises by restricting the union (+) and iteration (*) operations from KAT to predicate-guarded
versions. We develop the (co)algebraic theory of GKAT and show how it can be efficiently used
to reason about imperative programs. In contrast to KAT, whose equational theory is PSPACE-
complete, we show that the equational theory of GKAT is (almost) linear time. We also provide a
full Kleene theorem and prove completeness for an analogue of Salomaa’s axiomatization of Kleene
Algebra. We will also discuss how this result has practical implications in the verification of programs,
with examples from network and probabilistic programming. This is joint work with Nate Foster,
Justin Hsu, Tobias Kappe, Dexter Kozen, and Steffen Smolka.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Kleene algebra, verification, decision procedures

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.2

Category Invited Talk

© Alexandra Silva;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexandra.silva@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Picking Random Vertices
Daniel Lokshtanov
University of California, San Diego, USA
daniello@ii.uib.no

Abstract
We survey some recent graph algorithms that are based on picking a vertex at random and declaring
it to be a part of the solution. This simple idea has been deployed to obtain state-of-the-art
parameterized, exact exponential time, and approximation algorithms for a number of problems,
such as Feedback Vertex Set and 3-Hitting Set. We will also discuss a recent 2-approximation
algorithm for Feedback Vertex Set in Tournaments that is based on picking a vertex at random and
declaring it to not be part of the solution.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Randomized algorithms, Parameterized algorithms, Exact algorithms, Ap-
proximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.3

Category Invited Talk

© Daniel Lokshtanov;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniello@ii.uib.no
https://doi.org/10.4230/LIPIcs.MFCS.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Popular Matchings: Good, Bad, and Mixed
Telikepalli Kavitha
Tata Institute of Fundamental Research, Mumbai, India
kavitha@tifr.res.in

Abstract
We consider the landscape of popular matchings in a bipartite graph G where every vertex has strict
preferences over its neighbors. This is a very well-studied model in two-sided matching markets.
A matching M is popular if it does not lose a head-to-head election against any matching, where
each vertex casts a vote for the matching where it gets a better assignment. Roughly speaking, a
popular matching is one such that there is no matching where more vertices are happier. The notion
of popularity is more relaxed than stability: a classical notion studied for the last several decades.
Popular matchings always exist in G since stable matchings always exist in a bipartite graph and
every stable matching is popular.

Algorithmically speaking, the landscape of popular matching seems to have only a few bright
spots. Every stable matching is a min-size popular matching and there are also simple linear time
algorithms for computing a max-size popular matching and for the popular edge problem. All these
algorithms reduce the popular matching problem to an appropriate question in stable matchings
and solve the corresponding stable matching problem.

We now know NP-hardness results for many popular matching problems. These include the
min-cost/max-weight popular matching problem and the problem of deciding if G admits a popular
matching that is neither a min-size nor a max-size popular matching. For non-bipartite graphs, it is
NP-hard to even decide if a popular matching exists or not.

A mixed matching is a probability distribution or a lottery over matchings. A popular mixed
matching is one that never loses a head-to-head election against any mixed matching. As an allocation
mechanism, a popular mixed matching has several nice properties. Moreover, finding a max-weight
or min-cost popular mixed matching in G is easy (by solving a linear program). Interestingly, there
is always an optimal popular mixed matching Π with a simple structure: Π = {(M0, 1

2), (M1, 1
2)}

where M0 and M1 are matchings in G. Popular mixed matchings always exist in non-bipartite
graphs as well and can be computed in polynomial time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Matchings under preferences, Algorithms, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.4

Category Invited Talk

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kavitha@tifr.res.in
https://doi.org/10.4230/LIPIcs.MFCS.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Petri Net Reachability Problem
Jérôme Leroux
Univ.Bordeaux, CNRS, Bordeaux-INP, France
leroux@labri.fr

Abstract
Petri nets, also known as vector addition systems, are a long established model of concurrency
with extensive applications in modelling and analysis of hardware, software and database systems,
as well as chemical, biological and business processes. The central algorithmic problem for Petri
nets is reachability: whether from the given initial configuration there exists a sequence of valid
execution steps that reaches the given final configuration. The complexity of the problem has
remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory
of verification. In this presentation, we overview decidability and complexity results over the last
fifty years about the Petri net reachability problem.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation

Keywords and phrases Petri net, Reachability problem, Formal verification, Concurrency

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.5

Category Invited Talk

Funding Jérôme Leroux: The author was supported by the grant ANR-17-CE40-0028 of the French
National Research Agency ANR (project BRAVAS).

1 Outline

The presentation focuses on the reachability problem for vector addition systems with states
given as multi-dimensional weighted automata. Main results about 1) reachability in small
dimensions, 2) boundedness problems, and 3) decidability and complexity results for the
reachability problem in any dimension will be overviewed.

For small dimensions, the complexity of the reachability problem depends on the dimension
and on the way weights are encoded (in unary or in binary). In dimension one, the
reachability problem can be easily shown to be NL-complete when weights are written in
unary thanks to a hill-cutting argument (the same argument that applies on pushdown
automata). When updates are given in binary, this argument can only provide a complexity
in between NP and PSPACE. Nevertheless, by using some additional arguments, the
problem was proved to be NP-complete in [5]. The complexity of the reachability problem
is also known in dimension two. Thanks to a precise analysis of the algorithm introduced
in [12], the problem was proved to be PSPACE-complete in [1] for binary updates. This
last result was extended later in [4] to show that the problem is NL-complete for unary
updates. In dimension three the complexity of the reachability problem is nowadays open
whatever the encoding of the weights.
The Karp and Miller algorithm introduced in [6] is central for deciding the reachability
problem in general dimension. It provides a way for computing the maximal value of
a bounded counter. Notice that even if this value can be Ackermannian [16], deciding
the boundedness of a counter is known to be EXPSPACE-complete [3] by extending the
Rackoff’s proof [17].

© Jérôme Leroux;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 5; pp. 5:1–5:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leroux@labri.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Petri Net Reachability Problem

The reachability problem was first proved to be decidable by Mayr [14, 15] in 1981. This
proof was improved later by Kosaraju [7] and Lambert [8] by introducing an algorithm
that decompose the set of executions. We call this decomposition the KLM decomposition
(following the initials of the contributed authors). In [10] we proved that the KLM
decomposition can be interpreted as ideal decompositions for a natural well-quasi order
on the set of executions. In that paper we also provided a cubic-Ackermaninan complexity
upper-bound of the reachability problem; the very first complexity upper-bound for the
reachability problem. This bound was recently improved in [11], by proving that there
exists a KLM decomposition algorithm that works in time primitive recursive in fixed
dimension, and at most Ackermannian in general. Concerning lower-bounds, recently
in [2], the complexity of the problem was shown to be TOWER-hard, improving the
best-known EXPSPACE complexity lower-bound given by Lipton [13] in 1976. Nowadays,
the exact complexity of the reachability problem is still open between TOWER and
ACKERMANN. In order to close that problem, either we need to improve the recent
TOWER lower bound, or we need to design an algorithm improving the ACKERMANN
upper bound. The very simple algorithm introduced in [9], based on Presburger inductive
invariant seems to be a good candidate for that late direction.

References

1 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-
ability in Two-Dimensional Vector Addition Systems with States Is PSPACE-Complete. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 32–43. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.14.

2 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 24–33. ACM, 2019.
doi:10.1145/3313276.3316369.

3 Stéphane Demri. On selective unboundedness of VASS. J. Comput. Syst. Sci., 79(5):689–713,
2013. doi:10.1016/j.jcss.2013.01.014.

4 Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in Two-Dimensional Unary
Vector Addition Systems with States is NL-Complete. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 477–484. ACM,
2016. doi:10.1145/2933575.2933577.

5 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
Succinct and Parametric One-Counter Automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

6 Richard M. Karp and Raymond E. Miller. Parallel Program Schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

7 S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Preliminary
Version). In STOC, pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

8 Jean-Luc Lambert. A Structure to Decide Reachability in Petri Nets. Theor. Comput. Sci.,
99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

9 Jérôme Leroux. Vector Addition Systems Reachability Problem (A Simpler Solution). In
Turing-100, volume 10 of EPiC Series in Computing, pages 214–228. EasyChair, 2012.

https://doi.org/10.1109/LICS.2015.14
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1016/j.jcss.2013.01.014
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D

J. Leroux 5:3

10 Jérôme Leroux and Sylvain Schmitz. Demystifying Reachability in Vector Addition Systems. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 56–67. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.16.

11 Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. CoRR, abs/1903.08575, 2019. To appear at LICS’19. arXiv:
1903.08575.

12 Jérôme Leroux and Grégoire Sutre. On Flatness for 2-Dimensional Vector Addition Systems
with States. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Pro-
ceedings, volume 3170 of Lecture Notes in Computer Science, pages 402–416. Springer, 2004.
doi:10.1007/978-3-540-28644-8_26.

13 Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62,
Yale University, 1976. URL: http://cpsc.yale.edu/sites/default/files/files/tr63.pdf.

14 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In STOC,
pages 238–246. ACM, 1981. doi:10.1145/800076.802477.

15 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAM J.
Comput., 13(3):441–460, 1984. doi:10.1137/0213029.

16 Ernst W. Mayr and Albert R. Meyer. The Complexity of the Finite Containment Problem for
Petri Nets. J. ACM, 28(3):561–576, 1981. doi:10.1145/322261.322271.

17 Charles Rackoff. The Covering and Boundedness Problems for Vector Addition Systems.
Theor. Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

MFCS 2019

https://doi.org/10.1109/LICS.2015.16
http://arxiv.org/abs/1903.08575
http://arxiv.org/abs/1903.08575
https://doi.org/10.1007/978-3-540-28644-8_26
http://cpsc.yale.edu/sites/default/files/files/tr63.pdf
https://doi.org/10.1145/800076.802477
https://doi.org/10.1137/0213029
https://doi.org/10.1145/322261.322271
https://doi.org/10.1016/0304-3975(78)90036-1

An Improved Online Algorithm for the Traveling
Repairperson Problem on a Line
Marcin Bienkowski
Institute of Computer Science, University of Wrocław, Poland
marcin.bienkowski@cs.uni.wroc.pl

Hsiang-Hsuan Liu
Institute of Computer Science, University of Wrocław, Poland
alison.hhliu@cs.uni.wroc.pl

Abstract
In the online variant of the traveling repairperson problem (TRP), requests arrive in time at points
of a metric space X and must be eventually visited by a server. The server starts at a designated
point of X and travels at most at unit speed. Each request has a given weight and once the server
visits its position, the request is considered serviced; we call such time completion time of the request.
The goal is to minimize the weighted sum of completion times of all requests.

In this paper, we give a 5.429-competitive deterministic algorithm for line metrics improving
over 5.829-competitive solution by Krumke et al. (TCS 2003). Our result is obtained by modifying
the schedule by serving requests that are close to the origin first. To compute the competitive ratio
of our approach, we use a charging scheme, and later evaluate its properties using a factor-revealing
linear program which upper-bounds the competitive ratio.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Scheduling algorithms

Keywords and phrases traveling repairperson problem, competitive analysis, minimizing completion
time, factor-revealing LP

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.6

Funding Supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

1 Introduction

The traveling repairperson problem (TRP) is a variant of the traveling salesperson prob-
lem (TSP), where the goal is to minimize the total latency instead of a more standard
objective of minimizing the total length of a route. In the TRP, there are m requested points
of a given metric space X and they must be eventually visited by a server. Request rj is
a triple (pj , aj , wj), where pj ∈ X denotes request position, aj ≥ 0 its release time and wj
its weight.

The server starts at a designated point of X called origin and travels at most at unit
speed. That is, for any two times t < t′ the distance between positions of the server at
times t and t′ is at most t′ − t. Each request rj must be eventually serviced by moving the
server to point pj . The request cannot be serviced before its release time aj ; we call the time
when it is eventually serviced its completion time and we denote it Cj . The goal is to find
a route for the server (a schedule) that minimizes the cost, defined as the weighted sum of
completion times, i.e.,

∑m
j=1 wj · Cj .

The TRP has a natural online variant. There, an online algorithm Alg, at time t, knows
only requests that arrived before or at time t. The number of requests m is also not known by
an algorithm a priori. In the online setting, the goal is to minimize the competitive ratio [11],
defined as the maximum over all inputs of the Alg-to-Opt cost ratio, where Opt denotes
the optimal offline algorithm.

© Marcin Bienkowski and Hsiang-Hsuan Liu;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 6; pp. 6:1–6:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2453-7772
mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-0194-9360
mailto:alison.hhliu@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

1.1 Previous work

The online variant has been first investigated by Feuerstein and Stougie [13]. They considered
the case where X is a real line and, adapting an algorithm for the so-called cow-path
problem [7], presented a 9-competitive solution. They also gave a lower bound (that holds
also already for a line) of 1 +

√
2. The result has been subsequently improved by Krumke

et al. [18], who gave a deterministic algorithm Interval attaining competitive ratio of
(1 +

√
2)2 < 5.829 and a randomized 3.874-competitive solution. Their algorithm works for

an arbitrary metric space.

A natural extension to the TRP is a so-called dial-a-ride problem, where each request is
an object with a source and a destination and the goal is to transport the object [9, 13, 18].
There, the server may have a fixed capacity allowing it to store at most k objects, or this
capacity may be infinite. The 5.829-competitive deterministic algorithm by Krumke et al. [18]
extends also to this variant and no better algorithms are known even for specific metric
spaces.

Some papers considered an extension of the TRP to k ≥ 1 servers. Bonifaci and Stougie
showed how to adapt the algorithm Interval by Krumke et al. [18] to this setting without
an increase of the competitive ratio [10]. However, the best known lower bound for multiple
servers is 2 (i.e., smaller than the lower bound for the one-server case) [10]. Furthermore, for
the particular case of line metrics, the ratio converges to 1 with growing k, and is between
1 + 1/(2k − 1) [14] and 1 +O((log k)/k) [10].

Another strand of papers considered different objectives, such as minimizing the total
makespan [3, 4, 5, 6, 8, 9] or maximum flow time [16, 17, 19], with a special focus on line
metrics. Finally, the offline variant (also known as minimum latency problem) has been
extensively studied both from the computational hardness and approximation algorithms
perspectives, see, e.g., [1, 2, 12, 15, 20, 21].

1.2 Our contribution

In this paper, we focus on the TRP on line metrics and give a 5.429-competitive algorithm
Reroute. This improves the long standing record of 5.829 achieved by the algorithm
Interval by Krumke et al. [18].

Similarly to the algorithm Interval, Reroute partitions an input into phases of
geometrically increasing lengths, and in each phase greedily tries to service the set of pending
requests of maximum weight. However, our algorithm Reroute tries to modify the route,
so to ensure that (i) either it services requests only in the initial part of the phase, (ii) or in
the later part of the phase, it services only requests that are far away from the origin. As
such requests cannot be serviced early by any algorithm (also by Opt), this allows us to
charge the cost of Reroute against the cost of Opt in a more efficient way.

For the analysis, we construct a charging scheme that maps the total weight serviced by
Reroute in particular time intervals to the total weight serviced in appropriate intervals by
Opt. This yields a set of linear inequalities that need to hold for any input instance. On
this basis, we create a maximization LP (linear program), whose objective value is an upper
bound on the competitive ratio. Finally, to bound the value of such factor-revealing LP, we
explicitly construct a solution to its dual.

M. Bienkowski and H.-H. Liu 6:3

2 Algorithms Interval and ReturnFirst

As our algorithm is built on the phase-based approach of the algorithm Interval proposed
by Krumke et al. [18], we start with a description of the latter.

Let f = minj{max{pj , aj}} be the earliest time at which Opt may service a request.
(Note that an online algorithm can learn f before or at time f .) Without loss of generality, we
may assume that there are no requests that arrive at time 0 at the origin, and hence f > 0.

We partition time into phases. Phase 0 starts at time 0 and ends at time f . Phase i ≥ 1
starts at time f · αi−1 and ends at time f · αi, where α = 1 +

√
2. At the beginning of any

phase i ≥ 1, Interval computes and executes a schedule that
starts at the final server position from the last phase;
stops at distance at most f · αi−1 from the origin;
has length at most f · (αi − αi−1);
among schedules satisfying the previous three conditions maximizes the total weight of
serviced requests (which are pending when the phase starts).

To simplify the notation, in the rest of the paper, we assume that f = 1.1 We start
with a slight modification of the algorithm Interval, called ReturnFirst (RetF). At the
beginning of any phase i ≥ 1, RetF computes and executes a schedule that

starts at the final server position from the last phase;
in the first part of the schedule (called return part), the server returns to the origin;
the second part of the schedule (called serving part) starts at the origin, is of length at
most αi−1, and among such schedules maximizes the total weight of serviced requests
(which are pending when the phase starts).

I Observation 1. At the beginning of each phase i ≥ 1, RetF has its server at a distance
at most αi−2 from the origin. Furthermore, the total length of both parts of the schedule is at
most the phase length.

Proof. The first property is clearly satisfied at the beginning of phase 1, which is started
with the server at the the origin. In the subsequent phases, this property follows inductively:
as in phase i − 1 the serving part of the schedule starts at the origin and has length at
most αi−2, at be beginning of phase i the server distance to the origin is at most αi−2.

The second property follows as the total length of the planned schedule in phase i is at
most αi−2 + αi−1 = αi − αi−1, which is the length of the phase. Note that this property
holds as long as α ≥ 1 +

√
2. J

While RetF may produce schedules that are worse than those of Interval, using similar
arguments to those of [18], one can show that RetF is α2-competitive. In particular, the
following bound holds both for Interval and RetF; we present its proof for completeness.

In our arguments, we use Algi and Opti to denote the total weight of requests serviced
by an online algorithm and Opt, respectively, in a phase i. Observe that for RetF and
Interval, Alg0 = 0.

I Lemma 2 ([18]). Let L be the index of the last phase in which Opt services any request.
Then, RetF services all requests within the first L + 1 phases, and for any phase j ∈
{1, . . . , L+ 1}, it holds that

∑L+1
i=j Algi ≤

∑L
i=j−1 Opti.

1 All terms occurring in the proof, both related to distances and to time, have a multiplicative factor f ,
which cancels out when the competitive ratio is computed.

MFCS 2019

6:4 An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

Proof. Consider the schedule Sk of Opt in phases 0, 1, . . . , k, where k ∈ {0, . . . , L}. Sched-
ule Sk starts at the origin, its length is equal to αk and the total weight serviced by Sk is
w(Sk) =

∑k−1
i=0 Opti. In phase k+1, when RetF chooses the route for the serving part, Sk is

among feasible options. If RetF chose such route, then each request serviced by schedule Sk
in Opt’s solution is serviced by RetF (in phase k + 1 or already in earlier phases). Thus,
the total weight serviced by RetF in phases 1, . . . , k + 1 would be at least w(Sk). As RetF
chooses the schedule for the serving part which is at least as good as Sk, it holds that∑k+1

i=1 Algi ≥ w(Sk) =
∑k
i=0 Opti . (1)

If we set k = L, then the above inequality implies that RetF services all requests already
in the first L+ 1 phases, i.e.,∑L+1

i=1 Algi =
∑L
i=0 Opti . (2)

The lemma for j = 1 follows by (2), and the lemma for j ≥ 2 follows by subtracting (1)
from (2) and setting k = j − 2. J

3 Modifying the schedule

We now take a closer look at the structure of schedules produced by RetF in particular
phases. We show that the schedule produced in a given phase can be modified, so that it
services the same set of requests as RetF, but either it ends substantially earlier than the
phase end or from some time it services only far requests.

I Lemma 3. Fix any c ∈ [0, 1] and let ` = αi−1 + c · αi−2. Fix a schedule S for phase i
produced by the algorithm RetF. On the basis of S and c, it is possible to construct schedule S̃
that services the same set of requests as S and

Either the length of S̃ is at most `,
or after executing the prefix of S̃ of length `, the server distance from the origin is at
least (1/3) · (α− 1 + 5c) · αi−2, and afterwards the server travels away from the origin
(with unit speed).

Proof. In the following proof, server positions are real numbers, with zero denoting the
origin. Let p denote the server position at the beginning of phase i. Note that we may
assume that p ≥ 0 without loss of generality. As in the proof of Observation 1, it can be
inductively shown that in the produced schedule S̃, the server ends phase i− 1 at most at
distance αi−2 from the origin. Thus, p ≤ αi−2.

Let [b, u] be the interval containing all points visited by the serving part of S. As this
part starts at zero, b ≤ 0 ≤ u. Let x ∈ {b, u} be the interval endpoint closer to the origin
and y be the further one (with ties broken arbitrarily). Observe that the shortest possible
schedule that starts at zero and services all requests from interval [b, u] has length 2 · |x|+ |y|.
As the serving part of S services this interval and its length is at most αi−1, it holds that

2 · |x|+ |y| ≤ αi−1 and thus |x| ≤ αi−1/3 . (3)

We use (3) extensively in our bounds below.
We define two possible schedules Sxy and Syx for phase i; we show that at least one of

them satisfies the requirements of the lemma.
Sxy starts at p, goes to x (possibly going through zero if p and x are on the opposite
sides of the origin), and then proceeds through 0 to y. Its length is |p− x|+ |x|+ |y|.

M. Bienkowski and H.-H. Liu 6:5

Syx starts at p, goes to y (possibly going through zero if p and y are on the opposite
sides of the origin), and then proceeds through 0 to x. Its length is |p− y|+ |y|+ |x|.

We consider four cases depending on values of x, y, p and c. Note that all these values
are known by RetF at the beginning of phase i.

Case 1. If x < 0 and p+ 3 · |x| ≥ (α− c) · αi−2, we set S̃ = Syx.
We show that the length of S̃ is at most `. As x < 0, it holds that y ≥ 0. If y ≤ p, the
length of S̃ is (p− y) + y + |x| = p+ |x| ≤ αi−2 + αi−1/3 < αi−1 ≤ `. Otherwise y > p,
and then the length of S̃ is

(y − p) + y + |x| = 2 · y − p+ |x| ≤ 2 · (αi−1 − 2 · |x|)− p+ |x|
= 2 · αi−1 − (p+ 3 · |x|) ≤ 2 · αi−1 − (α− c) · αi−2 = ` .

Case 2. If x < 0 and p+ 3 · |x| < (α− c) · αi−2, we set S̃ = Sxy.
If the length of S̃ is at most `, then the lemma follows. Otherwise, we analyze the prefix
of S̃ of length `. It contains the server movement from p to x and then to 0: this holds
because the total length of this movement is p+ 2 · |x| < (α− c) · αi−2 ≤ αi−1 ≤ `. Thus,
after having executed the prefix of S̃ of length `, the server is traveling away from the
origin towards y and its position is equal to

`− (p+ 2 · |x|) = αi−1 + c · αi−2 − (2/3) · (p+ 3 · |x|)− p/3
> αi−1 + c · αi−2 − (2/3) · (α− c) · αi−2 − αi−2/3
= (1/3) · (α− 1 + 5c) · αi−2 .

Case 3. If x ≥ p ≥ 0, we set S̃ = Sxy.
The length of S̃ is then (x− p) + x+ |y| = 2 · x+ |y| − p ≤ αi−1 − p ≤ `.

Case 4. If p > x ≥ 0, we set S̃ = Sxy.
The reasoning here is similar to the one from Case 2. If the length of S̃ is at most `, then
the lemma follows. Otherwise, we analyze the prefix of S̃ of length `. It contains the
server movement from p to 0 through x: this holds because the length of this movement is
equal to p ≤ αi−2 < `. Thus, after having executed the prefix of S̃ of length `, the server
is traveling away from the origin towards y and its distance from the origin is equal to

`− p ≥ αi−1 + c · αi−2 − αi−2 = (α+ c− 1) · αi−2 > (1/3) · (α− 1 + 5c) · αi−2 .

The last inequality follows as α > 1 + c. J

4 Algorithm Reroute

Our algorithm Reroute(β) is parameterized with a constant β ∈ [2/α, 1] and follows the
phase framework of RetF. At the beginning of any phase j ≥ 1, Reroute(β) computes
the schedule S in the same way RetF would do, modifies it according to Lemma 3 using
c = β · α2 − 2 · α ∈ [0, 1] obtaining schedule S̃, and then executes S̃ within phase j.

For any real ξ ≥ [β, 1], we define

τβ(ξ) = 5 · β · α2 − 9α− 1
3α + (ξ − β) · α . (4)

The following lemma shows that requests that are serviced late by Reroute(β) in a given
phase are far away from the origin, and hence cannot be serviced too early by Opt.

MFCS 2019

6:6 An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

I Lemma 4. Fix β ∈ [2/α, 1]. For any phase i and any value ξ ≥ β, in time interval (ξ·αi, αi],
Reroute(β) services only requests whose distance to the origin is at least τβ(ξ) · αi−1.

Proof. By the definition of Reroute(β), its schedule S̃ for phase i is constructed as described
in Lemma 3 with c = β ·α2 − 2α ∈ [0, 1]. Let ` = αi−1 + c ·αi−2 = β ·αi −αi−1. Recall that
phase i starts at time αi−1. By Lemma 3, two cases are possible.

If the length of S̃ is at most `, then the execution of S̃ ends at or before time αi−1+` = β·αi.
Then, the lemma follows trivially as Reroute(β) does not service anything in the
remaining part of phase i, i.e., in the time interval (β · αi, αi].
Otherwise, the length of S̃ is larger than `. Then, at time αi−1 + ` = β · αi, the server
still executes S̃, is at distance at least (1/3) · (α− 1 + 5c) · αi−2 from the origin and it
travels away from the origin with unit speed. Within time interval [β · αi, ξ · αi], the
server either finishes executing S̃ or it increases its distance to the origin by ξ ·αi − β ·αi.
In the former case, the lemma follows trivially, and in the latter case, the server distance
to the origin at time ξ · αi is at least

α− 1 + 5c
3 · αi−2 + (ξ − β) · αi = 5 · β · α2 − 9α− 1

3 · αi−2 + (ξ − β) · αi

= τβ(ξ) · αi−1 .

From time ξ · αi, the server continues to travel away from the origin, and thus the lemma
follows. J

4.1 Relating Reroute to Opt
We analyze the performance of algorithm Reroute(β) for a fixed parameter β, such that
2/α ≤ β ≤ 1. Moreover, we choose β, so that τβ(β) ≥ 1/α. In our analysis we use a
parameter ξ, such that β ≤ ξ ≤ 1 and τβ(β) ≤ τβ(ξ) ≤ 1. Concrete values of β and ξ will be
fixed later.

Let L be the index of the last phase in which Opt services a request. On the basis of β
and ξ, we partition both Algi (the total weight of requests serviced in phase i ∈ {1, . . . , L+1}
by Reroute) and Opti (the total weight of requests serviced in phase i ∈ {0, . . . , L} by
Opt) into three parts:

Aa
i : the weight serviced by Reroute(β) in time interval (αi−1, β · αi],

Ab
i : the weight serviced by Reroute(β) in time interval (β · αi, ξ · αi],

Ac
i : the weight serviced by Reroute(β) in time interval (ξ · αi, αi],

Oa
i : the weight serviced by Opt in time interval [αi−1, τβ(β) · αi),

Ob
i : the weight serviced by Opt in time interval [τβ(β) · αi, τβ(ξ) · αi),

Oc
i : the weight serviced by Opt in time interval [τβ(ξ) · αi, αi).

Note that the validity of this partitioning requires that 1/α ≤ β ≤ ξ ≤ 1 and 1/α ≤
τβ(β) ≤ τβ(ξ) ≤ 1. We slightly modify the definition of Aa

0 and Oc
L to include also the initial

and final time points, i.e., to be the weight serviced by Reroute(β) in [α0, β · α1] and the
weight serviced by Opt in [τβ(ξ) · αL, αL], respectively. Clearly, Algi = Aa

i + Ab
i + Ac

i and
Opti = Oa

i + Ob
i + Oc

i .
As Reroute services the same set of requests as RetF, the guarantee of Lemma 2

applies to the schedule produced by Reroute(β) as well. In particular, Reroute(β)
finishes servicing all requests till the end of phase L + 1 (it does not service anything in
phase 0) and for any phase j ∈ {1, . . . , L+ 1}, it holds that

L+1∑
i=j

(
Aa
i + Ab

i + Ac
i

)
≤

L∑
i=j−1

(
Oa
i + Ob

i + Oc
i

)
. (5)

M. Bienkowski and H.-H. Liu 6:7

Fix any phase j ∈ {1, . . . , L + 1} and consider all requests contributing to the sum∑L+1
i=j (Ab

i + Ac
i). By Lemma 4, each such request has to be serviced by Opt at time

τβ(β) · αj−1 or later (because its distance to the origin is at least τβ(β) · αj−1). Thus,

L+1∑
i=j

(
Ab
i + Ac

i

)
≤ Ob

j−1 + Oc
j−1 +

L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
. (6)

Similarly, consider all requests contributing to the sum Ac
j +

∑L+1
i=j+1(Ab

i + Ac
i). Again, by

Lemma 4, each such request has to be serviced by Opt at time τβ(ξ) ·αj−1 or later (because
its distance to the origin is at least τβ(ξ) · αj−1). Hence,

Ac
j +

L+1∑
i=j+1

(
Ab
i + Ac

i

)
≤ Oc

j−1 +
L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
. (7)

Finally, observe that the total cost of Reroute(β) can be upper-bounded by
∑L+1
i=1 (β ·

αi ·Aa
i + ξ · αi ·Ab

i + αi ·Ac
i) and the cost of Opt can be lower-bounded by

∑L
i=0(αi−1 ·

Oa
i + τβ(β) · αi ·Ob

i + τβ(ξ) · αi ·Oc
i).

4.2 Factor-revealing LP

Let us now consider what happens when an adversary constructs an instance I for the
algorithm Reroute. When Opt is run on I, this defines L as the index of the last
phase when Opt services a request and this also defines non-negative values of variables
Oa
i ,Ob

i ,Oc
i for i ∈ {0, . . . , L}. When Reroute(β) is run on I, this defines non-negative

values of variables Aa
i ,Ab

i ,Ac
i for i ∈ {1, . . . , L+ 1}. As shown above, these variables satisfy

inequalities (5), (6) and (7). Moreover, the goal of the adversary is to maximize the ratio
between the cost of Reroute(β) and the cost of Opt.

This maximization problem may become only easier for the adversary if instead of creating
an actual input sequence, the adversary simply chooses L and the non-negative values of
variables Aa

i ,Ab
i ,Ac

i , Oa
i ,Ob

i ,Oc
i for i ∈ {0, . . . , L}, satisfying inequalities (5), (6) and (7),

so to maximize the objective value of Reroute-to-Opt cost ratio.

The values of all variables can be multiplied by a fixed value without changing the
objective value. Thus, instead of maximizing the cost ratio, the adversary may maximize
total cost of Reroute(β) with an additional constraint ensuring that the total cost of Opt
is at most 1.

This leads to the following factor-revealing linear program P(L, β, ξ), whose optimal value
P ∗(L, β, ξ) is an upper bound on the competitive ratio of Reroute(β) for a given L. This
relation holds for any choice of parameter ξ ∈ [β, 1]. The goal of P(L, β, ξ) is to maximize

L+1∑
i=1

(
β · αi ·Aa

i + ξ · αi ·Ab
i + αi ·Ac

i

)

MFCS 2019

6:8 An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

subject to the following constraints
L+1∑
i=j

(
Aa
i + Ab

i + Ac
i

)
≤

L∑
i=j−1

(
Oa
i + Ob

i + Oc
i

)
for all j ∈ {1, . . . , L+ 1}

L+1∑
i=j

(
Ab
i + Ac

i

)
≤ Ob

j−1 + Oc
j−1 +

L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
for all j ∈ {1, . . . , L+ 1}

Ac
j +

L+1∑
i=j+1

(
Ab
i + Ac

i

)
≤ Oc

j−1 +
L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
for all j ∈ {1, . . . , L+ 1}

L∑
i=0

(
αi−1 ·Oa

i + τβ(β) · αi ·Ob
i + τβ(ξ) · αi ·Oc

i

)
≤ 1

and non-negativity of the variables. Note that the left hand side of the last inequality is
a lower bound on the cost of Opt

It remains to upper-bound the value of P ∗(L, β, ξ). Such upper bound is given by the
value of any feasible solution to the dual program D(L, β, ξ). The goal of D(L, β, ξ) is to
minimize R subject to the following constraints

j∑
i=1

qai ≥ β · αj for all j ∈ {1, . . . , L+ 1} (8)

j−1∑
i=1

(
qai + qbi + qci

)
+ qaj + qbj ≥ ξ · αj for all j ∈ {1, . . . , L+ 1} (9)

j∑
i=1

(
qai + qbi + qci

)
≥ αj for all j ∈ {1, . . . , L+ 1} (10)

αj−1 · R ≥
j∑
i=1

(
qai + qbi + qci

)
+ qaj+1 for all j ∈ {0, . . . , L} (11)

τβ(β) · αj · R ≥
j∑
i=1

(
qai + qbi + qci

)
+ qaj+1 + qbj+1 for all j ∈ {0, . . . , L} (12)

τβ(ξ) · αj · R ≥
j+1∑
i=1

(
qai + qbi + qci

)
for all j ∈ {0, . . . , L} (13)

and non-negativity of the variables. Note that sets of inequalities (8), (9), (10), (11), (12)
and (13) correspond to sets of variables Aa

i , Ab
i , Ac

i , Oa
i , Ob

i and Oc
i , respectively, in the

primal program P(L, β, ξ).

I Lemma 5. There exist values β and ξ, such that for any L, there exists a feasible solution
to D(L, β, ξ) whose value is at most 2

√
2 + 13/5 < 5.429.

Proof. We choose

β = (9α+ 4)/(5α2) = (3 +
√

2)/5 ≈ 0.883 and

ξ = β + (1− β)/α = (4
√

2− 1)/5 ≈ 0.931 .

For these values of β and ξ, it holds that

τβ(β) = 1/α =
√

2− 1 ≈ 0.414 and

τβ(ξ) = τβ(β) + (ξ − β) · α = 1/α+ (2−
√

2)/5 = (5 +
√

2)/(5 + 5
√

2) ≈ 0.531 .

M. Bienkowski and H.-H. Liu 6:9

We set the dual variables as follows:

qa1 = β · α ,
qb1 = (ξ − β) · α ,
qc1 = (1− ξ) · α ,
qaj = β · (α− 1) · αj−1 for j ∈ {2, . . . , L+ 1} ,
qbj = 0 for j ∈ {2, . . . , L+ 1} ,
qcj = (1− β) · (α− 1) · αj−1 for j ∈ {2, . . . , L+ 1} .

Our choice of β, ξ and dual variables satisfy (8), (9) and (10) conditions of D(L, β, ξ)
with equality. Actually, (8), (10) and (9) for j = 1 hold with equality for any choice of β
and ξ. For j ∈ {2, . . . , L+ 1}, the left hand side of (9) is equal to αj−1 + β · (α− 1) · αj−1 =
(β · α + 1 − β) · αj−1, and the right hand side is equal to ξ · αj ; these values coincide for
ξ = β + (1− β)/α.

Given the fixed values of the dual variables, we choose R as the minimum value satisfying
inequalities (11), (12) and (13). Substituting the chosen values of the dual variables in these
inequalities and using τβ(β) = 1/α, yields

R ≥ (β · α)/α−1 = β · α2 by (11) for j = 0 ,
R ≥ (αj + β · (α− 1) · αj)/αj−1 = β · α2 + α− β · α by (11) for j ≥ 1 ,
R ≥ (β · α+ (ξ − β) · α)/τβ(β) = ξ · α2 by (12) for j = 0 ,
R ≥ (1 + β · (α− 1)) · αj/(τβ(β) · αj) = β · α2 + α− β · α by (12) for j ≥ 1 ,
R ≥ αj+1/(τβ(ξ) · αj) = α/τβ(ξ) by (13) for j ≥ 0 .

Thus, using β ≤ ξ and ξ = β + (1− β)/α, we obtain

R = max
{
β · α2, β · α2 + α− β · α, ξ · α2,

α

τβ(ξ)

}
= max

{
ξ · α2,

α

τβ(ξ)

}
= max

{
2
√

2 + 13/5, (15 + 10
√

2)/(5 +
√

2)
}

= 2
√

2 + 13/5 < 5.429 ,

which concludes the proof. J

I Theorem 6. For β = (3 +
√

2)/5 ≈ 0.883, the competitive ratio of Reroute(β) for the
traveling repairperson problem is at most 2

√
2 + 13/5 < 5.429.

Proof. Fix any input sequence I, run Opt on I, and partition its execution into phases.
Let L be the index of the last phase in which Opt services a request.

Let ξ = β+(1−β)/α. As discussed above, the competitive ratio of Reroute(β) is upper-
bounded by the optimal value P ∗(L, β, ξ) of the maximization program P(L, β, ξ). By weak
duality, the feasible solution to the dual minimization program D(L, β, ξ) of value 2

√
2+13/5

proposed in Lemma 5 is an upper bound on the optimal primal solution P ∗(L, β, ξ). Hence,
2
√

2 + 13/5 is an upper bound on the competitive ratio of Reroute(β). J

MFCS 2019

6:10 An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

5 Final remarks

Our computer-based experiments show that further partitioning of phases into more than
three intervals does not lead to an improvement of the competitive ratio.

Furthermore, it is possible to show that our solution to the dual program is asymptotically
best possible and the ratio cannot be improved by simply choosing better parameters β
and ξ. That is, with growing L, the optimal value of the dual D(L, β, ξ) converges to the
value 2

√
2 + 13/5 given by Lemma 5, as demonstrated in the lemma below.

I Lemma 7. Fix any L. For any values of β and ξ, satisfying 1/α ≤ β ≤ ξ ≤ 1 and
1/α ≤ τβ(β) ≤ τβ(ξ) ≤ 1, the value of any feasible solution to the dual program D(L, β, ξ) is
at least (2

√
2 + 13/5)/(1 + α−L).

Proof. Fix any j ∈ {1, . . . , L}. By combining requirement (11) with (10), we obtain

(R− α) · αj−1 = R · αj−1 − αj

≥
j∑
i=1

(
qai + qbi + qci

)
+ qaj+1 −

j∑
i=1

(
qai + qbi + qci

)
= qaj+1 .

Summing this relation over all j ∈ {1, . . . , L} and using (8) yields

(R− α) · α
L − 1
α− 1 ≥

L∑
j=1

qaj+1 = −qa1 +
L+1∑
j=1

qaj ≥ β · αL+1 − qa1 .

Now we observe that (11) for j = 1 implies qa1 ≤ R/α < R/(α− 1). By substituting this in
the inequality above and multiplying both sides by α− 1, we get

(R− α) · (αL − 1) ≥ β · (α− 1) · αL+1 −R .

Finally, we divide both sides by αL, obtaining

R− α ≥ (R− α) · (αL − 1)/αL ≥ β · (α− 1) · α−R/αL ,

and therefore,

R · (1 + α−L) ≥ β · α2 + α− β · α .

As in our construction we require τβ(β) ≥ 1/α, it holds that β ≥ (9α+4)/(5α2) = (3+
√

2)/5.
Combining this bound with the value of α = 1 +

√
2 yields

R ≥ (β · α2 + α− β · α)/(1 + α−L) ≥ (2
√

2 + 13/5)/(1 + α−L) . J

References
1 Foto N. Afrati, Stavros S. Cosmadakis, Christos H. Papadimitriou, George Papageorgiou, and

Nadia Papakostantinou. The Complexity of the Travelling Repairman Problem. Informat.
Theor. Appl., 20(1):79–87, 1986. doi:10.1051/ita/1986200100791.

2 Aaron Archer and Anna Blasiak. Improved Approximation Algorithms for the Minimum
Latency Problem via Prize-Collecting Strolls. In Proc. 21st ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 429–447, 2010. doi:10.1137/1.9781611973075.36.

https://doi.org/10.1051/ita/1986200100791
https://doi.org/10.1137/1.9781611973075.36

M. Bienkowski and H.-H. Liu 6:11

3 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:
Minimizing the Completion Time. In Proc. 17th Symp. on Theoretical Aspects of Computer
Science (STACS), pages 639–650, 2000. doi:10.1007/s10951-005-6811-3.

4 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.
Serving Requests with On-line Routing. In Proc. 4th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), pages 37–48, 1994. doi:10.1007/3-540-58218-5_4.

5 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.
Competitive Algorithms for the On-line Traveling Salesman. In Proc. 4th Int. Workshop on
Algorithms and Data Structures (WADS), pages 206–217, 1995. doi:10.1007/3-540-60220-8_
63.

6 Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo.
Algorithms for the On-Line Travelling Salesman. Algorithmica, 29(4):560–581, 2001. doi:
10.1007/s004530010071.

7 Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in the
Plane. Information and Computation, 106(2):234–252, 1993. doi:10.1006/inco.1993.1054.

8 Alexander Birx and Yann Disser. Tight Analysis of the Smartstart Algorithm for Online
Dial-a-Ride on the Line. In Proc. 36th Symp. on Theoretical Aspects of Computer Science
(STACS), pages 15:1–15:17, 2019. doi:10.4230/LIPIcs.STACS.2019.15.

9 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP on
the Line. In Proc. 28th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 994–1005,
2017. doi:10.1137/1.9781611974782.63.

10 Vincenzo Bonifaci and Leen Stougie. Online k-Server Routing Problems. Theory of Computing
Systems, 45(3):470–485, 2009. doi:10.1007/s00224-008-9103-4.

11 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

12 Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, Trees, and
Minimum Latency Tours. In Proc. 44th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 36–45, 2003. doi:10.1109/SFCS.2003.1238179.

13 Esteban Feuerstein and Leen Stougie. On-line single-server dial-a-ride problems. Theoretical
Computer Science, 268(1):91–105, 2001. doi:10.1016/S0304-3975(00)00261-9.

14 Irene Fink, Sven Oliver Krumke, and Stephan Westphal. New lower bounds for online
k-server routing problems. Information Processing Letters, 109(11):563–567, 2009. doi:
10.1016/j.ipl.2009.01.024.

15 Michel X. Goemans and Jon M. Kleinberg. An improved approximation ratio for the minimum
latency problem. Math. Program., 82:111–124, 1998. doi:10.1007/BF01585867.

16 Dietrich Hauptmeier, Sven Oliver Krumke, and Jörg Rambau. The Online Dial-a-Ride Problem
under Reasonable Load. In Proc. 4th Int. Conf. on Algorithms and Complexity (CIAC), pages
125–136, 2000. doi:10.1007/3-540-46521-9_11.

17 Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-
Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in the Online Dial-a-
Ride Problem. In Proc. 3rd Workshop on Approximation and Online Algorithms (WAOA),
pages 258–269, 2005. doi:10.1007/11671411_20.

18 Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, and Leen Stougie. News from
the online traveling repairman. Theoretical Computer Science, 295:279–294, 2003. doi:
10.1016/S0304-3975(02)00409-7.

19 Sven Oliver Krumke, Luigi Laura, Maarten Lipmann, Alberto Marchetti-Spaccamela, Willem
de Paepe, Diana Poensgen, and Leen Stougie. Non-abusiveness Helps: An O(1)-Competitive
Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Problem.
In Proc. 5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX), pages 200–214, 2002. doi:10.1007/3-540-45753-4_18.

MFCS 2019

https://doi.org/10.1007/s10951-005-6811-3
https://doi.org/10.1007/3-540-58218-5_4
https://doi.org/10.1007/3-540-60220-8_63
https://doi.org/10.1007/3-540-60220-8_63
https://doi.org/10.1007/s004530010071
https://doi.org/10.1007/s004530010071
https://doi.org/10.1006/inco.1993.1054
https://doi.org/10.4230/LIPIcs.STACS.2019.15
https://doi.org/10.1137/1.9781611974782.63
https://doi.org/10.1007/s00224-008-9103-4
https://doi.org/10.1109/SFCS.2003.1238179
https://doi.org/10.1016/S0304-3975(00)00261-9
https://doi.org/10.1016/j.ipl.2009.01.024
https://doi.org/10.1016/j.ipl.2009.01.024
https://doi.org/10.1007/BF01585867
https://doi.org/10.1007/3-540-46521-9_11
https://doi.org/10.1007/11671411_20
https://doi.org/10.1016/S0304-3975(02)00409-7
https://doi.org/10.1016/S0304-3975(02)00409-7
https://doi.org/10.1007/3-540-45753-4_18

6:12 An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

20 René Sitters. The Minimum Latency Problem Is NP-Hard for Weighted Trees. In Proc. 9th
Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO), pages 230–239,
2002. doi:10.1007/3-540-47867-1_17.

21 René Sitters. Polynomial time approximation schemes for the traveling repairman and other
minimum latency problems. In Proc. 25th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 604–616, 2014. doi:10.1137/1.9781611973402.46.

https://doi.org/10.1007/3-540-47867-1_17
https://doi.org/10.1137/1.9781611973402.46

Query-Competitive Sorting with Uncertainty
Magnús M. Halldórsson
ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
mmh@ru.is

Murilo Santos de Lima1

ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
mslima@ic.unicamp.br

Abstract
We study the problem of sorting under incomplete information, when queries are used to resolve
uncertainties. Each of n data items has an unknown value, which is known to lie in a given interval.
We can pay a query cost to learn the actual value, and we may allow an error threshold in the sorting.
The goal is to find a nearly-sorted permutation by performing a minimum-cost set of queries.

We show that an offline optimum query set can be found in polynomial time, and that both obliv-
ious and adaptive problems have simple query-competitive algorithms. The query-competitiveness
for the oblivious problem is n for uniform query costs, and unbounded for arbitrary costs; for the
adaptive problem, the ratio is 2.

We then present a unified adaptive strategy for uniform query costs that yields: (i) a 3/2-
query-competitive randomized algorithm; (ii) a 5/3-query-competitive deterministic algorithm if the
dependency graph has no 2-components after some preprocessing, which has query-competitive ratio
3/2 + O(1/k) if the components obtained have size at least k; (iii) an exact algorithm if the intervals
constitute a laminar family. The first two results have matching lower bounds, and we have a lower
bound of 7/5 for large components.

We also show that the advice complexity of the adaptive problem is bn/2c if no error threshold
is allowed, and dn/3 · lg 3e for the general case.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Discrete mathematics; Theory of computation → Theory and algo-
rithms for application domains

Keywords and phrases online algorithms, sorting, randomized algorithms, advice complexity, thresh-
old tolerance graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.7

Funding Partially supported by Icelandic Research Fund grant 174484-051.

1 Introduction

Sorting is one of the most fundamental problems in computer science and an essential part
of any system dealing with large amounts of data. High-performance algorithms such as
QuickSort [19] have been known for decades, but the demand for fast sorting of huge amounts
of data is such that improvements in sorting algorithms are still an active area of research;
see, e.g., [26].

In a distributed application with dynamic data, it may not be feasible to maintain a
precise copy of the information in each replica. In particular, to access a local cached
information may be much cheaper, even though not as precise, than to query a master
database or to run a distributed consensus algorithm. One approach is to maintain in the
replicas, for each data item, an interval that bounds the actual value. These intervals can
be updated much faster than to guarantee a strict consistency of the data. When higher

1 Corresponding author.

© Magnús M. Halldórsson and Murilo Santos de Lima;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5774-8437
mailto:mmh@ru.is
https://orcid.org/0000-0002-2297-811X
mailto:mslima@ic.unicamp.br
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Query-Competitive Sorting with Uncertainty

precision is required, the system can query the master database for a more fine-grained
interval or for the actual data value. Therefore a trade-off between data precision and system
performance can be established. The TRAPP system, proposed by Olston and Widom [24],
relies on this concept.

This idea has led to theoretical investigation on uncertainty problems with queries [7,
11, 12, 13, 14, 17, 22]. Such problems also appear in optimization scenarios in which an
extra effort can be incurred in order to obtain more precise values of the input data, such as
by investing in market research, which is expensive so its cost should be minimized. These
works build upon more established frameworks of optimization with uncertainty, such as
online [5], robust [3] and stochastic [4] optimization. In particular, the analysis of algorithms
in terms of competitiveness against an adversary is inherited from the online optimization
literature.

In this paper, we investigate the problem of sorting data items whose actual values are
unknown, but for which we are given intervals on which the actual values lie. We can query
an interval and then learn the actual value of the corresponding data item, but this incurs
some cost. The goal, then, is to sort the items by performing a set of queries of minimum
cost. Furthermore, the precision in the sorting may be relaxed, so that inversions may occur
if the actual values are not too far apart.

We distinguish between two types of algorithms for uncertainty problems with queries.
An adaptive algorithm may decide which queries to perform based on results from previous
queries. An oblivious algorithm, however, must choose the whole set of queries to perform
in advance; i.e., it must choose a set of queries that certainly allow the problem to be solved
without any knowledge of the actual values. In this paper, both algorithms are compared with
an offline optimum query set, i.e., a minimum-cost set of queries that proves the obtained
solution to be correct.2 An algorithm (either adaptive or oblivious) is α-query-competitive
if it performs a total query cost of at most α times the cost of an offline optimum query set.

Another related problem is that of finding an optimum query set. Here we are given
the actual data values, and want to identify a minimum-cost set of queries that would be
sufficient to prove that the solution is correct. Solving this problem is useful, for example,
to perform experimental evaluation of online algorithms, since we are actually finding the
offline optimum solution for the uncertainty problem. This is also called the verification
version of the corresponding uncertainty problem with queries [8, 11].

We are also interested in the advice complexity of the problems we study. In this
setting, an online algorithm has access to an oracle that can give helpful information when
making decisions. The advice complexity is the number of bits of advice that are sufficient
and necessary for an online algorithm to solve the problem exactly. This is a research topic
that has gained substantial attention; see [6] for a survey.

Our contribution. We begin by showing how to compute an optimum query set in poly-
nomial time, and that both oblivious and adaptive problems have simple algorithms with
matching deterministic lower bounds. The query-competitive ratio of the oblivious problem
is n if we have uniform query costs, and unbounded for arbitrary costs; for the adaptive
problem, the query-competitive ratio is 2. The optimal oblivious algorithm is trivial; for the

2 This nomenclature differs to that used by Feder et al. [14]. They call an adaptive algorithm an online
algorithm, and an oblivious algorithm an offline algorithm. We disagree with this nomenclature, since
both types of algorithms are online in the standard sense of not knowing the data. Also, they compare
an oblivious algorithm to an optimal oblivious strategy, and not to an offline optimum query set.

M.M. Halldórsson and M. S. de Lima 7:3

adaptive case, we have a simpler algorithm for uniform query costs, and a more sophisticated
one for arbitrary query costs. If query costs are uniform and the error threshold is zero, then
the simpler algorithm can be implemented as an oracle for any comparison-based sorting
algorithm, preserving time complexity and stability.

Those results are rather simple and it seems like the query-competitiveness of the
problem is settled. However, we present a unified adaptive strategy that attains different
improvements for uniform query costs. First, we obtain a 3/2-query-competitive algorithm
by using randomization. Second, if the error threshold is zero, and after some preprocessing
the dependency graph has no 2-components, the strategy yields a deterministic 5/3-query-
competitive algorithm; if the obtained graph has components of size at least k, then the same
algorithm has query-competitive ratio 3/2 + O(1/k). The first two results have a matching
lower bound, and for large components we have a lower bound of 7/5. The problem can also
be solved exactly if the intervals constitute a laminar family.

Finally, we show that the advice complexity for adaptive algorithms is exactly bn/2c bits
if there is no error threshold, and exactly dn/3 · lg 3e bits for the general case.

Related work. The first work to investigate the minimum number of queries to solve a
problem is by Kahan [20], who showed optimal oblivious strategies to find the minimum,
maximum and median of n values in uncertainty intervals.

Olston and Widom [24] proposed the TRAPP system, a distributed database based on
uncertainty intervals. The authors: (1) gave an optimal oblivious strategy for finding the
minimum (and equivalently, the maximum) of a sequence of values within an error bound;
(2) showed that it is NP-hard to find an optimum oblivious query set to compute the sum of
a sequence of values within an error bound, with a reduction from the knapsack problem.
The paper also discusses strategies for counting and finding the average of a sequence of
values. Khanna and Tan [21] generalized these results for arbitrary query costs and different
levels of precision.

Feder et al. [14] considered the uncertainty version of the problem of finding the k-th
largest value on a sequence (i.e., the generalized median problem). The authors presented
optimal oblivious and adaptive strategies for the problem, both running in polynomial time.
Both strategies are optimal, and the ratio between the oblivious and the adaptive strategy
(also called the price of obliviousness) is 2k−1

k < 2 for uniform query costs, and k for
arbitrary query costs.3

Bruce et al. [7] studied geometric problems where the points are given in uncertainty
areas. The authors gave 3-query-competitive algorithms for finding the maximal points and
the convex hull in a two-dimensional space. They also proposed the concept of witness sets,
which has been used subsequently in various works on uncertainty problems with queries.
Charalambous and Hoffman [8] showed that it is NP-hard to find an optimum query set for
the maximal points problem.

Feder et al. [13] studied the uncertainty variant of the shortest path problem. They
showed that to solve optimally the oblivious version of the problem is neither NP nor co-NP,
unless NP = co-NP. Their paper also discusses the complexity of the problem for various
particular cases.

Erlebach et al. [12] proved that the minimum spanning tree problem with uncertainty
admits an adaptive 2-query-competitive algorithm, which is the best possible for a determin-
istic algorithm. Erlebach, Hoffmann and Kammer [11] studied a generalization called the

3 The works cited up to this point do not evaluate the algorithms using the competitiveness framework.

MFCS 2019

7:4 Query-Competitive Sorting with Uncertainty

cheapest set problem, for which there is an adaptive algorithm with at most d · opt + d

queries, where d is the maximum cardinality of a set. They also generalized the result in
the previous work to obtain an adaptive 2-query-competitive algorithm for the problem of
finding a minimum-weight base on a matroid.

Gupta, Sabharwal and Sen [18] studied various of the previous problems in the setting
where a query may return a refined interval, instead of the exact value of the data item.

Megow, Meißner and Skutella [22] improved the result for the minimum spanning tree
problem with a randomized adaptive algorithm, obtaining query-competitive ratio 1.7. (The
problem has lower bound 1.5 for randomized algorithms.) They also considered non-uniform
query costs and proved that their results can be extended to find a minimum-weight base on
a matroid. Furthermore, they showed that an optimum query set and the actual value of the
minimum spanning tree can be computed in polynomial time. Some experimental evaluation
of those algorithms were presented in [15].

Ryzhov and Powell [25] investigated how to solve a linear program while minimizing the
query cost when the coefficients of the objective function are uncertain. They presented a
policy which is asymptotically optimal. Yamaguchi and Maehara [28] studied the variant
with packing constraints and coefficients following a probability distribution, and showed
how to apply this to stochastic problems such as matching, matroid and stable set problems.

Note that all the work cited so far deals with problems whose classical (offline) versions
can be solved in polynomial time. Uncertainty versions with queries have been proposed
for the knapsack problem [17] and the scheduling problem [2, 9]. Since those problems are
NP-hard, we might include the query cost into the solution cost and look for a competitive
algorithm if we are looking for a polynomial-time algorithm. Another option is to limit the
maximum number of queries performed, and then to try to optimize the solution cost.

For a survey on the topic, see [10]. Other references for related problems are also cited
in [11].

Another sorting problem with uncertainty was studied by Ajtain et al. [1]. In that
problem, the values to be sorted are unknown, but their relative order can be tested by
a comparison procedure. However, comparing values that are too close returns imprecise
answers, so in principle we should compare all

(
n
2
)
pairs to obtain a sorting with some error

guarantee. The authors show how to solve the problem using only O(n3/2) comparisons.

Organization of the paper. In Section 2, we present the sorting problem with uncertainty
and some basic facts, and in Section 3 we give algorithms to find an offline optimum query
set and for the oblivious setting. We treat deterministic adaptive algorithms in Section 4.
In Section 5, we show how to improve the adaptive result for uniform query costs by
using a randomized algorithm, or by assuming some structure in the dependency graph.
We investigate the advice complexity for adaptive algorithms in Section 6, and finally, in
Section 7, we discuss possible future research directions.

2 Sorting with Uncertainty

In the sorting problem with uncertainty, there are n numbers v1, . . . , vn ∈ R whose exact
value is unknown. We are given n uncertainty intervals I1, . . . , In with vi ∈ Ii = [`i, ri], a
cost wi ∈ R+ for querying interval Ii, and an error threshold δ ≥ 0. After querying Ii, we
obtain the exact value of vi; we can also say that we replace Ii with interval I ′i = [vi, vi].
The goal is to obtain a permutation π : [n] → [n] such that vi ≤ vj + δ if π(i) < π(j) by
performing a minimum-cost set of queries.

M.M. Halldórsson and M. S. de Lima 7:5

We begin by defining the following dependency relation between intervals, which is
essential to solve the problem.

I Definition 2.1. Two intervals Ii and Ij such that ri−`j > δ and rj−`i > δ are dependent.
Two intervals that are not dependent are independent.

I Lemma 2.2. The relative order between two intervals can be decided without querying
either of them if and only if they are independent.

Proof. Let Ii and Ij be such that ri − `j ≤ δ. Since vi ≤ ri and vj ≥ `j , we have that
vi ≤ vj + δ and we can set π(i) < π(j) without querying both Ii and Ij .

Conversely, let Ij and Ij be two dependent intervals. We cannot set π(i) < π(j), because
it may be the case that vi = ri and vj = `j , thus ri − `j > δ implies that vi > vj + δ. By
a symmetric argument, we cannot set π(j) < π(i), so we cannot decide the relative order
between the intervals. J

The graphs defined by this dependency relation are exactly the co-threshold tolerance
(co-TT) graphs [23]. G = (V,E) is a threshold tolerance graph if there are functions
w : V → R and t : V → R such that uv ∈ E if and only if w(u) + w(v) ≥ min(t(u), t(v)). A
co-TT graph is the complement of any threshold tolerance graph, or equivalently, G = (V,E)
is a co-TT graph if and only if there are functions a : V → R and b : V → R such that
uv ∈ E if and only if a(u) < b(v) and a(v) < b(u) [23]. The proof of Theorem 2.3 is omitted.

I Theorem 2.3. The graphs defined by the dependency relation in Definition 2.1 are exactly
the co-TT graphs.

The following result will be useful.

I Lemma 2.4 ([23]). Every co-TT graph is chordal.

When δ > 0, it is useful to distinguish intervals of width smaller than δ, which we call
trivial intervals. It is easy to check that two trivial intervals cannot be dependent, so when a
trivial and a non-trivial interval are dependent, it is enough to query the non-trivial interval
in order to decide their relative order. This does not mean, however, that trivial intervals
should never be queried, and in particular adaptive algorithms may decide to do that.

It is also clear that the dependency graph is an interval graph when δ = 0. This is also
true when δ > 0 and there are no trivial intervals, in which case we can simply replace each
interval Ii = [`i, ri] with I(δ)

i = [`(δ)
i , r

(δ)
i] := [`i + δ/2, ri − δ/2] 6= ∅, and it is easy to check

that Ii and Ij are dependent with error threshold δ if and only if I(δ)
i and I(δ)

j are dependent
with error threshold 0. Note however that we cannot use this reduction to solve the sorting
problem, since the precise values could fall outside of the given interval.

3 Warm-Up: Offline and Oblivious Algorithms

The first result we present concerns finding the optimum query set for a given set of intervals,
assuming we know the actual values in each interval. I.e., given the intervals I1, . . . , In and
the actual values v1, . . . , vn, find a minimum-cost set Q of intervals to query, such that Q is
sufficient to prove an ordering for I1, . . . , In without the knowledge of v1, . . . , vn. Solving this
problem is useful, for example, to perform experimental evaluation of algorithms, since we
are actually finding the offline optimum solution for the online (either oblivious or adaptive)
problem. The ideas we present here will also be useful when solving the online problem.

MFCS 2019

7:6 Query-Competitive Sorting with Uncertainty

We show that the problem can be solved optimally in polynomial time. The key observa-
tions behind the algorithm are the following. In order to simplify notation, we write Ii ⊃ Ij
for intervals Ii and Ij if `i < `j and rj < ri.

I Proposition 3.1. Let Ii and Ij be intervals with actual values vi and vj . If Ij ⊃ [vi−δ, vi+δ],
then Ij is queried by every optimum solution.

Proof. Even if we have queried Ii, we have to query Ij because we may have vj ∈ [`j , vi − δ)
or vj ∈ (vi + δ, rj]. J

I Proposition 3.2. Let Ii and Ij be two dependent intervals, vi the actual value in Ii and vj
the actual value in Ij. If Ii 6⊃ [vj − δ, vj + δ] and Ij 6⊃ [vi − δ, vi + δ], then it is enough to
query either Ii or Ij to decide their relative order.

Proof. If we query Ii, then vi /∈ [`j + δ, rj − δ], so we can pick a reasonable order between Ii
and Ij . The argument is symmetrical if we query Ij . J

The algorithm begins with a query set Q containing all intervals that satisfy the condition
in Proposition 3.1. Due to Proposition 3.2, it is enough to complement Q with a minimum-
cost vertex cover in the dependency graph defined by the remaining intervals, which can be
found in polynomial time for chordal graphs [16].

I Theorem 3.3. The problem of finding an optimum query set for the sorting problem with
uncertainty can be solved optimally in polynomial time.

Now we consider oblivious algorithms. In this case, all non-trivial intervals with some
dependence must be queried, and clearly this is the best possible strategy. In the following
theorem, we show that this implies a tight bound of n on the query-competitive ratio for
the case with uniform costs, and that in the general case the query-competitive ratio is
unbounded.

I Theorem 3.4. If query costs are uniform, any oblivious algorithm for sorting with uncer-
tainty has query-competitive ratio exactly n. For arbitrary costs, the query-competitive ratio
is unbounded.

Proof. For the upper bound with uniform costs, a naïve algorithm that queries all intervals
and then sorts the numbers suffices.

For both lower bounds, we have n− 1 independent intervals with length greater than 2δ,
plus an interval In which contains all the other ones. Both an algorithm and the optimum
solution must query In in order to decide where vn fits in the order. If the algorithm does not
query some Ii with i < n, then the adversary can set vn ∈ (`i+δ, ri−δ) 6= ∅ and the algorithm
cannot decide the order. Thus, without the knowledge of vn, the algorithm must query all Ii
with i < n. However, it may be the case that vn /∈ Ii for all i < n, and querying In suffices
to decide the order. This gives a lower bound of n on the query-competitive ratio for uniform
query costs. For the general case, wn can be arbitrarily small and the query-competitive
ratio is unbounded. J

4 Deterministic Adaptive Algorithms

Now let us consider deterministic adaptive algorithms. We begin with a lower bound.

I Lemma 4.1. Any deterministic adaptive algorithm for the sorting problem with uncertainty
has query-competitive ratio at least 2, even if query costs are uniform and the dependency
graph has large components.

M.M. Halldórsson and M. S. de Lima 7:7

Proof. Consider intervals I1 and I2 with uniform query cost, `1 < `2 < r1 < r2 and
r1 − `2 > 2δ. If the algorithm queries I1, then the adversary chooses v1 ∈ (`2 + δ, r1 − δ).
The algorithm must also query I2 to decide the order, but then the adversary can choose
v2 ∈ [r1 − δ, r2] and one query would be sufficient. The argument is symmetrical if the
algorithm queries I2 first, with v2 ∈ (`2 + δ, r1 − δ) and v1 ∈ [`1, `2 + δ]. To obtain a large
component, make several independent copies of this structure and connected them by a large
interval containing all the others. J

First we give a simple deterministic 2-query-competitive adaptive algorithm for the case
with uniform query costs. It is inspired by the algorithm of Erlebach et al. [12] for the
minimum spanning tree problem with uncertainty, and it relies on the following concepts,
which were introduced in [7]. Let I = {I1, . . . , In} be a set of intervals for the sorting problem
with uncertainty. We say that a set W ⊆ I of intervals is a witness set if at least one
of the intervals in W must be queried to decide the order of I, even if all intervals except
those in W are queried. Due to Lemma 2.2, any pair of dependent intervals constitute a
witness set. A set of intervals I ′ = {I ′1, . . . , I ′n} is a refinement of I if I ′ is obtained from I
by performing a sequence of queries. Proposition 4.2 follows simply from I ′ having more
information than I.

I Proposition 4.2. Let I ′ be a refinement of I. If some set of intervals W ⊆ I ′ ∩ I is a
witness set for I ′, then it is a witness set for I.

The algorithm, then, consists in the following. While there is some pair of dependent
intervals, we query all intervals in this pair that have not been queried yet. When an
interval Ii is queried, it is replaced by [vi, vi]. (Note that, even after querying Ii, it may
still be dependent to a non-trivial interval.) Finally, intervals are sorted by breaking ties
arbitrarily.4

For a better understanding of the algorithm, consider the examples in Figure 1, assuming
δ = 0. In Figure 1a, the optimum solution must query I1 and I3, since v1 ∈ I3 and v3 ∈ I1,
and this is enough because I2 will be independent after querying I1. If the algorithm first
queries I1 and I2, it must also query I3. In Figure 1b it is enough to query I1, but the
algorithm will query a dependent pair, say, I1 and I2. Either way, the algorithm does not
spend more than twice the optimum number of queries.

I2

I1

I3

(a)

I2

I1

I3

(b)

Figure 1 Example instances of the problem.

I Theorem 4.3. The simple adaptive algorithm for sorting with uncertainty is 2-query-
competitive for uniform query costs.

Proof. Note that the optimum solution must query at least one interval in each witness
set. For every pair {Ii, Ij} of dependent intervals selected by the algorithm, we have that:

4 If δ = 0, then the algorithm can be implemented with stable sorting and in O(n lgn) time by running a
standard stable sorting algorithm (e.g., MergeSort) and querying two intervals when MergeSort needs to
know the relative order between them. It does not work, however, if δ > 0, since the relation vi ≤ vj + δ
is not transitive.

MFCS 2019

7:8 Query-Competitive Sorting with Uncertainty

(1) if both Ii and Ij have not been queried yet, the algorithm queries the witness set {Ii, Ij};
(2) if Ii has already been queried then, by Proposition 3.1, {Ij} is a witness set, which is
queried by the algorithm. We can conclude that the algorithm only queries disjoint witness
sets of size at most 2, and thus it queries at most twice the minimum number of intervals. J

For arbitrary query costs, the problem also admits a 2-query-competitive deterministic
adaptive algorithm, although not as simple. The algorithm first queries a minimum-cost
vertex cover S1 on the dependency graph. Then, it queries all non-trivial intervals that are
still dependent after querying S1, which we denote by the set S2.

I Theorem 4.4. The adaptive algorithm for sorting with uncertainty with arbitrary query
costs is 2-query-competitive.

Proof. Let Q be an optimum query set. The set of intervals not contained in Q must be
independent. By the duality between independent sets and vertex covers, Q must be a
vertex cover. Thus w(S1) ≤ w(Q), since S1 has minimum cost. Furthermore, note that every
interval in S2 is a singleton witness set, since S2 is a set of independent intervals. Thus
w(S2) ≤ w(Q) as well, and w(S1 ∪ S2) ≤ 2 · w(Q). J

5 Improved Adaptive Algorithms for Uniform Query Costs

We now explore refined analysis of query-competitive sorting. We present a unified strategy
that yields different improvements to Theorem 4.3, depending on what assumptions we make.

The core observation is that the bad 2-interval instance in the proof of Lemma 4.1 is the
only structure that prevents an algorithm from performing better than twice the optimum.
The first strategy that comes to mind, then, is to use randomization: a simple randomized
strategy attains query-competitive factor 3/2 on the instance of Lemma 4.1. Before extending
the algorithm to arbitrary instances, we give a lower bound for any randomized algorithm.

I Lemma 5.1. Any randomized adaptive algorithm has query-competitive ratio at least 3/2
against an adversary that is oblivious to the randomized tosses, even for uniform query costs.

Proof. Use the same bad instance as Lemma 4.1, set probability 1/2 for each of the two
possible inputs and apply Yao’s minimax principle. J

The algorithm is based on the following property of the dependency graph, whose proof
we omit.

I Lemma 5.2. If Ix is an interval with minimum rx, then the vertex x is simplicial, i.e., its
neighborhood is a clique.

The algorithm begins by querying intervals that are singleton witness sets according to a
generalization of the condition in Proposition 3.1. Then, if a component of the remaining
dependency graph is an edge, the randomized strategy is applied. Else, the algorithm
considers a non-queried vertex x with minimum rx, a neighbor y of x with minimum ry,
and another neighbor z of x (or of y if y is the only neighbor of x) with minimum rz. The
algorithm first queries Iy. If x and y are still adjacent, or if x and z are adjacent, then we
query both Ix and Iz. We repeat this strategy until the dependency graph has no edges.

A pseudocode is presented in Algorithm 1; we parameterize the probability p in the
randomized strategy since the algorithm will be reused afterwards. We also maintain a set V
of the values resulting of queried intervals.

M.M. Halldórsson and M. S. de Lima 7:9

Algorithm 1 Improved adaptive algorithm for the sorting problem with queries.

Input: (I1, . . . , In, p)
1 V ← ∅;
2 while there are i, j with Ii ⊃ [`j − δ, rj + δ] or Ii ⊃ [vj − δ, vj + δ] with vj ∈ V do
3 query Ii, add vi to V;
4 while there is some dependency do
5 if some component is an edge ij then
6 pick i with probability p (and j with probability 1− p); assume i is picked;
7 query Ii, add vi to V;
8 if Ij ⊃ [vi − δ, vi + δ] then
9 query Ij , add vj to V;

10 else
11 let Ix non-queried with min rx, and y be a neighbor of x with min ry;
12 let z be another neighbor of x (or of y if x is a leaf), with min rz;
13 query Iy, add vy to V;
14 if Ix ⊃ [vy − δ, vy + δ] or Ix, Iz are dependent then
15 query Ix, add vx to V;
16 query Iz, add vz to V;
17 while there is Ii ⊃ [vj − δ, vj + δ] for some vj ∈ V do
18 query Ii, add vi to V;

I Theorem 5.3. Algorithm 1 has expected query-competitive ratio 3/2 if p = 1/2.

Proof. We form a partition V1, . . . , Vm of the set of input intervals with the following
property. Let a(Vi) be the number of intervals in Vi that are queried by the algorithm, and
let q(Vi) := |Q ∩ Vi|, where Q is an optimum query set. We show that E[a(Vi)/q(Vi)] ≤ 3/2
for every i, from which the theorem follows.

If the algorithm queries an interval Ii in Line 3 or Line 18, then {Ii} is the next set in
the partition. Due to Proposition 3.1, it is a singleton witness set, so a({Ii})/q({Ii}) = 1.

If the algorithm runs Lines 6–9 for edge ij, then W = {Ii, Ij} is the next set in the
partition. We consider the following cases.
1. If Ii ⊃ [vj − δ, vj + δ] and Ij ⊃ [vi − δ, vi + δ], then q(W) = 2 and a(W) = 2.
2. Otherwise, q(W) ≥ 1 because this is a witness pair.

a. If Ii ⊃ [vj − δ, vj + δ] but Ij 6⊃ [vi − δ, vi + δ], then with probability 1/2 the algorithm
queries Ii and this is enough, and with probability 1/2 it queries both, so E[a(W)] = 3/2;
the same holds for the symmetrical case.

b. If Ii 6⊃ [vj−δ, vj +δ] and Ij 6⊃ [vi−δ, vi+δ], then Line 9 is not executed and a(W) = 1.

If the algorithm runs Lines 11–16 for x, y and z, then we have two cases.
1. If x and z are not neighbors, and x and y are not neighbors after Line 13, thenW = {Ix, Iy}

is the next set in the partition. Since it is a witness set, q(W) ≥ 1. But the algorithm
will not query Ix because y is the only neighbor of x, so a(W) = 1.

2. Otherwise, W = {Ix, Iy, Iz} is the next set in the partition. We have two subcases.
a. If x and z are neighbors, then xyz is a clique by Lemma 5.2. So q(W) ≥ 2, since

otherwise a pair is unsolved.
b. Otherwise, Ix ⊃ [vy − δ, vy + δ] and {Ix} is a singleton witness set. Since x and z are

not neighbors, then y and z are neighbors and, by Lemma 2.2, {Iy, Iz} is a witness set.
Either way, q(W) ≥ 2 and a(W) = 3.

We conclude that the expected query-competitive ratio is 3/2. J

MFCS 2019

7:10 Query-Competitive Sorting with Uncertainty

Our second strategy to obtain an improvement on Theorem 4.3 is, instead of using
randomization, to assume that the graph does not have 2-components, i.e., components
consisting of a single edge. This is not enough, however, since in Lemma 4.1 we have shown
that we can have a large component. So our hypothesis is that δ = 0 and, after executing
the loop of Lines 2–3, the remaining dependency graph, which becomes a proper interval
graph, has no 2-components. (Note that Theorem 5.3 is still true if we remove Lines 2–3 of
the algorithm.) Let us prove a lower bound for this case.

I Lemma 5.4. Any deterministic adaptive algorithm has query-competitive ratio at least 5/3,
even if δ = 0 and the dependency graph is a proper interval graph with no 2-components.

Proof. Consider five proper intervals Ia, Ib, Ic, Id, Ie with `a < `b < `c < `d < `e. The
dependencies are defined by two triangles, abc and cde.

If the algorithm first queries Ic, then we set vc ∈ Ic \ (Ia ∪ Ib ∪ Id ∪ Ie), and we can make
ab and de behave as the bad instance of Lemma 4.1.

If the algorithm first queries Ia, then we set va ∈ Ib ∩ Ic, so the algorithm will be forced
to query Ib and Ic, and we set vb, vc ∈ (Ib ∪ Ic) \ (Ia ∪ Id ∪ Ie), so the optimum can avoid Ia.
Then we can make de behave as the bad instance of Lemma 4.1. The argument is symmetric
if the algorithm first queries Ie.

If the algorithm first queries Ib, then we set vb ∈ Ia ∩ Ic, so the algorithm will be forced
to query Ia and Ic, and we set va, vc ∈ (Ia ∪ Ic) \ (Ib ∪ Id ∪ Ie), so the optimum can avoid Ib.
Then we can make de behave as the bad instance of Lemma 4.1. The argument is symmetric
if the algorithm first queries Id. J

I Theorem 5.5. Algorithm 1 (with p = 0 or 1) is 5/3-query-competitive if δ = 0 and the
dependency graph has no 2-components after finishing the loop of Lines 2–3.

Proof. The analysis is similar to that of Theorem 5.3. We will give a partition V1, . . . , Vm of
the set of intervals with the following property. Let a(Vi) be the number of intervals in Vi
that are queried by the algorithm, and let q(Vi) := |Q ∩ Vi|, where Q is an optimum query
set. We will have that a(Vi)/q(Vi) ≤ 5/3 for every i, and then the theorem follows. The
analysis for the cases of Lines 3, 11–16 and 18 are identical.

If the algorithm runs Lines 6–9 for edge ij, then let C be the component containing ij in
the dependency graph after finishing the loop of Lines 2–3. We claim that i and j are the
only vertices of C queried in Lines 6–9: Lines 11–16 force that intervals are queried from
left to right; thus, since the dependency graph at this point is a proper interval graph, if an
interval i′ is queried in Line 18, then after that no interval j′ with rj′ < ri′ will have some
dependency. Pick an arbitrary set W ′ of the partition consisting of vertices of C. We merge
{Ii, Ij} and W ′ into a single set W of the partition, and from the previous cases we have
that a(W)/q(W) ≤ 5/3. J

This proof indicates that the analysis can be improved if we require the graph to have
large components after finishing the loop of Lines 2–3.

I Theorem 5.6. Algorithm 1 (with p = 0 or 1) has query-competitive factor 3/2 + O(1/k) if
δ = 0 and each component of the dependency graph has size at least k after finishing the loop
of Lines 2–3.

Proof. We only have to reconsider the case of Lines 6–9 in the proof of Theorem 5.5. If
the algorithm runs Lines 6–9 for edge ij, then let C be the component containing ij in the
dependency graph after finishing the loop of Lines 2–3. We merge {Ii, Ij} and all partition

M.M. Halldórsson and M. S. de Lima 7:11

sets containing vertices of C into a single set W of the partition. Since i and j are the only
vertices of C queried in Lines 6–9 and C has size at least k, from the other cases we have
that a(W)/q(W) ≤ 3/2 + O(1/k). J

The analysis is tight since we can have a chain of k triangles plus 1 edge, such that we
can force the algorithm to query all intervals, while the optimum can avoid one interval in
each triangle and one interval in the extra edge. For large components, we still have a lower
bound of 7/5 for any deterministic algorithm.

I Lemma 5.7. Any deterministic adaptive algorithm has query-competitive ratio at least 7/5,
even if δ = 0 and the dependency graph is a proper interval graph with large components.

Proof. (Lemma 5.7.) Consider the graph of Figure 2, which has 7k + 2 vertices. For
i = 0, . . . , k − 1, vertices 7i+ 3, . . . , 7i+ 7 consist in a copy of the instance of Lemma 5.4.
For i = 0, . . . , k, vertices xi = 7i + 1 and yi = 7i + 2 are dependent, xi is dependent to
7(i − 1) + 7 if i > 0, and yi is dependent to 7i + 3 if i < k. We set vxi , vyi ∈ Ixi ∩ Iyi , so
both the algorithm and the optimum must query Ixi

and Iyi
, but querying them gives us no

information about the remaining vertices. From Lemma 5.4, we can force any deterministic
algorithm to query all vertices in the graph, while the optimum solution can query only 3
vertices of 7i+ 3, . . . , 7i+ 7. J

Figure 2 Instance which attains the lower bound for proper interval graphs with large components.

It remains an open question to close the gap between the lower bound of 7/5 and the
upper bound of 3/2 + O(1/k). Finally, we note that the problem can be solved exactly for
laminar families of intervals, since all queries will happen at Line 3 of the algorithm.

I Theorem 5.8. Algorithm 1 obtains an optimum solution if δ = 0 and the intervals constitute
a laminar family.

6 Advice Complexity for Adaptive Algorithms

In this section we investigate the advice complexity of solving the adaptive version of the
problem. We assume arbitrary query costs, and for consistency that the oracle answers
questions regarding a fixed optimum solution for the given instance.

First, we deal with the case when δ = 0. Let n be the number of given intervals. We
claim that bn/2c bits of advice are sufficient to solve the problem exactly, and that there are
instances for which bn/2c bits are necessary.

I Lemma 6.1. The advice complexity of the adaptive sorting problem with uncertainty is at
least bn/2c, where n is the number of intervals, even if δ = 0.

Proof. Assume n even and consider n/2 independent copies of the bad instance of Lemma 4.1.
At least 1 bit of advice is necessary to decide the relative order between each pair. J

For an adaptive algorithm with a matching upper bound, we note that, if δ = 0, then any
triangle ijk contains a vertex j such that Ij ⊆ Ii ∪ Ik (just take i with minimum `i and k
with maximum rk). Thus, we can ask the oracle whether the optimum solution queries Ij ; if
not, then we must query all neighbors of j; otherwise, we query Ij , and since Ij ⊆ Ii ∪ Ik,

MFCS 2019

7:12 Query-Competitive Sorting with Uncertainty

we will know at least one of Ii and Ik that also must be queried. If the dependency graph
contains no triangles, then it is a forest, because any cycle in a chordal graph must contain a
triangle. Therefore, we can pick a leaf i and ask the oracle whether the optimum solution
queries its neighbor j; if not, then we query all neighbors of j; otherwise, we query Ij and
we will know if Ii must or not be queried. Since we decide at least two intervals with one bit
of advice, then bn/2c bits are sufficient. We present a pseudocode in Algorithm 2.

Algorithm 2 An adaptive algorithm that finds an optimum solution with bn/2c bits of
advice when δ = 0.
Input: (I1, . . . , In)

1 V ← ∅;
2 while there is some dependency do
3 if there is a triangle K then
4 let i ∈ K with minimum `i, k ∈ K with maximum rk, and j ∈ K \ {i, k};
5 else let i be a leaf, and j be the neighbor of i ;
6 ask the oracle whether the optimum solution queries j;
7 if yes then query Ij , add vj to V;
8 else foreach neighbor z of j do
9 query Iz, add vz to V;

10 while there is Ii ⊃ [vj − δ, vj + δ] for some vj ∈ V do
11 query Ii, add vi to V;

I Theorem 6.2. The advice complexity of the adaptive sorting problem with uncertainty is
bn/2c when δ = 0, where n is the number of intervals.

Now we consider the case when δ > 0. Here, we can improve the lower bound to dn/3·lg 3e
and still have an algorithm with matching upper bound. Both are based on the fact that to
encode k distinct values amortized lg k bits are sufficient and necessary [27].

I Lemma 6.3. The advice complexity of the adaptive sorting problem with uncertainty is at
least dn/3 · lg 3e, where n is the number of intervals.

Proof. Assume n multiple of 3 and consider n/3 independent triangles; it suffices to bound
the number of bits of advice necessary to solve each triangle. Suppose by contradiction
that there is an algorithm that solves any triangle with one bit of advice, and consider the
following instances I1, I2, I3. In each Ii, the k-th triangle has intervals I1, I2, I3 such that
`1 < `2 < `3− δ, r1 + δ < r2 < r3, `2 ≤ `1 + δ, r2 ≥ r3− δ and r1− `3 > 2δ. We have vj = rj
for all j in I1; in I2, v1 = `1, v2 ∈ (`3 + δ, r1 − δ), v3 = r3; and vj = `j for all j in I3. The
only optimum solution for I1, I2, I3 is not to query I1, I2, I3, respectively. (See Figure 3.)

Figure 3 Instances for the lower bound on advice complexity when δ > 0.

By the pigeonhole principle, the algorithm must have the same advice for at least two of
those inputs. So, it suffices to prove that any deterministic algorithm fails in one instance of
any subset with at least two of those instances. Since the intervals are structurally identical,
any algorithm for a triangle performs no better than an algorithm in the following form, for

M.M. Halldórsson and M. S. de Lima 7:13

fixed x, y ∈ {1, 2, 3}, x 6= y: query Ix, and if no helpful information is given, query Iy. The
instances are constructed in such a way that, for instance Ii, the algorithm does not get any
helpful information by querying Ix with i 6= x, so it fails on instances Ix and Iy. Since one
bit is not sufficient, at least three different values must be encoded in the advice for each
triangle, so dn/3 · lg 3e bits are necessary for the whole instance. J

The algorithm that attains the upper bound relies on Lemma 5.2. It considers the
clique K consisting of vertex x with minimum rx and its neighborhood. Then it asks the
oracle for the index of a vertex y in K that is not queried in the optimum solution or, if
there is no such vertex in K, then the oracle must return y = x. Either way, the algorithm
queries all intervals in K \ {y}, and if y = x then the algorithm will know if y must also be
queried after querying everyone else. So it uses lg |K| bits of advice to decide at least |K|
intervals, and the bound follows since lg k/k has its maximum at k = 3 when k is integer. A
pseudocode is presented in Algorithm 3.

Algorithm 3 An adaptive algorithm that finds an optimum solution with dn/3 · lg 3e
bits of advice.
Input: (I1, . . . , In)

1 V ← ∅;
2 while there is some dependency do
3 let x with minimum rx, and K be the clique consisting of x and its neighborhood;
4 ask the oracle for a vertex y ∈ K not queried in the optimum solution, or y = x if

there is no such vertex;
5 foreach z ∈ K \ {y} do
6 query Iz, add vz to V;
7 while there is Ii ⊃ [vj − δ, vj + δ] for some vj ∈ V do
8 query Ii, add vi to V;

I Theorem 6.4. The advice complexity of the adaptive sorting problem with uncertainty is
dn/3 · lg 3e, where n is the number of intervals.

7 Future Work Directions

One interesting question is how the sorting problem can take advantage of queries with
different levels of precision, as in [21]. A variety of other classical optimization problems
could also be studied in similar uncertainty variants with queries.

References
1 M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and Selection with Imprecise

Comparisons. ACM Transactions on Algorithms, 12(2):19:1–19:19, 2016. doi:10.1145/
2701427.

2 L. Arantes, E. Bampis, A. V. Kononov, M. Letsios, G. Lucarelli, and P. Sens. Scheduling under
uncertainty: A query-based approach. In IJCAI 2018: 27th International Joint Conference on
Artificial Intelligence, pages 4646–4652, 2018. doi:10.24963/ijcai.2018/646.

3 H.-G. Beyer and B. Sendhoff. Robust optimization – a comprehensive survey. Computer
Methods in Applied Mechanics and Engineering, 196(33-34):3190–3218, 2007. doi:10.1016/j.
cma.2007.03.003.

MFCS 2019

https://doi.org/10.1145/2701427
https://doi.org/10.1145/2701427
https://doi.org/10.24963/ijcai.2018/646
https://doi.org/10.1016/j.cma.2007.03.003
https://doi.org/10.1016/j.cma.2007.03.003

7:14 Query-Competitive Sorting with Uncertainty

4 J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in
Operations Research and Financial Engineering. Springer, 2011.

5 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

6 J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen. Online Algorithms
with Advice: A Survey. ACM Computing Surveys, 50(2), 2017. doi:10.1145/3056461.

7 R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient Update Strategies for Geometric
Computing with Uncertainty. Theory of Computing Systems, 38(4):411–423, 2005. doi:
10.1007/s00224-004-1180-4.

8 G. Charalambous and M. Hoffmann. Verification Problem of Maximal Points under Uncertainty.
In T. Lecroq and L. Mouchard, editors, IWOCA 2013: 24th International Workshop on
Combinatorial Algorithms, volume 8288 of Lecture Notes in Computer Science, pages 94–105.
Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-45278-9_9.

9 C. Dürr, T. Erlebach, N. Megow, and J. Meißner. Scheduling with Explorable Uncertainty. In
A. R. Karlin, editor, ITCS 2018: 9th Innovations in Theoretical Computer Science Conference,
volume 94 of Leibniz International Proceedings in Informatics, pages 30:1–30:14, 2018. doi:
10.4230/LIPIcs.ITCS.2018.30.

10 T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncertainty.
Bulletin of EATCS, 116:22–39, 2015. URL: http://bulletin.eatcs.org/index.php/beatcs/
article/view/335.

11 T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest set
problems under uncertainty. Theoretical Computer Science, 613:51–64, 2016. doi:10.1016/j.
tcs.2015.11.025.

12 T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’Ák, and R. Raman. Computing minimum
spanning trees with uncertainty. In STACS’08: 25th International Symposium on Theoretical
Aspects of Computer Science, pages 277–288, 2008. URL: https://arxiv.org/abs/0802.2855.

13 T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. Journal of Algorithms, 62(1):1–18, 2007. doi:10.1016/j.jalgor.
2004.07.005.

14 T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the me-
dian with uncertainty. SIAM Journal on Computing, 32(2):538–547, 2003. doi:10.1137/
S0097539701395668.

15 J. Focke, N. Megow, and J. Meißner. Minimum Spanning Tree under Explorable Uncertainty
in Theory and Experiments. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman,
editors, SEA 2017: 16th International Symposium on Experimental Algorithms, volume 75
of Leibniz International Proceedings in Informatics, pages 22:1–22:14, 2017. doi:10.4230/
LIPIcs.SEA.2017.22.

16 F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by
Cliques, and Maximum Independent Set of a Chordal Graph. SIAM Journal on Computing,
1(2):180–187, 1972. doi:10.1137/0201013.

17 M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack problem with
queries. Computers & Operations Research, 55:12–22, 2015. doi:10.1016/j.cor.2014.09.010.

18 M. Gupta, Y. Sabharwal, and S. Sen. The Update Complexity of Selection and Related Prob-
lems. Theory of Computing Systems, 59(1):112–132, 2016. doi:10.1007/s00224-015-9664-y.

19 C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962. doi:10.1093/comjnl/5.
1.10.

20 S. Kahan. A model for data in motion. In STOC’91: 23rd Annual ACM Symposium on Theory
of Computing, pages 265–277, 1991. doi:10.1145/103418.103449.

21 S. Khanna and W.-C. Tan. On computing functions with uncertainty. In PODS’01: 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 171–182,
2001. doi:10.1145/375551.375577.

https://doi.org/10.1145/3056461
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/978-3-642-45278-9_9
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1016/j.tcs.2015.11.025
https://arxiv.org/abs/0802.2855
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.4230/LIPIcs.SEA.2017.22
https://doi.org/10.4230/LIPIcs.SEA.2017.22
https://doi.org/10.1137/0201013
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/103418.103449
https://doi.org/10.1145/375551.375577

M.M. Halldórsson and M. S. de Lima 7:15

22 N. Megow, J. Meißner, and M. Skutella. Randomization Helps Computing a Minimum
Spanning Tree under Uncertainty. SIAM Journal on Computing, 46(4):1217–1240, 2017.
doi:10.1137/16M1088375.

23 C. L. Monma, B. Reed, and W.T. Trotter Jr. Threshold Tolerance Graphs. Journal of Graph
Theory, 12(3):343–362, 1988. doi:10.1002/jgt.3190120307.

24 C. Olston and J. Widom. Offering a Precision-Performance Tradeoff for Aggregation Queries
over Replicated Data. In VLDB 2000: 26th International Conference on Very Large Data
Bases, pages 144–155, 2000. URL: http://ilpubs.stanford.edu:8090/437/.

25 I. O. Ryzhov and W. B. Powell. Information Collection for Linear Programs with Uncertain
Objective Coefficients. SIAM Journal on Optimization, 22(4):1344–1368, 2012. doi:10.1137/
12086279X.

26 A. Salah, K. Li, and K. Li. Lazy-Merge: A Novel Implementation for Indexed Parallel k-Way
In-Place Merging. IEEE Transactions on Parallel and Distributed Systems, 27(7):2049–2061,
2015. doi:10.1109/TPDS.2015.2475763.

27 C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948.

28 Y. Yamaguchi and T. Maehara. Stochastic Packing Integer Programs with Few Queries. In
SODA’18: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 293–310, 2018. doi:10.1137/1.9781611975031.21.

MFCS 2019

https://doi.org/10.1137/16M1088375
https://doi.org/10.1002/jgt.3190120307
http://ilpubs.stanford.edu:8090/437/
https://doi.org/10.1137/12086279X
https://doi.org/10.1137/12086279X
https://doi.org/10.1109/TPDS.2015.2475763
https://doi.org/10.1137/1.9781611975031.21

Better Bounds for Online Line Chasing
Marcin Bienkowski
Institute of Computer Science, University of Wrocław, Poland
marcin.bienkowski@cs.uni.wroc.pl

Jarosław Byrka
Institute of Computer Science, University of Wrocław, Poland
jaroslaw.byrka@cs.uni.wroc.pl

Marek Chrobak
University of California at Riverside, CA, USA
marek@cs.ucr.edu

Christian Coester
University of Oxford, United Kingdom
christian.coester@cs.ox.ac.uk

Łukasz Jeż
Institute of Computer Science, University of Wrocław, Poland
lukasz.jez@cs.uni.wroc.pl

Elias Koutsoupias
University of Oxford, United Kingdom
elias@cs.ox.ac.uk

Abstract
We study online competitive algorithms for the line chasing problem in Euclidean spaces Rd, where
the input consists of an initial point P0 and a sequence of lines X1, X2, ..., Xm, revealed one at
a time. At each step t, when the line Xt is revealed, the algorithm must determine a point Pt ∈ Xt.
An online algorithm is called c-competitive if for any input sequence the path P0, P1, ..., Pm it
computes has length at most c times the optimum path. The line chasing problem is a variant of
a more general convex body chasing problem, where the sets Xt are arbitrary convex sets.

To date, the best competitive ratio for the line chasing problem was 28.1, even in the plane.
We improve this bound by providing a simple 3-competitive algorithm for any dimension d. We
complement this bound by a matching lower bound for algorithms that are memoryless in the sense
of our algorithm, and a lower bound of 1.5358 for arbitrary algorithms. The latter bound also
improves upon the previous lower bound of

√
2 ≈ 1.412 for convex body chasing in 2 dimensions.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases convex body chasing, line chasing, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.8

Funding Research supported by NSF grant CCF-1536026, by Polish National Science Centre grants
2016/22/E/ST6/00499 and 2015/18/E/ST6/0045, and by ERC Advanced Grant 321171 (ALGAME).

1 Introduction

Convex body chasing is a fundamental problem in online computation. It asks for an
incrementally-computed path that traverses a given sequence of convex sets provided one
at a time in an online fashion and is as short as possible. Formally, the input consists of
an initial point P0 ∈ Rd and a sequence X1, X2, ..., Xm ⊆ Rd of convex sets. The objective
is to find a path P = (P0, P1, ..., Pm) with Pt ∈ Xt for each t = 1, 2, ...,m and minimum
total length `(P) =

∑m
t=1 `Pt−1Pt . (Throughout the paper, by `(P,Q) or `PQ we denote the

Euclidean distance between points P and Q in Rd.) This path P must be computed online,
© Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Christian Coester, Łukasz Jeż, and Elias
Koutsoupias;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2453-7772
mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-3387-0913
mailto:jaroslaw.byrka@cs.uni.wroc.pl
https://orcid.org/0000-0002-8673-2709
mailto:marek@cs.ucr.edu
https://orcid.org/0000-0003-3744-0977
mailto:christian.coester@cs.ox.ac.uk
https://orcid.org/0000-0002-7375-0641
mailto:lukasz.jez@cs.uni.wroc.pl
https://orcid.org/0000-0002-2226-6737
mailto:elias@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Better Bounds for Online Line Chasing

in the following sense: the sets Xt are revealed over time, one per time step. At step t, when
set Xt is revealed, we need to immediately and irrevocably identify its visit point Pt ∈ Xt.
Thus the choice of Pt does not depend on the future sets Xt+1, ..., Xm.

As can be easily seen, in this online scenario computing an optimal solution is not possible,
and thus all we can hope for is to find a path whose length only approximates the optimum
value. A widely accepted measure for the quality of this approximation is the competitive
ratio. For a constant c ≥ 1, we will say that an online algorithm A is c-competitive if it
computes a path whose length is at most c times the optimum solution (computed offline).
This constant c is called the competitive ratio of A. Our objective is then to design an online
algorithm whose competitive ratio is as close to 1 as possible.

The convex body chasing problem was originally introduced in 1993 by Friedman and
Linial [11], who gave a constant-competitive algorithm for chasing convex bodies in R2

(the plane) and conjectured that it is possible to achieve constant competitiveness in any
d-dimensional space Rd. As shown in [11], this constant would have to depend on d; in fact
it needs to be at least

√
d.

The Friedman-Linial conjecture has remained open for over two decades. In the last
several years this topic has experienced a sudden increase in research activity, partly moti-
vated by connections to machine learning (see [3, 7]), resulting in rapid progress. In 2016,
Antoniadis et al. [1] gave a 2O(d)-competitive algorithm for chasing affine spaces of any dimen-
sion. In 2018, Bansal et al. [3] gave an algorithm with competitive ratio 2O(d log d) for nested
families of convex sets, where the input set sequence satisfies X1 ⊇ X2 ⊇ ... ⊇ Xm. Soon
later their bound was improved to O(d log d) by Argue et al. [2], and then to O(

√
d log d)

by Bubeck et al. [6]. Finally, Bubeck et al. [7] just recently announced a proof of the
Friedman-Linial conjecture, providing an algorithm with competitive ratio 2O(d) for arbitrary
convex sets.

One other natural variant of convex body chasing that also attracted attention in the
literature is line chasing, where all sets Xt are lines. Friedman and Linial [11] gave an
online algorithm for line chasing in R2 with ratio 28.53. Their algorithm was simplified by
Antoniadis et al. [1], who also slightly improved the ratio, to 28.1. Earlier, in 2014, Sitters [16]
showed that a generalized work function algorithm has constant competitive ratio for line
chasing, but he did not determine the value of the constant.

1.1 Our results

We study the line chasing problem discussed above. We give a 3-competitive algorithm for
line chasing in Rd, for any dimension d ≥ 2, significantly improving the competitive ratios
from [11, 1, 16]. Our algorithm is very simple and essentially memoryless, as it only needs to
keep track of the last line in the request sequence. We start by providing the algorithm for
line chasing in the plane, in Section 2, and later in Section 3 we extend it to an arbitrary
dimension. In Section 4, we provide a matching lower bound of 3 for algorithms that are
memoryless in the sense stated above and oblivious with respect to rotation, translation and
uniform scaling of the metric space. We also provide a lower bound for arbitrary algorithms
(see Section 5), showing that no online algorithm can achieve competitive ratio better than
1.5358. This improves the lower bound of

√
2 ≈ 1.412 for line chasing established in [11],

which was previously also the best known lower bound for the more general problem of
convex body chasing in the plane.

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:3

r

S

L

L’

h

P

P’

s
x

P

Figure 1 Algorithm Drift moves from P to P ′.

1.2 Other related work
Set chasing problems are also known as Metrical Service Systems (see below) and belong
to a very general class of problems for online optimization and competitive analysis called
Metrical Task Systems (MTS) [5]. An instance of MTS specifies a metric space M , an initial
point P0 ∈ M , and a sequence of non-negative functions τ1, τ2, ..., τm over M called tasks.
These tasks arrive online, one at a time. At each step t, the algorithm needs to choose a
point Pt ∈M where it moves to “process” the current task τt. The goal is to minimize the
total cost defined by

∑m
t=1(µ(Pt−1, Pt) + τt(Pt)), where µ() is the metric in M . Thus in

MTS, in addition to movement cost, at each step we also pay the cost of “processing” τt.
For any metric space M with n points, if we allow arbitrary non-negative task functions
then a competitive ratio of 2n− 1 can be achieved and is optimal. This general bound is not
particularly useful, because in many online optimization problems that can be modeled as
an MTS, the metric space M has additional structure and only tasks of some special form
are allowed, which makes it possible to design online algorithms with constant competitive
ratios, independent of the size of M .

An MTS where M = Rd and all functions τt are convex is referred to as convex function
chasing, and was studied in [1, 4, 13]. For the special case of convex functions on the real
line, a 2-competitive algorithm was given in [4].

An MTS where each task function τt takes value 0 on a subset Xt ⊆M and ∞ elsewhere
is called a Metrical Service System (MSS) [9]. In other words, in an MSS, in each step t the
algorithm needs to move to a point in Xt. To achieve a competitive ratio independent of the
size of M , it is generally required to restrict the sets Xt to be in some subset X (P(M).
For instance, finite competitive ratios can be achieved when X is the set of sets of size
at most k [10, 8, 15]. If M = Rd and X is the set of convex subsets, this is precisely the
convex body chasing problem, and if X is the set of lines, it is the line chasing problem. One
variant of MSS that has been particularly well studied is the famous k-server problem (see,
for example, [14, 12]), in which one needs to schedule movement of k servers in response to
requests arriving online in a metric space, where each request must be covered by one server.
(In the MSS representation of the k-server problem, each set Xt consists of all k-tuples of
points that include the request point at step t.)

2 A 3-Competitive Algorithm in the Plane

In this section, we present our online algorithm for line chasing in R2 with competitive
ratio 3. The intuition is this: suppose that the last requested line is L and that the algorithm
moved to point P ∈ L. Let L′ be the new request line, S the intersection point of L and L′,
and r = `SP . A naïve greedy algorithm would move to the point P̄ on L′ nearest to P (see

MFCS 2019

8:4 Better Bounds for Online Line Chasing

Figure 1) at cost h = `PP̄ . If h is small, then r − `SP̄ = o(h), that is the distance between
the greedy algorithm’s point and S decreases only by a negligible amount. But the adversary
can move to S, paying cost r, and then alternate requests on L and L′. On this sequence the
overall cost of this algorithm would be ω(r), so it would not be constant-competitive. This
example shows that if the angle between L and L′ is small then the drift distance towards S
needs to be roughly proportional to h. Our algorithm is designed so that this distance is
roughly h/

√
2 if h is small (with the coefficient chosen to optimize the competitive ratio),

and that it becomes 0 when L′ is perpendicular to L.

Algorithm 1 Algorithm Drift.

Suppose that the last request is line L and that the algorithm is on point P ∈ L. Let the
new request be L′ and for any point X ∈ L, let X̄ be the orthogonal projection of X onto L′.
If L′ does not intersect L, move to P ′ = P̄ . Otherwise, let S = L ∩ L′ be the intersection
point of L and L′. Let also r = `SP , h = `PP̄ , and s = `SP̄ (see Figure 1). Move to point
P ′ ∈ L′ such that `SP ′ = s− x, where x = 1√

2 (h+ s− r).

I Theorem 1. Algorithm Drift is 3-competitive for the line chasing problem in R2.

Proof. We establish an upper bound on the competitive ratio via amortized analysis, based
on a potential function. The (always non-negative) value of this potential function, Φ(P,A),
depends on locations P,A ∈ L of the algorithm’s and the adversary’s point on the current
line L. If L′ is the new request line, and P ′, A′ ∈ L′ are the new locations of the algorithm’s
and adversary’s points, we want this function to satisfy

`PP ′ + Φ(P ′, A′)− Φ(P,A) ≤ 3 `AA′ . (1)

Since initially the potential is 0 and is always non-negative, adding inequality (1) for all
moves will establish 3-competitiveness of Algorithm Drift.

The potential function we use in our proof is Φ(P,A) =
√

3 `AP . Substituting this formula,
inequality (1) reduces to

`PP ′ +
√

3 (`A′P ′ − `AP) ≤ 3 `AA′ . (2)

It thus remains to prove inequality (2). Let g = `AĀ, z = `A′Ā, and v = `ĀP̄ .
We first discuss the trivial case of non-intersecting L and L′. Keeping with the general

notation, here we have x = 0 and thus `PP ′ = h. Moreover, g = `AĀ = h as well. For fixed
z, we have `AA′ =

√
h2 + z2, i.e., the right hand side of (2) is fixed, whereas the left hand

side is maximized if A′ is on the other side of Ā than P̄ . The left hand side is thus at most

h+
√

3 z ≤
√

2
√
h2 + 3z2 ≤

√
2
√

3 (h2 + z2) =
√

6 `AA′ < 3 `AA′ ,

where the first inequality follows from the power mean inequality (for powers 1 and 2),
proving this easy case.

The situation when L′ and L do intersect is illustrated in Figure 2. (The figure shows
only the case when Ā is between S and P ′.) Orient L′ from left to right (with P̄ being to the
right of S), as shown in this figure. We want to express the distances in the above inequality
in terms of s, h, v, and z (keeping in mind that x and r are functions of h and s):

`PP ′ =
√
x2 + h2

`AP = vr/s = (v
√
s2 + h2)/s

`AA′ =
√
z2 + g2

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:5

S

L

L’

h

P

P’ x

A

A’

z

g
PA

v

r

s

Figure 2 Notation for the analysis of Algorithm Drift.

The values of g and `A′P ′ depend on some cases, that we consider below.

Case 1. Ā is between S and P ′, as in Figure 2. Then g = h(s− v)/s. Our goal is first to
find A′ for which the bound in (2) is tightest. For a given z, among the two locations
of A′ at distance z from Ā, the one on the left gives a larger value of the left-hand side
of (2), while the right-hand side is the same for both. Thus we can assume that A′ is to
the left of Ā, so `A′P ′ = z + v − x. Then we can rewrite (2) as follows:

1√
3 `PP

′ − `AP + v − x ≤
√

3
√
z2 + g2 − z (3)

By elementary calculus, the right-hand side is minimized for z = 1√
2 g, so we can assume

that z has this value. Then inequality (3) reduces to

1√
3 `PP

′ − `AP + v − x ≤
√

2 g. (4)

After substituting g = h(s− v)/s and `AP = vr/s, inequality (4) reduces further to

s (1√
3 `PP

′ − x−
√

2h) ≤ v (r − s−
√

2h). (5)

The expression in the parenthesis on the right-hand side of (5) is non-positive by triangle
inequality, so the right-hand side is minimized when v is maximized, that is v = s, and
then it reduces to

x2 + h2 ≤ 3(r − s+ x)2. (6)

Recall that x = 1√
2 (h+ s− r). Since r − h ≤ s ≤ r, we have

x2 + h2 = 1
2 (h+ s− r)2 + h2

≤ 1
2h

2 + h2

= 3
2h

2 ≤ 3
2 [h+ (

√
2− 1)(r − s)]2 = 3(r − s+ x)2,

proving (6).
Case 2. Ā is before S. In this case we have g = h(v− s)/s. Just as in Case 1, we can assume

that A′ is to the left of Ā, so that `A′P ′ = z + v − x, and (2) reduces to

1√
3 `PP

′ − `AP + v − x ≤
√

2 g. (7)

After substituting g = h(v − s)/s and `AP = vr/s, inequality (4) reduces further to

s (1√
3 `PP

′ − x+
√

2h) ≤ v (r − s+
√

2h). (8)

MFCS 2019

8:6 Better Bounds for Online Line Chasing

The expression in the parenthesis on the right-hand side of (8) is non-negative, so the
right-hand side is minimized when v = s (because in this case v ≥ s), so (8) reduces to
the same inequality (6) as in Case 1, completing the argument for Case 2.

Case 3. Ā is after P̄ . In this case we have g = h(v + s)/s. Symmetrically to Case 1, we can
now assume that A′ is to the right of Ā, so that `A′P ′ = z + v + x, and that z = 1√

2 g.
Then, analogously to (4), we can rewrite (2) as follows:

1√
3 `PP

′ − `AP + v + x ≤
√

2 g (9)

After substituting g = h(v + s)/s and `AP = vr/s, inequality (9) reduces further to

s (1√
3 `PP

′ + x−
√

2h) ≤ v (r − s+
√

2h). (10)

The expression in the parenthesis on the right-hand side of (10) is non-negative, so the
right-hand side is minimized when v = 0, and then it reduces to

x2 + h2 ≤ 3(
√

2h− x)2. (11)

To prove this, we proceed similarly as in Case 1:

x2 + h2 ≤ 3
2h

2 ≤ 3
2 (h+ r − s)2 = 3(

√
2h− x)2,

proving (11).
Case 4. Ā is between P ′ and P̄ . Then g = h(s− v)/s (as in Case 1). Similar to Case 3, we

can assume that A′ is to the right of Ā, so that now `A′P ′ = z− v+ x, and that z = 1√
2 g.

Then, analogously to (4), we can rewrite (2) for this case as follows:

1√
3 `PP

′ − `AP − v + x ≤
√

2 g (12)

After substituting g = h(s− v)/s and `AP = vr/s, inequality (12) reduces further to

s (1√
3 `PP

′ + x−
√

2h) ≤ v (r + s−
√

2h). (13)

We now have two sub-cases. If the expression in the parenthesis on the right-hand
side of (13) is non-negative then the right-hand side is minimized when v = 0, so
inequality (13) reduces to inequality (11) from Case 3. If this expression is negative (that
is when r + s <

√
2h), then it is sufficient to prove (13) with v on the right-hand side

replaced by s (because v ≤ s). This reduces it to 1√
3 `PP

′ +x ≤ r+s. This last inequality
follows from `PP ′ ≤ r and x ≤ s. J

3 An Algorithm for Arbitrary Dimension

In this section, we show how to extend Algorithm Drift to Euclidean spaces Rd for arbitrary
dimension d ≥ 2. This extension, that we call ExtDrift, is quite simple, and consists of
projecting the whole space onto an appropriately chosen plane that contains the new request
line. While such approach was suggested already by Friedman and Linial [11], their choice of
plane may lose a constant factor in the competitive ratio. We project onto a different plane,
which allows ExtDrift to also be 3-competitive.

Let P be the current ExtDrift position and L′ the new request line. If P ∈ L′,
ExtDrift makes no move. Otherwise, let U be the uniquely determined plane which
contains both L′ and P . ExtDrift makes the move prescribed by Drift in the plane U for
P , L′ and the projection of L onto U .

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:7

I Theorem 2. Algorithm ExtDrift is 3-competitive for the line chasing problem in Rd,
for arbitrary dimension d ≥ 2.

Proof. We prove that (1) holds in arbitrary dimension. If P ∈ L′ then L and L′ are co-planar,
so the analysis from the previous section works directly.

So assume that P /∈ L′. We first allow the adversary to perform a free move from its
current position A to point Ä defined as the orthogonal projection of A onto U , and then we
analyze the move within U (that is, in a two-dimensional setting), as if the adversary started
from point Ä.

We note that `ÄX ≤ `AX for any point X ∈ U , as (`AX)2 = (`ÄX)2 +(`AÄ)2 by definition
of Ä. It follows that:

In the free adversary move from A to Ä the potential function decreases (by taking X = P

in the above inequality) and both costs are 0. Further, in the move within U , with the
adversary starting from Ä, Algorithm ExtDrift makes the same move as Drift, which
implies that (1) is satisfied. Thus the complete move (combining the free adversary move
and the move inside U) satisfies inequality (1) as well.
The free move is only beneficial for the adversary: taking X = A′ shows that the cost of
moving to A′ from Ä is no more costly for the adversary than moving to A′ from A. J

4 Lower Bound for Memoryless Algorithms

We show that our algorithm achieves the optimal competitive ratio among a certain class of
“memoryless” algorithms. For a metric spaceM , let X ⊆ P(M) be the set of possible requests
(i.e., lines in our case). In general, we can view an algorithm as a function A : M ×X ∗ → X
with A(P0) = P0 and A(P0, X1, . . . , Xt) ∈ Xt for each initial point P0 ∈ M and requests
X1, . . . , Xt ∈ X . We call an algorithm memoryless if A(P0, X1, . . . , Xt) is a function of only
the last position A(P0, X1, . . . , Xt−1), the last request Xt−1 and the new request Xt.

However, memorylessness alone would not impose any limit on the power of line-chasing
algorithms: By perturbing its positions very slightly, an algorithm could always encode the
entire history in low significant bits of its current position. To get a meaningful notion of mem-
orylessness, we therefore require an additional property, namely that the algorithm is oblivious
with respect to rotation, translation or scaling of the metric space. More precisely, a direct sim-
ilarity of Rd is a bijection f : Rd → Rd that is a composition of rotation, translation and scaling
by some factor rf > 0. In particular, for any P,Q ∈ Rd, we have `(f(P), f(Q)) = rf `(P,Q).
We call an algorithm A rts-oblivious if A(f(P0), f(X1), . . . , f(Xt)) = f(A(P0, X1, . . . , Xt))
for any P0 ∈M , Xi ∈ X and any direct similarity f . In general (when algorithms are allowed
to use memory) there is no reason to behave differently when the input is transformed by
such f , since it is just a renaming of points and scaling of distances by a uniform constant.
For completeness, we provide a proof of this intuition via the following proposition:

I Proposition 3. If there is a c-competitive algorithm for line-chasing, then there is a
c-competitive rts-oblivious algorithm.

Proof. For an initial position P0 and request sequence X1, . . . , Xt, we assume without loss
of generality that P0 /∈ X1. For any such P0 and X1, there exists a unique direct similarity
g = gP0X1 such that g(P0) = (0, 1) and g(X1) = R× {0}. Given a c-competitive algorithm
A, we claim that the algorithm Ã given by

Ã(P0, X1, . . . , Xt) = g−1(A(g(P0), g(X1), . . . , g(Xt)))

is rts-oblivious and c-competitive.

MFCS 2019

8:8 Better Bounds for Online Line Chasing

To see that Ã is rts-oblivious, consider an arbitrary direct similarity f . Notice that
gf(P0)f(X1) = g ◦ f−1. Thus,

Ã(f(P0), f(X1), . . . , f(Xt)) = (f ◦ g−1)(A(g(P0), g(X1), . . . , g(Xt)))
= f(Ã(P0, X1, . . . , Xt)),

as required. To see that Ã is c-competitive, consider an initial position P0 and request
sequence X1, . . . , Xm along with an adversary’s solution A0 = P0, A1 ∈ X1, . . . , Am ∈ Xm.
The cost of Ã can be bounded via

m∑
t=1

`(Ã(P0, X1, . . . , Xt−1), Ã(P0, X1, . . . , Xt))

= 1
rg

m∑
t=1

`(A(g(P0), g(X1), . . . , g(Xt−1)),A(g(P0), g(X1), . . . , g(Xt)))

≤ c

rg

m∑
t=1

`(g(At−1), g(At))

= c

m∑
t=1

`(At−1, At),

where the inequality uses that A is c-competitive against the solution g(A0), . . . , g(Am) for
the transformed input g(P0), g(X1), . . . , g(Xm). J

Intuitively, an rts-oblivious algorithm does not know the absolute coordinates of its
positions and requests, but only relative to each other and up to scaling. If it is memoryless,
in the plane this boils down to only knowing the angle between the new and the old request
line. We show now that our algorithms Drift and ExtDrift achieve the optimal competitive
ratio among rts-oblivious memoryless algorithms.

I Theorem 4. Any rts-oblivious memoryless algorithm for line-chasing has competitive ratio
at least 3.

Proof. We will construct an initial point P0 and lines L0, . . . , Lm in R2 with the property
that P0 ∈ L0 and Lt can be obtained by rotating Lt−1 around some point St ∈ Lt−1 in
clockwise direction by less than 90 degrees.

Let P0, . . . , Pm be the sequence of points visited by a given algorithm. We use notation
similar to that in Figure 1: Write P̄t−1 for the orthogonal projection of Pt−1 onto Lt and
let ht = `(Pt−1, P̄t−1) and st = `(P̄t−1, St). The movement from Pt−1 to Pt can always
be viewed as first moving to P̄t−1 and then moving some distance xt ∈ R in the direction
towards intersection St, for a total cost

√
h2
t + x2

t . Here, xt < 0 would constitute movement
away from St and xt > st would constitute movement beyond St.

Observe that for rts-oblivious memoryless algorithms, xt

ht
is a function of only ht

st
, i.e.

β(ht

st
) = xt

ht
for some function β : (0,∞)→ R. Any rts-oblivious memoryless algorithm for

line-chasing in the plane is uniquely determined by its associated function β as well as similar
functions for the cases of counter-clockwise rotations of at most 90 degrees and parallel
lines.1 Let β(0) := lim supa→0 β(a) ∈ R ∪ {−∞,∞}. Let us first show that algorithms with
β(0) =∞ or β(0) ≤ 0 have unbounded competitive ratio.

1 If we require algorithms to be oblivious also with respect to reflection (which would still satisfy
Proposition 3), they would be uniquely determined by β alone. Drift is the algorithm corresponding

to β(a) = a+1−
√

a2+1√
2a

.

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:9

If β(0) =∞, we choose P0 = (1, h), L0 = {(x, y) : y = hx}, L1 = R× {0} for some small
h > 0. The algorithm’s cost is h

√
1 + β(h)2, whereas the optimal cost is h. Choosing h

arbitrarily small shows that the competitive ratio is unbounded.
If β(0) ≤ 0, fix some ε ∈ (0, 1

2] and choose a ∈ (0, ε] with β(a) ≤ ε. Let P0 = (1, 0),
L0 = R× {0} and define Lt as the clockwise rotation of Lt−1 around the origin O := (0, 0)
by angle arctan(a). Thus, we have ht

st
= a for each t. Notice that st

√
1 + a2 = `(O,Pt−1) =

st−1(1− aβ(a)), and therefore

st
st−1

= 1− aβ(a)√
1 + a2

≥ 1− a2 + aβ(a)
1 + a2 ≥ 1− 2εa,

where the first inequality uses
√

1 + a2 ≤ 1 + a2 and the second inequality uses 0 < a ≤ ε

and β(a) ≤ ε. Hence,

st ≥ (1− 2εa)t−1

Since `(Pt−1, Pt) ≥ ht = ast, the total cost of the algorithm is

m∑
t=1

`(Pt−1, Pt) ≥ a
m−1∑
t=0

(1− 2εa)t m→∞−−−−→ 1
2ε .

Meanwhile, an optimal algorithm pays total cost 1 by moving to O immediately. Letting
ε→ 0, we find again that the competitive ratio is unbounded.

It remains to consider the case 0 < β(0) < ∞. Then we can choose arbitrarily small
a > 0 such that 0 < aβ(a) < 1. We choose the initial point P0 = (1

a , 1), and the request
sequence starts with L0 = {(x, y) : y = ax} and L1 = R×{0}. For t ≥ 2, we define Lt as the
clockwise rotation of Lt−1 around St = S2 =

(
1
a − β(a) +

√
1 + a2

(
β(a) + 1

2β(a)

)
, 0
)
by

angle arctan(a). The idea is that in response to L1, the algorithm drifts to the left (towards
intersection S1 = (0, 0)), but the subsequent requests are such that it would have been
cheaper to drift to the right (away from S1) instead.

We have s1 = 1
a and s2 = `(P1,S2)√

1+a2 = β(a) + 1
2β(a) . For t ≥ 3, similarly to the previous

case we get

st
st−1

≥ 1− a2 + aβ(a)
1 + a2 ≥ 1− a2 − aβ(a)

and therefore

st ≥
(
β(a) + 1

2β(a)

)(
1− a2 − aβ(a)

)t−2 if t ≥ 2.

As m→∞, the cost of the algorithm is
∞∑
t=1

`(Pt−1, Pt) =
∞∑
t=1

ht
√

1 + β(a)2 =
√

1 + β(a)2a

∞∑
t=1

st

≥
√

1 + β(a)2
(

1 +
(
β(a) + 1

2β(a)

)
1

a+ β(a)

)
a→0−−−→

√
1 + β(0)2

(
2 + 1

2β(0)2

)
,

where the limit a→ 0 is taken along a sequence where β(a)→ β(0). In contrast, an offline
algorithm can move immediately from P0 to S2, paying cost

√
1 + 1

4β(0)2 as a → 0 and

MFCS 2019

8:10 Better Bounds for Online Line Chasing

c1

c2

A3 L1

L2

P0 = A0

P1

c3

C2

A1

C3

L3
p2

A2

P2
P3

p3

a2

a1

P’2

Figure 3 Visual description of our lower bound for arbitrary algorithms. Lines L1, L2 and L3 are
presented to an online algorithm. Blue arrows describe possible movements of Opt, while gray thick
arrows describe a path of an algorithm that minimizes the competitive ratio for this adversarial
construction. Red thick half-line denotes the forbidden region.

β(a)→ β(0). By dividing, we see that the competitive ratio is at least√
(1 + β(0)2)

(
4 + 1

β(0)2

)
=

√
4β(0)2 + 1

β(0)2 + 5,

which is minimized for β(0) = 1√
2 , taking value 3. J

5 Lower Bound for Arbitrary Algorithms

Finally, in this section, we show how to improve an existing lower bound of
√

2 ≈ 1.41 for
arbitrary algorithms to 1.5358. Our bound holds even in two dimensions, and improves also
the lower bound for the more general convex body chasing in two dimensions.

I Theorem 5. The competitive ratio of any deterministic online algorithm A for the line
chasing problem is at least 1.5358.

Proof. We describe our adversarial strategy below. On the created input, we will compare
the cost of A to the cost of an offline optimum Opt. We assume that both A and Opt start
at origin point P0 = A0 = (0, 0).

Our construction is parameterized with real positive numbers c1 = 0.5535, c2 = 0.4965,
c3 = 0.8743, a1 = 1.3012, a2 = 0.6663, p2 = 0.5612, and p3 = 0.1696.

We fix points P1 = (0, c1), C2 = (0, c1 + c2), C3 = (0, c1 + c2 + c3) and A3 = (1, c1), see
Figure 3 for illustration. For succinctness, we use notation M(x, y) =

√
x2 + y2.

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:11

Initial part: Line L1

The first request line is the line P1A3, denoted L1. Without loss of generality, we can
assume that A moves to point P1. This is because the adversary can either play the strategy
described below or its mirror image (flipped against the line P0P1), so any deviation from
P1, either to the left or right, can only increase the cost of A.

From now on, for any point Q we denote its projection on line L1 by Qx.

Middle part: Line L2

Next, the adversary issues the request line C2A3, denoted L2. Let P2 ∈ L2 and A1 ∈ L2 be
the points to the left of A3, such that `Px

2 A3 = p2 and `Ax
1A3 = a1.

Let P̄2 be the point on L2 chosen by A. If P̄2 lies to the right of point P2, then the
adversary forces A to move to A1 (by giving sufficiently many different lines that go through
A1 at different angles). Opt may then serve the whole sequence by going from A0 to A1 at
cost

`A0A1 = M(c1 + c2 · a1, a1 − 1) ≤ 1.23679

while the cost of A is then at least

`P0P1 + `P1P2 + `P2A1 = `P0P1 + `P1P2 + `A3A1 − `A3P2

= c1 + M(1− p2, c2 · p2) + M(a1, c2 · a1) − M(p2, c2 · p2)
≥ 1.89948

Hence, the competitive ratio in this case is at least 1.5358.
We call the half-line of L2 to the right of point P2 forbidden region. From now on, we

assume that the point chosen by A in L2 does not lie in this region.

Final part: Line L3

Finally, the adversary issues the request line C3A3, denoted L3. Let P ′2 be the intersection
of line P1P2 with line L3. Next, let A2 and P3 be the points on the line L3 to the left of A3,
such that `Ax

2A3 = a2 and `Px
3 A3 = p3. Note that P3 belongs to the interval P ′2A3.

Let P̄3 be the point on L3 chosen by A. We consider two cases.

Case 1. P̄3 lies at point P3 or to its left. In this case, the adversary forces A to move to A3.
Opt may serve the whole sequence by going from A0 to A3 paying

`A0A3 = M(1, c1) ≤ 1.142963.

We may now argue that the cost of A is minimized if P̄3 is equal to P3: If P̄3 is to the left
of point P ′2, then the cost of A is at least `P0P1 + `P1P̄3

+ `P̄3A3
. Both the second and the

third summand decrease when we move P̄3 towards P ′2. Hence, now we may assume that
P̄3 belongs to the interval P ′2P3. As the path of A must avoid forbidden region, its cost
is at least `P0P1 + `P1P2 + `P2P̄3

+ `P̄3A3
. The sum of the last two summands decreases

when we move P̄3 towards P3. Therefore, we obtain that the cost of A is at least

`P0P1+`P1P2 + `P2P3 + `P3A3

= c1 + M(1− p2, c2 · p2) + M((c2 + c3) · p3 − c2 · p2, p2 − p3)
+ M(p3, (c2 + c3) · p3) ≥ 1.75537.

Thus, in this case the competitive ratio is at least 1.5358.

MFCS 2019

8:12 Better Bounds for Online Line Chasing

Case 2. If P̄3 lies to the right of point P3, then the adversary forces A to move to A2. Opt
may serve the whole sequence by going from A0 to A2 at cost

`A0A2 = M(c1 + (c2 + c3) · a2, 1− a2) ≤ 1.50435.

To go from P1 to P̄3 and avoid the forbidden region, A has to pay at least `P1P2 + `P2P̄3
.

Therefore, its cost is at least

`P0P1+`P1P2 + `P2P̄3
+ `P̄3A2

≥ `P0P1 + `P1P2 + `P2P3 + `P3A2

≥ `P0P1 + `P1P2 + `P2P3 + `A2A3 − `P3A3

= c1 + M(1− p2, c2 · p2) + M((c2 + c3) · p3 − c2 · p2, p2 − p3)
+ M(a2, (c2 + c3) · a2) − M(p3, (c2 + c3) · p3) ≥ 2.31039.

Thus, in this case the ratio is also at least 1.5358. J

6 Final Comments

Establishing the optimal competitive ratio for line chasing with memory remains an open
problem. We believe that with memory, a competitive ratio better than 3 is achievable.

The intuition is that in the first move, if L and P are the initial line and position and
L′ is the new request line, then the algorithm should move to the nearest point P̄ on L′.
More generally, if the requests on L and L′ alternate (and their angle is small), the algorithm
should initially drift slowly towards S = L ∩ L′ and only gradually accelerate as it becomes
more credible that the adversary is located at S. To gauge this credibility for general request
sequences, an algorithm might store the current work function at each step.

It appears also that our lower bound of 1.5358 can be improved by introducing additional
steps, although this gives only very small improvements and leads to a very involved analysis.
It is possible that an approach fundamentally different from ours may give a better bound
with simpler analysis.

References
1 Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior, and Michele

Scquizzato. Chasing Convex Bodies and Functions. In Proc. 12th Latin American Theoretical
Informatics Symposium (LATIN), pages 68–81, 2016. doi:10.1007/978-3-662-49529-2_6.

2 C. J. Argue, Sébastien Bubeck, Michael B. Cohen, Anupam Gupta, and Yin Tat Lee. A Nearly-
Linear Bound for Chasing Nested Convex Bodies. In Proc. 30th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 117–122, 2019.

3 Nikhil Bansal, Martin Böhm, Marek Eliás, Grigorios Koumoutsos, and Seeun William Umboh.
Nested Convex Bodies are Chaseable. In Proc. 29th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 1253–1260, 2018. doi:10.1137/1.9781611975031.81.

4 Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior,
and Clifford Stein. A 2-Competitive Algorithm For Online Convex Optimization With
Switching Costs. In Proc. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), pages 96–109, 2015. doi:10.4230/LIPIcs.
APPROX-RANDOM.2015.96.

5 Allan Borodin, Nathan Linial, and Michael E. Saks. An Optimal On-Line Algorithm for
Metrical Task System. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

6 Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing Nested Convex Bodies
Nearly Optimally. CoRR, abs/1811.00999, 2018. URL: http://arxiv.org/abs/1811.00999.

https://doi.org/10.1007/978-3-662-49529-2_6
https://doi.org/10.1137/1.9781611975031.81
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
https://doi.org/10.1145/146585.146588
http://arxiv.org/abs/1811.00999

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:13

7 Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Competitively chasing convex
bodies. In Proc. 51st ACM Symp. on Theory of Computing (STOC), pages 861–868, 2019.
doi:10.1145/3313276.3316314.

8 William R. Burley. Traversing Layered Graphs Using the Work Function Algorithm. J.
Algorithms, 20(3):479–511, 1996. doi:10.1006/jagm.1996.0024.

9 Marek Chrobak and Lawrence L. Larmore. Metrical Task Systems, the Server Problem and
the Work Function Algorithm. In Online Algorithms, The State of the Art (Proc. Dagstuhl
Seminar, June 1996), pages 74–96, 1996. doi:10.1007/BFb0029565.

10 Amos Fiat, Dean P. Foster, Howard J. Karloff, Yuval Rabani, Yiftach Ravid, and Sundar
Vishwanathan. Competitive Algorithms for Layered Graph Traversal. SIAM J. Comput.,
28(2):447–462, 1998. doi:10.1137/S0097539795279943.

11 Joel Friedman and Nathan Linial. On Convex Body Chasing. Discrete & Computational
Geometry, 9:293–321, 1993. doi:10.1007/BF02189324.

12 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

13 Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic Right-
Sizing for Power-Proportional Data Centers. IEEE/ACM Trans. Netw., 21(5):1378–1391, 2013.
doi:10.1109/TNET.2012.2226216.

14 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive Algorithms for
Server Problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

15 H. Ramesh. On Traversing Layered Graphs On-Line. J. Algorithms, 18(3):480–512, 1995.
doi:10.1006/jagm.1995.1019.

16 René Sitters. The Generalized Work Function Algorithm Is Competitive for the Generalized
2-Server Problem. SIAM J. Comput., 43(1):96–125, 2014. doi:10.1137/120885309.

MFCS 2019

https://doi.org/10.1145/3313276.3316314
https://doi.org/10.1006/jagm.1996.0024
https://doi.org/10.1007/BFb0029565
https://doi.org/10.1137/S0097539795279943
https://doi.org/10.1007/BF02189324
https://doi.org/10.1145/210118.210128
https://doi.org/10.1109/TNET.2012.2226216
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1006/jagm.1995.1019
https://doi.org/10.1137/120885309

Nash Equilibria in Games over Graphs Equipped
with a Communication Mechanism
Patricia Bouyer
LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France
bouyer@lsv.fr

Nathan Thomasset
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
nathan.thomasset@ens-paris-saclay.fr

Abstract
We study pure Nash equilibria in infinite-duration games on graphs, with partial visibility of actions
but communication (based on a graph) among the players. We show that a simple communication
mechanism consisting in reporting the deviator when seeing it and propagating this information
is sufficient for characterizing Nash equilibria. We propose an epistemic game construction, which
conveniently records important information about the knowledge of the players. With this abstraction,
we are able to characterize Nash equilibria which follow the simple communication pattern via
winning strategies. We finally discuss the size of the construction, which would allow efficient
algorithmic solutions to compute Nash equilibria in the original game.

2012 ACM Subject Classification Theory of computation; Theory of computation → Solution
concepts in game theory; Theory of computation → Verification by model checking

Keywords and phrases Multiplayer games, Nash equilibria, partial information

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.9

Related Version Full version available at http://arxiv.org/abs/1906.07753

Funding This work has been partly supported by ERC project EQualIS (FP7-308087).

1 Introduction

Multiplayer concurrent games over graphs allow to model rich interactions between players.
Those games are played as follows. In a state, each player chooses privately and independently
an action, defining globally a move (one action per player); the next state of the game is
then defined as the successor (on the graph) of the current state using that move; players
continue playing from that new state, and form a(n infinite) play. Each player then gets
a reward given by a payoff function (one function per player). In particular, objectives of
the players may not be contradictory: those games are non-zero-sum games, contrary to
two-player games used for controllers or reactive synthesis [15, 12].

Using solution concepts borrowed from game theory, one can describe interactions among
the players, and in particular rational behaviours of selfish players. One of the most basic and
classically studied solution concepts is that of Nash equilibria [13]. A Nash equilibrium is a
strategy profile where no player can improve her payoff by unilaterally changing her strategy.
The outcome of a Nash equilibrium can therefore be seen as a rational behaviour of the
system. While very much studied by game theorists, e.g. over (repeated) matrix games, such
a concept (and variants thereof) has been only rather recently studied over infinite-duration
games on graphs. Probably the first works in that direction are [9, 8, 16, 17]. Several series
of works have followed. To roughly give an idea of the existing results, pure Nash equilibria
always exist in turn-based games for ω-regular objectives [19] but not in concurrent games,
even with simple objectives; they can nevertheless be computed [19, 4, 7, 3] for large classes

© Patricia Bouyer and Nathan Thomasset;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2823-0911
mailto:bouyer@lsv.fr
mailto:nathan.thomasset@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.9
http://arxiv.org/abs/1906.07753
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

of objectives. The problem becomes harder with mixed (that is, stochastic) Nash equilibria,
for which we often cannot decide the existence [18, 5].

Computing Nash equilibria requires to (i) find a good behaviour of the system; (ii) detect
deviations from that behaviour, and identify deviating players; (iii) punish them. This simple
characterization of Nash equilibria is made explicit in [10]. Variants of Nash equilibria require
slightly different ingredients, but they are mostly of a similar vein.

Many of those results are proven using the construction of a two-player game, in which
winning strategies correspond (in some precise sense) to Nash equilibria in the original game.
This two-player game basically records the knowledge of the various players about everything
which can be uncertain: (a) the possible deviators in [4], and (b) the possible states the
game can be in [3]. Extensions of this construction can be used for other solution concepts
like robust equilibria [7] or rational synthesis [11].

In this work, we consider infinite-duration games on graphs, in which the game arena
is perfectly known by all the players, but players have only a partial information on the
actions played by the other players. The partial-information setting of this work is inspired
by [14]: it considers repeated games played on matrices, where players only see actions of
their neighbours. Neighbours are specified by a communication graph. To ensure a correct
detection of deviators, the solution is to propagate the identity of the deviator along the
communication graph. A fingerprint (finite sequence of actions) of every player is agreed at
the beginning, and the propagation can be made properly if and only if the communication
graph is 2-connected, ensuring large sets of Nash equilibria (formalized as a folk theorem).
Fingerprints are not adapted to the setting of graphs, since they may delay the time at which
a player will learn the identity of the deviator, which may be prohibitive if a bad component
of a graph is then reached.

We therefore propose to add real communication among players. Similarly to [14], a
player can communicate only with her neighbours (also specified by a communication graph),
but can send arbitrary messages (modelled as arbitrary words over alphabet {0, 1}). We
assume that visited states are known by the players, hence only the deviator (if any) may be
unknown to the players. In this setting, we show the following results:

We show that a very simple epidemic-like communication mechanism is sufficient for
defining Nash equilibria. It consists in (a) reporting the deviator (for the neighbours
of the deviator) as soon as it is detected, and (b) propagating this information (for the
other players).
We build an epistemic game, which tracks those strategy profiles which follow the above
simple communication pattern. This is a two-player turn-based game, in which Eve (the
first player) suggest moves, and Adam (the second player) complies (to generate the main
outcome), or not (to mimic single-player deviations). The correctness of the construction
is formulated as follows: there is a Nash equilibrium in the original game of payoff p if
and only if there is a strategy for Eve in the epistemic game which is winning for p.
We analyze the complexity of this construction.

Note that we do not assume connectedness of the communication graph, hence the
particular case of a graph with no edges allows to recover the setting of [4] while a complete
graph allows to recover the settings of [19, 7].

In Section 2, we define our model and give an example to illustrate the role of the
communication graph. In Section 3, we prove the simple communication pattern. In
Section 4, we construct the epistemic game and discuss its correctness. In Section 5, we
discuss complexity issues. All proofs are available in the technical report [6].

P. Bouyer and N. Thomasset 9:3

2 Definitions

We use the standard notations R (resp. Q, N) for the set of real (resp. rational, natural)
numbers. If S is a subset of R, we write S for S ∪ {−∞,+∞}.

Let S be a finite set and R ⊆ S. If m is an S-vector over some set Σ, we write m(R) (resp.
m(−R)) for the vector composed of the R-components of m (resp. all but the R-components).
We also use abusively the notations m(i) (resp. m(−i)) when i is a single element of S, and
may sometimes even use mi if this is clear in the context. Also, if s ∈ S and a ∈ Σ, then
m[s/a] is the vector where the value m(s) is replaced by a.

If S is a finite set, we write S∗ (resp. S+, Sω) for the set of words (resp. non-empty
word, infinite words) defined on alphabet S.

2.1 Concurrent games and communication graphs
We use the model of concurrent multi-player games [4], based on the two-player model of [1].

I Definition 1. A concurrent multiplayer game is a tuple G = 〈V, vinit,Act, P ,Σ,Allow,
Tab, (payoffa)a∈P 〉, where V is a finite set of vertices, vinit ∈ V is the initial vertex, Act is
a finite set of actions, P is a finite set of players, Σ is a finite alphabet, Allow : V × P →
2Act \ {∅} is a mapping indicating the actions available to a given player in a given vertex,1
Tab : V ×ActP → V associates, with a given vertex and a given action tuple the target vertex,
for every a ∈ P , payoffa : V ω → D is a payoff function with values in a domain D ⊆ R.

An element of ActP is called a move. Standardly (see [1] for two-player games and [4]
for the multiplayer extension), concurrent games are played as follows: from a given vertex
v, each player selects independently an action (allowed by Allow), which altogether form a
move m; then, the game proceeds to the next vertex, given by Tab(v,m); the game continues
from that new vertex.

Our setting will refine this model, in that at each round, each player will also broadcast
a message, which will be received by some of the players. The players that can receive a
message will be specified using a communication graph that we will introduce later. The role
of the messages will remain unclear until we commit to the definition of a strategy.

Formally, a full history h in G is a finite sequence

v0 · (m0,mes0) · v1 · (m1,mes1) · v2 . . . (ms−1,mess−1) · vs ∈ V ·
((
ActP × ({0, 1}∗)P) · V)∗

such that for every 0 ≤ r < s, for every a ∈ P , mr(a) ∈ Allow(vr, a), and vr+1 = Tab(vr,mr).
For every 0 ≤ r < s, for every a ∈ P , the set mesr(a) is the message appended to action
mr(a) at step r + 1, which will be broadcast to some other players. For readability we will
also write h as

v0
m0,mes0−−−−−→ v1

m1,mes1−−−−−→ v2 . . .
ms−1,mess−1−−−−−−−−→ vs

We write vertices(h) = v0·v1 · · · vs, and last(h) for the last vertex of h (that is, vs). If r ≤ s, we
also write h≥r (resp. h≤r) for the suffix vr·(mr,mesr)·vr+1·(mr+1,mesr+1) . . . (ms−1,mess−1)·
vs (resp. prefix v0 · (m0,mes0) · v1 · (m1,mes1) . . . (mr−1,mesr−1) · vr). We write HistG(v0)
(or simply Hist(v0) if G is clear in the context) for the set of full histories in G that start at
v0. If h ∈ Hist(v0) and h′ ∈ Hist(last(h)), then we write h · h′ for the obvious concatenation
of histories (it then belongs to Hist(v0)).

1 This condition ensures that the game is non-blocking.

MFCS 2019

9:4 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

We add a communication (directed) graph G = (P , E) to the context. The set of vertices
of G is the set of players, and edges define a neighbourhood relation. An edge (a, b) ∈ E
(with a 6= b) means that player b can see which actions are played by player a together with
the messages broadcast by player a. Later we write a_b whenever (a, b) ∈ E or a = b, and
n(b) = {a ∈ P | a_b} for the so-called neighbourhood of b (that is, the set of players about
which player b has information). If a, b ∈ P , we write distG(a, b) for the distance in G from a

to b (+∞ if there is no path from a to b).
Let a ∈ P be a player. The projection of h for a is denoted πa(h) and is defined by

v0 · (m0(n(a)),mes0(n(a))) · v1 · (m1(n(a)),mes1(n(a))) · v2 . . .

. . . (ms−1(n(a)),mess−1(n(a))) · vs ∈ V ·
((

Actn(a) × ({0, 1}∗)n(a)
)
· V
)∗

This will be the information available to player a. In particular, messages broadcast by
the players are part of this information. Note that we assume perfect recall, that is, while
playing, player a will remember all her past knowledge, that is, all of πa(h) if h has been
played so far. We define the undistinguishability relation ∼a as the equivalence relation over
full histories induced by πa: for two histories h and h′, h ∼a h′ iff πa(h) = πa(h′). While
playing, if h ∼a h′, a will not be able to know whether h or h′ has been played. We write
HistG,a(v0) for the set of histories for player a (also called a-histories) from v0.

We extend all the above notions to infinite sequences in a straightforward way and to the
notion of full play. We write PlaysG(v0) (or simply Plays(v0) if G is clear in the context) for
the set of full plays in G that start at v0.

A strategy for a player a ∈ P from vertex v0 is a mapping σa : HistG(v0)→ Act× {0, 1}∗
such that for every history h ∈ HistG(v0), σa(h)[1] ∈ Allow(last(h), a), where the notation
σa(h)[1] denotes the first component of the pair σ(h). The value σa(h)[1] represents the
action that player a will do after h, while σa(h)[2] is the message that she will append to her
action and broadcast to all players b such that a_b. The strategy σa is said G-compatible
if furthermore, for all histories h, h′ ∈ Hist(v0), h ∼a h′ implies σa(h) = σa(h′). In that
case, σa can equivalently be seen as a mapping HistG,a(v0) → Act × {0, 1}∗. An outcome
of σa is a(n infinite) play ρ = v0 · (m0,mes0) · v1 · (m1,mes1) . . . such that for every r ≥ 0,
σa(ρ≤r) = (mr(a),mesr(a)). We write out(σa, v0) for the set of outcomes of σa from v0.

A strategy profile is a tuple σP = (σa)a∈P , where, for every player a ∈ P , σa is a strategy
for player a. The strategy profile is said G-compatible whenever each σa is G-compatible.
We write out(σP , v0) for the unique full play from v0, which is an outcome of all strategies
part of σP .

When σP is a strategy profile and σ′d a player-d G-compatible strategy, we write σP [d/σ′d]
for the profile where player d plays according to σ′d, and each other player a (6= d) plays
according to σa. The strategy σ′d is a deviation of player d, or a d-deviation w.r.t. σP .
Such a d-deviation is said profitable w.r.t. σP whenever payoffd

(
vertices(out(σP , v0))

)
<

payoffd
(

vertices(out(σP [d/σ′d], v0))
)
.

I Definition 2. A Nash equilibrium from v0 is a G-compatible strategy profile σP such that
for every d ∈ P , there is no profitable d-deviation w.r.t. σP .

In this definition, deviation σ′d needs not really to be G-compatible, since the only meaningful
part of σ′d is along out(σ[d/σ′d], v0), where there are no ∼d-equivalent histories: any deviation
can be made G-compatible without affecting the profitability of the resulting outcome.

P. Bouyer and N. Thomasset 9:5

v0

v′0

v1 v′1

v2 v3 v4

α5 α2βα2, α3βα, α4β

αβ
Ac
t3 β
βAct 3

βαAct 3

0

1

2

4

3

G1

0

1

2

4

3

G2

0

1

2

4

3

G3

Figure 1 A five-player game (left) and three communication graphs (right); self-loops a_a

omitted from the picture. The action alphabet is {α, β}. The transition function is represented as
arrows from one vertex to another labeled with the action profile(s) allowing to go from the origin
vertex to the destination one. We write action profiles with length-5 words. Convention: no label
means complementary labels (e.g. one goes from v0 to v′

0 using any action profile that is not in
α5 + (αβ + ββ + βα)Act3 + α2(βα2 + αβα+ α2β)).

I Remark 3. Before pursuing our study, let us make clear what information players have: a
player knows the full arena of the game and the whole communication graph; when playing
the game, a player sees the states which are visited, and see actions of and messages from her
neighbours (in the communication graph). When playing the profile of a Nash equilibrium,
all players know all strategies, hence a player knows precisely what is expected to be the
main outcome; in particular, when the play leaves the main outcome, each player knows that
a deviation has occurred, even though she didn’t see the deviator or received any message.
Note that deviations which do not leave the main outcome may occur; in this case, only the
neighbours of the deviator will know that such a deviation occurred; we will see that it is
useless to take care of such deviations.

2.2 An example
We consider the five-player game described in Figure 1 in which we denote the players
P = {0, 1, 2, 3, 4}. The action alphabet is Act = {α, β}, and the initial vertex is assumed to
be v0. We suppose the payoff function vector is defined as (to be read as the list of payoffs
of the players):

payoff(ρ) =



(0, 0, 1, 1, 1) if ρ visits v1 infinitely often
(0, 0, 2, 2, 2) if ρ visits v1 finitely often and v′1 infinitely often
(0, 0, 0, 2, 2) if ρ ends up in v2
(0, 0, 2, 0, 2) if ρ ends up in v3
(0, 0, 2, 2, 0) if ρ ends up in v4
(0, 0, 3, 3, 3) if ρ ends up in v′0

We consider a (partial) strategy profile σ whose main outcome is:

ρ =
(
v0 · (α5,mesε) · v1 · (α5,mesε)

)ω
where mesε(a) = ε for every a ∈ P . Note that players 0 and 1 cannot benefit from any
deviation since their payoffs is uniformly 0. Then notice that no one alone can deviate from

MFCS 2019

9:6 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

ρ to v′0. Now, the three players 2, 3 and 4 can alone deviate to v′1 and (try to) do so infinitely
often. We examine those deviations. If players 0 and 1 manage to learn who is the deviator,
then, together, they can punish the deviator: if they learn that player 2 (resp. 3, 4) is the
deviator, then they will enforce vertex v2 (resp. v3, v4). If they do not manage to learn who
is the deviator, then they will not know what to do, and therefore, in any completion of the
strategy profile, there will be some profitable deviation for at least one of the players (hence
there will not be any Nash equilibrium whose main outcome is ρ).

We examine now the three communication graphs G1, G2 and G3 depicted in Figure 1.
Using communication based on graph G1, if player 4 deviates, then player 0 will see this
immediately and will be able to communicate this fact to player 1; if player 3 deviates, then
player 4 will see this immediately and will be able to communicate this fact to player 0,
which will transmit to player 1; if player 2 deviates, then no one will see anything, hence
they will deduce the identity of the deviator in all the cases.

Using communication based on graph G2, if either player 3 or player 4 deviates, then
player 0 will see this immediately and will be able to communicate this fact to player 1 using
the richness of the communication scheme (words over {0, 1}). Like before, the identity of
deviator 2 will be guessed after a while.

Using communication based on graph G3, if player 4 deviates, then player 0 will see this
immediately and will be able to communicate this fact to player 1 (as before); now, no one
(except players 2 and 3) will be able to learn who is deviating, if player 2 or player 3 deviates.

We can conclude that there is a Nash equilibrium with graph G1 or G2 whose main
outcome is ρ, but not with graph G3.

2.3 Two-player turn-based game structures
Two-player turn-based game structures are specific cases of the previous model, where at
each vertex, at most one player has more than one action in her set of allowed actions. But
for convenience, we will give a simplified definition, with only objects that will be useful.

A two-player turn-based game structure is a tuple G = 〈S, SEve, SAdam, sinit, A,Allow,Tab〉,
where S = SEve t SAdam is a finite set of states (states in SEve belong to player Eve whereas
states in SAdam belong to player Adam), sinit ∈ S is the initial state, A is a finite alphabet,
Allow : S → 2A \ {∅} gives the set of available actions, and Tab : S ×A→ S is the next-state
function. If s ∈ SEve (resp. SAdam), Allow(s) is the set of actions allowed to Eve (resp. Adam)
in state s.

In this context, strategies will use sequences of states. That is, if a denotes Eve or Adam,
an a-strategy is a partial function σa : S∗ · Sa → A such that for every H ∈ S∗ · Sa such
that σa(H) is defined, σa(H) ∈ Allow(last(H)). Note that we do not include any winning
condition or payoff function in the tuple, hence the name structure.

2.4 The problems we are looking at
We are interested in the constrained existence of a Nash equilibrium. For simplicity, we
define rectangular threshold constraints, but could well impose more complex constraints,
like Boolean combinations of linear constraints.

I Problem 1 (Constrained existence problem). Given a concurrent game G =
〈V, vinit, P ,Act,Σ,Allow,Tab, (payoffa)a∈P 〉, a communication graph G for P , a predicate P
over R|P |, can we decide whether there exists a Nash equilibrium σP from vinit such that
payoff(vertices(out(σP , vinit))) ∈ P? If so, compute one. If the predicate P is trivial, we
simply speak of the existence problem.

P. Bouyer and N. Thomasset 9:7

The case where the communication graph has no edge was studied in depth in [4], with
a generic two-player construction called the suspect construction, allowing to decide the
constrained existence problem for many kinds of payoff functions. The case where the
communication graph is a clique was the subject of the work [7]. The general case of a
communication graph has not been investigated so far, but induces interesting developments.
In the next section, we show that we can restrict the search of Nash equilibria to the search
of so-called normed strategy profiles, where the communication via messages follows a very
simple pattern. We also argue that deviations which do not impact the visited vertices should
not be considered in the analysis. Given those reductions, we then propose the construction
of a two-player game, which will track those normed profiles. This construction is inspired
by the suspect-game construction of [4] and of the epistemic game of [3].

3 Reduction to profiles following a simple communication mechanism

We fix a concurrent game G = 〈V, vinit,Act, P ,Σ,Allow,Tab, (payoffa)a∈P 〉 and a communica-
tion graph G. We assume that vinit = v0. We will reduce the search for Nash equilibria to
the search for strategy profiles with a very specific shape. In particular, we will show that
the richness of the communication offered by the setting is somehow useless, and that a very
simple communication pattern will be sufficient for characterizing Nash equilibria.

In the following, we write mesε for the vector assigning the empty word ε to every player
a ∈ P . Furthermore, for every d ∈ P , we pick some word idd ∈ {0, 1}+ which are all distinct
(and different from ε).

We first define restrictions for deviations. Let σP be a strategy profile. A player-d
deviation σ′d is said immediately visible whenever, writing h for the longest common prefix
of out(σP , v0) and out(σP [d/σ′d], v0), Tab(last(h),m) 6= Tab(last(h),m′), where m = σP (h)[1]
and m′ =

(
σP [d/σ′d](h)

)
[1] are the next moves according to σP and σP [d/σ′d]. That is, at

the first position where player d changes her strategy, it becomes public information that a
deviation has occurred (even though some players know who deviated – all the players a
with d_a – , and some other don’t know). It is furthermore called honest whenever for every
h′ ∈ out(σP [d/σ′d], v0) such that h is a (non-strict) prefix of h′, σ′d(h′)[2] = idd. Somehow,
player d admits she deviated, and does so immediately and forever.

The simple communication mechanism that we will design consists in reporting the
deviator (role of the direct neighbours of the deviator), and propagating this information
along the communication graph (for all the other players). Formally, let σP be a strategy
profile, and let ρ be its main outcome. The profile σP will be said normed whenever the
following conditions hold:
1. for every h ∈ out(σP) ∪

⋃
d∈P , σ′

d
out(σP [d/σ′d], v0), if vertices(h) is a prefix of vertices(ρ),

then for every a ∈ P , σa(h)[2] = ε;
2. for every d ∈ P , for every d-strategy σ′d, if h · (m,mes) · v ∈ out(σP [d/σ′d], v0) is the first

step out of vertices(ρ), then for every d_a, σa(h · (m,mes) · v)[2] = idd;
3. for every d ∈ P , for every d-strategy σ′d, if h · (m,mes) · v ∈ out(σP [d/σ′d], v0) has left the

main outcome for more than one step, then for every a ∈ P , σa(h · (m,mes) · v)[2] = ε

if for all b_a, mes(b) = ε and σa(h · (m,mes) · v)[2] = idd if there is b_a such that
mes(b) = idd; note that this is well defined since at most one id can be transmitted.

The first condition says that, as long as a deviation is not visible, then no message needs to
be sent; the second condition says that as soon as a deviation becomes visible, then messages
denouncing the deviator should be sent by “those who know”, that is, the (immediate)

MFCS 2019

9:8 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

neighbours of the deviator; the third condition says that the name (actually, the id) of the
deviator should propagate according to the communication graph in an epidemic way.

Note that the profiles discussed in Section 2.2 were actually normed.

I Theorem 4. The existence of a Nash equilibrium σP with payoff p is equivalent to the
existence of a normed strategy profile σ′P with payoff p, which is resistant to immediately
visible and honest single-player deviations.

The proof of this theorem, which is rather technical, can be found in [6]. We only give
some intuition here. First, we explain why being resistant to immediately visible and honest
deviations is enough. Notice that as long as the sequence of vertices follows the main outcome,
then one can simply ignore the deviation and act only when the deviation becomes visible, in
a way as if the deviator had started deviating only at this moment. This will be enough to
punish the deviator. The “honest” part comes from the fact that one should simply ignore
the messages sent by the deviator as it can be only in her interest to not ignore them (if it
was not, then why would she send any message at all?).

Second, we show why no one should communicate as long as the sequence of vertices
follows the main outcome. The reason is that if no one has deviated then any message is
essentially useless, and if a deviation has happened, as explained earlier it can just be ignored
as long as it has not become visible.

Finally, we demonstrate why the richness of the communication mechanism is in a way
useless. Intuitively, one can understand that the only factors that should matter when playing
are the sequence of the vertices that have been visited (because payoff functions only take
into account the visited vertices) and the identity of the deviator. Thus the messages should
only be used so that players can know of the identity of the deviator in the fastest possible
way, and we show that nothing is faster than a sort of epidemic mechanism where one simply
broadcasts the identity of the deviator whenever one received the information.

4 The epistemic game abstraction

We fix a concurrent game G = 〈V, vinit,Act, P ,Σ,Allow,Tab, (payoffa)a∈P 〉 for the rest of the
section, and G be a communication graph for P . We will implement an epistemic abstraction,
which will track normed strategy profiles, and check that there is no profitable immediately
visible and honest single-player deviations.

4.1 Description of the epistemic game

A situation is a triple (d, I,K) in P × 2P ×
(

2P
)P

, which consists of a deviator d ∈ P , a list
of players I having received the information that d is the deviator, and a knowledge function
K that associates to every player a a list of suspects K(a); in particular, it should be the
case that d ∈ I and for every a ∈ I, K(a) = {d}. We write Sit for the set of situations.

The epistemic game EGG of G and G is defined as a two-player game structure 〈S, SEve,

SAdam, sinit,Σ′,Allow′,Tab′〉. We describe the states and the transitions leaving those states;
in particular, components Σ′, Allow′, Tab′ of the above tuple will only be implicitely defined.

Eve’s states SEve consist of elements of V × 2Sit such that if (v,X) is a state then for all
a ∈ P the set {(d, I,K) ∈ X | d = a} is either a singleton or empty (there is at most one
situation associated with a given player a). We write dev(X) the set {d ∈ P | ∃(d, I,K) ∈ X}
of agents which are a deviator in one situation of X. If d ∈ dev(X), we write (d, IXd ,KX

d) for
the unique triple belonging to X having deviator d. Hence, X = {(d, IXd ,KX

d) | d ∈ dev(X)}.

P. Bouyer and N. Thomasset 9:9

Intuitively, an Eve’s state (v,X) will correspond to a situation where the game has proceeded
to vertex v, but, if dev(X) 6= ∅, several players may have deviated. Each player d ∈ dev(X)
may be responsible for the deviation; some people will have received a message denouncing d
(those are in the set IXd), and some will deduce things from what they observe (this is given
by KX

d). Note that the (un)distinguishability relation of a player a will be deduced from X:
if d deviated and a ∈ IXd , then a will know d deviated; if a is neither in IXd nor in IXd′ , then
a will not be able to know whether d or d′ deviated (as we will prove later, in Lemma 5).

First let us consider the case where X = ∅, which is to be understood as the case where
no deviation has arisen yet. In state (v, ∅), Eve’s actions are moves in G enabled in v. When
she plays move m ∈ ActP , the game progresses to Adam’s state ((v, ∅),m) ∈ SAdam where
Adam’s actions are vertices v′ ∈ V such that there exists a player d ∈ P and an action δ ∈ Act
such that Tab(v, (m[d/δ])) = v′. When Adam plays v′, either v′ = Tab(v,m) and the game
progresses to Eve’s state (v′, ∅) or v′ 6= Tab(v,m) and the game progresses to Eve’s state
(v′, X ′) where:

d ∈ dev(X ′) if and only if there is δ ∈ Act such that Tab(v, (m[d/δ])) = v′. It means that
given the next state v′, d is a possible deviator;
if d ∈ dev(X ′), then:
IX
′

d = {a ∈ P | d_a};
for every a ∈ IX′d , KX′

d (a) = {d};
for every a /∈ IX′d , KX′

d (a) = {b ∈ P | ∃β ∈ Act s.t. Tab(v, (m[b/β])) = v′} \ {b ∈ P |
b_a}. Those are all the players that can be suspected by a, given the vertex v′, and
the absence of messages so far.

We write X ′ = upd((v, ∅),m, v′). Note that X ′ = ∅ whenever (and only when) Tab(v,m) = v′.

In a state (v,X) ∈ SEve where X 6= ∅, Eve’s actions consist of functions from dev(X) to
ActP that are compatible with players’ knowledge, that is: f : dev(X)→ ActP is an action
enabled in (v,X) if and only if (i) for all d ∈ dev(X), for each a ∈ P , f(d)(a) ∈ Allow(v, a),
(ii) for all d, d′ ∈ dev(X), for all a ∈ P , if a /∈ IXd ∪ IXd′ and KX

d (a) = KX
d′ (a) then

f(d)(a) = f(d′)(a);2 that is, if a player has not received any message so far but has the
same knowledge about the possible deviators in two situations, then Eve’s suggestion for
that player’s action must be the same in both situations. When Eve plays action f in (v,X),
the next state is ((v,X), f) ∈ SAdam, where Adam’s actions correspond to states of the game
that are compatible with (v,X) and f , that is states v′ such that there exists d ∈ dev(X)
and δ ∈ Act such that Tab(v, f(d)[d/δ]) = v′.

When Adam chooses the action v′ in ((v,X), f), the game progresses to Eve’s state (v′, X ′),
where:

d ∈ dev(X ′) if and only if d ∈ dev(X) and there exists δ ∈ Act such that Tab(v, f(d)[d/δ]) =
v′. It corresponds to a case where d was already a possible deviator and can continue
deviating so that the game goes to v′;
if d ∈ dev(X ′), then:
IX
′

d = IXd ∪ {a ∈ P | ∃b ∈ IXd s.t. b_a}. New players receive a message with the
deviator id;
for every a ∈ IX′d , KX′

d (a) = {d};

2 Note in particular that “KX
d (a) singleton” does not imply a ∈ IX

d , those are two distinguishable
situations: the message with the identity of the deviator may not have been received in the first case,
while it has been received in the second case.

MFCS 2019

9:10 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

v0, ∅
v0, ∅
α5

v1, ∅

v′1, X

Eve Adam

Eve

Eve

α5

v1

v′1

0

1

2

4

3

G1

X =


(2, {2}, {0 7→ {2, 3}, 1 7→ {2, 3, 4}, 3 7→ {2, 4}, 4 7→ {2}}),
(3, {3, 4}, {0 7→ {2, 3}, 1 7→ {2, 3, 4}, 2 7→ {3, 4}}),
(4, {0, 4}, {1 7→ {2, 3, 4}, 2 7→ {3, 4}, 3 7→ {2, 4}})


Figure 2 Part of the epistemic game corresponding to the game described in Figure 1 (with

graph G1). This does not represent the whole epistemic game and a lot of actions accessible in the
states we show here are not written. In situations (d, I,K) we describe K by the list of its values
for players a /∈ I, as for all a in I we have K(a) = {d} by definition.

for every a /∈ IX′d , KX′

d (a) = {b ∈ KX
d (a) | ∃β ∈ Act s.t. Tab(v, f(b)[b/β]) = v′} \ {c ∈

P | distG(c, a) ≤ max{distG(c, c′) | c′ ∈ IXc } + 1}. Those are the players that could
have deviated but for which player a would not have received the signal yet.

We write X ′ = upd((v,X), f, v′). Note that X ′ 6= ∅ and that dev(X ′) ⊆ dev(X).
We let R = (v0, X0) ·((v0, X0), f0) ·(v1, X1) . . . be an infinite play from (v0, X0) = (vinit, ∅).

We write visited(R) for v0v1 · · · ∈ V ω the sequence of vertices visited along R. We also define
dev(R) = ∅ if Xr = ∅ for every r, and dev(R) = limr→+∞ dev(Xr) otherwise. This is the set
of possible deviators along R.

4.1.1 Winning condition of Eve
A zero-sum game will be played on the game structure EGG , and the winning condition of
Eve will be given on the branching structure of the set of outcomes of a strategy for Eve,
and not individually on each outcome, as standardly in two-player zero-sum games. We
write sinit = (vinit, ∅) for the initial state. Let p = (pa)a∈P ∈ RP , and ζ be a strategy for Eve
in EGG ; it is said winning for p from sinit whenever payoff(visited(R)) = p, where R is the
unique outcome of ζ from sinit where Adam complies to Eve’s suggestions, and for every other
outcome R′ of ζ, for every d ∈ dev(R′), payoffd(visited(R′)) ≤ pd.

4.2 An example
In Figure 2 we present a part of the epistemic game corresponding to the game we described in
Figure 1 with graph G1. In state (v0, ∅), Eve can play the action profile α5 and make the game
go to ((v0, ∅), α5) where Adam can either play v1 = Tab(v0, α

5) (we say that Adam complies with
Eve) or choose a different state accessible from v0 and an action profile that consists in a single-
player deviation from α, for instance v′1 = Tab(v0, α

2βα2) = Tab(v0, α
3βα) = Tab(v0, α

4β).
If Adam chooses v′1, then three players are possible deviators: 2, 3 and 4. We write X for the
corresponding set of situations, and we already know that dev(X) = {2, 3, 4} .

If player 2 is the deviator, then no one (except himself) directly receives this information.
Player 0 knows that player 4 did not deviate (since 4_0 in G1), hence KX

2 (0) = {2, 3};
Player 1 has no information hence KX

2 (1) = {2, 3, 4}; Player 3 knows that he is not the
deviator but cannot know more, hence KX

2 (3) = {2, 4}; Finally, player 4 can deduce many
things: he knows he is not the deviator, and he saw that player 3 is not the deviator
(since 3_4 in G1), hence KX

2 (4) = {2}.

P. Bouyer and N. Thomasset 9:11

If player 3 is the deviator, then both players 3 and 4 get the information, hence IX3 = {3, 4}.
Other players can guess some things, for instance player 0 sees that player 4 cannot be
the deviator, this is why KX

3 (0) = {2, 3}. Etc.
The reasoning for player 4 is similar.

In the situation we have just described, when the game will proceed to v′1, then either player
0 knows that player 4 has deviated, or he knows that player 4 didn’t deviate but he suspects
both 2 and 3. On the other hand, player 4 will precisely know who deviated. And player 3
knows whether he deviated or not, but if he didn’t, then he cannot know whether it was
player 2 or player 4 who deviated. This knowledge is stored in situation X we have described,
and which is fully given in Figure 2.

Let us now illustrate how actions of Eve are defined in states with a non-empty set of
situations. Assume we are in Eve’s state (v0, X), with X as previously defined. From that
state, an action for Eve is a mapping f : {2, 3, 4} → ActP such that:

f(2)(0) = f(3)(0) f(2)(1) = f(3)(1) = f(4)(1) f(3)(2) = f(4)(2) f(2)(3) = f(4)(3)

The intuition behind these constraints is the following: Player 0 knows whether Player
4 deviated or not, but in the case she did not cannot know whether Player 2 or Player 3
deviated; Player 1 does not know who deviated, hence should play the same action in the
three cases (that she cannot distinguish); Player 2 does only know whether she deviated
hence in the case she did not cannot know whether Player 3 or Player 4 deviated; the case for
Player 3 is similar; finally Player 4 knows for sure who deviated: she saw if Player 3 deviated
and knows whether she herself deviated, thus can distinguish between the three cases.

4.3 Correctness of the epistemic game construction
When constructing the epistemic game, we mentioned that Eve’s states will allow to properly
define the undistinguishability relation for all the players. Towards that goal, we show by an
immediate induction the following result:

I Lemma 5. If (v,X) is an Eve’s state reachable from some (v0, ∅) in EGG , then for all
d ∈ dev(X):

for all a ∈ IXd , KX
d (a) = {d};

for all a /∈ IXd , KX
d (a) = dev(X) \ {d′ ∈ dev(X) | a ∈ IXd′ }.

In particular, for all d, d′ ∈ dev(X), for all a /∈ IXd ∪ IXd′ , KX
d (a) = KX

d′ (a).

So, either a player a will have received from a neighbour the identity of the deviator, or
she will not have received any deviator identity yet, and she will have a set of suspected
deviators that she will not be able to distinguish.

This allows to deduce the following correspondence between G and EGG :

I Proposition 6. There is a winning strategy for Eve in EGG for payoff p if and only if there
is a normed strategy profile in G, whose main outcome has payoff p and which is resistant to
single-player immediately visible and honest deviations.

The proof of correctness of the epistemic game then goes through the following steps,
which are detailed in [6]. First, given an Eve’s strategy ζ, we build a function Eζ associating
with a-histories (for every a ∈ P) in the original game Eve’s histories in the epistemic game
such that Eve plays according to ζ along Eζ .

Then we use this function to create a strategy profile Ω(ζ) for the original game where
the action prescribed by this profile to player a after history h corresponds in some sense to

MFCS 2019

9:12 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

ζ(Eζ(h))(d)(a), where d is a suspected deviator according to player a. This works because,
thanks to Lemma 5, we know that either player a knows who the deviator is, or player a has
a subset of suspect deviators and Eve’s suggestion for a (by construction of EGG) is the same
for all those possible deviators.

Finally we prove that if ζ is a winning strategy for Eve then Ω(ζ) is both normed and
resistant to single-player immediately visible and honest deviations in G.

To prove the converse proposition we build a function Λ associating with Eve’s histories
in the epistemic game families of single-player histories in the original game. We then use
this correspondence to build a function Υ associating with normed strategy profiles Eve’s
strategies in a natural way.

Finally we prove that if σ is normed and resistant to single-player immediately visible
honest deviations, then Υ(σ) is a winning strategy for Eve.

Gathering results of Theorem 4 and of this proposition, we get the following theorem:

I Theorem 7. There is a Nash equilibrium with payoff p in G if and only if there is a
winning strategy for Eve in EGG for payoff p.

I Remark 8. Note that all the results are constructive, hence if one can synthesize a winning
strategy for Eve in EGG , then one can synthesize a correponding Nash equilibrium in G.

5 Complexity analysis

We borrow all notations of previous sections. A rough analysis of the size of the epistemic
game EGG gives an exponential bound. We will give a more precise bound, pinpointing
the part with an exponential blowup. We write diam(G) for the diameter of G, that is
diam(G) = max{distG(a, b) | distG(a, b) < +∞}.

I Lemma 9. Assuming that Tab is given explicitely in G, the number of states in the reachable
part of EGG from sinit = (vinit, ∅) is bounded by

|SEve| ≤ |V |+ |V | · |Tab|2 · (diam(G) + 2) and |SAdam| ≤ |SEve| · |Act||P |
2

The number of edges is bounded by |SAdam|+ |SAdam| · |SEve|.
If |P | is assumed to be a constant of the problem, then the size of EGG is polynomial in the

size of G.

We will not detail algorithmics issues, but the winning condition of Eve in EGG is very
similar to the winning condition of Eve in the suspect-game construction of [4] (for Boolean
or ordered objectives), or in the deviator-game construction of [7] (for mean-payoff), or
in a closer context to the epistemic-game construction of [3]. Hence, when the size of the
epistemic game is polynomial, rather efficient algorithms can be designed to compute Nash
equilibria. For instance, in a setting where the size of EGG is polynomial, using a bottom-up
labelling algorithm similar to that of [2, Sect. 4.3], one obtains a polynomial space algorithm
for deciding the (constrained) existence of a Nash equilibrium when payoffs are Boolean
payoffs corresponding to parity conditions.

6 Conclusion

In this paper, we have studied multiplayer infinite-duration games over graphs, and focused on
games where players can communicate with neighbours, given by a directed graph. We have
shown that a very simple communication mechanism was sufficient to describe Nash equilibria.

P. Bouyer and N. Thomasset 9:13

This mechanism is sort of epidemic, in that if a player deviates, then his neighbours will see it
and transmit the information to their own neighbours; the information then propagates along
the communication graph. This framework encompasses two standard existing frameworks,
one where the actions are invisible (represented with a graph with no edges), and one where
all actions are visible (represented by the complete graph). We know from previous works that
in both frameworks, one can compute Nash equilibria for many kinds of payoff functions. In
this paper, we also show that we can compute Nash equilibria in this generalized framework,
by providing a reduction to a two-player game, the so-called epistemic game construction.
Winning condition in this two-player game is very similar to winning conditions encountered
in the past, yielding algorithmic solution to the computation of Nash equilibria. We have
also analyzed the size of the abstraction, which is polynomial when the number of players is
considered as a constant of the problem.

The current framework assumes messages can be appended to actions by players, allowing
a rich communication between players. The original framework of [14] did not allow additional
messages, but did encode identities of deviators by sequences of actions. This was possible
in [14] since games were repeated matrix games, but it is harder to see how we could extend
this approach and how we could encode identities of players with actions, taking into account
the graph structure. For instance, due to the graph, having too long identifiers might be
prohibitive to transmit in a short delay the identity of the deviator. Nevertheless, that could
be interesting to see if something can be done in this framework.

References
1 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time Temporal Logic.

Journal of the ACM, 49:672–713, 2002. doi:10.1145/585265.585270.
2 Patricia Bouyer. Games on graphs with a public signal monitoring. Research report, arXiv,

2017. arXiv:1710.07163.
3 Patricia Bouyer. Games on graphs with a public signal monitoring. In Proc. 21st International

Conference on Foundations of Software Science and Computation Structures (FoSSaCS’18),
volume 10803 of Lecture Notes in Computer Science, pages 530–547. Springer, 2018.

4 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash
Equilibria in Concurrent Games. Logical Methods in Computer Science, 11(2:9), 2015.

5 Patricia Bouyer, Nicolas Markey, and Daniel Stan. Mixed Nash Equilibria in Concurrent
Games. In Proc. 33rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’14), volume 29 of LIPIcs, pages 351–363. Leibniz-Zentrum für
Informatik, 2014.

6 Patricia Bouyer and Nathan Thomasset. Nash equilibria in games over graphs equipped with
a communication mechanism. Research report, arXiv, 2019. arXiv:1906.07753.

7 Romain Brenguier. Robust Equilibria in Mean-Payoff Games. In Proc. 19th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS’16),
volume 9634 of Lecture Notes in Computer Science, pages 217–233. Springer, 2016.

8 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. Games with Secure
Equilibria. Theoretical Computer Science, 365(1-2):67–82, 2006.

9 Krishnendu Chatterjee, Rupak Majumdar, and Marcin Jurdziński. On Nash Equilibria in
Stochastic Games. In Proc. 18th International Workshop on Computer Science Logic (CSL’04),
volume 3210 of Lecture Notes in Computer Science, pages 26–40. Springer, 2004.

10 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
Complexity of Rational Synthesis. In Proc. 43rd International Colloquium on Automata,
Languages and Programming (ICALP’16), volume 55 of LIPIcs, pages 121:1–121:15. Leibniz-
Zentrum für Informatik, 2016.

MFCS 2019

https://doi.org/10.1145/585265.585270
http://arxiv.org/abs/1710.07163
http://arxiv.org/abs/1906.07753

9:14 Nash Equilibria in Games over Graphs Equipped with a Communication Mechanism

11 Rodica Condurache, Youssouf Oualhadj, and Nicolas Troquard. The Complexity of Rational
Synthesis for Concurrent Games. In Proc. 29th International Conference on Concurrency
Theory (CONCUR’18), volume 118 of LIPIcs, pages 38:1–38:15. Leibniz-Zentrum für Informatik,
2018.

12 Thomas A. Henzinger. Games in system design and verification. In Proc. 10th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK’05), pages 1–4, 2005.

13 John F. Nash. Equilibrium Points in n-Person Games. Proceedings of the National Academy
of Sciences of the United States of America, 36(1):48–49, 1950.

14 Jérôme Renault and Tristant Tomala. Repeated Proximity Games. International Journal of
Game Theory, 27(4):539–559, 1998.

15 Wolfgang Thomas. Infinite Games and Verification. In Proc. 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer Science,
pages 58–64. Springer, 2002. Invited Tutorial.

16 Michael Ummels. Rational Behaviour and Strategy Construction in Infinite Multiplayer Games.
In Proc. 26th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages 212–223.
Springer, 2006.

17 Michael Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games. In Proc.
11th International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS’08), volume 4962 of Lecture Notes in Computer Science, pages 20–34. Springer,
2008.

18 Michael Ummels and Dominik Wojtczak. The Complexity of Nash Equilibria in Limit-Average
Games. In Proc. 22nd International Conference on Concurrency Theory (CONCUR’11),
volume 6901 of Lecture Notes in Computer Science, pages 482–496. Springer, 2011.

19 Michael Ummels and Dominik Wojtczak. The Complexity of Nash Equilibria in Stochastic
Multiplayer Games. Logical Methods in Computer Science, 7(3), 2011.

Parity Games: Zielonka’s Algorithm in
Quasi-Polynomial Time
Paweł Parys
Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm
solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms
were introduced; none of them is easy to understand. Moreover, it turns out that in practice
they operate very slowly. On the other side there is Zielonka’s recursive algorithm, which is very
simple, exponential in the worst case, and the fastest in practice. We combine these two approaches:
we propose a small modification of Zielonka’s algorithm, which ensures that the running time is
at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in
quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to
an algorithm that shares the good performance of Zielonka’s algorithm on typical inputs, while
reducing the worst-case complexity on difficult inputs.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Parity games, Zielonka’s algorithm, quasi-polynomial time

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.10

Funding Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

Acknowledgements The author would like to thank Wojciech Czerwiński, Laure Daviaud, Marcin
Jurdziński, Eryk Kopczyński, Ranko Lazić, Karoliina Lehtinen, and Igor Walukiewicz for all the
discussions that preceded writing of this paper, and the anonymous reviewers of all versions of this
paper for their valuable comments.

1 Introduction

The fundamental role of parity games in automata theory and logic, and their applications to
verification and synthesis is doubtless, hence it is pointless to elaborate on their importance.
Let us only mention that the algorithmic problem of finding the winner in parity games
is polynomial-time equivalent to the emptiness problem for nondeterministic automata on
infinite trees with parity acceptance conditions, and to the model-checking problem for
modal µ-calculus [10]. It also lies at the heart of algorithmic solutions to Church’s synthesis
problem [29]. The impact of parity games reaches relatively far areas of computer science,
like Markov decision processes [11] and linear programming [15].

It is a long-standing open question whether parity games can be solved in polynomial
time. Several results show that they belong to some classes “slightly above” polynomial
time. Namely, deciding the winner of parity games was shown to be in NP ∩ coNP [10],
and in UP ∩ coUP [18], while computing winning strategies is in PLS, PPAD, and even in
their subclass CLS [9]. The same holds for other kinds of games: mean-payoff games [36],
discounted games, and simple stochastic games [7]; parity games, however, are the easiest
among them, in the sense that there are polynomial-time reductions from parity games to
the other kinds of games [18, 36], but no reductions in the opposite direction are known.

Describing the algorithmic side of solving parity games, one has to start with Zielonka’s
algorithm [35], being an adaptation of an approach proposed by McNaughton to solve Muller

© Paweł Parys;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7247-1408
mailto:parys@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

games [28]. This algorithm consists of a single recursive procedure, being simple and very
natural; one may say that it computes who wins the game “directly from the definition”.
Its running time is exponential in the worst case [14, 1, 16], but on many typical inputs it
works much faster. For over two decades researchers were trying to cutback the complexity
of solving parity games, which resulted in a series of algorithms, all of which were either
exponential [5, 31, 19, 34, 30, 2], or mildly subexponential [3, 21]. The next era came
unexpectedly in 2017 with a breakthrough result of Calude, Jain, Khoussainov, Li, and
Stephan [6] (see also [17, 23]), who designed an algorithm working in quasi-polynomial
time. This invoked a series of quasi-polynomial-time algorithms, which appeared soon
after [20, 13, 24]. These algorithms are quite involved (at least compared to the simple
recursive algorithm of Zielonka), and it is not so trivial to understand them.

The four quasi-polynomial-time algorithms [6, 20, 13, 24], at first glance being quite
different, actually proceed along a similar line (as observed by Bojańczyk and Czerwiński [4]
and Czerwiński et al. [8]). Namely, out of all the four algorithms one can extract a construction
of a safety automaton (nondeterministic in the case of Lehtinen [24], and deterministic in
the other algorithms), which accepts all words encoding plays that are decisively won by
one of the players (more precisely: plays consistent with some positional winning strategy),
and rejects all words encoding plays in which the player loses (for plays that are won by the
player, but not decisively, the automaton can behave arbitrarily). This automaton does not
depend at all on the game graph; it depends only on its size. Having an automaton with
the above properties, it is not difficult to convert the original parity game into an equivalent
safety game (by taking a “product” of the parity game and the automaton), which can be
solved easily – and all the four algorithms actually proceed this way, even if it is not stated
explicitly that such an automaton is constructed. As shown in Czerwiński et al. [8], all
automata having the aforementioned properties have to look very similar: their states have to
be leaves of some so-called universal tree; particular papers propose different constructions of
these trees, and of the resulting automata (of quasi-polynomial size). Moreover, Czerwiński
et al. [8] show a quasi-polynomial lower bound for the size of such an automaton.

In this paper we propose a novel quasi-polynomial-time algorithm solving parity games.
It is obtained by applying a small modification to Zielonka’s recursive algorithm; this
modification guarantees that the worst-case running time of this algorithm, being originally
exponential, becomes quasi-polynomial. The simplicity of Zielonka’s algorithm remains in
place; we avoid complicated considerations accompanying all the previous quasi-polynomial-
time algorithms. Another point is that our algorithm exploits the structure of parity games
in a rather different way from the four previous quasi-polynomial-time algorithms. Indeed,
the other algorithms construct automata that are completely independent from a particular
game graph given on input – they work in exactly the same way for every game graph of a
considered size. The behaviour of our algorithm, in contrast, is highly driven by an analysis
of the game graph given on input. In particular, although our algorithm is not faster than
quasi-polynomial, it does not fit to the “separator approach” in which a quasi-polynomial
lower bound of Czerwiński et al. [8] exists.

The running time of our algorithm is quasi-polynomial, and the space complexity is
quadratic (more precisely, O(n · h), where n is the number of nodes in the game graph, and
h is the maximal priority appearing there).

We remark that Lehtinen, Schewe, and Wojtczak in their recent follow up paper [25]
suggested a variation of our algorithm that improves the complexity to meet the state-of-
the-art complexity of broadly 2O((log n)(log h)), while providing polynomial bounds when the
number of priorities is logarithmic.

P. Parys 10:3

Let us also mention the practical side of the world. It turns out that parity games
are one of the areas where theory does not need to meet practice: the quasi-polynomial-
time algorithms, although fastest in theory, are actually the slowest. The most exhaustive
comparison of existing algorithms was performed by Tom van Dijk [32]. In his Oink tool he
has implemented several algorithms, with different optimizations. Then, he has evaluated
them on a benchmark of Keiren [22], containing multiple parity games obtained from model
checking and equivalence checking tasks, as well as on different classes of random games.
It turns out that the classic recursive algorithm of Zielonka [35] performs the best, ex
aequo with the recent priority promotion algorithm [2]. After that, we have the strategy
improvement algorithm [34, 12], being a few times slower. Far later, we have the small
progress measure algorithm [19]. At the very end, with a lot of timeouts, we have the
quasi-polynomial-time algorithm of Fearnley, Jain, Schewe, Stephan, and Wojtczak [13]. The
other quasi-polynomial-time algorithms were not implemented due to excessive memory
usage.

While developing the current algorithm, we hoped that it will share the good performance
with Zielonka’s algorithm, on which it is based. Unfortunately, preliminary experiments have
shown that this is not necessarily the case. It turns out that

on random games our algorithm performs similarly to the slowest algorithms implemented
in Oink;
on crafted game families that are difficult for Zielonka’s algorithm, our algorithm is indeed
faster from it, but not dramatically faster;
the only think that is optimistic is that on games with a very low number of priorities
our algorithm performs similarly to the fastest algorithms.

Because the empirical results of a direct implementation of the algorithm are completely
unsatisfactory, we do not include a full description of our experiments. Instead, we leave an
efficient implementation for a future work. Beside of the discouraging outcomes, we believe
that our idea, via further optimizations, can lead to an algorithm that is both fast in practice
and has a good worst-case complexity (see the concluding section for more comments).

2 Preliminaries

A parity game is played on a game graph between two players, called Even or Odd (shortened
sometimes to E and O). A game graph consists of

a directed graph G, where we require that every node has at least one successor, and
where there are no self-loops (i.e., edges from a node to itself);
a labeling of every node v of G by a positive natural number π(v), called its priority;
a partition of nodes of G between nodes owned by Even and nodes owned by Odd.

An infinite path in G is called a play, while a finite path in G is called a partial play. The
game starts in a designated starting node. Then, the player to which the current node
belongs, selects a successor of this node, and the game continues there. In effect, after a
finite time a partial play is obtained, and at the end, after infinite time, this results in a
play. We say that a play v1, v2, . . . is winning for Even if lim supi→∞ π(vi) is even (i.e., if
the maximal priority seen infinitely often is even). Conversely, the play is winning for Odd if
lim supi→∞ π(vi) is odd.

A strategy of player P ∈ {Even,Odd} is a function that maps every partial play that
ends in a node of P to some its successor. Such a function says how P will play in every
situation of the game (depending on the history of that game). When a (partial) play π
follows a strategy σ in every step in which player P is deciding, we say that π agrees with σ.

MFCS 2019

10:4 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

A strategy σ is winning for P from a node v if every play that starts in v and agrees with σ
is winning for P . While saying “player P wins from a node v” we usually mean that P has a
winning strategy from v. Let WinP (G) be the set of nodes of G from which P wins; it is
called the winning region of P . By Martin’s theorem [27] we know that parity games are
determined: in every game graph G, and for every node v of G either Even wins from v, or
Odd wins from v. In effect, WinE(G) and WinO(G) form a partition of the node set of G.

During the analysis, we also consider games with other winning conditions. A winning
condition is a set of plays. The winning conditions of Even and Odd considered in parity
games are denoted LimsupEven and LimsupOdd, respectively. Beside of that, for every set
S of nodes, let Safety(S) be the set of plays that use only nodes from S.

A dominion for Even is a set S of nodes such that from every v ∈ S Even wins the game
with the condition LimsupEven ∩ Safety(S); in other words, from every node of S he can
win the parity game without leaving S. Likewise, a dominion for Odd is a set S of nodes
such that from every v ∈ S Odd wins the game with the condition LimsupOdd ∩ Safety(S).
Notice that the whole WinP (G) is a dominion for P (where P ∈ {Even,Odd}). Indeed, if
Even is going to win from some v ∈WinE(G), the play cannot leave WinE(G) and enter a
node v′ ∈WinO(G), as then Odd could use his winning strategy from v′ and win the whole
game; here we use the fact that all suffixes of a play in LimsupEven are also in LimsupEven.
For P = Odd the situation is symmetric.

3 Standard Zielonka’s Algorithm

Before presenting our algorithm, we recall the standard Zielonka’s algorithm, as a reference.
For a set of nodes N in a game graph G, and for a player P ∈ {Even,Odd}, we define

the attractor of N , denoted AtrP (G,N), to be the set of nodes of G from which P can force
to reach a node from N . In other words, AtrP (G,N) is the smallest set such that

N ⊆ AtrP (G,N),
if v is a node of P and some its successor is in AtrP (G,N), then v ∈ AtrP (G,N), and
if v is a node of the opponent of P and all its successors are in AtrP (G,N), then
v ∈ AtrP (G,N).

Clearly AtrP (G,N) can be computed in time proportional to the size of G.

Algorithm 1 Standard Zielonka’s Algorithm.

1: procedure SolveE(G, h) . h is an even upper bound for priorities in G
2: begin
3: do begin
4: Nh = {v ∈ nodes(G) | π(v) = h}; . nodes with the highest priority
5: H = G \AtrE(G,Nh); . new game: reaching priority h → win
6: WO = SolveO(H,h− 1); . in WO we lose before reaching priority h
7: G = G \AtrO(G,WO); . possibly Nh ∩AtrO(G,WO) 6= ∅
8: end while WO 6= ∅;
9: return nodes(G);
10: end

Algorithm 1 is the standard Zielonka’s algorithm. The procedure SolveE(G, h) returns
WinE(G), the winning region of Even, if h is an even number that is greater or equal than
all priorities appearing in G. A procedure SolveO(G, h) is also needed; it is identical to
SolveE(G, h) except that the roles of E and O are swapped; it returns WinO(G), the

P. Parys 10:5

WinE(G) WinO(G)

h
h
h
h

h

h

h

h

h

h

h
h

h

h

W 0
O

W 1
OW 2

OW 3
O

A2
A3 A1AE

Figure 1 The structure of winning regions in a parity game.

winning region of Odd. While writing G \ S, we mean the game obtained by removing from
G all nodes in S, and all edges leading to nodes in S or starting from nodes in S. We use
this construct only when S is an attractor; in such a case, if all successors of a node v are
removed, then v is also removed (i.e., if all successors of v belong to an attractor, then v
belongs to the attractor as well). In effect G \ S is a valid game graph (every its node has at
least one successor).

We remark that the algorithm is presented in a slightly different way than usually.
Namely, we use here a loop, while the usual presentation does not use a loop but rather
calls recursively SolveE(G \AtrO(G,WO), h) at the end of the procedure. This is only a
superficial difference in the presentation, but is useful while modifying the algorithm in the
next section.

The algorithm can be understood while looking at Figure 1. Let h be the highest priority
used in G; assume that it is even. The game graph G can be divided into two parts: WinE(G)
and WinO(G). In WinE(G) we can distinguish the attractor of nodes with priority h (denoted
AE). Odd either loses inside WinE(G) \AE , or enters AE , which causes that a node with
priority h is seen, and then the game continues in some node of WinE(G). The winning
region of Odd, WinO(G), can be divided into multiple parts. We have a part W 0

O, where
Odd can win without seeing a node of priority h. Then, we have nodes of priority h from
which Even is forced to enter W 0

O, and their attractor, denoted A1. Then, we have a part
W 1

O, where Odd can ensure that the play is either winning for him inside W 1
O or enters A1;

in other words, from nodes of W 1
O Odd can win while seeing h at most once. We also have

parts W i
O for larger i, and corresponding attractors Ai.

While running the algorithm, this partition of G is not known, and has to be discovered.
To this end, the algorithm assumes first (in the game H) that all nodes of priority h are
winning for Even. The first call to SolveO(H,h − 1) returns the set W 0

O of nodes where
Odd wins without seeing a node of priority h. We then remove them from the game, together
with the attractor A1. In the next step, SolveO(H,h− 1) returns the set W 1

O, and so on.
At the end the whole WinO(G) becomes removed, and the procedure returns WinE(G).

4 Quasi-Polynomial-Time Algorithm

We now present a modification to Algorithm 1 that results in obtaining quasi-polynomial
running time, in the worst case.

The modification can be understood while looking again at Figure 1. The key observation
is that, while WinO(G) is of size at most n (where n is the number of nodes in G), then
most of its parts W i

O are smaller. Namely, most of them have to be of size at most n
2 , and

only one of them can be larger than n
2 . We use this observation, and while looking for W i

O,
we search for a winning region (for a dominion) of size at most n

2 . Usually this is enough;

MFCS 2019

10:6 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

only once it is not enough: one W i
O can be larger than n

2 and it will not be found if we only
look for a set of size at most n

2 . But when the algorithm finds no set of size at most n
2 , we

can once search for W i
O of an arbitrary size. After that, we know that all following sets W i

O

are again of size at most n
2 . While going recursively, we notice that every W i

O can be further
subdivided in a similar way, while splitting on the priority h− 2. If |W i

O| ≤ n
2 , we again have

the property that most of the parts of W i
O are of size at most n

4 , and only one of them can
be larger than n

4 .

To exploit this observation, in the recursive calls we pass two precision parameters, pE

and pO (one for every of the players), saying that we search for winning sets of size at most
pE for Even, and at most pO for Odd. The modified procedure is presented as Algorithm 2.
Again, one also needs a procedure SolveO, which is obtained from SolveE by literally
changing every E to O and vice versa.

Algorithm 2 Quasi-Polynomial-Time Algorithm.

1: procedure SolveE(G, h, pE , pO) . pE , pO are new “precision” parameters
2: begin
3: if G = ∅ ∨ pE ≤ 1 then
4: return ∅; . we assume that there are no self-loops in G
5: do begin
6: Nh = {v ∈ nodes(G) | π(v) = h};
7: H = G \AtrE(G,Nh);
8: WO = SolveO(H,h− 1, bpO/2c, pE); . precision decreased
9: G = G \AtrO(G,WO);
10: end while WO 6= ∅;
11: Nh = {v ∈ nodes(G) | π(v) = h};
12: H = G \AtrE(G,Nh);
13: WO = SolveO(H,h− 1, pO, pE); . we try once with the full precision
14: G = G \AtrO(G,WO);
15: while WO 6= ∅ do begin
16: Nh = {v ∈ nodes(G) | π(v) = h};
17: H = G \AtrE(G,Nh);
18: WO = SolveO(H,h− 1, bpO/2c, pE); . again, precision decreased
19: G = G \AtrO(G,WO);
20: end;
21: return nodes(G);
22: end

We start the algorithm with pE = pO = n, where n is the number of nodes in G. In the
procedure we have now, in a sense, three copies of the previous procedure, corresponding to
three stages. In the first stage, in lines 5-10, we look for sets W i

O of size at most bpO

2 c. If the
returned set is empty, this may mean that the next W i

O either is empty, or is of size greater
than bpO

2 c. Then, in lines 11-14, we once search for a set W i
O of size at most pO (knowing

that if it is nonempty, then its size is greater than bpO

2 c). Finally, in the loop in lines 15-20,
we again look for sets W i

O of size at most bpO

2 c (because we have already found a set of size
greater than bpO

2 c, all the remaining sets have size at most bpO

2 c).

P. Parys 10:7

5 Complexity Analysis

Let us analyze the complexity of our algorithm.
First, we observe that the space complexity is O(n · h), where n is the number of nodes,

and h is the maximal priority. Indeed, the depth of the recursion is at most h, and on every
step we only need to remember some sets of nodes.

We now come to the running time. As it is anyway worse than the running time of the
other quasi-polynomial-time algorithms, we do not aim in proving a very tight upper bound;
we only prove that the running time is quasi-polynomial.

LetR(h, l) be the number of (nontrivial) executions of the SolveE and SolveO procedures
performed during one call to SolveE(G, h, pE , pO) with blog pEc+ blog pOc = l, and with G
having at most n nodes (where n is fixed). We only count here nontrivial executions, that is,
such that do not leave the procedure in line 4. Clearly R(0, l) = R(h, 0) = 0. For h, l ≥ 1 it
holds that

R(h, l) ≤ 1 + n ·R(h− 1, l − 1) +R(h− 1, l) . (1)

Indeed, in SolveE after every call to SolveO we remove at least one node from G, with the
exception of two such calls: the last call in line 8, and the last call ever. In effect, in lines 8
and 18 we have at most n calls to SolveO with decreased precision (plus, potentially, the
(n+ 1)-th call with empty G, which is not included in R(h, l)), and in line 13 we have one
call to SolveO with full precision. Notice that blog pOc (hence also l) decreases by 1 in the
decreased-precision call.

Using Inequality (1) we now prove by induction that R(h, l) ≤ nl ·
(

h+l
l

)
− 1. For h = 0

and for l = 0 the inequality holds. For h, l ≥ 1 we have that

R(h, l) ≤ 1 + n ·R(h− 1, l − 1) +R(h− 1, l)

≤ 1 + n ·
(
nl−1 ·

(
h− 1 + l − 1

l − 1

)
− 1

)
+ nl ·

(
h− 1 + l

l

)
− 1

≤ nl ·
((

h− 1 + l

l − 1

)
+

(
h− 1 + l

l

))
− 1

= nl ·
(
h+ l

l

)
− 1 .

In effect, R(h, l) ≤ nl · (h+ l)l. Recalling that we start with l = 2 · blognc, we see that this
number is quasi-polynomial in n and h. This concludes the proof, since obviously a single
execution of the SolveE procedure (not counting the running time of recursive calls) costs
polynomial time.

6 Correctness

We now justify correctness of the algorithm. This amounts to proving the following lemma.

I Lemma 6.1. Procedure SolveE(G, h, pE , pO) returns a set WE such that for every S ⊆
nodes(G),

if S is a dominion for Even, and |S| ≤ pE, then S ⊆WE, and
if S is a dominion for Odd, and |S| ≤ pO, then S ∩WE = ∅.

Notice that in G there may be nodes that do not belong to any dominion smaller than
pE or pO; for such nodes we do not specify whether or not they are contained in WE .

MFCS 2019

10:8 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

Recall that WinE(G) is a dominion for Even, and WinO(G) is a dominion for Odd. Thus,
using Lemma 6.1 we can conclude that for pE = pO = n the procedure returns WinE(G),
the winning region of Even.

One may wonder why we use dominions in the statement of the lemma, instead of simply
saying that if |WinE(G)| ≤ pE , then WinE(G) ⊆WE . Such a simplified statement, however,
is not suitable for induction. Indeed, while switching from the game G to the game H
(created in lines 7, 12, 17) the winning regions of Even may increase dramatically, because in
H Odd is not allowed to visit any node with priority h. Nevertheless, the winning region of
Even in G, and any dominion of Even in G, remains a dominion in H (when restricted to
nodes of H).

Before proving Lemma 6.1, let us observe two facts about dominions. In their statements
P ∈ {Even,Odd} is one of the players, and P is his opponent.

I Fact 6.2. If S is a dominion for P in a game G, and X is a set of nodes of G, then
S \AtrP (G,X) is a dominion for P in G \AtrP (G,X).

Proof. Denote S′ = S \ AtrP (G,X) and G′ = G \ AtrP (G,X). By definition, from
every node v ∈ S player P wins with the condition LimsupP ∩ Safety(S) in G, using
some winning strategy. Observe that using the same strategy he wins with the condition
LimsupP ∩ Safety(S′) in G′ (assuming that the starting node v is in S′). The strategy
remains valid in G′, because every node u of player P that remains in G′ has the same
successors in G′ as in G (conversely: if some of successors of u belongs to AtrP (G,X), then
u also belongs to AtrP (G,X)). J

I Fact 6.3. If S is a dominion for P in a game G, and X is a set of nodes of G such
that S ∩ X = ∅, then S is a dominion for P in G \ AtrP (G,X) (in particular S ⊆
nodes(G \AtrP (G,X))).

Proof. Denote G′ = G \ AtrP (G,X). Suppose that there is some v ∈ S ∩ AtrP (G,X).
On the one hand, P can guarantee that, while starting from v, the play stays in S (by the
definition of a dominion); on the other hand, P can force to reach the set X (by the definition
of an attractor), which is disjoint from S. Thus such a node v could not exist, we have
S ⊆ nodes(G′).

It remains to observe that from every node v ∈ S player P wins with the condition
LimsupP ∩Safety(S) also in the restricted game G′, using the same strategy as in G. Indeed,
a play in G following this strategy never leaves S, and the whole S remains unchanged in
G′. J

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. We prove the lemma by induction on h. Consider some execution
of the procedure. By Gi, N i

h, H
i,W i

O we denote values of the variables G,Nh, H,WO just
after the i-th call to SolveO in one of the lines 8, 13, 18; in lines 9, 14, 19 we create Gi+1

out of Gi and W i
O. In particular G1 equals the original game G, and at the end we return

nodes(Gm+1), where m is the number of calls to SolveO.
Concentrate on the first item of the lemma: fix an Even’s dominion S in G (i.e., in G1)

such that |S| ≤ pE . Assume that S 6= ∅ (for S = ∅ there is nothing to prove). Notice first
that a nonempty dominion has at least two nodes (by assumption there are no self-loops
in G, hence every play has to visit at least two nodes), thus, because S ⊆ nodes(G) and
|S| ≤ pE , we have that G 6= ∅ and pE > 1. It means that the procedure does not return in
line 4. We thus need to prove that S ⊆ nodes(Gm+1).

P. Parys 10:9

We actually prove that S is a dominion for Even in Gi for every i ∈ {1, . . . ,m + 1},
meaning in particular that S ⊆ nodes(Gi). This is shown by an internal induction on i. The
base case (i = 1) holds by assumption. For the induction step, consider some i ∈ {1, . . . ,m}.
By the induction assumption S is a dominion for Even in Gi, and we need to prove that it is
a dominion for Even in Gi+1.

Consider Si = S ∩ nodes(Hi). Because Si = S \AtrE(Gi, N i
h), by Fact 6.2 the set Si

is a dominion for Even in Hi = Gi \AtrE(Gi, N i
h), and obviously |Si| ≤ |S| ≤ pE . By the

assumption of the external induction (which can be applied to SolveO, by symmetry) it
follows that Si ∩W i

O = ∅, so also S ∩W i
O = ∅ (because W i

O contains only nodes of Gi, while
S \ Si contains no nodes of Gi). Thus, by Fact 6.3 the set S is a dominion for Even in
Gi+1 = Gi \AtrO(Gi,W i

O). This finishes the proof of the first item.
Now we prove the second item of the lemma. To this end, fix some Odd’s dominion S

in G such that |S| ≤ pO. If pE ≤ 1, we return WE = ∅ (line 4), so clearly S ∩WE = ∅.
The interesting case is when pE ≥ 2. Denote Si = S ∩ nodes(Gi) for all i ∈ {1, . . . ,m+ 1};
we first prove that Si is a dominion for Odd in Gi. This is shown by induction on i. The
base case of i = 1 holds by assumption, because G1 = G and S1 = S. For the induction
step, assume that Si is a dominion for Odd in Gi, for some i ∈ {1, . . . ,m}. By definition
Gi+1 = Gi \AtrO(Gi,W i

O) and Si+1 = Si \AtrO(Gi,W i
O), so Si+1 is a dominion for Odd

in Gi+1 by Fact 6.2, which finishes the inductive proof.
For i ∈ {1, . . . ,m}, let Zi be the set of nodes (in Si \N i

h) from which Odd wins with the
condition LimsupOdd ∩ Safety(Si \N i

h) in Gi (that is, where Odd can win without seeing
priority h – the highest even priority). Let us observe that if Si 6= ∅ then Zi 6= ∅ (♣). Indeed,
suppose to the contrary that Zi = ∅, and consider an Odd’s strategy that allows him to
win with the condition LimsupOdd ∩ Safety(Si) in Gi, from some node v0 ∈ Si. Because
v0 6∈ Zi, this strategy in not winning for the condition LimsupOdd ∩ Safety(Si \ N i

h), so
Even, while playing against this strategy, can reach a node v1 in N i

h (as he cannot violate
the parity condition nor leave Si). For the same reason, because v1 6∈ Zi, Even can continue
and reach a node v2 in N i

h. Repeating this forever, Even gets priority h (which is even and
is the highest priority) infinitely many times, contradicting the fact that the strategy was
winning for Odd.

Observe also that from nodes of Zi Odd can actually win with the condition LimsupOdd∩
Safety(Zi) in Gi, using the strategy that allows him to win with the condition LimsupOdd∩
Safety(Si \N i

h). Indeed, if a play following this strategy enters some node v, then from this
node v Odd can still win with the condition LimsupOdd∩Safety(Si \N i

h), which means that
these nodes belongs to Zi. It follows that Zi is a dominion for Odd in Gi. Moreover, because
Zi∩N i

h = ∅, from Fact 6.3 we have that Zi is a dominion for Odd in Hi = Gi\AtrE(Gi, N i
h).

Let k be the number of the call to SolveO that is performed in line 13 (calls number
1, . . . , k − 1 are performed in line 8, and calls number k + 1, . . . ,m are performed in line 18).
Recall that W i

O is the set returned by a call to SolveO(Hi, h− 1, pi
O, pE), where pk

O = pO,
and pi

O = bpO

2 c if i 6= k. From the assumption of the external induction, if |Zi| ≤ bpO

2 c or if
i = k (since Zi ⊆ Si ⊆ S and |S| ≤ pO, clearly |Zi| ≤ pO), we obtain that Zi ⊆W i

O (♠).
We now prove that |Sk+1| ≤ bpO

2 c. This clearly holds if Sk−1 = ∅, because Sk+1 ⊆
Sk ⊆ Sk−1. Suppose thus that Sk−1 6= ∅. Then Zk−1 6= ∅, by (♣). On the other
hand, W k−1

O = ∅, because we are just about to leave the loop in lines 5-10 (the k-th
call to SolveO is in line 13). By (♠), if |Zk−1| ≤ bpO

2 c, then Zk−1 ⊆ W k−1
O , which

does not hold in our case. Thus |Zk−1| > bpO

2 c. Because W k−1
O = ∅, we simply have

Gk = Gk−1, and Sk = Sk−1, and Zk = Zk−1. Using (♠) for i = k, we obtain that
Zk ⊆ W k

O, and because Sk+1 = Sk \AtrO(Gk,W k
O) ⊆ Sk \W k

O ⊆ Sk \ Zk we obtain that
|Sk+1| ≤ |Sk| − |Zk| ≤ pO − (bpO

2 c+ 1) ≤ bpO

2 c, as initially claimed.

MFCS 2019

10:10 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

If k = m, we have Zm ⊆Wm
O by (♠). If k + 1 ≤ m, we have Sm ⊆ Sk+1 (our procedure

only removes nodes from the game) and Zm ⊆ Sm, so |Zm| ≤ bpO

2 c by the above paragraph,
and also Zm ⊆ Wm

O by (♠). Because after the m-th call to SolveO the procedure ends,
we have Wm

O = ∅, so also Zm = ∅, and thus Sm = ∅ by (♣). We have Sm+1 ⊆ Sm, so
Sm+1 = S ∩ nodes(Gm+1) = ∅. This is exactly the conclusion of the lemma, since the set
returned by the procedure is nodes(Gm+1). J

7 Conclusions

To the list of the four existing quasi-polynomial-time algorithms solving parity games, we
have added a new one. It uses a rather different approach: it analyses recursively the game
graph, like Zielonka’s algorithm.

Notice that the number of recursive calls in our algorithm may be smaller than in the
original Zielonka’s algorithm, because of the precision parameters, but it may also be larger.
Indeed, while SolveE in the original Zielonka’s algorithm stops after the first time when a
recursive call returns ∅, in our algorithm the procedure stops after the second time when a
recursive call returns ∅.

The algorithm, as is, turns out not to be very efficient in practice. Beside of that, we
believe that it can serve as a good starting point for a more optimized algorithm. Over the
years, some optimizations to Zielonka’s algorithm were proposed. For example, Liu, Duan,
and Tian [26] replace the loop guard WO = ∅ by WO = AtrO(G,WO) (which ensures that
WO will be empty in the next iteration of the loop). Verver [33] proposes to check whether
AtrE(G,Nh) contains all nodes of priority h− 1, and if so, to extend Nh by nodes of the
next highest Even priority (i.e., h− 2). It seems that these optimizations can be applied to
our algorithm as well.

A straightforward optimization is to decrease pO and pE to |G| at the beginning of every
recursive call.

Another idea is to extend the recursive procedure so that it will return also a Boolean
value saying whether the returned set surely equals the whole winning region (i.e., whether
the precision parameters have not restricted anything). If while making the recursive call
with smaller precision (line 8) the answer is positive, but the returned set WO is empty, we
can immediately stop the procedure, without making the recursive call with the full precision
(line 13).

One can also observe that the call to SolveO in line 13 (with the full precision) gets the
same subgame H as the last call to SolveO in line 8 (with decreased precision). A very
rough idea is to make some use of the computations performed by the decreased-precision
call during the full-precision call.

We leave implementation and evaluation of the above (and potentially some other)
optimizations for a future work.

References

1 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Robust Exponential Worst
Cases for Divide-et-Impera Algorithms for Parity Games. In Patricia Bouyer, Andrea Orlandini,
and Pierluigi San Pietro, editors, Proceedings Eighth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20-22 September
2017., volume 256 of EPTCS, pages 121–135, 2017. doi:10.4204/EPTCS.256.9.

https://doi.org/10.4204/EPTCS.256.9

P. Parys 10:11

2 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Solving parity games via
priority promotion. Formal Methods in System Design, 52(2):193–226, 2018. doi:10.1007/
s10703-018-0315-1.

3 Henrik Björklund and Sergei G. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics, 155(2):210–229,
2007. doi:10.1016/j.dam.2006.04.029.

4 Mikołaj Bojańczyk and Wojciech Czerwiński. An Automata Toolbox, February 2018. URL:
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf.

5 Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, and Wilfredo R. Marrero.
An Improved Algorithm for the Evaluation of Fixpoint Expressions. Theor. Comput. Sci.,
178(1-2):237–255, 1997. doi:10.1016/S0304-3975(96)00228-9.

6 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

7 Anne Condon. The Complexity of Stochastic Games. Inf. Comput., 96(2):203–224, 1992.
doi:10.1016/0890-5401(92)90048-K.

8 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić,
and Paweł Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

9 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous Local Search. In Dana
Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 790–804.
SIAM, 2011. doi:10.1137/1.9781611973082.62.

10 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001. doi:10.1016/
S0304-3975(00)00034-7.

11 John Fearnley. Exponential Lower Bounds for Policy Iteration. In Samson Abramsky,
Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis,
editors, Automata, Languages and Programming, 37th International Colloquium, ICALP 2010,
Bordeaux, France, July 6-10, 2010, Proceedings, Part II, volume 6199 of Lecture Notes in
Computer Science, pages 551–562. Springer, 2010. doi:10.1007/978-3-642-14162-1_46.

12 John Fearnley. Efficient Parallel Strategy Improvement for Parity Games. In Rupak Majumdar
and Viktor Kuncak, editors, Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume 10427 of
Lecture Notes in Computer Science, pages 137–154. Springer, 2017. doi:10.1007/978-3-319-
63390-9_8.

13 John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. In Hakan
Erdogmus and Klaus Havelund, editors, Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017,
pages 112–121. ACM, 2017. doi:10.1145/3092282.3092286.

14 Oliver Friedmann. Recursive algorithm for parity games requires exponential time. RAIRO -
Theor. Inf. and Applic., 45(4):449–457, 2011. doi:10.1051/ita/2011124.

15 Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential lower bounds for
randomized pivoting rules for the simplex algorithm. In Lance Fortnow and Salil P. Vadhan,
editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 283–292. ACM, 2011. doi:10.1145/1993636.1993675.

MFCS 2019

https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1007/s10703-018-0315-1
https://doi.org/10.1016/j.dam.2006.04.029
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf
https://doi.org/10.1016/S0304-3975(96)00228-9
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1007/978-3-319-63390-9_8
https://doi.org/10.1145/3092282.3092286
https://doi.org/10.1051/ita/2011124
https://doi.org/10.1145/1993636.1993675

10:12 Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

16 Maciej Gazda. Fixpoint Logic, Games, and Relations of Consequence. PhD thesis, Eindhoven
University of Technology, 2016. URL: https://pure.tue.nl/ws/files/16681817/20160315_
Gazda.pdf.

17 Hugo Gimbert and Rasmus Ibsen-Jensen. A short proof of correctness of the quasi-polynomial
time algorithm for parity games. CoRR, abs/1702.01953, 2017. arXiv:1702.01953.

18 Marcin Jurdziński. Deciding the Winner in Parity Games is in UP ∩ co-UP. Inf. Process.
Lett., 68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

19 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In Horst Reichel
and Sophie Tison, editors, STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in
Computer Science, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3_24.

20 Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–9. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005092.

21 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A Deterministic Subexponential Algorithm
for Solving Parity Games. SIAM J. Comput., 38(4):1519–1532, 2008. doi:10.1137/070686652.

22 Jeroen J. A. Keiren. Benchmarks for Parity Games. In Mehdi Dastani and Marjan Sirjani,
editors, Fundamentals of Software Engineering - 6th International Conference, FSEN 2015
Tehran, Iran, April 22-24, 2015, Revised Selected Papers, volume 9392 of Lecture Notes in
Computer Science, pages 127–142. Springer, 2015. doi:10.1007/978-3-319-24644-4_9.

23 Bakhadyr Khoussainov. A Brief Excursion to Parity Games. In Mizuho Hoshi and Shinnosuke
Seki, editors, Developments in Language Theory - 22nd International Conference, DLT 2018,
Tokyo, Japan, September 10-14, 2018, Proceedings, volume 11088 of Lecture Notes in Computer
Science, pages 24–35. Springer, 2018. doi:10.1007/978-3-319-98654-8_3.

24 Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial
time. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
639–648. ACM, 2018. doi:10.1145/3209108.3209115.

25 Karoliina Lehtinen, Sven Schewe, and Dominik Wojtczak. Improving the complexity of Parys’
recursive algorithm. CoRR, abs/1904.11810, 2019. arXiv:1904.11810.

26 Yao Liu, Zhenhua Duan, and Cong Tian. An Improved Recursive Algorithm for Parity Games.
In 2014 Theoretical Aspects of Software Engineering Conference, TASE 2014, Changsha, China,
September 1-3, 2014, pages 154–161. IEEE Computer Society, 2014. doi:10.1109/TASE.2014.
24.

27 Donald A. Martin. Borel determinacy. The Annals of Mathematics, 102(2):363–371, 1975.
28 Robert McNaughton. Infinite Games Played on Finite Graphs. Ann. Pure Appl. Logic,

65(2):149–184, 1993. doi:10.1016/0168-0072(93)90036-D.
29 Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American Mathe-

matical Society, Boston, MA, USA, 1972.
30 Sven Schewe. Solving parity games in big steps. J. Comput. Syst. Sci., 84:243–262, 2017.

doi:10.1016/j.jcss.2016.10.002.
31 Helmut Seidl. Fast and Simple Nested Fixpoints. Inf. Process. Lett., 59(6):303–308, 1996.

doi:10.1016/0020-0190(96)00130-5.
32 Tom van Dijk. Oink: An Implementation and Evaluation of Modern Parity Game Solvers.

In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part I, volume 10805 of Lecture Notes in Computer
Science, pages 291–308. Springer, 2018. doi:10.1007/978-3-319-89960-2_16.

https://pure.tue.nl/ws/files/16681817/20160315_Gazda.pdf
https://pure.tue.nl/ws/files/16681817/20160315_Gazda.pdf
http://arxiv.org/abs/1702.01953
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1137/070686652
https://doi.org/10.1007/978-3-319-24644-4_9
https://doi.org/10.1007/978-3-319-98654-8_3
https://doi.org/10.1145/3209108.3209115
http://arxiv.org/abs/1904.11810
https://doi.org/10.1109/TASE.2014.24
https://doi.org/10.1109/TASE.2014.24
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/j.jcss.2016.10.002
https://doi.org/10.1016/0020-0190(96)00130-5
https://doi.org/10.1007/978-3-319-89960-2_16

P. Parys 10:13

33 Maks Verver. Practical Improvements to Parity Game Solving. Master’s thesis, University
of Twente, 2013. URL: http://essay.utwente.nl/64985/1/practical-improvements-to-
parity-game-solving.pdf.

34 Jens Vöge and Marcin Jurdziński. A Discrete Strategy Improvement Algorithm for Solving
Parity Games. In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verification,
12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings,
volume 1855 of Lecture Notes in Computer Science, pages 202–215. Springer, 2000. doi:
10.1007/10722167_18.

35 Wiesław Zielonka. Infinite Games on Finitely Coloured Graphs with Applications to Automata
on Infinite Trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

36 Uri Zwick and Mike Paterson. The Complexity of Mean Payoff Games on Graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

MFCS 2019

http://essay.utwente.nl/64985/1/practical-improvements-to-parity-game-solving.pdf
http://essay.utwente.nl/64985/1/practical-improvements-to-parity-game-solving.pdf
https://doi.org/10.1007/10722167_18
https://doi.org/10.1007/10722167_18
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/0304-3975(95)00188-3

Bidding Mechanisms in Graph Games
Guy Avni
IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

Ðorđe Žikelić
IST Austria, Klosterneuburg, Austria
djordje.zikelic@ist.ac.at

Abstract
In two-player games on graphs, the players move a token through a graph to produce a finite or
infinite path, which determines the qualitative winner or quantitative payoff of the game. We study
bidding games in which the players bid for the right to move the token. Several bidding rules were
studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and
the higher bidder moves the token and pays the other player. Poorman bidding is similar except
that the winner of the bidding pays the “bank” rather than the other player. Taxman bidding
spans the spectrum between Richman and poorman bidding. They are parameterized by a constant
τ ∈ [0, 1]: portion τ of the winning bid is paid to the other player, and portion 1− τ to the bank.
While finite-duration (reachability) taxman games have been studied before, we present, for the
first time, results on infinite-duration taxman games. It was previously shown that both Richman
and poorman infinite-duration games with qualitative objectives reduce to reachability games, and
we show a similar result here. Our most interesting results concern quantitative taxman games,
namely mean-payoff games, where poorman and Richman bidding differ significantly. A central
quantity in these games is the ratio between the two players’ initial budgets. While in poorman
mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding,
the payoff depends only on the structure of the game. In both games the optimal payoffs can be
found using (different) probabilistic connections with random-turn games in which in each turn,
instead of bidding, a coin is tossed to determine which player moves. While the value with Richman
bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the
bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff
taxman games that is based on a probabilistic connection: the value of a taxman bidding game with
parameter τ and initial ratio r, equals the value of a random-turn game that uses a coin with bias
F (τ, r) = r+τ ·(1−r)

1+τ . Thus, we show that Richman bidding is the exception; namely, for every τ < 1,
the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the
previous proof techniques for both Richman and poorman bidding.

2012 ACM Subject Classification Theory of computation → Solution concepts in game theory;
Theory of computation → Formal languages and automata theory

Keywords and phrases Bidding games, Richman bidding, poorman bidding, taxman bidding, mean-
payoff games, random-turn games

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.11

Related Version The full version can be found in https://arxiv.org/abs/1905.03588.

Funding This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship),
and from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 665385.

© Guy Avni, Thomas A. Henzinger, and Ðorđe Žikelić;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guy.avni@ist.ac.at
mailto:tah@ist.ac.at
mailto:djordje.zikelic@ist.ac.at
https://doi.org/10.4230/LIPIcs.MFCS.2019.11
https://arxiv.org/abs/1905.03588
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Bidding Mechanisms in Graph Games

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in formal veri-
fication [2], where they are used, for example, to solve synthesis [19], and they have deep
connections to foundations of logic [21]. A graph game proceeds by placing a token on a
vertex in the graph, which the players move throughout the graph to produce an infinite
path (“play”) π. The game is zero-sum and π determines the winner or payoff. Graph games
can be classified according to the players’ objectives. For example, the simplest objective is
reachability, where Player 1 wins iff an infinite path visits a designated target vertex. Another
classification of graph games is the mode of moving the token. The most studied mode of
moving is turn based, where the players alternate turns in moving the token.

In bidding games, in each turn, an “auction” is held between the two players in order
to determine which player moves the token. The bidding mode of moving was introduced
in [13, 14] for reachability games, where the following bidding rules where defined. In Richman
bidding (named after David Richman), each player has a budget, and before each turn, the
players submit bids simultaneously, where a bid is legal if it does not exceed the available
budget. The player who bids higher wins the bidding, pays the bid to the other player, and
moves the token. A second bidding rule called poorman bidding in [13], is similar except that
the winner of the bidding pays the “bank” rather than the other player. Thus, the bid is
deducted from his budget and the money is lost. A third bidding rule on which we focus in
this paper, called taxman in [13] spans the spectrum between poorman and Richman bidding.
Taxman bidding is parameterized by τ ∈ [0, 1]: the winner of a bidding pays portion τ of his
bid to the other player and portion 1− τ to the bank. Taxman bidding with τ = 1 coincides
with Richman bidding and taxman bidding with τ = 0 coincides with poorman bidding.

Bidding games are relevant for several communities in Computer Science. In formal
methods, graph games are used to reason about systems. Poorman bidding games naturally
model concurrent systems where processes pay the scheduler for moving. Block-chain
technology like Etherium is an example of such a system, which is a challenging to formally
verify [9, 3]. In Algorithmic Game Theory [17], auction design is a central research topic that
is motivated by the abundance of auctions for online advertisements [16]. Infinite-duration
bidding games can model ongoing auctions and can be used to devise bidding strategies for
objectives like: “In the long run, an advertiser’s ad should show at least half of the time”.
In Artificial Intelligence, bidding games with Richman bidding have been used to reason
about combinatorial negotiations [15]. Finally, discrete-bidding games [11], in which the
granularity of the bids is restricted by assuming that the budgets are given using coins, have
been studied mostly for recreational games, like bidding chess [6].

Both Richman and poorman infinite-duration games have a surprising, elegant, though
different, mathematical structure as we elaborate below. Our study of taxman bidding aims
at a better understanding of this structure and at shedding light on the differences between
the seemingly similar bidding rules.

A central quantity in bidding games is the initial ratio of the players budgets. Formally,
assuming that, for i ∈ {1, 2}, Player i’s initial budget is Bi, we say that Player 1’s initial
ratio is B1/(B1 +B2). The central question that was studied in [13] regards the existence of
a necessary and sufficient initial ratio to guarantee winning the game. Formally, the threshold
ratio in a vertex v, denoted Th(v), is such that if Player 1’s initial ratio exceeds Th(v), he can
guarantee winning the game, and if his initial ratio is less than Th(v), Player 2 can guarantee

G. Avni, T. A. Henzinger, and Ð. Žikelić 11:3

winning the game1. Existence of threshold ratios in reachability games for all three bidding
mechanisms was shown in [13].

Reachability Richman-bidding games have an interesting probabilistic connection [14].
To state the connection, we first need to introduce random-turn games. Let p ∈ [0, 1]. In
a random-turn game that is parameterized by p, in each turn, rather than bidding, the
player who moves is chosen by throwing a (possibly) biased coin: with probability p, Player 1
chooses how to move the token, and Player 2 chooses with probability 1 − p. Formally,
a random-turn game is a special case of a stochastic game [10]. Consider a reachability
Richman-bidding game G. We construct a “uniform” random-turn game on top of G, denoted
RT0.5(G), in which we throw an unbiased coin in each turn. The objective of Player 1 remains
reaching his target vertex. It is well known that each vertex in RT0.5(G) has a value, which is,
informally, the probability of reaching the target when both players play optimally, and which
we denote by val(RT0.5(G), v). We are ready to state the probabilistic connection: For every
vertex v in the Richman game G, the threshold ratio in v equals 1 − val(RT0.5(G), v). We
note that such a connection is not known and is unlikely to exist in reachability games with
neither poorman nor taxman bidding. Random-turn games have been extensively studied in
their own right, mostly with unbiased coin tosses, since the seminal paper [18].

Infinite-duration bidding games have been recently studied with Richman [4] and poorman
[5] bidding. For qualitative objectives, namely games in which one player wins and the other
player loses, both bidding rules have similar properties. By reducing general qualitative
games to reachability games, it is shown that threshold ratios exist for both types of bidding
rules. We show a similar result for qualitative games with taxman bidding.

Things get interesting in mean-payoff games, which are quantitative games: an infinite
play has a payoff, which is Player 1’s reward and Player 2’s cost (see an example of a
mean-payoff game in Figure 1). We thus call the players in a mean-payoff game Max and
Min, respectively. We focus on games that are played on strongly-connected graphs. With
Richman bidding [4], the initial budget of the players does not matter: A mean-payoff
Richman-bidding game G has a value c ∈ IR that depends only on the structure of the game
such that Min can guarantee a cost of at most c with any positive budget, and with any
positive budget, Max can guarantee a payoff of at least c − ε, for every ε > 0. Moreover,
the value c of G equals the value of a random-turn game RT0.5(G) that is constructed on
top of G. Since G is a mean-payoff game, RT0.5(G) is a mean-payoff stochastic game, and its
value, which again, is a well-known concept, is the expected payoff when both players play
optimally.

Mean-payoff poorman-bidding games have different properties. Unlike with Richman
bidding, the value of the game depends on the initial ratio. That is, with a higher initial
ratio, Max can guarantee a better payoff. While the probabilistic connection for mean-payoff
Richman games is not entirely unexpected given the probabilistic connection for reachability
Richman games, we find it surprising that mean-payoff poorman games exhibit a probabilistic
connection, which is in fact richer than for Richman bidding. The connection for poorman
games is the following: Suppose Max’s initial ratio is r ∈ [0, 1] in a game G. Then, the value
in G with respect to r is the value of the random-turn game RTr(G) in which in each turn,
we toss a biased coin that chooses Max with probability r and Min with probability 1− r.

1 When the initial ratio is exactly Th(v), the winner depends on the mechanism with which ties are
broken. Our results do not depend on a specific tie-breaking mechanism.Tie-breaking mechanisms are
particularly important in discrete-bidding games [1].

MFCS 2019

11:4 Bidding Mechanisms in Graph Games

2 −1 −1 −2

v1 v2 v3 v4

Figure 1 On the left, a mean-payoff game G. On the right, the mean-payoff value of G, where
the initial ratio is fixed to 0.75 and the taxman parameter τ varies. The value of G with Richman
bidding is −0.5, with poorman bidding, it is 1, and, for example, with τ = 0.2, it is 0.533.

Given this difference between the two bidding rules, one may wonder how do mean-payoff
taxman games behave, since these bidding rules span the spectrum between Richman and
poorman bidding. Our main contribution is a complete solution to this question: we identify
a probabilistic connection for a taxman game G that depends on the parameter τ of the
bidding and the initial ratio r. That is, we show that the value of the game equals the value
of the random-turn game RTF (τ,r)(G), where F (τ, r) = r+τ ·(1−r)

1+τ . The construction gives rise
to optimal strategies w.r.t. τ and the initial ratio. As a sanity check, note that for τ = 1, we
have F (τ, r) = 0.5, which agrees with the result on Richman bidding, and for τ = 0, we have
F (τ, r) = r, which agrees with the result on poorman bidding. In Figure 1, we depict some
mean-payoff values for a fixed initial ratio and varying taxman parameter. Previous results
only give the two endpoints in the plot, and the mid points in the plot are obtained using
the results in this paper.

The main technical challenge is constructing an optimal strategy for Max, which, intuit-
ively, performs a de-randomization; with a deterministic bidding strategy, Max guarantees
that the ratio of the time that is spent in each vertex is the same as in a random behavior.
The construction of Max strategy involves two components. First, we assign an “importance”
to each vertex v, which we call strength and denote St(v). Intuitively, if St(v) > St(u), then
it is more important for Max to move in v than in u. Second, when the game reaches a
vertex v, Max’s bid is a careful normalization of St(v) so that changes in Max’s ratio are
matched with the accumulated weights in the game. Finding the right normalization is
intricate and it consists of the main technical contribution of this paper. Previous such
normalizations were constructed for Richman and poorman mean-payoff games [4, 5]. The
construction for Richman bidding is much more complicated than the one we present here.
The construction for poorman bidding is ad-hoc and does not generalize. Our construction
for taxman bidding thus unifies these constructions and simplifies them. It uses techniques
that can generalize beyond taxman bidding. Finally, we study, for the first time, complexity
problems for taxman games.

Due to lack of space, some proofs appear in the full version.

2 Preliminaries

A graph game is played on a directed graph G = 〈V,E〉, where V is a finite set of vertices
and E ⊆ V × V is a set of edges. The neighbors of a vertex v ∈ V , denoted N(v), is the
set of vertices {u ∈ V : 〈v, u〉 ∈ E}. A path in G is a finite or infinite sequence of vertices
v1, v2, . . . such that for every i ≥ 1, we have 〈vi, vi+1〉 ∈ E.

G. Avni, T. A. Henzinger, and Ð. Žikelić 11:5

Bidding games. Each Player i has a budget Bi ∈ IR≥0. In each turn a bidding determines
which player moves the token. Both players simultaneously submit bids, where a bid bi for
Player i is legal if bi ≤ Bi. The player who bids higher wins the bidding, where we assume
some mechanism to break ties, e.g., always giving Player 1 the advantage, and our results are
not affected by the specific tie-breaking mechanism at use. The winner moves the token and
pays his bid, where we consider three bidding mechanisms that differ in where the winning
bid is paid. Suppose Player 1 wins a bidding with his bid of b.

In Richman bidding, the winner pays to the loser, thus the new budgets are B1 − b and
B2 + b.
In poorman bidding, the winner pays to the bank, thus the new budgets are B1 − b and
B2.
In taxman bidding with parameter τ ∈ [0, 1], the winner pays portion τ to the other
player and (1− τ) to the bank, thus the new budgets are B1 − b and B2 + (1− τ) · b.

A central quantity in bidding games is the ratio of a player’s budget from the total
budget.

I Definition 1 (Ratio). Suppose the budget of Player i is Bi, for i ∈ {1, 2}, at some point in
the game. Then, Player i’s ratio is Bi/(B1 +B2). The initial ratio refers to the ratio of the
initial budgets, namely the budgets before the game begins. We restrict attention to games in
which both players start with positive initial budgets, thus the initial ratio is in (0, 1).

Strategies and plays. A strategy is a recipe for how to play a game. It is a function that,
given a finite history of the game, prescribes to a player which action to take, where we
define these two notions below. For example, in turn-based games, a strategy takes as
input, the sequence of vertices that were visited so far, and it outputs the next vertex to
move to. In bidding games, histories and strategies are more involved as they maintain the
information about the bids and winners of the bids. Formally, a history in a bidding game
is π = 〈v1, b1, i1〉, . . . , 〈vk, bk, ik〉, vk+1 ∈ (V × IR× {1, 2})∗ · V , where for 1 ≤ j ≤ k + 1, the
token is placed on vertex vj at round j, for 1 ≤ j ≤ k, the winning bid is bj and the winner
is Player ij . Consider a finite history π. For i ∈ {1, 2}, let Wi(π) ⊆ {1, . . . , k} denote the
indices in which Player i is the winner of the bidding in π. Let BIi be the initial budget of
Player i. Player i’s budget following π, denoted Bi(π), depends on the bidding mechanism.
For example, in Richman bidding, B1(π) = BIi −

∑
j∈W1(π) bj +

∑
j∈W2(π) bj , B2 is defined

dually, and the definition is similar for taxman and poorman bidding. Given a history π that
ends in v, a strategy for Player i prescribes an action 〈b, v〉, where b ≤ Bi(π) is a bid that
does not exceed the available budget and v is a vertex to move to upon winning, where we
require that v is a neighbor of vk+1. An initial vertex, initial budgets, and two strategies for
the players determine a unique infinite play π for the game. The vertices that π visits form
an infinite path path(π).

Objectives. An objective O is a set of infinite paths. Player 1 wins an infinite play π iff
path(π) ∈ O. We call a strategy f winning for Player 1 w.r.t. an objective O if for every
strategy g of Player 2 the play that f and g determine is winning for Player 1. Winning
strategies for Player 2 are defined dually. We consider the following qualitative objectives:
1. In reachability games, Player 1 has a target vertex t and an infinite play is winning iff it

visits t.

MFCS 2019

11:6 Bidding Mechanisms in Graph Games

2. In parity games, each vertex is labeled with an index in {1, . . . , d}. An infinite path is
winning for Player 1 iff the parity of the maximal index that is visited infinitely often is
odd.

3. Mean-payoff games are played on weighted directed graphs, with weights given by a
function w : V → Q. Consider an infinite path η = v1, v2, · · · ∈ V ω. For n ∈ IN, the
prefix of length n of η is ηn, and we define its energy to be E(ηn) =

∑n
i=1 w(vi). The

payoff of η is MP(η) = lim infn→∞E(ηn)/n. Player 1 wins η iff MP(η) ≥ 0.

Mean-payoff games are quantitative games. We think of the payoff as Player 1’s reward
and Player 2’s cost, thus in mean-payoff games, we refer to Player 1 as Max and to Player 2
as Min.

Threshold ratios. The first question that arises in the context of bidding games asks what
is the necessary and sufficient initial ratio to guarantee an objective.

I Definition 2 (Threshold ratios). Consider a bidding game G, a vertex v, an initial ratio
r, and an objective O for Player 1. The threshold ratio in v, denoted Th(v), is a ratio in
[0, 1] such that if r > Th(v), then Player 1 has a winning strategy that guarantees that O is
satisfied, and if r < Th(v), then Player 2 has a winning strategy that violates O.

Random-turn games. A stochastic game [10] is a graph game in which the vertices are
partitioned between two players and a nature player. As in turn-based games, whenever the
game reaches a vertex that is controlled by Player i, for i = 1, 2, he choses how the game
proceeds, and whenever the game reaches a vertex v that is controlled by nature, the next
vertex is chosen according to a probability distribution that depends only on v.

Consider a bidding game G that is played on a graph 〈V,E〉. The random-turn game
with ratio r ∈ [0, 1] that is associated with G is a stochastic game that intuitively simulates
the following process. In each turn we throw a biased coin that turns heads with probability
r and tails with probability 1− r. If the coin turns heads, then Player 1 moves the token,
and otherwise Player 2 moves the token. Formally, we define RTr(G) = 〈V1, V2, VN , E,Pr〉,
where each vertex in V is split into three vertices, each controlled by a different player, thus
for α ∈ {1, 2, N}, we have Vα = {vα : v ∈ V }, nature vertices simulate the fact that Player 1
chooses the next move with probability r, thus Pr[vN , v1] = r = 1− Pr[vN , v2], and reaching
a vertex that is controlled by one of the two players means that he chooses the next move,
thus E = {〈vα, uN 〉 : 〈v, u〉 ∈ E and α ∈ {1, 2}}. When G is a mean-payoff game, the vertices
are weighted and we define the weights of v1, v2, and vN to be equal to the weight of v.

The following definitions are standard, and we refer the reader to [20] for more details. A
strategy in a stochastic game is similar to a turn-based game; namely, given the history of
vertices visited so far, the strategy chooses the next vertex. Fixing two such strategies f and
g for both players gives rise to a distribution D(f, g) on infinite paths. Intuitively, Player 1’s
goal is to maximize the probability that his objective is met. An optimal strategy for Player 1
guarantees that the objective is met with probability at least c and, intuitively, he cannot
do better, thus Player 2 has a strategy that guarantees that the objective is violated with
probability at least (1− c). It is well known that optimal positional strategies exist for the
objectives that we consider.

I Definition 3 (Values in stochastic games). Consider a bidding game G, let r ∈ [0, 1], and
consider two optimal strategies f and g for the two players in RT r(G). When G is a qualitative
game with objective O, the value of RT r(G), denoted val(RT r(G)), is Prη∼D(f,g) Pr[η ∈ O].
When G is a mean-payoff game, the mean-payoff value of RT r(G), denoted MP(RT r(G)), is
Eη∈D(f,g)MP(η).

G. Avni, T. A. Henzinger, and Ð. Žikelić 11:7

3 Qualitative Taxman Games

In [14, 13], reachability bidding games were studied with a slightly different definition, which
we call double-reachability: both players have a target, where we denote by ti the target of
Player i, for i ∈ {1, 2}, all vertices have a path to both targets, and the game ends once one
of the targets is reached. They show the following results.

I Theorem 4. [14, 13] Consider a double-reachability bidding game G and a vertex v. The
threshold ratio exists in v with Richman, poorman, and taxman bidding. Moreover, threshold
ratios have the following properties. For the target vertex t1 of Player 1, we have Th(t1) = 0,
and for the target t2 of Player 2, we have Th(v) = 1. Consider some other vertex v and denote
v+, v− ∈ N(v) the vertices with the minimal and maximal thresholds in the neighborhood of
v, thus for every u ∈ N(v), we have Th(v−) ≤ Th(u) ≤ Th(v+).

In Richman bidding, we have Th(v) = 1
2
(
Th(v+) + Th(v−)

)
.

In poorman bidding, we have Th(v) = Th(v+)/(1 + Th(v+)− Th(v−)).
In taxman bidding with parameter τ , we have Th(v) =

(
Th(v−)+Th(v+)−τ ·Th(v−)

)
/
(
2−

τ · (1 + Th(v−)− Th(v+))
)
.

Moreover, only double-reachability Richman-bidding games exhibit the following probabilistic
connection: for every vertex v, we have Th(v) = 1− val(RT0.5(G), v). Thus, for games played
on finite graphs, the threshold ratios are all rational numbers. However, threshold ratios with
poorman-bidding need not be rational in finite games.

The equivalence between double-reachability bidding games and reachability games with
Richman- and poorman-bidding is shown in [4] and [5]. The following proposition is the key
component in showing the equivalence as well as in the reduction from parity taxman games
to reachability taxman games.

I Lemma 5. Consider a reachability taxman game G. Suppose that every vertex in G has a
path to the target of Player 1. Then, for any taxman parameter, Player 1 wins from every
vertex with any positive initial budget. Thus, for every vertex v, we have Th(v) = 0.

Proof. Let G = 〈V,E, t〉, where n = |V | − 1. Suppose the game starts from a vertex v, and
let ε > 0 be the initial budget of Player 1. Since there is a path from v to Player 1’s target,
there is a path of length at most n. Thus, if Player 1 wins n consecutive biddings, he wins the
game. Intuitively, Player 1 carefully chooses n increasing bids such that if Player 2 wins one
of these bids, Player 1’s ratio increases by a constant over his initial budget. By repeatedly
playing according to such a strategy, Player 1 guarantees that his ratio increases and will
eventually allow him to win n biddings in a row. Formally, if τ = 0, then G is a Richman
game and the proof of the lemma can be found in [4]. Otherwise, pick a sufficiently large
r ∈ IN such that τ > 2

r−1 and r ≥ 3. Fix 0 < m < ε
rn . Player 1 proceeds as follows: after

winning i times, for 0 ≤ i, he bids m · ri and, upon winning the bidding, he moves towards t
along any shortest path. Since m + mr + · · · + mrn−1 < mrn < ε, Player 1 has sufficient
budget to win n consecutive biddings. If Player 2 does not win any of the first n biddings,
Player 1 wins the game. On the other hand, if Player 2 wins the k-th bidding with 1 ≤ k ≤ n,
we show in the full version that his ratio increases by a fixed amount b = mr

(1−ε)(r−1) > 0. J

The following corollary shows the equivalence between reachability and double-reachability
taxman games.

I Corollary 6. Consider a reachability taxman game G = 〈V,E, t〉. Let S ⊆ V be the set of
vertices that have no path to t. Let T ⊆ V be a set of vertices such that t ∈ T and every

MFCS 2019

11:8 Bidding Mechanisms in Graph Games

u ∈ T has a path to t and no path to a vertex in S. Then, for every v ∈ T , we have Th(v) = 0,
for every v ∈ S, we have Th(v) = 1. Let G′ be a double-reachability taxman game that is
obtained from G by merging the vertices in S and T into two targets t1 and t2 for Players 1
and 2, respectively. Then, for every v ∈ (V \ (S ∪ T)), the threshold of v in G equals the
threshold of v in G′.

The following theorem, whose proof can be found in the full version, uses Lemma 5 to
classify the bottom-strongly-connected components of a parity taxman game as those that
are winning and losing for Player 1, thereby constructing a reachability taxman game.

I Theorem 7. Parity taxman games are linearly reducible to reachability taxman games.
Specifically, threshold ratios exist in parity taxman games.

4 Mean-Payoff Taxman Games

This section consists of our main technical contribution. We start by showing a complete
classification of the value in strongly-connected mean-payoff taxman games depending on
the taxman parameter τ and the initial ratio. We then extend the solution to general games,
where the solution to strongly-connected games constitutes the main ingredient in the solution
of the general case.

4.1 Strongly-connected mean-payoff taxman games
We start by formally defining the value of a strongly-connected mean-payoff game. Lemma 5
implies that in a strongly-connected game, a player can draw the game from every vertex to
any other vertex with any positive initial budget. Since mean-payoff objectives are prefix
independent, it follows that the vertex from which the game starts does not matter. Indeed,
if the game starts at a vertex v with Max having initial ratio r + ε, then Max can use ε/2 of
his budget to draw the game to a vertex u and continue as if he starts the game with initial
ratio r + ε/2.

I Definition 8 (Mean-payoff value). Consider a strongly-connected mean-payoff game G, a
ratio r ∈ (0, 1), and a taxman parameter τ ∈ [0, 1]. The mean-payoff value of G w.r.t. r and
τ , is a value c ∈ IR such that for every ε > 0

if Min’s initial ratio is greater than (1− r), then he has a strategy that guarantees that
the payoff is at most c+ ε, and
if Max’s initial ratio is greater than r, then he has a strategy that guarantees that the
payoff is greater than c− ε.

The following theorem, which we prove in the next two sections, summarizes the properties
of mean-payoff taxman games.

I Theorem 9. Consider a strongly-connected mean-payoff taxman game G with taxman
parameter τ ∈ [0, 1] and an initial ratio r ∈ (0, 1). The value of G w.r.t. τ and r equals the
value of the random-turn game RTF (τ,r)(G) in which Max is chosen to move with probability
F (τ, r) and Min with probability 1− F (τ, r), where F (τ, r) = r+τ(1−r)

1+τ .

We show that in order to prove Theorem 9, it suffices to prove the following intermediate
lemma, whose proof can be found in the full version, and follows from the advantage of Min
in the definition of payoff.

G. Avni, T. A. Henzinger, and Ð. Žikelić 11:9

I Lemma 10. Consider a strongly-connected mean-payoff taxman game G, a taxman para-
meter τ , and an initial ratio r ∈ (0, 1) such that MP(RTF (τ,r)) = 0 for F (τ, r) = r+τ(1−r)

1+τ .
Then, for every ε > 0 Max has a strategy that guarantees that no matter how Min plays, the
payoff is greater than −ε.

4.2 The importance of moving
The first part of the construction of an optimal strategy for Max as in Lemma 10 is to
assign, to each vertex v ∈ V , a strength, denoted St(v), where St(v) ∈ Q≥0. Intuitively, if
St(v) > St(u), for u, v ∈ V , it is more important for Max to move in v than it is in u. We
follow the construction in [5], which uses the concept of potentials, which is a well-known
concept in stochastic games (see [20]) and was originally defined in the context of the strategy
iteration algorithm [12]. For completeness, we present the definitions below.

Consider a strongly-connected mean-payoff game G, and let p ∈ [0, 1]. Let f and g be two
optimal positional strategies in RTp(G), for Min and Max, respectively. For a vertex v ∈ V ,
let v−, v+ ∈ V be such that Max proceeds from v to v+ according to g and Min proceeds
from v to v− according to f . It is not hard to see that the mean-payoff value in all vertices in
RTp(G) is the same and we denote it by MP(RTp(G)). We denote the potential of v by Potp(v)
and the strength of v by Stp(v), and we define them as follows.

Potp(v) = p · Potp(v+) + (1− p) · Potp(v−) + w(v)− MP(RTp(G)) and
Stp(v) = p · (1− p) ·

(
Potp(v+)− Potp(v−)

)
There are optimal strategies for which Potp(v−) ≤ Potp(v′) ≤ Potp(v+), for every v′ ∈ N(v),
which can be found, for example, using the strategy iteration algorithm. Note that St(v) ≥ 0,
for every v ∈ V .

Consider a finite path π = v1, . . . , vn in G. We intuitively think of π as a play, where for
every 1 ≤ i < n, the bid of Max in vi is St(vi) and he moves to v+

i upon winning. Thus, if
vi+1 = v+

i , we say that Max won in vi, and if vi+1 6= v+
i , we say that Max lost in vi. Let

W (π) and L(π) respectively be the indices in which Max wins and loses in π. We call Max
wins investments and Max loses gains, where intuitively he invests in increasing the energy
and gains a higher ratio of the budget whenever the energy decreases. Let G(π) and I(π)
be the sum of gains and investments in π, respectively, thus G(π) =

∑
i∈L(π) St(vi) and

I(π) =
∑
i∈W (π) St(vi). Recall that the energy of π is E(π) =

∑
1≤i<n w(vi). The following

lemma, whose proof can be found in the full version, which generalizes a similar lemma in
[5], connects the strength with the change in energy.

I Lemma 11. Consider a strongly-connected mean-payoff game G and p ∈ [0, 1]. For
every finite path π = v1, . . . , vn in G, we have Potp(v1)− Potp(vn) + (n− 1) · MP(RT p(G)) ≤
E(π) + G(π)/(1 − p) − I(π)/p. In particular, when p = ν/(µ + ν) for ν, µ > 0, there is a
constant P = minv Potp(v)−maxv Potp(v) such that ν·µ

ν+µ ·
(
E(π)−P−(n−1)·MP(RT

ν
µ+ν (G))

)
≥

µ · I(π)− ν ·G(π).

4.3 Normalizing the bids
Whenever the game reaches a vertex v, Max’s bid is obtained by carefully normalizing the
strength of v. More formally, assuming an initial ratio r, in v, Max bids r · (1− r) · St(v) · βx,
where βx is the normalization factor and x ∈ IR≥1. In this section we show how to choose
the normalization factor. We associate with every x ≥ 1, two numbers: a ratio rx and βx
both in (0, 1]. We think of (rx)x≥1 as a sequence and a play gives rise to a walk on the

MFCS 2019

11:10 Bidding Mechanisms in Graph Games

sequence, which corresponds to the changes in energy in the bidding game. When the walk
is in x ≥ 1, Max uses the normalization factor βx. If Max wins a bidding, we take a step up
on the sequence, modeling the increase of energy, and when Min wins, we talk a step down.
The size of the step depends on the strength of v. We prove existence of sequences with
properties given in the following lemma and formally define Max’s strategy after it.

I Lemma 12. Consider a game G, a finite set of non-negative strengths S ⊆ IR≥0, a ratio
r ∈ (0, 1), and a taxman parameter τ ∈ [0, 1]. For every K > τr2+r(1−r)

τ(1−r)2+r(1−r) there exist
sequences (rx)x≥1 and (βx)x≥1 with the following properties.
1. Max’s bid does not exceed his budget, thus, for each position x ∈ IR≥1 and strength s ∈ S,

we have βx · s · r · (r − 1) < rx.
2. Min cannot force the game beyond position 1, thus for every s ∈ S\{0} and 1 ≤ x < 1+rs,

we have βx · s · r · (r − 1) > 1− rx.
3. The ratios tend to r from above, thus for every x ∈ IR≥1, we have rx ≥ r, and limx→∞ rx =

r.
4. No matter who wins a bidding, Max’s ratio can only improve. Thus, in case of winning

and in case of losing, we respectively have
rx − βx · s · r · (r − 1)

1− (1− τ) · βx · s · r · (r − 1) ≥ rx+(1−r)·K·s and rx + τ · βx · s · r · (r − 1)
1− (1− τ) · βx · s · r · (r − 1) ≥ rx−s·r

We first show how Lemma 12 implies Theorem 9.

Proof that Lemma 12 implies Lemma 10. Fix ε > 0, we construct strategy for Max guar-
anteeing a payoff greater than −ε, as wanted. Observe that

r

r + (1− r) τr2+r(1−r)
τ(1−r)2+r(1−r)

= r(τ(1− r) + r)
τr(1− r) + r2 + τr2 + r(1− r) = r + τ(1− r)

1 + τ
= F (τ, r).

Thus, since by assumption MP(RTF (τ,r)(G)) = 0 and MP(RTp(G)) is a continuous function in
p ∈ [0, 1] [8, 22], we can pick K > F (τ, r) such that MP(RT

r
r+(1−r)K (G)) > −ε.

We now describe Max’s strategy. We think of the change in Max’s ratio as a walk on
IR≥1. Each position x ∈ IR≥1 is associated with a ratio rx. The walk starts in a position x0
such that Max’s initial ratio is at least rx0 . Let ν = r and µ = K(1− r). Suppose the token
is placed on a vertex v ∈ V . Then, Max’s bid is r · (1− r) ·βx ·St(v), where the ratios of Max
and Min are normalized to sum up to 1, and he proceeds to v+ upon winning. If Max wins,
the walk proceeds up µ · St(v) steps to x+µSt(v), and if he loses, the walk proceeds down to
x− νSt(v). Suppose Min fixes some strategy and let π = v1, . . . , vn be a finite prefix of the
play that is generated by the two strategies. Suppose the walk following π reaches x ∈ IR.
Then, using the terminology of the previous section, we have x = x0 −G(π) · ν + I(π) · µ.
Lemma 12 shows that the walk always stays above 1, thus x ≥ 1. Combining with Lemma 11,
we get ν+µ

ν·µ (1 − x0) + P + (n − 1) · MP(RT
ν

ν+µ (G)) ≤ E(π). Thus, dividing both sides by n
and letting n → ∞, since x0 and P are constants depending only on K we conclude that
this strategy guarantees payoff at least MP(RT

ν
ν+µ (G)) > −ε. J

We continue to prove Lemma 12.

Proof of Lemma 12. Note that τr2+r(1−r)
τ(1−r)2+r(1−r) is well-defined for r ∈ (0, 1). Fix τ ∈ [0, 1]

and r ∈ (0, 1). Let K > τr2+r(1−r)
τ(1−r)2+r(1−r) . Observe that the two inequalities in Point 4 are

equivalent to:

rx−rs − rx ≤ τr(1− r)βxs+ (1− τ)r(1− r)βxsrx−rs,
rx − rx+K(1−r)s ≥ r(1− r)βxs− (1− τ)r(1− r)βxsrx+K(1−r)s.

G. Avni, T. A. Henzinger, and Ð. Žikelić 11:11

Point 3 combined with monotonicity in the above expressions, implies that we can replace
the last term in each of them by r in order to obtain stronger inequalities. Therefore, it
suffices for (rx)x≥1 and (βx)x≥1 to satisfy

rx−rs − rx ≤ τr(1− r)βxs+ (1− τ)r(1− r)βxsr,
rx − rx+K(1−r)s ≥ r(1− r)βxs− (1− τ)r(1− r)βxsr,

which is equivalent to

rx−rs − rx ≤ r(1− r)βxs[τ + (1− τ)r],
rx − rx+K(1−r)s ≥ r(1− r)βxs[1− (1− τ)r]. (1)

We seek (rx)x≥1 and (βx)x≥1 in the form rx = γx−1 + (1− γx−1)r and βx = βγx−1 for some
γ, β ∈ (0, 1). Note that this choice ensures Points 1 and 3. Therefore, we just need to show
that we can find γ, β ∈ [0, 1] for which the inequalities in (1) hold for any s ∈ S. Substituting
rx and βx in terms of γ and β, the inequalities in (1) reduce to

rx−rs − rx = γx−1(γ−rs − 1)(1− r)
?
≤ βγx−1r(1− r)s[τ + (1− τ)r],

rx − rx+K(1−r)s = γx−1(1− γK(1−r)s)(1− r)
?
≥ βγx−1r(1− r)s[1− (1− τ)r].

First, when s = 0, both sides of both inequalities are equal to 0 so both inequalities clearly
hold. Recall that S is a finite set of non-negative strengths. Thus, when s > 0, it takes
values in 0 < s1 ≤ . . . ≤ sn, and the above inequalities are equivalent to

γ ≥
(
1 + βrs[τ + (1− τ)r]

)− 1
rs ,

γ ≤
(
1− βrs[1− (1− τ)r]

) 1
K(1−r)s . (2)

Since both of these expressions are in (0, 1), to conclude that γ, β ∈ (0, 1) exist, it suffices to
show that there is some β ∈ (0, 1) such that

max
s∈{s1,...,sn}

(
1 + βrs[τ + (1− τ)r]

)− 1
rs ≤ min

s∈{s1,...,sn}

(
1− βrs[1− (1− τ)r]

) 1
K(1−r)s . (3)

Note that the LHS of (3) is monotonically increasing in s > 0 whereas the RHS is monoton-
ically decreasing in s > 0, therefore it suffices to find β ∈ (0, 1) for which(

1 + βrsn[τ + (1− τ)r]
)− 1

rsn ≤
(
1− βrs1[1− (1− τ)r]

) 1
K(1−r)s1 . (4)

By Taylor’s theorem (1 + y)α = 1 + αy + O(y2), so Taylor expanding both sides of (4) in
β > 0 we get(

1 + βrsn[τ + (1− τ)r]
)− 1

rsn = 1− β[τ + (1− τ)r] +O(β2),(
1− βrs1[1− (1− τ)r]

) 1
K(1−r)s1 = 1− β r

K(1− r) [1− (1− τ)r] +O(β2).

Therefore, if we show that [τ + (1− τ)r] > r
K(1−r) [1− (1− τ)r], the linear coefficient of β

on the LHS of (4) will be strictly smaller than the linear coefficient of β on the RHS. Thus,
for sufficiently small β > 0, (4) will hold, which concludes the proof of the lemma. This
condition is equivalent to

K >
r[1− (1− τ)r]

(1− r)[τ + (1− τ)r] = r[τr + (1− r)]
(1− r)[τ(1− r) + r] = τr2 + r(1− r)

τ(1− r)2 + r(1− r) ,

which is true by assumption. Thus, Points 1, 3, and 4 hold. In the full version, we show that
Point 2 holds. J

MFCS 2019

11:12 Bidding Mechanisms in Graph Games

4.4 General mean-payoff taxman games
We extend the solution to general games. Recall that the threshold ratio in mean-payoff
games is a necessary and sufficient initial ratio with which Max can guarantee a payoff of at
least 0.

I Theorem 13. Threshold ratios exist in mean-payoff taxman games.

Proof. Consider a mean-payoff taxman game G = 〈V,E,w〉 with taxman parameter τ . If
G is strongly-connected, then by Theorem 9, the threshold ratio in all vertices in G is the
same and is r ∈ (0, 1) for r such that MP(RTF (τ,r)(G)) = 0. If no such r exists, then either
MP(RTF (τ,1)(G)) < 0, in which case the threshold ratios are 1, or MP(RTF (τ,0)(G)) > 0, in which
case the threshold ratios are 0. The proof for general games follows along the same lines as
the proof for reachability games. For each bottom strongly-connected component Si of G
we find the threshold ratio ri ∈ (0, 1) as in the above. We play a “generalized” reachability
game on G as follows. The game ends once the token reaches one of the BSCCs in G. Max
wins the game iff the first time the game enters a BSCC Si, Max’s ratio is greater than ri.
Showing existence of threshold ratios in the generalized game follows the same argument as
for reachability games [13]. J

5 Computational Complexity

We show, for the first time, computational complexity results for taxman games. We study the
following problem, which we call THRESH: given a taxman game G with taxman parameter
τ and a vertex v0 in G, decide whether Th(v0) ≥ 0.5. The correspondence in Theorem 9 gives
the second part of the following theorem, and for the first part, in the full version, we show a
reduction from THRESH to the existential theory of the reals [7].

I Theorem 14. For taxman reachability, parity, and mean-payoff games THRESH is in
PSPACE. For strongly-connected mean-payoff games, THRESH is in NP ∩ coNP.

6 Discussion

We study, for the first time, infinite-duration taxman-bidding games, which span the spectrum
between Richman and poorman bidding. For qualitative objectives, we show that the
properties of taxman coincide with these of Richman and poorman bidding. For mean-payoff
games, where Richman and poorman bidding have an elegant though surprisingly different
mathematical structure, we show a complete understanding of taxman games. Our study of
mean-payoff taxman games sheds light on these differences and similarities between the two
bidding rules. Unlike previous proof techniques, which were ad-hoc, we expect our technique
to be easier to generalize beyond taxman games, where they can be used to introduce concepts
like multi-players or partial information into bidding games.

References
1 M. Aghajohari, G. Avni, and T. A. Henzinger. Determinacy in Discrete-Bidding Infinite-

Duration Games. In In Proc. 30th CONCUR, 2019.
2 K.R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists. Cambridge

University Press, 2011.
3 N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum smart contracts.

IACR Cryptology ePrint Archive, 2016:1007, 2016.

G. Avni, T. A. Henzinger, and Ð. Žikelić 11:13

4 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-Duration Bidding Games. J. ACM,
66(4):31:1–31:29, 2019.

5 G. Avni, T. A. Henzinger, and R. Ibsen-Jensen. Infinite-Duration Poorman-Bidding Games.
In Proc. 14th WINE, volume 11316 of LNCS, pages 21–36. Springer, 2018.

6 J. Bhatt and S. Payne. Bidding Chess. Math. Intelligencer, 31:37–39, 2009.
7 J. F. Canny. Some Algebraic and Geometric Computations in PSPACE. In Proc. 20th STOC,

pages 460–467, 1988.
8 K. Chatterjee. Robustness of Structurally Equivalent Concurrent Parity Games. In Proc. 15th

FoSSaCS, pages 270–285, 2012.
9 K. Chatterjee, A. K. Goharshady, and Y. Velner. Quantitative Analysis of Smart Contracts.

In Proc. 27th ESOP, pages 739–767, 2018.
10 A. Condon. The Complexity of Stochastic Games. Inf. Comput., 96(2):203–224, 1992.
11 M. Develin and S. Payne. Discrete Bidding Games. The Electronic Journal of Combinatorics,

17(1):R85, 2010.
12 A. R. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
13 A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial

Games under Auction Play. Games and Economic Behavior, 27(2):229–264, 1999.
14 A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman Games. Games of No

Chance, 29:439–449, 1996.
15 R. Meir, G. Kalai, and M. Tennenholtz. Bidding games and efficient allocations. Games and

Economic Behavior, 2018. doi:10.1016/j.geb.2018.08.005.
16 S. Muthukrishnan. Ad Exchanges: Research Issues. In Proc. 5th WINE, pages 1–12, 2009.
17 N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game Theory. Cambridge

University Press, 2007.
18 Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-war and the infinity Laplacian.

J. Amer. Math. Soc., 22:167–210, 2009.
19 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. 16th POPL, pages

179–190, 1989.
20 M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 2005.
21 M.O. Rabin. Decidability of Second Order Theories and Automata on Infinite Trees. Transac-

tion of the AMS, 141:1–35, 1969.
22 E. Solan. Continuity of the value of competitive Markov decision processes. Journal of

Theoretical Probability, 16:831–845, 2003.

MFCS 2019

https://doi.org/10.1016/j.geb.2018.08.005

Cluster Deletion on Interval Graphs and Split
Related Graphs
Athanasios L. Konstantinidis
Department of Mathematics, University of Ioannina, Greece
skonstan@cc.uoi.gr

Charis Papadopoulos
Department of Mathematics, University of Ioannina, Greece
charis@cs.uoi.gr

Abstract
In the Cluster Deletion problem the goal is to remove the minimum number of edges of a given
graph, such that every connected component of the resulting graph constitutes a clique. It is known
that the decision version of Cluster Deletion is NP-complete on (P5-free) chordal graphs, whereas
Cluster Deletion is solved in polynomial time on split graphs. However, the existence of a
polynomial-time algorithm of Cluster Deletion on interval graphs, a proper subclass of chordal
graphs, remained a well-known open problem. Our main contribution is that we settle this problem
in the affirmative, by providing a polynomial-time algorithm for Cluster Deletion on interval
graphs. Moreover, despite the simple formulation of the algorithm on split graphs, we show that
Cluster Deletion remains NP-complete on a natural and slight generalization of split graphs
that constitutes a proper subclass of P5-free chordal graphs. Although the later result arises from
the already-known reduction for P5-free chordal graphs, we give an alternative proof showing an
interesting connection between edge-weighted and vertex-weighted variations of the problem. To
complement our results, we provide faster and simpler polynomial-time algorithms for Cluster
Deletion on subclasses of such a generalization of split graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Cluster deletion, interval graphs, split graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.12

Related Version https://arxiv.org/abs/1904.09470

Funding This research is co-financed by Greece and the European Union (European Social Fund –
ESF) through the Operational Programme “Human Resources Development, Education and Lifelong
Learning” in the context of the project “Strengthening Human Resources Research Potential via
Doctorate Research” (MIS–5000432), implemented by the State Scholarships Foundation (IKY).

1 Introduction

In graph theoretic notions, clustering is the task of partitioning the vertices of the graph
into subsets, called clusters, in such a way that there should be many edges within each
cluster and relatively few edges between the clusters. In many applications, the clusters are
restricted to induced cliques, as the represented data of each edge corresponds to a similarity
value between two objects [18, 19]. Under the term cluster graph, which refers to a disjoint
union of cliques, one may find a variety of applications that have been extensively studied
[1, 5, 23]. Here we consider the Cluster Deletion problem which asks for a minimum
number of edge deletions from an input graph, so that the resulting graph is a disjoint union
of cliques. In the decision version of the problem, we are also given an integer k and we want
to decide whether at most k edge deletions are enough to produce a cluster graph.

© Athanasios L. Konstantinidis and Charis Papadopoulos;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:skonstan@cc.uoi.gr
mailto:charis@cs.uoi.gr
https://doi.org/10.4230/LIPIcs.MFCS.2019.12
https://arxiv.org/abs/1904.09470
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Cluster Deletion on Interval Graphs and Split Related Graphs

Although Cluster Deletion is NP-hard on general graphs [24], settling its complexity
status restricted on graph classes has attracted several researchers. Regarding the maximum
degree of a graph, Komusiewicz and Uhlmann [22] have shown an interesting dichotomy
result: Cluster Deletion remains NP-hard on C4-free graphs with maximum degree four,
whereas it can be solved in polynomial time on graphs having maximum degree at most three.
Quite recently, Golovach et al. [14] have shown that it remains NP-hard on planar graphs.
For graph classes characterized by forbidden induced subgraphs, Gao et al. [11] showed that
Cluster Deletion is NP-hard on (C5, P5,bull, fork, co-gem, 4-pan, co-4-pan)-free graphs
and on (2K2, 3K1)-free graphs. Regarding H-free graphs, Grüttemeier et al. [16], showed a
complexity dichotomy result for any graph H consisting of at most four vertices. In particular,
for any graph H on four vertices with H /∈ {P4,paw}, Cluster Deletion is NP-hard on
H-free graphs, whereas it can be solved in polynomial time on P4- or paw-free graphs [16].
Interestingly, Cluster Deletion remains NP-hard on P5-free chordal graphs [3].

On the positive side, Cluster Deletion has been shown to be solved in polynomial
time on cographs [11], proper interval graphs [3], split graphs [3], and P4-reducible graphs
[2]. More precisely, iteratively picking maximum cliques defines a clustering on the graph
which actually gives an optimal solution on cographs (i.e., P4-free graphs), as shown by
Gao et al. in [11]. In fact, the greedy approach of selecting a maximum clique provides a
2-approximation algorithm, though not necessarily in polynomial-time [7]. As the problem
is already NP-hard on chordal graphs [3], it is natural to consider subclasses of chordal
graphs such as interval graphs and split graphs. Although for split graphs there is a simple
polynomial-time algorithm, restricted to interval graphs only the complexity on proper
interval graphs was determined by giving a solution that runs in polynomial-time [3]. Settling
the complexity of Cluster Deletion on interval graphs, was left open [3, 2, 11].

For proper interval graphs, Bonomo et al. [3] characterized their optimal solution by
consecutiveness of each cluster with respect to their natural ordering of the vertices. Based
on this fact, a dynamic programming approach led to a polynomial-time algorithm. It is
not difficult to see that such a consecutiveness does not hold on interval graphs, as potential
clusters might require to break in the corresponding vertex ordering. Here we characterize an
optimal solution of interval graphs whenever a cluster is required to break. In particular, we
take advantage of their consecutive arrangement of maximal cliques and describe subproblems
of maximal cliques containing the last vertex. One of our key observations is that the candidate
clusters containing the last vertex can be enumerated in polynomial time given two vertex
orderings of the graph. We further show that each such candidate cluster separates the graph
in a recursive way with respect to optimal subsolutions, that enables to define our dynamic
programming table to keep track about partial solutions. Thus, our algorithm for interval
graphs suggests to consider a particular consecutiveness of a solution and apply a dynamic
programming approach defined by two vertex orderings. The overall running time of our
algorithm is O(n6) for an interval graph on n vertices.

Furthermore, we complement the previously-known NP-hardness of Cluster Deletion
on P5-free chordal graphs, by providing a proper subclass of such graphs for which we prove
that the problem remains NP-hard. This result is inspired and motivated by the very simple
characterization of an optimal solution on split graphs: either a maximal clique constitutes
the only non-edgeless cluster, or there are exactly two non-edgeless clusters whenever there
is a vertex of the independent set that is adjacent to all the vertices of the clique except one
[3]. Due to the fact that true twins belong to the same cluster in an optimal solution, it is
natural to consider true twins at the independent set, as they are expected not to influence
the solution characterization. Surprisingly, we show that Cluster Deletion remains NP-

A. L. Konstantinidis and C. Papadopoulos 12:3

complete even on such a slight generalization of split graphs. This is achieved by observing
that the constructed graphs given in the reduction for P5-free graphs [3], constitute such
split-related graphs. However, here we give a different reduction that highlights an interesting
connection between edge-weighted and vertex-weighted split graphs. We then study two
different classes of such generalization of split graphs that can be viewed as the parallel of
split graphs that admit disjoint clique-neighborhood and nested clique-neighborhood. For
Cluster Deletion we provide polynomial-time algorithms on both classes of graphs. In
particular, for the former case, a polynomial-time algorithm is already known and is achieved
through computing a minimizer of submodular functions [3]. Here we provide a simpler and
faster (linear-time) algorithm for Cluster Deletion on such graphs that avoids the usage
of submodular functions minimization.

2 Preliminaries

All graphs considered here are simple and undirected. We refer to Diestel’s classical book
[8] for standard graph terminology that is undefined here. Two adjacent vertices u and v

are called true twins if N [u] = N [v], whereas two non-adjacent vertices x and y are called
false twins if N(u) = N(v). For a set of finite graphs H, we say that a graph G is H-free if
G does not contain an induced subgraph isomorphic to any of the graphs of H.

The problem of Cluster Deletion is formally defined as follows: given a graph
G = (V, E), the goal is to compute the minimum set F ⊆ E(G) of edges such that every
connected component of G−F is a clique. A cluster graph is a P3-free graph, or equivalently,
any of its connected components is a clique. Thus, the task of Cluster Deletion is to
turn the input graph G into a cluster graph by deleting the minimum number of edges. Let
S = C1, . . . , Ck be a solution of Cluster Deletion such that G[Ci] is a clique. In such
terms, the problem can be viewed as a vertex partition problem into C1, . . . , Ck. Each Ci

is simple called cluster. Edgeless clusters, i.e., clusters containing exactly one vertex, are
called trivial clusters. The edges of G are partitioned into internal and external edges: an
internal edge uv has both its endpoints u, v ∈ Ci in the same cluster Ci, whereas an external
edge uv has its endpoints in different clusters u ∈ Ci and v ∈ Cj , for i 6= j. Then, the goal
of Cluster Deletion is to minimize the number of external edges which is equivalent to
maximize the number of internal edges. We write S(G) to denote an optimal solution for
Cluster Deletion of the graph G, that is, a cluster subgraph of G having the maximum
number of edges. Given a solution S(G), the number of edges incident only to the same
cluster, that is the number of internal edges, is denoted by |S(G)|.

For a clique C, we say that a vertex x is C-compatible if C \ {x} ⊆ N(x). We start with
few preliminary observations regarding twin vertices. Notice that for true twins x and y, if x

belongs to any cluster C then y is C-compatible.

I Lemma 1 ([3]). Let x and y be true twins in G. Then, in any optimal solution x and y

belong to the same cluster.

The above lemma shows that we can contract true twins and look for a solution on a
vertex-weighted graph that does not contain true twins. Notice, however, that the weights
on the vertices imply weights on the edges of the graph, as they contribute to the total cost
of external and internal edges in a solution. Even though false twins cannot be grouped into
the same cluster as they are non-adjacent, we can actually disregard one of the false twins
whenever their neighborhood forms a clique.

MFCS 2019

12:4 Cluster Deletion on Interval Graphs and Split Related Graphs

I Lemma 2. Let x and y be false twins in G such that N(x) = N(y) is a clique. Then, there
is an optimal solution such that y constitutes a trivial cluster.

Proof. Let Cx and Cy be the clusters of x and y, respectively, in an optimal solution such
that |Cx| ≥ 2 and |Cy| ≥ 2. We construct another solution by replacing both clusters by
Cx ∪ Cy \ {y} and {y}, respectively. To see that this indeed a solution, first observe that x

is adjacent to all the vertices of Cy \ {y} because N(x) = N(y), and Cx ∪ Cy \ {y} ⊆ N [x]
forms a clique by the assumption. Moreover, since |Cx| ≥ 2 and |Cy| ≥ 2, we know that
|Cx|+ |Cy| ≤ |Cx||Cy|, implying that the number of internal edges in the constructed solution
is at least as large as the number of internal edges of the optimal solution. J

Moreover, we prove the following generalization of Lemma 1.

I Lemma 3. Let C and C ′ be two clusters of an optimal solution and let x ∈ C and y ∈ C ′.
If y is C-compatible then x is not C ′-compatible.

Proof. Let S be an optimal solution such that C, C ′ ∈ S. Assume for contradiction that x

is C ′-compatible. We show that S is not optimal. Since y is C-compatible, we can move y to
C and obtain a solution Sy that contains the clusters C ∪ {y} and C ′ \ {y}. Similarly, we
construct a solution Sx from S, by moving x to C ′ so that C \{x}, C ′∪{x} ∈ Sx. Notice that
the Sx forms a clustering, since x is C ′-compatible. We distinguish between the following
cases, according to the values |C| and |C ′|.

If |C| ≥ |C ′| then |Sy| > |S|, because
(|C|+1

2
)

+
(|C′|−1

2
)

>
(|C|

2
)

+
(|C′|

2
)
.

If |C| < |C ′| then |Sx| > |S|, because
(|C|−1

2
)

+
(|C′|+1

2
)

>
(|C|

2
)

+
(|C′|

2
)
.

In both cases we reach a contradiction to the optimality of S. Therefore, x is not C ′-
compatible. J

I Corollary 4. Let C be a cluster of an optimal solution and let x ∈ C. If there is a vertex
y that is C-compatible and N [y] ⊆ N [x], then y belongs to C.

3 Polynomial-time algorithm on interval graphs

Here we present a polynomial-time algorithm for the Cluster Deletion problem on interval
graphs. A graph is an interval graph if there is a bijection between its vertices and a family
of closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals intersect. Such a bijection is called an interval representation of the
graph. We identify the intervals of the given representation with the vertices of the graph,
interchanging these notions appropriately. Whether a given graph is an interval graph can
be decided in linear time and if so, an interval representation can be generated in linear
time [10, 13]. Notice that every induced subgraph of an interval graph is an interval graph.

Let G be an interval graph. Instead of working with the interval representation of G,
we consider its sequence of maximal cliques. It is known that a graph G with p maximal
cliques is an interval graph if and only if there is an ordering K1, . . . , Kp of the maximal
cliques of G, such that for each vertex v of G, the maximal cliques containing v appear
consecutively in the ordering (see e.g., [10, 13]). A path P = K1 · · ·Kp following such an
ordering is called a clique path of G. Notice that a clique path is not necessarily unique
for an interval graph. Also note that an interval graph with n vertices contains at most n

maximal cliques. By definition, for every vertex v of G, the maximal cliques containing v

form a connected subpath in P.
Given a vertex v, we denote by Ka(v), . . . , Kb(v) the maximal cliques containing v with

respect to P, where Ka(v) and Kb(v) are the first (leftmost) and last (rightmost) maximal

A. L. Konstantinidis and C. Papadopoulos 12:5

cliques containing v. Notice that a(v) ≤ b(v) holds. Moreover, for every edge of G there is a
maximal clique Ki of P that contains both endpoints of the edge. Thus, two vertices u and
v are adjacent if and only if a(v) ≤ a(u) ≤ b(v) or a(v) ≤ b(u) ≤ b(v).

For a set of vertices U ⊆ V , we write a-min U and a-max U to denote the minimum and
maximum value, respectively, among all a(u) with u ∈ U . Similarly, b-min U and b-max U

correspond to the minimum and maximum value, respectively, with respect to b(u).
With respect to the Cluster Deletion problem, observe that for any cluster C of a

solution, we know that C ⊆ Ki where Ki ∈ P , as C forms a clique. A vertex y is said to be
guarded by two vertices x and z if min{a(x), a(z)} ≤ a(y) and b(y) ≤ max{b(x), b(z)} hold.
For a clique C, observe that y is C-compatible if and only if there exists a maximal clique
Ki such that C ⊆ Ki with a(y) ≤ i ≤ b(y). Observe that the following statement generalizes
Corollary 4, in the sense that the neighborhood of the guarded vertex y is not necessarily
contained in the neighborhood of x or z.

I Lemma 5. Let x, y, z be three vertices of G such that y is guarded by x and z. If x and z

belong to the same cluster C of an optimal solution and y is C-compatible then y ∈ C.

Let v1, . . . , vn be an ordering of the vertices such that b(v1) ≤ · · · ≤ b(vn). For every
vi, vj with b(vi) ≤ b(vj), we define the following set of vertices:

Vi,j = {v ∈ V (G) : min{a(vi), a(vj)} ≤ a(v) and b(v) ≤ b(vj)} .

That is, Vi,j contains all vertices that are guarded by vi and vj . We write a(i, j) to denote
the value of min{a(vi), a(vj)} and we simple write Ka(j) and Kb(j) instead of Ka(vj) and
Kb(vj). Notice that for a neighbor u of vj with u ∈ Vi,j , we have either a(vj) ≤ a(u) or
a(vi) ≤ a(u) ≤ a(vj). This means that all neighbors of vj that are totally included (i.e., all
vertices u such that a(vj) ≤ a(u) ≤ b(u) ≤ b(vj)) belong to Vi,j for any vi with b(vi) ≤ b(vj).
To distinguish such neighbors of vj , we define the following sets (see also Figure 1):

U(j) contains the neighbors u ∈ Vi,j of vj such that a(u) < a(vj) ≤ b(u) ≤ b(vj)
(neighbors of vj in Vi,j that partially overlap vj).
M(j) contains the neighbors w ∈ Vi,j of vj such that a(vj) ≤ a(w) ≤ b(w) ≤ b(vj)
(neighbors of vj that are totally included within vj).

In the forthcoming arguments, we restrict ourselves to the graph induced by Vi,j . It is
clear that the first maximal clique that contains a vertex of Vi,j is Ka(i,j), whereas the last
maximal clique is Kb(j). For two vertices vi, vj with b(vi) ≤ b(vj), we define the following:

Ai,j is the value of an optimal solution for Cluster Deletion of the graph G[Vi,j].
To ease the notation, when we say a cluster of Ai,j we mean a cluster of an optimal solution
of G[Vi,j]. Notice that A1,n is the desired value for the whole graph G, since V1,n = V (G).

Our task is to construct the values for Ai,j by taking into account all possible clusters
that contain vj . To do so, we show that (i) the number of candidate clusters containing vj

in Ai,j is polynomial and (ii) each such candidate cluster containing vj separates the graph
in a recursive way with respect to optimal subsolutions.

Observe that if vivj ∈ E(G) then vi ∈ U(j) if and only if a(vi) < a(vj), whereas vi ∈M(j)
if and only if a(vj) ≤ a(vi); in the latter case, it is not difficult to see that Vi,j = M(j)∪{vj}.
Thus, whenever vi ∈ M(j) holds, we have Vi,j = Vj,j . The candidates of a cluster of Ai,j

containing vj lie among U(j) and M(j). Let us show with the next two lemmas that we can
restrict ourselves into a polynomial number of such candidates. To avoid repeating ourselves,
in the forthcoming statements we let vi, vj be two vertices with b(vi) ≤ b(vj).

MFCS 2019

12:6 Cluster Deletion on Interval Graphs and Split Related Graphs

vj

vi

M [t]

KtKa(j) Kb(j)

M(j)

vj

M [t]

uq

u1

U [t]
U(j)

vi

Ka(i) Ka(j) Kt Kb(j)

M(j)

Figure 1 Illustrating the sets M(j) and U(j) for vj . The left part shows the case in which
vi ∈ M(j) (or, equivalently, Vi,j = Vj,j), whereas the right part corresponds to the case in which
a(vi) < a(vj).

I Lemma 6. Let C be a cluster of Ai,j containing vj . If there is a vertex w ∈M(j) such that
w ∈ C then there is a maximal clique Kt with a(vj) ≤ t ≤ b(vj) such that Kt ∩M(j) ⊆ C

and C ∩M(j) ⊆ Kt.

Proof. Observe that w ∈ M(j) implies a(vj) ≤ a(w) ≤ b(w) ≤ b(vj). Since vj , w ∈ C, we
know that there is a maximal clique Kt for which C ⊆ Kt with a(vj) ≤ a(w) ≤ t ≤ b(w) ≤
b(vj). We show that all other vertices of Kt ∩M(j) are guarded by vj and w. Notice that
for every vertex y ∈ M(j) we already know that a(vj) ≤ a(y) and b(y) ≤ b(vj). Thus,
for every vertex y ∈ M(j) we have a(vj) = min{a(vj), a(w)} ≤ a(y) and b(y) ≤ b(vj) =
max{b(vj), b(w)}. This means that all vertices of Kt ∩M(j) \ {w} are guarded by vj and w.
Moreover, since C ⊆ Kt, we know that all vertices of Kt∩M(j) are C-compatible. Therefore,
we apply Lemma 5 to every vertex of Kt ∩M(j), showing that Kt ∩M(j) ⊆ C. Furthermore,
there is no vertex of M(j) \Kt that belongs to C, because C ⊆ Kt. J

By Lemma 6, we know that we have to pick the entire set Kt ∩M(j) for constructing
candidates to form a cluster that contains vj and some vertices of M(j). As there are at
most n choices for Kt, we get a polynomial number of such candidate sets. We next show
that we can construct a polynomial number of candidate sets that contain vj and vertices of
U(j). For doing so, we consider the vertices of U(j) increasingly ordered with respect to their
first maximal clique. More precisely, let U(j)≤a = (u1, . . . , u|U(j)|) be an increasingly order
of the vertices of U(j) such that a(u1) ≤ · · · ≤ a(u|U(j)|) (see the right part of Figure 1).

I Lemma 7. Let C be a cluster of Ai,j containing vj and let uq ∈ U(j)≤a.If uq ∈ C then
every vertex of {uq+1, . . . , u|U(j)|} that is C-compatible belongs to C.

Proof. Let u be a vertex of {uq+1, . . . , u|U(j)|}. We show that u is guarded by uq and vj .
By the definition of U(j)≤a, we know that a(uq) < a(u) < a(vj). Moreover, observe that
b(u) ≤ b(vj) holds by the fact that u ∈ Vi,j and b(uq) ≤ b(vj). Thus, we apply Lemma 5 to
u, because uq, vj ∈ C and u is C-compatible, showing that u ∈ C as desired. J

For a(vj) ≤ t ≤ b(vj), let M [t] = Kt ∩M(j). Observe that each M [t] may be an empty
set. On the part M(j), all vertices are grouped into the sets M [a(vj)], . . . , M [b(vj)]. Similar
to the group M [t], let U [t] = U(j) ∩Kt. Then, all vertices of U [t] are {vj , M [t]}-compatible
and all vertices of M [t] are {vj , U [t]}-compatible. Figure 1 depicts the corresponding sets.

I Lemma 8. Let C be a cluster of Ai,j containing vj . Then, there is a(vj) ≤ t ≤ b(vj) such
that M [t] ⊆ C.

A. L. Konstantinidis and C. Papadopoulos 12:7

All vertices of a cluster C containing vj belong to U(j) ∪M(j). Thus, C \ {vj} can be
partitioned into C ∩U(j) and C ∩M(j). Also notice that C ⊆ Kt for some a(vj) ≤ t ≤ b(vj).
Combined with the previous lemmas, we enumerate all such subsets C of U(j) ∪M(j) in
polynomial-time. In particular, we first build all candidates for C ∩M(j), which are exactly
the sets M [t] by Lemmas 6 and 8. Then, for each of such candidate M [t], we apply Lemma 7
to construct all subsets containing the last q vertices of U [t]≤a. Thus, there are at most n2

candidate sets from the vertices of U(j) ∪M(j) that belong to the same cluster with vj .

3.1 Splitting into partial solutions
We further partition the vertices of M(j). Given a pivot group M [t], we consider the vertices
that lie on the right part of M [t]. More formally, for a(vj) ≤ t < b(vj), we define the set
Bj(t) =

((
Kt+1 ∪ · · · ∪Kb(j)

)
\Kt

)
∩M(j). The reason of breaking the vertices of the part

M(j) into sets Bj(t) is the following.

I Lemma 9. Let C be a cluster of Ai,j such that {vj} ∪M [t] ⊆ C, for a(vj) ≤ t ≤ b(vj).
Then, for any two vertices x ∈ Vi,j \ Bj(t) and y ∈ Bj(t), there is no cluster of Ai,j that
contains both of them.

Proof. First observe that y ∈ (M [t + 1] ∪ · · · ∪M [b(j)]) \M [t]. We consider two cases for x,
depending on whether x ∈M(j) or not. Assume that x ∈M(j). If x ∈M [t], then x ∈ C by
Lemma 6, which implies that y /∈ C. If x ∈ (M [a(vj)]∪· · ·∪M [t− 1])\M [t] then xy /∈ E(G).
Now assume that x ∈ U(j). If x ∈ C, then y does not belong to Kt, so that y /∈ C. If
x /∈ C, then we show that x does not belong to a cluster with any vertex of Bj(t). Assume
for contradiction that x belongs to a cluster C ′ such that C ′ ∩Bj(t) 6= ∅. This means that
x ∈ Ki′ with t < i′ ≤ b(vj) and C ′ ⊆ Ki′ . Then vj is C ′-compatible and x is C-compatible,
as both x and vj belong to Kt ∩Ki′ . Therefore, by Lemma 3 we reach a contradiction to x

and vj belonging to different clusters. J

For a non-empty set S ⊆ V (G), we write A(S) to denote the following solutions:
A(S) = Ai′,j′ , where vi′ is the vertex of S having the smallest a(vi′) and vj′ is the vertex
of S having the largest b(vj′).

Having this notation, observe that Ai,j = A(Vi,j), for any vi, vj with b(vi) ≤ b(vj). However,
it is important to notice that A(S) does not necessarily represent the optimal solution of
G[S], since the vertices of S may not be consecutive with respect to Vi′,j′ , so that S is
only a subset of Vi′,j′ in the corresponding solution Ai′,j′ for A(S). Under the following
assumptions, with the next result we show that for the chosen sets we have S = Vi′,j′ .

I Observation 10. Let Vt = Kt ∩ Vi,j, for every min{a(vi), a(vj)} ≤ t ≤ b(vj). If SL =(
Va(i,j) ∪ · · · ∪ Vt−1

)
\ Vt then SL = Vi′,j′ , where i′ = a-min(SL) and j′ = b-max(SL).

Given the clique path P = K1 · · ·Kp, a clique-index t is an integer 1 ≤ t ≤ p. Let
`(j), r(j) be two clique-indices such that a(i, j) ≤ `(j) ≤ a(vj) and a(vj) ≤ r(j) ≤ b(vj). We
denote by `r(j) the minimum value of a(v) among all vertices of v ∈ Kr(j) ∩ Vi,j having
`(j) ≤ a(v). Clearly, `(j) ≤ `r(j) ≤ r(j) holds. A pair of clique-indices (`(j), r(j)) is called
admissible pair for a vertex vj , if both a(i, j) ≤ `(j) ≤ a(vj) and a(vj) ≤ r(j) ≤ b(vj) hold.
Given an admissible pair (`(j), r(j)), we define the following set of vertices:

C(`(j), r(j)) = {z ∈ Vi,j : `r(j) ≤ a(z) and r(j) ≤ b(z)}.

Observe that all vertices of C(`(j), r(j)) induce a clique in G, because C(`(j), r(j)) ⊆ Kr(j).
We say that a vertex u crosses the pair (`(j), r(j)) if a(u) < `r(j) and r(j) ≤ b(u). It is not

MFCS 2019

12:8 Cluster Deletion on Interval Graphs and Split Related Graphs

difficult to see that for a vertex u that crosses (`(j), r(j)), we have u /∈ C(`(j), r(j)). We
prove the following properties of C(`(j), r(j)).

I Lemma 11. Let vi′ , vj′ be two vertices with b(vi′) ≤ b(vj′) and let (`, r) be an admissible
pair for vj′ . Moreover, let vi, vj be the vertices of Vi′,j′ \C(`, r) having the smallest a(vi) and
largest b(vj), respectively. If the vertices of C(`, r) form a cluster in Ai′,j′ then the following
statements hold:
1. Vi,j = Vi′,j′ \ C(`, r).
2. If a(x) ≤ r ≤ b(x) holds for a vertex x ∈ Vi,j, then x crosses (`, r).
3. Every vertex of Bj(r) does not belong to the same cluster with any vertex of Vi,j \Bj(r).
4. Every vertex that crosses (`, r) does not belong to the same cluster with any vertex y ∈ Vi,j

having `r ≤ a(y).

Notice that the number of admissible pairs (`(j), r(j)) for vj is polynomial because there
are at most n choices for each clique-index. Moreover, if vi ∈M(j) then `(j) = a(vj). A pair
of clique-indices (`, r) with ` ≤ r is called bounding pair for vj if either b(vj) < r holds, or vj

crosses (`, r). Given a bounding pair (`, r) for vj , we write (`(j), r(j)) < (`, r) to denote the
set of admissible pairs (`(j), r(j)) for vj with the following restriction on r(j):

r(j) ≤ b(vj), whenever b(vj) < r holds, and r(j) < `, whenever b(vj) ≥ r holds.
Observe that if b(vj) < r holds, then (`(j), r(j)) < (`, r) describes all admissible pairs for
vj with no restriction, regardless of `. On the other hand, if ` < a(vj) and r ≤ b(vj) hold,
then (`, r) is not a bounding pair for vj . In fact, we will show that the latter case will
not be considered in our partial subsolutions. Intuitively, an admissible pair (`(j), r(j))
corresponds to the cluster containing vj , whereas a bounding pair (`, r) forbids vj to select
certain vertices as they have already formed a cluster that does not contain vj (observe that
vj ∈ C(`(j), r(j)) and vj /∈ C(`, r)).

Our task is to construct subsolutions over all admissible pairs for vj with the property
that the vertices of C(`(j), r(j)) form a cluster. To do so, we consider a vertex vj′ with
b(vj) ≤ b(vj′) and a cluster containing vj′ . Let (`, r) be an admissible pair for vj′ such that
a(vj) ≤ r ≤ b(vj). The previous results suggest to consider solutions in which the vertices of
C(`, r) form a cluster in an optimal solution. It is clear that if ` ≤ a(vj) then vj ∈ C(`, r).
Moreover, if b(vj) < r, then no vertex of Vi,j belongs to C(`, r). Thus, we need to construct
solutions for Ai,j , whenever (`, r) is a bounding pair for vj and the vertices of C(`, r) form a
cluster. Such an idea is formally described as follows: Let (`, r) be a bounding pair for vj .

Ai,j [`, r] is the value of an optimal solution for Cluster Deletion of the graph G[Vi,j]−
(C(`, r) ∪Bj(r)) such that the vertices of C(`, r) form a cluster.

Hereafter, we assume that Bj(t) with t ≥ b(vj) corresponds to an empty set. Figure 2
illustrates a partition of the vertices with respect to Ai,j [`, r]. Notice that an optimal solution
Ai,j without any restriction is described in terms of Ai,j [`, r] by Ai,j [1, b(vj) + 1], since no
vertex of Vi,j belongs to C(1, b(vj) + 1). Therefore, A1,n[1, n + 1] corresponds to the optimal
solution of the whole graph G. As base cases, observe that if Vi,j contains at most one vertex
then Ai,j [`, r] = 0 for all bounding pairs (`, r). For a set C, we write |C|2 to denote the
number

(|C|
2
)
. With the following result, we describe a recursive formulation for the optimal

solution Ai,j [`, r], which is our central tool for our dynamic programming algorithm.

I Lemma 12. Let (`, r) be a bounding pair for vj. Then,

Ai,j [`, r] = max
(`(j),r(j))<(`,r)

(A(VL)[`(j), r(j)] + |C(`(j), r(j))|2 + A(VR)[`, r]) ,

where VL = Vi,j \ (C(`(j), r(j)) ∪Bj(r(j))) and VR = Bj(r(j)) \ (C(`, r) ∪Bj(r)).

I Theorem 13. Cluster Deletion is polynomial-time solvable on interval graphs.

A. L. Konstantinidis and C. Papadopoulos 12:9

vj

CL

C(`(j), r(j))

L

CR

C(`, r)

R

Bj(r)

K`(j) Ka(j) Kr(j) K` Kr Kb(j)

Figure 2 A partition of the set of vertices given in Ai,j [`, r], where VL = CL ∪L and VR = CR ∪R.
Observe that Bj(r(j)) = R ∪ CR ∪ (C (`, r) ∩ Vi,j) ∪ Bj(r).

4 Cluster Deletion on a generalization of split graphs

A graph G = (V, E) is a split graph if V can be partitioned into a clique C and an
independent set I, where (C, I) is called a split partition of G. Split graphs are characterized
as (2K2, C4, C5)-free graphs [9]. They form a subclass of the larger and widely known graph
class of chordal graphs, which are the graphs that do not contain induced cycles of length 4 or
more as induced subgraphs. In general, a split graph can have more than one split partition
and computing such a partition can be done in linear time [17].

Hereafter, for a split graph G, we denote by (C, I) a split partition of G in which C is a
maximal clique. It is known that Cluster Deletion is polynomial-time solvable on split
graphs [3]. In fact, the algorithm given in [3] is characterized by its simplicity due to the
following elegant characterization of an optimal solution: if there is a vertex v ∈ I such that
N(v) = C \ {w} and w has a neighbor v′ in I then the non-trivial clusters of an optimal
solution are C \ {w} ∪ {v} and {w, v′}; otherwise, the only non-trivial cluster of an optimal
solution is C [3]. Here we study whether such a simple characterization can be extended into
more general classes of split graphs. Due to Lemma 1, it is natural to consider true twins
at the independent set, as they are grouped together in an optimal solution and they are
expected not to influence the solution characterization. Surprisingly, we show that Cluster
Deletion remains NP-complete even on such a slight generalization of split graphs. Before
presenting our NP-completeness proof, let us first show that such graphs form a proper
subclass of P5-free chordal graphs. We start by giving the formal definition of such graphs.

I Definition 14. A graph G = (V, E) is called split-twin graph if its vertex set can be
partitioned into C and I such that G[C] is a clique and the vertices of each connected
component of G[I] form true twins in G.

It is clear that in a split-twin graph G the following holds: (i) each connected component of
G[I] is a clique and forms a true-twin set in G, and (ii) contracting the connected components
of G[I] results in a split graph, denoted by G∗. Figure 3 illustrates the induced subgraphs
that are forbidden in a split-twin graph.

I Proposition 15. A graph G is split-twin if and only if it does not contain any of the graphs
C4, C5, P5, 2P3, Ā, X as induced subgraphs.

MFCS 2019

12:10 Cluster Deletion on Interval Graphs and Split Related Graphs

C4 C5 P5 2P3 Ā X

Figure 3 The list of forbidden induced subgraph characterization for split-twin graphs.

Thus by Proposition 15, split-twin graphs form a proper subclass of P5-free chordal
graphs, i.e., of (C4, C5, P5)-free graphs. Now let us show that decision version of Cluster
Deletion is NP-complete on split-twin graphs. This is achieved by observing that the
constructed graphs given in the reduction for P5-free graphs [3], constitute such split-related
graphs. In particular, the reduction shown in [3] comes from the X3C problem: given a
universe X of 3q elements and a collection C = {C1, . . . , C|C|} of 3-element subsets of X,
asks whether there is a subset C ′ ⊆ C such that every element of X occurs in exactly one
member of C ′. The constructed graph G is obtained by identifying the elements of X as a
clique KX and there are |C| disjoint cliques K1, . . . , K|C| each of size 3q corresponding to
the subsets of C and a vertex x of KX is adjacent to all the vertices of Ki if and only if x

belongs to the corresponding subset Ci of Ki. Then, it is not difficult to see that the vertices
of each Ki are true twins and the contracted graph G∗ is a split graph, showing that G is
indeed a split-twin graph. Therefore, by the NP-completeness given in [3], we have:

I Theorem 16. Cluster Deletion is NP-complete on split-twin graphs.

However, here we give a different reduction that highlights an interesting connection
between edge-weighted and vertex-weighted split graphs. In the Edge Weighted Cluster
Deletion problem, each edge of the input graph is associated with a weight and the objective
is to construct a clustered graph having the maximum total (cumulative) weight of edges. As
already explained, we can contract true twins and obtain a vertex-weighted graph as input
for the corresponding Cluster Deletion. Similarly, it is known that for edge-weighted
graphs the corresponding Edge Weighted Cluster Deletion remains NP-hard even
when restricted to particular variations on special families of graphs [3]. In fact, it is known
that Edge Weighted Cluster Deletion remains NP-hard on split graphs even when (i)
all edges inside the clique have weight one, (ii) all edges incident to a vertex w ∈ I have the
same weight q, and (iii) q = |C| [3]. We abbreviate the latter problem by EWCD and denote
by (C, I, k) an instance of the problem where (C, I) is a split partition of the vertices of G

and k is the total weight of the edges in a cluster solution for G. With the following result,
we show an interesting connection between the two variations of the problem when restricted
to split-twin graphs.

I Theorem 17. There exists a polynomial time algorithm that, given an instance (C, I, k)
for EWCD, produces an equivalent instance for Cluster Deletion on split-twin graphs.

Proof. From G, we build a split-twin graph G′ = (C ′ ∪ I ′, E′) by keeping the same clique
C ′ = C, and for every vertex wj ∈ I we apply the following:

We replace wj by q = |C| true twin vertices I ′j (i.e., by a q-clique) such that for any
vertex w′ ∈ I ′j we have NG′(w′) = NG(wj) ∪ (I ′j \ {w′}). That is, their neighbors outside
I ′j are exactly NG(wj). Moreover, the set of vertices I ′1, . . . , I ′|I| form I ′.

By the above construction, it is not difficult to see that G′ is a split-twin graph, since the
graph induced by I ′ is a disjoint union of cliques and two adjacent vertices of I ′ are true

A. L. Konstantinidis and C. Papadopoulos 12:11

twins in G′. Also observe that the construction takes polynomial time because q is at most
n = |V (G)|. We claim that there is an edge weighted cluster solution for G with total weight
at least k if and only if there is a cluster solution for G′ having at least k + |I| ·

(
q
2
)
edges.

Assume that there is a cluster solution S for G with total weight at least k. From S, we
construct a solution S′ for G′. There are three types of clusters in S:
(a) Cluster formed only by vertices of the clique C, i.e., Y ∈ S, where Y ⊆ C. We keep such

clusters in S′. We denote by ta the total weight of clusters of type (a). Notice that since
the weight of edges having both endpoints in C are all equal to one, ta corresponds to
the number of edges in Y .

(b) Cluster formed only by one vertex wj ∈ I, i.e., {wj} ∈ S. In S′ we replace such cluster
by the corresponding clique I ′j having exactly

(
q
2
)
edges. It is clear that the total weight

of such clusters do not contribute to the value of S.
(c) Cluster formed by the vertices y1, . . . , yp, wj , where yi ∈ C and wj ∈ I. As the weights

of the edges between the vertices of yi is one, the total number of weights in such a
cluster is

(
p
2
)

+ p · q. Let tc be the total weight of clusters of type (c). In S′ we replace
wj by the vertices of I ′j and obtain a cluster S′ having

(
p
2
)

+ p · q +
(

q
2
)
number of edges.

Now observe that in S we have ta + tc total weight, which implies ta + tc ≥ k. Thus, in S′

we have at least ta + tc + |I| ·
(

q
2
)
edges, giving the desired bound.

For the opposite direction, assume that there is a solution S′ in G′ having at least
k + |I| ·

(
q
2
)
edges. All vertices of I ′j are true twins and, by Lemma 1, they belong to the

same cluster in S′. Thus, any cluster of S′ has one of the following forms: (i) Y ′, where
Y ′ ⊆ C ′, (ii) I ′j , (iii) I ′j ∪ {y′1, . . . , y′p}, where y′i ∈ C ′. This means that all internal edges
having both endpoints in I ′ contribute to the value of S′ by |I| ·

(
q
2
)
. Moreover, observe that

for any internal edge of S′ of the form y′w′ with y′ ∈ C ′ and w′ ∈ I ′j , we know that there
are exactly q internal edges incident to y′ and the q vertices of I ′j . Thus, internal edges y′w′

of S′ correspond to exactly one internal edge ywj of S having weight q, where y = y′ (recall
that C = C ′) and wj is the vertex of I associated with Ij . Hence, all internal edges outside
each I ′j in S′ correspond to either a weighted internal edge in S or to the same unweighted
edge of C in S. Therefore, there is an edge weighted solution S having weight at least k. J

4.1 Polynomial-time algorithms on subclasses of split-twin graphs
Due to the hardness result given in Theorems 16 and 17, it is natural to consider subclasses
of split-twin graphs related to their analogue subclasses of split graphs. We consider two such
subclasses. The first one corresponds to the split-twin graphs such that the vertices of I have
no common neighbor in the clique, unless they are true or false twins. The second subclass
corresponds to threshold graphs (i.e., split graphs in which the vertices of the independent
set have nested neighborhood) and form the split-twin graphs in which the vertices of I have
a nested neighborhood. We formally define such graphs and give polynomial-time algorithms
for Cluster Deletion. For a vertex x ∈ I we write NC(x) to denote the set N(x) ∩ C.

I Definition 18. A split-twin graph G with partition (C, I) on its vertices is called 1-split-twin
graph if for any two vertices x, y ∈ I, either NC(x) ∩NC(y) = ∅ or NC(x) = NC(y).

It is not difficult to see that in a 1-split-twin graph, any two vertices of I having a
common neighbor in C have the same neighborhood in C. Close related to 1-split-twin
graphs, are the 1-split graphs which are the edge-weighted split graphs in which every vertex
of the independent set is adjacent to exactly one vertex of the clique. It is known that the
(edge-weighted) Cluster Deletion is solved in polynomial-time on 1-split graphs [3]. Let
us explain how to use the algorithm on a 1-split graph to obtain a polynomial-time algorithm

MFCS 2019

12:12 Cluster Deletion on Interval Graphs and Split Related Graphs

on a 1-split-twin graph G = (C, I). Observe that the contracted graph G∗ is 1-split. Let xy

be an edge of G∗. Denote by w(x) and w(y) the weights assigned to x and y that correspond
to the sizes of their true twins classes in G. From the vertex-weighted 1-split graph G∗,
construct an edge-weighted 1-split graph H∗ by removing the vertex weights and for each
edge xy assign weight w(x) · w(y). Then, given a solution of the edge-weighted H∗ taken
from the algorithm of [3], we obtain a solution for Cluster Deletion on G by adding the
internal edges corresponding to each contracted vertex.

Notice, however, that the running time is bounded by the polynomial-time algorithm
of 1-split graphs. In particular the described algorithm of 1-split graphs is accomplished
through a minimizer of a general submodular function provided a given oracle for evaluating
the function value [3]. This means that through such an approach it is unlikely to achieve
a better running time for 1-split-twin graphs, unless there is a faster algorithm with less
number of oracle calls for finding a minimizer of a general submodular function. With our
next result we provide a simpler and faster (linear-time) algorithm for Cluster Deletion
on 1-split-twin graphs that avoids the usage of submodular functions minimization.

I Theorem 19. Cluster Deletion is linear-time solvable on 1-split-twin graphs.

Proof. Let G be a 1-split-twin graph with partition (C, I). First observe that if G is
disconnected then I contains isolated cliques, i.e., true twins having no neighbor in C. Thus
we can restrict ourselves to a connected graph G, since by Lemma 1 each isolated clique is
contained in exactly one cluster of an optimal solution. We now show that all vertices of C

that have a common neighbor in I are true twins. Let u and v be two vertices of C such
that x ∈ N(u) ∩N(v) ∩ I. All vertices of C \ {u, v} are adjacent to both u and v. Assume
that there is a vertex y ∈ I that is adjacent to u and non-adjacent to v. If xy ∈ E(G)
then by the definition of split-twin graphs x and y are true twins which contradicts the
assumption of xv ∈ E(G) and yv /∈ E(G). Otherwise, x and y are non-adjacent and since
NC(x) ∩NC(y) 6= ∅ we reach a contradiction to the definition of 1-split-twin graphs. Thus,
all vertices of C that have a common neighbor in I are true twins.

We partition the vertices of C into true twin classes C1, . . . , Ck, such that each Ci contains
true twins of C. From the previous discussion, we know that any vertex of I is adjacent to
all the vertices of exactly one class Ci; otherwise, there are vertices of different classes in C

that have common neighbor. For a class Ci, we partition the vertices of N(Ci) ∩ I into true
twin classes I1

i , . . . , Iq
i such that |I1

i | ≥ · · · ≥ |I
q
i |.

We claim that in an optimal solution S, the vertices of each class Ij
i with j ≥ 2 constitute

a cluster. To see this, observe first that the vertices of Ij
i , 1 ≤ j ≤ q, are true twins, and by

Lemma 1 they all belong to the same cluster of S. Also, by Lemma 1 we know that all the
vertices of Ci belong to the same cluster of S. Moreover, all vertices between different classes
Ij

i ,I
j′

i are non-adjacent and are Ci-compatible. Since every vertex of Ij
i is non-adjacent to

all the vertices of V (G) \ {Ij
i ∪ Ci}, we know that any cluster of S that contains Ij

i is of
the form either {Ij

i ∪ Ci} or Ij
i . Assume that there is a cluster that contains {Ij

i ∪ Ci} with
j ≥ 2. Then, we substitute the vertices of Ij

i by the vertices of I1
i and obtain a solution of at

least the same size, because |I1
i | ≥ |I

j
i | implies

(|Ci|+|I1
i |

2
)
≥
(|Ci|+|Ij

i
|

2
)
. Thus, all vertices of

each class Ij
i with j ≥ 2 constitute a cluster in an optimal solution S.

This means that we can safely remove the vertices of Ij
i with j ≥ 2, by constructing

a cluster that contains only Ij
i . Hence, we construct a graph G∗ from G, in which there

are only matched pair of k classes (Ci, Ii) such that (i) all sets Ci, Ii are non-empty except
possibly the set Ik, (ii) N(Ci) ∩ I = Ii, (iii) N(Ii) = Ci, (iv) G∗[Ci ∪ Ii] is a clique, and (v)
G∗[C1 ∪ · · · ∪ Ck] is a clique. Our task is to solve Cluster Deletion on G∗, since for the

A. L. Konstantinidis and C. Papadopoulos 12:13

rest of the vertices we have determined their cluster. By Lemma 1, if the vertices of Ci ∪ Cj

belong to the same cluster then the vertices of each Ii and Ij constitute two clusters. Thus,
for each set of vertices Ii we know that either one of Ci ∪ Ii or Ii constitutes a cluster in S.
This boils down to compute a set M of matched pairs (Ci, Ii), having the maximum value∑

(Ci,Ii)∈M

(
|Ci|+ |Ii|

2

)
+
(∑

Cj /∈M |Cj |
2

)
+
∑

Ij /∈M

(
|Ij |
2

)
.

Let (Ci, Ii) and (Cj , Ij) be two pairs of classes such that |Ci|+ |Ii| ≤ |Cj |+ |Ij |. We show
that if (Cj , Ij) /∈ M then (Ci, Ii) /∈ M . Assume for contradiction that (Cj , Ij) /∈ M and
(Ci, Ii) ∈ M . Observe that |Ij | <

∑
Ct /∈M\Cj

|Ct|, because Ij is Cj-compatible. Similarly,
we know that

∑
Ct /∈M\Cj

|Ct| + |Cj | ≤ |Ii|. This however, shows that |Cj | + |Ij | < |Ii|,
contradicting the fact that |Ci|+ |Ii| ≤ |Cj |+ |Ij |. Thus (Cj , Ij) /∈M implies (Ci, Ii) /∈M .

This means that we can consider the k pair of classes (Ci, Ii) in a decreasing order
according to their number of vertices |Ci| + |Ii|. With a simple dynamic programming
algorithm, starting from the largest ordered pair (C1, I1) we know that either (C1, I1) belongs
to M or not. In the former, we add

(|C1|+|I1|
2

)
to the optimal value of (C2, I2), . . . , (Ck, Ik)

and in the latter we know that no pair belongs to M giving a total value of
(∑ |Ci|

2

)
+
∑(|Ii|

2
)
.

By choosing the maximum between the two values, we construct a table of size k needed
for the dynamic programming. Computing the twin classes and the partition (C, I) takes
linear time in the size of G and sorting the pair of classes can be done O(n) time, since∑

(|Ci|+ |Ii|) is bounded by n. Thus, the total running time is O(n + m), as the dynamic
programming for computing M requires O(n) time. Therefore, all steps can be carried out
in linear time for a 1-split-twin graph G. J

I Definition 20. A split-twin graph G with partition (C, I) on its vertices is called threshold-
twin graph if the vertices of I can be ordered w1, . . . , w|I| such that for any wi, wj ∈ I with
i < j, we have NC(wi) ⊆ NC(wj).

For the next result, we prove that there is no P4 in a threshold-twin graph (P4-free graphs
are closed under true twins addition). Thus, by the algorithm given in [11], we have:

I Theorem 21. Cluster Deletion is polynomial-time solvable on threshold-twin graphs.

5 Concluding remarks

It is notable that our algorithm for interval graphs, heavily relies on the linear structure
obtained from their clique paths. Such an observation, leads us to consider few open questions
regarding two main directions. On the one hand, it seems tempting to adjust our algorithm
for other vertex partitioning problems on interval graphs within a more general framework,
as already have been studied for particular graph properties [4, 12, 20, 21, 25]. On the other
hand, it is reasonable to ask whether our approach works for Cluster Deletion on graphs
admitting similar linear structure such as permutation graphs, or graphs having bounded
linear related parameter. Towards the latter direction, observe that Cluster Deletion as
a vertex partitioning problem can be solved in linear time on graphs of bounded treewidth
by using Courcelle’s machinery [6].

Although for other structural parameters it seems rather difficult to obtain similar result,
it is still interesting to settle the complexity of Cluster Deletion on distance hereditary
graphs that admit constant clique-width [15]. In fact, we would like to settle the case in
which from a given cograph we can append degree-one vertices. This comes in conjunction
with the 1-split-twin graphs, as they can be seen as a degree-one extension of a clique.

MFCS 2019

12:14 Cluster Deletion on Interval Graphs and Split Related Graphs

References
1 N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56:89–113,

2004.
2 F. Bonomo, G. Durán, A. Napoli, and M. Valencia-Pabon. A one-to-one correspondence

between potential solutions of the cluster deletion problem and the minimum sum coloring
problem, and its application to P4-sparse graphs. Inf. Proc. Lett., 115:600–603, 2015.

3 F. Bonomo, G. Durán, and M. Valencia-Pabon. Complexity of the cluster deletion problem on
subclasses of chordal graphs. Theor. Comp. Science, 600:59–69, 2015.

4 B. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally checkable
vertex subset and vertex partitioning problems. Theor. Comput. Sci., 511:66–76, 2013.

5 M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In
Proceedings of FOCS 2003, pages 524–533, 2003.

6 B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

7 A. Dessmark, J. Jansson, A. Lingas, E.-M. Lundell, and M. Persson. On the approximability
of maximum and minimum edge clique partition problems. Int. J. Found. Comput. Sci.,
18:217–226, 2007.

8 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics. Springer,
2012.

9 S. Földes and P. L. Hammer. Split graphs. Congressus Numerantium, 19:311–315, 1977.
10 D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal of

Mathematics, 15:835–855, 1965.
11 Y. Gao, D. R. Hare, and J. Nastos. The cluster deletion problem for cographs. Discrete

Mathematics, 313:2763–2771, 2013.
12 M. U. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with

fixed clique-width. Theor. Comp. Science, 299:719–734, 2003.
13 P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval

graphs. Canadian Journal of Mathematics, 16:539–548, 1964.
14 P. A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos.

Parameterized aspects of strong subgraph closure. In Proceedings of SWAT 2018, pages
23:1–23:13, 2018.

15 M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. Int. J.
Found. Comput. Sci., 11:423–443, 2000.

16 N. Grüttemeier and C. Komusiewicz. On the relation of strong triadic closure and cluster
deletion. In Proceedings of WG 2018, pages 239–251, 2018.

17 P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1:275–284, 1981.
18 P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Math. Pro-

gramming, 79:191–215, 1997.
19 J. Hartigan. Clustering Algorithms. Wiley, New York, 1975.
20 P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A. Telle. Generalized graph

clustering: recognizing (p, q)-cluster graphs. In Proceedings of WG 2010, pages 171–183, 2010.
21 I. A. Kanj, C. Komusiewicz, M. Sorge, and E. Jan van Leeuwen. Solving partition problems

almost always requires pushing many vertices around. In Proceedings of ESA 2018, pages
51:1–51:14, 2018.

22 C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded modifications. Discrete
Applied Mathematics, 160:2259–2270, 2012.

23 S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
24 R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied

Mathematics, 144:173–182, 2004.
25 J. A. Telle and A. Proskurowski. Algorithms for Vertex Partitioning Problems on Partial

k-Trees. SIAM J. Discrete Math., 10:529–550, 1997.

Constrained Representations of Map Graphs and
Half-Squares
Hoang-Oanh Le
Berlin, Germany
LeHoangOanh@web.de

Van Bang Le
Universität Rostock, Institut für Informatik, Rostock, Germany
van-bang.le@uni-rostock.de

Abstract
The square of a graph H, denoted H2, is obtained from H by adding new edges between two distinct
vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X, Y, EB)
are the subgraphs of B2 induced by the color classes X and Y , B2[X] and B2[Y]. For a given graph
G = (V, EG), if G = B2[V] for some bipartite graph B = (V, W, EB), then B is a representation
of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph
and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM , 49 (2) (2002) 127-138].

While Chen, Grigni, Papadimitriou proved that any map graph G = (V, EG) has a witness with
at most 3|V | − 6 points, we show that, given a map graph G and an integer k, deciding if G admits
a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of
edge clique partition on planar graphs; until this present paper, the complexity status of edge
clique partition for planar graphs was previously unknown.

We also consider half-squares of tree-convex bipartite graphs and prove the following complexity
dichotomy: Given a graph G = (V, EG) and an integer k, deciding if G = B2[V] for some tree-convex
bipartite graph B = (V, W, EB) with |W | ≤ k points is NP-complete if G is non-chordal dually
chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of
tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases map graph, half-square, edge clique cover, edge clique partition, graph classes

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.13

1 Introduction

Map graphs, introduced and investigated in [5, 6], are intersection graphs of simply-connected
and interior-disjoint regions of the Euclidean plane; each region is homeomorphic to a closed
disc. More precisely, a map of a graph G = (V, EG) is a function M taking each vertex
v ∈ V to a region M(v) in the plane, such that all M(v), v ∈ V , are interior-disjoint,
and two distinct vertices v and v′ of G are adjacent if and only if the boundaries ofM(v)
andM(v′) intersect, even in a point. A map graph is one having a map. Map graphs are
interesting as they generalize planar graphs in a very natural way. Some applications of map
graphs have been addressed in [8]. Papers dealing with hard problems in map graphs include
[4, 9, 10, 11, 13, 14].

In [5, 6], the notion of half-squares of bipartite graphs has been also introduced in order
to give a combinatorial representation of map graphs. The square of a graph H, denoted H2,
is obtained from H by adding new edges between any two vertices at distance two in H.
For a bipartite graph B = (X, Y, EB), the subgraphs of the square B2 induced by the
color classes X and Y , B2[X] and B2[Y], are called the two half-squares of B. For a given
graph G = (V, EG), if G = B2[V] for some bipartite graph B = (V, W, EB), then B is a
representation or a half-root of G and W is the set of points in B. While every graph is a

© Hoang-Oanh Le and Van Bang Le;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 13; pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:LeHoangOanh@web.de
mailto:van-bang.le@uni-rostock.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Constrained Representations of Map Graphs and Half-Squares

half-square of some bipartite graph, it turns out that map graphs are exactly half-squares
of planar bipartite graphs [5, 6]. If G = (V, EG) is a map graph and B = (V, W, EB) is a
planar representation of G, then B is called a witness of G. See Figure 1 for an example.

1 2

34

5 6

G

1 2

6

3

5

4

M 1 2

34

5 6

B

Figure 1 A map graph G, a mapM, and a witness B of G.

It is perhaps important to note at this place that one of the difficulties in recognizing
map graphs is that we do not know the set of points of a witness we are looking for. It is
shown in [5, 6] that an n-vertex graph G = (V, EG) is a map graph if and only if it has a
witness B = (V, W, EB) with |W | ≤ 3n − 6 points, implying that recognizing map graphs
is in NP. Subsequently, Thorup [28] announced that recognizing map graphs is in P by
giving an Ω(n120)-time algorithm for n-vertex input graphs.1 Thorup’s algorithm is very
complex and highly non-combinatorial. Given the very high polynomial degree in Thorup’s
running time, the most discussed problem concerning map graphs is whether there is a faster
recognition algorithm with simpler arguments for map graphs.

One direction in attacking this problem is to consider map graphs with restricted witness.
Structural results and more efficient recognition algorithms for map graphs with restricted
witness will enhance our understanding on map graphs in whole. More generally, let B be a
class of (not necessarily planar) bipartite graphs, the following problem has been discussed
first by Le and Le [18].

B representation
Instance: A graph G = (V, EG).
Question: Does there exist a bipartite graph B = (V, W, EB) in B with G = B2[V]?

Recall that in case B is the class of all planar bipartite graphs, planar representation
is the problem of recognizing map graphs, which admits an Ω(n120)-time algorithm due to
Thorup. Recall also that every map graph has a witness B = (V, W, EB) with |W | ≤ 3|V |− 6
due to Chen et al. [5, 6]. This motivates considering the following problem.

point minimal B representation
Instance: A graph G = (V, EG) and an integer k.
Question: Does there exist a bipartite graph B = (V, W, EB) in B with G = B2[V]

and |W | ≤ k?

In case B is the class of all bipartite graphs, we simply denote the problem by point minimal
representation.

This paper considers the cases where B is one of the classes of (planar) bipartite graphs
of a given girth, of tree-convex bipartite graphs, and of tree-biconvex bipartite graphs. All
terms used are given in the next section.

1 Thorup did not give the running time explicitly, but it is estimated to be roughly Ω(n120) with n being
the vertex number of the input graph; cf. [6].

H.-O. Le and V. B. Le 13:3

Our contributions. We first consider map graphs with witness of large girth and, more
generally, half-squares of bipartite graphs of large girth, and prove the following complexity
dichotomy for minimal point (planar) girth-g representation: Given a (map) graph
G = (V, EG) and an integer k, deciding if G = B2[V] for some (planar) bipartite graph B =
(V, W, EB) of girth at least g with |W | ≤ k points is NP-complete for g ≤ 6 and polynomially
solvable otherwise. The case g ≥ 8 is based on our previous paper [19], and the case g ≤ 6 is
based on a close connection to the well-known NP-complete problems edge clique cover
and edge clique partition. It is perhaps interesting to note that, while recognizing map
graphs is in P due to Thorup, our hardness result in case g = 4 says that the problem
becomes intractable if we ask for a witness with few points. In case g = 6, our result implies
that edge clique partition is NP-complete for planar graphs. (The complexity status
of this problem for planar graphs was previously unknown.) We then consider half-squares
of tree-convex bipartite graphs, and prove the following complexity dichotomy for minimal
point tree-convex representation: Given a graph G = (V, EG) and an integer k,
deciding if G = B2[V] for some tree-convex bipartite graph B = (V, W, EB) with |W | ≤ k

points is NP-complete for non-chordal dually chordal graphs G and solvable in linear time
otherwise. We obtain this result by proving that half-squares of tree-convex bipartite graphs
are exactly the chordal and dually chordal graphs. We also show that minimal point
tree-biconvex representation can be solved in linear time by proving that half-squares
of tree-biconvex bipartite graphs are precisely the double chordal graphs. Our results on
half-squares of tree-(bi)convex bipartite graphs settle the question left open in [18].

Related work. The first restricted representations of map graphs have been considered
in [5, 6] which lead to the so-called k-map graphs; k-map graphs are map graphs having a
witness in which every point has at most k neighbors. It turns out that, for k ≤ 3, k-map
graphs are precisely the planar graphs. 4-map graphs can be recognized in cubic time [1], and
are related to 1-planar graphs [1, 7], a relevant topic in graph drawing. Recognizing k-map
graphs, k ≥ 5, in polynomial time still remains open. (We remark that Thorup’s algorithm
cannot be used to recognize map graphs having witness with additional properties.)

Mnich et al. [25] considered map graphs with outerplanar witness and tree witness, and
showed that such map graphs can be recognized in linear time. Map graphs with witness of
a given girth and, more generally, half-squares of bipartite graphs of a given girth have been
considered in the recent paper [19]. It is shown in that paper that half-squares of (planar)
bipartite graphs of girth at least 8 admit good characterizations, leading to cubic time
recognition algorithms. In [18], half-squares of classical bipartite graphs, such as biconvex,
convex, and chordal bipartite graphs, have been studied. It turns out that half-squares of
biconvex, convex, and chordal bipartite graphs (all are subclasses of tree-(bi)convex bipartite
graphs) are exactly the proper interval, interval, and strongly chordal graphs, respectively.

The paper is organized as follows. All definitions and notion needed are provided in
the next section. Section 3 first collects known results on half-squares of (planar) bipartite
graphs of large girth, and then provides a dichotomy theorem for point minimal girth-g
(planar) representation. Section 4 deals with half-squares of tree-convex and tree-
biconvex bipartite graphs, and provides a dichotomy theorem for point minimal tree-
convex representation. Section 5 concludes the paper with some open problems for
future work.

MFCS 2019

13:4 Constrained Representations of Map Graphs and Half-Squares

2 Preliminaries

All graphs considered are simple and connected. Let G = (V, EG) be a graph with vertex
set V (G) = V and edge set E(G) = EG. A stable set (a clique) in G is a set of pairwise
non-adjacent (adjacent) vertices. The complete graph on n vertices and the cycle with n

vertices are denoted Kn and Cn, respectively. A K3 is also called a triangle. The diamond,
denoted K4 − e, is the graph obtained from the K4 by deleting an edge.

The neighborhood of a vertex v in G, denoted NG(v), is the set of all vertices in G

adjacent to v; if the context is clear, we simply write N(v). A universal vertex v in G is one
with N(v) = V \ {v}, i.e., v is adjacent to all other vertices in G.

Let F be a graph. F -free graphs are those having no induced subgraphs isomorphic to F .
Chordal graphs are precisely the Ck-free graphs, k ≥ 4. A dually chordal graph G is one in
which every connected component H of G admits a spanning tree T such that every maximal
clique of H induces a subtree in T .2 Graphs that are both chordal and dually chordal are
called double chordal. While chordal graphs are closed under taking induced subgraphs,
dually chordal graphs and double chordal graphs are not. Strongly chordal graphs are those
graphs G such that every induced subgraph of G is double chordal. See [15, 24, 27] for more
information on these graph classes. Additional information on dually chordal graphs can
be found in [2]. We will use the well-known facts that chordal and dually chordal graphs,
hence double chordal graphs, can be recognized in linear time [15, 27, 2], and that any
n-vertex chordal graph has at most n maximal cliques and all of them can be listed in linear
time [15, 27].

For a subset W ⊆ V , G[W] is the subgraph of G induced by W , and G−W stands for
G[V \W]. For a vertex v, G − v stands for G − {v}. We will consider map graphs with
large-girth witness and, more generally, half-squares of bipartite graphs of large girth. Here,
the girth of a graph is the minimum length of a cycle in that graph. (Thus, a graph has
girth at least g if and only if it is Ck-free for all k < g.) We will also consider half-squares of
tree-convex bipartite graphs, a problem left open in [18]. A bipartite graph B = (X, Y, EB)
is tree-convex on X if there exists a tree T = (X, ET) such that, for each y ∈ Y , N(y)
induces a subtree in T . Being tree-convex on Y is defined similarly. B is tree-convex if it is
tree-convex on X or tree-convex on Y . B is tree-biconvex if it is both tree-convex on X and
tree-convex on Y . A well-known subclass of tree-biconvex bipartite graphs consists of the
chordal bipartite graphs, i.e., bipartite graphs containing no induced cycle of length at least
six. Liu [21] discusses relationships between tree-convex bipartite graphs and other classical
classes of bipartite graphs.

point minimal B representation is related to two well-studied problems. An edge
clique cover of a graph G is a family of cliques C in G such that every edge of G is contained
in one or more cliques in C. An edge clique partition of G is an edge clique cover C of G such
that every edge of G is contained in exactly one clique in C. The two well-studied problems
are:

edge clique cover
Instance: A graph G = (V, EG) and an integer k.
Question: Does G have an edge clique cover of size k or less?

2 Dually chordal graphs haven been studied under different names and admit various characterizations.
The chosen definition is dependent on our purpose.

H.-O. Le and V. B. Le 13:5

edge clique partition
Instance: A graph G = (V, EG) and an integer k.
Question: Does G have an edge clique partition of size k or less?

edge clique cover is NP-complete [26, 17], and remains NP-complete on planar graphs [3]
and on complements of bipartite graphs [20]. We will use the fact that edge clique cover is
solvable in linear time on chordal graphs [23]. The monograph [24] provides more information
on edge clique covers.

edge clique partition is NP-complete [26, 16], and remains NP-complete on K4-free
graphs [22]. In contrast to edge clique cover, edge clique partition is NP-complete
on chordal graphs, even on split graphs [30]. edge clique partition on planar graphs has
been considered in [12]; the complexity status of this problem on planar graphs was unknown
until our present work.

Let C be an edge clique cover of a graph G = (V, EG). The vertex-C incidence bipartite
graph of G is BC = (V, C, EB) with EB = {vC | v ∈ V, C ∈ C, v ∈ C}. If C = C(G), the set of
all maximal cliques in G, then BC is called the vertex-clique incidence bipartite graph of G

and usually denoted by BG.

I Fact 1.
(i) For any graph G = (V, EG) and any edge clique cover C of G, G = B2

C[V]. If C is in
addition an edge clique partition, then BC is C4-free.

(ii) For any graph G = (V, EG) and any bipartite graph B = (V, W, EB) with G = B2[V],
C = {NB(w) | w ∈W} is an edge clique cover of G. If B is in addition C4-free, then C
is an edge clique partition of G.

Proof. (i): For all vertices x, y ∈ V we have xy ∈ EG ⇔ x, y ∈ C for some C ∈ C ⇔ xC and
yC are edges of BC for some C ∈ C ⇔ xy ∈ E(B2

C [V]). If C is an edge clique partition, then,
for any two distinct cliques C, C ′ ∈ C, C and C ′ have at most one vertex in common. Hence,
BC is a C4-free.

(ii): If G = B2[V] for some bipartite graph B = (V, W, EB), then any edge of G is in a
clique NB(w) for some w ∈W , hence {NB(w) | w ∈W} is an edge clique cover of G. If, in
addition, B is C4-free, then |NB(w) ∩NB(w′)| ≤ 1 for any two distinct points w, w′ ∈ W .
Hence {NB(w) | w ∈W} is an edge clique partition of G. J

Thus,
point minimal representation and edge clique cover, and
point minimal C4-free representation and edge clique partition

are computationally equivalent.

3 Girth-constrained representations

This section deals with half-squares of (planar) bipartite graphs of large girth. In [18], the
following useful fact has been observed, and used in [19] in discussing half-squares of bipartite
graphs with girth constraints.

I Lemma 1 ([18]). Let G = B2[V] for some bipartite graph B = (V, W, EB). If B has no
induced cycle of length six, then every maximal clique Q in G stems from a star in B, i.e.,
there is a point w ∈W such that Q = NB(w).

We will also use this fact when considering point minimal representations of half-squares
and map graphs.

MFCS 2019

13:6 Constrained Representations of Map Graphs and Half-Squares

3.1 Half-squares of girth-constrained bipartite graphs
Recall that every graph is a half-square of a girth-six bipartite graph (take its subdivision).
Half-squares of bipartite graphs of large girth have been fully characterized as follows.

I Theorem 2 ([19]). Let t ≥ 4 be an integer. The following statements are equivalent for
every graph G = (V, EG).
(i) G is a half-square of a bipartite graph with girth at least 2t;
(ii) G is diamond-free and C`-free for every 4 ≤ ` ≤ t− 1;
(iii) The vertex-clique incidence bipartite graph BG of G has girth at least 2t.

Theorem 2 implies that half-squares of bipartite graphs of large girth can be recognized
in cubic time (cf. [19]).

By definition, every map graph is a half-square of a planar bipartite graph. Though map
graphs can be recognized in polynomial time due to Thorup, no good characterization for
map graphs is known so far. Map graphs of planar bipartite graphs of large girth have been
fully characterized as follows.

I Theorem 3 ([19]). Let t ≥ 4 be an integer. The following statements are equivalent for
every graph G = (V, EG).
(i) G is a map graph having a witness of girth at least 2t;
(ii) G is diamond-free and C`-free for every 4 ≤ ` ≤ t− 1, and the vertex-clique incidence

bipartite graph BG of G is planar;
(iii) The vertex-clique incidence bipartite graph BG of G is planar and has girth at least 2t.

Theorem 3 implies that map graphs with witness of large girth can be recognized in time
O(n2m) (cf. [19]). No good characterization of map graphs with girth-six witness is known
so far. It is also not known whether these map graphs can be recognized efficiently. Note
that every planar graph has a girth-six witness, e.g., its subdivision.

3.2 Point minimal girth-constrained representations
This subsection deals with half-squares of (planar) bipartite graphs with girth constraints.
We first consider the non-planar case.

Recall that, by Fact 1, point minimal representation is equivalent to edge clique
cover, and thus is NP-complete. Also by Fact 1, point minimal C4-free representation
is equivalent to edge clique partition, and thus is NP-complete. Notice that C4-free
bipartite graphs and bipartite graphs of girth at least six coincide.

Now, let t ≥ 4 be an integer and assume G = B2[V] for some bipartite graph B =
(V, W, EB) of girth at least 2t. By Lemma 1, any maximal clique in G is a neighborhood of
some w ∈W , implying |W | ≥ |C(G)|. Thus, by Theorem 2, BG is a minimal point girth-2t

representation for G. Note that, in this case, C(G) can be computed in polynomial time
(cf. [19]), hence we obtain:

I Theorem 4. point minimal girth-at-least-2t representation is NP-complete for
t ≤ 3 and solvable in polynomial time otherwise.

In the remainder of this subsection, we deal with the planar case. We first consider the
girth-four witness case, i.e., no girth condition is made. Recall that any map graph with
n vertices has a witness with at most 3n− 6 points. We are going to show that finding a
witness with minimal number of points is hard. We will use the fact that edge clique
cover remains NP-complete on maximal planar graphs without triangle-separators. More

H.-O. Le and V. B. Le 13:7

precisely, it was shown in [3], that edge clique cover remains NP-complete for plane
triangulations in which every triangle is a face. Observe that such a triangulation does not
contain any 4-clique K4, unless the whole graph is a K4. Thus, we may further assume that
all plane triangulations considered are K4-free.

I Theorem 5. point minimal planar representation is NP-complete, even when
restricted to planar graphs.

Proof. Let G = (V, EG) be a plane triangulation in which every triangle is a face, and let k

be an integer. We will argue that G has an edge clique cover of size k or less if and only if G

has a witness B = (V, W, EB) with |W | ≤ k.
First, assume G has an edge clique cover C with |C| ≤ k. Note that we can assume that

every clique in C is a triangle. Then, as any triangle in G is a face of the plane triangulation G,
the vertex-C incidence bipartite graph BC = (V, C, EB) is planar. Indeed, BC is obtained
from G by

inserting a point wT in the face T , T ∈ C, and
connecting wT with the three vertices of the triangle T , and
deleting all edges of G.

See also Figure 2. By Fact 1, as C is an edge clique cover of G, G = B2
C[V], and by

construction, BC has |C| ≤ k points.
Next, assume that G = H2[V] for some (planar) bipartite graph H = (V, W, EH) with

|W | ≤ k. Then, by Fact 1, NH(w), w ∈ W , form an edge clique cover of G with |W | ≤ k

cliques. (Notice that, in this direction, we do not use the fact that H is planar. Any half-root
of G with at most k points works.) J

1 2

3

4

5

6

7

89

1 2

3

4

5

6

7

89

Figure 2 A triangulation G with the edge clique cover C consisting of the eight triangles
126, 278, 389, 349, 145, 567, 579, and 123, and the planar bipartite graph BC obtained from G and C.

We next consider the girth-six witness case. Recall that every planar graph has a witness
of girth six. We are going to show that finding a witness of girth six with minimal number of
points is hard. In a graph, a set of pairwise edge-disjoint triangles is called an independent
triangle set. In [29], Uehara considered the following problem:

independent triangle set
Instance: A graph G = (V, EG) and an integer k.
Question: Does G have k or more pairwise edge-disjoint triangles?

Uehara [29] proved that the independent triangle set, restricted to plane triangulations,

MFCS 2019

13:8 Constrained Representations of Map Graphs and Half-Squares

is NP-complete. Chang and Müller [3] observed that independent triangle set is NP-
complete even on plane triangulations in which every triangle is a face. (We leave the details
to the full version.) Recall that we may further assume that all such plane triangulations are
K4-free.

I Theorem 6. point minimal planar girth-6 representation is NP-complete, even
when restricted to planar graphs.

Proof. Let G = (V, EG) be a plane triangulation without K4 in which every triangle is a
face, and let k be an integer. We will argue that G has k edge-disjoint triangles if and only if
there is a C4-free planar bipartite graph B = (V, W, EB) with G = B2[V] and |W | ≤ m− 2k.
(As usual, m denotes the edge number of G.)

First, assume G has k edge-disjoint triangles T1, . . . , Tk. We construct a bipartite graph
B = (V, W, EB) as follows; let F be the set of all edges of G not belonging to any triangle
Ti, 1 ≤ i ≤ k. For each 1 ≤ i ≤ k, wi is a point in W corresponding to Ti, and for each
edge e ∈ F , we is a point in W corresponding to e. Then, B is the V -W incidence bipartite
graph. Thus, W = {w1, . . . , wk} ∪ {we | e ∈ F}, and EB = {vwi | v ∈ V, v ∈ Ti, 1 ≤ i ≤
k} ∪ {vwe | v ∈ V, v ∈ e ∈ F}. Obviously, B is planar. Indeed, B is obtained from the plane
triangulation G by

inserting a point wi in the face Ti, 1 ≤ i ≤ k, and connecting wi with the three vertices
of Ti,
subdividing each edge e ∈ F by a point we, and
deleting all edges in T1 ∪ . . . ∪ Tk.

Now, as each of the triangles Ti is a face of the plane triangulation G, B is clearly planar.
Since {T1, . . . , Tk} ∪ F is an edge clique cover of G, G = B2[V]. Since the triangles Ti

are edge-disjoint, |NB(wi) ∩ NB(wj)| ≤ 1 for 1 ≤ i, j ≤ k, i 6= j, and by definition of F ,
|NB(we) ∩NB(w)| ≤ 1 for all e ∈ F , w ∈W \ {we}. That is, B is C4-free. Moreover, B has
|W | = k + |F | = m− 2k points.

Next, assume that G = H2[V] for some (planar) C4-free bipartite graph H = (V, W, EH)
with |W | ≤ m−2k. Among all such bipartite graphs, let H have minimal number of points |W |.
Since G is K4-free, |NH(w)| ≤ 3 for all w ∈W . Since |W | is minimal, |NH(w)| ≥ 2, and every
two points have distinct neighborhoods. Let w1, . . . , wk′ be the degree-3 points in W . Then,
as H is C4-free, NH(wi), 1 ≤ i ≤ k′, are k′ edges-disjoint triangles in G. Since G = H2[V],
G has m = 3k′ + (|W | − k′) = |W |+ 2k′ ≤ m− 2k + 2k′ edges. Therefore, k′ ≥ k. That is,
G has at least k edges-disjoint triangles. J

Since, by Fact 1, point minimal girth-6 representation and edge clique partition
are equivalent, Theorem 6 implies:

I Corollary 7. edge clique partition is NP-complete on planar graphs.

We remark that the complexity of edge clique partition on planar graphs was
previously unknown until this work (cf. [12]). Actually, the proof of Theorem 6 implies that
edge clique partition is NP-complete even for K4-free maximal plane graphs in which
every triangle is a face.

Now, let t ≥ 4 be an integer, and assume that G = B2[V] for some planar bipartite
graph B = (V, W, EB) of girth at least 2t. By Lemma 1, any maximal clique in G is a
neighborhood of some point w ∈W , implying |W | ≥ |C(G)|. Thus, by Theorem 3, BG is a
minimal point planar girth-2t representation for G. Note that, in this case, C(G) can be
computed in polynomial time (cf. [19]), hence, by Theorems 5 and 6 we obtain:

H.-O. Le and V. B. Le 13:9

I Theorem 8. point minimal planar girth-at-least-2t representation is NP-comp-
lete for t ≤ 3 and solvable in polynomial time otherwise.

4 Tree-convex representations

Recall that a bipartite graph B = (X, Y, EB) is tree-convex on X (resp. Y) if there is a
tree T on vertex set X (resp. Y) such that the neighborhood of any vertex y ∈ Y (resp.
x ∈ X) forms a subtree in T . B is tree-biconvex if it is both tree-convex on X and on Y . In
this section we first characterize and recognize half-squares of tree-convex bipartite graphs
and half-squares of tree-biconvex bipartite graphs. Characterizing and recognizing these
half-squares have been left open in [18]. We then discuss the problem of determining such a
representation with minimal number of points.

4.1 Half-squares of tree-convex bipartite graphs

In this section, we characterize half-squares of tree-convex bipartite graphs and of tree-
biconvex bipartite graphs. It turns out that these are precisely the chordal and dually chordal
graphs, and the double chordal graphs, respectively. We will use the following well known
characterizations of chordal graphs which are classical by now (cf. [15, 24]).

I Theorem 9. The following statements are equivalent for any graph G = (V, E):
(i) G is chordal;
(ii) G is the vertex-intersection graph of subtrees in a tree: There are subtrees Tv, v ∈ V ,

of a tree T such that, for any pair of vertices u, v of G, uv ∈ E if and only if Tu and
Tv have a vertex in common;

(iii) G has a clique tree: There is a tree T on the maximal cliques of G with the property
that, for any vertex v of G, the cliques containing v form a subtree of T .

I Lemma 10. Let B = (X, Y, EB) be a bipartite graph. If B is tree-convex on Y , then
B2[X] is chordal and B2[Y] is dually chordal.

Proof. Let B be tree-convex with an associated tree T = (Y, ET) such that, for each v ∈ X,
NB(v) induces a subtree in T .

Then, by Theorem 9 (ii), B2[X] is chordal. We now show that G = B2[Y] is dually
chordal. Note that we may assume that G is connected. Then T is a spanning tree of G.
Indeed, consider an edge y1y2 of T , and let T1 and T2 be the two subtrees of T − y1y2
containing y1 and y2, respectively. Since G = B2[Y] is connected, some vertex x ∈ X must
have neighbors, in B, in both T1 and T2. Since NB(x) is a subtree of T , both y1 and y2
must be neighbors of such a vertex x. Therefore, y1y2 is an edge of B2[V] = G, and hence T

is a spanning tree of G as claimed. Now, consider an arbitrary maximal clique C of G,
and suppose that T [C] is not connected. Let T1, . . . , Tq be the connected components of
T [C]. Let y 6∈ T [C] such that there is a connected component of T − y contains only one of
T1, . . . , Tq, say T1. (As T is a tree, such vertex y exists.) Now, since C is a clique in G, for
each w ∈ T1 and w′ ∈ Ti, 2 ≤ i ≤ q, there is some v ∈ X adjacent in B to both w and w′.
Since T [N(v)] is a subtree, v therefore must be adjacent in B to y. Thus, y is adjacent in G

to every w ∈ T1 and every w′ ∈ Ti, 2 ≤ i ≤ q. This contradicts the fact that C is a maximal
clique in G. Thus, for any maximal clique C of G, T [C] is a subtree in T , hence G is dually
chordal. J

MFCS 2019

13:10 Constrained Representations of Map Graphs and Half-Squares

It follows from Lemma 10 that half-squares of tree-biconvex bipartite graphs are double
chordal. The following lemma characterizes chordal graphs, dually chordal graphs and double
chordal graphs in terms of their vertex-clique bipartite graphs.

I Lemma 11. Let G = (V, EG) be a graph and let BG = (V, C(G), EB) the vertex-clique
incidence bipartite graph of G. Then:
(i) G is chordal if and only if BG is tree-convex on C(G).
(ii) G is dually chordal if and only if BG is tree-convex on V .
(iii) G is double chordal if and only if BG is tree-biconvex.

Proof. (i): Let G be a chordal graph. By Theorem 9 (iii), G has a clique tree T . By definition
of BG and of T , for each v ∈ V , NBG

(v) = {C ∈ C(G) | v ∈ C} induces a subtree in T . That
is, BG is tree-convex on C(G). The conserve follows from Lemma 10 with B = BG, where
X = V and Y = C(G). (Recall that G = B2

G[V] = B2[X].)
(ii): Let G be a (connected) dually chordal graph, and let T = (V, ET) be a spanning tree

of G such that, for each maximal clique C of G, T [C] is a subtree of T . Then, by definition
of BG, for each w ∈W , NBG

(w) is a maximal clique in G, hence NBG
(w) induces a subtree

in T . The converse follows from Lemma 10 with B = BG, where X = C(G) and Y = V .
(iii): This part immediately follows from (i) and (ii). J

By Lemmas 10 and 11 we obtain:

I Theorem 12.
(i) A graph is a half-square of a tree-convex bipartite graph if and only if it is chordal or

dually chordal.
(ii) Half-squares of tree-biconvex bipartite graphs are exactly the double chordal graphs.

Since chordal and dually chordal graphs, hence double chordal graphs, can be recognized
in linear time, we obtain from Theorem 12:

I Corollary 13. Deciding if a given graph is a half-square of a tree-(bi)convex bipartite graph
can be done in linear time.

4.2 Point minimal tree-convex representations
In the remainder of this section, we first show that point minimal tree-biconvex rep-
resentation is solvable in linear time and then prove a complexity dichotomy theorem for
point minimal tree-convex representation.

We will show that, in fact, 〈G, k〉 is a yes-instance for point minimal tree-biconvex
representation if and only if G is double chordal and k is at least the number of max-
imal cliques of G, k ≥ |C(G)|. If we ask for a tree-convex (not necessarily tree-biconvex)
representation, k may be much smaller than |C(G)|. See Figure 3 for an example.

The following fact will be useful in later discussions:

I Lemma 14. Let B = (X, Y, EB) be tree-convex on Y . Then, for each maximal clique C

of B2[X], there is some y ∈ Y with C = NB(y).

Proof. Let T = (Y, ET) be a tree such that, for any x ∈ X, T [NB(x)] is a subtree of T .
Let C be a maximal clique in B2[X]. Let y ∈ T be a vertex with maximum |NB(y) ∩ C|.
Suppose there is some x ∈ C \ NB(y). Let w ∈ T be a neighbor of x in B that is closest
to y in T , and let Tw be the connected component of T − wy′ containing w, where wy′

is the w-edge on the w, y-path in T (possibly y′ = y). Since B is tree-convex on Y with

H.-O. Le and V. B. Le 13:11

1

2

3

4 5

6

7

8

9

10

11

12

1 2 34 567 8 910 1112

w1 w2 w3 w4 w5 w6

1 2 34 567 8 910 1112

w1 w2 w3 w4 w5 w6w7 w8

Figure 3 A double chordal graph G (top left), a point minimal tree-convex, not tree-biconvex,
half-square root B (top right) and a point minimal tree-biconvex half-square root BG of G (bottom).

tree T , NB(x) ⊆ Tw. By the choice of y, there is some x′ ∈ NB(y) ∩ C \NB(w). As B is
tree-convex on Y with tree T , we have NB(x′) ⊆ Ty with Ty is the connected component
of T − yy′′ containing y, where yy′′ is the y-edge on the y, w-path in T (possibly y′′ = w).
Since Tw ∩ Ty = ∅, we have NB(x)∩NB(x′) = ∅. This contradicts the fact that x and x′ are
adjacent in B2[V].

Thus, C ⊆ NB(y), and by the maximality of the clique C, C = NB(y). J

Notice that tree-convex bipartite graphs need not be C6-free, and C6-free bipartite graphs
need not be tree-convex. So, Lemma 14 and Lemma 1 are independent to each other.

I Theorem 15. point minimal tree-biconvex representation is solvable in linear
time.

Proof. Let 〈G, k〉 be an instance for point minimal tree-biconvex representation. By
Theorem 12 (ii) we may assume that G = (V, EG) is double chordal. Let B = (V, W, EG) be
an arbitrary tree-biconvex bipartite graph with G = B2[V]. By Lemma 14, every maximal
clique C of G is the neighborhood NB(w) for some w ∈W , implying |W | ≥ |C(G)|. Therefore,
the vertex-clique incidence bipartite graph BG of G (which is tree-biconvex by Lemma 11
(iii)) is a point optimal tree-biconvex half-root of G. That is, 〈G, k〉 is a yes-instance if and
only if G is double chordal and k ≥ |C(G)|.

Finally, recall that double chordal graphs can be recognized in linear time, and that all
maximal cliques of an n-vertex chordal graph (there are at most n) can be computed in
linear time (and so BG can be constructed in linear time, too). J

We now are providing a dichotomy for point minimal tree-convex representation.
We first begin with the hardness case.

I Lemma 16. point minimal tree-convex representation is NP-complete, when
restricted to non-chordal dually chordal input graphs.

Proof. Given an instance 〈G = (V, EG), k〉 of point minimal representation, construct
an instance 〈G′, k′〉 for point minimal tree-convex representation as follows.

G′ is obtained from G by adding a new vertex u and all edges between u and all vertices
of G, i.e., u is a universal vertex of G′;
k′ := k.

MFCS 2019

13:12 Constrained Representations of Map Graphs and Half-Squares

Suppose that G = B2[V] for some bipartite graph B = (V, W, EB) with |W | ≤ k. Consider
B′ = (V ′, W ′, EB′) with V ′ = V ∪ {u}, W ′ = W and EB′ = EB ∪ {uw | w ∈W}. Then it is
easy to see that G′ = B′2[V ′]. Notice, moreover, that G′ is dually chordal (as u is a universal
vertex of G′), and B′ is tree-convex (with a star T = (V, {uv | v ∈ V })).

Conversely, if G′ = H2[V ′] for some bipartite graph H = (V ′, W, EH) with |W | ≤ k′,
regardless tree-convex or not, then clearly G = B2[V], where B = H − u with at most k = k′

points.
Since point minimal representation (viz., clique edge cover) is NP-complete on

non-chordal graphs, point minimal tree-convex representation is NP-complete, when
restricted to non-chordal dually chordal graphs. J

For the efficient solvable cases, we need the following characterization of dually chordal
graphs which is slightly more flexible than the one stated in Lemma 11 (ii), and can be
proved along the same line. (Notice that the characterization of chordal and double chordal
graphs stated in Lemma 11 (i) and (iii), respectively, does not admit this flexibility.)

I Lemma 17. Let G = (V, EG) be a graph and let C be an edge clique cover of G in which
every member is a maximal clique. Let BC = (V, C, EB) be the vertex-C incidence bipartite
graph of G. Then G is dually chordal if and only if BC is tree-convex on V .

Notice that any edge clique cover can be modified in an obvious way to another one of
the same size that consists of maximal cliques only.

I Theorem 18. point minimal tree-convex representation is NP-complete for non-
chordal dually chordal inputs, and solvable in linear time otherwise.

Proof. Let 〈G, k〉 be an instance for point minimal tree-convex representation. By
Theorem 12, we may assume that G = (V, EG) is chordal or dually chordal (otherwise, the
output is ‘no’ as G does not have a tree-convex representation). Recall that chordal, as well
as dually chordal graphs can be recognized in linear time.

By Lemma 16, it remains to consider the case in which G is chordal. The following
procedure decides in linear time if G has a tree-convex representation with at most k points
and, if so, outputs such one.

(1) if G is double chordal then
(2) compute an optimal edge clique cover C of G that consists of
(3) maximal cliques only
(4) if k < |C| then return ‘no’
(5) return the vertex-C incidence bipartite graph BC
(6) else //G is chordal but not dually chordal
(7) if k < |C(G)| then return ‘no’
(8) return the vertex-clique incidence bipartite graph BG

Since G is chordal, an optimal edge clique cover C can be computed in linear time [23]. In
fact, the optimal edge clique cover of a chordal graph computed in [23] consists of maximal
cliques only. Also, recall that for any chordal graph G = (V, EG), C(G) consists of at most |V |
maximal cliques and all maximal cliques can be listed in linear time.

We now argue that the output of the procedure is a tree-convex representation with
at most k points (if exists). Assume first that G is dually chordal (and hence G is double
chordal). Then BC is tree-convex (on V) by Lemma 17. Thus, by Fact 1, BC is a point
optimal tree-convex representation of G. So, the outputs at lines (4) and (5) are correct.

H.-O. Le and V. B. Le 13:13

In the second case, let us assume that G is not dually chordal. Then, by Lemma 10, for
any tree-convex representation B = (V, W, EB) of G, B must be tree-convex on W . Hence,
by Lemma 14, every maximal clique of G = B2[V] is the neighborhood NB(w) for some
w ∈W , implying |W | ≥ |C(G)|. Therefore, the vertex-clique incidence bipartite graph BG

of G (which is, by Lemma 11 (i), tree-convex on C(G); recall that G is chordal) is a point
optimal tree-convex half-root of G. Thus, the outputs at lines (7) and (8) are correct. J

5 Conclusion

Though the computational complexity of minimal point planar girth-g representation
is completely determined (Theorem 8), the problem of characterizing and recognizing map
graphs with girth-6 witness is still open. Recall that, by definition, all map graphs have
a witness of girth at least 4, and that all map graphs with witness of girth g ≥ 8 admit
good characterizations which lead to simple cubic time recognition algorithms [19]. Since
any planar graph has a girth-six witness (e.g., its subdivision), it is natural to study map
graphs with girth-six witness. Thus, recognizing and characterizing map graphs with girth-six
witness are two interesting open problems.

In contrast to large-girth witnesses, maximal witnesses (i.e., maximal planar bipartite
graphs) have girth four. Recognizing and characterizing map graphs with maximal witness
are two other interesting open problems for further research.

Perhaps, another way to look for a simpler and more efficient algorithm than the one
of Thorup is to consider restricted input graphs (rather than restricted witnesses). So,
recognizing map graphs is trivial if the input graphs are planar. But it is not obvious for
other restricted graph classes; especially for graphs with arbitrary large cliques. In particular,
it seems that it is not easy to recognize chordal map graphs in polynomial time without
using Thorup’s algorithm.

References
1 Franz J. Brandenburg. Characterizing and Recognizing 4-Map Graphs. Algorithmica,

81(5):1818–1843, 2019. doi:10.1007/s00453-018-0510-x.
2 Andreas Brandstädt, Feodor F. Dragan, Victor Chepoi, and Vitaly I. Voloshin. Dually Chordal

Graphs. SIAM J. Discrete Math., 11(3):437–455, 1998. doi:10.1137/S0895480193253415.
3 Maw-Shang Chang and Haiko Müller. On the Tree-Degree of Graphs. In Graph-Theoretic

Concepts in Computer Science, 27th International Workshop, WG 2001, Boltenhagen, Germany,
June 14-16, 2001, Proceedings, pages 44–54, 2001. doi:10.1007/3-540-45477-2_6.

4 Zhi-Zhong Chen. Approximation Algorithms for Independent Sets in Map Graphs. J. Al-
gorithms, 41(1):20–40, 2001. doi:10.1006/jagm.2001.1178.

5 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar Map Graphs.
In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 514–523, 1998. doi:10.1145/276698.276865.

6 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM,
49(2):127–138, 2002. doi:10.1145/506147.506148.

7 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Recognizing Hole-
Free 4-Map Graphs in Cubic Time. Algorithmica, 45(2):227–262, 2006. doi:10.1007/
s00453-005-1184-8.

8 Zhi-Zhong Chen, Xin He, and Ming-Yang Kao. Nonplanar Topological Inference and Political-
Map Graphs. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 17-19 January 1999, Baltimore, Maryland, USA., pages 195–204, 1999. URL:
http://dl.acm.org/citation.cfm?id=314500.314558.

MFCS 2019

https://doi.org/10.1007/s00453-018-0510-x
https://doi.org/10.1137/S0895480193253415
https://doi.org/10.1007/3-540-45477-2_6
https://doi.org/10.1006/jagm.2001.1178
https://doi.org/10.1145/276698.276865
https://doi.org/10.1145/506147.506148
https://doi.org/10.1007/s00453-005-1184-8
https://doi.org/10.1007/s00453-005-1184-8
http://dl.acm.org/citation.cfm?id=314500.314558

13:14 Constrained Representations of Map Graphs and Half-Squares

9 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005. doi:10.1145/1077464.1077468.

10 Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its
Algorithmic Applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

11 Kord Eickmeyer and Ken-ichi Kawarabayashi. FO model checking on map graphs. In Funda-
mentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France,
September 11-13, 2017, Proceedings, pages 204–216, 2017. doi:10.1007/978-3-662-55751-8_
17.

12 Rudolf Fleischer and Xiaotian Wu. Edge Clique Partition of K4-Free and Planar Graphs. In
Computational Geometry, Graphs and Applications - 9th International Conference, CGGA
2010, Dalian, China, November 3-6, 2010, Revised Selected Papers, pages 84–95, 2010. doi:
10.1007/978-3-642-24983-9_9.

13 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Decomposition of Map Graphs with Applications. CoRR, abs/1903.01291, 2019. arXiv:
1903.01291.

14 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1563–1575, 2012. doi:
10.1137/1.9781611973099.124.

15 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980. doi:10.1016/C2013-0-10739-8.

16 Ian Holyer. The NP-Completeness of Some Edge-Partition Problems. SIAM J. Comput.,
10(4):713–717, 1981. doi:10.1137/0210054.

17 Lawrence T. Kou, Larry J. Stockmeyer, and C. K. Wong. Covering Edges by Cliques with
Regard to Keyword Conflicts and Intersection Graphs. Commun. ACM, 21(2):135–139, 1978.
doi:10.1145/359340.359346.

18 Hoàng-Oanh Le and Van Bang Le. Hardness and structural results for half-squares of restricted
tree-convex bipartite graphs. Algorithmica, in press, 2019. doi:10.1007/s00453-018-0440-7.

19 Hoàng-Oanh Le and Van Bang Le. Map graphs having witnesses of large girth. Theor. Comput.
Sci., 772:143–148, 2019. doi:10.1016/j.tcs.2018.12.010.

20 Van Bang Le and Sheng-Lung Peng. On the complete width and edge clique cover problems.
J. Comb. Optim., 36(2):532–548, 2018. doi:10.1007/s10878-016-0106-9.

21 Tian Liu. Restricted Bipartite Graphs: Comparison and Hardness Results. In Al-
gorithmic Aspects in Information and Management - 10th International Conference, AAIM
2014, Vancouver, BC, Canada, July 8-11, 2014. Proceedings, pages 241–252, 2014. doi:
10.1007/978-3-319-07956-1_22.

22 S. Ma, Walter D. Wallis, and Julin Wu. On the complexity of the clique partition problem.
Congressus Numerantium, 67:59–66, 1988.

23 S. Ma, Walter D. Wallis, and Julin Wu. Clique Covering of Chordal Graphs. Utilitas
Mathematica, 36:151–152, 1989.

24 Terry A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM, 1999.
URL: https://epubs.siam.org/doi/book/10.1137/1.9780898719802.

25 Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt. Linear-time recognition of map graphs
with outerplanar witness. Discrete Optimization, 28:63–77, 2018. doi:10.1016/j.disopt.
2017.12.002.

26 James Orlin. Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae, 80:406–424, 1977. doi:10.1016/1385-7258(77)90055-5.

27 Jeremy P. Spinrad. Efficient Graph Representations. Fields Institute Monographs, 2003.
28 Mikkel Thorup. Map Graphs in Polynomial Time. In 39th Annual Symposium on Foundations

of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages
396–405, 1998. doi:10.1109/SFCS.1998.743490.

https://doi.org/10.1145/1077464.1077468
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1007/978-3-662-55751-8_17
https://doi.org/10.1007/978-3-662-55751-8_17
https://doi.org/10.1007/978-3-642-24983-9_9
https://doi.org/10.1007/978-3-642-24983-9_9
http://arxiv.org/abs/1903.01291
http://arxiv.org/abs/1903.01291
https://doi.org/10.1137/1.9781611973099.124
https://doi.org/10.1137/1.9781611973099.124
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1137/0210054
https://doi.org/10.1145/359340.359346
https://doi.org/10.1007/s00453-018-0440-7
https://doi.org/10.1016/j.tcs.2018.12.010
https://doi.org/10.1007/s10878-016-0106-9
https://doi.org/10.1007/978-3-319-07956-1_22
https://doi.org/10.1007/978-3-319-07956-1_22
https://epubs.siam.org/doi/book/10.1137/1.9780898719802
https://doi.org/10.1016/j.disopt.2017.12.002
https://doi.org/10.1016/j.disopt.2017.12.002
https://doi.org/10.1016/1385-7258(77)90055-5
https://doi.org/10.1109/SFCS.1998.743490

H.-O. Le and V. B. Le 13:15

29 Ryuhei Uehara. NP-complete problems on a 3-connected cubic planar graph and their
applications. Tokyo Woman’s Christian University, Technical Report TWCU-M-0004, 1996/9.
URL: http://www.jaist.ac.jp/~uehara/pdf/triangle.pdf.

30 W. D. Wallis and Julin Wu. On clique partitions of split graphs. Discrete Mathematics,
92(1-3):427–429, 1991. doi:10.1016/0012-365X(91)90297-F.

MFCS 2019

http://www.jaist.ac.jp/~uehara/pdf/triangle.pdf
https://doi.org/10.1016/0012-365X(91)90297-F

Colouring H-Free Graphs of Bounded Diameter
Barnaby Martin
Department of Computer Science, Durham University, United Kingdom
barnaby.d.martin@durham.ac.uk

Daniël Paulusma
Department of Computer Science, Durham University, United Kingdom
daniel.paulusma@durham.ac.uk

Siani Smith
Department of Computer Science, Durham University, United Kingdom
siani.smith@durham.ac.uk

Abstract
The Colouring problem is to decide if the vertices of a graph can be coloured with at most k

colours for an integer k, such that no two adjacent vertices are coloured alike. A graph G is H-free
if G does not contain H as an induced subgraph. It is known that Colouring is NP-complete for
H-free graphs if H contains a cycle or claw, even for fixed k ≥ 3. We examine to what extent the
situation may change if in addition the input graph has bounded diameter.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases vertex colouring, H-free graph, diameter

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.14

Funding Daniël Paulusma: supported by the Leverhulme Trust (RPG-2016-258).

1 Introduction

Graph colouring is one of the best studied concepts in Computer Science and Mathematics.
This is mainly due to its many practical and theoretical applications and its many natural
variants and generalizations. Over the years, numerous surveys and books on graph colouring
were published (see, for example, [1, 4, 18, 21, 26, 28, 31]).

A (vertex) colouring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} that assigns
each vertex u ∈ V a colour c(u) in such a way that c(u) 6= c(v) whenever uv ∈ E. If
1 ≤ c(u) ≤ k, then c is said to be a k-colouring of G and G is said to be k-colourable. The
Colouring problem is to decide if a given graph G has a k-colouring for some given integer k.
If k is fixed, that is, k is not part of the input, we denote the problem by k-Colouring. It
is well known that even 3-Colouring is NP-complete [23].

In this paper we aim to increase our understanding of the computational hardness of
Colouring. One way to do this is to consider inputs from families of graphs to learn
more about the kind of graph structure that causes the hardness. This led to a highly
extensive study of Colouring and k-Colouring for many special graph classes. The
best-known result in this direction is due to Grötschel, Lovász, and Schrijver, who proved
that Colouring is polynomial-time solvable for perfect graphs [13].

Perfect graphs form an example of a graph class that is closed under vertex deletion.
Such graph classes are also called hereditary. Hereditary graph classes are ideally suited
for a systematic study in the computational complexity of graph problems. Not only do
they capture a very large collection of many well-studied graph classes, but they are also
exactly the graph classes that can be characterized by a unique set H of minimal forbidden
induced subgraphs. When solving an NP-hard problem under input restrictions, it is standard
practice to consider, for example, first the case where H has small size, or where each H ∈ H
has small size.

© Barnaby Martin, Daniël Paulusma, and Siani Smith;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barnaby.d.martin@durham.ac.uk
mailto:daniel.paulusma@durham.ac.uk
mailto:siani.smith@durham.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Colouring H-free Graphs of Bounded Diameter

We note that the set H defined above may be infinite. If not, say H = {H1, . . . ,Hp} for
some positive integer p, then the corresponding hereditary graph class G is said to be finitely
defined. Formally, a graph G is (H1, . . . ,Hp)-free if for each i ∈ {1, . . . , p}, G is Hi-free,
where the latter means that G does not contain an induced subgraph isomorphic to Hi.

We emphasize that the borderline between NP-hardness and tractability is often far
from clear beforehand and jumps in computational complexity can be extreme. In order to
illustrate this behaviour of graph problems, we present the following example of a (somewhat
artificial) graph problem related to vertex colouring.

Colouring-or-Subgraph
Instance: an n-vertex graph G

Question: is G d
√

log ne-colourable or H-free for some graph H with |V (H)| ≤ d
√

log ne?

I Theorem 1. The Colouring-or-Subgraph problem is NP-hard, but constant-time
solvable for every hereditary graph class not equal to the class of all graphs.

Proof. We reduce from 3-Colouring, which we recall is NP-complete [23]. Let G be an
n-vertex graph. Set k = d

√
logne. Add k − 3 pairwise adjacent vertices to G. Make the

new vertices also adjacent to every vertex of G. Add each possible graph on k vertices as a
connected component to G. The resulting graph G′ has n+(k−3)+k ·2

k(k−1)
2 < 3n2 vertices.

By construction, G′ contains every graph on at most k vertices as an induced subgraph.
Hence, G′ is a yes-instance of Colouring-or-Subgraph if and only if G′ is k-colourable,
and the latter holds if and only if G is 3-colourable.

Now let G be a hereditary graph class for which there exist at least one graph H such
that every graph G ∈ G is H-free. Let ` = |V (H)|. We claim that Colouring-or-
Subgraph is constant-time solvable for G. Let G ∈ G be an n-vertex graph. If n ≤ 2|`|2 ,
then G has constant size and the problem is constant-time solvable. If n > 2|`|2 , then
` = |V (H)| <

√
logn ≤ d

√
logne. Hence G is a yes-instance of Colouring-or-Subgraph,

as G is H-free and H has less than d
√

logne vertices. J

In this paper, we consider the problems Colouring and k-Colouring. In order to describe
known results and our new results we first give some terminology and notation.

1.1 Terminology and Notation
The disjoint union of two vertex-disjoint graphs F and G is the graph G + F = (V (F) ∪
V (G), E(F) ∪ E(G)). The disjoint union of s copies of a graph G is denoted sG. A linear
forest is the disjoint union of paths. The length of a path or a cycle is the number of its edges.
The distance dist(u, v) between two vertices u, v in a graph G is the length of a shortest
induced path between them. The diameter of a graph G is the maximum distance over all
pairs of vertices in G. The girth of a graph G is the length of a shortest induced cycle of
G. The graphs Cr, Pr and Kr denote the cycle, path and complete graph on r vertices,
respectively.

A polyad is a tree where exactly one vertex has degree at least 3. We will use several
special polyads in our paper. The graph K1,r denotes the (r + 1)-vertex star, that is, the
graph with vertices x, y1, . . . , yr and edges xyi for i = 1, . . . , r. The graph K1,3 is also called
the claw. The subdivision of an edge uw in a graph removes uw and replaces it with a new
vertex v and edges uv, vw. We let K`

1,r denote the `-subdivided star, which is the graph
obtained from a star K1,r by subdividing one edge of K1,r exactly ` times. The graph Sh,i,j ,
for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, which is the tree with one vertex x of degree 3
and exactly three leaves, which are of distance h, i and j from x, respectively. Note that
S1,1,1 = K1,3. The graph S1,1,2 = K1

1,3 is also known as the chair.

B. Martin, D. Paulusma, and S. Smith 14:3

1.2 Known Results
The computational complexity of Colouring has been fully classified for H-free graphs:
if H is an induced subgraph of P1 + P3 or of P4, then Colouring for H-free graphs is
polynomial-time solvable, and otherwise it is NP-complete [20]. In contrast, the complexity
classification for k-Colouring restricted to H-free graphs is still incomplete. It is known that
for every k ≥ 3, k-Colouring for H-free graphs is NP-complete if H contains a cycle [10]
or an induced claw [16, 22]. However, the remaining case where H is a linear forest has not
been settled yet even if H consists of a single path. For Pt-free graphs, the cases k ≤ 2, t ≥ 1
(trivial), k ≥ 3, t ≤ 5 [14], k = 3, 6 ≤ t ≤ 7 [2] and k = 4, t = 6 [6] are polynomial-time
solvable and the cases k = 4, t ≥ 7 [17] and k ≥ 5, t ≥ 6 [17] are NP-complete. The cases
where k = 3 and t ≥ 8 are still open. For further details, including for linear forests H of more
than one connected component, see the survey paper [11] or some recent papers [5, 12, 19].

1.3 Our Focus
We consider H-free graphs where H contains a cycle or claw. In this case, k-Colouring
restricted to H-free graphs is NP-compete for every k ≥ 3, as mentioned above. However,
we re-examine the situation after adding a diameter constraint to our input graphs. If the
diameter is 1, then G is a complete graph, and Colouring becomes trivial. As such, our
research question is:

To what extent does bounding the diameter help making Colouring and k-Colouring
tractable on H-free graphs?

We remark that H-free graphs of diameter at most d for some integer d are no longer
hereditary, which requires some care in the proof of our results. We also note that by
a straightforward reduction from 3-Colouring one can show that k-Colouring is NP-
complete for graphs of diameter d for all pairs (k, d) with k ≥ 3 and d ≥ 2 except for two
cases, namely (k, d) ∈ {(3, 2), (3, 3)}. Mertzios and Spirakis [24] settled the case (k, d) = (3, 3)
by proving that 3-Colouring is NP-complete even for C3-free graphs of diameter 3. The
case (k, d) = (3, 2) is still open.

1.4 Our Results
We complement the bounded diameter results of Mertzios and Spirakis [24] by presenting a
set of new results for Colouring and k-Colouring for H-free graphs of bounded diameter
when H contains a claw or a cycle. Results for the case where H has a cycle usually follow
from stronger results for graphs of girth at least g for some fixed integer g. In particular,
Emden-Weinert, Hougardy and Kreuter [10] proved that for all integers k ≥ 3 and g ≥ 3,
k-Colouring is NP-complete for graphs with girth at least g and with maximum degree at
most 6k13 (for more results on Colouring for graphs of maximum degree, see [3, 7, 25]).

First, in Section 3 we research the effect on bounding the diameter of k-Colouring
and Colouring restricted to polyad-free graphs for various polyads. Our first result, which
formed together with the result of [24] the starting point of our investigation, is that k-
Colouring is constant-time solvable for K1,r-free graphs of diameter d for any fixed integers
d ≥ 1, k ≥ 1 and r ≥ 1. We also show that this does not hold for Colouring (when k is
part of the input). We then extend these results for larger polyads; see also Figure 1.

Second, in Section 4 we perform a similar study for graphs of bounded diameter and girth.
We provide new polynomial-time and NP-hardness results for k-Colouring, identifying and

MFCS 2019

14:4 Colouring H-free Graphs of Bounded Diameter

Colours Diameter H-free Complexity Theorem
fixed k d K1,r P 9
input k d K1,4 NP-c 10

3 d K1
1,3 P 12(1)

3 2 K2
1,r P 12(2)

3 4 K3
1,4 NP-c 12(3)

4 2 K1
1,3 NP-c 12(4)

3 2 S1,2,2 P 13

Figure 1 Our polynomial-time (P) and NP-complete (NP-c) results for polyad-free graphs.

narrowing the gap between tractability and intractability, in particular for the case where
k = 3 (see also Figure 2). Section 5 contains some open questions and directions for future
work.

XXXXXXXXXXdiameter
girth ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12

≤ 1 P P P P P P P P P P
≤ 2 ? ? P P P P P P P P
≤ 3 NP-c NP-c ? ? P P P P P P
≤ 4 NP-c NP-c NP-c NP-c ? ? P P P P
≤ 5 NP-c NP-c NP-c NP-c ? ? ? ? ? P

Figure 2 The complexity of 3-Colouring for graphs of diameter at most d and girth at least g.

2 Preliminaries

In this section we complement Section 1.1 by giving some additional terminology and notation.
We also recall some useful results from the literature.

Let G = (V,E) be a graph. A vertex u ∈ V is dominating if u is adjacent to every other
vertex of G. For a set S ⊆ V , the graph G[S] denotes the subgraph of G induced by S. The
neighbourhood of a vertex u ∈ V is the set N(u) = {v | uv ∈ E} and the degree of u is the size
of N(u). For a set U ⊆ V , we write N(U) =

⋃
u∈U N(u) \ U . For a set U ⊆ V and a vertex

u ∈ U , the private neighbourhood of u with respect to U is the set N(u) \ (N(U \ {u}) ∪ U)
of private neighbours of u with respect to U , which is the set of neighbours of u outside U
that are not a neighbour of any other vertex of U . If every vertex of G has degree p, then G
is (p)-regular.

We will use the aforementioned results of Král’ et al.; Holyer; Leven and Galil; Emden-
Weinert, Hougardy and Kreuter; and Mertzios and Spirakis.

I Theorem 2 ([20]). Let H be a graph. If H ⊆i P4 or H ⊆i P1 + P3, then Colouring
restricted to H-free graphs is polynomial-time solvable, otherwise it is NP-complete.

I Theorem 3 ([16, 22]). For every integer k ≥ 3, k-Colouring is NP-complete for claw-free
graphs.

I Theorem 4 ([10]). For all integers k ≥ 3 and g ≥ 3, k-Colouring is NP-complete for
graphs with girth at least g (and with maximum degree at most 6k13).

B. Martin, D. Paulusma, and S. Smith 14:5

I Theorem 5 ([24]). 3-Colouring is NP-complete for C3-free graphs of diameter 3.

A list assignment of a graph G = (V,E) is a function L that prescribes a list of admissible
colours L(u) ⊆ {1, 2, . . .} to each u ∈ V . A colouring c respects L if c(u) ∈ L(u) for every
u ∈ V. If |L(u)| ≤ 2 for each u ∈ V , then L is also called a 2-list assignment. The 2-List
Colouring problem is to decide if a graph G with a 2-list assignment L has a colouring
that respects G. Our strategy for obtaining a polynomial-time algorithm for 3-Colouring
is often to reduce the input to a polynomial number of instances of 2-List Colouring. The
reason is that we can then apply the following well-known result of Edwards.

I Theorem 6 ([9]). The 2-List Colouring problem is linear-time solvable.

We will also use the following result, which includes the Hoffman-Singleton Theorem,
which provides a description of regular graphs of diameter 2 and girth 5.

I Theorem 7 ([8, 15, 30]). For every d ≥ 1, every graph of diameter d and girth 2d+ 1 is
p-regular for some integer p. Moreover, if d = 2, then there are only four such graphs (with
p = 2, 3, 7, 57, respectively) and if d ≥ 3, then such graphs are cycles (of length 2d+ 1).

A clique in a graph is a set of pairwise adjacent vertices, and an independent set is a set
of pairwise non-adjacent vertices. By Ramsey’s Theorem [27], there exists a constant, which
we denote by R(k, r), such that any graph on at least R(k, r) vertices contains either a clique
of size k or an independent set of size r.

3 Polyad-Free Graphs of Bounded Diameter

In this section we prove, among other things, our results on Colouring and k-Colouring
for polyad-free graphs of bounded diameter; see also Figure 1. We first make an observation.

I Lemma 8. If G is a graph of diameter d that is not a tree, then G contains an induced
cycle of length at most 2d+ 1.

Proof. As G is not a tree and G is connected, G must contain a cycle C. Suppose that C has
length at least 2d+ 2. Since G has diameter d, there exists a path of length at most d in G
between any two vertices u and v at distance d+ 1 in C. The vertices of this path, together
with the vertices of the path of length d+ 1 between u and v on C, induce a subgraph of G
that contains an induced cycle C ′ of length at most 2d+ 1. J

We now state our first result, which forms the starting point of the research in this section.

I Theorem 9. For all integers d, k, r ≥ 1, k-Colouring is constant-time solvable for
K1,r-free graphs of diameter d.

Proof. Let G = (V,E) be a K1,r-free graph of diameter d. We prove that if G has size
larger than some constant β(k, r), which we determine below, then G is not k-colourable. If
|V (G)| ≤ β(k, r), we can solve k-Colouring in constant time.

As G isK1,r-free, Ramsey’s Theorem tells us that the neighbourhood of every vertex u ∈ V
with degree at least R(k, r) contains a clique of size k. In that case N(u) ∪ {u} is a clique of
size k + 1. Hence, to be k-colourable, every vertex of G must have degree less than R(k, r),
so G must have at most β(k, r) = 1 +R(k, r) +R(k, r)2 + . . .+R(k, r)d vertices. J

If k is not part of the input, Theorem 9 no longer holds. This is shown by the following more
general theorem. In this theorem we assume that H 6⊆i P1 + P3 and H 6⊆i P4, as in those
cases Colouring is polynomial-time solvable for all H-free graphs due to Theorem 2. Note
that Theorem 10 covers all remaining cases except the case where H = K1,3.

MFCS 2019

14:6 Colouring H-free Graphs of Bounded Diameter

I Theorem 10. Let H be a graph with H 6⊆i P1 + P3 and H 6⊆i P4 and d be an integer.
Then Colouring for H-free graphs of diameter at most d is
1. NP-complete if H has no dominating vertex u such that H−u ⊆i P1 +P3 or H−u ⊆i P4

and d ≥ 2;
2. NP-complete if H 6= K1,3 and H has a dominating vertex u such that H − u ⊆i P1 + P3

or H − u ⊆i P4 and d ≥ 3.

Proof.
1. Let H have no dominating vertex u such that H−u ⊆i P1 +P3 or H−u ⊆i P4. We define

H ′ as H − u if H has a dominating vertex u and as H itself otherwise. By construction,
H ′ 6⊆i P1 + P3 and H ′ 6⊆i P4. Hence, Colouring is NP-complete for H ′-free graphs due
to Theorem 2. Let G be an H ′-free graph. Add a dominating vertex to G. The new
graph G′ has diameter 2 and is H-free. Moreover, G is k-colourable if and only if G′ is
(k + 1)-colourable.

2. Let H 6= K1,3 have a dominating vertex u such that H − u ⊆i P1 + P3 or H − u ⊆i P4.
Then H cannot be a forest, as in that case H would be in {P1, P2, P3,K1,3}. Hence, H
has an induced cycle Cr for some r ≥ 3. If r = 3, then 3-Colouring is NP-complete for
H-free graphs of diameter 3, as it is so for C3-free graphs of diameter 3 due to Theorem 5.
If r ≥ 4, then Colouring is NP-complete even for H-free graphs of diameter 2, as it is
so for Cr-free graphs of diameter 2 due to 1. J

It is a natural question whether we can extend Theorem 9 to H-free graphs of diameter d,
where H is a slightly larger tree than a star. The first interesting case is where H is an
`-subdivided star K`

1,r for some integer ` ≥ 1 and r ≥ 3. We prove a number of results for
various values of d,k,`. For one of our proofs and also for the proof of our next result we
need the following theorem.

I Theorem 11. 3-Colouring can be solved in polynomial time for C5-free graphs of diameter
at most 2.

Proof. If G is bipartite, then G is 3-colourable. If G contains a K4, then G is not 3-colourable.
We check these properties in polynomial time, and from now on we assume that G is K4-free
and non-bipartite. The latter implies that G must have an odd induced cycle Cr for some
odd integer r. As G has diameter 2, we find that r ≤ 5 due to Lemma 8. As G is C5-free, it
follows that r = 3.

Let C be a triangle in G. We write N0 = V (C) = {x1, x2, x3}, N1 = N(V (C)) and
N2 = V (G) \ (N0 ∪ N1). As G has diameter 2, for every i ∈ {1, 2, 3}, it holds that every
vertex in N2 has a neighbour in N1 that is adjacent to xi.

We let T consist of all vertices of N2 that have a neighbour in N1 that is adjacent to
exactly two vertices of N0. We claim that N2 = T . In order to see this, let u ∈ N2. If
u has a neighbour y ∈ N1 adjacent to every xi, then G contains a K4, a contradiction.
Hence, u must have three distinct neighbour y1, y2, y3, such that for i ∈ {1, 2, 3}, it holds
that N(yi) ∩N0 = {xi}. If {y1, y2, y3} is a clique, then G has a K4 on vertices u, y1, y2, y3,
a contradiction. Hence, we may assume without loss of generality that y1 and y2 are non-
adjacent. However, then {u, y1, x1, x2, y2} induces a C5 in G, another contradiction. We
conclude that T = N2.

If G has a 3-colouring c, then we may assume without loss of generality that c(xi) = i

for i ∈ {1, 2, 3}. Hence, our algorithm assigns colours 1, 2, 3 to x1, x2, x3, respectively.
This reduces the list of admissible colours of the vertices of N1 by at least one colour. In
particular, vertices in N1 that have two neighbours in N0 can be coloured with only one

B. Martin, D. Paulusma, and S. Smith 14:7

colour. Our algorithm assigns this colour to such vertices. This means that any of their
neighbours in T = N2 can be coloured with at most two colours. So, after propagation, we
have obtained either two adjacent vertices that are coloured alike, in which case G is not
3-colourable, or we have constructed an instance of 2-List Colouring. We can solve such
an instance in linear time due to Theorem 6. J

We are now ready to state our results for K`
1,r, where we exclude the cases that are

tractable in general, namely where d = 1, or k ≤ 2, or r ≤ 2 (the latter case corresponds to
the case where H = K+

1,2 = P4, so we can use Theorem 2). Note that for k ≥ 4 all interesting
cases are NP-complete, whereas for k = 3 the situation is less clear.

x1 x2 x3 x4 x5

y

z

w1 w2

N0

N1

N2

N3

Figure 3 An example of a decomposition of a chair-free graph of diameter 3 into sets N0, . . . , N3

where p = 5 and y ∈ N1 has two “descendants” in N3. To prevent an induced chair, y must be
adjacent to exactly two (adjacent) vertices of N0, and w1 and w2 must be adjacent to each other.

I Theorem 12. Let d, k, `, r be four integers with d ≥ 2, k ≥ 3, ` ≥ 1 and r ≥ 3. Then
k-Colouring for K`

1,r-free graphs of diameter at most d is:
1. polynomial-time solvable if d ≥ 2, k = 3, ` = 1 and r = 3
2. polynomial-time solvable if d = 2, k = 3, ` = 2 and r ≥ 3
3. NP-complete if d ≥ 4, k = 3, ` ≥ 3 and r ≥ 4
4. NP-complete if d ≥ 2, k ≥ 4, ` ≥ 1 and r ≥ 3.

Proof.
1. Recall that K1

1,3 is the chair S1,1,2. Let G be a chair-free graph of diameter d. If G is a
tree, then G is even 2-colourable. We check in O(n4) time if G has a K4. If so, then G is
not 3-colourable. From now on we assume that G is not a tree and that G is K4-free.
As G is not a tree and G is connected, G contains an induced cycle of length at most
2d+ 1 by Lemma 8. We can find a largest induced cycle C of length at most 2d+ 1 in
O(n2d+1) time. Let |V (C)| = p. We write N0 = V (C) = {x1, x2, . . . , xp} and for i ≥ 1,
Ni = N(Ni−1) \Ni−2. So the sets Ni partition V (G), and the distance of a vertex u ∈ Ni
to N0 is i.

Case 1. 4 ≤ p ≤ 2d+ 1.
This case is illustrated in Figure 3. We consider every possible 3-colouring of C. Let c be

MFCS 2019

14:8 Colouring H-free Graphs of Bounded Diameter

such a 3-colouring. Every vertex with two differently coloured neighbours can only be
coloured with one remaining colour. We assign this unique colour to such a vertex and
apply this rule as long as possible. This takes polynomial time. The remaining vertices
have a list of admissible colours that either consists of two or three colours, and vertices
in the latter case belong to V (G) \ (N0 ∪N1) (as N(N0) = N1).
If N2 = ∅, then V (G) = N0 ∪N1. Then, we obtained an instance of 2-List Colouring,
which we can solve in linear time due to Theorem 6. Now assume that N2 6= ∅. Let
z ∈ N2. Then z has a neighbour y ∈ N1, which in turn has a neighbour x ∈ N0. If y is
adjacent to neither neighbour of x on N0, then z, y, x and these two neighbours induce a
chair in G, a contradiction. Hence, y must be adjacent to at least one neighbour of x on
N0, meaning that y must have received a colour by our algorithm. Consequently, z must
have a list of admissible colours of size at most 2.
From the above we deduce that every vertex in N2 has only two available colours in
its list. We now consider the vertices of N3. Let z′ ∈ N3. Then z′ has a neighbour
z ∈ N2, which in turn has a neighbour y ∈ N1, which in turn has a neighbour x ∈ N0,
say x = x1. If y has two non-adjacent neighbours in N0, then z′, z, y and these two
non-adjacent neighbours of y induce a chair in G, a contradiction. Combined with the
fact deduced above, we conclude that y must have exactly two neighbours in N0 and
these two neighbours must be adjacent, say x2 is the other neighbour of y in N0.
Suppose x1 and x2 are both adjacent to a vertex y′ ∈ N1 \{y} that is adjacent to a vertex
in N2 that has a neighbour in N3. Then, just as in the case of vertex y, the two vertices
x1 and x2 are the only two neighbours of y′ in N0. If y and y′ are not adjacent, this
means that x2, x3, x4, y, y

′ induce a chair in G, a contradiction. Hence y and y′ must be
adjacent. However, then x1, x2, y, y

′ form a K4, a contradiction. This means that every
pair of adjacent vertices of N0 can have at most one common neighbour in N1 that is
adjacent to a vertex in N2 with a neighbour in N3. We already deduced that every vertex
of N1 with a “descendant” in N3 has exactly two neighbours in N0, which are adjacent.
Hence, we conclude that the number of such vertices of N1 is at most p.
We now observe that for i ≥ 2, every vertex in Ni has at most two neighbours in Ni+1.
This can be seen as follows. If v ∈ Ni has two non-adjacent neighbours w1, w2 in Ni+1,
then we pick a neighbour u of v in Ni−1, which has a neighbour t in Ni−2. Then
v, u, t, w1, w2 induce a chair in G, a contradiction. Hence , the neighbourhood of every
vertex in Ni in Ni+1 is a clique, which must have size at most 2 due to the K4-freeness of
G. As the number of vertices in N1 with a “descendant” in N3 is at most p, this means
that there are at most 2i−1p vertices in Ni with a neighbour in Ni+1. Therefore the total
number of vertices not belonging to any of the sets N0, N1 or N2 is at most

∑d
i=3 2i−1p.

This means the total number of vertices not belonging to N1 or N2 is at most β(d) =∑d
i=3 2i−1p + p ≤

∑d
i=3 2i−1(2d+ 1) + 2d + 1. Let Tc be this set. We consider every

possible 3-colouring of G[Tc]. As we already deduced that the vertices in N1 ∪N2 have a
list of size at most 2, for each case we obtain an instance of 2-List Colouring, which
we can solve in linear time due to Theorem 6. As the total number of instances we need
to consider is at most 3p × 3β(d) ≤ 32d+1 × 3β(d), our algorithm runs in polynomial time.

Case 2. p = 3.
As p was the size of a largest induced cycle of length at most 2d+ 1 and 2d+ 1 ≥ 5, we
find that G is C4-free. As G is K4-free, each vertex of N1 is adjacent to at most two
vertices of N0. If a vertex x ∈ N0 has two independent private neighbours u and v in N1
with respect to N0, then every neighbour w of u in N2 must also be a neighbour of v and
vice versa, since G is chair-free. However, this is not possible, as x, u, w, v induce a C4.

B. Martin, D. Paulusma, and S. Smith 14:9

We conclude that u and v must be adjacent. Therefore, as G is K4-free, every vertex of
N0 has at most two private neighbours in N1, with respect to N0, that have a neighbour
in N2.
By the same arguments as above we deduce that every two vertices of N0 have at most
one common neighbour in N1 that is adjacent to a vertex in N2. Combined with the
above, we find that there at most 6 + 3 = 9 vertices in N1 that have a neighbour in N2. If
a vertex in N1 has two independent neighbours in N2, then G contains an induced chair,
which is not possible. Hence the neighbourhood of a vertex in N1 in N2 is a clique, which
has size at most 2 due to the K4-freeness of G. We conclude that |N2| ≤ 9 × 2 = 18.
Similarly, every vertex in Ni for i ≥ 3 has at most two neighbours in Ni+1. Therefore
the number of vertices in Ni for i ≥ 3 is at most 18× 2i−2. This means that the total
number of vertices outside N0 ∪N1 ∪N2 is at most β(d) =

∑d
i=3 18× 2i−2. Let T be this

set. We consider every possible 3-colouring of G[T] and every possible 3-colouring of C.
For each case we obtain an instance of 2-List Colouring, which we can solve in linear
time due to Theorem 6. As the total number of instances we need to consider is at most
3d × 3β(d), our algorithm runs in polynomial time.

2. Let G be a K2
1,r-free graph of diameter at most 2. We first check in O(n4) time if G is K4-

free. If not, then G is not 3-colourable. We then check in O(n5) time if G has an induced
C5. If G is C5-free, then we use Theorem 11. From now on, suppose that G is K4-free
and that G contains an induced cycle C of length 5, say on vertices x1, . . . , x5 in that
order. We write N0 = V (C) = {x1, . . . , x5}, N1 = N(V (C)) and N2 = V (G) \ (N0 ∪N1).
Let N ′2 be the set of vertices in N2 that are adjacent to some vertex in N1 that is a
private neighbour of some vertex in N0 with respect to N0. As G is K4-free, the private
neighbourhood P (xi) of each vertex xi ∈ N0 with respect to N0 does not contain a
clique of size 3. Moreover, if P (xi) contains an independent set I of size r − 1 for some
i ∈ {1, . . . , 5}, then I ∪ {xi, xi+1, xi+2, xi+3} induces a K2

1,r, which is not possible. Now
let v ∈ P (xi) for some i ∈ {1, . . . 5}, say i = 1. As G is K4-free, the set N(v) ∩ N2
does not contain a clique of size 3. Moreover, if N(v) ∩N2 contains an independent set
I ′ of size r − 1, then I ′ ∪ {v, x1, x2, x3, } induces a K2

1,r, which is not possible. Hence,
|N(v) ∩N2| ≤ R(3, r − 1) by Ramsey’s Theorem. We conclude that |N ′2| ≤ 5R(3, r − 1)2.
We now consider all possible 3-colourings of C. Let c be such a 3-colouring. We assume
without loss of generality that c(x1) = c(x3) = 1, c(x2) = c(x4) = 2 and c(x5) = 3.
Moreover, every vertex that has two differently coloured neighbours can only be coloured
with one remaining colour. We assign this unique colour to such a vertex and apply this
rule as long as possible. This takes polynomial time. The remaining vertices have a list
of admissible colours that either consists of two or three colours, and vertices in the latter
case must belong to N2 (as N(N0) = N1).
Let Tc be the set of vertices in N2 that still have a list of size 3. We will prove that
Tc ⊆ N ′2. Let u ∈ Tc. As G has diameter 2, we find that u has a neighbour v adjacent
to x5. Then v cannot be adjacent to any of x1, . . . , x4, as otherwise v would have a
unique colour and u would not be in Tc. Hence, v is a private neighbour of x5 with
respect to N0. We conclude that all vertices in Tc belong to N ′2, which implies that
|Tc| ≤ |N ′2| ≤ 5R(3, r − 1)2.
We now consider every possible 3-colouring of G[Tc]. Then all uncoloured vertices have
a list of size at most 2. In other words, we created an instance of 2-List Colouring,
which we solve in linear time using Theorem 6. As the number of 3-colourings of C is at
most 35 and for each 3-colouring c of C the number of 3-colourings of G[Tc] is at most
35R(3,r−1)2 , the total running time of our algorithm is polynomial.

MFCS 2019

14:10 Colouring H-free Graphs of Bounded Diameter

3. We consider the standard reduction from the NP-complete problem NAE 3-SAT [29],
where each variable appears in at most three clauses and each literal appears in at most
two. Given a CNF formula φ, we construct the graph G as follows:

Add a vertex vxi
for each literal xi.

Add an edge between each literal and its negation.
Add a vertex z adjacent to every literal vertex.
For each clause Ci add a triangle Ti with vertices ci1 , ci2 , ci3 .
Fix an arbitrary order of the literals of Ci, xi1 , xi2 , xi3 and add an edge xijcij .

Given a 3-colouring of G, assume z is assigned colour 1. Then each literal vertex is
assigned either colour 2 or colour 3. If, for some clause Ci, the vertices xi1 , xi2 and xi,3
are all assigned the same colour, then Ti cannot be coloured. Therefore, if we set literals
whose vertices are coloured with colour 2 to be true and those coloured with colour 3 to
be false, each clause must contain at least one true literal and at least one false literal.
If φ is satisfiable then we can colour vertex z with colour 1, each true literal with colour
2 and each false literal with colour 3. Then, since each clause has at least one true literal
and at least one false literal, each triangle has neighbours in two different colours. This
implies that each triangle is 3-colourable. Therefore G is 3-colourable if and only if φ is
satisfiable.
We next show that G has diameter at most 4. First note that any literal vertex is adjacent
to z and any clause vertex is adjacent to some literal vertex so any vertex is at distance
at most 2 from z. Therefore any two vertices are at distance at most 4.
Finally we show that G is K3

1,4-free. Any literal vertex has degree at most 4 since it
appears in at most two clauses. However it has at most 3 independent neighbours since
its negation is adjacent to z. Each clause vertex has at most 3 neighbours so the only
vertex with four independent neighbours is d. The longest induced path including z has
length at most 4 since any such path contains at most one literal and at most two vertices
of any triangle. Therefore G is K3

1,4-free.
4. This follows from Theorem 3. Let k∗ ≥ 3. We take a claw-free graph G and add a

dominating vertex to it. The new graph G′ has diameter at most 2 and is K1
1,3-free. Let

k = k∗ + 1 ≥ 4. Then G is k∗-colourable if and only if G′ is k-colourable. J

Subdividing two edges of the claw yields another interesting case, namely whereH = S1,2,2.
For k ≥ 4, Theorem 12 tells us that k-Colouring is NP-complete for S1,2,2-free graphs of
diameter 2. For k = 3, we could only prove polynomial-time solvability if d = 2.

I Theorem 13. 3-Colouring can be solved in polynomial time for S1,2,2-free graphs of
diameter at most 2.

Proof. Let G be an S1,2,2-free graph of diameter at most 2. We first check in O(n5)
time if G has an induced C5. If G is C5-free, then we use Theorem 11. Suppose G
contains an induced cycle C of length 5, say on vertices x1, . . . , x5 in that order. We write
N0 = V (C) = {x1, . . . , x5}, N1 = N(V (C)) and N2 = V (G)\(N0∪N1). As G has diameter 2,
for every i ∈ {1, 2, 3}, every vertex in N2 has a neighbour in N1 that is adjacent to xi.

We let T consist of all vertices of N2 that have a neighbour in N1 that is adjacent to two
adjacent vertices of N0. So the colour of any vertex of T will be fixed in any 3-colouring after
colouring the five vertices of N0. We claim that N2 = T . In order to see this, let u ∈ N2. As
G has diameter 2, we find that u must have a neighbour v ∈ N1 adjacent to a vertex of N0,

B. Martin, D. Paulusma, and S. Smith 14:11

say x1. Then v is not adjacent to x5 or x2. If v is not adjacent to x3 either, then the vertices
x1, x5, x2, x3, v, u induce a S1,2,2 with center x1, a contradiction. So v must be adjacent to
x3, meaning v is not adjacent to x4. However, now x3, x2, x4, x5, v, u induce a S1,2,2 with
center x3, another contradiction.

We now “guess” the 3-colouring of C by considering all 35 possibilities if necessary. We
then proceed as in the proof of Theorem 11. That is, we observe that every vertex of N1 can
only be coloured with two possible colours and that after propagation, every uncoloured vertex
of N2 can only be coloured with two possible colours as well (as T = N2). Then it remains
to solve an instance of 2-List Colouring, which takes linear time by Theorem 6. As we
need to do this at most 35 times, the total running time of our algorithm is polynomial. J

4 Graphs of Bounded Diameter and Girth

In this section we will examine the trade-offs for k-Colouring between diameter and girth.
Recall that Mertzios and Sprirakis [24] proved that 3-Colouring is NP-complete for graphs
of diameter 3 and girth 4 (Theorem 5). We extend their result in our next theorem, partially
displayed in Figure 2. This theorem shows that there is still a large gap for which we do not
know the computational complexity of 3-Colouring for graphs of diameter d and girth g.

I Theorem 14. Let d, g, k be three integers with d ≥ 2, g ≥ 3 and k ≥ 3. Then k-Colouring
for graphs of diameter at most d and girth at least g is
1. polynomial-time solvable if g ≥ 2d+ 1
2. NP-complete if d = 3 and g ≤ 4 and k = 3
3. NP-complete if 4p ≤ d ≤ 4p+ 3 and g ≤ 4p+ 2 for some integer p ≥ 1 and k = 3.

v1 v2 v3 v4

v1,1 v2,1 v3,1 v4,1

v1,2,4v1,2,3 v2,2,4

Figure 4 An example of a graph G′, constructed in the proof of Theorem 14(3), for p = 1.

Proof.
1. This case follows from Theorem 7.
2. This case is Theorem 5 (proven in [24]).
3. We reduce 3-Colouring for graphs of girth at least 8p − 3, which is NP-complete by

Theorem 4, to 3-Colouring for graphs of diameter at most 4p and girth at least 4p+ 2.
Construct the graph G′ as follows (see Figure 4 for an example):

label the vertices of G v1 to vn;
for each vertex of G, add a new neighbour vi,1;
for every two vertices vi and vj such that dist(vi, vj) > l = 2p− 1 add new vertices to
form the path vi,1vi,2,j ...vi,p+1,jvj,p,i...vj,1.

MFCS 2019

14:12 Colouring H-free Graphs of Bounded Diameter

First we show that G′ has diameter at most 4p. For any two vertices vi and vj of G
either dist(vi, vj) ≤ l or we have the path vi,1vi,2,j ...vi,p+1,jvj,p,i...vj,1 and dist(vi, vj) ≤
2p + 2. Similarly, dist(vi, vj,1) ≤ 2p + 1 and dist(vi,1, vj,1) ≤ 2p + 1. Now consider two
vertices va,r,b and vc,q,d for 2 ≤ r ≤ p + 1, 2 ≤ q ≤ p + 1. If dist(va, vc) ≤ l then
dist(va,r,b, vc,q,d) ≤ r + q + l ≤ (p + 1) + (p + 1) + (2p − 1) ≤ 4p + 1. Otherwise we
have the path va,r,b..va,1va,2,c...va,p+1,cvc,p,a...vc,1vc,2,d...vc,q,d. This gives dist(va,r,b, vc,q,d) ≤
(r − 1) + p + p + (q − 1) ≤ 4p. In fact, if dist(va,r,b, vc,q,d) = 4p + 1, then we must have
r = q = p+ 1 and dist(va, vc) = dist(va, vd) = dist(vb, vc) = dist(vb, vd) = 2p−1. In this case
we have two paths of length at most 4p− 2 between va and vb, one containing vc and the
other containing vd. These paths must be distinct since the existence of the vertex vc,p+1,d
implies that dist(vc, vd) > 2p− 1. Therefore we have a cycle in G of length at most 8p− 4
which contradicts the assumption that G has girth at least 8p − 3. This implies that the
diameter of G′ is at most 4p.

Since G has girth at least 8p− 3, every cycle in G′ of length less than 4p+ 2 must contain
at least one vertex of V (G′)\V (G). Since all the vertices of V (G′)\V (G) except the vertices
vi,1 have degree 2, any such cycle C must contain the path vi,1..vi,p+1,j ...vj for some vi, vj at
distance greater than l. This path has length 2p+ 1. If C contains vi,2,m for some m different
from j then it contains the path vi,2,m...vm,1 and has length at least 4p+ 2. Similarly, this is
the case if C contains vj,2,m for m different from i. Otherwise C contains vi and vj which
are at distance at least l and has length at least (2p+ 1) + 2 + (2p− 1) = 4p+ 2.

Finally, we show that G is 3-colourable if and only if G′ is 3-colourable. The latter holds
if and only if the subgraph G′′ of G′ induced by V (G) ∪ {vi,1 | 1 ≤ i ≤ n} is 3-colourable,
since every other vertex of G′ has degree 2. The graph G is 3-colourable if and only if G′′ is
3-colourable, since G is an induced subgraph of G′′ and each vertex of V (G′′) \ V (G) has
degree 1. Therefore, G is 3-colourable if and only if G′ is 3-colourable. J

5 Conclusions

We proved a number of new results for Colouring and k-Colouring for polyad-free
graphs of bounded diameter and for graphs of bounded diameter and girth. In particular
we identified and narrowed a number of complexity gaps. This leads us to some natural
open problems. Our first two open problems follow from Theorem 10. The third open
problem comes from Theorem 12; note that K2

1,3 = S1,1,3. Our fourth open problem stems
from Theorem 13. Recall that determining the complexity of 3-Colouring for graphs of
diameter 2 is still wide open. This question is covered by the fifth open problem.

I Open Problem 1. Does there exist an integer d such that Colouring is NP-complete for
K1,3-free graphs of diameter d?

I Open Problem 2. What is the complexity of Colouring for C3-free graphs of diameter 2,
or equivalently, graphs of diameter 2 and girth 4?

I Open Problem 3. What are the complexities of 3-Colouring for K1
1,4-free graphs of

diameter 3 and for K2
1,3-free graphs of diameter 3?

I Open Problem 4. Do there exist integers d, h, i, j such that 3-Colouring is NP-complete
for Sh,i,j-free graphs of diameter d?

I Open Problem 5. What is the complexity of the open cases in Figure 2 and in particular
of 3-Colouring for graphs of diameter 2 and for graphs of diameter 2 and girth 4?

B. Martin, D. Paulusma, and S. Smith 14:13

References
1 Noga Alon. Restricted colorings of graphs. Surveys in combinatorics, London Mathematical

Society Lecture Note Series, 187:1–33, 1993.
2 Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian

Zhong. Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven
Vertices. Combinatorica, 38(4):779–801, 2018.

3 Miroslav Chlebík and Janka Chlebíková. Hard coloring problems in low degree planar bipartite
graphs. Discrete Applied Mathematics, 154(14):1960–1965, 2006.

4 Maria Chudnovsky. Coloring graphs with forbidden induced subgraphs. Proc. ICM 2014,
IV:291–302, 2014.

5 Maria Chudnovsky, Shenwei Huang, Sophie Spirkl, and Mingxian Zhong. List-three-coloring
graphs with no induced P6 + rP3. CoRR, abs/1806.11196, 2018.

6 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P6-free graphs. Proc.
SODA 2019, pages 1239–1256, 2019.

7 Konrad Kazimierz Dabrowski, François Dross, Matthew Johnson, and Daniël Paulusma. Filling
the Complexity Gaps for Colouring Planar and Bounded Degree Graphs. Journal of Graph
Theory, to appear, 2015.

8 R. Mark Damerell. On Moore Graphs. Mathematical Proceedings of the Cambridge Philosophical
Society, 74:227–236, 1973.

9 Keith Edwards. The complexity of colouring problems on dense graphs. TCS, 43:337–343,
1986.

10 Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely Colourable Graphs
and the Hardness of Colouring Graphs of Large Girth. Combinatorics, Probability and
Computing, 7(04):375–386, 1998.

11 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A Survey on the
Computational Complexity of Colouring Graphs with Forbidden Subgraphs. Journal of Graph
Theory, 84(4):331–363, 2017.

12 Carla Groenland, Karolina Okrasa, Pawel Rzążewski, Alex Scott, Paul Seymour, and Sophie
Spirkl. H-colouring Pt-free graphs in subexponential time. CoRR, 1803.05396, 2018.

13 Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial Algorithms for Perfect
Graphs. Annals of Discrete Mathematics, 21:325–356, 1984.

14 Chính T. Hoàng, Marcin Kamiński, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding
k-Colorability of P5-Free Graphs in Polynomial Time. Algorithmica, 57(1):74–81, 2010.

15 Alan J. Hoffman and Robert R. Singleton. On Moore graphs with diameter 2 and 3. IBM
Journal of Research and Development, 5:497–504, 1960.

16 Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10(4):718–
720, 1981.

17 Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. European Journal
of Combinatorics, 51:336–346, 2016.

18 Tommy R. Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 1995.
19 Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and Veronika

Slívová. Colouring (Pr + Ps)-Free Graphs. Proc. ISAAC 2018, LIPIcs, 123:5:1–5:13, 2018.
20 Daniel Král’, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of Coloring

Graphs without Forbidden Induced Subgraphs. Proceedings of WG 2001, LNCS, 2204:254–262,
2001.

21 Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. New trends in the theory of graph colorings:
choosability and list coloring. Proc. DIMATIA-DIMACS Conference, 49:183–197, 1999.

22 Daniel Leven and Zvi Galil. NP completeness of finding the chromatic index of regular graphs.
Journal of Algorithms, 4(1):35–44, 1983.

23 László Lovász. Coverings and coloring of hypergraphs. Congr. Numer., VIII:3–12, 1973.
24 George B. Mertzios and Paul G. Spirakis. Algorithms and Almost Tight Results for 3-

Colorability of Small Diameter Graphs. Algorithmica, 74(1):385–414, 2016.

MFCS 2019

14:14 Colouring H-free Graphs of Bounded Diameter

25 Michael Molloy and Bruce A. Reed. Colouring graphs when the number of colours is almost
the maximum degree. Journal of Combinatorial Theory, Series B, 109:134–195, 2014.

26 Daniël Paulusma. Open problems on graph coloring for special graph classes. Proc. WG 2015,
LNCS, 9224:16–30, 2015.

27 Frank P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical
Society, s2-30(1):264–286, 1930.

28 Bert Randerath and Ingo Schiermeyer. Vertex Colouring and Forbidden Subgraphs – A Survey.
Graphs and Combinatorics, 20(1):1–40, 2004.

29 Thomas J. Schaefer. The Complexity of Satisfiability Problems. STOC, pages 216–226, 1978.
30 Robert R. Singleton. There is no irregular Moore Graph. Amererican Mathematical Monthly,

75:42–43, 1968.
31 Zsolt Tuza. Graph colorings with local constraints - a survey. Discussiones Mathematicae

Graph Theory, 17(2):161–228, 1997.

Distance Labeling Schemes for Cube-Free Median
Graphs
Victor Chepoi
Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
victor.chepoi@lis-lab.fr

Arnaud Labourel
Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
arnaud.labourel@lis-lab.fr

Sébastien Ratel
Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
sebastien.ratel@lis-lab.fr

Abstract
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a
way that the distance between any two vertices u and v can be determined efficiently by merely
inspecting the labels of u and v, without using any other information. One of the important problems
is finding natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic
size. In this paper, we show that the class of cube-free median graphs on n nodes enjoys distance
labeling scheme with labels of O(log3 n) bits.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases median graphs, labeling schemes, distributed distance computation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.15

Related Version A full version of the paper is available at https://arxiv.org/abs/1809.10508.

Funding The work on this paper was supported by ANR project DISTANCIA (ANR-17-CE40-0015).

1 Introduction

Classical network representations are usually global in nature. In order to derive a useful piece
of information, one must access to a global data structure representing the entire network
even if the needed information only concerns few nodes. Nowadays, with networks getting
bigger and bigger, the need for locality is more important than ever. Indeed, in several cases,
global representations are impractical and network representation must be distributed. The
notion of (distributed) labeling scheme has been introduced [12, 32, 38, 39, 27] in order to
meet this need. A (distributed) labeling scheme is a scheme maintaining global information
on a network using local data structures (or labels) assigned to nodes of the network. Their
goal is to locally store some useful information about the network in order to answer a
specific query concerning a pair of nodes by only inspecting the labels of the two nodes.
Motivation for such localized data structure in distributed computing is surveyed and widely
discussed in [38]. The predefined queries can be of various types such as distance, adjacency,
or routing. The quality of a labeling scheme is measured by the size of the labels of nodes
and the time required to answer queries. Trees with n vertices admit adjacency and routing
labeling schemes with size of labels and query time O(logn)1 and distance labeling schemes
with size of labels and query time O(log2 n), and this is asymptotically optimal. Finding
natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic
size is an important and challenging problem.

1 All logarithms in this paper are in base 2.

© Victor Chepoi, Arnaud Labourel, and Sébastien Ratel;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.chepoi@lis-lab.fr
mailto:arnaud.labourel@lis-lab.fr
mailto:sebastien.ratel@lis-lab.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.15
https://arxiv.org/abs/1809.10508
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Distance Labeling Schemes for Cube-Free Median Graphs

A connected graph G is median if any triplet of vertices x, y, z contains a unique vertex
simultaneously lying on shortest (x, y)-, (y, z)-, and (z, x)-paths. Median graphs constitute
the most important class in metric graph theory [5]. This importance is explained by the
bijections between median graphs and discrete structures arising and playing important roles
in completely different areas of research in mathematics and theoretical computer science: in
fact, median graphs, 1-skeletons of CAT(0) cube complexes from geometric group theory
[30, 41], domains of event structures from concurrency [44], median algebras from universal
algebra [7], and solution sets of 2-SAT formulae from complexity theory [36, 42] are all the
same. In this paper, we design a distance labeling scheme for median graphs containing no
cubes. In our scheme, the labels have O(log3 n) bits and O(1) query time. Our constant
query time assumes the standard word-RAM model with word size Ω(logn).

We continue with the idea of the labeling scheme. Let G = (V,E) be a cube-free median
graph with n vertices. First, the algorithm computes a median (centroid) vertex m of G. and
the star St(m) of m (the union of all edges and squares of G incident to m). The star St(m)
is gated, i.e., each vertex of G has an unique projection (nearest vertex) in St(m). Therefore,
with respect to the projection function, the vertex-set of G is partitioned into fibers: the
fiber F (x) of x ∈ St(m) consists of all vertices v ∈ V having x as the projection in St(m).
Since m is a median of G, each fiber contains at most n

2 vertices. The fibers are also gated
and are classified into panels and cones depending to the distance between their projections
and m (one for panels and two for cones). Each cone has at most two neighboring panels
however a panel may have an unbounded number of neighboring cones. Given two arbitrary
vertices u and v of G, we show that dG(u, v) = dG(u,m) + dG(m, v) for all locations of u
and v in the fibers of St(m) except the cases when u and v belong to neighboring cones and
panels, or u and v belong to two cones neighboring the same panel, or u and v belong to
the same fiber. If dG(u, v) = dG(u,m) + dG(m, v), then dG(u, v) can be retrieved by keeping
dG(u,m) in the label of u and dG(v,m) in the label of v. If u and v belong to the same
fiber F (x), the computation of dG(u, v) is done by recursively partitioning the cube-free
median graph F (x) at a later stage of the recursion. In the two other cases, we show that
dG(u, v) can be retrieved by keeping in the labels of vertices in all cones the distances to
their projections on the two neighboring panels. It turns out (and this is the main technical
contribution of the paper), that for each panel F (x), the union of all projections of vertices
from neighboring cones on F (x) is included in an isometric tree of G and that the vertices
of the panel F (x) contain one or two projections in this tree. All such outward and inward
projections are kept in the labels of respective vertices. Therefore, one can use distance
labeling schemes for trees to deal with vertices u and v lying in neighboring fibers or in cones
having a common neighboring panel. Consequently, the size of the label of a vertex u on
each recursion level is O(log2 n). Since the recursion depth is O(logn), the vertices of G have
labels of size O(log3 n). The distance dG(u, v) can be retrieved by finding the first time in
the recursion when vertices u and v belong to different fibers of the partition. Consequently,
the main result of the paper is the following theorem:

I Theorem 1. There exists a distance labeling scheme that constructs in O(n2 logn) time
labels of size O(log3 n) of the vertices of a cube-free median graph G = (V,E). Given the
labels of u and v of G, it computes in constant time the distance dG(u, v) between u and v.

The remaining part of this note is organized in the following way. Section 2 introduces
the notions used in this paper. In Section 3 we review the main results on distance labeling
schemes and on median graphs. In Section 4 we recall or establish some properties of general
median graphs used in our scheme. Section 5 presents the most important geometric and
structural properties of cube-free median graphs, which are the essence of our distance scheme

V. Chepoi, A. Labourel, and S. Ratel 15:3

and which do not hold for general median graphs. Section 6 describes our distance labeling
scheme for cube-free median graphs and proves Theorem 1. Due to page limits, the missing
proofs and the pseudocodes are provided in the full version [22]. In the full version, we also
describe a routing labeling scheme with similar performances.

2 Preliminaries

2.1 Basic notions

All graphs G = (V,E) in this note are finite, undirected, simple, and connected. We
will write u ∼ v if two vertices u and v are adjacent. The distance dG(u, v) between two
vertices u and v is the length of a shortest (u, v)-path, and the interval I(u, v) := {x ∈
V : dG(u, x) + dG(x, v) = dG(u, v)} consists of all the vertices on shortest (u, v)–paths. A
connected subgraph H of G is called isometric if dH(u, v) = dG(u, v) for any two vertices u, v
ofH. A subgraphH of G is gated if for every vertex v /∈ V (H), there exists a vertex v′ ∈ V (H)
such that for all u ∈ V (H), dG(v, u) = dG(v, v′) + dG(v′, u) (v′ is called the gate of v in H).
For a vertex x of a gated subgraph H of G, the set F (x) = {v ∈ V : x is the gate of v in H}
is called the fiber of x with respect to H. The fibers {F (x) : x ∈ H} define a partition of G.
The m-dimensional hypercube Qm has all subsets of {1, . . . ,m} as the vertex-set and A ∼ B
iff |A4B| = 1.

A graph G is called median if the intersection I(x, y) ∩ I(y, z) ∩ I(z, x) is a singleton
for each triplet x, y, z of vertices; this unique intersection vertex is called the median of
x, y, z. Median graphs are bipartite. Basic examples of median graphs are trees, hypercubes,
rectangular grids, and Hasse diagrams of distributive lattices and of median semilattices
[5]. The star St(z) of a vertex z of a median graph G is the union of all hypercubes of G
containing z. The dimension dim(G) of a median graph G is the largest dimension of an
hypercube subgraph of G. A cube-free median graph is a median graph G of dimension 2, see
Figure 1 for illustrations. Even if cube-free median graphs are the skeletons of 2-dimensional
CAT(0) cube complexes, their combinatorial structure is rather intricate. As an example,
for n,m ≥ 5, the Cartesian product K1,n ×K1,m is a non-planar cube-free median graph.
Moreover, for any n, one can construct a cube-free median graph containing Kn as a minor
by gluing together

(
n
2
)
grids of size n× n along a common horizontal side. Hence, this class

is not a subset of any minor-closed graph family.

Figure 1 Cube-free median graphs.

MFCS 2019

15:4 Distance Labeling Schemes for Cube-Free Median Graphs

2.2 Distance labeling schemes
A labeling scheme for a graph family G consists of an encoding function and a decoding
function. These functions depend on the family G and on the type of queries: adjacency,
distance, or routing queries. More formally, a distance labeling scheme on a graph family G
consists of an encoding function CG : V (G)→ {0, 1}∗ that gives to every vertex of a graph
G of G a label, and of a decoding function DG : {0, 1}∗ × {0, 1}∗ → N that, given the labels
of two vertices u and v of G, can compute efficiently the distance dG(u, v) between them.

3 Related work

3.1 Distance labeling schemes
Distance Labeling Schemes (DLS) have been introduced in a series of papers by Peleg et
al. [38, 39, 27]. Before these works, some closely related notions already existed such as
embeddings in a squashed cube [43] (equivalent to distance labeling schemes with labels of
size logn times the dimension of the cube) or labeling schemes for adjacency requests [32].
One of the main results for DLS is that general graphs support distance labeling schemes
with labels of size O(n) bits [43, 27, 2]. This scheme is asymptotically optimal since Ω(n) bits
labels are needed for general graphs. Another important result is that there exists a distance
labeling scheme for the class of trees with O(log2 n) bits labels [38, 3, 24]. Several classes of
graphs containing trees also enjoy a distance labeling scheme with O(log2 n) bit labels such
as bounded tree-width graphs [27], distance-hereditary graphs [25], bounded clique-width
graphs [23], and non-positively curved plane graphs [19]. A lower bound of Ω(log2 n) bits
on the label length is known for trees [27, 3], implying that all the results mentioned above
are optimal as well. Other families of graphs have been considered such as interval graphs,
permutation graphs, and their generalizations [9, 26] for which an optimal bound of Θ(logn)
bits was given, and planar graphs for which there is a lower bound of Ω(n 1

3) bits [27] and an
upper bound of O(

√
n) bits [28].

3.2 Median graphs
Median graphs and related structures have an extensive literature; several surveys exist
listing their numerous characterizations and properties [5, 33, 34]. These structures have
been investigated in different contexts by quite a number of authors for more than half a
century. In this subsection we briefly review the links between median graphs and CAT(0)
cube complexes. We also recall some results, related to the subject of this paper, about the
distance and shortest path problems in median graphs and CAT(0) cube complexes. For
a survey of results on median graphs and their bijections with median algebras, median
semilattices, CAT(0) cube complexes, and solution spaces of 2-SAT formulae, see [5]. For a
comprehensive presentation of median graphs and CAT(0) cube complexes as domains of
event structures, see the long version of [14].

It is not immediately clear from the definition, but median graphs are intimately related to
hypercubes: median graphs can be obtained from hypercubes by amalgams and median graphs
are themselves isometric subgraphs of hypercubes [8, 35]. Even more, median graphs are
exactly the retracts of hypercubes [4]. Due to the abundance of hypercubes, to each median
graph G one can associate a cube complex X(G) obtained by replacing every hypercube of G
by a solid unit cube. Then G can be recovered as the 1-skeleton of X(G). The cube complex
X(G) can be endowed with several intrinsic metrics, in particular with the `2-metric. An
important class of cube complexes studied in geometric group theory and combinatorics is the

V. Chepoi, A. Labourel, and S. Ratel 15:5

class of CAT(0) cube complexes. CAT(0) geodesic metric spaces are usually defined via the
nonpositive curvature comparison axiom of Cartan–Alexandrov–Toponogov [13]. For cube
complexes (and more generally for cell complexes) the CAT(0) property can be defined in a
very simple and intuitive way by the property that `2-geodesics between any two points are
unique. Gromov [30] gave a nice combinatorial characterization of CAT(0) cube complexes
as simply connected cube complexes with flag links. It was also shown in [18, 40] that median
graphs are exactly the 1-skeletons of CAT(0) cube complexes.

Previous characterizations can be used to show that several cube complexes arising in
applications are CAT(0). Billera et al. [10] proved that the space of trees (encoding all
tree topologies with a given set of leaves) is a CAT(0) cube complex. Abrams et al. [1, 29]
considered the space of all possible positions of a reconfigurable system and showed that
in many cases this state complex is CAT(0). Billera et al. [10] formulated the problem of
computing the geodesic between two points in the space of trees. In the robotics literature,
geodesics in state complexes correspond to the motion planning to get the robot from one
position to another one with minimal power consumption. A polynomial-time algorithm for
geodesic problem in the space of trees was provided in [37] and, very recently, [31] designed
such an algorithm for all CAT(0) cube complexes.

Returning to median graphs, the following is known about the labeling schemes for
them. First, the arboricity of any median graph G on n vertices is at most logn, leading
to adjacency schemes of O(log2 n) bits per vertex. As noted in [21], one logn factor can be
replaced by the dimension of G. Compact distance labeling schemes can be obtained for
some subclasses of cube-free median graphs. One particular class is that of squaregraphs,
i.e., plane graphs in which all inner vertices have degree ≥ 4. For squaregraphs, distance
schemes with labels of size O(log2 n) follow from a more general result of [19] for plane
graphs of nonpositive curvature. Another such class of graphs is that of partial double
trees [6]. Those are the median graphs which isometrically embed into a Cartesian product
of two trees. The isometric embedding of partial double trees into a product of two trees
immediately leads to distance schemes with labels of O(log2 n) bits. Finally, with a technically
involved proof, it was shown in [20] that there exists a constant M such that any cube-free
median graph G with maximum degree ∆ can be isometrically embedded into a Cartesian
product of at most ε(∆) := M∆26 trees. This immediately shows that cube-free median
graph admit distance labeling schemes with labels of length O(ε(∆) log2 n). Compared
with the O(log3 n)-labeling scheme obtained in the current paper, the disadvantage of the
O(ε(∆) log2 n)-labeling scheme is the dependence from the maximum degree ∆ of G. The
situation is even worse for high dimensional median graphs: [20] presents an example of a
5-dimensional median graph/CAT(0) cube complex with constant degree which cannot be
embedded into a Cartesian product of a finite number of trees. Therefore, for general finite
median graphs the function ε(∆) does not exist. This in some sense explains the difficulty of
designing polylogarithmic distance labeling schemes for general median graphs. Nevertheless,
we do not have any indication to believe that such schemes do not exist.

4 Fibers in median graphs

In this section, we recall several useful properties of fibers of gated subgraphs of median
graphs. From the definition, one can deduce that median graphs satisfy the following
quadrangle condition: For any vertices u, v, w, z such that dG(u, z) = k + 1, v, w ∼ z, and
dG(u, v) = dG(u,w) = k, there is a unique vertex x ∼ v, w such that dG(u, x) = k − 1.

MFCS 2019

15:6 Distance Labeling Schemes for Cube-Free Median Graphs

I Lemma 1. [17]: A subgraph H of a median graph G is gated if and only if any vertex
v /∈ V (H) is adjacent to at most one vertex of H.

Combinatorially, the stars of median graphs may have quite an arbitrary structure: by
a result of [8], there is a bijection (via the simplex graph operation) between the stars of
median graphs and arbitrary graphs. However, from the metric point of view, stars St(z)
have interesting properties:

I Proposition 2. The stars St(z) and their fibers F (x), x ∈ St(z), are gated.

Both properties of Proposition 2 are known for more general graphs: for gatedness of
stars, see [15, Theorem 6.17]) and for gatedness of fibers of gated sets, see [16].

Let H be a gated subgraph of G and let F(H) = {F (x) : x ∈ V (H)} be the partition of
V into fibers. We call two fibers F (x) and F (y) neighboring (notation F (x) ∼ F (y)) if there
exists an edge x′y′ of G with x′ in F (x) and y′ in F (y). If F (x) and F (y) are neighboring
fibers of H, then denote by ∂yF (x) the set of all vertices x′ ∈ F (x) having a neighbor y′ in
F (y) and call ∂yF (x) the boundary of F (x) relative to F (y). The following three results can
be easily proved.

I Lemma 2. Two fibers F (x) and F (y) of H are neighboring if and only if x ∼ y. Moreover,
if F (x) ∼ F (y), then ∂yF (x) induces a gated subgraph of G of dimension ≤ dim(G)− 1.

For a vertex x of H and its fiber F (x), the union of all boundaries ∂yF (x) over all
F (y) ∼ F (x), y ∈ V (H), is called the total boundary of the fiber F (x) and is denoted by
∂∗F (x). The boundaries ∂yF (x) constituting ∂∗F (x) are called branches of ∂∗F (x).

I Lemma 3. The total boundary of any fiber of H is an isometric subgraph of G not
containing dim(G)-cubes.

We conclude this section with an additional property of fibers of stars of median vertices
of G, i.e., vertices minimizing the function M(x) =

∑
v∈V dG(x, v).

I Lemma 4. Let m be a median vertex of a median graph G with n vertices. Then any fiber
F (x) of the star St(m) of m has at most n/2 vertices.

Unfortunately, the total boundary of a fiber does not always induce a median subgraph.
Therefore, one cannot recursively apply the algorithm to the subgraphs induced by the
total boundaries ∂∗F (x). However, if G is cube-free, then the total boundaries of fibers are
isometric subtrees of G and one can use for them distance schemes for trees. Even in this
case, we still need an additional property of ∂∗F (x). We establish it in the next section.

5 Fibers in cube-free median graphs

In this section, we establish additional properties of fibers and of their total boundaries in
cube-free median graphs (for other properties of such graphs, see [11]). Using them we can
show that for any pair u, v of vertices of G, the following trichotomy holds: the distance
dG(u, v) either can be computed as dG(u,m) + dG(m, v), or as the sum of distances from
u, v to appropriate vertices u′, v′ of ∂∗F (x) plus the distance between u′, v′ in ∂∗F (x), or
via a recursive call to the fiber containing u and v.

V. Chepoi, A. Labourel, and S. Ratel 15:7

5.1 Classification of fibers
Let z be an arbitrary vertex of G and let Fz = {F (x) : x ∈ St(z)} denote the partition of V
into the fibers of St(z). We distinguish two types of fibers: the fiber F (x) is called a panel if
x is adjacent to z and F (x) is called a cone if x has distance two to z. The interval I(x, z) is
the edge xz if F (x) is a panel and is a square Qx := (x, y′, z, y′′) if F (x) is a cone. In the
second case, since y′ and y′′ are the only neighbors of x in St(z), by Lemma 2 we deduce
that the cone F (x) is adjacent to the panels F (y′) and F (y′′) and that F (x) is not adjacent
to any other panel or cone. By the same lemma, a panel F (y) is not adjacent to any other
panel, but F (y) is adjacent to all cones F (x) such that the square Qx contains the edge yz.

5.2 Total boundaries of fibers are quasigated
For a set A, an imprint of a vertex u /∈ A on A is a vertex a ∈ A such that I(u, a)∩A = {a}.
Denote by Υ(u,A) the set of all imprints of u on A. The most important property of
imprints is that for any vertex z ∈ A, there exists a shortest (u, z)-path passing via an
imprint. Therefore, if the set Υ(u,A) has constant size, one can store in the label of u the
distances to the vertices of Υ(u,A). Using this, for any z ∈ A, one can compute dG(u, z)
as min{dG(u, a) + dG(a, z) : a ∈ Υ(u,A)}. Note that A is gated iff any u /∈ A has a unique
imprint on A. We will say that a set A is quasigated if |Υ(u,A)| ≤ 2 for any vertex u /∈ A.
The main goal of this subsection is to show that the total boundaries of fibers are quasigated.

Let T be a tree with a distinguished vertex r in G, called the root of T . We will say that
a rooted tree T has gated branches if for any vertex x of T the unique path P (x, r) of T
connecting x to the root r is a gated subgraph of G. Lemma 3 implies:

I Lemma 5. The total boundary of any fiber is an isometric tree with gated branches.

By Lemma 5, ∂∗F (x) has gated branches, however ∂∗F (x) is not necessarily gated itself.
Since a panel F (x) may be adjacent to an arbitrary number of cones, one can think that
the imprint-set Υ(u, ∂∗F (x)) of a vertex u of F (x) may have an arbitrarily large size. The
following lemma shows that this is not the case, namely that |Υ(u, ∂∗F (x))| ≤ 2. This is one
of the key ingredients in the design of the distance labeling scheme presented in Section 6.
This property is no longer true for median graphs of dimension > 2.

I Lemma 6. Any rooted (at r) tree T with gated branches of G is quasigated.

Proof. Pick any u ∈ V \ V (T) and suppose by way of contradiction that Υ(u, T) contains
three distinct imprints x1, x2, and x3. Since T has gated branches, none of the vertices
x1, x2, x3 belong to the path of T between r and another vertex from this triplet. In particular,
r is different from x1, x2, x3. Suppose additionally that among all rooted trees T ′ with gated
branches of G and such that |Υ(u, T ′)| ≥ 3, the tree T has the minimal number of vertices.
This minimality choice (and the fact that any subtree of T containing r is also a rooted
tree with gated branches) implies that T is exactly the union of the three gated paths
P (r, x1), P (r, x2), and P (r, x3). Therefore, x1, x2 and x3 are the leaves of T .

Let yi be the neighbor of xi in the path P (r, xi), i = 1, 2, 3. Since G is bipartite, either
xi ∈ I(yi, u) or yi ∈ I(xi, u). Since xi ∈ Υ(u, T), necessarily xi ∈ I(yi, u). Let T ′i be the
subtree of T obtained by removing the leaf xi. From the minimality choice of T , we cannot
replace T by the subtree T ′i . This means that |Υ(u, T ′i)| ≤ 2. Since xj , xk ∈ Υ(u, T ′i) for
{i, j, k} = {1, 2, 3}, necessarily I(yi, u) ∩ {xj , xk} 6= ∅ holds.

First, notice that x1, x2, x3 ∈ I(u, r). Indeed, let zi denote the median of the triplet
xi, u, r. If zi 6= xi, since zi ∈ I(xi, r) = P (xi, r) ⊂ T and zi ∈ I(u, xi), we obtain a
contradiction with the inclusion of xi in Υ(u, T). Thus zi = xi, yielding xi ∈ I(u, zi).

MFCS 2019

15:8 Distance Labeling Schemes for Cube-Free Median Graphs

Now, suppose without loss of generality that dG(r, x3) = max{dG(r, xi) : i = 1, 2, 3} := k.
Since I(y3, u) ∩ {x1, x2} 6= ∅ as shown above, we can suppose that x2 ∈ I(y3, u). Since
x3 ∈ I(y3, u), from these inclusions we obtain that dG(x3, u) + 1 = dG(y3, x2) + dG(x2, u).
Then dG(x3, u) ≥ dG(x2, u), and we conclude that dG(x3, u) = dG(x2, u) and dG(y3, x2) = 1.
Since x2, x3 ∈ I(r, u), dG(x3, r) = dG(x2, r). We distinguish two cases:
Case 1. dG(x1, r) = k.

Since x1, x2, x3 have the same distance k to r, we can apply to x1 the same analysis as to x3
and deduce that the neighbor y1 of x1 in T coincides with one of the vertices y2 or y3. Since
y2 = y3 = y, we conclude that the vertices x1, x2, x3 have the same neighbor y in T . Since
y is closer to r than each of the vertices x1, x2, x3 and since x1, x2, x3 ∈ I(r, u), we conclude
that x1, x2, x3 ∈ I(y, u). Applying the quadrangle condition three times, we can find three
vertices xi,j , i, j ∈ {1, 2, 3}, i 6= j, such that xi,j ∼ xi, xj and dG(xi,j , u) = k− 1. If two of
the vertices x1,2, x2,3, and x3,1 coincide, then we will get a forbidden K2,3. Thus x1,2, x2,3,

and x3,1 are pairwise distinct. Since G is bipartite, this implies that dG(xi, xj,k) = 3
for {i, j, k} = {1, 2, 3}. Since x1,2, x2,3 ∈ I(x2, u), by quadrangle condition there exists a
vertex w such that w ∼ x1,2, x2,3 and dG(w, u) = k − 2. Since G is bipartite, dG(w, x3,1)
equals to 3 or to 1. If dG(w, x3,1) = 3 = d(y, w), then the triplet y, w, x3,1 has two
medians x1 and x3, which is impossible, because G is median. Thus dG(w, x3,1) = 1, i.e.,
w ∼ x3,1. Then one can easily see that the vertices y, x1, x2, x3, x1,2, x2,3, x3,1, w define
an isometric 3-cube of G, contrary to the assumption that G is cube-free. This finishes
the analysis of Case 1.

Case 2. dG(x1, r) < k.
This implies that dG(r, x1) ≤ k−1 = dG(r, y). Let r′ be the neighbor of r in the (r, y)-path
of T . Note that r′ /∈ I(r, x1) = P (r, x1). Otherwise, r′ ∈ P (r, x1) ∩ P (r, x2) ∩ P (r, x3)
and we can replace T by the subtree T ′ rooted at r′ and consisting of the subpaths of
P (r, xi) between r′ and xi, i = 1, 2, 3. Clearly T ′ is a rooted tree with gated branches
and x1, x2, x3 ∈ Υ(u, T ′), contrary to the minimality choice of T . Thus r′ /∈ P (r, x1).
Let also P (r, x1) = (r, v1, . . . , vm−1, vm =: x1). Note that r may coincide with y1
and x1 may coincide with v1. Since v1, r

′ ∈ I(r, u), by quadrangle condition we will
find v′2 ∼ v1, r

′ at distance dG(r, u) − 2 from u. Since r′ /∈ I(r, x1), v′2 6= v2. Since
v2, v

′
2 ∈ I(v1, u), by quadrangle condition we will find v′3 ∼ v2, v

′
2 at distance dG(r, u)− 3

from u. Again, since r′ /∈ I(r, x1), v′3 6= v3. Continuing this way, we will find the vertices
v′2, v

′
3, . . . , v

′
m, v

′
m+1 =: x′1 forming an (r′, x′1)-path P (r′, x′1) and such that v′i+1 ∼ vi, v

′
i,

v′i+1 6= vi+1, and v′i+1 is one step closer to u than vi and v′i. From its construction,
P (r′, x′1) is a shortest path. We assert that P (r′, x′1) is gated. Otherwise, by Lemma
1, we can find two vertices v′i−1 and v′i+1 having a common neighbor z′ different from
v′i. Let z be the median of the triplet z′, vi−1, vi+1. Then z is a common neighbor of
z′, vi−1, vi+1 and z is different from vi (otherwise, we obtain a forbidden K2,3). But then
the vertices vi−1, vi, vi+1, v

′
i−1, v

′
i, v
′
i+1, z, z

′ induce in G an isometric 3-cube, contrary to
the assumption that G is cube-free. Consequently, P (r′, x′1) is a gated path of G.
Let T ′′ be the tree rooted at r′ and consisting of the gated path P (r′, x′1) and the gated
subpaths of P (r, x2) and P (r, x3) between r′ and x2, x3, respectively. Clearly, T ′′ is a
rooted tree with gated branches. Notice that x′1, x2, x3 ∈ Υ(u, T ′′). Indeed, if x2 or x3
belonged to I(x′1, u), then x′1 ∈ I(x1, u) and we would conclude that x2 or x3 belongs to
I(x1, u), which is impossible because x1 ∈ Υ(u, T). On the other hand, x′1 cannot belong
to I(x2, u) or to I(x3, u) because dG(x′1, u) = dG(x1, u) − 1 ≤ dG(x2, u) = dG(x3, u).
Consequently, |Υ(u, T ′′)| ≥ 3. Since T ′′ contains less vertices than T , we obtain a
contradiction with the minimality choice of T . This concludes the analysis of Case 2,
thus T is quasigated. J

V. Chepoi, A. Labourel, and S. Ratel 15:9

Applying Lemmas 5 and 6 to the subgraph of G induced by the fiber F (x), we obtain:

I Corollary 3. The total boundary ∂∗F (x) of any fiber F (x) is quasigated.

5.3 Classification of pairs of vertices
In Subsection 5.1, we classified the fibers of St(z) into panels and cones. In this subsection,
we use it to provide a classification of pairs of vertices of G with respect to the partition into
fibers, which extends the one done in [19] for planar median graphs.

Let z be an arbitrary fixed vertex of G. Let Fz = {F (x) : x ∈ St(z)} be the partition of
V into the fibers of St(z). Let u, v be two arbitrary vertices of G and suppose that u belongs
to the fiber F (x) and v belongs to the fiber F (y) of Fz. We say that u and v are roommates
if they belong to the same fiber, i.e., x = y. We say that u and v are 1-neighboring if F (x)
and F (y) are two neighboring fibers (then one of them is a panel and another is a cone). We
say that u and v are 2-neighboring if F (x) and F (y) are distinct cones neighboring with a
common panel, i.e., there exists a panel F (w) ∼ F (x), F (y). Finally, we say that u and v are
separated if the fibers F (x) and F (y) are distinct, are not neighboring, and if both F (x) and
F (y) are cones, then they are not 2-neighboring. From the definition it follows that any two
vertices u, v of G are either roommates, or separated, or 1-neighboring, or 2-neighboring.

separated vertices 1-neighboring vertices

u
v

x y

z

F (x) F (y)

u

u1

u2

v+

v

z

x

y

F (x)

F (y)

2-neighboring vertices

z

u
u+

v+
v

y

w

x

F (x) F (y)

F (w)

Figure 2 To Lemmas 7, 8 and 9: in red, shortest paths between separated, 1-neighboring, and
2-neighboring vertices u and v. The total boundaries of the panels appear in blue.

We continue with distance formulae for separated, 2-neighboring, and 1-neighboring
vertices. The illustration of each of the formulae is provided in Figure 2.

MFCS 2019

15:10 Distance Labeling Schemes for Cube-Free Median Graphs

I Lemma 7. Two vertices u and v are separated if and only if dG(u, v) = dG(u, z)+dG(z, v).

I Lemma 8. Let u and v be two 1-neighboring vertices such that u belongs to the panel
F (x) and v belongs to the cone F (y). Let u1 and u2 be the two imprints of u on the total
boundary ∂∗F (x) and let v+ be the gate of v in F (x). Then, dG(u, v) = min{dG(u, u1) +
d∂∗F (x)(u1, v

+), dG(u, u2) + d∂∗F (x)(u2, v
+)}+ dG(v+, v).

I Lemma 9. Let u and v be two 2-neighboring vertices belonging to the cones F (x) and
F (y), respectively, and let F (w) be the panel neighboring F (x) and F (y). Let u+ and v+ be
the gates of u and v in F (w). Then dG(u, v) = dG(u, u+) + d∂∗F (w)(u+, v+) + dG(v+, v).

6 Distance labeling scheme for cube-free median graphs

Let G = (V,E) be a cube-free median graph with n vertices and let m be a median vertex of
G. Let u, v be any pair of vertices of G for which we have to compute the distance dG(u, v).
Applying Lemmas 7, 8, and 9 with m instead of z, the distance dG(u, v) can be computed
once u and v are separated, 1-neighboring, or 2-neighboring and once u and v keep in their
labels the distances to m, to the respective gates u+ and v+, and to the imprints u1 and
u2 if u belongs to a panel. It also requires keeping in the labels of u and v the information
necessary to compute each of the distances d∂∗F (x)(u1, v

+), d∂∗F (x)(u2, v
+), d∂∗F (w)(u+, v+).

Since the total boundaries are isometric trees, this can be done by keeping in the label of
u the labels of u1, u2, and u+ in a distance labeling scheme for trees, as well as keeping in
the label of v such a label of v+. This shows that dG(u, v) can be computed in all cases
except when u and v are roommates. Since F (x) is median, we can apply the same recursive
procedure to each fiber F (x) instead of G. Therefore, dG(u, v) is computed in the first
recursive call when u and v will no longer belong to the same fiber of the current median
vertex (we will sometimes refer at this median vertex as the separator of u and v). Since at
each step the division into fibers is performed with respect to a median, |F (x)| ≤ n/2 by
Lemma 4, thus the tree of recursive calls has logarithmic depth.

In this section, we present the distance labeling scheme. The encoding scheme is described
by the algorithm Dist_Enc presented in Subsection 6.1. Subsection 6.2 presents the
algorithm Dist for answering distance queries. In Subsection 6.3, we briefly explain how a
constant query time can be achieved by adding O(log2 n) bits in head of each label.

6.1 Encoding
We describe now how Dist_Enc constructs for every vertex u of G a distance label LD(u).
This is done recursively and every depth of the recursion is called a step. Initially, we suppose
that every vertex u of G is given a unique identifier id(u). We define this naming step
as Step 0 and denote the corresponding part of LD(u) by LD0(u), i.e., LD0(u) := id(u).
At Step 1, Dist_Enc computes a median vertex m of G, the star St(m) of m, and the
partition Fm := {F (x) : x ∈ St(m)} of V into fibers. Every vertex u of G receives the
identifier id(m) of m and its distance dG(u,m) to m. After that, every vertex x of St(m)
receives a special identifier LSt(m)(x) of size O(log |V |) given by a distance labeling for the
star St(m). Then, Dist_Enc computes the gate u↓ in St(m) of every vertex u of G and
adds its identifier LSt(m)(u↓) to LD(u). The identifiers LSt(m)(x) of the vertices of St(m)
can also be used to distinguish the fibers of St(m). This triplet (id(m), dG(u,m),LSt(m)(u↓))
contains the necessary information relative to St(m) and is thus referred as the part “star”
of the information LD1(u) given to u at Step 1. We denote this part by LDSt

1 (u). We also
set LDSt[Med]

1 (u) := id(m), LDSt[Dist]
1 (u) := dG(u,m) and LDSt[gate]

1 (u) := LSt(m)(u↓) for the
three components of the label LDSt

1 (u).

V. Chepoi, A. Labourel, and S. Ratel 15:11

Afterwards, at Step 1, the algorithm considers each fiber F (x) of Fm. If F (x) is a panel,
then the algorithm computes the total boundary ∂∗F (x) of F (x). The vertices v of the
quasigated tree ∂∗F (x) are given special identifiers LD∂∗F (x)(v) of size O(log2 |V |) consisting
of a distance labeling scheme for trees (see [24]). For each vertex u of the panel F (x),
the algorithm computes the two imprints u1 and u2 of u in ∂∗F (x) (it may happen that
u1 = u2) and stores (LD∂∗F (x)(u1), dG(u, u1)) and (LD∂∗F (x)(u2), dG(u, u2)) in LD1st

1 (u) and
LD2nd

1 (u). If F (x) is a cone and F (w1) and F (w2) are the two panels neighboring F (x),
then for each vertex u of F (x), the algorithm computes the gates u+

1 and u+
2 of u in F (w1)

and F (w2), respectively. Since u+
i ∈ ∂xF (wi) ⊂ ∂∗F (x), i = 1, 2, the labels LD∂∗F (w1)(u+

1)
and LD∂∗F (w2)(u+

2) in the distance labelings of trees ∂∗F (w1) and ∂∗F (w2) are well-defined.
Therefore, the algorithm stores (LD∂∗F (w1)(u+

1), dG(u, u+
1)) and (LD∂∗F (w2)(u+

2), dG(u, u+
2))

in LD1st
1 (u) and LD2nd

1 (u). This ends Step 1.
Since Fm partitions V into gated median subgraphs, the label LD2(u) added to LD(u)

at Step 2 is constructed as LD1(u) replacing G by the fiber F (u↓) containing u, and so on.
Since each fiber contains no more than half of the vertices of the current graph, at Step
dlog |V |e, the fiber containing any vertex consists solely of this vertex, and the algorithm
stops. Therefore, for each pair of vertices u and v of G, there exists a step of the recursion
after which u and v are no longer roommates.

6.2 Distance queries
Let u and v be two vertices of G and let LD(u) and LD(v) be their labels returned by
Dist_Enc. Here we describe how the algorithm Dist computes the information about the
relative positions of u and v with respect to each other and how, using it, computes dG(u, v).
First, the algorithm has to detect if u and v coincide or not. If u 6= v, then Dist finds the
largest integer i such that LDSt[Med]

i (u) = LDSt[Med]
i (v). This corresponds to the first time

the vertices u and v belong to different fibers in a partition. Let m be the median vertex
of the current median graph that is the separator of u and v. Then, the algorithm Dist
retrieves the distances d := dG(u↓, v↓), du := dG(u↓,m) and dv := dG(v↓,m). This is done
by using the identifiers LDSt[gate]

i (u) and LDSt[gate]
i (v) and the distance decoder for distance

labeling in stars. With this information at hand, one can easily decide for each of the vertices
u and v if it belongs to a cone or to a panel, and moreover decide if the vertices u and v are
1-neighboring, 2-neighboring, or separated. In each of these cases, a call to an appropriate
function is done.

First suppose that the vertices u and v are 1-neighboring (d = 1 and one of du, dv is 1
and the other is 2), i.e., one of the vertices u, v belongs to a cone, the other one belongs to
a panel, and the cone and the panel are neighboring. The function Dist_1-Neighboring
returns the distance dG(u, v) in the assumption that u belongs to a panel and v belongs to a
cone (if v belongs to a panel and u to a cone, it suffices to swap the names of the vertices u
and v before using Dist_1-Neighboring). The function finds the gate v+ of v in the panel
of u by looking at LDSt[gate]

i (v) (it also retrieves the distance dG(v, v+)). It then retrieves
the imprint u∗ of u (and the distance dG(u, u∗)) on the total boundary of the panel that
minimizes the distance of u to one of the two imprints plus the distance from this imprint to
the gate v+ using their tree distance labeling scheme. Finally, Dist_1-Neighboring returns
dG(u, u∗) + dG(u∗, v+) + dG(v+, v) as dG(v, u).

Now suppose that the vertices u and v are 2-neighboring (i.e., d = du = dv = 2). Then
both u and v belong to cones. By inspecting LDSt[gate]

i (u) and LDSt[gate]
i (v), the function

Dist_2-Neighboring determines the panel F (w) sharing a border with the cones F (u↓)
and F (v↓). Then, the function retrieves the respective gates u+ and v+ of u and v in

MFCS 2019

15:12 Distance Labeling Schemes for Cube-Free Median Graphs

this panel F (w) and the distances dG(u, u+) and dG(v, v+). The distance between the
gates u+ and v+ is retrieved using the distance decoder for trees. The algorithm returns
dG(u, u+) + dG(u+, v+) + dG(v+, v) as dG(u, v).

In the remaining cases, the vertices u and v are separated. By Lemma 7, dG(u, v) =
dG(u,m) + dG(m, v). Both u and v have stored the median vertex m and their distances to
m. Therefore, Dist_Separated simply returns the sum of those two distances.

6.3 Complexity analysis and improved query time

The correctness of Dist results from the following properties of G: stars and fibers are gated
(Proposition 2); total boundaries of fibers are quasigated (Corollary 3) isometric trees with
gated branches (Lemma 5); the formulae for computing the distance between separated,
1-neighboring, and 2-neighboring vertices (Lemmas 7, 8, and 9). At each step of the encoding,
O(log2 n) bits are added to the label of every vertex (due to the tree-distance labeling scheme
they contain). Since there are dlogne steps, the total length of each label is O(log3 n). For
decoding the labels, it suffices to read them once to find when the vertices are no longer
roommates. This is done in time O(log2 n) assuming the word-RAM model. Then it might
be necessary to decode the distance labels for trees. This can be done in constant time [24].

To sum up, the most costly part of decoding the labels LD(u) and LD(v) is to read
them up to find the (median) separator of u and v. But with an appropriate O(log2 n) bits
information concatenated to LD(u) and LD(v), one can find this median vertex in O(1) time
and then directly jump to the corresponding part of LD(u) and LD(v). For that, consider
the tree T (of recursive calls) in which vertices at depth i are the median vertices chosen
at step i and in which the children of a vertex x are the medians chosen at step i + 1 in
the fibers generated by x at step i. We can observe that every vertex of G appears in this
tree, that the separator m of any two vertices u and v of G is their nearest common ancestor
in the tree T , and that its depth j in this tree corresponds to its position in LD(u) and
LD(v), i.e., LDSt[Med]

j (u) = LDSt[Med]
j (v) = id(m). As noticed in [39], any distance labeling

for trees T can be modified to support nearest common ancestor’s depth (NCAD) queries
by adding the depth depth(u) of u in T to the label L(u) given to each vertex u ∈ V (T) by
the distance labeling. Given two vertices u and v of T , the NCAD decoder then returns
1
2 (depth(u) + depth(v) − dT (u, v)). So, during the execution of Dist_Enc, we can also
construct the tree T of recursive calls and then give an NCAD label L′(u) in T to every
vertex of G. Now, the first step of Dist will consist in decoding L′(u) and L′(v). Then the
algorithm directly reads the parts of LD(u) and LD(v) corresponding to the last common
median they stored. This establishes Theorem 1.

7 Conclusion

In this paper we presented a distance labeling scheme for cube-free median graphs G with
labels of size O(log3 n). For that, we considered the partitioning of G into fibers (of size
≤ n/2) of the star St(m) of a median vertex m. Each fiber is further recursively partitioned
using the same algorithm. We classified the fibers into panels and cones and the pairs of
vertices u, v of G into roommates, separated, 1-neighboring, and 2-neighboring pairs. If u
and v are roommates, then dG(u, v) is taken at a later step of the recursion. Otherwise, we
showed how to retrieve dG(u, v) by keeping in the labels of u and v some distances from those
vertices to some gates/imprints. Our main ingredient is the fact that the total boundaries of
fibers of cube-free median graphs are isometric quasigated trees.

V. Chepoi, A. Labourel, and S. Ratel 15:13

This last property of fibers is an obstacle in generalizing our approach to all median graphs,
or even to median graphs of dimension 3. The main problem is that the total boundary is
no longer a median graph. Therefore, one cannot apply to this total boundary the distance
scheme for cube-free median graphs. Nevertheless, a more brute-force approach works for
arbitrary median graphs G of constant maximum degree ∆. In this case, all hypercubes of G
have constant size. Thus, the star St(m) cannot have more than O(2∆) vertices, i.e., St(m)
has a constant number of fibers. Since every fiber is gated, at every step of the encoding
algorithm, every vertex v can store in its label the distance from v to its gates in all fibers of
St(m). Consequently, this leads to distance labeling scheme with labels of (polylogarithmic)
length O(2∆ log3 n) for all median graphs with constant maximum degree ∆. We would like
to finish this paper with the following question: Does there exist a polylogarithmic distance
labeling scheme for general median graphs or for median graphs of constant dimension?

References
1 A. Abrams and R. Ghrist. State complexes for metamorphic robots. Intl. J. Robotics Res.,

23(7-8):811–826, 2004. doi:10.1177/0278364904045468.
2 S. Alstrup, C. Gavoille, E.B. Halvorsen, and H. Petersen. Simpler, faster and shorter labels

for distances in graphs. In SODA, pages 338–350, 2016.
3 S. Alstrup, I.L. Gørtz, E.B. Halvorsen, and E. Porat. Distance Labeling Schemes for Trees. In

ICALP, pages 132:1–132:16, 2016.
4 H.-J. Bandelt. Retracts of hypercubes. J. Graph Theory, 8(4):501–510, 1984. doi:10.1002/

jgt.3190080407.
5 H.-J. Bandelt and V. Chepoi. Metric graph theory and geometry: a survey. Contemporary

Mathematics, 453:49–86, 2008.
6 H.-J. Bandelt, V. Chepoi, and D. Eppstein. Ramified rectilinear polygons: coordinatization by

dendrons. Discr. Comput. Geom., 54(4):771–797, 2015. doi:10.1007/s00454-015-9743-5.
7 H.-J. Bandelt and J. Hedlíková. Median algebras. Discr. Math., 45(1):1–30, 1983.
8 H.-J. Bandelt and M. van de Vel. Embedding topological median algebras in products of

dendrons. Proc. London Math. Soc., s3-58(3):439–453, 1989.
9 F. Bazzaro and C. Gavoille. Localized and compact data-structure for comparability graphs.

Discr. Math., 309(11):3465–3484, 2009.
10 L. J. Billera, S.P. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees.

Adv. Appl. Math., 27:733–767, 2001.
11 B. Brešar, S. Klavžar, and R. Škrekovski. On cube-free median graphs. Discr. Math.,

307(3-5):345–351, 2007.
12 M. A. Breuer and J. Folkman. An unexpected result in coding the vertices of a graph. J.

Math. Anal. Appl., 20(3):583–600, 1967.
13 M.R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature, volume 319 of

Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.
14 J. Chalopin and V. Chepoi. A Counterexample to Thiagarajan’s Conjecture on Regular Event

Structures. In ICALP, pages 101:1–101:14. arXiv:1605.08288, 2017.
15 J. Chalopin, V. Chepoi, H. Hirai, and D. Osajda. Weakly modular graphs and nonpositive

curvature. Memoirs of AMS, (to appear).
16 M. Chastand. Fiber-complemented graphs. I. Structure and invariant subgraphs. Discr. Math.,

226(1-3):107–141, 2001.
17 V. Chepoi. Classification of graphs by means of metric triangles. Metody Diskret. Analiz.,

49:75–93, 96, 1989.
18 V. Chepoi. Graphs of some CAT(0) complexes. Adv. Appl. Math., 24(2):125–179, 2000.
19 V. Chepoi, F. F. Dragan, and Y. Vaxès. Distance and routing labeling schemes for non-

positively curved plane graphs. J. Algorithms, 61(2):60–88, 2006.

MFCS 2019

https://doi.org/10.1177/0278364904045468
https://doi.org/10.1002/jgt.3190080407
https://doi.org/10.1002/jgt.3190080407
https://doi.org/10.1007/s00454-015-9743-5

15:14 Distance Labeling Schemes for Cube-Free Median Graphs

20 V. Chepoi and M. F. Hagen. On embeddings of CAT(0) cube complexes into products of trees
via colouring their hyperplanes. J. Comb. Theory, Ser. B, 103(4):428–467, 2013.

21 V. Chepoi, A. Labourel, and S. Ratel. On density of subgraphs of Cartesian products. CoRR,
abs/1711.11485, 2017. arXiv:1711.11485.

22 Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. Distance and routing labeling schemes
for cube-free median graphs. CoRR, abs/1809.10508, 2018. arXiv:1809.10508.

23 B. Courcelle and R. Vanicat. Query efficient implementation of graphs of bounded clique-width.
Discr. Appl. Math., 131(1):129–150, 2003.

24 O. Freedman, P. Gawrychowski, P. K. Nicholson, and O. Weimann. Optimal distance labeling
schemes for trees. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, pages 185–194. ACM, 2017.

25 C. Gavoille and C. Paul. Distance labeling scheme and split decomposition. Discr. Math.,
273(1-3):115–130, 2003.

26 C. Gavoille and C. Paul. Optimal distance labeling for interval graphs and related graph
families. SIAM J. Discr. Math., 22(3):1239–1258, 2008.

27 C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. J. Algorithms,
53(1):85–112, 2004.

28 P. Gawrychowski and P. Uznanski. A note on distance labeling in planar graphs. CoRR,
abs/1611.06529, 2016. arXiv:1611.06529.

29 R. Ghirst and Peterson V. The geometry and topology of reconfiguration. Adv. Appl. Math.,
38:302–323, 2007.

30 M. Gromov. Hyperbolic groups. In S. M. Gersten, editor, Essays in group theory, volume 8 of
Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.

31 K. Hayashi. A Polynomial Time Algorithm to Compute Geodesics in CAT(0) Cubical
Complexes. In ICALP, pages 78:1–78:14, 2018.

32 S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM J. Discr. Math.,
5(4):596–603, 1992.

33 S. Klavžar and H.M. Mulder. Median Graphs: characterizations, Location Theory and Related
Structures. J. Combin. Math. Combin. Comput., 30:103–127, 1999.

34 D.E. Knuth. The Art of Computer Programming : Vol. 4. Fascicle 0, Introduction to combi-
natorial algorithms and Boolean functions. Boston, Mass. ; London : Addison-Wesley, 2008.
"Newly available sections of the classic work" –cover.

35 H.M. Mulder. The Interval Function of a Graph, volume 132 of Mathematical Centre Tracts.
Mathematisch Centrum, Amsterdam, 1980.

36 H.M. Mulder and A. Schrijver. Median graphs and Helly hypergraphs. Discr. Math., 25(1):41–
50, 1979. doi:10.1016/0012-365X(79)90151-1.

37 M. Owen and J.S. Provan. A Fast Algorithm for Computing Geodesic Distances in Tree Space.
IEEE/ACM Trans. Comput. Biol. Bioinform., 8(1):2–13, 2011. doi:10.1109/TCBB.2010.3.

38 D. Peleg. Proximity-preserving labeling schemes. J. Graph Theory, 33(3):167–176, 2000.
doi:10.1002/(SICI)1097-0118(200003)33:3\%3C167::AID-JGT7\%3E3.0.CO;2-5.

39 D. Peleg. Informative labeling schemes for graphs. Theor. Comput. Sci., 340(3):577–593, 2005.
40 M. Roller. Poc sets, median algebras and group actions. Technical report, Univ. of Southampton,

1998.
41 M. Sageev. CAT(0) cube complexes and groups. In M. Bestvina, M. Sageev, and K. Vogtmann,

editors, Geometric Group Theory, volume 21 of IAS/Park City Mathematics Series, pages
6–53. AMS, Institute for Advanced Study, 2012.

42 T.J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216–226, 1978.
doi:10.1145/800133.804350.

43 P. M. Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135–139, 1983.
44 G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky, Dov M. Gabbay, and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science (Vol. 4), pages 1–148.
Oxford University Press, 1995.

http://arxiv.org/abs/1711.11485
http://arxiv.org/abs/1809.10508
http://arxiv.org/abs/1611.06529
https://doi.org/10.1016/0012-365X(79)90151-1
https://doi.org/10.1109/TCBB.2010.3
https://doi.org/10.1002/(SICI)1097-0118(200003)33:3%3C167::AID-JGT7%3E3.0.CO;2-5
https://doi.org/10.1145/800133.804350

One-Dimensional Guarded Fragments
Emanuel Kieroński
University of Wrocław, Poland
kiero@cs.uni.wroc.pl

Abstract
We call a first-order formula one-dimensional if every maximal block of existential (or universal)
quantifiers in it leaves at most one variable free. We consider the one-dimensional restrictions of the
guarded fragment, GF, and the tri-guarded fragment, TGF, the latter being a recent extension of
GF in which quantification for subformulas with at most two free variables need not be guarded, and
which thus may be seen as a unification of GF and the two-variable fragment, FO2. We denote the
resulting formalisms, resp., GF1, and TGF1. We show that GF1 has an exponential model property
and NExpTime-complete satisfiability problem (that is, it is easier than full GF). For TGF1 we
show that it is decidable, has the finite model property, and its satisfiability problem is 2-ExpTime-
complete (NExpTime-complete in the absence of equality). All the above-mentioned results are
obtained for signatures with no constants. We finally discuss the impact of their addition, observing
that constants do not spoil the decidability but increase the complexity of the satisfiability problem.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases guarded fragment, two-variable logic, satisfiability, finite model property

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.16

Related Version A full version of this paper is available at https://arxiv.org/abs/1904.04572.

Funding Supported by Polish National Science Centre grant No 2016/21/B/ST6/01444.

Acknowledgements The author would like to thank Sebastian Rudolph and the anonymous reviewers
for their helpful comments.

1 Introduction

The guarded fragment of first-order logic, GF, is obtained by requiring all quantifiers to be
appropriately relativised by atoms. It was introduced by Andréka, van Benthem and Németi
[1] as a generalization of propositional modal logic and may be also seen as an extension of
some standard description logics. GF has good algorithmic and model-theoretic properties.
In particular, Grädel proved that its satisfiability problem is decidable, it has a tree-like
model property and the finite model property [7]. The idea of GF turned out to be very
fruitful and found numerous applications. In this paper we consider some modifications of
the syntax of GF. Our aim is to check if in this way we can obtain interesting fragments
with better complexity and/or attractive expressiveness.

The satisfiability problem for GF is 2-ExpTime-complete. This relatively high complexity
can be lowered to ExpTime either by bounding the number of variables, or the arity of
relation symbols [7]. We propose another way of decreasing the complexity without sacrificing
either the number of variables or the arity of relations. The idea is to restrict formulas to
be one-dimensional. We say that a formula is one-dimensional if every maximal block of
existential (or universal) quantifiers in it leaves at most one variable free. We remark that
the one-dimensional restriction of full first-order logic, F1, is undecidable, as observed by
Hella and Kuusisto [9]. We denote the intersection of F1 and GF by GF1 and call it the
one-dimensional guarded fragment. While this variation decreases the expressive power of the
logic, we believe that it is still quite interesting, as, in particular, it still embeds propositional
modal logic, and most standard description logics embeddable in full GF. Thus, as GF, it

© Emanuel Kieroński;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8538-8221
mailto:kiero@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.16
https://arxiv.org/abs/1904.04572
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 One-Dimensional Guarded Fragments

may serve as an extension of modal/description logics to contexts with relations of arbitrary
arity. We show that the satisfiability problem for GF1 is NExpTime-complete and that it
has an exponential model property, that is, its every satisfiable formula has a model of size
bounded exponentially in its length. This is in contrast to full GF in which one can enforce
doubly exponentially large models. Moreover, proving the finite model property for GF1
is much easier than for full GF, in particular it does not need complicated combinatorial
constructions used in the case of GF (in [7], and in Bárány, Gottlob and Otto [2]). We
obtain a corresponding NExpTime-lower bound even for a weaker logic, uniform GF1, that
is the intersection of GF1 and uniform F1, UF1, the latter being a decidable restriction of
F1 introduced in [9] as a canonical generalization of the two-variable fragment FO2 (with
equality) to scenarios involving relations of arity greater than two (see Kieroński, Kuusisto
[13] where NExpTime-completeness of UF1 is shown). This is slightly surprising, since in
many aspects UF1 behaves similarly to the two-variable fragment, FO2, and the guarded
version of the latter is ExpTime-complete [7].

We also consider an extension of GF called the tri-guarded fragment, TGF. In TGF
quantification for subformulas with at most two free variables may be used freely, without
guards. Hence, TGF unifies GF and the already-mentioned FO2. We borrowed the term
tri-guarded fragment from a recent work by Rudolph and Šimkus [15], but, actually, the
idea behind TGF is not new and can be traced back already in Kazakov’s PhD thesis [11]
where the fragment GF|FO2, essentially identical with TGF, was defined. A similar logic, GF
with binary cross product, GF×2 , is also considered by Bourhis, Morak and Pieris [4]. Both
GF|FO2 and GF×2 do not allow constant symbols. We remark that in our initial scenario
we also assume that constants are not present in signature; however, we will discuss their
addition later.

Similarly to GF, FO2 is a seminal fragment of first-order logic, and its importance is
justified, inter alia, by its close relationships to modal and description logics. Mortimer
[14] demonstrated that it has the finite model property and Grädel, Kolaitis and Vardi
[8] proved that its satisfiability problem is NExpTime-complete. Each of the logics GF,
FO2 has some advantages and drawbacks with respect to the other. We mention here the
fact that GF allows only to express properties of a local character, e.g., it cannot express
∀xy(Px ∧Qy → Rxy), while FO2 does not allow for a non-trivial use of relations of arity
greater than two. TGF offers a substantial improvement in these aspects. Moreover, in
TGF we can embed the Gödel class, that is the class of all prenex formulas of the form
∀xy∃z̄ψ(x, y, z̄). Indeed, any such formula has an equisatisfiable TGF formula obtained
just by an addition of a dummy guard, as follows, ∀xy∃z̄(G(x, y, z̄) ∧ ψ(x, y, z̄)), where G
is a fresh relation symbol of the appropriate arity. Such embedding implies, however, that
the satisfiability problem for TGF with equality is undecidable, since the Gödel class with
equality is undecidable, as proved by Goldfarb [6]. The undecidability of TGF with equality
is also shown in [15] by a direct grid encoding. On the positive side, it turns out that the
satisfiability problem for TGF without equality is decidable and 2-ExpTime-complete. It
was proved in [11] by a resolution method, and follows also from the decidability of GF×2 ,
shown in [4] by a use of the database-theoretic concept of chase.1

1 A footnote in [4] suggests that the decidability of GF with binary cross-product is retained in the
presence of equality. This has however been later later refuted by the authors (private communication).
GF with binary cross product with equality is undecidable by the same arguments we gave for TGF.

E. Kieroński 16:3

In this paper we consider a natural combination of GF1 and TGF, the one-dimensional tri-
guarded fragment, TGF1, which, on the one hand, allows us to use unguarded quantification
for subformulas with at most two free variables, but, on the other hand, requires to obey
the one-dimensionality restriction. We show that this variant is decidable even in the
presence of equality. The complexity, however, depends on the presence/absence of equality:
The satisfiability problem is 2-ExpTime-complete with equality and NExpTime-complete
without it. The logic has the finite model property (we remark that whether full TGF has
the finite model property is an open question), and, again, a bound on the size of minimal
models is doubly- or singly exponential, depending on whether equality is allowed or not.
TGF1 may be seen as a decidable generalization of FO2 (with equality) to scenarios with
relations of arity greater than two, alternative and orthogonal in the expressive power to
the above-mentioned UF1. We also remark that TGF1 can express the concept of nominals
from description logics, since the combination of equality and unguarded quantification for
subformulas with two free variables allows us to say that some unary predicates hold for
unique elements of a model. Thus we can embed in TGF1, e.g., the description logic ALC
plus inverse roles (I), nominals (O), role hierarchies (H), and any Boolean combination of
roles (including their negations).

We then briefly consider applications of the ideas of one-dimensionality and tri-guardedness
to two decidable extensions of GF, namely, the loosely guarded fragment, LGF, introduced by
van Benthem [17], and the guarded negation fragment, GNFO, proposed by Bárány, ten Cate
and Segoufin [3]. Regarding one-dimensionality, it helps in the case of LGF: one-dimensional
LGF has an exponential model property and NExpTime-complete satisfiability problem
(exactly as GF1), but does not help in the case of GNFO, where the one-dimensional variant
remains 2-ExpTime-hard. Regarding the tri-guardedness, the results are negative: both LGF
and GNFO, even in their one-dimensional variants, become undecidable when unguarded
quantification for subformulas with two free variables is allowed.

As remarked, all the results discussed above are obtained under the assumption that
constants are not present in signatures. It turns out that all the decidability results are
preserved in the presence of constants. However, interestingly, the computational complexity
may change (we recall that for GF constants make no difference [7]). This is also the
case for TGF with constants, without equality, which is shown in [15] to be 2-NExpTime-
complete. Here we show that a 2-NExpTime-lower bound can be obtained even for TGF1
with constants, without equality. We also observe that the presence of constants lifts the
complexity of GF1 to 2-ExpTime.

In Table 1 we summarize the above-discussed complexity results for the variations of
GF. We point out an interesting status of TGF1: it is NExpTime-complete without
equality and constants, 2-ExpTime-complete with equality and without constants, and
2-NExpTime-complete with constants (with or without equality).

We finally remark that further pushing the concepts of one-dimensionality and tri-
guardedness to, resp., two-dimensionality and tetra-guardedness does not lead to attractive
results. Indeed, a 2-ExpTime lower bound for two-dimensional GF can be shown by a
slight adaptation of the bound for full GF from [7]; allowing for unguarded quantification
for subformulas with three free variables gives undecidability, as the resulting logic contains
the undecidable three-variable fragment of FO (see, e.g., Kahr, Moore and Wang [10]).
Undecidability of the three-variable fragment can be easily shown even using only one-
dimensional formulas.

MFCS 2019

16:4 One-Dimensional Guarded Fragments

Table 1 Complexities of the guarded fragments. If the presence of constants makes a difference,
the complexity of the variant with constants is given in the brackets. All logics have the finite model
property. Results of this paper are distinguished in bold.

logic with = without =
GF 2-ExpTime. 2-ExpTime
TGF undecidable 2-ExpTime (2-NExpTime)
GF1 NExpTime (2-ExpTime) NExpTime (2-ExpTime)
TGF1 2-ExpTime (2-NExpTime) NExpTime (2-NExpTime)

2 Preliminaries

We mostly work with purely relational signatures with no constants and function symbols
(only in Section 6 we consider signatures with constants). For convenience we also assume
that there are no relation symbols of arity 0. We refer to structures using Fraktur capital
letters, and to their domains using the corresponding Roman capitals. Given a structure A

and some B ⊆ A we denote by A�B or just by B the restriction of A to its subdomain B.
We usually use a, b, . . . to denote elements from domains of structures, ā, b̄, . . . for tuples

of elements, x, y, . . . for variables and x̄, ȳ, . . . for tuples of variables; all of these possibly
with some decorations. For a tuple of variables x̄ we use ψ(x̄) to denote a formula (or
subformula) ψ, whose all free variables are in x̄.

An atomic l-type β over a signature σ is a maximal consistent set of atomic or negated
atomic formulas (including equalities/inequalities) over σ in l variables x1, . . . , xl. We often
identify a type with the conjunction of its elements, β(x1, . . . , xl). For an l-type β we denote
by β�xi (i = 1, . . . , l) the 1-type obtained by removing from β all the literals that use some xj ,
with j 6= i, and then replacing all occurrences of xi by x1. We will be particularly interested
in 1-types and 2-types over signatures σ consisting of the relation symbols used in some given
formula. Observe that the number of 1-types is bounded by a function which is exponential
in |σ|, and hence also in the length of the formula. This is because a 1-type just corresponds
to a subset of σ. On the other hand, the number of 2-types may be doubly exponentially
large. Indeed, using an n-ary predicate and two fixed variables one can build 2n atoms which
then can be used to form 22n different 2-types.

Let A be a structure, and let a, b ∈ A be such that a 6= b. We denote by tpA(a) the
unique atomic 1-type realized in A by the element a, i.e., the 1-type α(x) such that A |= α(a);
similarly by tpA(a, b) we denote the unique atomic 2-type realized in A by pair (a, b), i.e.,
the 2-type β(x, y) such that A |= β(a, b). For B ⊆ A we denote by α[B] the set of all 1-types
realized in A by elements of B.

Below we define several fragments of first-order logic, FO, including two new fragments,
GF1 and TGF1. Each of the fragments is defined as the least set of formulas (i) containing
all atomic formulas (including equalities), (ii) closed under Boolean connectives, and (iii)
satisfying appropriate (depending on the fragment) rules of using quantifiers, specified below
(x̄, ȳ represent here any tuples of variables and x, y represent any variables):

Guarded fragment of first-order logic, GF:
if ψ(x̄, ȳ) ∈ GF then ∀x̄(γ(x̄, ȳ) → ψ(x̄, ȳ)) and ∃x̄(γ(x̄, ȳ) ∧ ψ(x̄, ȳ)) belong to GF,
where γ(x̄, ȳ) is an atomic formula containing all the free variables of ψ, called a guard
for ψ.

One-dimensional fragment of first-order logic, F1:
if ψ(x̄, y) ∈ F1 then ∃x̄ψ(x̄, y) and ∀x̄ψ(x̄, y) belong to F1.

E. Kieroński 16:5

One-dimensional guarded fragment, GF1:
if ψ(x̄, y) ∈ GF1 then ∀x̄(γ(x̄, y)→ ψ(x̄, y)) and ∃x̄(γ(x̄, y) ∧ ψ(x̄, y)) belong to GF1,
where γ(x̄, y) is a guard for ψ.

Tri-guarded fragment, TGF:
if ψ(x̄, ȳ) ∈ TGF then ∀x̄(γ(x̄, ȳ)→ ψ(x̄, ȳ)) and ∃x̄(γ(x̄, ȳ)∧ ψ(x̄, ȳ)) belong to TGF,
where γ(x̄, ȳ) is a guard for ψ,
if ψ(x, y) is in TGF, then ∃xψ(x, y) and ∀xψ(x, y) belong to TGF.

One-dimensional tri-guarded fragment, TGF1:
if ψ(x̄, y) ∈ TGF1 then ∀x̄(γ(x̄, y) → ψ(x̄, y)) and ∃x̄(γ(x̄, y) ∧ ψ(x̄, y)) belong to
TGF1, where γ(x̄, y) is a guard for ψ,
if ψ(x, y) is in TGF1, then ∃xψ(x, y) and ∀xψ(x, y) belong to TGF1.

Note that GF1 is just the intersection of GF and F1, TGF contains both GF and FO2,
and TGF1 is the intersection of TGF and F1, containing full FO2.

We recall that the satisfiability problem for F1 is undecidable [9]. To regain decidability
its uniform restriction, UF1, was introduced in [9]. Roughly speaking, a boolean combination
of atoms is allowed in UF1 if all of them use precisely the same set of variables; the exceptions
are atoms with one free variable and equalities, which may be used freely. See [9] or [13] for
a formal definition and more details on UF1.

We will also be interested in the loosely guarded fragment, LGF, the guarded negation
fragment, GNFO, and their one-dimensional and tri-guarded variations. They will be
introduced in Section 5.

3 Finite model property

In this section we prove the finite model property for TGF1 and obtain (essentially optimal)
upper bounds on the size of minimal models of its satisfiable formulas, as well as of formulas
of its interesting subfragments.

We introduce a Scott-type normal form for TGF1. Given a TGF1 formula ϕ we say that
it is in normal form if it has the following shape∧

i∈I
∀x̄(γi(x̄)→ ψi(x̄)) ∧

∧
i∈I′
∀x∃ȳψ′i(x, ȳ) ∧ ∀xyψ′′(x, y) (1)

where I, I ′ are some sets of indices, the ψi, ψ′i, and ψ′′ represent arbitrary quantifier-free
formulas, and for every i, γi is a proper guard for ψi. We remark that we do not require
guards in formulas of the form ∀∃̄, even if they contain more than two variables, as their
presence there is inessential (cf. Remark in [7], p. 1725). In a rather standard fashion one
can show the following lemma.

I Lemma 1. There is a polynomial nondeterministic procedure, taking as its input a TGF1
formula ϕ and producing a normal form formula ϕ′ (over an extended signature), such that
(i) if A |= ϕ for some structure A then there is a run of the procedure producing a normal

form ϕ′ such that A′ |= ϕ′ for some expansion A′ of A,
(ii) if the procedure has a run producing ϕ′ and A′ |= ϕ′, for some A′, then A′ |= ϕ.

Moreover, if ϕ is without equality then the procedure produces ϕ′ without equality; if ϕ is in
GF1 then the last conjunct ∀xyψ′′(x, y) is not present in ϕ′.

Lemma 1 allows us, when dealing with decidability or complexity issues and when
considering the size of minimal models of formulas in TGF1, to restrict attention to normal
form sentences. The part of this lemma starting with “moreover” will allow us to use it
effectively for TGF1 without equality and for GF1.

MFCS 2019

16:6 One-Dimensional Guarded Fragments

Our normal form is similar to normal form for GF [7]. It adapts the latter to the one-
dimensional setting and extends it by the last type of conjuncts. The conversion to normal
form in [7] is deterministic, it however cannot be used directly in our case as it adds one free
variable to every subformula, which spoils one-dimensionality and may lead to unguarded
subformulas with three variables.

Let ϕ be a normal form formula and A its model. Take a ∈ A and a conjunct ψ =
∀x∃ȳψ′i(x, ȳ) of ϕ. Let b̄ be a tuple of elements of A such that A |= ψ′i(a, b̄). Then A�({a}∪ b̄)
is called a witness structure for a and ψ.

I Theorem 2. Every satisfiable formula ϕ in
(i) TGF1 (with equality) has a finite model of size bounded doubly exponentially in |ϕ|.
(ii) TGF1 without equality has a finite model of size bounded exponentially in |ϕ|.
(iii) GF1 (with or without equality) has a finite model of size bounded exponentially in |ϕ|.

We concentrate on showing (i) and then obtain (ii) and (iii) as a corollary from the finite
model construction presented. Let ϕ be a normal form TGF1 formula as in (1), and denote
n = |ϕ|. Let us fix an arbitrary model A of ϕ. We construct a bounded model B |= ϕ.
We mimic the scheme of the classical construction from [8] showing an exponential model
property for FO2, in particular we adapt the notions of kings and court. The details, however,
are more complicated.

Court. We say that an element a ∈ A is a king if tpA(a) is realized in A only by a; tpA(a)
is then called royal. As in the case of FO2 kings are important as their duplication may
be forbidden by formulas like ∀xy(Px ∧ Py → x = y). Let K ⊆ A be the set of kings of
A. For each a ∈ K and each i ∈ I ′ choose a witness structure Wa,i for a and ψ′i in A. Let
C = K ∪

⋃
a,iWa,i. We call C the court of A. The court will be retained in B. Note that

the number of elements in C is bounded exponentially in n, and it that the structure C can
be described using exponentially many bits (the latter is true since the arity of all relation
symbols is bounded by n). Note that K, and thus also C may be empty.

Pattern witness structures. For each non-royal element a ∈ A \ K we say that the iso-
morphism type of the structure A�(K ∪ {a}) is the K-type of a. Note that from a K-type
of an element one can infer its 1-type, and that the number of the K-types realized in A is
bounded doubly exponentially in n. Denote by αK the set of K-types realized in A by the
elements of A \K. Later, we will allow ourselves to use the notion of a K-type in a natural
way also for other structures with a distinguished substructure K. For each π ∈ αK choose
an element a having K-type π in A and for each i ∈ I ′ choose a witness structure Wπ,i for
a and ψ′i. Let W∗π,i = Wπ,i�(Wπ,i \ (K ∪ {a})). For each π ∈ αK, i ∈ I ′ and j = 0, 1, 2 let
W∗π,i,j be a fresh isomorphic copy of W∗π,i.

Universe. We define the universe of B as follows B := C ∪
⋃
π,i,jW

∗
π,i,j , where π ranges

over αK, i over I ′ and j over {0, 1, 2}. We emphasise that the sets W ∗π,i,j are disjoint from C

and from each other. We retain in B the structure on C from A and for each π, i, j we make
B�(K ∪W ∗π,i,j) isomorphic to A�(K ∪W ∗π,i). This, in particular, makes the K-type in B of
each element b belonging to some W ∗π,i,j identical with the K-type in A of the counterpart of
b from the original substructure Wπ,i.

Witness structures for the court. Let us consider an element c ∈ C \K, and denote by π
its K-type in A. For every i ∈ I ′ make B�({c} ∪ (Wπ,i ∩K) ∪W ∗π,i,0) isomorphic to Wπ,i.
This provides a witness structure for c and ψ′i in B. Note that a single such step (for fixed c

E. Kieroński 16:7

and i) consists in defining relations on tuples containing c, at least one element of W ∗π,i,0
and possibly some elements of K, since relations on other relevant tuples were defined in
the desired way in step Universe. Note that no conflicts (attempts to set the same atom to
both true and false) can arise, when we perform this step for some c and i and then for the
same c and some i′ 6= i, because in the first case we define truth-values of relations only on
tuples containing some element from W ∗π,i,0, and in the second – only on tuples containing
some element from W ∗π,i′,0, and W ∗π,i,0 is disjoint from W ∗π,i′,0. Finally, when we perform this
step for some c, and then for some c′ 6= c no conflicts arise since in the first case we define
relations only on tuples containing c but not c′ and in the second – only on tuples containing
c′ but not c.

Witness structures for the other elements. Consider now any element b ∈ B \C. Assume
it belongs to W ∗π′,i′,j′ and that π is the K-type of b in B�(K ∪ {b}). For each i ∈ I ′ make
the structure on {b} ∪ (Wπ,i ∩K) ∪W ∗π,i,(j′+1 mod 3) isomorphic to Wπ,i. This provides a
witness structure for b and ψ′i in B. Again, to do it we need to define relations on some
tuples containing b and some element of W ∗π,i,(j′+1 mod 3), and, due to our strategy, this can
be done without conflicts.

Completing the structure. For any pair of distinct elements b, b′ ∈ B whose 2-type has
not yet been defined in B choose a pair of distinct elements a, a′ with tpA(a) = tpB(b) and
tpA(a′) = tpB(b′), and set tpB(b, b′) := tpA(a, a′). An appropriate pair a, a′ exists even if
tpB(b) = tpB(b′) since at least one of b, b′ has a non-royal type. For any tuple b̄ of elements
of B containing at least three distinct elements, and any relation symbol R of arity |b̄|, if the
truth-value of R(b̄) in B has not yet been defined then set it to false.

This finishes the definition of B. Let us now estimate its size. We can bound the
number and the arity of relation symbols by n = |ϕ|. Then the size of K is bounded by
the number of possible 1-types, 2n. The size of C is bounded by 2n · n(n − 1), as each
element a of K may need at most n witness structures each of them containing (besides a)
at most n− 1 elements. The number of possible relations of arity at most n on a a set of
2n + 1 elements is bounded by 2(2n+1)n ≤ 22n2+n , thus the number of K-types is bounded by
(22n2+n)n = 2n·2n2+n ≤ 22n2+2n ≤ 222n2

(for n > 1). Finally, we can bound the size of B by
2n + 2n · n(n− 1) + 3n(n− 1) · 222n2

, doubly exponentially in n.
Presently, we explain that B |= ϕ. First note that for each b ∈ B and each i ∈ I ′ there is

an appropriate witness structure: if b ∈ K then this witness structure is provided in C which
is a substructure of B. If b ∈ C \K or b ∈ B \C then a proper witness structure is provided
explicitly either in step Witness structure for the court or, resp., Witness structures for the
other elements. Thus B satisfies all conjuncts of ϕ of the form ∀x∃ȳψ′i(x, ȳ).

Consider any conjunct ∀x̄(γi(x̄) → ψi(x̄)) of ϕ and a tuple of elements b̄ such that
B |= γi(b̄). If b̄ ⊆ C or b̄ ⊆ K ∪W ∗π,i,j for some π, i, j then the structure on b̄ was made
an isomorphic copy of some substructure of A in step Universe. Otherwise b̄ contains at
least two distinct elements. In this case the structure on b̄ was made an isomorphic copy of
some substructure of A either in one of the steps Witness structures for the court, Witness
structures for the other elements or in step Completing the structure (in this last subcase b̄
contains precisely two distinct elements). Thus B |= ψi(b̄). Finally, consider the conjunct
∀xyψ′′(x, y) and take any pair b, b′ ∈ B. Again, the structure on {b, b′} is an isomorphic
copy of a substructure of A defined (at the latests) in step Completing the structure.

MFCS 2019

16:8 One-Dimensional Guarded Fragments

This finishes the proof of (i). To see (ii) and (iii) we first observe that in both cases
every satisfiable formula ϕ has a model without kings. Given a structure A we define two
new structures 2A and 2A+, each of them with universe A× {0, 1} and the substructures on
A×{0} and A×{1} isomorphic to A. In 2A we make these two copies of A completely disjoint
by setting the truth-value of R(ā) to false for any R and any tuple ā (of the appropriate
length) contained neither in A× {0} nor A× {1}. In 2A+, for any tuple ā contained neither
in A × {0} nor A × {1} and for any relation symbol R of arity |ā|, if this tuple contains
at least three distinct elements then we also define R(ā) to be false. If ā contains just two
distinct elements, say (a, 0) and (a′, 1), then for any relation symbol R or arity |ā| set R(ā)
true iff A |= R(ā�1) where ā�1 is the projection of the elements of ā on their first position.

Observations that if ϕ is without equality and A |= ϕ then 2A+ |= ϕ, and that if ϕ is in
GF1 (even with equality) and A |= ϕ then 2A |= ϕ are routine. Of course our new models
are without kings. Starting our small model construction from a model without kings we get
K = ∅ and thus K-types trivialize to 1-types, which means that their number is bounded
singly exponentially. Also C = ∅ and thus we construct B out of the W ∗π,i,j where π ranges
over the set of 1-types, the number of possible i is linear in n and there are just three possible
values of j. The size of each W∗π,i,j is linear in n. The size of the constructed models can be
thus estimated by 3n(n− 1) · 2n. Hence part (ii) and (iii) of Thm. 2 hold.

4 Complexity

In this section we establish the complexity of the considered logics.

I Theorem 3. The satisfiability problem (= finite satisfiability problem)
(i) for TGF1 with equality is 2 -ExpTime-complete.
(ii) for TGF1 without equality is NExpTime-complete.
(iii) for GF1 is NExpTime-complete.

Upper bound in (i). We design an alternating satisfiability test for TGF1 using only expo-
nential space. A 2-ExpTime-upper bound follows then from the fact that AExpSpace=2-
ExpTime (Chandra, Kozen, Stockmeyer [5]). The procedure takes as its input a TGF1
formula ϕ and works as described below. For simplicity our description is slightly informal.
In particular, we do not precisely specify how structures constructed during its execution are
represented. We also allow ourselves to write “guess an object X such that Y ” instead of
more accurate “guess an object X; verify if X meets property Y ; if it does not then reject”.

1. Nondeterministically compute a normal form ϕ′ as in Lemma 1. Let n := |ϕ′|.
2. Guess a set of 1-types α = αr ∪̇ αnr over the signature of ϕ′ (royal and non-royal

types), such that for any α1, α2 (possibly α1 = α2) such that α1 ∈ α and α2 ∈ αnr there
is a 2-type β such that β�x1 = α1 and β�x2 = α2, and β does not violate the universal
conjuncts of ϕ′.

3. Guess structures K, C of size at most 2n and 2n · n2, resp., with K being a substructure
of C, such that (i) α[K] = αr, (ii) α[C \K] ⊆ αnr, (iii) each element of K has all the
required witness structures for ∀∃̄ conjuncts of ϕ′ in C, and (iv) universal conjuncts of ϕ′
are not violated in C.

4. Universally choose an element c ∈ C \ K and a conjunct ψ of ϕ′ of type ∀∃̄. Set
F := C�(K ∪ {c}).

5. Set Counter := 0.

E. Kieroński 16:9

6. Guess an extension D of F, with universe D = K ∪ {c} ∪ {a1, . . . , at}, such that
(i) tpD(ai) ∈ αnr for all i, (ii) for some k1, . . . , ks ∈ K the structure W = D �
{c, k1, . . . , ks, a1, . . . , at} is a witness structure for c and ψ, (iii) universal conjuncts
of ϕ′ are not violated in D. If t = 0 then accept.

7. Universally choose a new value for c from {a1, . . . , at} and a conjunct ψ of ϕ′ of the
form ∀∃̄. Set F := F�(K ∪ {c}).

8. Counter := Counter + 1
9. If Counter < 222n2

then goto 6 else accept.

Let us first note that exponential space is sufficient to perform the above algorithm.
By Lemma 1 we have that n is bounded polynomially in |ϕ|. The number of 1-types in α
is also bounded by 2n, as a 1-type is determined by a subset of the signature. For some
pairs of 1-types we need to guess a 2-type whose description is exponential (there are at
most 2n tuples of length not greater than n consisting of a pair of elements, and at most n
relation symbols). The size of the structure C guessed in Step 4 is explicitly required to be
exponential in n. Also its description requires only exponentially many bits (recall that the
arity of all relations is bounded by n). Analogously we can bound the size of structures D
guessed in Step 6. Finally, the value of Counter is bounded doubly exponentially, so it also
can be written using exponentially many bits.

Now we argue that the procedure accepts its input ϕ iff ϕ is satisfiable. Assume first that
the procedure accepts ϕ. We show that then ϕ′ (and thus, by Lemma 1, also ϕ) has a model.
Consider an accepting run of the procedure. We may assume w.l.o.g. that this run is uniform,
that is, when entering step 6, in configurations differing only in the values of Counter (but
with isomorphic Fs) it makes the same (isomorphic) guesses of D. Then the modification of
this procedure in which Step 9 is replaced just by ’Goto 6’ can run infinitely (if necessary)
without clashes. Indeed if the value Counter = 222n2

is reached we have a guarantee that the
K-type of the current c appeared before in the computation (cf. our estimations on the size of
the small model constructed in the proof of Thm. 2, in particular on the number of K-types).
We can construct a model for ϕ′ starting from the substructure C guessed in Step 4, and
then providing witness structures for all conjuncts of the form ∀∃̄ of ϕ′ and elements c in
accordance with guesses of D is Step 6 (we add fresh copies of elements a1, . . . , at and make
the structure on the union of K, {c} and the set of the newly added elements isomorphic to
D). We complete the (usually infinite) structure as in Step Completing the structure of the
small model construction from the proof of Thm. 2 using the 2-types guaranteed in Step 1.
As in that proof we can also show that the constructed structure is a model of ϕ′.

Conversely, assume that ϕ has a model A∗. Nondeterministically compute its normal
form ϕ′ and let A |= ϕ′ be an expansion of A∗ guaranteed by Lemma 1. Let B be a model of
ϕ′ constructed as in the proof of Thm. 2, starting from A. W can now make all the guesses
of our procedure in accordance with B: denoting KB and CB the set of kings and a court
of B, resp., we set αr := α[KB], αnr := α[B \KB], K := KB, C := CB. Then in the loop
6-9, when a structure D containing a witness structure for c and ψ is going to be guessed we
choose an element c′ ∈ B such that the K-types of c′ in B and c in F are identical and find a
witness structure for c′ and ψ in B. We set D to be isomorphic to the restriction of B to
the union of KB and this witness structure. This strategy naturally leads to acceptance.

Lower bound in (i). We encode computations of an alternating Turing machine M working
in exponential space on its input ā = ai0 . . . ain−1 .

The general idea of the proof is not far from the ideas used in the proofs of the 2-ExpTime-
lower bound for GF [7] and 2-NExpTime-lower bound for TGF with constants [15]. We
must, however, be careful to avoid quantification leaving more than one variable free, which

MFCS 2019

16:10 One-Dimensional Guarded Fragments

happens in both the above-mentioned proofs. E.g., in [7] configurations of a Turing machine
are encoded by pairs of elements a1, a2; concretely, by the truth-values of some relations of
arity O(n) on tuples consisting of a1, a2. To enforce existence of successor configurations
quantification leaving two free variables is needed there.

We assume that M has states s0, s1, . . . , sk, where s0 is the initial state, sk−1 is the only
accepting state, and sk is the only rejecting state. The alphabet of M consists of letters
a0, . . . , al where a0 represents blank. Without loss of generality we assume that M has
precisely two possible moves in every configuration, that on its every computation path it
enters the accepting or rejecting state no later than in 22n -th step, and then, after reaching
such final state, does not stop but works infinitely in a trivial way, without changing its
configuration.

For i = 0, . . . , k we use a predicate Si, for i = 0, . . . , l we use a predicate Ai and to
describe the head position we use a predicate H. Each of the Si, Ai and H is of arity 1 + n.

We enforce the existence of two kings, called zero and one, marked, resp., by unary
predicates Z and O. They will also be called bits, serve as binary digits and will be used to
encode the numbers of tape cells.

∃x(Z(x) ∧ ¬O(x)) ∧ ∀xy(Z(x) ∧ Z(y)→ x = y) (2)
∃x(O(x) ∧ ¬Z(x)) ∧ ∀xy(O(x) ∧O(y)→ x = y) (3)

The idea is that every element of a model encodes a configuration of M in its relation to
tuples of bits of size n. Such a tuple of bits b̄ can be naturally read as a number in the range
[0, . . . , 2n − 1]. Let us think that Ai(c, b̄) means that in the configuration encoded by c, tape
cell b̄ contains ai, H(c, b̄) denotes that this tape cell is scanned by the head and, for a cell
observed by the head, Si(c, b̄) means that M is in state si.

To be able to speak about properties of configurations of M in TGF1 we introduce a
predicate C of arity 1 + 2n, which will be made true at least for all tuples consisting of an
arbitrary element of a model followed by 2n bits. We first say that, for any 0 ≤ i < 2n, C holds
for some tuple consisting of i ones and 2n−i zeros, and then propagate C to all relevant tuples,
using the fact that the pair of permutations (2, 1, 3, . . . , 2n) and (2, 3, . . . , 2n, 1) generates
the whole permutation group S2n. Below z̄ = z2n−1, z2n−2, . . . , z1, z0.

∀x∃t1t0(O(t1) ∧ Z(t0)∧C(x, t0, t0, t0, . . . , t0)∧
C(x, t1, t0, t0 . . . , t0)∧ (4)
C(x, t1, t1, t0, . . . , t0) ∧ . . .∧
C(x, t1, t1, t1, . . . , t1))

∀xz̄(C(x, z̄)→ C(x, z2n−2, z2n−1, z2n−3, . . . , z0) ∧ C(x, z2n−2, z2n−3, . . . , z0, zn−1)) (5)

We use a convention that ū, v̄, w̄ are tuples of variables of size n, ū = un−1, . . . , u0 and
analogously for v̄ and w̄. We introduce abbreviations, λ 6=(ū, v̄) and λ+1(ū, v̄) for quantifier-
free formulas of size polynomial in n. The former is intended to say that the numbers encoded
by ū and v̄ differ, the latter – that the number encoded by v̄ is greater by one than the
number encoded by ū. E.g., λ+1(ū, v̄) can be defined as∨

0≤i<n
(Z(ui) ∧O(vi) ∧

∧
j<i

(O(uj) ∧ Z(vj)) ∧
∧
j>i

(O(uj)↔ Z(vj))) (6)

Analogously, we use λi(ū) and λ≥i(ū) for formulas saying that the number encoded by ū is,
resp., equal to i and greater or equal i. Again, they can be defined in a standard way by
quantifier-free, polynomially bounded formulas.

E. Kieroński 16:11

Now we ensure that every element properly encodes a configuration. The following
formulas say that, resp., there is a tape cell scanned by the head, there is at most one such
cell, this cell carries also information about the state, and every tape cell contains precisely a
single letter. Below

∨̇
iψi is an easily definable shorthand for “exactly one of the ψi holds”.

∀x∃ū(H(x, ū) ∧
∧
i

(O(ui) ∨ Z(ui)) (7)

∀xūv̄(C(x, ū, v̄)→ H(x, ū) ∧ λ6=(ū, v̄)→ ¬H(x, v̄)) (8)

∀xū(H(x, ū)→
∨̇

i
Si(x, ū)) (9)

∀xū(C(x, ū, ū)→
∨̇

i
Ai(x, ū)) (10)

We then say that every element has two successors, and, using the trick with permutations
prepare appropriate guards. Predicates Succi are of arity 2 + 3n. For i = 1, 2 we write:

∀x∃yt1t0(O(t1) ∧ Z(t0)∧Succi(x, y, t0, t0, t0, . . . , t0)∧
Succi(x, y, t1, t0, t0 . . . , t0)∧
Succi(x, y, t1, t1, t0, . . . , t0) ∧ . . .∧ (11)
Succi(x, y, t1, t1, t1, . . . , t1))

∀xyt̄(Succi(x, y, t̄)→
Succi(x, y, t3n−2, t3n−1, t3n−3, . . . , t0) ∧ Succi(x, y, t3n−2, t3n−3, . . . , t0, t3n−1)) (12)

We next describe the computations of M on ā. First we say that the letter at a tape cell
not scanned by the head does not change in the successor configurations. For i = 1, 2:

∀xyū((Succi(x, y,ū, ū, ū)→ ¬H(x, ū)→
∧
i

(Ai(x, ū)→ Ai(y, ū))) (13)

Consider now existential moves. Assume that in an existential state si, reading a letter
aj the machine has two possible transitions: (si′ , aj′ ,→) and (si′′ , aj′′ ,←). Then we write:

∀xyūv̄w̄(Succ1(x, y, ū, v̄, w̄)→ H(x, ū) ∧ Si(x, ū) ∧Aj(x, ū) ∧ λ+1(ū, v̄) ∧ λ+1(w̄, ū)→
(H(y, v̄) ∧ Si′(y, v̄) ∧Aj′(y, ū)) ∨ (H(y, w̄) ∧ Si′′(y, w̄) ∧Aj′′(y, ū))) (14)

Similarly, assume that M has moves as above in a universal state si. We write:

∀xyūv̄v̄(Succ1(x, y, ū, v̄, v̄)→
H(x, ū) ∧ Si(x, ū) ∧Aj(x, ū) ∧ λ+1(ū, v̄)→ H(y, v̄) ∧ Si′(y, v̄) ∧Aj′(y, ū)) (15)

∀xyūw̄w̄(Succ2(x, y, ū, w̄, w̄)→
H(x, ū) ∧ Si(x, ū) ∧Aj(x, ū) ∧ λ+1(w̄, ū)→ H(y, w̄) ∧ Si′(y, w̄) ∧Aj′(y, ū)) (16)

We finally say that a model does not contain a configuration with the rejecting state and
impose the existence of an element encoding the initial configuration.

¬∃xSk(x) ∧ ∃xInit(x) (17)

∀xū(C(x, ū)→ Init(x)→ (λ=0(ū)→ H(x, ū) ∧ S0(x, ū) ∧Ai0(x, ū))∧
(λ=1(ū)→ Ai1(x, ū)) ∧ . . .∧ (18)
(λ=n−1(ū)→ Ain−1(x, ū))∧
(λ≥n(ū)→ A0(x, ū)))

Showing that M accepts ā iff the constructed formula has a model is routine.

MFCS 2019

16:12 One-Dimensional Guarded Fragments

Upper bounds in (ii) and (iii). In both cases we have proved an exponential model property.
Thus, to test satisfiability it suffices to guess an exponentially bounded structure and verify
that it indeed is a model. More precisely, given a formula ϕ we nondeterministically convert
it into normal form ϕ′. We guess an exponentially bounded model B of ϕ′ (again we remark
that not only the universe of B is bounded exponentially, but also the description of B, since
we are dealing only with at most |ϕ′| relations of arity at most |ϕ′|), and verify that it is
indeed a model. The last task can be carried out in an exhaustive way: for each b ∈ B and
each conjunct of ϕ′ of the form ∀x∃ȳψ′i(x, ȳ) guess which elements form a witness structure
for b and this conjunct and check that they indeed form a required witness structure; for
each conjunct ∀x̄(γi(x̄)→ ψi(x̄)) enumerate all tuples b̄ of elements of B such that |b̄| = |x̄|
and check that B |= γi(b̄)→ ψi(b̄). Proceed analogously with the conjunct ∀xyψ′′(x, y).

Lower bounds in (ii) and (iii). It suffices to show NExpTime-lower bound for GF1 without
equality. As advertised in the Introduction, we even strengthen this result using only uniform
formulas, that is we show NExpTime-hardness of the uniform one-dimensional guarded
fragment being the intersection of GF and UF1. For our current purposes it is sufficient to
say that conjunctions of sentences ∃x̄ψ(x̄) and ∀x̄ψ(x̄) with quantifier-free ψ are uniform if
all atoms of ϕ use either all variables of x̄ or just one of them. We use only formulas of such
kind. For a general definition of UF1 see [9] or [13]. Our proof goes by an encoding of an
exponential tiling problem and is given in the full version of this paper.

5 Variations on extensions of the guarded fragment

Let us see what happens when the ideas of one-dimensionality, tri-guardedness and their
combination are applied to two extensions of the guarded fragment: the loosely guarded
fragment, LGF, introduced by van Benthem [17], and the guarded negation fragment, GNFO,
introduced by Bárány, ten Cate and Segoufin [3]. LGF is defined similarly to GF, but the
notion of the guard is more liberal: in subformulas of the form ∃ȳ(γ(x̄, ȳ) ∧ ϕ(x̄, ȳ)) and
∀ȳ(γ(x̄, ȳ)→ ϕ(x̄, ȳ)) we do not require that γ is atomic but allow it to be a conjunction of
atoms such that for every variable from ȳ and every variable from ȳ ∪ x̄ there is an atom in
γ containing both of them. In GNFO (atomic) guards are required not for quantifiers but
for negated subformulas. For a more detailed definition of GNFO see [3].

One-dimensionality. First, let us see that the one-dimensionality decreases the complexity
of LGF, similarly as in the case of GF, but does not affect the complexity of GNFO.

I Theorem 4.
(i) The satisfiability (= finite satisfiability) problem for the one-dimensional LGF, LGF1,

is NExpTime-complete. LGF1 has an exponential model property.
(ii) The satisfiability (= finite satisfiability) problem for the one-dimensional GNFO is

2 -ExpTime-complete.

To prove (i) we adjust the small model construction from the proof of Thm. 2, by
using more copies of witness structures and refining the strategy of providing witnesses.
The construction from the proof of Thm. 2 cannot be applied without any changes to the
current scenario, as it may accidentally form some cliques of cardinality greater than 2 in
the Gaifmann graph of the constructed model which then could work as loose guards and
lead to a violation of some universal conjuncts of the input formula.

E. Kieroński 16:13

To see (ii) note that GNFO contains the unary negation fragment, UNFO, whose sat-
isfiability problem is already 2-ExpTime-hard. UNFO is not one-dimensional but can be
polynomially translated to its equivalent UN-normal form (ten Cate, Segoufin [16]), which is
one-dimensional. The upper bound is inherited from the upper bound for full GNFO [3].

Tri-guardedness. Unfortunately, allowing for unguarded binary subformulas leads to unde-
cidability already in the case of one-dimensional variants of LGF and GNFO.

I Theorem 5. The (finite) satisfiability problems for the one-dimensional LGF or GNFO,
with unguarded subformulas with two variables, even without equality, are undecidable.

In the case of LGF1, unguarded binary subformulas give the power of full one-dimensional
fragment F1. Indeed by adding a conjunct ∀xyG∗(x, y) we would be able to guard any
tuple of variables x1, . . . , xk by the conjunction

∧
i 6=j G

∗(xi, xj). (A similar observation
is present also in [15].) As the satisfiability problem for F1 is undecidable [9] this gives
the undecidability of the considered variation of LGF. For the one-dimensional GNFO,
using unguarded negations of binary atoms one can express transitivity of binary relations:
¬∃xyz(Rxy ∧ Ryz ∧ ¬Rxz). One-dimensional GNFO contains the two-variable guarded
fragment which becomes undecidable when extended by transitive relations (Kieroński [12],
Kazakov [11]). Thus the claim follows.

6 Adding constants

Finally, we study the satisfiability problem for GF1 and TGF1 with constants. It turns
out that in the presence of constants we lose neither the decidability nor the finite model
property, however, the complexity increases. The following theorem completes Table 1.

I Theorem 6.
(i) Every satisfiable formula in TGF1 with constants has a finite model of size bounded

doubly exponentially in its length.
(ii) The satisfiability (= finite satisfiability) problem for GF1 with constants (with or without

equality) is 2 -ExpTime-complete.
(iii) The satisfiability (= finite satisfiability) problem for TGF1 with constants (with or

without equality) is 2 -NExpTime-complete.

It is not difficult to see that Lemma 1 holds for formulas with constants. Thus, to show
(i) we can use a minor adaptation of our small model construction from the proof of Thm. 2.
Indeed, interpretations of constants may be treated as kings. The number of K-types remains
doubly exponential. The construction works then essentially without changes, we only remark
that in step Completing the structure, when a 2-type for a pair of elements is chosen, we need
to define the truth-values of all relations on tuples built out of these elements and constants.
This way we get a doubly exponential bound on the size of models.

The upper bound in (ii) follows from the fact that full GF with constants is in 2-
ExpTime [7].

The upper bound in (iii) follows from the fact that full TGF with constants is in 2-
NExpTime [15]. We remark, however, that this upper bound for TGF is obtained without
proving the finite model property, thus to justify the upper bound for finite satisfiability of
TGF1 we must refer to part (i) of Thm. 6.

The corresponding lower bounds in (ii) and (iii) are proved in the full version of this paper.

MFCS 2019

16:14 One-Dimensional Guarded Fragments

References
1 H. Andréka, J. van Benthem, and I. Németi. Modal Languages and Bounded Fragments of

Predicate Logic. Journal of Philosophical Logic, 27:217–274, 1998.
2 V. Bárány, G. Gottlob, and M. Otto. Querying the Guarded Fragment. Logical Methods in

Computer Science, 10(2), 2014.
3 V. Bárány, B. ten Cate, and L. Segoufin. Guarded Negation. J. ACM, 62(3):22, 2015.
4 P. Bourhis, M. Morak, and A. Pieris. Making Cross Products and Guarded Ontology Languages

Compatible. In International Joint Conference on Artificial Intelligence, IJCAI 2017, pages
880–886, 2017.

5 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
doi:10.1145/322234.322243.

6 W. D. Goldfarb. The unsolvability of the Gödel class with identity. J. Symb. Logic, 49:1237–
1252, 1984.

7 E. Grädel. On The Restraining Power of Guards. J. Symb. Log., 64(4):1719–1742, 1999.
8 E. Grädel, P. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-order

logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.
9 L. Hella and A. Kuusisto. One-dimensional Fragment of First-order Logic. In Proceedings of

Advances in Modal Logic, 2014, pages 274–293, 2014.
10 A.S. Kahr, E.F. Moore, and H. Wang. Entscheidungsproblem reduced to the ∀∃∀ case. Proc.

Nat. Acad. Sci. U.S.A., 48:365–377, 1962.
11 Y. Kazakov. Saturation-based decision procedures for extensions of the guarded fragment. PhD

thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.
12 E. Kieroński. Results on the Guarded Fragment with Equivalence or Transitive Relations. In

Computer Science Logic, volume 3634 of LNCS, pages 309–324. Springer, 2005.
13 E. Kieronski and A. Kuusisto. Complexity and Expressivity of Uniform One-Dimensional

Fragment with Equality. In MFCS. Proceedings, Part I, pages 365–376, 2014.
14 M. Mortimer. On languages with two variables. Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, 21:135–140, 1975.
15 Sebastian Rudolph and Mantas Šimkus. The Triguarded Fragment of First-Order Logic. In

LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, volume 57 of EPiC Series in Computing, pages 604–619, 2018.

16 B. ten Cate and L. Segoufin. Unary negation. Logical Methods in Comp. Sc., 9(3), 2013.
17 J. van Benthem. Dynamic bits and pieces. ILLC Research Report, 1997.

https://doi.org/10.1145/322234.322243

Finite Satisfiability of Unary Negation Fragment
with Transitivity
Daniel Danielski
University of Wrocław, Poland

Emanuel Kieroński
University of Wrocław, Poland
kiero@cs.uni.wroc.pl

Abstract
We show that the finite satisfiability problem for the unary negation fragment with an arbitrary
number of transitive relations is decidable and 2-ExpTime-complete. Our result actually holds
for a more general setting in which one can require that some binary symbols are interpreted as
arbitrary transitive relations, some as partial orders and some as equivalences. We also consider
finite satisfiability of various extensions of our primary logic, in particular capturing the concepts of
nominals and role hierarchies known from description logic. As the unary negation fragment can
express unions of conjunctive queries, our results have interesting implications for the problem of
finite query answering, both in the classical scenario and in the description logics setting.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases unary negation fragment, transitivity, finite satisfiability, finite open-world
query answering, description logics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.17

Related Version A full version of this paper is available at https://arxiv.org/abs/1809.03245.

Funding Supported by Polish National Science Centre grant No 2016/21/B/ST6/01444.

1 Introduction

Decidable fragments and unary negation. Searching for attractive fragments of first-order
logic is an important theme in theoretical computer science. Successful examples of such
fragments, with numerous applications, are modal and description logics. They have their
own syntax, but naturally translate to first-order logic, via the standard translation. Several
seminal decidable fragments of first-order logic were identified by preserving one particular
restriction obeyed by this translation and dropping all the others. Important examples of such
fragments are two-variable logic, FO2, [25], the guarded fragment, GF, [2], and the fluted
fragment, FF, [24, 22]. They restrict, respectively, the number of variables, the quantification
pattern and the order of variables in which they appear as arguments of predicates. A more
recent proposal [27] is the unary negation fragment, UNFO. This time we restrict the use
of negations, allowing them only in front of subformulas with at most one free variable.
UNFO turns out to retain many good algorithmic and model theoretic properties of modal
logic, including the finite model property, a tree-like model property and the decidability of
the satisfiability problem. We remark here that UNFO and GF have a common decidable
generalization, the guarded negation fragment, GNFO, [5].

To justify the attractiveness of UNFO let us look at one of the crucial problems in
database theory, open-world query answering. Given an (incomplete) set of facts D, a set of
constraints T and a query q, check if D∧ T entails q. Generally, this problem is undecidable,
and to make it decidable one needs to restrict the class of queries and constraints. Widely
investigated class of queries are (unions of) conjunctive queries – (disjunctions of) sentences

© Daniel Danielski and Emanuel Kieroński;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8538-8221
mailto:kiero@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.17
https://arxiv.org/abs/1809.03245
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Finite Satisfiability of Unary Negation Fragment with Transitivity

of the form ∃x̄ψ(x̄) where ψ is a conjunction of atoms. An important class of constraints
are tuple generating dependencies, TGDs, of the form ∀x̄ȳ(ψ(x̄, ȳ)→ ∃z̄ψ′(ȳ, z̄)), where ψ
and ψ′ are, again, conjunctions of atoms. Conjunctive query answering against arbitrary
TGDs is still undecidable (see, e.g., [6]), so TGDs need to be restricted further. Several
classes of TGDs making the problem decidable have been proposed. One interesting such
class are frontier-one TGDs, in which the frontier of each dependency, ȳ, consists just of
a single variable [4]. Frontier-one TGDs are a special case of frontier-guarded TGDs [3].
Checking whether D and T entail q boils down to verifying (un)satisfiability of the formula
D∧T ∧¬q. It turns out that if T is a conjunction of frontier-one TGDs and q is a disjunction
of conjunctive queries then the resulting formula belongs to UNFO.

Transitivity. A serious weakness of the expressive power of UNFO is that it cannot express
transitivity of a binary relation, nor related properties like being an equivalence, a partial
order or a linear order. This limitation becomes particularly important when database or
knowledge representation applications are considered, as transitivity is a natural property in
many real-life situations. Just consider relations like greater-than or part-of. This weakness
is shared by FO2, GF and FF. Thus, it is natural to think about their extensions, in
which some distinguished binary symbols may be explicitly required to be interpreted as
transitive relations. It turns out that FO2, GF and FF do not cope well with transitivity,
and the satisfiability problems for the obtained extensions are undecidable [15, 13, 23] (see
also [10, 18, 17]). Some positive results were obtained for FO2, GF and FF only when one
transitive relation is available [21, 18, 23] or when some further syntactic restrictions are
imposed [26].

UNFO is an exception here, since its satisfiability problem remains decidable in the
presence of arbitrarily many transitive relations. This has been explicitly stated in [16], as
a corollary from a stronger result that UNFO is decidable when extended by regular path
expressions. Independently, the decidability of UNFO with transitivity, UNFO+S, follows
from [1], which deals with the decidability of a richer logic, the guarded negation fragment
with transitive relations restricted to non-guard positions, which embeds UNFO+S. From
both papers the 2-ExpTime-completeness of UNFO+S can be inferred.

Our main results. A problem related to satisfiability is finite satisfiability, in which we
ask about the existence of finite models. In computer science, the importance of decision
procedures for finite satisfiability arises from the fact that most objects about which we
may want to reason using logic, e.g., databases, are finite. Thus the ability of solving only
general satisfiability may not be fully satisfactory. Both the above-mentioned decidability
results implying the decidability of UNFO+S are obtained by employing tree-like model
properties of the logics and then using automata techniques. Since tree-like unravelings of
models are infinite, this approach works only for general satisfiability, and gives little insight
into the decidability/complexity of finite satisfiability. In this paper we consider the finite
satisfiability problem for UNFO+S. Actually, we made a step in this direction already in
our previous paper [7] (see [8] for its longer version) where we proved a related result that
UNFO with equivalence relations, UNFO+EQ, has the finite model property and thus that
its satisfiability and finite satisfiability problems coincide, both being 2-ExpTime-complete.
Some ideas developed in [7] are extended and applied also here, even though UNFO+S does
not have the finite model property which becomes evident when looking at the following
formula with transitive T , ∀x∃yTxy ∧ ∀x¬Txx, satisfiable only in infinite models.

Our main contribution is demonstrating the decidability of finite satisfiability for UNFO+S
and establishing its 2-ExpTime-completeness. En route we obtain a triply exponential bound
on the size of minimal models of finitely satisfiable UNFO+S formulas. Actually, our results

D. Danielski and E. Kieroński 17:3

hold for a more general setting, in which some relations may be required to be interpreted as
equivalences, some as partial orders, and some just as arbitrary transitive relations. Returning
to database motivations, we get this way the decidability of the finite open-world query
answering for unions of conjunctive queries against frontier-one TGDs with equivalences,
partial orders and arbitrary transitive relations. By finite open-world query answering we
mean the question if for given D, T and q, D and T entail q over finite structures.

To the best of our knowledge, UNFO+S is the first logic which allows one to use arbitrarily
many transitive relations, and, at the same time, to speak non-trivially about relations of
arbitrary arities, whose finite satisfiability problem is shown decidable. In the case of related
logics of this kind, like the guarded fragment with transitive guards [26], and the guarded
negation fragment with transitive relations outside guards [1], the decidability was shown
only for general satisfiability, and its finite version is open. (Finite satisfiability was shown
decidable only for the two-variable guarded fragment with transitive guards [20]).

We believe that moving from UNFO+EQ from [7] to UNFO+S is an important im-
provement. Besides the fact that this requires strengthening our techniques and employing
some new ideas, general transitive relations have stronger motivations than equivalences. In
particular, it opens natural connections to the realm of description logics, DLs.

UNFO and expressive description logics. UNFO, via the above-mentioned standard trans-
lation, embeds the DL ALC, as well as its extension by inverse roles (I) and role intersections
(u). Thus, having the ability of expressing conjunctive queries, we can use our results to solve
the so-called (finite) ontology mediated query answering problem, (F)OMQA, for some DLs.
This problem is a counterpart of (finite) open-world query answering: given a conjunctive
query (or a union of conjunctive queries) and a knowledge base specified in a DL, check
whether the query holds in every (finite) model of this knowledge base.

While there are quite a lot of results for OMQA, not much is known about FOMQA. In
particular, for DLs with transitive roles (S) the only positive results we are aware of are
the ones obtained recently in [12], where the decidability and 2-ExpTime-completeness of
FOMQA for the logics SOI, SIF and SOF is shown. This is orthogonal to our results
described above, since UNFO+S captures neither nominals (O) nor functional roles (F). On
the other hand, we are able to express any positive boolean combinations of roles, including
their intersection (u), which allows us to solve FOMQA, e.g., for the logic SIu. Moreover
we can use non-trivially relations of arity greater than two.

It is an interesting question if our decidability result can be extended to capture some
more expressive DLs. Unfortunately, we cannot hope for number restrictions (Q or N) or
even functional roles (F), as satisfiability and finite satisfiability of UNFO (even without
transitive relations) and two binary functional relations are undecidable. This is implicit in
[27] (see the full version of this paper for an explicit proof). On the positive side, we show the
decidability and 2-ExpTime-completeness of finite satisfiability of UNFO+SOH, extending
UNFO+S by constants (corresponding to nominals (O)) and inclusions of binary relations
(capturing role hierarchies (H)). This is sufficient, in particular, to imply the decidability of
FOMQA for the description logic SHOIu, which, up to our knowledge, is a new result.

Towards guarded negation fragment. We propose also another decidable extension of our
basic logic, the one-dimensional base-guarded negation fragment with transitive relations on
non-guard positions, BGNFO1+S. This is a non-trivial fragment of the already mentioned
logic from [1]. After some rather easy adjustments, our constructions cover this bigger logic,
however, it becomes undecidable when extended with inclusions of binary relations.

MFCS 2019

17:4 Finite Satisfiability of Unary Negation Fragment with Transitivity

Organization of the paper. The rest of this paper is organized as follows. Section 2
contains definitions, basic facts and a high-level description of our decidability proof. As our
constructions are rather complex, in the main body of the paper, Section 3, we explicitly
process the restricted, two-variable case of our logic, for which our ideas can be presented
more transparently. In Section 4 we just formulate the remaining results, leaving the details
for the full version of this paper, which also contains the missing proofs from Sections 2 and
3. In Section 5 we conclude the paper.

2 Preliminaries

2.1 Logics, structures, types and functions

We employ standard terminology and notation from model theory. We refer to structures
using Fraktur capital letters, and their domains using the corresponding Roman capitals.
For a structure A and A′ ⊆ A we use A�A′ or A′ to denote the restriction of A to A′.

The unary negation fragment of first-order logic, UNFO is defined by the following
grammar [27]: ϕ = Bx̄ | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ¬ϕ(x), where, in the first clause, B
represents any relational symbol, and, in the last clause, ϕ has no free variables besides (at
most) x. An example formula not expressible in UNFO is x 6= y. We formally do not have
universal quantification. However we allow ourselves to use ∀x̄¬ϕ as an abbreviation for
¬∃x̄ϕ, for an UNFO formula ϕ. Note that frontier-one TGDs ∀x̄y(ψ(x̄, y)→ ∃z̄ψ′(y, z̄)) are
in UNFO as they can be rewritten as ¬∃x̄y(ψ(x̄, y) ∧ ¬∃z̄ψ′(y, z̄)).

We mostly work with purely relational signatures (admitting constants only in some
extensions of our main results) of the form σ = σbase ∪ σdist, where σbase is the base signature,
and σdist is the distinguished signature. We assume that σdist = {T1, . . . , T2k}, with all the Tu
binary, and intension that T2u is interpreted as the inverse of T2u−1. For every 1 ≤ u ≤ k we
sometimes write T−1

2u for T2u−1, and T−1
2u−1 for T2u. We say that a subset E of σdist is closed

under inverses if, for every 1 ≤ u ≤ 2k, we have Tu ∈ E iff T−1
u ∈ E . Note that E is closed

under inverses iff σdist \ E is closed under inverses. Given a formula ϕ we denote by σϕ the
signature induced by ϕ, i.e., the minimal signature, with its distinguished part closed under
inverses, containing all symbols from ϕ.

The unary negation fragment with transitive relations, UNFO+S, is defined by the same
grammar as UNFO, however when satisfiability of its formulas is considered, we restrict the
class of admissible models to those that interpret all symbols from σdist as transitive relations
and, additionally, for each u, interpret T2u as the inverse of T2u−1. The latter condition
is intended to simplify the presentation, and is imposed without loss of generality. In our
constructions we sometimes consider some auxiliary structures in which symbols from σdist

are not necessarily interpreted as transitive relations (but the pairs T2u−1, T2u are always
interpreted as inverses of each other).

An (atomic) k-type over a signature σ is a maximal satisfiable set of literals (atoms
and negated atoms) over σ with variables x1, . . . , xk. We often identify a k-type with the
conjunction of its elements. We are mostly interested in 1- and 2-types. Given a σ-structure
A and a, b ∈ A we denote by atpA(a) the 1-type realized by a, that is the unique 1-type α(x1)
such that A |= α(a), and by atpA(a, b) the unique 2-type β(x1, x2) such that A |= β(a, b).

We use various functions in our paper. Given a function f : A→ B we denote by Rngf
its range, by Domf its domain, and by f�A0 the restriction of f to A0 ⊆ A.

D. Danielski and E. Kieroński 17:5

2.2 Normal form, witnesses and basic facts
We say that an UNFO+S formula is in Scott-normal form if it is of the shape

∀x1, . . . , xt¬ϕ0(x̄) ∧
m∧
i=1
∀x∃ȳϕi(x, ȳ) (1)

where each ϕi is a UNFO+S quantifier-free formula and ϕ0 is additionally in negation
normal form (NNF). A similar normal form for UNFO was introduced in the bachelor’s
thesis [9]. By a straightforward adaptation of Scott’s translation for FO2 [25] one can
translate in polynomial time any UNFO+S formula to a formula in normal form, in such
a way that both are satisfiable over the same domains. This allows us, when dealing with
decidability/complexity issues for UNFO+S, or when considering the size of minimal finite
models of formulas, to restrict attention to normal form formulas.

Given a structure A, a normal form formula ϕ as in (1) and elements a, b̄ of A such that
A |= ϕi(a, b̄) we say that the elements of b̄ are witnesses for a and ϕi and that A�{a, b̄} is a
witness structure for a and ϕi. Fix an element a. For every ϕi choose a witness structure
Wi. Then the structure W = A�{W1 ∪ . . . ∪Wm} is called a ϕ-witness structure for a.

We are going to present a construction which given an arbitrary finite model of a normal
form UNFO+S formula ϕ builds a finite model of ϕ of a bounded size. The construction
goes via several intermediate steps in which some tree-like models are produced. To argue
that that they are still models of ϕ we use the following basic observation (we recall that t is
the number of variables of the ∀-conjunct of ϕ).

I Lemma 1. Let A be a model of a normal form UNFO+S formula ϕ. Let A′ be a structure
in which all symbols from σdist are interpreted as transitive relations, such that
(a1) for every a′ ∈ A′ there is a ϕ-witness structure for a′ in A′,
(a2) for every tuple a′1, . . . , a′t ∈ A′ there is a homomorphism h : A′�{a′1, . . . , a′t} → A which

preserves 1-types of elements.
Then A′ |= ϕ.

2.3 Plan of the small model construction
Our main goal is to show that finite satisfiability of UNFO+S formulas can be checked in
2-ExpTime. To this end we will introduce a natural notion of tree-like structures and a
measure associating with transitive paths of such structures their so-called ranks. Intuitively,
for a transitive relation Ti and a Ti-path π, the Ti-rank of π is the number of one-directional
Ti-edges in π (a precise definition is given in Section 3.1). Then we show that having the
following forms of models is equivalent for a normal form formula ϕ:
(f1) finite;
(f2) tree-like, with bounded ranks of transitive paths;
(f3) tree-like, with ranks of transitive paths bounded doubly exponentially in |ϕ|;
(f4) tree-like, with ranks of paths bounded doubly exponentially in |ϕ|, and regular (with

doubly exponentially many non-isomorphic subtrees);
(f5) finite of size triply exponential in |ϕ|.
We will make the following steps: (f1) (f2), (f2) (f3), (f3) (f4), (f4) (f5). The step
closing the circle, (f5) (f1) is trivial. In the two-variable case, we will omit the form (f4)
and directly show (f3) (f5). Our 2-ExpTime-algorithm will look for models of the form
(f3). Showing transitions leading from (f3) to (f5) justifies that its answers coincide indeed
with the existence of finite models.

MFCS 2019

17:6 Finite Satisfiability of Unary Negation Fragment with Transitivity

This scheme is similar to the one we used to show the finite model property for UNFO+EQ
in [7]. In the main part of the construction from [7] we build bigger and bigger substructures
in which some equivalence relations are total. The induction goes, roughly speaking, by
the number of non-total equivalences in the substructure. Here we extend this approach
to handle one-way transitive connections. It may be useful to briefly compare the case of
UNFO+S and the case of UNFO+EQ.

First of all, if a given formula ϕ is from UNFO+EQ then we can start our constructions
leading to a small finite model of ϕ from its arbitrary model, while if ϕ is in UNFO+S we
start from a finite model of ϕ. A very simple step (f1) (f2) in both papers is, essentially,
identical. The counterpart of step (f3) (f4) in the case of equivalences is slightly simpler,
but the main differences lie in steps (f2) (f3) and (f4) (f5). The former, clearly, is not
present at all in [7]. While the general idea in this step is quite standard, as we just use a kind
of tree pruning, the details are rather delicate due to possible interactions among different
transitive relations, and this step is, by no means, trivial. We refine here, in particular, the
apparatus of declarations introduced in [7]. Regarding step (f4) (f5), the main construction
there, in its single inductive step, has two phases: building the so-called components and
then arranging them into a bigger structure. It is this first phase which is more complicated
than in the corresponding step in [7]. Having components prepared we join them similarly as
in [7].

3 The two-variable case

As in the case of unbounded number of variables we can restrict attention to normal form
formulas, which in the two-variable case simplify to the standard Scott-normal form [25]:

∀xy¬ϕ0(x, y) ∧
m∧
i=1
∀x∃yϕi(x, y), (2)

where all ϕi are quantifier-free UNFO2+S formulas (in this restricted case it is not important
whether ϕ0 is in NNF or not). As is typical for two-variable logics we assume that formulas
do not use relational symbols of arity greater than 2 (cf. [14]).

3.1 Tree pruning in the two-variable case
We use a standard notion of a (finite or infinite) rooted tree and related terminology.
Additionally, any set consisting of a node and all its children is called a family. Any node b,
except for the root and the leaves, belongs to two families: the one containing its parent,
and the one containing its children, the latter called the downward family of b.

We say that a structure A over a signature consisting of unary and binary symbols is a
light tree-like structure if its nodes can be arranged into a rooted tree in such a way that
if A |= Baa′ for some non-transitive relation symbol B then one of three conditions holds:
a = a′, a is the parent of a′ or a is a child of a′, and if A |= Tuaa

′ for some Tu then either
a = a′ or there is a sequence of distinct nodes a = a0, a1, . . . , ak = a′ such that ai and ai+1
are joined by an edge of the tree and A |= Tuaiai+1. In other words, distant nodes in a light
tree-like structure can be joined only by transitive connections, moreover, these transitive
connections are just the transitive closures of connections inside families. For a light tree-like
structure A and a ∈ A we denote by Aa the set of all nodes in the subtree rooted at a and
by Aa the corresponding substructure.

Let A be a light tree-like structure. A sequence of nodes a1, . . . , aN ∈ A is a downward
path in A if for each i ai+1 is a child of ai. A downward-Tu-path is a downward path such
that for each i we have A |= Tuaiai+1. The Tu-rank of a downward-Tu-path ~a, rAu (~a), is the

D. Danielski and E. Kieroński 17:7

cardinality of the set {i : A |= ¬Tuai+1ai}. The Tu-rank of an element a ∈ A is defined as
rAu (a) = sup{rAu (~a) : ~a = a, a2, . . . , aN ;~a is a downward-Tu-path}. For an integer M , we say
that A has downward-Tu-paths bounded by M when for all a ∈ A we have rAu (a) ≤M , and
that A has transitive paths bounded by M if it has downward-Tu-paths bounded by M for
all u. Note that a downward-Tu-path bounded by M may have more than M nodes, as the
symmetric Tu-connections do not increase the rank.

Given an arbitrary model A of a normal form UNFO2+S formula ϕ we can simply
construct its light tree-like model of degree bounded by |ϕ|. We define a light-ϕ-tree-like
unraveling A′ of A and an associated function h : A′ → A in the following way. A′ is divided
into levels L0, L1, Choose an arbitrary element a ∈ A and add to level L0 of A′ an
element a′ such that atpA′(a′) = atpA(a); set h(a′) = a. The element a′ will be the only
element of L0 and will become the root of A′. Having defined Li repeat the following for
every a′ ∈ Li. For every j, if h(a′) is not a witness for ϕj and itself then choose in A a
witness b for h(a′) and ϕj . Add a fresh copy b′ of b to Li+1, make A′�{a′, b′} isomorphic to
A�{h(a′), b} and set h(b′) = b. Complete the definition of A′ transitively closing all relations
from σdist.

I Lemma 2 ((f1) (f2), light). Let A be a finite model of a normal form UNFO2+S formula
ϕ. Let A′ be a light-ϕ-tree-like unraveling of A. Then A′ |= ϕ and A′ is a light tree-like
structure of degree bounded by |ϕ|, and transitive paths bounded by |A|.

Our next task is making the transition (f2) (f3). For this purpose we introduce a
notion of light declarations. It is closely related to a notion of declarations which will be
used in the general case, but simpler than the latter. Fix a signature and let α be the set of
1-types over this signature.

For T ⊆ {T1, . . . , T2k} we write A |= T ab iff A |= Tuab for all Tu ∈ T . A light
declaration is a function of type P({T1, . . . , T2k})→ P(α). Given a light tree-like structure
A and its node a we say that a respects a light declaration d if for every T , for every
α ∈ d(T) there is no node b ∈ A of 1-type α such that A |= T ab. We denote by ldecA(a)
the maximal light declaration respected by a. Formally, for every T ⊆ {T1, . . . , T2k},
ldecA(a)(T) = {α : for every node b of type α we have ¬A |= T ab}. Intuitively, ldecA(a)
says, for any combination of transitive relations, which 1-types have no realizations to which
a is connected by this combination in A. Note that if a respects a light declaration d then for
any T we have d(T) ⊆ ldecA(a)(T). We remark that it would be equivalent to define the light
declarations without the negations, listing the 1-types that a given node is connected with,
however we choose a version with negations to make them uniform with the corresponding
(more complicated) notion in the general case, where negations are more convenient.

Now we define the local consistency conditions (LCCs) for a system of light declarations
(da)a∈A assigned to all nodes of a tree-like structure A. Let F be the downward family of
some node a. We say that the system satisfies LCCs at a if for every a1, a2 ∈ F and for
every T such that A |= T a1a2 the following two conditions hold: (ld1) for every α ∈ α, if
α ∈ da1(T) then α ∈ da2(T), (ld2) atpA(a2) 6∈ da1(T). Given a light tree-like structure A

we say that a system of light declarations (da)a∈A is locally consistent if it satisfies LCCs
at each a ∈ A and is globally consistent if da(T) ⊆ ldecA(a)(T) for each a ∈ A and each T .
Note that the global consistency means that all nodes a respect their light declarations da.
It is not difficult to see that local and global consistency play along in the following sense.

I Lemma 3 (Local-global, light). Let A be a light tree-like structure. Then, (i) if a system
of light declarations (da)a∈A is locally consistent then it is globally consistent; and (ii) the
canonical system of light declarations, (ldecA(a))a∈A, is locally consistent.

MFCS 2019

17:8 Finite Satisfiability of Unary Negation Fragment with Transitivity

Given a light tree-like structure A, by the generalized type of a node a of A we will mean
a pair (ldecA(a), atpA(a)), and denote it as gtpA(a). We introduce a concept of top-down
tree pruning. Let A be a light tree-like structure. A top-down tree pruning process on A has
countably many steps 0, 1, 2, . . ., each of them producing a new light tree-like structure by
removing some nodes from the previous one and naturally stitching together the surviving
nodes. We emphasise that the universes of all structures build in this process are subsets
of the universe of the original structure A. More specifically, we take A0 := A, and having
constructed Ai, i ≥ 0 construct Ai+1 as follows. For every node a of Ai of depth i+ 1 (we
assume that the root has depth 0) either leave the subtree rooted at a untouched or replace
it by a subtree rooted at some descendant b of a having in the original structure A the same
generalized type as a, and then transitively close all transitive relations. The result of the
process is a naturally defined limit structure A′, in which the pair of elements a, b, of depth
da and db respectively, has its 2-type taken from Amax(da,db). Note that this 2-type is not
modified in the subsequent structures, so the definition is sound.

I Lemma 4 (Tree-pruning, light). Let A be a light tree-like structure. Let (da)a∈A be the
canonical system of light declarations on A, da := ldecA(a). Let A′ be the result of a top-town
tree pruning process on A. Then (i) the system of light declarations (da)a∈A′ (the canonical
declarations from A of the nodes surviving the pruning process) in A′ is locally consistent,
(ii) for any pair of elements a, a′ ∈ A′ there is a homomorphism A�{a, a′} → A preserving
the 1-types; it also follows that (iii) for a normal form ϕ, if A is a model of ϕ such that any
node a has all its witnesses in its downward family then A′ |= ϕ.

It is not difficult to devise a strategy of top-down tree pruning leading to a model with
short transitive paths in a simple scenario where only one transitive relation is present. With
several transitive relations, however, a quite intricate strategy seems to be required. The
main obstacle is that when decreasing the Tu-rank of an element a, for some u, we may
accidentally increase the Tv-rank of a for some v 6= u. Nevertheless, an appropriate strategy
exists (see the full version of this paper), which allows us to state:

I Lemma 5 ((f2) (f3), light). Let ϕ be a normal form UNFO2+S formula. Let A |= ϕ be
a light tree-like structure over signature σϕ, with transitive paths bounded by some natural
number M , such that each element has all the required witnesses in its downward family.
Then ϕ has a light tree-like model with transitive paths bounded doubly exponentially in |ϕ|.

3.2 Finite model construction in the two-variable case
In this section we show the following small model property. To this end, in particular, we
will make the transition (f3) (f5).

I Theorem 6. Every finitely satisfiable two-variable UNFO+S formula ϕ has a finite model
of size bounded triply exponentially in |ϕ|.

Let us fix a finitely satisfiable normal form UNFO+S formula ϕ over a signature σϕ =
σbase ∪ σdist for σdist = {T1, . . . , T2k}. Denote by α the set of 1-types over this signature.
Fix a light tree-like model A |= ϕ, with linearly bounded degree and doubly exponentially
bounded transitive paths (in this section we denote this bound by M̂ϕ), as guaranteed by
Lemma 5. We show how to build a “small” finite model A′ |= ϕ. For a set E ⊆ σdist, closed
under inverses, and a ∈ A we denote by [a]E the set consisting of a and all elements b ∈ A
such that A |= Tuab for all Tu ∈ E . Note that [a]E is either a singleton or each of the Tu ∈ E
is total on [a]E , that is, for each b1, b2 ∈ [a]E we have A |= Tub1b2 for all Tu ∈ E . We note
that [a]∅ = A.

D. Danielski and E. Kieroński 17:9

In our construction we inductively produce finite fragments of A′ corresponding to some
(potentially infinite) classes [a]E of A. Essentially, the induction goes downward on the size of
E . Intuitively, if a relation is total then it plays no important role, so we may forget about it
during the construction. Every such fragment will be obtained by an appropriate arrangement
of some number of basic building blocks, called components. Each of the components is
obtained by some number of applications of the inductive assumption to situations in which
a new pair of relations T2u−1, T2u is added to E .

Let us formally state our inductive lemma. In this statement we do not explicitly include
any bound on the size of promised finite models, but such a bound will be implicit in the
proof and will be presented later. Recall that A is the model fixed at the beginning of this
subsection.

I Lemma 7 (Main construction, light). Let a0 ∈ A and let E0 ⊆ σdist be closed under inverses,
let Etot := σdist \ E0. Let A0 = Aa0�[a0]Etot . Then there exist a finite structure A′0, a function
p : A′0 → A0 and an element a′0 ∈ A′0, called the origin of A′0, such that
(b1) A′0 is a singleton or every symbol from Etot is interpreted as the total relation on A′0.
(b2) p(a′0) = a0.
(b3) For each a′ ∈ A′0 and each i, if p(a′) has a child being its witness for ϕi in A0 then a′

has a witness for ϕi in A′0. Moreover, atpA′0(a′) = atpA0(p(a′)).
(b4) For every pair a′, b′ ∈ A′0 there exists a homomorphism h : A′0�{a′, b′} → A preserving

1-types such that h(a′) = p(a′), and for any 1-type α and T ⊆ {1, . . . , 2k}, if A′0 |= T a′b′
and α 6∈ ldecA(p(b′))(T) then α 6∈ ldecA(p(a′))(T).

Observe first that Lemma 7 indeed allows us to build a particular finite model of ϕ.
Apply it to E0 = σdist (which means that Etot = ∅ and [a0]Etot = A) and a0 being the root of
A (which means that A0 = A) and use Lemma 1 to see that the obtained structure A′0 is a
model of ϕ. Indeed, Condition (a1) of Lemma 1 follows directly from Condition (b3), as in
this case p(a′) has all witnesses in A0. Condition (a2) is directly implied by Condition (b4).

The proof of Lemma 7 goes by induction on l, where l = |E0|/2. In the base of induction,
l = 0, we have Etot = σdist. Without loss of generality we may assume that the classes [a]Etot
are singletons for all a ∈ A. (If this is not the case, we just add artificial transitive relations
T2k+1 and T2k+2 both interpreted as the identity in A.) We simply take A′0 := A0 = A�{a0}
and set p(a0) = a0. It is readily verified that the conditions (b1)–(b4) are then satisfied.

For the inductive step assume that Lemma 7 holds for arbitrary E0 closed under inverses,
of size 2(l− 1) < 2k. We show that then it holds for E0 of size 2l. Take such E0, and assume,
w.l.o.g., that E0 = {T1, . . . , T2l}. In the next two subsections we present a construction of
A′0. We argue that it is correct in the full version of this paper. Finally we estimate the size
of the produced models and establish the complexity of the finite satisfiability problem.

3.2.1 Pattern components
We plan to construct A′0 out of basic building blocks called components. Each component
will be an isomorphic copy of some pattern component.

Let γ[A0] be the set of the generalized types realized in A0. For every γ ∈ γ[A0] we
construct two pattern structures, a pattern component Cγ and an extended pattern component
Gγ . Cγ is a finite structure whose universe is divided into 2l layers L1, . . . , L2l. Gγ extends
Cγ by an additional, interface layer, denoted L2l+1. See the left part of Fig. 1. We now
define Gγ , obtaining then Cγ just by the restriction of Gγ to non-interface layers.

Each non-interface layer Li is further divided into sublayers L1
i , L

2
i , . . . , L

M̂ϕ+1
i . Addition-

ally, in each sublayer Lji its initial part Lj,initi is distinguished. In particular, L1,init
1 consists

MFCS 2019

17:10 Finite Satisfiability of Unary Negation Fragment with Transitivity

Cγ
Gγ

L1

L2

L3

L4

L2l leaves
interface layer

root

L1
3

L2
3

L3
3

L
M̂ϕ+1
3

L1,init
3

not crossed by T2

not crossed by T3

Figure 1 A schematic view of a component in the two-variable case.

of a single element called the root. The interface layer L2l+1 has no internal division but, for
convenience, is sometimes referred to as L1,init

2l+1 . The elements of L2l are called leaves and
the elements of L2l+1 are called interface elements. See Fig. 1.

Gγ will have a shape resembling a tree, with structures obtained by the inductive
assumption as nodes, though it will not be tree-like in the sense of Section 3.1 (in particular,
the internal structure of nodes may be complicated). All elements of Gγ , except for the
interface elements, will have appropriate witnesses (those required by (b3)) provided. The
crucial property we want to enforce is that the root of Gγ will not be joined to its interface
elements by any transitive path.

We remark that during the process of building a pattern component we do not yet
apply the transitive closure to the distinguished relations. Postponing this step is not
important from the point of view of the correctness of the construction, but will allow us for
a more precise presentation of the proof of this correctness. Given a component C (extended
component G) we will sometimes denote by C+ (G+) the structure obtained from C (G) by
applying all the appropriate transitive closures.

The role of every non-interface layer Lu is, speaking informally, to kill Tu, that is to
ensure that there will be no Tu-connections from Lu to Lu+1. See the right part of Fig. 1.
The role of sublayers of Lu, on the other hand, is to decrease the Tu-rank of the patterns of
elements. The purpose of the interface layer, L2l+1, will be to connect the component with
other components.

If γ is the generalized type of a0 then take a := a0; otherwise take as a any element of
A0 of generalized type γ. We begin the construction of Gγ by defining L1,init

1 = {a′} for a
fresh a′, setting atpGγ (a′) = atpA(a) and p(a′) = a.

Construction of a layer. Let 1 ≤ u ≤ 2l. Assume we have defined layers L1, . . . , Lu−1,
the initial part of sublayer L1

u, L1,init
u , and both the structure of Gγ and the values of p on

L1 ∪ . . . ∪ Lu−1 ∪ L1,init
u . We are going to kill Tu. We now expand L1,init

u to a full layer Lu.

Step 1: Subcomponents. Assume that we have defined sublayers L1
u, . . . , L

j,init
u , and both

the structure of Gγ and the values of p on L1 ∪ . . . ∪ Lu−1 ∪ L1
u ∪ . . . ∪ Lj,initu . For each

b ∈ Lj,initu perform independently the following procedure. Apply the inductive assumption
to p(b) and the set E0 \ {Tu, T−1

u } obtaining a structure B0, its origin b0 and a function
pb : B0 → Ap(b) ∩ [p(b)]Etot∪{Tu,T−1

u } ⊆ A0 with pb(b0) = p(b). Identify b0 with b and add
the remaining elements of B0 to Lju, retaining the structure. Substructures B0 of this kind
will be called subcomponents (note that all appropriate relations are transitively closed in
subcomponents). Extend p so that p�B0 = pb. This finishes the definition of Lju.

D. Danielski and E. Kieroński 17:11

Step 2: Providing witnesses. For each b ∈ Lju and 1 ≤ s ≤ m independently perform the
following procedure. Let B0 be the subcomponent created inductively in Step 1, such that
b ∈ B0. If p(b) has a witness for ϕs(x, y) in A0 then we want to reproduce such a witness for
b. Choose one such witness c (being a child of p(b)) for p(b). Let us denote β = atpA(p(b), c).
If {Tuxy, T−1

u xy} ⊆ β then by Condition (b3) of the inductive assumption b already has an
appropriate witness in the subcomponent B0. So we do nothing in this case. If Tuxy ∈ β
and T−1

u xy 6∈ β then we add a copy c′ of c to Lj+1,init
u ; if Tuxy 6∈ β then we add a copy c′ of

c to L1,init
u+1 . We join b with c′ by β and set p(c′) = c.

An attentive reader may be afraid that when adding witnesses for elements of the last
sublayer LM̂ϕ+1

u of Lu we may want to add one of them to the non-existing layer LM̂ϕ+2
u .

There is however no such danger, which follows from the following claim.

B Claim 8. (i) Let b ∈ Lj,initu and let B0 be the subcomponent created for b in Step 1. Then
for all b′ ∈ B0 we have rAu (p(b)) ≥ rAu (p(b′)). (ii) Let b ∈ Lju and let c′ ∈ Lj+1

u be a witness
created for b in Step 2. Then rAu (p(b)) > rAu (p(c′)).

Hence, when moving from Lju to Lj+1
u the Tu-ranks of pattern elements for the elements

of these sublayers strictly decrease. Since these ranks are bounded by M̂ϕ, then, even if
the Tu-ranks of the patterns of some elements of L1

u are equal to M̂ϕ, then, if L
M̂ϕ+1
u is

non-empty, the Tu-ranks of the patterns of its elements must be 0, which means that they
cannot have witnesses connected to them one-directionally by Tu.

The construction of Gγ is finished when layer L2l is fully processed. We have added some
elements to the interface layer, L2l+1. Recall that it has only its “initial part”.

3.2.2 Joining the components
In this section we take some number of copies of pattern components and arrange them into
the desired structure A′0, identifying interface elements of some components with the roots
of some other. Some care is needed in this process in order to avoid any modifications of the
internal structure of closures C+ of components C, which could potentially result from the
transitivity of relations. In particular we need to ensure that if for some u a pair of elements
of a component C is not connected by Tu inside C, then it will not become connected by a
chain of Tu-edges external to C.

We create a pattern component Cγ and its extension Gγ for every γ ∈ γ[A0]. Let γa0 be
the generalized type of a0. Let max be the maximal number of interface elements across all
the Gγ . For each Gγ arbitrarily number its interface elements from 1 up to, maximally, max.

For each γ we take copies Gγ,gi,γ′ of Gγ for g ∈ {0, 1}, 1 ≤ i ≤ max and γ′ ∈ γ[A0]. The
parameter g is sometimes called a color (red or blue); it is convenient to think that the
non-interface elements of Gγ,gi,γ′ are of color g, but its interface elements have color 1−g, cf. the
left part of Fig. 1, as the latter will be later identified with the roots of some components of
color 1− g. We import the numbering of the interface elements to these copies. We also take
an additional copy G

γa0 ,0
⊥,⊥ of Gγa0 . Its root will become the origin of the whole A′0. By Cγ,gi,γ′

we denote the restriction of Gγ,gi,γ′ to its non-interface elements.
For each γ, g consider extended components of the form Gγ,g·,· , where the placeholders ·

can be substituted with any combination of proper indices. Perform the following procedure
for each 1 ≤ i ≤ max. Let b be the i-th interface element of any such extended component,
let γ′ be the generalized type of p(b). Identify the i-th interface elements of all Gγ,g·,· with
the root c0 of Gγ

′,1−g
i,γ . Note that the values of p(c0) and p(b) may differ. However, by

construction, they have identical generalized types γ′. For the element c∗ obtained in this
identification step we define p(c∗) = p(c0).

MFCS 2019

17:12 Finite Satisfiability of Unary Negation Fragment with Transitivity

A′0

g
=

1

g=
0

a

b

Figure 2 Viewing A0
0 and A′

0 as placed on a cylindrical surface.

Define the graph of components used in the above construction, Gcomp, by joining two
components by an edge iff we identified an interface element of the extended version of one
of them with the root of the other. Let A0

0 be the union of the components accessible from
C
γa0 ,0
⊥,⊥ in Gcomp and let A0

0 be the induced structure. Note that in A0
0 we still do not take the

transitive closures of relations. We define A′0 by transitively closing all relations from σdist in
A0

0. Finally, we choose as the origin a′0 of A′0 the root of the pattern component Cγ0,0
⊥,⊥.

We remark that it is sufficient to take as the universe of A′0 the union of the universes
of some components C·,··,·, and not of their extended versions G·,··,· from which we started our
construction, since the interface elements from these extended components were identified
with some roots of other components.

For the correctness proof of our construction see the full version of this paper. In this
proof it is helpful to think about A0

0 and A′0 as the structures placed on a cylindrical surface
and divided into 4l levels, see Fig. 2. What is crucial, any transitive path in A0

0 can cross at
most one of the two borders between colors.

3.2.3 Size of models and complexity
By a rather routine calculation we can show that models produced in the proof of Lemma 7
are of size bounded triply exponentially in the length of input formulas. This finishes the
proof of Thm. 6, which immediately gives the decidability of the finite satisfiability problem
for UNFO2+S and suggests a simple 3-NExpTime-procedure: guess a finite structure of
size bounded triply exponentially in the size of input ϕ and verify that it is indeed a model
of ϕ. We can however do better and show a doubly exponential upper bound matching the
known complexity of the general satisfiability problem. For this we design an alternating
exponential space algorithm searching for models of the form (f3). The lower bound can
be obtained for the two-variable UNFO2+S in the presence of one transitive relation by a
straightforward adaptation of the lower bound proof for GF2 with transitive guards [19].

I Theorem 9. The finite satisfiability problem for UNFO2+S is 2 -ExpTime-complete.

4 The general case and its further extensions

In the full version of this paper we generalize the ideas from Section 3 to show:

I Theorem 10. The finite satisfiability problem for UNFO+S is 2 -ExpTime-complete.

We also obtain a triply exponential upper bound on the size of minimal finite models of
finitely satisfiable formulas. The structure of the proofs is similar to the two-variable case,
though some details are more complicated. In particular, we need to go through form (f4)
of models: regular trees with bounded ranks of transitive paths. We also explain that in
addition to general transitive relations we can use also equivalences and partial orders.

D. Danielski and E. Kieroński 17:13

We further extend Thm. 10 by considering an extension, UNFO+SOH, of UNFO+S by
constants and inclusion of binary relations of the form B1 ⊆ B2, interpreted in a natural
way: A |= B1 ⊆ B2 iff A |= ∀xy(B1xy → B2xy).

I Theorem 11. The finite satisfiability problem for UNFO+SOH is 2 -ExpTime-complete.

As mentioned in the Introduction, UNFO+SOH captures several interesting description
logics. This implies that we can solve FOMQA problem for them. In particular, we have the
following corollary, which, up to our knowledge is the first decidability result for FOMQA in
the case of a description logic with both transitive roles and role hierarchies.

I Corollary 12. Finite ontology mediated query answering, FOMQA, for the description
logic SHOIu is decidable and 2 -ExpTime-complete.

SHOIu and some related logics are considered, e.g., in [11]. For more about FOMQA
for description logics with transitivity see [12]. For more about OMQA for description logics
see, e.g., references in [12].

Somewhat orthogonally to the extensions motivated by description logics we consider
the base-guarded negation fragment with transitivity, BGNFO+S, for which the general
satisfiability problem was shown decidable in [1]. We do not solve its finite satisfiability
problem here, but, analogously to the extension with equivalence relations, UNFO+EQ [7],
we are able to lift our results to its one-dimensional restriction, BGNFO1+S, admitting only
formulas in which every maximal block of quantifiers leaves at most one variable free.

I Theorem 13. The finite satisfiability problem for BGNFO1+S is 2 -ExpTime-complete.

Surprisingly, in contrast to UNFO+S, BGNFO1+S becomes undecidable when extended
by inclusions of binary relations.

5 Conclusions

We proved that the finite satisfiability problem for the unary negation fragment with transitive
relations, UNFO+S, is decidable and 2-ExpTime-complete, complementing this way the
analogous result for the general satisfiability problem for this logic implied by two other
papers. Further, we identified some decidable extensions of our base logic capturing the
concepts of nominals and role hierarchies from description logics. We noted that our work
has some interesting implications on the finite query answering problem both under the
classical (open-world) database scenario as well as in the description logics setting.

One open question is the decidability of the finite satisfiability problem for the full logic
BGNFO+S from [1]. We made a step in this direction here, by solving this problem for
the one-dimensional restriction of that logic. Another question is if our techniques can be
adapted to a setting in which we do not assert that some distinguished relations are transitive
but where we can talk about the transitive closure of the binary relations, or, more generally,
to the extension of UNFO with regular path expressions from [16].

We finally remark that we do not know if our small model construction, producing finite
models of size bounded triply exponentially in the size of the input formulas, is optimal with
respect to the size of models. The best we can do for the lower bound is to enforce models
of doubly exponential size (actually, this can be done in UNFO even without transitive
relations).

MFCS 2019

17:14 Finite Satisfiability of Unary Negation Fragment with Transitivity

References
1 A. Amarilli, M. Benedikt, P. Bourhis, and M. Vanden Boom. Query Answering with Transitive

and Linear-Ordered Data. In Proceedings of the 25th International Joint Conference on
Artificial Intelligence, IJCAI 2016, pages 893–899, 2016.

2 H. Andréka, J. van Benthem, and I. Németi. Modal Languages and Bounded Fragments of
Predicate Logic. Journal of Philosophical Logic, 27:217–274, 1998.

3 J.-F. Baget, M. LeClere, and M.-L. Mugnier. Walking the Decidability Line for Rules with
Existential Variables. In Proceedings of the 12th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2010, pages 466–476, 2010.

4 J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending Decidable Cases for Rules
with Existential Variables. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence, IJCAI 2009, pages 677–682, 2009.

5 V. Bárány, B. ten Cate, and L. Segoufin. Guarded Negation. J. ACM, 62(3):22, 2015.
6 A. Calì, G. Gottlob, and M. Kifer. Taming the Infinite Chase: Query Answering under

Expressive Relational Constraints. J. Artif. Intell. Res., 48:115–174, 2013.
7 D. Danielski and E. Kieroński. Unary negation fragment with equivalence relations has the

finite model property. In 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, pages 285–294, 2018.

8 D. Danielski and E. Kieronski. Unary negation fragment with equivalence relations has the
finite model property. CoRR, abs/1802.01318, 2018. arXiv:1802.01318.

9 M. Dzieciołowski. Satisfability issues for unary negation logic. Bachelor’s thesis, University of
Wrocław, 2017.

10 H. Ganzinger, Ch. Meyer, and M. Veanes. The Two-Variable Guarded Fragment with Transitive
Relations. In 14th Annual IEEE Symposium on Logic in Computer Science, LICS 1999, pages
24–34, 1999.

11 B. Glimm and Y. Kazakov. Role Conjunctions in Expressive Description Logics. In Logic for
Programming, Artificial Intelligence, and Reasoning, 15th International Conference, LPAR
2008, pages 391–405, 2008.

12 T. Gogacz, Y. A. Ibáñez-García, and F. Murlak. Finite Query Answering in Expressive
Description Logics with Transitive Roles. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixteenth International Conference, KR 2018., pages 369–378,
2018.

13 E. Grädel. On The Restraining Power of Guards. J. Symb. Log., 64(4):1719–1742, 1999.
14 E. Grädel, P. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-order

logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.
15 E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logics. Archiv für

Mathematische Logik und Grundlagenforschung, 38(4-5):313–354, 1999.
16 J. Ch. Jung, C. Lutz, M. Martel, and T. Schneider. Querying the Unary Negation Fragment

with Regular Path Expressions. In International Conference on Database Theory, ICDT 2018,
pages 15:1–15:18, 2018.

17 Y. Kazakov. Saturation-based decision procedures for extensions of the guarded fragment. PhD
thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

18 E. Kieroński. Results on the Guarded Fragment with Equivalence or Transitive Relations. In
Computer Science Logic, volume 3634 of LNCS, pages 309–324. Springer, 2005.

19 E. Kieroński. On the complexity of the two-variable guarded fragment with transitive guards.
Inf. Comput., 204(11):1663–1703, 2006.

20 E. Kieroński and L. Tendera. Finite Satisfiability of the Two-Variable Guarded Fragment with
Transitive Guards and Related Variants. ACM Trans. Comput. Logic, 19(2):8:1–8:34, 2018.

21 I. Pratt-Hartmann. The Finite Satisfiability Problem for Two-Variable, First-Order Logic with
one Transitive Relation is Decidable. Mathematical Logic Quarterly, 2018.

22 I. Pratt-Hartmann, W. Szwast, and L. Tendera. The Fluted Fragment Revisited. Journal of
Symbolic Logic, Forthcoming, 2019.

http://arxiv.org/abs/1802.01318

D. Danielski and E. Kieroński 17:15

23 I. Pratt-Hartmann and L. Tendera. The Fluted Fragment with Transitivity. In 44th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS 2019, pages
18:1–18:15, 2019.

24 W. V. Quine. On the limits of decision. In Proceedings of the 14th International Congress of
Philosophy, volume III, pages 57–62, 1969.

25 D. Scott. A decision method for validity of sentences in two variables. Journal Symbolic Logic,
27:477, 1962.

26 W. Szwast and L. Tendera. The guarded fragment with transitive guards. Annals of Pure and
Applied Logic, 128:227–276, 2004.

27 B. ten Cate and L. Segoufin. Unary negation. Logical Methods in Comp. Sc., 9(3), 2013.

MFCS 2019

The Fluted Fragment with Transitivity
Ian Pratt-Hartmann
University of Warsaw, Poland
University of Opole, Poland
University of Manchester, UK
ipratt@cs.man.ac.uk

Lidia Tendera
University of Opole, Poland
tendera@math.uni.opole.pl

Abstract
We study the satisfiability problem for the fluted fragment extended with transitive relations. We
show that the logic enjoys the finite model property when only one transitive relation is available.
On the other hand we show that the satisfiability problem is undecidable already for the two-variable
fragment of the logic in the presence of three transitive relations.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Finite Model Theory

Keywords and phrases First-Order logic, Decidability, Satisfiability, Transitivity, Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.18

Related Version An extended version of the paper is available at https://arxiv.org/abs/1906.
09131.

Funding This work is supported by the Polish National Science Centre grant 2018/31/B/ST6/03662.

1 Introduction

The fluted fragment, here denoted FL, is a fragment of first-order logic in which, roughly
speaking, the order of quantification of variables coincides with the order in which those
variables appear as arguments of predicates. The allusion is presumably architectural: we
are invited to think of arguments of predicates as being “lined up” in columns. The following
formulas are sentences of FL

No student admires every professor
∀x1(student(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2))) (1)

No lecturer introduces any professor to every student
∀x1(lecturer(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(student(x3)→ intro(x1, x2, x3)))), (2)

with the “lining up” of variables illustrated in Fig. 1. By contrast, none of the formulas

∀x1.r(x1, x1)
∀x1∀x2(r(x1, x2)→ r(x2, x1))
∀x1∀x2∀x3(r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)),

expressing, respectively, the reflexivity, symmetry and transitivity of the relation r, is fluted,
as the atoms involved cannot be arranged so that their argument sequences “line up” in the
fashion of Fig. 1.

The history of this fragment is somewhat tortuous. The basic idea of fluted logic can be
traced to a paper given by W.V. Quine to the 1968 International Congress of Philosophy [19],
in which the author defined the homogeneous m-adic formulas. Quine later relaxed this

© Ian Pratt-Hartmann and Lidia Tendera;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0062-043X
mailto:ipratt@cs.man.ac.uk
https://orcid.org/0000-0003-0681-4040
mailto:tendera@math.uni.opole.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.18
https://arxiv.org/abs/1906.09131
https://arxiv.org/abs/1906.09131
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 The Fluted Fragment with Transitivity

∀x1

(student(x1)
→ ¬∀x2

(prof(x2)
→ admires(x1, x2)))

∀x1

(lecturer(x1)
→ ¬∃x2

(prof(x2)
∧∀x3

(student(x3)
→ intro(x1, x2, x3))))

Figure 1 The “lining up” of variables in the fluted formulas (1) and (2); all quantification is
executed on the right-most available column.

fragment, in the context of a discussion of predicate-functor logic, to what he called “fluted”
quantificational schemata [20], claiming that the satisfiability problem for the relaxed fragment
is decidable. The viability of the proof strategy sketched by Quine was explicitly called into
question by Noah [12], and the subject then taken up by W.C. Purdy [17], who gave his
own definition of “fluted formulas”, proving decidability. It is questionable whether Purdy’s
reconstruction is faithful to Quine’s intentions: the matter is clouded by differences in the
definitions of predicate functors between between [12] and [20], both of which Purdy cites.
In fact, Quine’s original definition of “fluted” quantificational schemata appears to coincide
with a logic introduced – apparently independently – by A. Herzig [6]. Rightly of wrongly,
however, the name “fluted fragment” has now attached itself to Purdy’s definition in [17];
and we shall continue to use it in that way in the present article. See Sec. 2 for a formal
definition.

To complicate matters further, Purdy claimed in [18] that FL (i.e. the fluted fragment,
in our sense, and his) has the exponential-sized model property: if a fluted formula ϕ is
satisfiable, then it is satisfiable over a domain of size bounded by an exponential function
of the number of symbols in ϕ. Purdy concluded that the satisfiability problem for FL is
NExpTime-complete. These latter claims are false. It was shown in [14] that, although
FL has the finite model property, there is no elementary bound on the sizes of the models
required, and the satisfiability problem for FL is non-elementary. More precisely, define
FLm to be the subfragment of FL in which at most m variables (free or bound) appear.
Then the satisfiability problem for FLm is bm/2c-NExpTime-hard for all m ≥ 2 and in
(m − 2)-NExpTime for all m ≥ 3 [15]. It follows that the satisfiability problem for FL
is Tower-complete, in the framework of [21]. These results fix the exact complexity of
satisfiability of FLm for small values of m. Indeed, the satisfiability problem for FO2, the
two-variable fragment of first-order logic, is known to be NExpTime-complete [5], whence
the corresponding problem for FL2 is certainly in NExpTime. Moreover, for 0 ≤ m ≤ 1,
FLm coincides with the m-variable fragment of first-order logic, whence its satisfiability
problem is NPTime-complete. Thus, taking 0-NExpTime to mean NPTime, we see that
the satisfiability problem for FLm is bm/2c-NExpTime-complete, at least for m ≤ 4.

The focus of the present paper is what happens when we add to the fluted fragment the
ability to stipulate that certain designated binary relations are transitive, or are equivalence
relations. The motivation comes from analogous results obtained for other decidable fragments
of first-order logic. Consider basic propositional modal logic K. Under the standard translation
into first-order logic (yielded by Kripke semantics), we can regard K as a fragment of first-
order logic – indeed as a fragment of FL2. From basic modal logic K, we obtain the logic
K4 under the supposition that the accessibility relation on possible worlds is transitive,
and the logic S5 under the supposition that it is an equivalence relation: it is well-known
that the satisfiability problems for K and K4 are PSpace-complete, whereas that for S5

I. Pratt-Hartmann and L. Tendera 18:3

is NPTime-complete [11]. (For analogous results on graded modal logic, see [7].) Closely
related are also description logics (cf. [2]) with role hierarchies and transitive roles. In
particular, the description logic SH, which has the finite model property, is an ExpTime-
complete fragment of FL with transitivity. Similar investigations have been carried out in
respect of FO2, which has the finite model property and whose satisfiability problem, as just
mentioned, is NExpTime-complete. The finite model property is lost when one transitive
relation or two equivalence relations are allowed. For equivalence, everything is known: the
(finite) satisfiability problem for FO2 in the presence of a single equivalence relation remains
NExpTime-complete, but this increases to 2-NExpTime-complete in the presence of two
equivalence relations [8, 9], and becomes undecidable with three. For transitivity, we have
an incomplete picture: the finite satisfiability problem for FO2 in the presence with a single
transitive relation in decidable in 3-NExpTime [13], while the decidability of the satisfiability
problem remains open (cf. [23]); the corresponding problems with two transitive relations
are both undecidable [10].

Adding equivalence relations to the fluted fragment poses no new problems. Existing
results on of FO2 with two equivalence relations can be used to show that the satisfiability
and finite satisfiability problems for FL (not just FL2) with two equivalence relations are
decidable. Furthermore, the proof that the corresponding problems for FO2 in the presence
of three equivalence relations are undecidable can easily be seen to apply also to FL2. On
the other hand, the situation with transitivity is much less clear.

We show in the sequel that FL in the presence of a single transitive relation has the finite
model property. On the other hand, FL with three transitive relations admits axioms of
infinity and the corresponding satisfiability problem is undecidable even for the intersection
of FL2 with the guarded fragment [1] (and the same holds even when one of these transitive
relations is the identity). The status of FL with just two transitive relations remains open.
These can be contrasted with DLs where, to lose the finite model property, one needs to add
to S either both inverses and number restrictions, or the self operator (none expressible in
FL). We also want to point to another paper in this volume [4] and the references therein
where the impact of adding transitivity to the unary negation fragment is discussed.

2 Preliminaries

Unless explicitly stated to the contrary, the fragments of first-order logic considered here do
not contain equality. We employ purely relational signatures, i.e. no individual constants or
function symbols. We do, however, allow 0-ary relations (proposition letters).

Let x̄ω = x1, x2, . . . be a fixed sequence of variables. We define the sets of formulas
FL[m] (for m ≥ 0) by structural induction as follows: (i) any atom α(x`, . . . , xm), where
x`, . . . , xm is a contiguous subsequence of x̄ω, is in FL[m]; (ii) FL[m] is closed under boolean
combinations; (iii) if ϕ is in FL[m+1], then ∃xm+1ϕ and ∀xm+1ϕ are in FL[m]. The set of
fluted formulas is defined as FL =

⋃
m≥0 FL

[m]. A fluted sentence is a fluted formula with
no free variables. Thus, when forming Boolean combinations in the fluted fragment, all the
combined formulas must have as their free variables some suffix of some prefix x1, . . . , xm of
x̄ω; and, when quantifying, only the last variable in this sequence may be bound. Note also
that proposition letters (0-ary predicates) may be combined freely with formulas: if ϕ is in
FL[m], then so, for example, is ϕ ∧ P , where P is a proposition letter.

Denote by FLm the sub-fragment of FL consisting of those formulas featuring at most
m variables, free or bound. Do not confuse FLm (the set of fluted formulas with at most m
variables, free or bound) with FL[m] (the set of fluted formulas with free variables x`, . . . , xm).

MFCS 2019

18:4 The Fluted Fragment with Transitivity

These are, of course, quite different. For example, (1) is in FL2, and (2) is in FL3, but they
are both in FL[0]. Note that FLm cannot include predicates of arity greater than m.

For m ≥ 2, denote by FLmkT the m-variable fluted fragment FLm together with k

distinguished transitive relations. In addition, denote by FL2kTu the sub-fragment of FL2kT
in which no binary predicates occur except the k distinguished transitive ones.

3 The decidability of fluted logic with one transitive relation

In this section, we show that the logic FL1T, the fluted fragment together with a single
distinguished transitive relation t, has the finite model property. We proceed in stages. First,
we show that FL21Tu has a doubly exponential-sized model property. Next, we show that
FL21T has a triply exponential-sized model property, via an exponential-sized reduction to
FL21Tu. Finally, for m ≥ 2, we provide an exponential-sized reduction of the satisfiability
problem for FLm+11T to the corresponding problem for FLm1T, showing that, if the target
of the reduction has a model of size N , then the source has a model of size O(2N). The
satisfiability problems considered here will all have at least exponential complexity. Therefore,
we may assume without loss of generality in this section that all signatures feature no 0-ary
predicates, since their truth values can simply be guessed.

3.1 The logic FL21Tu

Fix some signature Σ of unary predicates. We consider FL21Tu-formulas over the signature
Σ ∪ {t}, where t is the distinguished transitive predicate. (Thus, t 6∈ Σ.) By a 1-type over
Σ, we mean a maximal consistent conjunction of literals ±p(x), where p ∈ Σ. If A is a
structure interpreting Σ ∪ {t}, any element a ∈ A satisfies a unique 1-type over Σ; we denote
it tpA[a]. Since Σ will not vary, we typically omit reference to it when speaking of 1-types.
We use the letters π and π′ always to range over 1-types and µ always to range over arbitrary
quantifier-free Σ-formulas involving just the variable x. We write π(y) to indicate the result
of substituting y everywhere for x in π, and similarly for π′ and µ.

Call a FL21Tu-formula over Σ ∪ {t} basic if it is of one of the forms

∃x.µ ∀x.µ ∀x(π → ∃y(µ(y) ∧ ±t(x, y))) ∀x(π → ∀y(π′(y)→ ±t(x, y))).

The following Lemma is a version of the familiar “Scott normal form” for FL2 from [22].

I Lemma 1. Let ϕ be a FL21Tu-sentence. There exists a set Ψ of basic FL21Tu-formulas
with the following properties: (i) |= (

∧
Ψ)→ ϕ; (ii) if ϕ has a model, then so has Ψ; (iii)

||Ψ|| is bounded by a polynomial function of ||ϕ||.

We say that a super-type over Σ is a pair 〈π,Π〉, where π is a 1-type over Σ and Π a
set of 1-types over Σ. If A is a structure interpreting the signature Σ ∪ {t} and a ∈ A, the
super-type of a in A, denoted stpA[a], is the pair 〈tpA[a],Π〉, where Π = {tpA[b] | A |= t[a, b]}.
Intuitively, a super-type is a description of an element in a structure specifying that element’s
1-type together with the 1-types of those elements to which it is related by t. If S is a set
of super-types, we write tp(S) = {π | 〈π,Π〉 ∈ S for some Π}. We usually omit Σ when
speaking of super-types. By a certificate, we mean a pair C = (S,�), where S is a set of
super-types and � is a transitive relation on tp(S) satisfying the following conditions:
(C1) if 〈π,Π〉 ∈ S and π′ ∈ Π, then there exists 〈π′,Π′〉 ∈ S with Π′ ⊆ Π;
(C2) if π � π′, 〈π,Π〉 ∈ S and 〈π′,Π′〉 ∈ S, then {π′} ∪Π′ ⊆ Π.

I. Pratt-Hartmann and L. Tendera 18:5

For a structure A, the certificate of A, denoted C(A), is the pair (S,�), where S = {stpA[a] |
a ∈ A} is the set of super-types realized in A, and π � π′ if and only if π and π′ are realized
in A and A |= ∀x(π → ∀y(π′(y) → t(x, y))). Intuitively, a certificate is a description of a
structure listing the realized super-types and containing a partial order which specifies when
all elements realizing one 1-type are related by t to all elements realizing another 1-type.

I Lemma 2. If A is any structure interpreting Σ ∪ {t}, C(A) is a certificate.

Proof. Write C(A) = (S,�). Obviously � is transitive. We must check (C1) and (C2).
(C1): Suppose 〈π,Π〉 ∈ S and π′ ∈ Π. Let a be such that stpA[a] = 〈π,Π〉. Then there
exists a b ∈ A such that tpA[b] = π′ and A |= t[a, b]. Let stpA[b] = 〈π′,Π′〉.
(C2): Suppose 〈π,Π〉 ∈ S and 〈π′,Π′〉 ∈ S with π � π′, and let a, b ∈ A be such that
stpA[a] = 〈π,Π〉 and stpA[b] = 〈π′,Π′〉. Since π � π′, by construction of C(A), we have
A |= ∀x(π → ∀y(π′(y)→ t(x, y))), whence it is immediate that π′ ∈ Π and Π′ ⊆ Π. J

If C = (S,�) is a certificate, and ψ a basic FL21Tu-formula, we define the relation C |= ψ

to hold provided the following six conditions are satisfied. The motivation for this definition
is provided by Lemmas 3 and 4.
(i) if ψ is of the form ∀x(π → ∃y(µ(y) ∧ t(x, y))), then, for all Π such that 〈π,Π〉 ∈ S,

there exists π′ ∈ Π such that |= π′ → µ;
(ii) if ψ is of the form ∀x(π → ∀y(π′(y)→ t(x, y))) and π, π′ ∈ tp(S), then π � π′;
(iii) if ψ is of the form ∀x(π → ∃y(µ(y) ∧ ¬t(x, y))), then, for all 〈π,Π〉 ∈ S, there exists

〈π′,Π′〉 ∈ S such that |= π′ → µ and there exists no α ∈ {π} ∪Π such that α� π′;
(iv) if ψ is of the form ∀x(π → ∀y(π′(y)→ ¬t(x, y))), then, for all 〈π,Π〉 ∈ S, π′ 6∈ Π;
(v) if ψ is of the form ∃x.µ, then there exists 〈π,Π〉 ∈ S such that |= π → µ;
(vi) if ψ is of the form ∀x.µ, then, for all 〈π,Π〉 ∈ S, |= π → µ.

I Lemma 3. Let A be a structure interpreting Σ∪ {t} and let ψ be a basic FL21Tu-formula
over Σ ∪ {t}. If A |= ψ, then C(A) |= ψ.

Proof. We write C(A) = (S,�) and consider the possible forms of ψ in turn.
ψ = ∀x(π → ∃y(µ(y) ∧ t(x, y))): Suppose 〈π,Π〉 ∈ S. Then there exists a ∈ A with
stpA[a] = 〈π,Π〉. Since A |= ψ, choose b ∈ A such that A |= µ[b] and A |= t[a, b], and let
tpA[b] = π′. Then |= π′ → µ and π′ ∈ Π, as required.
ψ = ∀x(π → ∀y(π′(y)→ t(x, y))): It is immediate by the construction of C(A) that, if
π, π′ ∈ tp(S), then π � π′;
ψ = ∀x(π → ∃y(µ(y) ∧ ¬t(x, y))): Suppose 〈π,Π〉 ∈ S. Then there exists a ∈ A with
stpA[a] = 〈π,Π〉. Since A |= ψ, choose b ∈ A such that A |= µ[b] and A 6|= t[a, b], and let
tpA[b] = π′, so that |= π′ → µ. We require only to show that there exists no α ∈ {π} ∪Π
such that α� π′. Suppose, for contradiction, that such an α exists. By (C1), α ∈ tp(S).
If α = π, then, by the definition of �, we have A |= ∀x(π → ∀y(π′(y)→ t(x, y))), which
contradicts the supposition that A 6|= t[a, b]. If α ∈ Π, then, by the definition of Π and
�, we have an element a′ ∈ A such that tpA[a′] = α, A |= t[a, a′] and A |= ∀x(α →
∀y(π′(y)→ t(x, y))), which again contradicts the supposition that A 6|= t[a, b].
ψ = ∀x(π → ∀y(π′(y) → ¬t(x, y))): Suppose 〈π,Π〉 ∈ S and let a ∈ A be such that
stpA[a] = 〈π,Π〉. Since A |= ψ, we have π′ 6∈ Π.
ψ = ∃x.µ or ψ = ∀x.µ. Immediate by construction of S. J

I Lemma 4. If C = (S,�) is a certificate, then there exists a structure A over a domain of
cardinality 2|S| such that, for any basic FL21Tu-formula ψ over Σ, C |= ψ implies A |= ψ.

MFCS 2019

18:6 The Fluted Fragment with Transitivity

Proof. Define A+ = {a+
π,Π | 〈π,Π〉 ∈ S} and A− = {a−π,Π | 〈π,Π〉 ∈ S}, where the various

a+
π,Π and a−π,Π are some objects (assumed distinct), and set A = A+ ∪A−. Define the binary

relations T1 = {〈a±π,Π, a
+
π′,Π′〉 | {π′} ∪ Π′ ⊆ Π} and T2 = {〈a±π,Π, a

±
π′,Π′〉 | π � π′}, and let

T be the transitive closure of T1 ∪ T2. Intuitively, we may think of the elements a+
π′,Π′ as

witnessing existential formulas of the form ∃y(µ(y) ∧ t(x, y)), where |= π′ → µ, and of the
elements a−π′,Π′ as witnessing existential formulas of the form ∃y(µ(y)∧¬t(x, y)). Now define
A on the domain A by setting tpA[a±π,Π] = π for all 〈π,Π〉 ∈ S, and by setting tA = T .

We observe that if a = a±π,Π and b = a±π′,Π′ are elements of A such that a is related to
b by either T1 or T2, then {π′} ∪ Π′ ⊆ Π. Indeed, for T1, this is immediate by definition;
and for T2, it follows from property (C2) of certificates. It follows by induction that, if a is
related to b by T , then {π′} ∪Π′ ⊆ Π. To prove the lemma, we consider the possible forms
of ψ in turn.

ψ = ∀x(π → ∃y(µ(y)∧ t(x, y))): Suppose a = a±π,Π. Since C |= ψ, there exists π′ ∈ Π such
that π′ → µ. By (C1), there exists 〈π′,Π′〉 ∈ S such that Π′ ⊆ Π. Letting b = a+

π′,Π′ , we
have that a is related to b by T1. But then A |= t[a, b] and A |= µ[b] by construction of A.
ψ = ∀x(π → ∀y(π′(y)→ t(x, y))): Since C |= ψ, we have π � π′. Suppose now a = a±π,Π
and b = a±π′,Π′ . Thus, a is related to b by T2, and so by construction of A, A |= t[a, b].
ψ = ∀x(π → ∃y(µ(y) ∧ ¬t(x, y))): Suppose a = a±π,Π. Since C |= ψ, there exists
〈π′,Π′〉 ∈ S such that π′ → µ, and such that there is no α ∈ {π} ∪Π with α� π′. Now
let b = a−π′,Π′ . By construction of A, A |= µ[b]. It suffices to show that A 6|= t[a, b]. For
otherwise, by the definition of T , there exists a chain of elements a = a1, . . . , am = b

with each related to the next by either T1 or T2 and with am−1 related to am by T2.
(Notice that nothing can be related by T1 to b = a−π′,Π′ .) Writing am−1 = a±α,Π′′ ∈ S, we
see that α� π′, and, moreover, that a is either identical to am−1, or related to it by T .
As we observed above, if a±π,Π is related to a±α,Π′′ by T , then α ∈ Π. Thus, either way,
α ∈ {π} ∪Π. But we are supposing that no such α exists.
ψ = ∀x(π → ∀y(π′(y) → ¬t(x, y))): Suppose a = a±π,Π and b = a±π′,Π′ are elements of
A. We observed above that, if a is related to b by T , then π′ ∈ Π, contradicting the
assumption that C |= ψ. Thus, by construction of A, A 6|= t[a, b].
ψ = ∃x.µ or ψ = ∀x.µ. Immediate by construction of A. J

Since the number of super-types over Σ is bounded by 2(2|Σ|+|Σ|), and a structure A can
be guessed and verified to be a model of any m-variable first-order formula ϕ in time
O(|ϕ| · |A|m) [25], Lemmas 1–4 yield:

I Lemma 5. If ϕ is a satisfiable formula of FL21Tu, then ϕ has a model of size at most
doubly exponential in ||ϕ||. Hence the satisfiability problem for FL21Tu is in 2-NExpTime.

3.2 The logics FLm1T for m ≥ 2
Let Σ be a signature of predicates of positive arity, excluding t. An atomic formula of
FLm1T involving a predicate from Σ ∪ {t} will be called a fluted m-atom over Σ ∪ {t}. A
fluted m-literal is a fluted m-atom or the negation thereof. A fluted m-clause is a disjunction
of fluted m-literals. We allow the absurd formula ⊥ (i.e. the empty disjunction) to count
as a fluted m-clause. Thus, any literal of a fluted m-clause has arguments xh, . . . , xm, in
that order, for some h (1 ≤ h ≤ m). When writing fluted m-clauses, we silently remove
bracketing, re-order literals and delete duplicated literals as necessary. A fluted m-type is
a maximal consistent set of fluted m-literals; where convenient, we identify fluted m-types
with their conjunctions. If A is a structure interpreting Σ∪ {t}, any tuple a1, . . . , am from A

satisfies a unique fluted m-type; we denote it ftpA[a1, . . . , am]. Note that a fluted 1-type over

I. Pratt-Hartmann and L. Tendera 18:7

Σ ∪ {t} coincides with what we earlier called a 1-type over Σ. Reference to the signature
Σ ∪ {t} will as usual be suppressed when clear from context. Predicates in Σ will be referred
to as non-distinguished. Our strategy will be to reduce the (finite) satisfiability problem for
FLm1T to that for FL21T (Lemma 11), and thence to that for FL21Tu (Lemma 9), which
we have already dealt with (Lemma 5).

A FLm1T-formula ϕ (m ≥ 2) is in clause normal form if it is of the form

∀x1 · · ·xm.Ω ∧
s∧
i=1
∀x1 · · ·xm−1 (αi → ∃xm.Γi) ∧

t∧
j=1
∀x1 · · ·xm−1(βj → ∀xm.∆j), (3)

where Ω,Γ1, . . . ,Γs,∆1, . . . ,∆t are sets of fluted m-clauses, and α1, . . . , αs, β1, . . . , βt fluted
(m− 1)-atoms. We refer to ∀x1 · · ·xm.Ω as the static conjunct of ϕ, to conjuncts of the form
∀x1 · · ·xm−1 (αi → ∃xmΓi) as the existential conjuncts of ϕ, and to conjuncts of the form
∀x1 · · ·xm−1(βj → ∀xm.∆j) as the universal conjuncts of ϕ.

Using the same techniques as for Lemma 1, we can transform any FLm1T-formula into
clause normal form.

I Lemma 6. Let ϕ be an FLm1T-formula, m ≥ 2. There exists an FLm1T-formula ψ in
clause normal form such that: (i) |= ψ → ϕ; and (ii) if ϕ has a model then so has ψ; (iii)
||ψ|| is bounded by a polynomial function of ||ϕ||.

For fragments of first-order logic not involving equality, we are free to duplicate any
element a in a structure A. More formally, we have the following lemma, which will be used
as a step in the ensuing argument.

I Lemma 7. Let A be any structure, and let z > 0. There exists a structure B such that
(i) if ϕ is any first-order formula without equality, then A |= ϕ if and only if B |= ϕ; (ii)
|B| = z · |A|; and (iii) if ψ(x1, . . . , xm−1) = ∃xm.χ(x1, . . . , xm) is a first-order formula
without equality, and B |= ψ[b1, . . . , bm−1], then there exist at least z distinct elements b of
B such that B |= χ[b1, . . . , bm−1, b].

Keeping the signature Σ fixed, we employ the standard apparatus of resolution theorem-
proving to eliminate non-distinguished predicates of arity 2 or more. Suppose p ∈ Σ is a
predicate of aritym, and let γ′ and δ′ be flutedm-clauses over Σ. Then, γ = p(x1, . . . , xm)∨γ′
and δ = ¬p(x1, . . . , xm) ∨ δ′ are also fluted m-clauses, as indeed is γ′ ∨ δ′. In that case,
we call γ′ ∨ δ′ a fluted resolvent of γ and δ, and we say that γ′ ∨ δ′ is obtained by fluted
resolution from γ and δ on p(x1, . . . , xm). Thus, fluted resolution is simply a restriction of
the familiar resolution rule from first-order logic to the case where the resolved-on literals
have maximal arity, m, and (in the case m = 2) do not feature the distinguished predicate t.
It may be helpful to note the following at this point: (i) if γ and δ resolve to form ε, then
|= ∀x1 · · · ∀xm(γ ∧ δ → ε); (ii) the fluted resolvent of two fluted m-clauses may or may not
involve predicates of arity m; (iii) in fluted resolution, the arguments of the literals in the
fluted m-clauses undergo no change when forming the resolvent; (iv) if the fluted m-clause γ
involves no predicates of arity m, then it cannot undergo fluted resolution at all.

If Γ is a set of fluted m-clauses, denote by Γ∗ the smallest set of fluted m-clauses including
Γ and closed under fluted resolution. If Γ = Γ∗, we say that it is closed under fluted
resolution. We further denote by Γ◦ the result of deleting from Γ∗ any clause involving a
non-distinguished predicate of arity m. Observe that, since all fluted m-atoms involving
predicates of non-maximal arity are of the form p(xh, . . . , xm) for some h ≥ 2, it follows that
Γ◦ features the variable x1 only in the case m = 2, and even then only in literals of the form
±t(x1, x2).

MFCS 2019

18:8 The Fluted Fragment with Transitivity

The following lemma is, in effect, nothing more than the familiar completeness theorem
for (ordered) propositional resolution. The proof is omitted due to space limits.

I Lemma 8. Let Γ be a set of fluted m-clauses over a signature Σ ∪ {t}, let Σ′ be the result
of removing all predicates of maximal arity m from Σ, and let τ− be a fluted m-type over
Σ′ ∪ {t}. If τ− is consistent with Γ◦, then there exists a fluted m-type τ over the signature
Σ ∪ {t} such that τ ⊇ τ− and τ is consistent with Γ.

The following lemma employs a technique from [13] to eliminate binary predicates.

I Lemma 9. Let ϕ be an FL21T-formula in clause normal form over a signature Σ ∪ {t},
and suppose that ϕ has s existential and t universal conjuncts. Then there exists a clause
normal form FL21Tu-formula ϕ′ over a signature Σ′ ∪ {t} such that: (i) ϕ′ has at most 2ts
existential and 2t universal conjuncts; (ii) |Σ′| ≤ |Σ|+ 2t(s+ 1); (iii) if ϕ has a model, so
does ϕ′; and (iv) if ϕ′ has a model of size M , then ϕ has a model of size at most sM .

Proof. Let ϕ = ∀x1x2.Ω ∧
∧s
i=1∀x1 (pi(x1)→ ∃x2.Γi) ∧

∧t
j=1∀x1(qj(x1)→ ∀x2.∆j), where

Ω,Γ1, . . . ,Γs,∆1, . . . ,∆t are sets of fluted 2-clauses, and p1, . . . , ps, q1, . . . , qt unary predicates.
Write T = {1, . . . , t}. For all i (1 ≤ i ≤ s) and all J ⊆ T , let pi,J and qJ be new unary
predicates. The intended interpretation of pi,J (x1) is “x1 satisfies pi, and also satisfies qj for
every j ∈ J ;” and the intended interpretation of qJ(x1) is “x1 satisfies qj for every j ∈ J .”
Let ϕ′ be the conjunction of the sentences:
(a)

∧s
i=1
∧
J⊆T ∀x2((pi(x2) ∧

∧
j∈J qj(x2))→ pi,J(x2)),

(b)
∧
J⊆T ∀x2((

∧
j∈J qj(x2))→ qJ(x2)),

(c)
∧s
i=1
∧
J⊆T ∀x1

(
pi,J(x1)→ ∃x2 (Γi ∪ Ω ∪

⋃
{∆j | j ∈ J})◦

)
, and

(d)
∧
J⊆T ∀x1

(
qJ(x1)→ ∀x2 (Ω ∪

⋃
{∆j | j ∈ J})◦

)
.

Observe that ϕ′ contains no non-distinguished binary predicates, and hence is in FL21Tu.
Clearly, ϕ′ satisfies properties (i) and (ii). To show (iii), suppose A |= ϕ, and let A′ be
the structure obtained by interpreting the predicates pi,J and qJ as suggested above. To
show (iv), suppose ϕ′ has a model of size M . By Lemma 7, ϕ′ has a model B of size sM in
which witnesses for all the conjuncts in (c) are duplicated s times. We need to show that
B can be expanded to a model of ϕ. Fix a ∈ B and suppose a satisfies p1. Let J be the
set of indices j such that a satisfies qj . By (a), putting i = 1, a satisfies p1,J , whence, by
(c), there exists b such that the pair 〈a, b〉 satisfies (Γ1 ∪ Ω ∪

⋃
{∆j | j ∈ J})◦. But Lemma 8

guarantees that we can expand B by interpreting the non-distinguished binary predicates so
that 〈a, b〉 satisfies Γ1 ∪ Ω ∪

⋃
{∆j | j ∈ J}. Because of the duplication of witnesses, we can

repeat with p2, . . . , ps, choosing a fresh witness each time, so as to avoid clashes. Do this
for all elements a. At the end of the process, the partially defined expansion of B satisfies
all the existential conjuncts of ϕ, and violates none of the universal or static conjuncts. A
precisely similar argument shows that we may complete the expansion so that no universal
or static conjuncts of ϕ are violated. J

Thus, at the expense of an exponentially larger signature, we have reduced the (finite)
satisfiability problem for FL21T to that for FL21Tu. By Lemmas 5 and 9, we obtain

I Lemma 10. Let ϕ be a FL21T-formula. If ϕ is satisfiable, then ϕ has a model of size at
most triply exponential in ||ϕ||. Hence the satisfiability problem for FL21T is in 3 -NExpTime.

We now establish the finite model property for the whole of FL1T by eliminating variables
from FLm+11T, where m ≥ 2, one at a time. The proof of the following Lemma is similar
to the proof of Lemma 9 and is omitted due to space limits.

I. Pratt-Hartmann and L. Tendera 18:9

I Lemma 11. Let ϕ be a clause normal form FLm+11T-formula (m ≥ 2) over a signature
Σ∪ {t}, and suppose that ϕ has s existential conjuncts and t universal conjuncts. Then there
exists a clause normal form FLm1T-formula ϕ′ over a signature Σ′∪{t} such that the following
hold: (i) ϕ′ has at most 2ts existential and 2t universal conjuncts; (ii) |Σ′| ≤ |Σ|+ 2t(s+ 1);
(iii) if ϕ has a model, so does ϕ′; and (iv) if ϕ′ has a model of size M , then ϕ has a model
of size at most sM .

I Theorem 12. Let ϕ be a FLm1T-formula for m ≥ 2. If ϕ is satisfiable, then ϕ has a
model of size at most (m+ 1)-tuply exponential in ||ϕ||. Hence the satisfiability problem for
FLm1T is in non-deterministic (m+ 1)-tuply exponential time.

Proof. Induction on m. The case m = 2 is Lemma 10. The inductive step is Lemma 11. J

We mentioned in Sec. 1 that [14] establishes a lower bound of bm/2c-NExpTime-hard for
the satisfiability problem for FLm. For m ≥ 3, this appears to be the best available lower
bound on the corresponding problem for FLm1T. Thus, a gap remains between the best
available upper and lower complexity bounds. Certainly, it follows that the satisfiability
problem for FL1T is Tower-complete, as for FL.

4 Fluted Logic with more Transitive Relations

In this section we show two undecidability results for the fluted fragment with two variables,
FL2, extended with more transitive relations, that have been informally announced in [24].
We employ the apparatus of tiling systems.

A tiling system is a tuple C = (C, CH , CV), where C is a finite set of tiles, and CH ,
CV ⊆ C × C are the horizontal and vertical constraints.

Let S be any of the spaces N× N, Z× Z or Zt × Zt. A tiling system C tiles S, if there
exists a function ρ : S → C such that for all (p, q) ∈ S: (ρ(p, q), ρ(p + 1, q)) ∈ CH and
(ρ(p, q), ρ(p, q + 1)) ∈ CV . The following problems are known to be undecidable (cf. e.g. [3]):

Given a tiling system C determine if C tiles Z× Z, or N× N.
Given a tiling system C determine if C tiles Zt × Zt, for some t ≥ 1.

In this section we first prove the following theorem.

I Theorem 13. The satisfiability problem for FL23T, the two-variable fluted fragment with
three transitive relations, is undecidable.

Proof. Suppose the signature contains transitive relations b (black), g (green) and r (red),
and additional unary predicates e, e′, f , l, ci,j (0 ≤ i ≤ 5, 0 ≤ j ≤ 2) and di,j (0 ≤ i ≤ 2,
0 ≤ j ≤ 5); we refer to the ci,j ’s and to the di,j ’s as colours.

We reduce from the N× N tiling problem. We first write a formula ϕgrid that captures
several properties of the intended expansion of the N× N grid as shown in Fig. 2a. There
the predicates ci,j and di,j together define a partition of the universe as follows: an element
(k, k′) with k′ > k (i.e. in the yellow region, above the diagonal) satisfies ci,j with i = k

mod 6, j = k′ mod 3, and an element (k, k′) with k ≥ k′ (i.e. in the pink region, on or below
the diagonal) satisfies di,j with i = k mod 3, j = k′ mod 6. Paths of the same transitive
relation have length at most 7 and follow one of four designated patterns. Remaining unary
predicates mark the following elements: l – left column, f – bottom row, e – main diagonal,
and e′ – elements with coordinates (k, k + 1).

The formula ϕgrid comprises a large number of conjuncts. We have organized these
conjuncts into groups, each of which secures a particular property (or collection of properties)
exhibited by its models. The first two properties are very simple:

MFCS 2019

18:10 The Fluted Fragment with Transitivity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(a) Three transitive relations: b, g and r. Filled nodes
depict the beginning of a transitive path of the same
colour; dotted lines connect the first element with the
last element on such path.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(b) Two transitive relations: b and r.
Edges without arrows depict connections
in both direction.

Figure 2 Expansions of the N× N grid in the proofs of Theorem 13 (a) and Theorem 16 (b).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(a) Path starting with an initial element and
generated by witnesses for conjuncts of group
(3).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(b) Additional edges arising from conjuncts of
group (4) (solid lines drawn inside grid cells)
and transitivity (dashed lines). Nodes on the
diagonals are marked orange (e) and yellow (e′).

Figure 3 Construction of the intended model of ϕgrid in the proof of Theorem 13.

(1) There is an “initial” element satisfying d00(x) ∧ e(x) ∧ l(x) ∧ f(x).
(2) The predicates ci,j and di,j together partition the universe.
The third property generates the path shown in Fig. 3a:
(3) Each element has a b- r- or g- successor as shown in the path shown in Fig. 3a, and

satisfying the appropriate predicates ci,j or di,j . Specifically, if a node in this path has
coordinates (x, y) with y > x, then it satisfies ci,j where i = x mod 3 and j = y mod 6;
and when y ≤ x, then the node satisfies di,j where i = x mod 3 and j = y mod 6.

The conjuncts enforcing this property have the form

∀x
(
colour(x) ∧ diag(x) ∧ border(x)→ ∃y(t(x, y) ∧ colour′(y))

)
, (3a)

where colour and colour′ stand for one of the predicate letters ci,j or di,j , diag(x) stands for
one of the literals e′(x), ¬e′(x), e(x), ¬e(x) or > (i.e. the logical constant true), border(x)
stands for one of the literals l(x), ¬l(x), f(x), ¬f(x) or >, and t stands for one of the

I. Pratt-Hartmann and L. Tendera 18:11

transitive predicate letters b, r or g. The precise combinations of the literals and predicate
letters in these conjuncts can be read from Fig. 3a (cf. [16] for details).

To connect all pairs of elements that are neighbours in the standard grid we require a
fourth property, which we give in schematic form as follows:
(4) Certain pairs of elements connected by one transitive relation are also connected by

another, as indicated in Fig. 3b.
Here are some examples of the conjuncts enforcing this property:

∀x(c01(x)→ ∀y(b(x, y) ∧ (c11(y) ∨ d11(y))→ g(x, y))), (4a)
∀x(d11(x)→ ∀y(b(x, y) ∧ d10(y)→ r(x, y))), (4b)
∀x(d11(x)→ ∀y(r(x, y) ∧ (c12(y) ∨ d12(y))→ g(x, y))), (4c)

The role of these conjuncts can be explained referring to Fig. 3b. For example, employing
(4b) for the element (1, 1) in the intended model G, we get G |= r((1, 1), (1, 0)); hence by
transitivity of r, also G |= r((1, 1), (1, 2)). This, applying (4c), implies G |= g((1, 1), (1, 2)).
By (4a), we get G |= g((0, 1), (1, 1)) and, by transitivity of g, G |= g((0, 1), (0, 2)). The
process is illustrated in Fig. 3b; when carried on along the zig-zag path, it constructs a
grid-like structure.

These conjuncts depend on having available the predicates marking the borders and the
diagonals. Specifically, we require the following property:
(5) the predicates l, f , e and e′ are distributed to mark the left-most column, the first row,

the diagonal and the “super-diagonal” of the grid, as indicated above. To secure this
property, we add to ϕgrid several conjuncts, for instance:∧

0≤i≤2, 0≤j≤5
∀x
(
di,j(x) ∧ ±e(x)→ ∀y((b(x, y) ∨ g(x, y) ∨ r(x, y)) ∧ di+1,j+1(y)→ ±e(y))

)
, (5a)

where ±e(x) denotes uniformly e(x) or ¬e(x). Similar conjuncts are added for the super-
diagonal, left column and bottom row; and also for the connection with and between e and e′.
The conjuncts ensuring properties (4) and (5) work in tandem. For instance, applying (5a) to
(1,1) we get e is true at (2, 2); then, following the zig-zag path and applying more conjuncts
from the group (4), we get that g((2, 2), (3, 3)) holds, so the node (3, 3) will be marked by e;
this will propagate along the main diagonal.

The structure G depicted in Fig. 2a is a model of ϕgrid. In fact, ϕgrid is an infinity axiom.
To see this, let A |= ϕgrid and define an injective embedding ρ of the standard grid on N×N
into A as follows. Let next : N× N 7→ N× N be the successor function defined on N× N as
depicted by the zig-zag path in the left-hand picture of Fig. 3 starting at (0, 0) (ignoring
any colours). Denote s0 = (0, 0), sn = next(sn−1) and Sn = {s0, . . . , sn}. Let a0 ∈ A be
an element such that A |= d00(a) ∧ e(a) ∧ l(a) ∧ f(a) that exists by condition (1). Define
ρ(s0) = a0. Now, we proceed inductively: suppose ρ(sn−1) has already been defined in step
n−1 of the induction and ρ(sn−1) = an−1. Let an be the witness of an−1 for the appropriate
conjunct from the group (3), i.e. where the unary literals for x agree with the unary literals
satisfied by an−1 in A. Define ρ(sn) = an. Using induction one can prove that ρ is indeed
injective: in the inductive step we assume that A � {a0, . . . , an−1} is isomorphic to G � Sn−1,
and we show that an 6∈ {a0, . . . , an−1} and A � {a0, . . . , an} and G � Sn are again isomorphic.
In the proof one considers several cases depending on the 1-type realized by an. The formula
ϕgrid ensures that a0, . . . , a18 are all distinct, and any eight consecutive elements of the
sequence a0, . . . , an are always distinct. Consider a18 = ρ(4, 2) that requires a witness b ∈ A
for a conjunct from the group (3) such that A |= r(a18, b)∧ d11(b). Suppose, b = a2 = ρ(1, 1),
since A |= d11(a2). Then, by transitivity of g, A |= g(a18, a10), which is a contradiction with
G |= ¬g((4, 2), (1, 1)). Other cases are similar and due to page limits have been omitted.

MFCS 2019

18:12 The Fluted Fragment with Transitivity

We are now ready to define the horizontal and vertical successors in models of of ϕgrid.
In fact, instead of defining the horizontal grid successor h as one binary relation, we define
two disjoint binary relations rt(x, y) and lt(x, y) such that rt and the inverse of lt together
give the expected horizontal grid successor; they are defined respecting the “direction” of the
transitive edges in the models. In the intended model rt((x1, y1), (x2, y2)) holds if x2 = x1 +1,
y2 = y1 and (x1, y1) and (x2, y2) are connected by b, g or r; and for lt((x1, y1), (x2, y2)) to
hold we require x2 = x1 − 1 instead of x2 = x1 + 1. We present the definition of rt(x, y) in
detail below1

rt(x, y) :=(b(x, y) ∨ g(x, y) ∨ r(x, y)) ∧
(c01(x) ∧ d11(y)) ∨ (c20(x) ∧ d03(y)) ∨ (c42(x) ∧ d25(y)) ∨∨

(i,j)/∈{(0,2),(1,2),(2,1),(3,1),(4,0),(5,0)}

(cij(x) ∧ ci+1,j(y)) ∨
∨

(i,j)/∈{(2,1),(1,3),(0,5)}

(dij(x) ∧ di+1,j(y))

The relation rt connects elements that are connected by b, g or r and satisfy one of the
possible combinations of colours: in the second line the combinations for crossing the diagonal
are listed, in the third line the left disjunction describes combinations when both elements
are located above the diagonal, and in the right disjunction – when both elements are located
on and below the diagonal. The definition of lt(x, y) complements that of rt. Analogously,
we define relations up and dn that together define the vertical grid successor.

Now we are ready to write formulas that properly assign tiles to elements of the model.
We do this with a formula ϕtile, which again features several conjuncts enforcing various
properties of its models. Fortunately, the properties in question are much simpler this time:
(6) Each node encodes precisely one tile: ∀x

(∨
C∈C C(x) ∧

∧
C 6=D(¬C(x) ∨ ¬D(x))

)
.

(7) Adjacent tiles respect CH . This is secured by the conjuct∧
C∈C

∀x
(
C(x)→ ∀y

(
(rt(x, y)→

∨
C′:(C,C′)∈CH

C′(y)) ∧ (lt(x, y)→
∨

C′:(C′,C)∈CH

C′(y))
))

.

(8) Adjacent tiles respect CV (written as above using up and dn).
We remark that these latter formulas are not strictly fluted but can be rewritten as fluted
using classical tautologies.

Finally, let ηC be the conjunction of ϕgrid and ϕtile. We complete the proof showing

B Claim 14. ηC is satisfiable iff C tiles N× N.

Proof. (⇐) If C tiles N× N then to show that ηC is satisfiable we can expand our intended
model G for ϕgrid assigning to every element of the grid a unique C ∈ C given by the tiling.

(⇒) Let A |= ηC. Let ρ be the embedding of the standard N × N grid into A defined
above. One can inductively show that ρ maps neighbours in the grid to elements connected
by one of the relations lt, rt, up, dn as follows (i, j ≥ 0):

A |= rt(ρ(i, j), ρ(i+1, j))∨̇lt(ρ(i+1, j), ρ(i, j))∧up(ρ(i, j), ρ(i, j+1))∨̇dn(ρ(i, j+1), ρ(i, j)).

(Here, ∨̇ is exclusive disjunction.) So, we can define a tiling of the standard grid assigning to
every node (i, j) the unique tile C such that A |= C(ρ(i, j)). Conditions (7) and (8) together
with the above observation ensure that this assignment satisfies the tiling conditions. C

J

1 Addition in subscripts of the ci,j ’s is always understood modulo 6 in the first position, and modulo 3 in
the second position, i.e. ci+a,j+b denotes c(i+a) mod 6,(j+b) mod 3. Similarly, addition in subscripts of the
di,j ’s is understood modulo 3 in the first position, and modulo 6 in the second position.

I. Pratt-Hartmann and L. Tendera 18:13

We remark that the formula ϕgrid in the proof of Theorem 13 is an axiom of infinity, hence
the satisfiability and the finite satisfiability problems do not coincide. Moreover, all formulas
used in the proof are either guarded or can easily be rewritten as guarded. Furthermore, in
the proof it would suffice to assume that b, g and r are interpreted as equivalence relations.
Hence, we can strengthen the above theorem as follows.

I Corollary 15. The satisfiability problem for the intersection of the fluted fragment with the
two-variable guarded fragment is undecidable in the presence of three transitive relations (or
three equivalence relations).

Now we improve the undecidability result to the case of FL22T with equality.

I Theorem 16. The (finite) satisfiability problem for the two-variable fluted fragment with
equality is undecidable in the presence of two transitive relations.

Proof. We write a formula ϕgrid over a signature consisting of transitive relations b and r,
and unary predicates ci,j (0 ≤ i, j ≤ 3). The formula ϕgrid captures several properties of the
intended expansion of the Z× Z grid as shown Fig. 2b:
(1) there is an initial element: ∃x.c00(x).
(2) the predicates ci,j partition the universe.
(3) transitive paths do not connect distinct elements of the same colour:

∧
0≤i,j≤3 ∀x(cij(x)→

∀y((b(x, y) ∨ r(x, y)) ∧ cij(y)→ x = y))
(4) each element belongs to a 4-element blue clique and to a 4-element red clique.
(5) certain pairs of elements connected by r are also connected by b, and certain pairs of

elements connected by b are also connected by r.
We have given property (5) only schematically, of course; its role is analogous to that of
property (4) in the proof of Theorem 13. The remainder of the proof is similar to the
one presented for Theorem 13 and is omitted due to space limits. We note that ϕgrid has
also finite models expanding a toroidal grid structure Z4m × Z4m (m > 0) obtained by
identifying elements from columns 0 and 4m and from rows 0 and 4m. Hence, the proof
gives undecidability for both the satisfiability and the finite satisfiability problems. J

Again, the formulas used in the above proof are guarded or can be rewritten as guarded.
Also it suffices to assume that r is an equivalence relation. Hence we get the following

I Corollary 17. The (finite) satisfiability problem for the intersection of the fluted fragment
with equality with the two-variable guarded fragment is undecidable in the presence of two
transitive relations (or one transitive and one equivalence relation).

5 Conclusions

In this paper, we considered the (m-variable) fluted fragment in the presence of different
numbers of transitive relations. We showed that FL1T has the finite model property, but
FL23T admits axioms of infinity and the satisfiability problem for FL23T is undecidable.
This contrasts with known results for other decidable fragments, in particular, FO2, where
the satisfiability and finite satisfiability problems are undecidable in the presence of two
transitive relations, and where the finite satisfiability problem is decidable in the presence of
one transitive relation. It is open whether the (finite) satisfiability problem for FL in the
presence of two transitive relations, t1 and t2, is decidable. We point out that Lemma 11
in Section 3 could be generalized to normal form formulas from FLm+12T. Hence, the
(finite) satisfiability problem for FL in the presence of two transitive relations is decidable

MFCS 2019

18:14 The Fluted Fragment with Transitivity

if and only if the corresponding problem for FL2 with two transitive relations is decidable.
Unfortunately neither the method of Sec. 3 (to show decidability) nor that of Sec. 4 (to show
undecidability) appears to apply here. The barrier in the former case is that pairs of elements
can be related by both t1 and t2 via divergent t1- and t2-chains, so that simple certificates
of the kind employed for FL21Tu do not guarantee the existence of models. The barrier in
the latter case is that the grid construction has to build models featuring transitive paths of
bounded length, and this seems not to be achievable with just two transitive relations. Finally,
we expect that the undecidability result for FL23T can be extended to get undecidability of
the corresponding finite satisfiability problem.

References
1 H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of

predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.
2 F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

3 E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer, 1997.
4 D. Danielski and E. Kieron̈ski. Finite Satisfiability of Unary Negation Fragment with Transit-

ivity. In Proceedings of MFCS 2019, volume 138, pages 17:1–17:15, 2019.
5 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order

logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.
6 A. Herzig. A new decidable fragment of first order logic. In Abstracts of the 3rd Logical

Biennial Summer School and Conference in Honour of S. C.Kleene, June 1990.
7 Y. Kazakov and I. Pratt-Hartmann. A note on the complexity of the satisfiability problem for

graded modal logic. In Logic in Computer Science, pages 407–416. IEEE, 2009.
8 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order

logic with equivalence closure. SIAM Journal on Computing, 43(3):1012–1063, 2014.
9 E. Kieroński and M. Otto. Small Substructures and Decidability Issues for First-Order Logic

with Two Variables. Journal of Symbolic Logic, 77:729–765, 2012.
10 E. Kieroński and L. Tendera. On finite satisfiability of two-variable first-order logic with

equivalence relations. In Logic in Computer Science, pages 123–132. IEEE, 2009.
11 R. Ladner. The computational complexity of provability in systems of modal propositional

logic. SIAM Journal on Computing, 6:467–480, 1980.
12 A. Noah. Predicate-functors and the limits of decidability in logic. Notre Dame Journal of

Formal Logic, 21(4):701–707, 1980.
13 I. Pratt-Hartmann. Finite satisfiability for two-variable, first-order logic with one transitive

relation is decidable. Mathematical Logic Quarterly, 64(3):218–248, 2018.
14 I. Pratt-Hartmann, W. Szwast, and L. Tendera. Quine’s fluted fragment is non-elementary. In

25th EACSL Annual Conference on Computer Science Logic, CSL, volume 62 of LIPIcs, pages
39:1–39:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

15 I. Pratt-Hartmann, W. Szwast, and L. Tendera. The fluted fragment revisited. Journal of
Symbolic Logic, 2019. (Forthcoming).

16 I. Pratt-Hartmann and L. Tendera. The fluted fragment with transitivity. ArXiv, 2019.
extended version of MFCS’19 paper. URL: https://arxiv.org/abs/1906.09131.

17 W. C. Purdy. Fluted formulas and the limits of decidability. Journal of Symbolic Logic,
61(2):608–620, 1996.

18 W. C. Purdy. Complexity and nicety of fluted logic. Studia Logica, 71:177–198, 2002.
19 W. V. Quine. On the limits of decision. In Proceedings of the 14th International Congress of

Philosophy, volume III, pages 57–62. University of Vienna, 1969.
20 W. V. Quine. The variable. In The Ways of Paradox, pages 272–282. Harvard University

Press, revised and enlarged edition, 1976.

https://arxiv.org/abs/1906.09131

I. Pratt-Hartmann and L. Tendera 18:15

21 S. Schmitz. Complexity hierarchies beyond Elementary. ACM Transactions on Computation
Theory, 8(1:3):1–36, 2016.

22 D. Scott. A decision method for validity of sentences in two variables. Journal of Symbolic
Logic, 27:477, 1962.

23 W. Szwast and L. Tendera. On the satisfiability problem for fragments of the two-variable
logic with one transitive relation. Journal of Logic and Computation, 2019. Forthcoming.

24 L. Tendera. Decidability frontier for fragments of first-order logic with transitivity. In
Proceedings of the 31st International Workshop on Description Logics co-located with 16th
International Conference on Principles of Knowledge Representation and Reasoning (KR 2018),
2018. URL: http://ceur-ws.org/Vol-2211/paper-02.pdf.

25 M. Vardi. On the complexity of bounded-variable queries. In Proceedings of the Fourteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
266–276, 1995.

MFCS 2019

http://ceur-ws.org/Vol-2211/paper-02.pdf

Counting of Teams in First-Order Team Logics
Anselm Haak
Theoretische Informatik, Leibniz Universität Hannover, Appelstraße, D-30167, Germany
haak@thi.uni-hannover.de

Juha Kontinen
Department of Mathematics and Statistics, University of Helsinki,
Pietari Kalmin katu 5, 00014, Finland
juha.kontinen@helsinki.fi

Fabian Müller
Theoretische Informatik, Leibniz Universität Hannover, Appelstraße, D-30167, Germany
fabian.mueller@thi.uni-hannover.de

Heribert Vollmer
Theoretische Informatik, Leibniz Universität Hannover, Appelstraße, D-30167, Germany
vollmer@thi.uni-hannover.de

Fan Yang
Department of Mathematics and Statistics, University of Helsinki,
Pietari Kalmin katu 5, 00014, Finland
fan.yang@helsinki.fi

Abstract

We study descriptive complexity of counting complexity classes in the range from #P to # · NP.
A corollary of Fagin’s characterization of NP by existential second-order logic is that #P can be
logically described as the class of functions counting satisfying assignments to free relation variables
in first-order formulae. In this paper we extend this study to classes beyond #P and extensions
of first-order logic with team semantics. These team-based logics are closely related to existential
second-order logic and its fragments, hence our results also shed light on the complexity of counting
for extensions of first-order logic in Tarski’s semantics. Our results show that the class # ·NP can be
logically characterized by independence logic and existential second-order logic, whereas dependence
logic and inclusion logic give rise to subclasses of # · NP and #P, respectively. We also study
the function class generated by inclusion logic and relate it to the complexity class TotP ⊆ #P.
Our main technical result shows that the problem of counting satisfying assignments for monotone
Boolean Σ1-formulae is # ·NP-complete with respect to Turing reductions as well as complete for
the function class generated by dependence logic with respect to first-order reductions.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Complexity classes; Theory of computation → Complexity theory and logic

Keywords and phrases team-based logics, counting classes, finite model theory, descriptive complex-
ity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.19

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.00246.

Funding Anselm Haak, Fabian Müller, Heribert Vollmer : Supported by DFG VO 630/8-1 and
DAAD grant 57348395.
Juha Kontinen, Fan Yang: Supported by grants 308712 and 308099 of the Academy of Finland.

Acknowledgements We thank the anonymous referees for helpful comments.

© Anselm Haak, Juha Kontinen, Fabian Müller, Heribert Vollmer, and Fan Yang;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1031-5922
mailto:haak@thi.uni-hannover.de
https://orcid.org/0000-0003-0115-5154
mailto:juha.kontinen@helsinki.fi
https://orcid.org/0000-0002-6995-4422
mailto:fabian.mueller@thi.uni-hannover.de
https://orcid.org/0000-0002-9292-1960
mailto:vollmer@thi.uni-hannover.de
https://orcid.org/0000-0003-0392-6522
mailto:fan.yang@helsinki.fi
https://doi.org/10.4230/LIPIcs.MFCS.2019.19
https://arxiv.org/abs/1902.00246
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Counting of Teams in First-Order Team Logics

1 Introduction

The question of the power of counting arises in propositional and predicate logic in a
number of contexts. Counting the number of satisfying assignments for a given propositional
formula, #SAT, is complete for Valiant’s class #P of functions counting accepting paths
of nondeterministic polynomial-time Turing machines [32]. Valiant also proved that #SAT
even remains complete when restricted to monotone 2CNF-formulae.

The class #P can be seen as the counting analogue of NP, which was shown by Fagin
[11] to correspond to existential second order logic, where the quantified relation encodes
accepting computation paths of NP-machines. Hence, if we define #FOrel to count satisfying
assignments to free relational variables in first-order (FO-) formulae, we obtain #FOrel = #P.
This result has been refined to prefix classes of FO showing, e.g., that #Πrel

2 = #P [30].
If we define #FOfunc in the same fashion as #FOrel except that we count assignments

to function variables instead of relation variables, then obviously #FOfunc = #P. The
situation changes for the prefix classes, though. In particular, unlike for #Πrel

1 , it holds that
#Πfunc

1 = #P, and, remarkably, also arithmetic circuit classes like #AC0 can be characterized
in this context [7].

In this paper we consider a different model-theoretic approach to the study of counting
processes using so-called team-based logics. In these logics, formulae with free variables are
evaluated not for single assignments to these variables but for sets of such assignments (called
teams). Logics with team semantics have been developed for the study of various dependence
and independence concepts important in many areas such as (probabilistic) databases and
Bayesian networks (see, e.g. [16, 5, 15]) for which model counting is an important inference
task (see, e.g., [3, 27]). In addition, team-based logics have interesting connections to a wide
range of areas such as formal semantics of natural language [4], social choice theory [28], and
quantum information theory [18].

In team semantics, a first-order formula is satisfied by a team if and only if all its members
satisfy the formula individually. Interest in teams stems from the introduction of different
logical atoms describing properties of teams, called team atoms, such as the value of a
variable being functionally dependent on other variables (characterized by the dependence
atom =(x̄, y)), a variable being independent from other variables (characterized by the
independence atom ȳ⊥x̄z̄), and the values of a variable occurring as values of some other
variable (characterized by the inclusion atom x̄ ⊆ ȳ), etc. ([31, 14, 12]).

We initiate in this paper the study of counting for team-based logics. In our proofs we
utilize the known correspondences between team-based logics and existential second-order
logic (Σ1

1) and its fragments (see Theorem 2). We want to stress that our results are also
novel for existential second-order logic and its fragments, and that there is no natural way to
carry out the study of the function class generated by inclusion logic, that is, FO extended
by the inclusion atom, in Tarskian semantics.

We define #FOteam to be the class of functions counting teams that satisfy a given
FO-formula, and similarly for extensions of FO by team atoms. Making use of different team
atoms, we give a characterization of # ·NP. While it is relatively easy to see that with every
finite set A of NP-definable team atoms, the class #FO(A)team stays a subclass of # ·NP
(Toda’s generalization of #P, see [17] for a survey of counting classes like these), we show
that FO extended with the independence atom is actually sufficient to characterize the full
class # ·NP:

#FO(⊥)team = #Σ1
1 = # ·NP.

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:3

The situation with inclusion logic and dependence logic is more complex due to their
strong closure properties: satisfaction of formulae is closed under union for inclusion logic
and is closed downwards for dependence logic. We show that #FO(⊆)team is a subclass of
TotP, which is a class of counting problems with easy decision versions. Note that TotP is
a strict subclass of #P unless P = NP and consequently the same holds for #FO(⊆)team.
Furthermore, #FO(=(. . .))team is a subclass of # ·NP, which we believe to be strict as well.
Interestingly, both classes contain complete problems from their respective superclasses. In
establishing this result for dependence logic, we introduce an interesting class of monotone
quantified Boolean formulae and show that the corresponding counting problem where
the all-0-assignment is not counted, #Σ1CNF−∗ , is # · NP-complete. In order to prove
·NP-completeness we also show that the more natural problem of counting all satisfying
assignments of the same class of formulae is # ·NP-complete by introducing a new technique
of simultaneous reductions between pairs of counting problems, which we hope will also be
useful in other contexts.

For inclusion logic we show that the well-known #P-complete problem #2CNF+ is
in #FO(⊆)team and that the problem of counting assignments for existentially quantified
dual-Horn formulae is hard for #FO(⊆)team.

In related previous work, so-called weighted logics have been used to logically characterize
counting complexity classes [1], and the decision-problem analogue PP of #P and the
counting hierarchy have been logically characterized in [21, 23, 6]. Counting classes from
circuit complexity beyond #AC0 have been logically characterized in [8].

Due to space restrictions, we only give proof sketches for some theorems, and detailed
proofs for all results throughout the paper are deferred to the full version of this paper.

2 Definitions and Preliminaries

First-order Logic and Team Semantics

Let us start by recalling the syntax of first-order logic (FO). In this work, we only consider
relational vocabularies (i.e., vocabularies with no function or constant symbols), and thus the
only first-order terms are variables. Formulae of first-order logic are defined by the following
grammar:

ϕ ····= ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ | R(x) |¬R(x) | x = y | x 6= y (?)

where x, y are variables, R is a relation symbol, and x is a tuple of the appropriate number
of variables.

The set of free variables of a formula ϕ is defined as usual, and we sometimes write
ϕ(x1, . . . , xk) to emphasize that the free variables of ϕ are among x1, . . . , xk. A formula with
no free variable is called a sentence. For any k, the fragment Σk of FO consists of all formulae
of the form ∃x1∀x2 . . . Qxkϕ, where ϕ is quantifier-free and Q is either ∃ or ∀ depending on
whether k is odd or even; similarly, the fragment Πk is defined as the class of all formulae
∀x1∃x2 . . . Qxkϕ in prenex normal form with a quantifier prefix with k alternations starting
with universal quantifiers.

We only consider finite structures with a finite relational vocabulary σ. Denote the class
of all such structures by STRUC[σ], and let dom(A) denote the universe of a σ-structure A.
We will always use structures with universe {0, 1, . . . , n−1} for some n ∈ N\{0}. We assume
that our structures contain a built-in binary relation ≤ and ternary relations +,× with the
usual interpretation, i.e., ≤ is interpreted in a model of any size as the “less than or equal to”
relation on N, + is interpreted as addition and × as multiplication. We write encσ(A) for

MFCS 2019

19:4 Counting of Teams in First-Order Team Logics

the standard binary encoding of a σ-structure A (see e.g., [20]): Relations are encoded row
by row by listing their truth values as 0’s and 1’s. The whole structure is encoded by the
concatenation of the encodings of its relations.

We assume that the reader is familiar with the usual Tarskian semantics for first-order
formulae, in which formulae are evaluated with respect to single assignments of a structure.
In this paper, we also consider so-called team semantics for first-order formulae, in which
formulae are evaluated with respect to teams. A team is a set of assignments of a structure,
that is, a set of functions s : {x1, . . . , xk } → dom(A), where we call {x1, . . . , xk } the domain
of the team. Note that the empty set ∅ is a team, called empty team, and the singleton {∅}
containing only the empty assignment is also a team. We denote by team(A, (x1, . . . , xk)) the
set of all teams over a structure A with the domain {x1, . . . , xk}. Due to certain connections
between team logics and second-order logic it is often helpful to view teams as relations. Let
A be a structure and X a team of A with domain {x1, . . . , xk}. A and X induce the k-ary
relation rel(X) on dom(A) defined as

rel(X) ··= {(s(x1), . . . , s(xn)) | s ∈ X}.

Furthermore, for any subset V ⊆ {x1, . . . , xk} of variables we define

X
∣∣
V
··= {s

∣∣
V
| s ∈ X},

the restriction of team X to domain V .
We define inductively the notion of a team X with domain {x1, . . . , xk} of a structure A

with A ··= dom(A) satisfying an FO-formula ϕ(x1, . . . , xk), denoted by A |=X ϕ, as follows:
A |=X α for α an atomic formula if and only if for all s ∈ X, A |=s α in the usual
Tarskian semantics sense.
A |=X ϕ ∨ ψ if and only if there are teams Y, Z ⊆ X such that Y ∪ Z = X, A |=Y ϕ and
A |=Z ψ.
A |=X ϕ ∧ ψ if and only if A |=X ϕ and A |=X ψ.
A |=X ∃xϕ if and only if there exists a function F : X → P(A)\{∅}, called supplementing
function, such that A |=X[F/x] ϕ, where

X[F/x] = {s[a/x] | s ∈ X and a ∈ F (s)} and s[a/x](y) =
{
a, if x = y,

s(y), else.

A |=X ∀xϕ if and only if A |=X[A/x] ϕ, where X[A/x] = {s[a/x] | s ∈ X and a ∈ A}.

A sentence ϕ is said to be true in A, written A |= ϕ, if A |={∅} ϕ.
FO-formulae ϕ are flat over team semantics, i.e., A |=X ϕ, if and only if A |=s ϕ for all

s ∈ X. In this sense, team semantics is conservative over FO-formulae. We now extend
first-order logic by sets of atomic formulae which are not flat. For any sequence x of variables
and variable y, the string =(x, y) is called a dependence atom. For any sequences x, y, z of
variables, the string y ⊥x z is called an independence atom. For any two sequences x and
y of variables of the same length, the string x ⊆ y is called an inclusion atom. The team
semantics of these atoms is defined as follows:
A |=X=(x, y), if and only if for all s, s′ ∈ X, if s(x) = s′(x), then s(y) = s′(y).
A |=X y⊥xz if and only if for all s, s′ ∈ X such that s(x) = s′(x), there exists s′′ ∈ X
such that s′′(x) = s(x), s′′(y) = s(y) and s′′(z) = s′(z).
A |=X x ⊆ y if and only if for all s ∈ X there is s′ ∈ X such that s(x) = s′(y).

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:5

For any subset A ⊆ {=(. . .),⊥,⊆}, we define FO(A) as first-order logic extended by the
respective atoms, and refer to such a logic as team-based logic. More precisely we extend the
grammar (?) by adding a rule for each atom in A. For example for FO({⊆}) we add the rule

ϕ ····= x ⊆ y,

where x, y are tuples of variables. For convenience, we often omit the curly brackets and
write for example FO(⊆) instead of FO({⊆}).

The team-based logic FO(=(. . .)) is known in the literature as dependence logic [31],
FO(⊥) as independence logic [14] and FO(⊆) as inclusion logic [12]. We recall some basic
properties of these logics from [31, 14, 12]: Formulae of FO(=(. . .)) are closed downwards,
i.e., A |=X ϕ and Y ⊆ X implies A |=Y ϕ, formulae of FO(⊆) are closed under unions, i.e.,
A |=X ϕ and A |=Y ϕ implies A |=X∪Y ϕ, and formulae of any of these logics have the empty
team property, i.e., A |=∅ ϕ always holds.

The above atoms expressing team properties can be generalized, as we will do next. Let
us first recall below the definition of generalized quantifiers, where we follow the notations
from [22, 26].

I Definition 1. Let i1, . . . , in (n > 0) be a sequence of positive integers, and σ a vocabulary
consisting of an ij-ary relation symbol for each 1 ≤ j ≤ n. A generalized quantifier of type
(i1, . . . , in) is a class C of σ-structures (A,B1, . . . , Bn) such that the following conditions
hold:
1. A 6= ∅ and for each 1 ≤ j ≤ n, we have Bj ⊆ Aij .
2. C is closed under isomorphisms, that is, if (A′, B′1, . . . , B′n) ∈ C is isomorphic to

(A,B1, . . . , Bn), then (A′, B′1, . . . , B′n) ∈ C.

Let Q be a generalized quantifier of type (i1, . . . , in). Let us extend the syntax of first-order
logic with an expression AQ(x1, . . . , xn), where each xj is a tuple of variables of length ij
and Vars(xi) is the set of variables in xi. We call AQ a generalized (dependency) atom (of
type (i1, . . . , in)), and its team semantics is defined as:

A |=X AQ(x1, . . . , xn) if and only if(rel(X
∣∣
Vars(x1)), . . . , rel(X

∣∣
Vars(xn))) ∈ Q

A,

where QA = {(B1, . . . , Bn) | (dom(A), B1, . . . , Bn) ∈ Q}.

We say that a generalized dependency atom AQ is NP-definable if there is an NP-algorithm
that decides for a given structure A and a given team X whether A |=X AQ(x1, . . . , xn)
holds or not. A set A of generalized atoms is NP-definable if every a ∈ A is NP-definable.
For example, the set A = {=(. . .),⊥,⊆} is NP-definable.

Many results in this paper are based on the expressive power of the logics defined above,
that we shall now recall. We first recall some notions and notations. Existential second-order
logic (Σ1

1) consists of formulae of the form ∃R1 . . . ∃Rkϕ, where ϕ is an FO-formula. Let σ be
a vocabulary. We write σ(R) for the vocabulary that arises by adding a fresh relation symbol
R to σ, and we sometimes write ϕ(R) to emphasize that the relation symbol R occurs in the
σ(R)-formula ϕ. If A is a σ-structure, we write (A, Q) for A expanded into a σ(R)-structure
where the new k-relation symbol R is interpreted as Q ⊆ dom(A)k. A σ(R)-sentence ϕ(R)
of Σ1

1 is said to be downward monotone with respect to R if (A, Q) |= ϕ(R) and Q′ ⊆ Q

imply (A, Q′) |= ϕ(R). It is known that ϕ(R) is downward monotone with respect to R if
and only if ϕ(R) is equivalent to a sentence where R occurs only negatively (see e.g., [24]).

MFCS 2019

19:6 Counting of Teams in First-Order Team Logics

I Theorem 2 (see [12, 24, 13]).
1. For every σ-formula ϕ of FO(⊥), there is an σ(R)-sentence ψ(R) of Σ1

1 such that for all
σ-structures A and teams X,

A |=X ϕ ⇐⇒ (A, rel(X)) |= ψ(R). (1)

Conversely, for every σ(R)-sentence ψ(R) of Σ1
1, there is a σ-formula ϕ of FO(⊥) such

that (1) holds for all σ-structures A and non-empty teams X.
2. The same as the above holds for formulae of FO(=(. . .)) as well, except that in both

directions for FO(=(. . .)) the relation symbol R is assumed to occur only negatively in
the sentence ψ(R).

3. In particular, over sentences both FO(⊥) and FO(=(. . .)) are expressively equivalent
to Σ1

1, in the sense that every σ-sentence of FO(⊥) (or FO(=(. . .))) is equivalent to a
σ-sentence ψ of Σ1

1, i.e., for any σ-structure A,

A |= ϕ ⇐⇒ A |= ψ,

and vice versa. As a consequence of Fagin’s Theorem (see [11]), over finite structures
both FO(⊥) and FO(=(. . .)) capture NP.

4. For any σ-formula ϕ(x1, . . . , xk) of FO(⊆), there exists a σ(R)-formula ψ(R) of positive
greatest fixed point logic (posGFP) such that for all σ-structures A and teams X,

A |=X ϕ ⇐⇒ A, rel(X) |=s ψ(R) for all s ∈ X;

and vice versa. In particular, over sentences FO(⊆) is expressively equivalent to posGFP.
As a consequence of Immerman’s Theorem (see [19]), over finite structures, FO(⊆) is
expressively equivalent to least fixed point logic (LFP). Thus, by [19, 34], over ordered
finite structures, FO(⊆) captures P.

5. Let ϕ(R) be a myopic σ-formula, that is, ϕ(R) = ∀x(R(x) → ψ(R, x)), where ψ is a
first order σ-formula with only positive occurrences of R. Then there exists a σ-formula
χ ∈ FO(⊆) such that for all σ-structures A and all teams X:

A |=X χ(x)⇔ A, rel(X) |= ϕ(R).

Propositional and Quantified Boolean formulae

In this paper, we will also consider certain classes of propositional and quantified Boolean
formulae. As usual, we use CNF to denote the class of propositional formulae in conjunctive
normal form and k-CNF to denote the class of propositional formulae in conjunctive normal
form where each clause contains at most k literals. A formula in CNF is in the class DualHorn
if each of its clauses contains at most one negative literal.

For a class C of Boolean formulae, we denote by Σ1C the class of quantified Boolean
formulae in prenex normal form with only existential quantifiers where the quantifier-free
part is an element of C.

For a class C of quantified Boolean formulae we denote with C+(resp. C−) the class of
formulae in C whose free variables occur only positively (resp. negatively). For example,
Σ13CNF− consists of all quantified Boolean formulae in prenex normal form with only
existential quantifiers, where the quantifier-free part is in 3CNF and the free variables occur
only negatively. Note that in Boolean formulae all variables are free.

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:7

Counting Problems and Counting Classes

This paper aims to identify model-theoretic characterizations of counting classes in terms of
team-based logics. Let us now recall relevant previous results on the descriptive complexity of
counting problems. We begin by defining the most important complexity classes for counting
problems.

I Definition 3. A function f : {0, 1}∗ → N is in #P if there is a non-deterministic polynomial
time Turing machine M such that for all inputs x ∈ {0, 1}∗,

f(x) is the number of the accepting computation paths of M on input x.

This definition can be generalized as follows.

I Definition 4. Let C be a complexity class. A function f : {0, 1}∗ → N is said to be in # · C
if there are a language L ∈ C and a polynomial p such that for all x ∈ {0, 1}∗:

f(x) = |{y | |y| ≤ p(|x|) and (x, y) ∈ L}|.

Obviously #P = # · P, and it is well known that #P ⊆ # · NP ⊆ # · coNP = #PNP,
where, under reasonable complexity-theoretic assumptions, all these inclusions are strict; see
[17] for a survey of these issues.

I Definition 5. A function f : {0, 1}∗ → N is in TotP if there is a non-deterministic
polynomial time Turing machine M such that for all inputs x ∈ {0, 1}∗,

f(x) is the number of the computation paths of M on input x minus 1.

Subtracting 1 from the number of computation paths is neccessary since otherwise TotP-
functions could never map to 0. In [29] it was shown that TotP is the closure with respect to
parsimonious reductions of self-reducible counting problems from #P whose decision version
is in P. It follows that TotP (#P unless P = NP.

Next, we define the relevant logical counting classes.

I Definition 6. A function f : {0, 1}∗ → N is said to be in #FOrel if there is a vocabulary
σ with a built-in linear order ≤, and an FO-formula ϕ(R1, . . . , Rk, x1, . . . , x`) over σ with
free relation variables R1, . . . , Rk and free individual variables x1, . . . , x` such that for all
σ-structures A,

f(encσ(A)) = |{(S1, . . . , Sk, c1, . . . , c`) : A |= ϕ(S1, . . . , Sk, c1, . . . , c`}|.

If the input of f is not of the appropriate form, we assume the output to be 0.

In the same fashion, subclasses of #FOrel, such as #Σrel
k and #Πrel

k for arbitrary k, are
defined by assuming that the formula ϕ in the above definition is in the corresponding
fragments Σk and Πk.

Recall the relationship between the above defined logical counting classes and #P:

I Theorem 7 ([30]). #Σrel
0 = #Πrel

0 ⊂ #Σrel
1 ⊂ #Πrel

1 ⊂ #Σrel
2 ⊂ #Πrel

2 = #FOrel = #P.
Furthermore, #Σrel

0 ⊆ FP.

Complete problems (i.e., hardest problems) for counting classes have also been studied
extensively. Let us now recall three reductions that are relevant in this study. Let f and h be
counting problems. We say that f is parsimoniously reducible to h if there is a polynomial-
time computable function g such that f(x) = h(g(x)) for all inputs x, f is Turing reducible

MFCS 2019

19:8 Counting of Teams in First-Order Team Logics

to h if f ∈ FPh, and f is metrically reducible to h if there are polynomial-time computable
functions g1, g2 such that f(x) = g2(h(g1(x)), x) for all inputs x. Clearly, metric reductions
are Turing reductions with one oracle query. Besides these three familiar reductions we
now define another type of reductions, called first-order reductions. First recall that for
any two vocabularies σ1, σ2, an FO-interpretation (or a first-order query) is a function
I : STRUC[σ1]→ STRUC[σ2], represented as a tuple I = (ϕ0, ϕR1 , . . . , ϕR`

) of FO-formulae
over σ1 with k free variables, that maps any structure A ∈ STRUC[σ1] to another structure
I(A) ∈ STRUC[σ2], whose domain is a subset of dom(A)k (i.e., a set of k-ary tuples of
elements in A) defined by ϕ0 and relations Ri are defined by ϕRi

(see [20] for detailed
discussion). In the team semantics case, we also need to define how teams are transformed by
the interpretation I. The value I(X) is defined in a straightforward way: individual elements
from Ak·m in X are mapped to elements from I(A)m in I(X), where k is the arity of tuples
in the domain of the structure I(A), and m is the arity of the team I(X). Now, we define
first-order reductions via FO-interpretations as follows:

I Definition 8. Let f1, f2 be two functions. We say f1 is first-order reducible or FO-reducible
to f2 (denoted f1 ≤fo f2) if there are vocabularies σ1, σ2 with σ2 = (Ra1

1 , . . . , Ral

l) and an
FO-interpretation I = (ϕ0, ϕR1 , . . . , ϕR`

), where ϕ0, ϕR1 , . . . , ϕR`
are FO-formulae over σ1,

such that for all A1 ∈ STRUC[σ1], there are k ∈ N and A2 ∈ STRUC[σ2] with

dom(A2) = {(x1, . . . , xk) | A1 |= ϕ0(x1, . . . , xk)}

and for all i ≤ k

Ri((x1
1, . . . , x

k
1), . . . , (x1

ai
, . . . , xkai

))⇔ A1 |= ϕRi(x1
1, . . . , x

k
1 , . . . , x

1
ai
, . . . , xkai

)

and f1(encσ1(A1)) = f2(encσ2(A2)).

It is often possible to find complete problems in counting classes by counting satisfying
assignments for certain (quantified) Boolean formulae. Let F be a class of quantified Boolean
formulae. Define the problem #F as follows:

Problem: #F
Input: Formula ϕ ∈ F

Output: Number of satisfying assignments of ϕ

For example, #SAT, the function counting the number of satisfying assignments for proposi-
tional formulae, as well as its restriction #3CNF, are complete for #P under parsimonious
reductions, while #2CNF+ and #2CNF− are complete for #P under Turing reductions.
Observe that for all Σ1CNF-formulae ϕ it holds that the number of satisfying assignments
is equal to that of the formula ϕ̃ obtained by negating all literals in all clauses in ϕ. Thus,
#Σ1CNF+ and #Σ1CNF− are in a sense the same problem. In fact all our results for #C+

(for a class of formulae C) also hold for #C− and vice versa. This also holds for #Horn and
#DualHorn. Note that Aziz et al [2] studied the problem #Σ1SAT under the name projected
model counting and observed that it is contained in # ·NP.

Next we introduce the central class for this paper, a class of counting problems in
the context of team-based logics. For any set A of generalized dependency atoms, we
define #FO(A)team to consist of those functions counting non-empty satisfying teams for
FO(A)-formulae. Note that by the empty team property of dependence, independence, and
inclusion logic formulae any function that counts all satisfying teams (including the empty
team) could not attain the value 0.

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:9

I Definition 9. For any set A of generalized atoms, #FO(A)team is the class of all functions
f : {0, 1}∗ → N for which there is a vocabulary σ with a built-in linear order ≤ and an
FO(A)-formula ϕ(x) over σ with a tuple x of free first-order variables such that for all
σ-structures A,

f(encσ(A)) = |{X ∈ team(A, (x)) : X 6= ∅ and A |=X ϕ(x)}|.

We denote by fϕ the function defined by ϕ.

I Example 10. As an example for how to work with team semantics in a counting context,
we show that the #P-complete problem #2CNF+ is contained in both #FO(=(. . .))team

and #FO(⊆)team. Let ϕ(x1, . . . , xn) =
∧
Ci ∈ 2CNF+, where each Ci = `i,1 ∨ `i,2 and

`i,j ∈ {x1, . . . , xn}. Consider the vocabulary τ2CNF+ = {C2}. We encode the formula
ϕ(x1, . . . , xn) by the structure A = ({x1, . . . , xn}, CA), where (x, y) ∈ CA if and only if the
clause x ∨ y occurs in ϕ.

We show that #2CNF+ can be defined by counting non-empty teams (which correspond
to assignments mapping at least one variable to true) satisfying suitable formulae from FO(⊆)
as well as FO(=(. . .)). For this purpose, we encode Boolean assignments to the variables
x1, . . . , xn by teams over one variable t. Since the universe of our structures is exactly the
set of variables of the formula ϕ(x1, . . . , xk) in question, assignments to the variables can be
encoded by inclusion of the values of the variables xi in t in the team.

Now, the following FO(⊆)-formula defines #2CNF+:

ϕ⊆(t) = ∀x∀y(¬C(x, y) ∨ x ⊆ t ∨ y ⊆ t).

Intuitively, this formula states that if a pair (x, y) of variables in ϕ occur in the same clause
(i.e., C(x, y) holds), then the value of one of the two variables x, y is contained in the team,
or it is set to true.

To define the same problem in FO(=(. . .)) where inclusion atoms are not any more
available in the language, we need to encode assignments differently. We now encode
variables xi being set to 1 by not including them in the team over the variable t. The
FO(=(. . .))-formula that defines #2CNF+ is the following:

ϕ=(...)(t) =∃min∀z min ≤ z∧

∀x∀y∃x′∃y′
(

=(x, x′)∧ =(y, y′) ∧ (¬x = y ∨ x′ = y′)∧

(x 6= t ∨ x′ = min) ∧ (¬C(x, y) ∨ x′ 6= min ∨ y′ 6= min)
)
.

Intuitively, in the above formula we use existential quantifications together with dependence
atoms to express that x′ is a function of x, and this function f is guaranteed in the formula
to be consistent with the assignment encoded by the team. We shall interpret a function
mapping to the minimal element of the universe (encoded by the variable min in the formula)
as an assignment to 0, and a function mapping to any other element as an assignment to
1. Now, the second last conjunct in our formula states that all variables that occur as
values of t in the team (which correspond to those xi set to 0) are mapped by our function
f to the minimal element. Finally, the last conjunct in our formula checks whether the
2CNF-formula is satisfied by the assignment encoded by f . Note that in order to talk about
the assignment to two variables simultaneously, in the above formula we actually use two
(equivalent) functions to encode the same assignment.

MFCS 2019

19:10 Counting of Teams in First-Order Team Logics

3 A Characterization of the Class # · NP

In this section, we characterize the class # · NP in terms of team-based logics. Our first
result shows that # · NP is the largest class attainable by counting teams in team-based
logics FO(A), as long as all generalized atoms in A are NP-definable.

I Theorem 11. For any set A of NP-definable generalized atoms, #FO(A)team ⊆ # ·NP.

Proof Sketch. Let ϕ(x) ∈ #FO(A)team. To show that fϕ ∈ # ·NP we note that fϕ can be
computed by counting on input encσ(A) the number of teams X such that A |=X ϕ(x). It
is thus sufficient to show that the letter can be checked in NP on input (encσ(A), X). In
this proof, the only places that involve nondeterminism are disjunctions (guess the split),
existential quantifiers (guess the supplementing function) and NP-definable generalized atoms
(checkable in NP by definition). J

Next, we prove the converse inclusion of the above theorem by proving a stronger result:
The whole class #·NP can actually be captured by a single generalized atom, the independence
atom.

I Theorem 12. # ·NP ⊆ #FO(⊥)team

Proof Sketch. It is sufficient to show # ·NP ⊆ #Σ1
1 since by Theorem 2.1 we have #Σ1

1 =
#FO(⊥)team.

Let f ∈ # ·NP. Then there are a polynomial p and L ∈ NP such that

f(x) = |{y | |y| = p(|x|), (x, y) ∈ L}|.

We encode tuples (x, y) of strings with |y| = p(|x|) as structures A(x,y) by encoding the string
x as a structure Ax in the standard way, and y as a unique relation Ry over dom(Ax)k for
some k ∈ N. Finally, Fagin’s theorem gives a Σ1

1-sentence ϕ such that for all x,

|{y | |y| = p(|x|), (x, y) ∈ L}| = |{y | A(x,y) |= ϕ}| = |{R | Ax |= ϕ(R)}|. J

I Remark 13. The class #P can also be characterized by counting teams. A variant L of
dependence logic that defines exactly the first-order definable team properties in the sense of
Theorem 2 was introduced in [25]. Since #P = #FO (see [30]), this logic L captures #P.
We do not present the details of L in this paper, but only note that L has weaker versions of
quantifiers and disjunction instead of the standard ones as defined in Section 2.

4 Counting Teams in Dependence and Inclusion Logic

In this section, we study the smaller classes #FO(=(. . .))team and #FO(⊆)team. We begin
by showing that the # · NP-complete problem #Σ1CNF−∗ , defined below, is contained in
#FO(=(. . .))team. We will show # ·NP-completeness for #Σ1CNF−∗ in Theorem 26.

Problem: #Σ1CNF−
∗

Input: Formula ϕ(x1, . . . , xk) ∈ CNF−

Output: Number of satisfying assignments of ϕ, dis-
regarding the all-0-assignment

Note that the all-0-assignment is the assignment mapping each variable to 0.

I Theorem 14. #Σ1CNF−∗ ∈ #FO(=(. . .))team.

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:11

We will show that the above problem is actually complete for #FO(=(. . .))team with
respect to first-order reductions. First-order reductions turn out to be particularly natural
in our context, as all our classes are closed under these reductions.

I Theorem 15. #FO(A)team is closed under first-order reductions for A ⊆ {=(. . .),⊥,⊆}.

Next we show that the problem #Σ1CNF−∗ is hard and thus complete for #FO(=(. . .))team

under first-order reductions. Our proof technique is similar to that of [9], where the data
complexity of inclusion logic is shown to be polynomial.

I Theorem 16. #Σ1CNF−∗ is complete for #FO(=(. . .))team with respect to first-order
reductions.

Having proven our results for dependence logic FO(=(. . .)), we now turn to inclusion
logic FO(⊆). We first prove that #FO(⊆)team is a subclass of #P.

I Theorem 17. #FO(⊆)team ⊆ #P.

The above theorem naturally gives rise to the question whether #FO(⊆)team actually
coincides with #P. However, we identify in the next lemma a particular property of
#FO(⊆)team functions, making this equivalence unlikely to hold.

I Lemma 18. Let ϕ(x) ∈ FO(⊆) be a formula over a vocabulary σ. Then the language
L ··= {w | fϕ(w) > 0} is in P.

I Corollary 19. If P 6= NP, then #FO(⊆)team 6= #P.

Theorem 17 and Corollary 19 indicate that #FO(⊆)team is most likely a strict subclass
of #P. Nevertheless, we show in the next theorem that #FO(⊆)team contains the problem
#DualHorn which is complete for #P with respect to Turing reductions. It is unknown
whether #DualHorn ∈ #FO(=(. . .)).

I Theorem 20. #DualHorn ∈ #FO(⊆).

We continue by exhibiting a hard problem for the class #FO(⊆)team. It is an open
question whether the problem is definable by an inclusion logic formula.

I Theorem 21. #Σ1DualHorn is hard for #FO(⊆)team with respect to first-order reductions.

It seems to us that #FO(⊆) is a strict subclass of #P and the decision versions of
problems in #FO(⊆) are in P. For this reason, we now investigate relationship between
#FO(⊆) and the subclass TotP. We show that #FO(⊆) is a subclass of TotP and that TotP
contains #Σ1DualHorn. We conjecture that these classes do not coincide, but this question
remains open.

I Theorem 22. #FO(⊆) ⊆ TotP

I Theorem 23. #Σ1DualHorn ∈ TotP

5 Complete Problems for # · NP

In this section we show that #Σ1CNF−∗ is # ·NP-complete. To this end, we first observe that
#Σ1CNF is # ·NP-complete. Afterwards we show that the smaller class #Σ1CNF− remains
·NP-complete by adapting the proof for #P-completeness of #2CNF+ given by Valiant
[33]. We conclude this section with a reduction from #Σ1CNF− to #Σ1CNF−∗ showing the
·NP-completeness of the latter.

MFCS 2019

19:12 Counting of Teams in First-Order Team Logics

I Lemma 24. #Σ1SAT and #Σ1CNF are # ·NP-complete under parsimonious reductions.

I Theorem 25. #Σ1CNF− is # ·NP-complete under Turing reductions.

Proof Sketch. Membership follows from 24, since #Σ1CNF− is a special case of #Σ1CNF.
For the hardness proof, we show a chain of reductions adapted from the one used by Valiant
[33] to show the #P-completeness of #2CNF+. Recall that the main steps of Valiant’s chain
of reductions are:

#3CNF ≤ PERMANENT ≤ #PERFECT-MATCHING
≤ #IMPERFECT-MATCHING ≤ #2CNF+.

Our idea is to add a Σ13CNF-formula to the input of each problem in the above chain of
reductions, and to express certain properties of the respective inputs in the added formula.
We then count only the solutions to the input that also satisfy the added formula.

As part of the chain of reductions we will make use of the following problem:

Problem: #(3CNF,Σ13CNF−)
Input: Formula ϕ(x1, . . . , xk) ∈ 3CNF and for-

mula ψ(x1, . . . , xk) ∈ Σ13CNF−

Output: Number of satisfying assignments of ϕ ∧ ψ

We will reduce #Σ13CNF to #(3CNF,Σ13CNF−), and then apply the above chain of
reductions (with added formulae, as described above). This results in a reduction to
#(2CNF−,Σ13CNF−), defined analogously to the above problem. Finally it is straightfor-
ward to show #(2CNF−,Σ13CNF−) ≤ #Σ1CNF− using the fact that for ϕ ∈ 2CNF− and
ψ ∈ Σ13CNF−, the prenex normal form of ϕ ∧ ψ is a Σ13CNF−-formula. We conclude by
sketching the first reduction.

#Σ13CNF ≤ #(3CNF,Σ13CNF−): We construct for any ϕ ∈ Σ13CNF two formulae
ϕ′ ∈ 3CNF and ψ ∈ Σ13CNF− such that #Σ13CNF(ϕ) = #(3CNF,Σ13CNF−)(ϕ′, ψ).

Assume ϕ = ∃y1 . . . ∃y`
∧
Ci ∧

∧
Di ∧

∧
Ei, where clauses Ci only contain free variables

of ϕ, clauses Di contain only bound variables of ϕ, and clauses Ei contain at least one free
and at least one bound variable of ϕ. We can now simply add all clauses Ci to ϕ′ and all
clauses Di to ψ.

To handle the remaining clauses, we add for each Ei a new free variable ei. We then
express in ϕ′ that ei is true if and only if clause Ei is not satisfied by the assignment to the
free variables, and express in ψ that Ei has to be satisfied by the assignment to the bound
variables if ei is true. The former does not involve any bound variables and for the latter,
the only needed free variable is ei, which only occurs negatively. J

Because of the special role of the empty team in the team logics we consider, we will also
show the completeness for another version of #Σ1CNF−, denoted as #Σ1CNF−∗ , for which
the all-0-assignment is not counted.

I Theorem 26. The problem #Σ1CNF−∗ is # ·NP-complete under Turing reductions.

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:13

6 Conclusion

In this paper we have studied the following hierarchy of classes defined by counting problems
for team-based logics:

TotP ⊆ #Lteam = #P ⊆ #FO(⊥)team = # ·NP

⊆ ⊆

#FO(⊆)team #FO(=(. . .))team

We also showed that our classes are closed under first-order reductions and that #FO(⊆)team

and #FO(=(. . .))team contain complete problems from #P and # · NP, respectively. The
latter problem is even complete for #FO(=(. . .))team under first-order reductions.

The connection between #FO(=(. . .))team and the classes #P and # ·NP is not yet clear.
While we know that a complete problem from # ·NP is contained in it, it is open whether
the class coincides with # ·NP, and (if not) whether it contains the class #P. We conjecture
that the answer to both questions is negative, since the defining logic has closure properties
that make it unlikely to contain counting versions of non-monotone problems from #P.

Regarding #FO(⊆)team, the search for a complete problem could be interesting. We
have only showed that the problem #DualHorn is contained in this class and the problem
#Σ1DualHorn is hard for this class, but neither of the problems is known to be complete.

The lower end of our hierarchy deserves further study as well. The class #FOteam (i.e.,
the class with no dependency atoms in the formulae) can be shown to be a subclass of FTC0,
the class of functions computable by families of polynomial size constant depth majority
circuits (see [35]). The circuit-based counting class #AC0, counting proof trees in polynomial
size constant depth unbounded fan-in circuits [35], was characterized in a model-theoretic
manner by counting assignments to free function symbols in certain quantifier-restricted
FO-formulae [7]. A similar quantifier restriction for #FO(A)team, where A consists of the
dependency atom plus a totality atom (that we did not study in the present paper), also
leads to a characterization of #AC0. This suggests that low level counting classes and
circuit classes in the context of counting problems for team-based logics might be worth
studying. Another natural question is to search for generalized dependency atoms that lead
to interesting relations to complexity classes. Besides the aforementioned totality atom,
the constancy or the exclusion [12] atom are worth examining. In particular, it is an open
question to find an atom A such that #FO(A)team = #P. The logic L of [25], though it
satisfies the equality, is not of this form.

In the context of counting complexity theory, an interesting question to study is the
approximability of problems in different classes. In our case, it is unlikely that any of our
classes is efficiently approximable (in the sense of FPRAS): In [10] it was shown that it
is unlikely that the number of satisfying assignments of CSPs can be approximated by an
FPRAS, unless all relations in the constraint language are affine. Since our classes contain
counting problems for classes of formulae which do not admit this property, this result
applies. Consequently, it would be interesting to study restrictions of our full classes to
obtain, possibly, efficiently approximable fragments.

Our proof of the completeness of #Σ1CNF− for # ·NP introduces problems that arise
from “pairing decision problems” and gives simultaneous reductions between such pairs. This
idea might be helpful in other contexts as well; in particular it should lead to more interesting
complete problems for # ·NP or higher levels # ·Σk of the counting polynomial-time hierarchy.

MFCS 2019

19:14 Counting of Teams in First-Order Team Logics

References
1 Marcelo Arenas, Martin Muñoz, and Cristian Riveros. Descriptive Complexity for counting

complexity classes. In LICS, pages 1–12. IEEE Computer Society, 2017.
2 Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter J. Stuckey. #∃SAT: Projected

model counting. In SAT, volume 9340 of Lecture Notes in Computer Science, pages 121–137.
Springer, 2015.

3 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving #SAT and Bayesian Inference
with Backtracking Search. CoRR, abs/1401.3458, 2014.

4 Ivano Ciardelli. Dependency as Question Entailment. In Samsom Abramsky, Juha Kontinen,
Jouko Väänänen, and Heribert Vollmer, editors, Dependence Logic: Theory and Application,
Progress in Computer Science and Applied Logic, pages 129–182. Birkhauser, 2016.

5 Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänänen. A
Logical Approach to Context-Specific Independence. Ann. Pure Appl. Logic, 2019.

6 Arnaud Durand, Johannes Ebbing, Juha Kontinen, and Heribert Vollmer. Dependence Logic
with a Majority Quantifier. Journal of Logic, Language and Information, 24(3):289–305, 2015.
doi:10.1007/s10849-015-9218-3.

7 Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. Descriptive Complexity
of #AC0 Functions. In CSL, volume 62 of LIPIcs, pages 20:1–20:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

8 Arnaud Durand, Anselm Haak, and Heribert Vollmer. Model-Theoretic Characterization of
Boolean and Arithmetic Circuit Classes of Small Depth. In LICS, pages 354–363. ACM, 2018.

9 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen. Tractability
Frontier of Data Complexity in Team Semantics. In GandALF, volume 193 of EPTCS, pages
73–85, 2015.

10 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for
Boolean #CSP. J. Comput. Syst. Sci., 76(3-4):267–277, 2010. doi:10.1016/j.jcss.2009.08.
003.

11 Ronald Fagin. Generalized first-order spectra, and polynomial time recognizable sets. SIAM-
AMS Proceedings, 7:43–73, 1974.

12 Pietro Galliani. Inclusion and exclusion dependencies in team semantics - On some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012.

13 Pietro Galliani and Lauri Hella. Inclusion Logic and Fixed Point Logic. In CSL, volume 23 of
LIPIcs, pages 281–295. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

14 Erich Grädel and Jouko A. Väänänen. Dependence and Independence. Studia Logica,
101(2):399–410, 2013.

15 Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, and Jonni Virtema. Facets of
Distribution Identities in Probabilistic Team Semantics. CoRR, abs/1812.05873, 2018.

16 Miika Hannula and Juha Kontinen. A finite axiomatization of conditional independence and
inclusion dependencies. Inf. Comput., 249:121–137, 2016.

17 Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations: counting classes beyond
#P and other definitional adventures. SIGACT News, 26(1):2–13, 1995.

18 Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. Quantum Team Logic and Bell’s
inequalities. Rew. Symb. Logic, 8(4):722–742, 2015. doi:10.1017/S1755020315000192.

19 Neil Immerman. Relational Queries Computable in Polynomial Time. Information and Control,
68(1-3):86–104, 1986.

20 Neil Immerman. Descriptive Complexity. Graduate texts in computer science. Springer, 1999.
21 Juha Kontinen. A logical characterization of the counting hierarchy. ACM Trans. Comput.

Log., 10(1):7:1–7:21, 2009.
22 Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of Predicate Logics with

Team Semantics. In MFCS, volume 58 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

https://doi.org/10.1007/s10849-015-9218-3
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1017/S1755020315000192

A. Haak, J. Kontinen, F. Müller, H. Vollmer, and F. Yang 19:15

23 Juha Kontinen and Hannu Niemistö. Extensions of MSO and the monadic counting hierarchy.
Inf. Comput., 209(1):1–19, 2011.

24 Juha Kontinen and Jouko A. Väänänen. On Definability in Dependence Logic. Journal of
Logic, Language and Information, 18(3):317–332, 2009.

25 Juha Kontinen and Fan Yang. Logics for first-order team properties. In WoLLIC, Lecture
Notes in Computer Science. Springer, 2019.

26 Antti Kuusisto. A Double Team Semantics for Generalized Quantifiers. Journal of Logic,
Language and Information, 24(2):149–191, 2015.

27 Antti Kuusisto and Carsten Lutz. Weighted model counting beyond two-variable logic. In
LICS, pages 619–628. ACM, 2018.

28 Eric Pacuit and Fan Yang. Dependence and Independence in Social Choice: Arrow’s Theorem.
In H. Vollmer S. Abramsky, J. Kontinen and J. Väänänen, editors, Dependence Logic: Theory
and Application, Progress in Computer Science and Applied Logic, pages 235–260. Birkhauser,
2016.

29 Aris Pagourtzis and Stathis Zachos. The Complexity of Counting Functions with Easy Decision
Version. In MFCS, volume 4162 of Lecture Notes in Computer Science, pages 741–752. Springer,
2006.

30 Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. Descriptive Complexity of
#P Functions. J. Comput. Syst. Sci., 50(3):493–505, 1995.

31 Jouko A. Väänänen. Dependence Logic - A New Approach to Independence Friendly Logic,
volume 70 of London Mathematical Society student texts. Cambridge University Press, 2007.

32 Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci.,
8:189–201, 1979.

33 Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput.,
8(3):410–421, 1979.

34 Moshe Y. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In
STOC, pages 137–146. ACM, 1982.

35 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 1999.

MFCS 2019

Approximating Activation Edge-Cover and Facility
Location Problems
Zeev Nutov
The Open University of Israel, Ra’anana, Israel
nutov@openu.ac.il

Guy Kortsarz
Rutgers University, Camden, USA
guyk@camden.rutgers.edu

Eli Shalom1

The Open University of Israel, Ra’anana, Israel
eli.shalom@gmail.com

Abstract
What approximation ratio can we achieve for the Facility Location problem if whenever a client
u connects to a facility v, the opening cost of v is at most θ times the service cost of u? We show
that this and many other problems are a particular case of the Activation Edge-Cover problem.
Here we are given a multigraph G = (V,E), a set R ⊆ V of terminals, and thresholds {teu, tev} for
each uv-edge e ∈ E. The goal is to find an assignment a = {av : v ∈ V } to the nodes minimizing∑

v∈V
av, such that the edge set Ea = {e = uv : au ≥ teu, av ≥ tev} activated by a covers R. We

obtain ratio 1 + max
x≥1

ln x
1 + x/θ

≈ ln θ − ln ln θ for the problem, where θ is a problem parameter. This

result is based on a simple generic algorithm for the problem of minimizing a sum of a decreasing
and a sub-additive set functions, which is of independent interest. As an application, we get the
same ratio for the above variant of Facility Location. If for each facility all service costs are
identical then we show a better ratio 1 + max

k∈N

Hk − 1
1 + k/θ

, where Hk =
∑k

i=1 1/i. For the Min-Power

Edge-Cover problem we improve the ratio 1.406 of [4] (achieved by iterative randomized rounding)
to 1.2785. For unit thresholds we improve the ratio 73/60 ≈ 1.217 of [4] to 1555

1347 ≈ 1.155.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms

Keywords and phrases generalized min-covering problem, activation edge-cover, facility location,
minimum power, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.20

Funding Guy Kortsarz: Partially supported by NSF grant number 1540547.

Acknowledgements We thank anonymous referees for many useful comments.

1 Introduction

Let G = (V,E) be an undirected multigraph where each edge e ∈ E has an activating
function fe from some range Le ⊆ R2

+ to {0, 1}. Given a non-negative assignment
a = {av : v ∈ V } to the nodes, we say that a uv-edge e ∈ E is activated by a if
fe(au, av) = 1. Let Ea = {e ∈ E : fe(au, av) = 1} denote the set of edges activated by
a. The value of an assignment a is a(V) =

∑
v∈V av. In Activation Network Design

problems the goal is to find an assignment a of minimum value, such that the edge set Ea
activated by a satisfies a prescribed property. We make the following two assumptions, which
are standard in the literature; see the paper of Panigrahi [20] that introduced the problem,
and a recent survey [19] on various activation problems.

1 Part of this work was done as a part of author’s M.Sc. thesis done at the Open University of Israel.

© Zeev Nutov, Guy Kortsarz, and Eli Shalom;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nutov@openu.ac.il
mailto:guyk@camden.rutgers.edu
mailto:eli.shalom@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Approximating Activation Edge-Cover and Facility Location Problems

Monotonicity Assumption. For every e ∈ E, fe is monotone non-decreasing, namely,
fe(xu, xv) = 1 implies fe(yu, yv) = 1 if yu ≥ xu and yv ≥ xv.

Polynomial Domain Assumption. Every v ∈ V has a polynomial size in n = |V | set Lv of
“levels” and Le = Lu × Lv for every uv-edge e ∈ E.

Given a set R ⊆ V of terminals we say that an edge set J is an R-cover or that J
covers R if every v ∈ R has some edge in J incident to it. In Edge-Cover problems
we seek an R-cover J that minimizes a given value function, e.g., the edge cost of J . The
min-cost Edge-Cover problem can be solved in polynomial time [9], and it is one of the
most fundamental problems in Combinatorial Optimization, cf. [23].

We consider the Activation Edge-Cover problem. Since we consider multigraphs,
e = uv means that e is a uv-edge, namely, that u, v are the endnodes of e; e = uv ∈ E means
that e is a uv-edge that belongs to E. Under the two assumptions above, the problem can
be formulated without activating functions. For this, replace each edge e = uv by a set of at
most |Lu| · |Lv| uv-edges {e(tu, tv) : (tu, tv) ∈ Lu × Lv, fe(tu, tv) = 1}. Then for any J ⊆ E
the optimal assignment a activating J is given by au = max{teu : e ∈ J is incident to u};
here and everywhere a maximum or a minimum taken over an empty set is assumed to be
zero. Consequently, the problem can be restated as follows.

Activation Edge-Cover
Input: A graph G = (V,E), a set of terminals R ⊆ V , and thresholds {teu, tev} for each
uv-edge e ∈ E.
Output: An assignment a of minimum value a(V) =

∑
v∈V av, such that the edge set

Ea = {e = uv ∈ E : au ≥ teu, av ≥ tev} activated by a covers R.

As we will explain later, Activation Edge-Cover problems are among the most
fundamental problems in network design, that include NP-hard problems such as Set-Cover,
Facility Location, covering problems that arise in wireless networks (node weighted/min-
power/installation problems), and many other problems. The Activation Edge-Cover
problem admit ratio O(ln |R|) by a factor 2 reduction to the Facility Location problem.

To state our main result we define assignments q and c, where cv = qv = 0 if v ∈ V \R
and for u ∈ R:

qu = min
e=uv∈E

teu is the minimum threshold at u of an edge in E incident to u.

cu = min
e=uv∈E

(teu + tev)− qu, so cu + qu is the minimum value of an edge in E incident to u.
Following [19], the quantity maxu∈R cu/qu is called the slope of the instance. We say that
an Activation Edge-Cover instance is θ-bounded if the instance slope is at most θ,
namely if cu ≤ θqu for all u ∈ R; moreover, we assume by default that θ = maxu∈R cu/qu is
the instance slope. Let opt denote the optimal solution value of a problem instance at hand.
For each u ∈ R let eu be some minimum value edge covering u. Then {eu : u ∈ R} is an
R-cover of value at most

∑
u∈R(cu + qu) = (c + q)(R). From this and the definition of θ we

get

0 ≤ opt− q(R) ≤ c(R) ≤ θq(R) ≤ θopt

In particular, (c + q)(R) ≤ (θ + 1)opt. Using this, it is possible to design a greedy algorithm
with ratio 1 + ln(θ + 1). We will show how to obtain a better ratio (the difference is quite
significant when θ ≤ 104 – see Table 1). In what follows, let Hk denote the k-th harmonic

Z. Nutov, G. Kortsarz, and E. Shalom 20:3

number. Our approximation ratios are expressed in the terms of the following two functions
ω(θ) and ω̄(θ) defined for θ > 0, where ω̄ can be viewed as a “discrete version” of ω:

ω(θ) = max
x≥1

ln x
1 + x/θ

ω̄(θ) = max
k∈N

Hk − 1
1 + k/θ

Table 1 Some numerical bounds on 1 + ω(θ), 1 + ω̄(θ), ln θ − ln ln θ, and 1 + ln(θ + 1).

θ 1 2 3 5 10 100 1000 10000 1000000
1 + ω(θ) 1.2785 1.4631 1.6036 1.8146 2.1569 3.6360 5.4214 7.3603 11.4673
1 + ω̄(θ) 1.2167 1.3667 1.4834 1.6637 1.9645 3.3428 5.0808 6.9967 11.0820

ln θ − ln ln θ - 1.0597 1.0046 1.1336 1.4686 3.0780 4.9752 6.9901 11.1898
1 + ln(θ + 1) 1.6932 2.0987 2.3863 2.7918 3.3979 5.6152 7.9088 10.2105 14.8156

In Lemma 8 we show that ω(θ) = W (θ/e), where W (z) is the Lambert W Function
(a.k.a. ProductLog Function), which is the inverse function of z(W) = WeW , c.f. [7, 15].
We are not aware of any known formula for ω̄(θ), but since Hk − 1 ≤ ln k, ω̄(θ) < ω(θ)
for θ > 0. We also observe in Section 4 that in the definition of ω̄(θ) the maximum is
attained for the smallest integer k such that Hk ≥ 2 + θ−1

k+1 . It follows from [15] that
limθ→∞[1 +W (θ/e)− (ln θ − ln ln θ)] = 0, so 1 + ω(θ) (and it seems that also 1 + ω̄(θ)) is
close to ln θ − ln ln θ for large values of θ, although the convergence is very slow; see Table 1.

These functions were implicitly used before to bound approximation ratios. E.g., Robins &
Zelikovsky [22] proved that their algorithm for the Steiner Tree problem in quasi-bipartite
graph achieves ratio 1 + ω(1) + ε < 1.2785; this was improved to 1 + ω̄(1) + ε = 73

60 + ε in [3].
See also [12] and a survey on the Steiner Tree problem in [13]. In [4] is established ratio
73
60 for the Min-Power Edge-Cover problem in bipartite graphs and for unit thresholds.

Our main result is:

I Theorem 1. Activation Edge-Cover admits ratio 1 + ω(θ) for θ-bounded instances.
The problem also admits ratio 1 + ln(∆ + 1), and ratio 1 + ln ∆ if R is an independent set in
G, where ∆ is the maximum number of terminal neighbors of a node in G.

This result is based on a generic simple approximation algorithm for the problem of
minimizing a sum of a decreasing and a sub-additive set functions, which is of independent
interest; it is described in the next section. This result is inspired by the algorithm of Robins
& Zelikovsky [22] for the Steiner Tree problem, and the analysis in [13] of this algorithm.

We note that Slavik [25] proved that the greedy algorithm for Set-Cover achieves
ratio lnn− ln lnn+ Θ(1), while our ratio for Activation Edge-Cover is asymptotically
ln θ − ln ln θ + Θ(1); but we do not see an immediate relation between the two results.

Let us say that v ∈ V is a steady node if the thresholds tev of the edges e incident to
v are all equal to the same number wv, which we call the weight of v. Note that we may
assume that all non-terminals are steady, by replacing each v ∈ V \R by Lv new nodes; see
the so called “Levels Reduction” in [19]. This implies that no two parallel edges are incident
to the same non-terminal. Clearly, we may assume that V \R is an independent set in G. Let
Bipartite Activation Edge-Cover be the restriction of Activation Edge-Cover to
instances when also R is an independent set, namely, when G is bipartite with sides R, V \R.
Note that in this case G is a simple graph and all non-terminals are steady.

We now mention some threshold types in Activation Edge-Cover problems, known
problems arising from these types, and some implications of Theorem 1 for these problems.

MFCS 2019

20:4 Approximating Activation Edge-Cover and Facility Location Problems

Weighted Set-Cover.
This is a particular case of Bipartite Activation Edge-Cover when all nodes are steady
and nodes in R have weight 0. Note that in this case θ is infinite, and we can only deduce
from Theorem 1 the known ratio 1 + ln ∆. Consider a modification of the problem, which we
call θ-Bounded Weighted Set-Cover: when we pick a set v ∈ V \R, we pay wv for v,
and also pay wv/θ for each element in R covered by v that was not yet covered. Then the
corresponding Activation Edge-Cover instance is θ-bounded.

Facility Location.
Here we have a bipartite graph with sides R (clients) and V \R (facilities), weights (opening
costs) w = {wv : v ∈ V \R}, and distances (service costs) d = {duv : u ∈ R, v ∈ V \R}. We
need to choose S ⊆ V \R with w(S) +

∑
u∈R d(u, S) minimal, where d(u, S) = minv∈S duv

is the minimal distance from u to S. This is equivalent to Bipartite Activation Edge-
Cover. Note however that if for some constant θ we have wv ≤ θduv for all uv ∈ E with
u ∈ R and v ∈ V \R, then the corresponding Bipartite Activation Edge-Cover instance
is θ-bounded, and achieves a low constant ratio even for large values of θ, by Theorem 1.

Installation Edge-Cover.
Suppose that the installation cost of a wireless network is proportional to the total height of
the towers for mounting antennas. An edge uv is activated if the towers at u and v are tall
enough to overcome obstructions and establish line of sight between the antennas. This is
modeled as each pair u, v ∈ V has a height demand huv and constants γuv, γvu, such that
a uv-edge is activated by a if the scaled heights γuvau, γvuav sum to at least huv. In the
Installation Edge-Cover problem, we need to assign heights to the antennas such that
each terminal can communicate with some other node, while minimizing the total sum of the
heights. The problem is Set-Cover hard even for 0, 1 thresholds and bipartite G [20]. But
in a practical scenario, the quotient of the maximum tower height over the minimum tower
height is a small constant; say, if possible tower heights are 5, 15, 20, then θ = 4.

Min-Power Edge-Cover.
This problem is a particular case of Activation Edge-Cover when teu = tev for every edge
e = uv ∈ E; note that θ = 1 in this case (in fact, the case θ = 1 is much more general). The
motivation is to assign energy levels to the nodes of a wireless network while minimizing the
total energy consumption, and enabling communication for every terminal. The Min-Power
Edge-Cover problem is NP-hard even if R = V , or if R is an independent set in the input
graph G and unit thresholds [14]. The problem admits ratio 2 by a trivial reduction to
the min-cost case. This was improved to 1.5 in [17], and then to 1.406 in [4], which also
establishes the ratio 73/60 for the bipartite case and for unit thresholds.

From Theorem 1 and the discussion above we get:

I Corollary 2. Min-Power Edge-Cover admits ratio 1 + ω(1) < 1.2785, and the θ-
bounded versions of each of the problems Weighted Set-Cover, Facility Location, and
Installation Edge-Cover, admits ratio 1 + ω(θ).

Let us illustrate this result on the Facility Location problem. One might expect a
constant ratio for any θ > 0, but our ratio 1+ω(θ) is surprisingly low. Even if θ = 100 (service
costs are at least 1% of opening costs) then we get a small ratio 1 + ω(100) < 3.636. Even
for θ = 104 we still get a reasonable ratio 1 + ω(104) < 7.3603. All previous results for the
problem are usually summarized by just two observations: the problem is Set-Cover hard

Z. Nutov, G. Kortsarz, and E. Shalom 20:5

(so has a logarithmic approximation threshold by [21, 10]), and that it admits a matching
logarithmic ratio 1 + ln |R| [6]; see surveys on Facility Location problems by Vygen
[26] and Shmoys [24]. Due to this, almost all work focused on the more tractable Metric
Facility Location problem. Our Theorem 1 implies that many practical non-metric
Facility Location instances admit a reasonable small constant ratio.

Note that our Theorem 1 ratio 1.2785 for θ = 1 significantly improves the previous best
ratio 1.406 of [4] for Min-Power Edge-Cover on general graphs achieved by iterative
randomized rounding; we do not match the ratio 73/60 of [4] for the bipartite case, but note
that the case θ = 1 is much more general than the min-power case considered in [4].

For the case of “locally uniform” thresholds – when for each non-terminal (facility) all
thresholds (service costs) are identical, we show a better ratio, see also Table 1.

I Theorem 3. Bipartite Activation Edge-Cover with locally uniform thresholds admits
ratio 1 + ω̄(θ).

In addition, we consider unit thresholds, and using some new ideas in addition to [4],
improve the “natural” previous best ratio 73/60 ≈ 1.217 of [4] as follows.

I Theorem 4. Activation Edge-Cover with unit thresholds admits ratio 1555
1347 < 1.155.

We note that the proofs of some of our results are non-trivial, although we invested an
effort to simplify matters. In any case, the focus in this paper is not technical, but rather
conceptual. Our main contribution is giving a unified algorithm for a large class of problems
that we identify – θ-Bounded Activation Edge-Cover problems, either substantially
improving known ratios, or showing that many seemingly Set-Cover hard problems may
be tractable in practice. Let us also point out that our main result is more general than
the applications listed in Corollary 2. The generalization to θ-bounded Activation Edge-
Cover problems is different from earlier results; besides finding a unifying algorithmic idea
that generalizes and improves previous results, we are also able to find tractable special cases
in a new direction.

The rest of this paper is organized as follows. In Section 2 we define the Generalized
Min-Covering problem and analyze a greedy algorithm for it, see Theorem 5. In Section 3
we use Theorem 5 to prove Theorem 1. Theorems 3 and 4 are proved using a modified
method in Sections 4 and 5, respectively.

2 The Generalized Min-Covering problem

A set function f is increasing if f(A) ≤ f(B) whenever A ⊆ B; f is decreasing if −f is
increasing, and f is sub-additive if f(A ∪ B) ≤ f(A) + f(B) for any subsets A,B of the
ground-set. Let us consider the following algorithmic problem:

Generalized Min-Covering
Input: Non-negative set functions ν, τ on subsets of a ground-set U such that ν is
decreasing, τ is sub-additive, and τ(∅) = 0.
Output: A ⊆ U such that ν(A) + τ(A) is minimal.

The “ordinary” Min-Covering problem is min{τ(A) : ν(A) = 0}; it is a particular case
of the Generalized Min-Covering problem when we seek to minimize Mν(A) + τ(A) for
a large enough constant M . Under certain assumptions, the Min-Covering problem admits
ratio 1 + ln ν(∅) [16]. Various generic covering problems are considered in the literature,
among them the Submodular Covering problem [27], and several other types, cf. [5].

MFCS 2019

20:6 Approximating Activation Edge-Cover and Facility Location Problems

The variant we consider is inspired by the algorithms of Robins & Zelikovsky [22] for the
Steiner Tree problem, and the analysis in [13] of this algorithm; but, to the best of our
knowledge, the explicit formulation of the Generalized Min-Covering problem given
here is new. Interestingly, our ratio for Activation Edge-Cover with θ = 1 is the same as
that of [22] for Steiner Tree in quasi-bipartite graphs.

We call ν the potential and τ the payment. The idea behind this interpretation and
the subsequent greedy algorithm is as follows. Given an optimization problem, the potential
ν(A) is the value of some “simple” augmenting feasible solution for A. We start with an
empty set solution, and iteratively try to decrease the potential by adding a set B ⊆ U \A
of minimum “density” – the price paid for a unit of the potential. The algorithm terminates
when the price ≥ 1, since then we gain nothing from adding B to A. The ratio of such an
algorithm is bounded by 1 + ln ν(∅)

opt (assuming that during each iteration a minimum density
set can be found in polynomial time). So essentially the greedy algorithm converts ratio
α = ν(∅)

opt into ratio 1 + lnα. However, sometimes a tricky definition of the potential and the
payment functions may lead to a smaller ratio.

Let opt be the optimal solution value of a problem instance at hand. Fix an optimal
solution A∗. Let ν∗ = ν(A∗), τ∗ = τ(A∗), so opt = τ∗ + ν∗. The quantity τ(B)

ν(A)−ν(A∪B) is
called the density of B (w.r.t. A); this is the price paid by B for a unit of potential. The
Greedy Algorithm (a.k.a. Relative Greedy Heuristic) for the problem starts with A = ∅
and while ν(A) > ν∗ repeatedly adds to A a non-empty augmenting set B ⊆ U that satisfies
the following condition, while such B exists:

Density Condition: τ(B)
ν(A)− ν(A ∪B) ≤ min

{
1, τ∗

ν(A)− ν∗

}
.

Note that since ν is decreasing ν(A)− ν(A ∪A∗) ≥ ν(A)− ν(A∗) = ν(A)− ν∗; hence if
ν(A) > ν∗, then τ(A∗)

ν(A)−ν(A∪A∗) ≤
τ∗

ν(A)−ν∗ and there exists an augmenting set B that satisfies
the condition τ(B)

ν(A)−ν(A∪B) ≤
τ∗

ν(A)−ν∗ , e.g., B = A∗. Thus if B∗ is a minimum density set
and τ(B∗)

ν(A)−ν(A∪B∗) ≤ 1, then B∗ satisfies the Density Condition; otherwise, the density of B∗
is larger than 1 so no set can satisfy the Density Condition.

I Theorem 5. The Greedy Algorithm achieves approximation ratio

1 + τ∗

opt ln ν0 − ν∗

τ∗
= 1 + τ∗

opt · ln
(

1 + ν0 − opt
τ∗

)
.

Proof. Let ` be the number of iterations. Let A0 = ∅ and for i = 1, . . . , ` let Ai be the
intermediate solution at the end of iteration i and Bi = Ai\Ai−1. Let νi = ν(Ai), i = 0, . . . , `.
Then:

τ(Bi)
νi−1 − νi

≤ min
{

1, τ∗

νi−1 − ν∗

}
i = 1, . . . , `

Since ν is decreasing

∑̀
i=1

τ(Bi) ≤
∑̀
i=1

min
{

1, τ∗

νi−1 − ν∗

}
(νi−1 − νi)

This is the lower Darboux sum of the function f(ν) =
{

1 if ν ≤ τ∗ + ν∗

τ∗

ν−ν∗ if ν > τ∗ + ν∗
in the

interval [ν`, ν0] w.r.t. the partition ν` < ν`−1 < · · · < ν0. We claim that τ∗ + ν∗ ≥ ν`. Since

Z. Nutov, G. Kortsarz, and E. Shalom 20:7

the algorithm stopped with A`, at least one of the following holds: (i) A` = U ; (ii) ν` ≤ ν∗;
(iii) A∗ has density > 1. If (i) holds then (ii) holds (by the monotonicity of ν), but case (ii) is
trivial. So assume that only (iii) holds. Then τ(A∗)

ν(A`)−ν(A`∪A∗) > 1, thus since ν is decreasing
τ(A∗) ≥ ν` − ν(A ∪A∗) ≥ ν` − ν(A∗). Consequently,

∑`
i=1 τ(Bi) is bounded by∫ ν0

ν`

f(ν)dν =
∫ τ∗+ν∗

ν`

1dν +
∫ ν0

τ∗+ν∗

τ∗

ν − ν∗
dν = τ∗ + ν∗ − ν` + τ∗ ln ν0 − ν∗

τ∗

Let A = A` =
⋃`
i=1Bi be the set computed by the algorithm. Since τ is sub-additive

τ(A) ≤
∑̀
i=1

τ(Bi) ≤ τ∗ + ν∗ − ν(A) + τ∗ ln ν0 − ν∗

τ∗

Thus the approximation ratio is bounded by τ(A)+ν(A)
opt ≤ 1 + τ∗

opt ln ν0−ν∗

τ∗ . J

3 Algorithm for general thresholds (Theorem 1)

Given an instance G = (V,E), t, R of Activation Edge-Cover define the corresponding
Generalized Min-Covering instance U, τ, ν as follows. We put at each node u ∈ V a
large set of “assignment units”, and let U be the union of these sets of “assignment units”.
Note that to every A ⊆ U naturally corresponds the assignment a where au is the number of
units in A put at u. It would be more convenient to define ν and τ in terms of assignments,
by considering instead of a set A ⊆ U the corresponding assignment a.

To define ν and τ , let us recall the assignments q and c from the Introduction. We have
cv = qv = 0 if v ∈ V \R and for u ∈ R:

qu = min
e=uv∈E

teu is the minimum threshold at u of an edge in E incident to u.
cu = min

e=uv∈E
(teu + tev)− qu, so cu + qu is the minimum value of an edge in E incident to u.

We let Q = q(V) = q(R) and C = c(R). Note that c(R′) ≤ θq(R′) for any R′ ⊆ R; in
particular, C ≤ θQ. For an assignment a that “augments” q let Rq+a denote the set of
terminals covered by the edge set Eq+a activated by the assignment q+a. A natural definition
of the potential and the payment functions would be τ(a) = a(V) and ν(a) = (c+q)(R\Rq+a)
but this enable us to prove only ratio 1 + ln(θ + 1). We show a better ratio by adding to the
potential in advance the “fixed” part Q. We define

τ(a) = a(V) ν(a) = Q+ c(R \Rq+a)

It is easy to see that ν is decreasing, τ is sub-additive, and τ(0) = 0.
The next lemma shows that the obtained Generalized Min-Covering instance is

equivalent to the original Activation Edge-Cover instance.

I Lemma 6. If q+a is a feasible solution for Activation Edge-Cover then τ(a)+ν(a) =
Q+a(V). If a is a feasible solution for Generalized Min-Covering then one can construct
in polynomial time a feasible solution for Activation Edge-Cover of value at most
τ(a) + ν(a). In particular, both problems have the same optimal value, and Generalized
Min-Covering has an optimal solution a∗ such that ν(a∗) = Q and thus opt = τ(a∗) +Q.

Proof. If q + a is a feasible Activation Edge-Cover solution then Rq+a = R and thus
ν(a) = Q. Consequently, τ(a) + ν(a) = a(V) +Q.

Let now a be a Generalized Min-Covering solution. The assignment q + a has value
Q + a(V) and activates the edge set Eq+a that covers Rq+a. To cover R \ Rq+a, pick for

MFCS 2019

20:8 Approximating Activation Edge-Cover and Facility Location Problems

every u ∈ R \Rq+a an edge uv with tuvu + tuvv minimum. Let b be an assignment defined by
bu = cu if u ∈ R \Rq+a and bu = 0 otherwise. The set of picked edges can be activated by
an assignment q + b that has value Q+ c(R \Rq+a). The assignment q + a + b activates
both edge sets and has value Q+ a(V) + c(R \Rq+a) = τ(a) + ν(a), as required. J

For the obtained Generalized Min-Covering instance, let us fix an optimal solution
a∗ as in Lemma 6, so ν∗ = Q and opt = τ∗ +Q. Denote ν0 = ν(0) = Q+ c(R), and note
that c(R) ≤ θQ. To apply Theorem 5 we need several bounds given in the next lemma.

I Lemma 7. opt
τ∗
≥ 1 + 1

θ
, ν0

τ∗
≤ (θ + 1)

(opt
τ∗
− 1
)
, and ν0 − ν∗

τ∗
≤ ∆ + 1.

Proof. Note that

τ∗ +Q = opt ≤ ν0 ≤ (θ + 1)Q .

In particular, τ∗ ≤ θQ, and this implies the first bound of the lemma

opt
τ∗

= 1 + Q

τ∗
≥ 1 + 1

θ
.

The second bound of the lemma holds since ν0 ≤ (θ + 1)Q = (θ + 1)(opt− τ∗).
The last bound of the lemma is equivalent to the bound c(R) ≤ τ∗(∆ + 1). Let J be an

inclusion minimal edge cover of R activated by q + a∗. Then J is a collection S of node
disjoint rooted stars with leaves in R. Let S ∈ S. By the definition of c, a∗(S) ≥ max

u∈R∩S
cu,

thus c(R ∩ S) ≤ |R ∩ S|a∗(S) ≤ (∆ + 1)a∗(S). Consequently, c(R) =
∑
S∈S

c(R ∩ S) ≤

(∆ + 1)
∑
S∈S

a∗(S) ≤ (∆ + 1)a∗(V). J

We will show later that the Greedy Algorithm can be implemented to run in polynomial
time; now we focus on showing that it achieves the approximation ratios stated in Theorem 1.
Denote x = θ

(opt
τ∗ − 1

)
and f(x) = ln x

1+x/θ . By Lemma 7 first bound, x ≥ 1. Substituting
Lemma 7 second bound in Theorem 5 second bound we get that the ratio is bounded by

1 + τ∗

opt · ln
(

1 + ν0

τ∗
− opt

τ∗

)
≤ 1 + ln x

1 + x/θ
= 1 + f(x)

Consequently, the ratio is bounded by 1 + max{f(x) : x ≥ 1} = 1 + ω(θ).
Substituting Lemma 7 third bound in Theorem 5 first bound and observing that τ∗ ≤ opt

we get that the ratio is bounded by 1 + ln(∆ + 1). In the case when R is an independent set
in G, it is easy to see that the third bound in Lemma 7 improves to ν0 − ν∗

τ∗
≤ ∆, and we

get ratio 1 + ln ∆ in this case.
In the next lemma we show that ω(θ) = W (θ/e), where W (z) is the Lambert W Function,

which is the inverse function of z(W) = WeW .

I Lemma 8. For any θ > 0, the equation y + 1 = ln(θ/y) has a unique (real) root y(θ), and
0 < y(θ) ≤ θ. Furthermore, ω(θ) = y(θ) = W (θ/e) for any θ > 0.

Proof. Since the function y + 1 is strictly increasing and the function ln(θ/y) is strictly
decreasing, the equation has at most one root; we claim that this root exists and is in the
interval (0, θ]. To see this consider the function h(y) = y + 1− ln(θ/y), and note that h is
continuous and that h(θ) = θ+ 1 > 0 while h(ε) = ε+ 1− ln(θ/ε) < 0 for ε > 0 small enough.

Z. Nutov, G. Kortsarz, and E. Shalom 20:9

Let f(x) = ln x
1+x/θ . Since f(1) = 0 and lim

x→∞
f(x) = 0 (by L’Hospital’s Rule), f(x) attains

a maximum when

f ′(x) = (1 + x/θ)/x− (ln x)/θ
(1 + x/θ)2 = 1 + x/θ − (x/θ) ln x

x(1 + x/θ)2 = 0 .

So f ′(x) = 0 if and only if 1 + x/θ = (x/θ) ln x, and then f(x) = θ/x. Substituting y ← θ/x

we get the equation y + 1 = ln(θ/y), where 0 < y ≤ θ. Thus ω(θ) = y(θ).
To prove that W (θ/e) = y(θ) we show that W (θ/e) + 1 = ln(θ/W (θ/e)), namely, that

W (θ/e) is the root of the equation y+1 = ln(θ/y) that defines y(θ). We haveW (z)eW (z) = z

for any z > 0 (c.f. Eq. 1.5 in [7]), which is equivalent to W (z) + lnW (z) = ln z . Thus
W (θ/e) + lnW (θ/e) = ln(θ/e), which gives W (θ/e) + 1 = ln(θ/W (θ/e)), as claimed. J

Finally, we show that the Greedy Algorithm algorithm can be implemented in
polynomial time. As was mentioned in Section 2 before Theorem 5, we just need to perform
in polynomial time the following two operations for any assignment a: to check the condition
ν(a) > ν∗, and to find an augmenting assignment b of minimum density.

The assignments q and c can be computed in polynomial time, and thus the potential
ν(a) = Q + c(R \ Rq+a) can be computed in polynomial time, for any a. Let a∗ be an
optimal solution as in Lemma 6, and denote τ∗ = τ(a∗) and ν∗ = ν(a∗) = Q. Then the
condition ν(A) > ν∗ is equivalent to ν(a) ≥ Q and thus can be checked in polynomial time.

Now we show how to find an augmenting assignment b of minimum density. Note that
the density of an assignment b w.r.t. a is

τ(b)
ν(a)− ν(a + b) = b(V)

c(R \Rq+a)− c(R \Rq+a+b) = b(V)
c(Rq+a+b \Rq+a) .

I Lemma 9. There exists a polynomial time algorithm that given an instance of Activation
Edge-Cover and an assignment a finds an assignment b of minimum density.

Proof. A star is a rooted tree S = (VS , ES) with at least one edge such that only its root
s may have degree ≥ 2. We say that a star S is a proper star if all the leaves of S are
terminals. We denote the terminals in S by RS = R ∩ VS .

Since q,a are given assignments, we simplify the notation by assuming that R← R\Rq+a
is our set of terminals, and that a ← q + a is our given assignment. Then the density of
b is just b(V)

c(Ra+b) . Let b∗ be an assignment of minimum density, and let J∗ ⊆ Ea+b∗ be an
inclusion minimal Ra+b∗-cover. Then J∗ decomposes into a collection S of node disjoint
proper stars that collectively cover Ra+b∗ . For S ∈ S let bS be the optimal assignment such
that a + bS activates S. Since the stars in S are node disjoint∑

S∈S
bS(V) ≤ b∗(V) and

∑
S∈S

c(RS) = c(Ra+b∗) .

By an averaging argument, bS(V)
c(RS) ≤

b∗(V)
c(Ra+b∗) holds for some S ∈ S, and since b∗ is a

minimum density assignment, so is bS , and bS(V)
c(RS) = b∗(V)

c(Ra+b∗) holds. Consequently, it is
sufficient to show how to find in polynomial time an assignment b such that a + b activates
a proper star S and b(V)

c(RS) is minimal.
We may assume that we know the root v and the value w = bv of an optimal density pair

S,b; there are at most |V ||E| choices and we can try all and return the best outcome. Let
Rw = {u ∈ R : there is a uv-edge e with tev ≤ av + w}. For u ∈ Rw let bu be the minimal
non-negative number for which there is a uv-edge e with av + w ≥ tev and au + bu ≥ teu.

MFCS 2019

20:10 Approximating Activation Edge-Cover and Facility Location Problems

Then our problem is equivalent to finding RS ⊆ Rw with σ(RS) = w+b(RS)
c(RS) minimum. This

problem can be solved in polynomial time, by starting with RS = ∅ and while there is
u ∈ Rw \RS with σ(RS + u) < σ(RS), adding u ∈ Rw \RS to RS with bu/cu minimum. J

The proof of Theorem 1 is complete.

4 Locally uniform thresholds (Theorem 3)

Here we consider the Bipartite Activation Edge-Cover problem with locally uniform
thresholds. This means that each non-terminal v ∈ V \R has weight wv and all edges incident
to v have the same threshold tv; in the θ-bounded version wv ≤ θtv. We consider a natural
greedy algorithm that repeatedly picks a star S that minimizes the average price paid for
each terminal (the quotient of the optimal activation value of S over |RS |), and then removes
RS . Each time we choose a star S we distribute its activation value uniformly among its
terminals, paying in the computed solution the average price for each terminal of S.

We now apply a standard “set-cover” analysis, cf. [28]. In some optimal solution fix an
inclusion maximal star S∗ with center v and terminals RS∗ covered by the algorithm in the
order rk, rk−1, ..., r1, where rk is covered first and r1 last; we bound the algorithm payment
for covering RS∗ . Note that 1 ≤ k ≤ ∆. Denote w = wv and let t be the threshold of the
terminals in S∗. Let S∗i be the substar of S∗ with leaves ri, . . . , r1. At the start of the iteration
in which the algorithm covers ri, the terminals of S∗i are uncovered. Thus the algorithm
pays for covering ri at most the average price paid by S∗i , namely (w+ it)/i = w/i+ t. Over
all iterations, the algorithm pays for covering RS∗ at most wHk + kt, while the optimum
pays w + kt. Thus the quotient between them is bounded by

wHk + kt

w + kt
= w/tHk + k

w/t+ k
≤ θHk + k

θ + k
= 1 + θ(Hk − 1)

θ + k
≤ 1 + max

1≤k≤∆

Hk − 1
1 + k/θ

≤ 1 + ω̄(θ) .

Since any optimal solution decomposes into node disjoint stars, the last term bounds the
approximation ratio, concluding the proof of Theorem 3.

Let g(k) = Hk−1
1+k/θ where k ∈ N, so ω̄(θ) = maxk∈N g(k). We have

g(k + 1)− g(k) = θ

(k + θ)(k + 1 + θ)

(
2−Hk + θ − 1

k + 1

)
.

Thus g(k + 1) ≥ g(k) if and only if 2−Hk + θ−1
k+1 > 0. Consequently, ω̄(θ) = g(k(θ)) where

k(θ) be the smallest integer k such that Hk ≥ 2 + θ−1
k+1 .

For θ = 1 we have k(θ) = 4, so 1 + ω̄(1) = 73/60. The greedy algorithm cannot do better
even for unit thresholds, as shows the example in Fig. 1. The instance has 48 terminals (in
black), and two sets of covering nodes: the upper 12 nodes that form an optimal cover, and
the bottom 13 nodes. The bottom nodes have 3 nodes of degree 4, 4 of degree 3, and 6 of
degree 2. The algorithm may start taking all bottom nodes, and only then add the upper
ones, thus creating a solution of value 73, instead of the optimum 60.

5 Unit thresholds (Theorem 4)

Here we consider the case of unit thresholds when teu = tev = 1 for every uv-edge e. By
a reduction from [4], we may assume that the instance is bipartite. Specifically, for any
optimal assignment a we have au = 1 for all u ∈ R, hence we can consider the residual
instance obtained by removing the terminals covered by edges with both ends in R; in the
new obtained instance R is an independent set, and recall that we may assume that V \R is
an independent set.

Z. Nutov, G. Kortsarz, and E. Shalom 20:11

Figure 1 Tight example of ratio 73
60 for unit thresholds.

One can observe that in the obtained bipartite instance, a is an optimal solution if and
only if av ∈ {0, 1} for all v ∈ V , av = 1 for all v ∈ R, and the set C = {v ∈ V \R : av = 1}
covers R, meaning that R is the set of neighbors of C. Namely, our problem is equivalent
to min{|C|+ |R| : C ⊆ V \R,C covers R}. On the other hand the problem min{|C| : C ⊆
V \R,C covers R} is essentially the (unweighted) Set-Cover problem, and C is a feasible
solution to this Set-Cover instance if and only if C ∪ R is the characteristic set of a
feasible assignment for the Activation Edge-Cover instance. Note that both problems
are equivalent w.r.t. their optimal solutions but may differ w.r.t. approximation ratios, since
if C∗ is an optimal Set-Cover solution then |C|+|R|

|C∗|+|R| may be much smaller than |C|
|C∗| .

Recall that a standard greedy algorithm for Set-Cover repeatedly picks the center
of a largest star and removes the star from the graph. This algorithm has ratio Hk for
k-Set-Cover, where k = ∆ is the maximum degree of a non-terminal (the maximum size
of a set). However, the same algorithm achieves a much smaller ratio 73

60 for Activation
Edge-Cover with unit thresholds; the ratio 73

60 was established in [4], and it also follows
from the case θ = 1 in Theorem 3. In what follows we denote by αk the best known ratio for
k-Set-Cover. We have α1 = α2 = 1 (k = 2 is the Edge-Cover problem) and α3 = 4/3 [8].
The current best ratios for k ≥ 4 are due to [11] (see also [18, 1]). We summarize the current
values of αk for k ≤ 7 in the following table.

Table 2 Current values of αk for k ≤ 7.

α1 α2 α3 α4 α5 α6 α7

1 1 4
3

73
48

26
15

28
15

212
105

We now show how these ratios for k-Set-Cover can be used to approximate the
Activation Edge-Cover problem with unit costs. We start by describing a simple
algorithm with ratio 1 67

360 <
73
60 , that uses only the k = 2 case.

Algorithm 1 ratio 1 67
360

1 A← ∅
1 while there exists a star with at least 3 terminals do
2 add to A and remove from G the node-set of a maximum size star
3 add to A an optimal solution of the residual instance

We claim that the above algorithm achieves approximation ratio 1 67
360 for Activation

Edge-Cover (a similar analysis implies ratio Hk − 1
6 for Set-Cover). In some optimal

solution fix a star S∗ with terminals covered in the order rk, rk−1, ..., r1, where rk is covered
first and r1 last; we bound the algorithm payment to cover these terminals. Let S∗i be the
substar of S∗ with leaves ri, . . . , r1. At the start of the iteration when ri is covered, the
terminals of S∗i are uncovered. Thus the algorithm pays for covering ri at most the density
of S∗i , namely, (i + 1)i = 1 + 1/i. Over all iterations, the algorithm pays for covering RS
at most k +Hk, while the optimum pays k + 1. If k = 1 then the algorithm pays at most

MFCS 2019

20:12 Approximating Activation Edge-Cover and Facility Location Problems

the amount of the optimum. We claim that if k ≥ 2 then in fact the payment is at most
k +Hk − 1/6. If k = 2 then the payment is at most 3 < 3 +H3 − 1/6 (we pay 3 if the star
“survives” all the iterations before the last). For k ≥ 3, the pay for the last 3 terminals is
either: 4/3 for each of for r3, r2 and 2 for r1 (a total of 14/3), or 4/3 for r3 and 3 for r2, r1 (a
total of 13/3). The maximum is 14/3 = 3 +H3 − 1/6. Consequently, the ratio is bounded by

max
k≥2

k +Hk − 1/6
k + 1 = 1 + max

k≥2

Hk − 7/6
k + 1 = 1 + max

k≥2
g(k)

By fundamental computations we have g(k + 1) − g(k) = 13/6−Hk

(k+1)(k+2) . Thus g(k) is in-
creasing if and only if Hk <

13
6 . Since H4 = 23

12 < 13
6 and H5 = 137

60 > 13
6 , we get that

maxk≥2 g(k) = g(5) = 67
360 , so we have ratio 1 67

360 .

We now show ratio 8
7 < 1555

1347 < 7
6 . As in the greedy algorithm for Set-Cover, we

repeatedly remove an inclusion maximal set of disjoint stars with maximum number of leaves
and pick the set of roots of these stars. The difference is that each time stars with more
than k leaves are exhausted, we compute an αk-approximate solution Ak for the remaining
k-Set-Cover instance; we let A0 = ∅. This gives many Set-Cover solutions, each is a
union of the centers of stars picked and Ak; we choose the smallest one, and together with R
this gives a feasible Activation Edge-Cover solution. Formally, the algorithm is:

Algorithm 2 ratio ρ = 1555
1347 < 1.1545

1 for k ← ∆ downto 0 do
2 remove from G a maximal collection of node disjoint (k + 1)-stars

let Ck+1 be the set of the roots of the stars removed so far
3 compute an αk-approximate k-Set-Cover solution Ak in G
4 return the smallest set Ck+1 ∪Ak, k ∈ {∆, . . . , 0}

Since we claim ratio 1555
1347 > 1.15 > 8

7 , at iterations when k ≥ 7 step 3 can be skipped,
since then we can apply a standard “local ratio” analysis [2]. Indeed, when a star with
k ≥ 7 terminals is removed, the partial solution value increases by k + 1 while the optimum
decreases by at least k. Hence for k ≥ 7 it is a k+1

k ≤
8
7 local ratio step. Consequently, we

may assume that ∆ ≤ 6, provided that we do not claim ratio better than 8/7.
Let r = |R|. Let τ be the optimal value to the initial Set-Cover instance. At iteration

k the algorithm computes a solution of value at most αkτ + r + |Ck+1|. Thus we get ratio ρ
if ρ(r + τ) ≥ αkτ + r + |Ck+1| holds for some k ≤ 6. Otherwise,

ρ(r + τ) < α6τ + r

ρ(r + τ) < α5τ + r + |C6|
ρ(r + τ) < α4τ + r + |C5|
ρ(r + τ) < α3τ + r + |C4|
ρ(r + τ) < α2τ + r + |C3|
ρ(r + τ) < α1τ + r + |C2|
ρ(r + τ) < r + |C1|

Denote σ = α1 + · · · + α5 = 1581
240 . Note that |C1| + · · · + |C6| = r, since in this sum the

number of stars with k leaves is summed exactly k times, k = 1, . . . , 6. The first inequality,
and the inequality obtained as the sum of the other six inequalities gives the following two

Z. Nutov, G. Kortsarz, and E. Shalom 20:13

inequalities:

ρ(r + τ) < α6τ + r

6ρ(r + τ) < στ + 7r

Dividing both inequalities by τ and denoting x = r/τ gives:

ρ(x+ 1) < α6 + x

6ρ(x+ 1) < σ + 7x

Since ρ > 1 and 7 > 6ρ this is equivalent to:

6ρ− σ
7− 6ρ < x <

α6 − ρ
ρ− 1

We obtain a contradiction if ρ is the solution of the equation 6ρ−σ
7−6ρ = α6−ρ

ρ−1 , namely

ρ = 7α6 − σ
6α6 − σ + 1 = 1 + α6 − 1

6α6 − σ + 1 = 1 + 208
1347 = 1555

1347 .

This concludes the proof of Theorem 4.

References
1 S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis. Analysis of Approximation Algorithms

for k-Set Cover Using Factor-Revealing Linear Programs. Theory Comput. Syst., 45(3):555–576,
2009.

2 Reuven Bar-Yehuda. One for the price of two: A unified approach for approximating covering
problems. Algorithmica, 27(2):131–144, 2000.

3 J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner Tree Approximation via Iterative
Randomized Rounding. J. ACM, 60(1):6:1–6:33, 2013.

4 G. Calinescu, G. Kortsarz, and Z. Nutov. Improved approximation algorithms for minimum
power covering problems. In WAOA, pages 134–148, 2018.

5 K. Chandrasekaran, R. M. Karp, E. Moreno-Centeno, and S. Vempala. Algorithms for Implicit
Hitting Set Problems. In SODA, pages 614–629, 2011.

6 V. Chvatal. Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

7 R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert
W function. Advances in Computational Mathematics, 5:329–359, 1996.

8 Rong-chii Duh and Martin Fürer. Approximation of k-set cover by semi-local optimization. In
STOC, pages 256–264, 1997.

9 J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
10 U. Feige. A threshold of lnn for approximating set cover. J. of the ACM, 45(4):634–652, 1998.
11 M. Fürer and H. Yu. Packing-Based Approximation Algorithm for the k-Set Cover Problem.

In ISAAC, pages 484–493, 2011.
12 M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps for

hypergraphic steiner tree relaxations. In STOC, pages 1161–1176, 2012.
13 C. Gröpl, S. Hougardy, T. Nierhoff, and H. J. Prömel. Approximation Algorithms for the

Steiner Tree Problem in Graphs. In X. Z. Cheng and D-. Z. Du, editors, Steiner Trees in
Industry, pages 235–279. Kluwer Academic Publishers, 2001.

14 M. Hajiaghayi, G. Kortsarz, V. Mirrokni, and Z. Nutov. Power optimization for connectivity
problems. Math. Programming, 110(1):195–208, 2007.

15 A. Hoorfar and M. Hassani. Inequalities on the Lambert W Function and Hyperpower Function.
Journal of Inequalities in Pure and Applied Mathematics (IPAM), 9(2), 2008. Article 51, 5 pp.

MFCS 2019

20:14 Approximating Activation Edge-Cover and Facility Location Problems

16 D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. Comput. Syst. Sci.,
9(3):256–278, 1974.

17 G. Kortsarz and Z. Nutov. Approximating minimum-power edge-covers and 2, 3-connectivity.
Discrete Applied Mathematics, 157:1840–1847, 2009.

18 A. Levin. Approximating the unweighted k-set cover problem: greedy meets local search. In
WAOA, pages 290–301, 2006.

19 Z. Nutov. Activation Network Design Problems. In T. F. Gonzalez, editor, Handbook on
Approximation Algorithms and Metaheuristics, Second Edition, volume 2, chapter 15. Chapman
& Hall/CRC, 2018.

20 D. Panigrahi. Survivable Network Design Problems in Wireless Networks. In SODA, pages
1014–1027, 2011.

21 R. Raz and S. Safra. A sub constant error probability low degree test, and a sub constant
error probability PCP characterization of NP. In STOC, pages 475–484, 1997.

22 G. Robins and A. Zelikovsky. Tighter Bounds for Graph Steiner Tree Approximation. SIAM
J. Discrete Math., 19(1):122–134, 2005.

23 A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag Berlin,
Heidelberg New York, 2004.

24 D B. Shmoys. Approximation algorithms for facility location problems. In APPROX, pages
265–274, 2000.

25 P. Slavik. A Tight Analysis of the Greedy Algorithm for Set Cover. J. Algorithms, 25(2):237–
254, 1997.

26 J. Vygen. Approximation algorithms for facility location problems (Lecture Notes). Technical
Report 05950, Research Institute for Discrete Mathematics, University of Bonn, 2005.

27 L. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.

28 N. E. Young. Greedy Set-Cover Algorithms. In Encyclopedia of Algorithms, pages 886–889.
Springer, 2016.

Distributed Minimum Vertex Coloring and
Maximum Independent Set in Chordal Graphs
Christian Konrad
Department of Computer Science, University of Bristol, UK
christian.konrad@bristol.ac.uk

Viktor Zamaraev
Department of Computer Science, Durham University, UK
viktor.zamaraev@durham.ac.uk

Abstract
We give deterministic distributed (1 + ε)-approximation algorithms for Minimum Vertex Coloring
and Maximum Independent Set on chordal graphs in the LOCAL model. Our coloring algorithm
runs in O(1

ε
logn) rounds, and our independent set algorithm has a runtime of O(1

ε
log(1

ε
) log∗ n)

rounds. For coloring, existing lower bounds imply that the dependencies on 1
ε
and logn are best

possible. For independent set, we prove that Ω(1
ε
) rounds are necessary.

Both our algorithms make use of the tree decomposition of the input chordal graph. They
iteratively peel off interval subgraphs, which are identified via the tree decomposition of the input
graph, thereby partitioning the vertex set into O(logn) layers. For coloring, each interval graph
is colored independently, which results in various coloring conflicts between the layers. These
conflicts are then resolved in a separate phase, using the particular structure of our partitioning. For
independent set, only the first O(log 1

ε
) layers are required as they already contain a large enough

independent set. We develop a (1 + ε)-approximation maximum independent set algorithm for
interval graphs, which we then apply to those layers.

This work raises the question as to how useful tree decompositions are for distributed computing.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases local model, approximation algorithms, minimum vertex coloring, maximum
independent set, chordal graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.21

Related Version This work has previously been presented as a Brief Announcement at PODC
2018 [28]. A full version of the paper is available at [29], https://arxiv.org/abs/1805.04544.

Funding Christian Konrad: C.K. carried out most work on this paper while being at the University
of Warwick. He was supported by the Centre for Discrete Mathematics and its Applications (DIMAP)
at Warwick University and by EPSRC award EP/N011163/1.
Viktor Zamaraev: V.Z. is supported by EPSRC award EP/P020372/1.

1 Introduction

The LOCAL Model. In the LOCAL model of distributed computation [31], the input graph
G = (V,E) with n = |V | represents a communication network, where every network node
hosts a computational entity. Nodes have unique IDs. A distributed algorithm is executed
on all network nodes simultaneously and proceeds in discrete rounds. Initially, besides
their own IDs, nodes only know their neighbors. Each round consists of a computation
and a communication phase. In the computation phase, nodes are allowed to perform
unlimited computations. In the communication phase, nodes can send individual messages of
unbounded sizes to all their neighbors (and receive messages from them as well). The runtime
of the algorithm is the total number of communication rounds, and the objective is to design
algorithms that run in as few rounds as possible. The output is typically distributed: For

© Christian Konrad and Viktor Zamaraev;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
mailto:viktor.zamaraev@durham.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.21
https://arxiv.org/abs/1805.04544
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Distributed Coloring and Independent Set in Chordal Graphs

vertex colorings, it is required that upon termination of the algorithm, every node knows
its own color, and for independent sets, every node knows whether it participates in the
independent set.

Network Decompositions. Network decompositions (see for example [3, 35, 32]) are a
widely employed tool in distributed computing. They allow us to partition the vertex set of
a graph into connected clusters of bounded diameter such that the cluster graph, i.e., the
graph obtained by contracting the clusters into vertices, has small chromatic number. The
Linial-Saks network decomposition method [32] guarantees that the cluster graph can be
colored with O(logn) colors (and provides such a coloring), and no better method is known
with regards to the number of colors. When employing a network decomposition algorithm
for the Minimum Vertex Coloring (MVC) problem, the chromatic number of the cluster
graph directly translates to the achieved approximation factor: Iterate through the color
classes of the cluster graph and make each cluster color itself optimally using exponential
time computations (recall that MVC is NP-hard) and using a color palette that is disjoint to
the colors employed by already colored neighboring clusters. Indeed, this techniques yields
the currently best known distributed algorithm for MVC (with approx. factor O(logn)) [4].

Tree Decompositions. Our objective is to obtain distributed coloring algorithms with
improved approximation guarantees, i.e., sub-logarithmic in n. To this end, we follow a route
that at a first glance is very similar to the approach outlined above. However, instead of
employing network decompositions, we make use of the tree decomposition of the input graph.
A tree decomposition is a decomposition of the vertex set into (not necessarily disjoint) bags
that are arranged in a tree such that every edge of the input graph is contained in the induced
subgraph of at least one bag, and all bags that contain a specific vertex form a subtree in
the tree decomposition. The key advantage of employing tree decompositions rather than
network decompositions is that trees have small chromatic number and can efficiently be
colored distributively. There are however multiple obstacles: First, there are graphs whose
tree decompositions necessarily contain at least one bag whose diameter (maximum distance
in the original graph between any two nodes in the bag) is Ω(n) (e.g. on a ring [16]). In
these graphs, network nodes thus cannot learn the set of bags they are contained in in a
small number of rounds and it appears impossible that nodes can obtain a local view of a
coherent global tree decomposition. Second, the fact that every node may appear in multiple
bags renders the coloring process more difficult since we cannot simply color independent
parts of the tree simultaneously as some nodes may appear in multiple parts.

Our Results. Despite these obstacles, in this paper we show that the tree decomposition
route can successfully be taken for the class of chordal graphs. A graph is chordal, if every
cycle on at least four nodes contains a chord, i.e., an edge different from the edges of the cycle
connecting two nodes of the cycle. Chordal graphs admit a tree decomposition where every
bag has diameter 1, i.e., every bag is a clique. We first show that the tree decomposition
of a chordal graph can efficiently be computed in the distributed setting. We then employ
a peeling process on the tree decomposition that partitions the chordal graph into interval
subgraphs, which can be colored efficiently distributively using a line of work by Halldórsson
and Konrad [24, 25]. Particular care needs to be taken where these subgraphs meet, and
we employ a color rotation technique to correct the colors at their boundaries. Perhaps
surprisingly, this approach allows us to obtain a (1+ε)-approximation algorithm on this graph
class, which constitutes our main result (Theorem 14). Our algorithm runs in O(1

ε logn)
rounds and prior work shows that the dependencies on both 1

ε and logn are optimal.

C. Konrad and V. Zamaraev 21:3

We further adapt this approach to the Maximum Independent Set (MIS) problem. In
general graphs, a (1 + ε)-approximation to MIS can be obtained in O(1

ε logn) rounds [11, 21].
We show that using the tree decomposition approach outlined above, a (1 + ε)-approximation
on chordal graphs can be obtained in O(1

ε log(1
ε) log∗ n) rounds (Theorem 16), and we

prove that Ω(1
ε) rounds are necessary (Theorem 17).

Related Work: Distributed Vertex Coloring. Distributed vertex coloring has been studied
since more than 30 years (e.g. [14, 23]). Given a graph G = (V,E), a (legal) c-coloring of G
is an assignment γ : V → {1, 2, . . . , c} of at most c colors to the nodes of G such that every
pair of adjacent nodes receives different colors. The algorithmic challenge lies in computing
colorings with few colors. The chromatic number χ(G) is the smallest c such that there
is a c-coloring. The MVC problem asks to find a χ(G)-coloring. This is a difficult task,
even in the centralized setting: In general graphs, MVC is NP-complete [27] and hard to
approximate within a factor of n1−ε, for any ε > 0 [39].

Most research papers on distributed vertex coloring address the problem of computing
a (∆ + 1)-coloring (e.g. [14, 38, 37, 5, 8, 26, 18, 12]) (other objectives, such as ∆-colorings
[36, 20] and other degree-based objectives [1] have been studied as well). Only few research
papers address the MVC problem in a distributed model itself. On general graphs, the best
distributed algorithm computes a O(logn)-approximation in O(log2 n) rounds [4] and is based
on the network decomposition of Linial and Saks [32]. This algorithm uses exponential time
computations, which due to the computational hardness of MVC is necessary unless P = NP .
Barenboim et al. [7] gave a O(nε)-approximation algorithm that runs in exp(O(1/ε)) rounds.
Both the exponential time computations and the relatively large best known approximation
factor of O(logn) on general graphs motivate the study of special graph classes. Besides
results on graph classes with bounded chromatic number (planar graphs [23] and graphs of
bounded arboricity [6, 22]), the only natural graph class with unbounded chromatic number
that has been addressed in the literature are interval graphs, which are the intersection graphs
of intervals on the line. Halldórsson and Konrad gave a (1 + ε)-approximation algorithm for
MVC on interval graphs that runs in O(1

ε log∗ n) rounds [25] (see also [24]). This work is
the most relevant related work to our results.

Related Work: Distributed Independent Sets. An independent set in a graph G = (V,E)
is a subset of non-adjacent nodes I ⊆ V . Algorithms for independent sets are usually designed
with one of the following two objectives in mind: (1) Compute a maximal independent set,
i.e., an independent set I that cannot be enlarged by adding a node outside I to it, or (2)
Compute a Maximum Independent Set (MIS) (or an approximation thereof), i.e., an
independent set of maximum size, which is the variant studied in this paper. Similar to
MVC, the MIS problem is NP-complete [27] and hard to approximate within a factor of
n1−ε, for every ε > 0 [39]. In the distributed setting, Luby [33] and independently Alon
et al. [2] gave distributed O(logn) rounds maximal independent set algorithms more than
30 years ago. Improved results are possible for graphs with bounded maximum degree
([8, 19]) or on specific graph classes (e.g. [14, 38]). Using exponential time computations,
a (1 + ε)-approximation to MIS can be computed in general graphs in O(1

ε logn) rounds
[11] (see also [21]). Deterministic distributed MIS algorithms may be inferior to randomized
ones: It is known that every deterministic MIS O(1)-approximation algorithm on a path
requires Ω(log∗ n) rounds [30, 15], while a simple randomized O(1)-round O(1)-approximation
algorithm exists [15].

MFCS 2019

21:4 Distributed Coloring and Independent Set in Chordal Graphs

Outline. In Section 2, we give notation and definitions. We then discuss in Section 3 how
network nodes can obtain coherent local views of the tree decomposition. A centralized
(1 + ε)-approximation MVC algorithm is then presented in Section 4, and distributed
implementation of this algorithm is given in Section 5. Due to space restrictions, we only
briefly sketch our results on MIS in Section 6 and defer a complete exposition to the full
version of this paper [29]. Finally, we conclude in Section 7.

2 Preliminaries

Basic Notation and Definitions. Let G = (V,E) be a graph. For a node v ∈ V , we denote
by ΓG(v) the neighborhood of v in G. The degree of v in G is defined as degG(v) := |ΓG(v)|.
By ΓG[v] we denote the set ΓG(v) ∪ {v}. Similarly, for a set of nodes W ⊆ V we write
ΓG(W) := (

⋃
v∈W ΓG(v)) \W , and ΓG[W] := ΓG(W) ∪W . The distance-k neighborhood

of v in G, i.e., the set of nodes at distance at most k from v in G, is denoted ΓkG(v). The
subgraph of G induced by a set of nodes U is denoted by G[U]. A set of pairwise adjacent
(resp., non-adjacent) nodes in G is called a clique (resp., an independent set). A clique (resp.,
an independent set) S is maximal if S ∪ {v} is not a clique (resp., an independent set), for
every v ∈ V \ S. A maximum independent set in G is an independent set of maximum size.
The cardinality of a maximum independent set is called the independence number of G. A
graph is chordal if every cycle of length at least four contains a chord, i.e., an edge that
connects two non-consecutive nodes of the cycle. It is a well-known fact that an n-node
chordal graph has at most n maximal cliques.

Tree Decomposition. A tree decomposition of an n-node graph G = (V,E) is a forest
T = (S, E) whose vertex set S = {S1, S2, . . . , Sn} is a family of subsets of V , and:
1. every node1 v ∈ V belongs to at least one subset in S;
2. for every edge uv ∈ E, there is a subset Si ∈ S containing both nodes u and v;
3. for every node v ∈ V the family φ(T , v) ⊆ S of subsets containing v induces a tree in T ,

which we denote T (v), i.e., T (v) := T [φ(T , v)].

When the tree decomposition is clear from the context we will write φ(v) instead of φ(T , v).
It follows from the definition that G is a subgraph of the intersection graph of the trees T (v).

Tree Decomposition of Chordal Graphs. It is well known (see, e.g., [10]) that a graph G
is chordal if and only if it has a tree decomposition T = (C, E) whose vertex set C is the
family of maximal cliques of G. We call such a tree decomposition a clique forest of chordal
graph G. Since every vertex of the clique forest is a clique, G coincides with the intersection
graph of the subtrees T (v) of clique forest T . In other words, a clique forest of a chordal
graph G is a forest T = (C, E) whose vertex set C is the family of maximal cliques of G, such
that T [φ(v)] is a tree for every v. If a clique forest of a chordal graph is linear, i.e., a forest
with every component being a path, then the graph is interval.

I Theorem 1 ([17]). A chordal graph G is interval iff its clique forest is a linear forest.

1 For convenience, throughout the paper, we say node when referring to a vertex of an underlying graph,
and we say vertex when referring to a vertex of its tree decomposition.

C. Konrad and V. Zamaraev 21:5

Binary Paths. We say that a path v1, . . . , vk in G is binary, if degG(vi) ≤ 2, for every
i ∈ [k] (note that this implies that degG(vi) = 2, for every i ∈ {2, 3, . . . , k− 1}). We say that
a binary path v1, . . . , vk is a pendant path, if either degG(v1) = 1 or degG(vk) = 1 (or both).
For convenience, we consider an isolated vertex as a pendant path. A binary path v1, . . . , vk
is an internal path, if degG(vi) = 2, for every i ∈ [k]. A binary/pendant/internal path is
maximal if it cannot be enlarged by adding a vertex outside the path to it.

Let G = (V,E) be a chordal graph with clique forest T = (C, E). Let P = C1, . . . , Ck be
a binary path in T . We define the diameter of P to be the maximum distance in G between
nodes in C1 ∪ . . . ∪ Ck, that is, diam(P) = max

u∈Ci,v∈Cj ,i,j∈[k]
distG(u, v). Similarly, we define

the independence number of P to be the independence number of G[C1 ∪ . . . ∪ Ck].

Distributed Algorithms for Interval Graph. Halldórsson and Konrad [25] gave a determin-
istic distributed algorithm for coloring interval graphs. For every ε ≥ 2

χ(G) , their algorithm
computes a (1+ε)-approximation to MVC in O(1

ε log∗ n) rounds. We will reuse this algorithm
and denote it by ColIntGraph(ε).

3 Computing Local Views of the Clique Forest

Our algorithms make use of the clique forest of the input chordal graph. For network nodes
to obtain a coherent view of the clique forest, we make use of the following maximum weight
spanning forest characterization: With a chordal graph G we associate the weighted clique
intersection graph WG whose vertex set is the family C of maximal cliques of G, and any
two cliques C1, C2 ∈ C with a nonempty intersection are connected by an edge with weight
|C1 ∩ C2|. Then:

I Theorem 2 ([9]). A forest T = (C, E) is a clique forest of a chordal graph G if and only if
it is a maximum weight spanning forest of WG.

Observe that while the vertex set of a clique forest is unique, i.e., the family of maximal
cliques of G, the edge set is not necessarily unique as there may be multiple different maximum
weight spanning forests in WG. To obtain coherent local views of a clique forest, it is thus
necessary that nodes agree on a unique maximum weight spanning forest in WG. We achieve
this by defining a linear order < on the edges of WG that respects the partial order given by
the edge weights, and preferring edges that are larger with respect to <. To this end, we
first assign to every maximal clique C ∈ C a word σ(C) over the alphabet of the identifiers
of nodes, where σ(C) consists of the identifiers of the nodes in C listed in increasing order.
Further, we associate with every edge e = CiCj a triple (we, le, he), where we is the weight
of e, i.e., we = |Ci ∩ Cj |, le = lexmin{σ(Ci), σ(Cj)}, and he = lexmax{σ(Ci), σ(Cj)}. Now
for two edges e and f we define e < f if and only if either we < wf , or we = wf and le ≺ lf ,
or we = wf , le = lf and he ≺ hf , where ≺ is the lexicographical order. Clearly, < orders the
edges of WG linearly while preserving the weight order.

In what follows, when we say that T is the clique forest of a chordal graph G, we implicitly
assume that it is the clique forest uniquely specified by the above mechanism. Figure 2
demonstrates the weighted clique intersection graph and the clique forest of the chordal
graph presented in Figure 1. A maximum weight spanning forest has the following easily
verifiable local optimality property:

I Lemma 3. Let G = (V,E) be a weighted graph with a unique maximum weight spanning
forest F , and let U ⊆ V be a set of nodes inducing a tree T in F . Then G[U] has a unique
maximum weight spanning tree, which coincides with T .

MFCS 2019

21:6 Distributed Coloring and Independent Set in Chordal Graphs

1 2

3 4

5 6

7

8

9

10

11

12

13

14

15

16

19

20

21

17 18

22

23

Figure 1 Chordal graph G.

1, 2, 3C1

2, 3, 4

C2

4, 5, 6

C3

5, 6, 7C4

2, 4, 8

C5

8, 9, 10

C6

9, 10, 11

C7

11, 12, 13

C8

12, 13, 14

C9

14, 15, 16

C10

15, 16, 19

C11

19, 20, 21

C13

16, 17, 18

C12

21, 22

C14

21, 23

C15

2
1

1

2

1

2 1 2 1 2 1 2 1

1 1

1

1

1

Figure 2 The weighted clique intersection graph WG of chordal graph G presented in Fig. 1.
The vertices of WG are the maximal cliques of G, and two vertices Ci, Cj of WG with a nonempty
intersection are connected by an edge with weight |C1 ∩ C2|. The bold edges are the edges of
the clique forest T of G., i.e., the edges of the unique maximum weight spanning forest of WG

corresponding to the linear order of edges <.

1 2

3 4

5 6

7

8

9

10

11

12

13

14

15

16

19

20

21

17 18

22

23

Figure 3 Local view of graph G from node 10. The non-gray nodes are the nodes in Γ3
G[10], and

the black nodes are the nodes in Γ2
G[10].

1, 2, 3C1

2, 3, 4

C2

4, 5, 6

C3

2, 4, 8

C5

8, 9, 10

C6

9, 10, 11

C7

11, 12, 13

C8

12, 13, 14

C92
1

1
1

2 1 2 1 2

Figure 4 Local view of the graph WG from node 10. The cliques in C′ =
{C1, C2, C3, C5, C6, C7, C8, C9} are exactly the maximal cliques of G that contain at least one
node from Γ2

G[10]. The bold edges are the edges of the unique maximum weight spanning forest of
WG[C′], which coincides with the subtree of T induced by C′.

C. Konrad and V. Zamaraev 21:7

Applied to a chordal graph and its clique forest, we thus obtain:

I Lemma 4. Let G = (V,E) be a chordal graph and T = (C, E) its clique forest. Then for any
v ∈ V the unique maximum weight spanning forest in WG[φ(v)] equals to tree T (v) = T [φ(v)].

This suggests a method for a node v ∈ V to compute a local view T ′ of clique forest T :
Suppose that v knows its distance d-neighborhood ΓdG[v]. For every u ∈ Γd−1

G [v], v computes
the family φ(u) of maximal cliques containing u (notice that a maximal clique that contains
a node at distance d− 1 from v may include nodes at distance d). Then, v computes the
maximum weight spanning forest in every WG[φ(u)] and adds the edges of this forest to
T ′. Figures 3 and 4 illustrate construction of a local view of the clique forest of the chordal
graph presented in Figure 1.

4 Minimum Vertex Coloring: Centralized Algorithm

In this section, we give a centralized (1 + ε)-approximation algorithm for MVC on chordal
graphs. This algorithm will later be implemented in the LOCAL model in Section 5.

4.1 Algorithm

Algorithm 1 A centralized (1 + ε)-approximation coloring algorithm for chordal graphs.

Input: G = (V,E) is an n-node chordal graph with clique forest T = (C, E); a parameter ε > 2
χ(G) .

Set k = 2/ε.
(1) Pruning Phase.

Let T1 = T , U1 = V .
for i = 1, 2, . . . , dlogne do:

a. Let Li be the set that contains all maximal pendant paths of Ti, and all maximal internal
paths of Ti of diameter at least 3k.

b. Let Vi ⊆ Ui be such that for each v ∈ Vi, T (v) is a subpath of a path in Li.
c. Let Ui+1 = Ui \ Vi, and let Ti+1 be the forest obtained from Ti by removing all paths in
Li. As proved in Lemma 5, Ti+1 is the clique forest of G[Ui+1].

(2) Coloring Phase.
for i = 1, 2, . . . , dlogne do: Color G[Vi] with at most (1 + 1/k)χ(G[Vi]) + 1 colors.

(3) Color Correction Phase.
for i = dlogne − 1, dlogne − 2, . . . , 1 do:

for each path P ∈ Li do:
(a) Let W ⊆ Vi be the set of nodes w such that T (w) is a subpath of P.
(b) Let W ′ ⊆

⋃
l>i

Vl be the subset of nodes that have neighbors in W .
(c) As we will show, G[W ∪W ′] is an interval graph. Using Lemma 8, we recolor those

nodes of W that are at distance at most k + 3 from a node in W ′ using at most
(1 + 1/k)χ(G[Vi]) + 1 colors to resolve all coloring conflicts between W and W ′.

Our algorithm (Alg. 1) consists of the pruning, the coloring, and the color correction
phases: In the pruning phase, the node set V is partitioned into at most dlogne layers
V1, . . . , Vdlogne such that, for every i ∈ [dlogne], G[Vi] constitutes an interval graph. In each
step of the pruning phase, we remove every node v ∈ Ui from the current graph G[Ui] (we set
U1 = V and hence G[U1] = G) whose corresponding subtree T (v) in the clique forest Ti of
G[Ui] is a subpath of a pendant path or an internal path of diameter at least 3k. The set of
removed nodes is denoted Vi, and G[Vi] forms an interval graph (which follows from Lemma 7,
[29]). We prove in Lemma 5 that the clique forest Ti+1 of the resulting graph G[Ui+1], where

MFCS 2019

21:8 Distributed Coloring and Independent Set in Chordal Graphs

Ui+1 = Ui \ Vi, can be obtained by removing all pendant paths and all internal paths of
diameter at least 3k from Ti. We also show in Lemma 6 that the pruning process ends after
at most dlogne iterations and thus creates at most dlogne layers.

In the coloring phase, each interval graph G[Vi] is colored with at most (1+1/k)χ(G[Vi])+1
colors. In the centralized setting, it would be easy to color these interval graphs optimally.
However, since we will implement the algorithm later in the distributed setting, and an
optimal coloring on interval graphs cannot be computed distributively in few rounds, we
impose a weaker quality guarantee that can be achieved distributively. The colorings of
different layers are computed independently from each other and do not give a coherent
coloring of the entire input graph.

In the color correction phase, these incoherences are corrected. To this end, the colors of
Vdlogne remain unchanged and we correct the layers iteratively, starting with layer dlogne− 1
and proceeding downwards to layer V1. In a general step, for every path P ∈ Li, we show
that the subgraph induced by the nodes W ⊆ Vi whose subtrees are subpaths of P forms an
interval graph together with those nodes in

⋃
j≥i+1 Vj that have coloring conflicts towards

W (Lemma 8, [29]). Notice that each path P connects to at most two maximal cliques in
Ti. The neighborhood of W thus consists of subsets of these (at most two) cliques, which
further implies that all conflicting nodes in

⋃
j≥i+1 Vj are included in these cliques as well.

We then reuse a recoloring result previously proved by Halldórsson and Konrad [25], which
shows that we can resolve all conflicts by changing the colors of those nodes in W that are
at distance at most k + 3 from the (at most) two conflicting cliques.

4.2 Analysis
The analysis of our algorithm relies on various technical lemmas that are given in the full
version of this paper [29]. We now give the most important lemmas that allow us to prove
correctness of our algorithm. Concerning the pruning step, we show that Ti is indeed the
clique forest of G[Ui] in Lemma 5, and we prove that at most dlogne iterations are required
to complete the pruning process2 in Lemma 6.

I Lemma 5. For every i, Ti is the clique forest of G[Ui].

I Lemma 6. Phase 1 in Alg. 1 requires at most dlogne iterations, i.e.,
⋃

1≤i≤dlogne Vi = V .

Next, we address the color correction phase. In each iteration of the phase we consider
every path P ∈ Li independently. The subgraph induced by the set of nodes W ⊆ Vi whose
corresponding trees are subpaths of P is legally colored in the coloring phase. This coloring
may be inconsistent with the coloring of subgraph G[Ui+1]. However, we prove in Lemma 8,
[29], that the set W ′ ⊆

⋃
s>i Vs = Ui+1 of neighbors of W in G[Ui+1] (i.e., the nodes in Ui+1

that could potentially cause conflicts) is the union of at most two cliques, which are included
in the end vertices of the clique forest of interval graph G[W ∪W ′]. In order to resolve these
conflicts we carry out a recoloring process on interval graph G[W ∪W ′] with fixed colorings
of its “boundary” cliques. To this end, we reuse a result by Halldórsson and Konrad [25]:

I Lemma 7 (Halldórsson and Konrad [25]). Let G = (V,E) be an interval graph with its
clique forest T = (C, E) being a path P = C1, C2, . . . , Ck such that distG(u, v) ≥ r for every
pair of nodes u ∈ C1, v ∈ Ck, for an integer r ≥ 5. Suppose that cliques C1 and Ck are
legally colored using at most c colors. Then the coloring of G[C1 ∪ Ck] can be extended to a
legal coloring of G with at most max{b(1 + 1

r−3)χ(G)c+ 1, c} colors.

2 Recently, inspired by Miller and Reif’s parallel tree contraction [34], a very similar procedure was
developed by Chang and Pettie [13].

C. Konrad and V. Zamaraev 21:9

Equipped with Lemma 7, we now prove correctness of the color correction phase.

I Lemma 8 (Recoloring Lemma). Consider the color correction phase (Step 3) of Algorithm
1. Let P ∈ Li be a path and let W ⊆ Vi be the subset of nodes whose corresponding subtrees
are included in P. Further, let W ′ ⊆

⋃
s>i Vs = Ui+1 be the nodes in Ui+1 that have neighbors

in W . Suppose that W ′ is colored using colors from the set [b(1 + 1/k)χ(G) + 1c]. Then, we
can recolor those nodes of W that are at distance at most k + 4 from W ′ in G with colors
from the set [b(1 + 1/k)χ(G) + 1c] so that G[W ∪W ′] is legally colored.

Proof. By Lemma 8, [29], G[W ∪W ′] is an interval graph and its clique forest is a path. Let
P ′ = C1, C2, . . . , Cr denote this path. The same lemma also states that W ′ ⊆ C1 ∪ Cr.

Let i be the minimum index such that dist(u, v) ≥ k + 3, for every u ∈ W ′ ∩ C1 and
v ∈ Ci. Then, by Lemma 7, the nodes of the cliques C2, . . . , Ci−1 can be recolored using at
most b(1 + 1/k)χ(G)c+ 1 colors to resolve the coloring conflicts between W ′ ∩ C1 and W .
Similarly, let j be the maximum index such that dist(u, v) ≥ k + 3, for every u ∈W ′ ∩ Cr
and v ∈ Cj . Then, by Lemma 7, the nodes of the cliques Cj+1, . . . , Cr−1 can be recolored
using at most b(1 + 1/k)χ(G)c+ 1 colors to resolve the conflicts between W ′∩Cr and W . J

I Theorem 9. For any ε > 2
χ(G) , Algorithm 1 is a (1 + ε)-approximation MVC algorithm

on chordal graphs.

Proof. First, we show by induction that the algorithm uses at most (1 + 1/k)χ(G) + 1 colors.
This is clearly true for Gdlogne. The induction step follows from Lemma 8. Now, using the
assumption ε > 2

χ(G) , we obtain: (1+1/k)χ(G)+1 ≤ (1+ε/2)χ(G)+εχ(G)/2 = (1+ε)χ(G),
which proves the approximation factor of the algorithm. J

5 Minimum Vertex Coloring: Distributed Algorithm

We give now a LOCAL model implementation of Algorithm 1 that runs in O
(1
ε logn

)
rounds.

5.1 Algorithm
The global behavior of our distributed algorithm, Algorithm 2, is identical to that of our
centralized Algorithm 1. The main challenge lies in the coordination of the network nodes.
One particular difficulty stems from the fact that network nodes are not aware of n, the total
number of nodes, and thus do not know when the dlogne iterations of the pruning phase have
completed. For this reason, nodes execute the three phases of Algorithm 1 asynchronously.

We will first present the pseudocode of our distributed algorithm, which is executed
independently on every node v. Then we will describe each of the three phases in detail.

Algorithm 2 A distributed (1 + ε)-approximation algorithm, code for node v.

Input: a parameter ε, let k = d2/εe

1. Pruning Phase. (lv, parentv, childrenv)← pruneTree()

2. Coloring Phase. Run ColIntGraph(1
k

) on layer lv and store color in cv

3. Color Correction Phase.
if parentv 6= ⊥ then

Wait until message SetColor(c) received from parentv; Set cv ← c;
end if
CorrectChildren(childrenv, k)

MFCS 2019

21:10 Distributed Coloring and Independent Set in Chordal Graphs

The Pruning Phase. In the pruning phase, the subroutine PruneTree is invoked and
returns parameters lv, parentv, and childrenv, where lv is the layer of node v, and parentv
and childrenv are variables necessary for the coordination of the color correction phase and
are defined and explained later. The pseudocode of PruneTree is given in Algorithm 3.

Algorithm 3 PruneTree(), code for node v.

Initialization:
Let i = 1, lv = −1, childrenv = {}, and parentv = ⊥
while lv = −1 do:

1. Collect Γ10k
G (v) together with variables lu and IDu, for every u ∈ Γ10k

G (v)
2. Compute local view of the clique forest Ti = (Ci, Ei) of the subgraph of G induced by the

nodes u ∈ Γ10k
G (v) with lu = −1

3. if Ti(v) is a subpath of a pendant path in Ti, or Ti(v) is a subpath of a binary path in Ti of
diameter at least 3k then
lv = i; parentv = parent of v;

else
Add children in layer i (if there are any) to childrenv[i]

end if
4. i = i+ 1

return (lv, parentv, childrenv)

In each iteration of the while loop of PruneTree, one layer is removed from the clique
forest of the input graph. To describe the global behavior of the algorithm, we will reuse the
naming conventions already used in Algorithm 1. Let U1 = V , and let Vi ⊆ Ui be the set of
nodes removed in iteration i, i.e., assigned layer index i. Let also Ui+1 = Ui \ Vi, and let Li
be the set of maximal paths removed from the clique forest Ti of G[Ui].

In each iteration i, first, each node v collects its distance-10k neighborhood. Then, v
computes its local view of the clique forest Ti of the graph induced by the nodes that have
not yet been removed from the graph, i.e., of G[Ui] (as in Section 3). Next, node v is removed
from G[Ui] and added to the current layer Vi if its corresponding subtrees Ti(v) is entirely
contained in either a pendant path or a binary path of large enough diameter. This step
is identical to Algorithm 1, and the exact same partitioning is computed. Node v that is
removed in the current iteration stores its parent in parentv, and nodes that remain in the
graph potentially store some of the removed nodes as their children in childrenv.

I Definition 10 (Parent, Child). Let v ∈ Vi and let P be the maximal binary path in Ti that
contains Ti(v). If P is a component of Ti then we define parentv := ⊥. Otherwise, let C be
the vertex outside P in Ti such that C is adjacent to an end vertex of P and distG(v, C) is
minimal. Let c be the node with maximum ID in C. Then the parent of v is defined to be c,
if distG(v, C) ≤ k + 3, and ⊥ otherwise. If c is the parent of v, then v is a child of c.

The parent of node v is responsible for recoloring v in the color correction phase. Notice
that a node v does not have a parent if the closest maximal clique outside v’s path P is at
least at distance k + 4 from v. In this case, the color that v will receive in the coloring phase
is final and no color correction is needed for v. Recall that in the color correction phase
of Algorithm 1, we only need to recolor nodes that are at distance at most k + 3 from the
cliques that contain nodes with color conflicts. Finally, the subroutine returns the node’s
level lv, its parent parentv, and its children childrenv.

C. Konrad and V. Zamaraev 21:11

The Coloring Phase. Notice that all nodes of layer i return from PruneTree in the same
round. They can hence invoke the coloring phase simultaneously. They run the algorithm
ColIntGraph of Halldórsson and Konrad [25] and compute a coloring on G[Vi] that uses
at most b(1 + 1

k)χ(G[Vi]) + 1c colors. This algorithm runs in O(k log∗ n) rounds.
While some nodes execute the coloring phase, others still execute PruneTree. These

nodes repeatedly collect their distance-10k neighborhood. This requires all other network
nodes to continuously forward messages, which can be taken care of in the background.

The Color Correction Phase. In color correction phase, nodes with assigned parents (i.e.,
nodes v with parentv 6= ⊥) first wait until they received their final color from their parents.
Only then they proceed and correct the colors of their children. To this end, each such node
v runs subroutine CorrectChildren, which processes childrenv layer by layer, starting
with layer lv− 1 down to 1. If v has children in layer Vi, then it waits until all nodes adjacent
to childrenv[i] which are contained in layers > i have received their final colors. This can be
done by repeatedly collecting its local distance-(k + 5) neighborhood and checking whether
the colors of all nodes in ΓG[Ui](childrenv[i]) are final. Then, v locally computes the color
correction for childrenv[i] and notifies them about their new colors.

Algorithm 4 CorrectChildren(childrenv, k), code for node v.

for l← lv − 1, lv − 2, . . . , 1 do:
if childrenv[l] 6= {} then

a. Wait until all neighbors of childrenv[l] in G[Ul] have received their final color
b. Compute color correction as in Lemma 8
c. For each u ∈ childrenv[l], send message SetColor(c) to u, where c is u’s new color

5.2 Analysis
To ensure correctness of our algorithm, we need to show that the parent of a node v ∈ Vi is
contained in a layer j > i. This is shown via the following lemma.

I Lemma 11. Let P ∈ Li, and let W ⊆ Vi be the set of nodes whose corresponding subtrees
are included in P. Then every node u ∈ ΓG[Ui](W) is contained in a layer Vj with j > i.

It follows from the definition that the parent of a node v ∈ Vi belongs to ΓG[Ui](W). Hence:

I Corollary 12. The parent of a node v ∈ Vi is contained in a layer Vj with j > i.

The following lemma demonstrates that Algorithm 2 mimics the behavior of our centralized
algorithm and uses O(1

ε logn) rounds. This establishes our main result, stated in Theorem 14.

I Lemma 13. The global behavior of Algorithm 2 is identical to the behavior of Algorithm 1.
Furthermore, Algorithm 2 runs in O(1

ε logn) rounds.

I Theorem 14. For every ε ≥ 2
χ(G) , there is a deterministic (1 + ε)-approximation algorithm

for MVC on chordal graphs that runs in O(1
ε logn) rounds in the LOCAL model.

6 Maximum Independent Set

Maximum Independent Set on Interval Graphs. Let H = (V,E) be an interval graph, i.e.,
a chordal graph whose clique forest is a collection of paths. We first observe that the subset
of nodes V ′ ⊆ V , with u ∈ V ′ iff there exists a node v ∈ V with ΓH [v] (ΓH [u], is not needed

MFCS 2019

21:12 Distributed Coloring and Independent Set in Chordal Graphs

for the computation of a large maximum independent set: If a maximum independent set I∗
in H contains a node u ∈ V ′, then it can simply be replaced by a node v with ΓH [v] (ΓH [u].
We thus only need to consider graph H ′ := H[V \ V ′], which constitutes a unit interval
graph. We first compute a distance-k maximal independent set I in O(k log∗ n) rounds, for
some k = Θ(1

ε), by simulating the maximal independent set O(log∗ n) rounds algorithm for
bounded-independence graphs [38] on H ′k. Then, every (v1, v2) ∈ P , where P is the set
of pairs of nodes of I that are of mutual distance at most 2k − 1, computes a maximum
independent set Iv1,v2 among the nodes located between them but outside of ΓH′(v1)∪ΓH′(v2)
in O(k) rounds. Set I ∪ (∪(v1,v2)∈P Iv1,v2) has the desired size.

I Theorem 15. For every ε > 0, there is a deterministic (1 + ε)-approximation algorithm
for MIS on interval graphs that operates in O(1

ε log∗ n) rounds in the LOCAL model.

Maximum Independent Set on Chordal Graphs. Our distributed MIS algorithm uses an
adapted version of the peeling process used in our coloring algorithm. The key observation
that allows us to obtain a runtime of o(logn) is the fact that the first O(log 1

ε) layers
computed by our peeling process already contain a large enough independent set. Our
algorithm proceeds as follows: In each iteration i = 1, . . . ,O(1

ε) of the peeling process, we
remove set Li of all pendant paths and all internal paths of large enough diameter from
the clique forest Ti of the graph induced by the remaining nodes. Next, we compute large
independent sets among the nodes whose trees are included in each path P ∈ Li. If P has a
large independence number then we run our (1 + ε)-approximation algorithm for interval
graphs in O(1

ε log∗ n) rounds. If P has small independence number we need to compute an
optimal independent set in order to locally stay within a (1 + ε)-approximation guarantee.
This can be achieved using only O(1

ε) rounds, since paths with small independence number
necessarily have small diameter. The runtime is dominated by the product of the number of
iterations O(log 1

ε) and the O(1
ε log∗ n) runtime of our MIS algorithm for interval graphs.

I Theorem 16. For any ε ∈ (0, 1/2), there is a deterministic (1+ε)-approximation algorithm
for MIS on chordal graphs that runs in O(1

ε log(1
ε) log∗ n) rounds in the LOCAL model.

When implementing this idea, care needs to be taken when combining the computed independ-
ent sets of different levels. Indeed, our algorithm bases the computation of the independent
set in level i on the outcome of the computations of the independent sets of levels < i and it
seems difficult to avoid this. We therefore cannot execute the independent set computations
of different levels simultaneously, which would reduce the runtime to O(1

ε (log∗ n+ log 1
ε)).

Lower Bound. Our lower bound is established on a path Pn of length n and uses an
indistinguishability argument: Consider a k rounds MIS algorithm that operates on Pn, and
let v be an arbitrary node that is not too close to an end point of the path. Suppose that
v is selected into the independent set. Let u1 be a node at distance 2k + 1 from v and let
u2 be the adjacent node to u1 that is at distance 2k + 2 from v. Since the runtime of the
algorithm is k, the outputs computed by u1 and u2 are independent from v. Since in average
it is equally likely that u1 or u2 are selected, the expected size of an independent set in the
subpath starting at v and ending at u2 is thus strictly smaller than k + 2, while a maximum
independent set in this subpath is of size k + 2. Based on this insight, we obtain

I Theorem 17. For every ε > 0 and n large enough, every randomized algorithm in the
LOCAL model with expected approximation factor at most 1+ε for MIS requires Ω(1

ε) rounds.

C. Konrad and V. Zamaraev 21:13

7 Conclusion

In this paper, we gave distributed (1 + ε)-approximation algorithms for MVC and MIS on
chordal graphs. We showed that in chordal graphs network nodes can obtain coherent views
of a global tree decomposition, which enabled us to exploit the tree structure of the input
graph for the design of algorithms. How can we extend the class of graphs on which we can
solve MVC and MIS within a small approximation factor even further? In particular, how
can we handle graphs that contain longer induced cycles, such as k-chordal graphs (for some
integer k)?

References
1 Pierre Aboulker, Marthe Bonamy, Nicolas Bousquet, and Louis Esperet. Distributed Coloring in

Sparse Graphs with Fewer Colors. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’18, pages 419–425, New York, NY, USA, 2018. ACM.
doi:10.1145/3212734.3212740.

2 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986. doi:
10.1016/0196-6774(86)90019-2.

3 Baruch Awerbuch, Michael Luby, Andrew V Goldberg, and Serge A Plotkin. Network
Decomposition and Locality in Distributed Computation. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, SFCS ’89, pages 364–369, Washington, DC,
USA, 1989. IEEE Computer Society. doi:10.1109/SFCS.1989.63504.

4 Leonid Barenboim. On the Locality of Some NP-complete Problems. In Proceedings of
the 39th International Colloquium Conference on Automata, Languages, and Programming -
Volume Part II, ICALP’12, pages 403–415, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-31585-5_37.

5 Leonid Barenboim. Deterministic (∆ + 1)-Coloring in Sublinear (in ∆) Time in Static,
Dynamic and Faulty Networks. In Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC ’15, pages 345–354, New York, NY, USA, 2015. ACM.
doi:10.1145/2767386.2767410.

6 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Computing, 22(5):363–379, 2010.

7 Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A Fast Network-Decomposition Al-
gorithm and Its Applications to Constant-Time Distributed Computation. In Post-Proceedings
of the 22nd International Colloquium on Structural Information and Communication Complex-
ity - Volume 9439, SIROCCO 2015, pages 209–223, New York, NY, USA, 2015. Springer-Verlag
New York, Inc. doi:10.1007/978-3-319-25258-2_15.

8 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. J. ACM, 63(3):20:1–20:45, June 2016. doi:10.1145/2903137.

9 Philip A Bernstein and Nathan Goodman. Power of natural semijoins. SIAM Journal on
Computing, 10(4):751–771, 1981.

10 Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.

11 Marijke H.L. Bodlaender, Magnús M. Halldórsson, Christian Konrad, and Fabian Kuhn. Brief
Announcement: Local Independent Set Approximation. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC ’16, pages 93–95, New York, NY,
USA, 2016. ACM. doi:10.1145/2933057.2933068.

12 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆ + 1)-coloring
algorithm? In Proceedings 50th ACM Symposium on Theory of Computing (STOC), pages
445–456, 2018.

MFCS 2019

https://doi.org/10.1145/3212734.3212740
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1007/978-3-642-31585-5_37
https://doi.org/10.1007/978-3-642-31585-5_37
https://doi.org/10.1145/2767386.2767410
https://doi.org/10.1007/978-3-319-25258-2_15
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2933057.2933068

21:14 Distributed Coloring and Independent Set in Chordal Graphs

13 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM
Journal on Computing, 48(1):33–69, 2019.

14 Richard Cole and Uzi Vishkin. Deterministic Coin Tossing with Applications to Optimal
Parallel List Ranking. Inf. Control, 70(1):32–53, July 1986. doi:10.1016/S0019-9958(86)
80023-7.

15 Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast Distributed Approx-
imations in Planar Graphs. In Gadi Taubenfeld, editor, Distributed Computing, pages 78–92,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

16 Yon Dourisboure and Cyril Gavoille. Tree-decompositions with Bags of Small Diameter.
Discrete Math., 307(16):2008–2029, July 2007. doi:10.1016/j.disc.2005.12.060.

17 Peter C Fishburn. Interval orders and interval graphs: A study of partially ordered sets. John
Wiley & Sons, 1985.

18 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 625–634, 2016.

19 Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set. In
Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’16, pages 270–277, Philadelphia, PA, USA, 2016. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=2884435.2884455.

20 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved Distributed Delta-
Coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC ’18, pages 427–436, New York, NY, USA, 2018. ACM. doi:10.1145/3212734.3212764.

21 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the Complexity of Local Distributed
Graph Problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pages 784–797, New York, NY, USA, 2017. ACM. doi:10.1145/
3055399.3055471.

22 Mohsen Ghaffari and Christina Lymouri. Simple and Near-Optimal Distributed Coloring for
Sparse Graphs. In Distributed Computing: 31th International Symposium, DISC 2017, Vienna,
Austria, October 16-20, 2017. Proceedings, 2017.

23 Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel Symmetry-Breaking
in Sparse Graphs. SIAM J. Discrete Math., 1(4):434–446, 1988. doi:10.1137/0401044.

24 Magnús M. Halldórsson and Christian Konrad. Distributed Algorithms for Coloring Interval
Graphs, pages 454–468. Springer, 2014. doi:10.1007/978-3-662-45174-8_31.

25 Magnús M. Halldórsson and Christian Konrad. Improved Distributed Algorithms for Coloring
Interval Graphs with Application to Multicoloring Trees. In Post-Proceedings of the 24th In-
ternational Colloquium on Structural Information and Communication Complexity, SIROCCO
2017, 2017.

26 David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
Sublogarithmic Rounds. In Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 465–478, New York, NY, USA, 2016. ACM. doi:
10.1145/2897518.2897533.

27 Richard M Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

28 Christian Konrad and Viktor Zamaraev. Brief Announcement: Distributed Minimum Vertex
Coloring and Maximum Independent Set in Chordal Graphs. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 159–161, 2018. doi:10.1145/3212734.3212787.

29 Christian Konrad and Viktor Zamaraev. Distributed Coloring and Independent Set in Chordal
Graphs. arXiv preprint arXiv:1805.04544., 2018.

30 Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s Locality Limit. In Gadi
Taubenfeld, editor, Distributed Computing, pages 394–407, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/j.disc.2005.12.060
http://dl.acm.org/citation.cfm?id=2884435.2884455
https://doi.org/10.1145/3212734.3212764
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1137/0401044
https://doi.org/10.1007/978-3-662-45174-8_31
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1145/3212734.3212787

C. Konrad and V. Zamaraev 21:15

31 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193–201,
February 1992. doi:10.1137/0221015.

32 Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, December 1993. doi:10.1007/BF01303516.

33 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
J. Comput., 15(4):1036–1053, 1986. doi:10.1137/0215074.

34 Gary L. Miller and John H. Reif. Parallel Tree Contraction–Part I: Fundamentals. In
Randomness and Computation, volume 5, pages 47–72. JAI Press, 1989.

35 Alessandro Panconesi and Aravind Srinivasan. Improved Distributed Algorithms for Coloring
and Network Decomposition Problems. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 581–592, New York, NY, USA, 1992.
ACM. doi:10.1145/129712.129769.

36 Alessandro Panconesi and Aravind Srinivasan. The Local Natur of Delta-Coloring and its
Algorithmic Applications. Combinatorica, 15(2):255–280, 1995. doi:10.1007/BF01200759.

37 Johannes Schneider and Roger Wattenhofer. A New Technique for Distributed Symmetry
Breaking. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC ’10, pages 257–266, New York, NY, USA, 2010. ACM.
doi:10.1145/1835698.1835760.

38 Johannes Schneider and Roger Wattenhofer. An optimal maximal independent set algorithm
for bounded-independence graphs. Distributed Computing, 22(5):349–361, August 2010. doi:
10.1007/s00446-010-0097-1.

39 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007.

MFCS 2019

https://doi.org/10.1137/0221015
https://doi.org/10.1007/BF01303516
https://doi.org/10.1137/0215074
https://doi.org/10.1145/129712.129769
https://doi.org/10.1007/BF01200759
https://doi.org/10.1145/1835698.1835760
https://doi.org/10.1007/s00446-010-0097-1
https://doi.org/10.1007/s00446-010-0097-1

Multistage Knapsack
Evripidis Bampis
Sorbonne Université, CNRS, LIP6, France
evripidis.bampis@lip6.fr

Bruno Escoffier
Sorbonne Université, CNRS, LIP6, France
bruno.escoffier@lip6.fr

Alexandre Teiller
Sorbonne Université, CNRS, LIP6, France
alexandre.teiller@lip6.fr

Abstract
Many systems have to be maintained while the underlying constraints, costs and/or profits change
over time. Although the state of a system may evolve during time, a non-negligible transition cost is
incured for transitioning from one state to another. In order to model such situations, Gupta et al.
(ICALP 2014) and Eisenstat et al. (ICALP 2014) introduced a multistage model where the input is
a sequence of instances (one for each time step), and the goal is to find a sequence of solutions (one
for each time step) that simultaneously (i) have good quality on the time steps and (ii) as stable as
possible. We focus on the multistage version of the Knapsack problem where we are given a time
horizon t = 1, 2, . . . , T , and a sequence of knapsack instances I1, I2, . . . , IT , one for each time step,
defined on a set of n objects. In every time step t we have to choose a feasible knapsack St of It,
which gives a knapsack profit. To measure the stability/similarity of two consecutive solutions St

and St+1, we identify the objects for which the decision, to be picked or not, remains the same in St

and St+1, giving a transition profit. We are asked to produce a sequence of solutions S1, S2, . . . , ST

so that the total knapsack profit plus the overall transition profit is maximized.
We propose a PTAS for the Multistage Knapsack problem. This is the first approximation

scheme for a combinatorial optimization problem in the considered multistage setting, and its
existence contrasts with the inapproximability results for other combinatorial optimization problems
that are even polynomial-time solvable in the static case (e.g.multistage Spanning Tree, or
multistage Bipartite Perfect Matching). Then, we prove that there is no FPTAS for the
problem even in the case where T = 2, unless P = NP . Furthermore, we give a pseudopolynomial
time algorithm for the case where the number of steps is bounded by a fixed constant and we show
that otherwise the problem remains NP-hard even in the case where all the weights, profits and
capacities are 0 or 1.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Knapsack, Approximation Algorithms, Multistage Optimization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.22

Acknowledgements This research benefited from the support of FMJH program PGMO and from
the support of EDF-Thalès-Orange.

1 Introduction

In a classical combinatorial optimization problem, given an instance of the problem we seek
a feasible solution optimizing the objective function. However, in many systems the input
may change over the time and the solution has to be adapted to the input changes. It is
then necessary to determine a tradeoff between the optimality of the solutions in each time
step and the stability/similarity of consecutive solutions. This is important since in many
applications there is a significant transition cost for changing (parts of) a solution. Recently,

© Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evripidis.bampis@lip6.fr
mailto:bruno.escoffier@lip6.fr
mailto:alexandre.teiller@lip6.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Multistage Knapsack

Gupta et al. [15] and Eisenstat et al. [11] introduced a multistage model in order to deal
with such situations. They consider that the input is a sequence of instances (one for each
time step), and the goal is to find a sequence of solutions (one for each time step) reaching
such a tradeoff.

Our work follows the direction proposed by Gupta et al. [15] who suggested the study
of more combinatorial optimization problems in their multistage framework. In this paper,
we focus on the multistage version of the Knapsack problem. Consider a company owning
a set N = {u1, . . . , un} of production units. Each unit can be used or not; if ui is used, it
spends an amount wi of a given resource (energy, raw material,...), and generates a profit pi.
Given a bound W on the global amount of available resource, the static Knapsack problem
aims at determining a feasible solution that specifies the chosen units in order to maximize
the total profit under the constraint that the total amount of the resource does not exceed
the bound of W . In a multistage setting, considering a time horizon t = 1, 2, . . . , T of, let us
say, T days, the company needs to decide a production plan for each day of the time horizon,
given that data (such as prices, level of resources,...) usually change over time. This is a
typical situation, for instance, in energy production planning (like electricity production,
where units can be nuclear reactors, wind or water turbines,...), or in data centers (where
units are machines and the resource corresponds to the available energy). Moreover, in
these examples, there is an extra cost to turn ON or OFF a unit like in the case of turning
ON/OFF a reactor in electricity production [25], or a machine in a data center [1]. Obviously,
whenever a reactor is in the ON or OFF state, it is beneficial to maintain it at the same
state for several consecutive time steps, in order to avoid the overhead costs of state changes.
Therefore, the design of a production plan over a given time horizon has to take into account
both the profits generated each day from the operation of the chosen units, as well as the
potential transition profits from maintaining a unit at the same state for two consecutive
days.

We formalize the problem as follows. We are given a time horizon t = 1, 2, . . . , T , and a
sequence of knapsack instances I1, I2, . . . , IT , one for each time step, defined on a set of n
objects. In every time step t we have to choose a feasible knapsack St of It, which gives a
knapsack profit. Taking into account transition costs, we measure the stability/similarity of
two consecutive solutions St and St+1 by identifying the objects for which the decision, to
be picked or not, remains the same in St and St+1, giving a transition profit. We are asked
to produce a sequence of solutions S1, S2, . . . , ST so that the total knapsack profit plus the
overall transition profit is maximized.

Our main contribution is a polynomial time approximation scheme (PTAS) for the
multistage version of the Knapsack problem. Up to the best of our knowledge, this is
the first approximation scheme for a multistage combinatorial optimization problem and its
existence contrasts with the inapproximability results for other combinatorial optimization
problems that are even polynomial-time solvable in the static case (e.g. multistage
Spanning Tree [15], or multistage Bipartite Perfect Matching [4]).

1.1 Problem definition
Formally, the Multistage Knapsack problem can be defined as follows.

I Definition 1. In the Multistage Knapsack problem (MK) we are given:
a time horizon T ∈ N∗, a set N = {1, 2, . . . , n} of objects;
For any t ∈ {1, . . . , T}, any i ∈ N :
pti the profit of taking object i at time t
wti the weight of object i at time t

E. Bampis, B. Escoffier, and A. Teiller 22:3

For any t ∈ {1, . . . , T − 1}, any i ∈ N : Bti ∈ R+ the bonus of the object i if we keep the
same decision for i at time t and t+ 1.
For any t ∈ {1, . . . , T}: the capacity Ct of the knapsack at time t.

We are asked to select a subset St ⊆ N of objects at each time t so as to respect the capacity
constraint:

∑
i∈St

wti ≤ Ct. To a solution S = (S1, . . . , ST) are associated:
A knapsack profit

∑T
t=1
∑
i∈St

pti corresponding to the sum of the profits of the T knap-
sacks;

A transition profit
T−1∑
t=1

∑
i∈∆t

Bti where ∆t is the set of objects either taken or not taken at

both time steps t and t+ 1 in S (formally ∆t = (St ∩ St+1) ∪ (St ∩ St+1)).
The value of the solution S is the sum of the knapsack profit and the transition profit, to be
maximized.

1.2 Related works

Multistage combinatorial optimization. A lot of optimization problems have been con-
sidered in online or semi-online settings, where the input changes over time and the algorithm
has to modify the solution by making as few changes as possible. Tradeoffs between modific-
ation costs and quality of solutions have been also studied in the reoptimization setting. We
refer the reader to [3, 6, 10, 14, 22, 23, 26] and the references therein.

Multistage optimization has been studied for fractional problems by Buchbinder et al. [8]
and Buchbinder, Chen and Naor [7]. The multistage model considered in this article is the
one studied in Eisenstat et al. [11] and Gupta et al. [15]. Eisenstat et al. [11] studied the
multistage version of facility location problems. They proposed a logarithmic approximation
algorithm. An et al. [2] obtained constant factor approximation for some related problems.
Gupta et al. [15] studied the Multistage Maintenance Matroid problem for both the
offline and the online settings. They presented a logarithmic approximation algorithm for
this problem, which includes as a special case a natural multistage version of Spanning
Tree. The same paper also introduced the study of the Multistage Minimum Perfect
Matching problem. They showed that the problem becomes hard to approximate even for
a constant number of stages. Later, Bampis et al. [4] showed that the problem is hard to
approximate even for bipartite graphs and for the case of two time steps. In the case where
the edge costs are metric within every time step they first proved that the problem remains
APX-hard even for two time steps. They also showed that the maximization version of the
problem admits a constant factor approximation algorithm but is APX-hard. In another
work [5], the Multistage Max-Min Fair Allocation problem has been studied in the
offline and the online settings. This corresponds to a multistage variant of the Santa Klaus
problem. For the off-line setting, the authors showed that the multistage version of the
problem is much harder than the static one. They provided constant factor approximation
algorithms for the off-line setting.

Knapsack variants. Our work builds upon the Knapsack literature [18]. It is well known
that there is a simple 2-approximation algorithm as well as a fully polynomial time (FPTAS)
for the static case [16, 20, 21, 17]. There are two variants that are of special interest for our
work:

(i) The first variant is a generalization of the Knapsack problem known as the k-
Dimensional Knapsack (k −DKP) problem:

MFCS 2019

22:4 Multistage Knapsack

I Definition 2. In the k-Dimensional Knapsack problem (k − DKP), we have a set
N = {1, 2, . . . , n} of objects. Each object i has a profit pi and k weights wji, j = 1, . . . , k.
We are also given k capacities Cj. The goal is to select a subset Y ⊆ N of objects such that:

The capacity constraints are respected: for any j,
∑
i∈Y wji ≤ Cj;

The profit
∑
i∈Y pi is maximized.

It is well known that for the usual Knapsack problem, in the continuous relaxation
(variables in [0, 1]), at most one variable is fractional. Caprara et al. [9] showed that this can
be generalized for k −DKP .

Let us consider the following ILP formulation (ILP −DKP) of the problem:
max

∑
i∈N

piyi

s.t.

∣∣∣∣∣
∑
i∈N

wjiyi ≤ Cj ∀j ∈ {1, ..., k}

yi ∈ {0, 1} ∀i ∈ N

I Theorem 3. [9] In the continuous relaxation (LP − DKP) of (ILP − DKP) where
variables are in [0, 1], in any basic solution at most k variables are fractional.

A basic solution is an extreme point (vertex) of the polytope of solutions. Note that with
an easy affine transformation on variables, the same result holds when variable yi is subject
to ai ≤ yi ≤ bi instead of 0 ≤ yi ≤ 1: in any basic solution at most k variables yi are such
that ai < yi < bi.

Caprara et al. [9] use the result of Theorem 3 to show that for any fixed constant k,
k −DKP admits a polynomial time approximation scheme (PTAS). Other PTASes have
been presented in [24, 12]. Korte and Schrader [19] showed that there is no FPTAS for
k −DKP unless P = NP .

(ii) The second related variant is a simplified version of k −DKP called Cardinality-
2-KP, where the dimension is 2, all the profits are 1 and, given a K, we are asked if there
is a solution of value at least K (decision problem). In other words, given two knapsack
constraints, can we take K objects and verify the two constraints? The following result is
shown in [18].

I Theorem 4. [18] Cardinality-2-KP is NP -complete.

1.3 Our contribution
As stated before, our main contribution is to propose a PTAS for the multistage Knapsack
problem. Furthermore, we prove that there is no FPTAS for the problem even in the case
where T = 2, unless P = NP . We also give a pseudopolynomial time algorithm for the case
where the number of steps is bounded by a fixed constant and we show that otherwise the
problem remains NP-hard even in the case where all the weights, profits and capacities are 0
or 1. The following table summarizes our main result pointing out the impact of the number
T of time steps on the difficulty of the problem (“no FPTAS” means “no FPTAS unless
P=NP”).

T = 1 T fixed any T

pseudopolynomial pseudopolynomial strongly NP -hard
FPTAS PTAS PTAS
- no FPTAS no FPTAS

We point out that the negative results (strongly NP-hardness and no FPTAS) hold even
in the case of uniform bonus, i.e., when Bti = B for all i ∈ N and all t = 1, . . . , T − 1.

E. Bampis, B. Escoffier, and A. Teiller 22:5

2 ILP formulation

The Multistage Knapsack problem can be written as an ILP as follows. We define Tn
binary variables xti equal to 1 if i is taken at time t (i ∈ St) and 0 otherwise. We also define
(T − 1)n binary variables zti corresponding to the transition profit of object i between time t
and t+ 1. The profit is 1 if i is taken at both time steps, or taken at none, and 0 otherwise.
Hence, zti = 1− |x(t+1)i − xti|. Considering that we solve a maximization problem, this can
be linearized by the two inequalities: zti ≤ −x(t+1)i + xti + 1 and zti ≤ x(t+1)i − xti + 1. We
end up with the following ILP (called ILP −MK):

max
T∑
t=1

∑
i∈N

ptixti +
T−1∑
t=1

∑
i∈N

ztiBti

s.t.

∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈N

wtixti ≤ Ct ∀t ∈ {1, ..., T}

zti ≤ −x(t+1)i + xti + 1 ∀t ∈ {1, ..., T − 1},∀i ∈ N
zti ≤ x(t+1)i − xti + 1 ∀t ∈ {1, ..., T − 1},∀i ∈ N
xti ∈ {0, 1} ∀t ∈ {1, ..., T},∀i ∈ N
zti ∈ {0, 1} ∀t ∈ {1, ..., T − 1},∀i ∈ N

In devising the PTAS we will extensively use the linear relaxation (LP − MK) of
(ILP −MK) where variables xti and zti are in [0, 1].

3 A polynomial time approximation scheme

In this section we show that Multistage Knapsack admits a PTAS. The central part of
the proof is to derive a PTAS when the number of steps is a fixed constant (Sections 3.1 and
3.2). The generalization to an arbitrary number of steps is done in Section 3.3.

Building upon [9], our PTAS for a fixed number of time steps heavily relies on a property
of the relaxed LP-formulation of Multistage Knapsack: we show that there are at most T 3

fractional variables in an optimal (basic) solution of the (relaxed) Multistage Knapsack
problem. Based on this bound, the PTAS is built from a combination of (1) bruteforce
search (to find the most profitable objects), (2) a preprocessing step and (3) a rounding of
the fractional solution of the (relaxed) LP-formulation. The preprocessing step associated
to the bound on the number of fractional variables allow to bound the global loss of the
solution built by the algorithm.

We show how to bound the number of fractional variables in Section 3.1. We first
illustrate the reasoning on the case of two time-steps, and then present the general result. In
Section 3.2 we present the PTAS for a constant number of steps. For ease of notation, we
will sometimes write a feasible solution as S = (S1, . . . , ST) (subsets of objects taken at each
time step), or as S = (x, z) (values of variables in (ILP −MK) or (LP −MK)).

3.1 Bounding the number of fractional objects in (LP − MK)

3.1.1 Warm-up: the case of two time-steps
We consider in this section the case of two time-steps (T = 2), and focus on the linear
relaxation (LP −MK) of (ILP −MK) with the variables xti and zi in [0, 1] (we write zi
instead of z1i for readability). We say that an object is fractional in a solution S if x1i, x2i
or zi is fractional.

Let us consider a (feasible) solution Ŝ = (x̂, ẑ) of (LP −MK), where ẑi = 1− |x̂2i − x̂1i|
(variables ẑi are set to their optimal value w.r.t. x̂). We show the following.

MFCS 2019

22:6 Multistage Knapsack

I Proposition 5. If Ŝ is a basic solution of (LP −MK), at most 4 objects are fractional.

Proof. First note that since we assume ẑi = 1− |x̂1i − x̂2i|, if x̂1i and x̂2i are both integers
then ẑi is an integer. So if an object i is fractional either x̂1i or x̂2i is fractional.

Let us denote:
L the set of objects i such that x̂1i = x̂2i.
P = N \ L the set of objects i such that x̂1i 6= x̂2i.

We first show Fact 1.
Fact 1. In P there is at most one object i with x̂1i fractional.

Suppose that there are two such objects i and j. Note that since 0 < |x̂1i − x̂2i| < 1,
ẑi is fractional, and so is ẑj . Then, for a sufficiently small ε > 0, consider the solution S1
obtained from Ŝ by transfering at time 1 an amount ε of weight from i to j (and adjusting
consequently zi and zj). Namely, in S1:

x1
1i = x̂1i− ε

w1i
, z1
i = ẑi− di ε

w1i
, where di = 1 if x̂2i > x̂1i and di = −1 if x̂2i < x̂1i (since

i is in P x̂2i 6= x̂1i).
x1

1j = x̂1j + ε
w1j

, z1
j = ẑi + dj

ε
w1j

, where dj = 1 if x̂2j > x̂1j and dj = −1 otherwise.
Note that (for ε sufficiently small) S1 is feasible. Indeed (1) x̂1i, x̂1j , ẑi and ẑj are fractional
(2) the weight of the knapsack at time 1 is the same in S1 and in Ŝ (3) if x̂1i increases by a
small δ, if x̂2i > x̂1i then |x̂2i − x̂i1| decreases by δ so ẑi can increase by δ (so di = 1), and if
x̂2i < x̂i1 then ẑi has to decrease by δ (so di = −1), and similarly for x̂1j .

Similarly, let us define S2 obtained from Ŝ with the reverse transfer (from j to i). In S2:
x2

1i = x̂1i + ε
w1i

, z2
i = ẑi + di

ε
w1i

x2
1j = x̂1j − ε

w1j
, z2

j = ẑi − dj ε
w1j

As previously, S2 is feasible. Then Ŝ is clearly a convex combination of S1 and S2 (with
coefficient 1/2), so not a basic solution, and Fact 1 is proven.

In other words (and this interpretation will be important in the general case), for this
case we can focus on variables at time one, and interpret locally the problem as a (classical,
unidimensional) fractional knapsack problem. By locally, we mean that we consider as
fixed the variables at time 2: for variables at time 1, if x̂1i < x̂2i then x1i must be in
[0, x̂2i] (in S1, x1

1i cannot be larger than x̂2i, otherwise the previous value of z1
i would be

erroneous); similarly if x̂1i > x̂2i then x1i must be in [x̂2i, 1]. The profit associated to object
i is p1i + diB1i (if xi1 increases/decreases by ε, then the knapsack profit increases/decreases
by p1iε, and the transition profit increases/decreases by εdiB1i, as explained above). Then
we have at most one fractional variable, as in any fractional knapsack problem.

In P there is at most one object i with x̂1i fractional. Similarly there is at most one
object k with x̂2k fractional. In P , for all but at most two objects, both x̂1i and x̂2i, and
thus ẑi, are integers.

Note that this argument would not hold for variables in L. Indeed if x̂1i = x̂2i, then
ẑi = 1, and the transition profit decreases in both cases: when x̂1i increases by δ > 0 and
when it decreases by δ. So, we cannot express Ŝ as a convex combination of S1 and S2 as
previously.

However, let us consider the following linear program 2−DKP obtained by fixing variables
in P to their values in Ŝ, computing the remaining capacities C ′t = Ct −

∑
j∈P wtj x̂tj , and

“imposing” x1i = x2i:

E. Bampis, B. Escoffier, and A. Teiller 22:7



max
∑
i∈L

(p1i + p2i)yi +
∑
i∈L

B1i∑
i∈L

w1iyi ≤ C′
1∑

i∈L

w2iyi ≤ C′
2

yi ∈ [0, 1] ∀i ∈ L

Clearly, the restriction of Ŝ to variables in L is a solution of 2 −DKP . Formally, let
ŜL = (ŷj , j ∈ L) defined as ŷj = x̂1j . ŜL is feasible for 2−DKP . Let us show that it is basic:
suppose a contrario that ŜL = S1

L+S2
L

2 , with S1
L = (y1

i , i ∈ L) 6= S2
L two feasible solutions of

2−DKP . Then consider the solution S1 = (x1, y1) of (LP −MK) defined as:
If i ∈ L then x1

1i = x1
2i = y1

i , and z1
1i = 1 = ẑ1i.

Otherwise (for i in P) S1 is the same as Ŝ.
S1 is clearly a feasible solution of Multistage Knapsack. If we do the same for S2

L, we
get a (different) feasible solution S2, and Ŝ = S1+S2

2 , so Ŝ is not basic, a contradiction.
By the result of [9], ŜL has at most 2 fractional variables. Then, in L, for all but at most

2 variables both x̂1i, x̂2i and ẑi are integers. J

3.1.2 General case
The case of 2 time steps suggests to bound the number of fractional objects by considering 3
cases:

Objects with x̂1i fractional and x̂1i 6= x̂2i. As explained in the proof of Proposition 5,
this can be seen locally (as long as x1i does not reach x̂2i) as a knapsack problem from
which we can conclude that there is at most 1 such fractional object.
Similarly, objects with x̂2i fractional and x̂1i 6= x̂2i.
Objects with x̂1i = x̂2i fractional. As explained in the proof of Proposition 5, this can be
seen as a 2−DKP from which we can conclude that there are at most 2 such fractional
objects.

For larger T , we may have different situations. Suppose for instance that we have 5 time
steps, and a solution (x, z) with an object i such that: x1i < x2i = x3i = x4i < x5i. So we
have xti fractional and constant for t = 2, 3, 4, and different from x1i and x5i. The idea is to
say that we cannot have many objects like this (in a basic solution), by interpreting these
objects on time steps 3, 4, 5 as a basic optimal solution of a 3−DKP (locally, i.e. with a
variable yi such that x1i ≤ yi ≤ x5i).

Then, roughly speaking, the idea is to show that for any pair of time steps t0 ≤ t1, we
can bound the number of objects which are fractional and constant on this time interval
[t0, t1] (but not at time t0 − 1 and t1 + 1). Then a sum on all the possible choices of (t0, t1)
gives the global upper bound.

Let us state this rough idea formally. In all this section, we consider a (feasible) solution
Ŝ = (x̂, ẑ) of (LP −MK), where ẑti = 1−|x̂(t+1)i− x̂ti| (variables ẑti are set to their optimal
value w.r.t. x̂).

In such a solution Ŝ = (x̂, ẑ), let us define as previously an object as fractional if at least
one variable x̂ti or ẑti is fractional. Our goal is to show the following result.

I Theorem 6. If Ŝ = (x̂, ẑ) is a basic solution of (LP −MK), it has at most T 3 fractional
objects.

MFCS 2019

22:8 Multistage Knapsack

Before proving the theorem, let us introduce some definitions and show some lemmas.
Let t0, t1 be two time steps with 1 ≤ t0 ≤ t1 ≤ T .

I Definition 7. The set F (t0, t1) associated to Ŝ = (x̂, ẑ) is the set of objects i (called
fractional w.r.t. (t0, t1)) such that

0 < x̂t0i = x̂(t0+1)i = · · · = x̂t1i < 1;
Either t0 = 1 or x̂(t0−1)i 6= x̂t0i;
Either t1 = T or x̂(t1+1)i 6= x̂t1i;

In other words, we have x̂ti fractional and constant on [t0, t1], and [t0, t1] is maximal
w.r.t. this property.

For t0 ≤ t ≤ t1, we note C ′t the remaining capacity of knapsack at time t considering that
variables outside F (t0, t1) are fixed (to their value in x̂):

C ′t = Ct −
∑

i 6∈F (t0,t1)

wtix̂ti.

As previously, we will see xt0i, . . . , xt1i as a single variable yi. We have to express the fact
that this variable yi cannot “cross” the values x̂(t0−1)i (if t0 > 1) and x̂(t1+1)i (if t1 < T),
so that everything remains locally (in this range) linear. So we define the lower and upper
bounds ai, bi induced by Definition 7 as:

Initialize ai ← 0. If x̂(t0−1)i < x̂t0i then do ai ← x̂(t0−1)i. If x̂(t1+1)i < x̂t1i then do
ai ← max(ai, x̂(t1+1)i).
Similarly, initialize bi ← 1. If x̂(t0−1)i > x̂t0i then do bi ← x̂(t0−1)i. If x̂(t1+1)i > x̂t1i then
do bi ← min(bi, x̂(t1+1)i).

Note that with this definition ai < x̂t0,i < bi. This allows us to define the polyhedron
P (t0, t1) as the set of y = (yi : i ∈ F (t0, t1)) such that

∑
i∈F (t0,t1)

wtiyi ≤ C′
t ∀t ∈ {t0, ..., t1}

ai ≤ yi ≤ bi ∀i ∈ F (t0, t1)

I Definition 8. The solution ŷ associated to Ŝ = (x̂, ẑ) is defined as ŷi = x̂t0i for i ∈ F (t0, t1).

I Lemma 9. If Ŝ = (x̂, ẑ) is a basic solution, then the solution ŷ associated to (x̂, ẑ) is
feasible of P (t0, t1) and basic.

Proof. Since (x̂, ẑ) is feasible, then ŷ respects the capacity constraints (remaining capacity),
and ai < ŷi = x̂t0i < bi so ŷ is feasible.

Suppose now that ŷ = y1+y2

2 for two feasible solutions y1 6= y2 of P (t0, t1). We associate
to y1 a feasible solution S1 = (x1, z1) as follows.

For any object i, we fix x1
ti = x̂i for t 6∈ [t0, t1], and x1

ti = y1
i for t ∈ [t0, t1]. We fix

variables z1
it to their maximal values, i.e. z1

ti = 1− |x1
(t+1)i − x

1
ti|. This way, we get a feasible

solution (x1, z1). Note that:
z1
ti = ẑti for t 6∈ [t0 − 1, t1], since coresponding variables x are the same in S1 and Ŝ;
z1
ti = 1 = ẑti for t ∈ [t0, t1 − 1], since variables x are constant on the interval [t0, t1].

Then, for variables z, the only modifications between z1 and ẑ concern the “boundary”
variables z1

ti for t = t0 − 1 and t = t1.
We build this way two solutions S1 = (x1, z1) and S2 = (x2, z2) of (LP −MK) cor-

responding to y1 and y2. By construction, S1 and S2 are feasible. They are also different
provided that y1 and y2 are different. It remains to prove that Ŝ = (S1 + S2)/2.

Let us first consider variables x:

E. Bampis, B. Escoffier, and A. Teiller 22:9

if t 6∈ [t0, t1], x1
ti = x2

ti = x̂ti so x̂ti = x1
ti+x

2
ti

2 .

if t ∈ [t0, t1], x1
ti = y1

i and x2
ti = y2

t , so
x1

ti+x
2
ti

2 = y1
i +y2

i

2 = ŷi = x̂ti.

Now let us look at variables z: first, for t 6∈ {t0 − 1, t1}, z1
ti = z2

ti = ẑti so ẑti = z1
ti+z

2
ti

2 .
The last and main part concerns the last 2 variables z(t0−1)i (if t0 > 1) and zt1i (if t1 < T).

We have z1
(t0−1)i = 1− |x1

t0i
− x1

(t0−1)i| = 1− |x1
t0i
− x̂(t0−1)i| and ẑ(t0−1)i = 1− |x̂t0i −

x̂(t0−1)i|. The crucial point is to observe that thanks to the constraint ai ≤ yi ≤ bi, and by
definition of ai and bi, x1

t0,i
, x2

t0,i
and x̂t0,i are either all greater than (or equal to) x̂(t0−1)i,

or all lower than (or equal to) x̂(t0−1)i.
Suppose first that they are all greater than (or equal to) x̂(t0−1)i. Then z1

(t0−1)i−ẑ(t0−1)i =
|x̂t0,i − x̂t0−1,i| − |x1

t0,i
− x̂t0−1,i| = x̂t0i − x1

t0i
= ŷi − y1

i .

Similarly, z2
(t0−1)i− ẑ(t0−1)i = ŷi− y2

i . So
z1

(t0−1)i+z
2
(t0−1)i

2 = 2ẑ(t0−1)i+2ŷi−y1
i−y

2
i

2 = ẑ(t0−1)i.
Now suppose that they are all lower than (or equal to) x̂t0−1,i. Then:

z1
(t0−1)i − ẑ(t0−1)i = |x̂t0i − x̂(t0−1)i| − |x1

t0i − x̂(t0−1)i| = x1
t0i − x̂t0i = y1

i − ŷi

Similarly, z2
(t0−1)i − ẑ(t0−1)i = y2

i − ŷi. So
z1

(t0−1)i+z
2
(t0−1)i

2 = 2ẑ(t0−1)i−2ŷi+y1
i +y2

i

2 = ẑ(t0−1)i.

Then, in both cases, ẑ(t0−1)i = z1
(t0−1)i+z

2
(t0−1)i

2 .

With the very same arguments we can show that z1
t1i+z

2
t1i

2 = ẑt1i. Then, Ŝ is the half
sum of S1 and S2, contradiction with the fact that Ŝ is basic. J

Now we can bound the number of fractional objects w.r.t. (t0, t1).

I Lemma 10. |F (t0, t1)| ≤ t1 + 1− t0.

Proof. P (t0, t1) is a polyhedron corresponding to a linear relaxation of a k −DLP , with
k = t1 + 1 − t0. Since ŷ is basic, using Theorem 3 (and the note after) there are at most
k = t1 + 1 − t0 variables ŷi such that ai < ŷi < bi. But by definition of F (t0, t1), for all
i ∈ F (t0, t1) ai < ŷi < bi. Then |F (t0, t1)| ≤ t1 + 1− t0. J

Now we can easily prove Theorem 6.

Proof. First note that if x̂ti and x̂(t+1)i are integral, then so is ẑti. Then, if an object i is
fractional at least one x̂ti is fractional, and so i will appear in (at least) one set F (t0, t1).

We consider all pairs (t0, t1) with 1 ≤ t0 ≤ t1 ≤ T . Thanks to Lemma 10, |F (t0, t1)| ≤
t1 + 1− t0. So, the total number of fractional objects is at most:

NT =
T∑

t0=1

T∑
t1=t0

(t1 + 1− t0) ≤ T 3

Indeed, there are less than T 2 choices for (t0, t1) and at most T fractional objects for
each choice. J

Note that with standard calculation we get NT = T 3+3T 2+2T
6 , so for T = 2 time steps

N2 = 4: we have at most 4 fractional objects, the same bound as in Proposition 5.

MFCS 2019

22:10 Multistage Knapsack

3.2 A PTAS for a constant number of time steps
Now we can describe the PTAS. Informally, the algorithm first guesses the ` objects with
the maximum reward in an optimal solution (where ` is defined as a function of ε and T),
and then finds a solution on the remaining instance using the relaxation of the LP. The
fact that the number of fractional objects is small allows to bound the error made by the
algorithm.

For a solution S (either fractional or integral) we define gi(S) as the reward of object
i in solution S: gi(S) =

∑T
t=1 ptixti +

∑T−1
t=1 ztiBti. The value of a solution S is g(S) =∑

i∈N gi(S).
Consider the algorithm ALP which, on an instance of Multistage Knapsack:
Finds an optimal (basic) solution Sr = (xr, zr) of the relaxation (LP −MK) of (ILP −
MK);
Takes at step t an object i if and only if xrti = 1.

Clearly, ALP outputs a feasible solution, the value of which verifies:

g(ALP) ≥ g(Sr)−
∑
i∈F

gi(Sr) (1)

where F is the set of fractional objects in Sr. Indeed, for each integral (i.e., not fractional)
object the reward is the same in both solutions.

Now we can describe the algorithm Algorithm P T ASConstantMK , which takes as
input an instance of Multistage Knapsack and an ε > 0, and works as follows.
1. Let ` := min

{⌈
(T+1)T 3

ε

⌉
, n
}
.

2. For all X ⊆ N such that |X| = `, ∀X1 ⊆ X, ...,∀XT ⊆ X:
If for all t = 1, . . . , T wt(Xt) =

∑
j∈Xt

wtj ≤ Ct, then:

Compute the rewards of object i ∈ X in the solution (X1, . . . , XT), and find the
smallest one, say k, with reward gk.
On the subinstance of objects Y = N \X:

For all i ∈ Y , for all t ∈ {1, . . . , T}: if pti > gk then set xti = 0.
apply ALP on the subinstance of objects Y , with the remaining capacity C ′t =
Ct −wt(Xt), where some variables xti are set to 0 as explained in the previous step.

Let (Y1, ..., YT) be the sets of objects taken at time 1, . . . , T by ALP . Consider the
solution (X1 ∪ Y1, ..., XT ∪ YT).

3. Output the best solution computed.

I Theorem 11. The algorithm PTASConstantMK is a (1 − ε)-approximation algorithm
running in time O

(
nO(T 5/ε)

)
.

Proof. (sketch) Let us briefly argue why the claimed ratio holds. We consider the iteration of
the algorithm where X equals the set of ` objects which have maximum reward in an optimal
solution S∗. By exhaustive search, the algorithm considers the case where X1, . . . , XT are
exactly as in S∗, so the reward of the algorithm is the same as S∗ for these objects. For the
remaining objects, we use the relaxation of the linear program to build an integer solution.
The loss corresponds to the rewards generated by fractional objects (see Equation 1) in the
fractional solution.

While these profits could be very high, the preprocessing step fixing some variables with
high profit to 0 (xti is set to 0 if pti > gk) allows to bound the loss as (roughly) the reward of
these fractional objects in S∗. Since there is a bounded number of fractional objects, the loss
induced by their rewards can be bounded by a fraction ε of the optimal value, by choosing a
sufficiently large ` = |X|. J

E. Bampis, B. Escoffier, and A. Teiller 22:11

3.3 Generalization to an arbitrary number of time steps

We now devise a PTAS for the general problem, for an arbitrary (not constant) number
of steps. We actually show how to get such a PTAS provided that we have a PTAS for
(any) constant number of time steps. Let Aε,T0 be an algorithm which, given an instance of
Multistage Knapsack with at most T0 time steps, outputs a (1− ε)-approximate solution
in time O(nf(ε,T0)) for some function f .

The underlying idea is to compute (nearly) optimal solutions on subinstances of bounded
sizes, and then to combine them in such a way that at most a small fraction of the optimal
value is lost.

Let us first give a rough idea of our algorithm PTASMK .
Given an ε > 0, let ε′ = ε/2 and T0 = d 1

ε′ e. We construct a set of solutions S1, . . . , ST0 in
the following way:

In order to construct S1, we partition the time horizon 1, . . . , T into d TT0
e consecutive

intervals. Every such interval has length T0, except possibly the last interval that may have
a smaller length. We apply Aε,T0 at every interval in this partition. S1 is then just the
concatenation of the partial solutions computed for each interval.

The partition used to build the solution Si, 1 < i ≤ T0, is made in a similar way. The
only difference is that the first interval of the partition of the time horizon 1, . . . , T goes from
time 1 to time i− 1. For the remaining part of the time horizon, i.e. for i, . . . T , the partition
is made as previously, i.e. starting at time step i, every interval will have a length of T0,
except possibly the last one, whose length may be smaller. Once the partition is operated,
we apply Aε,T0 to every interval of the partition. Si, 1 < i ≤ T0, is then defined as the
concatenation of the partial solutions computed on each interval. Among the T0 solutions
S1, . . . , ST0 , the algorithm chooses the best solution.

The construction is illustrated on Figure 1, with 10 time steps and T0 = 3. The first
solution S1 is built by applying 4 times Aε,T0 , on the subinstances corresponding to time
steps {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {10}. The solution S2 is built by applying 4 times Aε,T0 ,
on the subinstances corresponding to time steps {1}, {2, 3, 4}, {5, 6, 7}, and {8, 9, 10}.

Figure 1 The three solutions for T0 = 3 and T = 10.

I Theorem 12. The algorithm PTASMK is a polynomial time approximation algorithm.

Let us give a rough idea of the proof. As we see from Figure 1, each solution St misses
some potential transition profit between some time steps (as between 3 and 4, between 6 and
7, and between 9 and 10 for S1). For each j, such loss between step j and j + 1 appears in
exactly one St, so in average we loose a fraction 1/T0 of the optimal transition profit (so a
fraction at most ε′). Another loss is due to the fact that we use an approximation algorithm
on the subinstances, inducing also a loss of at most a fraction ε′ of the optimum value.

MFCS 2019

22:12 Multistage Knapsack

4 Pseudo-polynomiality and hardness results

We complement the previous result on approximation scheme by showing the following results
for Multistage Knapsack. First, it does not admit an FPTAS (unless P = NP), as stated
in the following Theorem.

I Theorem 13. There is no FPTAS for Multistage Knapsack unless P = NP , even if
there are only two time steps and the bonus is uniform.

The reduction is from Cardinality-2-KP, and the idea of the proof is to take a
sufficiently large (but polynomially bounded) bonus in the multistage instance in order to
force the knapsacks of the two time steps to be the same.

The second result states that the problem is pseudo-polynomial for a constant number of
time steps. More precisely, with a standard dynamic programming procedure, we have the
following.

I Theorem 14. Multistage Knapsack is solvable in time O(T (2Cmax + 2)Tn) where
Cmax = max{Ci, i = 1, . . . , T}.

As a final result, we show that the problem is strongly NP -hard (when the number of
steps is not bounded), by showing the NP -hardness of the following subproblem.

I Definition 15. Binary Multistage Knapsack is the sub-problem of Multistage
Knapsack where all the weights, profits and capacities are all equal to 0 or 1.

For the usual Knapsack problem, the binary case corresponds to a trivial problem. For
the multistage case, we have the following:

I Theorem 16. Binary Multistage Knapsack is NP -hard, even in the case of uniform
bonus.

Proof. (sketch) We prove the result by a reduction from the Independent Set problem
where, given a graph G and an integer K, we are asked if there exists a subset of K pairwise
non adjacent vertices (called an independent set). This problem is NP -hard, see [13].

Let (G,K) be an instance of the Independent Set problem, with G = (V,E),
V = {v1, . . . , vn} and E = {e1, . . . , em}. We build the following instance I ′ of Binary
Multistage Knapsack:

There are n objects {1, 2 . . . , n}, one object per vertex;
There are T = m time steps: each edge (vi, vj) in E corresponds to one time step;
at the time step corresponding to edge (vi, vj): objects i and j have weight 1, while the
others have weight 0, all objects have profit 1, and the capacity constraint is 1.
The transition profit is bti = B = 2nm for all i, t.

Roughly speaking, B is large enough to ensure that in an optimal solution there are no
modifications of the knapsack over the time. Then we can show that there is an independent
set of size (at least) K if and only if there is a solution for Binary Multistage Knapsack
of value (at least) n(m− 1)B +mK. J

Since B is polynomially bounded in the proof, Multistage Knapsack is strongly NP -hard.

E. Bampis, B. Escoffier, and A. Teiller 22:13

References

1 Susanne Albers. On Energy Conservation in Data Centers. In Christian Scheideler and
Mohammad Taghi Hajiaghayi, editors, Proceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017, pages
35–44. ACM, 2017. doi:10.1145/3087556.

2 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic Facility Location via
Exponential Clocks. ACM Trans. Algorithms, 13(2):21:1–21:20, 2017.

3 Barbara M. Anthony and Anupam Gupta. Infrastructure Leasing Problems. In Matteo Fischetti
and David P. Williamson, editors, Integer Programming and Combinatorial Optimization, 12th
International IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, Proceedings, volume
4513 of Lecture Notes in Computer Science, pages 424–438. Springer, 2007. doi:10.1007/
978-3-540-72792-7.

4 Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage
Matchings. In David Eppstein, editor, 16th Scandinavian Symposium and Workshops on
Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmö, Sweden, volume 101 of LIPIcs,
pages 7:1–7:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/
LIPIcs.SWAT.2018.7.

5 Evripidis Bampis, Bruno Escoffier, and Sasa Mladenovic. Fair Resource Allocation Over
Time. In Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita Sukthankar, editors,
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pages 766–773. International
Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018.
URL: http://dl.acm.org/citation.cfm?id=3237496.

6 Nicolas K. Blanchard and Nicolas Schabanel. Dynamic Sum-Radii Clustering. In Sheung-Hung
Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Com-
putation, 11th International Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan,
March 29-31, 2017, Proceedings., volume 10167 of Lecture Notes in Computer Science, pages
30–41. Springer, 2017. doi:10.1007/978-3-319-53925-6_3.

7 Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive Analysis via Regularization. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 436–444.
SIAM, 2014. doi:10.1137/1.9781611973402.32.

8 Niv Buchbinder, Shahar Chen, Joseph Naor, and Ohad Shamir. Unified Algorithms for
Online Learning and Competitive Analysis. Math. Oper. Res., 41(2):612–625, 2016. doi:
10.1287/moor.2015.0742.

9 Alberto Caprara, Hans Kellerer, Ulrich Pferschy, and David Pisinger. Approximation algorithms
for knapsack problems with cardinality constraints. European Journal of Operational Research,
123(2):333–345, 2000.

10 Edith Cohen, Graham Cormode, Nick G. Duffield, and Carsten Lund. On the Tradeoff between
Stability and Fit. ACM Trans. Algorithms, 13(1):7:1–7:24, 2016. doi:10.1145/2963103.

11 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility Location in Evolving Metrics.
In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer
Science, pages 459–470. Springer, 2014. doi:10.1007/978-3-662-43951-7_39.

12 Alan M Frieze, MRB Clarke, et al. Approximation algorithms for the m-dimensional 0-1
knapsack problem: Worst-case and probabilistic analyses. European Journal of Operational
Research, 15:100–109, 1984.

13 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

MFCS 2019

https://doi.org/10.1145/3087556
https://doi.org/10.1007/978-3-540-72792-7
https://doi.org/10.1007/978-3-540-72792-7
https://doi.org/10.4230/LIPIcs.SWAT.2018.7
https://doi.org/10.4230/LIPIcs.SWAT.2018.7
http://dl.acm.org/citation.cfm?id=3237496
https://doi.org/10.1007/978-3-319-53925-6_3
https://doi.org/10.1137/1.9781611973402.32
https://doi.org/10.1287/moor.2015.0742
https://doi.org/10.1287/moor.2015.0742
https://doi.org/10.1145/2963103
https://doi.org/10.1007/978-3-662-43951-7_39

22:14 Multistage Knapsack

14 Albert Gu, Anupam Gupta, and Amit Kumar. The Power of Deferral: Maintaining a
Constant-Competitive Steiner Tree Online. SIAM J. Comput., 45(1):1–28, 2016. doi:10.
1137/140955276.

15 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing Bases: Multistage Optimization
for Matroids and Matchings. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of
Lecture Notes in Computer Science, pages 563–575. Springer, 2014.

16 Oscar H. Ibarra and Chul E. Kim. Fast Approximation Algorithms for the Knapsack and Sum
of Subset Problems. J. ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.

17 Hans Kellerer and Ulrich Pferschy. A New Fully Polynomial Time Approximation Scheme for
the Knapsack Problem. J. Comb. Optim., 3(1):59–71, 1999. doi:10.1023/A:1009813105532.

18 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004.

19 Bernhard Korte and Rainer Schrader. On the existence of fast approximation schemes. In
O. Magasarian, R. Meyer, and S. Robinson, editors, Nonlinear Programming 4, pages 415–437.
Academic Press, 1981.

20 Eugene L. Lawler. Fast Approximation Algorithms for Knapsack Problems. Math. Oper. Res.,
4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

21 Michael J. Magazine and Osman Oguz. A fully polynomial approximation scheme for the 0-1
knapsack problem. European Journal of Operational Research, 8:270–273, 1981.

22 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The Power of Recourse
for Online MST and TSP. SIAM J. Comput., 45(3):859–880, 2016. doi:10.1137/130917703.

23 Chandrashekhar Nagarajan and David P Williamson. Offline and online facility leasing.
Discrete Optimization, 10(4):361–370, 2013.

24 Osman Oguz and Michael J. Magazine. A polynomial time approximation algorithm for the
multidimensional knapsack problem. Working paper, University of Waterloo, 1980.

25 Cécile Rottner. Combinatorial Aspects of the Unit Commitment Problem. PhD thesis, Sorbonne
Université, 2018.

26 Baruch Schieber, Hadas Shachnai, Gal Tamir, and Tami Tamir. A Theory and Al-
gorithms for Combinatorial Reoptimization. Algorithmica, 80(2):576–607, 2018. doi:
10.1007/s00453-017-0274-8.

https://doi.org/10.1137/140955276
https://doi.org/10.1137/140955276
https://doi.org/10.1145/321906.321909
https://doi.org/10.1023/A:1009813105532
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1137/130917703
https://doi.org/10.1007/s00453-017-0274-8
https://doi.org/10.1007/s00453-017-0274-8

Recursion Schemes, Discrete Differential
Equations and Characterization of Polynomial
Time Computations
Olivier Bournez
Laboratoire d’Informatique de l’X (LIX), CNRS, Ecole Polytechnique,
Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
bournez@lix.polytechnique.fr

Arnaud Durand
Université Paris Diderot, IMJ-PRG, CNRS UMR 7586, Case 7012, 75205 Paris cedex 13, France
durand@math.univ-paris-diderot.fr

Abstract
This paper studies the expressive and computational power of discrete Ordinary Differential Equations
(ODEs). It presents a new framework using discrete ODEs as a central tool for computation and
algorithm design. We present the general theory of discrete ODEs for computation theory, we
illustrate this with various examples of algorithms, and we provide several implicit characterizations
of complexity and computability classes.

The proposed framework presents an original point of view on complexity and computation
classes. It unifies several constructions that have been proposed for characterizing these classes
including classical approaches in implicit complexity using restricted recursion schemes, as well as
recent characterizations of computability and complexity by classes of continuous ordinary differential
equations. It also helps understanding the relationships between analog computations and classical
discrete models of computation theory.

At a more technical point of view, this paper points out the fundamental role of linear (discrete)
ordinary differential equations and classical ODE tools such as changes of variables to capture
computability and complexity measures, or as a tool for programming many algorithms.

2012 ACM Subject Classification Theory of computation; Theory of computation → Models of
computation; Theory of computation → Computability; Theory of computation → Recursive func-
tions; Computer systems organization → Analog computers; Theory of computation → Complexity
classes; Theory of computation → Complexity theory and logic; Mathematics of computing →
Differential equations; Mathematics of computing → Ordinary differential equations; Mathematics
of computing → Differential calculus

Keywords and phrases Implicit complexity, discrete ordinary differential equations, recursion scheme

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.23

Funding Olivier Bournez: Supported by RACAF Project from Agence National de la Recherche
and Labex Digicosme Project ACDC.

Acknowledgements We would like to thank Sabrina Ouazzani for many scientific discussions about
the results in this article.

1 Introduction

Since the beginning of its foundations, classification of the difficulty of problems, with various
models of computation, either by their complexity or by their computability properties, is a
thriving field of computer science. Nowadays, classical computer science problems also deal
with continuous data coming from different areas and modeling involves the use of tools like
numerical analysis, probability theory or differential equations. Thus new characterizations

© Olivier Bournez and Arnaud Durand;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9218-1130
mailto:bournez@lix.polytechnique.fr
mailto:durand@math.univ-paris-diderot.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Discrete Differential Equations & Characterization of Polynomial Time Comp.

related to theses fields have been proposed. On a dual way, the quest for new types of
computers recently led to revisit the power of some models for analog machines based on
differential equations, and to compare them to modern digital models. In both contexts,
when discussing the related computability or complexity issues, one has to overcome the fact
that today’s (digital) computers are in essence discrete machines while the objects under
study are continuous and naturally correspond to Ordinary Differential Equations (ODEs).

We consider here an original approach in between the two worlds: discrete oriented
computation with differential equations.

ODEs appear to be a natural way of expressing properties and are intensively used, in
particular in applied science. The theory of classical (continuous) ODEs has an abundant
literature (see e.g. [1, 3, 9]) and is rather well understood under many aspects. We are
interested here in a discrete counterpart of classical continuous ODEs: discrete ODEs. Its
associated derivative notion, called finite differences, has been widely studied in numerical
optimization for function approximation [12] and is reminiscent in discrete calculus [14, 13,
15, 20] for combinatorial analysis (remark that similarities between discrete and continuous
statements have also been historically observed, under the terminology of umbral or symbolic
calculus as early as in the 19th century). However, even if the underlying computational
content of finite differences theory is clear and has been pointed out many times, no
fundamental connections with algorithms and complexity have been exhibited so far.

In this article, our goal is to demonstrate that discrete ODEs is a very natural tool for
algorithm design and to prove that complexity and computability notions can be elegantly and
simply captured using discrete ordinary differential equations. We illustrate this by providing
a characterization of FPTIME, the class of polynomial time computable functions, and of
its non deterministic analog FNP. To this aim, we will also demonstrate how some notions
from the analog world such as linearity of differential equations or derivatives along some
particular functions (i.e. changes of variables) are representative of a certain computational
hardness and can be used to solve efficiently some (classical, digital) problems.

As far as we know, this is the first time that computations with discrete ODEs and
their related complexity aspects are considered. By contrast, complexity results have been
recently obtained about classical (continuous) ODEs for various classes of functions, mostly
in the framework of computable analysis. The hardness of solving continuous ODEs has been
intensively discussed: for example [19] establishes some bases of the complexity aspects of
ODEs and more recent works like [18] or [10] establish links between complexity or effective
aspects of such differential equations. We believe that investigating the expressive power
of discrete ODE, can help to better understand complexity of computation for both the
discrete and continuous settings. Indeed, on the one hand, our results offers a new machine
independent perspective on classical discrete computations, i.e. computations that deal with
bits, words, or integers. And, on the other hand, it relates classical (discrete) complexity
classes to analog computations, i.e. computations over the reals, as analog computation have
been related in various ways to continuous ordinary differential equations, and as discrete
ordinary differential equations provide clear hints about their continuous counterparts. A
mid-term goal of this line of research is also to bring insights from complexity theory to the
problem of solving ODE (discrete and, hopefully also, numerical). A descriptive approach
such as the one initiated in the paper could help classifying large classes of ODE by their
computational hardness and bring some uniformity to methods of this field.

O. Bournez and A. Durand 23:3

From restricted recursion scheme to discrete differential equations

Recursion schemes constitutes a major approach of computability theory and to some extent
of complexity theory. A foundational result in that spirit is due to Cobham, who gave in [8]
a characterization of functions computable in polynomial time through the notion of bounded
recursion on notations (BRN, for short). A function f is defined by BRN from g, h0, h1, k if
f(0,y) = g(y); f(0(x),y) = h0(f(x,y), x,y) for x 6= 0; f(1(x),y) = h1(f(x,y), x,y) with,
for all x,y: f(x,y) ≤ k(x,y). Here 0(.) and 1(.) denote the successor functions defined by
0(x) = 2.x and 1(x) = 2.x+ 1. In this approach, the number of steps is controlled through
the use of the alternative successors 0(.) and 1(.) (which increase the size of their argument
by one in each round) and the size of objects through an explicit upper bound by a given
function k. Later, notions such as safe recursion [2] or ramification ([22, 21] have allowed
syntactical characterizations of polynomial time or other classes [23] that do not require the
use of an explicit bound but at the expense of rather sophisticated schemes. These works
have therefore been at the origin of the very vivid field of implicit complexity at the interplay
of logic and theory of programming.

A discrete function can also be described by its derivative i.e. the value f(x+1,y)−f(x,y).
It is straightforward to rewrite primitive recursion in this setting, though one may have to
cope with possibly negative values. To capture more fine grained time and space measures
we come up in the proposed context of discrete ODEs with at least two original concepts
which are very natural in the continuous setting:

deriving along a function; when such a function is suitably chosen this allows to control
the number of steps in the computation;
linearity that permits to control object sizes.

By combining these two approaches, we provide a characterization of FPTIME that
does not require to specify an explicit bound in the recursion, in contrast to Cobham’s work,
nor to assign a specific role or type to variables, in contrast to safe recursion or ramification.
The characterization happens to be very simple from a syntactical point of view using only
natural notions from the world of ODE.

This characterization is also a first step to convince the reader that deep connections
between complexity and ODE solving do exist and that these connections are worth to be
further studied.

Related works on analog computations

As many historical or even possibly futuristic analog machines are naturally described by
(continuous) ODEs, the quest of understanding how the computational power of analog
models compare to classical digital ones have led to several results relating classical complexity
to various classes of continuous ODEs. In particular, a series of papers has been devoted to
study various classes of the so-called R-recursive functions, after their introduction in [25] as a
theoretical model for computations over the reals. At the complexity level, characterizations
of complexity classes such as PTIME and NPTIME using R-recursive algebra have been
obtained [27], motivated in particular by the idea of transferring classical questions from
complexity theory to the context of real and complex analysis [24, 27, 26]. But this has been
done with the addition of limit schemata and with a rather different settings.

More recently, revisiting the model of General Purpose Analog Computer of Claude
Shannon, it is has been proved that polynomial differential equations can be considered as a
very simple and elegant model in which computable functions over the reals and polynomial
time computable functions over the reals can be defined without any reference to concepts

MFCS 2019

23:4 Discrete Differential Equations & Characterization of Polynomial Time Comp.

from discrete computation theory [4, 29]. We believe the current work is a substantial step to
understand the underlying power and theory of such analog models, by providing concepts,
definitions and results relating the two worlds.

Refer to [5] for an up to date survey about various works on analog computations, in
particular in a computation theory perspective.

Structure of the paper

In Section 2 a short introduction to discrete differentiability is given followed in Section 3
by an illustration, through examples, of the programming ability of discrete ODE. Formal
definitions of discrete ODE schemas are given in Section 4 together with characterizations of
classical computability classes. Our objective, from Section 2 to 4, is to expose in a simple
way (using sometimes well-known concepts) the basics of the theory of discrete ODE and
its computational content, before getting to more technical results. Section 5 introduces
the notion of length-ODE which is central, together with the that of (essentially) linear
differential equation, for the characterization of FPTIME (Section 6) and FNP (Sections 7).
In Section 8 we discuss some extensions of the results.

2 Discrete differentiability and ODEs

In this section, we review some basic notions of discrete calculus to help intuition in the rest
of the paper (refer to [16, 12] for a more complete review). Discrete derivatives are usually
intended to concern functions over the integers of type f : Np → Zd, but the statements and
concepts considered in our discussions are also valid more generally for functions of type
f : Zp → Zd, for some integers p, d, or even functions f : Rp → Rd. The basic idea is to
consider the following concept of derivative

I Remark 1. We first discuss the case where p = 1, i.e. functions f : N→ Zd. We will later
on consider more general functions, with partial derivatives instead of derivatives.

I Definition 2 (Discrete Derivative). The discrete derivative of f(x) is defined as ∆f(x) =
f(x+ 1)− f(x). We will also write f ′ for ∆f(x) to help to understand statements with respect
to their classical continuous counterparts.

Several results from classical derivatives generalize to this settings: this includes linearity
of derivation (a · f(x) + b · g(x))′ = a · f ′(x) + b · g′(x), formulas for products and division
such as (f(x) · g(x))′ = f ′(x) · g(x+ 1) + f(x) · g′(x) = f(x+ 1)g′(x) + f ′(x)g(x).

A fundamental concept is the following:

I Definition 3 (Discrete Integral). Given some function f(x), we write
∫ b
a

f(x)δx as a
synonym for

∫ b
a

f(x)δx =
∑x=b−1
x=a f(x) with the convention that it takes value 0 when a = b

and
∫ b
a

f(x)δx = −
∫ a
b

f(x)δx when a > b.

The telescope formula yields the so-called Fundamental Theorem of Finite Calculus:

I Theorem 4 (Fundamental Theorem of Finite Calculus). Let F(x) be some function. Then,∫ b
a

F′(x)δx = F(b)− F(a).

As for classical functions, a given function has several primitives. These primitives are
defined up to some additive constant. Several techniques from the classical settings generalize
to the discrete settings: this includes the technique of integration by parts.

O. Bournez and A. Durand 23:5

A classical concept in discrete calculus is the one of falling power defined as xm =
x · (x− 1) · (x− 2) · · · (x− (m− 1)). This notion is motivated by the fact that it satisfies a
derivative formula (xm)′ = m · xm−1 similar to the classical one for powers in the continuous
setting. In a similar spirit, we introduce the concept of falling exponential.

I Definition 5 (Falling exponential). Given some function U(x), the expression U to the
falling exponential x, denoted by 2U(x), stands for 2U(x) = (1 + U′(x− 1)) · · · (1 + U′(1)) ·
(1 + U′(0)) =

∏t=x−1
t=0 (1 + U′(t)), with the convention that

∏0
0 = id, where id is the identity

(sometimes denoted 1 hereafter)

This is motivated by the remarks that 2x = 2x, and that the discrete derivative of a
falling exponential is given by

(
2U(x)

)′
= U′(x) · 2U(x) for all x ∈ Z.

We will focus in this article on discrete Ordinary Differential Equations (ODE) on
functions with several variables, that is to say for example on equations of the (possibly
vectorial) form:

∂f(x,y)
∂x

= h(f(x,y), x,y), (1)

where ∂f(x,y)
∂x stands as expected for the derivative of functions f(x,y) considered as a

function of x, when y is fixed i.e. ∂f(x,y)
∂x = f(x + 1,y) − f(x,y). When some initial value

f(0,y) = g(y) is added, this is called an Initial Value Problem (IVP) or a Cauchy Problem.
An IVP can always be put in integral form

f(x,y) = f(0,y) +
∫ x

0
h(f(x,y), x,y)δx.

Our aim here is to discuss total functions whose domain and range is either of the form
D = N, Z, or possibly a finite product D = D1 × · · · × Dk where each Di = N, Z. By
considering that N ⊂ Z, we assume that the range is always Zd for some d. The concept of
solution for such ODEs is as expected: given h : Zd ×N× Zp → Z (or h : Zd × Z× Zp → Z),
a solution over D is a function f : D × Zp → Zd that satisfies the equations for all x,y.

We will only consider well-defined ODEs such as above in this article (but variants with
partially defined functions could be considered as well). Observe that an IVP of the form (1)
always admits a (necessarily unique) solution over N since f can be defined inductively with
f(0,y) = g(y) and f(x+ 1,y) = f(x,y) + h(f(x,y), x,y).
I Remark 6. Notice that this is not necessarily true over Z: As an example, consider
f ′(x) = −f(x) + 1, f(0) = 0. By definition of f ′(x), we must have f(x+ 1) = 1 for all x, but
if x = −1, f(0) = 1 6= 0.
I Remark 7 (Sign function). It is very instructive to realize that the solution of this IVP over
N is the sign sgN(x) function defined by sgN(x) = 1 if x > 0 and sgN(x) = 0 in the other case.

Linear (also called Affine) ODEs will play a very important role in what follows, i.e.
discrete ordinary differential equations of the form f ′(x) = A(x) · f(x) + B(x).
I Remark 8. Recall that the solution of f ′(x) = a(x)f(x) + b(x) for classical continous
derivatives turns out to be given by (usually obtained using the method of variation of
parameters): f(x) = f(0)e

∫ x

0
a(t)dt+

∫ x
0 b(u)e

∫ x

u
a(t)dt

du. This generalizes with our definitions
to discrete ordinary differential equations, and this works even vectorially:

I Lemma 9 (Solution of linear ODE). For matrices A and vectors B and G, the solution
of equation f ′(x,y) = A(x,y) · f(x,y) + B(x,y) with initial conditions f(0,y) = G(y) is

f(x,y) =
(

2
∫ x

0
A(t,y)δt

)
·G(y) +

∫ x
0

(
2
∫ x

u+1
A(t,y)δt

)
·B(u,y)δu.

MFCS 2019

23:6 Discrete Differential Equations & Characterization of Polynomial Time Comp.

I Remark 10. Notice that this can be rewritten as
∑x−1
u=−1

(∏x−1
t=u+1(1 + A(t,y))

)
·B(u,y)

with the conventions that for any function κ(·),
∏x−1
x κ(x) = 1 and B(−1,y) = G(y). Such

equivalent expressions both have a clear computational content. They can be interpreted as
an algorithm unrolling the computation of f(x+ 1,y) from the computation of f(x,y), f(x−
1,y), . . . , f(0,y). The next section will build on that remark through some examples.

3 Programming with discrete ODE

The computational dimension of calculus of finite differences has been widely stressed in
mathematical analysis. However, no fundamental connection has been established with
algorithmic and complexity. In this section, we show that several algorithms can actually be
naturally expressed as discrete ODEs.

For now, we suppose that composition of functions, constant and the following basic
functions can be used freely as functions from Z to Z: arithmetic operations: +, −, ×; `(x)
returns the length of |x| written in binary; sg(x) : Z→ Z (respectively: sgN(x) : N→ Z) that
takes value 1 for x > 0 and 0 in the other case; From these basic functions, for readability, one
may define useful functions as synonyms: s̄g(x) stands for s̄g(x) = (1− sg(x))× (1− sg(−x)):
it tests if x = 0 for x ∈ Z; ¯sgN(x) stands for ¯sgN(x) = 1 − sgN(x): it tests if x = 0
for x ∈ N. if(x, y, z) stands for if(x, y, z) = y + s̄g(x) · (z − y) and ifN(x, y, z) stands for
ifN(x, y, z) = y + ¯sgN(x) · (z − y). if(x < x′, y, z) will be a synonym for if(sg(x′ − x+ 1), y, z)
and if(x = x′, y, z) will be a synonym for if(1− s̄g(x− x′), y, z).

First observe that discrete ODEs allow to express easily search functions:

I Example 11 (Computing the minimum of a function). The minimum of a function min f :
x 7→ min{f(y) : 0 ≤ y ≤ x} is given by F (x, x) where F is solution of the discrete ODE
F (0, x) = f(0); ∂F (t,x)

∂t = H(F (t, x), f(x), t, x), where H(F, f, t, x) = 0 if F < f , f − F if
F ≥ f . In integral form, we have: F (x, y) = F (0) +

∫ x
0 H(F (t, y), t, y)δt.

Conversely such an integral above (equivalently discrete ODE) can always be considered as
a (recursive) algorithm: compute the integral from its definition as a sum. On this example,
this corresponds basically to compute F (x, x) recursively by F (t + 1, x) = if(F (t, x) <
f(x), F (t, x), f(x)).
I Remark 12. Note that this algorithm is not polynomial in the length of its argument x, as
it takes time x to compute min f . Getting to polynomial algorithms will be at the heart of
coming discussions in the two next examples and in Section 5.

As shown in the following two examples, discrete ODEs can express more sophisticated
functions and turn out to be very natural in many other contexts, in particular non numerical
ones, where they would probably not be expected.

I Example 13 (Computing the integer part and divisions, going to Length-ODE). Suppose
that we want to compute b

√
xc = max{y ≤ x : y · y ≤ x} and

⌊
x
y

⌋
= max{z ≤ x : z · y ≤ x}.

It can be done by the following general method. Let f, h be some functions with h being
non decreasing. We compute someh with someh(x) = y s.t. |f(x)− h(y)| is minimal. When
h(x) = x2 and f(x) = x, it holds that: b

√
xc = if(someh(x)2 ≤ x, someh(x), someh(x)− 1).

The function someh can be computed (in non-polynomial time) as a solution of an ODE as in
Example 11. However, there is a more efficient (polynomial time) way to do it based on what
one usually does with classical ordinary differential equations: performing a change of variable
so that the search becomes logarithmic in x. Indeed, we can write someh(x) = G(`(x), x)
for some function G(t, x) that is a solution of G(0, x) = x; ∂G(t,x)

∂t = E(G(t, x), t, x) where
E(G, t, x) takes value 2`(x)−t−1 whenever h(G > f(x)), 0 whenever h(G) = f(x) and
−2`(x)−t−1 whenever h(G) < f(x).

O. Bournez and A. Durand 23:7

I Example 14 (Computing suffixes with discrete ODEs). The suffix function, suffix(x, y)
takes as input two integers x and y and outputs the `(y) = t least significant bits of the
binary decomposition of x. We describe below a way to compute a suffix working over a
parameter t, that is logarithmic in x. Consider the following unusual algorithm that can be
interpreted as a fix-point definition of the function: suffix(x, y) = F (`(x), y) where F (0, x) = x;
F (t + 1, x) = if(`(F (t, x)) = 1, F (t, x), F (t, x) − 2`(F (t,x))−1).This can be interpreted as a
differential equation, whose solution is converging fast again (i.e. in polynomial time) to what
we want. In other words, suffix(x, y) = F (`(x), x) using the solution of the IVP: F (0, y) = x,
∂F (T,y)
∂T = if(`(F (t, x)) = 1, 0,−2`(F (t,x))−1).

4 Computability and Discrete ODEs

Here, we consider functions defined by ODEsunder the prism of computability. It serves as
an introductory illustration of the close relationship between discrete ODEs and recursive
schemata before moving to efficient algorithms and complexity classes characterizations with
a finer approach. This part is clearly inspired by ideas from [6, 7], but adapted here for our
framework of discrete ODEs. We refer to [30, 28] for basic definitions from computability.

I Definition 15 ((Scalar) Discrete ODE schemata). Given g : Np → N and h : Z×Np+1 → Z,
we say that f is defined by discrete ODE solving from g and h, denoted by f = ODE(g, h), if
f : Np+1 → Z corresponds to the (necessarily unique) solution of Initial Value Problem

∂f(x,y)
∂x = h(f(x,y), x,y), f(0,y) = g(y). (2)

I Remark 16. To be more general, we could take g : Np → Z. However, this would be of
no use in the context of this paper. We could also consider vectorial equations as in what
follows which are very natural in the context of ODEs, and we would get similar statements.

It is clear that primitive recursion schemes can be reformulated as discrete ODE schemata.
The restriction to Linear ODEs is very natural, in particular as this class of ODEs has a
highly developed theory for the continuous setting. It is very instructive to realize that the
class of functions definable by Linear ODEs is exactly the well-known class of elementary
functions [17] (we will see later how additional requirements lead to a characterization of
polynomial time functions).

I Definition 17 (Linear ODE schemata). Given a vector G = (Gi)1≤i≤k matrix A =
(Ai,j)1≤i,j≤k, B = (Bi)1≤i≤k whose coefficients corresponds to functions gi : Np → Nk, and
ai,j : Np+1 → Z and bi,j : Np+1 → Z respectively, we say that f is obtained by linear ODE
solving from g,A and B, denoted by f = LI(G,A,B), if f : Np+1 → Zk corresponds to the
(necessarily unique) solution of Initial Value Problem

∂f(x,y)
∂x = A(x,y) · f(x,y) + B(x,y), f(0,y) = G(y). (3)

I Theorem 18 (A discrete ODE characterization of elementary functions). The set of elementary
functions E is the intersection with NN of the smallest set of functions that contains the zero
functions 0, the projection functions πpi , the successor function s, addition +, subtraction −,
and that is closed under composition and discrete linear ODE schemata (respectively: scalar
discrete linear ODE schemata) LI.

By adding suitable towers of exponential, the above result can be generalized to char-
acterize the various levels of the Grzegorczyk hierarchy. We can also reexpress Kleene’s
minimization:

MFCS 2019

23:8 Discrete Differential Equations & Characterization of Polynomial Time Comp.

I Theorem 19 (Discrete ODE computability and classical computability are equivalent). A
total function f : Np → N is total recursive iff there exist some functions h1, h2 : Np+1 → N2

in the smallest set of functions that contains the zero functions 0, the projection functions πpi ,
the successor function s, and that is closed under composition and discrete ODE schemata
such that: for all y, there exists some T = T (y) with h2(T,y) 6= 0; f(y) = h1(T,y) where T
is the smallest such T .

5 Restricted recursion and integration schemes

In order to talk about complexity instead of computability, we need to add some restrictions
on the integration scheme. This follows from the following remark:

I Example 20. The solution of the (degree 2) polynomial ODE y′1 = y1, y′i = y′i−1y
′
i

for i = 1, . . . d is growing faster than a tower of falling exponentials. Consequently, it is
not polynomial time computable as just outputting its value in binary cannot be done in
polynomial time.

We consequently propose to introduce the following variation on the notion of derivation:
derivation along some function L(x,y).

I Definition 21 (L-ODE). Let L : Np+1 → Z. We write

∂f(x,y)
∂L

= ∂f(x,y)
∂L(x,y) = h(f(x,y), x,y), (4)

as a formal synonym for f(x+ 1,y) = f(x,y) + (L(x+ 1,y)− L(x,y)) · h(f(x,y), x,y).

I Remark 22. This is motivated by the fact that the latter expression is similar to classical
formula for classical continuous ODEs:

δf(x,y)
δx

= δL(x,y)
δx

· δf(x,y)
δL(x,y) .

This will allow us to simulate suitable changes of variables using this analogy. We will talk
about L-IVP when some initial condition is added. An important special case is when L(x,y)
corresponds to the length L(x,y) = `(x) function: we will call this special case length-ODEs.

5.1 General theory
The main result of this part illustrates one key property of the L-ODE scheme from a
computational point of view: its dependence on the number of distinct values of function L.

I Definition 23 (JumpL). Let L : Np+1 → Z be some function. Fixing y ∈ Np, let
JumpL(x,y) = {0 ≤ i ≤ x− 1|L(i+ 1,y) 6= L(i,y)} be the set of positive integers less than
x after which the value of L changes.

We also write: JL = |JumpL(x,y)| for its cardinality; α : [0..JL−1]→ JumpL(x,y) for an
increasing function enumerating the elements of JumpL(x,y): If i0 < i1 < i2 < · · · < iJL−1
denote all elements of JumpL(x,y), then α(j) = ij ∈ JumpL(x,y).

I Lemma 24. Let f : Np+1 → Zd and L : Np+1 → Z be some functions. Assume that (4)
holds. Then f(x,y) is equal to:

f(0,y) +
∫ JL

0
∆L(α(u),y) · h(f(α(u),y), α(u),y)δu.

O. Bournez and A. Durand 23:9

I Remark 25. Note that the above result would still hold with L and h taking their images
in R.
Its proof is based on (and illustrates) some fundamental aspect of L-ODE from their definition:
for fixed y, the value of f(x,y) only changes when the value of L(x,y) changes. If the previous
hypotheses hold, there is then an alternative view to understand the integral, by using a
change of variable, and by building a discrete ODE that mimics the computation of the
integral.

I Lemma 26 (Alternative view). Let k ∈ N, f : Np+1 → Zd, L : Np+1 → Z be some functions
and assume that (4) holds. Then f(x,y) is given by f(x,y) = F(L(x,y),y) where F is the
solution of initial value problem

∂F(t,y)
∂t = ∆L(t,y) · h(F(t,y), t,y) F(0,y) = f(L(0,x),y).

Conversely, if there is such a function F, then a discrete ODE of the type of (4) can easily
be derived.

5.2 Linear length-ODEs
I Remark 27. In all previous reasonings, we considered that a function over the integers
is polynomial time computable if it is in the length of all its arguments, as this is the
usual convention. When not explicitly stated, this is our convention. As usual, we also say
that some vectorial function (respectively: matrix) is polynomial time computable if all its
components are. We need sometimes to consider also polynomial dependency directly in
some of the variables and not on their length: This happens in the next fundamental lemma.
We write ‖ · · · ‖ for the sup norm: given some matrix A = (Ai,j)1≤i≤n,1≤j≤m, ‖A‖ =
maxi,j Ai,j .

I Lemma 28 (Fundamental observation). Consider the ODE

f ′(x,y) = A(f(x,y), x,y) · f(x,y) + B(f(x,y), x,y). (5)

Assume:
1. The initial condition G(y) =def f(0,y), as well as Matrix A and vector B are polynomial

time computable.
2. `(‖A(f, x,y)‖) ≤ `(‖f‖) + pA(x, `(y)) for some polynomial pA
3. `(‖B(f, x,y)‖) ≤ `(‖f‖) + pB(x, `(y)) for some polynomial pB

Then its solution f(x,y) is polynomial time computable in x and the length of y.

Proof sketch. This comes from the explicit form of solutions provided by Lemma 9, con-
sidered then as an algorithm (see Remark 10). The point is then to analyse the size of all the
involved quantities in order to state that this remains indeed polynomial time feasible. J

We now go to specific forms of linear ODEs.

I Definition 29. A sg-polynomial expression P (x1, ..., xh) is an expression built-on +,−,×
(often denoted ·) and sg() functions over a set of variables V = {x1, ..., xh} and integer
constants. The degree deg(x, P) of a term x ∈ V in P is defined inductively as follows:

deg(x, x) = 1 and for x′ ∈ X ∪ Z such that x′ 6= x, deg(x, x′) = 0
deg(x, P +Q) = max{deg(x, P),deg(x,Q)}
deg(x, P ×Q) = deg(x, P) + deg(x,Q)
deg(x, sg(P)) = 0

A sg-polynomial expression P is essentially constant in x if deg(x, P) = 0.

MFCS 2019

23:10 Discrete Differential Equations & Characterization of Polynomial Time Comp.

Compared to the classical notion of degree in polynomial expression, all subterms that
are within the scope of a sign function contributes 0 to the degree. A vectorial function (resp.
a matrix or a vector) is said to be a sg-polynomial expression if all its coordinates (resp.
coefficients) are. It is said to be essentially constant if all its coefficients are.

I Definition 30. A (possibly vectorial) sg-polynomial expression g(f(x,y), x,y) is essentially
linear in f(x,y) if it is of the form g(f(x,y), x,y) = A[f(x,y), x,y] · f(x,y) + B[f(x,y), x,y]
where A and B are sg-polynomial expressions essentially constant in f(x,y).

I Example 31. The expression P (x, y, z) = x · sg((x2 − z) · y) + y3 is linear in x, essentially
constant in z and not linear in y. The expression P (x, 2`(y), z) = sg(x2 − z) · z2 + 2`(y) is
essentially constant in x, essentially linear in 2`(y) (but not essentially constant) and not
essentially linear in z. The expression: if(x, y, z) = y+ s̄g(x) · (z−y) = y+ (1− sg(x)) · (z−y)
is essentially constant in x and linear in y and z.

I Definition 32. Function f is linear L-ODE definable (from u, g and h) if it corresponds
to the solution of L-IVP

∂f(x,y)
∂L = u(f(x,y),h(x,y), x,y) f(0,y) = g(y) (6)

where u is essentially linear in f(x,y). When L(x,y) = `(x), such a system is called linear
length-ODE.

The previous statements lead to the following:

I Lemma 33 (Key Observation for linear L-ODE). Assume that f is the solution of (6) and
that functions g,h,L and JumpL are computable in polynomial time. Then, f is computable
in polynomial time.

6 A characterization of polynomial time

The above result shows that functions defined by linear length-ODE from functions com-
putable in polynomial time, are indeed polynomial time. We are now ready to introduce a
recursion scheme based on solving linear differential equations to capture polynomial time.
I Remark 34. Since the functions we define take their values in N and have output in Z,
composition is an issue. Instead of considering restrictions of these functions with output
in N (which is always possible, even by syntactically expressible constraints), we simply
admit that composition may not be defined in some cases. In other words, we consider that
composition is a partial operator.

I Definition 35 (DL). Let DL be the smallest subset of functions, that contains 0, 1,
projections πpi , the length function `(x), the addition function x+y, the subtraction function
x−y, the multiplication function x × y (often denoted x · y), the sign function sg(x) and
closed under composition (when defined) and linear length-ODE scheme.

I Remark 36. As our proofs show, the definition of DL would remain the same by considering
closure under any kind of L-ODE with L satisfying the hypothesis of Lemma 33.

I Example 37. A number of natural functions are in DL. Functions 2`(x), 2`(x)·`(y),
if(x, y, z), suffix(x, y), b

√
xc, bxy c, 2b

√
xc all belong to DL by some linear length-ODE easy to

establish.

I Theorem 38. DL = FPTIME

O. Bournez and A. Durand 23:11

sketch. ⊆ Consequence of Lemma 33, on the fact that arithmetic operations that are allowed
can be computed in polynomial time and that FPTIME is closed under composition.
⊇ A register machine program is a finite sequence of ordered labeled instructions acting

on a finite set of registers R0,...,Rk. Such a machine is equipped with assignment instructions
(Rj := Rj+Ri, Rj := Rj−Ri, Rj := i for i ∈ {0, 1}), control flow statement (ifRj = 0 goto p)
and halt instruction.

Let f : Np −→ N be computable in polynomial time and M a k registers machine that
computes f in time `(x)c for some c ∈ N (with x in registers R1,, Rp, p ≤ k, at startup
and f(x) in R0 at the end). It is well known that polynomial time on register machines and
on Turing machines is the same.

The computation ofM is defined by simultaneous recursion scheme on length for functions
R0(t,x), ..., Rk(t,x) and inst(t,x): it gives, respectively, the values of each register and the
label of the current instruction at time `(t). It is shown to correspond to some length-linear
ODE. As an example, we describe function inst(t,x) below.

Let nextIl , nexthl , h ≤ k describe the evolution of function inst and of register Rh between
two instants of time after firing instruction with label l. If l is of the type Rj := Rj − Ri
(or is any assignment), then nextIl = 1 since inst(t+ 1,x) = inst(t,x) + 1. If l if of the type
if Rj = 0 goto p, nextIl = if(Rj(t,x), p− inst(t,x), 1) since, in case Rj(t,x) = 0 instruction
number goes from inst(t,x) to p. The definition of each nexthl is similar.

The value of inst(t+ 1,x) can then be described from inst(t,x) and Rh(t,x), h ≤ k, by
cases depending on the type of the current instruction. Expanded as an arithmetic expression,
this gives:

∂inst
∂`

(t,x) =
m∑
l=0

(l−1∏
i=0

sg(inst(t,x)− i)
)
· s̄g(inst(t,x)− l) · nextIl .

It is proved to be of the form

∂Rj
∂`

(t,x) =
m∑
l=0

(l−1∏
i=0

sg(inst(t,x)− i)
)
· s̄g(inst(t,x)− l) · nextjl

for some nextjl encoding the various types of instructions.
The definition is similar (and easier) for each function Rj(t,x). Observe that in the

expression above, there is at most one occurrence of inst(t,x) and Rj(t,x) that is not under
the scope of an essentially constant function (i.e. the sign functions). Hence, the expressions
are of the prescribed form.

We know M works in time `(x)c for some fixed c ∈ N. Both functions `(x) = `(x1) + . . .+
`(xp) and B(x) = 2`(x)·`(x) are in DL. It is easily seen that : `(x)c ≤ B(c)(`(x))) where B(c)

is the c-fold composition of function B. We conclude by setting f(x) = R0(B(c)(max(x)),x).
J

I Definition 39 (Normal linear L-ODE (NL-ODE)). Function f is definable by a normal linear
L-ODE if it corresponds to the solution of L-IVP ∂f(x,y)

∂L = u(f(x,y), x,y), f(0,y) = v(y)
where u is essentially linear in f(x,y) and v is either the identity, a projection or a constant
function.

From the proof of Theorem 38 the result below can be easily obtained. It expresses that
composition needs to be used only once as exemplified in the above definition.

I Theorem 40 (Alternative characterization of FPTIME). A function f : Np → Z is in
FPTIME iff f(y) = g(`(y)c,y) for some integer c and some g : Np+1 → Zk solution of a
normal linear length-ODE ∂g(x,y)

∂`(x) = u(g(x,y), x,y).

MFCS 2019

23:12 Discrete Differential Equations & Characterization of Polynomial Time Comp.

I Remark 41. From similar arguments, FPTIME also corresponds to the class defined as
DL but where linear length-ODE scheme is replaced by normal linear length-ode scheme:
this forbids a function already defined with some ODE scheme to be used into some other
ODE scheme.

7 A characterization of FNP

This can be extended to more general class such as FNP. A function can always seen by its
graph Q: A relation Q is in FNP if and only if there is a deterministic time verifier, given
an arbitrary input (x, y) determines whether (x, y) ∈ Q. Equivalently, Q is FNP if and only
if there is a non deterministic polynomial time algorithm that, given an arbitrary input x,
can find some y such that (x, y) ∈ Q. A function w : Np+1 → Z is bounded if for all x ∈ Np,
w(x) ≤ ‖x‖.

I Definition 42 (Normal linear L-ODE with parameter). Let L : Np+1 → Z. Function
f : Np+1 → Zk is definable by a L-ODE with parameter if there exists a bounded function
w : Np+1 → Z such that f is the solution of an equation ∂f(x,y)

∂L = u(f(x,y), w(x,y), x,y)
f(0,y) = v(y), where u is essentially linear in f(x,y) and v is either the identity, a projection
or a constant function.

I Theorem 43 (Characterization of FNP). A function f : Np → Nk is in FNP iff f(y) =
g(2`(y)c

,y) for some integer c and some g : Np+1 → Nk, solution of a normal linear length-
ODE with parameter ∂g(x,y)

∂`(x) = u(g(x,y), w(x,y), x,y) for some bounded w : Np+1 → N.

8 Discussions and further works

Our aim in this article was to give the basis of a presentation of complexity theory based
on discrete Ordinary Differential Equations and their basic properties. We demonstrated
the particular role played by affine ordinary differential equations in complexity theory, as
well as the concept of derivation along some particular function (i.e. change of variable) to
guarantee a low complexity.

Previous ideas used here for FPTIME can also be extended to provide a characterization
of other complexity classes: This includes the possibility of characterizing the class P[0,1] of
functions computable in polynomial time over the reals in the sense of computable analysis,
or more general classes of classical discrete complexity theory such as FPSPACE. For the
clarity of the current exposition, as this would require to introduce other types of schemata
of ODEs, we leave this characterization (and improvement of the corresponding schemata to
“the most natural and powerful form”) for future work, but we believe the current article
basically provides the key types of arguments to conceive that this is indeed possible.

More generally, it is also very instructive to revisit classical algorithmic under this
viewpoint, and for example one may realize that even inside class PTIME, the Master
Theorem (see e.g. [11, Theorem 4.1] for a formal statement) can be basically read as a
result on (the growth of) a particular class of discrete time length ODEs. Several recursive
algorithms can then be reexpressed as particular discrete ODEs of specific type.

References
1 V. I. Arnold. Ordinary Differential Equations. MIT Press, 1978.
2 S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time

functions. Computational Complexity, 2:97–110, 1992.

O. Bournez and A. Durand 23:13

3 G. Birkhoff and G.-C. Rota. Ordinary Differential Equations. John Wiley & Sons, 4th edition,
1989.

4 O. Bournez, D. S. Graça, and A. Pouly. Polynomial Time corresponds to Solutions of
Polynomial Ordinary Differential Equations of Polynomial Length. Journal of the ACM,
64(6):38:1–38:76, 2017. doi:10.1145/3127496.

5 Olivier Bournez and Amaury Pouly. A Survey on Analog Models of Computation. In Vasco
Brattka and Peter Hertling, editors, Handbook of Computability and Complexity in Analysis.
Springer. To appear, 2018.

6 Manuel L. Campagnolo. Computational Complexity of Real Valued Recursive Functions and
Analog Circuits. PhD thesis, Universidade Técnica de Lisboa, 2001.

7 Manuel L. Campagnolo, Cristopher Moore, and José Félix Costa. An analog characterization
of the Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000, 2002.

8 A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,
Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science,
pages 24–30. North-Holland, Amsterdam, 1962.

9 E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. Mc-Graw-Hill,
1955.

10 Pieter Collins and Daniel S Graça. Effective computability of solutions of ordinary differential
equations the thousand monkeys approach. Electronic Notes in Theoretical Computer Science,
221:103–114, 2008.

11 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms (third edition). MIT press, 2009.

12 AO Gelfand. Calcul des différences finies. Dunod, 1963.
13 David Gleich. Finite calculus: A tutorial for solving nasty sums. Stanford University, 2005.
14 Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu. Concrete mathematics:

a foundation for computer science. Computers in Physics, 3(5):106–107, 1989.
15 FA Izadi, N Aliev, and G Bagirov. Discrete Calculus by Analogy. Bentham Science Publishers,

2009.
16 Charles Jordan and Károly Jordán. Calculus of finite differences, volume 33. American

Mathematical Soc., 1965.
17 L. Kalmár. Egyzzerü példa eldönthetetlen aritmetikai problémára. Mate és Fizikai Lapok,

50:1–23, 1943.
18 A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space

complete. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 149–
160. IEEE, 2009.

19 Ker-I Ko. On the Computational Complexity of Ordinary Differential Equations. Information
and Control, 58(1-3):157–194, 1983.

20 Gustavo Lau. Discrete calculus. URL: http://www.acm.ciens.ucv.ve/main/entrenamiento/
material/DiscreteCalculus.pdf.

21 D. Leivant. Predicative recurrence and computational complexity I: Word recurrence and
poly-time. In Peter Clote and Jeffery Remmel, editors, Feasible Mathematics II, pages 320–343.
Birkhäuser, 1994.

22 D. Leivant and J-Y Marion. Lambda Calculus Characterizations of Poly-Time. Fundamenta
Informatica, 19(1,2):167,184, September 1993.

23 Daniel Leivant and Jean-Yves Marion. Ramified recurrence and computational complexity II:
substitution and poly-space. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic,
8th Workshop, CSL’94, volume 933 of Lecture Notes in Computer Science, pages 369–380,
Kazimierz, Poland, 1995. Springer.

24 Bruno Loff, José Félix Costa, and Jerzy Mycka. The New Promise of Analog Computation.
In Computability in Europe 2007: Computation and Logic in the Real World., 2007.

25 Cristopher Moore. Recursion theory on the reals and continuous-time computation. Theoretical
Computer Science, 162(1):23–44, August 1996.

MFCS 2019

https://doi.org/10.1145/3127496
http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf
http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf

23:14 Discrete Differential Equations & Characterization of Polynomial Time Comp.

26 Jerzy Mycka and José Félix Costa. What lies beyond the mountains? Computational systems
beyond the Turing limit. European Association for Theoretical Computer Science Bulletin,
85:181–189, February 2005.

27 Jerzy Mycka and José Félix Costa. The P 6= NP conjecture in the context of real and complex
analysis. Journal of Complexity, 22(2):287–303, 2006.

28 P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the foundations
of mathematics. North-Holland, April 1992.

29 Amaury Pouly. Continuous models of computation: from computability to complexity. PhD
thesis, Ecole Polytechnique and Unidersidade Do Algarve, 2015. https://pastel.archives-
ouvertes.fr/tel-01223284, Ackermann Award 2017.

30 H. E. Rose. Subrecursion, Functions and Hierarchies. Clarendon Press, Oxford, 1984.

On the Coalgebra of Partial Differential Equations

Michele Boreale
Università di Firenze, Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) “G. Parenti”,

Viale Morgagni 65, I-50134 Firenze, Italy

michele.boreale@unifi.it

Abstract

We note that the coalgebra of formal power series in commutative variables is final in a certain

subclass of coalgebras. Moreover, a system Σ of polynomial PDEs, under a coherence condition,

naturally induces such a coalgebra over differential polynomial expressions. As a result, we obtain a

clean coinductive proof of existence and uniqueness of solutions of initial value problems for PDEs.

Based on this characterization, we give complete algorithms for checking equivalence of differential

polynomial expressions, given Σ.

2012 ACM Subject Classification Theory of computation → Invariants; Theory of computation →
Operational semantics

Keywords and phrases coalgebra, partial differential equations, polynomials

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.24

Acknowledgements Three anonymous reviewers have provided valuable comments.

1 Introduction

The last two decades have seen an impressive growth of formal methods and tools for con-

tinuous and hybrid systems, centered around techniques for reasoning on ordinary differential

equations (ODEs), see e.g. [29, 28, 21, 11, 15, 6] and references therein. On the other

hand, formal methods for systems defined by partial differential equations (PDEs) have not

undergone a comparable development. The present paper is meant as an initial contribution

towards this development.

Like in our previous works on ODEs [5, 7], our starting point is a simple operational

view of differential equations as programs for calculating the Taylor coefficients of a function.

Taking a transition in such a program corresponds to taking a function’s derivative. An

output is returned as the result of evaluating the current state (function) at a fixed expansion

point, for example the origin. This idea is certainly not new: it is for example at the root of

classical methods to numerically solve ODEs.

We focus here on polynomial PDEs, which are expressive enough for the vast majority

of problems arising in applications, and systematically pursue the above operational view

in the framework of coalgebras. We first introduce a subclass of coalgebras that enjoy a

commutativity property of transitions, then note that formal power series in commutative

variables (CFPSs) are final for this subclass (Section 2). A system Σ of PDEs and a

specification of initial data together form an initial value problem. Under a coherence

condition (Section 3), an initial value problem induces a coalgebra structure over the set of

differential polynomials. The solution of the initial value problem is therefore obtained as

the unique coalgebra morphism from the set of such polynomials to the final coalgebra of

CFPSs. This way, we obtain an elementary and clean proof of existence and uniqueness of

solutions as CFPSs (Section 4). We also show that coherence is an essential requirement for

this result. From a pragmatical point of view, we note that as solutions of PDEs, CFPSs

may be viewed as a conservative extension of analytic functions: if an analytic solution of Σ
exists, then its Taylor expansion from 0, seen as a formal power series, coincides with the

unique solution in our sense.

© Michele Boreale;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michele.boreale@unifi.it
https://doi.org/10.4230/LIPIcs.MFCS.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 On the Coalgebra of Partial Differential Equations

This characterization is the basis of an algorithm to automatically check polynomial

equalities – e.g. conservation laws – valid among the functions defined by given system Σ
and a specification of initial data (Section 5). Just like in certain on-the-fly algorithms for

bisimulation checking, the underlying idea is, based on the introduced transition structure, to

incrementally build a relation until it “closes up”, but working here modulo sum and product

of polynomials. Concepts from algebraic geometry, notably Gröbner bases, are used to prove

the termination and correctness of this algorithm. In fact, we are more general than this, and

also give a method to automatically compute the weakest precondition (= set of initial data

specifications) under which a given equality is valid in Σ. These algorithms are complete,

under a certain finite-parameter condition. This way one can, for example, automatically

check conservation laws of a given physical system. Relationship with our previous work on

ODEs [5, 7], as well as with related work by other authors, is discussed in the concluding

section (Section 6). Proofs omitted from the present version will appear in a forthcoming

online version of the paper.

2 Commutative coalgebras

Let X be a finite nonempty set of actions (or variables), ranged over by x, y, ... and O a

nonempty set. We recall that a (Moore) coalgebra1 with actions in X and outputs in O is a

triple C = (S, δ, o) where: S is a set of states, δ : S ×X → S is a transition function, and

o : S → O is an output function (see e.g. [27]). A bisimulation in C is a binary relation

R ⊆ S ×S such that whenever sR t then: (a) o(s) = o(t), and (b) for each x, δ(s, x)Rδ(t, x).
It is an (easy) consequence of the general theory of bisimulation that a largest bisimulation

over C, called bisimilarity and denoted by ∼C , exists, is the union of all bisimulation relations,

and is an equivalence relation over S. Given two coalgebras with actions in X and outputs

in O, C1 and C2, a morphism from C1 to C2 is a function µ : S1 → S2 that: (1) preserves

outputs (o1(s) = o2(µ(s)), and (2) preserves transitions (µ(δ1(s, x)) = δ2(µ(s), x)), for each

state s and action x). It is an easy consequence of this definition that a morphism preserves

bisimulation in both directions, that is: s ∼C1 t if and only if µ(s) ∼C2 µ(t).
We introduce now the subclass of Moore coalgebras we will focus on. We say a coalgebra

C has commutative actions (or just that is commutative) if for each state s and actions x, y, it

holds that δ(δ(s, x), y) ∼C δ(δ(s, y), x). We will introduce below an example of commutative

coalgebra. In what follows, we let σ range over X∗, and, for any state s, let s(σ) be defined

inductively as: s(ε) 4= s and s(xσ) 4= δ(s, x)(σ).

I Lemma 2.1. Let C be a commutative coalgebra. If σ, σ′ ∈ X∗ are permutations of one

another then for any state s ∈ S, s(σ) ∼C s(σ′).

We now introduce the coalgebra of formal power series in commutative variables with

outputs in O = R. Let X⊗, ranged over by τ, τ ′, ..., be the set of monomials2 that can be

formed from X = {x1, ..., xn}, in other words, the commutative monoid freely generated by

X.

I Definition 2.2 (commutative formal power series). Let X be a finite nonempty alphabet. A

commutative formal power series (CFPS) with indeterminates in X and coefficients in R is

a total function f : X⊗ → R. The set of these CFPSs will be denoted by F(X), or simply F
if X is understood from the context.

1 In the paper, we only consider Moore coalgebras. For brevity, we shall omit the qualification “Moore”.
2 In general, we shall adopt for monomials the same notation we use for strings, as the context is

sufficient to disambiguate. In particular, we overload the symbol ε to denote both the empty string
and the empty monomial.

M. Boreale 24:3

In the rest of the section, we fix an arbitrary X. We will sometimes use the suggestive

notation∑
τ

f(τ) · τ

to denote a CFPS f = λτ.f(τ). By slight abuse of notation, for each r ∈ R, we will denote

the CFPS that maps ε to r and anything else to 0 simply as r; while xi will denote the i-th

identity, the CFPS that maps xi to 1 and anything else to 0. In the sequel, δ(f, x) 4= ∂f
∂x

denotes the CFPS obtained by the usual (formal) partial derivative of f along x. For a more

workable formulation of this definition, let us introduce the following notation. Let us fix

any total order x = (x1, ..., xn) of the variables in X. Given a vector α = (α1, ..., αn) of

nonnegative integers (a multi-index), we let xα denote the monomial xα1
1 · · ·xαnn . Then ∂f

∂xi

is defined by the following, for each τ = x(α1,...,αn)

∂f

∂xi
(τ) 4= (αi + 1)f(xiτ) . (1)

Finally, we define the coalgebra of CFPSs, CF

CF
4= (F , δF , oF)

where δF (f, x) = ∂f
∂x and oF (f) = f(ε) (the constant term of f). Bisimilarity in CF , denoted

by ∼F , coincides with equality. It is easily seen that for each x, y, ∂
∂y

∂f
∂x = ∂

∂x
∂f
∂y , so that CF

is a commutative coalgebra. Now fix any commutative coalgebra C = (S, δ, o). We define

the function µ : S → F as follows. For each τ = xα

µ(s)(τ) 4= o(s(τ))
α! (2)

where α! 4= α1! · · ·αn!. Here, abusing slightly notation, we let o(s(τ)) denote o(s(σ)), for

some string σ obtained by arbitrarily ordering the elements in τ : the specific order does not

matter, in view of Lemma 2.1 and of condition (a) in the definition of bisimulation.

I Lemma 2.3. Let C be a commutative coalgebra and f = µ(s). For each x, ∂f
∂x = µ(δ(s, x)).

Based on the above lemma and the fact that ∼F is equality, we can prove the following

corollary, saying that CF is final in the class of commutative coalgebras.

I Corollary 2.4 (coinduction and finality of CF). Let C be a commutative coalgebra. The

function µ in (2) is the unique coalgebra morphism from C to CF . Moreover, the following

coinduction principle is valid: s ∼C t if and only if µ(s) = µ(t) in F .

Proof. We have: (1) o(s) = µ(s)(ε) by the definition of µ, and (2) µ(δ(s, x)) = δF (µ(s), x),
by Lemma 2.3. This proves that µ is a coalgebra morphism. Next, we prove that ∼F
coincides with equality in F . More precisely, we prove that for each τ and for each f, g:

f ∼F g implies f(τ) = g(τ). Proceeding by induction on the length of τ , we see that

the base case is trivial, while for the induction step τ = xiτ
′ we have: f ∼F g implies

∂f
∂xi
∼F ∂g

∂xi
(bisimilarity), which in turn implies ∂f

∂xi
(τ ′) = ∂g

∂xi
(τ ′) (induction hypothesis);

but by (1), f(xiτ ′) = (∂f∂xi (τ
′))/(αi + 1) and g(xiτ ′) = (∂g∂xi (τ

′))/(αi + 1), and this completes

the induction step. From the coincidence of ∼F with equality in F , and the fact that any

morphism preserves bisimilarity in both directions, the last part of the statement (coinduction)

follows immediately. Finally, let ν be any morphism from C to CF . From the definitions

of bisimulation and morphism it is easy to see that for each s, µ(s) ∼F ν(s): this implies

µ(s) = ν(s) by coinduction, and proves uniqueness of µ. J

M FC S 2 0 1 9

24:4 On the Coalgebra of Partial Differential Equations

We end this section by recalling the sum and product operations on F . For any ξ = xα

and τ = xβ, let ξ ≤ τ if for each i = 1, ..., n, αi ≤ βi; in this case τ/ξ denotes the monomial

x(β1−α1,...,βn−αn). We have the following definitions of sum and product. For each τ ∈ X⊗:

(f + g)(τ) 4= f(τ) + g(τ) (f · g)(τ) 4=
∑
ξ≤τ

f(ξ) · g(τ/ξ) . (3)

These operations correspond to the usual sum and product of functions, when (convergent)

CFPS are interpreted as analytic functions. These operations enjoy associativity, commut-

ativity and distributivity. Moreover, if f(ε) 6= 0 there exists a unique CFPS f−1 ∈ F that

is a multiplicative inverse of f , that is f · f−1 = 1. Finally, the following familiar rules of

differentiation are satisfied:

∂(f + g)
∂x

4= ∂f

∂x
+ ∂g

∂x

∂(f · g)
∂x

4= ∂f

∂x
· g + f · ∂g

∂x
. (4)

If the support of f , supp(f) 4= {τ : f(τ) 6= 0}, is finite, we will call f a polynomial. The

set of polynomials, denoted by R[X], is closed under the above defined operations of partial

derivative, sum and product (but in general not inverse). Moreover, note that, when confining

to polynomials, these operations are well defined even in case the cardinality of the set X of

indeterminates is infinite.

3 Coherent systems of PDEs

We first review some notation and terminology from the formal theory of PDEs; these are

standard notions, see e.g. [23, 18]. Like in the previous section, assume we are given a finite

nonempty set X, which we will call here the independent variables. Another nonempty,

finite set U of dependent variables, disjoint from X, is given; U is ranged over by u, v,

D 4= {uτ : u ∈ U, τ ∈ X⊗} is the set of the derivatives; here uε will be identified with u.

E,F, ... range over P 4= R[X ∪ D], the set of (differential, multivariate) polynomials with

coefficients in R and indeterminates in X ∪ D. Considered as formal objects, polynomials

are just finite-support CFPSs in F(X ∪ D) (see Section 2). As such, they inherit from

CFPSs the operations of sum, product and partial derivative, along with the corresponding

properties. Syntactically, we shall write polynomials as expressions of the form
∑
α∈M λα · α,

for 0 6= λα ∈ R and M ⊆fin (X∪D)⊗. For example, E = vzuxy+v2
y+u+5x is a polynomial3.

For an independent variable x ∈ X, the total derivative of E ∈ P along x is just the derivative

of E along x, taking into account that ∂uτ
∂x = uxτ . Formally, we have the following.

I Definition 3.1 (total derivative). The operator Dx : P → P is defined by (note
∑

below

has only finitely many nonzero terms)

DxE
4= ∂E

∂x
+
∑
u,τ

uxτ ·
∂E

∂uτ

where ∂E
∂a denotes the partial derivative of polynomial E along a ∈ X ∪ D.

Dx inherits from partial derivatives rules for sum and product that are the analog of (4).

As an example, for the polynomial E above, we have DxE = vxzuxy+vzuxxy+2vyvxy+ux+5.

3 Real arithmetic expressions will be used as a meta-notation for polynomials: e.g. (u+ux+1) ·(x+uy)
denotes the polynomial xu+ uuy + xux + uxuy + x+ uy.

M. Boreale 24:5

In particular, Dxuτ = uxτ and Dxx
k = kxk−1. Just as partial derivatives, total derivatives

commute with each other, that is DxDyF = DyDxF . This suggests to extend the notation

to monomials: for any monomial τ = x1 · · ·xm, we let DτF be Dx1 · · ·DxmF , where the

order of the variables is irrelevant.

I Definition 3.2 (system of PDEs). A system of PDEs is a nonempty set Σ of equations

(pairs) of the form uτ = E, with E ∈ P. The set of derivatives uτ that appear as left-hand

sides of equations in Σ is denoted dom(Σ). Based on Σ, the set D can be partitioned into

two sets as follows:

Pr(Σ) 4= {uξ : τ ≤ ξ for some τ s.t. uτ ∈ dom(Σ)} is the set of principal derivatives of

Σ;

Pa(Σ) 4= D \ Pr(Σ) is the set of parametric derivatives of Σ.

We let P0(Σ) 4= R[X ∪ Pa(Σ)].

The intuition of Pa(Σ) is that, once we fix the corresponding values, the rest of the solution,

hence Pr(Σ), will be uniquely determined (see Example 3.4 below). Note that we do

not require that each derivative occurs at most once as left-hand side in Σ. The infinite

prolongation of a system Σ, denoted Σ∞, is the system of PDEs of the form uξτ = DξF ,

where uτ = F is in Σ and ξ ∈ X⊗. Of course, Σ∞ ⊇ Σ. Moreover, Σ and Σ∞ induce the

same sets of principal and parametric derivatives.

A ranking is a total order ≺ of D such that: (a) uτ ≺ uxτ , and (b) uτ ≺ vξ implies

uxτ ≺ vxξ, for each x ∈ X, τ, ξ ∈ X⊗ and u, v ∈ U . Dickson’s lemma [10] implies that D
with ≺ is a well-order, and in particular that there is no infinite descending chain in it. The

system Σ is ≺-normal if, for each equation uτ = E in Σ, uτ � vξ, for each vξ appearing in

E. An easy but important consequence of condition (b) above is that if Σ is normal then

also its prolongation Σ∞ is normal.

Now, consider the equational theory over P induced by the equations in Σ∞. More

precisely, write E →Σ F if F is the polynomial that is obtained from E by replacing one

occurrence of uτ with G, for some equation uτ = G ∈ Σ∞. Note, in particular, that E ∈ P
cannot be rewritten if and only if E ∈ P0(Σ). We let =Σ denote the reflexive, symmetric and

transitive closure of →Σ. The following definition formalizes the key concepts of consistency

and coherence of Σ. Basically, as we will show, under the syntactic requirement of normality,

which is natural from an algorithmic point of view, consistency is a necessary and sufficient

condition for Σ to admit a unique solution under all initial data specifications.

I Definition 3.3 (consistency and coherence). Let Σ be a system of PDEs.

We say Σ is consistent if for each E ∈ P there is a unique F ∈ P0(Σ) such that E =Σ F .

Let ≺ be a ranking. A system Σ is ≺-coherent if it is ≺-normal and consistent.

For a consistent system, we can define a normal form function

SΣ : P → P0(Σ)

by letting SΣE = F , for the unique F ∈ P0(Σ) such that E =Σ F . The term SΣE will be

often abbreviated as SE, if Σ is understood from the context. Deciding if a (finite) system Σ
is coherent, for a suitable ranking ≺, is of course a nontrivial problem. In a normal system,

since ≺ is a well-order, there are no infinite sequences of rewrites E1 →Σ E2 →Σ E3 →Σ · · · :
therefore it is possible to rewrite any E into some F ∈ P0(Σ) in a finite number of steps.

Proving coherence in this case reduces basically to ensure that Σ contains “enough equations”

to make →Σ confluent. In fact, an even more general problem than checking coherence is

completing a normal, non coherent system by new equations so as to make it coherent; or

M FC S 2 0 1 9

24:6 On the Coalgebra of Partial Differential Equations

1
2

3
4

0 x
1

2
3

4

t
1

2
3

4

0 x
1

2
3

4

t
1

2
3

4

0 x
1

2
3

4

t

Figure 1 Lattices of u-derivatives, partially ordered by uξ ≤ uτ if and only if ξ ≤ τ . With

reference to Example 3.4, black circles correspond to left-hand sides of equations, shaded regions to

principal derivatives, and non-shaded regions to parametric derivatives.

deciding if this is impossible at all, because the system is intrinsically inconsistent. There is

a rich literature on these problems, which we briefly review in the concluding section. The

following simple example is enough to demonstrate these concepts for our purposes.

I Example 3.4 (coherence). Consider the heat equation in one spatial dimension, where

X = {x, t}, U = {u} and Σ is given by the single equation (for a real parameter a 6= 0)

uxx = aut . (5)

Here, the principal derivatives are Pr(Σ) = {uxxτ : τ ∈ X⊗}, and the parametric ones are

Pa(Σ) = {utj : j ≥ 0} ∪ {uxtj : j ≥ 0} (see Figure 1, left). Since the system has just one

equation, it is clearly consistent: indeed, its prolongation Σ∞ has precisely one equation

uxxτ = Dτ (aut) for each principal derivative uxxτ . Concerning coherence, we consider the

following ranking. Ordering the independent variables as t < x induces a graded lexicographic

order ≺grlex over X⊗: that is, monomials are compared first by their total degree, and then

lexicographically. We lift ≺grlex to D as expected: explicitly, uξ ≺ uτ if, for ξ = tixj and

τ = ti
′
xj

′
, it holds that either i + j < i′ + j′ or (i + j = i′ + j′ and j′ > j). Σ is clearly

≺-normal.

Next, suppose we build a new system Σ1 by adding the new equation (with no physical

significance)

utx = u .

Now the parametric derivatives are utj for j ≥ 0 and ux, while the remaining derivatives are

principal (see Figure 1, center). The prolongation of the new system, Σ∞1 , has both utxx = ux
and utxx = autt as equations, which implies ux =Σ1 autt. As ux, utt ∈ Pa(Σ1) ⊆ P0(Σ1),
we conclude that Σ1 is not consistent, hence not coherent: indeed, there are two distinct

but equivalent normal forms. This suggests that we can complete Σ1 by inserting a third

equation, a so-called integrability condition

utt = ux
a
.

In the resulting system Σ2 the set of parametric derivatives has changed to {u, ut, ux} (see

Figure 1, right), and utxx has the (only) normal form ux. The system Σ2 can be indeed

checked to be consistent, hence coherent. Finally, consider adding to the original system Σ
the two equations below, thus obtaining Σ3

utx = t utt = 1 .

Together with (5) these two equations imply a =Σ3 0: Σ3 is not consistent, moreover there is

no way of completing it so as to get a consistent system. That is, Σ3 is (informally speaking)

intrinsically inconsistent.

M. Boreale 24:7

For our purposes, it is enough to know that completing a given system of equations to

make it coherent, or deciding that this is impossible, can be achieved by one of many existing

computer algebra algorithms. For example, there is a completion procedure by Marvan [18],

for which a Maple implementation is also available. See also Reid et al.’s method of reduction

to reduced involutive form [23], implemented in the Maple rif package. An alternative to

these methods is applying a procedure similar to the Knuth-Bendix completion algorithm

[13] to the given system. Further references are discussed in the concluding section. In

practice, in many cases arising from applications (e.g. mathematical physics), transforming

the system into a coherent form for an appropriate ranking can be accomplished manually,

without much difficulty. We shall not further dwell on algorithms for coherence checking

in the rest of the paper. We end the section with a technical result about normal forms in

coherent systems that will be used in the next section.

I Lemma 3.5. Let Σ be coherent. For each x ∈ X and F ∈ P, SDxSF = SDxF .

4 Coalgebraic semantics of initial value problems

We will provide differential polynomials with a coalgebra structure depending on Σ: from this,

existence and uniqueness of solutions of initial value problems will follow almost immediately

by coinduction (Corollary 2.4). The essential point is that coherence allows for the definition

of a transition function based on total derivatives. In the definition below, it is useful to bear

in mind that, informally, for a parametric derivative uτ , the initial data value ρ(uτ) specifies

the value of ∂u
∂τ at the origin.

I Definition 4.1 (initial value problem). Let Σ be a system of PDEs. A specification of initial

data for Σ is a mapping ρ : Pa(Σ)→ R. An initial value problem is a pair B = (Σ, ρ).

In what follows, for any function ψ : U → F , we can consider its homomorphic extension

P → F , obtained by interpreting each expression E in the obvious way: replace uτ by ∂ψ(u)
∂τ ,

and sum and product by the corresponding operations in F (see Section 2); an independent

variable xi ∈ X is interpreted as the i-th identity CFPS. By slight abuse of notation, we

will still denote by “ψ” the homomorphic extension of ψ. In part (a) below, recall that for a

CFPS f , f(ε) represents, informally, the value of function f at the origin.

I Definition 4.2 (solution of B). A solution of a initial value problem B = (Σ, ρ) is a mapping

ψ : U → F such that: (a) the initial data specifications are satisfied, that is ψ(uτ)(ε) = ρ(uτ)
for each uτ ∈ Pa(Σ); and (b) all equations are satisfied, that is ψ(uτ) = ψ(F) for each

uτ = F in Σ∞.

The following lemma about solutions will be used to prove uniqueness of the solution of

B.

I Lemma 4.3. Let B = (Σ, ρ) and ψ a solution of B. For each E,F ∈ P, E =Σ F implies

ψ(E) = ψ(F).

With any coherent (w.r.t. some ranking) Σ and initial data specification ρ, B = (Σ, ρ),
we can associate a coalgebra as follows. The initial data specification ρ : Pa(Σ) → R can

be extended homomorphically to P0(Σ)→ R, by interpreting + and · as the usual sum and

product over R, respectively, and by letting ρ(x) 4= 0 for each independent variable x ∈ X.

Now we define a coalgebra depending on B:

CB
4= (P, δΣ, oρ)

M FC S 2 0 1 9

24:8 On the Coalgebra of Partial Differential Equations

where δΣ(E, x) 4= SDxE and oρ(E) 4= ρ(SE). We will denote by ∼B bisimilarity in CB. As

an example of transition, for the heat equation Σ = {uxx = aut}, one has δΣ(uxx, t) = autt.

I Remark 4.4. An obvious alternative to the above definition of transition function of CB
would be just letting δΣ(E, x) = DxE: this definition in fact would work as well, but it has

the computational disadvantage of making the order of the derivatives higher at each step,

which would be inconvenient for the algorithms to be developed later on (Section 5).

As expected, CB is a commutative coalgebra. Moreover, each expression is bisimilar to

its normal form. This is the content of the following lemma.

I Lemma 4.5. Let B = (Σ, ρ), with Σ coherent. Then: (1) CB is commutative; and (2) For

each E ∈ P, E ∼B SE.

Note that since δΣ(δΣ(E, x), y) = δΣ(δΣ(E, y), x), for any monomial τ , the notation

δΣ(E, τ) is well defined. As a consequence of the previous lemma, part 1, and of Corollary

2.4, there exists a unique morphism from CB to CF . This morphism is the unique solution

of B we are after. We need a lemma, saying that the unique morphism φ from CB to CF is

compositional.

I Lemma 4.6. Let B = (Σ, ρ), with Σ coherent, and let φB be the unique morphism from

CB to CF . Then φB is a homomorphism over P.

I Theorem 4.7 (coalgebraic semantics of PDEs). Let B = (Σ, ρ), with Σ coherent. Let φB
denote the unique morphism from CB to CF . Then φB (restricted to U) is the unique solution

of B.

Proof. By virtue of Lemma 4.6, φB coincides with the homomorphic extension of (φB)|U .

We first prove that that φB respects the initial data specification. Let uτ be parametric. By

the definition of coalgebra morphism and of output functions in CF and CB, we have

φB(uτ)(ε) = oF (φB(uτ)) = oρ(uτ) = ρ(Suτ) = ρ(uτ)

which proves the wanted condition. Next, we have to prove that φB satisfies the equations in

Σ∞. But for each such equation, say uτ = F , we have Suτ =Σ SF by the definition of =Σ,

hence uτ ∼B F by Lemma 4.5(2), hence the thesis by coinduction (Corollary 2.4). We finally

prove uniqueness of the solution. Assume ψ is a solution of B, and consider the homomorphic

extension of ψ to P, still denoted by ψ. We prove that ψ is a coalgebra morphism from CB
to CF , hence ψ = φB will follow by coinduction (Corollary 2.4). Let E ∈ P. There are two

steps in the proof.

ψ(E)(ε) = ρ(SE) = oρ(E). This follows directly from Lemma 4.3, since ψ(E) = ψ(SE).
For each x, ∂ψ(E)

∂x = ψ(δΣ(E, x)). First, we note that ∂ψ(E)
∂x = ψ(DxE). This is proven

by induction on the size of E: in the base case when E = uτ , just use the fact that, by the

definition of solution, ∂ψ(uτ)
∂x = ∂

∂x
∂ψ(u)
∂τ = ∂ψ(u)

∂τx = ψ(uτx) = ψ(Dxuτ); in the induction

step, use the fact that ψ is an homomorphism over P, and the derivation rules of Dx

and ∂
∂x for sum and product. Now applying Lemma 4.3, we get ψ(DxE) = ψ(SDxE) =

ψ(δΣ(E, x)), which is the wanted equality. J

I Remark 4.8 (analyticity). The previous theorem guarantees that formal power series

solutions of a coherent system of PDEs always exist and are unique. In general, there is

no guarantee of analyticity for such solutions. However, if a solution ψ of Σ in the usual

sense exists that is analytic around the origin, then its Taylor expansion from the origin,

seen as a CFPS, coincides with our solution φB: for each u and f = ψ(u), we have that

f =
∑

α(∂f∂τ)(0) · xα

α! = φB(u). Riquier’s theorem [24] gives sufficient syntactic conditions for

the existence of analytic solutions; see [26, 16, 17] for further discussion of this point.

M. Boreale 24:9

The computational content of Theorem 4.7 is twofold. One one hand, we can use

coinduction as a technique to prove semantically valid identities E = F for the initial value

problem at hand, as bisimulations E ∼B F (via Corollary 2.4). On the other hand, we can

calculate mechanically the coefficients of the Taylor expansion of the solution. This will also

be key to the algorithms presented in Section 5.

I Corollary 4.9 (Taylor coefficients). Let Σ be coherent, let ρ be an initial data specification

and let φB be the unique solution of B = (Σ, ρ). Then, for each E ∈ P, φB(E) =
∑
τ=xα cτ ·τ

where

cτ = ρ(δΣ(E, τ))
α! . (6)

Proof. This follows immediately from Theorem 4.7 and from the definitions of unique

morphism (2) and of the coalgebra CB. J

The terms δΣ(E,τ)
α! ∈ P0(Σ) appearing in (6) provide a “symbolic” representation of the

Taylor coefficients of solutions, independent of ρ.

I Example 4.10. Consider U = {f, g, i, j, h, k}, X = {x, y} and Σ = { fx = −g , fy =
−g , gx = f , gy = f , ix = −j , iy = 0 , jx = i , jy = 0 , hx = 0 , hy = −k , kx = 0 , ky = h }.
Note that Pa(Σ) = U . The system is consistent because Σ∞ has just one equation for

each uτ ∈ Pr(Σ). Moreover, it is normal, hence coherent, with respect to any graded

ranking. Consider now the initial value problem B = (Σ, ρ) where ρ is defined by ρ(f) =
ρ(i) = ρ(h) = 1 and ρ(g) = ρ(j) = ρ(k) = 0. Let E

4= ih − jk, F
4= ik + jh and

R ⊆ P × P, R
4= {(f,E), (g, F), (−f,−E), (−g,−F)}: it is immediate to check that R is a

bisimulation in CB. By coinduction and Theorem 4.7, we have therefore φB(f) = φB(E)
and φB(g) = φB(F). Note that, in the given B, the variables in U encode cos(x+ y), sin(x+
y), cos(x), sin(x), cos(y), sin(y), respectively. Therefore e.g. φB(f) = φB(E) actually proves

that cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), a well-known trigonometric identity.

Finally, a more refined argument leads to a precise characterization of the systems that

admit (unique) solutions for every initial data specification, under normality.

I Theorem 4.11 (consistency, existence and uniqueness). Let Σ be a normal system. Σ is

coherent if and only if for each ρ, B = (Σ, ρ) has a solution. Moreover, for each such B the

solution is unique.

5 Equivalence checking

In this section, based on Theorem 4.7 and on an algebraic characterization of bisimilarity

we shall discuss below, we will provide a decision algorithm for the equivalence problem

φB(E) = φB(F), limited to the following subclass of PDE systems.

I Definition 5.1 (finite-parameter systems). A system Σ is finite-parameter if Pa(Σ) is finite.

For instance, with reference to Example 3.4, Σ2 is finite-parameter, while Σ and Σ1
are not. We need to introduce now some additional, mostly standard notation about

polynomials. According to (6), the calculation of the Taylor coefficients of a solution of an

initial value problem B = (Σ, ρ) involves evaluating expressions in P0(Σ) = R[X∪Pa(Σ)]. As

k
4= |X ∪Pa(Σ)| < +∞, elements of P0(Σ) can be treated as usual multivariate polynomials

in a finite number of indeterminates. In particular, we can identify initial data specifications

M FC S 2 0 1 9

24:10 On the Coalgebra of Partial Differential Equations

ρ with points in Rk that vanish in the x-coordinates (x ∈ X). In this section we will let

ρ range over Rk. Moreover, we let Rk0
4= {ρ ∈ Rk : ρ(x) = 0 for each x ∈ X} and, for

polynomials E ∈ P0(Σ) and initial data specifications ρ ∈ Rk0 , write ρ(E) as E(ρ) – that is

the value in R obtained by evaluating E at point ρ.

In what follows, we shall also make use a few elementary notions from algebraic geometry

[10]. In particular, an ideal J ⊆ P0(Σ) is a nonempty set of polynomials closed under addition,

and under multiplication by polynomials in P0(Σ). For P ⊆ P0(Σ),
〈
P
〉 4= {∑m

i=1Gi · Ei :
m ≥ 0, Gi ∈ P0(Σ), Ei ∈ P} denotes the smallest ideal which includes P , and V (P) ⊆ Rk

the (affine) variety induced by P : V (P) 4= {ρ ∈ Rk : E(ρ) = 0 for each E ∈ P} ⊆ Rk. For

W ⊆ Rk, I(W) 4= {E ∈ P0(Σ) : E(ρ) = 0 for each ρ ∈ V }. We will use a few basic facts

about ideals and varieties: (a) both I(·) and V (·) are inclusion reversing: P1 ⊆ P2 implies

V (P1) ⊇ V (P2) and W1 ⊆ W2 implies I(W1) ⊇ I(W2); (b) any ascending chain of ideals

I0 ⊆ I1 ⊆ · · · stabilizes in a finite number of steps (Hilbert’s basis theorem); (c) for finite

P ⊆ P0(Σ) , the problem of deciding if E ∈
〈
P
〉

is decidable, by computing a Gröbner basis

(a set of generators with special properties) of
〈
P
〉
. See [10] for a comprehensive treatment.

Given a coherent, finite-parameter Σ and an initial data specification ρ ∈ Rk0 , let us

denote by φB the unique solution of the initial value problem B = (Σ, ρ) (Theorem 4.7).

Since by definition φB is a homomorphism, for any given E,F ∈ P, establishing that

φB(E) = φB(F) is equivalent to establish that φB(E − F) = 0. In other words, we can

identify polynomial equations with polynomials, and valid polynomial equations under ρ

with polynomials E ∈ ZB ⊆ P, where (below, 0 denotes the zero CFPS in F(X))

ZB
4= φ−1

B (0) .

The equality problem reduces therefore to the membership problem for ZB, for which we will

now give an algorithm. In general terms, given E ∈ P , suppose we want to decide if E ∈ ZB.

Note that, by virtue of Lemma 4.3, we can assume w.l.o.g. that E ∈ P0(Σ). We shall rely

mainly on Corollary 4.9. Consider now the chain of sets A0 ⊆ A1 ⊆ · · · ⊆ P0(Σ) defined as:

A0
4= {E} Ai+1

4= Ai ∪ {δΣ(F, x) : F ∈ Ai, x ∈ X} . (7)

Let m ≥ 0 be the least integer such that either: (a) there exists F ∈ Am s.t. F (ρ) 6= 0; or

(b) no such F ∈ Am exists, but Am+1 ⊆ Im, where, for each i ≥ 0, Ii
4=
〈
Ai
〉

is the ideal in

P0(Σ) generated by Ai. The algorithm returns “No” if (a) occurs, and “Yes” if (b) occurs.

Note that the Ii’s, i ≥ 0, form an ascending chain of ideals in P0(Σ), which must stabilize in

a finite numbers of steps (by Hilbert’s basis theorem). Moreover, the inclusion Am+1 ⊆ Im
is decidable (by Gröbner basis construction). This ensures termination and effectiveness of

the outlined algorithm. Concerning its correctness, we premise the following lemma, which

implies that we can effectively detect stabilization of the sequence of the ideals Ii s.

I Lemma 5.2. Let Σ be coherent and finite-parameter. Suppose Am+1 ⊆ Im. Then Im =
Im+j for each j ≥ 1.

I Corollary 5.3 (membership checking). Let Σ be coherent and finite-parameter, ρ an initial

data specification for Σ and E ∈ P0(Σ). Then φB(E) = 0 if and only if the above algorithm

returns “Yes”.

Proof. “No” is returned in case (a) occurs: as Am consists precisely of all δΣ(E, τ) such that

|τ | ≤ m, this implies that φB(E) 6= 0, by virtue of (6). Assume on the other hand “Yes” is

returned, that is case (b) of the algorithm occurs. Then by Lemma 5.2, I0 ⊆ · · · ⊆ Im =

M. Boreale 24:11

Im+1 = Im+2 = · · · : therefore Im contains in effect every δΣ(E, τ) such that τ ∈ X⊗. As ρ

makes all polynomials in Am vanish, by the definition of ideal ρ also makes all polynomials

in Im =
〈
Am

〉
vanish. As a consequence, (δΣ(E, τ))(ρ) = 0 for all τ ∈ X⊗, which, from

Corollary 4.9, implies that φB(E) = 0. J

I Example 5.4 (Burgers’ equation). Consider the following system, which is a special case of

Burgers’ equation [1, 9]

ut = −u · ux ux = 1
t+ 1 .

To code up this system, we fix X = {t, x} and U = {u, v}, where v represents 1/(t+ 1), and

let

Σ = {ut = −u · ux, ux = v, vt = −v2, vx = 0} . (8)

As Pa(Σ) = {u, v}, the system is finite-parameter. Σ can be checked to be consistent – in

particular there is a unique equation in Σ∞ for utx, that is utx = −v2. Moreover, with the

lexicographic order induced by u > v and t > x, Σ is coherent. Now fix ρ(u) = ρ(v) = 1 as an

initial data specification and let E
4= u− (x+ 1)v. We check that E = 0 is a valid equation

for the initial value problem B = (Σ, ρ), that is E ∈ ZB, applying the above algorithm.

We have: A0 = {E} and A1 = {E} ∪ {δΣ(E, t), δΣ(E, x)} = {E} ∪ {−v · E, 0}. As trivially

{0,−v · E} ⊆
〈
{E}

〉
= I0, and E(ρ) = (−v · E)(ρ) = 0, the algorithm returns “Yes”. Note

that the validity of E = 0 implies that u = (x+ 1)v = x+1
t+1 , v = 1

t+1 yield a solution of B.

Finally, relying on the ascending chain (7), we devise a complete algorithm to compute

the set of initial data specifications under which a given equation E is valid in Σ – so to

speak, the weakest precondition of E.

I Corollary 5.5 (weakest precondition). Let Σ be coherent and finite-parameter, E ∈ P0(Σ).

Let Im+1 = Im. Then {ρ ∈ Rk0 : φ(Σ,ρ)(E) = 0} = V (X ∪Am).

I Example 5.6 (Burgers’ equation, continued). Consider again the system Σ in (8) and

E = u− v · (x+ 1). As I1 = I0 =
〈
{E}

〉
, we see that the set of ρ’s under which E is valid

is V (X ∪ {E}); that is, those ρ’s such that ρ(t) = ρ(x) = 0 and ρ(u) = ρ(v).

I Remark 5.7 (complexity). Procedures for computing Gröbner bases, such as Buchberger’s

algorithm, have a very high worst-case time and space complexity – exponential in the

number of variables and the degree of the involved polynomials, see [10]. The number of

steps m before the chain (7) stabilizes can also depend super-exponentially on the number of

variables and their degrees, see [19]. This theoretical complexity is of course inherited by

our algorithms. On the other hand, Gröbner basis algorithms have shown to behave well in

many practical cases: this suggests that an assessment of our algorithms based on concrete

case studies might be more informative than a purely complexity theoretical one. We leave a

systematic exploration of this more pragmatical aspect for future work.

6 Conclusion, further and related work

We have put forward a coalgebraic framework for PDEs, that yields a clean proof of existence

and uniqueness of solutions of initial value problems, and complete algorithms for checking

equivalence of differential polynomial expressions, under a finite-parameters assumption. To

the best of our knowledge, no such characterization and completeness results for PDEs exist

M FC S 2 0 1 9

24:12 On the Coalgebra of Partial Differential Equations

in the literature. As for future work, we plan to explore extensions of the present results to

postconditions: computing at once the most general, in a precise sense, consequences of a

given algebraic set of initial data specifications. This would also permit to automatically

discover valid equations, rather than just check given ones.

Conceptually, the present development parallels in part our previous work on polynomial

ODEs [5, 7]. Technically, the case of PDEs is by far more challenging, for the following

reasons. (a) Existence of solutions, and of the transition structure itself, depends now on

coherence, which is trivial in ODEs. (b) In PDEs, differential polynomials live in the infinite-

indeterminates space P , which requires reduction to P0(Σ) via S and a finiteness assumption

on parametric derivatives; in ODEs, P = P0(Σ) always has finitely many indeterminates.

An operational view of functions and differential equations similar to ours has been

considered elsewhere in the literature on coalgebras [20, 27]. In particular, it is at the basis

of Rutten’s calculus of behavioural differential equations [27]. In this calculus, neither PDEs

nor equivalence algorithms are considered, though. Algorithms for equivalence checking are

presented in [4, 3], limited to linear weighted automata: in terms of differential equations,

these basically correspond to linear ODEs.

In the field of formal methods, we are aware of the work by Boldo et al. [2], who apply

theorem proving to the formal verification of a numerical PDE integrator written in C.

Platzer, in his work on differential hybrid games [22], relies on certain Hamilton-Jacobi type

PDEs in order to define a solution concept for differential games. These works pursue goals

rather different from ours, though.

Our work is also related to the field of Differential Algebra. In the classical exposition,

coherent systems correspond to Riquier-Janet’s orthonomic passive systems [24, 12], further

developed by Thomas [30]. A modern presentation of orthonomic passive systems is in

Marvan’s [18]. A more geometrical approach is followed by Reid et al. [23, 26]. The work

of Riquier, Janet and Thomas is the root of what is nowadays known as Ritt-Kolchin’s

Differential Algebra (DA) [25, 14]. Recent developments of DA include the work by the

French school, especially Boulier et al., see e.g. [8, 16]. The relationship of our coalgebraic

framework with DA is not yet entirely clear and deserves further investigation.

References

1 H. Bateman. Some recent researches on the motion of fluids. Monthly Weather Review,

43(4):163–170, 1915.

2 S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, and P. Weis. Trusting

Computations: a Mechanized Proof from Partial Differential Equations to Actual Program.

Computers and Mathematics with Applications, 68(3):325–352, 2014.

3 F. Bonchi, M. M. Bonsangue, M. Boreale, J. J. M. M. Rutten, and A. Silva. A coalgebraic

perspective on linear weighted automata. Inf. Comput., 211:77–105, 2012.

4 M. Boreale. Weighted Bisimulation in Linear Algebraic Form. In CONCUR 2009, volume

5710 of LNCS, pages 163–177. Springer, 2009.

5 M. Boreale. Algebra, coalgebra, and minimization in polynomial differential equations. In

FoSSACS 2017, volume 10203 of LNCS, pages 71–87. Springer, 2017. Full version in Logical

Methods in Computer Science 15(1) arXiv.org:1710.08350, 2019.

6 M. Boreale. Algorithms for exact and approximate linear abstractions of polynomial continuous

systems. In HSCC 2018, pages 207–216. ACM, 2018.

7 M. Boreale. Complete algorithms for algebraic strongest postconditions and weakest precondi-

tions in polynomial ODE’s. In SOFSEM 2018: Theory and Practice of Computer Science -

44th International Conference on Current Trends in Theory and Practice of Computer Science,

volume 10706 of LNCS, pages 442–455. Springer, 2018.

M. Boreale 24:13

8 F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations for radicals

of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput., 20(1):73–121,

2009.

9 J. M. Burgers. A mathematical model illustrating the theory of turbulence. In Advances in

applied mechanics, volume 1, pages 171–199. Elsevier, 1948.

10 D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. An Introduction to Compu-

tational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics.

Springer, 2007.

11 K. Ghorbal and A. Platzer. Characterizing Algebraic Invariants by Differential Radical

Invariants. In TACAS 2014, volume 8413 of LNCS, pages 279–294. Springer, 2014. URL:

http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf.

12 M. Janet. Sur les systèmes d’équations aux dérivées partielles. Thèses françaises de l’entre-

deux-guerres. Gauthiers-Villars, Paris, 1920. URL: http://www.numdam.org/item?id=THESE_

1920__19__1_0.

13 D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. W. Leech,

editor, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263–297.

Pergamon, Oxford, 1970.

14 E. R. Kolchin. Differential algebra and algebraic groups, volume 54 of Pure and Applied

Mathematics. Academic Press, New York-London, 1973.

15 H. Kong, S. Bogomolov, Ch. Schilling, Yu Jiang, and Th.A. Henzinger. Safety Verification of

Nonlinear Hybrid Systems Based on Invariant Clusters. In HSCC 2017, pages 163–172. ACM,

2017.

16 F. Lemaire. Contribution à l’algorithmique en algèbre différentielle. Génie logiciel

[cs.SE]. Université des Sciences et Technologie de Lille - Lille, 2002. URL: https://tel.

archives-ouvertes.fr/tel-00001363/document.

17 F. Lemaire. An Orderly Linear PDE System with Analytic Initial Conditions with a Non-

analytic Solution. J. Symb. Comput., 35(5):487–498, May 2003. doi:10.1016/S0747-7171(03)

00017-8.

18 M. Marvan. Sufficient Set of Integrability Conditions of an Orthonomic System. Foundations

of Computational Mathematics, 9(6):651–674, 2009.

19 D. Novikov and S. Yakovenko. Trajectories of polynomial vector fields and ascending chains of

polynomial ideals. Annales de l’Institut Fourier, 49(2):563–609, 1999. doi:10.5802/aif.1683.

20 D. Pavlovic and M.H. Escardó. Calculus in Coinductive Form. In LICS 1998, pages 408–417.

IEEE, 1998.

21 A. Platzer. Logics of dynamical systems. In LICS 2012, pages 13–24. IEEE, 2012.

22 A. Platzer. Differential hybrid games. ACM Trans. Comput. Log., 18(3):19–44, 2017.

23 G. Reid, A. Wittkopf, and A. Boulton. Reduction of systems of nonlinear partial differential

equations to simplified involutive forms. European Journal of Applied Mathematics, 7(6):635–

666, 1996.

24 C. Riquier. Les systèmes d’équations aux dérivèes partielles. Gauthiers-Villars, Paris, 1910.

25 J. F. Ritt. Differential Algebra, volume XXXIII. American Mathematical Society Colloquium

Publications, American Mathematical Society, New York, N. Y, 1950.

26 C. J. Rust, G. J. Reid, and A. D. Wittkopf. Existence and Uniqueness Theorems for Formal

Power Series Solutions of Analytic Differential Systems. In ISSAC 1999, pages 105–112, 1999.

27 J. J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of streams,

automata, and power series. Theoretical Computer Science, 308(1–3):1–53, 2003.

28 S. Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal fixed

points. In HSCC 2010, pages 221–230. ACM, 2010.

29 S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant generation using

Gröbner bases. In POPL 2004. ACM, 2004.

30 J. M. Thomas. Differential Systems, volume XXI. American Mathematical Society Colloquium

Publications, American Mathematical Society, New York, N. Y, 1937.

M FC S 2 0 1 9

http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf
http://www.numdam.org/item?id=THESE_1920__19__1_0
http://www.numdam.org/item?id=THESE_1920__19__1_0
https://tel.archives-ouvertes.fr/tel-00001363/document
https://tel.archives-ouvertes.fr/tel-00001363/document
https://doi.org/10.1016/S0747-7171(03)00017-8
https://doi.org/10.1016/S0747-7171(03)00017-8
https://doi.org/10.5802/aif.1683

Random Subgroups of Rationals
Ziyuan Gao
Department of Mathematics, National University of Singapore, Singapore
matgaoz@nus.edu.sg

Sanjay Jain
School of Computing, National University of Singapore, Singapore
sanjay@comp.nus.edu.sg

Bakhadyr Khoussainov
Department of Computer Science, University of Auckland, New Zealand
bmk@cs.auckland.ac.nz

Wei Li
Department of Mathematics, National University of Singapore, Singapore
matliw@nus.edu.sg

Alexander Melnikov
Institute of Natural and Mathematical Sciences, Massey University, New Zealand
A.Melnikov@massey.ac.nz

Karen Seidel
Hasso Plattner Institute, University of Potsdam, Germany
karen.seidel@hpi.uni-potsdam.de

Frank Stephan
Department of Mathematics, National University of Singapore, Singapore
fstephan@comp.nus.edu.sg

Abstract
This paper introduces and studies a notion of algorithmic randomness for subgroups of rationals.
Given a randomly generated additive subgroup (G,+) of rationals, two main questions are addressed:
first, what are the model-theoretic and recursion-theoretic properties of (G,+); second, what
learnability properties can one extract from G and its subclass of finitely generated subgroups? For
the first question, it is shown that the theory of (G,+) coincides with that of the additive group
of integers and is therefore decidable; furthermore, while the word problem for G with respect to
any generating sequence for G is not even semi-decidable, one can build a generating sequence β
such that the word problem for G with respect to β is co-recursively enumerable (assuming that
the set of generators of G is limit-recursive). In regard to the second question, it is proven that
there is a generating sequence β for G such that every non-trivial finitely generated subgroup of G is
recursively enumerable and the class of all such subgroups of G is behaviourally correctly learnable,
that is, every non-trivial finitely generated subgroup can be semantically identified in the limit
(again assuming that the set of generators of G is limit-recursive). On the other hand, the class
of non-trivial finitely generated subgroups of G cannot be syntactically identified in the limit with
respect to any generating sequence for G. The present work thus contributes to a recent line of
research studying algorithmically random infinite structures and uncovers an interesting connection
between the arithmetical complexity of the set of generators of a randomly generated subgroup of
rationals and the learnability of its finitely generated subgroups.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Inductive inference

Keywords and phrases Martin-Löf randomness, subgroups of rationals, finitely generated subgroups
of rationals, learning in the limit, behaviourally correct learning

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.25

© Ziyuan Gao, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, Alexander Melnikov, Karen Seidel, and
Frank Stephan;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matgaoz@nus.edu.sg
mailto:sanjay@comp.nus.edu.sg
mailto:bmk@cs.auckland.ac.nz
mailto:matliw@nus.edu.sg
mailto:A.Melnikov@massey.ac.nz
mailto:karen.seidel@hpi.uni-potsdam.de
mailto:fstephan@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.MFCS.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Random Subgroups of Rationals

Related Version A full version of the paper is available at https://hal.archives-ouvertes.fr/
hal-01970683v2/document

Funding Sanjay Jain was supported in part by NUS grant C252-000-087-001. Furthermore, Ziyuan
Gao, Sanjay Jain and Frank Stephan have been supported in part by the Singapore Ministry of
Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112. Bakhadyr
Khoussainov was supported by the Marsden fund of Royal Society of New Zealand. Karen Seidel
was supported by the German Research Foundation (DFG) under Grant KO 4635/1-1 (SCL) and
by the Marsden fund of Royal Society of New Zealand.

Acknowledgements The authors would like to thank Philipp Schlicht and Tin Lok Wong for helpful
discussions, as well as thank Timo Kötzing for pointers to the literature.

1 Introduction

The concept of algorithmic randomness, particularly for strings and infinite sequences, has
been extensively studied in recursion theory and theoretical computer science [6, 15, 19]. It
has also been applied in a wide variety of disciplines, including formal language and automata
theory [14], machine learning [29], and recently even quantum theory [20]. An interesting
and long open question is whether the well-established notions of randomness for infinite
sequences have analogues for infinite structures such as graphs and groups. Intuitively,
it might be reasonable to expect that a collection of random infinite structures possesses
the following characteristics: (1) randomness should be an isomorphism invariant property;
in particular, random structures should not be computable; (2) the collection of random
structures (of any type of algebraic structure) should have cardinality equal to that of the
continuum. The standard random infinite graph thus does not qualify as an algorithmically
random structure; in particular, it is isomorphic to a computable graph and has a countable
categorical theory. Very recently, Khoussainov [12, 13] defined algorithmic randomness for
infinite structures that are akin to graphs, trees and finitely generated structures.

This paper addresses the following three open questions in algorithmic randomness: (A)
is there a reasonable way to define algorithmically random structures for standard algebraic
structures such as groups; (B) can one define algorithmic randomness for groups that are not
necessarily finitely generated; (C) what are the model-theoretic properties of algorithmically
random structures? The main contribution of the present paper is to answer the first two
questions positively for a fundamental and familiar algebraic structure, the additive group of
rationals, denoted (Q,+), and to answer the third question with respect to this structure.
Prior to this work, question (A) was answered for structures such as finitely generated
universal algebras, connected graphs, trees of bounded degree and monoids [12]. Concerning
question (C), it is still unknown whether the first order theory of algorithmically random
graphs (or trees) is decidable. In fact, it is not even known whether any two algorithmically
random graphs (of the same bounded degree) are elementarily equivalent [12].

As mentioned earlier, one goal of this work is to formulate a notion of randomness for
subgroups of (Q,+). This is a fairly natural class of groups to consider, given that the
isomorphism types of its subgroups have been completely classified, as opposed to the current
limited state of knowledge about the isomorphism types of even rank 2 groups. As has been
known since the work of Baer [1], the subgroups of (Q,+) coincide, up to isomorphism, with
the torsion-free Abelian groups of rank 1. Moreover, the group (Q,+) is robust enough that
it has uncountably many algorithmically random subgroups (according to our definition of
algorithmically random subgroups of (Q,+)), which contrasts with the fact that there is a
unique standard random graph up to isomorphism. At the same time, the algorithmically

https://hal.archives-ouvertes.fr/hal-01970683v2/document
https://hal.archives-ouvertes.fr/hal-01970683v2/document

Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan 25:3

random subgroups of (Q,+) are not too different from one other in the sense that they are
all elementarily equivalent (a fact that will be proven later), which is similar to the case of
standard random graphs being elementarily equivalent.

The properties of the subgroups of (Q,+) were first systematically studied by Baer [1]
and then later by Beaumont and Zuckerman [3]. Later, the group (Q,+) was studied in the
context of automatic structures [28]. An early definition of a random group is due to Gromov
[10]. According to this definition, random groups are those obtained by first fixing a set of
generators, and then randomly choosing (according to some probability distribution) the
relators specifying the quotient group. An alternative definition of a general random infinite
structure was proposed by Khoussainov [12, 13]; this definition is based on the notion of a
branching class, which is in turn used to define Martin-Löf tests for infinite structures entirely
in analogy to the definition of a Martin-Löf test for sequences. An infinite structure is then
said to be Martin-Löf random if it passes every Martin-Löf test in the preceding sense.

Like Gromov’s definition of a random group, the one adopted in the present work is
syntactic, in contrast to the semantic and algebraic definition due to Khoussainov. However,
rather than selecting the relators at random according to a prescribed probability distribution
for a fixed set of generators, our approach is to directly encode a Martin-Löf random binary
sequence into the generators of the subgroup. More specifically, we fix any binary sequence
R, and define the group GR as that generated by all rationals of the shape p−ni

i , where pi
denotes the (i+ 1)-st prime and ni is the number of ones occurring between the i-th and
(i + 1)-st occurrences of zero in R; n0 is the number of starting ones, and if there is no
(i+ 1)-st zero then nj is defined to be zero for all j greater than i and GR is generated by
all p−ni′

i′ with i′ less than i and all p−n
′

i such that n′ is any positive integer. GR is then
said to be randomly generated if and only if R is Martin-Löf random. In order to derive
certain computability properties, it will always be assumed in the present paper that any
Martin-Löf random sequence associated to a randomly generated subgroup of (Q,+) is also
limit-recursive. It may be observed that no finitely generated subgroup of (Q,+) is randomly
generated in the sense adopted here; this corresponds to the intuition that in any “random”
infinite binary sequence R, the fraction of zeroes in the first n bits should tend to a number
strictly smaller than one as n grows to infinity.

The first main part of this work is devoted to the study of the model-theoretic and
recursion-theoretic properties of randomly generated subgroups of (Q,+). It is shown that
the theory of any randomly generated subgroup coincides with that of the integers with
addition (denoted (Z,+)), and is therefore decidable1. Next, we define the notion of a
generating sequence for a randomly generated group GR; this is an infinite sequence β such
that GR is generated by the terms of β. We then consider the word problem for GR with
respect to β: this is the problem of determining, given any two finite integer sequence
representations σ and τ of elements of GR with respect to β, whether or not σ and τ

represent the same element of GR. We show that the word problem for GR with respect to
any generating sequence β is never recursively enumerable (r.e.); on the other hand, one can
construct a generating sequence β′ for GR such that the corresponding word problem for
GR is co-r.e. Moreover, one can build a generating sequence β′′ for GR such that the word
problem for the quotient group of GR by Z with respect to β′′ is r.e.

The second main part of this paper investigates the learnability of non-trivial finitely
generated subgroups of randomly generated subgroups of (Q,+) from positive examples, also

1 For a proof of the decidability of the theory of (Z,+), often known as Presburger Arithmetic, see [16,
pages 81–84].

MFCS 2019

25:4 Random Subgroups of Rationals

known as learning from text. Stephan and Ventsov [25] examined the learnability of classes
of substructures of algebraic structures; the study of more general classes of structures was
undertaken in the work of Martin and Osherson [17, Chapter III]. The general objective is
to understand how semantic knowledge of a class of concepts can be exploited to learn the
class; in the context of the present problem, semantic knowledge refers to the properties of
every finitely generated subgroup of any randomly generated subgroup of rationals, such as
being generated by a single rational [1]. It may be noted that the present work considers
learning of the actual representations of finitely generated subgroups, as opposed to learning
their structures up to isomorphism, as is considered in the learning framework of Martin
and Osherson [17]. Various positive learnability results are obtained: it will be proven, for
example, that for any randomly generated subgroup GR of (Q,+), there is a generating
sequence β for GR such that the set of representations of every non-trivial finitely generated
subgroup of GR with respect to β is r.e.; furthermore, the class of all such representations
can be identified in the limit up to semantic equivalence. On the other hand, it will be seen
that the class of all such representations can never be learnable in the limit. Similar results
hold for the class of non-trivial finitely generated subgroups of the quotient group of GR
by Z. Thus this facet of our work implies a connection between the limit-recursiveness of
the set of generators of a randomly generated subgroup of (Q,+) and the learnability of its
non-trivial finitely generated subgroups.

2 Preliminaries

Any unexplained recursion-theoretic notation may be found in [22, 24, 21]. For background
on algorithmic randomness, we refer the reader to [6, 19]. We use N = {0, 1, 2, . . .} to denote
the set of all natural numbers and Z to denote the set of all integers. The (i+ 1)-st prime
will be denoted by pi. Z<ω denotes the set of all finite sequences of integers. Throughout
this paper, ϕ0, ϕ1, ϕ2, . . . is a fixed acceptable programming system of all partial recursive
functions and W0,W1,W2, . . . is a fixed acceptable numbering of all recursively enumerable
(abbr. r.e.) sets of natural numbers. We will occasionally work with objects belonging to
some countable class X different from N; in such a case, by abuse of notation, we will use the
same symbol We to denote the set of objects obtained from We by replacing each member x
with F (x) for some fixed bijection F between N and X.

Given any set S, S∗ denotes the set of all finite sequences of elements from S. By
D0, D1, D2, . . . we denote any fixed canonical indexing of all finite sets of natural numbers.
Cantor’s pairing function 〈 · , · 〉 : N × N → N is given by 〈x, y〉 = 1

2 (x + y)(x + y + 1) + y

for all x, y ∈ N. The symbol K denotes the diagonal halting problem, i.e., K = {e | e ∈
N, ϕe(e) converges}. The jump of K, that is, the relativised halting problem {e | e ∈
N;ϕKe (e)↓}, will be denoted by K ′.

For σ ∈ (N ∪ {#})∗ and n ∈ N we write σ(n) to denote the element in the n-th position
of σ. Further, σ[n] denotes the sequence σ(0), σ(1), . . . , σ(n− 1). Given a number a ∈ N and
some fixed n ∈ N, n ≥ 1, we denote by an the finite sequence a, . . . , a, where a occurs exactly
n times. Moreover, we identify a0 with the empty string ε. For any finite sequence σ we use
|σ| to denote the length of σ. The concatenation of two sequences σ and τ is denoted by σ ◦ τ ;
for convenience, and whenever there is no possibility of confusion, this is occasionally denoted
by στ . For any sequence β (infinite or otherwise) and s < |β|, β �s denotes the initial segment
of β of length s+ 1. For any m ≥ 1 and p ∈ Z, Im(p) denotes the vector of length m whose
first m− 1 coordinates are 0 and whose last coordinate is p. Furthermore, given two vectors
α = (ai)0≤i≤m and β = (bi)0≤i≤m of equal length, α ·β denotes the scalar product of α and β,

Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan 25:5

that is, α · β :=
∑m
i=0 aibi. For any c ∈ Z and σ := (bi)0≤i≤m ∈ Z<ω, cσ denotes the vector

obtained from σ by coordinatewise multiplication with c, that is, cσ := (cb0, cb1, . . . , cbm).
For any non-empty S ⊆ Q, 〈S〉 denotes {

∑k
i=0 cisi | k ∈ N ∧ ci ∈ Z ∧ si ∈ S}.

Cantor space, the set of all infinite binary sequences, will be denoted by 2ω. The set of
finite binary strings will be denoted by 2<ω. For any binary string σ, [σ] denotes the cylinder
generated by σ, that is, the set of infinite binary sequences with prefix σ. For any U ⊆ 2<ω,
the open set generated by U is [U] :=

⋃
σ∈U [σ]. The Lebesgue measure on 2ω will be denoted

by λ; that is, for any binary string σ, λ([σ]) = 2−|σ|. By the Carathéodory Theorem, this
uniquely determines the Lebesgue measure on the Cantor space.

3 Randomly Generated Subgroups of Rationals

We first review some basic definitions and facts in algorithmic randomness which in our
setting is always understood w.r.t the Lebesgue measure. An r.e. open set R is an open
set generated by an r.e. set of binary strings. Regarding We as a subset of 2<ω, one has an
enumeration [W0], [W1], [W2], . . . of all r.e. open sets. A uniformly r.e. sequence (Gm)m<ω of
open sets is given by a recursive function f such that Gm = [Wf(m)] for each m. As infinite
binary sequences may be viewed as characteristic functions of subsets of N, we will often use
the term “set” interchangeably with “infinite binary sequence”; in particular, the subsequent
definitions apply equally to subsets of N and infinite binary sequences.

Martin-Löf [18] defined randomness based on tests. A Martin-Löf test is a uniformly
r.e. sequence (Gm)m<ω of open sets such that (∀m < ω)[λ(Gm) ≤ 2−m]. A set Z ⊆ N fails
the test if Z ∈

⋂
m<ω Gm; otherwise Z passes the test. Z is Martin-Löf random if Z passes

each Martin-Löf test. Schnorr [23] showed that Martin-Löf random sets can be described
via martingales. A martingale is a function mg : 2<ω → R+ ∪ {0} that satisfies for every
σ ∈ 2<ω the equality mg(σ ◦ 0) + mg(σ ◦ 1) = 2mg(σ). For a martingale mg and a set Z, the
martingale mg succeeds on Z if supnmg(Z(0) . . . Z(n)) =∞.

I Theorem 1. [23] For any set Z, Z is Martin-Löf random iff no r.e. martingale succeeds
on Z.

The following characterisation of all subgroups of (Q,+) forms the basis of our definition of
a random subgroup.

I Theorem 2. [3] Let G be any subgroup of (Q,+). Then there is an integer z, as well

as a sequence (ni)i<ω with ni ∈ N ∪ {∞} such that G =
{

a · z
Πk
i=0p

mi
i

| a ∈ Z ∧ k ∈ N ∧ (∀i ≤

k)[mi ∈ N ∧mi < ni]}.

I Definition 3. Let R ∈ 2ω be a real in the Cantor space, i.e. an infinite sequence of 0’s
and 1’s. Then the group GR is the subgroup of the rational numbers (Q,+) generated by
a0, a1, . . . with ai = 1

p
ni
i

for all i ∈ N, where for each i ∈ N, by pi we denote the (i + 1)-st
prime and by ni the number of consecutive 1’s in R between the i-th and (i+ 1)-st zero in R,
with which we let n0 count the number of starting 1’s. If there is no (i+ 1)-st zero, we let
ni :=∞, meaning that for all n the fraction 1

pn
i
is in GR.

Clearly, (Z,+) is always a subgroup of GR and 1
pi

/∈ GR if and only if the i-th and
(i + 1)-st zero in R are consecutive. Thus, if R ends with infinitely many zeros, then GR
is isomorphic to (Z,+). Moreover, there is a prime pi such that 1

pj
/∈ GR for all j > i and

1
pn

i
∈ GR for all n ∈ N, for short pi infinitely divides GR, if and only if R ends with an

infinite sequence of 1’s.

MFCS 2019

25:6 Random Subgroups of Rationals

I Lemma 4. If R ∈ 2ω is Martin-Löf random, then ni is finite for every i ∈ N, where ni is
defined as in Definition 3. In other words, the group GR is not infinitely divisible by any
prime.

Proof. This is an easy observation, as in no Martin-Löf random w.r.t the Lebesgue measure
only finitely many 0’s occur. J

A similar argument shows that for Martin-Löf random R there are infinitely many primes
occurring as basis of a denominator of a generator.

I Definition 5. Fix a probability distribution µ on the natural numbers and let X = (Xi)i∈N
be a sequence of iid random variables taking values in N with distribution Xi ∼ µ for all
i ∈ N. Denote by HX the subgroup of (Q,+) generated by {p−Xi

i | i ∈ N}, where pi denotes
the (i+ 1)-st prime.

The so obtained random group might follow a more uniform process.

I Lemma 6. If µ is the distribution on N assigning 0 probability 1
2 , 1 probability 1

4 , 2
probability 1

8 and n probability 2−n−1, then with probability 1 holds HX = GR for some
Martin-Löf random R.

Proof. This follows immediately, as the set of ML-randoms has measure 1 with respect to
the Lebesgue measure. From X0 = n0, X1 = n1, . . ., Xi = ni, . . . we obtain an infinite
binary sequence R ∈ 2ω by recursively appending 1ni0 in step i to the already established
initial segment of R, starting with the empty string. By definition the Lebesgue measure
assigns probability 1

2n+1 to having the (intermediate) subsequence 1n0 in R. This is exactly
the probability of the event Xi = n. J

A generating sequence for GR is an infinite sequence (bi)i<ω such that 〈bi | i < ω〉 = GR. We
will often deal with generating sequences rather than minimal generating sets for GR, mainly
due to the fact that if the terms of a sequence β are carefully chosen based on a limiting
recursive programme for R (so that β itself is limiting recursive), then, as will be seen later,
the set of representations of elements of GR with respect to β can have certain desirable
computability properties, such as equality being co-r.e.

I Proposition 7. Suppose R ≤T K is Martin-Löf random. Then there does not exist any
strictly increasing recursive enumeration i0, i1, i2, . . . such that for each j, there is some
nij ≥ 1 with p

−nij

ij
∈ GR.

I Theorem 8. If R ≤T K is Martin-Löf random, then (GR,+) is co-r.e., meaning that + is
recursive and there is a generating sequence with respect to which equality is co-r.e.

Proof. For a fixed generating sequence (qi)i<ω of GR there is an epimorphism from the
set of finite sequences of integers Z<ω to GR by identifying σ = (σ(0), . . . , σ(|σ| − 1)) with
x =

∑|σ|−1
i=0 σ(i)qi. We call σ a representation of x w.r.t. (qi)i<ω or (qi)i<n+1.

Obviously, for any generating sequence of GR addition is recursive as only the components
of the representations have to be added as integers.

In order to prove that equality is co-r.e., we construct a specific generating sequence
(bi)i<ω. Based on the result Rs of the computation of R after s steps, we are going to define
finite sequences βs of rational numbers recursively, such that |βs| = s + 1 and inequality
on {−s − 1, . . . , s + 1}s+1 ⊆ Zs+1, interpreted as representations w.r.t. βs, is decided and
extends the inequalities on {−s, . . . , s}s, even though they originate from an interpretation

Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan 25:7

as representations according to βs−1. With this in the limit we obtain a generating sequence
of GR, meaning that for every i there is some si > i such that for all s ≥ si the i-th element
of βs is the same as the i-th element of βsi

, which we denote by bi. Further, (bi)i∈N generates
GR and for this generating sequence equality will be co-r.e.

In the following we write ni,s for ni according to Rs, i.e. the number of 1’s between
the i-th and (i+ 1)-st zero in Rs, as introduced in Definition 3. As Rs does not end with
infinitely many 1’s, ni,s can be computed in finitely many steps for every i and s.

s = 0. Let β0 = (1).
s s+1. Check for every i ≤ s whether ni,s = ni,s+1. If ni,s = ni,s+1 let βs+1(i) = βs(i).
Replace all 1

p
ni,s
i

occurring in βs with ni,s 6= ni,s+1 by some respective integer, for which
existence we argue below, such that

∆(qi)i<s+1 = { (σ0, σ1) ∈ ({−s− 1, . . . , s+ 1}s+1)2 |
σ0, σ1 represent different elements w.r.t. (qi)i<s+1 }

stays the same or enlarges if (qi)i<s+1 equals the first s+ 1 entries of βs+1 instead of βs.
Further, let

βs+1(s+ 1) = 1
p
nj,s+1
j

,

where j ≤ s + 1 is minimal such that 1
p

nj,s+1
j

is an element of GRs+1 and does not yet

occur in βs+1 �(s+ 1). If there is no such j, let βs+1(s+ 1) = 1.

For example, if the tape after stage s = 2 started with 1111010 . . ., after 3 steps contained
1101010 . . . and β2 = (1, 1

24 ,
1
3), then in β3 we would have to replace 1

24 by an integer w such
that for arbitrary integers u0, u1, u2, v0, v1, v2 between −3 and 3 we have

u0 + u1
1
24 + u2

1
3 6= v0 + v1

1
24 + v2

1
3 ⇒ u0 + u1w + u2

1
3 6= v0 + v1w + v2

1
3

and β3(3) would be 1
22 .

We proceed by showing that there is always such an integer w.

B Claim 9. For every s ∈ N in step s+ 1 it is possible to alter finitely many entries of βs to
obtain βs+1 �(s+ 1) such that ∆βs

⊆ ∆βs+1�(s+1).

Proof of the Claim. Let s ∈ N. It suffices to show that one entry can be replaced in this
desired way. As the argument does not depend on the position, we further assume that it is
the last entry. For all (σ0, σ1) ∈ ∆βs

we want to prevent

s−1∑
i=0

σ0(i)βs(i) + σ0(s)w =
s−1∑
i=0

σ1(i)βs(i) + σ1(s)w.

This is a linear equation having zero or one solution in Q. As there are only finitely many
choices for the pair (σ0, σ1), an integer not fulfilling any of these equations can be found in a
computable way. C

We continue by proving that the entries of the βs stabilize, such that in the limit we
obtain a sequence (bi)i<ω of elements of GR.

MFCS 2019

25:8 Random Subgroups of Rationals

B Claim 10. For every i ∈ N there is some si ≥ i such that for all s ≥ si we have βs(i) = bi,
with bi = βsi

(i).

Proof of the Claim. Let i ∈ N. If there is si > i such that the entry βsi−1(i) had to be
changed, then βsi(i) is an integer and thus, it will never be changed lateron. In case this
does not happen, we obtain βs(i) = βi(i) for all s ≥ i and therefore si = i. C

By the next claim the just constructed sequence generates the random group.

B Claim 11. The sequence (bi)i<ω generates GR.

Proof of the Claim. Let i ∈ N and ai as in Definition 3. We argue that there is some j with
ai = bj . Let mi be the position of the (i+1)-st zero in the Martin-Löf random R. Then there
is s′ such that after s′ computation steps R�(mi+ 1) is not changed any more. Thus, after at
most i additional steps all generators of GR having one of the first i primes as denominator
are in the range of βs′+i. C

Finally, we observe that w.r.t. the generating sequence (bi)i<ω all pairs of unequal elements
of GR can be recursively enumerated.

B Claim 12. Equality in (GR,+) is co-r.e.

Proof of the Claim. We run the algorithm generating (bi)i<ω and in step s return all elements
of the finite set ∆βs

. As inequalities w.r.t βs yield inequalities w.r.t. (bi)i<ω, we only
enumerate correct information. Further, for every two elements x, y of GR fix representations
w.r.t. (bi)i<ω and s′ large enough such that not more than the first s′ of the bi occur in
these representations, all of these have stabilized up to stage s′ and all coefficients in the
representations take values between −s′ − 1 and s′ + 1. Then x 6= y if and only if the tuple
of their representations is in ∆βs′ . C

This finishes the proof of the theorem. J

As there are K-recursive Martin-Löf random reals, we obtain the following corollary.

I Corollary 13. There exists a co-r.e. random subgroup of the rational numbers.

I Remark 14. Proposition 7 implies, in particular, that if R ≤T K is Martin-Löf random,
then there cannot exist any generating sequence for GR with respect to which equality of
members of GR is r.e. Indeed, suppose that such a generating sequence β did exist, so that
E := {(σ, τ) ∈ Z<ω × Z<ω | σ · β � |σ|−1 = τ · β � |τ |−1} is r.e. Fix any σ0 ∈ Z<ω such that
σ0 · β|σ0|−1 = 1 (since 1 ∈ GR, such a σ0 must exist). Then there is a strictly increasing
recursive enumeration i0, i1, i2, . . . such that for all j, ij is the first ` found for which the
following hold: (i) ` > ij′ whenever j′ < j; (ii) there are n` ≥ 1 and relatively prime positive
integers q, r with p` - q and p` - r such that for some m, (qσ0, Im(rpn`

`)) ∈ E. Note that

(qσ0, Im(rpn`

`)) ∈ E ⇔ q = (qσ0) · β|σ0|−1 = Im(rpn`

`) · βm−1 = rpn`

` bm−1

⇔ bm−1 = qp−n`

` r−1.

The Martin-Löf randomness of R implies that β contains infinitely many terms of the form
q′

r′p
n′

`′
`′

with n′`′ ≥ 1, q′ and r′ relatively prime and positive, p`′ - q′ and p`′ - r′. Thus ij is

defined for all j, and by Proposition 7 this contradicts the Martin-Löf randomness of R.
Further, a variation of the algorithm yields that equality of the proper rational part is r.e.

on random groups.

Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan 25:9

I Theorem 15. If R ≤T K is Martin-Löf random, then equality modulo 1 on (GR,+) is r.e.
with respect to some generating sequence.

The next main result is concerned with the model-theoretic properties of random subgroups
of rationals. We recall that two structures (in the model-theoretic sense) M and N with
the same set σ of non-logical symbols are elementarily equivalent (denoted M ≡ N) iff they
satisfy the same first-order sentences over σ; the theory of a structure M (denoted Th(M)) is
the set of all first-order sentences (over the set of non-logical symbols of M) that are satisfied
by M . The reader is referred to [16] for more background on model theory. We will prove
a result that may appear a bit surprising: even though Martin-Löf random subgroups of
(Q,+) (viewed as classes of integer sequence representations) are not computable, any such
subgroup is elementarily equivalent to (Z,+) - the additive group of integers - and thus has a
decidable theory. In other words, the incomputability of a random subgroup of rationals, at
least according to the notion of “randomness” adopted in the present work, has little or no
bearing on the decidability of its first-order properties. We begin by showing that the theory
of any subgroup G of rationals reduces to that of the subgroup of (Q,+) generated by the set
of all rationals either equal to 1 or of the shape p−n, where p is a prime infinitely dividing G
and n ∈ N. Our proof of this fact rests on a sufficient criterion due to Szmielew [27] for the
elementary equivalence of two groups; this result will be stated as it appears in [11].

I Theorem 16. ([27], as cited in [11]) Let p be a prime number and G be a group. For
all n ≥ 1, k ≥ 1 and elements g1, . . . , gk ∈ G, define G[pn] := {x ∈ G | pnx = 0} and the
following predicate C(p; g1, . . . , gk):

C(p; g1, . . . , gk)⇔ the images g′1, . . . , g′k of g1, . . . , gk in the factor group G := G/G[pn]are
such that g′1 + pG, . . . , g′k + pG are linearly independent in G/pG.

Define the parameters αp,n(G), βp(G) and γp(G) as follows.

αp,n(G) := sup{k ∈ N | G contains Zkpn as a pure subgroup},
βp(G) := inf{sup{k ∈ N | Zkpn is a subgroup of G} | n ∈ N},
γp(G) := inf{sup{k ∈ N | (∃x1, . . . , xk)C(p;x1, . . . , xk)} | n ∈ N}.

(Here pG := {pg | g ∈ G} and Zkpn is the k-th power of the primary cyclic group on pn

elements, that is, it consists of all elements (a0, . . . , ak−1) such that a0, . . . , ak−1 ∈ Zpn .)
Then any two groups H and L are elementarily equivalent iff αq,m(H) = αq,m(L), βq(H) =
βq(L) and γq(H) = γq(L) for all primes q and all m ≥ 1.

The definition of a pure subgroup will not be used in the proof of the subsequent theorem; it
will be observed that if G is a subgroup of the rationals, then for k ≥ 1 and n ≥ 1, it cannot
contain Zkpn as a subgroup in any case, so that αp,n(G) = βp(G) = 0.

I Theorem 17. Let G be a subgroup of (Q,+). Then G ≡ [Z]P (G), where P (G) := {i ∈ N |
(∀x ∈ G)(∀n ∈ N)[xpn

i
∈ G]} denotes the set of all primes infinitely dividing G and for a set

of primes P we write [Z]P for the subgroup of (Q,+) generated by {1} ∪ { 1
pk | p ∈ P, k ∈ N}.

Note that Th([Z]K ,+) is undecidable; in contrast, for R Martin-Löf random we have
P (GR) = ∅, so the promised corollary follows.

I Corollary 18. Let R ∈ 2ω be Martin-Löf random. Then (GR,+) and (Z,+) have the same
theories.

MFCS 2019

25:10 Random Subgroups of Rationals

One may ask whether this still holds for richer structures. This is not the case, as for example
the theory of (G,+, <) is different from Th(Z,+, <), as in the latter x = 1 is a satisfying
assignment for the formula x+ x > x ∧ ∀y < x ¬y + y > y. There does not exist an x ∈ GR
with this property for a ML-random R.

4 Learning Finitely Generated Subgroups of a Random Subgroup of
Rationals

In this section, we investigate the learnability of non-trivial finitely generated subgroups of
any group GR generated by a Martin-Löf random sequence R such that R ≤T K. First, we
introduce some additional notation.

I Notation 19. Let R ≤T K be Martin-Löf random and let β := (bi)i<ω be any generating
sequence of GR. For any subgroup F of GR, Fβ denotes the set of all representations of
elements of F with respect to β, that is, Fβ := {σ ∈ Z<ω |

∑|σ|−1
i=0 σ(i)bi ∈ F}. Furthermore,

define Fβ := {Fβ | F is a non-trivial finitely generated subgroup of GR}.

We will consider learning from texts, where a text is an infinite sequence that contains all
elements of Fβ for the F to be learnt and may contain the symbol #, which indicates a pause in
the data presentation and thus no new information. For any text T and n ∈ N, T (n) denotes
the (n+1)-st term of T and T [n] denotes the finite sequence T (0), . . . , T (n−1), i.e., the initial
segment of length n of T ; content(T [n]) denotes the set of non-pause elements occurring in
T [n]. A learner M is a recursive function mapping (Z<ω ∪ {#})∗ into N ∪ {?}; the ? symbol
permits M to abstain from conjecturing at any stage. A learner is fed successively with
growing initial segments of the text and it produces a sequence of conjectures e0, e1, e2, . . .,
which are interpreted with respect to a fixed hypothesis space. In the present paper, we
stick to the standard hypothesis space, a fixed Gödel numbering W0,W1,W2, . . . of all r.e.
subsets of Z<ω. In our setting from the generator q

m of F we can immediately derive an
index e for Fβ and therefore in the proofs we argue for learning q and m. The learner is said
to behaviourally correctly (denoted Bc) learn the representation Fβ of a finitely generated
subgroup F with respect to a fixed generating sequence β for GR iff on every text for Fβ ,
the sequence of conjectures output by the learner converges to a correct hypothesis; in other
words, the learner almost always outputs an r.e. index for Fβ [7, 5, 2]. If almost all of the
learner’s hypotheses on the given text are equal in addition to being correct, then the learner
is said to explanatorily (denoted Ex) learn Fβ (or it learns Fβ in the limit) [9].

A useful notion that captures the idea of the learner converging on a given text is that of a
locking sequence, or more generally that of a stabilising sequence. A sequence σ ∈ (N∪ {#})∗
is called a stabilising sequence [8] for a learner M on some set L if content(σ) ⊆ L and for all
τ ∈ (L ∪ {#})∗, M(σ) = M(σ ◦ τ). A sequence σ ∈ (N ∪ {#})∗ is called a locking sequence
[4] for a learner M on some set L if σ is a stabilising sequence for M on L and WM(σ) = L.

The following proposition due to Blum and Blum [4] will be occasionally useful.

I Proposition 20. [4] If a learner M explanatorily learns some set L, then there exists a
locking sequence for M on L. Furthermore, all stabilising sequences for M on L are also
locking sequences for M on L.

Clearly, also a Bc-version of Proposition 20 holds.
It is not clear in the first place whether or not every finitely generated subgroup of a

randomly generated subgroup of (Q,+) can even be represented as an r.e. set. This will be
clarified in the next series of results. We recall that a finitely generated subgroup F of GR is

Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan 25:11

any subgroup of GR that has some finite generating set S, which means that every element
of F can be written as a linear combination of finitely many elements of S and the inverses
of elements of S. F is trivial if it is equal to {0}; otherwise it non-trivial. Furthermore, if
GR is a subgroup of (Q,+), then any finitely generated subgroup F of GR is cyclic, that is,
F =

〈 q
m

〉
for some q ∈ N and m ∈ N with gcd(q,m) = 1 (see, for example, [26, Theorem

8.1]). The latter fact will be used freely throughout this paper. For any generating sequence
β for GR and any finitely generated subgroup F of GR, the set of representations of elements
of F with respect to β will be denoted by Fβ .

I Theorem 21. Let R ≤T K be Martin-Löf random. Then there is a generating sequence
(bi)i<ω of GR such that for every non-trivial finitely generated subgroup F of GR the set Fβ
is r.e.

I Remark 22. The statement of Theorem 21 excludes the trivial subgroup because for any
generating sequence β := (bi)i<ω for GR, 〈0〉β cannot be r.e. To see this, suppose, by way of
contradiction, that 〈0〉β were r.e. Given any σ, σ′ ∈ Z<ω, set ` = max({|σ|− 1, |σ′|− 1}), and
for all i ∈ {0, . . . , `}, wi = σ(i) if i ≤ |σ| − 1 and 0 otherwise, and vi = σ′(i) if i ≤ |σ′| − 1
and 0 otherwise. Then σ · β � |σ|−1 = σ′ · β � |σ′|−1 ⇔ σ · β � |σ|−1 − σ′ · β � |σ′|−1 = 0 ⇔∑`
i=0(wi − vi)bi = 0⇔ (w0 − v0, w1 − v1, . . . , w` − v`) ∈ 〈0〉β . Thus if 〈0〉β were r.e., then

equality with respect to β would also be r.e., which, as was shown earlier, is impossible.

We note that there cannot be any generating sequence β for GR such that there are finitely
generated subgroups F, F ′ of GR with Fβ r.e. and F ′β co-r.e.

I Theorem 23. Let R ≤T K be Martin-Löf random. Let β be any generating sequence for
GR. Then for any finitely generated subgroups F and F ′ of GR, one of the following holds:
(i) both Fβ and F ′β are r.e., (ii) both Fβ and F ′β are co-r.e., or (iii) at least one of Fβ and
F ′β is neither r.e. nor co-r.e.

I Theorem 24. Let R ≤T K be Martin-Löf random. Then there is a generating sequence β
of GR such that Fβ is r.e. for every non-trivial finitely generated subgroup F of GR and Fβ
is Bc-learnable.

The next result shows, in contrast to Theorem 24, that if R ≤T K is Martin-Löf random,
then, given any generating sequence β for GR such that Fβ is r.e. for every non-trivial finitely
generated subgroup F of GR, the class Fβ is not explanatorily learnable.

I Theorem 25. Let R ≤T K be Martin-Löf random. Suppose β := (bi)i<ω is a generating
sequence for GR such that for any non-trivial finitely generated subgroup F of GR, Fβ is r.e.
Then Fβ is not Ex-learnable.

The next theorem considers the learnability of the set of representations of any finitely
generated subgroup F of the quotient group GR/Z with respect to the generating se-
quence for GR/Z constructed in the proof of Theorem 15. Slightly abusing the notation
defined in Notation 19, for any generating sequence β for GR/Z, Fβ will denote the set
of representations of any subgroup F of GR/Z with respect to β, and Fβ will denote
{Fβ | F is a finitely generated subgroup of GR/Z}.

I Theorem 26. Suppose R ≤T K is Martin-Löf random. Let GR/Z be the quotient group
of GR by Z. Then there is a generating sequence β for GR/Z such that Fβ is r.e. for all
finitely generated subgroups of GR/Z and Fβ is Bc-learnable.

MFCS 2019

25:12 Random Subgroups of Rationals

As in the case of the collection of non-trivial finitely generated subgroups of GR, the class
Fβ is not explanatorily learnable with respect to any generating sequence β for GR/Z. The
proof is entirely analogous to that of Theorem 25.

I Theorem 27. Let R ≤T K be Martin-Löf random. Suppose β := (bi)i<ω is a generating
sequence for GR/Z such that for any finitely generated subgroup F of GR/Z, Fβ is r.e. Then
Fβ is not Ex-learnable.

A natural question is whether the learnability or non-learnability of a class of representations
for a collection of subgroups of GR is independent of the choice of the generating sequence
for GR. We have seen in Theorem 25, for example, that the non explanatory learnability of
the class of non-trivial finitely generated subgroups of GR holds for any generating sequence
for GR such that Fβ is r.e. whenever F is a finitely generated subgroup. The next theorem
gives a positive learnability result that is to some extent independent of the choice of the
generating sequence: for any generating sequence β for GR such that equality with respect
to β is K-recursive and Fβ is r.e. whenever F is a finitely generated subgroup of GR, the
class Fβ is explanatorily learnable relative to oracle K.

I Theorem 28. Let R ≤T K be Martin-Löf random. Then for any generating sequence β
for GR such that equality with respect to β is K-recursive (in other words, the set Eβ :=
{(σ, σ′) ∈ Z<ω × Z<ω | σ · β|σ|−1 = σ′ · β|σ′|−1} is K-recursive) and Fβ is r.e. for all finitely
generated subgroups of GR, Fβ is Ex[K]-learnable.

We recall from Theorem 15 that there is a generating sequence β := (bi)i<ω for GR such that
equality modulo 1 with respect to β is r.e.; in other words, the set {(σ, σ′) ∈ Z<ω × Z<ω |
σ · β|σ|−1 ≡ σ′ · β|σ|′−1 (mod 1)} is r.e. The next result considers the learnability of a class
that is in some sense “orthogonal” to the class Zβ : the class of all sets of representations of
Z with respect to any generating sequence β′ for GR such that Zβ′ is r.e. In the statement
and proof of the next theorem, for any generating sequence β for GR, let Eβ denote the set
{(σ, σ′) ∈ Z<ω × Z<ω | σ · β|σ|−1 = σ′ · β|σ′|−1 (mod 1)}.

I Theorem 29. Let R ≤T K be Martin-Löf random. Let G0 be the collection of all generating
sequences β for GR such that Eβ is r.e., and define E0 := {Eβ | β ∈ G0}. Then E0 is not
Bc-learnable.

In contrast to Theorem 29, we present a positive learnability result for the collection of all Eβ
such that Eβ is co-r.e. The learnability is with respect to a hypothesis space which uses co-r.e.
indices. That is to say, given any text T , the learner will on T always output an r.e. index
for sets of the form (Z<ω × Z<ω) \ Eβ′ , where Eβ′ is some co-r.e. set. In the statement and
proof of the next theorem, given any generating sequence β for GR such that equality with
respect to β is co-r.e., Eβ will denote the set {(σ, σ′) ∈ Z<ω × Z<ω | σ · β|σ|−1 = σ′ · β|σ′|−1}.

I Theorem 30. Let R ≤T K be Martin-Löf random. Let G1 be the collection of all generating
sequences β for GR such that Eβ is co-r.e., and define E1 := {Eβ | β ∈ G1}. Then E1 is
explanatorily learnable relative to oracle K using co-r.e. indices. That is to say, there is
a K-recursive learner M such that for any Eβ ∈ E1 and any text T for Eβ, M on T will
output an r.e. index for (Z<ω × Z<ω) \ Eβ in the limit.

5 Conclusion and Possible Future Research

This paper introduced a method of constructing random subgroups of rationals, whereby
Martin-Löf random binary sequences are directly encoded into the generators of the group.

Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan 25:13

It was shown that if the Martin-Löf random sequence associated to a randomly generated
subgroup G is limit-recursive, then one can build a generating sequence β for G such that
the word problem for G is co-r.e. with respect to β, as well as another generating sequence
β′ such that the word problem for G/Z with respect to β′ is r.e. We also showed that every
non-trivial finitely generated subgroup of G has an r.e. representation with respect to a
suitably chosen generating sequence for G; moreover, the class of all such r.e. representations
is behaviourally correctly learnable but never explanatorily learnable. We did not, however,
extend the definition of algorithmic randomness to all Abelian groups; we suspect that
such a general definition might be out of reach of current methods due to the fact that the
isomorphism types of even rank 2 groups (subgroups of (Q2,+)) are still unknown.

References
1 Reinhold Baer. Abelian groups without elements of finite order. Duke Mathematical Journal,

3(1):68–122, March 1937.
2 Janis Bārzdin, s̆. Two theorems on the limiting synthesis of functions. Latv. Gos. Univ. Uch.

Zapiski, 210:82–88, 1974. (In Russian).
3 Ross A. Beaumont and Herbert S. Zuckerman. A characterization of the subgroups of the

additive rationals. Pacific Journal of Mathematics, 1(2):169–177, 1951.
4 Lenore Blum and Manuel Blum. Toward a Mathematical Theory of Inductive Inference.

Information and Control, 28:125–155, 1975.
5 John Case and Carl Smith. Comparison of identification criteria for machine inductive inference.

Theoretical Computer Science, 25:193–220, 1983.
6 Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity. Springer-Verlag,

Berlin, Heidelberg, 2010.
7 Jerome A. Feldman. Some decidability results on grammatical inference and complexity.

Information and Control, 20(3):244–262, 1972.
8 Mark A. Fulk. A Study of Inductive Inference Machines. PhD thesis, State University of New

York at Buffalo, Buffalo, NY, USA, 1986.
9 E. M. Gold. Language Identification in the Limit. Information and Control, 10:447–474, 1967.
10 Mikhail Gromov. Random walk in random groups. Geometric and Functional Analysis,

13:73–146, 2003.
11 Nazif G. Khisamiev. Chapter 17:Constructive abelian groups. In Yu. L. Ershov, S. S. Goncharov,

A. Nerode, J. B. Remmel, and V. W. Marek, editors, Handbook of Recursive Mathematics,
volume 139 of Studies in Logic and the Foundations of Mathematics, pages 1177–1231. Elsevier,
1998.

12 Bakhadyr Khoussainov. A Quest for Algorithmically Random Infinite Structures. In Proceedings
of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, pages 56:1–56:9, 2014.

13 Bakhadyr Khoussainov. A Quest for Algorithmically Random Infinite Structures, II. In Logical
Foundations of Computer Science - International Symposium, LFCS 2016, pages 159–173,
2016.

14 Ming Li and Paul Vitány. A New Approach to Formal Language Theory by Kolmogorov
Complexity. SIAM Journal on Computing, 24(2):398–410, 1995.

15 Ming Li and Paul Vitány. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, New York, NY, USA, 3rd edition, 2008.

16 David Marker. Model theory: an introduction, volume 217 of Graduate Texts in Mathematics.
Springer-Verlag, New York, NY, USA, 2002.

17 Eric Martin and Daniel N. Osherson. Elements of scientific inquiry. MIT Press, Cambridge,
Massachusetts, 1998.

MFCS 2019

25:14 Random Subgroups of Rationals

18 Per Martin-Löf. The definition of random sequences. Information and Control, 9(6):602–619,
1966.

19 André Nies. Computability and Randomness. Oxford University Press, Inc., New York, NY,
USA, 2009.

20 André Nies and Volkher Scholz. Martin-Löf random quantum states. arXiv preprint
arXiv:1709.08422, 2017.

21 Piergiorgio Odifredd. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
22 Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,

Cambridge, MA, USA, 1987.
23 Claus-Peter Schnorr. A Unified Approach to the Definition of a Random Sequence. Mathe-

matical Systems Theory, 5(3):246–258, 1971.
24 Robert I. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable Func-

tions and Computably Generated Sets. Perspectives in Mathematical Logic. Springer Berlin
Heidelberg, 1999.

25 Frank Stephan and Yuri Ventsov. Learning algebraic structures from text. Theoretical
Computer Science, 268(2):221–273, 2001.

26 Sándor Szabó and Arthur D. Sands. Factoring groups into subsets. Lecture Notes in Pure
and Applied Mathematics. Chapman and Hall/CRC Press, 6000 Broken Sound Parkway NW,
Suite 300, 2009.

27 Wanda Szmielew. Elementary properties of Abelian groups. Fundamenta Mathematicae,
41(2):203–271, 1955.

28 Todor Tsankov. The additive group of the rationals does not have an automatic presentation.
Journal of Symbolic Logic, 76(4):1341–1351, 2011.

29 Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-Learning Applications
of Algorithmic Randomness. In Proceedings of the Sixteenth International Conference on
Machine Learning (ICML 1999), pages 444–453, 1999.

Counting Induced Subgraphs:
An Algebraic Approach to #W[1]-hardness∗

Julian Dörfler
Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus (SIC), Germany
s8judoer@stud.uni-saarland.de

Marc Roth
Cluster of Excellence (MMCI), Saarland Informatics Campus (SIC), Saarbrücken, Germany
https://www.roth-marc.com
mroth@mmci.uni-saarland.de

Johannes Schmitt
ETH Zürich, Switzerland
https://people.math.ethz.ch/~schmittj/
johannes.schmitt@math.ethz.ch

Philip Wellnitz
Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbrücken, Germany
https://people.mpi-inf.mpg.de/~wellnitz/
wellnitz@mpi-inf.mpg.de

Abstract
We study the problem #IndSub(Φ) of counting all induced subgraphs of size k in a graph G

that satisfy the property Φ. This problem was introduced by Jerrum and Meeks and shown
to be #W[1]-hard when parameterized by k for some families of properties Φ including, among
others, connectivity [JCSS 15] and even- or oddness of the number of edges [Combinatorica 17].
Very recently [IPEC 18], two of the authors introduced a novel technique for the complexity
analysis of #IndSub(Φ), inspired by the “topological approach to evasiveness” of Kahn, Saks and
Sturtevant [FOCS 83] and the framework of graph motif parameters due to Curticapean, Dell and
Marx [STOC 17], allowing them to prove hardness of a wide range of properties Φ. In this work,
we refine this technique for graph properties that are non-trivial on edge-transitive graphs with a
prime power number of edges. In particular, we fully classify the case of monotone bipartite graph
properties: It is shown that, given any graph property Φ that is closed under the removal of vertices
and edges, and that is non-trivial for bipartite graphs, the problem #IndSub(Φ) is #W[1]-hard and
cannot be solved in time f(k) · no(k) for any computable function f , unless the Exponential Time
Hypothesis fails. This holds true even if the input graph is restricted to be bipartite and counting
is done modulo a fixed prime. A similar result is shown for properties that are closed under the
removal of edges only.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Problems, reductions and completeness; Mathematics of
computing → Combinatorics; Mathematics of computing → Graph theory

Keywords and phrases counting complexity, edge-transitive graphs, graph homomorphisms, induced
subgraphs, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.26

Related Version A full version of the paper is available at https://arxiv.org/abs/1904.10479.

Funding Johannes Schmitt: The third author has received funding from the European Research
Council (ERC) under the EU’s Horizon 2020 research and innovation programme (No 786580).

Acknowledgements We are very grateful to Radu Curticapean and Holger Dell for fruitful discussions
and valuable feedback on early drafts of this work.

∗ All authors of this paper are students.

© Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0943-8282
mailto:s8judoer@stud.uni-saarland.de
https://orcid.org/0000-0003-3159-9418
https://www.roth-marc.com
mailto:mroth@mmci.uni-saarland.de
https://orcid.org/0000-0001-5774-3508
https://people.math.ethz.ch/~schmittj/
mailto:johannes.schmitt@math.ethz.ch
https://orcid.org/0000-0002-6482-8478
https://people.mpi-inf.mpg.de/~wellnitz/
mailto:wellnitz@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.26
https://arxiv.org/abs/1904.10479
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

1 Introduction

The study of the computational complexity of counting problems was initiated by Valiant’s
seminal work about the complexity of computing the permanent [22]. In contrast to a decision
problem which requires to verify the existence of a solution, a counting problem asks to
compute the number of solutions. Counting complexity theory is particularly interesting for
problems whose decision versions are solvable efficiently but whose counting versions are
intractable. One such example is the problem of finding/counting perfect matchings, whose
decision version is solvable in polynomial time [7] and whose counting version is as least
as hard as every problem in the Polynomial Hierarchy PH with respect to polynomial-time
Turing reductions [22, 21]. In this work, we consider the following problem which was first
introduced by Jerrum and Meeks [11]: Fix a graph property Φ, given a graph G and a positive
integer k, compute the number of all induced subgraphs of G with k vertices that satisfy Φ.
We denote this problem by #IndSub(Φ) and remark that, strictly speaking, #IndSub(Φ)
is the unlabeled version of p-#InducedSubgraphWithProperty(Φ) as defined in [12,
Section 1.3.1]. In particular, our properties only depend on the isomorphism type of a graph
and not on any labeling of the vertices.

We study the parameterized complexity of #IndSub(Φ) depending on the property Φ. The
underlying framework, known as parameterized counting complexity theory, was introduced in-
dependently by Flum and Grohe [8] and McCartin [16], and constitutes a hybrid of (classical)
computational counting and parameterized complexity theory. Here, the method of para-
meterization allows us to perform a multivariate analysis of the complexity of #IndSub(Φ):
Instead of the distinction between polynomial-time solvable and NP-hard cases, we search for
properties Φ for which the problem is solvable in time f(k) · nO(1), where n is the number of
vertices of the graph and f can be any computable function. If this is the case, the problem
is called fixed-parameter tractable. Unfortunately, the only known cases of Φ for which
#IndSub(Φ) is fixed-parameter tractable are trivial in the sense that there are only finitely
many k such that Φ is neither true nor false on the set of all graphs with k vertices. On the
contrary, it is easy to see that #IndSub(Φ) is most likely not fixed-parameter tractable if Φ
encodes a problem whose decision version is already known to be hard. An example of the
latter is the property of being a complete graph. In this case, the problem #IndSub(Φ) is
identical to the problem of counting cliques of size k, for which even the decision version, that
is, finding a clique of size k in a graph with n vertices, cannot be done in time f(k) · no(k),
unless the Exponential Time Hypothesis fails [3, 4].

The first non-trivial hardness result of #IndSub(Φ) was given by Jerrum and Meeks
for Φ the property of being connected [11]. Note that, in this case, the decision version of the
problem can be solved efficiently as, on input G and k, one only has to decide whether there
exists a connected component of G of size at least k. This result initiated a line of research in
which Jerrum and Meeks proved fixed-parameter tractability of #IndSub(Φ) to be unlikely
for the property of having an even (or odd) number of edges [12], for properties that induce
low edge densities [10] and for properties that are closed under the addition of edges and
whose (edge-)minimal elements have large treewidth [17]. More precisely, all of those results
established hardness for the parameterized complexity class #W[1], which can be seen as the
parameterized counting equivalent of NP. In a recent breakthrough result [5], Curticapean,
Dell and Marx have shown, that for every graph property Φ, the problem #IndSub(Φ) is
either fixed-parameter tractable or hard for #W[1], that is, there are no cases of intermediate
difficulty. On the downside, they did not provide an explicit criterion for #W[1]-hardness
that allows to pin down the complexity of #IndSub(Φ), given a concrete property Φ.

J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz 26:3

However, combining the framework of [5] with tools from the “topological approach to
evasiveness” by Kahn, Saks and Sturtevant [13], two of the authors of the current paper
established #W[1]-hardness for a wide range of properties, including, for example, all non-
trivial properties that are closed under the removal of edges and false on odd cycles [20].
Taken together, the above results suggest the following conjecture.

I Conjecture 1. Let Φ be a computable graph property satisfying that there are infinitely
many positive integers k such that Φ is neither true nor false on all graphs with k vertices.
Then #IndSub(Φ) is #W[1]-hard.

Unfortunately, a proof of this conjecture seems to be a long way off. In this work however,
building up on [5, 20], we introduce an algebraic approach that allows us to resolve the above
conjecture in case of all non-trivial monotone properties on bipartite graphs. In particular,
we obtain a matching lower bound under the Exponential Time Hypothesis.

Results and techniques

We call a graph property monotone if it is closed under the removal of vertices and edges and
edge-monotone if it is closed under the removal of edges only. Furthermore, we write ISk for
the graph consisting of k isolated vertices and Kt,t for the complete bipartite graph with t
vertices on each side. Our main theorems read as follows.

I Theorem 2. Let Φ be a computable graph property and let K be the set of all prime
powers t such that Φ(IS2t) 6= Φ(Kt,t). If K is infinite then #IndSub(Φ) is #W[1] hard.
If additionally K is dense then it cannot be solved in time f(k) · no(k) for any computable
function f unless ETH fails. This holds true even if the input graphs to #IndSub(Φ) are
restricted to be bipartite.

In the previous theorem, a set K is dense if there exists a constant c such that for every
m ∈ N, there exists a k ∈ K such that m ≤ k ≤ cm. While the hypotheses of Theorem 2
sound technical, the theorem applies in many situations. In particular, it is applicable to
properties that are neither (edge-) monotone nor the complement thereof: Let Φ be the
property of being Eulerian. The graph Kt,t contains an Eulerian cycle if t = 2s for s ≥ 1.
Hence we can apply Theorem 2 with K = {2s | s ≥ 1}, which is infinite and dense.

I Corollary 3. Let Φ be the property of being Eulerian. Then #IndSub(Φ) is #W[1]-hard
and cannot be solved in time f(k) · no(k) for any computable function f unless the ETH fails.
This holds true even if the input graphs to #IndSub(Φ) are restricted to be bipartite.

In case Φ is edge-monotone, the condition Φ(IS2t) 6= Φ(Kt,t) is equivalent to non-triviality
and if Φ is monotone, we obtain the following, more concise statement of the hardness result.

I Theorem 4. Let Φ be a computable monotone graph property such that Φ and ¬Φ hold on
infinitely many bipartite graphs. Then #IndSub(Φ) is #W[1]-hard and cannot be solved in
time f(k) · no(k) for any computable function f unless the Exponential Time Hypothesis fails.
This holds true even if the input graphs to #IndSub(Φ) are restricted to be bipartite.

Let us illustrate further consequences of the previous theorems with respect to (edge-)
monotone properties. First of all, most of the prior hardness results ([11, 10, 17, 12, 20]) are
shown to hold in the restricted case of bipartite graphs. We provide three examples:

I Corollary 5. The problem #IndSub(Φ), restricted to bipartite input graphs, is #W[1]-hard
and cannot be solved in time f(k) · |V (G)|o(k) for any computable function f unless ETH
fails, if Φ is one of the properties of being disconnected, planar or non-hamiltonian.

MFCS 2019

26:4 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

One example of a monotone property Φ for which the complexity of #IndSub(Φ) was
unknown, even for general graphs, is given by the following corollary of Theorem 4.

I Corollary 6. Let F be a fixed bipartite graph with at least one edge and define Φ(G) = 1
if G does not contain a subgraph isomorphic to F . Then #IndSub(Φ) is #W[1]-hard and
cannot be solved in time f(k) · |V (G)|o(k) for any computable function f unless ETH fails.
This holds true even if the input graphs of #IndSub(Φ) are restricted to be bipartite.

As the number of induced subgraphs of size k that satisfy Φ equals
(|V (G)|

k

)
minus the number

of induced subgraphs of size k that satisfy ¬Φ, all of the previous result remain true for the
complementary properties ¬Φ.

In proving the previous theorems we build up on the approach in [5, 20], where it was
shown that, given a graph property Φ and a positive integer k, the number of induced
subgraphs of size k in a graph G that satisfy Φ can equivalently be expressed as the following
sum over all (isomorphism types of) graphs H:∑

H

aΦ(H) ·#Hom(H → G) , (1)

where aΦ is a function from graphs to integers with finite support and #Hom(H → G) is
the number of graph homomorphisms from H to G. It is known that computing a linear
combination of homomorphism numbers, as in the above expression, is precisely as hard as
computing its hardest term with a non-zero coefficient ([5], also implicitly proved in [2]).
We refer to this property as complexity monotonicity. In [20] two of the authors of the
current paper used a topological approach to analyze the coefficient aΦ(Kk) of the complete
graph on k vertices. If this coefficient is non-zero then complexity monotonicity implies
that computing the number of induced subgraphs of size k in a graph G that satisfy Φ is
at least as hard as computing the number #Hom(Kk → G). This, in turn, is equivalent to
computing the number of cliques of size k in G, the canonical #W[1]-complete problem [8].
While this approach led to hardness proofs for a wide range of properties Φ, it seems that
resolving Conjecture 1, even restricted to monotone properties, requires a significant amount
of new ideas. Without going too much into the details1 of [20], our analysis of aΦ(Kk) is
complicated by the fact that the number of edges of the complete graph on k ≥ 4 vertices is
not a prime power. In this work, we hence focus on the coefficient of aΦ(H) for graphs H
that have a prime power number of edges and for which computing #Hom(H → G) is hard.
One example of such graphs is the biclique Kt,t for some prime power t. Here a biclique Kt,t,
also called a complete bipartite graph, has t vertices on each side and contains every edge
from a vertex on the left side to a vertex to the right side. Hence the number of edges is t2
which is a prime power if t is.

In analyzing the coefficient aΦ(Kt,t) of the complete bipartite graph, we invoke the results
of Rivest and Vuillemin [19] who considered transitive boolean functions over a domain
of prime power cardinality to resolve the asymptotic version of what is known as Karp’s
evasiveness conjecture (we recommend Miller’s survey [18] for an excellent overview).

1 Readers familiar with [20] might recall that fixed points of group actions have been used to derive a
simpler formula to compute the number aΦ(Kt) modulo a prime p for positive powers t of p. This
formula would simplify greatly if the group had a p-power number of elements and acted transitively on
the edges of Kt. Unfortunately, this can never happen for t ≥ 4, since the number of edges of Kt is not
itself a p-power.

J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz 26:5

Given a property Φ and a graph H, the alternating enumerator of Φ and H is defined to be

χ̂(Φ, H) :=
∑

S⊆E(H)

Φ(H[S]) · (−1)#S ,

where H[S] is the graph with vertices V (H) and edges S. Roughly speaking, it will turn
out that the value of aΦ(H) is closely related to χ̂(Φ, H). We furthermore point out that,
in case Φ is closed under the removal of edges, the alternating enumerator χ̂(Φ, H) equals
what is called the reduced Euler characteristic of the simplicial complex on E(H) associated
to Φ [18, 20]. In Section 3 we study the alternating enumerator in case of edge-transitive
graphs, that is, graphs whose automorphism groups act transitively on the set of edges. We
give a self-contained proof of the following fact, which implicitly follows from [19].

I Lemma 7. Let Φ be a graph property and let H be an edge-transitive graph with pk edges
such that p is a prime and Φ(H[∅]) 6= Φ(H). Then it holds that χ̂(Φ, H) = (±1) mod p .

Now, intuitively, Lemma 7 induces a strategy towards proving hardness of #IndSub(Φ):
Assume a family of edge-transitive graphs H can be found such that #E(H) is a prime
power and Φ(H[∅]) 6= Φ(H) for every H ∈ H. Then #IndSub(Φ) is at least as hard as
counting homomorphisms from graphs in H, the latter of which is fully understood [6]. This
observation gives a strong motivation for the study of edge-transitive graphs with a prime
power number of edges. In the second part of Section 3, we fully classify those graphs
as subgraphs of bipartite graphs or vertex-transitive subgraphs of wreath graphs; consult
Section 3 for the formal definitions. The proof of the following theorem, which might be of
independent interest, relies on a non-trivial application of Sylow’s theorems.

I Theorem 8. Let G be a connected edge-transitive graph with pt edges for some prime p
and positive integer t. Then either G is bipartite or G is vertex-transitive and can be obtained
from the wreath graph Wpk for k ≥ 1 by removing edges (or both).

With the analysis of χ̂ and edge-transitive graphs completed, we turn to the reduction
from counting homomorphisms in Section 4. More precisely, given a class H of edge-transitive
graphs with a prime power number of edges and a graph property Φ such that for every
H ∈ H we have that Φ(H[∅]) 6= Φ(H), we construct a parameterized Turing reduction from
#Hom(H) to #IndSub(Φ). Here, the problem #Hom(H) is defined as follows: Given as
input a graph H ∈ H and a graph G, compute the number of homomorphisms from H to G.
For technical reasons, we cannot immediately transform the number of induced subgraphs that
satisfy Φ to a linear combination of homomorphism numbers as in Equation (1). We solve this
technical issue by introducing color-prescribed variants of those problems in an intermediate
step. In this context we consider H-colored graphs. Recall that a graph G is H-colored if it
comes with a homomorphism c from G to H. A homomorphism from H to G is then called
color-prescribed if it maps every vertex v of H to a vertex u of G satisfying that c(u) = v.
We demonstrate that, given an H-colored graph G and oracle access to #IndSub(Φ), the
following linear combination can be computed in time f(|V (H)|) · |V (G)|O(1).∑

S⊆E(H)

âΦ(S) ·#cp-Hom(H[S]→ G). (2)

Here cp-Hom(H[S] → G) denotes the set of color-prescribed homomorphisms from H[S]
to G and âΦ is a function of finite support only depending in Φ. In particular, âΦ(E(H))
and χ̂(Φ, H) are proved to agree up to a factor of −1. Finally, we establish complexity
monotonicity for linear combinations of color-prescribed homomorphisms as in Equation (2),
which in combination with Lemma 7 yields the desired reduction.

MFCS 2019

26:6 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

Combining the previous results, we invoke the reduction on graph properties that are non-
trivial on bipartite graphs and prove Theorem 2 and Theorem 4, in Section 5. Furthermore,
we illustrate that our algebraic approach readily extends to modular counting by proving
that both, Theorem 2 and Theorem 4 remain true in case counting is done modulo a fixed
prime. Due to space constraints, the formal statement and proof of the modular counting
version, as well as some proofs of Sections 3 and 4, are deferred to the full version.

2 Preliminaries

Given a positive integer k, we write [k] for the set {1, . . . , k} and given a set A we write
(

A
k

)
for the set of all subsets of size k of A. Furthermore, assuming that A is finite, we write #A
or |A| for its cardinality. Given a function g : A×B → C and an element a ∈ A, we write
g(a, ?) for the function which maps b ∈ B to g(a, b). Some of our proofs rely on (elementary)
group theory; due to the space constraints we refrain from an introduction and refer the
reader to e.g. Chapter 1 in the standard textbook of Lang [14].

2.1 Graph theory

Graphs in this work are considered simple, undirected and without self-loops. More precisely,
a graph G is a pair of a finite set V (G) of vertices and a symmetric and irreflexive relation
E(G) ⊆ V (G)2. If a graph H is obtained from G by deleting a set of edges and a set of
vertices of G, including incident edges, then H is called a subgraph of G. Given a subset V̂ of
V (G) we write G[V̂] for the graph with vertices V̂ and edges E ∩ V̂ 2. The resulting graph is
called an induced subgraph of G. An edge-subgraph of a graph H is a graph obtained from H

by deleting edges. Given a set S ⊆ E(H) we write H[S] for the edge-subgraph (V (H), S)
of H.

Homomorphisms and embeddings

A homomorphism from a graph H to a graph G is a mapping h : V (H)→ V (G) that preserves
adjacencies. In other words, for every edge {u, v} ∈ E(H) it holds that {h(u), h(v)} ∈ E(G).
We write Hom(H → G) for the set of all homomorphisms from H to G. A homomorphism
inducing a bijection of vertices and satisfying {u, v} ∈ E(H) if and only if {f(u), f(v)} ∈ E(G)
is called an isomorphism and we say that two graphs H and Ĥ are isomorphic if there exists
an isomorphism from H to Ĥ. We write Sub(H → G) and IndSub(H → G) for the sets of
all subgraphs and induced subgraphs of G, respectively, that are isomorphic to H.

An isomorphism from a graph to itself is called an automorphism. The set of automorph-
isms of a graph, together with the operation of functional composition constitutes a group,
called the automorphism group of a graph. Slightly abusing notation, we will write Aut(H)
for both the set of automorphisms of a graph H as well as for the automorphism group of H.

An embedding is an injective homomorphism and we write Emb(H → G) for the set
of embeddings from H to G. If an embedding h from H to G additionally satisfies that
{h(u), h(v)} ∈ E(G) implies {u, v} ∈ E(H), we call it a strong embedding. We write
StrEmb(H → G) for the set of strong embeddings from H to G. Observe that the images of
embeddings and strong embeddings from H to G are precisely the subgraphs and induced
subgraphs of G that are isomorphic to H.

J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz 26:7

Colored variants

Given graphs G and H, we say that G is H-colored if G comes with a homomorphism c from G

to H, called an H-coloring. Note that, in particular, every edge-subgraph of H can be H-
colored by the identity function on V (H), which is assumed to be the given coloring whenever
we consider H-colored edge-subgraphs of H in this paper. Given an edge-subgraph F of H
and a homomorphism h from F to a H-colored graph G, we say that h is color-prescribed if
for all v ∈ V (F) = V (H) it holds that c(h(v)) = v. We write cp-Hom(F → G) for the set of
all color-prescribed homomorphisms from F to G. cp-StrEmb(F → G) is defined similarly
for color-prescribed strong embeddings. We point out that a definition of cp-Emb is obsolete
as every color-prescribed homomorphism is injective by definition and hence an embedding.
Furthermore, we write cp-Sub(F → G) and cp-IndSub(F → G) for the sets of images of
color-prescribed embeddings and strong embeddings from F to G, respectively. Elements
of cp-Sub(F → G) and cp-IndSub(F → G) are referred to as color-prescribed subgraphs and
induced subgraphs.2

Graph properties and the alternating enumerator

A graph property is a function Φ from graphs to {0, 1} such that for any pair of isomorphic
graphs H and Ĥ we have that Φ(H) = Φ(Ĥ). Adapting the notation of Rivest and
Vuillemin [19], we define the alternating enumerator of a property Φ and a graph H to be
the function

χ̂(Φ, H) :=
∑

S⊆E(H)

Φ(H[S]) · (−1)#S .

A graph property Φ is called edge-monotone if it is closed under the removal of edges. It
is called monotone if it is closed under the removal of edges and vertices.3 Given a graph
property Φ, a positive integer k and a graph G, we write IndSub(Φ, k → G) for the set of
all induced subgraphs of size k of G that satisfy Φ. Furthermore, given a graph property Φ
and an H-colored graph G, we write cp-IndSub(Φ → G) for the set of all color-prescribed
induced subgraphs of size |V (H)| in G that satisfy Φ.

2.2 Parameterized counting complexity
The field of parameterized counting was introduced independently by McCartin [16] and Flum
and Grohe [8] and constitutes a hybrid of classical computational counting and parameterized
complexity theory. A parameterized counting problem is a pair of a function P : Σ∗ → N
and a computable parameterization κ : Σ∗ → N. It is called fixed-parameter tractable (FPT)
if there exists a computable function f and a deterministic algorithm that computes P (x)
in time f(κ(x)) · |x|O(1) for every x ∈ Σ∗. A parameterized Turing reduction from (P, κ)
to (P̂ , κ̂) is a deterministic FPT algorithm with respect to κ that is given oracle access to
P̂ and that on input x computes P (x) with the additional restriction that there exists a
computable function g such that for any oracle query y it holds that κ̂(y) ≤ g(κ(x)). We
write (P, κ) ≤fpt

T (P̂ , κ̂) if a parameterized Turing reduction exists.

2 The observant reader might have noticed that the sets cp-Sub(F → G) and cp-Hom(F → G) as well as
cp-IndSub(F → G) and cp-StrEmb(F → G) are essentially the same as a color-prescribed homomorphism
is uniquely identified by its image. However, we decided to distinguish those notions in order to make
the combinatorial arguments in Section 4 more accessible.

3 To avoid confusion, we remark that in some literature, e.g. in [17] a property is called monotone if it is
closed under addition of vertices and edges.

MFCS 2019

26:8 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

Given a graph G and a positive integer k, the parameterized counting problem #Clique
asks to compute the number of complete subgraphs of size k in G and is parameterized by k,
that is κ(G, k) := k. It is complete for the class #W[1], which can be seen as a parameterized
counting equivalent of NP [8]. Evidence for the fixed-parameter intractability of #W[1]-hard
problems is given by the Exponential Time Hypothesis (ETH), which asserts that 3-SAT
cannot be solved4 in time exp(o(m)) where m is the number of clauses of the input formula.
Assuming ETH, #Clique cannot be solved in time f(k) · no(k) for any function f [3, 4] and
hence #W[1]-hard problems are not fixed-parameter tractable.

Given a recursively enumerable class of graphs H, the problem #Hom(H) asks, given a
graph H ∈ H and an arbitrary graph G, to compute #Hom(H → G). Its parameterization is
given by κ(H,G) := |V (H)|. The problems #cp-Hom(H) and #cp-IndSub(H) are defined
similarly. Note that the inputs of the latter two problems are of the form (H,G) where
H ∈ H and G comes with an explicitly given H-coloring.

Given a computable graph property Φ, the problem #IndSub(Φ) asks, given a graph G
and a positive integer k, to compute #IndSub(Φ, k → G) and the parameterization is given by
κ(G, k) := k. Furthermore, we define #cp-IndSub(Φ) to be the problem of, given a graph G
that is H-colored for some graph H, computing #cp-IndSub(Φ → G) and parameterize it
by κ(G) := |V (H)|. We emphasize that, similarly to #cp-Hom(H), the input graph G

comes with an explicitly given H-coloring, from which H can be constructed and thus the
parameterization is well-defined.

3 Alternating enumerators and p-edge-transitive graphs

In this part of the paper we will provide a rough exposition of the work of Rivest and
Vuillemin [19] who studied transitive boolean functions to resolve the asymptotic version of
Karp’s evasiveness conjecture. We will then apply their result to graphs H that are both
edge-transitive and have p` many edges for some prime p. This will enable us to conclude
that the alternating enumerator of Φ and H is (±1) modulo p whenever Φ(H[∅]) 6= Φ(H).
We start by introducing some required notions from algebraic graph theory.
The automorphism group of a graph H induces a group action on the edges of H, given
by h{u, v} := {h(u), h(v)}. A group action is transitive if there exists only one orbit and a
graph H is called edge-transitive if the group action on the edges is transitive, that is, if for
every pair of edges {u, v} and {û, v̂} there exists an automorphism h ∈ Aut(H) such that
h{u, v} = {û, v̂}. If additionally the number of edges of an edge-transitive graph is a prime
power p` we call the graph p-edge-transitive.

I Lemma 9 (Lemma 7 restated). Let Φ be a graph property and let H be a p-edge-transitive
graph such that Φ(H[∅]) 6= Φ(H). Then it holds that χ̂(Φ, H) = (±1) mod p .

Lemma 9 is implicitly proven in [19, Theorem 4.3], but for completeness we will include a
short and self-contained proof, demonstrating a first application of the machinery of Sylow
subgroups that we will need later.

For the proofs in this section, let us recall some key results from group theory. Given a
prime number p, a finite group Γ′ is called a p-group if the order #Γ′ is a power of p. The
following is a well-known and central result from the theory of finite groups.

4 We point out that this includes deterministic and randomized algorithms.

J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz 26:9

I Theorem 10 (Sylow theorems). Let Γ be a finite group of order #Γ = pkm for a prime p
and an integer m ≥ 1 coprime to p. Then Γ contains a subgroup Γ′ of order pk. Moreover,
every other subgroup Γ′′ of Γ of order pk is conjugate to Γ′, that is there exists g ∈ Γ with
Γ′′ = gΓ′g−1. In particular, the groups Γ′,Γ′′ are isomorphic (via the conjugation by g).

Finally, every subgroup Γ̃ ⊆ Γ which is a p-group is actually contained in some conjugate
gΓ′g−1 of the group Γ′.

A subgroup Γ′ ⊆ Γ as above is called a p-Sylow subgroup of Γ.
The following result is a first important application of the Sylow theorems. It can be

found as Exercise (E28) in [1]; for completeness we include a proof in the full version.

I Lemma 11. Let Γ be a finite group acting transitively on a set T such that #T = pl for
some l ≥ 0. Then the induced action of any p-Sylow subgroup Γ′ ⊆ Γ on T is still transitive.

This result allows us to give a short proof of Lemma 9 above. We sketch the proof here and
provide the details in the full version of the paper.

Proof sketch of Lemma 9. Let Γ′ be a p-Sylow subgroup of Aut(H), then by Lemma 11 it
acts transitively on E(H). This action on the edges of H induces an action on the set of
subsets S ⊆ E(H) and by the Orbit-Stabilizer Theorem, for any S which is not invariant
under Γ′, the size of its orbit by Γ′ is a positive power of p. Then in the sum

χ̂(Φ, H) =
∑

S⊆E(H)

Φ(H[S]) · (−1)#S ,

we group together summands belonging to S in the same Γ′-orbit. The contribution of any
orbit of positive size is divisible by p and can be left out modulo p. Since Γ′ acts transitively
on E(H), the only invariant sets S are S = ∅ and S = E(H), so we have

χ̂(Φ, H) = Φ(H[∅]) + Φ(H[E(H)]) · (−1)#E(H) = Φ(H[∅])− Φ(H) mod p .

Note that we use the fact that for p > 2 we have that #E(H) is odd since it is a prime
power and for p = 2 we have −1 = 1 modulo p. Now, the condition Φ(H[∅]) 6= Φ(H) exactly
gives us Φ(H[∅])− Φ(H) = ±1 mod p. J

There are two main examples for p-edge-transitive graphs. The first example is the class
of the complete, bipartite graphs Kpl,pm with l,m ≥ 0. The graph Kpl,pm has pl+m edges
and the automorphism group clearly acts transitively on the edges of that graph. The second
example is the class of wreath graphs Wpk for k ≥ 1. The graph Wpk has pk vertices that
can be decomposed in disjoint sets V0, . . . , Vp−1 of order pk−1 each, and edges {vi, vi+1} for
each i = 0, . . . , p− 1 and vertices vi ∈ Vi, vi+1 ∈ Vi+1 (where it is understood that Vp = V0).
Thus in total, Wpk has p2k−1 edges, except for p = 2 where it has 22k−2 edges. The graph
Wpk can be seen as the lexicographical product of a p-cycle with a graph consisting of pk−1

disjoint vertices. For k = 1 we exactly obtain the p-cycle. To see that Wpk is edge-transitive,
we observe that on the one hand, for fixed i we can apply an arbitrary permutation on Vi

leaving the graph invariant. On the other hand, there exists a “rotational action” sending Vj

to Vj+1 for j = 0, . . . , p− 1, which also leaves the graph invariant. Using these two types of
automorphisms, we can map every edge to every other edge.

The following result tells us that in a certain sense the graphs Kpl,pm and Wpk are the
maximal p-edge-transitive graphs. A graph G is called vertex-transitive if its automorphism
group Aut(G) acts transitively on its set of vertices V (G).

MFCS 2019

26:10 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

I Theorem 12 (Theorem 8 restated). Let G be a connected p-edge-transitive graph. Then
either G is bipartite (and thus a subgraph of a graph of the form Kpl,pm for some l,m ≥ 0)
or G is vertex-transitive and an edge-subgraph of Wpk for k ≥ 1 (or both).

Due to the space constraints the proof is deferred to the full version of the paper.

4 The main reduction: From homomorphisms to induced subgraphs

In what follows we will construct a sequence of reductions, starting from #Hom(H) and
ending in #IndSub(Φ). Here, H is a recursively enumerable set of p-edge-transitive graphs
and Φ is a graph property such that for every graph H ∈ H we have that Φ(H[∅]) 6= Φ(H).
More precisely, we will prove that

#Hom(H)≤fpt
T #cp-Hom(H)

Lemma 17
≤fpt

T #cp-IndSub(Φ)≤fpt
T #IndSub(Φ) (3)

In particular, all of those reductions will be tight in the sense that conditional lower
bounds on the fine-grained complexity of #Hom(H) immediately transfer to #IndSub(Φ).
For the hardness results we rely on a result of Dalmau and Jonsson [6] stating that the
problem #Hom(H) is known to be #W[1]-hard whenever H is recursively enumerable and
of unbounded treewidth.5 Here a class of graphs is said to have unbounded treewidth if
for every b ∈ N there exists a graph in the class with treewidth at least b. Due to space
constraints, the remainder of this section is concerned with proving Lemma 17, that is, the
second step of the reduction sequence; the first and the third step are deferred to the full
version.

Reducing color-prescribed homomorphisms to color-prescribed induced subgraphs

The reduction from color-prescribed homomorphisms to color-prescribed induced subgraphs
requires the introduction of an H-colored variant of the framework of graph motif parameters,
which was explicitly introduced in [5] and implicitly used in [2]. More precisely, given an H-
colored graphG and a property Φ, we will express #cp-IndSub(Φ→ G) as a linear combination
of color-prescribed homomorphisms, that is, terms of the form #cp-Hom(H[S] → G). In
a first step, we show complexity monotonicity for linear combinations of color-prescribed
homomorphisms. While this property allows a quite simple proof, a second step, in which
we study the coefficient of #cp-Hom(H → G) requires a thorough understanding of the
alternating enumerator of Φ and H. In case of p-edge-transitive graphs, the latter is provided
by Lemma 9.

We start by introducing a colored variant of the tensor product of graphs (see e.g.
Chapter 5.4.2 in [15]). Given two H-colored graphs G and Ĝ with colorings c and ĉ we
define their color-prescribed tensor product G×H Ĝ as the graph with vertices V = {(v, v̂) ∈
V (G) × V (Ĝ) | c(v) = ĉ(v̂)} and edges between two vertices (v, v̂) and (u, û) if and only
if {v, u} ∈ E(G) and {v̂, û} ∈ E(Ĝ). The next lemma states that #cp-Hom is linear with
respect to ×H , a short proof of which can be found in the full version of the paper.

I Lemma 13. Let H be a graph, let F be an edge-subgraph of H and let G and Ĝ be
H-colored. Then we have that

#cp-Hom(F → G×H Ĝ) = #cp-Hom(F → G) ·#cp-Hom(F → Ĝ) .

5 We remark that the graph parameter of treewidth is not used explicitly in this work. Hence we omit
the definition and refer the interested reader e.g. to Chapter 11 in [9].

J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz 26:11

We are now prepared to prove the color-prescribed variant of complexity monotonicity.

I Lemma 14 (Complexity monotonicity). Let H be a graph and let a be a function from
edge-subgraphs of H to rationals. There exists an algorithm A that is given an H-colored
graph G as input and has oracle access to the function∑

S⊆E(H)

a(H[S]) ·#cp-Hom(H[S]→ ?) ,

and computes #cp-Hom(H[S]→ G) for all S such that a(H[S]) 6= 0 in time f(|H|) · |V (G)|
where f is a computable function. Furthermore, every oracle query Ĝ satisfies |V (Ĝ)| ≤
f(|H|) · |V (G)|.

Proof. Using Lemma 13 we have that for every H-colored graph F it holds that∑
S⊆E(H)

a(H[S]) ·#cp-Hom(H[S]→ (G×H F)) (4)

=
∑

S⊆E(H)

a(H[S]) ·#cp-Hom(H[S]→ G) ·#cp-Hom(H[S]→ F) , (5)

which we can evaluate for F = H[∅], . . . ,H[E(H)]. This induces a system of linear equations
which can easily be shown to have a unique solution; the proof that the corresponding matrix
is non-singular can be found in the full version of the paper. Consequently, the numbers
a(H[S]) ·#cp-Hom(H[S]→ G) are uniquely determined and can be computed by solving the
system using Gaussian elimination. Finally, we obtain the numbers #cp-Hom(H[S]→ G) by
multiplying with a(H[S])−1 whenever a(H[S]) 6= 0. J

It remains to express the number of color-prescribed induced subgraphs that satisfy a
property Φ as a linear combination of color-prescribed homomorphisms. We only sketch the
proof of the following lemma and defer the details to the full version of the paper.

I Lemma 15. Let H be a graph, let Φ be a graph property and let G be an H-colored graph.
Then it holds that

#cp-IndSub(Φ→ G) =
∑

S⊆E(H)

Φ(H[S])
∑

J⊆E(H)\S

(−1)#J ·#cp-Hom([H[S ∪ J]→ G) .

Moreover, the absolute values of the coefficient of #cp-Hom(H → G) and χ̂(Φ, H) are equal.

Proof sketch. We rely on the following claim which follows by inclusion-exclusion.

B Claim 16. Let H be graph, let S ⊆ E(H) and let G be an H-colored graph. Then we
have that

#cp-IndSub(H[S]→ G) =
∑

J⊆E(H)\S

(−1)#J ·#cp-Sub(H[S ∪ J]→ G) .

Now summing up over all S for which Φ(H[S]) = 1 and applying Claim 16 yields

#cp-IndSub(Φ→ G) =
∑

S⊆E(H)

Φ(H[S])
∑

J⊆E(H)\S

(−1)#J ·#cp-Hom(H[S ∪ J]→ G) . (6)

Finally, we collect for the coefficient of #cp-Hom(H → G) and obtain∑
S⊆E(H)

Φ(H[S]) · (−1)#E(H)−#S = (−1)#E(H) · χ̂(Φ, H) . (7)

J

MFCS 2019

26:12 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

The application of the complexity monotonicity property for color-prescribed homomorphisms
(Lemma 14) requires non-zero coefficients. However, this can be guaranteed for the coefficient
of interest in case of p-edge-transitive graphs as shown in Section 3. Formally, the reduction
is constructed as follows.

I Lemma 17. Let Φ be a graph property and let H be a p-edge-transitive graph such that
Φ(H[∅]) 6= Φ(H). There exists an algorithm A that is given an H-colored graph G as input
and has oracle access to the function #cp-IndSub(Φ→ ?) and computes #cp-Hom(H → G)
in time f(|H|) · |V (G)| where f is a computable function. Furthermore, every oracle query Ĝ
is H-colored as well and satisfies |V (Ĝ)| ≤ f(|H|) · |V (G)|.

Proof. Using Lemma 15 we can express #cp-IndSub(Φ → ?) as a linear combination of
color-prescribed homomorphisms. In particular, the coefficient of #cp-Hom(H → ?) is
(±1) · χ̂(Φ, H) and by Lemma 9 we have that this number is non-zero whenever H is p-edge-
transitive and Φ(H[∅]) 6= Φ(H). Hence we can use the algorithm from Lemma 14 to compute
#cp-Hom(H → G) in the desired running time. J

5 Non-trivial monotone properties on bipartite graphs

In the last part of the paper, we apply the algebraic approach which was laid out in the
preceding sections to bipartite graph properties. This will allow us to prove our main result.
To this end, we say that a set K ⊆ N is dense if there exists a constant c such that for
every k′ ∈ N there exists k ∈ K such that k′ ≤ k ≤ ck′. Furthermore, we write ISk for
the graph with k isolated vertices. The following theorem is obtained by invoking the
reduction sequence (3) to complete bipartite graphs Kt,t for prime powers t = pk, which are
p-edge-transitive (see Section 3). Due to the space constraints, the details, as well as the
case of modular counting, are deferred to the full version of the paper.

I Theorem 18 (Theorem 2 restated). Let Φ be a computable graph property and let K be
the set of all prime powers t such that Φ(IS2t) 6= Φ(Kt,t). If K is infinite then #IndSub(Φ)
is #W[1] hard. If additionally K is dense then it cannot be solved in time f(k) · no(k) for
any computable function f unless ETH fails. This holds true even if the input graphs to
#IndSub(Φ) are restricted to be bipartite.

Note that, in case Φ or its complement is edge-monotone, we only have to find infinitely
many prime powers t for which Φ is neither true nor false on the set of all edge-subgraphs
of Kt,t, which is the case for all sensible, non-trivial properties that do not rely on the number
of vertices in some way. If Φ (or its complement) is monotone, that is, not only closed under
the removal of edges, but also under the removal of vertices, then such artificial properties
do not exist and we can state the result more clearly as follows.

I Corollary 19 (Theorem 4 restated). Let Φ be a computable monotone graph property such
that Φ and ¬Φ hold on infinitely many bipartite graphs. Then #IndSub(Φ) is #W[1]-hard
and cannot be solved in time f(k) · no(k) for any computable function f unless ETH fails.
This holds true even if the input graphs to #IndSub(Φ) are restricted to be bipartite.

Proof. If Φ is monotone and Φ and ¬Φ hold on infinitely many bipartite graphs, then
Φ(ISk) = 1 for all positive integers k and Φ(Kt,t) = 0 for all but finitely many t. Hence we
can apply Theorem 18 and, in particular, the set K will contain all but finitely many prime
powers and is therefore dense. J

J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz 26:13

Conclusion

We have established hardness for #IndSub(Φ) for any (edge-)monotone property Φ that is
non-trivial on bipartite graphs. In particular, this holds true even if we count modulo a prime
and restrict the input graphs to be bipartite as well. Hence, we did not only significantly
extend the set of graph properties Φ for which the (parameterized) complexity of #IndSub(Φ)
is understood, but we also generalized many of the prior results, such as [11], [17] and parts
of [20] to the cases of bipartite input graphs and modular counting.

As a next step towards a proof of Conjecture 1, we suggest the study of properties that
are defined by forbidden induced subgraphs, for which the complexity of #IndSub(Φ) is
only partially resolved at this point.

References
1 Shreeram S. Abhyankar. Lectures on algebra. Vol. I. World Scientific Publishing Co. Pte. Ltd.,

Hackensack, NJ, 2006. doi:10.1142/9789812773449.
2 Hubie Chen and Stefan Mengel. Counting Answers to Existential Positive Queries: A Com-

plexity Classification. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 315–326, 2016. doi:10.1145/2902251.2902279.

3 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

4 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/j.jcss.2006.04.007.

5 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223,
2017. doi:10.1145/3055399.3055502.

6 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.08.008.

7 Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:449–467,
1965. doi:10.4153/CJM-1965-045-4.

8 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
J. Comput., 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

9 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

10 Mark Jerrum and Kitty Meeks. Some Hard Families of Parameterized Counting Problems.
TOCT, 7(3):11:1–11:18, 2015. doi:10.1145/2786017.

11 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected subgraphs
and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015. doi:10.1016/j.jcss.2014.11.
015.

12 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Combinatorica, 37(5):965–990, 2017. doi:10.1007/s00493-016-3338-5.

13 Jeff Kahn, Michael E. Saks, and Dean Sturtevant. A topological approach to evasiveness.
Combinatorica, 4(4):297–306, 1984. doi:10.1007/BF02579140.

14 Serge Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2005. doi:
10.1007/978-1-4613-0041-0.

15 László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. Amer-
ican Mathematical Society, 2012. URL: http://www.ams.org/bookstore-getitem/item=
COLL-60.

MFCS 2019

https://doi.org/10.1142/9789812773449
https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/2786017
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1007/BF02579140
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
http://www.ams.org/bookstore-getitem/item=COLL-60
http://www.ams.org/bookstore-getitem/item=COLL-60

26:14 Counting Induced Subgraphs: An Algebraic Approach to #W[1]-hardness

16 Catherine McCartin. Parameterized counting problems. Ann. Pure Appl. Logic, 138(1-3):147–
182, 2006. doi:10.1016/j.apal.2005.06.010.

17 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170–194, 2016. doi:10.1016/j.dam.2015.06.
019.

18 Carl A. Miller. Evasiveness of Graph Properties and Topological Fixed-Point Theorems.
Foundations and Trends in Theoretical Computer Science, 7(4):337–415, 2013. doi:10.1561/
0400000055.

19 Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency matrices.
Theoret. Comput. Sci., 3(3):371–384, 1976/77. doi:10.1016/0304-3975(76)90053-0.

20 Marc Roth and Johannes Schmitt. Counting Induced Subgraphs: A Topological Approach to
#W[1]-hardness. In 13th International Symposium on Parameterized and Exact Computation,
IPEC 2018, August 20-24, 2018, Helsinki, Finland, pages 24:1–24:14, 2018. doi:10.4230/
LIPIcs.IPEC.2018.24.

21 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

22 Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci.,
8:189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

https://doi.org/10.1016/j.apal.2005.06.010
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1561/0400000055
https://doi.org/10.1561/0400000055
https://doi.org/10.1016/0304-3975(76)90053-0
https://doi.org/10.4230/LIPIcs.IPEC.2018.24
https://doi.org/10.4230/LIPIcs.IPEC.2018.24
https://doi.org/10.1137/0220053
https://doi.org/10.1016/0304-3975(79)90044-6

Packing Arc-Disjoint Cycles in Tournaments
Stéphane Bessy
Université de Montpellier, LIRMM, CNRS, Montpellier, France
bessy@lirmm.fr

Marin Bougeret
Université de Montpellier, LIRMM, CNRS, Montpellier, France
bougeret@lirmm.fr

R. Krithika
Indian Institute of Technology Palakkad, India
krithika@iitpkd.ac.in

Abhishek Sahu
The Institute of Mathematical Sciences, HBNI, Chennai, India
asahu@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Bergen, Norway
saket@imsc.res.in

Jocelyn Thiebaut
Université de Montpellier, LIRMM, CNRS, Montpellier, France
thiebaut@lirmm.fr

Meirav Zehavi
Ben-Gurion University, Beersheba, Israel
meiravze@bgu.ac.il

Abstract
A tournament is a directed graph in which there is a single arc between every pair of distinct
vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity
of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of
size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these
problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in
Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the
linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of
arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results
seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show
that the problem of determining if a tournament has a cycle packing and a feedback arc set of the
same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they
can be solved in 2O(k log k)nO(1) time and 2O(k)nO(1) time respectively. Moreover, they both admit
a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2o(

√
k)nO(1)

time under the Exponential-Time Hypothesis.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of com-
putation → Complexity classes; Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Design and analysis of algorithms; Mathematics of computing
→ Graph algorithms

Keywords and phrases arc-disjoint cycle packing, tournaments, parameterized algorithms, kerneliz-
ation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.27

Related Version This paper is based on the two independent manuscripts arXiv:abs/1802.06669
and arXiv:abs/1802.07090.

© Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh, Jocelyn Thiebaut,
and Meirav Zehavi;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bessy@lirmm.fr
mailto:bougeret@lirmm.fr
mailto:krithika@iitpkd.ac.in
mailto:asahu@imsc.res.in
mailto:saket@imsc.res.in
mailto:thiebaut@lirmm.fr
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.MFCS.2019.27
http://arxiv.org/abs/1802.06669
http://arxiv.org/abs/1802.07090
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Packing Arc-Disjoint Cycles in Tournaments

1 Introduction

Given a (directed or undirected) graph G and a positive integer k, the Disjoint Cycle
Packing problem is to determine whether G has k (vertex or arc/edge) disjoint (directed
or undirected) cycles. Packing disjoint cycles is a fundamental problem in Graph Theory
and Algorithm Design with applications in several areas. Since the publication of the classic
Erdős-Pósa theorem in 1965 [21], this problem has received significant scientific attention in
various algorithmic realms. In particular, Vertex-Disjoint Cycle Packing in undirected
graphs is one of the first problems studied in the framework of parameterized complexity.
In this framework, each problem instance is associated with a non-negative integer k called
parameter, and a problem is said to be fixed-parameter tractable (FPT) if it can be solved in
f(k)nO(1) time for some computable function f , where n is the input size. For convenience,
the running time f(k)nO(1) is denoted as O?(f(k)). A kernelization algorithm is a polynomial-
time algorithm that transforms an arbitrary instance of the problem to an equivalent instance
of the same problem whose size is bounded by some computable function g of the parameter
of the original instance. The resulting instance is called a kernel and if g is a polynomial
function, then it is called a polynomial kernel. A decidable parameterized problem is FPT if
and only if it has a kernel (not necessarily of polynomial size). Kernelization typically involves
applying a set reduction rules to the given instance to produce another instance. A reduction
rule is said to be safe if it is sound and complete, i.e., applying it to the given instance
produces an equivalent instance. In order to classify parameterized problems as being FPT
or not, the W-hierarchy is defined: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. It is believed that the
subset relations in this sequence are all strict, and a parameterized problem that is hard for
some complexity class above FPT in this hierarchy is said to be fixed-parameter intractable.
Further details on parameterized algorithms we refer to recent books [16, 19, 24, 26].

Vertex-Disjoint Cycle Packing in undirected graphs is FPT with respect to the
solution size k [10, 36] but has no polynomial kernel unless NP ⊆ coNP/poly [11]. In contrast,
Edge-Disjoint Cycle Packing in undirected graphs admits a kernel with O(k log k)
vertices (and is therefore FPT) [11]. On directed graphs, these problems have many practical
applications (for example in biology [12, 18]) and they have been extensively studied [7, 34].
It turns out that Vertex-Disjoint Cycle Packing and Arc-Disjoint Cycle Packing
are equivalent and are W[1]-hard [33, 42]. Therefore, studying these problems on a subclass
of directed graphs is a natural direction of research. Tournaments form a mathematically
rich subclass of directed graphs with interesting structural and algorithmic properties [6, 38].
Tournaments have several applications in modeling round-robin tournaments and in the
study of voting systems and social choice theory [29, 31].

Feedback Vertex Set and Feedback Arc Set are two well-explored algorithmic
problems on tournaments. A feedback vertex (arc) set is a set of vertices (arcs) whose deletion
results in an acyclic graph. Given a tournament, MinFAST and MinFVST are the problems
of obtaining a feedback arc set and feedback vertex set of minimum size, respectively. We refer
to the corresponding decision version of the problems as FAST and FVST. The optimization
problems MinFAST and MinFVST have numerous practical applications in the areas of
voting theory [17], machine learning [15], search engine ranking [20] and have been intensively
studied in various algorithmic areas. MinFAST and MinFVST are NP-hard [3, 13] while
FAST and FVST are FPT when parameterized by the solution size k [4, 23, 25, 31]. Further,
FAST has a kernel with O(k) vertices and FVST has a kernel with O(k1.5) vertices [9, 35].
Surprisingly, the duals (in the linear programming sense) of MinFAST and MinFVST
have not been considered in the literature until recently. Any tournament that has a cycle

S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi 27:3

also has a triangle [7]. Therefore, if a tournament has k vertex-disjoint cycles, then it also
has k vertex-disjoint triangles. Thus, Vertex-Disjoint Cycle Packing in tournaments
is just packing vertex-disjoint triangles. This problem is NP-hard [8]. A straightforward
application of the colour coding technique [5] shows that this problem is FPT and a kernel
with O(k2) vertices is an immediate consequence of the quadratic element kernel known for
3-Set Packing [1]. Recently, a kernel with O(k1.5) vertices was shown for this problem
using interesting variants and generalizations of the popular expansion lemma [35].

A tournament that has k arc-disjoint cycles need not necessarily have k arc-disjoint
triangles. This observation hints that packing arc-disjoint cycles could be significantly
harder than packing vertex-disjoint cycles. It also hints that packing arc-disjoint cycles and
arc-disjoint triangles in tournaments could be problems of different complexities. This is the
starting point of our study. Subsequently, we refer to a set of pairwise arc-disjoint cycles
as a cycle packing and a set of pairwise arc-disjoint triangles as a triangle packing. Given
a tournament, MaxACT and MaxATT are the problems of obtaining a maximum set of
arc-disjoint cycles and triangles, respectively. We refer to the corresponding decision version
of the problems as ACT and ATT. Formally, given a tournament T and a positive integer k,
ACT (resp. ATT) is the task of determining if T has k arc-disjoint cycles (resp. triangles).
From a structural point of view, the problem of partitioning the arc set of a directed graph
into a collection of triangles has been studied for regular tournaments [44], almost regular
tournaments [2] and complete digraphs [28]. In this work, we study the classical complexity
of MaxACT and MaxATT and the parameterized complexity of ACT and ATT with
respect to the solution size (i.e. the number k of cycles/triangles) as parameter.

Our main contributions.
We prove that MaxATT and MaxACT are NP-hard (Theorems 5 and 7). As a
consequence, we also show that ACT and ATT do not admit algorithms with O?(2o(

√
k))

running time under the Exponential-Time Hypothesis (Theorem 10). Moreover, deciding
if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete
(Theorem 9).
A tournament T has k arc-disjoint cycles if and only if T has k arc-disjoint cycles each of
length at most 2k + 1 (Theorem 11).
ACT can be solved in O?(2O(k log k)) time (Theorem 17) and admits a kernel with O(k)
vertices (Theorem 16).
ATT can be solved inO?(2O(k)) time and admits a kernel withO(k) vertices (Theorem 18).

2 Preliminaries

We denote the set {1, 2, . . . , n} of consecutive integers from 1 to n by [n].

Directed Graphs. A directed graph D (or digraph) is a pair consisting of a finite set V (D) of
vertices of D and a set A(D) of arcs of D, which are ordered pairs of elements of V (D). For a
vertex v ∈ V (D), its out-neighbourhood, denoted byN+(v), is the set {u ∈ V (D) : vu ∈ A(D)}
and its out-degree, denoted by d+(x), is |N+(v)|. For a set F of arcs, V (F) denotes the
union of the sets of endpoints of arcs in F . Given a digraph D and a subset X of vertices,
we denote by D[X] the digraph induced by the vertices in X. Moreover, we denote by D \X
the digraph D[V (D) \X] and say that this digraph is obtained by deleting X from D.

MFCS 2019

27:4 Packing Arc-Disjoint Cycles in Tournaments

Paths and Cycles. A path P in a digraph D is a sequence (v1, . . . , vk) of distinct vertices
such that for each i ∈ [k − 1], vivi+1 ∈ A(D). The set {v1, . . . , vk} is denoted by V (P) and
the set {vivi+1 : i ∈ [k − 1]} is denoted by A(P). A cycle C in D is a sequence (v1, . . . , vk)
of distinct vertices such that (v1, . . . , vk) is a path and vkv1 ∈ A(D). The length of a path
or cycle X is the number of vertices in it. A cycle on three vertices is called a triangle. A
digraph is called a directed acyclic graph if it has no cycles. A feedback arc set (FAS) is
a set of arcs whose deletion results in an acyclic graph. For a digraph D, let minfas(D)
denote the size of a minimum FAS of D. Any directed acyclic graph D has an ordering
σ(D) = (v1, . . . , vn) called topological ordering of its vertices such that for each vivj ∈ A(D),
i < j holds. Given an ordering σ and two vertices u and v, we write u <σ v if u is before v
in σ.

Tournaments. A tournament T is a digraph in which for every pair u, v of distinct vertices
either uv ∈ A(T) or vu ∈ A(T) but not both. In other words, a tournament T on n vertices
is an orientation of the complete graph Kn. A tournament T can alternatively be defined by
an ordering σ(T) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T) (which will
be denoted A(T) as the considered ordering is not ambiguous), where each arc a ∈ A(T) is of
the form vi1vi2 with i2 < i1. Indeed, given σ(T) and A(T), we define V (T) = {vi : i ∈ [n]}
and A(T) = A(T) ∪ A(T) where A(T) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T)} is the set
of forward arcs of T in the given ordering σ(T). The pair (σ(T),A(T)) is called a linear
representation of the tournament T . A tournament is called transitive if it is a directed acyclic
graph and a transitive tournament has a unique topological ordering. Given two tournaments
T1, T2 defined by σ(Tl) and A(Tl) with l ∈ {1, 2}, we denote by T = T1T2 the tournament
called the concatenation of T1 and T2, where V (T) = V (T2) ∪ V (T2), σ(T) = σ(T1)σ(T2) is
the concatenation of the two sequences, and A(T) = A(T1) ∪A(T2).

3 NP-hardness of MaxACT and MaxATT

This section contains our main results. We prove the NP-hardness of MaxATT using a
reduction from 3-SAT(3). Here, 3-SAT(3) denotes the specific case of 3-SAT where each
clause has at most three literals, and each literal appears at most two times positively and
exactly one time negatively. In the following, denote by F the input formula of an instance
of 3-SAT(3). Let n be the number of its variables and m be the number of its clauses. We
may suppose that n ≡ 3 (mod 6). If it is not the case, we can add up to 5 unused variables
x with the trivial clause x ∨ x. This operation guarantees us we keep the hypotheses of
3-SAT(3). We can also assume that m+ 1 ≡ 3 (mod 6). Indeed, if it not the case, we add
6 new unused variables x1, . . . , x6 with the 6 trivial clauses xi ∨ xi, and the clause x1 ∨ x2.
This padding process keep both the 3-SAT(3) structure and n ≡ 3 (mod 6). From F we
construct a tournament T which is the concatenation of two tournaments Tv and Tc defined
below.

In the following, let f be the reduction that maps an instance F of 3-SAT(3) to a
tournament T we describe now.

The variable tournament Tv. For each variable vi of F , we define a tournament Vi of
order 6 as follows: σi(Vi) = (ri, x̄i, x1

i , si, x
2
i , ti) and Aσ(Vi) = {siri, tix1

i }. Figure 1 is a
representation of one variable gadget Vi. One can notice that the minimum FAS of Vi
corresponds exactly to the set of its backward arcs. We now define V (Tv) be the union
of the vertex sets of the Vis and we equip Tv with the order σ1σ2 . . . σn. Thus, Tv has 6n

S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi 27:5

ri x̄i x1
i

si x2
i ti

Figure 1 The variable gadget Vi. Only backward arcs are depicted, so all the remaining arcs are
forward arcs.

vertices. We also add the following backward arcs to Tv. Since n ≡ 3 (mod 6), there is an
edge-disjoint (undirected) triangle packing of Kn covering all its edges with triangles that
can be computed in polynomial time [32]. Let {u1, . . . , un} be an arbitrary enumeration of
the vertices of Kn. Using a perfect triangle packing ∆Kn of Kn, we create a tournament
TKn

such that σ′(TKn
) = (u1, . . . , un) and Aσ′(TKn

) = {ukui : (ui, uj , uk) is a triangle of
∆Kn

with i < j < k}. Now we set Aσ(Tv) = {xy : x ∈ V (Vi), y ∈ V (Vj) for i 6= j and
ujui ∈ Aσ′(TKn

)}∪
⋃n
i=1Aσ(Vi). In some way, we “blew up” every vertex ui of TKn

into our
variable gadget Vi.

The clause tournament Tc. For each of them clauses cj of F , we define a tournament Cj of
order 3 as follows: σ(Cj) = (c1j , c2j , c3j) and Aσ(Cj) = ∅. In addition, we have a (m+1)th tour-
nament denoted by Cm+1 and defined by σ(Cm+1) = (c1m+1, c

2
m+1, c

3
m+1) and Aσ(Cm+1) =

{c3m+1c
1
m+1}, that is Cm+1 is a triangle. We call this triangle the dummy triangle , and its ver-

tices the dummy vertices. We now define Tc such that σ(Tc) is the concatenation of each order-
ing σ(Cj) in the natural order, that is σ(Tc) = (c11, c21, c31, . . . , c1m, c2m, c3m, c1m+1, c

2
m+1, c

3
m+1).

So Tc has 3(m+ 1) vertices. Since m+ 1 ≡ 3 (mod 6), we use the same trick as above to
add arcs to Aσ(Tc) coming from a perfect packing of undirected triangles of Km+1. Once
again, we “blew up” every vertex uj of TKm+1 into our clause gadget Cj .

The tournament T . To define our final tournament T let us begin with its ordering σ
defined by σ(T) = σ(Tv)σ(Tc). Then we construct Avc(T) the backward arcs between Tc
and Tv. For any j ∈ [m], if the clause cj in F has three literals, that is cj = `1 ∨ `2 ∨ l3, then
we add to Avc(T) the three backward arcs c3jzu where u ∈ [3] and such that zu = x̄iu when
`u = v̄iu , and zu ∈ {x1

iu
, x2
iu
} when `u = viu in such a way that for any i ∈ [n], there exists a

unique arc a ∈ Avc(T) with h(a) = x1
i . Informally, in the previous definition, if x1

iu
is already

“used” by another clause, we chose zu = x2
iu
. Such an orientation will always be possible since

each variable occurs at most two times positively and once negatively in F . If the clause cj
in F has only two literals, that is cj = `1 ∨ `2, then we add in Avc(T) the two backward arcs
c2jzu where u ∈ [2] and such that zu = x̄iu when `u = v̄iu and zu ∈ {x1

iu
, x2
iu
} when `u = viu

in such a way that for any i ∈ [n], there exists a unique arc a ∈ Avc(T) with h(a) = x1
i .

Finally, we add in Avc(T) the backward arcs cum+1x̄i for any u ∈ [3] and i ∈ [n]. These arcs
are called dummy arcs. We set Aσ(T) = Aσ(Tv) ∪Aσ(Tc) ∪Avc(T). Notice that each x̄i has
exactly four arcs a ∈ Aσ(T) such that h(a) = x̄i and t(a) is a vertex of Tc. To finish the
construction, notice also that T has 6n+3(m+1) vertices and can be computed in polynomial
time. Figure 2 is an example of the tournament obtained from a trivial 3-SAT(3) instance.

Now, we move on to proving the correctness of the reduction. First of all, observe that in
each variable gadget Vi, there are only four triangles: let δ1

i , δ2
i , δ3

i and δ4
i be the triangles

(ri, x̄i, si), (ri, x1
i , si), (x1

i , si, ti) and (x1
i , x

2
i , ti), respectively. Moreover, notice that there are

only three maximal triangle packings of Vi which are {δ1
i , δ

3
i }, {δ1

i , δ
4
i } and {δ2

i , δ
4
i }. We call

these packings ∆>i , ∆>′

i and ∆⊥i , respectively.

MFCS 2019

27:6 Packing Arc-Disjoint Cycles in Tournaments

r1 x̄1 x1
1
s1 x2

1 t1 r2 x̄2 x1
2
s2 x2

2 t2 r3 x̄3 x1
3
s3 x2

3 t3 c11 c21 c31 c12 c22 c32

c13 c23 c33

Figure 2 Example of reduction obtained when F = {c1, c2} where c1 = v̄1 ∨ v2 ∨ v̄3 and
c2 = v1 ∨ v̄2 ∨ v3. Forward arcs are not depicted. In addition to the depicted backward arcs, we
have the 36 backward arcs from V3 to V1, and the 9 backward arcs from C3 to C1.

Given a triangle packing ∆ of T and a subset X of vertices, we define for any x ∈ X
the ∆-local out-degree of the vertex x, denoted d+

X\∆(x), as the remaining out-degree
of x in T [X] when we remove the arcs of the triangles of ∆. More formally, we set:
d+
X\∆(x) = |{xa : a ∈ X,xa ∈ A[X], xa /∈ A(∆)}|.

I Remark 1. Given a variable gadget Vi, we have:
(i) d+

Vi\∆>
i

(x1
i) = d+

Vi\∆>
i

(x2
i) = 1 and d+

Vi\∆>
i

(x̄i) = 3,
(ii) d+

Vi\∆>′
i

(x1
i) = 1, d+

Vi\∆>′
i

(x2
i) = 0 and d+

Vi\∆>′
i

(x̄i) = 3,
(iii) d+

Vi\∆⊥
i

(x1
i) = d+

Vi\∆⊥
i

(x2
i) = 0 and d+

Vi\∆⊥
i

(x̄i) = 4,
(iv) none of x̄ix1

i , x̄ix2
i , x̄iti belongs to ∆>i or ∆⊥i .

Informally, we want to set the variable xi to true (resp. false) when one of the locally-
optimal ∆>′

i or ∆>i (resp. ∆⊥i) is taken in the variable gadget Vi in the global solution. Now
given a triangle packing ∆ of T , we partition ∆ into the following sets:

∆V,V,V = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Vk with i < j < k},
∆V,V,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Vj , c ∈ Ck with i < j},
∆V,C,C = {(a, b, c) ∈ ∆ : a ∈ Vi, b ∈ Cj , c ∈ Ck with j < k},
∆C,C,C = {(a, b, c) ∈ ∆ : a ∈ Ci, b ∈ Cj , c ∈ Ck with i < j < k},
∆2V,C = {(a, b, c) ∈ ∆ : a, b ∈ Vi, c ∈ Cj},
∆V,2C = {(a, b, c) ∈ ∆ : a ∈ Vi, b, c ∈ Cj},
∆3V = {(a, b, c) ∈ ∆ : a, b, c ∈ Vi},
∆3C = {(a, b, c) ∈ ∆ : a, b, c ∈ Ci}.

Notice that in T , there is no triangle with two vertices in a variable gadget Vi and its
third vertex in a variable gadget Vj with i 6= j since all the arcs between two variable gadgets
are oriented in the same direction. We have the same observation for clauses.
In the two next lemmas, we prove some properties concerning the solution ∆, which imply
the result of Lemma 4.

I Lemma 2. There exists a triangle packing ∆v (resp. ∆c) which uses exactly the arcs between
distinct variable gadgets (resp. clause gadgets). Therefore, we have |∆V,V,V | ≤ 6n(n− 1) and
|∆C,C,C | ≤ 3m(m+ 1)/2 and these bounds are tight.

Proof. First recall that the tournament Tv is constructed from a tournament TKn
which

admits a perfect packing of n(n − 1)/6 triangles. Then we replaced each vertex ui in
TKn

by the variable gadget Vi and kept all the arcs between two variable gadgets Vi

S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi 27:7

and Vj in the same orientation as between ui and uj . Let uiujuk be a triangle of the
perfect packing of TKn

. We temporally relabel the vertices of Vi, Vj and Vk respectively by
{fi, i ∈ [6]}, {gi, i ∈ [6]} and {hi, i ∈ [6]} and consider the tripartite tournament K6,6,6 given
by V (K6,6,6) = {fi, gi, hi, i ∈ [6]} and A(K6,6,6) = {figj , gihj , hifj : i, j ∈ [6]}. Then it is
easy to check that {(fi, gj , hi+j (mod 6)) : i, j ∈ [6]} is a perfect triangle packing of K6,6,6.
Since every triangle of TKn becomes a K6,6,6 in Tv, we can find a triangle packing ∆v which
use all the arcs between disjoint variable gadgets. We use the same reasoning to prove that
there exists a triangle packing ∆c which use all the arcs available in Tc between two distinct
clause gadget. J

I Lemma 3. For any triangle packing ∆ of the tournament T , we have:
(i) |∆V,V,V |+ |∆C,C,C | ≤ 6n(n− 1) + 3m(m+ 1)/2,
(ii) |∆2V,C |+ |∆V,2C |+ |∆V,C,C |+ |∆V,V,C | ≤ |Avc(T)|,
(iii) |∆3V | ≤ 2n,
(iv) |∆3C | ≤ 1.
Therefore in total we have |∆| ≤ 6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T)|+ 1.

Proof. Let ∆ be a triangle packing of T . Recall that we have: |∆| = |∆V,V,V |+ |∆V,V,C |+
|∆V,C,C |+ |∆C,C,C |+ |∆2V,C |+ |∆V,2C |+ |∆3V |+ |∆3C |. First, inequality (i) comes from
Lemma 2. Then, we have |∆2V,C | + |∆V,2C | + |∆V,C,C | + |∆V,V,C | ≤ |Avc(T)| since every
triangle of these sets consumes one backward arc from Tc to Tv. We have |∆3V | ≤ 2n since
we have at most 2 disjoint triangles in each variable gadget. Finally we also have |∆3C | ≤ 1
since the dummy triangle is the only triangle lying in a clause gadget. J

I Lemma 4. F is satisfiable if and only if there exists a triangle packing ∆ of size
6n(n− 1) + 3m(m+ 1)/2 + 2n+ |Avc(T)|+ 1 in the tournament T .

As 3-SAT(3) is NP-hard [39, 43], this implies the following theorem.

I Theorem 5. MaxATT is NP-hard.

As mentioned in the introduction, packing arc-disjoint cycles is not necessarily equivalent
to packing arc-disjoint triangles. Thus, we need to establish the following lemma to transfer
the previous NP-hardness result to MaxACT.

I Lemma 6. Given a 3-SAT(3) instance F , and T the tournament constructed from F

with the reduction f , we have a triangle packing ∆ of T of size 6n(n− 1) + 3m(m+ 1)/2 +
2n+ |Avc(T)|+ 1 if and only if there is a cycle packing O of the same size.

The previous lemma and Theorem 5 imply the following theorem.

I Theorem 7. MaxACT is NP-hard.

Let us now define two special cases Tight-ATT (resp. Tight-ACT) where, given a
tournament T and a linear ordering σ with k backward arcs, where k = minfas(T), the goal
is to decide if there is a triangle (resp. cycle) packing of size k. We call these special cases
the “tight” versions of the classical packing problems because as the input admits an FAS
of size k, any triangle (or cycle) packing has size at most k. We have the following result,
directly implying the NP-hardness of Tight-ATT and Tight-ACT.

I Lemma 8. Let T be a tournament constructed by the reduction f , and k be the threshold
value defined in Lemma 4. Then, we have k = minfas(T) and we can construct (in polynomial
time) an ordering of T with k backward arcs.

MFCS 2019

27:8 Packing Arc-Disjoint Cycles in Tournaments

I Theorem 9. Tight-ATT and Tight-ACT are NP-hard.

Finally, the size s of the required packing in Lemma 4 satisfies s = O((n+m)2). Under
the Exponential-time Hypothesis, the problem 3-SAT cannot be solved in 2o(n+m) [16, 30].
Then, using the linear reduction from 3-SAT to 3-SAT(3) [43], we also get the following
result.

I Theorem 10. Under the Exponential-time Hypothesis, ATT and ACT cannot be solved
in O?(2o(

√
k)) time.

In the framework of parameterizing above guaranteed values [37], the above results imply
that ACT parameterized below the guaranteed value of the size of a minimal feedback arc
set is fixed-parameter intractable.

4 Parameterized Complexity of ACT

The classical Erdős-Pósa theorem for cycles in undirected graphs states that for each non-
negative integer k, every undirected graph either contains k vertex-disjoint cycles or has a
feedback vertex set consisting of f(k) = O(k log k) vertices [21]. An interesting consequence
of this theorem is that it leads to an FPT algorithm for Vertex-Disjoint Cycle Packing
(see [36] for more details).

Analogous to these results, we prove an Erdős-Pósa type theorem for tournaments and
show that it leads to an O?(2O(k log k)) time algorithm and a linear vertex kernel for ACT.
First we obtain the following result.

I Theorem 11. Let k and r be positive integers such that r ≤ k. A tournament T contains
a set of r arc-disjoint cycles if and only if T contains a set of r arc-disjoint cycles each of
length at most 2k + 1.

Proof. The reverse direction of the claim holds trivially. Let us now prove the forward
direction. Let C be a set of r arc-disjoint cycles in T that minimizes

∑
C∈C |C|. If every

cycle in C is a triangle, then the claim trivially holds. Otherwise, let C be a longest cycle in
C and let ` denote its length. Let vi, vj be a pair of non-consecutive vertices in C. Then,
either vivj ∈ A(T) or vjvi ∈ A(T). In any case, the arc e between vi and vj along with A(C)
forms a cycle C ′ of length less than ` with A(C ′) \ {e} ⊂ A(C). By our choice of C, this
implies that e is an arc in some other cycle Ĉ ∈ C. This property is true for the arc between
any pair of non-consecutive vertices in C. Therefore, we have

(
`
2
)
− ` ≤ `(k − 1) leading to

` ≤ 2k + 1. J

This result essentially shows that it suffices to determine the existence of k arc-disjoint
cycles in T each of length at most 2k + 1 in order to determine if (T, k) is an yes-instance
of ACT. This immediately leads to a quadratic Erdős-Pósa bound. That is, for every
non-negative integer k, every tournament T either contains k arc-disjoint cycles or has an
FAS of size O(k2). Next, we strengthen this result to arrive at a linear bound.

We will use the following lemma known from [14] in order to prove Theorem 131. For a
digraph D, let Λ(D) denote the number of non-adjacent pairs of vertices in D. That is, Λ(D)
is the number of pairs u, v of vertices of D such that neither uv ∈ A(D) nor vu ∈ A(D).

1 The authors would like to thank F. Havet for pointing out that Lemma 12 was a consequence of a result
by Chudnovsky et al. [14], as well for an improvement of the constant in Theorem 13.

S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi 27:9

I Lemma 12. [14] Let D be a triangle-free digraph in which for every pair u, v of distinct
vertices, at most one of uv or vu is in A(D). Then, we can compute an FAS of size at most
Λ(D) in polynomial time.

I Theorem 13. For every non-negative integer k, every tournament T either contains k
arc-disjoint triangles or has an FAS of size at most 5(k−1) that can be obtained in polynomial
time.

Proof. Let C be a maximal set of arc-disjoint triangles in T (that can be obtained greedily
in polynomial time). If |C| ≥ k, then we have the required set of triangles. Otherwise, let
D denote the digraph obtained from T by deleting the arcs that are in some triangle in
C. Clearly, D has no triangle and Λ(D) ≤ 3(k − 1). Let F be an FAS of D obtained in
polynomial time using Lemma 12. Then, we have |F | ≤ 3(k−1). Next, consider a topological
ordering σ of D − F . Each triangle of C contains at most 2 arcs which are backward in this
ordering. If we denote by F ′ the set of all the arcs of the triangles of C which are backward
in σ, then we have |F ′| ≤ 2(k− 1) and (D−F)−F ′ is acyclic. Thus F ∗ = F ∪F ′ is an FAS
of T satisfying |F ∗| ≤ 5(k − 1). J

Next, we show how to obtain a linear kernel for ACT. This kernel is inspired by the
linear kernelization described in [9] for FAST and uses Theorem 13. Let T be a tournament
on n vertices. First, we apply the following reduction rule.

I Reduction Rule 4.1. If a vertex v is in no cycle, then delete v from T .

This rule is clearly safe as our goal is to find k cycles and v cannot be in any of them.
To describe our next rule, we need to state a result by Bessy et al. [9]. An interval is a
consecutive set of vertices in a linear representation (σ(T),A(T)) of a tournament T .

I Lemma 14 ([9]). Let T = (σ(T),A(T)) be a tournament on which Reduction Rule 4.1 is
not applicable. If |V (T)| ≥ 2|A(T)|+ 1, then there exists a partition J of V (T) into intervals
(that can be computed in polynomial time) such that there are |A(T) ∩ E| > 0 arc-disjoint
cycles using only arcs in E where E denotes the set of arcs in T with endpoints in different
intervals.

Our reduction rule that is based on this lemma is as follows.

I Reduction Rule 4.2. Let T = (σ(T),A(T)) be a tournament on which Reduction Rule
4.1 is not applicable. Let J be a partition of V (T) into intervals satisfying the properties
specified in Lemma 14. Reverse all arcs in A(T) ∩ E and decrease k by |A(T) ∩ E| where E
denotes the set of arcs in T with endpoints in different intervals.

I Lemma 15. Reduction Rule 4.2 is safe.

Proof. Let T ′ be the tournament obtained from T by reversing all arcs in A(T)∩E. Suppose
T ′ has k − |A(T) ∩ E| arc-disjoint cycles. Then, it is guaranteed that each such cycle is
completely contained in an interval. This is due to the fact that T ′ has no backward arc
with endpoints in different intervals. Indeed, if a cycle in T ′ uses a forward (backward) arc
with endpoints in different intervals, then it also uses a back (forward) arc with endpoints in
different intervals. It follows that for each arc uv ∈ E, neither uv nor vu is used in these
k − |A(T) ∩ E| cycles. Hence, these k − |A(T) ∩ E| cycles in T ′ are also cycles in T . Then,
we can add a set of |A(T) ∩ E| cycles obtained from the second property of Lemma 14 to
these k − |A(T) ∩ E| cycles to get k cycles in T . Conversely, consider a set of k cycles in

MFCS 2019

27:10 Packing Arc-Disjoint Cycles in Tournaments

T . As argued earlier, we know that the number of cycles that have an arc that is in E is at
most |A(T) ∩E|. The remaining cycles (at least k − |A(T) ∩E| of them) do not contain any
arc that is in E, in particular, they do not contain any arc from A(T) ∩ E. Therefore, these
cycles are also cycles in T ′. J

Thus, we have the following result.

I Theorem 16. ACT admits a kernel with O(k) vertices.

Proof. Let (T, k) denote the instance obtained from the input instance by applying Reduction
Rule 4.1 exhaustively. From Lemma 13, we know that either T has k arc-disjoint triangles or
has an FAS of size at most 5(k − 1) that can be obtained in polynomial time. In the first
case, we return a trivial yes-instance of constant size as the kernel. In the second case, let F
be the FAS of size at most 5(k − 1) of T . Let (σ(T),A(T)) be the linear representation of T
where σ(T) is a topological ordering of the vertices of the directed acyclic graph T − F . As
V (T − F) = V (T), |A(T)| ≤ 5(k − 1). If |V (T)| ≥ 10k − 9, then from Lemma 14, there is a
partition of V (T) into intervals with the specified properties. Therefore, Reduction Rule 4.2
is applicable (and the parameter drops by at least 1). When we obtain an instance where
neither of the Reduction Rules 4.1 and 4.2 is applicable, it follows that the tournament in
that instance has at most 10k vertices. J

Finally, we show that ACT can be solved in O?(2O(k log k)) time. The idea is to reduce
the problem to the following Arc-Disjoint Paths problem in directed acyclic graphs:
given a digraph D on n vertices and k ordered pairs (s1, t1), . . . , (sk, tk) of vertices of D, do
there exist arc-disjoint paths P1, . . . , Pk in D such that Pi is a path from si to ti for each
i ∈ [k]? On directed acyclic graphs, Arc-Disjoint Paths is known to be NP-complete [22],
W[1]-hard [42] with respect to k as parameter and solvable in nO(k) time [27]. Despite
its fixed-parameter intractability, we will show that we can use the nO(k) algorithm and
Theorems 13 and 16 to describe an FPT algorithm for ACT.

I Theorem 17. ACT can be solved in O?(2O(k log k)) time.

Proof. Consider an instance (T, k) of ACT. Using Theorem 16, we obtain a kernel I = (T̂ , k̂)
such that T̂ has O(k) vertices. Further, k̂ ≤ k. By definition, (T, k) is an yes-instance if
and only if (T̂ , k̂) is an yes-instance. Using Theorem 13, we know that T̂ either contains
k̂ arc-disjoint triangles or has an FAS of size at most 5(k̂ − 1) that can be obtained in
polynomial time. If Theorem 13 returns a set of k̂ arc-disjoint triangles in T̂ , then we declare
that (T, k) is an yes-instance.

Otherwise, let F̂ be the FAS of size at most 5(k̂ − 1) returned by Theorem 13. Let
D denote the (acyclic) digraph obtained from T̂ by deleting F̂ . Observe that D has O(k)
vertices. Suppose T̂ has a set C = {C1, . . . , Ck̂} of k̂ arc-disjoint cycles. For each C ∈ C, we
know that A(C) ∩ F̂ 6= ∅ as F̂ is an FAS of T̂ . We can guess that subset F of F̂ such that
F = F̂ ∩A(C). Then, for each cycle Ci ∈ C, we can guess the arcs Fi from F that it contains
and also the order πi in which they appear. This information is captured as a partition F of
F into k̂ sets, F1 to F

k̂
and the set {π1, . . . , πk̂} of permutations where πi is a permutation

of Fi for each i ∈ [k̂]. Any cycle Ci that has Fi ⊆ F contains a (v, x)-path between every
pair (u, v), (x, y) of consecutive arcs of Fi with arcs from A(D). That is, there is a path
from h(π−1

i (j)) and t(π−1
i ((j + 1) mod |Fi|)) with arcs from D for each j ∈ [|Fi|]. The total

number of such paths in these k̂ cycles is O(|F |) and the arcs of these paths are contained in
D which is a (simple) directed acyclic graph.

S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi 27:11

The number of choices for F is 2|F̂ | and the number of choices for a partition F =
{F1, . . . , Fk̂} of F and a set X = {π1, . . . , πk̂} of permutations is 2O(|F̂ | log |F̂ |). Once such a
choice is made, the problem of finding k̂ arc-disjoint cycles in T̂ reduces to the problem of
finding k̂ arc-disjoint cycles C = {C1, . . . , Ck̂} in T̂ such that for each 1 ≤ i ≤ k̂ and for each
1 ≤ j ≤ |Fi|, Ci has a path Pij between h(π−1

i (j)) and t(π−1
i ((j + 1) mod |Fi|)) with arcs

from D = T̂ − F̂ . This problem is essentially finding r = O(|F̂ |) arc-disjoint paths in D and
can be solved in |V (D)|O(r) time using the algorithm in [27]. Therefore, the overall running
time of the algorithm is O?(2O(k log k)) as |V (D)| = O(k) and r = O(k). J

5 Parameterized Complexity of ATT

It is easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique [5]
for packing subgraphs of bounded size, and in particular for ATT. Moreover, using matching
techniques, we also provide a kernel with a linear number of vertices.

In this section, we provide an FPT algorithm and a linear vertex kernel for ATT. First, it
is easy to obtain an O?(2O(k)) time algorithm using the classical colour coding technique [5]
for packing subgraphs of bounded size.

I Theorem 18. ATT can be solved in O?(2O(k)) time.

Proof. Consider an instance I = (T, k) of ATT. Let n denote |V (T)| and m denote |A(T)|.
Let F denote the family of colouring functions c : A(T)→ [3k] of size 2O(k) log2m that can
be computed in O?(2O(k)) time using 3k-perfect family of hash functions [41]. For each
colouring function c in F , we colour A(T) according to c and find a triangle packing of size
k whose arcs use different colours. We use a standard dynamic programming routine to
finding such a triangle packing. Clearly, if I is an yes-instance and C is a set of k arc-disjoint
triangles in T , there is a colouring function in F that colours the 3k arcs in these triangles
with distinct colours and our algorithm will find the required triangle packing. Given a
colouring c ∈ F , we first compute for every set of 3 colours {a, b, c} whether the arcs coloured
with a, b or c induce a triangle using 3 different colours or not. Then, for every set S of
3(p+ 1) colours with p ∈ [k − 1], we recursively test if the arcs coloured with the colours in
S induce p+ 1 arc-disjoint triangles whose arcs use all the colours of S. This is achieved by
iterating over every subset {a, b, c} of S and checking if there is a triangle using colours a, b
and c and a collection of p arc-disjoint triangles whose arcs use all the colours of S \ {a, b, c}.
For a given S, we can find this collection of triangles in O(p3) = O(k3) time. Therefore, the
overall running time of the algorithm is O?(2O(k)). J

Next, we show that ATT has a linear vertex kernel.

I Theorem 19. ATT admits a kernel with O(k) vertices.

Proof. Let X be a maximal collection of arc-disjoint triangles of a tournament T obtained
greedily. Let VX denote the vertices of the triangles in X and AX denote the arcs of VX .
Let U be the remaining vertices of V (T), i.e., U = V (T) \ VX . If |X | ≥ k, then (T, k) is
an yes-instance of ATT. Otherwise, |X | < k and |VX | < 3k. Moreover, notice that T [U] is
acyclic and T does not contain a triangle with one vertex in VX and two in vertices in U
(otherwise X would not be maximal).

Let B be the (undirected) bipartite graph defined by V (B) = AX ∪ U and E(B) =
{au : a ∈ AX , u ∈ U such that (t(a), h(a), u) forms a triangle in T}. Let M be a maximum
matching of B and A′ (resp. U ′) denote the vertices of AX (resp. U) covered by M . Define
A′ = AX \A′ and U ′ = U \ U ′.

MFCS 2019

27:12 Packing Arc-Disjoint Cycles in Tournaments

We now prove that (VX ∪ U ′, k) is a linear kernel of (T, k). Let C be a maximum sized
triangle packing that minimizes the number of vertices of U ′ belonging to a triangle of C. By
previous remarks, we can partition C into CX ∪ F where CX are the triangles of C included
in T [VX] and F are the triangles of C containing one vertex of U and two vertices of VX . It
is clear that F corresponds to a union of vertex-disjoint stars of B with centres in U . Denote
by U [F] the vertices of U clause gadget g to a triangle of F . If U [F] ⊆ U ′ then (VX ∪ U ′, k)
is immediately a kernel. Suppose there exists a vertex x0 such that x0 ∈ U [F] ∩ U ′.

We will build a tree rooted in x0 with edges alternating between F and M . For this let
H0 = {x0} and construct recursively the sets Hi+1 such that

Hi+1 =
{
NF (Hi) if i is even,
NM (Hi) if i is odd,

where, given a subset S ⊆ U , NF (S) = {a ∈ AX : ∃s ∈ S s.t. (t(a), h(a), s) ∈ F and as /∈M}
and given a subset S ⊆ AX , NM (S) = {u ∈ U : ∃a ∈ AX s.t. au ∈M}. Notice that Hi ⊆ U
when i is even and that Hi ⊆ AX when i is odd, and that all the Hi are distinct as F is a
union of disjoint stars and M a matching in B. Moreover, for i ≥ 1 we call Ti the set of edges
between Hi and Hi−1. Now we define the tree T such that V (T) =

⋃
iHi and E(T) =

⋃
i Ti.

As Ti is a matching (if i is even) or a union of vertex-disjoint stars with centres in Hi−1 (if i
is odd), it is clear that T is a tree.

For i being odd, every vertex of Hi is incident to an edge of M otherwise B would contain
an augmenting path for M , a contradiction. So every leaf of T is in U and incident to an
edge of M in T and T contains as many edges of M than edges of F . Now for every arc
a ∈ AX ∩ V (T) we replace the triangle of C containing a and corresponding to an edge of F
by the triangle (t(a), h(a), u) where au ∈M (and au is an edge of T). This operation leads
to another collection of arc-disjoint triangles with the same size as C but containing a strictly
smaller number of vertices in U ′, yielding a contradiction.

Finally VX ∪U ′ can be computed in polynomial time and we have |VX ∪U ′| ≤ |VX |+|M | ≤
2|VX | ≤ 6k, which proves that the kernel has O(k) vertices. J

6 Concluding Remarks

In this work, we studied the classical and parameterized complexity of packing arc-disjoint
cycles and triangles in tournaments. We showed NP-hardness, fixed-parameter tractability
and linear kernelization results. An interesting problem could be to find subclasses of
tournaments where these problems are polynomial-time solvable. For instance, we show
in the full version of the paper that it is the case for sparse tournaments, that is for
tournaments which admit an FAS that is a matching. This class of tournaments is worthy of
attention for these packing problems as packing vertex-disjoint triangles (and hence cycles)
in sparse tournaments is NP-complete [8]. To conclude, observe that very few problems on
tournaments are known to admit an O?(2

√
k)-time algorithm when parameterized by the

standard parameter k [40] - FAST is one of them [4, 23]. To the best of our knowledge,
outside bidimensionality theory, there are no packing problems that are known to admit such
subexponential algorithms. In light of the 2o(

√
k) lower bound shown for ACT and ATT, it

would be interesting to explore if these problems admit O?(2O(
√
k)) algorithms.

S. Bessy, M. Bougeret, R. Krithika, A. Sahu, S. Saurabh, J. Thiebaut, and M. Zehavi 27:13

References
1 F. N. Abu-Khzam. An Improved Kernelization Algorithm for r-Set Packing. Inf. Process.

Lett., 110(16):621–624, 2010.
2 I. Akaria and R. Yuster. Packing Edge-Disjoint Triangles in Regular and Almost Regular

Tournaments. Discrete Math., 338(2):217–228, 2015.
3 N. Alon. Ranking Tournaments. SIAM J. Discrete Math., 20(1):137–142, 2006.
4 N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In 36th International Colloquium on

Automata, Languages, and Programming (ICALP) Part I, pages 49–58, 2009.
5 N. Alon, R. Yuster, and U. Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
6 J. Bang-Jensen and G. Gutin. Paths, Trees and Cycles in Tournaments. Congressus Numer-

antium, 115:131–170, 1996.
7 J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag

London, 2009.
8 S. Bessy, M. Bougeret, and J. Thiebaut. Triangle Packing in (Sparse) Tournaments: Ap-

proximation and Kernelization. In 25th Annual European Symp. on Algorithms (ESA 2017),
volume 87, pages 14:1–14:13, 2017.

9 S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé. Kernels
for Feedback Arc Set in Tournaments. J. Comput. Syst. Sci, 77(6):1071–1078, 2011.

10 H. L. Bodlaender. On Disjoint Cycles. Int. J. Found. Comput. S., 5(1):59–68, 1994.
11 H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel Bounds for Disjoint Cycles and Disjoint

Paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.
12 A. Caprara, A. Panconesi, and R. Rizzi. Packing Cycles in Undirected Graphs. J. Algorithms,

48(1):239–256, 2003.
13 P. Charbit, S. Thomassé, and A. Yeo. The Minimum Feedback Arc Set Problem is NP-hard

for Tournaments. Comb Probab Comput., 16(1):1–4, 2007.
14 M. Chudnovsky, P. Seymour, and B. Sullivan. Cycles in Dense Digraphs. Combinatorica,

28(1):1–18, 2008.
15 W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to Order Things. Journal of Artificial

Intelligence Research, 10:243–270, 1999.
16 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized Algorithms. Springer, 2015.
17 Jean-Charles de Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale

des Sciences, 1781.
18 D. Dorninger. Hamiltonian Circuits Determining the Order of Chromosomes. Discrete Appl.

Math., 50(2):159–168, 1994.
19 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer-Verlag

London, 2013.
20 C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank Aggregation Methods for the Web.

In 10th International World Wide Web Conference, pages 613–622, 2001.
21 P. Erdős and L. Pósa. On Independent Circuits Contained in a Graph. Canadian J. Math.,

17:347–352, 1965.
22 S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable and Multicommodity Flow

Problems. SIAM J. Comput., 5(4):691–703, 1976.
23 U. Feige. Faster FAST(Feedback Arc Set in Tournaments), 2009. arXiv:0911.5094.
24 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
25 F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Fast Local Search Algorithm for

Weighted Feedback Arc Set in Tournaments. In 24th AAAI Conf. on Artificial Intelligence,
pages 65–70, 2010.

26 F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameter-
ized Preprocessing. Cambridge University Press, 2019.

27 S. Fortune, J. Hopcroft, and J. Wyllie. The Directed Subgraph Homeomorphism Problem.
Theor. Comput. Sci., 10(2):111–121, 1980.

MFCS 2019

http://arxiv.org/abs/0911.5094

27:14 Packing Arc-Disjoint Cycles in Tournaments

28 R. B. Gardner. Optimal Packings and Coverings of the Complete Directed Graph with
3-Circuits and with Transitive Triples. In 28th Southeastern International Conference on
Combinatorics, Graph Theory and Computing, volume 127, pages 161–170, 1997.

29 E. Hemaspaandra, H. Spakowski, and J. Vogel. The Complexity of Kemeny Elections. Theor.
Comput. Sci., 349(3):382–391, 2005.

30 R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential Com-
plexity? J. Comput. Syst. Sci, 63(4):512–530, 2001.

31 M. Karpinski and W. Schudy. Faster Algorithms for Feedback Arc Set Tournament, Kemeny
Rank Aggregation and Betweenness Tournament. In 21st International Symp. on Algorithms
and Computation (ISAAC), pages 3–14, 2010.

32 T. P. Kirkman. On a Problem in Combinations. Cambridge and Dublin Mathematical Journal,
2:191–204, 1847.

33 M. Krivelevich, Z. Nutov, M. R. Salavatipour, J. V. Yuster, and R. Yuster. Approximation Al-
gorithms and Hardness Results for Cycle Packing Problems. ACM Transactions on Algorithms,
3(4), 2007.

34 M. Krivelevich, Z. Nutov, and R. Yuster. Approximation Algorithms for Cycle Packing
Problems. In 16th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 556–561,
2005.

35 T. Le, D. Lokshtanov, S. Saurabh, S. Thomassé, and M. Zehavi. Subquadratic Kernels for
Implicit 3-Hitting Set and 3-Set Packing Problems. In 29th Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 331–342, 2018.

36 D. Lokshtanov, A. Mouawad, S. Saurabh, and M. Zehavi. Packing Cycles Faster Than Erdős-
Pósa. In 44th International Colloquium on Automata, Languages, and Programming (ICALP),
pages 71:1–71:15, 2017.

37 M. Mahajan and V. Raman. Parameterizing Above Guaranteed Values: MaxSat and MaxCut.
J. Algorithms, 31(2):335–354, 1999.

38 J.W. Moon. Topics on Tournaments. Holt, Rinehart and Winston, New York, 1968.
39 C. H. Papadimitriou. Computational Complexity. John Wiley and Sons Ltd., 2003.
40 M. Pilipczuk. Tournaments and Optimality: New Results in Parameterized Complexity. PhD

thesis, The University of Bergen, 2013.
41 J. P. Schmidt and A. Siegel. The Spatial Complexity of Oblivious k-Probe Hash Functions.

SIAM J. Comput., 19(5):775–786, 1990.
42 A. Slivkins. Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs.

SIAM J. Discrete Math., 24(1):146–157, 2010.
43 C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Appl. Math., 8(1):85–89,

1984.
44 R. Yuster. Packing Triangles in Regular Tournaments. J. of Graph Theory, 74(1):58–66, 2013.

A Sub-Exponential FPT Algorithm and a
Polynomial Kernel for Minimum Directed
Bisection on Semicomplete Digraphs
Jayakrishnan Madathil
The Institute of Mathematical Sciences, HBNI, Chennai, India
jayakrishnanm@imsc.res.in

Roohani Sharma
The Institute of Mathematical Sciences, HBNI, Chennai, India
roohani@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beer-Sheva, Israel
meiravze@bgu.ac.il

Abstract
Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection
problem asks if the vertices of D can be partitioned into two parts, say L and R, such that |L|
and |R| differ by at most 1 and the number of arcs from R to L is at most k. This problem, in
general, is W-hard as it is known to be NP-hard even when k = 0. We investigate the parameterized
complexity of this problem on semicomplete digraphs. We show that Minimum Directed Bisection
on semicomplete digraphs is one of a handful of problems that admit sub-exponential time fixed-
parameter tractable algorithms. That is, we show that the problem admits a 2O(

√
k log k)nO(1) time

algorithm on semicomplete digraphs. We also show that Minimum Directed Bisection admits
a polynomial kernel on semicomplete digraphs. To design the kernel, we use (n, k, k2)-splitters.
To the best of our knowledge, this is the first time such pseudorandom objects have been used in
the design of kernels. We believe that the framework of designing kernels using splitters could be
applied to more problems that admit sub-exponential time algorithms via chromatic coding. To
complement the above mentioned results, we prove that Minimum Directed Bisection is NP-hard
on semicomplete digraphs, but polynomial time solvable on tournaments.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases bisection, semicomplete digraph, tournament, fpt algorithm, chromatic
coding, polynomial kernel, splitters

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.28

Funding Meirav Zehavi: Supported by ISF grant no. 1176/18.

Acknowledgements We thank Daniel Lokshtanov and Saket Saurabh for insightful discussions on
bisection in semicomplete digraphs.

1 Introduction

A bisection of a graph is a partition of its vertex set into two (almost) equal parts. In the
Minimum Bisection problem, given an undirected graph G and a non-negative integer
k, the task to check whether the vertex set of G can be partitioned into two parts, say A
and B, such that ||A| − |B|| ≤ 1 and the number of edges with one endpoint in A and the
other endpoint in B is at most k. This problem has been studied extensively, resulting in a
large volume of literature [7, 11, 12, 19, 20, 27, 28]. In particular, it has been shown that
Minimum Bisection is NP-hard [19], but admits a fixed-parameter tractable algorithm
(with k as the parameter) [11]. We study the directed counterpart of this problem in the

© Jayakrishnan Madathil, Roohani Sharma, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 28; pp. 28:1–28:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jayakrishnanm@imsc.res.in
mailto:roohani@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.MFCS.2019.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Minimum Directed Bisection on Semicomplete Digraphs

framework of parameterized complexity. In the Minimum Directed Bisection problem,
the input consists of a digraph D and an integer k, and the question is to determine whether
the vertices of D can be partitioned into two parts, say L and R, such that ||L| − |R|| ≤ 1,
and there are at most k arcs with their tails in R and heads in L (i.e. arcs directed from R

to L). The problem is formally defined below.

Minimum Directed Bisection Parameter: k

Input: A digraph D and a non-negative integer k.
Question: Can the vertex set of D be partitioned into two parts, say L and R, such
that ||L| − |R|| ≤ 1 and there are at most k arcs (u, v) with u ∈ R and v ∈ L?

Feige and Yahalom [16] showed that this problem is NP-hard even for k = 0, which implies
that the Minimum Directed Bisection problem has no polynomial time approximation
unless P = NP. Their result also implies that Minimum Directed Bisection is para-
NP-hard on general digraphs and hence, it is W-hard when parameterized by k. We study
the complexity of this problem on restricted classes of digraphs such as tournaments and
semicomplete digraphs.

Our results. Our contribution is threefold.
1. We show that Minimum Directed Bisection is polynomial time solvable on tourna-

ments.
2. On semicomplete digraphs, Minimum Directed Bisection is NP-hard, but admits an

algorithm running in time 2O(
√

k log k)nO(1).
3. We also show that Minimum Directed Bisection on semicomplete digraphs admits a

polynomial kernel.

A tournament is a digraph D such that for every distinct pair of vertices u and v of
D, exactly one of the arcs (u, v) or (v, u) is present in D. A semicomplete digraph is a
digraph D such that for every pair of distinct vertices u and v of D, at least one of the arcs
(u, v) or (v, u) is present in D. Note that both the arcs (u, v) and (v, u) may be present
in a semicomplete digraph. Tournaments and semicomplete digraphs form two interesting
and well-studied classes of digraphs. See, for example, the monograph by Bang-Jensen and
Gutin [3] for an overview. In recent years, tournaments and semicomplete digraphs received
a great deal of attention, in part, due to the many structural results for these classes that
are similar to the theory of minors for undirected graphs. In particular, it has been shown
that tournaments are well-quasi ordered under strong minors [23] and strong immersions [9].
Similarly, semicomplete digraphs have been shown to be well-quasi ordered under strong
minors, butterfly immersions [22] and strong immersions [5].

Due to the extremely rigid structure of tournaments, a number of problems that are
NP-hard on general digraphs become polynomial time solvable on tournaments. Examples
include classic problems such as Hamiltonian path [29] and Hamiltonian Cycle [8].
Although semicomplete digraphs are a slight generalization of tournaments, the flexibility in
the definition allowing for the presence of anti-parallel arcs makes them distinctly dissimilar
to tournaments when it comes to tractability of algorithmic problems. This contrast in
behavior is perhaps best illustrated by problems such as Cutwidth and Optimal Linear
Arrangement (OLA), which are polynomial time solvable on tournaments, but NP-hard
on semicomplete digraphs [4]. Our work reinforces this pattern. We show that while
Minimum Directed Bisection is polynomial time solvable on tournaments (Lemma 4),
it is NP-hard on semicomplete digraphs (Lemma 16). The polynomial time solvability of
Minimum Directed Bisection on tournaments follows from a polynomial time algorithm

J. Madathil, R. Sharma, and M. Zehavi 28:3

due to Fradkin [18] for computing the cutwidth of a tournament. Barbero et al. [4] showed
that Fradkin’s approach in [18] yields a polynomial time algorithm for the Optimal Linear
Arrangement problem on tournaments as well. We rely on the analysis of Barbero et al.
in [4] to conclude that Fradkin’s approach works for Minimum Directed Bisection on
tournaments as well. We establish the NP-hardness of Minimum Directed Bisection on
semicomplete digraphs by a reduction from the Maximum Bisection problem on directed
acyclic graphs.

Tournaments and semicomplete digraphs found favor with the parameterized complex-
ity community mainly because of the possibility that several problems might admit sub-
exponential time parameterized algorithms on these classes of digraphs. In the field of
parameterized complexity, problems that admit sub-exponential time algorithms (except
those on planar graphs, using the bidimensionality approach) are something of a rarity. In
fact, the first such sub-exponential time algorithm was designed by Alon, Lokshtanov and
Saurabh [1] for the Feedback Arc Set problem on tournaments (FAST). They developed
the technique of chromatic coding to design a 2O(

√
k log2 k) algorithm for this problem. This

running time has since been improved, independently by Feige [15], Karpinski and Schudy [21],
and Fomin and Pilipczuk [17], to 2O(

√
k). Fomin and Pilipczuk’s [17] algorithm for FAST was

in fact a by-product of their work on the Cutwidth and Optimal Linear Arrangement
(OLA) problems on semicomplete digraphs. They showed that both Cutwidth and OLA
admit sub-exponential FPT algorithms on semicomplete digraphs. Later, Barbero et al. [4]
showed that these problems are indeed NP-hard on semicomplete digraphs. We show that
Minimum Directed Bisection on semicomplete digraphs admits a sub-exponential time
algorithm that runs in time 2O(

√
k log k)nO(1) (Theorem 21).

Both our algorithm and kernel for Minimum Directed Bisection build on a crucial
observation that in any bisection (L,R) of a semicomplete digraph, every vertex v has a
“preferred position” (either L or R), which we call the “canonical position” of v (denoted by
can(v)). In particular, if (L,R) is a bisection of size at most k, then we show that in (L,R),
no more than 2k vertices can deviate from their canonical positions. Note that with just this
information one can easily design an nO(k) algorithm for the problem. In order to achieve
sub-exponential FPT running time, we use the technique of chromatic coding to identify
a small set of vertices that contain these 2k vertices that can deviate from their canonical
positions. More precisely, we color the vertex set with O(

√
k) colors such that all the k arcs

in a k-sized bisection (if it exists) are properly colored. Then, to identify the desired set
of vertices, we exploit the fact that no arc within a color class can be directed from R to
L. The crucial point in chromatic coding is that it is sufficient to try out 2O(

√
k log k) logn

different coloring functions so as to ensure that we find a coloring with the required property.
The kernelization complexity of problems on tournaments and semicomplete digraphs has

proved to be even more diverse, requiring a wide array of techniques specific to individual
problems. For instance, it is now textbook knowledge that the Feedback Arc Set problem
on tournaments admits a simple kernel with O(k2) vertices [10, 14]. There has been a line
of work on this front that improved the size of the kernel, the current best being a linear
kernel by Bessy et al. [6]. Barbero et al. [4] showed that while Cutwidth on semicomplete
digraphs does not admit a polynomial kernel unless NP ⊆ coNP/poly, OLA does admit a
kernel with 2k vertices. In addition, by using the submodularity property of directed cuts,
Barbero et al. [4] showed that Cutwidth admits a Turing kernel on semicomplete digraphs.

We employ a family of hash functions called (n, k, k2)-splitters, introduced by Naor et
al. [26], to design a polynomial kernel for Minimum Directed Bisection on semicom-
plete digraphs (Theorem 22). Splitters are a well-known combinatorial tool often used

MFCS 2019

28:4 Minimum Directed Bisection on Semicomplete Digraphs

to derandomize algorithms. To the best of our knowledge, this is the first occurrence of
splitters’ being used to design polynomial kernels. Our kernelization algorithm for Minimum
Directed Bisection on semicomplete digraphs has two main steps. In the first step, we
reduce the given instance (D, k) of the Minimum Directed Bisection problem to kO(1)

many instances of a weighted variant of the problem, with the guarantee that the sizes of
the reduced instances is kO(1) and at least one of the reduced instances is equivalent to the
original instance (D, k). Then, in the second step, we apply a polynomial time reduction
from the reduced instances to Minimum Directed Bisection to obtain the desired kernel.
To elaborate a little about the first step, like in the design of our algorithm, we want a
coloring function that properly colors the k arcs of the bisection. But unlike in the algorithm
where we have to use O(

√
k) colors to ensure sub-exponential runtime, for the kernel, it is

enough to have such a coloring using O(k2) colors. This increase in the number of colors
from O(

√
k) to O(k2) allows us to bring down the size of the coloring family that guarantees

the existence of the good coloring that we want, to a polynomial in k. This is where we use
(n, k, k2)-splitters: we construct a reduced instance for each of the kO(1) coloring functions.
The one corresponding to the good coloring function is the one that is always a yes-instance
if the input instance is a yes-instance.

Related work on Minimum Bisection. As mentioned earlier, the Minimum Bisection
problem, (the undirected counterpart of our problem) is an extensively-studied problem in
algorithmic graph theory. Being a natural variant of the well-known Min Cut problem,
Minimum Bisection has already been known to be NP-hard since the 1970s [19]. However,
the parameterized complexity of the problem had been open for a long time, until it was finally
settled by Cygan et al. [11] in 2014, who showed that the problem is fixed-parameter tractable.
Before that, Jansen et al. [20] had shown that the problem is fixed-parameter tractable
when parameterized by the treewidth of the input graph. The best known approximation
algorithm for Minimum Bisection, to the best of our knowledge, is due to Räcke [28], with
an approximation factor of O(logn). While Minimum Bisection on planar graphs admits a
single-exponential parameterized algorithm [7], it remains open whether the problem is NP-
hard. On the related (but incomparable) class of unit disk graphs, Minimum Bisection is
known to be NP-hard [12], but was recently shown to admit a single-exponential parameterized
algorithm [27]. The Minimum Vertex Bisection problem (the vertex-deletion variant
of Minimum Bisection) asks the following question. Given an undirected graph G and a
non-negative integer k, is it possible to partition the vertex set of G into three parts A, S and
B such that |S| ≤ k, |A| = |B| and there are no edges between A and B? This problem is
W[1]-hard: as observed in [11], the W[1]-hardness of Minimum Vertex Bisection follows
from a more general result due to Marx [25].

2 Preliminaries

For a natural number n ∈ N, [n] denotes the set {1, 2, . . . , n}. For z ∈ N, |z| denotes the
number of bits in the binary representation of z.

Splitters. Consider two finite sets A and B and a function f : A→ B. For a subset S ⊆ A,
we say that f splits S evenly if for every b1, b2 ∈ B, |f−1(b1) ∩ S| and |f−1(b2) ∩ S| differ by
at most 1. Notice that if |B| > |S|, then f splits S evenly if and only if f is injective on S.

I Definition 1 ([26]). For positive integers n, k and `, an (n, k, `)-splitter is a family F of
functions from [n] to [`] such that for every subset S ⊆ [n] of size at most k, there exists a
function f ∈ F that splits S evenly.

J. Madathil, R. Sharma, and M. Zehavi 28:5

I Proposition 2 ([2, 26]). There is an algorithm that, given positive integers n and k, runs
in time kO(1)n logn and constructs an (n, k, k2)-splitter of size kO(1) logn.

Digraphs. For a digraph D, we denote by V (D) and A(D) the vertex set and arc set
of D, respectively. For sets X,Y ⊆ V (D), A(X,Y) = {(x, y) ∈ A(D) | x ∈ X and y ∈ Y }.
(Whenever dealing with multiple digraphs on the same vertex set, we may write AD(X,Y)
instead of A(X,Y) to emphasize that we mean the set of arcs from X to Y in D.) For a vertex
v ∈ V (D), A(v) denotes the set of arcs incident with v. For an arc a ∈ A(D), V (a) denotes
the set of endpoints of a. That is, if a = (u, v) ∈ A(D), then V (a) = {u, v}. More generally,
for a set of arcs A ⊆ A(D), V (A) = ∪a∈AV (a). The complement of D, denoted by D, is the
digraph defined as follows: V (D) = V (D) and A(D) = (V 2 \ {(u, u) | u ∈ V (D)}) \ A(D).
(We assume that D has no self-loops.) Note that for vertices u, v ∈ V (D), if (u, v) /∈ A(D),
then (u, v), (v, u) ∈ A(D). For a digraph D, rev(D) denotes the digraph obtained by
reversing all arcs of D, i.e. V (rev(D)) = V (D) and A(rev(D)) = {(u, v) | (v, u) ∈ A(D)}.

Consider a digraph D. Throughout this paper, we use (LD, RD) to denote a bipartition
of D. That is V (D) = LD ∪RD and LD ∩RD = ∅. We may drop the subscript D and simply
write (L,R) when D is clear from the context. A bipartition (LD, RD) is a bisection of D if
||LD| − |RD|| ≤ 1; we refer to the value |A(RD, LD)| as the size of the bipartition (LD, RD).
Moreover, we say that (LD, RD) is a one way partition if A(RD, LD) = ∅, i.e. if (LD, RD) is
a bipartition of size 0.

3 Some Observations and Simple Lemmas

Throughout this paper, whenever dealing with an instance (D, k) of Minimum Directed
Bisection, we assume that |V (D)| is even. This assumption about V (D) is made without
loss of generality since if |V (D)| is odd, then we may construct two instances (D1, k) and
(D2, k) of Minimum Directed Bisection such that at least one of them will be equivalent
to (D, k) and |V (D1)| = |V (D2)| = |V (D)|+ 1. The following lemma shows that it is safe to
make this assumption.

I Lemma 3 (?1). Given an instance (D, k) of Minimum Directed Bisection where
|V (D)| is odd, it is possible to construct two instances (D1, k) and (D2, k) of Minimum
Directed Bisection in polynomial time such that (i) |V (D1)| and |V (D2)| are even,
(ii) D1 and D2 are semicomplete digraphs (tournaments) if D is a semicomplete digraph
(tournament), and (iii) (D, k) is a yes-instance if and only if either (D1, k) or (D2, k) is a
yes-instance.

The following lemma deals with Minimum Directed Bisection on tournaments.

I Lemma 4 (?). Minimum Directed Bisection is polynomial time solvable on tourna-
ments.

Proof Sketch. The algorithm for Minimum Directed Bisection on tournaments works as
follows. Given a tournament T on n vertices, sort the vertices in non-decreasing order by their
in-degrees. Take LT to be the set of the first n/2 vertices in the sorted list, andRT = V (T)\LT .
Then, our claim is that (LT , RT) is a minimum bisection of T , i.e. |A(RT , LT)| ≤ |A(Y,X)|
for every bisection (X,Y) of T . The correctness of this algorithm follows from Lemma 1
in [4]. J

1 Due to paucity of space, proofs of statements marked with a ? have been omitted.

MFCS 2019

28:6 Minimum Directed Bisection on Semicomplete Digraphs

We now state two observations about semicomplete digraphs. These observations are
considered to be folklore, so we omit their proofs. Specifically, the first observation is
immediate, and the second can be found in [13].

I Observation 5. Let D be a semicomplete digraph on n vertices, where n is even. For
every v ∈ V (D), we have d+(v) ≥ n/2 or d−(v) ≥ n/2.

I Observation 6. Every semicomplete digraph contains a Hamiltonian path. Moreover,
there is a polynomial time algorithm that, given a semicomplete digraph D as input, finds a
Hamiltonian path in D.

We now develop some preliminary results that will be used in the design and analysis of
our algorithm and kernel.

Canonical Position. A crucial idea behind our algorithm and kernel is that every vertex
has a “preferred position” in a bisection (either L or R). In particular, if a vertex v deviates
from its preferred position, then at least one of the arcs incident with v would have to belong
to A(R,L). Therefore, in a bisection of size at most k, no more than O(k) vertices can
deviate from their preferred positions. Next, we formalize this idea.

I Definition 7. Let D be a semicomplete digraph on n vertices, where n is even. The partition
(Lc

D, R
c
D) (not necessarily a bisection) of V (D) defined as Lc

D = {v ∈ V (D) | d+(v) ≥ n/2}
and Rc

D = V (D) \ Lc
D is called the canonical partition of D. For a vertex v ∈ Lc

D, we say
that Lc

D is the canonical position of v and write can(v) = Lc
D. Similarly, for a vertex v ∈ Rc

D,
we say that Rc

D is the canonical position of v and write can(v) = Rc
D.

I Definition 8. Let D be a semicomplete digraph with a bipartition (L,R). For a vertex
v ∈ V (D), we say that (L,R) respects the canonical position of v if v ∈ L and can(v) = Lc

D

or if v ∈ R and can(c) = Rc
D. Otherwise, we say that (L,R) violates the canonical position

of v.

The following lemma follows directly from the definition of the canonical position of a
vertex. It shows that if a bisection (L,R) violates the canonical position of a vertex v, then
at least one of the arcs incident with v must belong to A(R,L).

I Lemma 9 (?). Consider a semicomplete digraph D on n vertices, where n is even. Let
(L,R) be a bisection of D. Let v ∈ V (D) be such that (L,R) violates the canonical position
of v. Then, A(R,L) ∩A(v) 6= ∅.

An immediate consequence of Lemma 9 is that any bisection of size at most k of a
semicomplete digraph can violate the canonical positions of at most 2k vertices.

I Corollary 10. Let (D, k) be an yes-instance of Minimum Directed Bisection, and
let (L,R) be a bisection of D of size at most k. Let X = {v ∈ V (D) | (L,R) violates the
canonical position of v}. Then, |X| ≤ 2k.

Proof. As Lemma 9 shows, for every v ∈ X, A(R,L) contains an arc incident with v. Since
each arc in A(R,L) can be incident with at most two vertices in X, and |A(R,L)| ≤ k, it
follows that |X| ≤ 2k. J

Consider a bisection (L,R) of D, and a subset of vertices Z ⊆ V (D) such that no arc of
D[Z] belongs to A(R,L). The following lemma identifies the vertices in Z whose canonical
positions can possibly be violated by (L,R). Moreover, it shows that there can be at most 4k
such vertices in Z, and that (L,R) must respect the canonical position of every other vertex.

J. Madathil, R. Sharma, and M. Zehavi 28:7

I Lemma 11. Let D be a semicomplete digraph with a bisection (L,R) of size at most k.
Let Z ⊆ V (D) be such that no arc of D[Z] belongs to AD(R,L). That is, (L∩Z,R∩Z) is a
one way partition of Z. Let P be a Hamiltonian path in D[Z] from a vertex α to a vertex β
for some α, β ∈ Z. Let X = {x ∈ Z | can(x) = Rc

D} and Y = {y ∈ Z | can(y) = Lc
D}. For

1 ≤ j ≤ |X|, let xj be the jth vertex of P that belongs to X as we traverse P from α to β,
and for 1 ≤ p ≤ |Y |, let yp be the pth vertex of P that belongs to Y as we traverse rev(P i)
from β to α. Then, if |X| > 2k, then for every xj ∈ X with j > 2k, xj ∈ R. Similarly, if
|Y | > 2k, then for every yp ∈ Y with p > 2k, yp ∈ L. (In other words, (L,R) respects the
canonical positions of xj and yp for j > 2k and p > 2k.)

Proof. Note first that for any arc (z, z′) ∈ A(P), it cannot be the case that z ∈ R and z′ ∈ L,
as (L∩Z,R∩Z) is a one way partition of Z. More generally, this property holds for any two
distinct vertices z, z′ ∈ Z such that z appears before z′ as we traverse P from α to β. To see
this, suppose by way of contradiction that z ∈ R and z′ ∈ L. Then, consider the subpath of
P from z to z′. This subpath must have an arc from a vertex in R to a vertex in L, which
we have already argued to be impossible.

Now, suppose that |X| > 2k and consider a vertex xj ∈ X with j > 2k. Then,
can(xj) = Rc

D. We need to show that xj ∈ R. Assume for contradiction that xj ∈ L, i.e.
(L,R) violates the canonical position of xj . Then, for every j′ ≤ j, we must have xj′ ∈ L as
well, as otherwise, we obtain a pair {xj′ , xj} such that xj′ appears before xj as we traverse
P from α to β while xj′ ∈ R and xj ∈ L, which by the preceding argument, is not possible.
Having xj′ ∈ L for every j′ ≤ j means that (L,R) violates the canonical position of xj′

for every j′ ≤ j. Thus, (L,R) violates the canonical positions of more than 2k vertices.
However, as (L,R) is a bisection of D of size at most k, by Corollary 10, (L,R) can violate
the canonical positions of at most 2k vertices.

Using symmetric arguments, we also derive that yp ∈ L for every p > 2k. J

I Remark 12. In the above proof, it is actually shown that for any j ≤ |X| such that (L,R)
violates the canonical position of xj ∈ X, (L,R) must violate the canonical position of xj′

for every j′ < j as well. Similarly, for any p ≤ |Y | such that (L,R) violates the canonical
position of yp ∈ Y , (L,R) must violate the canonical position of yp′ for every p′ < p as well.

Tools for Our Kernel. We now develop some tools that will be used to design our
kernel. Consider a vertex-weighted digraph D, where the weights are given by a func-
tion w : V (D)→ N. For a subset X ⊆ V (D) of vertices, the weight of X is defined as
w(X) =

∑
x∈X w(x). We say that a partition (L,R) of V (D) is a w-bisection of D (or simply

a bisection when w is clear from the context) if |w(L)− w(R)| ≤ 1, and |A(R,L)| is called
the size of the bisection. So, given (D,w, k), the Weighted Minimum Bisection (WMB)
problem asks whether D has a w-bisection of size at most k. We now define a “composition”
of this problem, where the input consists of multiple pairs (D,w), and at least one is required
to have a bisection of size at most k.

At Least One Weighted Minimum Bisection (ALO-WMB)
Input: A collection D1, D2, . . . , Dr of vertex-weighted semicomplete digraphs, a weight
function wi : V (Di)→ N for every i ∈ [r], and a non-negative integer k.
Question: Does there exist i ∈ [r] such that Di has a wi-bisection of size at most k?

It is not difficult to see that this problem belongs to the class NP: a polynomial-sized
certificate for the problem would be a partition (L,R) of V (Di) for some i, and it can
be verified whether (L,R) is indeed a bisection of size at most k in time polynomial in∑

j∈[r](|V (Dj)|+
∑

v∈V (Dj) |wj(v)|). For future reference, we record this observation below.

MFCS 2019

28:8 Minimum Directed Bisection on Semicomplete Digraphs

I Observation 13. ALO-WMB belongs to the class NP.

P-Contraction of a Digraph. Consider a digraph D. Let P = {V1, V2, . . . , Vp} be a
partition of V (D) (i.e. Vi ∩ Vj = ∅ for every distinct i, j ∈ [p] and

⋃
i∈[p] Vi = V (D)). The

P-contraction of D is the digraph P(D) obtained by “contracting” every part Vi into a single
vertex, formally defined as follows. The digraph P(D) has p vertices, one corresponding to
every part Vi ∈ P. For each i ∈ [p], let zi deonte the vertex of P(D) corresponding to the
part Vi. For distinct i, j ∈ [p], the arc (zi, zj) is present in P(D) if and only if there exist
vi ∈ Vi and vj ∈ Vj such that (vi, vj) ∈ A(D). (Note that P(D) has no self-loops.) For a
vertex zi ∈ V (P(D)), we refer to the part Vi as the parent-part of zi (or simply part of zi),
and write part(zi) = Vi. Moreover, we define the P-weighted-contraction of D to be the
digraph P(D), where weights are assigned to its vertices by a weight function wP , which is
given by wP(zi) = |Vi| for every vertex zi of P(D).

I Lemma 14 (?). Let D be an unweighted (not necessarily semicomplete) digraph and
(L,R) a bipartition (not necessarily a bisection) of D. Consider a pair of partitions L =
{V1, V2, . . . , Vp} and R = {Vp+1, Vp+2, . . . , Vq} of L and R, respectively. Let P be the partition
of V (D) that is the union of L and R, i.e. P = L∪R. Let H = P(D) be the P-weighted-
contraction of D. (Thus, for each Vi ∈ P, H has a vertex zi, with weight wP(zi) = |Vi|.) Let
LH = {z1, z2, . . . , zp}, and RH = {zp+1, zp+2, . . . , zq}. Then, (L,R) is a bisection of D if
and only if (LH , RH) is a wP -bisection of H.

4 NP-hardness of Minimum Directed Bisection on Semicomplete
Digraphs

In this section, we show that Minimum Directed Bisection is NP-hard on semicomplete
digraphs by a reduction from Maximum Directed Bisection on directed acyclic graphs
(DAGs). (Recall that in the Maximum Directed Bisection problem, the input consists of
a digraph D and an integer k, and the task is to determine whether D admits a bisection
(L,R) such that |A(R,L)| ≥ k.) The NP-hardness of Maximum Directed Bisection on
DAGs easily follows from the fact that Directed Max-Cut is NP-hard on DAGs, shown
by Lampis et al. [24] (Theorem 4 in [24]).

I Observation 15 (?). Maximum Directed Bisection is NP-complete on DAGs.

I Lemma 16 (?). Minimum Directed Bisection is NP-complete on semicomplete digraphs.

Proof Sketch. It is easy to see that Minimum Directed Bisection belongs to NP. Now, for
the proof of hardness, we give a reduction from the Maximum Directed Bisection problem
on DAGs. To this end, consider an instance (D, k) of Maximum Directed Bisection
where D is a DAG. Let |V (D)| = n. Without loss of generality, assume that n is even. (Add
an isolate vertex to D if n is odd.) We construct an instance (D′, k′) of Minimum Directed
Bisection as follows. Take D′ = D and k′ = n2/4− k. Note first that D is a semicomplete
digraph, and that D′ can be constructed in polynomial time. It can be verified that (D, k) is
a yes-instance if and only if (D′, k′) is a yes-instance. J

I Remark 17. By Observation 13, the problem At Least One Weighted Minimum
Bisection belongs to the class NP. Moreover, we have just shown that Minimum Directed
Bisection is NP-complete on semicomplete digraphs. Thus, we can conclude that there
is a polynomial time reduction from ALO-WMB to Minimum Directed Bisection on
semicomplete digraphs.

J. Madathil, R. Sharma, and M. Zehavi 28:9

x1

Rc
D

x2

Rc
D

x3

Rc
D

y9

Lc
D

x4

Rc
D

y8

Lc
D

y7

Lc
D

x5

Rc
D

y6

Lc
D

y5

Lc
D

y4

Lc
D

y3

Lc
D

x6

Rc
D

y2

Lc
D

y1

Lc
D

x7

Rc
D

Figure 1 An example of a Hamiltonian path Pi in Di, with the canonical positions of its vertices.
We have V (Di) = Xi ∪ Yi. The vertices of Xi are indexed from left to right, while the vertices of Yi

are indexed from right to left.

5 FPT Algorithm for Minimum Directed Bisection on Semicomplete
Digraphs

In this section, we design an algorithm for Minimum Directed Bisection on semicomplete
digraphs that runs in time 2O(

√
k log k)nO(1). Our algorithm is based on a technique called

chromatic coding, introduced by Alon et al. [1]. The basic idea behind this technique is to
color the vertices of the input digraph by O(

√
k) colors so that all the k arcs in a k-sized

bisection (if one exists) are properly colored, i.e. have their endpoints in different color classes.
As stated below, it was shown that there is a coloring family of size 2O(

√
k log k) logn that

does this job.

I Proposition 18 (Chromatic coding [1]). For positive integers n and k, there exists a family
F of functions from [n] to [2d

√
ke] with the following property: for every graph G with

V (G) = [n] and with at most k edges, there exists a function f ∈ F that properly colors E(G)
(i.e. for every uv ∈ E(G), f(u) 6= f(v)). Moreover, there is an algorithm that runs in time
2O(
√

k log k)n logn and constructs such a family F of size 2O(
√

k log k) logn.

The family F in Proposition 18 is called a coloring family, and the elements of F are
called coloring functions. For a coloring function f ∈ F , we refer to the set of all vertices
that have been assigned the color i by f as the ith color class.

Informally, our algorithm for Minimum Directed Bisection is as follows. Suppose that
(D, k) is a yes-instance, and let (L,R) be a bisection of D of size at most k. We would like to
color the vertices of D using O(

√
k) colors so that all arcs of A(R,L) are properly colored (of

course, without knowing (L,R)). Proposition 18 guarantees such a coloring function f . For
any color i, let Di be the subgraph of D induced by vertices in the ith color class. Because all
arcs of A(R,L) are properly colored, no arc of Di can belong to A(R,L). Thus, we “guess”
the vertices of Di whose canonical positions are violated by (L,R), and define a partition
of V (Di) accordingly. Due to Lemma 11 and Remark 12, there are at most 4k vertices in
Di whose canonical positions can be violated by (L,R). Thus we would need to consider
only kO(

√
k) = 2O(

√
k log k) guesses, which gives rise to an algorithm with the claimed running

time. We present a formal description of our algorithm in Algorithm 1.
In the next two lemmas, we establish the correctness of Algorithm 1, and analyse its

runtime.

I Lemma 19 (?). Algorithm 1 is correct.

Proof Sketch. Observe first that if Algorithm 1 returns yes, then D has a bisection of size
at most k (that is (Lf

t , R
f
t) for some f and t). Therefore, in order to show that Algorithm 1

returns the correct answer, we shall prove the following. If (D, k) is a yes-instance with a
k-sized bisection (L,R), then for some f ∈ F and for some tuple t defined in Step 2 of the
algorithm, we will have (L,R) = (Lf

t , R
f
t) where Lf

t and Rf
t are as defined in Step 2-(ii)-(a)

of the algorithm. J

I Lemma 20 (?). Algorithm 1 runs in time 2O(
√

k log k)nO(1).

MFCS 2019

28:10 Minimum Directed Bisection on Semicomplete Digraphs

Algorithm 1 Input: (D, k) where D is a semicomplete digraph on n vertices.

1. Run the algorithm in Proposition 18 and construct a coloring family F .
2. For each f ∈ F , perform the following steps:

(i). For each i ∈ [2d
√
ke], consider Di, the subgraph of D induced by f−1(i), and

perform the following steps.
(a). Find a Hamiltonian path Pi in Di. Then, Pi is a path from αi to βi for some

αi, βi ∈ V (Di).
(b). Let Xi = {x ∈ V (Di) | can(x) = Rc

D} and Yi = {y ∈ V (Di) | can(y) = Lc
D}.

For 1 ≤ j ≤ |Xi|, let xj be the jth vertex of Pi that belongs to Xi as we
traverse Pi from αi to βi. For 1 ≤ p ≤ |Yi|, let yp be the pth vertex of Pi that
belongs to Yi as we traverse rev(Pi) from βi to αi (see Figure 1).

(c). For each pair (`i, qi), where 0 ≤ `i ≤ min {|Xi|, 2k} and 0 ≤ qi ≤ min {|Yi|, 2k},
construct a partition (L`i,qi

, R`i,qi
) of V (Di) as follows. For every j ≤ `i, assign

xj to L`i,qi , and for every p ≤ qi, assign yp to R`i,qi . For every other vertex
z ∈ V (Di), assign z to L`i,qi

if can(z) = Lc
D, and assign z to R`i,qi

otherwise.
(ii). For each tuple t = (t1, t2, . . . , t2d√ke), ti = (`i, qi) for some 0 ≤ `i ≤ min {|Xi|, 2k}

and 0 ≤ qi ≤ min {|Yi|, 2k} such that (L`i,qi
R`i,qi

) is a one way partition of V (Di),
perform the following step.
(a). Construct a partition (Lf

t , R
f
t) of V (D) as follows: Lf

t =
⋃

i L`i,qi
and Rf

t =⋃
i R`i,qi

. If (Lf
t , R

f
t) is a bisection of D of size at most k, then return that

(D, k) is a yes-instance and terminate.
3. Return that (D, k) is a no-instance.

We have thus proved the following theorem.

I Theorem 21. Minimum Directed Bisection on semicomplete digraphs admits a
2O(
√

k log k)nO(1) time algorithm.

6 Polynomial Kernel for Minimum Directed Bisection on
Semicomplete Digraphs

In this section, we design a polynomial kernel for the Minimum Directed Bisection
problem on semicomplete digraphs. Specifically, we prove the following theorem.

I Theorem 22. There is a polynomial time algorithm that, given an instance (D, k) of
Minimum Directed Bisection where D is a semicomplete digraph, produces an equivalent
instance (D′, k′) of Minimum Directed Bisection such that max {|V (D′)|, k′} ≤ kO(1).

Throughout this section, D denotes a semicomplete digraph on n vertices and k a non-
negative integer. Given an instance (D, k) of Minimum Directed Bisection, our kernel
proceeds as follows. In the first step, we reduce the instance (D, k) to an equivalent instance of
ALO-WMB (defined in Section 2), whose size is bounded by kO(1). As ALO-WMB belongs
to the class NP (see Remark 13), and Minimum Directed Bisection is NP-complete (see
Lemma 16), we know that ALO-WMB admits a polynomial time reduction to Minimum
Directed Bisection. In the second step, we apply this reduction to the kO(1)-sized
ALO-WMB instance to obtain an equivalent instance of Minimum Directed Bisection
of size kO(1). And in order to reduce Minimum Directed Bisection to ALO-WMB in
the first step, we use an (n, 2k, 4k2)-splitter. Using such a splitter, we construct kO(1) many
instances of Weighted Minimum Bisection (WMB) such that each one of these instances
has size kO(1), and at least one of them is equivalent to our original instance (D, k).

J. Madathil, R. Sharma, and M. Zehavi 28:11

I Remark 23 (Assumption about k). In this section, given an instance (D, k) of Minimum
Directed Bisection, we assume that logn ≤ k. Otherwise, if logn > k, then we have
n > 2k > 2

√
k log k. But this implies that Algorithm 1 runs in time polynomial in n. That is,

if logn > k, then we can solve Minimum Directed Bisection on semicomplete digraphs
in polynomial time.

Terminology. In what follows, we use the following definitions and notations. Consider an
instance (D, k) of Minimum Directed Bisection. Let (L,R) be a bisection of D. Let
S be the set of endpoints of the arcs in A(R,L), i.e. S = V (A(R,L)). For some positive
integer ` ≥ |S|, let f : V (D)→ [`] be a function that splits S evenly. For each i ∈ [`] such
that f−1(i) 6= ∅, let Di, Pi, αi, βi, Xi, Yi, xj and yp be as defined in Algorithm 1. Since f
splits S evenly, and ` ≥ |S|, the function f is injective on S. Therefore, no arc of Di belongs
to A(R,L). Moreover, note that V (Di) is the disjoint union of Xi and Yi.

Fix i ∈ [`]. We say that a vertex z ∈ V (Di) is marked if z = xj for some xj ∈ Xi with
j ≤ 2k, or if z = yp for some yp ∈ Yi with p ≤ 2k. Otherwise, we say that z is unmarked.
That is, the first 2k of vertices of Pi that belong to Xi, and the last 2k vertices of Pi that
belong to Yi are marked. All other vertices are unmarked. (Here, first and last are defined
with respect to the traversal of Pi from αi to βi.) Therefore, in light of Lemma 11, if (L,R)
is of size at most k, and (L,R) violates the canonical position of a vertex v ∈ V (Di), then v
is a marked vertex. In other words, every bisection of D of size at most k, if such a bisection
exists, respects the canonical position of every unmarked vertex. Let Mi denote the set of all
marked vertices in V (Di).

Let ni = |V (Di)|. For r ∈ [ni], let vr be the rth vertex of Pi as we traverse Pi from αi to
βi. That is, Pi = (αi =)v1v2 . . . vni(= βi).

I Observation 24. We have |Mi| = |Mi ∩Xi|+ |Mi ∩ Yi| ≤ 2k + 2k = 4k. If vr ∈ Xi ∩Mi,
then for every vs ∈ Xi with s ≤ r, we have vs ∈ Mi. Similarly, if vr ∈ Yi ∩Mi, then for
every vs ∈ Yi with s ≥ r, we have vs ∈Mi.

For r, s ∈ [ni], r ≤ s, let P r,s
i denote the subpath of Pi from vertex vr to vertex vs. Also,

we say that the subpath P r,s
i is monochromatic if for every r ≤ j ≤ s, the vertex vj is

unmarked, and can(vj) = can(vr). And we say that a monochromatic subpath P r,s
i is a

maximal monochromatic subpath if there is no monochromatic subpath of Pi that strictly
contains P r,s

i . That is, a maximal monochromatic subpath is a maximal subpath of Pi such
that all its vertices are unmarked and have the same canonical positions.

I Lemma 25 (?). Assume that (D, k) is a yes-instance and that (L,R) is a bisection of D
of size at most k. Then for every i, the path Pi has at most 4k + 2 maximal monochromatic
subpaths.

The above lemma shows that V (Di) \Mi can be partitioned into at most 4k+ 2 maximal
monochromatic subpaths. Additionally, V (Di) contains at most 4k marked vertices. Let
Pf,i denote this partition of V (Di) into 4k + 2 + 4k = 8k + 2 parts. That is, every part in
Pf,i is either the set of vertices of a maximal monochromatic subpath of Pi or a singleton
set consisting of a marked vertex. We call Pf,i the monochromatic partition of V (Di).

I Lemma 26 (?). Assume that (D, k) is a yes-instance and that (L,R) is a bisection of D
of size at most k. Then, for every part Z ∈ Pf,i, either Z ⊆ L or Z ⊆ R.

MFCS 2019

28:12 Minimum Directed Bisection on Semicomplete Digraphs

Kernel. Our kernelization algorithm works as follows. Given (D, k), we begin by using
Proposition 2 to construct an (n, 2k, 4k2)-splitter F ′ in time kO(1)n logn. By Proposition
2 and Remark 23, we get that |F ′| = kO(1). For each function f ∈ F ′, we do as follows.
For each i ∈ [4k2] such that f−1(i) 6= ∅, we find a Hamiltonian path Pi in Di. We say
that f ∈ F is a good function if for every i ∈ [4k2] such that f−1(i) 6= ∅, the path Pi has
at most 4k + 2 maximal monochromatic subpaths. Let F ⊆ F ′ be the collection of good
functions in F . We now compute the monochromatic partition Pf,i of V (Di). Note that
|Pf,i| ≤ 8k+ 2. Let Pf be the partition of V (D) obtained by taking the union of Pi for all i,
that is, Pf =

⋃
i∈[4k2] Pf,i. We have |Pf | ≤ 4k2 · (8k + 2) = kO(1). This completes the first

step our kernelizaition algorithm. Observe that this step can be executed in time kO(1)nO(1).
Now, construct the Pf -weighted contraction of D, (with weight function wPf

), and denote
it by Hf . Note that |V (Hf)| = |Pf | = kO(1). As every vertex v ∈ V (Hf) corresponds to a
part of Pf of size at most n, we have wPf

(v) = |part(v)| ≤ n for every vertex v ∈ V (Hf).
Hence, |wPf

(v)| ≤ logn ≤ k for every v ∈ V (Hf) (by Remark 23). Thus, Hf is a vertex-
weighted semicomplete digraph with kO(1) vertices and further, the weight of each vertex in
V (Hf) can be encoded using kO(1) bits. This is the second step of our kernel. Observe that
this step also runs in time polynomial in n.

Now, consider the instance ({(Hf , wPf
) | f ∈ F}, k) of ALO-WMB. Note that the size

of the ALO-WMB instance ({(Hf , wPf
) | f ∈ F}, k) is bounded by kO(1). The following

lemma shows the equivalence of this instance to (D, k).

I Lemma 27 (?). The instance (D, k) is a yes-instance of Minimum Directed Bisection
if and only if ({(Hf , wPf

) | f ∈ F}, k) is a yes-instance of ALO-WMB.

Note that the first two steps of the kernel – up to the construction of the ALO-WMB
instance ({(Hf , wPf

) | f ∈ F}, k) – runs in polynomial time. Finally, we use the polynomial
time reduction in Remark 17 to reduce the instance ({(Hf , wPf

) | f ∈ F}, k) of ALO-WMB
to an equivalent instance (D′, k′) of Minimum Directed Bisection on semicomplete
digraphs. As the size of the instance ({(Hf , wPf

) | f ∈ F}, k) is bounded by kO(1), this
reduction runs in time polynomial in k. We thus conclude that the size of the instance
(D′, k′) is also bounded by kO(1). This completes the proof of Theorem 22.

7 Conclusion

We studied the Minimum Directed Bisection problem from the parameterized complexity
perspective. In particular, we gave an algorithm with running time 2O(

√
k log k) · nO(1) and a

polynomial kernel for Minimum Directed Bisection on semicomplete digraphs. Some
natural questions that arise from this work are: can the log k dependence on the exponent in
the running time be removed? How far can we reach in improving the size of the kernel? In
particular, can one prove a lower bound/existence of a linear/quadratic kernel for Minimum
Directed Bisection on semi-complete digraphs? We also believe that our technique of
employing splitters can be generalized for the design of kernels for many problems, especially
the ones that admit algorithms crucially using chromatic coding. At least, for such problems,
the use of splitters can “simulate” the effects of chromatic coding that are sufficient for
kernelization.

J. Madathil, R. Sharma, and M. Zehavi 28:13

References
1 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Automata, Languages and

Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009,
Proceedings, Part I, pages 49–58, 2009. doi:10.1007/978-3-642-02927-1_6.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

3 Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs - theory, algorithms and applications.
Springer, 2002.

4 Florian Barbero, Christophe Paul, and Michal Pilipczuk. Exploring the Complexity of Layout
Parameters in Tournaments and Semicomplete Digraphs. ACM Trans. Algorithms, 14(3):38:1–
38:31, 2018. doi:10.1145/3196276.

5 Florian Barbero, Christophe Paul, and Michal Pilipczuk. Strong immersion is a well-quasi-
ordering for semicomplete digraphs. Journal of Graph Theory, 90(4):484–496, 2019. doi:
10.1002/jgt.22408.

6 Stéphane Bessy, Fedor V Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket
Saurabh, and Stéphan Thomassé. Kernels for feedback arc set in tournaments. Journal of
Computer and System Sciences, 77(6):1071–1078, 2011.

7 Thang Nguyen Bui and Andrew Peck. Partitioning Planar Graphs. SIAM J. Comput.,
21(2):203–215, 1992. doi:10.1137/0221016.

8 Paul Camion. Chemins et circuits hamiltoniens des graphes complets. Comptes Rendus
Hebdomadaires des Séances de l’Académie des Sciences, 249(21):2151–2152, 1959.

9 Maria Chudnovsky and Paul D. Seymour. A well-quasi-order for tournaments. J. Comb.
Theory, Ser. B, 101(1):47–53, 2011. doi:10.1016/j.jctb.2010.10.003.

10 M Cygan, F V Fomin, L Kowalik, D Lokshtanov, D Marx, M Pilipczuk, M Pilipczuk, and
S Saurabh. Parameterized algorithms. Springer, 2015.

11 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed parameter tractable. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 323–332, 2014. doi:
10.1145/2591796.2591852.

12 Josep Díaz and George B. Mertzios. Minimum Bisection Is NP-hard on Unit Disk Graphs. In
Mathematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS
2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, pages 251–262, 2014.
doi:10.1007/978-3-662-44465-8_22.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algorithms, 8(1):76–86,
2010. doi:10.1016/j.jda.2009.08.001.

15 Uriel Feige. Faster FAST(Feedback Arc Set in Tournaments). CoRR, abs/0911.5094, 2009.
arXiv:0911.5094.

16 Uriel Feige and Orly Yahalom. On the complexity of finding balanced oneway cuts. Inf.
Process. Lett., 87(1):1–5, 2003. doi:10.1016/S0020-0190(03)00251-5.

17 Fedor V. Fomin and Michal Pilipczuk. Subexponential Parameterized Algorithm for Computing
the Cutwidth of a Semi-complete Digraph. In Algorithms - ESA 2013 - 21st Annual European
Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 505–516, 2013.
doi:10.1007/978-3-642-40450-4_43.

18 Alexandra Fradkin. Forbidden structures and algorithms in graphs and digraphs. PhD thesis,
Princeton University, 2011.

19 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified NP-Complete Graph
Problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)90059-1.

MFCS 2019

https://doi.org/10.1007/978-3-642-02927-1_6
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/3196276
https://doi.org/10.1002/jgt.22408
https://doi.org/10.1002/jgt.22408
https://doi.org/10.1137/0221016
https://doi.org/10.1016/j.jctb.2010.10.003
https://doi.org/10.1145/2591796.2591852
https://doi.org/10.1145/2591796.2591852
https://doi.org/10.1007/978-3-662-44465-8_22
https://doi.org/10.1016/j.jda.2009.08.001
http://arxiv.org/abs/0911.5094
https://doi.org/10.1016/S0020-0190(03)00251-5
https://doi.org/10.1007/978-3-642-40450-4_43
https://doi.org/10.1016/0304-3975(76)90059-1

28:14 Minimum Directed Bisection on Semicomplete Digraphs

20 Klaus Jansen, Marek Karpinski, Andrzej Lingas, and Eike Seidel. Polynomial Time Approx-
imation Schemes for MAX-BISECTION on Planar and Geometric Graphs. SIAM J. Comput.,
35(1):110–119, 2005. doi:10.1137/S009753970139567X.

21 Marek Karpinski and Warren Schudy. Faster Algorithms for Feedback Arc Set Tournament,
Kemeny Rank Aggregation and Betweenness Tournament. In Algorithms and Computation
- 21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17, 2010,
Proceedings, Part I, pages 3–14, 2010. doi:10.1007/978-3-642-17517-6_3.

22 Ilhee Kim. On containment relations in directed graphs. PhD thesis, Princeton University,
2013.

23 Ilhee Kim and Paul D. Seymour. Tournament minors. J. Comb. Theory, Ser. B, 112:138–153,
2015. doi:10.1016/j.jctb.2014.12.005.

24 Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effectiveness of
digraph decompositions and complexity measures. Discrete Optimization, 8(1):129–138, 2011.
doi:10.1016/j.disopt.2010.03.010.

25 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/j.tcs.2005.10.007.

26 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and Near-Optimal
Derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995, pages 182–191, 1995. doi:10.1109/SFCS.1995.492475.

27 Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction Decomposition in Unit Disk
Graphs and Algorithmic Applications in Parameterized Complexity. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1035–1054, 2019. doi:10.1137/1.9781611975482.
64.

28 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 255–264, 2008. doi:10.1145/1374376.1374415.

29 L Rédei. Ein kombinatorischer Satz. Satz. Acta Litt. Szeged, 7:39–43, 1934.

https://doi.org/10.1137/S009753970139567X
https://doi.org/10.1007/978-3-642-17517-6_3
https://doi.org/10.1016/j.jctb.2014.12.005
https://doi.org/10.1016/j.disopt.2010.03.010
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1137/1.9781611975482.64
https://doi.org/10.1137/1.9781611975482.64
https://doi.org/10.1145/1374376.1374415

The Quantifier Alternation Hierarchy of
Synchronous Relations
Diego Figueira
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France
CNRS, ReLaX, UMI2000, Siruseri, India
diego.figueira@labri.fr

Varun Ramanathan
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France
CNRS, ReLaX, UMI2000, Siruseri, India
varun.ramanathan@labri.fr

Pascal Weil
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France
CNRS, ReLaX, UMI2000, Siruseri, India
pascal.weil@labri.fr

Abstract
The class of synchronous relations, also known as automatic or regular, is one of the most studied
subclasses of rational relations. It enjoys many desirable closure properties and is known to be
logically characterized: the synchronous relations are exactly those that are defined by a first-order
formula on the structure of all finite words, with the prefix, equal-length and last-letter predicates.
Here, we study the quantifier alternation hierarchy of this logic. We show that it collapses at level
Σ3 and that all levels below admit decidable characterizations. Our results reveal the connections
between this hierarchy and the well-known hierarchy of first-order defined languages of finite words.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Transducers

Keywords and phrases synchronous relations, automatic relations, first-order logic, characterization,
quantifier alternation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.29

Funding Work supported by ANR DeLTA, grant ANR-16-CE40-0007.

1 Introduction

We study classes of relations on finite words, within the class of rational relations. Synchronous
relations [8] – also studied as regular relations [3] and automatic relations [5] – form a subclass
of rational relations which is well-behaved from many standpoints. Contrary to rational
relations, they enjoy crucial effective properties such as closure under intersection and
complement. As a consequence, most paradigmatic problems are decidable for synchronous
relations, in the same way as they are for regular languages. Further, they admit clean
characterizations both in terms of automata and logic, providing yet more evidence of the
connections between logic, formal languages and automata. Due to this good behavior, this
class finds various applications in verification [6, 1], automatic structures [5], the theory of
transducers and database theory [2].

Synchronous relations contain natural relations such as equality, prefix, or equal-length.
In fact, any letter-to-letter transduction, alphabetic morphism or length-preserving rational
relation lies within synchronous relations [4].

Synchronous relations are those that are accepted by multi-tape finite automata. A
k-tape automaton over an alphabet A can be naturally seen as an NFA over the alphabet of

© Diego Figueira, Varun Ramanathan, and Pascal Weil;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego.figueira@labri.fr
mailto:varun.ramanathan@labri.fr
mailto:pascal.weil@labri.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 The Quantifier Alternation Hierarchy of Synchronous Relations

k-tuples Â = (A ∪ {⊥})k that reads k input words w1, . . . , wk ∈ A∗ simultaneously, from left
to right, the i-th transition reading the tuple from Â composed of the i-th letters of each
word wj (or ⊥ if i > |wj |). Synchronous relations can also be described as finite unions of
the componentwise concatenation of a length-preserving rational relation with a recognizable
relation – two other well-studied classes of relations [4].

On the other hand, relations can be defined by logical formulæ interpreted on words
in A∗: a formula ϕ with free variables z1, . . . , zk defines the k-ary relation of all tuples
(w1, . . . , wk) such that ϕ holds with the interpretation zi 7→ wi (1 ≤ i ≤ k). Eilenberg, Elgot
and Shepherdson [9] showed that a relation is synchronous if, and only if, it can be defined
in this way by a first-order formula using the prefix, equal-length and last letter predicates.

This characterization opens the possibility of exploring classes of synchronous relations
specified by fragments of first-order logic. In the present work, we study the quantifier
alternation hierarchy in this logic, that is, the classes of relations defined by formulæ with
a bounded number of alternations of existential and universal quantifier blocks. This is a
natural way of providing small, well-behaved classes (closed under boolean combinations) of
synchronous relations. We show that the hierarchy collapses at level Σ3 and we give clean
combinatorial characterizations for its different layers, namely Σ1, its boolean closure BΣ1, Σ2
and BΣ2. These characterizations reveal strong links with the classical Σ1- and Σ2- fragments
of the first-order theory on finite words with the order < relation and letter predicates.
Interestingly, the notion of subwords, which plays a central role in the characterization of
Σ1[<] and BΣ1[<], must be replaced here by the more subtle notion of synchronized subwords.

We also show that these characterizations are decidable: given a synchronous relation,
one can decide whether it is defined by a formula in Σ1 (resp. BΣ, Σ2, BΣ2). Our results
provide therefore a complete decision procedure for the alternation hierarchy of synchronous
relations.

Section 2 introduces technical preliminaries. Our main results are all stated in Section 3,
and their proofs are given in the ensuing sections: Section 4 for the collapse of the hierarchy,
Section 5 for what concerns the Σ1- and BΣ1-fragments and Section 6 for the Σ2- and
BΣ2-fragments.

2 Preliminaries

For any set A and ā ∈ Ak, we denote by ā(i) its i-th component, an element of A. If w ∈ A∗
is a word, we denote by |w| its length and, for any 1 ≤ i ≤ j ≤ |w|, by w[i] the letter of w
in i-th position, and by w[i..j] the factor w[i] · · ·w[j] of w between positions i and j. To
simplify notation, we let w[i..j] = ε (the empty word) whenever 1 ≤ i ≤ j ≤ |w| does not
hold. If u, v are words, we let u u v be the longest common prefix of u and v.

We will consider relations of a fixed arity k ≥ 2, over a fixed alphabet A with at least
two letters. Let ⊥ be a symbol not in A, and let A⊥ = A ∪ {⊥}. We will often work with
the alphabet Ak⊥, the direct product of k copies of A⊥.

Synchronous relations

Given w1, . . . , wk ∈ A∗, we define the synchronized word w̄ of the tuple (w1, . . . , wk), written
w̄ = w1 ⊗ · · · ⊗ wk, to be the word in (Ak⊥)∗ such that:
|w̄| = max(|w1|, . . . , |wk|); and
for every i ∈ {1, . . . , |w̄|} and j ∈ {1, . . . , k}, we have w̄[i](j) = wj [i] if i ≤ |wj |, and
w̄[i](j) = ⊥ otherwise.

D. Figueira, V. Ramanathan, and P. Weil 29:3

For example, abba ⊗ c ⊗ de = (a, c, d)(b,⊥, e)(b,⊥,⊥)(a,⊥,⊥). We let SWk be the set
of all k-synchronized words, that is, SWk = {w1 ⊗ · · · ⊗ wk : w1, . . . , wk ∈ A∗}. For
S = {s1, . . . , sn} ⊆ {1, . . . , k} such that s1 < · · · < sn, we define the projection πS : SWk →
(An⊥)∗ as πS(w1 ⊗ · · · ⊗ wk) = ws1 ⊗ · · · ⊗ wsn . In the case of a singleton S = {i}, note that
πS : SWk → A∗, and we simply write πi. If R ⊆ (A∗)k is a k-ary relation, the synchronized
language of R, denoted by LR, is the language {w1 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ R} ⊆ (Ak⊥)∗.
The relation R is said to be synchronous if LR is regular. The set of synchronous relations,
of arbitrary arity, is denoted by Sync.

MSO over finite words

In the classical setting introduced by Büchi (see [21]), languages over an alphabet A are
described by formulæ interpreted over the set of positions of a finite word, using the binary
word ordering predicate < and the unary letter predicates a (a ∈ A) – where a(i) holds if the
word carries letter a in position i. Büchi’s Theorem [7, 21] states that a language is regular
if and only if it is definable by a closed monadic second order formula in this logic, written
MSO[<, {a}a∈A], or MSO[<] if A is understood. If ϕ is a closed formula in MSO[<], we
let |ϕ| be the language in A∗ it defines, and if F is a set of formulæ, |F| denotes the class
{|ϕ| : ϕ ∈ F}.

First-order formulæ in Büchi’s logic define a strict subclass of regular languages, that of
star-free languages (see [19, 12, 21, 22]). The quantifier alternation hierarchy within FO[<]
forms a strict infinite hierarchy, and it has been the object of intense study (see [17, 18] for
an overview). In the sequel, we will only use results regarding the Σ1, BΣ1, Σ2 and BΣ2
fragments of FO[<], possibly enriched with the constant predicate max, which stands for the
last position in a word (see below in this section and Section 6). Recall that B designates the
boolean closure; that Σ1 is the set of existential formulæ, of the form ∃z1 · · · ∃zn ϕ with ϕ
quantifier-free; and that Σ2 consists in the formulæ of the form ∃z1 · · · ∃zn ϕ with ϕ in BΣ1.
The Πi fragment consists of the negations of the formulæ in Σi (e.g., Π1 are all formulæ
of the form ∀z1 · · · ∀zn ϕ with ϕ quantifier-free). We will sometimes write FO[<](A∗) (or
fragments thereof) when we want to make explicit the alphabet A we work with.

FO over the structure of all finite words

We now turn to the signature introduced by Eilenberg et al. [9] to discuss synchronous
relations over A∗, namely σ = [�, eq, (`a)a∈A]. These predicates are interpreted as follows:

(w1, w2) |= x � y if and only if w1 is a prefix of w2;
(w1, w2) |= eq(x, y) if and only if w1 and w2 have equal length;
w |= `a(x) if and only if the last letter of w is a.

Every formula ϕ with free variables z1, . . . , zk defines a k-ary relation written ‖ϕ‖, namely:

‖ϕ‖ = {(w1, . . . , wk) ∈ (A∗)k : (w1, . . . , wk) |= ϕ}.

Let FO[σ] denote the set of first order formulæ with signature σ, and for any F ⊆ FO[σ] let
‖F‖ denote the set of relations definable by formulæ in F . For convenience, we write x ≺ y
for (x � y) ∧ ¬(y � x), and Lϕ for L‖ϕ‖. For example, ϕ(x1, x2, x3) = (x3 � x1) ∧ (x3 �
x2) ∧ ∀z (x3 ≺ z → ¬(z � x1 ∧ z � x2)) defines the set ‖ϕ‖ of all triples (w1, w2, w3) such
that w3 = w1 u w2.

MFCS 2019

29:4 The Quantifier Alternation Hierarchy of Synchronous Relations

Types and type sequences

For a letter ā = (a1, . . . , ak) ∈ Ak⊥, the type of ā is the subset of {1, . . . , k}2 type(ā) =
{(i, j) : ai = aj 6= ⊥}. The type of a synchronized word w̄ = ā1 · · · ān is given by
type(w̄) =

⋂
1≤i≤n type(āi). For example, type((a,⊥, a, b)) = {(1, 3), (3, 1), (1, 1), (3, 3), (4, 4)}

and type((a,⊥, a, b)(⊥,⊥, b, b)) = {(3, 3), (4, 4)}.
In particular, if w̄ ∈ SWk, the successive values T1) T2 · · ·) Tn taken by the types

of the prefixes of w̄ form the type sequence of w̄, written type-seq(w̄). In such a sequence,
we say that Ti is an end type if either i = n, or (j, j) ∈ Ti \ Ti+1 for some j ≤ k – that is,
if w̄ = w1 ⊗ · · · ⊗ wk, Ti is an end type in type-seq(w̄) if the length of the longest prefix
of w̄ of type Ti is equal to |wj | for some j. If T is a type, we let AT be the set of T -
compatible letters, AT = {ā ∈ Ak⊥ : T ⊆ type(ā) ⊆ T ?}, where T ? = {(i, j) : (i, i), (j, j) ∈ T};
and let A−,T = {ā ∈ Ak⊥ : T = type(ā)}. If T ′ is a type such that T (T ′, we also let
AT ′,T = {ā ∈ Ak⊥ : T = T ′ ∩ type(ā)}. Hence, if w̄ā ∈ SWk and w̄ has type T (resp. T ′),
then type(w̄ā) = T if and only if ā ∈ AT (resp. T (T ′ and ā ∈ AT ′,T).

It follows that, if T̄ = (T1, . . . , Tn) is a type sequence and K(T̄) is the set of synchronized
words w̄ such that type-seq(w̄) = T̄ , then

K(T̄) = A−,T1A∗T1
AT1,T2A∗T2

· · ·ATn−1,TnA∗Tn
. (1)

Note that this product of languages is deterministic, that is, given w̄, we can determine
type-seq(w̄) and its unique factorization in the product (1) by reading w̄ from left to right:
the first letter determines T1, the next factor is the longest written in AT1 , the first letter
not in AT1 (together with T1) determines T2, etc.

If w̄ = w̄1 · · · w̄n is this factorization, with w̄i ∈ ATi−1,Ti
A∗Ti

for each i (AT−,Ti
A∗Ti

for
i = 1), we say that w̄i is the i-th type factor of w̄, written type-factori(w̄).

Synchronized subwords

We denote by v the (scattered) subword relation on A∗ (sometimes called subsequence):
if u, v ∈ A∗, we have u v v if there exists a strictly increasing function p : {1, . . . , |u|} →
{1, . . . , |v|}, called the witness function, such that, for all i ∈ {1, . . . , |u|}, u[i] = v[p(i)].

Given w̄ = w1⊗· · ·⊗wk and w̄′ = w′1⊗· · ·⊗w′k, we say that w̄ is a synchronized subword
of w̄′, denoted by w̄ vs w̄

′ if and only if w̄ v w̄′, with a witness function p which is
type preserving: type(w̄[1..i]) = type(w̄′[1..p(i)]) for all 1 ≤ i ≤ |w̄|; and
end preserving: p(|wj |) = |w′j | for all j ∈ {1, . . . , k}.

I Lemma 1. For ū, ū′ ∈ SWk with type sequences T̄ and T̄ ′, we have ū vs ū
′ if and only

if T̄ is a subsequence of T̄ ′ with a witness function t : {1, . . . , |T̄ |} → {1, . . . , |T̄ ′|} such that,
for every i, the i-th type factor of ū is a subword of the t(i)-th type factor of ū′, and they
further have the same last letter if T̄i is an end type of T̄ .

Proof. Suppose first that ū vs ū
′ and let p : {1, . . . , |ū|} → {1, . . . , |ū′|} be a witness function.

Let T̄ and T̄ ′ be the type sequences of ū and ū′ and let ū = ū1 · · · ūn, ū′ = ū′1 · · · ū′m be the
type factorizations of ū and ū′. For each 1 ≤ i ≤ n, if v̄i = ū1 · · · ūi, then Ti = type(v̄i) =
type(ū′[1..p(|v̄i|)]), so T̄ is a subsequence of T̄ ′. Let t(i) be such that T ′t(i) = Ti. Since p is
type-preserving, the factor ūi is a subword of ū′t(i). Both have the same last letter if Ti is an
end type for ū, since p is end-preserving.

Conversely, suppose that Ti = T ′t(i) and that ūi v ū′t(i), with witness function pi (with
domain {1, . . . , |ūi|}). Let p be the function on {1, . . . , |ū|} obtained by “concatenating”
the pi: p(|ū1 · · · ūi−1|+ h) = |ū′1 · · · ū′t(i)−1|+ pi(h). It is directly verified that p witnesses
ū vs ū

′. J

D. Figueira, V. Ramanathan, and P. Weil 29:5

Given a quasi-order � over a domain X, the �-upward closure of an element x ∈ X is
the set ↑�x = {x′ ∈ X : x � x′}. If S ⊆ X, we also let ↑�S =

⋃
x∈S ↑� x. Finally, S is

�-upward closed if S = ↑�S. Henceforward, we write ↑w and ↑S as short for ↑vw and ↑vS;
and we write ↑sw̄ and ↑sS as short for ↑vsw and ↑vsS.

A well-quasi-order (wqo) is a quasi-order (X,�) such that for every infinite sequence
(xi)i∈N of elements of X, there exist i < j such that xi � xj . A crucial observation is that, if
� is a wqo, then any set has a finite number of �-minimal elements.

It is a classical result (Higman’s lemma [10], see also [11, chap. 6]) that the subword
order on A∗ is a wqo. Unsurprisingly, the same holds for the synchronized subword order.

I Proposition 2. For every k, (SWk,vs) is a well-quasi-order.

Proof. If (w̄n)n is an infinite sequence of elements of SWk, we can extract an infinite
subsequence of elements with the same type sequence T̄ = (T1, . . . , Tn) (since there are only
finitely many type sequences). Similarly, we can further extract an infinite subsequence
where, for each end type Ti, all the i-th type factors end with the same letter.

On this subsequence, vs coincides with the intersection of the subword order applied to
each of the n type factors. The result follows since the subword order is a wqo and wqo’s are
closed under intersection. J

Bounded subword and synchronized subword classes

It is well-known [21] that |Σ1[<]| is the set of languages of the form ↑S, where S is a set of
words (which can be assumed to be finite by the wqo property). Similarly, |BΣ1[<]| is the
set of finite unions of languages of the form ↑S \ ↑S ′, where S,S ′ are finite sets of words. For
h ∈ N, let ∼h be the equivalence relation on A∗ defined by w1 ∼h w2 if and only if w1 and
w2 have the same subwords of length at most h. Then we also know [13, 21] that |BΣ1[<]|
is the set of finite unions of ∼h-classes, also known as the set of piecewise testable languages.

We introduce analogous definitions for synchronized subwords. If h ∈ N, we let ≈h be
the equivalence relation on synchronized words defined by w̄1 ≈h w̄2 if w̄1 and w̄2 have the
same set of synchronized subwords of length less than or equal to h. We let Vh be the set of
equivalence classes of ≈h and V̄h be its Boolean closure. Finally, we let V̄ =

⋃
h∈N V̄h.

3 Summary of results

We start with an overview of our main results. Their proofs are discussed in the next sections.
Theorem 3 refines the already mentioned 1969 result of Eilenberg et al. [9], which states that
the relations definable in ‖FO[σ]‖ are exactly the synchronous relations.

I Theorem 3. For any alphabet having at least two letters,

‖Σ1[σ]‖ (‖BΣ1[σ]‖ (‖Σ2[σ]‖ (‖BΣ2[σ]‖ (‖Σ3[σ]‖ = ‖FO[σ]‖ = Sync.

The characterizations of the Σ1[σ]- and the BΣ1[σ]-fragments are in terms of synchronized
subwords, rather than ordinary subwords as in the case of word languages.

I Theorem 4. For any relation R, R ∈ ‖Σ1[σ]‖ if and only if LR = ↑sLR.

I Theorem 5. For any relation R, R ∈ ‖BΣ1[σ]‖ if and only if LR ∈ V̄.

We note the following corollary of Theorem 4, which follows from the wqo property of
the synchronized subword order (Proposition 2).

MFCS 2019

29:6 The Quantifier Alternation Hierarchy of Synchronous Relations

I Corollary 6. For every formula ϕ ∈ Σ1[σ] with k free variables, there exists a finite set
S ⊆ SWk such that Lϕ = ↑sS.

In contrast, the characterizations of the Σ2[σ]- and the BΣ2[σ]-fragments reduce to the
corresponding logical fragments for word languages.

I Theorem 7. For any relation R, R ∈ ‖Σ2[σ]‖ if and only if LR ∈ |Σ2[<]|.

I Corollary 8. For any relation R, R ∈ ‖BΣ2[σ]‖ if and only if LR ∈ |BΣ2[<]|.

These characterizations can then be used to prove the decidability of the membership
problems for the different fragments of FO[σ].

I Theorem 9. Given a fragment F ∈ {Σ1[σ],BΣ1[σ],Σ2[σ],BΣ2[σ]} and a synchronous
relation R (say, an automaton accepting LR), it is decidable whether R ∈ ‖F‖.

I Remark 10. The decidability of membership in ‖Σ2[σ]‖ and ‖BΣ2[σ]‖ follows directly from
the decidability of |Σ2[<]| [15] and |BΣ2[<]| [16], see also [17].

4 Collapse of the alternation hierarchy

Here we prove Theorem 3. The equality ‖FO[σ]‖ = Sync was proved in [9]. The collapse
at level Σ3 is established by a folklore argument, in which the runs of a classical (1-tape)
automaton are first-order encoded using additional tapes.

Specifically, let R be a k-ary synchronous relation and let A be a DFA accepting the
language LR, with state set Q. We fix 0, 1, two distinct letters of A, which will be used to
encode the runs of A. If w̄ ∈ SWk and if q ∈ Q, we let uq be the word of length |w̄| which
carries the letter 1 at each position i such that A is in state q after reading the i first letters
of w̄, and carries letter 0 everywhere else.

A Σ3[σ]-formula ϕ with free variables z1, . . . , zk defining R is obtained as follows. A
tuple of variables Y = (yq)q∈Q is quantified existentially, and the rest of the formula, in
BΣ2[σ], verifies that the words uq (q ∈ Q) assigned to these variables encode the run of
A as above. More precisely, each of these words must have length |w̄| (verified in Π2[σ])
and at every position, exactly one of them carries a 1 (verified in Π1[σ]). Moreover, the
first letter of each uq must be 1 exactly when q is the state reached from the initial state
when reading the tuple of first letters of the words assigned to z1, . . . , zk; the notion of first
letter, or rather of length 1 prefix is Π2[σ]-definable. Similarly, the last state must be one of
the final states of A, which is readily verified using (without any quantifier) the last letter
predicates `a. Finally, the compatibility of the uq’s with the transitions of the run of A on w̄
can be encoded with a Π2[σ]-formula. Thus Sync is contained in ‖Σ3[σ]‖

We now turn to the proof of the strictness of containments in Theorem 3. We observe
that a unary relation on A is nothing but a language in A∗. In that case, the notion of
type is trivial, and w vs w

′ if and only if w v w′ and they have the same last letter. In
view of Theorems 4 and 5, it follows that a∗ is in ‖BΣ1[σ]‖ but not in ‖Σ1[σ]‖. The other
containments are strict because they are in the classical framework. This completes the proof
of Theorem 3.

5 Σ1[σ] and its boolean closure

We prove Theorems 4 and 5, and we exhibit a decision procedure for membership in (B)Σ1[σ].

D. Figueira, V. Ramanathan, and P. Weil 29:7

5.1 Characterization of Σ1[σ]

The proof of Theorem 4 is a consequence of the following three properties:
if ϕ is a formula of Σ1[σ], then Lϕ is vs-upward closed (Lemma 12 below);
the relation defined by the vs-upward closure of any synchronized word is Σ1[σ]-definable
(Lemma 13 below);
vs is a well-quasi-order on SWk (Proposition 2 above).

We first show how these three properties imply Theorem 4.

Proof of Theorem 4. If R is Σ1[σ]-definable, then LR = ↑sLR by Lemma 12. Conversely,
suppose that LR = ↑sLR and let S be a vs-minimal subset of LR, such that ↑sS = ↑sLR.
Since vs is a wqo by Proposition 2, S is finite, say, S = {w̄1, . . . , w̄m}. By Lemma 13, for every
1 ≤ i ≤ m, there exists a formula ϕi ∈ Σ1[σ] such that Lϕi = ↑sw̄i. Letting ϕ =

∨
1≤i≤m ϕi,

we see that Lϕ =
⋃

1≤i≤m ↑sw̄i = ↑sS = ↑sLR = LR, and hence R = ‖ϕ‖ ∈ ‖Σ1[σ]‖. J

Before we prove Lemma 12, we establish the following technical lemma.

I Lemma 11. Let w̄ = w1 ⊗ · · · ⊗ wk, and w̄′ = w′1 ⊗ · · · ⊗ w′k such that w̄ vs w̄
′. For all

u ∈ A∗, there exists u′ ∈ A∗ such that w̄ ⊗ u vs w̄
′ ⊗ u′.

Proof. Let p : {1, . . . , |w̄|} → {1, . . . , |w̄′|} be the witness function for w̄ vs w̄
′. Let s1 =

maxi≤k |u u wi| and ` ≤ k be such that |u u w`| = s1. Finally, let s2 = min(|w̄|, |u|), and
u[s1+1..s2] = a1 · · · am. That is, u = (uuw`) (a1 · · · am) u[s2+1..|u|], with the understanding
that u[s2 + 1..|u|] = ε if |u| ≤ |w̄|.

For 1 ≤ i ≤ m, let ni = p(s1 + i)− p(s1)− 1, and nm+1 = |w̄′| − p(s2). Let also z be an
arbitrary letter of A. We then define

u′ = w′`[1..p(s1)] zn1 a1 · · · znm am z
nm+1 u[s2 + 1..|u|].

Example. Let w̄ = w1 ⊗ w2, w̄′ = w′1 ⊗ w′2 and u be defined as follows.

` = 2

w1 = a b a b b a
w2 = a b b a b
u = a b b b a a b

w0
1 = a a b b a b b b b a b a

w0
2 = a a b b b a b a b

u0 = a a b b b z z b a a z z b

s1 s2

1 2 3 4 5 6 7 p(1) p(2)p(3) p(4) p(5)p(6)

u u w2 u0 u w0
2

| {z } | {z }
n1 n4n2 = n3 = 0

p0(7)

Now let p′ be the function defined on {1, . . . ,max(|w̄|, |u|)}, which extends p by letting
p′(|w̄|+ j) = |w̄′|+ j for 1 ≤ j ≤ |u| − |w̄|. We show that p′ is a witness for w̄⊗ u vs w̄

′⊗ u′.
By construction, p′ is increasing and (w̄⊗u)[i] = (w̄′⊗u′)[p′(i)] for every i ≤ max(|w̄|, |u|)

= |w̄⊗u|. We must now show that, for each such i, type((w̄⊗u)[1..i]) = type((w̄′⊗u)[1..p′(i)]),
and that p′(|u|) = |u′|. For convenience, we write w̄u for w̄ ⊗ u and w̄′u′ for w̄′ ⊗ u′.

If 1 ≤ i ≤ s1, then p′(i) = p(i), the u-component of each letter of w̄u[1..i] coincides
with its w`-component, and the u′-component of each letter of w̄′u′ [1..p(i)] coincides
with its w′`-component. It follows that type(w̄u[1..i]) is the symmetric transitive closure
of type(w̄[1..i]) ∪ {(`, k + 1)}. Similarly, type(w̄′u′ [1..p(i)]) is the symmetric transitive
closure of type(w̄′[1..p(i)]) ∪ {(`, k + 1)}. Since type(w̄[1..i]) = type(w̄′[1..p(i)]), we have
type(w̄u[1..i]) = type(w̄′u′ [1..p′(i)]). In particular, we have u[i] = w`[i] = w′`[p′(i)] =
u′[p′(i)]. If i = |u|, then s1 = i and, by definition, u′ = w′`[1..p(i)]. It follows that
|u′| = p(i) = p′(i).

MFCS 2019

29:8 The Quantifier Alternation Hierarchy of Synchronous Relations

If s1 < i ≤ s2, again we have p′(i) = p(i). Moreover, type(w̄u[1..i]) = type(w̄[1..i])∪ {(k+
1, k+1)} since the u-component differs from any other component on at least one position
less than or equal to i. For the same reason, type(w̄′u′ [1..p′(i)]) = type(w̄′[1..p(i)]) ∪ {(k +
1, k + 1)} = type(w̄u[1..i]). Also, by definition of the nj , we get u[i] = u′[p(i)] and, as
above, if i = |u|, we find that p(i) = p(|u′|).
If s2 < i ≤ |u|, then p′(i)− |w̄′| = i− |w̄| = |u[s2 + 1..i]|. In particular, p′(|u|) = |w̄′|+
|u[s2 + 1..i]| = |u′|. Moreover, type(w̄u[1..i]) = {(k + 1, k + 1)} = type(w̄′u′ [1..p′(i)]). J

I Lemma 12. If ϕ is a formula in Σ1[σ], then Lϕ is vs-upward closed.

Proof. First observe that if the synchronized words w̄ = w1⊗· · ·⊗wk and w̄′ = w′1⊗· · ·⊗w′k
satisfy w̄ vs w̄

′, then, for all i, j ∈ {1, . . . , k}, we have:
wi � wj if and only if w′i � w′j ;
|wi| = |wj | if and only if |w′i| = |w′j |;
if |wi| = |w′i| > 0, then wi and w′i have the same last letter.

We now proceed by induction on the number of quantified variables of ϕ. If ϕ is quantifier-free,
these three properties show that Lϕ is vs-upward closed.

If ϕ is not quantifier-free, we have ϕ(y1, . . . , yk) = ∃x ψ(y1, . . . , yk, x) for some ψ ∈ Σ1[σ].
Let w̄, w̄′ ∈ SWk such that w̄ vs w̄

′ and w̄ |= ϕ. Then there is u ∈ A∗ such that w̄ ⊗ u |= ψ.
By Lemma 11, there also exists u′ ∈ A∗ such that w̄ ⊗ u vs w̄

′ ⊗ u′. Since ‖ψ‖ is vs-upward
closed by induction, w̄′ ⊗ u′ |= ψ, and hence w̄′ |= ϕ. This completes the proof. J

I Lemma 13. If w̄ is a synchronized word, then the relation defined by ↑sw̄ is Σ1[σ]-definable.

Proof. Let w̄ = w1 ⊗ · · · ⊗ wk ∈ SWk. We define a formula ϕ(z1, . . . , zk) (dependent on w̄)
whose synchronized language is ↑sw̄, using existential quantification on a set consisting of
one variable for each wi and one for each position within wi. Formally, let X = {xi,j : 1 ≤
i ≤ k, 1 ≤ j ≤ |wi|}. Then ϕ(z1, . . . , zk) = ∃X.ψ(z1, . . . , zk, X), where ψ is the conjunction
of the following formulæ for every i ∈ {1, . . . , k}:
(1) zi = xi,|wi|;
(2) for every 1 ≤ j < |wi|: xi,j ≺ xi,j+1;
(3) for every 1 ≤ j ≤ |wi|: `wi[j](xi,j);
(4) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |}: eq(xi,j , xi′,j);
(5) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |} such that wi[1..j] = wi′ [1..j]: xi,j = xi′,j .

Let w̄′ = w′1 ⊗ · · · ⊗ w′k. First assume that w̄′ ∈ ↑sw̄: we want to show that w̄′ ∈ Lϕ.
Let p be a witness function for w̄ vs w̄

′. For each 1 ≤ i ≤ k and 1 ≤ j ≤ |wi|, let the
word w′i[1..p(j)] be assigned to variable xi,j . It is readily verified that (w′1, . . . , w′k) satisfies
ϕ(z1, . . . , zk) and hence w̄ ∈ ‖ϕ‖.

Conversely, suppose that w̄′ ∈ Lϕ. There exists an assignment α for the variables in ϕ
such that (w̄, α) � ϕ. We define a function p : {1, . . . , |w̄|} → {1, . . . , |w̄′|} as follows.

If 1 ≤ j ≤ |w̄|, there exists 1 ≤ i ≤ k such that j ≤ |wi|, and we let p(j) = |α(xi,j)|.
Condition (4) in the definition of ϕ shows that p is well-defined. Condition (2) shows that it
is increasing and Condition (3) shows that w̄[j] = w̄′[p(j)], so that p is a witness function
for w̄ v w̄′. Finally, Conditions (5) and (1) show that p is type- and end-preserving, thus
establishing that it is a witness for w̄ vs w̄′. J

5.2 Characterization of BΣ1[σ]
The following lemma establishes one of the implications of Theorem 5.

I Lemma 14. For every ϕ ∈ BΣ1[σ], Lϕ ∈ V̄.

D. Figueira, V. Ramanathan, and P. Weil 29:9

Proof. By a standard transformation, ϕ is logically equivalent to a formula
∨n
i=1 ψi ∧ ψ′i

in disjunctive normal form, where ψi ∈ Σ1[σ] and ψ′i ∈ Π1[σ] for every i. By Corollary 6,
there exist finite sets Si and S ′i (1 ≤ i ≤ n) of synchronized words such that Lψi

= ↑sSi and
L¬ψ′

i
= ↑sS ′i. Let S =

⋃n
i=1 Si ∪ S ′i and let h = max{|ū| : ū ∈ S}.

If w̄, w̄′ are synchronized words such that w̄ ≈h w̄′, then w̄ and w̄′ have the same
synchronized subwords of length at most h, and hence the same synchronized subwords in
each Si and each S ′i (since these sets contain only words of length at most h). If w̄ ∈ Lϕ,
then for some i, w̄ contains a synchronized subword in Si and none in S ′i. The same holds
therefore for w̄′, and w̄′ ∈ Lϕi∧ψ′i . Thus w̄

′ ∈ Lϕ, which completes the proof. J

To establish the converse implication, we consider h ∈ N and L ∈ V̄h, such that L is a
finite union of ≈h-classes [w̄1]h, . . . , [w̄n]h, and we show that L = Lϕ for some ϕ ∈ BΣ1[σ].

For each 1 ≤ i ≤ n, let Si be the set of synchronized subwords of w̄i of length at most h,
and S ′i be the complement of Si within the set of synchronized words of length at most h.
Both are finite and, by Lemma 13, there exist Σ1[σ]-formulæ ψi and ψ′i such that Lψi

= ↑sSi
and Lψ′

i
= ↑sS ′i. Then, for each 1 ≤ i ≤ n, [w̄i]h = ↑sSi \ ↑sS ′i = Lψi∧¬ψ′i and hence, L = Lϕ

with ϕ =
∨
i ψi ∧ ¬ψ′i. This completes the proof of Theorem 5, since ϕ ∈ BΣ1[σ].

5.3 Deciding membership in ‖Σ1[σ]‖
In view of Theorem 4 and of the properties of regular languages (namely the decidability of
equality), membership decidability for ‖Σ1[σ]‖ reduces to proving the following proposition.

I Proposition 15. Given a regular language L ⊆ SWk, its upward-closure ↑sL is regular
and computable.

We begin with some preliminary definitions, which will also be used in the next section. For
S ⊆ SWk, let ↑` S = {w̄ ∈ SWk : ∃ū ∈ S ū v w̄ and ū, w̄ have the same last letter}. Let A
be a deterministic automaton accepting L, with state set Q and initial state q0. For p, r ∈ Q,
we let A(p, r) be the same as A, with p as initial state and {r} as final states, and denote by
Lang(A(p, r)) the language accepted by A(p, r).

We say that a state sequence q̄ = (q1, . . . , qn) ∈ Qn is T̄ -compatible in A if q1 is reachable
from q0 by reading a word in A−,T1A∗T1

, q2 is reachable from q1 by reading a word in
AT1,T2A∗T2

, etc. In addition, we require qn to be a final state of A. Observe that, given T̄ ,
the set of T̄ -compatible state sequences is finite and computable.

If q̄ is T̄ -compatible, we let L(T̄ , q̄, i) be the intersection of the language accepted
by A(qi−1, qi) with ATi−1,TiA∗Ti

(A−,T1A∗T1
if i = 1). In particular, if w̄ ∈ SWk and

type-seq(w̄) = T̄ , then w̄ ∈ L if and only if there exists a T̄ -compatible sequence q̄ such that
w̄ ∈ L(T̄ , q̄, 1) · · ·L(T̄ , q̄, n) (uniquely determined, due to determinism). Note that the n
factors of w̄ thus determined are its type factors. In particular, L =

⋃
L(T̄ , q̄, 1) · · ·L(T̄ , q̄, n),

where the union runs over all type sequences T̄ and all T̄ -compatible state sequences q̄ of A.
This is a finite union, all of whose terms are explicitly computable.

Proof of Proposition 15. For L, A, T̄ , q̄, i as above, let L̂(T̄ , q̄, i) be L̂(T̄ , q̄, i) = ↑L(T̄ , q̄, i)∩
A∗Ti

if Ti is not an end type or L̂(T̄ , q̄, i) = ↑`L(T̄ , q̄, i) ∩ A∗Ti
otherwise. We now show that

↑sL =
⋃
L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n).

Note that the closure ↑K of a regular language K is regular and computable (by adding self
loops to the states of an automaton accepting K), and the operation L(T̄ , q̄, i) 7→ L̂(T̄ , q̄, i)
is therefore computable, implying Proposition 15.

MFCS 2019

29:10 The Quantifier Alternation Hierarchy of Synchronous Relations

The proof is essentially an application of Lemma 1. Suppose first that w̄ ∈ ↑sL, that is,
there exists ū ∈ L such that ū vs w̄. Let T̄ = type-seq(ū) = (T1, . . . , Tn) and let q̄ be the
T̄ -compatible state sequence determined by reading ū in A. By Lemma 1, T̄ v type-seq(w̄),
with a witness function t such that, for each 1 ≤ i ≤ n, the i-th type factor ūi of ū is a subword
of w̄t(i), the t(i)-th type factor of w̄ (with an additional last letter condition if Ti is an end
type). Therefore ūi is also a subword of w̄t(i−1)+1 · · · w̄t(i), with the same last letter condition
in the case of end types. Since ūi ∈ L(T̄ , q̄, i), this means that w̄t(i−1)+1 · · · w̄t(i) ∈ L̂(T̄ , q̄, i)
and hence w̄ ∈ L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n).

Conversely, suppose that w̄ ∈ L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n) for some type sequence T̄ and T̄ -
compatible state sequence q̄. For each 1 ≤ i ≤ n, let ūi ∈ L(T̄ , q̄, i) be such that ūi v w̄i, with
witness function pi (and such that pi(|ui|) = |wi| if Ti is an end type). By construction of the
L(T̄ , q̄, i)’s, the word ū = ū1 · · · ūn is in L, with type factors ū1, . . . , ūn. Moreover ū vs w̄ for
the witness function obtained by “concatenating” the functions pi: p(i) = p1(i) for i ≤ |ū1|,
and p(|ū1 · · · ūi−1|+ h) = |w̄1 · · · w̄i−1|+ pi(h) for every 1 < i ≤ n and 1 ≤ h ≤ |ūi|. J

5.4 Deciding membership in ‖BΣ1[σ]‖
As a first step, we note the following.

I Lemma 16. If T̄ is a type sequence, then K(T̄) is BΣ1[σ]-definable.

Proof. Let ST̄ be the set of vs-minimal elements of K(T̄), a finite set by Proposition 2. Then
K(T̄) ⊆ ↑sST̄ . Moreover, if ū ∈ ↑sST̄ , then T̄ v type-seq(ū) by Lemma 1. It follows that
K(T̄) = ↑sST̄ \

⋃
{↑sST̄ ′ : T̄ v T̄ ′, T̄ 6= T̄ ′}. The statement then follows from Theorem 4. J

Since there are finitely many type sequences T̄ and each K(T̄) is computable, membership
of a language L in ‖BΣ1[σ]‖ is equivalent to the membership of each L ∩K(T̄) in ‖BΣ1[σ]‖.

We now fix a type sequence T̄ = (T1, . . . , Tn). Our next step is a technical characterization
of ‖BΣ1[σ]‖ for languages within K(T̄). For each 1 ≤ i ≤ n, let Fi = BΣ1[<,max](A∗Ti

) if
Ti is an end type in T̄ , and Fi = BΣ1[<](A∗Ti

) otherwise. Let also G1 = {A−,T1A∗T1
∩H : H ∈

|F1|} and, for i ≥ 2, Gi = {ATi−1,TiA∗Ti
∩H : H ∈ |Fi|}.

I Lemma 17. A regular language L ⊆ K(T̄) is in ‖BΣ1[σ]‖ if and only if, for each T̄ -
compatible state sequence q̄ and 1 ≤ i ≤ n, L(T̄ , q̄, i) ∈ Gi.

Proof. For convenience, we write L(q̄, i) for L(T̄ , q̄, i). First assume that every L(q̄, i) ∈
Gi, that is, there exists a BΣ1[<]-definable language H(q̄, i) ⊆ A∗Ti

such that L(q̄, i) =
ATi−1,Ti

A∗Ti
∩H(q̄, i) (or, if i = 1, L(q̄, 1) = A−,T1A∗T1

∩H(q̄, 1)). Then H(q̄, i) is the finite
union of languages of the form H(q̄, i, j) = ↑S(q̄, i, j) \ ↑S′(q̄, i, j) (or ↑`S(q̄, i, j) \ ↑`S′(q̄, i, j)
if Ti is an end type), for 1 ≤ j ≤ nq̄,i, where the S(q̄, i, j)’s and S′(q̄, i, j)’s are finite
sets. Then L(q̄, i) is the union of the L(q̄, i, j) = ATi−1,Ti

A∗Ti
∩ H(q̄, i, j) (or, if i = 1,

L(q̄, 1, j) = A−,T1A∗T1
∩ H(q̄, 1, j)). If ̄ = (j1, . . . , jn) is such that 1 ≤ ji ≤ nq̄,i for each

1 ≤ i ≤ n, let L(q̄, ̄) = L(q̄, 1, j1) · · ·L(q̄, n, jn). Then L is the (finite) union of the L(q̄, ̄).
Now let
S(q̄, ̄) = {w̄ ∈ K(T̄) : for all i ∈ {1, . . . , n}, type-factori(w̄) ∈ S(q̄, i, ji)} and
S ′(q̄, ̄) = {w̄ ∈ K(T̄) : for some i ∈ {1, . . . , n}, type-factori(w̄) ∈ S′(q̄, i, ji)}.

Then, L(q̄, ̄) = K(T̄) ∩ (↑S(q̄, ̄) \ ↑S ′(q̄, ̄)) ∈ ‖BΣ1[σ]‖. It follows that L ∈ ‖BΣ1[σ]‖.
Conversely, suppose that for some q̄ and some i, L(q̄, i) /∈ Gi. In view of Theorem 5, we

want to show that L is not a union of ≈r-classes for any r ≥ 1. Let r be now fixed. We only
need to exhibit words w̄ ∈ L and w̄′ /∈ L such that w̄ ≈r w̄′.

D. Figueira, V. Ramanathan, and P. Weil 29:11

Let ∼ir be the relation on A∗Ti
given by ū ∼ir v̄ if ū ∼r v̄ and, either the first letters

of ū and v̄ are both in ATi−1 or neither is. By means of contradiction, suppose L(q̄, i)
is the finite union of the ∼ir classes [ū1], . . . , [ūm]. Then each ūj ∈ ATi−1,Ti

A∗Ti
and, by

definition of ∼ir, [ūj] = ATi−1,TiA∗Ti
∩ [[ūj]], where [[ūj]] denotes the ∼r-class of ūj . Therefore

L(q̄, i) = ATi−1,Ti
A∗Ti
∩M , where M is the union of the [[ūj]]’s. Since M ∈ |BΣ1[<](ATi

)|,
this shows that L(q̄, i) ∈ Gi, a contradiction. (In the case where Ti is an end type, we need
to reason with the intersection of ∼ir with the same-last-letter equivalence.)

Now, since L(q̄, i) is not a union of ∼ir-classes, there exist words ūi, ū′i ∈ ATi−1,TiA∗Ti
such

that ūi ∼r ū′i (and if Ti is an end type they have the same last letter) and exactly one of them
is in L(q̄, i). Say ūi ∈ L(q̄, i), such that ūi ∈ Lang(A(qi−1, qi)) and ū′i ∈ Lang(A(qi−1, q

′
i))

for some qi 6= q′i. Assuming wlog that A is minimal for L, there exist a word ȳ and states
p, p′ of which exactly one is accepting, such that ȳ ∈ Lang(A(qi, p)) ∩ Lang(A(q′i, p′)). Let
x̄ ∈ L(q̄, 1) · · ·L(q̄, i − 1), w̄ = x̄ūiȳ and w̄′ = x̄ū′iȳ. Then exactly one of w̄, w̄′ is in L.
Since L ⊆ K(T̄), this implies that ȳ ∈ A∗Ti

ATi,Ti+1A∗Ti+1
· · ·ATn−1,Tn

A∗Tn
(A∗Tn

if i = n).
Consequently, w̄ and w̄′ have the same type sequence T̄ , with the same type factors except
for the i-th one. Moreover, type-factori(w̄) = ūiū

′ and type-factori(w̄′) = ū′iū
′, where ū′ is

the longest A∗Ti
prefix of ū. Since ūi ∼r ū′i, ūiū′ ∼r ū′iū′. Then w̄ ≈r w̄′ is a consequence of

Lemma 1. J

In view of Lemma 17 and since each L(T̄ , q̄, i) is computable (Section 5.3), the decidability
of ‖BΣ1[σ]‖ will be established if we show that membership in each Gi is decidable, which is
the object of the following lemma.

I Lemma 18. Let A be an alphabet and B ⊆ A. Then, it is decidable whether a regular
language is in WB = {BA∗ ∩ L : L ∈ BΣ1[<](A)}.

Proof. We will prove the following characterization of WB: a regular language K ∈ WB if
and only if K ⊆ BA∗ and for every b ∈ B, b−1K = {u ∈ A∗ : bu ∈ K} ∈ |BΣ1[<](A)|. Since
BΣ1[<] membership is decidable [20], the result follows directly.

If K ∈ WB, then K = BA∗ ∩ L for some L ∈ |BΣ1[<](A)|. Therefore, K ⊆ BA∗ and,
for every b ∈ B, b−1K = b−1L ∈ |BΣ1[<]| (since BΣ1[<] is closed under left quotients).

Conversely, suppose that each b−1K (b ∈ B) is a BΣ1[<]-language. Then there exists r
such that each of these languages is a union of ∼r-classes. Say that u ∼Br+1 v if u ∼r+1 v and,
either u, v have the same first letter in B or both their first letters are in A\B. Suppose there
exist words u, v such that u ∼Br+1 v and u ∈ K. Then u ∈ BA∗ and v has same first letter as
u, say b, so that u = bu′ and v = bv′. In particular, u′ ∼r v′. Since u′ ∈ b−1K and b−1K is a
union of ∼r-classes, it follows that v′ ∈ b−1K and hence v ∈ K. Therefore, K is the union of
the ∼Br+1-classes of a finite set of words u1, . . . , un and if L is the union of the ∼r+1-classes
of the same words, then L ∈ |BΣ1[<]| and L ∩BA∗ = K. That is, K ∈ WB . J

6 Σ2[σ] and its boolean closure

For any alphabet A, an A-monomial is a language of the form A∗1a1A
∗
2a2 · · ·A∗nanA∗n+1,

where A1, A2, . . . , An+1 ⊆ A and a1, a2, . . . , an ∈ A. An A-polynomial is a finite union of
A-monomials.

I Remark 19. It is known [14] that Σ2[<](A) sentences define exactly the set of A-polynomials.
A non-trivial consequence is that the set of A-polynomials is closed under intersection.

MFCS 2019

29:12 The Quantifier Alternation Hierarchy of Synchronous Relations

Not every Ak⊥-polynomial respects the structural properties (on the positions of ⊥) of
synchronized words. For example (a,⊥)∗(b, b)(a, a)∗ is a polynomial over Ak⊥ for A = {a, b}
and k = 2 but it does not define a relation. In order to characterize subsets of SWk which
are polynomials, we introduce the notion of ⊥-consistency.

If ā = a1 ⊗ · · · ⊗ ak is a synchronized letter in Ak⊥, we denote by τ(ā) the set {i ∈
{1, . . . , k} : ai = ⊥}. A non-empty subset Ā ⊆ Ak⊥ is said to be ⊥-consistent if all the
τ(ā) (ā ∈ Ā) take the same value. If that is the case, we let τ(Ā) = τ(ā) (for any ā ∈ Ā).
Finally we say that a monomial Ā∗0ā1Ā

∗
1 . . . ānĀ

∗
n (over Ak⊥) is ⊥-consistent if and only if

every non-empty Āi is ⊥-consistent and the sequence τ(Ā0), τ(ā1), τ(Ā1), . . . , τ(ān), τ(Ān)
is ⊆-increasing (where the term τ(Āi) is skipped if Āi = ∅).

We denote by P̄ the set of all ⊥-consistent polynomials, that is, of finite unions of
⊥-consistent monomials. The following statement follows directly from this definition.

I Lemma 20. Let L = Ā∗0ā1Ā
∗
1 . . . ānĀ

∗
n be an Ak⊥-monomial. Then L ⊆ SWk if and only

if L ∈ P̄. Moreover, if L is ⊥-consistent and S ⊆ {1, . . . , k}, then πS(L) is a ⊥-consistent
monomial as well.

We can now proceed with the proof of Theorem 7. We first show that a Σ2[σ]-
definable k-ary relation R satisfies LR ∈ P̄. Indeed, without loss of generality, R is
defined by a Σ2[σ]-formula ϕ with free variables S = {z1, . . . , zk}, of the form ϕ =
∃x1 . . . ∃xn ψ(x1, . . . , xn, z1, . . . , zk), with ψ ∈ Π1[σ]. In particular, ‖ψ‖ is a (n + k)-ary
relation and R = πS(‖ψ‖). Lemmas 20 and 21 therefore establish that LR ∈ P̄.

I Lemma 21. If R ∈ ‖Π1[σ]‖ then LR ∈ P̄.

Proof. Since R ∈ ‖Π1[σ]‖, it is the complement of a Σ1[σ]-definable relation. By Corollary 6,
we have LR = SWk \ ↑sS for some finite set S. Since P̄ is closed under intersection (see
Remark 19), we only need to show that SWk \ ↑sw̄ ∈ P̄ for a single synchronized word w̄.

Let T̄ = (T1, . . . , Tn) = type-seq(w̄). By Lemma 1, we see that ū ∈ LR if and only either
(1) T̄ 6v type-seq(ū), or (2) T̄ v type-seq(ū), with witness function t and w̄i 6v ūt(i) for some
1 ≤ i ≤ n or, (3) again T̄ v type-seq(ū) with witness t, where w̄i and ūt(i) do not have the
same last letter for some i such that Ti is an end-type for w̄.

The first condition means that ū ∈
⋃
K(T̄ ′), where the union runs over type sequences T̄ ′

such that T̄ 6v T̄ ′. We saw in Section 2 that this union is in P̄. The second condition places
ū in Ci = A−,T1A∗T1

· · ·ATi−2,Ti−1A∗Ti−1
Li ATi,Ti+1A∗Ti+1

· · ·ATn−1,Tn
A∗Tn

, where Li is the set
of words in ATi−1Ti

A∗Ti
that do not have w̄i as a subword. Then Li is Π1[<]-, and hence

Σ2[<]-definable. As a consequence, Li ∈ P̄ and, by associativity, Ci ∈ P̄. Finally, the third
condition places ū in C ′i = A−,T1A∗T1

· · ·ATi−2,Ti−1A∗Ti−1
L′i ATi,Ti+1A∗Ti+1

· · ·ATn−1,Tn
A∗Tn

,
where L′i = (ATi \ATi−1)A∗Ti

∩A∗Ti
Bi, with Bi the set of letters of ATi different from the last

letter of w̄i. Here too, L′i ∈ P̄ and hence C ′i ∈ P̄. J

The following lemma then concludes the proof of Theorem 7.

I Lemma 22. If R is a relation such that LR is a ⊥-consistent polynomial, then R ∈ ‖Σ2[σ]‖.

Proof. By definition of P̄ , the proof reduces to the case where LR is a ⊥-consistent monomial,
say LR = Ā∗0ā1Ā

∗
1 · · · ānĀ∗n. We now construct a Σ2[σ]-formula ϕ, with set of free variables

Z = {z1, . . . , zk}, which defines R.
Let w1, . . . , wk ∈ A∗ be such that w̄ = w1 ⊗ · · · ⊗ wk = ā1 · · · ān (they exist due to

⊥-consistency). Let X = {xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ |wi|} and Y = {y1, . . . , yk} be sets of
variables. We first let ψ1(X,Z) be the conjunction of the following formulæ for 1 ≤ i ≤ k:

D. Figueira, V. Ramanathan, and P. Weil 29:13

(1) for every 1 ≤ j < |wi|: xi,j ≺ xi,j+1; (2) xi,|wi| � zi; (3) for every 1 ≤ j ≤ |wi|: `wi[j](xi,j);
(4) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |}: eq(xi,j , xi′,j). Notice that ū ∈ SWk satisfies
∃X ψ1(X,Z) if and only if w̄ is a subword of x̄ with witness function given by p(j) = |xh,j |
for any 1 ≤ h ≤ k.

The variables in Y are meant to represent the k components of a prefix of ū, which is
expressed by ψ2(X,Y), the disjunction over all subsets H of {1, . . . , k} (H represents the
components of ū which are shorter than that prefix) of the formulæ∧

h∈H

(yh � zh ∧ eq(yh, zh)) ∧
∧

h,i6∈H

(yh ≺ zh) ∧ eq(yh, yi)) ∧
∧

h∈H,i6∈H

∃r(r � yi ∧ eq(r, yh)).

Next, for ā ∈ Ak⊥ and Ā ⊆ Ak⊥, and recalling that τ(ā) = {h : πh(ā) = ⊥}, we define
ψā(Y) =

∧
h/∈τ(ā) `πh(ā)(yh) and ψĀ(Y) =

∨
ā∈Ā ψā(Y). Once ȳ is a prefix of ū and w̄ is

a subword of ū with witness function p, if for some 1 ≤ j ≤ n, we have |ȳ| = p(j), then
ȳ satisfies ψāj . We now only need to verify that if |ȳ| sits between p(j) and p(j + 1) (for
some 0 ≤ j ≤ n), then ȳ satisfies ψĀj

. This is done by the formula ψ3(X,Y) =
∧n
j=0 χj ,

where χ0(X,Y) =
(∧

h/∈τ(Ā0) yh ≺ xh,1
)
→ ψĀ0

(Y), χn(X,Y) =
(∧

h/∈τ(Ān) xh,n ≺ yh
)
→

ψĀn
(Y), and for every 0 < j < n,

χj(X,Y) =

 ∧
h/∈τ(Āj)

(xh,j ≺ yh) ∧ (yh ≺ xh,j+1)

→ ψĀj
(Y).

Finally, R is defined by the Σ2[σ] formula ϕ(Z) = ∃Xψ1(X,Z) ∧ ∀Y (ψ2(X,Y) ∧ ψ3(X,Y)).
J

References
1 Parosh Aziz Abdulla, Bengt Jonnson, Marcus Nilsson, and Mayank Saksena. A survey of

regular model checking. In International Conference on Concurrency Theory (CONCUR),
pages 35–48, 2003.

2 Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive Languages
for Path Queries over Graph-Structured Data. ACM Transactions on Database Systems
(TODS), 37(4):31, 2012. doi:10.1145/2389241.2389250.

3 Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. Definable relations
and first-order query languages over strings. Journal of the ACM, 50(5):694–751, 2003.
doi:10.1145/876638.876642.

4 Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.
5 Achim Blumensath and Erich Grädel. Automatic Structures. In Annual IEEE Symposium

on Logic in Computer Science (LICS), pages 51–62. IEEE Computer Society Press, 2000.
doi:10.1109/LICS.2000.855755.

6 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular Model Checking.
In International Conference on Computer Aided Verification (CAV), pages 403–418. Springer,
2000.

7 J. Richard Büchi. On a Decision Method in Restricted Second-Order Arithmetic. In Proc. Int.
Congr. for Logic, Methodology, and Philosophy of Science, pages 1–11. Stanford Univ. Press,
1962.

8 Christian Choffrut. Relations over Words and Logic: A Chronology. Bulletin of the EATCS,
89:159–163, 2006.

9 Samuel Eilenberg, Calvin C. Elgot, and John C. Shepherdson. Sets recognized by n-tape
automata. Journal of Algebra, 13(4):447–464, 1969. doi:10.1016/0021-8693(69)90107-0.

MFCS 2019

https://doi.org/10.1145/2389241.2389250
https://doi.org/10.1145/876638.876642
https://doi.org/10.1109/LICS.2000.855755
https://doi.org/10.1016/0021-8693(69)90107-0

29:14 The Quantifier Alternation Hierarchy of Synchronous Relations

10 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society (3), 2(7):326–336, 1952. doi:10.1112/plms/s3-2.1.326.

11 M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its
Applications. Addison-Wesley, Reading, MA, 1983. Reprinted by Cambridge University Press,
1997.

12 Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press, Cambridge,
Mass., 1971.

13 Jean-Éric Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.
14 Jean-Éric Pin and Howard Straubing. Monoids of upper triangular matrices. In Colloquia

Mathematica Societatis Janos Bolyai, pages 259–272, 1981.
15 Jean-Éric Pin and Pascal Weil. Polynomial Closure and Unambiguous Product. Theory of

Computing Systems, 30(4):383–422, 1997.
16 Thomas Place and Marc Zeitoun. Going Higher in the First-Order Quantifier Alternation

Hierarchy on Words. In International Colloquium on Automata, Languages and Programming
(ICALP), pages 342–353, 2014. doi:10.1007/978-3-662-43951-7_29.

17 Thomas Place and Marc Zeitoun. The tale of the quantifier alternation hierarchy of first-order
logic over words. SIGLOG News, 2(3):4–17, 2015. doi:10.1145/2815493.2815495.

18 Thomas Place and Marc Zeitoun. Concatenation Hierarchies: New Bottle, Old Wine. In
International Computer Science Symposium in Russia (CSR), pages 25–37, 2017. doi:10.
1007/978-3-319-58747-9_5.

19 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

20 Imre Simon. Piecewise testable events. In H. Barkhage, editor, Automata Theory and Formal
Languages, 2nd GI Conference, Kaiserslautern, May 22–23, 1975, volume 33 of LNCS, pages
214–222. Springer, 1975.

21 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
Boston, Basel and Berlin, 1994.

22 Howard Straubing and Pascal Weil. An introduction to automata theory. In Deepak D’Souza
and Priti Shankar, editors, Modern applications of automata theory, volume 2 of I.I.Sc.
Monographs, pages 3–43. World Scientific, 2012.

https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1007/978-3-662-43951-7_29
https://doi.org/10.1145/2815493.2815495
https://doi.org/10.1007/978-3-319-58747-9_5
https://doi.org/10.1007/978-3-319-58747-9_5

Two variable fragment of Term Modal Logic
Anantha Padmanabha
Institute of Mathematical Sciences, HBNI, Chennai, India
ananthap@imsc.res.in

R. Ramanujam
Institute of Mathematical Sciences, HBNI, Chennai, India
jam@imsc.res.in

Abstract
Term modal logics (TML) are modal logics with unboundedly many modalities, with quantification
over modal indices, so that we can have formulas of the form ∃y∀x (�xP (x, y) ⊃ ♦yP (y, x)). Like
First order modal logic, TML is also “notoriously” undecidable, in the sense that even very simple
fragments are undecidable. In this paper, we show the decidability of one interesting fragment,
that of two variable TML. This is in contrast to two-variable First order modal logic, which is
undecidable.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Term modal logic, satisfiability problem, two variable fragment, decidability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.30

Related Version An extended version is available on arXiv [16], https://arxiv.org/abs/1904.
10260

Acknowledgements We thank Kamal Lodaya, Sreejith and Yanjing Wang for the insightful discus-
sions. We also thank the anonymous referees for their comments and suggestions that helped better
present the paper.

1 Introduction

Propositional multi-modal logics (ML) are extensively used in many areas of computer science
and artifical intelligence ([2, 9]). ML is built upon propositional logic by adding modal
operators �i and ♦i for every index i in a fixed finite set Ag which is often interpreted as
a set of agents (or reasoners). Typically, the satisfiability problem is decidable for most
instances of ML.

A natural question arises when we wish the set of modalities to be unbounded. This
is motivated by a range of applications such as client-server systems, dynamic networks of
processes, games with unboundedly many players, etc. In such systems, the number of agents
is not fixed a priori. For some cases, the agent set can vary not only across models, but also
from state to state (ex. when new clients enter the system or old clients exit the system).

Term Modal logic (TML) introduced by Fitting, Voronkov and Thalmann [6] addresses
this requirement. TML is built upon first order logic, but the variables now range over
modalities: so we can index the modality by terms (�xα) and these terms can be quantified
over. State assertions describe properties of these “agents”. Thus we can write formulas of the
form: ∀x(�xP (x) ⊃ ∃y �y♦xR(x, y)). In [15] we have advocated PTML, the propositional
fragment of TML, as a suitable logical language for reasoning about systems with unboundedly
many agents. TML has been studied in dynamic epistemic contexts in [11] and in modelling
situations where the identity of agents is not common knowledge among the agents [22].

The following examples illustrate the flavour of properties that can be expressed in TML.
© Anantha Padmanabha and R. Ramanujam;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4265-5772
mailto:ananthap@imsc.res.in
mailto:jam@imsc.res.in
https://doi.org/10.4230/LIPIcs.MFCS.2019.30
https://arxiv.org/abs/1904.10260
https://arxiv.org/abs/1904.10260
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Two variable fragment of Term Modal Logic

For every agent x there is some agent y such that P (x, y) holds at all x-successors or
there is some y-successor where ¬P (x, y) holds.
∀x∃y

(
�xP (x, y) ∨ ♦y(¬P (x, y))

)
Every agent of type A has a successor where some agent of type B exists.
∀x
(
A(x) ⊃ ♦x∃y B(y)

)
.

There is some agent x such that for all agents y if there are no y successors then in all
successors of x, there is a y successor.
∃x∀y

(
�y⊥ ⊃ �x♦y>).

Since TML contains first order logic, its satisfiability is clearly undecidable. We are then
led to ask: can we build term modal logics over decidable fragments of first order logic?
Natural candidates are the monadic fragment, the two-variable fragment and the guarded
fragment [13, 1].

TML itself can be seen as a fragment of first order modal logic (FOML) [5] which is built
upon first order logic by adding modal operators. There is a natural translation of TML into
FOML by inductively translating �xα into �(P (x) ⊃ α) and ♦xα into ♦(P (x)∧α) to get an
equi-satisfiable formula, where P is a new unary predicate. Sadly, this does not help much,
since FOML is notorious for undecidability. The modal extension of many simple decidable
fragments of first order logic become undecidable. For instance, the monadic fragment[12] or
the two variable fragment [10] of FOML are undecidable. In fact FOML with two variables
and a single unary predicate is already undecidable [18]. Analogously, in [15] we show that
the satisfiability problem for TML is undecidable even when the atoms are restricted to
propositions. In the presence of equality (even without propositions), this result can be
further strengthened to show “Trakhtenbrot” like theorem of mutual recursive inseparability.

On the other hand, as we show in [15], the monodic fragment of PTML (the propositional
fragment) is decidable (a formula ϕ is monodic if each of its modal subformulas of the form
�xψ or ♦xψ has a restriction that the free variables of ψ is contained in {x}). Further, via
the FOML translation above, we can show that the monodic restriction of TML based on the
guarded fragment of first order logic and monadic first order logic are decidable [23].

In a different direction, Wang ([21]) considered a fragment of FOML in which modalities
and quantifiers are bound to each other. In particular he considered the fragment with
∃� and showed it to be decidable in PSPACE. In [17] it is proved that this technique of
bundling quantifiers and modalities gives us interesting decidable fragments of FOML, and as
a corollary, the bundled fragment of TML is decidable where quantifiers and modalities always
occur in bundled form: ∀x�xα,∃x�xα and their duals. However, more general bundled
fragments of TML (such as those based on the guarded fragment of first order logic) have
been shown to be decidable by Orlandelli and Corsi ([14]), and by Shtakser ([19]). From all
these results, it is clear that the one variable fragment of TML is decidable, and that the
three variable fragment of PTML is undecidable.

In this paper, we show that the two variable fragment of TML (TML2) is decidable. This
is in contrast with FOML, for which the two variable fragment is undecidable [10]. Quoting
Wolter and Zakharyaschev from [23], where they discuss the root of undecidability of FOML
fragments:

All undecidability proofs of modal predicate logics exploit formulas of the form
� ψ(x, y) in which the necessity operator applies to subformulas of more than one free
variable; in fact, such formulas play an essential role in the reduction of undecidable
problems to those fragments . . .

A. Padmanabha and R. Ramanujam 30:3

Note that this is not expressible in TML2 where there is no “free” modality; every modality
is bound an index (x or y). With a third variable z, we could indeed encode �P (x, y) as
∀z�zP (x, y), but we do not have it. The decidability of the two variable fragment of TML,
without constants or equality, hinges crucially on this lack of expressiveness. Thus, TML2

provides a decidable fragment of FOML2. From FO2 view point, Gradel and Otto[8] show that
most of the natural extensions of FO2 (like transitive closure, lfp) are undecidable except for
the counting quantifiers. In this sense, 2-variable TML can be seen as another rare extension
of FO2 that still remains decidable. Note that in this paper we consider the two variable
fragment of TML without the bundling or guarded or monodic restriction. Also, there is no
natural translation of two variable TML to any known decidable fragment of FO such as the
two variable fragment of FO with 2 equivalence relations etc (cf [20]).

Thus, the contribution of this paper is technical, mainly in the identification of a decidable
fragment of TML. As is standard with two variable logics, we first introduce a normal form
which is a combination of Fine’s normal form for modal logics ([4]) and the Scott normal
form ([7]) for FO2. We then prove a bounded agent property using an argument that can be
construed as modal depth induction over the “classical” bounded model construction for
FO2.

2 TML syntax and semantics

We consider relational vocabulary with no constants or function symbols, and without equality.

I Definition 1 (TML syntax). Given a countable set of variables Var and a countable set of
predicate symbols P, the syntax of TML is defined as follows:

ϕ ::= P (x) | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x ϕ | ∀x ϕ | �xϕ | ♦xϕ

where x ∈ Var, x is a vector of length n over V ar and P ∈ P of arity n.

The free and bound occurrences of variables are defined as in FO with Fv(�xϕ) =
Fv(ϕ) ∪ {x}. We write ϕ(x) if all the free variables in ϕ are included in x. Given a TML
formula ϕ and x, y ∈ Var, if y 6∈ Fv(ϕ) then we write ϕ[y/x] for the formula obtained by
replacing every occurrence of x by y in ϕ. A formula ϕ is called a sentence if Fv(ϕ) = ∅.
The notion of modal depth of a formula ϕ (denoted by md(ϕ)) is also standard, which is
simply the maximum number of nested modalities occurring in ϕ. The length of a formula ϕ
is denoted by |ϕ| and is simply the number of symbols occurring in ϕ.

In the semantics, the number of accessibility relations is not fixed, but specified along
with the structure. Thus the Kripke frame for TML is given by (W,D,R) where W is a set
of worlds, D is the potential set of agents and R ⊆ (W ×D ×W). The agent dynamics is
captured by a function (δ : W → 2D below) that specifies, at any world w, the set of agents
live (or meaningful) at w. The condition that whenever (u, d, v) ∈ R, we have that d ∈ δ(u)
ensures only an agent alive at u can consider v accessible.

A monotonicity condition is imposed on the accessibility relation as well: whenever
(u, d, v) ∈ R, we have that δ(u) ⊆ δ(v). This is required to handle interpretations of free
variables (cf [3, 6, 5]). Hence the models are called “increasing agent” models.

I Definition 2 (TML structure). An increasing agent model for TML is defined as the tuple
M = (W,D, δ,R, ρ) where W is a non-empty countable set of worlds, D is a non-empty
countable set of agents, R ⊆ (W ×D ×W) and δ : W → 2D. The map δ assigns to each
w ∈W a non-empty local domain such that whenever (w, d, v) ∈ R we have d ∈ δ(w) ⊆ δ(v)
and ρ : (W × P) →

⋃
n∈ω 2Dn is the valuation function where for all P ∈ P of arity n we

have ρ(w,P) ⊆ [δ(w)]n.

MFCS 2019

30:4 Two variable fragment of Term Modal Logic

For a given model M , we use WM , DM , δM , RM , ρM to refer to the corresponding
components. We drop the superscript when M is clear from the context. We often write
Dw for δ(w). A constant agent model is one where Dw = D for all w ∈ W . To interpret
free variables, we need a variable assignment σ : Var → D. Call σ relevant at w ∈ W if
σ(x) ∈ δ(w) for all x ∈ Var. The increasing agent condition ensures that if σ is relevant at w
and (w, d, v) ∈ R then σ is relevant at v as well. In a constant agent model, every assignment
σ is relevant at all the worlds.

I Definition 3 (TML semantics). Given a TML structure M = (W,D, δ,R, ρ) and a TML
formula ϕ, for all w ∈W and σ relevant at w, define M,w, σ � ϕ inductively as follows:

M,w, σ � P (x1, . . . , xn) ⇔ (σ(x1), . . . , σ(xn)) ∈ ρ(w,P)
M,w, σ � ¬ϕ ⇔ M,w, σ 2 ϕ
M,w, σ � (ϕ ∧ ψ) ⇔ M,w, σ � ϕ and M,w, σ � ψ
M,w, σ � ∃x ϕ ⇔ there is some d ∈ δ(w) such that M, w, σ[x 7→d] � ϕ
M,w, σ � �x ϕ ⇔ M,v, σ � ϕ for all v s.t. (w, σ(x), v) ∈ R

where σ[x 7→d] denotes another assignment that is the same as σ except for mapping x to d.

The semantics for ϕ∨ψ,∀x ϕ and ♦x ϕ are defined analogously. Note that M,w, σ � ϕ is
inductively defined only when σ is relevant at w. We often abuse notation and say “for all w
and for all interpretations σ”, when we mean “for all w and for all interpretations σ relevant
at w” (and we will ensure that relevant σ are used in proofs). In general, when considering
the truth of ϕ in a model, it suffices to consider σ : Fv(ϕ) 7→ D, assignment restricted to the
variables occurring free in ϕ. When Fv(ϕ) ⊆ {x1, . . . , xn} and d ∈ [Dw]n is a vector of length
n over Dw, we write M,w � ϕ[d] to denote M,w, σ � ϕ(x) where for all i ≤ n, σ(xi) = di.
When ϕ is a sentence, we simply write M,w |= ϕ. A formula ϕ is valid, if ϕ is true in all
models M at all w for all interpretations σ (relevant at w). A formula ϕ is satisfiable if ¬ϕ
is not valid.

Now we take up the satisfiability problem which is the central theme of this paper. First
we observe that the satisfiability problem is equally hard for constant and increasing agent
models for TML.

I Proposition 4. For any TML formula ϕ, there is a corresponding formula ϕ̂ ∈ TML such
that ϕ is satisfiable in an increasing agent model with agent set D iff ϕ̂ is satisfiable in a
constant agent model with agent set D.

To see why the proposition is true, if ϕ is satisfiable in an increasing agent model, then
we can turn the model into constant agent model as follows. We introduce a new unary
predicate E and ensure that E(d) is true at w if d is a member of δ(w) in the given increasing
agent model. But now, all quantifications have to be relativized with respect to the new
predicate E. Thus, the syntactic translation is defined as follows:

I Definition 5. Let ϕ be any TML formula amd let E be a new unary predicate not occurring
in ϕ. The translation is defined inductively as follows:

Tr1(P (x1, . . . , xn)) = P (x1, . . . , xn)
Tr1(¬ϕ) = ¬Tr1(ϕ) and Tr1(ϕ ∧ ψ) = Tr1(ϕ) ∧ Tr1(ψ)
Tr1(�xϕ) = �x(Tr1(ϕ))
Tr1(∃x ϕ) = ∃x (E(x) ∧ Tr1(ϕ))

A. Padmanabha and R. Ramanujam 30:5

With this translation, we also need to ensure that the predicate E respects monotonicity.
Hence we have γϕ =

∧
i+j≤md(ϕ)

(∀y�y)i
(
∀x E(x) ⊃ (∀y�y)jE(x)

)
. Now, we can prove that ϕ

is satisfiable in an increasing model M with agent set D iff Tr1(ϕ) ∧ γϕ is satisfiable in a
constant agent model M ′ with agent set D. This translation is similar in approach to the
one for FOML[23]. The formal proof of Prop. 4 is provided in [16].

The propositional term modal logic (PTML) is a fragment of TML where the atoms are
restricted to propositions. Note that the variables still appear as index of modalities. For
PTML, the valuation function can be simply written as ρ : W 7→ 2P where P is the set of
propositions. Now we prove that the satisfiability problem for PTML is as hard as that for
TML.

I Proposition 6. Any TML formula ϕ has a corresponding formula ϕ̂ ∈ PTML, such that ϕ
is satisfiable in an increasing (constant) agent model with agent set D iff ϕ̂ is satisfiable in
an increasing (constant) agent model with agent set D.

The reduction is based on the translation of an arbitrary atomic predicate P (x1, . . . , xn)
to ♦x1 . . .♦xnp where p is a new proposition which represents the predicate P . However, this
cannot be used always1. Thus, we use a new proposition q, to distinguish the “real worlds”
from the ones that are added because of the translation. But now, the modal formulas have
to be relativized with respect to the proposition q. The formal translation is given as follows:

I Definition 7. Let ϕ be any TML formula where P1, . . . , Pk are the predicates that occur in
ϕ. Let {p1, . . . , pn} ∪ {q} be a new set of propositions not occurring in ϕ. The translation
with respect to q is defined inductively as follows:

Tr2(Pi(x1, . . . , xn); q) = ♦x1(¬q ∧ ♦x2(. . .¬q ∧ ♦xn(¬q ∧ pi) . . .))
Tr2(¬ϕ; q) = ¬Tr2(ϕ; q) and Tr2(ϕ ∧ ψ; q) = Tr2(ϕ; q) ∧ Tr2(ψ; q)
Tr2(�xϕ; q) = �x(q ⊃ Tr2(ϕ; q))
Tr2(∃x ϕ; q) = ∃x Tr2(ϕ; q)

Using this translation, we can prove that ϕ is satisfiable iff q ∧ Tr2(ϕ; q) is satisfiable,
over the same D. The proof details of Prop 6 are given in [16].

3 Two variable fragment

Note that all the examples discussed in the introduction section use only 2 variables. Thus,
TML can express interesting properties even when restricted to two variables. We now
consider the satisfiability problem of TML2. The translation in Def. 7 preserves the number
of variables. Therefore it suffices to consider the satisfiability problem for the two variable
fragment of PTML.

Let PTML2 denote the two variable fragment of PTML. We first consider a normal form
for the logic. In [4], Fine introduces a normal form for propositional modal logics which is a
disjunctive normal form (DNF) with every clause of the form (

∧
i

(si) ∧�α ∧
∧
j

♦βj) where si

are literals and α, βj are again in the normal form. For FO2, we have Scott normal form [7]
where every FO2 sentence has an equi-satisfiable formula of the form ∀x∀y ϕ ∧

∧
i

∀x∃y ψi

where ϕ and ψi are all quantifier free. For PTML2, we introduce a combination of these two

1 for instance, this translation will not work for the formula ∃x P (x) ∧ ∀y �y⊥

MFCS 2019

30:6 Two variable fragment of Term Modal Logic

normal forms, which we call the Fine Scott Normal form given by a DNF, where every clause
is of the form:

∧
i≤a

si ∧
∧

z∈{x,y}

(�zα ∧
∧
j≤mz

♦zβj) ∧
∧

z∈{x,y}

(∀z γ ∧
∧
k≤nz

∃z δk) ∧ ∀x∀y ϕ ∧
∧
l≤b

∀x∃y ψl

where a,mx,my, nx, ny, b ≥ 0 and si denotes literals. Further, α, βj are recursively in the
normal form and γ, δk, ϕ, ψl do not have quantifiers at the outermost level and all modal
subformulas occurring in these formulas are (recursively) in the normal form. The normal
form is formally defined in the next subsection.

Note that the first two conjuncts mimic the modal normal form and the last two conjuncts
mimic the FO2 normal form. The additional conjuncts handle the intermediate step where
only one of the variable is quantified and the other is free.

We now formally define the normal form and prove that every PTML2 formula has
a corresponding equi-satisfiable formula in the normal form. After this we prove the
bounded agent property for formulas in the normal form using an inductive FO2 type model
construction.

3.1 Normal form
We use {x, y} ⊆ Var as the two variables of PTML2. We use z to refer to either x or y
and refer to variables z1, z2 to indicate the variables x, y in either order. We use ∆z to
denote any modal operator ∆ ∈ {�,♦} and z ∈ {x, y}. A literal is either a proposition or its
negation. Also, we assume that the formulas are given in negation normal form(NNF) where
the negations are pushed in to the literals.

I Definition 8 (FSNF normal form). We define the following terms to introduce the Fine
Scott normal form (FSNF) for PTML2:

A formula ϕ is a module if ϕ is a literal or ϕ is of the form ∆zα.
For any formula ϕ, the outer most components of ϕ given by C(ϕ) is defined inductively
where for any ϕ which is a module, C(ϕ) = {ϕ} and C(Qz ϕ) = {Qz ϕ} where z ∈ {x, y}
and Q ∈ {∀,∃}. Finally C(ϕ� ψ) = C(ϕ) ∪ C(ψ) where � ∈ {∧,∨}.
A formula ϕ is quantifier-safe if every ψ ∈ C(ϕ) is a module.
We define Fine Scott normal form(FSNF) normal form (DNF and conjunctions) in-
ductively as follows:

Any conjunction of literals is an FSNF conjunction.
ϕ is said to be in FSNF DNF if ϕ is a disjunction where every clause is an FSNF
conjunction.
Suppose ϕ is quantifier-safe and for every ∆zψ ∈ C(ϕ) if ψ is in FSNF DNF normal
form then we call ϕ a quantifier-safe normal formula.
Let a, b,mx,my, nx, ny ≥ 0.
Suppose s1, . . . , sa are literals, αx, αy, βx1 , . . . , β

x
mx , β

y
1 , . . . , β

y
my are formulas in

FSNF DNF and γx, γy, δx1 , . . . , δxnx , δ
y
1 , . . . , δ

y
ny , ϕ, ψ1, . . . , ψb are quantifier-safe normal

formulas then:

∧
i≤a

si∧
∧

z∈{x,y}

(�zαz∧
∧
j≤mz

♦zβ
z
j) ∧

∧
z1∈{x,y}

(∀z2 γ
z1 ∧

∧
k≤nz

∃z2 δ
z1
k) ∧ ∀x∀y ϕ∧

∧
l≤b

∀x∃y ψl

is an FSNF conjunction.

A. Padmanabha and R. Ramanujam 30:7

Quantifier-safe formulas are those in which no quantifiers occur outside the scope of
modalities. Note that the superscripts in αx, αy etc only indicate which variable the formula
is associated with, so that it simplifies the notation. For instance, αx does not say anything
about the free variables in αx. In fact there is no restriction on free variables in any of these
formulas.

Further, note that by setting the appropriate indices to 0, we can have FSNF conjunctions
where one or more of the components corresponding to si, β

x, βy, δx, δy, ψl are absent.
We also consider the conjunctions where one or more of the components corresponding
to �xαx,�yαy, ϕ are also absent. As we will see in the next lemma, for any sentence
ϕ ∈ PTML2, we can obtain an equi-satisfiable sentence, which at the outer most level, is a
DNF where every clause is of the form

∧
i≤a

si ∧ ∀x∀y ϕ ∧
∧
l≤b
∀x∃y ψl.

I Lemma 9. For every formula ϕ ∈ PTML2 there is a corresponding formula ψ in FSNF DNF
such that ϕ and ψ are equi-satisfiable.

Proof (Sketch). To get the formula in the normal form, we introduce some new unary
predicates in the intermediate steps and finally get rid of them using the translation in Def.
7. The proof essentially follows that of reducing an FO2 formula into its equi-satisfiable Scott
normal form.

For the given formula ϕ, first observe that we can get an equivalent DNF over C(ϕ) using
propositional validities. If ϕ is modal free, then we can simply ignore the quantifiers, since
valuations of propositions do not depend on the quantifiers and the agent set is always
non-empty. Thus we get a propositional DNF by erasing the quantifiers and this is in the
required form.

If ϕ contains modal formulas, then we need to reduce every clause of the DNF to an FSNF
conjunction. We first translate the formulas at the outer most level to the required form.
This is the classical Scott-normal form construction which can be obtained by introducing
new unary predicates appropriately to get rid of the nested quantifiers at the outer most
level. Then, using the translation in Def 7, we get an equi-satisfiable PTML formula after
replacing the newly introduced unary predicates by corresponding propositional translations.
Further, replace conjuncts of the form �zα and �zβ by �z(α ∧ β) for z ∈ {x, y} to obtain
the resulting formula which has at most one subformula of the from �xαx and �yαy.

Note that after this translation, the resulting formula is in the required form at the
outermost level. We now only need to repeat the entire process for every sub-formula inside
the scope of modalities. The lemma is formally proved in [16]. J

Since we repeatedly convert the formula into DNF (inside the scope of every modality), if
we start with a formula of length n, the final translated formula has length 2O(n2). However,
observe that the number of modules in the translated formula is linear in the size of the given
formula ϕ. Furthermore, the given formula is satisfiable in a model M iff the translation is
satisfiable in M with appropriate modification of the ρ (valuation function).

3.2 Bounded agent property
Now we prove that any formula θ ∈ PTML2 in FSNF DNF is satisfiable iff θ is satisfiable in a
model M where the size of D is bounded. Note that for any PTML formula θ, if M,w, σ |= θ

then MT , w, σ |= θ where MT is the standard tree unravelling of M with w as root [15].
Further, MT can be restricted to be of height at most md(θ). Hence, we restrict our attention
to tree models of finite depth.

MFCS 2019

30:8 Two variable fragment of Term Modal Logic

First we define the notion of types for agents at every world. In classical FO2 the 2-types
are defined on atomic predicates. In PTML2 we need to define the types with respect to
modules. In any given tree model M rooted at r, for any w ∈ W and c, d ∈ Dw the 2-type
of (c, d) at w is simply the set of all modules that are true at w where the two variables
are assigned c, d in either order. The 1-type of c at w includes the set of all modules that
are true at w when both x, y are assigned c. Further, for every non-root node w, suppose
(w′ a−→ w) then the 1-type of any c ∈ Dw should capture how c behaves with respect to a and
the 1-type(w, c) should also include the information of how c acts with respect to d, for every
d ∈ Dw. Thus the 1-type of c at w is given by a 3-tuple where the first component is the set
of all modules that are true when both x, y are assigned c, the second component captures
how c behaves with respect to the incoming edge of w and the third component is a set of
subsets of formulas such that for each d ∈ Dw there is a corresponding subset of formulas
capturing the 2-type of c, d. To ensure that the type definition also carries the information
of the height of the world w, if w is at height h then we restrict 1-type and 2-type at w to
modules of modal depth at most md(ϕ)− h.

For any formula ϕ, let SF(ϕ) be the set of all subformulas of ϕ closed under negation. We
always assume2 that > ∈ SF(ϕ). Let SFh(ϕ) ⊆ SF(ϕ) be the set of all subformulas of modal
depth at most md(ϕ)− h. Thus we have SF(ϕ) = SF0(ϕ) ⊇ SF1(ϕ) ⊇ . . . ⊇ SFmd(ϕ)(ϕ).

I Definition 10 (PTML type). For any PTML2 formula ϕ and for any tree model M rooted
at r with height at most md(ϕ), for all w ∈W at height h:

For all c, d ∈ δ(w), define 2-type(w, c, d) = (Γxy; Γyx) where
Γxy = {ψ(x, y) ∈ SFh(ϕ) |M,w |= ψ(c, d)} and
Γyx = {ψ(x, y) ∈ SFh(ϕ) |M,w |= ψ(d, c)}.
If w is a non root node, (say w′

a−→ w) then for all c ∈ δ(w) define 1-type(w, c) =
(Λ1; Λ2; Λ3) where Λ1 = 2-type(w, c, c) and Λ2 = 2-type(w, c, a) and Λ3 = {2-type(w, c, d) |
d ∈ δ(w)}.
For the root node r, for all c ∈ δ(r) define 1-type(w, c) = (Λ1; {>}; Λ3) where
Λ1 = 2-type(w, c, c) and Λ3 = {2-type(w, c, d) | d ∈ δ(w)}.

The second component of 1-type(r, c) is added to maintain uniformity. For all w ∈ W
define 1-type(w) = {1-type(w, c) | c ∈ Dw} and 2-type(w) = {2-type(w, c, d) | c, d ∈ Dw}. We
use Λ,Π to represent elements of 1-type(w) and Λ1,Π2 etc for the respective components.

If a formula θ is satisfiable in a tree model, the strategy is to inductively come up with
bounded agent models for every subtree of the given tree (based on types), starting from
leaves to the root. While doing this, when we add new type based agents to a world at height
h, to maintain monotonicity, we need to propagate the newly added agents throughout its
descendants. For this, we define the notion of extending any tree model by addition of some
new set of agents.

Suppose in a tree model M , world w has local agent set Dw and we want to extend Dw

to Dw ∪ C, then first we have Ω : C 7→ Dw which assigns every new agent to some already
existing agent. The intended meaning is that the newly added agent c ∈ C at w mimics the
“type” of Ω(c). If w is a leaf node, we can simply extend δ(w) to Dw ∪ C. If w is at some
arbitrary height, along with adding the new agents to the live agent set to w, we also need to
create successors for every c ∈ C, one for each successor subtree of Ω(c) and inductively add
C to all the successor subtrees.

2 Let p0 be some proposition occurring in ϕ, then > is defined as p0 ∨ ¬p0.

A. Padmanabha and R. Ramanujam 30:9

I Definition 11 (Model extension). Suppose M is a tree model rooted at r with finite agent
set D and for every w ∈W let Mw be the subtree rooted at w. Let C be some finite set such
that C ∩D = ∅ and for any w ∈ W let Ω : C 7→ Dw be a function mapping C to agent set
live at w. Define the operation of “adding C to Mw guided by Ω” by induction on the height
of w to obtain a new subtree rooted at w (denoted by Mw

(C,Ω) and the components denoted by
δ′, ρ′ etc).

If w is a leaf, then Mw
(C,Ω) is a tree with a single node w with new δ′(w) = δ(w) ∪ C and

ρ′(w) = ρ(w).
If w is at height h then the new tree Mw

(C,Ω) is obtained from Mw rooted at w with new
δ′(w) = δ(w) ∪ C and ρ′(w) = ρ(w) and replacing all the subtrees Mu rooted at every
successor u of w by Mu

(C,Ω). Furthermore, for every c ∈ C and every (w,Ω(c), u) ∈ R
create a new copy of Mu

(C,Ω) and rename its root as uc and add an edge (w, c, uc) to R′.

Since we do not have equality in the language, this transformation will still continue to
satisfy the same formulas.

I Lemma 12. Let M be any tree model of finite depth rooted at r with finite agent set D
and let w ∈W . Let Mw

(C,Ω) (rooted at w) be an appropriate model extension of Mw (rooted
at w). For any interpretation σ : Var 7→ (C ∪Dw) let σ̂ : Var 7→ Dw where σ̂(x) = Ω(σ(x)) if
σ(x) ∈ C and σ̂(x) = σ(x) if σ(x) ∈ Dw. Then for all u ∈W which is a descendant of w in
M and for all σ : Var 7→ (C ∪Dw) and for all PTML formula ϕ, we have Mw

(C,Ω), u, σ |= ϕ

iff M,u, σ̂ |= ϕ.

To see why the lemma holds, first note that both models agree on literals since the
valuation function remains the same. Further, since every new agent mimics some old agent,
all the modal and the universal formulas continue to hold. Witnesses for ∃ formulas can still
be picked from the old agent set (Du). The lemma is formally proved in [16].

For any formula in the normal form, we use the same notations as in Def. 8. For a
given formula θ ∈ PTML2 in FSNF DNF form, let δxθ = {∃y δx ∈ SF(θ)}. Similarly we have
δyθ = {∃x δy ∈ SF(θ)} and ψθ = {∀x∃y ψ ∈ SF(ϕ)}.

For any tree model M , let # 6∈ D. For every w ∈ W and for all ∃y δ ∈ δxθ let the
function gwδ : Dw 7→ Dw ∪ {#} be a mapping such that M,w |= δ(c, gwδ (c)) and gwδ (c) = #
only if there is no d ∈ Dw such that M,w |= δ(c, d). Similarly for all ∃x δ ∈ δyθ let
hwδ : Dw 7→ Dw ∪ {#} such that M,w |= δ(hwδ (c), h) and hwδ (c) = # only if there is no
d ∈ Dw such that M,w |= δ(d, c). Again for all ∀x∃y ψ ∈ ψθ let fwψ : Dw 7→ Dw ∪ {#} such
that M,w |= ψ(c, fwψ (c)) and fwψ (c) = # only if there is no d ∈ Dw such that M,w |= ψ(c, d).

The functions g, h, f provide the witnesses at a world for every agent (if it exists) for the
existential formulas respectively.

I Theorem 13. Let θ ∈ PTML2 be in an FSNF DNF sentence. Then θ is satisfiable iff θ is
satisfiable in a model with bounded number of agents.

Proof. It suffices to prove (⇒). Let M be a tree model of height at most md(θ) rooted at r
such that M, r |= θ.

Let Eθ = δxθ ∪ δ
y
θ ∪ ψθ and hence |Eθ| ≤ |θ| (say q). Let Eθ = {χ1, . . . χq} be some

enumeration. For every w ∈ W and a ∈ δ(w) let Wit(a) = {b1 . . . bq} be the witnesses
for a where bi = gwδ (c) if χi is of the form ∃y δ ∈ δxθ (similarly bi = hwδ (c) or bi = fwψ (c)
corresponding to χi of the from ∃x δy and ∀x∃y ψ respectively). If bi = # then set bi = b

for some arbitrary but fixed b ∈ δ(w).

MFCS 2019

30:10 Two variable fragment of Term Modal Logic

For all w ∈ W and Λ ∈ 1-type(w) fix some awΛ ∈ δ(w) such that 1-type(w, awΛ) = Λ.
Furthermore, if c is the incoming edge of w and 1-type(w, c) = Λ then let awΛ = c. Let
Aw = {awΛ | Λ ∈1-type(w)}.

Now we define the bounded agent model. For every w ∈W let Mw be the subtree model
rooted at w ∈ W . For every such Mw, we define a corresponding type based model with
respect to θ (denoted by Twθ with components denoted by δwθ , ρwθ etc) inductively as follows:

If w is a leaf then Twθ is a tree with a single node w with
δwθ (w) = 1-type(w)× [1 . . . q]× {0, 1, 2} and ρwθ (w) = ρ(w).
If w is at height h, Twθ is a tree rooted at w with δwθ (w) = 1-type(w)× [1 . . . q]× {0, 1, 2}
and ρwθ (w) = ρ(w).
Before defining the successors of w in Twθ note that for every (w, a, u) ∈ R we have Tuθ
which is the inductively constructed type based model rooted at u. Also, inductively we
have δuθ (u) =1-type(u)× [1 . . . q]× {0, 1, 2}.

Now for every awΛ ∈ Aw let {b1 . . . bq} be the corresponding witnesses as described above.
For every successor (w, awΛ , u) ∈ R and for every 1 ≤ e ≤ q and f ∈ {0, 1, 2}, create a new
copy of Tuθ (call it N (Λ,e,f)) and name its root as u(Λ,e,f). Now add δwθ (w) to N (Λ,e,f) at
u(Λ,e,f) guided by Ω where Ω is defined as follows:

For all Π ∈ 1-type(w) we have awΠ ∈ Aw. Define Ω((Π, e, f)) = (1-type(u, awΠ), e, f).
for all k ≤ q if 1-type(u, bk) = Π then Ω((Π, k, f ′)) = (1-type(u, bk), e, f)
where f ′ = f + 1 mod 3.
Let f ′ = f − 1 mod 3. For all Π ∈ 1-type(w) let the witness set of awΠ be {d1 . . . dq}.
For all l ≤ q if 1-type(w, dl) = Λ then by Λ3 component, there is some a ∈ δ(w) such
that 2-type(w, dl, awΠ) = 2-type(w, awΛ , a). Define Ω((Π, l, f ′)) = (1-type(u, a), e, f).
For all (Π, e′, f ′) ∈ δwθ (w) if Ω(Π, e′, f ′) is not yet defined, then set Ω(Π, e′, f ′) = (1-
type(u, awΠ), e, f).

Add an edge (w, (Λ, e, f), u(Λ,e,f)) to Rwθ .

Note that Ω is well defined since the first three steps are defined for the indices f, (f+1
mod 3) and (f -1 mod 3) respectively, which are always distinct. Also note that T rθ is a
model that satisfies bounded agent property. Thus, it is sufficient to prove that T rθ , r |= θ.

Claim. For every w ∈W at height h and for all λ ∈ SFh(θ) the following holds:
1. Suppose λ is a sentence and M,w |= λ then Twθ , w |= λ.
2. If Fv(λ) ⊆ {x, y} and for all Λ,Π ∈ 1-type(w) if M,w, [x 7→ awΛ , y 7→ awΠ] |= λ then for all

1 ≤ e ≤ q and f ∈ {0, 1, 2} we have Twθ , w, [x 7→ (Λ, e, f), y 7→ (Π, e, f)] |= λ.

Note that the theorem follows from claim (1), since θ is sentence and M, r |= θ.

The proof of the claim is by reverse induction on h. In the base case h = md(θ) which
implies λ is modal free and hence is a DNF over literals. Thus, both the claims follow since
ρ(w) = ρwθ (w).

For the induction step, let w be at height h. Now we induct on the structure of λ. Again
if λ is a literal then both the the claims follow since ρ(w) = ρwθ (w). The case of ∧ and ∨ are
standard.

For the case �xλ, we only need to prove claim(2). Now suppose M,w, [x 7→ awΛ , y 7→
awΠ] |= �xλ. Pick arbitrary e and f . We need to prove that Twθ , w, [x 7→ (Λ, e, f), y 7→
(Π, e, f)] |= �xλ. Pick any (w, (Λ, e, f), u(Λ,e,f)) ∈ Rwθ , then by construction we have
(w, awΛ , u) ∈ R and since M,w, [x 7→ awΛ , y 7→ awΠ] |= �xλ, we have M,u, [x 7→ awΛ , y 7→
awΠ] |= λ. Let auΠ′ ∈ Au such that 1-type(u, auΠ′) =1-type(u, awΠ) and since awΛ is the incoming

A. Padmanabha and R. Ramanujam 30:11

edge of u, by Π2 component, we have 2-type(u, awΠ, awΛ) =2-type(u, auΠ′ , awΛ) and also awΛ ∈
Au . Hence M,u, [x 7→ awΛ , y 7→ auΠ′] |= λ and by induction hypothesis Tuθ , u, [x 7→ (1-
type(u, awΛ), e, f), y 7→ (1-type(u, auΠ′), e, f)] |= λ. Now by construction, at u(Λ,e,f) we have
Ω(Λ, e, f) = (1-type(w, awΛ), e, f) and Ω(Π, e, f) = (1-type(u, auΠ′), e, f). Thus, by Lemma 12,
Twθ , u

(Λ,e,f), [x 7→ (Λ, e, f), y 7→ (Π, e, f)] |= λ. Hence, we have Twθ , w, [x 7→ (Λ, e, f), y 7→
(Π, e, f)] |= �xλ. The case for �yλ is analogous.

For the case ♦yλ, again only claim(2) applies. Suppose M,w, [x 7→ awΛ , y 7→ awΠ] |= ♦yλ.
Now pick e and f appropriately. We need to prove that Twθ , w, [x 7→ (Γ, e, f), y 7→ (Π, e, f)] |=
♦yλ. By supposition, there is some w awΠ−−→ u such that M,u, [x 7→ awΛ , y 7→ awΠ] |= λ. Using
the argument similar to the previous case, we can prove that Twθ , u(Λ,e,f), [x 7→ (Λ, e, f), y 7→
(Π, e, f)] |= λ and hence Twθ , w, [x 7→ (Γ, e, f), y 7→ (Π, e, f)] |= ♦yλ. The case of ♦xλ is
symmetric.

For the case ∃y λ (where x is free at the outer most level), for claim (2) first note that since
θ is in the normal form, λ is quantifier-safe. Also note that ∃y λ = χi for some χi ∈ Eθ. Now,
suppose M,w, [x 7→ awΛ] |= ∃y λ then we need to prove that Twθ , w, [x 7→ (Λ, e, f)] |= ∃y λ.
Let the ith witness of awΛ be bi and hence M,w, [x 7→ awΛ , y 7→ bi] |= λ. Let 1-type(w, bi) = Π′,
we claim that Twθ , w, [x 7→ (Λ, e, f), y 7→ (Π′, i, f ′)] |= λ where f ′ = f + 1 mod 3. Suppose
not, then ∧ and ∨ can be broken down and we get some module such that M,w, [x 7→
awΛ , y 7→ bi] |= ∆zλ

′ and Twθ , w, [x 7→ (Λ, e, f), y 7→ (Π′, i, f ′)] 6|= ∆zλ
′ where ∆ ∈ {�,♦}

and z ∈ {x, y}. Assume ∆ = � and z = x (other cases are analogous). This implies
Twθ , w, [x 7→ (Λ, e, f), y 7→ (Π′, i, f ′)] |= ♦x¬λ′ and hence there is some w (Λ,e,f)−−−−→ u(Λ,e,f)

such that Twθ , u(Λ,e,f), [x 7→ (Λ, e, f), y 7→ (Π′, i, f ′)] |= ¬λ′(*). By construction, there is a
corresponding w

awΛ−−→ u in M . Now since M,w, [x 7→ awΛ , y 7→ bi] |= �xλ′, we have M,u, [x 7→
awΛ , y 7→ bi] |= λ′. Let b′i ∈ Au such that 1-type(u, bi) =1-type(u, b′i). Since awΛ is the incoming
edge to u by Π′2 component, we have 2-type(u, bi, awΛ) =2-type(u, b′i, awΛ) and awΛ ∈ Au. Thus,
M,u, [x 7→ awΛ , y 7→ b′i] |= λ′ and by induction hypothesis, Tuθ , u, [x 7→ (Λ, e, f), y 7→ (1-
type(u, b′i), e, f)] |= λ′. Again by construction, at u we have Ω((Λ, e, f)) = (Λ, e, f) and
Ω((Π′, i, f ′)) = (1-type(u, b′i), e, f) and hence by Lemma 12, Twθ , u(Λ,e,f), [x 7→ (Λ, e, f), y 7→
(Π′, i, f ′)] |= λ′ which is a contradiction to (*). The case of ∃y λ is analogous.

For the case of ∀x λ (where y is free at the outer most level), suppose M,w, [y 7→ awΠ] |=
∀x λ. We need to prove that Twθ , w, [y 7→ (Π, e, f)] |= ∀x λ. Pick any (Λ′, e′, f ′) ∈ δwθ (w),
now we claim Twθ , w, [x 7→ (Λ′, e′, f ′), y 7→ (Π, e, f)] |= λ (otherwise, like in the previous case,
since λ is quantifier-safe, we can reach a module where they differ and obtain a contradiction).
The case ∀y λ is analogous.

Finally we come to sentences which are relevant for claim (1). Note that in the normal
form, at the outermost level, a sentence will have only literals or formulas of the form ∀x∃y ψl
or ∀x∀y ϕ.

For the case M,w |= ∀x∃y ψl, let ∀x∃y ψl be ith formula in Eθ. We need to prove
Twθ , w |= ∀x∃y ψl. Pick any (Λ, e, f) ∈ δwθ (w) and we have awΛ ∈ Aw. Let the ith witness
for awΛ be bi. Thus we have M,w, [x 7→ aΓ, y 7→ bi] |= ψl. Let 1-type(w, bi) = Π′. Again we
claim that Twθ , w, [x 7→ (Γ, e, f), y 7→ [Π′, e, f ′)] |= ψl where f ′ = f + 1 mod 3. Suppose
not, again ∧ and ∨ can be broken down and we get some module such that M,w, [x 7→
awΛ , y 7→ bi] |= ∆zλ

′ and Twθ , w, [x 7→ (Λ, e, f), y 7→ (Π′, i, f ′)] 6|= ∆zλ
′ where ∆ ∈ {�,♦} and

z ∈ {x, y}. Assume ∆ = ♦ and z = y (other cases are analogous). This implies Twθ , w, [x 7→

MFCS 2019

30:12 Two variable fragment of Term Modal Logic

(Λ, e, f), y 7→ (Π′, i, f ′)] |= �y¬λ′ (*). Now let awΠ′ ∈ Aw such that 1-type(w, awΠ′) = 1-
type(w, bi) = Π′. Thus by Π′3 component, there is some d ∈ δwθ such that 2-type(w, awΠ′ , d) = 2-

type(w, bi, awΛ) and hence M,w, [x 7→ d, y 7→ awΠ′] |= ♦yλ′. Hence there is some w
awΠ′−−→ u

such that M,u, [x 7→ d, y 7→ awΠ′] |= λ′. Now let 1-type(u, d) = 1-type(u, d′) such that
d′ ∈ Au and since awΠ′ is the incoming edge, we have M,u, [x 7→ d′, y 7→ awΠ′] |= λ′ and by
induction hypothesis, Tuθ , u, [x 7→ (1-type(u, d′), i, f ′), y 7→ (1-type(u, awΠ′), i, f ′)] |= λ′ and
while constructing u(Π′,i,f ′) (case 3 applies for awΛ since its ith witness has same 1-type as
awΠ′) we have Ω((Λ, e, f ′ − 1)) = (1-type(u, d′), i, f ′). Thus by Lemma 12 (since f ′ − 1 = f),
Twθ , u

(Π′,i,f ′), [x 7→ (Λ, e, f), y 7→ (Π′, i, f ′)] |= λ′ which contradicts (*).

Finally, for the case ∀x∀y ϕ suppose M,w |= ∀x∀y ϕ, then for any (Γ, e, f), (∆, e′, f ′) ∈
δwθ (w) we claim that Twθ , w, [x 7→ (Γ, e, f), y 7→ (∆, e′, f ′)] |= ϕ (else again, go to the smallest
module and prove contradiction). J

Note that in the type based model, at any world w we have |δwθ | = 22O(|SF(θ)|) . Now if we
start with a PTML2 formula ϕ, then though its corresponding equi-satisfiable formula θ is
exponentially larger, the number of distinct subformulas in θ is still linear in the size of ϕ.

I Corollary 14. TML2 satisfiability is in 2-EXPSPACE.

Proof. Any TML2 formula α is satisfiable iff (by Prop.6) its corresponding PTML2 translation
ϕ is satisfiable iff (by Theorem 13) the corresponding normal form θ of ϕ is satisfiable over
agent set D of size 22O(|ϕ|) iff (by Prop. 4) θ̂ ∈ PTML2 is satisfiable in a constant domain
model over D.

Thus we can expand the quantifiers of θ̂ by corresponding
∧

and
∨

for ∀ and ∃ respectively
and we get a propositional multi-modal formula. This satisfiability is in PSPACE. But in
terms of the size of the formulas, |θ̂| = 22|α|2 . Thus we have a 2-EXPSPACE algorithm. J

3.3 Example
We illustrate the construction of type based models with an example. Consider the PTML2

sentence θ := ∀x �x�x⊥ ∧ ∀x∃y (�x(♦y(¬p) ∧ ∃y ♦yp)) which is in FSNF DNF. Let M be
the model described in Fig. 1 where

W = {r} ∪ {ui, vi, wi | i ∈ N}
D = N
δ(r) = {2i | i ∈ N} (all even numbers) and
δ(wi) = δ(ui) = δ(vi) = N
R = {(r, 2i, wi), (wi, 2i+ 1, ui), (wi, 2i+ 2, vi) | i ∈ N}
ρ(r) = ρ(wi) = ρ(vi) = ∅ and ρ(ui) = p for all i ∈ N .

Figure 1 Given model such that M, r |= θ.

A. Padmanabha and R. Ramanujam 30:13

Figure 2 Corresponding bounded agent model with M ′, r |= θ. aj
i , b

j
i , c

j
i corresponds to agents

with 1 ≤ j ≤ 2 and i ∈ {0, 1, 2}. The edge aj
i , b

j
i , c

j
i indicate one successor for every 1 ≤ j ≤ 2 and

i ∈ {0, 1, 2}.

Clearly, M, r |= θ. Let fr : Dr 7→ Dr be defined by fr(2i) = 2i + 2 and at all wi,
gi(j) = 2i+ 1 for all i ∈ N be the two (relevant) witness functions. The one and two types
at every world are described as follows:

At leaf nodes ui and vi there is only one distinct one type and two types. At wi, note
that r 2i−→ wi is the incoming edge and only 2i+ 1 and 2i+ 2 have outgoing edges. Thus,
there are 3 distinct 1-type members at wi, each for (2i+ 1), (2i+ 2) and [the rest]. Let b, c, d
be the respective types. Finally at the root again we have only a single distinct type (call it
a).

Since there are 2 existential formulas, the root of the type based model has (1×2×3) = 6
agents let it be {aef | 1 ≤ e ≤ 2, 0 ≤ f ≤ 2} and 0 be the representative. At w0 we have
(3× 2× 3) = 18 agents. Let the representatives be 1, 2, 0 for b, c, d respectively. Note that we
cannot pick any other representative for [the rest] other than 0 since 0 is the incoming edge
to w0. Let the bounded agent set be {bef , cef , def | 1 ≤ e ≤ 2, 0 ≤ f ≤ 2}. The corresponding
bounded model M ′ is described in Figure 2. It can be verified that M ′, r |= θ.

4 Discussion

We have proved that the two variable fragment of PTML2 (and hence TML2) is decidable.
The upper bound shown is in 2-EXPSPACE. A NEXPTIME lower bound follows since FO2

satisfiability can be reduced to PTML2 satisfiability. We believe that by careful management
of the normal form, space can be reused and the upper bound can in fact be brought down
by one exponent. That would still leave a significant gap between lower and upper bounds
to be addressed in future work.

We can also prove that addition of constants makes PTML2 undecidable. In fact, with
the addition of a single constant c we can use �c to simulate the “free” � of FOML2, thus
yielding undecidability. When it comes to equality, the situation is more tricky: note that
we can no longer use model extension (Def.11 and Lemma 12) since equality might restrict
the number of agents at every world.

The most important issue is expressiveness. What kind of accessibility relations or model
classes can be characterized by 2-variable TML? This is unclear, but there are sufficiently
intriguing examples and applications making the issue an interesting challenge.

MFCS 2019

30:14 Two variable fragment of Term Modal Logic

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded

fragments of predicate logic. Journal of philosophical logic, 27(3):217–274, 1998.
2 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic (Cambridge Tracts in

Theoretical Computer Science). Cambridge University Press, 2001.
3 Giovanna Corsi. A unified completeness theorem for quantified modal logics. The Journal of

Symbolic Logic, 67(4):1483–1510, 2002.
4 Kit Fine et al. Normal forms in modal logic. Notre Dame journal of formal logic, 16(2):229–237,

1975.
5 Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic (Synthese Library).

Springer, 1999.
6 Melvin Fitting, Lars Thalmann, and Andrei Voronkov. Term-Modal Logics. Studia Logica,

69(1):133–169, 2001. doi:10.1023/A:1013842612702.
7 Erich Grädel, Phokion G Kolaitis, and Moshe Y Vardi. On the decision problem for two-variable

first-order logic. Bulletin of symbolic logic, 3(1):53–69, 1997.
8 Erich Grädel and Martin Otto. On logics with two variables. Theoretical computer science,

224(1-2):73–113, 1999.
9 MJ Hughes and GE Cresswell. A New Introduction to Modal Logic. Routledge. 1996. Routledge,

1996.
10 Roman Kontchakov, Agi Kurucz, and Michael Zakharyaschev. Undecidability of first-order

intuitionistic and modal logics with two variables. Bulletin of Symbolic Logic, 11(3):428–438,
2005.

11 Barteld Kooi. Dynamic term-modal logic. In A Meeting of the Minds, pages 173–186, 2007.
12 Saul A. Kripke. The Undecidability of Monadic Modal Quantification Theory. Mathematical

Logic Quarterly, 8(2):113–116, 1962. doi:10.1002/malq.19620080204.
13 Michael Mortimer. On languages with two variables. Mathematical Logic Quarterly, 21(1):135–

140, 1975.
14 Eugenio Orlandelli and Giovanna Corsi. Decidable Term-Modal Logics. In 15th European

Conference on Multi-Agent Systems, 2017.
15 Anantha Padmanabha and R Ramanujam. The Monodic Fragment of Propositional Term

Modal Logic. Studia Logica, pages 1–25, 2018.
16 Anantha Padmanabha and R Ramanujam. Two variable fragment of Term Modal Logic. arXiv

preprint, 2019. arXiv:1904.10260.
17 Anantha Padmanabha, R Ramanujam, and Yanjing Wang. Bundled Fragments of First-

Order Modal Logic: (Un)Decidability. In Sumit Ganguly and Paritosh Pandya, editors, 38th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2018), volume 122 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 43:1–43:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.FSTTCS.2018.43.

18 Mikhail Rybakov and Dmitry Shkatov. Undecidability of first-order modal and intuitionistic
logics with two variables and one monadic predicate letter. Studia Logica, pages 1–23, 2017.

19 Gennady Shtakser. Propositional Epistemic Logics with Quantification Over Agents of
Knowledge. Studia Logica, 106(2):311–344, 2018.

20 Gennady Shtakser. Propositional Epistemic Logics with Quantification Over Agents
of Knowledge (An Alternative Approach). Studia Logica, August 2018. doi:10.1007/
s11225-018-9824-6.

21 Yanjing Wang. A New Modal Framework for Epistemic Logic. In Proceedings Sixteenth
Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2017, Liverpool, UK,
24-26 July 2017., pages 515–534, 2017. doi:10.4204/EPTCS.251.38.

22 Yanjing Wang and Jeremy Seligman. When Names Are Not Commonly Known: Epistemic
Logic with Assignments. In Advances in Modal Logic Vol. 12 (2018): 611-628, College
Publications, 2018 .

23 Frank Wolter and Michael Zakharyaschev. Decidable fragments of first-order modal logics.
The Journal of Symbolic Logic, 66(3):1415–1438, 2001.

https://doi.org/10.1023/A:1013842612702
https://doi.org/10.1002/malq.19620080204
http://arxiv.org/abs/1904.10260
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.43
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.43
https://doi.org/10.1007/s11225-018-9824-6
https://doi.org/10.1007/s11225-018-9824-6
https://doi.org/10.4204/EPTCS.251.38

Choiceless Logarithmic Space
Erich Grädel
RWTH Aachen University, Germany
graedel@logic.rwth-aachen.de

Svenja Schalthöfer
RWTH Aachen University, Germany
schalthoefer@logic.rwth-aachen.de

Abstract
One of the most important open problems in finite model theory is the question whether there is
a logic characterising efficient computation. While this question usually concerns Ptime, it can
also be applied to other complexity classes, and in particular to Logspace which can be seen
as a formalisation of efficient computation for big data. One of the strongest candidates for a
logic capturing Ptime is Choiceless Polynomial Time (CPT). It is based on the idea of choiceless
algorithms, a general model of symmetric computation over abstract structures (rather than their
encodings by finite strings). However, there is currently neither a comparably strong candidate for a
logic for Logspace, nor a logic transferring the idea of choiceless computation to Logspace.

We propose here a notion of Choiceless Logarithmic Space which overcomes some of the obstacles
posed by Logspace as a less robust complexity class. The resulting logic is contained in both
Logspace and CPT, and is strictly more expressive than all logics for Logspace that have been
known so far. Further, we address the question whether this logic can define all Logspace-queries,
and prove that this is not the case.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Finite Model Theory, Logics for Logspace, Choiceless Computation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.31

1 Introduction

The probably most fundamental problem of finite model theory concerns the question
whether there exist logics that precisely characterise the efficiently computable queries on
finite structures. Usually this problem is called the quest for a logic for polynomial time
[15], a problem originally posed by Chandra and Harel [5] and later made more precise by
Gurevich [19]. But Ptime is just one, although certainly the most common, complexity
class to capture the intuitive notion of efficient computability. Another important such class
is Logspace, which formalises efficient computation over large data sets with significantly
smaller working memory, and may thus be viewed as a notion of efficient computability
for big data. When Chandra and Harel [5] enquired about a logical characterization of the
Ptime-queries, they already asked about Logspace as well, and since then, a number of
logics have been proposed that capture relevant parts of Logspace. We briefly compare the
state of the art on the quests for logics for Ptime and Logspace, respectively.

Logics for polynomial time. For Ptime, the logic of reference is fixed-point logic with
counting (FPC), which has first been proposed informally by Immerman [20] and then made
precise in [11]. It extends first-order logic by fixed-point operators and counting terms and
actually comes rather close to being a logic for polynomial time. It is strong enough to
express many of the algorithmic techniques leading to polynomial-time procedures and it
captures Ptime on many interesting classes of structures, including planar graphs, structures
of bounded tree width, and actually all classes of graphs with an excluded minor [16]. For

© Erich Grädel and Svenja Schalthöfer;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:graedel@logic.rwth-aachen.de
mailto:schalthoefer@logic.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Choiceless Logarithmic Space

a recent survey on FPC, see [6]. Nevertheless there are important problems that separate
Ptime from FPC. The first of these, which still is an interesting benchmark problem for
logics in Ptime, has been the CFI-query due to [4]. Other examples are efficiently solvable
variants of the graph isomorphism problem or problems from linear algebra such as solving
linear equation systems over finite fields or rings [2]. To handle such examples, several more
powerful logics than FPC have been proposed, including for instance rank logic [7, 12].

However, the most promising candidate for a logic for Ptime is Choiceless Polynomial
Time (CPT), introduced by Blass, Gurevich, and Shelah [3]. There are several different
presentations of CPT (see e.g. [9, 10, 22, 25]). The original intention was to explore a model
for efficient computations on finite structures which preserve symmetries at every step in the
computation. This prohibits the explicit introduction of an ordering or, equivalently, arbitrary
choices between indistinguishable elements of the input structure or of the current state.
Such choices appear in many algorithms of fundamental importance, including depth-first
search, Gaussian elimination, and many more. CPT is based on a computation model that
avoids symmetry breaking choices, but allows essentially everything else, including parallelism
and “fancy data structures”, as long as all operations can be carried out in polynomial
time. It works, given a finite structure, on its extension by all hereditarily finite sets over its
universe, which may be seen as a powerful higher-order data structure. Choiceless Polynomial
Time is the restriction of this model to polynomial-time resources. It is known that CPT is
strictly more powerful than fixed-point logic with counting. In particular, CPT can express
several variants of the CFI-queries that are not expressible in FPC and, more generally, CPT
captures polynomial time over interesting classes of structures over which FPC fails to do
so [1, 8, 23]. Nevertheless it is still open whether CPT captures Ptime on arbitrary finite
structures. We refer to [9, 22, 26] for more information on CPT.

Logics for logarithmic space. The state of the art concerning logics for Logspace is less
advanced than for Ptime. On ordered structures, Logspace can be captured by DTC,
the extension of first-order logic by deterministic transitive closures [21]. A more elegant
variant is the symmetric transitive closure logic STC, whose evaluation in Logspace however
depends on the highly non-trivial algorithm by Reingold [24] for undirected graph reachability.
But even with an added counting operation, STC does not capture Logspace on arbitrary
structures, and again this can be proved by the CFI-query. Some of the shortcomings of
transitive closure logics are elegantly countered by the logic LREC (short for L-recursion),
especially in its stronger variant, called LREC= in the literature [17, 18]. The core of
LREC is an elaborate recursion operator, augmented by a mechanism defining symmetric
transitive closures to obtain closure under interpretations. However, although LREC captures
Logspace on a larger class of structures than transitive closure logics, it is still contained in
FPC and thus does not capture Logspace on arbitrary finite structures.

There has, up to now, not really emerged a convincing logspace-analogue of Choiceless
Polynomial Time, and also no other really serious candidate for a logic for Logspace. So
some natural questions arise: “What is Choiceless Logspace? What expressive power does
it have, and could it actually capture all of Logspace?” Addressing these questions, we
propose a notion of Choiceless Logspace. We prove that this provides a logic that is indeed
contained in both CPT and Logspace. Moreover, it is strictly more powerful than all
Logspace-logics known so far, including (the strong variant of) LREC. However, it turns
out that even this logic fails to capture all Logspace queries, which leads to the more general
question of what would be a suitable notion of efficient choiceless computation for big data.

E. Grädel and S. Schalthöfer 31:3

Sets of logarithmic size. Towards such a definition, we first note that the obvious, but
naïve attempt fails. Since CPT permits polynomially many computation steps using only
sets whose transitive closures contain polynomially many objects, the naïve approach would
simply discard the time bound and allow sets with a transitive closure of logarithmically many
objects. But this would make it possible to define sets containing logarithmically many atoms,
which admits no straightforward evaluation in Logspace: to represent such a set, one would
store every atom as a number with logarithmically many bits, so one would actually have to
represent logarithmically many numbers of logarithmic size. Unless Logspace = NC2, this
should not be possible.

The central question is thus what it means that a set is of logarithmic size. Even though
choiceless computation is invariant under encodings, already the size of an atom depends
on its encoding. On an ordered encoding of a structure, every atom can be referenced by a
binary string with logarithmically many bits. On the basis of this straightforward encoding, a
logspace algorithm could only store constantly many atoms at a time, so a set of logarithmic
size would be a set whose transitive closure is bounded by a constant. In fact, many standard
logspace algorithms operate with a bounded number of storage locations, each of which can
store an object with logarithmically many bits, typically an element of the input structure
or a number that is polynomially bounded by the size of the input structure. A previous
approach to defining choiceless logarithmic space [13, 27] has operated on exactly these
“bounded sets”. It corresponds to a logic, denoted here BDTC, that provides an operator
for deterministic transitive closures over bounded sets. In its original version, BDTC lacks
the ability to count, but besides that it has more fundamental deficiencies. Indeed, the
assumption that a set of logarithmic size can only contain constantly many atoms does not
take into account that there are alternative ways to represent atoms, and logspace algorithms
that operate in a more sophisticated manner, using an unbounded number of storage locations
such as the algorithm for tree isomorphism or Reingold’s algorithm for undirected graph
reachability. It is, for instance, possible to store the unique root of a tree in constant space
by just storing its defining property. In a structure with a unary predicate P , every atom
in P can be represented as “the kth element of P”, so the size of the atom representation
is logarithmic in |P | instead of the size of the whole structure. The size of an atom with
respect to Logspace-algorithms can hence vary depending on its representation.

Towards Choiceless Logspace. This observation leads to the main idea behind CLogspace,
the logic we shall introduce: When evaluating formulae with logarithmic bounds, we do not
assume a fixed size for every atom. Therefore, the sizes of atoms are part of the semantics
and, consequently, the logic is evaluated over size-annotated hereditarily finite sets.

Atoms can be represented using logical formulae. We introduce terms “Atoms .ϕ” in
our logic to make sure that, whenever a set of atoms is defined, that definition is guarded
by a formula. The size of the atoms in that set will then be defined assuming that every
atom is represented as “the ith entry of the kth tuple satisfying ϕ”. So the size of every
hereditarily finite object will depend on the terms of the form Atoms .ϕ generating the atoms
in its transitive closure. However, this way of defining atoms does not allow unbounded
recursion. We therefore add (a modified version of) the recursion operator from LREC to
our logic. But, just like in CPT, iterated creation of sets is necessary to obtain a formalism
that is stronger than common logics. Consequently, our logic also incorporates CPT-style
iteration with some modifications mimicking the behaviour of Logspace-algorithms.

In a nutshell, Choiceless Logspace in our sense means iteration and recursion over
hereditarily finite sets of logarithmic size, where the size of each atom is derived from its
representation through a formula.

MFCS 2019

31:4 Choiceless Logarithmic Space

2 Choiceless Logarithmic Space and Choiceless Polynomial Time

In this section we present the precise definition of CLogspace. Readers familiar with Choiceless
Polynomial Time will recall that it is evaluated with the data structure of all hereditarily
finite objects over the given input structure.

The elements of the universe A of an input structure A are assumed to be atoms, i. e. not
sets, and an object is an atom or a set. A set a is transitive if ∈ is a transitive relation on a,
which means that all elements of a are either subsets of a or atoms. The transitive closure
tc(a) of an object a is the smallest transitive set b with a ∈ b. An object a is hereditarily
finite if tc(a) is finite. Given a set A of atoms, HF(A) is the collection of hereditarily finite
objects over A, i. e. the set of all objects x such that x ∈ A or x is a hereditarily finite set
such that all atoms in tc(x) are elements of A.

Choiceless Logspace is evaluated over size-annotated hereditarily finite sets where a size
annotation is a function assigning (in a consistent way) a size to every element of the transitive
closure of the given set. The definition of sizes guarantees that a set of logarithmic size can
be represented in Logspace in a straightforward way.

I Definition 1. Let A be a σ-structure and a ∈ HF(A). A function s : tc(a)→ N is a size
annotation of a if, for each set b ∈ tc(a), s(b) = 1+

∑
c∈b s(c). The set of size-annotated hered-

itarily finite objects is SHF(A) := {(a, sa) : a ∈ HF(A) and sa is a size annotation of a}.
For size annotations (a, sa), (b, sb), we say that (b, sb) ∈ (a, sa) if b ∈ a and sb = sa� tc(b).

Note that a size annotation is completely determined by the values it assigns to the atoms.
In particular, for a pure set a ∈ HF(A), with tc(a)∩A = ∅, there is a unique size annotation,
which we denote by anna. Further, the size annotation yields an upper bound for the size of
the transitive closure. As atoms may have size 0, conclude that | tc(a) \ A| ≤ s(a) for any
size annotation s of a.

We now formulate a high-level definition of the logic CLogspace, and then proceed to
make precise, and explain, its ingredients step by step.

I Definition 2 (Choiceless Logarithmic Space). The logic CLogspace is defined by rules for
ordinary terms and formulae, iteration terms and recursion formulae as follows. If t is a
term and ϕ is a formula according to these rules, and f is a function f : n 7→ c logn for
c ∈ N, then (t, f) is a CLogspace-term, and (ϕ, f) is a CLogspace-formula.

The function f only plays a role in defining the semantics of iteration terms. Otherwise
the semantics is just given by the semantics of t and ϕ, respectively.

We first explain ordinary terms and formulae which provide the basic operations for
constructing sets.

I Definition 3 (Syntax). Ordinary terms and formulae over a vocabulary σ are defined
inductively as follows:
∅ is a term, and every variable x is a term,
if ϕ ∈ FO[σ] with at least one free variable, then Atoms .ϕ is a term,
if t1, t2 are terms, then Union(t1), Unique(t1), Pair(t1, t2), and Card(t1) are terms,
for R ∈ σ and terms t1, . . . , tk, the expressions t1 = t2, t1 ∈ t2, and Rt1 . . . tk are
formulae,
Boolean combinations of formulae are formulae,
if p and q are terms and ϕ is a formula, then {p : x ∈ q : ϕ} is a (comprehension) term.

The free variables free(t) of a term or formula t are defined as usual, where, in the
term t := {p : x ∈ q : ϕ}, x occurs free in p and ϕ and bound in t. We therefore write
{p(x) : x ∈ q : ϕ(x)}.

E. Grädel and S. Schalthöfer 31:5

Counting. The terms Card(t) define cardinalities of sets. Since the cardinality of sets of
polynomial size can be computed in Logspace, von Neumann ordinals, which represent
cardinalities in Choiceless Polynomial Time, are in general too large for our purposes.
Therefore cardinalities will be denoted by a set encoding of their binary representation. For
this purpose, we assume the short form 〈a, b〉 = {a, {a, b}} of Kuratowski pairs. This will
make sure that every word of length two is represented by a set with two elements and can
thus be distinguished from bitset(0) and bitset(1).

I Definition 4. We define the function bitset : {0, 1}+ → HF(∅) by setting bitset(0) := ∅,
bitset(1) := {∅}, and bitset(bw) = 〈bitset(b),bitset(w)〉 for b ∈ {0, 1} and w ∈ {0, 1}+.

If n ∈ N, let bitset(n) denote bitset(bin(n)), where bin(n) is the binary representation of
n, with 20 as the right-most bit and without leading zeroes.

It follows from the definition that the function bitset is injective. This representation
of numbers keeps their size logarithmic with respect to their unique size annotation. More
precisely, a simple induction on |w| shows:

I Lemma 5. Let s : tc(bitset(w)) → N be a size annotation for w ∈ {0, 1}+. Then
s(bitset(w)) ≤ 6|w|.

Semantics of ordinary terms and formulae. Evaluation over size-annotated objects means
that the value of every term is equipped with a size annotation. Hence, also the values of
free variables have to incorporate size annotations. Recall that a size annotation defines a
size for every element of the transitive closure of an object, which is uniquely determined by
the sizes associated with the atoms. Unless the size of an atom is given externally through
a free variable, its size originates from the term defining it. The only way to define atoms
directly will be with terms of the form Atoms .ϕ.

We assume every atom to be represented as “the ith entry of the kth tuple satisfying
ϕ”. Both ϕ and i are of constant size, since ϕ is a part of the term. So we can assume that,
up to an additive constant, such an atom can be written as a number with log k bits where
k is bounded by the number of tuples satisfying ϕ. This number is the size we assign to
every atom defined that way. If an atom occurs in the values of multiple subterms, it may
have multiple sizes that contribute to the value of the term. In that case, the minimal size is
picked, which is formalised as follows:

I Definition 6. Let S ⊆ SHF(A) be a set of size-annotated hereditarily finite sets. We
denote by SSHF the pair (s, anns) where s = {s′ : (s′, anns′) ∈ S} and anns is the unique size
annotation of s with anns(a) = min{anns′(a) : (s′, anns′) ∈ S} for every atom a ∈ tc(s).

I Definition 7 (Semantics of ordinary terms). Let A be a σ-structure and let β : X → SHF(A)
be a variable assignment. For α ∈ SHF(A), we write β[x 7→ α] : X ∪ {x} → SHF(A) to
denote the function that behaves like β on X \ {x} and maps x to α. For an ordinary σ-term
t (with free(t) ⊆ X), we define the value tA,β = (JtKA,β

, annA,β
t) ∈ SHF(A) as follows:

∅A,β = (∅, ∅ 7→ 1), and xA,β = β(x) for any variable x.
For t = Atoms .ϕ with ϕ ∈ FO[σ], let JtKA,β = {a : A |= ϕ(a)} if | free(ϕ)| = 1, and
JtKA,β = {{〈bitset(1), a1〉, . . . , 〈bitset(k), ak〉} : A |= ϕ(a1, . . . , ak)} otherwise. In both
cases annA,β

t is generated by mapping every occurring atom a to log |JtKA,β |.
If t = Pair(t1, t2), then tA,β =

{
t1

A,β , t2
A,β}

SHF.
If t = Unique(t′), then tA,β = (a, annA,β

t′ � tc(a)) if Jt′KA,β = {a} and tA,β = (∅, ∅ 7→ 1)
otherwise.

MFCS 2019

31:6 Choiceless Logarithmic Space

If t = Union(t′), then JtKA,β =
⋃
b∈Jt′KA,β b and annA,β

t = annA,β
t′ � JtKA,β.

If t = Card(t′), then JtKA,β = bitset
(∣∣∣Jt′KA,β

∣∣∣) , and annA,β
t = annJtKA,β .

If t = {p : x ∈ q : ϕ}, then tA,β = {pA,β[x7→a] : a ∈ qA,β : A, β[x 7→ a] |= ϕ}SHF.

For a σ-formula ϕ, the truth value of A, β |= ϕ is defined in the obvious way.

We denote the size annA,β
t (JtKA,β) assigned to the value of a term t by ‖t‖A,β . Further,

we write truek to denote a tautology with k free variables, true for true1 and Atoms instead
of Atoms . true. Then Atoms . truek defines the set of all k-tuples over the input structure.

Iteration terms. Ordinary terms and formulae cannot define arbitrarily nested sets. This
is achieved by constructing sets using fixed-point iteration.

I Definition 8 (Syntax of iteration terms). If u and x are variables and t is a term, then
[tu]∗(x) is an iteration term with free variables {x} ∪ free(t) \ {u}.

The fixed-point iteration starts with the object given by the free variable x, and the
variable u is usually a free variable of t, whose value is the previous stage of the iteration. To
ensure Logspace-computability, the fixed point is computed only if the logarithmic bound
given as part of the term is satisfied by all intermediate stages. The value of an iteration
term is not the fixed point itself, but the set of all stages up to that point.

I Definition 9 (Semantics of iteration terms). The i-fold iteration of a term s with free
variable u is defined by induction as s0 = s[u/x] and si+1 = s[u/si], where s[u/t] results
from replacing every occurrence of u in s by the term t.

Now let t = [su]∗(x) be an iteration term, let A be a structure and β : free(t)→ SHF(A)
a variable assignment. Then

JtKA,β =


{(si)A,β : i ≤ `}SHF, for the least ` with s` = s`+1

and ‖si‖A,β ≤ f(|A|) for all i ≤ `
if such an ` exists,

(∅, ∅ 7→ 1), otherwise.

The differences between this definition and iteration in CPT are explained by two
important properties of Logspace-algorithms: Firstly, a Logspace-algorithm can be
sequentially executed for different input values, e.g. in a forall-loop. Iteration terms allow
to do this in parallel for different values of the free variable x using suitable comprehension
terms. Secondly, defining the value of the iteration term as the aggregation of all intermediate
stages allows to generate outputs of polynomial size, which can be the input for other iteration
terms.

Recursion formulae. With recursion formulae, we basically add to our logic the lrec-operator
from [17, 18]. This operator permits a restricted kind of recursion over a graph interpretable
in the input structure. Since our logic operates on hereditarily finite sets, we modify the
interpretation such that the domain of the interpreted structure can be any definable set.
Recursion formulae contain a term tδ that restricts the domain to finitely many objects
and defines their size annotations. Further, the vertices of the graph are labelled by sets of
natural numbers, which we represent as bitsets instead of elements of a distinct number sort.

I Definition 10 (Syntax of recursion formulae). If tδ and tC are terms and ϕE and ϕ= are
formulae, then [lrecu,vtδ, ϕ=, ϕE , tC](x, y) is a recursion formula.

E. Grädel and S. Schalthöfer 31:7

For the definition of the semantics, fix a σ-structure A, a variable assignment β, and a
recursion formula ϕ = [lrecu,vtδ, ϕ=, ϕE , tC](x, y). We first describe how tδ, ϕ=, ϕE and tC
define a labelled graph G = (V,E,C) interpreted in the input structure. The formulae ϕ=
and ϕE will be evaluated for pairs of elements from JtδK

A,β . For that purpose, we define the
extension βa,b := β[u 7→ (a, annA,β

tδ
� tc(a)), v 7→ (b, annA,β

tδ
� tc(b))] of β for a, b ∈ JtδK

A,β .
The vertex set V consists of the equivalence classes of the reflexive, symmetric, transitive

closure of the relation {(a, b) ∈ JtδK
A,β × JtδK

A,β : A, βa,b |= ϕ=}. Let [a] denote the
equivalence class of a. The edge set of G is E := {([a], [b]) : A, βa,b |= ϕE}. Further, the label
of [a] ∈ V is the set C([a]) = {c : there exists a′ ∈ [a] with bitset(c) ∈ JtCKA,βa′}, where
βa′ = β[u 7→ (a′, annA,β

tδ
� tc(a′))].

The truth value of the recursion formula depends on a recursive property X of vertices of
a DAG unfolding of G. This unfolding is obtained by augmenting every vertex [a] ∈ V with
a resource ` ∈ N restricting the space necessary to process paths through the DAG (for a
detailed explanation, see [17, 18]). Then ([a], `) ∈ X ⊆ V × N if, and only if,

` > 0 and bitset
(∣∣∣∣{[b] ∈ [a]E :

(
[b],
⌊
`− 1
|E[b]|

⌋)
∈ X

}∣∣∣∣) ∈ C([a]),

If the values of the free variables x, y define a pair in V × N (i.e. a vertex of the DAG), then
the membership of that pair in X determines the truth value of the recursion formula:

I Definition 11 (Semantics of recursion formulae). Let ϕ,A, β and X as above. Then
A, β |= ϕ, where β(x) = (a, annA,β

tδ
� tc(a)) and β(y) = (bitset(`), annbitset(`)) for ` ∈ N, if,

and only if, ([a], `) ∈ X.

This completes the definition of CLogspace. We illustrate it with two short examples.

I Example 12 (Size annotations). To see that the size annotation of a term can map the
atoms to different values, consider the term Union(Pair(Atoms . true,Atoms .Px)). The value
of that term in a structure A is its whole domain. But the size annotation maps every
element of PA to log |PA|, and the other atoms to log |A|.

To demonstrate the use of iteration terms, we construct a formula ϕdtc(x, y) defining that
there is a deterministic path from x to y.

I Example 13 (Deterministic paths). The core of the formula is an iteration term [tu]∗(x)
progressing along the deterministic path starting from x:

t(u) = Unique ({z : z ∈ Atoms . true : Euz}) .

Note that the free variable x determines the value of the first stage. So, by definition of Unique,
the ith stage of [tu]∗(x) is the ith element on the deterministic path starting at x. Every
stage is added to the value of the term, so the desired formula is ϕdtc(x, y) = y ∈ [tu]∗(x).
Since every atom is initially defined with the term Atoms . true, it is mapped to log |A| by
the size annotation for the structure A. Thus n 7→ logn is a suitable bound for the formula.

Choiceless Polynomial Time. The newly introduced features that distinguish Choiceless
Logspace from Choiceless Polynomial Time are size annotations, the addition of recursion
formulae and the semantics of iteration terms. Further, CPT-formulae clearly possess
polynomial instead of logarithmic bounds.

Consequently, the definition of CPT-formulae can be recovered from our definition of
CLogspace by the following modifications: The terms of the form “Atoms .ϕ” are replaced

MFCS 2019

31:8 Choiceless Logarithmic Space

by an atomic term “Atoms”, defining the full set of atoms from the input structure. The
rule for recursion formulae is omitted. In terms (t, f) and formulae (ϕ, f), the function f is
a polynomial.

In the definition of the semantics, the size annotations are eliminated completely. The
polynomial bound for iteration terms is applied to the cardinality of the transitive closure
of the current stage. For the computation to remain within polynomial time, the number
of stages is also bounded by the polynomial. The value of an iteration term is the stage
inducing the fixed-point instead of the accumulation of all intermediate stages. For more
detailed definitions of Choiceless Polynomial Time, we refer to, for instance, [25, 9].

3 Inclusion in Logspace and CPT

We next prove the two essential properties of our logic that justify it to be called Choiceless
Logspace: Firstly, every formula in our logic can be evaluated in logarithmic space. Secondly,
it is choiceless in the sense that every formula can be translated to Choiceless Polynomial
Time, the prototypical model of choiceless computation.

I Theorem 14. Every query definable in CLogspace is Logspace-computable.

The explicit logarithmic bound in CLogspace-sentences is intended to enable evaluation
in Logspace. It ensures that every value occurring during an iterated computation has a
sufficiently small size annotation. The size annotations induced by the semantics of terms
and formulae are defined with a certain encoding of hereditarily finite sets in mind. We first
define this encoding, which is the core of our evaluation algorithm.

Recall that elements of the input structure are always defined by means of terms Atoms .ϕ.
Since the algorithm will take as input string encodings of structures, we now operate on
ordered structures. Hence one can represent an atom as “the ith entry of the kth tuple
satisfying ϕ” using the linear order on the input structure. We denote the set of k-tuples
from a structure A satisfying an FO-formula ϕ with k free variables by ϕA.

I Definition 15 (Representations). Let Φ ⊆ FO[σ] for some vocabulary σ. The alphabet
ΣΦ consists of 0,1, “(”, “)”, “{”, “}”, “,” and an alphabet symbol for each ϕ ∈ Φ, which
we also denote by ϕ. A Φ-representation is a word in the alphabet ΣΦ that is either a set
representation or an atom representation:

An atom representation is a word (ϕ, i,m), where ϕ ∈ Φ with k ≥ 1 free variables, and i
and m are binary encodings of natural numbers ≤ k and ≤ |ϕA|, respectively. If |ϕA| = 0,
then m is the empty string.
If r1, . . . , rk are representations, then the word {r1, . . . , rk} is a set representation.

Let A be the expansion of a σ-structure A′ by a linear order <A. The value rA of a
representation r is defined as

(ϕ, i,m)A = ai where (a1, . . . , ak) is the m-th tuple (w.r.t. the lexicographical order
extending <) in ϕA.
{r1, . . . , rk}A = {rA

1 , . . . , r
A
k }.

A representation r is A-minimal if
1. for every atom a in tc(rA), there is a unique atom representation of a that occurs as a

substring of r,
2. if r = {r1, . . . , rk}, then r1, . . . , rk are minimal representations and the values rA

i are
pairwise distinct.

E. Grädel and S. Schalthöfer 31:9

For an A-minimal representation r, we define the size annotation annA
r by induction on

the representation r:
annA

(ϕ,i,m) : (ϕ, i,m)A 7→ log |ϕA|,
annA

{r1...rk} is the size annotation of {(rA
1 , annA

r1
), . . . , (rA

k , annA
rk

)}SHF.
We say that r is a representation of (rA, annA

r) ∈ SHF(A).

We omit the structure A and speak about minimal representations if A can be inferred
from the context. Note that there are representations that are not minimal, since the same
set may be listed twice or an atom may occur encoded by different atom representations
throughout the transitive closure of the value. Thus minimal representations ensure that the
size annotation is well-defined. Note further that the size annotation does not agree with the
word length of the representation. It does, however, provide an upper bound on the word
length up to constant factors. Since the size annotation does not depend on the specific
numbers i and m, this upper bound is independent of the linear order. Moreover, the size
annotation of any given minimal representation is Logspace-computable.

Towards the evaluation algorithm, we show how to check whether two representations
have the same value and, using the former as a subroutine, how to compute minimal
representations.

I Lemma 16. There is an algorithm that, given a σ ∪ {<}-structure A (where <A is
obtained from the string representation of A) and A-minimal representations r1, r2, decides
in logarithmic space whether rA

1 = rA
2 .

Proof. We reduce equality of representations to isomorphism of coloured trees, where the
colours are numbers 1, . . . , |A|. An atom representation is encoded by a single node coloured
by its value, and a set representation is encoded by a tree where the subtrees below the
root encode the elements of the set representation. Note that, since the representations
are minimal, every node has at most one child of any isomorphism type, so equality of the
representations indeed implies isomorphism of the corresponding trees. J

I Lemma 17. There is an algorithm that, given a σ∪{<}-structure A (where <A is obtained
from the encoding of A) and A-minimal representations r1, . . . , rk, computes in logarithmic
space a minimal representation r of the size-annotated set {(rA

1 , annA
r1

), . . . , (rA
k , annA

rk
)}SHF.

Proof. We sequentially execute two Logspace-algorithms. The first one copies those
representations to the output tape whose value did not occur before (using the algorithm
from the previous lemma). The second algorithm replaces every atom representation by the
shortest representation of its value occurring in the original string. J

With these subroutines, the evaluation of terms and formulae becomes rather straight-
forward. To simplify the statement of the following lemma, we do not distinguish between
terms and formulae, but assume formulae to be terms with values ∅ and {∅}.

I Lemma 18. For every term t with free variables x1, . . . , xk and every function f : n 7→
c logn, there is a Logspace algorithm that, given a σ-structure A and representations
r1, . . . , rk of α1, . . . , αk ∈ SHF(A), computes a representation of (t, f)A,β : xi 7→αi .

Proof. We proceed by induction on the construction of terms. Evaluation of atomic terms ∅
and x is trivial. For terms of the form Atoms .ϕ, it suffices to compute the number n of tuples
satisfying the FO-formulae ϕ and enumerate all tuples with entries (ϕ, i,m) for 0 ≤ m ≤ n.

MFCS 2019

31:10 Choiceless Logarithmic Space

In the induction step, most cases follow directly from the induction hypothesis, using the
fact that Logspace is closed under sequential execution and thus the output of previous
computations can be processed further regardless of its size. For Pair, Union and compre-
hension, the results of the subcomputations can be converted to a minimal representation
with the algorithm from Lemma 17. Formulae t1 = t2 and t1 ∈ t2 can be evaluated using
the algorithm from Lemma 16. For recursion formulae, the lemma follows from inclusion of
LREC in Logspace.

Let [tu]∗ be an iteration term with free variable xj . In its ith iteration, the algorithm
computes a representation of (ti)A,β from (ti−1)A,β (which is possible by induction hypothesis)
and checks whether it satisfies the size bound. This is again possible using sequential execution.
The new stage is compared to the previous one. Whenever a new value has been produced,
it is additionally written to the output tape. A postprocessing step converts the result to a
minimal representation and replaces it by the empty set if the bound has been exceeded at
some point.

The bound on the size of each stage induces a logarithmic bound on the word length of the
representations that are written to the work tape. In particular, this implies that the number
of possible representations occurring as stages is polynomial. This ensures termination, since
a counter can track the number of values that have been produced. J

We have established that CLogspace is a fragment of Logspace. To verify that this
fragment is choiceless, we embed it in CPT.

I Theorem 19. CLogspace ≤ CPT.

The straightforward way to prove the theorem is to inductively translate CLogspace-
formulae to CPT. But the translation of formulae with free variables bears two technical dif-
ficulties: Firstly, CLogspace is evaluated over size-annotated hereditarily finite set. Secondly,
standard definitions of CPT do not allow free variables in iteration terms.

We can, however, assume a non-standard variant of CPT where iteration terms may
have free variables. This does not increase its expressive power because iteration terms
can be simulated for all possible values of the free variables at once without exceeding the
polynomial bound.

We address the first difficulty by the key concept of the translation to CPT: Expressing
size annotations as hereditarily finite sets.

I Definition 20. Let A be a σ-structure, and let (a, s) ∈ SHF(A). The set representation
set ((a, s)) ∈ HF(A) is the set 〈a, {〈b, [s(b)]〉 : b ∈ tc(a) ∩ A}〉, where [s(b)] is the ordinal
corresponding to s(b). We say that {〈b, s(b)〉 : b ∈ tc(a)∩A} represents the size annotation s.

Proof of Theorem 19. Set representations of size annotations induce a translation between
variable assignments, and thus a meaningful definition of translation between formulae
with free variables. It remains to show that every CLogspace-formula can be (inductively)
translated to CPT in that sense.

Most cases follow directly from the induction hypothesis, using CPT-terms that define
combinations of size annotations. Size annotations are combined by using the minimal known
size for every atom, which is definable in CPT.

In case a size annotation is not derived from the subterms, it originates from a term of
the form “Atoms .ϕ”. So the corresponding CPT-term has to define the size annotation that
assigns the value log |ϕA| to every atom from the structure A occurring in the value of the
term. This is possible since logarithms are CPT-definable.

E. Grädel and S. Schalthöfer 31:11

Further, CPT can check the logarithmic bound of iteration terms using the size annotation
at each stage. Finally, recursion formulae can be translated to CPT because LREC ≤ FPC ≤
CPT. This concludes the proof of Theorem 19. J

4 The expressive power of CLogspace

To substantiate the idea that the rich syntax of CLogspace leads to greater expressive power,
we compare it to known logics below Logspace. As classical benchmarks, we consider the
logics DTC and STC, which augment FO by deterministic and symmetric transitive closure
operators. For precise definitions, we refer to [14, Sect. 3.5.2]. These logics are known [17]
to be included in LREC, which is the strongest logic inside Logspace known so far. Hence
our main theorem of this kind is:

I Theorem 21. CLogspace
 LREC.

LREC is a logic with counting terms, so it features a linearly ordered number sort and
terms defining the cardinality of definable sets of tuples. Its core is the recursion operator,
a modified version of which appears in our logic. We describe the lrec-operator in terms
of the differences to our version, and refer to [17] for the full definition. Recall that the
recursion operator interprets a graph in the input structure. In the original version, the
elements of that graph are k-tuples from the input structure instead of hereditarily finite sets.
Consequently, the domain term tδ does not occur, and the subformulae can have multiple free
variables. Further, the labels of the graph are defined as tuples over the number sort instead
of bitsets. Both for counting of tuples and defining the labels of the graph, LREC uses a
Logspace-computable encoding of numbers polynomial in the size of the input structure by
fixed-size tuples over the number sort. To verify that the Logspace-computable arithmetic
operations used in LREC are CLogspace-definable, we show:

I Proposition 22. Let R ⊆ {0, . . . , |A|k}` be any Logspace-computable relation. Then
there is a CLogspace-term defining {〈bitset(n1), . . . ,bitset(n`)〉 : (n1, . . . , n`) ∈ R}.

Proof. By implementing basic bit operations in CLogspace, the successor of any natural
number is definable in the bitset encoding. This makes it possible to define a linear order
on all bitsets up to any definable number. The elements of the linear order are bitsets of
logarithmic size, so DTC-formulae can be simulated on that order analogously to Example 13.
As DTC captures Logspace on ordered structures, the proposition follows. J

The different encodings of numbers also pose a difficulty when translating formulae
with free variables, since these variables can be domain or number variables. Defining a
translation between variable assignments, inclusion of LREC in CLogspace can be made
precise on the level of formulae with free variables. The translation to CLogspace is then
rather straightforward. In particular, the only necessary iteration terms are those defining
the operations on the number sort, so there exists an appropriate logarithmic bound.

So LREC is included in CLogspace. The inclusion is strict because of a property that
CLogspace shares with CPT but not with traditional logics such as FPC and LREC: It
benefits from padding of the input structure, i.e. it can define all Logspace-properties of
sufficiently small, definable substructures.

I Definition 23. A σ ∪ {U}-structure A is a padded σ-structure if U /∈ σ is a unary
predicate. The underlying structure of A is the σ-reduct of UA.

MFCS 2019

31:12 Choiceless Logarithmic Space

I Theorem 24. Let C be the class of padded structures such that 2u!(u2(6 logu+2)+1) ≤ n for
every structure in C of size n with underlying structure of size u. For every Logspace-
computable property P, there is a CLogspace-sentence (ϕ, f) such that any structure in C
satisfies (ϕ, f) if, and only if, the underlying structure satisfies P.

Proof. We define the set of all linear orders on the underlying structure. Then, since
DTC ≤ LREC ≤ CLogspace and DTC captures Logspace on ordered structures, every
Logspace-computable property can be defined on the resulting ordered structures.

Initially, all linear orders on two elements are created, defining pairs of atoms with the
term Atoms .(Ux ∧ Uy ∧ x 6= y). Then an iteration term extends every linear order by every
atom that does not occur yet, defined by Atoms .Uy. It remains to show that there is a
logarithmic bound for the iteration term. Its value in the ith stage is the set of all orders
of the form {〈a, b〉 : a, b ∈ V : a < b} for subsets V ⊆ U of size i+ 2. All atoms are defined
by the terms Atoms .Ux and Atoms .(Ux ∧ Uy ∧ x 6= y), so every atom is annotated with a
size ≤ 2 log |U |. Then the pair 〈a, b〉 = {a, {a, b}} is mapped to 6 log |U |+ 2. Every linear
order contains < |V |2 ≤ |U |2 many pairs of that form, and there are |V |! ≤ |U |! many linear
orders in the ith iteration. So ‖ti‖A,β ≤ (|U |2 · (6 log |U |+ 2) + 1) · |U |! + 1. By assumption,
this is logarithmic in the size of the full input structure. J

Since the CFI-query is in Logspace, it is CLogspace-definable on padded structures.
But LREC is included in FPC [18], so it cannot define this query even in the presence of
padding. Thus Theorem 24 implies that CLogspace is strictly more expressive than LREC.
It follows that also DTC and STC, and their extensions with counting, are strictly included
in CLogspace. The same holds for all models of choiceless computation with a constant
bound on the number of objects in the transitive closure of a set.

Even though our results demonstrate that CLogspace is stronger than all previously
studied logics for Logspace, we can show that it does not capture all of Logspace. To
establish this result we use a technique for proving inexpressibility results for fragments of
CPT that is based on supports of hereditarily finite objects (see e.g. [3, 8, 26]).

I Definition 25. Let Aut(A) be the automorphism group of a finite structure A. For
a ∈ HF(A), let Stab(a) be the stabiliser of a with respect to Aut(A), and let Stab•(a) be its
point-wise stabiliser. An object s ∈ HF(A) is a support of a if Stab•(s) ⊆ Stab(a).

Every CPT-formula can be translated to an FPC-formula over a substructure of HF(A)
containing the sets activated by the formula. For general CPT-formulae, this can be
an arbitrary substructure of HF(A), depending on both the CPT-formula and the input
structure. But for some fragments of CPT, the substructure can be over-approximated
by those hereditarily finite objects that have a sufficiently small support. In particular,
CLogspace-formulae can be translated to FPC-formulae that are evaluated over hereditarily
finite sets with a support of logarithmic size.

I Lemma 26. For a structure A and f : N→ N, let HFf (A) be the substructure of HF(A)
containing exactly those sets that have a support of size f(n), where n is the size of the
domain of A. For every CLogspace-formula (ϕ, f), there is an FPC-formula ψ such that,
for every structure A, A |= (ϕ, f) if, and only if, HFf (A) |= ψ.

Proof. Since the stages of all iteration terms are of size at most f(n) with respect to their
size annotations, they are elements of HFf (A). Analogously to the translation of CPT-terms
to interpretations in an extension of FO in [10], every ordinary term or formula in CLogspace

E. Grädel and S. Schalthöfer 31:13

can be translated to an LREC-interpretation. Iteration terms can be translated to FPC-
interpretations that create new objects representing the value of the iteration term, i.e. the
aggregation of all stages. The element relation between that new element and the stages
can then be defined by a fixed-point formula, maintaining the size annotations as a separate
relation. J

By the same arguments as used in the proof of Theorem 40 in [8], this implies that the
Cai-Fürer-Immerman query cannot be defined in CLogspace. As a consequence we get

I Theorem 27. CLogspace is a strict fragment of Logspace.

5 Discussion

We have introduced Choiceless Logarithmic Space formalising the notion of symmetric,
choiceless computations using only logarithmic workspace. Through the notion of size-
annotated hereditarily finite sets, our logic takes into account that sizes of objects in
Logspace are sensitive to their encoding. The logic is a fragment of both Choiceless
Polynomial Time and Logspace, and it captures Logspace on certain classes of structures
with padding. This demonstrates the similarity to CPT, and, more importantly, makes it
stronger than all previously known logics in Logspace, in particular LREC.

However, we have seen that CLogspace does not capture Logspace because it can only
define sets with a support of logarithmic size, which, as shown in [8], makes it impossible
to define the Cai-Fürer-Immerman query. It remains open whether the concepts used in
CLogspace can be used to obtain a stronger logic that could capture all queries in Logspace.

Of course, our definition can be tuned in several ways, addressing issues such as closure
under interpretations, or trying to avoid the use of two different kinds of recursion operators
(iteration terms and recursion formulae). Even for the current definition of CLogspace, it
is open whether the lrec-operator can be eliminated without losing expressive power. It
can, however, be shown that iteration terms are necessary (see [26]). However, contrary to
polynomial time, logspace complexity is a much less robust notion, and the conflicting goals
of providing sufficient power for choiceless computation and remaining inside Logspace
necessarily seem to result in a rather involved construction of CLogspace. It seems difficult
to overcome, with further tunings of the definition, the barrier that the definable sets in
CLogspace have a (far too) small support. In the light of the research carried out here, we
therefore consider it improbable that some variant of choiceless computation can capture
precisely all (symmetry-invariant) Logspace-queries.

We may take a step back, and reconsider our general objectives. One of the reasons why
we are looking for a logic that captures logspace complexity on arbitrary finite structures is
that Logspace, other than being a well-studied complexity class for standard computation
models on ordered objects, is a reasonable formalisation of efficient computation for big data.
But there are also other, less restrictive, complexity classes that can serve a similar purpose,
for instance on the basis of polylogarithmic space bounds. Such variants may be more robust
and make it possible to assume a standard encoding of atoms with small space and might
grant more freedom in defining tree-like recursion using only iteration terms. Rather than
trying to tune the definition of CLogspace to find stronger notions of choiceless computation
inside Logspace, we may thus also go beyond the logspace bound and ask more generally:
“What is efficient choiceless computation for big data?”.

MFCS 2019

31:14 Choiceless Logarithmic Space

References
1 F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa. Choiceless Polynomial Time on structures

with small Abelian colour classes. In MFCS 2014, volume 8634 of Lecture Notes in Computer
Science, pages 50–62. Springer, 2014.

2 A. Atserias, A. Bulatov, and A. Dawar. Affine Systems of Equations and Counting Infinitary
Logic. Theoretical Computer Science, 410:1666–1683, 2009.

3 A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure and Applied
Logic, 100(1-3), 1999.

4 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for
graph identification. Combinatorica, 12:389–410, 1992.

5 A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer
and System Sciences, 25(1), 1982.

6 A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
2(1):8–21, 2015.

7 A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with Rank Operators. In Proc. 24th
IEEE Symp. on Logic in Computer Science (LICS 09), pages 113–122, 2009.

8 A. Dawar, D. Richerby, and B. Rossman. Choiceless Polynomial Time, Counting and the
Cai-Fürer-Immerman Graphs. Annals of Pure and Applied Logic, 152:31–50, 2009.

9 E. Grädel and M. Grohe. Is Polynomial Time Choiceless? In Fields of Logic and Computation
II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, pages 193–209,
2015.

10 E. Grädel, Ł. Kaiser, W. Pakusa, and S. Schalthöfer. Characterising Choiceless Polynomial
Time with First-Order Interpretations. In LICS, 2015.

11 E. Grädel and M. Otto. Inductive Definability with Counting on Finite Structures. In
Computer Science Logic, CSL 92, volume 702 of Lecture Notes in Computer Science, pages
231–247. Springer, 1992.

12 E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic! Journal of Symbolic Logic,
To appear, 2019. http://arxiv.org/abs/1503.05423.

13 E. Grädel and M. Spielmann. Logspace Reducibility via Abstract State Machines. In J. Wing,
J. Woodcock, and J. Davies, editors, World Congress on Formal Methods (FM ‘99), volume
1709 of LNCS. Springer, 1999. URL: http://www.logic.rwth-aachen.de/pub/graedel/
GrSp-fm99.ps.

14 E. Grädel et al. Finite Model Theory and Its Applications. Springer-Verlag, 2007.
15 M. Grohe. The quest for a logic capturing PTIME. In Proceedings of the 23rd IEEE Symposium

on Logic in Computer Science (LICS’08), pages 267–271, 2008.
16 M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.

Cambridge University Press, 2017.
17 M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-Recursion and a new Logic for

Logarithmic Space. In LIPIcs-Leibniz International Proceedings in Informatics, volume 12.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2011.

18 B. Grußien. Capturing Polynomial Time and Logarithmic Space using Modular Decompos-
itions and Limited Recursion. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät, 2017. doi:10.18452/18548.

19 Y. Gurevich. Logic and the challenge of computer science. In E. Börger, editor, Current
Trends in Theoretical Computer Science, pages 1–57. Computer Science Press, 1988.

20 N. Immerman. Expressibility as a complexity measure: results and directions. In Structure in
Complexity Theory, pages 194–202, 1987.

21 N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing,
16(4):760–778, 1987.

22 W. Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of
Polynomial Time. PhD thesis, RWTH Aachen University, 2016.

http://www.logic.rwth-aachen.de/pub/graedel/GrSp-fm99.ps
http://www.logic.rwth-aachen.de/pub/graedel/GrSp-fm99.ps
https://doi.org/10.18452/18548

E. Grädel and S. Schalthöfer 31:15

23 W. Pakusa, S. Schalthöfer, and E. Selman. Definability of Cai-Fürer-Immerman Problems in
Choiceless Polynomial Time. In 25th EACSL Annual Conference on Computer Science Logic
(CSL 2016), pages 19:1–19:17, 2016.

24 O. Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):17,
2008.

25 B. Rossman. Choiceless Computation and Symmetry. In A. Blass, N. Dershowitz, and
W. Reisig, editors, Fields of Logic and Computation: Essays Dedicated to Yuri Gurevich on
the Occasion of His 70th Birthday, volume 6300 of LNCS, pages 565–580. Springer, 2010.

26 S. Schalthöfer. Choiceless Computation and Logic. PhD thesis, RWTH Aachen University,
2018.

27 M. Spielmann. Abstract state machines: Verification problems and complexity. PhD thesis,
RWTH Aachen University, 2000.

MFCS 2019

Faster FPT Algorithm for 5-Path Vertex Cover
Radovan Červený
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
radovan.cerveny@fit.cvut.cz

Ondřej Suchý
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
ondrej.suchy@fit.cvut.cz

Abstract
The problem of d-Path Vertex Cover, d-PVC lies in determining a subset F of vertices of
a given graph G = (V, E) such that G \ F does not contain a path on d vertices. The paths we
aim to cover need not to be induced. It is known that the d-PVC problem is NP-complete for any
d ≥ 2. When parameterized by the size of the solution k, 5-PVC has direct trivial algorithm with
O(5knO(1)) running time and, since d-PVC is a special case of d-Hitting Set, an algorithm running
in O(4.0755knO(1)) time is known. In this paper we present an iterative compression algorithm that
solves the 5-PVC problem in O(4knO(1)) time.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases graph algorithms, Hitting Set, iterative compression, parameterized com-
plexity, d-Path Vertex Cover

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.32

Related Version https://arxiv.org/abs/1906.09213

Funding Radovan Červený: Supported by grant 17-20065S of the Czech Science Foundation.
Ondřej Suchý: The author acknowledges the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.

1 Introduction

The problem of d-Path Vertex Cover, d-PVC lies in determining a subset F of vertices of
a given graph G = (V,E) such that G\F does not contain a path on d vertices (even not a non-
induced one). The problem was first introduced by Brešar et al. [1], but its NP-completeness
for any d ≥ 2 follows already from the meta-theorem of Lewis and Yannakakis [11]. The
2-PVC problem corresponds to the well known Vertex Cover problem and the 3-PVC
problem is also known as Maximum Dissociation Set. The d-PVC problem is motivated
by the field of designing secure wireless communication protocols [12] or in route planning
and speeding up shortest path queries [9].

Since the problem is NP-hard, any algorithm solving the problem exactly is expected to
have exponential running time. If one measures the running time solely in terms of the input
size, then several efficient (faster than trivial enumeration) exact algorithms are known for
2-PVC and 3-PVC. In particular, 2-PVC (Vertex Cover) can be solved in O(1.1996n)
time and polynomial space due to Xiao and Nagamochi [20] and 3-PVC can be solved in
O(1.4656n) time and polynomial space due to Xiao and Kou [18].

In this paper we aim on the parameterized analysis of the problem, that is, to confine the
exponential part of the running time to a specific parameter of the input, presumably much

© Radovan Červený and Ondřej Suchý;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4528-9525
mailto:radovan.cerveny@fit.cvut.cz
https://orcid.org/0000-0002-7236-8336
mailto:ondrej.suchy@fit.cvut.cz
https://doi.org/10.4230/LIPIcs.MFCS.2019.32
https://arxiv.org/abs/1906.09213
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Faster FPT Algorithm for 5-Path Vertex Cover

smaller than the input size. Algorithms achieving running time f(k)nO(1) are called para-
meterized, fixed-parameter tractable, or FPT. See Cygan et al. [3] for a broader introduction
to parameterized algorithms.

When parameterized by the size of the solution k, the d-PVC problem is directly solvable
by a trivial FPT algorithm that runs in O∗(dk) time.1 However, since d-PVC is a special
case of d-Hitting Set, it was shown by Fomin et al. [6] that for any d ≥ 4 we have an
algorithm solving d-PVC in O∗((d− 0.9245)k). In order to find more efficient solutions, the
problem has been extensively studied in a setting where d is a small constant. For the 2-PVC
(Vertex Cover) problem, the algorithm of Chen, Kanj, and Xia [2] has the currently best
known running time of O∗(1.2738k). For 3-PVC, Tu [16] used iterative compression to
achieve a running time O∗(2k). This was later improved by Katrenič [10] to O∗(1.8127k),
by Xiao and Kou [19] to O∗(1.7485k) by using a branch-and-reduce approach and it was
further improved by Tsur [15] to O∗(1.713k). For the 4-PVC problem, Tu and Jin [17] again
used iterative compression and achieved a running time O∗(3k) and Tsur [14] claims to have
an algorithm with running time O∗(2.619k).

We present an algorithm that solves the 5-PVC problem parameterized by the size of the
solution k in O∗(4k) time by employing the iterative compression technique. Using the result
of Fomin et al. [7] this also yields O(1.7501n) time algorithm improving upon previously
known O(1.7547n) time algorithm.

Organization of this paper. We introduce the notation and define the 5-PVC problem in
section 2. Our disjoint compression routine for iterative compression is exposed in section 3.
We conclude this paper with a few open questions. Due to space constraints most proofs
were deferred to the full version of this paper. However, to showcase our technique of proving
the correctness of our algorithm, we included the proofs of correctness for Rules (R10) and
(R13.1), and proofs of Lemmata 18 and 21.

2 Preliminaries

We use the O∗ notation as described by Fomin and Kratsch [8], which is a modification of
the big-O notation suppressing all polynomially bounded factors. We use the notation of
parameterized complexity as described by Cygan et al. [3]. We use standard graph notation
and consider simple and undirected graphs unless otherwise stated. Vertices of graph G are
denoted by V (G), edges by E(G). By G[X] we denote the subgraph of G induced by vertices
of X ⊆ V (G). By N(v) we denote the set of neighbors of v ∈ V (G) in G. Analogically,
N(X) =

⋃
x∈X N(x) denotes the set of neighbors of vertices in X ⊆ V (G). The degree of

vertex v is denoted by deg(v) = |N(v)|. For simplicity, we write G \ v for v ∈ V (G) and
G \X for X ⊆ V (G) as shorthands for G[V (G) \ {v}] and G[V (G) \X], respectively.

A k-path, denoted as an ordered k-tuple Pk = (p1, p2, . . . , pk), is a path on k vertices
{p1, p2, . . . , pk}. A path Pk starts at vertex x when p1 = x. A k-cycle is a cycle on k vertices.
A triangle is a 3-cycle. A P5-free graph is a graph that does not contain a P5 as a subgraph
(the P5 need not to be induced). The 5-Path Vertex Cover problem is formally defined
as follows:

5-Path Vertex Cover, 5-PVC
Input: A graph G = (V, E), an integer k ∈ Z+

0 .
Output: A set F ⊆ V , such that |F | ≤ k and G \ F is a P5-free graph.

1 The O∗() notation suppresses all factors polynomial in the input size.

R. Červený and O. Suchý 32:3

I Definition 1. A star is a graph S with vertices V (S) = {s} ∪ {l1, . . . , lk}, k ≥ 3 and edges
E(S) = {{s, li} | i ∈ {1, . . . , k}}. Vertex s is called a center, vertices L = {l1, . . . , lk} are
called leaves.

I Definition 2. A star with a triangle is a graph S4 with vertices V (S4) = {s, t1, t2} ∪
{l1, . . . , lk}, k ≥ 1 and edges E(S4) = {{s, t1}, {s, t2}, {t1, t2}} ∪ {{s, li} | i ∈ {1, . . . , k}}.
Vertex s is called a center, vertices T = {t1, t2} are called triangle vertices and vertices
L = {l1, . . . , lk} are called leaves.

I Definition 3. A di-star is a graph D with vertices V (D) = {s, s′} ∪ {l1, . . . , lk} ∪
{l′1, . . . , l′m}, k ≥ 1,m ≥ 1 and edges E(D) = {{s, s′}} ∪ {{s, li} | i ∈ {1, . . . , k}} ∪
{{s′, l′j} | j ∈ {1, . . . ,m}}. Vertices s, s′ are called centers, vertices L = {l1, . . . , lk} and
L′ = {l′1, . . . , l′m} are called leaves.

I Lemma 4. If a connected graph is P5-free and has more than 5 vertices, then it is a star,
a star with a triangle, or a di-star.

3 5-PVC with P5-free bipartition

We employ the generic iterative compression framework as described by Cygan et al. [3,
pages 80–81]. We skip the generic steps and only present the disjoint compression routine
(see the full version of the paper for a brief discussion of the whole iterative compression
algorithm). That is, we assume that we are given a solution to the problem and search for
another solution which is strictly smaller than and disjoint from the given one. Moreover,
if the graph induced by the given solution contains a P5, then we can directly answer no.
Hence our routine disjoint_r restricts itself to a problem called 5-PVC with P5-free
Bipartition and we need it to run in O∗(3k) time.

A P5-free bipartition of graph G = (V,E) is a pair (V1, V2) such that V = V1 ∪ V2,
V1 ∩ V2 = ∅ and G[V1], G[V2] are P5-free. The 5-PVC with P5-free Bipartition problem
is formally defined as follows:

5-PVC with P5-free Bipartition, 5-PVCwB
Input: A graph G = (V, E) with P5-free bipartition (V1, V2), an integer k ∈ Z+

0 .
Output: A set F ⊆ V2, such that |F | ≤ k and G \ F is a P5-free graph.

Throughout this paper the vertices from V1 will be also referred to as “red” vertices and
vertices from V2 will be also refereed to as “blue” vertices.

3.1 Algorithm
Our algorithm is a recursive procedure disjoint_r(G,V1, V2, F, k), where G is the input
graph, V1, V2 are the partitions of the P5-free bipartition of G, F is the solution being
constructed, and k is the maximum number of vertices we can still add to F . The procedure
repeatedly tries to apply a series of rules with a condition that a rule (RI) can be applied
only if all rules that come before (RI) cannot be applied. It is paramount that in every call
of disjoint_r at least one rule can be applied. The main work is done in rules of two types:
reduction rules and branching rules. To make it easier for the reader we also use rules called
context rules, which only describe the configuration we are currently in and serve as some
sort of a parent rules for their subrules.

MFCS 2019

32:4 Faster FPT Algorithm for 5-Path Vertex Cover

A reduction rule is used to simplify a problem instance, i.e. remove some vertices or edges
from G and possibly add some vertices to a solution, or to halt the algorithm. A branching
rule splits the problem instance into at least two subinstances. The branching is based on
subsets of vertices that we try to add to a solution and by adding them to the solution we
also remove them from G.

The notation we use to denote the individual branches of a branching rule is as follows:
〈X1 | X2 | . . . | Xl 〉. Such a rule has l branches and X1, X2, . . . , Xl are subsets of V2 which
we try to add to the solution. This rule is translated into the following l calls of the procedure:

disjoint_r(G \Xi, V1, V2 \Xi, F ∪Xi, k − |Xi|) for i ∈ {1, . . . , l}

A rule is applicable if the conditions of the rule are satisfied and none of the previous
rules is applicable. If a context rule is not applicable, it means that none of its subrules is
applicable.

A reduction rule is correct if it satisfies that the problem instance has a solution if and
only if the simplified problem instance has a solution. A branching rule is correct if it satisfies
that the problem instance has a solution if and only if at least one of the branches of the
rule will return a solution.

When we say we delete a vertex, we mean that we remove it from G and also add it to
the solution F . When we say we remove a vertex, we mean that we remove it from G and
do not add it to the solution F .

For the rest of this paper assume that the parameters of the current call of disjoint_r
are G,V1, V2, F, k.

3.2 Preprocessing
I Reduction rule (R0). This rule stops the recursion of disjoint_r. It has three stopping
conditions:
1. If k < 0, return no solution;
2. else if G is P5-free, return F ;
3. else if k = 0, return no solution.

I Reduction rule (R1). Let v ∈ V (G) be a vertex such that there is no P5 in G that uses v.
Then remove v from G.

I Branching rule (R2). Let P be a P5 in G with X = V (P) ∩ V2 such that |X| ≤ 3. Then
branch on 〈x1 | x2 | . . . 〉, xi ∈ X, i.e. branch on the blue vertices of P .

I Lemma 5. Assume that Rules (R0) – (R2) are not applicable. Then for each vertex
v ∈ V (G) there exists a P5 in G that uses v; every P5 in G uses exactly one red vertex; and
there are only isolated vertices in G[V1].

3.3 Dealing with isolated vertices in G[V2]
I Lemma 6. Assume that Rules (R0) – (R2) are not applicable. Let v be an isolated vertex in
G[V2] and let F be a solution to 5-PVCwB which uses vertex v. Then there exists a solution
F ′ that does not use vertex v and |F ′| ≤ |F |.

I Branching rule (R3). Let v be an isolated vertex in G[V2] and let P = (v, w, x, y, z) be
a P5 where w is a red vertex. Then branch on 〈x | y | z 〉.

I Lemma 7. Assume that Rules (R0) – (R3) are not applicable. Then there are no isolated
vertices in G[V2].

R. Červený and O. Suchý 32:5

3.4 Dealing with isolated edges in G[V2]
I Lemma 8. Assume that Rules (R0) – (R3) are not applicable. Let v be a blue vertex to
which at least two red vertices are connected and let Cv be a connected component of G[V2]
which contains v. Then for each red vertex w connected to v we have that N(w) ⊆ V (Cv).

I Lemma 9. Assume that Rules (R0) – (R3) are not applicable. Let e = {u, v} be a blue
edge to which at least two red vertices are connected in a way that to both u and v there is at
least one red vertex connected. Let Ce be a connected component of G[V2] which contains e.
Then for each red vertex w connected to e we have that N(w) ⊆ V (Ce).

I Lemma 10. Let X be a subset of V2 such that N(X) ∩ V1 = ∅ and |N(X) ∩ V2| = 1. If
there exists a solution F such that F ∩ X 6= ∅, then there exists a solution F ′ such that
F ′ ∩X = ∅ and |F ′| ≤ |F |.

I Definition 11. We say that two nodes x, y are twins if N(x) \ {y} = N(y) \ {x}.

I Lemma 12. Let x, y be blue vertices that are twins. Let F be a solution and x ∈ F . Then
at least one of the following holds:
(1) y ∈ F ,
(2) F ′ = (F \ {x}) ∪ {y} is a solution.

I Branching rule (R4). Let e = {u, v} be an isolated edge in G[V2]. We know from
Lemmata 8 and 9 that there is only one red vertex w connected to e, because if there were
at least two red vertices connected to e, then there would be no P5 that uses vertices from e.
Let there be a red vertex w connected to at least one vertex in e. If w is connected only to
one vertex in e, let that vertex be v. Assume that x is some vertex to which w connects
outside e and let y be a neighbor of x in G[V2]. Then branch on 〈 v | x | y 〉.

I Lemma 13. Assume that Rules (R0) – (R4) are not applicable. Then there are no isolated
edges in G[V2].

3.5 Dealing with isolated P3 paths in G[V2]
I Context rule (R5). Let P be a P3 = (t, u, v) that forms a connected component in G[V2].
From Lemmata 5, 8 and 9 we know that there is only one red vertex w connected to P . We
further know that w must be connected to some component of G[V2] other than P , otherwise
no P5 could be formed. Assume that x is some vertex to which w connects outside P and
let y be a neighbor of x in G[V2]. This rule is split into four subrules (R5.1), (R5.2), (R5.3)
and (R5.4) based on how w is connected to P .

I Branching rule (R5.1). Vertex w is connected only to v in P . Then branch on 〈 v | x 〉.

I Branching rule (R5.2). Vertex w is connected only to u, v in P . Then branch on
〈u | v | x 〉.

I Branching rule (R5.3). Vertex w is connected only to u in P . Then branch on 〈u | x | y 〉.

I Branching rule (R5.4). Vertex w is connected to t, v in P and w can be also connected
to u in P . Then branch on 〈u | v | x 〉.

I Lemma 14. Assume that Rules (R0) – (R5) are not applicable. Then there are no isolated
P3 paths in G[V2].

MFCS 2019

32:6 Faster FPT Algorithm for 5-Path Vertex Cover

3.6 Dealing with isolated triangles in G[V2]
I Context rule (R6). Let T be a K3 = {t, u, v} that forms a connected component in G[V2].
From Lemmata 5 and 8 we know that there is only one red vertex w connected to T . We
further know that w must be connected to some component of G[V2] other than T , otherwise
no P5 could be formed. Assume that x is some vertex to which w connects outside T and
let y be a neighbor of x in G[V2]. This rule is split into three subrules (R6.1), (R6.2) and
(R6.3) based on how w is connected to T .

I Branching rule (R6.1). Vertex w is connected only to one vertex in T , let that vertex
be v. Then branch on 〈 v | x 〉.

I Branching rule (R6.2). Vertex w is connected to exactly two vertices in T , let those
vertices be u, v. Then branch on 〈 t | v | x 〉.

I Branching rule (R6.3). Vertex w is connected to all vertices in T . Then branch on 〈 v | x 〉.

I Lemma 15. Assume that Rules (R0) – (R6) are not applicable. Then there are no isolated
triangles in G[V2].

3.7 Dealing with 4-cycles in G[V2]
I Lemma 16. Let C be a connected component of G[V2] and X = V (C) ∩N(V1). Let F be
a solution that deletes at least |X| vertices in C. Then F ′ = (F \V (C))∪X is also a solution
and |F ′| ≤ |F |.

I Context rule (R7). Let Q be a connected component in G[V2] such that Q is a subgraph
of K4 and a 4-cycle is a subgraph of Q, label the vertices of the 4-cycle (v1, v2, v3, v4). We will
call pairs of vertices {v1, v3} and {v2, v4} diagonal, all other pairs will be called non-diagonal.
Edges corresponding to diagonal (non-diagonal) pairs are called diagonal (non-diagonal)
edges, respectively. This rule is split into two subrules (R7.1), (R7.2) based on the number
of red vertices connected to Q.

I Reduction rule (R7.1). Assume that there are at least two red vertices connected to Q.
Then delete any vertex vi in Q and add it to the solution F .

I Context rule (R7.2). Assume that there is only one red vertex w connected to Q and
X = V (Q)∩N(w). This rule is split into five subrules (R7.2a), (R7.2b), (R7.2c), (R7.2d) and
(R7.2e) based on how w is connected to Q and whether w is connected to other components.

I Reduction rule (R7.2a). Vertex w is connected only to one vertex in Q, let it be v1. Then
delete v1 and add it to the solution F .

I Branching rule (R7.2b). Set X contains at least one diagonal pair, let that pair be
{v1, v3}. Then branch on 〈 v1 | v2 | v4 〉.

I Branching rule (R7.2c). Set X contains exactly one non-diagonal pair, let that pair be
{v1, v2}, and case (a) either both diagonal edges are in Q , or case (b) none of them is. Then
branch on 〈 v1 | v3 | v4 〉

I Reduction rule (R7.2d). Set X contains exactly one non-diagonal pair, let that pair be
{v1, v2} and exactly one diagonal edge is in Q, let that edge be {v1, v3}. Furthermore, w is
connected only to Q, i.e. N(w) ⊆ V (Q). Then delete any vertex vi in Q and add it to the
solution F .

R. Červený and O. Suchý 32:7

I Branching rule (R7.2e). Set X contains exactly one non-diagonal pair, let that pair be
{v1, v2} and exactly one diagonal edge is in Q, let that edge be {v1, v3}. Furthermore, w
is connected to at least one more component of G[V2] other than Q, label the vertex to
which w connects outside Q as x and let y be a neighbor of x in G[V2]. Then branch on
〈 {v1, v2} | x | y 〉.

I Lemma 17. Assume that Rules (R0) – (R7) are not applicable. Then there is no component
of G[V2] that contains a 4-cycle as a subgraph.

3.8 Dealing with stars in G[V2]
In this subsection we consider a connected component of G[V2] which is isomorphic to a
star. Through this subsection we denote it by S and label its vertices as in Definition 1. We
remark that, as none of the Rules (R0) – (R7) is applicable, there is exactly one red vertex
connected to S.

I Context rule (R8). Let S be a star in G[V2] and let w be a red vertex connected to S.
This rule is divided into three subrules (R8.1), (R8.2) and (R8.3) based on how w is connected
to S.

I Branching rule (R8.1). A red vertex w is connected to at least two leaves of S, let those
two leaves be l1, l2. Then branch on 〈 l1 | s | L \ {l1, l2} 〉.

I Branching rule (R8.2). A red vertex w is connected only to s in S and w is connected to
some other vertex x in G[V2] outside S and y is a neighbor of x in G[V2]. Then branch on
〈 s | x | y 〉.

I Branching rule (R8.3). A red vertex w is connected to l1 in S, w can be connected also
to s in S, and w is connected to some other vertex x in G[V2] outside S. Then branch on
〈 s | l1 | x 〉.

I Lemma 18. Assume that Rules (R0) – (R8) are not applicable. Then there are no stars
in G[V2].

Proof. For contradiction assume that Rules (R0) – (R8) are not applicable and there is
a star S in G[V2].

If there is no P5 that uses vertices from S, then Rule (R1) is applicable on S. Suppose
there are at least two red vertices connected to S. If the red vertices are not connected to
a single vertex or a single edge in S, then Rule (R2) is applicable, since there is a P5 that
uses at least two red vertices. So suppose the red vertices are connected to a single vertex or
a single edge in S. Then from Lemmata 8 and 9 we know that those red vertices are not
connected to any other vertices outside S. Consequently, there cannot be a P5 that uses
vertices from S and again Rule (R1) is applicable on S.

So suppose that there is a P5 that uses vertices from S and there is only one red vertex w
connected to S. If w is connected to two leaves, then Rule (R8.1) is applicable. So suppose
that w is not connected to two leaves. There are three not mutually isomorphic possibilities
how w can be connected to S: {l1}, {s}, and {l1, s}. In those cases we apply Rules (R8.3),
(R8.2), and (R8.3), respectively. J

3.9 Dealing with stars with a triangle in G[V2]
In this subsection we consider a connected component of G[V2] which is isomorphic to a star
with a triangle. Through this subsection we denote it by S4 and label its vertices as in
Definition 2.

MFCS 2019

32:8 Faster FPT Algorithm for 5-Path Vertex Cover

I Context rule (R9). Let S4 be a star with a triangle in G[V2] and let w be a red vertex
connected to S4. This rule is divided into four subrules (R9.1), (R9.2), (R9.3) and (R9.4)
based on how w is connected to S4.

I Branching rule (R9.1). There is a red vertex w such that {t1, t2} ⊆ N(w). Then branch
on 〈 t1 | s | L 〉.

I Branching rule (R9.2). There is a red vertex w such that |{t1, t2} ∩N(w)| = 1, assume
that w is connected to t1. Then branch on 〈 t1 | s | L 〉.

I Lemma 19. Assume that Rules (R0) – (R9.1) are not applicable and the assumptions of
Rule (R9.2) are satisfied. If F is a solution that contains t2, then at least one of the following
holds:
(1) t1 ∈ F ,
(2) F ′ = (F \ {t2}) ∪ {t1} is a solution.

I Branching rule (R9.3). There is a red vertex w connected to a leaf of S4, let that leaf
be l1. Then branch on 〈 l1 | s 〉.

I Branching rule (R9.4). A red vertex w is connected only to s in S4. Then w must be
also connected to some component of G[V2] other than S4, otherwise no P5 would occur in
the component containing S4. Label the vertex to which w connects outside S4 as x. Then
branch on 〈 s | x 〉.

I Lemma 20. Assume that Rules (R0) – (R9) are not applicable. Then there are no stars
with a triangle in G[V2].

3.10 Dealing with di-stars in G[V2]
In this subsection we consider a connected component of G[V2] which is isomorphic to a
di-star. Through this subsection we denote it by D and label its vertices as in Definition 3.

I Branching rule (R10). Let D be a di-star in G[V2] and let there be a red vertex w

connected to at least two leaves on the same side of the di-star, i.e. |N(w) ∩ L| ≥ 2 or
|N(w) ∩ L′| ≥ 2. Assume that those leaves are from L and l1, l2 are among them. Observe
that there is no other red vertex connected to l1, l2. Then branch on 〈 l1 | s | s′ 〉.

Proof of correctness. We have to delete something in {l1, l2, s, s′} and since l1, l2 are twins,
from Lemma 12 we know that we have to try only one of them, thus branching on 〈 l1 | s | s′ 〉
is correct. J

I Context rule (R11). Let D be a di-star in G[V2] and let w be the only red vertex connected
to D such that {s, s′} ⊆ N(w). This rule is split into three subrules (R11.1), (R11.2), and
(R11.3) based on the degrees of s and s′.

I Context rule (R11.1). Assume that both s, s′ have degree two in G[V2], i.e. the di-star D
is actually a P4. This rule is split into four subrules (R11.1a), (R11.1b), (R11.1c), and
(R11.1d) based on how w is connected to D and whether w is connected to other components.

I Branching rule (R11.1a). Vertex w is connected only to s, s′ in D. Then branch on
〈 s | s′ 〉.

I Branching rule (R11.1b). Vertex w is connected to s, s′ and to one leaf in D, let that
leaf be l1. Then branch on 〈 l1 | s | s′ 〉.

R. Červený and O. Suchý 32:9

I Branching rule (R11.1c). Vertex w is connected to l1, l′1, s, s′ in D and to at least one
other component of G[V2], label the vertex w connects to outside D as x and the neighbor
of x in G[V2] as y. Then branch on 〈x | y | {l1, s′} | {s, l′1} | {s, s′} 〉.

I Reduction rule (R11.1d). Vertex w is connected only to l1, l′1, s, s′ in D and to no other
component of G[V2]. Then delete any vertex v in D and add it to the solution F .

I Context rule (R11.2). Assume that exactly one of s, s′ has degree at least 3 in G[V2], let
it be s. This rule is split into four subrules (R11.2a), (R11.2b), (R11.2c), and (R11.2d) based
on how w is connected to D.

I Branching rule (R11.2a). Vertex w is connected only to s, s′ in D. Then branch on
〈 s | s′ 〉.

I Branching rule (R11.2b). Vertex w is connected to s, s′ and exactly one leaf from L in D,
let that leaf be l1. Then branch on 〈 l1 | s | s′ 〉.

I Branching rule (R11.2c). Vertex w is connected to s, s′, l′1 in D. Then branch on
〈 l′1 | s | s′ 〉.

I Branching rule (R11.2d). Vertex w is connected to s, s′, l′1 and exactly one leaf from L

in D, let that leaf be l1. Then branch on 〈 l1 | s | s′ 〉.

I Branching rule (R11.3). Assume that both s, s′ in D have degree at least 3 in G[V2].
Then branch on 〈L | s | s′ | L′ 〉.

I Context rule (R12). Let D be a di-star in G[V2] and let w be the only red vertex connected
to D such that w is connected to D by exactly two edges. We know that w is connected
to a subset of {l1, s, s′, l′1}, but not to both s and s′. This rule is split into three subrules
(R12.1), (R12.2), and (R12.3) based on how w is connected to D.

I Branching rule (R12.1). Vertex w is connected to a center and its leaf in D, let them
be s and l1. Then branch on 〈 l1 | s 〉.

I Branching rule (R12.2). Vertex w is connected to a center and to a leaf of the other
center in D, let them be s′ and l1. Then branch on 〈 l1 | s | s′ 〉.

I Context rule (R12.3). Vertex w is connected to two opposite leaves in D, let them be l1
and l′1. This rule is split into four subrules (R12.3a), (R12.3b), (R12.3c), and (R12.3d) based
on the degrees of s and s′ and whether w is connected to other components.

I Branching rule (R12.3a). Both s, s′ in D have degree 2 in G[V2] and w is connected to
a component of G[V2] other than D, let x be the vertex w connects to outside D and let y
be a neighbor of x in G[V2]. Then branch on 〈x | y | {l1, l′1} 〉.

I Reduction rule (R12.3b). Both s, s′ in D have degree 2 in G[V2] and w is not connected
to a component of G[V2] other than D. Then delete any vertex v in D and add it to the
solution F .

I Branching rule (R12.3c). Exactly one of s, s′ in D has degree at least 3 in G[V2], let it
be s. Then branch on 〈 l1 | s | l′1 〉.

I Branching rule (R12.3d). Both s, s′ in D have degree at least 3 in G[V2]. Then branch
on 〈 s | s′ | {l1, l′1} 〉.

MFCS 2019

32:10 Faster FPT Algorithm for 5-Path Vertex Cover

I Context rule (R13). Let D be a di-star in G[V2] and let w be the only red vertex connected
to D such that w is connected to D by exactly three edges. We know that w is connected to
a subset of {l1, s, s′, l′1}, but not to both s and s′. Assume that w is connected to l1, s, l′1.
This rule is split into four subrules (R13.1), (R13.2), (R13.3) and (R13.4) based on the
degrees of s and s′ and whether w is connected to other components.

I Branching rule (R13.1). Both s, s′ in D have degree 2 in G[V2] and w is connected to at
least one other component of G[V2], label the vertex w connects to outside D as x and the
neighbor of x in G[V2] as y. Then branch on 〈x | y | {l1, s′} | {s, l′1} 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to delete at least
two and, by Lemma 16, at most three vertices in D. Suppose we wanted to delete exactly
two vertices. Out of six possible pairs, only {l1, s′}, {s, s′}, {s, l′1} lead to a solution. We
do not have to try {s, s′}, since if we delete s, then Lemma 10 becomes applicable and we
may delete l′1 instead of s′. Finally, if we wanted to delete three vertices, then by Lemma 16
those vertices would be {l1, s, l′1}, but this is already covered by branching on {s, l′1}. Thus
branching on 〈x | y | {l1, s′} | {s, l′1} 〉 is correct. J

I Reduction rule (R13.2). Both s, s′ in D have degree 2 in G[V2] and w is not connected
to other component of G[V2]. Then delete any vertex v in D and add it to the solution F .

I Branching rule (R13.3). Vertex s in D has degree at least 3 in G[V2]. Then branch on
〈 l1 | s | l′1 〉.

I Branching rule (R13.4). Vertex s′ in D has degree at least 3 in G[V2]. Then branch on
〈 l1 | s′ | l′1 〉.

I Context rule (R14). There is exactly one red vertex w connected to D by one edge. This
rule is split into two subrules (R14.1) and (R14.2) based on how w is connected to D.

I Reduction rule (R14.1). Vertex w is connected to a leaf in D, let it be l1. Then delete l1
and add it to the solution F .

I Branching rule (R14.2). Vertex w is connected to a center in D, let it be s, and w is
connected to at least one component of G[V2] other than D, label the vertex w connects to
outside D as x. Then branch on 〈 s | x 〉.

I Reduction rule (R15). There are at least two red vertices connected to D by exactly one
edge and they are connected to a single vertex. From Lemma 8 we know, that the red vertices
are not connected to a component of G[V2] other than D and hence the single vertex must
be a leaf, let it be l1, otherwise no P5 would be formed and Rule (R1) would be applicable.
Then delete l1 and add it to the solution F .

I Branching rule (R16). There are at least two red vertices connected to D by exactly one
edge and they are connected to two opposite leaves, let those leaves be l1, l′1. Assume that
there is at least one red vertex connected to each one of them. Further assume that the red
vertices connected to l1 are not connected to a component of G[V2] other than D. Then
branch on 〈 s′ | l′1 〉.

I Branching rule (R17). Let there be a di-star D and the two red vertices w,w′ connected
to D are connected to leaves l1, l′1, respectively, and at least one of the centers has degree at
least three, let it be s. Then branch on 〈 s | s′ | l′1 〉.

R. Červený and O. Suchý 32:11

I Branching rule (R18). Let there be a di-star D and the two red vertices w,w′ connected
to D are connected to leaves l1, l′1, respectively, and both centers have degree exactly two.
Then branch on 〈 l1 | l′1 〉.

I Lemma 21. Assume that Rules (R0) – (R9) are not applicable. Then at least one of Rules
(R10) – (R18) is applicable.

Proof. From Lemma 4 together with Lemmata 7, 13, 14, 15, 17, 18 and 20 we are now in
the situation in which all components of G[V2] are di-stars and there must be a di-star D
in G[V2] such that there is a P5 that uses the vertices of D which implies there is at least
one red vertex connected to D. For contradiction assume that Rules (R10) – (R18) are not
applicable, i.e. no rules are applicable.

Let w be some red vertex connected to D. If |N(w) ∩ L| ≥ 2 or |N(w) ∩ L′| ≥ 2, then
Rule (R10) is applicable. If there there is a red vertex w connected to li and a red vertex w′
connected to lj , j 6= i, then Rule (R2) applies. Similarly with vertices connected to l′i and l′j .
So for the rest of this proof assume that each red vertex can be connected only to vertices
l1, s, s

′, or l′1.
Firstly, assume that there is only one red vertex w connected to D. In Table 1 we list

all possibilities (omitting several isomorphic cases) based on how w is connected to D, on
the degrees of s and s′, and whether w is connected only to D (N(w) ⊆ V (D)) or w is also
connected outside D (N(w) 6⊆ V (D)).

Observe that if there were at least two red vertices connected to D and w was connected
to D by at least two edges, then Rule (R2) would be applicable with the only exception in case
where w is connected to {l1, s} or {s′, l′1} and the other red vertices to s or s′, respectively.
But this exception is resolved by Rule (R1) since vertices connected only to s or s′ in this
configuration are not used by any P5. With this in mind, if there are at least two red vertices
connected to D, then they are connected to D by only one edge.

Secondly, assume that there are at least two red vertices connected to D by exactly one
edge. Let X ⊆ V (D) be the vertices to which the red vertices are connected in D. Again, if
|X ∩ L| ≥ 2 or |X ∩ L′| ≥ 2, then Rule (R2) applies. So suppose that X ⊆ {l1, s, s′, l′1}. If
{l1, s′} ⊆ X or {s, l′1} ⊆ X (which covers also cases where |X| ≥ 3), then again Rule (R2) is
applicable. If the vertices are connected to a single edge, then at least one of the vertices of
such edge is a center, the vertices connected to it are not used by any P5, and Rule (R1)
applies. We conclude that the red vertices may be connected only to a single vertex or to
two opposite leaves in D.

Thirdly, assume that the red vertices are connected to a single vertex. If that vertex is
a leaf, then Rule (R15) is applicable, otherwise Rule (R1) is applicable.

Fourthly, assume that the red vertices are connected to two opposite leaves, let them
be l1 and l′1, and let W be the set of red vertices connected to l1 and W ′ be the set of red
vertices connected to l′1. If the vertices in W or in W ′ (or both) are not connected to any
component other than D, then Rule (R16) is applicable. This is the case whenever |W | ≥ 2
or |W ′| ≥ 2 by Lemma 8.

Observe that now we are in situation in which there are exactly two red vertices w and
w′ connected to D by exactly one edge and these vertices are connected to l1 and l′1, assume
that w is connected to l1 and w′ is connected to l′1. Furthermore, vertices w and w′ are
connected to at least one other di-star in G[V2]. If at least one of L,L′ has size at least two,
then Rule (R17) is applicable, otherwise all di-stars in G[V2] are actually a P4 paths and
Rule (R18) is applicable.

Finally, there is no di-star remaining in G[V2] which together with Lemmata 4, 7, 13, 14,
15, 17, 18 and 20 implies that G[V2] = ∅ and since V1, V2 is a P5-free bipartition, there is no
P5 path remaining in G and Rule (R0) is applicable. J

MFCS 2019

32:12 Faster FPT Algorithm for 5-Path Vertex Cover

Table 1 Possible configurations of single red vertex w and D in Lemma 21.

aaaaaaaN(w) ∩ V (D)

N(w) 6⊆ V (D) N(w) ⊆ V (D)
|L| = 1, |L| > 1, |L| > 1, |L| = 1, |L| > 1, |L| > 1,

|L′| = 1 |L′| = 1 |L′| > 1 |L′| = 1 |L′| = 1 |L′| > 1
{l1} (R14.1) (R14.1) (R14.1) (R14.1) (R14.1) (R14.1)
{s} (R14.2) (R14.2) (R14.2) (R1) (R1) (R1)
{s′} (R14.2) (R14.2) (R14.2) (R1) (R1) (R1)
{l′1} (R14.1) (R14.1) (R14.1) (R14.1) (R14.1) (R14.1)
{l1, s} (R12.1) (R12.1) (R12.1) (R12.1) (R12.1) (R12.1)
{l1, s′} (R12.2) (R12.2) (R12.2) (R12.2) (R12.2) (R12.2)
{l1, l′1} (R12.3a) (R12.3c) (R12.3d) (R12.3b) (R12.3c) (R12.3d)
{s, s′} (R11.1a) (R11.2a) (R11.3) (R11.1a) (R11.2a) (R11.3)
{s, l′1} (R12.2) (R12.2) (R12.2) (R12.2) (R12.2) (R12.2)
{s′, l′1} (R12.1) (R12.1) (R12.1) (R12.1) (R12.1) (R12.1)
{l1, s, s′} (R11.1b) (R11.2b) (R11.3) (R11.1b) (R11.2b) (R11.3)
{l1, s, l′1} (R13.1) (R13.3) (R13.3) (R13.2) (R13.3) (R13.3)
{l1, s′, l′1} (R13.1) (R13.4) (R13.3) (R13.2) (R13.4) (R13.3)
{s, s′, l′1} (R11.1b) (R11.2c) (R11.3) (R11.1b) (R11.2c) (R11.3)
{l1, s, s′, l′1} (R11.1c) (R11.2d) (R11.3) (R11.1d) (R11.2d) (R11.3)

3.11 Final remarks

From Lemma 21 we know that there is always at least one rule applicable. It remains to
analyze the running time of the disjoint compression routine disjoint_r.

I Theorem 22. The disjoint_r procedure solves the 5-PVCwB problem in O∗(3k) time.

By standard arguments (see Cygan et al. [3, pages 80–81]) we get the following corollary.

I Corollary 23. The iterative compression algorithm solves the 5-PVC problem and runs in
O∗(4k) time.

4 Conclusion

We conclude this paper with a few open questions.
Firstly, we see the trend of solving 3-PVC, 4-PVC and now 5-PVC with the iterative

compression technique, so it is natural to ask whether this approach can be further used for
6-PVC or even to d-PVC in general. However, given the complexity (number of rules) of
the algorithm presented in this paper, it seems more reasonable to first try to find a simpler
algorithm for 5-PVC.

Secondly, motivated by the work of Orenstein et al. [13], we ask whether known algorithms
for 3-PVC, 4-PVC, 5-PVC can be generalized to work with directed graphs.

Finally, due to Fafianie and Kratsch [5] we know that d-PVC problem has a kernel with
O(kd) vertices and edges. Dell and van Melkebeek [4] showed that there is no O(kd−ε) kernel
for any ε > 0 for general d-Hitting Set unless coNP is in NP/poly, which would imply a
collapse of the polynomial-time hierarchy. However, for 3-PVC problem, Xiao and Kou [19]
presented a kernel with 5k vertices. To our knowledge, it is not known whether there exists
a linear kernel for 4-PVC or any d-PVC with d ≥ 5.

R. Červený and O. Suchý 32:13

References
1 Boštjan Brešar, František Kardoš, Ján Katrenič, and Gabriel Semanišin. Minimum k-path

vertex cover. Discrete Applied Mathematics, 159(12):1189–1195, 2011. doi:10.1016/j.dam.
2011.04.008.

2 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

4 Holger Dell and Dieter van Melkebeek. Satisfiability Allows No Nontrivial Sparsification
unless the Polynomial-Time Hierarchy Collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

5 Stefan Fafianie and Stefan Kratsch. A Shortcut to (Sun)Flowers: Kernels in Logarithmic Space
or Linear Time. In Mathematical Foundations of Computer Science 2015 - 40th International
Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II, pages 299–310,
2015. doi:10.1007/978-3-662-48054-0_25.

6 Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh. Iterative
compression and exact algorithms. Theor. Comput. Sci., 411(7-9):1045–1053, 2010. doi:
10.1016/j.tcs.2009.11.012.

7 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact Algorithms
via Monotone Local Search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

8 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.

9 Stefan Funke, André Nusser, and Sabine Storandt. On k-Path Covers and their applications.
VLDB J., 25(1):103–123, 2016. doi:10.1007/s00778-015-0392-3.

10 Ján Katrenič. A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett., 116(4):273–
278, 2016. doi:10.1016/j.ipl.2015.12.002.

11 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

12 Marián Novotný. Design and Analysis of a Generalized Canvas Protocol. In Information
Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices,
4th IFIP WG 11.2 International Workshop, WISTP 2010, Passau, Germany, April 12-14,
2010. Proceedings, pages 106–121, 2010. doi:10.1007/978-3-642-12368-9_8.

13 Yaron Orenstein, David Pellow, Guillaume Marçais, Ron Shamir, and Carl Kingsford. Designing
small universal k-mer hitting sets for improved analysis of high-throughput sequencing. PLoS
Computational Biology, 13(10), 2017. doi:10.1371/journal.pcbi.1005777.

14 Dekel Tsur. An O∗(2.619k) algorithm for 4-path vertex cover. CoRR, abs/1811.03592, 2018.
arXiv:1811.03592.

15 Dekel Tsur. Parameterized algorithm for 3-path vertex cover. Theoretical Computer Science,
783:1–8, 2019. doi:10.1016/j.tcs.2019.03.013.

16 Jianhua Tu. A fixed-parameter algorithm for the vertex cover P3 problem. Inf. Process. Lett.,
115(2):96–99, 2015. doi:10.1016/j.ipl.2014.06.018.

17 Jianhua Tu and Zemin Jin. An FPT algorithm for the vertex cover P4 problem. Discrete
Applied Mathematics, 200:186–190, 2016. doi:10.1016/j.dam.2015.06.032.

18 Mingyu Xiao and Shaowei Kou. Exact algorithms for the maximum dissociation set and
minimum 3-path vertex cover problems. Theor. Comput. Sci., 657:86–97, 2017. doi:10.1016/
j.tcs.2016.04.043.

19 Mingyu Xiao and Shaowei Kou. Kernelization and Parameterized Algorithms for 3-Path
Vertex Cover. In Theory and Applications of Models of Computation - 14th Annual Conference,
TAMC 2017, Bern, Switzerland, April 20-22, 2017, Proceedings, pages 654–668, 2017 . doi:
10.1007/978-3-319-55911-7_47.

20 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf.
Comput., 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.

MFCS 2019

https://doi.org/10.1016/j.dam.2011.04.008
https://doi.org/10.1016/j.dam.2011.04.008
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2629620
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-3-662-48054-0_25
https://doi.org/10.1016/j.tcs.2009.11.012
https://doi.org/10.1016/j.tcs.2009.11.012
https://doi.org/10.1145/3284176
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/s00778-015-0392-3
https://doi.org/10.1016/j.ipl.2015.12.002
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-642-12368-9_8
https://doi.org/10.1371/journal.pcbi.1005777
http://arxiv.org/abs/1811.03592
https://doi.org/10.1016/j.tcs.2019.03.013
https://doi.org/10.1016/j.ipl.2014.06.018
https://doi.org/10.1016/j.dam.2015.06.032
https://doi.org/10.1016/j.tcs.2016.04.043
https://doi.org/10.1016/j.tcs.2016.04.043
https://doi.org/10.1007/978-3-319-55911-7_47
https://doi.org/10.1007/978-3-319-55911-7_47
https://doi.org/10.1016/j.ic.2017.06.001

Parameterized Complexity of Fair Vertex
Evaluation Problems
Dušan Knop
Algorithmics and Computational Complexity, Faculty IV, TU Berlin
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
dusan.knop@tu-berlin.de

Tomáš Masařík
Department of Applied Mathematics, Charles University, Prague, Czech Republic
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
masarik@kam.mff.cuni.cz

Tomáš Toufar
Computer Science Institute, Charles University, Prague, Czech Republic
toufi@iuuk.mff.cuni.cz

Abstract
A prototypical graph problem is centered around a graph-theoretic property for a set of vertices
and a solution to it is a set of vertices for which the desired property holds. The task is to decide
whether, in the given graph, there exists a solution of a certain quality, where we use size as a quality
measure. In this work, we are changing the measure to the fair measure (cf. Lin and Sahni [27]).
The fair measure of a set of vertices S is (at most) k if the number of neighbors in the set S of any
vertex (in the input graph) does not exceed k. One possible way to study graph problems is by
defining the property in a certain logic. For a given objective, an evaluation problem is to find a
set (of vertices) that simultaneously minimizes the assumed measure and satisfies an appropriate
formula. More formally, we study the MSO Fair Vertex Evaluation, where the graph-theoretic
property is described by an MSO formula.

In the presented paper we show that there is an FPT algorithm for the MSO Fair Vertex
Evaluation problem for formulas with one free variable parameterized by the twin cover number
of the input graph and the size of the formula. One may define an extended variant of MSO Fair
Vertex Evaluation for formulas with ` free variables; here we measure a maximum number of
neighbors in each of the ` sets. However, such variant is W[1]-hard for parameter ` even on graphs
with twin cover one.

Furthermore, we study the Fair Vertex Cover (Fair VC) problem. Fair VC is among the
simplest problems with respect to the demanded property (i.e., the rest forms an edgeless graph).
On the negative side, Fair VC is W[1]-hard when parameterized by both treedepth and feedback
vertex set of the input graph. On the positive side, we provide an FPT algorithm for the parameter
modular width.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Logic; Theory of computation → Graph algorithms analysis

Keywords and phrases Fair objective, metatheorem, fair vertex cover, twin cover, modular width

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.33

Related Version http://arxiv.org/abs/1803.06878

Funding Dušan Knop: Supported by DFG under project “MaMu”, NI 369/19 and partly supported
by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics”.
Tomáš Masařík : Author was supported by SVV–2017–260452 and by GAUK 1514217 of Charles
University and by the CE-ITI grant project P202/12/G061 of GA ČR.

© Dušan Knop,Tomáš Masařík, and Tomáš Toufar;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2588-5709
mailto:dusan.knop@tu-berlin.de
https://orcid.org/0000-0001-8524-4036
mailto:masarik@kam.mff.cuni.cz
mailto:toufi@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.MFCS.2019.33
http://arxiv.org/abs/1803.06878
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Parameterized Complexity of Fair Vertex Evaluation Problems

1 Introduction

A prototypical graph problem is centered around a fixed property for a set of vertices.
A solution is any set of vertices for which the given property holds. In a similar manner, one
can define the solution as a set of vertices such that the given property holds when we remove
this set of vertices from the input graph. This leads to the introduction of deletion problems –
a standard reformulation of some classical problems in combinatorial optimization introduced
by Yannakakis [37]. Formally, for a graph property π we formulate a vertex deletion problem.
That is, given a graph G = (V,E), find a smallest possible set of vertices W such that G \W
satisfies the property π. Many classical problems can be formulated in this way such as
Minimum Vertex Cover (π describes an edgeless graph) or Minimum Feedback Vertex
Set (π is valid for forests).

Clearly, the complexity of a graph problem is governed by the associated property π.
We can either study one particular problem or a broader class of problems with related
graph-theoretic properties. One such relation comes from logic, for example, two properties
are related if it is possible to express both by a first order (FO) formula. Then, it is possible
to design a model checking algorithm that for any property π expressible in the fixed logic
decides whether the input graph with the vertices from W removed satisfies π or not.

Undoubtedly, Courcelle’s Theorem [4] for graph properties expressible in the monadic
second-order logic (MSO) on graphs of bounded treewidth plays a prime role among model
checking algorithms. In particular, Courcelle’s Theorem provides for an MSO sentence ϕ an
algorithm that given an n-vertex graph G with treewidth k decides whether ϕ holds in G in
time f(k, |ϕ|)n, where f is some computable function and |ϕ| is the quantifier depth of ϕ. In
terms of parameterized complexity, such an algorithm is called fixed-parameter tractable (the
problem belongs to the class FPT for the combined parameter k+ |ϕ|). We refer the reader to
monographs [7, 8] for background on parameterized complexity theory and algorithm design.
There are many more FPT model-checking algorithms, e.g., an algorithm for (existential
counting) modal logic model checking on graphs of bounded treewidth [33], MSO model
checking on graphs of bounded neighborhood diversity [24], or MSO model checking on
graphs of bounded shrubdepth [14] (generalizing the previous result). First order logic (FO)
model checking received recently quite some attention as well and algorithms for graphs
with bounded degree [34], nowhere dense graphs [16], and some dense graph classes [11] were
given.

Fair Objective. Fair deletion problems, introduced by Lin and Sahni [27], are such modific-
ations of deletion problems where instead of minimizing the size of the deleted set we change
the objective. The Fair Vertex Deletion problem is defined as follows. For a given graph
G = (V,E) and a property π, the task is to find a set W ⊆ V which minimizes the maximum
number of neighbors in the set W over all vertices, such that the property π holds in G \W .
Intuitively, the solution should not be concentrated in a neighborhood of any vertex. In order
to classify (fair) vertex deletion problems we study the associated decision version, that is,
we are interested in finding a set W of size at most k, for a given number k. Note that this
can introduce only polynomial slowdown, as the value of our objective is bounded by 0 from
below and by the number of vertices of the input graph from above (provided a solution
exists). Since we are about to use a formula with a free variable X to express the desired
property π, we naturally use X to represent the set of deleted vertices in the formula. The
fair cost of a set W ⊆ V is defined as maxv∈V |N(v) ∩W |. We refer to the function that
assigns each set W ⊆ V its fair cost as to the fair objective function. Here, we give a formal
definition of the computational problem when the property π is defined in some logic L.

D. Knop, T. Masařík, and T. Toufar 33:3

Fair L Vertex Deletion
Input: An undirected graph G = (V, E), an L sentence ϕ, and a positive integer k.
Question: Is there a set W ⊆ V of fair cost at most k such that G \W |= ϕ?

Let ϕ(X) be a formula with one free variable and let G = (V,E) be a graph. For a set
W ⊆ V by ϕ(W) we mean that we substitute W for X in ϕ. The definition below can be
naturally generalized to contain ` free variables. We would like to point out one crucial
difference between deletion and evaluation problems, namely that in evaluation problems we
have access to the variable that represents the solution. This enables evaluation problems to
impose some conditions on the solution, e.g., we can ensure that the graph induced by the
solution has diameter at most 2 or is triangle-free.

Fair L Vertex Evaluation1

Input: An undirected graph G = (V, E), an L formula ϕ(X) with one free variable, and
a positive integer k.

Question: Is there a set W ⊆ V of fair cost at most k such that G |= ϕ(W)?

Minimizing the fair cost arises naturally for edge problems in many situations as well,
e.g., in defective coloring [6], which has been substantialy studied from the practical network
communication point of view [17, 19]. A graph G = (V,E) is (k, d)-colorable if every vertex
can be assigned a color from the set [k] in such a way that every vertex has at most d
neighbors of the same color. This problem can be reformulated in terms of fair deletion; we
aim to find a set of edges F such that graph G′ = (V, F) has maximum degree d and G \ F
can be partitioned into k independent sets.

Related Results. There are several possible research directions once a model checking
algorithm is known. One possibility is to broaden the result either by enlarging the class
of graphs it works for or by extending the expressive power of the concerned logic, e.g., by
introducing a new predicate [23]. Another obvious possibility is to find the exact complexity
of the general model checking problem by providing better algorithms (e.g., for subclasses [24])
and/or lower-bounds for the problem [9, 25]. Finally, one may instead of deciding a sentence
turn attention to finding a set satisfying a formula with a free variable that is optimal with
respect to some objective function [1, 5, 15]. In this work, we take the last presented approach
– extending a previous work on MSO model checking for the fair objective function.

When extending a model checking result to incorporate an objective function or a
predicate, we face two substantial difficulties. On the one hand, we are trying to introduce
as strong extension as possible, while on the other, we try not to worsen the running time
too much. Of course, these two are in a clash. One evident possibility is to sacrifice the
running time and obtain an XP algorithm, that is, an algorithm running in time f(k)|G|g(k).
For example there is an XP algorithm for the Fair MSO2 Vertex Evaluation problems
parameterized by treewidth (and the size of the formula) by Kolman et al. [21] running
in time f(|ϕ|, tw(G))|G|g(tw(G)). An orthogonal extension is due to Szeider [35] for the
so-called local cardinality constraints (MSO-LCC) who gave an XP algorithm parameterized
by treewidth. If we decide to keep the FPT running time, such a result is not possible for
treedepth (consequently for treewidth), as we give W[1]-hardness result for a very basic

1 This problem is called Generalized Fair L Vertex-Deletion in [29] and in the respective conference
version [28]. However, we believe that evaluation is a more suitable expression and coincides with
standard terminology in logic.

MFCS 2019

33:4 Parameterized Complexity of Fair Vertex Evaluation Problems

Fair L∅ Vertex Deletion problem2 in this paper. A weaker form of this hardness
was already known for FO logic [29]. Ganian and Obdržálek [15] study CardMSO and
provide an FPT algorithm parameterized by neighborhood diversity. Recently, Masařík
and Toufar [29] examined fair objective and provide an FPT algorithm for the Fair MSO1
Vertex Evaluation problem parameterized by neighborhood diversity. See also [20] for a
discussion of various extensions of the MSO.

We want to turn a particular attention to the Fair Vertex Cover (Fair VC) problem
which, besides its natural connection with Vertex Cover, has some further interesting
properties. For example, we can think about classical vertex cover as having several crossroads
(vertices) and roads (edges) that we need to monitor. However, people could get uneasy
if they will see too many policemen from one single crossroad. In contrast, if the vertex
cover has low fair cost, it covers all roads while keeping a low number of policemen in the
neighborhood of every single crossroad.

1.1 Our Results
We give a metatheorem for graphs having bounded twin cover. Twin cover (introduced by
Ganian [12]; see also [13]) is one possible generalization of the vertex cover number. Here,
we measure the number of vertices needed to cover all edges that are not twin-edges; an edge
{u, v} is a twin-edge if N(u) \ {v} = N(v) \ {u}. Ganian introduced twin cover in the hope
that it should be possible to extend algorithms designed for parameterization by the vertex
cover number to a broader class of graphs.

I Theorem 1. The Fair MSO1 Vertex Evaluation problem parameterized by the twin
cover number and the quantifier depth of the formula admits an FPT algorithm.

We want to point out here that in order to obtain this result we have to reprove the
original result of Ganian [12] for MSO1 model checking on graphs of bounded twin cover.
For this, we extend arguments given by Lampis [24] in the design of an FPT algorithm for
MSO1 model checking on graphs of bounded neighborhood diversity. We do this to obtain
better insight into the structure of the graph (a kernel) on which model checking is performed
(its size is bounded by a function of the parameter). This, in turn, allows us to find a
solution minimizing the fair cost and satisfying the MSO1 formula. The result by Ganian in
version [12] is based on the fact that graphs of bounded twin cover have bounded shrubdepth
and so MSO1 model checking algorithm on shrubdepth ([14, 10]) can be used.

When proving hardness results it is convenient to show the hardness result for a concrete
problem that is expressible by an MSO1 formula, yet as simple as possible. Therefore, we
introduce a key problem for Fair Vertex Deletion – the Fair VC problem.

Fair Vertex Cover (Fair VC)
Input: An undirected graph G = (V, E), and a positive integer k.
Question: Is there a set W ⊆ V of fair cost at most k such that G \W is an edgeless graph?

The Fair VC problem can be expressed in any logic that can express an edgeless graph
(we denote such logic L∅) which is way weaker than FO. Therefore, we propose a systematic
study of the Fair VC problem which, up to our knowledge, have not been considered before.

I Theorem 2. The Fair VC problem parameterized by treedepth td(G) and feedback vertex
set fvs(G) combined is W[1]-hard.

2 Here, L∅ stands for any logic that can express an edgeless graph.

D. Knop, T. Masařík, and T. Toufar 33:5

Table 1 The table summarize some related (with a citation) and all the presented (with a
reference) results on the studied parameters. Green cells denote FPT results, and red cells represent
hardness results. Logic L in metatheorems is specified by a logic used in the respective theorem.
Symbol ∗ denotes implied results from previous research and symbol Xdenotes new implied results.
A question mark (?) indicates that the complexity is unknown.

vc fvs + td tc nd cvd mw

Fair VC ∗ T2 ∗ ? T3
FV L Del MSO2 ∗ L∅ MSO1 MSO1 ∗ ? ?
FV L Eval MSO2 [29] L∅ MSO1 T1 MSO1 ∗ ? ?
`-FV L Eval MSO1 ∗ L∅ MSO1 T5 MSO1 [20] MSO1 MSO1

Note that this immediately yields W[1]-hardness and f(w)no(
√

w) lower bound for Fair L∅
Vertex Evaluation. Previously, an f(w)no(w1/3) lower bound was given for FO logic by
Masařík and Toufar [29]. Thus our result is stronger in both directions, i.e., the lower bound
is stronger, and the logic is less powerful. On the other hand, we show that Fair VC can be
solved efficiently in dense graph models.

I Theorem 3. The Fair VC problem parameterized by modular width mw(G) admits an FPT
algorithm with running time 2mw(G) ·mw(G) · n3, where n is the number of vertices in G.

We point out that the Fair VC problem is (rather trivially) AND-compositional and thus it
does not admit a polynomial kernel for parameterization by modular width.

I Lemma 4. The Fair VC problem parameterized by the modular width of the input graph
does not admit a polynomial kernel, unless NP ⊆ coNP/ poly.

Moreover, an analog to Theorem 3 cannot hold for parameterization by shrubdepth of the
input graph. This is a consequence of Theorem 2 and the fact that if a class of graphs has
bounded treedepth, then it has bounded shrubdepth (cf. [14, Proposition 3.4]).

Another limitation in a rush for extensions of Theorem 1 is given when aiming for more
free variables. More formally, the problem `-Fair L Vertex Evaluation has formula
ϕ(X1, . . . , X`) with ` free variables as an input andW1, . . . ,W` are the corresponding sets in G
of fair cost at most k. The fair cost of W1, . . . ,W` is defined as maxv∈V maxi∈[`] |N(v) ∩Wi|.
It is very surprising that such a generalization is not possible for parameterization by twin
cover, since the same extension is possible for parameterization by neighborhood diversity [20].
In fact, they prove something even stronger, i.e., an FPT algorithm parameterized by
neighborhood diversity in the context of MSOL

lin is given in [20]. In MSOL
lin one can specify

both lower- and upper-bound for each vertex and each free variable (i.e., a feasibility interval
is given for every vertex).

I Theorem 5 (F3). The `-Fair FO Vertex Evaluation problem is W[1]-hard for para-
meter ` even on graphs with twin cover of size one.

The reduction is done from the Unary `-Bin Packing problem; the lower-bound and
W[1]-hardness of Unary `-Bin Packing was given by Jansen et al. [18].

For an overview of the results, please refer to Table 1 and to Figure 1 for the hierarchy of
classes.

3 We mark a result by F if the proof is omitted and deferred to the full version (available on arXiv).

MFCS 2019

33:6 Parameterized Complexity of Fair Vertex Evaluation Problems

cw

tw mw

cvd

sd

nd
tc

fvs
td

vc

Figure 1 Hierarchy of graph parameters with depicted complexity of the Fair L Vertex
Evaluation problem. An arrow indicates that a graph parameter upper-bounds the other. Thus,
hardness results are implied in the direction of arrows, and FPT algorithms are implied in the reverse
direction. Green colors indicate FPT results for MSO2, orange are FPT for MSO1, blue are open,
and red are hardness results. We denote treewidth by tw, shrubdepth by sd, and clique width by
cw. We refer to book [7] for definitions. Other parameters and their respective abbreviations are
defined in Subsection 1.2.

1.2 Preliminaries

For a positive integer n we denote [n] the set {1, . . . , n}. We deal with simple undirected
graphs, for further standard notation we refer to monographs: graph theory [30] and
parameterized complexity [7]. For a vertex v by N(v) we denote the neighborhood of v and
by N [v] we denote the closed neighborhood of vertex v, i.e., N(v) ∪ {v}.

A parameter closely related to twin cover is cluster vertex deletion (cvd(G)), that is,
the smallest number of vertices one has to delete from a graph in order to get a collection
of (disjoint) cliques. Treedepth of a graph G (td(G)) is the minimum height of a rooted
forest whose transitive closure contains the graph G [31]. Feedback vertex set (fvs(G)) is the
minimum number of vertices of a graph G whose removal leaves the graph without cycles.
Neighborhood diversity (nd(G)) is the smallest integer r such that the the vertex set of G can
be partitioned into r sets V1, . . . , Vr in such a way that the graph G[Vi] is either a clique or an
edgeless graph for all i ∈ [r] and the bipartite graph G[Vi, Vj] is either a complete bipartite
graph or an edgeless graph for all distinct i, j ∈ [r]. Modular width of a graph G (mw(G)), is
the smallest positive integer r such that G can be obtained from an algebraic expression of
width at most r, defined as follows. The width of an expression A is the maximum number of
operands used by any occurrence of the substitution operation in A, where A is an algebraic
expression that uses the following operations:

1. Create an isolated vertex.

2. The substitution operation with respect to a template graph T with vertex set [r] and
graphs G1, . . . , Gr created by algebraic expression. The substitution operation, denoted
by T (G1, . . . , Gr), results in the graph on vertex set V = V1 ∪ · · · ∪ Vr and edge set
E = E1 ∪ · · · ∪ Er ∪

⋃
{i,j}∈E(T)

{
{u, v} : u ∈ Vi, v ∈ Vj

}
, where Gi = (Vi, Ei) for all

i ∈ [r].

An algebraic expression of width mw(G) can be computed in linear time [36].

We stick with standard definitions and notation in logic. For a comprehensive summary,
please consult a book by Libkin [26].

D. Knop, T. Masařík, and T. Toufar 33:7

2 Metatheorems for Fair Evaluation

We show an FPT algorithm as it is stated in Theorem 1. We give a more detailed statement
that implies the promised result straigthforwardly.

We split the proof into two parts. First, we show an algorithm for MSO1 model checking
parameterized by twin cover of the graph (Proposition 8). In the second part, we prove that
we can even compute the optimal fair cost (Proposition 12) and so derive the promised result.

Overview of the Algorithm. For the model checking algorithm, we closely follow the
approach of Lampis [24]. The idea is that if there is a large set of vertices with the same
closed neighborhood, then some of them are irrelevant, i.e., we can delete them without
affecting the truthfulness of the given formula ϕ. For graphs of bounded neighborhood
diversity using this rule alone can reduce the number of vertices below a bound that depends
on nd(G) and |ϕ| only, thus providing an FPT model checking algorithm. For the graphs
of bounded twin cover, this approach can be used to reduce the size of all (twin) cliques,
yet their number can still be large. We take the approach one step further and describe the
deletion of irrelevant cliques in a similar manner; these rules together yield a model checking
algorithm for graphs of bounded twin cover.

The reduction rules also lead to a notion of shape of a set W ⊆ V . The motivation behind
shapes is to partition all subsets of V such that if two sets W,W ′ have the same shape, then
G |= ϕ(W) if and only if G |= ϕ(W ′). This allows us to consider only one set of each shape
for the purposes of model checking. Since the number of all distinct shapes is bounded by
some function of parameters, we can essentially brute force through all possible shapes.

A final ingredient is an algorithm that for a given shape outputs a subset of vertices with
this shape that minimizes the fair cost. This algorithm uses ILP techniques, in particular
minimizing quasiconvex function subject to linear constraints.

Notation. In what follows G = (V,E) is a graph and K is its twin cover of size k. An
MSO1 formula ϕ contains qS set quantifiers and qv element (vertex) quantifiers. Given a
twin cover K and A ⊆ K, we say that A is the cover set of a set S ⊆ V \K if every v ∈ S
has N(v) ∩ K = A. Note that, by the definition of twin cover, for all u, v ∈ V \ K with
{u, v} ∈ E we have that A is a cover set for u if and only if A is a cover set for v. We
say that two cliques have the same type if they have the same size and the same cover set.
Clearly, if the cover set is fixed, two cliques agree on type if and only if their sizes are the
same. We define a labeled graph, that is, a graph and a collection of labels on the vertices.
We say that two cliques have the same labeled type if all of them have the same size, the
same cover set and the same labels on vertices.

2.1 Model checking
I Proposition 6 ([24, Lemma 5 and Theorem 4]). Let φ be an MSO1 formula and let G
be a labeled graph. If there is a set S of more than 2qSqv vertices having the same closed
neighborhood and the same labels, then for any v ∈ S we have G |= ϕ if and only if G\ v |= ϕ.

In particular, if G is a graph with just one label, then for any clique C where each vertex
has exactly the same closed neighborhood in G the following holds. Either there is a vertex
v ∈ C such that G |= φ if and only if G \ v |= φ or the size of C is bounded by 2qS+1qv .

Proposition 6 bounds the size of a maximum clique in G \K because we can apply it
repeatedly for each clique that is bigger than the threshold 2qS+1qv. Now, we need to bound
the number of cliques of each type. For this, we establish the following technical lemma.

MFCS 2019

33:8 Parameterized Complexity of Fair Vertex Evaluation Problems

I Lemma 7 (F). Let G be a labeled graph with twin cover K. Let ϕ be an MSO1 formula
with qv element quantifiers and qS set quantifiers. Suppose the size of a maximum clique in
G \K is bounded by r. If there are strictly more than

α(qS , qv) = 2rqS (qv + 1)

cliques of the same labeled type T , then there exists a clique C of the labeled type T such
that G |= ϕ if and only if G \ C |= ϕ.

From this, we can derive a model checking algorithm.

I Proposition 8 (F Model checking on graphs of bounded twin cover). Let G be a graph with
twin cover K of size k and the size of the maximum clique in G \K bounded by 2qSqv and ϕ
is an MSO1 sentence then either there exists a clique C ∈ G \K such that G |= φ if and only
if G \ C |= ϕ or the size of G is bounded by

k + (qv + 1)q2
v2k+2qS+2qS qSqv = 2O(k+2qS qSqv) .

2.2 Finding a Fair Solution
In the upcoming proof we follow the ideas of Masařík and Toufar [29]. They define, for a
given formula ϕ(X), a so-called shape of a set W ⊆ V in G. The idea behind a shape is that
in order to do the model checking we have deleted some vertices from G that cannot change
the outcome of ϕ(X), however, we have to derive a solution of minimal cost in the whole
graph G. Thus the shape characterizes a set under which ϕ(X) holds and we have to be able
to find a set W ⊆ V (G) for which ϕ(W) holds and W minimizes the fair cost among sets
having this shape.

Shape. Let G = (V,E) be a graph, ϕ(X) an MSO formula, K ⊆ V a twin cover of G, A ⊆ K,
and let r = 2qS+2qv and α = 2r(qS+1)(qv + 1). Let C be the collection of all cliques in G such
that A is their cover set. We define an A-shape. An A-shape of size r is a two dimensional
table SA of dimension (r + 2)× (r + 2) indexed by {0, 1, . . . , r + 1} × {0, 1, . . . , r + 1}. Each
entry SA(i, j) ∈ {0, . . . , α+ 1}. The interpretation of SA(i, j) is the minimum of α+ 1 and
of the number of cliques C with N(C) = A such that

min(α+ 1, |C ∩W |) = i and min(α+ 1, |C \W |) = j.

Finally, the shape of X in G is a collection of A-shapes for all A ⊆ K.
A solution for C with cover set A can be formally described by a function sol : C → N× N.

The solution sol is valid if for every C ∈ C with sol(C) = (i, j) either i+ j = |C| or |C| ≥ r,
i = r+ 1 (or equivalently j = r+ 1), and i+ j < |C|. For an illustration of a valid assignment
please refer to Figure 2. We say that a valid solution sol is compatible with the shape SA

if S(i, j) =
∣∣sol−1(i, j)

∣∣, whenever S(i, j) ≤ α and
∣∣sol−1(i, j)

∣∣ ≥ α + 1 if S(i, j) = α + 1.
The A-shape SA is said to be valid if there exists a valid solution for SA. Note that such a
solution does not exist if the shape specifies too many (or too few) cliques of certain sizes.
The shape S is valid if all its A-shapes are valid.

The following lemma is a key observation about shapes.

I Lemma 9. Let ϕ be an MSO1 formula with one free variable, G a graph and W,W ′ two
subsets of vertices having the same shape. Then G |= ϕ(W) if and only if G |= ϕ(W ′).

D. Knop, T. Masařík, and T. Toufar 33:9

0

0

1 2 3 4 5 ≥ 6

1

2

3

4

5

≥ 6nu
m
be

r
of

ve
rt
ic
es

in
W

number of vertices outside W

Figure 2 Example of a 7×7 A-shape. All
cliques of size 3 will be assigned to yellow
(light gray) fields, while cliques of size 8 will
be assigned to orange (darker gray) fields.

0

0

0 0

1

0

2

0

3

0

4

0

5

0

≥ 6

11

22

33

44

55

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

?≥ 6 ? ? ? ? ? 6nu
m
be

r
of

ve
rt
ic
es

in
W

number of vertices outside W

Figure 3 An example of uncertainty in
computation of objective function. The value
in the last row depends on the size of the
clique we are assigning to those cells. The
value in the cell is how much we pay for any
compatible clique assigned to this cell.

Proof. The proof follows using Proposition 6 and Lemma 7. Indeed, if we take the graph G
with one label corresponding to set W and apply the reduction rules given by Proposition 6
and Lemma 7 and repeat the same process with W ′, we obtain two isomorphic labeled
graphs. J

Lemma 9 allows us to say that a formula with one free variable holds under a shape since
it is irrelevant which subset of vertices of this particular shape is assigned to the free variable.
Also note that deciding whether the formula holds under the shape can be done in FPT time
by simply picking arbitrary assignment of the given shape and running a model checking
algorithm.

Lemma 11 computes a solution of minimal cost for an A-shape. We do this by reducing
the task to integer linear programming (ILP) while using non-linear objective. A fuction
f : Rp → R is separable convex if there exist convex functions fi : R→ R for i ∈ [p] such that
f(x1, . . . , xp) =

∑p
i=1 fi(xi).

I Theorem 10 ([32] – simplified). Integer linear programming with objective minimization
of a separable convex function in dimension p is FPT with respect to p and space exponential
in L the length of encoding of the ILP instance.

I Lemma 11. Let G = (V,E) be a graph, K be a twin cover of G, and ∅ 6= A ⊆ K. There is
an algorithm that given an A-shape SA of size r computes a valid solution for SA of minimal
cost in time f(|K|, r) · |G|O(1) or reports that SA is not valid.

Proof. Let C be the collection of all cliques such that A is their cover set. We split the task
of finding a minimal solution to SA into two independent parts depending on the size of
cliques assigned in the phase.

The first phase is for cliques in C with sizes at most r. Observe that these can be assigned
deterministically in a greedy way. This is because no cell of SA is shared by two sizes and
we can see that if there are more cells with value α on the corresponding diagonal we can
always prefer the top one as this minimizes the cost (see Figure 3). However, this is not
possible for larger cliques as they may in general share some cells of SA and thus we defer
them to the second phase.

MFCS 2019

33:10 Parameterized Complexity of Fair Vertex Evaluation Problems

Now observe that the most important vertices for computing the cost are the vertices
constituting the set A. To see this just note that all other vertices see only A and their
neighborhood (a clique) which is at least as large as for the vertices in A. It follows that we
should only care about the number of selected vertices such that A is their cover set. Thus if
the size of all cliques in C is bounded in terms of k we are done. Alas, this is not the case.

We split the set C into sets C1, . . . , C2r, and Cmax. A clique C ∈ C belongs to C|C| if
1 ≤ |C| ≤ 2r and belongs to Cmax otherwise. Note that cliques from Cmax may be assigned
only to cells having at least one index r + 1. As mentioned we are about to design an ILP
with a non-linear objective function. This ILP has variables xq

i,j that express the number
of cliques from the set Cq assigned to the cell (i, j) of SA (that is, 1 ≤ i, j ≤ r + 1 and
q ∈ Q = {1, . . . , 2r} ∪ {max}). The obvious conditions are the following (the D symbol
translates to = if S(i, j) ≤ α while it translates to ≥ if S(i, j) = α+ 1).∑

q∈Q

xq
i,j D SA(i, j) 0 ≤ i, j ≤ r + 1

∑
0≤i,j≤r+1

xq
i,j = |Cq| ∀q ∈ Q

xq
i,j ≥ 0 0 ≤ i, j ≤ r + 1, ∀q ∈ Q

We are about to minimize the following objective∑
0≤i≤r+1;0≤j≤r

∑
1≤q≤2r

(q − j)xq
i,j +

∑
0≤i≤r+1

∑
∀q

i · xq
i,r+1 + g

(
xmax

r+1,0, . . . , x
max
r+1,r

)
,

where g : Nr → N is a function that has access to sizes of all cliques in Cmax and computes the
minimum possible assignment. We claim that the function g is a separable convex function
in variables xmax

r+1,0, . . . , x
max
r+1,r. The first summand of the objective function describes the

cliques of size at most 2r. Their price corresponds to the number of vertices in the clique q
minus the number of vertices that are not selected j. The second summand corresponds to
the last row, where the cheapest price is always the number of selected vertices i. The last
summand, discussed in the following paragraph, describes the assignment to the last row.
The result then follows from Theorem 10 as the number of integral variables is O(r3).

Observe that the value of g
(
xmax

r+1,0, . . . , x
max
r+1,r

)
is equal to sum of sizes of cliques “assigned

to the last row” minus
∑r

j=0 j · xmax
r+1,j . Now, g

(
xmax

r+1,0, . . . , x
max
r+1,r

)
= g′

(∑r
j=0 x

max
r+1,j

)
−∑r

j=0 j · xmax
r+1,j . Since all cliques in Cmax are eligible candidates to be assigned to the last

row and since it is always cheaper to assign there those of the smallest size among them, we
can define g′ based only on the number of cliques that are assigned to the last row. This
finishes the proof since g′ is a convex function. We defer the details on polynomial space to
the full version of the paper. J

Now we are ready to prove the main result of this section. It essentially follows by the
exhaustive search among all possible shapes S such that ϕ is true under S and application
of Lemma 11.

I Proposition 12. Let G = (V,E) be a graph with twin cover K of size k. For an MSO1
formula ϕ(X) with one free variable that represents the set to be deleted it is possible to find
a set W ⊆ V such that

ϕ(W) holds in G and
the cost of W is minimized among all subset of V satisfying ϕ(X)

in time f(k, |ϕ|)|V |O(1) for some computable function f .

D. Knop, T. Masařík, and T. Toufar 33:11

1
2
i

n

...

Va

guard

n− 1

i

lower

...

n− i

upper

c1
ab

c2
ab

n

...

n− i
a-upper

i

a-lower

1
2
3
4
q

m

...

E{a,b}

guard

m− 1

j

n− j

Figure 4 An overview of the reduction in the proof of Theorem 2. The gray vertices are enforced
to be a part the fair vertex cover. If a vertex fair objective was lowered, then the resulting threshold
is beneath the vertex (the group of vertices).

Proof sketch. We proceed as follows. For every possible selection of K ∩W we generate
all possible shapes and check whether ϕ(X) evaluates to true under shape S and if so, we
compute W for S having the minimal fair-cost. J

3 The Fair VC problem

3.1 Hardness for Treedepth and Feedback Vertex Set
We observe substantial connection between Fair VC and Target Set Selection (TSS).
It is worth mentioning that Vertex Cover can be formulated in the language of TSS by
setting the threshold to deg(v) for every vertex v. As a result, our reduction given here is, in
certain sense, dual to the one given by Chopin et al. [3] for the TSS problem. However, we
will show that the structure of the solution for Fair VC is, in fact, the complement of the
structure of the solution for TSS given therein. The archetypal W[1]-hard problem is the
`-Multicolored Clique problem [7]:

`-Multicolored Clique Parameter: `
Input: An `-partite graph G = (V1 ∪ · · · ∪ V`, E), where Vc is an independent set for

every c ∈ [`] and they are pairwise disjoint.
Question: Is there a clique of the size ` in G?

Proof sketch of Theorem 2. Refer to figure 4. Observe that we can enforce a vertex v to
be a part of the fair vertex cover by attaching k + 1 degree 1 vertices to v. Notice further
that we may adjust (lower) the global budget k for individual vertex v by attaching vertices
to v and then attaching k new leaves to the newly added vertices.

There are three types of gadgets in our reduction, namely the vertex selection gadget, the
edge selection gadget, and the incidence check gadget. We start by enumerating the vertices
in each color class by numbers from [n] and edges by numbers in [m]. Now, we construct a
graph H in which we are going to look for a vertex cover of small fair cost. Throughout the
proof a, b are distinct numbers from [`].

MFCS 2019

33:12 Parameterized Complexity of Fair Vertex Evaluation Problems

A selection gadget consists of z choice vertices (representing either the color class Va

with z = n or E{a,b} in which case z = m), a special vertex called guard, and a group of n2

enumeration vertices. The guard vertex is connected to all choice vertices, it is enforced to be
a part of the fair vertex cover, and its budget is lowered so that at most z − 1 choice vertices
can be in any fair vertex cover. The i-th choice vertex is connected to n private enumeration
vertices. We further divide these vertices into two parts – the lower part consists of q vertices
and the upper part consists of n− q vertices, where q refers to the vertex number. That is,
q = i in case of a vertex choice gadget and for an edge choice gadget, we let q = vi, where vi

is the number of the vertex incident to i-th edge in the corresponding colorclass.
The ab-incidence check gadget consist of two vertices c1

ab and c2
ab. Both c1

ab and c2
ab are

enforced to be a part of the solution and with a lowered budget in a way that at most n
vertices in the neighborhood of each of them can be part of any fair vertex cover. The vertex
c1

ab is connected to every lower part vertex in the selection gadget for Va and to every upper
a-part vertex in the selection gadget for E{a,b}. For c2

ab we exchange the role of upper- and
lower- parts.

B Claim 13. Suppose (G, `) is a yes-instance then there is a vertex cover in H with fair cost
at most k = max(m− 1, 2n).

Let K ⊆ V1 × · · · × V` be a clique in G. We now construct a vertex cover CK of H having
|N(w) ∩ CK | ≤ k for all w ∈W . The set CK contains the following:
1. all enforced vertices (including all guard and check vertices),
2. if v ∈ Va ∩K is the i-th vertex of Va, then all selection vertices of Va but the vertex i are

in CK and lower and upper enumeration vertices of i are in CK , and
3. if v ∈ Va ∩K and u ∈ Vb ∩K are adjacent through q-th edge of E{a,b}, then all selection

vertices of E{a,b} but the vertex q are in CK and q’s enumeration vertices are in CK .
The proof of the reverse direction is deferred to the full version due to space limitations.

It remains to discuss the ETH based lower-bound. This follows immediately from our
reduction and the result of Chen et al. [2] who proved that there is no f(k)no(`) algorithm
for `-Multicolored Clique unless ETH fails. Since we have td(G) + fvs(G) = O(`2) in
our reduction, the lower-bound follows. J

3.2 FPT algorithm for Modular Width
Since an algebraic expression A of width mw(G) can be computed in linear time [36], we can
assume that we have A on the input. We construct the rooted ordered tree T corresponding
to A. Each node t ∈ T is assigned a graph Gt ⊆ G, that is, the graph constructed by the
subexpression of A rooted at t. Suppose we are performing substitution operation at node
t with respect to template graph T and graphs G1, . . . , Gr. Denote the resulting graph Gt

and denote by ni the size of V (Gi).

Proof sketch of Theorem 3. The computation will be carried out recursively from the
bottom of the tree T . We first describe the structure of all vertex covers C in Gt. Observe
that if ij ∈ E(T), then at least one of V (Gi), V (Gj) must be a subset of C. Thus, the set
CT := {i : V (Gi) ⊆ C} is a vertex cover of the template graph T . We call the CT the type
of the vertex cover C. Furthermore, every set C ∩ V (Gi) must be a vertex cover of Gi. Since
there are at most 2r vertex covers of T , we try all of these. Furthermore, every set C ∩V (Gi)
must be a vertex cover of Gi.

We now describe the fair cost of the cover C in terms of fair costs and sizes of the sets
C ∩ V (Gi). Let ci = |C ∩ V (Gi)| and let fi denote the fair cost of C ∩ V (Gi) in Gi. The

D. Knop, T. Masařík, and T. Toufar 33:13

fair cost of C in W ⊆ V (G) is defined as maxv∈W |C ∩ N(v)|. For i ∈ [r] the fair cost of
C in V (Gi) can be expressed as fi +

∑
j:ij∈E(T) cj . If we know the type CT of the cover C,

this expression can be simplified based on whether i lies in CT or not. If i ∈ CT , then fi is
∆(Gi) (the maximal degree of Gi). If, on the other hand, i /∈ CT , then all its neighbors j are
in CT and in this case cj = nj . Combining these observations together we get

fair cost of C in Gi =
{

∆(Gi) +
∑

j /∈CT :ij∈E(T) cj +
∑

j∈CT :ij∈E(T) nj i ∈ CT ,

fi +
∑

j:ij∈E(T) nj i /∈ CT .

From this we can design a dynamic program that computes the solution. J

4 Conclusions

Fair Edge L Deletion problems. One can define edge deletion problems in a similar way as
vertex deletion problems.

Fair L edge deletion
Input: An undirected graph G = (V, E), an L sentence ϕ, and a positive integer k.
Question: Is there a set F ⊆ E such that G \ F |= ϕ and for every vertex v of G, it holds

that |{e ∈ F : e 3 v}| ≤ k?

Recall, in dense graph classes one cannot obtain an MSO2 model checking algorithm running
in FPT-time [25]. This is the reason why evaluation problems do not make sense in this
context. In sparse graph classes, this problem was studied in [29] where W[1]-hardness was
obtained for Fair FO Edge Deletion on graphs of bounded treedepth and FPT algorithm was
derived for Fair MSO2 Edge Evaluation on graphs of bounded vertex cover.

The crucial open problem is to resolve the parameterized complexity of the Fair FO
Edge Deletion problems for parameterization by neighborhood diversity and twin cover.
To motivate the study we prove the following hardness result for parameterization by the
cluster vertex deletion number. Recall that for any graph its cluster vertex deletion number
is upper-bounded by the size of its twin cover.

I Theorem 14 (F). The Fair FO Edge Deletion problem is W[1]-hard when parameterized
by the cluster vertex deletion number of the input graph.

Generalization of parameters. Another open problem is to resolve the parameterized com-
plexity of the Fair MSO1 Vertex Evaluation problems with respect to graph parameters
generalizing neighborhood diversity or twin cover (e.g., modular width or cluster vertex
deletion number respectively).

MSO with Local Linear Constraints. Previously, an FPT algorithm for evaluation of a
fair objective was given for parameter neighborhood diversity [29]. That algorithm was
extended [20] to a so-called local linear constraints again for a formula ϕ(·) with one free
variable that is defined as follows. Every vertex v ∈ V (G) is accompanied with two positive
integers `(v), u(v), the lower and the upper bound, and the task is to find a set X that not
only G |= ϕ(X) but for each v ∈ V (G) it holds that `(v) ≤ |N(v) ∩X| ≤ u(v). Note that
this is a generalization as fair objective of value t can be tested in this framework by setting
`(v) = 0 and u(v) = t for every v ∈ V (G). Is this extension possible for parameterization by
the twin cover number?

MFCS 2019

33:14 Parameterized Complexity of Fair Vertex Evaluation Problems

Towards new fair problems. As we proposed the examination of Fair VC already, we
would like to turn an attention to exploring fair versions of other classical and well-studied
Vertex Deletion problems. In contrast, certain Fair Edge Deletion problems have got
some attention before, namely Fair Feedback Edge Set [27] or Fair Edge Odd Cycle
Transversal [22]. Besides Fair VC we propose a study of Fair Dominating Set and
Fair Feedback Vertex Set. In particular, it would be really interesting to know whether
fair variants of Vertex Cover and Dominating Set admit a similar behavior as in the
classical setting.

Furthemore, We would like to ask whether there is an NP-hard Fair Vertex Deletion
problem that admits an FPT algorithm for parameterization by treedepth (and feedback
vertex set) of the input graph.

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy Problems for Tree-Decomposable

Graphs. Journal of Algorithms, 12(2):308–340, June 1991. doi:10.1016/0196-6774(91)
90006-k.

2 Jianer Chen, Benny Chor, Michael R. Fellows, Xiuzhen Huang, David Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information
and Computation, 201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

3 Morgan Chopin, André Nichterlein, Rolf Niedermeier, and Mathias Weller. Constant Thresholds
Can Make Target Set Selection Tractable. Theory Comput. Syst., 55(1):61–83, 2014. doi:
10.1007/s00224-013-9499-3.

4 Bruno Courcelle. The Monadic Second-order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Information and Computation, 85(1):12–75, March 1990. doi:10.1016/
0890-5401(90)90043-h.

5 Bruno Courcelle and Mohamed Mosbah. Monadic Second-Order Evaluations on Tree-
Decomposable Graphs. Theor. Comput. Sci., 109(1&2):49–82, 1993. doi:10.1016/
0304-3975(93)90064-z.

6 Lenore J. Cowen, Robert Cowen, and Douglas R. Woodall. Defective colorings of graphs in
surfaces: Partitions into subgraphs of bounded valency. Journal of Graph Theory, 10(2):187–
195, 1986. doi:10.1002/jgt.3190100207.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

9 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic
revisited. Annals of Pure and Applied Logic, 130(1):3–31, 2004. Papers presented at the 2002
IEEE Symposium on Logic in Computer Science (LICS). doi:10.1016/j.apal.2004.01.007.

10 Jakub Gajarský and Petr Hliněný. Kernelizing MSO Properties of Trees of Fixed Height, and
Some Consequences. Logical Methods in Computer Science, Volume 11, Issue 1, April 2015.
doi:10.2168/LMCS-11(1:19)2015.

11 Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Daniel Lokshtanov, and M. S. Ramanujan.
A New Perspective on FO Model Checking of Dense Graph Classes. In Martin Grohe,
Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5–8, 2016,
pages 176–184. ACM, 2016. doi:10.1145/2933575.2935314.

12 Robert Ganian. Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics. In
Dániel Marx and Peter Rossmanith, editors, Parameterized and Exact Computation - 6th
International Symposium IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised

https://doi.org/10.1016/0196-6774(91)90006-k
https://doi.org/10.1016/0196-6774(91)90006-k
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1016/0890-5401(90)90043-h
https://doi.org/10.1016/0890-5401(90)90043-h
https://doi.org/10.1016/0304-3975(93)90064-z
https://doi.org/10.1016/0304-3975(93)90064-z
https://doi.org/10.1002/jgt.3190100207
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.2168/LMCS-11(1:19)2015
https://doi.org/10.1145/2933575.2935314

D. Knop, T. Masařík, and T. Toufar 33:15

Selected Papers, volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer,
2011. doi:10.1007/978-3-642-28050-4_21.

13 Robert Ganian. Improving Vertex Cover as a Graph Parameter. Discrete Mathematics &
Theoretical Computer Science, 17(2):77–100, 2015. URL: http://dmtcs.episciences.org/
2136.

14 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing Height of Dense Graphs. Logical Methods in Computer Science, 15(1),
2019. URL: https://lmcs.episciences.org/5149.

15 Robert Ganian and Jan Obdržálek. Expanding the Expressive Power of Monadic Second-
Order Logic on Restricted Graph Classes. In Thierry Lecroq and Laurent Mouchard, editors,
Combinatorial Algorithms—24th International Workshop, IWOCA 2013, Revised Selected
Papers, volume 8288 of Lecture Notes in Computer Science, pages 164–177. Springer, 2013.
doi:10.1007/978-3-642-45278-9_15.

16 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of
Nowhere Dense Graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

17 Frédéric Havet, Ross J. Kang, and Jean-Sébastien Sereni. Improper coloring of unit disk
graphs. Networks, 54(3):150–164, 2009. doi:10.1002/net.20318.

18 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/j.jcss.2012.04.004.

19 Ross J. Kang, Tobias Müller, and Jean-Sébastien Sereni. Improper colouring of (random) unit
disk graphs. Discrete Mathematics, 308(8):1438–1454, 2008. Third European Conference on
Combinatorics. doi:10.1016/j.disc.2007.07.070.

20 Dušan Knop, Martin Koutecký, Tomáš Masařík, and Tomáš Toufar. Simplified Algorithmic
Metatheorems Beyond MSO: Treewidth and Neighborhood Diversity. In Hans L. Bodlaender
and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts in Computer Science: 43rd
International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised
Selected Papers, pages 344–357, Cham, 2017. Springer International Publishing. doi:10.1007/
978-3-319-68705-6_26.

21 Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. Fair Edge Deletion Problems on
TreeDecomposable Graphs and Improper Colorings, 2010. URL: http://orion.math.iastate.
edu/lidicky/pub/kls10.pdf.

22 Petr Kolman, Bernard Lidický, and Jean-Sébastien Sereni. On Fair Edge Deletion Problems,
2009. URL: https://kam.mff.cuni.cz/~kolman/papers/kls09.pdf.

23 Juha Kontinen and Hannu Niemistö. Extensions of MSO and the monadic counting hierarchy.
Information and Computation, 209(1):1–19, 2011. doi:10.1016/j.ic.2010.09.002.

24 Michael Lampis. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

25 Michael Lampis. Model Checking Lower Bounds for Simple Graphs. Logical Methods in
Computer Science, 10(1):1–21, 2014. doi:10.2168/LMCS-10(1:18)2014.

26 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

27 Li-Shin Lin and Sartaj Sahni. Fair Edge Deletion Problems. IEEE Trans. Comput., 38(5):756–
761, 1989. doi:10.1109/12.24280.

28 Tomáš Masařík and Tomáš Toufar. Parameterized Complexity of Fair Deletion Problems.
In T.V. Gopal, Gerhard Jäger, and Silvia Steila, editors, Theory and Applications of Models
of Computation: 14th Annual Conference, TAMC 2017, Bern, Switzerland, April 20-22,
2017, Proceedings, pages 628–642, Cham, 2017. Springer International Publishing. doi:
10.1007/978-3-319-55911-7_45.

29 Tomáš Masařík and Tomáš Toufar. Parameterized complexity of fair deletion problems.
Discrete Applied Mathematics, 2019. doi:10.1016/j.dam.2019.06.001.

30 Jiří Matoušek and Jaroslav Nešetřil. Invitation to Discrete Mathematics (2. ed.). Oxford
University Press, 2009.

MFCS 2019

https://doi.org/10.1007/978-3-642-28050-4_21
http://dmtcs.episciences.org/2136
http://dmtcs.episciences.org/2136
https://lmcs.episciences.org/5149
https://doi.org/10.1007/978-3-642-45278-9_15
https://doi.org/10.1145/3051095
https://doi.org/10.1002/net.20318
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1016/j.disc.2007.07.070
https://doi.org/10.1007/978-3-319-68705-6_26
https://doi.org/10.1007/978-3-319-68705-6_26
http://orion.math.iastate.edu/lidicky/pub/kls10.pdf
http://orion.math.iastate.edu/lidicky/pub/kls10.pdf
https://kam.mff.cuni.cz/~kolman/papers/kls09.pdf
https://doi.org/10.1016/j.ic.2010.09.002
https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.2168/LMCS-10(1:18)2014
https://doi.org/10.1109/12.24280
https://doi.org/10.1007/978-3-319-55911-7_45
https://doi.org/10.1007/978-3-319-55911-7_45
https://doi.org/10.1016/j.dam.2019.06.001

33:16 Parameterized Complexity of Fair Vertex Evaluation Problems

31 Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and algorithms,
volume 28. Springer Science & Business Media, 2012. doi:10.1007/978-3-642-27875-4.

32 Timm Oertel, Christian Wagner, and Robert Weismantel. Integer convex minimization
by mixed integer linear optimization. Operations Research Letters, 42(6):424–428, 2014.
doi:10.1016/j.orl.2014.07.005.

33 Michał Pilipczuk. Problems Parameterized by Treewidth Tractable in Single Exponential
Time: A Logical Approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical
Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw,
Poland, August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science,
pages 520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

34 Detlef Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

35 Stefan Szeider. Monadic second order logic on graphs with local cardinality constraints. ACM
Trans. Comput. Log, 12(2):1–21, 2011. doi:10.1145/1877714.1877718.

36 Marc Tedder, Dereck G. Corneil, Michel Habib, and Christophe Paul. Simpler Linear-Time
Modular Decomposition Via Recursive Factorizing Permutations. In ICALP 2008, pages
634–645, 2008. doi:10.1007/978-3-540-70575-8_52.

37 Mihalis Yannakakis. Edge-Deletion Problems. SIAM J. Comput., 10(2):297–309, 1981.
doi:10.1137/0210021.

https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/j.orl.2014.07.005
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1145/1877714.1877718
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1137/0210021

A Complexity Dichotomy for Critical Values of the
b-Chromatic Number of Graphs
Lars Jaffke
Department of Informatics, University of Bergen, Norway
lars.jaffke@uib.no

Paloma T. Lima
Department of Informatics, University of Bergen, Norway
paloma.lima@uib.no

Abstract
A b-coloring of a graph G is a proper coloring of its vertices such that each color class contains a
vertex that has at least one neighbor in all the other color classes. The b-Coloring problem asks
whether a graph G has a b-coloring with k colors. The b-chromatic number of a graph G, denoted
by χb(G), is the maximum number k such that G admits a b-coloring with k colors. We consider
the complexity of the b-Coloring problem, whenever the value of k is close to one of two upper
bounds on χb(G): The maximum degree ∆(G) plus one, and the m-degree, denoted by m(G), which
is defined as the maximum number i such that G has i vertices of degree at least i− 1. We obtain a
dichotomy result for all fixed k ∈ N when k is close to one of the two above mentioned upper bounds.
Concretely, we show that if k ∈ {∆(G) + 1− p,m(G)− p}, the problem is polynomial-time solvable
whenever p ∈ {0, 1} and, even when k = 3, it is NP-complete whenever p ≥ 2. We furthermore
consider parameterizations of the b-Coloring problem that involve the maximum degree ∆(G) of
the input graph G and give two FPT-algorithms. First, we show that deciding whether a graph G
has a b-coloring with m(G) colors is FPT parameterized by ∆(G). Second, we show that b-Coloring
is FPT parameterized by ∆(G) + `k(G), where `k(G) denotes the number of vertices of degree at
least k.

2012 ACM Subject Classification Mathematics of computing → Graph coloring

Keywords and phrases b-Coloring, b-Chromatic Number

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.34

Related Version A full version is available at: https://arxiv.org/abs/1811.03966 [13].

Funding Lars Jaffke: Supported by The Bergen Research Foundation (BFS).
Paloma T. Lima: Supported by Research Council of Norway via the project “CLASSIS”.

Acknowledgements We would like to thank Fedor Fomin for useful advice with good timing and
Petr Golovach for pointing out the reference [7].

1 Introduction

Given a set of colors, a proper coloring of a graph is an assignment of a color to each of its
vertices in such a way that no pair of adjacent vertices receive the same color. In the deeply
studied Graph Coloring problem, we are given a graph and the question is to determine
the smallest set of colors with which we can properly color the input graph. This problem
is among Karp’s famous list of 21 NP-complete problems [14] and since it often arises in
practice, heuristics to solve it are deployed in a wide range of applications. A very natural
such heuristic is the following. We greedily find a proper coloring of the graph, and then
try to suppress any of its colors in the following way: say we want to suppress color c. If
there is a vertex v that has received color c, and there is another color c′ 6= c that does not
appear in the neighborhood of v, then we can safely recolor the vertex v with color c′ without

© Lars Jaffke and Paloma T. Lima;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 34; pp. 34:1–34:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4856-5863
mailto:lars.jaffke@uib.no
mailto:paloma.lima@uib.no
https://doi.org/10.4230/LIPIcs.MFCS.2019.34
https://arxiv.org/abs/1811.03966
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

making the coloring improper. We terminate this process once we cannot suppress any color
anymore.

To predict the worst-case behavior of the above heuristic, Irving and Manlove defined the
notions of a b-coloring and the b-chromatic number of a graph [12]. A b-coloring of a graph
G is a proper coloring such that in every color class there is a vertex that has a neighbor in
all of the remaining color classes, and the b-chromatic number of G, denoted by χb(G), is
the maximum integer k such that G admits a b-coloring with k colors. We observe that in a
b-coloring with k colors, there is no color that can be suppressed to obtain a proper coloring
with k − 1 colors, hence χb(G) describes the worst-case behavior of the previously described
heuristic on the graph G. We consider the following two computational problems associated
with b-colorings of graphs.

Input: Graph G, integer k
Question: Does G admit a b-coloring with k colors?

b-Coloring

Input: Graph G, integer k
Question: Is χb(G) ≥ k?

b-Chromatic Number

We would like to point out an important distinction from the “standard” notion of proper
colorings of graphs: If a graph G has a b-coloring with k colors, then this implies that
χb(G) ≥ k. However, if χb(G) ≥ k then we can in general not conclude that G has a
b-coloring with k colors. A graph for which the latter implication holds as well is called
b-continuous. This notion is mostly of structural interest, since the problem of determining
if a graph is b-continous is NP-complete even if an optimal proper coloring and a b-coloring
with χb(G) colors are given [2].

Besides observing that χb(G) ≤ ∆(G) + 1 where ∆(G) denotes the maximum degree of G,
Irving and Manlove [12] defined the m-degree of G as the largest integer i such that G has i
vertices of degree at least i− 1. It follows that χb(G) ≤ m(G). Since the definition of the
b-chromatic number originated in the analysis of the worst-case behavior of graph coloring
heuristics, graphs whose b-chromatic numbers take on critical values, i.e. values that are
close to these upper bounds, are of special interest. In particular, identifying them can be
helpful in structural investigations concerning the performance of graph coloring heuristics.

In terms of computational complexity, Irving and Manlove showed that both b-Coloring
and b-Chromatic Number are NP-complete [12] and Sampaio observed that b-Coloring
is NP-complete even for every fixed integer k ≥ 3 [17]. Panolan et al. [16] gave an exact
exponential algorithm for b-Chromatic Number running in time O(3nn4 log n) and an
algorithm that solves b-Coloring in time O(

(
n
k

)
2n−kn4 logn). From the perspective of

parameterized complexity [6, 8], it has been shown that b-Chromatic Number is W[1]-hard
parameterized by k [16] and that the dual problem of deciding whether χb(G) ≥ n−k, where
n denotes the number of vertices in G, is FPT parameterized by k [11].

Since the above mentioned upper bounds ∆(G) + 1 and m(G) on the b-chromatic number
are trivial to compute, it is natural to ask whether there exist efficient algorithms that
decide whether χb(G) = ∆(G) + 1 or χb(G) = m(G). It turns out both these problems are
NP-complete as well [10, 12, 15]. However, it is known that the problem of deciding whether
a graph G admits a b-coloring with k = ∆(G) + 1 colors is FPT parameterized by k [16, 17].

L. Jaffke and P. T. Lima 34:3

The Dichotomy Result. One of the main contributions of this paper is a complexity
dichotomy of the b-Coloring problem for fixed k, whenever k is close to either ∆(G) + 1 or
m(G). In particular, for fixed k ∈ {∆(G) + 1− p,m(G)− p}, we show that the problem is
polynomial-time solvable when p ∈ {0, 1} and, even in the case k = 3, NP-complete for all
fixed p ≥ 2. More specifically, we give XP time algorithms for the cases k = m(G), k = ∆(G),
and k = m(G)− 1 which together with the FPT algorithm for the case k = ∆(G) + 1 [16, 17]
and the aforementioned NP-hardness result for k = 3 complete the picture. We now formally
state this result.

I Theorem 1. Let G be a graph, p ∈ N and k ∈ {∆(G) + 1− p,m(G)− p}. The problem of
deciding whether G has a b-coloring with k colors is
(i) NP-complete if k is part of the input and p ∈ {0, 1},
(ii) NP-complete if k = 3 and p ≥ 2, and
(iii) polynomial-time solvable for any fixed positive k and p ∈ {0, 1}.

Maximum Degree Parameterizations. The positive results in our dichotomy theorem
provide XP-algorithms to decide whether a graph has a b-coloring with a number of colors
that either precisely meets or is one below one of two upper bounds on the b-chromatic
number, with the parameter being the number of colors in each of the cases. Towards more
“flexible” tractability results, we consider parameterized versions of b-Coloring that involve
the maximum degree ∆(G) of the input graph G, but ask for the existence of b-colorings
with a number of colors that in general is different from ∆(G) + 1 or ∆(G).

I Theorem 2. Let G be a graph. The problem of deciding whether G has a b-coloring with
m(G) colors is FPT parameterized by ∆(G).

One of the crucially used facts in the algorithm of the previous theorem is that if we ask
whether a graph G has a b-coloring with k = m(G) colors, then the number of vertices of
degree at least k is at most k. We generalize this setting and parameterize b-Coloring by
the maximum degree plus the number of vertices of degree at least k.

I Theorem 3. Let G be a graph. The problem of deciding whether G has a b-coloring with
k colors is FPT parameterized by ∆(G) + `k(G), where `k(G) denotes the number of vertices
of degree at least k in G.

We now argue that parameterizing by only one of the two invariants used in Theorem 3
is not sufficient to obtain efficient parameterized algorithms. From the result of Kratochvíl et
al. [15], stating that b-Coloring is NP-complete for k = ∆(G)+1, it follows that b-Coloring
is NP-complete when ∆(G) is unbounded and `k(G) = 0. On the other hand, Theorem 1(ii)
implies that b-Coloring is already NP-complete when k = 3 and ∆(G) = 4. Together, this
rules out the possibility of FPT- and even of XP-algorithms for parameterizations by one of
the two parameters alone, unless P = NP.

Parameterizations of graph coloring problems by the number of high degree vertices have
previously been considered for vertex coloring [1] and edge coloring [9]. Throughout the text,
proofs of statements marked with “♣” are deferred to the full version [13].

2 Preliminaries

We use the following notation: For k ∈ N, [k] ..= {1, . . . , k}. For a function f : X → Y and
X ′ ⊆ X, we denote by f |X′ the restriction of f to X ′ and by f(X ′) the set {f(x) | x ∈ X ′}.
For a set X and an integer n, we denote by

(
X
n

)
the set of all size-n subsets of X.

MFCS 2019

34:4 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

Graphs. Throughout the paper a graph G with vertex set V (G) and edge set E(G) ⊆
(

V (G)
2
)

is finite and simple. We often denote an edge {u, v} ∈ E(G) by the shorthand uv. For
graphs G and H we denote by H ⊆ G that H is a subgraph of G, i.e. V (H) ⊆ V (G) and
E(H) ⊆ E(G). We often use the notation n ..= |V (G)|. For a vertex v ∈ V (G), we denote
by NG(v) the open neighborhood of v in G, i.e. NG(v) = {w ∈ V (G) | vw ∈ E(G)}, and by
NG[v] the closed neighborhood of v in G, i.e. NG[v] ..= {v} ∪ NG(v). For a set of vertices
X ⊆ V (G), we let NG(X) ..=

⋃
v∈X NG(v) \X and NG[X] ..= X ∪NG(X). When G is clear

from the context, we abbreviate “NG” to “N”. The degree of a vertex v ∈ V (G) is the size
of its open neighborhood, and we denote it by degG(v) ..= |NG(v)| or simply by deg(v) if G
is clear from the context. For an integer k, we denote by `k(G) the number of vertices of
degree at least k in G.

For a vertex set X ⊆ V (G), we denote by G[X] the subgraph induced by X, i.e. G[X] ..=
(X,E(G) ∩

(
X
2
)
). We furthermore let G−X ..= G[V (G) \X] be the subgraph of G obtained

from removing the vertices in X and for a single vertex x ∈ V (G), we use the shorthand
“G− x” for “G− {x}”.

A graph G is said to be connected if for any 2-partition (X,Y) of V (G), there is an
edge xy ∈ E(G) such that x ∈ X and y ∈ Y , and disconnected otherwise. A connected
component of a graph G is a maximal connected subgraph of G. A path is a connected graph
of maximum degree two, having precisely two vertices of degree one, called its endpoints.
The length of a path is its number of edges. Given a graph G and two vertices u and v, the
distance between u and v, denoted by distG(u, v) (or simply dist(u, v) if G is clear from the
context), is the length of the shortest path in G that has u and v as endpoints.

A graph G is a complete graph if every pair of vertices of G is adjacent. A set C ⊆ V (G)
is a clique if G[C] is a complete graph. A set S ⊆ V (G) is an independent set if G[S] has no
edges. A graph G is a bipartite graph if its vertex set can be partitioned into two independent
sets. A bipartite graph with bipartition (A,B) is a complete bipartite graph if all pairs
consisting of one vertex from A and one vertex from B are adjacent, and with a = |A| and
b = |B|, we denote it by Ka,b. A star is the graph K1,b, with b ≥ 2, and we call center the
unique vertex of degree b and leaves the vertices of degree one.

Colorings. Given a graph G, a map γ : V (G)→ [k] is called a coloring of G with k colors.
If for every pair of adjacent vertices, uv ∈ E(G), we have that γ(u) 6= γ(v), then the coloring
γ is called proper. For i ∈ [k], we call the set of vertices u ∈ V (G) such that γ(u) = i the
color class i. If for all i ∈ [k], there exists a vertex xi ∈ V (G) such that
(i) γ(xi) = i, and
(ii) for each j ∈ [k] \ {i}, there is a neighbor y ∈ NG(xi) of xi such that γ(y) = j,
then γ is called a b-coloring of G. For i ∈ [k], we call a vertex xi satisfying the above two
conditions a b-vertex for color i.

Parameterized Complexity. Let Σ be an alphabet. A parameterized problem is a set
Π ⊆ Σ∗×N. A parameterized problem Π is said to be fixed-parameter tractable, or contained
in the complexity class FPT, if there exists an algorithm that for each (x, k) ∈ Σ∗×N decides
whether (x, k) ∈ Π in time f(k) · |x|c for some computable function f and fixed integer c ∈ N.
A parameterized problem Π is said to be contained in the complexity class XP if there is
an algorithm that for all (x, k) ∈ Σ∗ × N decides whether (x, k) ∈ Π in time f(k) · ng(k) for
some computable functions f and g.

A kernelization algorithm for a parameterized problem Π ⊆ Σ∗ × N is a polynomial-time
algorithm that takes as input an instance (x, k) ∈ Σ∗×N and either correctly decides whether

L. Jaffke and P. T. Lima 34:5

(x, k) ∈ Π or outputs an instance (x′, k′) ∈ Σ∗×N with |x′|+ k′ ≤ f(k) for some computable
function f for which (x, k) ∈ Π if and only if (x′, k′) ∈ Π. We say that Π admits a kernel if
there is a kernelization algorithm for Π.

3 Hardness Results

In this section we prove the hardness results of our complexity dichotomy. First, we show
that b-Chromatic Number and b-Coloring are NP-complete for k = m(G)− 1 = ∆(G),
based on a reduction for the case k = m(G) due to Havet et al. [10].

I Theorem 4 (♣). b-Chromatic Number and b-Coloring are NP-complete, even when
k = m(G)− 1 = ∆(G).

The previous theorem, together with the result that b-Coloring is NP-complete when k =
∆(G) + 1 [15] and when k = m(G) [10], proves Theorem 1(i). We now turn to the proof
of Theorem 1(ii), that is, we show that b-Coloring remains NP-complete for k = 3 if
k = ∆(G) + 1− p or k = m(G)− p for any p ≥ 2, based on a reduction due to Sampaio [17].
Note that the following proposition indeed proves Theorem 1(ii) as for fixed p ≥ 2, we have
that 3 ∈ {∆(G) + 1− p,m(G)− p} if and only if ∆(G) = p+ 2 or m(G) = p+ 3.

I Proposition 5 (♣). For every fixed integer p ≥ 2, the problem of deciding whether a graph
G has a b-coloring with 3 colors is NP-complete when ∆(G) = p+ 2 or m(G) = p+ 3.

Since b-Chromatic Number and b-Coloring are known to be NP-complete when
k = ∆(G) + 1 [15], we make the following observation which is of relevance to us since in
Section 5.2, we show that b-Coloring is FPT parameterized by ∆(G) + `k(G).

I Observation 6. b-Chromatic Number and b-Coloring are NP-complete on graphs with
`k(G) = 0, where k is the integer associated with the respective problem.

4 Dichotomy Algorithms

In this section we give the algorithms in our dichotomy result, proving Theorem 1(iii). We
show that for fixed k ∈ N, the problem of deciding whether a graph G admits a b-coloring with
k colors is polynomial-time solvable when k = m(G) (Sect. 4.2), when k = ∆(G) (Sect. 4.3),
and when k = m(G)− 1 (Sect. 4.4), by providing XP-algorithms for each case.

A natural way of solving the b-Coloring problem is to first try to identify a set of k
b-vertices, color them bijectively with colors from [k], and for each vertex in the set a set
of k − 1 neighbors that can be colored in such a way that the vertex becomes a b-vertex
for its color. Then try to extend the resulting coloring to the remainder of the graph. We
enumerate all such sets and colorings, and show that the extension problem is solvable in
polynomial time in each of the above cases.

The strategy of identifying the set of b-vertices and subsets of their neighbors that make
them b-vertices was (for instance) also used to give polynomial-time algorithms to compute
the b-chromatic number of trees [12] and graphs with large girth [4]. We capture it by
defining the notion of a b-precoloring in the next subsection.

4.1 b-Precolorings
All algorithms in this section are based on guessing a proper coloring of several vertices in the
graph, for which we now introduce the necessary terminology and establish some preliminary
results.

MFCS 2019

34:6 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

I Definition 7 (Precoloring). Let G be a graph and k ∈ N. A precoloring with k colors of a
graph G is an assignment of colors to a subset of its vertices, i.e. for X ⊆ V (G), it is a map
γX : X → [k]. We call γX proper, if it is a proper coloring of G[X]. We say that a coloring
γ : V (G)→ [k] extends γX , if γ|X = γX .

We use the following notation. For two precolorings γX and γY with X ∩ Y = ∅, we
denote by γX ∪ γY the precoloring that colors the vertices in X according to γX and the
vertices in Y according to Y , i.e. the precoloring γX∪Y

..= γX ∪ γY defined as follows: for all
v ∈ X ∪ Y , if v ∈ X, then γX∪Y (v) = γX , and if v ∈ Y then γX∪Y (v) = γY (v).

Next, we define a special type of precoloring with the property that any proper coloring
that extends it is a b-coloring of the graph.

I Definition 8 (b-Precoloring). Let G be a graph, k ∈ N, X ⊆ V (G) and γX a precoloring.
We call γX a b-precoloring with k colors if γX is a b-coloring of G[X]. A b-precoloring γX is
called minimal if for any Y ⊂ X, γX |Y is not a b-precoloring.

It is immediate that any b-coloring can be obtained by extending a minimal b-precoloring,
a fact that we capture in the following observation.

I Observation 9. Let G be a graph, k ∈ N, and γ a b-coloring of G with k colors. Then,
there is a set X ⊆ V (G) such that γ|X is a minimal b-precoloring.

The next observation captures the structure of minimal b-precolorings with k colors.
Roughly speaking, each such precoloring only colors a set of k b-vertices and for each b-vertex
a set of k− 1 of its neighbors that make that vertex the b-vertex of its color. We will use this
property in the enumeration algorithm in this section to guarantee that we indeed enumerate
all minimal b-precolorings with a given number of colors.

I Observation 10. Let γX be a minimal b-precoloring with k colors. Then, X = B ∪ Z,
where
(i) B = {x1, . . . , xk} and for i ∈ [k], γX(xi) = i, and
(ii) Z =

⋃
i∈[k] Zi, where Zi ∈

(
N(xi)
k−1

)
and γX(Zi) = [k] \ {i}.

We are now ready to give the enumeration algorithm for minimal b-precolorings.

I Lemma 11 (♣). Let G be a graph on n vertices and k ∈ N. The number of minimal
b-precolorings with k colors of G is at most

β(k) ..= nk ·∆k(k−1) · (k − 1)!k, (1)

where ∆ ..= ∆(G) and they can be enumerated in time β(k) · kO(1).

4.2 Algorithm for k = m(G)
Our first application of Lemma 11 is to solve the b-Coloring problem in the case when
k = m(G) in time XP parameterized by k. It turns out that in this case, we are dealing with
a Yes-instance as soon as we found a b-precoloring in the input graph that also colors all
high-degree vertices (see Claim 12.1).

I Theorem 12. Let G be a graph. There is an algorithm that decides whether G has a
b-coloring with k = m(G) colors in time nk2 · 2O(k2 log k).

Proof. Let D ⊆ V (G) denote the set of vertices in G that have degree at least k. Note that
by the definition of m(G), we have that |D| ≤ k.

L. Jaffke and P. T. Lima 34:7

I Claim 12.1 (♣). G has a b-coloring with k colors if and only if G has a b-precoloring γX

such that D ⊆ X and there exists S ⊆ D such that γX |(X\S) is a minimal b-precoloring.

The algorithm enumerates all minimal b-precolorings with k colors and for each such precol-
oring, it enumerates all colorings of the vertices D. If combining one such pair of precolorings
gives a b-precoloring, it returns a greedy extension of it; otherwise it reports that there is no
b-coloring with k colors, see Algorithm 1.

Algorithm 1 Algorithm for b-Coloring with k = m(G).

Input :A graph G
Output :A b-coloring with m(G) colors if it exists, No otherwise.

1 foreach minimal b-precoloring γX : X → [k] do
2 foreach precoloring γD\X : (D \X)→ [k] do
3 if γX∪D

..= γX ∪ γD\X is proper then return a greedy extension of γX∪D;
4 return No;

The correctness of the algorithm follows from the fact that it enumerates all precolorings
that can satisfy Claim 12.1. We discuss its runtime. By Lemma 11, we can enumerate all
minimal b-precolorings with k colors in time β(k) ·kO(1). For each such minimal b-precoloring,
we also enumerate all colorings of D. Since |D| ≤ k, this gives an additional factor of kk to
the runtime which (with ∆ ≤ n) then amounts to β(k) · kk · kO(1) ≤ nk2 · 2O(k2 log k). J

4.3 Algorithm for k = ∆(G)
Next, we turn to the case when k = ∆(G). Here the strategy is to again enumerate all
minimal b-precolorings, and then for each such precoloring we check whether it can be
extended to the remainder of the graph. Formally, we use an algorithm for the following
problem as a subroutine.

Input: A graph G, an integer k, and a precoloring γX : X → [k] of a set X ⊆ V (G)
Question: Does G have a proper coloring with k colors extending γX?

Precoloring Extension (PrExt)

Naturally, Precoloring Extension is a hard problem, since it includes Graph Col-
oring as the special case when X = ∅. However, when ∆(G) ≤ k − 1, then the problem
is trivially solvable: we simply check if the precoloring at the input is proper and if so, we
compute an extension of it greedily. Since each vertex has degree at most k − 1, there is
always at least one color available. The case when k = ∆(G) has also been shown to be
solvable in polynomial time.

I Theorem 13 (Thm. 3 in [5], see also [7]). There is an algorithm that solves Precoloring
Extension in polynomial time whenever ∆(G) ≤ k.

I Theorem 14. There is an algorithm that decides whether a graph G has a b-coloring with
∆(G) colors in time nk+O(1) · 2O(k2 log k).

Proof (sketch). For each minimal b-precoloring γX , we apply the algorithm for PrExt of
Theorem 13. If it finds a proper coloring extending γX , we return it, and if there is no
successful run of the algorithm for PrExt, we return No. The details are given in the full
version [13]. J

MFCS 2019

34:8 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

4.4 Algorithm for k = m(G)− 1
Before we proceed to describe the algorithm for b-Coloring when k = m(G) − 1, we
show that the algorithm of Theorem 13 can be used for a slightly more general case of
Precoloring Extension, namely the case when all high-degree vertices in the input
instance are precolored.

I Lemma 15 (♣). There is an algorithm that solves an instance (G, k, γX) of Precoloring
Extension in polynomial time whenever maxv∈V (G)\X deg(v) ≤ k.

I Theorem 16. There is an algorithm that decides whether a graph G has a b-coloring with
k = m(G)− 1 colors in time nk2+O(1) · 2k2 log k.

Proof (sketch). Let D denote the set of vertices of degree at least k + 1 in G. By the
definition of m(G), we have that |D| ≤ k + 1. We first enumerate all minimal b-precolorings
of G, and for each such precoloring, we enumerate all precolorings of D. Since given a
b-precoloring γX with D ⊆ X, we have that every vertex in V (G) \X has degree at most k,
we can apply the algorithm of Lemma 15 to verify whether there is a proper coloring of G
that extends γX . If so, we output that extension. If no such precoloring can be found, then
we conclude that we are dealing with a No-instance. We give the details of the algorithm
and its correctness proof in the full version [13].

It remains to argue the runtime. We enumerate β(k) (see (1)) minimal b-precolorings in
time β(k) · kO(1) using Lemma 11. For each such precoloring, we enumerate all precolorings
of D \ X. Since |D| ≤ k + 1, there are at most kk+1 such colorings. Finally, we run the
algorithm for PrExt due to Lemma 15 which takes time nO(1). The total runtime becomes
β(k) · kO(1) · kk+1 · nO(1) ≤ nk2+O(1) · 2k2 log k. J

5 Maximum Degree Parameterizations

In this section we consider parameterizations of b-Coloring that involve the maximum
degree ∆(G) of the input graph G. In Section 5.1 we show that we can solve b-Coloring
when k = m(G) in time FPT parameterized by ∆(G) and in Section 5.2 we show that
b-Coloring is FPT parameterized by ∆(G) + `k(G).

Both algorithms presented in this section make use of the following reduction rule, which
has already been applied in [16, 17] to obtain the FPT algorithm for the problem of deciding
whether a graph G has a b-coloring with k = ∆(G) + 1 colors, parameterized by k.

I Reduction Rule 17 ([16, 17]). Let (G, k) be an instance of b-Coloring. If there is a
vertex v ∈ V (G) such that every vertex in N [v] has degree at most k − 2, then reduce (G, k)
to (G− v, k).

5.1 FPT Algorithm for k = m(G) parameterized by ∆(G)
Sampaio [17] and Panolan et al. [16] independently showed that parameterized by ∆(G),
it can be decided in FPT time whether a graph G has a b-coloring with ∆(G) + 1 colors.
In this section we show that in the same parameterization, it can be decided in FPT time
whether a graph has a b-coloring with m(G) colors.

I Theorem (Thm. 2, restated). There is an algorithm that given a graph G on n vertices
decides whether G has a b-coloring with k = m(G) colors in time 2O(k4·∆) + nO(1) <

2O(∆5) + nO(1), where ∆ ..= ∆(G).

L. Jaffke and P. T. Lima 34:9

Proof. We apply Reduction Rule 17 exhaustively to G and consider the following 3-partition
(D,T,R) of V (G), where D contains the vertices of degree at least k, T the vertices of degree
precisely k − 1 and R the remaining vertices, i.e. R ..= V (G) \ (D ∪ T). Since we applied
Reduction Rule 17 exhaustively, we make

I Observation 2.1. Every vertex in R has at least one neighbor in D ∪ T .

We pick an inclusion-wise maximal set B ⊆ D ∪ T such that for each pair of distinct vertices
b1, b2 ∈ B, we have that dist(b1, b2) ≥ 4.
Case 1 (|B ∩ T | < k).1 We show that for any vertex in u ∈ V (G) \ B, there is a vertex
v ∈ B such that dist(u, v) ≤ 4. Suppose u ∈ D ∪ T . Since we did not include u in B, it
immediately follows that there is some v ∈ B such that dist(u, v) < 4. Now suppose u ∈ R.
By Observation 2.1, u has a neighbor w in D ∪ T and by the previous argument, there
is a vertex v ∈ B such that dist(w, v) < 4. We conclude that dist(u, v) ≤ 4. Using this
observation, we now show that in this case, the number of vertices in G is polynomial in k
and ∆.

I Claim 2.2. If |B ∩ T | < k, then |V (G)| ≤ O(k4 ·∆).

Proof. Note that (B ∪D,S1, . . . , S4) constitutes a partition of V (G), where Si is the set of
vertices of V (G)\(B∪D) that are at distance exactly i from B. Since |B∩T | < k and |D| ≤ k,
we have that |B ∪D| < 2k, and therefore |S1| < 2k ·∆. By the definition of m(G), all the
vertices in S1 ∪ . . .∪S4 have degree at most k− 1. This implies that |Si| < (k− 1)i−1 · 2k ·∆.
We conclude that the number of vertices in G is at most 2k+2k ·∆·

∑4
i=1(k−1)i−1 = O(k4 ·∆).

C

By Claim 2.2, we can solve the instance in Case 1 in time 2O(k4·∆) using the algorithm of
Panolan et al. [16].
Case 2 (|B ∩ T | ≥ k). Let B′ ⊆ B ∩ T with |B′| = k and denote this set by B′ =
{x1, x2, . . . , xk}. We show that we can construct a b-coloring γ : V (G)→ [k] of G such that
for i ∈ [k], xi is the b-vertex of color i. For i ∈ [k], we let γ(xi) ..= i. Next, we color the
vertices in D. Recall that |D| ≤ k, so we can color the vertices in D injectively with colors
from [k], ensuring that this will not create a conflict on any edge in G[D]. Furthermore,
consider i, j ∈ [k] with i 6= j. Since dist(xi, xj) ≥ 4, we have that N(xi) ∩N(xj) = ∅. In
particular, there is no vertex in D that has two or more neighbors in B′. To summarize, we
can conclude that we can let γ color the vertices of D in such a way that:
(i) γ is injective on D, and
(ii) γ is a proper coloring of G[B′ ∪D].

These two items imply that for each xi (i ∈ [k]), its neighbors N(xi) ∩D receive distinct
colors which are also different from i. Let ` ..= |N(xi)∩D|. It follows that we can let γ color
the remaning (k− 1)− ` neighbors of xi in an arbitrary bijective manner with the (k− 1)− `
colors that do not yet appear in the neighborhood of xi.

After this process, xi is a b-vertex for color i. We proceed in this way for all i ∈ [k].
Since for i, j ∈ [k] with i 6= j we have that dist(xi, xj) ≥ 4, it follows that there are no edges
between N [xi] and N [xj] in G. Hence, we did not introduce any coloring conflict in the
previous step. Now, all vertices in G that have not yet received a color by γ have degree at
most k − 1, so we can extend γ to a proper coloring of G in a greedy fashion.

We summarize the whole procedure in Algorithm 2. We now analyze its runtime. Clearly,

1 This case is almost identical to [16, Case II in the proof of Theorem 2].

MFCS 2019

34:10 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

Algorithm 2 An algorithm that either constructs a b-coloring of a graph G with m(G)
colors, or reports that there is none, and runs in FPT time parameterized by ∆(G).

Input :A graph G with k = m(G) // More generally, graph G with
`k(G) ≤ k

Output :A b-coloring with k colors of G if it exists, and No otherwise.
1 Apply Reduction Rule 17 exhaustively;
2 Let (D,T,R) be a partition of V (G) such that for all x ∈ D, degG(x) ≥ k, for all

x ∈ T , degG(x) = k − 1, and R = V (G) \ (D ∪ T);
3 Let B ⊆ D ∪ T be a maximal set such that for distinct b1, b2 ∈ B, dist(b1, b2) ≥ 4;
4 if |B ∩ T | < k then // Case 1
5 Solve the instance in time 2O(k4·∆) using the b-Coloring algorithm [16];
6 if the algorithm of [16] returned a b-coloring γ then return γ;
7 else return No;
8 else // Case 2, i.e. |B ∩ T | ≥ k
9 Pick a size-k subset of B ∩ T , say B′ ..= {x1, . . . , xk};

10 Initialize a k-coloring γ : V (G)→ [k];
11 For i ∈ [k], let γ(xi) ..= i;
12 Let γ color the vertices of D injectively such that γ remains proper on G[B′ ∪D];
13 For i ∈ [k], let γ color N(xi) ∩D such that xi is the b-vertex of color i;
14 Extend the coloring γ greedily to the remainder of G;
15 return γ;

exhaustively applying Reduction Rule 17 can be done in time nO(1). As mentioned above,
Case 1 can be solved in time 2O(k4·∆). In Case 2, the coloring of G[B′ ∪D] can be found in
time O(k2), and extending the coloring to the remainder of G can be done in time nO(1).
The claimed bound follows. J

I Remark 18 (♣). Algorithm 2 solves the problem of deciding whether G admits a b-coloring
with k colors in time 2O(k4·∆) + nO(1) whenever `k(G) ≤ k.

Furthermore, in the proof of Theorem 2, we provide a polynomial kernel for the problem: In
Case 1, we have a kernelized instance on O(k4 ·∆) vertices (see Claim 2.2) and in Case 2,
we always have a Yes-instance.

I Corollary 19. The problem of deciding whether a graph G has a b-coloring with k = m(G)
colors admits a kernel on O(k4 ·∆) = O(∆5) vertices.

5.2 FPT Algorithm Parameterized by ∆(G) + `k(G)

The next parameterization of b-Coloring involving the maximum degree that we consider
is by ∆(G) + `k(G). We show that in this case, the problem is FPT. By Observation 6 we
know that b-Coloring is NP-complete on graphs with `k(G) = 0, and by Theorem 1, it is
NP-complete even when k = 3 and ∆(G) = 4. Hence, there is no FPT- nor XP-algorithm for a
parameterization using only one of the two above mentioned parameters unless P = NP. Note
that the algorithm we provide in this section can be used to solve the case of k = m(G) for
which we gave a separate algorithm in Section 5.1, see Algorithm 2. However, Algorithm 2 is
much simpler than the algorithm presented in this section, and simply applying the following
algorithm for the case k = m(G) results in a runtime of 2O(kk+3·∆) +nO(1) which is far worse
than the runtime of 2O(k4·∆) + nO(1) of Theorem 2.

L. Jaffke and P. T. Lima 34:11

I Theorem (Thm. 3, restated). There is an algorithm that given a graph G on n vertices
decides whether G has a b-coloring with k colors in time 2O(`·∆·min{`,∆}`+2) + nO(1), where
∆ ..= ∆(G) and ` ..= `k(G).

Proof. The overall strategy of the algorithm is similar to Algorithm 2. We can make the
following assumptions. First, if ` ≤ k, then we can apply Algorithm 2 directly to solve the
instance at hand, see Remark 18. Hence we can assume that k < `. Furthermore, k ≤ ∆ + 1,
otherwise we are dealing with a trivial No-instance; we have that k ≤ min{` − 1,∆ + 1}.
Furthermore, we can assume that k > 2, otherwise the problem is trivially solvable in time
polynomial in n.

We consider a partition (D,T,R) of V (G), where the vertices in D have degree at least
k, the vertices in T have degree k − 1 and the vertices in R have degree less than k − 1. We
assume that Reduction Rule 17 has been applied exhaustively, so Observation 2.1 holds, i.e.
every vertex in R has at least one neighbor in D ∪ T .

Now, we pick an inclusion-wise maximal set B ⊆ D ∪ T such that for each pair of distinct
vertices b1, b2 ∈ B, distG(b1, b2) ≥ `+ 3.
Case 1 (|B ∩ T | < k). By the same argument given in Case 1 of the proof of Theorem 2,
we have that any vertex in T ∪R is at distance at most `+ 3 from a vertex in B. We now
give a bound on the number of vertices in G in terms of ` and ∆.

I Claim 3.1 (♣). If |B ∩ T | < k, then |V (G)| = O(` ·∆ ·min{`,∆}`+2).

By the previous claim, we can solve the instance in time 2O(`·∆·min{`,∆}`+2) in this case,
using the exact exponential time algorithm for b-Coloring due to Panolan et al. [16].
Case 2 (|B ∩ T | ≥ k). Let B′ ⊆ B ∩ T be of size k and denote it by B′ ..= {x1, . . . , xk}.
The strategy in this case is as follows: We compute a proper coloring of G[D], and then
modify it so that can be extended to a b-coloring of G. In this process we will be able to
guarantee for each i ∈ [k], that either xi can be the b-vertex for color i, or we will have found
another vertex in D that can serve as the b-vertex of color i. The difficulty here arises from
the following situation: Suppose that in the coloring we computed for G[D], a vertex xi has
two neighbors in D that received the same color. Then, xi cannot be the b-vertex of color i
in any extension of that coloring, since deg(xi) = k − 1, and k − 1 colors need to appear the
neighborhood of xi for it to be a b-vertex. However, recoloring a vertex in N(xi) ∩D might
create a conflict in the coloring of G[D]. These potential conflicts can only appear in the
connected component of G[D ∪B′] that contains xi. We now show that each component of
G[D ∪B′] can contain at most one such vertex, by our choice of the set B.

I Claim 3.2 (♣). Let C be a connected component of G[D ∪B′]. Then, C contains at most
one vertex from B′.

Throughout the following, for i ∈ [k], we denote by Ci the connected component of G[D∪B′]
that contains xi, and by `i the number of vertices of Ci, i.e. `i

..= |V (Ci)|. By Claim 3.2,
Ci 6= Cj , for all i, j ∈ [k], i 6= j. We now show that each neighbor of xi has no neighbor in
D ∩N [B′] outside of V (Ci) ∪N [xi].

I Claim 3.3 (♣). Let i ∈ [k], and y ∈ N(xi)\D. Then, NG[y]∩(D∪N [B′]) ⊆ V (Ci)∪N [xi].

Let C∅ be the set of connected components of G[D∪B′] that do not contain any vertex from
B′. We observe that any proper coloring of G[D ∪B′] can be obtained from independently
coloring the vertices in C1, . . . , Ck, and C∅. If for some i ∈ [k], Ci is a trivial2 component,

2 We call a connected component of a graph trivial if it contains only one vertex.

MFCS 2019

34:12 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

C1
C2 C4 C∅ D

T

R

x1
x2 x3 x4

C3

Figure 1 Illustration of the structure of a graph G in the proof of Theorem 3 where k = 4.
Here, B′ = {x1, . . . , x4} and C1, . . . , C4 are the components of G[D ∪ B′] containing x1, . . . , x4,
respectively. Note that all vertices in T are of degree 3, all vertices in R of degree at most 2 and all
vertices in R have a neighbor in D ∪ T .

then N(xi) ∩D = ∅. Hence, we can assign xi any color without creating any conflict with
the remaining vertices in G[D ∪B′]. On top of that, Claim 3.3 ensures that assigning a color
to a neighbor of any xi (that is not contained in D) cannot create a coloring conflict with
any vertex in D ∪N [B′] that is not contained in V (Ci) ∪N [xi]. We illustrate the structure
of G in Figure 1.

I Claim 3.4 (♣). Let i ∈ [k] and let γ : V (Ci)→ [k] be a proper coloring of Ci. Then, one
can find in time O(k2 · `2i) a set Yi ⊆ NG(xi) \D and a proper coloring δ : V (Ci) ∪ Yi → [k]
of G[V (Ci) ∪ Yi] that has a b-vertex for color i.

We now wrap up the treatment of this case. We compute a proper k-coloring γ of
G[D ∪ B′] using standard methods [3]. We derive from γ another k-coloring δ of some
induced subgraph of G[D ∪NG[B′]] containing D ∪B′. For each i ∈ [k], we do the following.
With input γ|V (Ci) we compute a proper k-coloring δi of G[V (Ci) ∪ Yi] using Claim 3.4,
where Yi is the set returned by its algorithm, and we let δ|V (Ci)∪Yi

..= δi. Finally, we let
δ|V (C∅)

..= γ|V (C∅). As for i 6= j, Ci and Cj are distinct connected components of G[D ∪B′]
and by Claim 3.3, this construction is well-defined and there is no color conflict between
any pair of vertices zi, zj where zi ∈ V (Ci) ∪ Yi and zj ∈ V (Cj) ∪ Yj for i 6= j. Since for
each i ∈ [k] we applied Claim 3.4, δ is a b-precoloring of G. All vertices in G that have not
received a color so far (recall that δ colors all vertices in D) have degree at most k− 1, so we
can extend the coloring δ greedily to the remainder of G and eventually obtain a b-coloring
of G. The runtime of 2O(`·∆·min{`,∆}`+2) + nO(1) is argued for in the full version [13]. J

Similar to above, we obtained a kernel for the problem. While this result does not provide
a polynomial kernel for the parameterization ∆ + `, it does give a polynomial kernel if we
consider the problem for fixed values of ` and parameter ∆.

I Corollary 20. The problem of deciding whether a graph G admits a b-coloring with k colors
admits a kernel on O(` ·∆ ·min{`,∆}`+2) vertices, where ∆ ..= ∆(G) and ` ..= `k(G).

6 Conclusion

We have presented a complexity dichotomy for b-Coloring with respect to two upper bounds
on the b-chromatic number, in the following sense: We have shown that given a graph G and
for fixed k ∈ {∆(G) + 1 − p,m(G) − p}, it can be decided in polynomial time whether G
has a b-coloring with k colors whenever p ∈ {0, 1} and the problem remains NP-complete
whenever p ≥ 2, already for k = 3.

L. Jaffke and P. T. Lima 34:13

The most immediate question left open in this work is the parameterized complexity of
the b-Coloring problem when k ∈ {m(G),∆(G),m(G)− 1}. In all of these cases, we have
provided XP-algorithms, and it would be interesting to see whether these problems are FPT
or W[1]-hard. We showed that b-Coloring is FPT parameterized by ∆(G) + `k(G), where
`k(G) denotes the number of vertices of degree at least k in G, and this is optimal in the
sense that there is no FPT nor XP algorithm for the problem parameterized by only one of
the two invariants. It would be interesting to see if one could devise an FPT-algorithm for
the parameterization that replaces the maximum degree by the number of colors.

References
1 Pierre Aboulker, Nick Brettell, Frédéric Havet, Dániel Marx, and Nicolas Trotignon. Coloring

Graphs with Constraints on Connectivity. J. Graph Theory, 85(4):814–838, 2017.
2 Dominique Barth, Johanne Cohen, and Taoufik Faik. On the b-continuity property of graphs.

Discrete Appl. Math., 155:1761–1768, 2007.
3 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set Partitioning via Inclusion-

Exclusion. SIAM J. Comput., 39(2):546–563, 2009.
4 Victor Campos, Carlos Vinicius G. C. Lima, and Ana Silva. Graphs of girth at least 7 have

high b-chromatic number. Eur. J. Combin., 48:154–164, 2015.
5 Miroslav Chelbík and Janka Chlebíkova. Hard Coloring Problems in Low Degree Planar

Bipartite Graphs. Discrete Appl. Math., 154:1960–1965, 2006.
6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 1st
edition, 2015.

7 Konrad K. Dabrowski, François Dross, Matthew Johnson, and Daniël Paulusma. Filling the
complexity gaps for colouring planar and bounded degree graphs. In Proc. IWOCA ’15, volume
9538 of Lecture Notes in Computer Science, pages 100–111. Springer, 2015.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

9 Esther Galby, Paloma T. Lima, Daniël Paulusma, and Bernard Ries. On the Parameterized
Complexity of k-Edge Colouring, 2019. arXiv:1901.01861.

10 Frédéric Havet, Cláudia Linhares Sales, and Leonardo Sampaio. b-Coloring of Tight Graphs.
Discrete Appl. Math., 160:2709–2715, 2012.

11 Frédéric Havet and Leonardo Sampaio. On the Grundy and b-chromatic numbers of a graph.
Algorithmica, 65(4):885–899, 2013.

12 Robert W. Irving and David F. Manlove. The b-Chromatic Number of a Graph. Discrete
Appl. Math., 91(1-3):127–141, 1999.

13 Lars Jaffke and Paloma T. Lima. A Complexity Dichotomy for Critical Values of the b-
Chromatic Number of Graphs. CoRR, 2018. arXiv:1811.03966.

14 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

15 Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. On the b-Chromatic Number of Graphs. In
Proc. WG ’02, volume 2573 of LNCS, pages 310–320, 2002.

16 Fahad Panolan, Geevarghese Philip, and Saket Saurabh. On the parameterized complexity of
b-Chromatic Number. J. Comput. Syst. Sci., 84:120–131, 2017.

17 Leonardo Sampaio. Algorithmic Aspects of Graph Coloring Heuristics. PhD thesis, Université
Nice Sophia Antipolis, France, 2012.

MFCS 2019

Parameterized Complexity of Conflict-Free
Matchings and Paths
Akanksha Agrawal
Ben-Gurion University of the Negev, Beer-Sheva, Israel
agrawal@post.bgu.ac.il

Pallavi Jain
Institute of Mathematical Sciences, HBNI, Chennai, India
pallavij@imsc.res.in

Lawqueen Kanesh
Institute of Mathematical Sciences, HBNI, Chennai, India
lawqueen@imsc.res.in

Saket Saurabh
University of Bergen, Bergen, Norway
Institute of Mathematical Sciences, HBNI, Chennai, India
UMI ReLax
saket@imsc.res.in

Abstract

An input to a conflict-free variant of a classical problem Γ, called Conflict-Free Γ, consists of an
instance I of Γ coupled with a graph H, called the conflict graph. A solution to Conflict-Free
Γ in (I, H) is a solution to I in Γ, which is also an independent set in H. In this paper, we study
conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free
Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We
show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size.
Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to
find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a
unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give
FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms
for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design
FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are
given by a (representable) matroid.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Conflict-free, Matching, Shortest Path, FPT algorithm, W[1]-hard, Matroid

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.35

Related Version https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/cf-
matching-shortest_path.pdf

Funding Akanksha Agrawal: PBC Program of Fellowships for Outstanding Post-doctoral Researchers
from China and India, reference no. 5101479000.
Pallavi Jain: SERB-NPDF fellowship, reference no. PDF/2016/003508, DST, India.
Saket Saurabh: Horizon 2020 Framework program, the European Research Council (ERC) Consolid-
ator Grant LOPPRE reference no. 819416.

© Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, and Saket Saurabh;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agrawal@post.bgu.ac.il
mailto:pallavij@imsc.res.in
mailto:lawqueen@imsc.res.in
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.MFCS.2019.35
https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/cf-matching-shortest_path.pdf
https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/cf-matching-shortest_path.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Parameterized Complexity of Conflict-Free Matchings and Paths

1 Introduction

In the recent years, conflict-free variant of classical combinatorial optimization problems
have gained attention from the viewpoint of algorithmic complexity. A typical input to a
conflict-free variant of a classical problem Γ, which we call Conflict-Free Γ, consists
of an instance I of Γ coupled with a graph H, called the conflict graph. A solution to
Conflict-Free Γ in (I,H) is a solution to I in Γ, which is also an independent set in H.
Notice that conflict-free version of the problem introduces the constraint of “impossible pairs”
in the solution that we seek for. Such a constraint of “impossible pairs” in a solution arises,
for example, in the context of program testing and validation [16, 23]. Gabow et al. [16]
studied the conflict-free version of paths in a graph, which they showed to be NP-complete.

Conflict-free variants of several classical problems such as, Bin Packing [10, 18, 20],
Knapsack [35, 32], Minimum Spanning Tree [5, 6], Maximum Matching [6], Maximum
Flow [33, 34], Shortest Path [6] and Set Cover [11] have been studied in the literature
from the viewpoint of algorithmic complexity, approximation algorithms, and heuristics. It
is interesting to note that most of these problems are NP-hard even when their classical
counterparts are polynomial time solvable. Recently, Jain et al. [19] and Agrawal et al. [2, 1]
initiated the study of conflict-free problems in the realm of parameterized complexity. In
particular, they studied Conflict-Free F-Deletion problems for various families F , of
graphs such as the family of forests, independent sets, bipartite graphs, interval graphs, etc.

Maximum Matching and Shortest Path are among the classical graph problems
which are of very high theoretical and practical interest. The Maximum Matching problem
takes as input a graph G, and the objective is to compute a maximum sized subset Y ⊆ E(G)
such that no two edges in Y have a common vertex. Maximum Matching is known to be
solvable in polynomial time [12, 28]. The Shortest Path problem takes as input a graph
G and vertices s and t, and the objective is to compute a path between s and t in G with
the minimum number of vertices. The Shortest Path problem, together with its variants
such as all-pair shortest path, single-source shortest path, weighted shortest path, etc. are
known to be solvable in polynomial time [7, 3].

Darmann et al. [6] (among other problems) studied the conflict-free variants of Maximum
Matching and Shortest Path. They showed that the conflict-free variant of Maximum
Matching is NP-hard even when the conflict graph is a disjoint union of edges (matching).
Moreover, for the conflict-free variant of Shortest Path, they showed that the problem is
APX-hard, even when the conflict graph belongs to the family of 2-ladders.

In this paper, we study the conflict-free versions of matching and shortest path from
the viewpoint of parameterized complexity. A parameterized problem Π is a subset of
Σ∗ × N, where Σ is a fixed, finite alphabet. An instance of a parameterized problem is
a pair (I, k), where I is a classical problem instance and k is an integer, which is called
the parameter. One of the central notions in parameterized complexity is fixed-parameter
tractability, where given an instance (I, k) of a parameterized problem Π, the goal is to
design an algorithm that runs in time f(k)nO(1), where, n = |I| and f(·) is some computable
function, whose value depends only on k. An algorithm with running time as described
above, is called an FPT algorithm. A parameterized problem that admits an FPT algorithm
is said to be in FPT. Not every parameterized problem admits an FPT algorithm, under
reasonable complexity-theoretic assumptions. Similar to the notion of NP-hardness and
NP-hard reductions in classical Complexity Theory, there are notions of W[t]-hardness, where
t ∈ N and parameterized reductions in parameterized complexity. A parameterized problem
which is W[t]-hard, for some t ∈ N is believed not to admit an FPT algorithm. For more
details on parameterized complexity we refer to the books of Downey and Fellows [9], Flum
and Grohe [13], Niedermeier [30], and Cygan et al. [4].

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:3

Our Results. We study conflict-free (parameterized) variants of Maximum Matching and
Shortest Path, which we call Conflict Free Maximum Matching (CF-MM, for short)
and Conflict Free Shortest Path (CF-SP, for short), respectively. These problems are
formally defined below.

Conflict Free Maximum Matching (CF-MM) Parameter: k

Input: A graph G = (V,E), a conflict graph H = (E,E′), and an integer k.
Question: Is there a matching M of size at least k in G, such that M is an independent
set in H?

Conflict Free Shortest Path (CF-SP) Parameter: k

Input: A graph G = (V,E), a conflict graph H = (E,E′), two special vertices s and t,
and an integer k.
Question: Is there an st-path P of length at most k in G, such that E(P) is an
independent set in H?

We show that both CF-MM and CF-SP are W[1]-hard, when parameterized by the
solution size. The W[1]-hardness for CF-MM is obtained by giving an appropriate reduction
from Independent Set, which is known to be W[1]-hard, when parameterized by the
solution size [4, 8]. In fact, our W[1]-hardness result for CF-MM holds even when the graph
where we want to compute a matching is itself a matching. We show the W[1]-hardness of
CF-SP by giving an appropriate reduction from a multicolored variant of the problem Unit
2-Track Independent Set (which we prove to be W[1]-hard). We note that Unit 2-Track
Independent Set is known to be W[1]-hard, which is used to establish W[1]-hardness of its
multicolored variant. We note that our W[1]-hardness result of CF-SP holds even when the
conflict graph is a unit interval graph.

Having shown the W[1]-hardness results, we then restrict our attention to having conflict
graphs belonging to some families of graphs, where the Independent Set problem is either
polynomial time solvable or solvable in FPT time. Two of the very well-known graph families
that we consider are the family of chordal graphs and the family of d-degenerate graphs.
For the CF-MM problem, we give an FPT algorithm, when the conflict graph belongs to
the family of chordal graphs. Our algorithm is based on a dynamic programming over
a “structured” tree decomposition of the conflict graph (which is chordal) together with
“efficient” computation of representative families at each step of our dynamic programming
routine. Notice that we cannot obtain an FPT algorithm for the CF-SP problem when the
conflict graph is a chordal graph. This holds because unit-interval graphs are chordal, and
the problem CF-SP is W[1]-hard, even when the conflict graph is a unit-interval graph.

For conflict graphs being d-degenerate, we obtain FPT algorithms for both CF-MM and
CF-SP. These algorithms are based on the computation of an independence covering family,
a notion which was recently introduced by Lokshtanov et al. [25]. We note that even for
nowhere dense graphs, such an independence covering family can be computed efficiently [25].
Since our algorithms are based on computation of independence covering families, hence, our
results hold even when the conflict graph is a nowhere dense graph.

Finally, we study a variant of CF-MM and CF-SP, where instead of conflicting conditions
being imposed by independent sets in a conflict graph, they are imposed by independence
constraints in a (representable) matroid. We give FPT algorithms for the above variant of
both CF-MM and CF-SP.

Due to space limitations, many proofs have been omitted from the extended
abstract.

MFCS 2019

35:4 Parameterized Complexity of Conflict-Free Matchings and Paths

2 Preliminaries

Sets and graph notations. For n ∈ N, by [n] and [0, n], we denote the sets {1, 2, · · · , n}
and {0, 1, 2, · · · , n}, respectively. For a set U and p ∈ N, a p-family (over U) is a family of
subsets of U of size p. We let ω denote the exponent in the running time of algorithm for
matrix multiplication, the current best known bound for it is ω < 2.373 [36]. Consider a
graph G. For X ⊆ V (G), G[X] denotes the subgraph of G with vertex set X and edge set
{uv ∈ E(G) | u, v ∈ X}. For Y ⊆ E(G), G[Y] denotes the subgraph of G with vertex set
∪uv∈Y {u, v} and edge set Y .

We define a structured tree decomposition that will be used in our algorithm.

I Definition 1 ([4, 22]). Let (T,X) be a tree decomposition of a graph H with r as the root
node. That is, T is a tree rooted at r and X = {Xt | t ∈ V (T)}. Then, (T,X) is a nice tree
decomposition if for each each leaf ` in T and the root r, we have that X` = Xr = ∅, and each
non-leaf node t ∈ V (T) is of one of the following types: Introduce node: t has exactly one
child, say t′, and Xt = Xt′ ∪ {v}, where v /∈ Xt′ . We say that v is introduced at t; Forget
node: t has exactly one child, say t′, and Xt = Xt′ \ {v}, where v ∈ Xt′ . We say that v is
forgotten at t; Join node: t has exactly two children, say t1 and t2, and Xt = Xt1 = Xt2 .

A tree decomposition (T,X) of a graph H, where for each t ∈ V (T), the graph H[Xt]
is a clique, is called a clique-tree. The result below follows from existence of clique-tree for
chordal graphs [17] and an algorithm for computation of a nice tree decomposition [4, 22].

I Proposition 2. Given an n vertex chordal graph H, in polynomial time we can construct a
nice tree decomposition which is also a clique-tree (nice clique-tree), (T,X) of H with O(n2)
nodes.

Matroids and representative sets. In the following we state some definitions related to
matroids used in the paper. We refer the reader to [31] for more details. We also state the
definition of representative families and state some results related to them.

I Definition 3 ([4, 31]). A matroidM = (U, I) is a partition matroid if the ground set U is
partitioned into sets U1, U2, · · · , Uk, and for each i ∈ [k], there is an integer ai associated
with Ui. A set S ⊆ U is an independent inM if and only if for each i ∈ [k], |S ∩ Ui| ≤ ai.

I Proposition 4 ([15, 31, 26]). A representation of a partition matroid over Q (the field of
rationals) can be computed in polynomial time.

I Definition 5. Let M1 = (U1, I1),M2 = (U2, I2) · · · ,Mt = (Ut, It) be t matroids with
Ui ∩ Uj = ∅, for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt, ofM1,M2, · · · ,Mt is
the matroid with ground set U = ∪i∈[t]Ui and X ⊆ U is independent inM if and only if for
each i ∈ [t], X ∩ Ui ∈ Ii.

I Proposition 6 ([27, 31]). Given matrices A1, A2, · · · , At (over F) representing matroids
M1,M2, · · · ,Mt, respectively, we can compute a representation of their direct sum,M1 ⊕
· · · ⊕Mt, in polynomial time.

Next, we state the definition of representative families.

I Definition 7. Let M = (U, I) be a matroid, and A be a p-family of U . We say that
A′ ⊆ A is a q-representative for A if for every set Y ⊆ U of size q, if there is a set X ∈ A,
such that X ∩ Y = ∅ and X ∪ Y ∈ I, then there is a set X ′ ∈ A′ such that X ′ ∩ Y = ∅ and
X ′ ∪ Y ∈ I. If A′ ⊆ A is a q-representative for A then we denote it by A′ ⊆q

rep A.

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:5

I Theorem 8 ([4, 14]). Given a matrix M (over field F) representing a matroidM = (U, I)
of rank k, a p-family A of independent sets inM, and an integer q such that p+ q = k, there
is an algorithm which computes a q-representative family A′ ⊆q

rep A of size at most
(

p+q
p

)
using at most O

(
|A|
((

p+q
p

)
pω +

(
p+q

p

)ω−1)) operations over F.

Let A1 and A2 be two families of sets over U andM = (U, I) be a matroid. We define
their convolution as: A1 ?A2 = {A1∪A2 | A1 ∈ A1, A2 ∈ A2, A1∩A2 = ∅ and A1∪A2 ∈ I}.

Universal sets and their computation. An (n, k)-universal set is a family F of subsets of
[n] such that for any set S ⊆ [n] of size k, the family {A∩ S | A ∈ F} contains all 2k subsets
of S.

I Proposition 9 ([4, 29]). For any n, k ≥ 1, we can compute an (n, k)-universal set of size
2kkO(log k) logn in time 2kkO(log k)n logn.

3 W[1]-hardness Results

In this section, we show that Conflict Free Maximum Matching and Conflict Free
Shortest Path are W[1]-hard, when parameterized by the solution size.

W[1]-hardness of CF-MM. We show that CF-MM is W[1]-hard, when parameterized
by the solution size, even when the graph where we want to find a matching, is itself a
matching (disjoint union of edges). To prove our result, we give an appropriate reduction
from Independent Set to CF-MM. It is known that Independent Set is W[1]-hard,
when parameterized by the size of an independent set [4, 8]. Given an instance (G?, k) of
Independent Set, we construct an equivalent instance (G,H, k) of CF-MM as follows.
We first describe the construction of G. For each v ∈ V (G?), we add an edge vv′ to G.
Notice that G is a matching. This completes the description of G. Next, we move to the
construction of H. We have V (H) = {ev = vv′ | v ∈ V (G?)}. Moreover, for eu, ev ∈ V (H),
we add the edge euev to E(H) if and only if uv ∈ E(G?). We note that H is exactly the
same as G?, with vertices being renamed. This completes the description of the reduction.
We obtain the following theorem from the equivalence of instances (G?, k) of Independent
Set and (G,H, k) of CF-MM.

I Theorem 10. CF-MM is W[1]-hard, when parameterized by the solution size.

W[1]-hardness of CF-SP. We show that CF-SP is W[1]-hard, when parameterized by
the solution size, even when the conflict graph is a proper interval graph. We refer to
this restricted variant of the problem as Unit Interval CF-SP. To prove our result, we
give an appropriate reduction from a multicolored variant of the problem Unit 2-Track
Independent Set, which we call Unit 2-Track Multicolored IS. In the following, we
define the problem Unit 2-Track Multicolored IS.

Unit 2-Track Multicolored IS (Unit 2-Track MIS) Parameter: k

Input: Two unit-interval graphs G1 = (V,E1) and G2 = (V,E2), and a partition
V1, V2, · · · , Vk of V .
Question: Is there a set S ⊆ V , such that S is an independent set in both G1 and G2,
and for each i ∈ [k], we have |S ∩ Vi| = 1?

MFCS 2019

35:6 Parameterized Complexity of Conflict-Free Matchings and Paths

It is known that Unit 2-Track IS is W[1]-hard, when parameterized by the solution
size [21]. We can show that the problem Unit 2-Track MIS is W[1]-hard, when paramet-
erized by the number of sets in the partition by giving an appropriate (Turing) reduction
from Unit 2-Track IS. We give a reduction from Unit 2-Track MIS to Unit Interval
CF-SP, and hence obtaining the desired result.

We now give a parameterized reduction from Unit 2-Track MIS to Unit Interval
CF-SP. Let (G1, G2, V1, · · · , Vk) be an instance of Unit 2-Track MIS. We construct an
instance (G′, H, s, t, k′) of Unit Interval CF-SP as follows. For each v ∈ V (G1), we add
a path on 3 vertices namely, (v1, v2, v3) in G′. For notational convenience, for v ∈ V (G1),
by e12(v) and e23(v) we denote the edges v1v2 and v2v3, respectively. Consider i ∈ [k − 1].
For u ∈ Vi and v ∈ Vi+1, we add the edge zuv = u3v1 to E(G′). Moreover, by Zi, we
denote the set {zuv | u ∈ Vi, v ∈ Vi+1}. We add two new vertices s and t to V (G′), and
add all the edges in Z0 = {sv1 | v ∈ V1} and Zk = {v3t | v ∈ Vk} to E(G′). Next, we
move to the construction of H. Note that H must be a unit-interval graph on the vertex
set E(G′) = (∪i∈[0,k]Zi) ∪ (∪v∈V (G1){e12(v), e23(v)}). In H, each vertex in ∪i∈[0,k]Zi is an
isolated vertex. Let E12 = {e12(v) | v ∈ V (G1)} and E23 = {e23(v) | v ∈ V (G1)}. For
e12(u), e12(v) ∈ E12, we add the edge e12(u)e12(v) to E(H) if and only if uv ∈ E(G1).
Similarly, for e23(u), e23(v) ∈ E23, we add the edge e23(u)e23(v) to E(H) if and only if
uv ∈ E(G2). Observe that H[E12] is isomorphic to G1, with bijection φ1 : V (G1)→ E12 with
φ1(v) = e12(v). Similarly, H[E23] is isomorphic to G2 with bijection φ2 : V (G2)→ E23 with
φ2(v) = e23(v). By construction, H is a disjoint union of unit-interval graphs, and hence is a
unit-interval graph. Finally, we set k′ = 3k+1. This completes the description of the reduction.
We obtain the following theorem from the equivalence of instances (G1, G2, V1, · · · , Vk) of
Unit 2-Track MIS and (G′, H, s, t, k′) of Unit Interval CF-SP.

I Theorem 11. Unit Interval CF-SP is W[1]-hard, when parameterized by the solution
size.

4 FPT Algorithm for CF-MM with Chordal Conflict

In this section, we show that CF-MM is FPT, when the conflict graph is a chordal graph.
We call this restricted version of CF-MM as Chordal Conflict Matching. Towards
designing an algorithm for Chordal Conflict Matching, we first give an FPT algorithm
for a restricted version of Chordal Conflict Matching, where the graph where we want
to compute a matching is a bipartite graph. We call this variant of Chordal Conflict
Matching as Chordal Conflict Bipartite Matching (CCBM). We then employ the
algorithm for CCBM to design an FPT algorithm for Chordal Conflict Matching.

4.1 FPT algorithm for CCBM

We design an FPT algorithm for the problem CCBM, where the conflict graph is chordal
and the graph where we want to compute a matching is a bipartite graph. The problem
CCBM is formally defined below.

Chordal Conflict Bipartite Matching (CCBM) Parameter: k

Input: A bipartite graph G = (V,E) with vertex bipartition L,R, a conflict graph
H = (E,E′), and an integer k.
Question: Is there a matching M ⊆ E of size k in G, such that M is an independent
set in H?

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:7

The FPT algorithm for CCBM is based on a dynamic programming routine over tree de-
composition of the conflict graphH and representative sets on the graph G. Let (G,L,R,H, k)
be an instance of CF-MM, where G is a bipartite graph on n vertices, with vertex bipartition
L,R, and H is a chordal graph with V (H) = E(G).

In the following, we construct three matroids ML = (E, IL),MR = (Ec, IR), and
M = (E ∪ Ec, I). MatroidsML andMR are partition matroids and the matroidM is the
direct sum ofML andMR. The ground set ofML is E = E(G). The set Ec contains a
copy of edges in E, i.e., Ec = {ec | e ∈ E}. We create two (disjoint) sets E and Ec, because
M is the direct sum ofML andMR, and we want their ground sets to be disjoint. Next, we
describe the partition E of E into |L| sets and |L| integers, one for each set in the partition,
for the partition matroidML. For u ∈ L, let Eu = {uv | uv ∈ E}. Notice that for u, v ∈ L,
where u 6= v, we have Eu ∩Ev = ∅. Moreover, ∪u∈EEu = E. We let E = {Eu | u ∈ L}, and
for each u ∈ L, we set au = 1. Similarly, we define the partition Ec of Ec with respect to set
R. That is, we let Ec = {Ec

u = {(uv)c | uv ∈ E(G)} | u ∈ R}. Furthermore, for u ∈ R, we
let auc = 1. We define the following notation, which will be used later. For Z ⊆ E, we let
Zc = {ec | e ∈ Z} ⊆ Ec.

To capture the independence property on the conflict graph, we rely on the fact that
a chordal graph admits a nice clique-tree (Proposition 2). This allows us to do dynamic
programming over a nice clique-tree. At each step of our dynamic programming routine,
using representative sets, we ensure that we store a family of sets which are enough to recover
(some) independent set inM, if a solution exists.

We now move to the formal description of the algorithm. The algorithm starts by
computing a nice clique-tree (T,X) of H in polynomial time, using Proposition 2. Let
r ∈ V (T) be the root of the (rooted) tree T . For Xt ∈ X, we let Xt = {∅}∪{{v} | v ∈ Xt}.For
a node t ∈ V (T), by desc(t) we denote the set descendant of t in T (including t). For t ∈ V (T),
Ht is the graph H[Vt], where Vt = ∪d∈desc(t)Xd.

In the following, we state some notations, which will be used in the algorithm. For each
t ∈ V (T), Y ∈ Xt, and an integer p ∈ [0, k] we define a family Pp

t,Y as: Pp
t,Y = {Z ∪ Zc |

Z ⊆ V (Ht)(⊆ E), |Z| = p, Z ∩Xt = Y,Z ∪Zc ∈ I and Ht[Z] is edgeless}. For a family F of
subsets of E ∪ Ec, F is called a paired-family if for each F ∈ F , there is Z ⊆ E, such that
F = Z ∪ Zc. Next, we state the entries in our dynamic programming routine.

I Definition 12. For each t ∈ V (T), Y ∈ Xt and p ∈ [0, k], we have an entry c[t, Y, p],
which stores a paired-family F(t, Y, p) of subsets of E ∪ Ec of size 2p, such that for each
F = Z∪Zc ∈ F , the following conditions are satisfied: |Z| = p; Z∩Xt = Y ; Z is a matching
in G, i.e., Z and Zc are independent sets inML andMR, respectively; Z is an independent
set in Ht. Moreover, F 6= ∅ if and only if Pp

t,Y 6= ∅.

Consider t ∈ V (T), Y ∈ Xt and p ∈ [0, k]. Observe that Pp
t,Y is a valid candidate

for c[t, Y, p], which also implies that (G,H, k) is a yes instance of CCBM if and only if
c[r, ∅, k] 6= ∅. However, we cannot set c[t, Y, p] = Pp

t,Y as the size of Pp
t,Y could be exponential

in n, and the goal here is to obtain an FPT algorithm. Hence, we will store a much
smaller subfamily (of size at most

(2k
2p

)
) of Pp

t,Y in c[t, Y, p], which will be computed using
representative sets. Moreover, as we have a structured form of a tree decomposition (nice
clique-tree) of H, we compute the entries of the table based on the entries of its children,
which will be given by recursive formulae. For leaf nodes, which form base cases for recursive
formulae, we compute all entries directly.

Next, we give (recursive) formulae for the computation of the table entries. Consider
t ∈ V (T), Y ∈ Xt and p ∈ [0, k]. We compute the entry c[t, Y, k] based on the following cases.

MFCS 2019

35:8 Parameterized Complexity of Conflict-Free Matchings and Paths

Leaf node. t is a leaf node. In this case, we have Xt = ∅, and hence Xt = {∅}. If p = 0,
then Pp

t,∅ = {∅}, and Pp
t,∅ = ∅, otherwise. Since, Pp

t,∅ is a valid candidate for c[t, Y, p], we set
c[t, Y, p] = Pp

t,∅. Note that c[t, Y, p] has size at most 1 ≤
(2k

2p

)
, and we can compute c[t, Y, p]

in polynomial time.

Introduce node. Suppose t is an introduce node with child t′ such thatXt = Xt′∪{e}, where
e /∈ Xt′ . If Y 6= ∅ and p < 1, then we set c[t, Y, p] = ∅. Otherwise, we compute the entry as
described below. Before computing the entry c[t, Y, p], we first compute a set P̃p

t,Y as follows.
If Y 6= {e}, then we set P̃p

t,Y = c[t′, Y, p], and otherwise, P̃p
t,Y = c[t′, ∅, p− 1] ? {{e, ec}}.

Next, we compute P̂p
t,Y ⊆2k−2p

rep P̃p
t,Y of size

(2k
2p

)
, using Theorem 8. Finally, we set

c[t, Y, p] = P̂p
t,Y .

Forget node. Suppose t is a forget node with child t′ such that Xt = Xt′ \ {e}, where
e ∈ Xt′ . Before computing the entry c[t, Y, p], we first compute a set P̃p

t,Y as follows. If
Y 6= ∅, we set P̃p

t,Y = c[t′, Y, p], and otherwise, P̃p
t,Y = c[t′, ∅, p].

Next, we compute P̂p
t,Y ⊆2k−2p

rep P̃p
t,Y of size

(2k
2p

)
, using Theorem 8. Finally, we set

c[t, Y, p] = P̂p
t,Y .

Join node. Suppose t is a join node with children t1 and t2, such that Xt = Xt1 = Xt2 .
If Y 6= ∅ and p < 1, then we set c[t, Y, p] = ∅. Otherwise, we compute the entry as
described below. Before computing the entry c[t, Y, p], we first compute a set P̃p

t,Y as
follows. If Y = ∅, we set P̃p

t,Y = ∪i∈[0,p](c[t1, ∅, i] ? c[t2, ∅, p − i]), and otherwise, P̃p
t,Y =

∪i∈[p](c[t1, Y, i] ? c[t2, ∅, p− i]).
Next, we compute P̂p

t,Y ⊆2k−2p
rep P̃p

t,Y of size
(2k

2p

)
, using Theorem 8. Finally, we set

c[t, Y, p] = P̂p
t,Y .

This completes the description of the (recursive) formulae for computing all entries of
the table. The correctness of the algorithm follows from the correctness of the (recursive)
formulae, and the fact that (G,H, k) is a yes instance of CCBM if and only if c[r, ∅, k] 6= ∅.
From the above, we obtain the following theorem.

I Theorem 13. CCBM admits an FPT algorithm running in time O(2O(ωk)nO(1)).

4.2 FPT algorithm for Chordal Conflict Matching

We design an FPT algorithm for Chordal Conflict Matching, using the algorithm for
CCBM (Theorem 13). Let (G,H, k) be an instance of CF-MM, where H is a chordal graph
and G is a graph on n vertices. We assume that G is a graph on vertex set [n], which can
easily be achieved by renaming vertices.

The algorithm starts by computing an (n, 2k)-universal set F , using Proposition 9. For
each set A ∈ F , the algorithm constructs an instance IA = (GA, LA, RA, HA, k) of CCBM
as follows. We have V (GA) = V (G), LA = A, R = V (G) \ A, E(GA) = {uv ∈ E(G) | u ∈
LA, v ∈ RA}, and HA = H[E(GA)]. Note that HA is a chordal graph because chordal graphs
are closed under induced subgraphs and disjoint unions. The algorithm decides the instance
IA using Theorem 13, for each A ∈ F . The algorithm outputs yes if and only if there is
A ∈ F , such that IA is a yes instance of CCBM.

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:9

I Theorem 14. The algorithm presented for CF-MM is correct, Moreover, it runs in time
2O(ωk)kO(log k)nO(1), where ω < 2.373 is the exponent of matrix multiplication and n is the
number of vertices in the input graph.

Proof. Let (G,H, k) be an instance of CF-MM, where H is a chordal graph and G is a
graph on vertex set [n]. Clearly, if the algorithm outputs yes, then indeed (G,H, k) is a yes
instance of CF-MM. Next, we argue that if (G,H, k) is a yes instance of CF-MM then the
algorithm returns yes. Suppose there is a solution M ⊆ E(G) to CF-MM in (G,H, k). Let
S = {i, j | ij ∈M}, and L = {i | there is j ∈ [n] such that ij ∈M and i < j}. Observe that
|S| = 2k. Since F is an (n, 2k)-universal set, there is A ∈ F such that A ∩ S = L. Note that
S is a solution to CCBM in IA. This together with Theorem 13 implies that the algorithm
will return yes as output.

Next, we prove the claimed running time of the algorithm. The algorithm computes (n, 2k)-
universal set of size O(22kkO(log k) logn), in time O(22kkO(log k) n logn), using Proposition 9.
Then for each A ∈ F , the algorithm creates an instance IA of CCBM in polynomial time.
Furthermore, it resolves the IA of CCBM in time O(2O(ωk)nO(1)) using Theorem 13. Hence,
the running time of the algorithm is bounded by 2O(ωk)kO(log k)nO(1). J

5 FPT algorithms for CF-MM and CF-SP with matroid constraints

In this section, we study the problems CF-MM and CF-SP, where the conflicting condition
is being an independent set in a (representable) matroid. Due to technical reasons we only
consider the case when the matroid is representable over Q (the field of rationals).

5.1 FPT algorithm for Matroid CF-MM
We study a variant of the problem CF-MM, where the conflicting condition is being an
independent set in a matroid representable over Q. We call this variant of CF-MM as
Rational Matroid CF-MM (Rat Mat CF-MM, for short), which is formally defined
below.

Rational Matroid CF-MM (Rat Mat CF-MM) Parameter: k

Input: A graph G, a matrix AM (representing a matroid M over Q) with columns
indexed by E(G), and an integer k.
Question: Is there a matching M ⊆ E(G) of size at most k, such that the set of columns
in M are linearly independent (over Q)?
We design an FPT algorithm for Rat Mat CF-MM. Towards designing an algorithm for

Rat Mat CF-MM, we first give an FPT algorithm for a restricted version of Rat Mat
CF-MM, where the graph in which we want to compute a matching is a bipartite graph. We
call this variant of Rat Mat CF-MM as Rat Mat CF-Bipartite Matching (Rat Mat
CF-BM). We then employ the algorithm for Rat Mat CF-BM to design an FPT algorithm
for Rat Mat CF-MM.

5.1.1 FPT algorithm for Rat Mat CF-BM
We design an FPT algorithm for the problem Rat Mat CF-BM, where the conflicting
condition is being an independent set in a matroid (representable over Q) and the graph
where we want to compute a matching is a bipartite graph.

Our algorithm takes an instance of Rat Mat CF-BM and generates an instance
of 3-Matroid Intersection, and then employs the known algorithm for 3-Matroid

MFCS 2019

35:10 Parameterized Complexity of Conflict-Free Matchings and Paths

Intersection to resolve the instance. In the following, we formally define the problem
3-Matroid Intersection.

3-Matroid Intersection Parameter: k

Input: Matrices AM1 , AM2 , and AM3 over F (representing matroidsM1,M2, andM3,
respectively, on the same ground set E) with columns indexed by E, and an integer k.
Question: Is there a set M ⊆ E of size k, such that M is independent in eachMi, for
i ∈ [3]?

Before moving further, we briefly explain why we needed an additional constraint that
the input matrix is representable over Q. Firstly, we will be using partition matroids which
are representable only on fields of large enough size, and we want all the matroids, i.e. the
one which is part of the input and the ones that we create, to be representable over the same
field. Secondly, the algorithmic result (with the desired running time) we use for 3-Matroid
Intersection works only for certain types of fields.

Next, we state an algorithmic result regarding 3-Matroid Intersection [24], which is
be used by the algorithm. We note that we only state a restricted form of the algorithmic
result for 3-Matroid Intersection in [24], which is enough for our purpose.

I Proposition 15 (Proposition 4.8 [24] (partial)). 3-Matroid Intersection can be solved
in O(23ωk‖AM‖O(1)) time, when the matroids are represented over Q.

We are now ready to prove the desired result.

I Theorem 16. Rat Mat CF-BM can be solved in O(23ωk‖AM‖O(1)) time.

Proof. Let (G = (V,E), L,R,AM, k) be an instance of Rat Mat CF-BM, where the
matrix AM represents a matroid M = (E, I) over Q and L,R is a partition of V into
independent sets. LetML = (E, IL),MR = (E, IR) be the partition matroids as defined in
Section 4. Next we compute matrix representations AML

and AMR
of matroidsML,MR,

respectively, using Proposition 4. Now, we solve 3-Matroid Intersection on the instance
(M, AML

, AMR
, k) (over Q) using Proposition 15, and return the same answer, as returned

by the algorithm in it. The correctness follows directly from the following. S ⊆ E is a
matching in G if and only if S is an independent set inML andMR, that is S ∈ IL ∩ IR.
The claimed running time follows from Proposition 4 and Proposition 15. J

5.1.2 FPT algorithm for Rat Mat CF-MM

We design an FPT algorithm for Rat Mat CF-MM, using the algorithm for Rat Mat
CF-BM (Theorem 13). Let (G,AM, k) be an instance of Rat Mat CF-MM, where the
matrix AM represents a matroidM = (E, I) over Q. We assume that G is a graph with the
vertex set [n], which can easily be achieved by renaming vertices.

The algorithm starts by computing an (n, 2k)-universal set F , using Proposition 9.
For each set X ∈ F , the algorithm constructs an instance IX = (GX , LX , RX , AM, k)
of Rat Mat CF-BM as follows. We have V (GX) = V (G), LX = X, R = V (G) \ X,
E(GX) = {uv ∈ E(G) | u ∈ LX , v ∈ RX}. The algorithm decides the instance IX using
Theorem 16, for each X ∈ F . The algorithm outputs yes if and only if there is X ∈ F , such
that IX is a yes instance of Rat Mat CF-BM.

I Theorem 17. The algorithm presented for Rat Mat CF-MM is correct. Moreover, it
runs in time O(2(3ω+2)kkO(log k)‖AM‖O(1)

nO(1)).

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:11

Proof. Let (G,AM, k) be an instance of Rat Mat CF-MM, where matrix AM represent
a matroid M = (E, I) over field F. Clearly, if the algorithm outputs yes, then indeed
(G,AM, k) is a yes instance of Rat Mat CF-MM. Next, we argue that if (G,AM, k) is
a yes instance of Rat Mat CF-MM then the algorithm returns yes. Suppose there is a
solution M ⊆ E(G) to Rat Mat CF-MM in (G,AM, k). Let S = {i, j | ij ∈ M}, and
L = {i | there is j ∈ [n] such that ij ∈M and i < j}. Observe that |S| = 2k. Since F is an
(n, 2k)-universal set, there is X ∈ F such that X ∩ S = L. Note that S is a solution to Rat
Mat CF-BM in IX . This together with Theorem 16 implies that the algorithm will return
yes as the output.

Next, we prove the claimed running time of the algorithm. The algorithm computes
(n, 2k)-universal set of size O(22kkO(log k) logn), in time O(22kkO(log k) n logn), using Pro-
position 9. Then for each X ∈ F , the algorithm creates an instance IX of Rat Mat
CF-BM in polynomial time. Furthermore, it resolves the IX of Rat Mat CF-BM in time
O(23ωk‖AM‖O(1)) using Theorem 16. Hence, the running time of the algorithm is bounded
by O(2(3ω+2)kkO(log k)‖AM‖O(1)

nO(1)). J

5.2 FPT algorithm for Matroid CF-SP
In this section, we design an FPT algorithm for Matroid CF-SP. The algorithm is based
on dynamic programming over representative families. Let (G, s, t, AM, k) be an instance
of Matroid CF-SP. Before moving to the description of the algorithm, we need to define
some notations. For distinct vertices u, v ∈ V (G) and an integer p, we define: Pp

uv = {X ⊆
E(G) | |X| = p, there is a u− v path in G[X] containing all edges in X, and X ∈ I}.

By the definition of convolution of sets, it is easy to see that Pp
uv =

⋃
wv∈E(G) Pp−1

uw ?

{{wv}}. Now we are ready to describe our algorithm for Matroid CF-SP. We aim to
store, for each v ∈ V (G) \ {s}, p ≤ k, and q ≤ k − p, a q-representative set P̂pq

sv , of Pp
sv,

of size
(

p+q
q

)
. Notice that for each v ∈ V (G) \ {s}, we can compute P1

sv in polynomial
time, since P1

sv = {sv} if sv ∈ E(G), and is empty otherwise. Moreover, since |P1
sv| ≤ 1,

therefore, we can set P̂1q
sv = P1

sv, for each q ≤ k − 1. Next, we iteratively compute, for each
p ∈ {2, 3, · · · , k}, in increasing order, for each q ≤ k−p, a q-representative P̂pq

sv , of Pp
sv. From

the above discussions, we obtain the following theorem.

I Theorem 18. The algorithm Alg-Mat-CF-SP is correct, and runs in time O(2O(ωk)nO(1)).

6 FPT Algorithm for d-degenerate Conflict Graphs

In this section, we show that CF-MM and CF-SP both are in FPT, when the conflict graph
H is a d-degenerate graphs. These algorithms are based on the notion of independence
covering family, which was introduced in [25], defined below.

I Definition 19 ([25]). For a graph H? and an integer k, a k-independence covering family,
I (H?, k), is a family of independent sets in H? such that for any independent set I ′ in H?

of size at most k, there is a set I ∈ I (H?, k) such that I ′ ⊆ I.

Our algorithms rely on the construction of k-independence covering family, for a family
of graphs. We first design an algorithm for an annotated version of the CF-MM and CF-SP
problems, which we call Annotated CF-MM and Annotated CF-SP, respectively. In
the Annotated CF-MM (Annotated CF-SP) problem, the input to CF-MM (CF-SP)
is annotated with a k-independence covering family F of H.

MFCS 2019

35:12 Parameterized Complexity of Conflict-Free Matchings and Paths

Algorithm 1 Alg-CF-MM (Alg-CF-SP).

Input: A graph G,((distinct) vertices s, t ∈ V (G)), a conflict graph H, an integer k,
and a k-independence covering family F of H.

Output: If there a set M ⊆ E of size k in G such that M is a matching in G (there
is an s− t path in G[M]) and M is an independent set in H, then yes, and
no otherwise.

1 for each I ∈ F do
2 Let GI be the graph with V (GI) = V (G) and E(GI) = I ;
3 if GI has a matching (path) of size k then
4 return yes;
5 end
6 return no ;

6.1 Algorithms for Annotated CF-MM and Annotated CF-SP
In this section, we study the problems Annotated CF-MM and Annotated CF-SP.
The algorithm that we design for them run in time polynomial in the size of the input.
We give the algorithm Alg-CF-MM (Alg-CF-SP) (Algorithm 1) for Annotated CF-MM
(Annotated CF-SP).

In the following lemma we prove the correctness of Alg-CF-MM (Alg-CF-SP).

I Lemma 20. The algorithm Alg-CF-MM (Alg-CF-SP) is correct. Moreover, the algorithm
runs in time polynomial in the size of the input.

We use Alg-CF-MM (Alg-CF-SP) together with Independence Covering Lemma of [25] to
obtain algorithms for CF-MM (CF-SP) when the conflict graph is d-degenerate or nowhere
dense graph. Towards this we state some lemmata from [25] that we use in our algorithms.

I Proposition 21. [25, Lemma 1.1] There is a randomized algorithm running in polynomial
time, that given a d-degenerate graph H? and an integer k as input, outputs an independent
set I, such that for every independent set I ′ of size at most k in graph H?, the probability
that I ′ ⊆ I is at least (

(
k(d+1)

k

)
· k(d+ 1))−1.

I Proposition 22. [25, Lemmas 3.2 and 3.3] There are two deterministic algorithms A1 and
A2, which given a d-degenerate graph H? and an integer k, output independence covering
families I1(H?, k) and I2(H?, k), respectively, such that the following conditions are satisfied:
i) A1 runs in time O(|I1(H?, k)| · (n+m)), where |I1(H?, k)| =

(
k(d+1)

k

)
· 2o(k(d+1)) · logn

and ii) A2 runs in time O(|I2(H?, k)| · (n + m)), where |I2(H?, k)| =
(

k2(d+1)2

k

)
· (k(d +

1))O(1) · logn.

Next, using Proposition 21 and 22, together with Alg-CF-MM (Alg-CF-SP), we obtain
randomized and deterministic algorithms, respectively for CF-MM (CF-SP), when the
conflict graph is a d-degenerate graph.

I Theorem 23. There is a randomized algorithm, which given an instance (G,H, k) of
CF-MM(CF-SP), where H is a d-degenerate graph, in time

(
k(d+1)

k

)
· k(d+ 1) · nO(1), either

reports a failure or correctly outputs that the input is a yes instance of CF-MM(CF-SP).
Moreover, if the input is a yes instance of CF-MM(CF-SP), then the algorithm outputs
correct answer with a constant probability.

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:13

Proof. Let (G, (s, t), H, k) be an instance CF-MM (CF-SP), where H is a d-degenerate
graph. We repeat the following procedure (

(
k(1+d)

k

)
· k(d+ 1)) many times: i) the algorithm

computes an independent set I in (H, k) using Proposition 21, and ii) the algorithm calls
Alg-CF-MM (Alg-CF-SP) with input (G, (s, t)H, k, {I}).

The algorithm outputs yes, if in one of the calls to Alg-CF-MM (Alg-CF-SP), it receives a
yes. Otherwise, the algorithm outputs no. The running time analysis of the above procedure
follows from Proposition 21 and Lemma 20. Also, given a yes instance, the guarantee on
success probability follows from Proposition 21, the number of repetitions, and Lemma 20.
Moreover, from Lemma 20 the yes output returned by the algorithm is indeed the correct
output to CF-MM(CF-SP)for the given instance. This concludes the proof. J

I Theorem 24. CF-MM (CF-SP) admits a deterministic algorithm running in time min{(
k(d+1)

k

)
· 2o(k(d+1)) · logn,

(
k2(d+1)2

k

)
· (k(d+ 1))O(1) · logn

}
· nO(1), when the conflict graph

is a d-degenerate graph.

Proof. Let (G, (s, t), H, k) be an instance CF-MM (CF-SP), where H is a d-degenerate
graph. The algorithm starts by computing a k-independence covering family I (H, k) of H,
using Proposition 22. Next, we call Alg-CF-MM (Alg-CF-SP) with the input (G, (s, t), H, k,
I (H, k)). The correctness and running time analysis of the above procedure follows from
Proposition 22 and Lemma 20. This completes the proof. J

7 Conclusion

We studied conflict-free (parameterized) variants of Maximum Matching (CF-MM) and
Shortest Path (CF-SP). We showed that both CF-MM and CF-SP are W[1]-hard, when
parameterized by the solution size. In fact, our W[1]-hardness result for CF-MM holds even
when the graph where we want to compute a matching is itself a matching and W[1]-hardness
result of CF-SP holds even when the conflict graph is a unit interval graph. Then, we
restricted our attention to having conflict graphs belonging to some families of graphs, where
the Independent Set problem is either polynomial time solvable or solvable in FPT time. In
particular, we considered the family of chordal graphs and the family of d-degenerate graphs.
For the CF-MM problem, we gave an FPT algorithm, when the conflict graph belongs to
the family of chordal graphs. We observed that, we cannot obtain an FPT algorithm for the
CF-SP problem when the conflict graph is a chordal graph. This holds because unit-interval
graphs are chordal, and the problem CF-SP is W[1]-hard, even when the conflict graph is a
unit-interval graph. For conflict graphs being d-degenerate, we obtained FPT algorithms for
both CF-MM and CF-SP. Our results hold even when the conflict graph is a nowhere dense
graph. Finally, we studied a variant of CF-MM and CF-SP, where instead of conflicting
conditions being imposed by independent sets in a conflict graph, they are imposed by
independence constraints in a (representable) matroid. We gave FPT algorithms for the
above variant of both CF-MM and CF-SP.

An interesting question is to obtain (parameterized) dichotomy results for CF-MM and
CF-SP, based on the families of graphs where the input graphs belong to. Another direction
could be studying kernelization complexity for different families of graphs, and also to see
what all FPT problems remain FPT with the conflicting constraints.

MFCS 2019

35:14 Parameterized Complexity of Conflict-Free Matchings and Paths

References
1 Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Daniel Lokshtanov, and Saket Saurabh.

Conflict Free Feedback Vertex Set: A Parameterized Dichotomy. 43rd International Symposium
on Mathematical Foundations of Computer Science, MFCS, pages 53:1–53:15, 2018.

2 Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, and Saket Saurabh.
Exploring the Kernelization Borders for Hitting Cycles. 13th International Symposium on
Parameterized and Exact Computation, IPEC, pages 14:1–14:14, 2018.

3 Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
5 Andreas Darmann, Ulrich Pferschy, and Joachim Schauer. Determining a minimum spanning

tree with disjunctive constraints. International Conference on Algorithmic DecisionTheory
(ADT), pages 414–423, 2009.

6 Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J. Woeginger. Paths, trees
and matchings under disjunctive constraints. Discrete Applied Mathematics, 159(16):1726–1735,
2011.

7 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

8 Rodney G. Downey and Michael R. Fellows. Fixed Parameter Tractability and Completeness.
Complexity Theory: Current Research, pages 191–225, 1992.

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

10 Leah Epstein, Lene M. Favrholdt, and Asaf Levin. Online variable-sized bin packing with
conflicts. Discrete Optimization, 8(2):333–343, 2011.

11 Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling with conflicts:
online and offline algorithms. Journal of Scheduling, 12(2):199–224, 2009.

12 Shimon Even and Oded Kariv. An O(n2.5) algorithm for maximum matching in general graphs.
Foundations of Computer Science (FOCS), pages 100–112, 1975.

13 J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag, Secaucus, NJ, USA, 2006.

14 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computation
of Representative Families with Applications in Parameterized and Exact Algorithms. Journal
of the ACM, 63(4):29:1–29:60, 2016.

15 Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of represent-
ative sets with applications in parameterized and exact algorithms. Symposium on Discrete
Algorithms (SODA), pages 142–151, 2014.

16 Harold N. Gabow, Shachindra N Maheshwari, and Leon J. Osterweil. On two problems in the
generation of program test paths. IEEE Transactions on Software Engineering, 2(3):227–231,
1976.

17 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.

18 Michel Gendreau, Gilbert Laporte, and Frédéric Semet. Heuristics and lower bounds for the
bin packing problem with conflicts. Computers & OR, 31(3):347–358, 2004.

19 Pallavi Jain, Lawqueen Kanesh, and Pranabendu Misra. Conflict Free Version of Covering
Problems on Graphs: Classical and Parameterized. Computer Science - Theory and Applications
- 13th International Computer Science Symposium in Russia (CSR), pages 194–206, 2018.

20 Klaus Jansen. An approximation scheme for bin packing with conflicts. Journal of combinatorial
optimization, 3(4):363–377, 1999.

21 Minghui Jiang. On the parameterized complexity of some optimization problems related to
multiple-interval graphs. Theoretical Computer Science, 411(49):4253–4262, 2010.

22 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

A. Agrawal, P. Jain, L. Kanesh, and S. Saurabh 35:15

23 KW Krause, MA Goodwin, and RW Smith. Optimal software test planning through automated
network analysis. TRW Systems Group, 1973.

24 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic trun-
cation of linear matroids. International Colloquium on Automata, Languages, and Programming
(ICALP), pages 922–934, 2015.

25 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.
Covering small independent sets and separators with applications to parameterized algorithms.
Symposium on Discrete Algorithms (SODA), pages 2785–2800, 2018.

26 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer
Science, 410(44):4471–4479, 2009.

27 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer
Science, 410(44):4471–4479, 2009.

28 Silvio Micali and Vijay V Vazirani. An O(
√

|V ||E|) algorithm for finding maximum matching
in general graphs. Foundations of Computer Science (FOCS), pages 17–27, 1980.

29 Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal deran-
domization. Foundations of Computer Science (FOCS), pages 182–191, 1995.

30 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

31 James G Oxley. Matroid theory, volume 3. Oxford University Press, 2006.
32 Ulrich Pferschy and Joachim Schauer. The Knapsack Problem with Conflict Graphs. Journal

of Graph Algorithms and Applications, 13(2):233–249, 2009.
33 Ulrich Pferschy and Joachim Schauer. The maximum flow problem with conflict and forcing

conditions. Network Optimization, pages 289–294, 2011.
34 Ulrich Pferschy and Joachim Schauer. The maximum flow problem with disjunctive constraints.

Journal of Combinatorial Optimization, 26(1):109–119, 2013.
35 Ulrich Pferschy and Joachim Schauer. Approximation of knapsack problems with conflict and

forcing graphs. Journal of Combinatorial Optimization, 33(4):1300–1323, 2017.
36 Virginia Vassilevska Williams. Multiplying Matrices Faster Than Coppersmith-winograd.

Symposium on Theory of Computing (STOC), pages 887–898, 2012.

MFCS 2019

On the Strength of Uniqueness Quantification in
Primitive Positive Formulas
Victor Lagerkvist
Department of Computer and Information Science, Linköping University, Linköping, Sweden
victor.lagerkvist@liu.se

Gustav Nordh
Independent researcher, Hällekis, Sweden
gustav.nordh@gmail.com

Abstract
Uniqueness quantification (∃!) is a quantifier in first-order logic where one requires that exactly one
element exists satisfying a given property. In this paper we investigate the strength of uniqueness
quantification when it is used in place of existential quantification in conjunctive formulas over a
given set of relations Γ, so-called primitive positive definitions (pp-definitions). We fully classify
the Boolean sets of relations where uniqueness quantification has the same strength as existential
quantification in pp-definitions and give several results valid for arbitrary finite domains. We also
consider applications of ∃!-quantified pp-definitions in computer science, which can be used to study
the computational complexity of problems where the number of solutions is important. Using our
classification we give a new and simplified proof of the trichotomy theorem for the unique satisfiability
problem, and prove a general result for the unique constraint satisfaction problem. Studying these
problems in a more rigorous framework also turns out to be advantageous in the context of lower
bounds, and we relate the complexity of these problems to the exponential-time hypothesis.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Primitive positive definitions, clone theory, constraint satisfaction problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.36

Related Version https://arxiv.org/abs/1906.07031

Acknowledgements We thank Andrei Bulatov for helpful discussions concerning the topic of the
paper, and the anonymous reviewers for their constructive feedback.

1 Introduction

A primitive positive definition (pp-definition) over a relational structure A = (A;R1, . . . , Rk)
is a first-order formula ∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym) with free variables x1, . . . , xn

where ϕ(x1, . . . , xn, y1, . . . , ym) is a conjunctive formula. Primitive positive definitions have
been extremely influential in the last decades due to their one-to-one correspondence with term
algebras in universal algebra, making them a cornerstone in the algebraic approach for studying
computational complexity [1, 10]. In short, pp-definitions can be used to obtain classical
“gadget reductions” between problems by replacing constraints by their pp-definitions, which
in the process might introduce fresh variables viewed as being existentially quantified. This
approach has successfully been used to study the complexity of e.g. the constraint satisfaction
problem (CSP) which recently led to a dichotomy between tractable and NP-complete
CSPs [6, 28]. However, these reductions are typically not sufficient for optimisation problems
and other variants of satisfiability, where one needs reductions preserving the number of
models, so-called parsimonious reductions. Despite the tremendous advances in the algebraic
approach there is currently a lack of methods for studying problems requiring parsimonious
reductions, and in this paper we take the first step in developing such a framework. The
requirement of parsimonious reductions can be realised by restricting existential quantification

© Victor Lagerkvist and Gustav Nordh;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.lagerkvist@liu.se
mailto:gustav.nordh@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.36
https://arxiv.org/abs/1906.07031
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

to unique quantification (∃!), where we explicitly require that the variable in question can be
expressed as a unique combination of other variables. That is, A |= ∃!xi : ϕ(x1, . . . , xi, . . . , xn)
if and only if there exists a function f such that f(a1, . . . , ai−1, ai+1, . . . , an) = ai, for all
a1, . . . , ai−1, ai, ai+1, . . . , an ∈ A where A |= ϕ(a1, . . . , ai−1, ai, ai+1, . . . , an). This notion of
unique quantification is not the only one possible and we discuss an alternative viewpoint
in Section 5. As a first step in understanding the applicability of uniqueness quantification
in complexity classifications we are interested in studying the expressive power of unique
existential quantification when used in place of existential quantification in pp-definitions,
which we call upp-definitions. Any variables introduced by the resulting gadget reductions
are then uniquely determined and do not affect the number of models.

Our main question is then: for which relational structures A is it the case that for
every pp-formula ϕ(x1, . . . , xn) there exists a upp-formula ϑ(x1, . . . , xn) such that A |=
ϕ(a1, . . . , an) ⇔ A |= ϑ(a1, . . . , an) for all a1, . . . , an ∈ A? If this holds over A then
uniqueness quantification has the same expressive power as existential quantification. The
practical motivation for studying this is that if upp-definitions are as powerful as pp-definitions
in A, then, intuitively, any gadget reduction between two problems can be replaced with a
parsimonious reduction. Given the generality of this question a complete answer for arbitrary
relational structures is well out of reach, and we begin by introducing simplifying concepts.
First, pp-definitions can be viewed as a closure operator over relations, and the resulting
closed sets of relations are known as relational clones, or co-clones [21]. For each universe A
the set of co-clones over A then forms a lattice when ordered by set inclusion, and given a set
of relations Γ we write 〈Γ〉 for the smallest co-clone over A containing Γ. Similarly, closure
under upp-definitions can also be viewed as a closure operator, and we write 〈Γ〉∃! for the
smallest set of relations over A containing Γ and which is closed under upp-definitions. Using
these notions the question of the expressive strength of upp-definitions can be stated as: for
which sets of relations Γ is it the case that 〈Γ〉 = 〈Γ〉∃!? The main advantage behind this
viewpoint is that a co-clone 〈Γ〉 can be described as the set of relations invariant under a set
of operations F , Inv(F), such that the operations in F describe all permissible combinations
of tuples in relations from Γ. An operation f ∈ F is also said to be a polymorphism of Γ
and if we let Pol(Γ) be the set of polymorphisms of Γ then Pol(Γ) is called a clone. This
relationship allows us to characterise the cases that need to be considered by using known
properties of Pol(Γ), which is sometimes simpler than working only on the relational side.

Our Results

Our main research question is to identify Γ such that 〈∆〉∃! = 〈Γ〉 for each ∆ such that
〈∆〉 = 〈Γ〉. If this holds we say that 〈Γ〉 is ∃!-covered. The main difficulty for proving this
is that it might not be possible to directly transform a pp-definition into an equivalent
upp-definition. To mitigate this we analyse relations in co-clones using partial polymorphisms,
which allows us to analyse their expressibility in a very nuanced way. In Section 3.1 we show
how partial polymorphisms can be leveraged to prove that a given co-clone is ∃!-covered.
Most notably, we prove that 〈Γ〉 is ∃!-covered if Pol(Γ) consists only of projections of the
form π(x1, . . . , xi, . . . , xn) = xi, or of projections and constant operations. As a consequence,
Γ pp-defines all relations over A if and only if Γ upp-defines all relations over A. One way of
interpreting this result is that if Γ is “sufficiently expressive” then pp-definitions can always be
turned into upp-definitions. However, there also exists ∃!-covered co-clones where the reason
is rather that Γ is “sufficiently weak”. For example, if Γ is invariant under the affine operation
x− y + z (mod |A|), then existential quantification does not add any expressive power over
unique existential quantification, since any existentially quantified variable occurring in a

V. Lagerkvist and G. Nordh 36:3

pp-definition can be expressed via a linear equation, and is therefore uniquely determined
by other arguments. In Section 3.2 we then turn to the Boolean domain, and obtain a full
classification of the ∃!-covered co-clones. Based on the results in Section 3.1 it is reasonable to
expect that the covering property holds for sufficiently expressive languages and sufficiently
weak languages, but that there may exist cases in between where unique quantification
differs from existential quantification. This is indeed true, and we prove that the Boolean
co-clones corresponding to non-positive Horn clauses, implicative and positive clauses, and
their dual cases, are not ∃!-covered. Last, in Section 4 we demonstrate how the results from
Section 3 can be used for obtaining complexity classifications of computational problems.
One example of a problem requiring parsimonious reductions is the unique satisfiability
problem over a Boolean set of relations Γ (U-SAT(Γ)) and its multi-valued generalization
the unique constraint satisfaction problem (U-CSP(Γ)), where the goal is to determine if
there exists a unique model of a given conjunctive Γ-formula. The complexity of U-SAT(Γ)
was settled by Juban [15] for finite sets of relations Γ, essentially using a large case analysis.
Using the results from Section 3.2 this complexity classification can instead be proved in
a succinct manner, and we are also able to extend the classification to infinite Γ and large
classes of non-Boolean Γ. This systematic approach is also advantageous for proving lower
bounds, and we relate the complexity of U-SAT(Γ) to the highly influential exponential-time
hypothesis (ETH) [12], by showing that none of the intractable cases of U-SAT(Γ) admit
subexponential algorithms without violating the ETH.

Related Work

Primitive positive definitions with uniqueness quantification appeared in Creignou & Her-
mann [7] in the context of “quasi-equivalent” logical formulas, and in the textbook by
Creignou et al. [8] under the name of faithful implementations. Similarly, upp-definitions were
utilised by Kavvadias & Sideri [16] to study the complexity of the inverse satisfiability problem.
A related topic is frozen quantification, which can be viewed as uniqueness quantification
restricted to variables that are constant in any model [22].

2 Preliminaries

2.1 Operations and Relations
In the sequel, let D ⊆ N be a finite domain of values. A k-ary function f : Dk → D is
sometimes referred to as an operation over D and we write ar(f) to denote the arity k.
Similarly, a partial operation over D is a map f : dom(f)→ D where dom(f) ⊆ Dk is called
the domain of f , and we let ar(f) = k be the arity of f . If f and g are k-ary partial
operations such that dom(f) ⊆ dom(g) and f(t) = g(t) for each t ∈ dom(f) then f is said
to be a suboperation of g. For k ≥ 1 and 1 ≤ i ≤ k we let πk

i be the ith projection, i.e.,
πk

i (x1, . . . , xi, . . . , xk) = xi for all x1, . . . , xi, . . . , xk ∈ D. We write OPD for the set of all
operations over D and pOPD for the set of all partial operations over D. As a notational
shorthand we for k ≥ 1 write [k] for the set {1, . . . , k}. For d ∈ D we by dn denote the
constant n-ary tuple (d, . . . , d). Say that a k-ary f ∈ OPD is essentially unary if there exists
unary g ∈ OPD and i such that f(x1, . . . , xi, . . . , xn) = g(xi) for all x1, . . . , xi, . . . , xn ∈ D.

Given an n-ary relation R ⊆ Dn we write ar(R) to denote its arity n. If t = (x1, . . . , xn) is
an n-ary tuple we write t[i] to denote the ith element xi, and Proji1,...,in′ (t) = (t[i1], . . . , t[in′])
to denote the projection on the coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, if R is an
n-ary relation we let Proji1,...,in′ (R) = {Proji1,...,in′ (t) | t ∈ R}. The ith argument of a

MFCS 2019

36:4 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

relation R is said to be redundant if there exists j 6= i such that t[i] = t[j] for each t ∈ R,
and is said to be fictitious if for all t ∈ R and d ∈ D have t′ ∈ R where t′[i] = d and
Proj1,...,i−1,i+1,...,n(t) = Proj1,...,i−1,i+1,...,n(t′).

We write EqD for the equality relation {(x, x) | x ∈ D} over D. We often represent
relations by their defining first-order formulas, and if ϕ(x1, . . . , xn) is a first-order formula
with n free variables we write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) to define the relation R =
{(f(x1), . . . , f(xn)) | f is a model of ϕ(x1, . . . , xn)}. We let RELn

D be the set of all n-ary
relations over D, REL≤n

D =
⋃n

i=1 RELn
D, and RELD =

⋃∞
i=1 RELi

D. A set Γ ⊆ RELD will
sometimes be called a constraint language.

2.2 Primitive Positive Definitions and Determined Variables
We say that an n-ary relation R has a primitive positive definition (pp-definition) over a
set of relations Γ over a domain D if R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ : R1(x1) ∧ . . . ∧ Rm(xm)
where each xi is a tuple of variables over x1, . . . , xn, y1, . . . , yn′ of length ar(Ri) and each
Ri ∈ Γ∪{EqD}. Hence, R can be defined as a (potentially) existentially quantified conjunctive
formula over Γ ∪ {EqD}. We will occasionally be interested in pp-definitions not making
use of existential quantification, and call pp-definitions of this restricted type quantifier-free
primitive positive definitions (qfpp-definitions).

I Definition 1. Let R be an n-ary relation over a domain D. We say that 1 ≤ i ≤ n

is uniquely determined, or just determined, if there exists i1, . . . , ik ∈ [n] and a function
h : Dk → D such that h(t[i1], . . . , . . . , t[ik]) = t[i] for each t ∈ R.

When defining relations in terms of logical formulas we will occasionally also say that the
ith variable is uniquely determined, rather than the ith index.

IDefinition 2. An n-ary relation R has a unique primitive positive definition (upp-definition)
over a set of relations Γ if there exists a pp-definition

R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ : R1(x1) ∧ . . . ∧Rm(xm)

of R over Γ where each yi is uniquely determined by x1, . . . , xn.

We typically write ∃!y1, . . . , yn′ for the existentially quantified variables in a upp-definition.
Following Nordh & Zanuttini [22] we refer to unique existential quantification over constant
arguments as frozen existential quantification (i ∈ [ar(R)] is constant if there exists d ∈ D
such that t[i] = d for each t ∈ R). If R is upp-definable over Γ via a upp-definition only
making use of frozen existential quantification then we say that R is freezingly pp-definable
(fpp-definable) over Γ. Let us define the following closure operators over relations.

I Definition 3. Let Γ be a set of relations. Then we define (1) 〈Γ〉 = {R | R has a pp-
definition over Γ}, (2), 〈Γ〉∃! = {R | R has a upp-definition over Γ}, (3), 〈Γ〉fr = {R | R has
an fpp-definition over Γ}, and (4), 〈Γ〉6∃ = {R | R has a qfpp-definition over Γ}.

In all cases Γ is called a base. If Γ = {R} is singleton then we write 〈R〉 instead of
〈Γ〉, and similarly for the other operators. Sets of relations of the form 〈Γ〉 are usually
called relational clones, or co-clones, sets of the form 〈Γ〉 6∃ weak systems, or weak partial
co-clones, and sets of the form 〈Γ〉fr are known as frozen partial co-clones. Note that
〈Γ〉 ⊇ 〈Γ〉∃! ⊇ 〈Γ〉fr ⊇ 〈Γ〉6∃ for any Γ ⊆ RELD. Co-clones and weak systems can be
described via algebraic invariants known as polymorphisms and partial polymorphism. More
precisely, if R ∈ RELn

D and f ∈ OPD is a k-ary operation, then for t1, . . . , tk ∈ R we let

V. Lagerkvist and G. Nordh 36:5

f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])). We then say that a k-ary partial
operation f preserves an n-ary relation R if f(t1, . . . , tk) ∈ R or there exists i ∈ [n] such
that (t1[i], . . . , tk[i]) /∈ dom(f), for each sequence of tuples t1, . . . , tk ∈ R. If f preserves
R then R is also said to be invariant under f . Note that if f is total then the condition
is simply that f(t1, . . . , tk) ∈ R for each sequence t1, . . . , tk ∈ R. We then let pPol(R) =
{f ∈ pOPD | f preserves R}, Pol(R) = pPol(R) ∩ OPD, pPol(Γ) =

⋂
R∈Γ pPol(R), and

Pol(Γ) =
⋂

R∈Γ Pol(R). Similarly, if F is a set of (partial) operations we let Inv(F) be
the set of relations invariant under F , and write Inv(f) if F = {f} is singleton. It is then
known that Inv(F) is a co-clone if F ⊆ OPD and that Inv(F) is a weak system if F ⊆ pOPD.
More generally, 〈Γ〉 = Inv(Pol(Γ)) and 〈Γ〉 6∃ = Inv(pPol(Γ)), resulting in the following Galois
connections.

I Theorem 4 ([3, 4, 11, 26]). Let Γ and ∆ be two sets of relations. Then Γ ⊆ 〈∆〉 if and
only if Pol(∆) ⊆ Pol(Γ) and Γ ⊆ 〈∆〉 6∃ if and only if pPol(∆) ⊆ pPol(Γ).

Last, we remark that sets of the form Pol(Γ) and pPol(Γ) are usually called clones, and
strong partial clones, respectively, and form lattices when ordered by set inclusion. Boolean
clones are particularly well understood and the induced lattice is known as Post’s lattice [24].
If F ⊆ OPD then we write [F] for the intersection of all clones over D containing F . Hence,
[F] is the smallest clone over D containing F .

2.3 Weak and Plain Bases of Co-Clones
In this section we introduce two special types of bases of a co-clone, that are useful for
understanding the expressibility of upp-definitions.

I Definition 5 (Schnoor & Schnoor [27]). Let 〈Γ〉 be a co-clone. A base Γw of 〈Γ〉 with the
property that 〈Γw〉 6∃ ⊆ 〈∆〉 6∃ for every base ∆ of 〈Γ〉 is called a weak base of 〈Γ〉.

Although not immediate from Definition 5, Schnoor & Schnoor [27] proved that a weak
base exists whenever 〈Γ〉 admits a finite base, by the following relational construction.

I Definition 6. For s ≥ 1, let Us
D = {t1, . . . , ts} where t1, . . . , ts is the sequence of |D|s-ary

tuples where (t1[1], . . . , ts[1]), . . . , (t1[|D|s], . . . , ts[|D|s]) is a lexicographic enumeration of Ds.

For R ∈ RELD and F ⊆ OPD we let F (R) =
⋂

R′∈Inv(F),R⊆R′∈RELD
R′. We typically write

Us instead of Us
D if the domain D is clear from the context, and say that a co-clone Inv(C)

has core-size s if there exist relations R,R′ such that Pol(R) = C, R = C(R′), and s = |R′|.
Weak bases can then be described via core-sizes as follows (a clone C is finitely related if
there exists a finite base of Inv(C)).

I Theorem 7 (Schnoor & Schnoor [27]). Let C be a finitely related clone where Inv(C) has
core-size s. Then C(U t) is a weak base of Inv(C) for every t ≥ s.

See Table 2 for a list of weak bases for the Boolean co-clones of interest in this paper [17, 18].
Here, and in the sequel, we use the co-clone terminology developed by Reith & Wagner [25]
and Böhler et al. [5], where a Boolean co-clone Inv(C) is typically written as IC. Many
relations in Table 2 are provided by their defining logical formulas; for example, x1 → x2 is
the binary relation {(0, 0), (0, 1), (1, 1)}. See Table 1 for definitions of the remaining relations.
As a convention we use c0 to indicate a variable which is constant 0 in any model, and c1
for a variable which is constant 1. On the functional side we use the bases by Böhler et
al. [5] and let I2 = [π1

1], I0 = [0], I1 = [1], I = [{0, 1}], N2 = [x], N = [{x, 0, 1}], E2 = [∧],

MFCS 2019

36:6 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

Table 1 Relations.

Relation Definition
F {(0)}

T {(1)}
Ne {(0, 1), (1, 0)}
n-EVEN {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . . + xn is even}
n-EVENn 6= n-EVEN(x1, . . . , xn) ∧Ne(x1, xn+1) ∧ . . . ∧Ne(xn, x2n)
n-ODD {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . . + xn is odd}
n-ODDn6= n-ODD(x1, . . . , xn) ∧Ne(x1, xn+1) ∧ . . . ∧Ne(xn, x2n)
NAn {0, 1}n \ {(1, . . . , 1)}

Table 2 Weak and plain bases of selected Boolean co-clones.

C Weak base of Inv(C) Plain base of Inv(C)
Sn

1 {NAn(x1, . . . , xn) ∧ F (c0)} {NAn}
S1 {NAn(x1, . . . , xn) ∧ F (c0) | n ≥ 2} {NAn | n ≥ 1}
Sn

12 {NAn(x1, . . . , xn) ∧ F (c0) ∧ T (c1)} {NAn, T (c1)}
S12 {NAn(x1, . . . , xn) ∧ F (c0) ∧ T (c1) | n ≥ 2} {NAn | n ≥ 1} ∪ {T (c1)}
Sn

11 {NAn(x1, . . . , xn) ∧ (¬x→ ¬x1 · · · ¬xn) ∧ F (c0)} {NAn, (x1 → x2)}
S11 {RSn

11
| n ≥ 2} {NAn | n ≥ 1} ∪ {(x1 → x2)}

Sn
10 {RSn

11
(x1, . . . , xn, c0) ∧ T (c1)} {NAn, (x1 → x2), T (c1)}

S10 {RSn
10
| n ≥ 2} {NAn | n ≥ 1} ∪ {(x1 → x2), T (c1)}

D {(x1 ⊕ x2 = 1)} {(x1 ⊕ x2 = 1)}
D1 {(x1 ⊕ x2 = 1) ∧ F (c0)} ∧ T (c1) {(x1 ⊕ x2 = 1)} ∪ {F (c0), T (c1)}
D2 {(x1 ∨ x2) ∧Ne(x1, x3) ∧Ne(x2, x4) ∧ F (c0) ∧ T (c1)} {(x1 ∨ x2), (¬x1 ∨ x2), (¬x1 ∨ ¬x2)}
E {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4)} {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1}
E0 {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ F (c0)} {NAn | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1}
E1 {(x1 ↔ x2x3) ∧ T (c1)} {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N}
E2 {(x1 ↔ x2x3) ∧ F (c0) ∧ T (c1)} {NAn | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N}

E0 = [{∧, 0}], E1 = [{∧, 1}], E = [{∧, 0, 1}], L2 = [x ⊕ y ⊕ z], and S11 = [{x ∧ (y ∨ z), 0}],
where x = 1− x and where 0, 1 are shorthands for the two constant Boolean operations. We
conclude this section by defining the dual notion of a weak base.

I Definition 8 (Creignou et al. [9]). Let 〈Γ〉 be a co-clone. A base Γp of 〈Γ〉 with the property
that 〈∆〉6∃ ⊆ 〈Γp〉6∃ for every base ∆ of 〈Γ〉 is called a plain base of 〈Γ〉.

Clearly, every co-clone is a trivial plain base of itself, but the question remains for which
co-clones more succinct plain bases can be found. For arbitrary finite domains little is known
but in the Boolean domain succinct plain bases have been described [9] (see Table 2).

2.4 Duality
Many questions concerning Boolean co-clones can be simplified by only considering parts
of Post’s lattice. If f ∈ OP{0,1} is k-ary then the dual of f , dual(f), is the operation
dual(f)(x1, . . . , xk) = f(x1, . . . , xk), and we let dual(F) = {dual(f) | f ∈ F} for a set
F ⊆ OP{0,1}. Each Boolean clone C can then be associated with a dual clone dual(C).
Similarly, for R ∈ REL{0,1} we let dual(R) = {t | t ∈ R} and dual(Γ) = {dual(R) | R ∈ Γ}
for Γ ⊆ REL{0,1}. It is then known that Inv(dual(C)) = dual(Inv(C)).

3 The Expressive Power of Unique Existential Quantification

The main goal of this paper is to understand when the expressive power of unique existential
quantification coincides with existential quantification in primitive positive formulas. Let us
first consider an example where a pp-definition can be rewritten into a upp-definition.

V. Lagerkvist and G. Nordh 36:7

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 1 The lattice of Boolean clones. Inv(C) is coloured in red if and only if Inv(C) is not
∃!-covered.

I Example 9. Consider the canonical reduction from k-SAT to (k−1)-SAT via pp-definitions
of the form (x1 ∨ . . .∨xk) ≡ ∃y : (x1 ∨ . . .∨xk−2 ∨ y)∧ (xk−1 ∨xk ∨¬y). In this pp-definition
the auxiliary variable y is not uniquely determined since, for example, y = 0 and y = 1 are
both consistent with x1 = 1, . . . xk−2 = 1, xk−1 = 1, xk = 1. On the other hand, if we instead
take the pp-definition (x1 ∨ . . . ∨ xk) ≡ ∃y : (x1 ∨ . . . ∨ xk−2 ∨ y) ∧ (y ↔ (xk−1 ∨ xk)), which
can be expressed by (k − 1)-SAT, it is easily verified that y is determined by xk−1 and xk.

Using the algebraic terminology from Section 2 this property can be phrased as follows.

I Definition 10. A co-clone 〈Γ〉 is ∃!-covered if 〈Γ〉 = 〈∆〉∃! for every base ∆ of 〈Γ〉.

Thus, we are interested in determining the ∃!-covered co-clones, and since every constraint
language Γ belongs to a co-clone, namely 〈Γ〉, Definition 10 precisely captures the aforemen-
tioned question concerning the expressive strength of uniqueness quantification in primitive
positive formulas. The remainder of this section will be dedicated to proving covering results
of this form, with a particular focus on proving a full classification for the Boolean domain.
See Figure 1 for a visualisation of this dichotomy. We begin in Section 3.1 by outlining
some of the main ideas required to prove that a co-clone is ∃!-covered, and consider covering
results applicable for arbitrary finite domains. In Section 3.2 we turn to the Boolean domain
where we prove the classification in Figure 1. Throughout, the missing proofs can be found
in the extended preprint [19], and the affected statements are marked with an asterisk (∗).

MFCS 2019

36:8 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

3.1 General Constructions
Given an arbitrary constraint language Γ it can be difficult to directly reason about the
strength of upp-definitions over Γ. Fortunately, there are methods to mitigate this difficulty.
Recall from Definition 5 that a weak base of a co-clone 〈Γ〉 is a base which is qfpp-definable
by any other base of 〈Γ〉, and that a plain base is a base with the property that it can
qfpp-define every relation in the co-clone. We then have the following useful lemma.

I Lemma 11. Let 〈Γ〉 be a co-clone with a weak base Γw and a plain base Γp. If Γp ⊆ 〈Γw〉∃!
then 〈Γ〉 is ∃!-covered.

Proof. Let ∆ be a base of 〈Γ〉 and R an n-ary relation from 〈Γ〉, with a qfpp-definition
R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) over Γp. By assumption, Γw can upp-define every relation
in Γp, and it follows that R(x1, . . . , xn) ≡ ∃!y1, . . . , ym : ϕ′(x1, . . . , xn, y1, . . . , ym) for a Γw-
formula ϕ′(x1, . . . , xn, y1, . . . , ym) since each constraint in ϕ(x1, . . . , xn) can be replaced by
its upp-definition over Γw. Last, since ∆ can qfpp-define Γw, we obtain a upp-definition of R
by replacing each constraint in ϕ′(x1, . . . , xn, y1, . . . , ym) by its qfpp-definition over ∆. J

Although not difficult to prove, Lemma 11 offers the advantage that it is sufficient to
prove that Γp ⊆ 〈Γw〉∃! for two constraint languages Γw and Γp. Let us now illustrate some
additional techniques for proving that 〈Γ〉 is ∃!-covered. Theorem 7 in Section 2.3 shows
that the relation C(Us) is a weak base of Inv(C) for s larger than or equal to the core-size of
Inv(C). For s smaller than the core-size we have the following description of C(Us).

I Theorem 12 (∗). Let C be a finitely related clone over a finite domain D. Then, for every
s ≥ 1, C(Us) ∈ 〈Γ〉 6∃ for every base Γ of Inv(C).

The applications of Theorem 12 in the context of upp-definitions might not be immediate.
However, observe that each argument i ∈ [|D|s] of Us is determined by at most s other
arguments, and if C is sufficiently simple, this property can be proved to hold also for C(Us).
This intuition can then be formalised into the following general theorem.

I Theorem 13. Let Pol(Γ) be a clone over a finite domain D such that each f ∈ Pol(Γ) is
a constant operation or a projection. Then 〈Γ〉 is ∃!-covered.

Proof. Let F be a set of operations such that [F] = Pol(Γ). We may without loss of
generality assume that F = {f1, . . . , fk} for unary operations fl such that fl(x) = dl for
some dl ∈ D. Take an arbitrary n-ary relation R ∈ 〈Γ〉. Let s = |R| and consider the
relation F (Us) from Definition 6. Our aim is to prove that F (Us) can upp-define R, which
is sufficient since F (Us) ∈ 〈Γ〉6∃ via Theorem 12. Let i1, . . . , in ∈ [|D|s] denote the indices
satisfying Proji1,...,in

(F (Us)) = R. If k = 0, and Pol(Γ) consists only of projections, then
F (Us) = Us, and each argument in [|D|s] \ {i1, . . . , in} is already determined by i1, . . . , in,
and by the preceding remark R ∈ 〈F (Us)〉∃!. Therefore, assume that k ≥ 1. For each
fl ∈ F then observe that (dl, . . . , dl) ∈ F (Us) and that (dl, . . . , dl) ∈ Proji1,...,in

(Us). Choose
j1, j2 ∈ [|D|s] such that t[j1] 6= t[j2] for t ∈ Us if and only if Proji1,...,in

(t) = (dl, . . . , dl), for
a dl such that fl(x) = dl. Thus, we choose a pair of indices differing in Us if and only if the
projection on i1, . . . , in is constant. Such a choice is always possible since the arguments
of Us enumerate all s-ary tuples over D. Then construct the relation R′(x1, . . . , x|D|s) ≡
F (Us)(x1, . . . , x|D|s) ∧ Eq(xj1 , xj2). It follows that Proji1,...,in

(R′) = R, and that every
argument l ∈ [|D|s] \ {i1, . . . , in} is determined by i1, . . . , in. Hence, R ∈ 〈F (Us)〉∃!. J

Theorem 13 implies that 〈Γ〉 is ∃!-covered if Γ is sufficiently powerful, and in particular
implies that RELD is ∃!-covered for every finite D. Hence, Γ pp-defines every relation if and
only if Γ upp-defines every relation. However, as we will now illustrate, this is not the only
possible case when a co-clone is ∃!-covered.

V. Lagerkvist and G. Nordh 36:9

I Lemma 14 (∗). Let F be a set of operations over a finite domain D. If each argument
i ∈ [ar(R)] is either fictitious or determined for every R ∈ Inv(F), then Inv(F) is ∃!-covered.

I Theorem 15. Let D be a finite domain such that |D| is prime, and let f(x, y, z) =
x − y + z (mod |D|). Then, for any constraint language Γ over D such that 〈Γ〉 ⊆ Inv(f),
〈Γ〉 is ∃!-covered.

Proof. We will prove that the preconditions of Lemma 14 are satisfied for Inv(f), which is
sufficient to prove the claim. Let R be invariant under f . Then it is known that R is the
solution space of a system of linear equations modulo |D| [14], from which it follows that
each argument is either determined, since it can be written as a unique combination of other
arguments, or is fictitious. J

3.2 Boolean Constraint Languages
In this section we use the techniques developed so far to prove that the classification in Figure 1
is correct. Note first that Inv(C) is ∃!-covered if and only if Inv(dual(C)) is ∃!-covered, since
a upp-definition ∃!y1, . . . , yn′ : R1(x1)∧ . . .∧Rm(xm) of n-ary R ∈ Inv(C) immediately yields
a upp-definition ∃!y1, . . . , yn′ : dual(R1)(x1)∧ . . .∧dual(Rm)(xm) of dual(R) ∈ Inv(dual(C)).
Thus, to simplify the presentation we omit the case when C ⊇ V2 in Figure 1. Let us begin
with the cases following directly from Section 3.1 or from existing results (recall that IC is a
shorthand for Inv(C)).

I Lemma 16. Let IC be a Boolean co-clone. Then IC is ∃!-covered if IC ⊆ IM2, IC ⊆ IL2,
IC ⊆ IS12, IC = IS10, IC = ISn

10 for some n ≥ 2, IC = IS1, or IC = ISn
1 for some n ≥ 2.

Proof. The case when IC ⊆ IL2 follows from Theorem 15 since L2 = [x⊕ y ⊕ z]. For each
case when C belongs to the infinite chains in Post’s lattice, or if IC ⊆ IM2, it is known that
IC = 〈Γ〉fr for any base Γ of IC [22], which is sufficient since 〈Γ〉fr ⊆ 〈Γ〉∃!. J

We now move on to the more interesting cases, and begin with the case when Pol(Γ) is
essentially unary, i.e., consists of essentially unary operations. This covers I2, I0, I1, I,N2,N
from Figure 1.

I Theorem 17 (∗). Let Γ be a Boolean constraint language such that Pol(Γ) is essentially
unary. Then 〈Γ〉 is ∃!-covered.

Next, we consider ID2, consisting of all relations pp-definable by binary clauses.

I Lemma 18 (∗). ID2 is ∃!-covered.

We now tackle the cases when Inv({∧, 0, 1}) ⊆ IC ⊆ Inv({∧}) (E, E0, E1, and E2 in
Figure 1). First, we describe the determined arguments of relations in E0.

I Lemma 19. Let R ∈ IE0 be an n-ary relation. If i ∈ [n] is determined in R then either (1)
there exists i1, . . . , ik ∈ [n] distinct from i such that t[i] = t[i1] ∧ . . . ∧ t[ik] for every t ∈ R,
or (2) t[i] = 0 for every t ∈ R.

Proof. Assume that i ∈ [n] is determined in R. Let R1 = {t1, . . . , tm} = {t ∈ R | t[i] = 1}
and R0 = {s1, . . . , sm′} = {s ∈ R | t[i] = 0}. Note first that R0 = ∅ cannot happen since R
is preserved by 0, and if R1 = ∅ then we end up in case (2). Hence, in the remainder of the
proof we assume that R0 and R1 are both non-empty.

Consider the tuple t1 ∧ . . . ∧ tm = t (applied componentwise), and observe that t ∈
{t1, . . . , tm} since R is preserved by ∧, and that t[i] = 1 since t1[i] = . . . = tm[i] = 1.

MFCS 2019

36:10 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

Furthermore, if t[j] = 1 for some j ∈ [n] then it must also be the case that t1[j] = . . . =
tm[j] = 1. Let i1, . . . , il ∈ [n] \ {i} denote the set of indices such that t[ij] = 1. Then
t′[i] = t′[i1] ∧ . . . ∧ t′[il] for every t′ ∈ R1, and we also claim that s[i] = s[i1] ∧ . . . ∧ s[il] for
every s ∈ R0, thus ending up in case (1). Note that l > 0, as otherwise every argument
distinct from i is constantly 0 in t, which is not consistent with the fact that 0n ∈ R0, since
it contradicts the assumption that i is determined. Assume that there exists s ∈ R0 such
that s[i] = 0 6= s[i1] ∧ . . . ∧ s[il]. Then, clearly, s[i1] = . . . = s[il] = 1. But then t ∧ s ∈ R
implies that i is not determined, since Proj1,...,i−1,i+1,...,n(t ∧ s) = Proj1,...,i−1,i+1,...,n(t) but
(t∧ s)[i] 6= t[i]. Hence, s[i] = s[i1]∧ . . .∧ s[il] for every s ∈ R, which concludes the proof. J

Lemma 19 also shows that if R ∈ IE with a determined argument i then there exists
i1, . . . , ik ∈ [ar(R)] such that t[i] = t[i1]∧ . . .∧t[ik] for every t ∈ R, since the constant relation
{(0)} /∈ IE. Before we use Lemma 19 to show the non-covering results for IE and IE0, we will
need the following lemma, relating the existence of a upp-definition to a qfpp-definition of a
special form. The proof essentially follows directly from the statement of the lemma and is
therefore omitted.

I Lemma 20. Let Γ be a constraint language. Then an n-ary relation R ∈ 〈Γ〉∃! has a upp-
definition R(x1, . . . , xn) ≡ ∃!y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym) if and only if there exists
an (n+m)-ary relation R′ ∈ 〈Γ〉6∃ such that Proj1,...,n(R′) = R where each n < i ≤ n+m is
determined by 1, . . . , n.

Say that a partial operation f is ∧-closed if dom(f) is preserved by ∧ and that it is
0-closed if 0ar(f) ∈ dom(f). We may now describe partial polymorphisms of 〈Γ〉∃! using
∧-closed and 0-closed partial polymorphisms of Γ.

I Lemma 21 (∗). Let Γ be a constraint language such that 〈Γ〉 = IE0. If f ∈ pPol(Γ) is ∧-
and 0-closed then f ∈ pPol(〈Γ〉∃!).

We now have all the machinery in place to prove that IE0 and IE are not ∃!-covered.

I Theorem 22. Let Rw be the weak base of IE0 from Table 2. Then 〈Rw〉∃! ⊂ IE0.

Proof. We prove that the relation R(x1, x2, x3) ≡ x1 ↔ x2x3 is not upp-definable over Rw,
which is sufficient since R ∈ IE0, as evident in Table 2. Furthermore, using Lemma 20,
we only have to prove that any (3 + n)-ary R′ where Proj1,2,3(R′) = R, and where each
other argument is determined by the three first, is not included in 〈Rw〉6∃. Assume, without
loss of generality, that R′ does not contain any redundant arguments. Define the binary
partial operation f such that f(0, 0) = 0, f(0, 1) = f(1, 0) = 1. By construction, f is
both 0-closed and ∧-closed, and it is also readily verified that f preserves Rw, which via
Lemma 21 then implies that f ∈ pPol(〈Rw〉∃!). To finish the proof we also need to show
that f /∈ pPol(R′), which is sufficient since it implies that R′ /∈ 〈Rw〉∃!. Take two tuples
s, t ∈ R′ such that Proj1,2,3(s) = (0, 0, 1), and Proj1,2,3(t) = (0, 1, 0). From Lemma 19, for
each 3 < i ≤ n+3, either i is constant 0 in R′ or there exists i1, . . . , ik ∈ {1, 2, 3}, k ≤ 3, such
that t[i] = t[i1]∧ . . . t[ik] for each t ∈ R′. But then (s[i], t[i]) ∈ dom(f) for each 3 < i ≤ n+ 3,
since either (s[i], t[i]) = (0, 0) ∈ dom(f) or (s[i], t[i]) is a conjunction over (0, 0, 1) and (0, 1, 0).
However, this implies that f(s, t) = u /∈ R′ since Proj1,2,3(u) = (0, 1, 1). Hence, f does not
preserve R′, and R′ /∈ 〈Rw〉6∃ via Theorem 4. J

The proof for IE uses the same construction and we omit the details. Surprisingly, as we
will now see, IE1 and IE2 behave entirely differently and are in fact ∃!-covered.

I Lemma 23 (∗). IE1 and IE2 are ∃!-covered.

V. Lagerkvist and G. Nordh 36:11

The natural generalisation of the Boolean operations ∧ and ∨ are so-called semilattice
operations; binary operations that are idempotent, associative, and commutative. It is
then tempting to conjecture that Lemma 19 can be generalized to arbitrary semilattice
operations, i.e., that every determined argument can be described as a semilattice combination
of other arguments, whenever a relation is preserved by a given semilattice operation.
This, however, is not true. For a simple counterexample define the semilattice operation
s : {0, 1, 2}2 → {0, 1, 2} as s(x, x) = x and s(x, y) = 0 otherwise. If we then consider the
relation R = {(0, 0), (1, 1), (2, 0)} it is easily verified that s preserves R, and that the second
argument is uniquely determined by the first argument but cannot be described via the
operation s.

The only co-clones remaining are IS11 and ISn
11 (for n ≥ 2). As we will see, unique

existential quantification is only as powerful as frozen quantification for these co-clones. We
state the following lemma only for IS11 but the same construction is valid also for ISn

11.

I Lemma 24 (∗). Let Γ be a constraint language such that 〈Γ〉 = IS11. Then 〈Γ〉∃! = 〈Γ〉fr.

It thus only remains to prove that IS11 and ISn
11 do not collapse into a single frozen

co-clone. Here, we state the lemma only for ISn
11, but the same argument works for IS11.

I Lemma 25 (∗). Let Γp denote the plain base and Γw the weak base of ISn
11 (n ≥ 2) from

Table 2. Then 〈Γw〉fr ⊂ 〈Γp〉fr.

Combining the results in this section we can now finally prove our dichotomy theorem.

I Theorem 26. Let 〈Γ〉 be a Boolean co-clone. Then 〈Γ〉 is not ∃!-covered if and only if
1. 〈Γ〉 ∈ {IE, IE0, IV, IV1}, or
2. 〈Γ〉 ∈ {ISn

01, ISn
11 | n ≥ 2} ∪ {IS01, IS11} (where, in addition, 〈Γ〉∃! = 〈Γ〉fr).

Proof. Each negative case either follows immediately from Lemma 22, Lemma 24, Lemma 25,
or is the dual of one of those cases. Each ∃!-covered co-clone is proved in Lemma 16,
Theorem 17, Lemma 18, and Lemma 23. J

4 Applications in Complexity

In this section we apply Theorem 26 to study the complexity of computational problems not
compatible with pp-definitions. Let us begin by defining the constraint satisfaction problem
over a constraint language Γ (CSP(Γ)).

Instance: A tuple (V,C) where V is a set of variables and C a set of constraints of the
form Ri(xi1 , . . . , xiar(R)) for Ri ∈ Γ.
Question: Does (V,C) have at least one model? That is, a function f : V → D such
that f(xi1 , . . . , xiar(Ri)) ∈ Ri for each Ri(xi1 , . . . , xiar(Ri)) ∈ C?

For Boolean constraint languages Γ we write SAT(Γ) instead of CSP(Γ). If ∆ ⊆ 〈Γ〉 (or,
equivalently, Pol(Γ) ⊆ Pol(∆)) then CSP(∆) is polynomial-time reducible to CSP(Γ) [13].
However, there exist many natural variants of CSPs not compatible with pp-definitions, but
compatible with more restricted closure operators such as upp-definitions. One such example
is the unique satisfiability problem over a Boolean constraint language Γ (U-SAT(Γ)).

MFCS 2019

36:12 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

Instance: A SAT(Γ) instance I.
Question: Does I have a unique model?

The unrestricted U-SAT problem, i.e., the U-SAT problem where all possible constraints
are allowed, can be seen as the intersection of satisfiability (in NP), and the satisfiability
problem of checking if a given instance does not admit two distinct models (in co-NP). Hence,
U-SAT is included in the second level of the Boolean hierarchy, BH2, but is not believed
to be complete for this class [23]. This unclear status motivated Blass and Gurevich [2] to
introduce the complexity class unique polynomial-time, US, the set of decision problems
solvable by a non-deterministic polynomial-time Turing machine where an instance is a
yes-instance if and only if there exists a unique accepting path. Blass and Gurevich then
quickly observed that U-SAT is US-complete and that US ⊆ BH2.

We will present a simple, algebraic proof of Juban’s trichotomy theorem for U-SAT(Γ) [15],
showing that U-SAT(Γ) for finite Γ is either tractable, co-NP-complete, or US-complete.
Using our machinery we will also be able to generalise this result to arbitrary infinite constraint
languages. However, for infinite Γ we first need to specify a method of representation. We
assume that the elements R1, R2, . . . of Γ are recursively enumerable by their arity, are
represented as lists of tuples, and that there exists a computable function f : N→ N such
that for every k ≥ 1 and every k-ary relation R, R ∈ 〈Γ〉∃! if and only if R ∈ 〈Γ∩REL≤f(k)

{0,1} 〉∃!.
Thus, if a relation is upp-definable it is always possible to bound the arities of the required
relations in the definition. The complexity of U-SAT(Γ) is then determined by 〈Γ〉∃! in the
following sense.

I Theorem 27. Let Γ and ∆ be Boolean constraint languages. If ∆ ⊆ 〈Γ〉∃! is finite then
U-SAT(∆) is polynomial-time many-one reducible to U-SAT(Γ).

Proof. By assumption every R ∈ ∆ is upp-definable over Γ. First let k = max{f(ar(R)) |
R ∈ ∆}. We then begin by computing a upp-definition of R over Γ∩REL≤k

{0,1}, and store this
upp-definition in a table. Since ∆ is finite this can be done in constant time. Next, given an
instance I = (V,C) of U-SAT(∆), we similar to the ordinary CSP case simply replace each
constraint in C by its upp-definition over Γ, and identify any potential variables occurring in
equality constraints. This procedure might introduce additional variables, but since they are
all determined by V , the existence of a unique model is preserved. J

I Theorem 28 (∗). Let Γ be a Boolean constraint language. Then U-SAT(Γ) is co-NP-
complete if 〈Γ〉 ∈ {II0, II1}, US-complete if 〈Γ〉 = II2, and is tractable otherwise.

A complexity classification akin to Theorem 28 is useful since it clearly separates tractable
from intractable cases. However, in the last decade, a significant amount of research has
been devoted to better understanding the “fine-grained” complexity of intractable problems,
with a particular focus on ruling out algorithms running in O(c|V |) time for every c > 1,
so-called subexponential time. This line of research originates from Impagliazzo et al. [12]
who conjectured that 3-SAT is not solvable in subexponential time; a conjecture known as
the exponential-time hypothesis (ETH). Lower bounds for U-SAT(Γ) can then be proven
using the ETH and the results from Section 3.

I Theorem 29 (∗). Let Γ be a Boolean constraint language such that U-SAT(Γ) is US-
complete or co-NP-complete. Then U-SAT(Γ) is not solvable in subexponential time, unless
the ETH is false.

V. Lagerkvist and G. Nordh 36:13

Using our algebraic framework, hardness results can effortlessly be proven for the CSP
generalisation of U-SAT, i.e., the problem U-CSP(Γ) of answering yes if and only if the
given instance of CSP(Γ) admits a unique model.

I Theorem 30 (∗). Let Γ be a constraint language over a finite domain D. If 〈Γ〉 = RELD

then U-CSP(Γ) is US-complete, and if Pol(Γ) = [{f}] for a constant operation f , then
U-CSP(Γ) is co-NP-complete.

5 Concluding Remarks and Future Research

We have studied unique existential quantification in pp-definitions, with a particular focus
on finding constraint languages where existential quantification and unique existential
quantification coincide. In general, this question appears highly challenging, but we have
managed to find several broad classes of languages where this is true, and established a
complete dichotomy theorem in the Boolean domain. We also demonstrated that upp-
definitions can be applied to obtain complexity theorems for problems in a more systematic
manner than what has earlier been possible. Many interesting open question hinge on the
possibility of finding an algebraic characterisation of upp-closed sets of relations. For example,
it would be interesting to determine the cardinality of the set {〈Γ〉∃! | Γ ⊆ II2}, and hopefully
describe all such upp-closed sets. By our classification theorem it suffices to investigate the
Boolean co-clones that are not ∃!-covered, but even this question appears difficult to resolve
using only relational tools. Similarly, a continued description of the ∃!-covered co-clones over
finite domains would be greatly simplified by an algebraic characterisation. Thus, given a set
of relations Γ, what is the correct notion of a “polymorphism” of a upp-definable relation
over Γ? This question also has a strong practical motivation: essentially all complexity
classifications for CSP related problems over non-Boolean domain require stronger algebraic
tools than pp-definitions, and this is likely the case also for problems that can be studied
with upp-definitions.

Another interesting topic is the following computational problem concerning upp-definability.
Fix a constraint language Γ, and let R be a relation. Is it the case that R is upp-definable over
Γ? The corresponding problem for pp-definitions is tractable for Boolean constraint languages
Γ [9] while the corresponding problem for qfpp-definitions is co-NP-complete [16, 20]. Note
that if 〈Γ〉 is ∃!-covered (which can be checked in polynomial time) then R ∈ 〈Γ〉∃! can be
answered by checking whether R ∈ 〈Γ〉. Thus, only the co-clones that are not ∃!-covered
would need to be investigated in greater detail.

Last, it is worth remarking that our notion of uniqueness quantification in pp-definitions
is not the only one possible. Assume that we in ∃!xi : R(x1, . . . , xi, . . . , xn) over a domain D
do not require that xi is determined by x1, . . . , xi−1, xi+1, . . . , xn but instead simply obtain
the relation {(d1, . . . , di−1, di+1, . . . , dn) | ∃!di ∈ D such that (d1, . . . , di−1, di, di+1, . . . , dn) ∈
R)}. This notion of unique existential quantification is in general not comparable to existential
quantification, since if we e.g. let R = {(0, 0), (0, 1), (1, 0)} then T (x) ≡ ∃!y : R(y, x) even
though T /∈ 〈R〉, i.e., is not even pp-definable by R (where T = {(1)}). Thus, it would be
interesting to determine the resulting closed classes of relations and see in which respect they
differ from the ordinary co-clone lattice.

MFCS 2019

36:14 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

References
1 L. Barto, A. Krokhin, and R. Willard. Polymorphisms, and How to Use Them. In Andrei

Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

2 A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and Control,
55(1):80–88, 1982.

3 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for Post
algebras. I. Cybernetics, 5:243–252, 1969.

4 V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory for Post
algebras. II. Cybernetics, 5:531–539, 1969.

5 E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean Blocks, Part I: Post’s
Lattice with Applications to Complexity Theory. ACM SIGACT-Newsletter, 34(4):38–52,
2003.

6 A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the 58th Annual
Symposium on Foundations of Computer Science (FOCS-2017). IEEE Computer Society, 2017.

7 N. Creignou and M. Hermann. Complexity of Generalized Satisfiability Counting Problems.
Information and Computation, 125(1):1–12, 1996.

8 N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of Boolean constraint
satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications, 2001.

9 N. Creignou, P. Kolaitis, and B. Zanuttini. Structure identification of Boolean relations
and plain bases for co-clones. Journal of Computer and System Sciences, 74(7):1103–1115,
November 2008.

10 N. Creignou and H. Vollmer. Boolean Constraint Satisfaction Problems: When Does Post’s
Lattice Help? In N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Complexity of
Constraints, volume 5250 of Lecture Notes in Computer Science, pages 3–37. Springer Berlin
Heidelberg, 2008.

11 D. Geiger. Closed Systems of Functions and Predicates. Pacific Journal of Mathematics,
27(1):95–100, 1968.

12 R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. Journal of Computer and System
Sciences, 62(2):367–375, 2001.

13 P. Jeavons. On The Algebraic Structure Of Combinatorial Problems. Theoretical Computer
Science, 200:185–204, 1998.

14 P. Jeavons, D. Cohen, and M. Gyssens. A unifying framework for tractable constraints. In
Proceedings of the First International Conference in Principles and Practice of Constraint
Programming (CP-1995), pages 276–291, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

15 L. Juban. Dichotomy Theorem for the Generalized Unique Satisfiability Problem. In Proceedings
of the 12th International Symposium of Fundamentals of Computation Theory (FCT-1999),
volume 1684 of Lecture Notes in Computer Science, pages 327–337. Springer, 1999.

16 D. Kavvadias and M. Sideri. The Inverse Satisfiability Problem. SIAM Journal on Computing,
28:152–163, 1998.

17 V. Lagerkvist. Weak bases of Boolean co-clones. Information Processing Letters, 114(9):462–
468, 2014.

18 V. Lagerkvist. Strong Partial Clones and the Complexity of Constraint Satisfaction Problems:
Limitations and Applications. PhD thesis, Linköping University, The Institute of Technology,
2016.

19 V. Lagerkvist and G. Nordh. On the Strength of Uniqueness Quantification in Primitive
Positive Formulas. ArXiv e-prints, June 2019. arXiv:1906.07031.

20 V. Lagerkvist and B. Roy. A Dichotomy Theorem for the Inverse Satisfiability Problem. In
Proceedings of the 37th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS-2017), volume 93, pages 39:39–39:14, 2018.

http://arxiv.org/abs/1906.07031

V. Lagerkvist and G. Nordh 36:15

21 D. Lau. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone
Theory (Springer Monographs in Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

22 G. Nordh and B. Zanuttini. Frozen Boolean Partial Co-clones. In Proceedings of the 39th
International Symposium on Multiple-Valued Logic (ISMVL-2009), pages 120–125, 2009.
doi:10.1109/ISMVL.2009.10.

23 C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets of
complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

24 E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

25 S. Reith and K. W. Wagner. The Complexity of Problems Defined by Boolean Circuits. In
Proceedings International Conference Mathematical Foundation of Informatics (MFI-1999),
pages 25–28, 1999.

26 B.A. Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–167,
1981.

27 H. Schnoor and I. Schnoor. Partial Polymorphisms and Constraint Satisfaction Problems. In
N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Complexity of Constraints, volume 5250
of Lecture Notes in Computer Science, pages 229–254. Springer Berlin Heidelberg, 2008.

28 D. Zhuk. The Proof of CSP Dichotomy Conjecture. In Proceedings of the 58th Annual
Symposium on Foundations of Computer Science (FOCS-2017). IEEE Computer Society, 2017.

MFCS 2019

https://doi.org/10.1109/ISMVL.2009.10

Resolution Lower Bounds for Refutation
Statements
Michal Garlík
Dept. Ciències de la Computació, Universitat Politècnica de Catalunya,
C. Jordi Girona, 1-3, 08034 Barcelona, Spain
mgarlik@cs.upc.edu

Abstract
For any unsatisfiable CNF formula we give an exponential lower bound on the size of resolution
refutations of a propositional statement that the formula has a resolution refutation. We describe
three applications. (1) An open question in [2] asks whether a certain natural propositional encoding
of the above statement is hard for Resolution. We answer by giving an exponential size lower bound.
(2) We show exponential resolution size lower bounds for reflection principles, thereby improving
a result in [1]. (3) We provide new examples of CNFs that exponentially separate Res(2) from
Resolution (an exponential separation of these two proof systems was originally proved in [10]).

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases reflection principles, refutation statements, Resolution, proof complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.37

Related Version https://arxiv.org/abs/1905.12372v1

Funding Funded by European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme, grant agreement ERC-2014-CoG 648276 (AUTAR).

1 Introduction

Proving lower bounds on the size of propositional proofs is the central task of proof complexity
theory. After Cook and Reckhow [4] motivated this line of research as an approach towards
establishing NP 6= coNP, some initial success for weak proof systems followed, e.g., the first
exponential size lower bound for Resolution was proved by Haken [6]. Nevertheless, many
important open problems from the 1980s and 1990s remain unsolved, and it seems that
proving nontrivial lower bounds on the size of propositional proofs is hard. If it is hard for
people, it is natural to ask if it is also hard for the proof systems themselves. In trying to
formalize this question so that it makes sense to a proof system, we must say what we mean
by “proving is hard”. It can be “there are no short proofs”, a statement which appears in
a propositional formalization of reflection principles. By “short” we mean polynomial in
the size of the formula being proven or refuted. The negation of the reflection principle
for a proof system P is a conjunction of the statement “y is a P -refutation of length s of
formula x of length n” and the statement “z is a satisfying assignment of formula x”. In a
propositional formulation of the principle, P, s, n are fixed parameters and x, y, z are disjoint
sets of variables. A possible way to formalize the above question is then to take the first
conjunct of the negation of the reflection principle and plug in for the x-variables some
formula F of length n. The resulting formula was discussed and utilized by Pudlák [9]; we
denote it by REFFP,s and call it a refutation statement for P . We may now ask whether some
proof system Q can shortly refute REFFP,s, and if it can not, we can interpret this to mean
that lower bounds for P -refutations of F are hard for Q.

© Michal Garlík;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgarlik@cs.upc.edu
https://doi.org/10.4230/LIPIcs.MFCS.2019.37
https://arxiv.org/abs/1905.12372v1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Resolution Lower Bounds for Refutation Statements

Pudlák [9] found connections between the reflection principles and automatizability, and
these were elaborated on in [1]. Following [3], a proof system P is automatizable if there
is a deterministic algorithm that when given as input an unsatisfiable CNF formula F

outputs a P -refutation of F in time polynomial in the size of the shortest P -refutation of F .
Recently, Atserias and Müller [2] showed that Resolution is not automatizable unless P = NP.
Refutation statements for Resolution play a prominent role in their proof. They show that
strong enough resolution size lower bounds for REFFRes,s with an unsatisfiable F imply their
result. However, they leave the lower bound problem for REFFRes,s as an open question, and
in place of REFFRes,s they use in the proof a different formulation of the refutation statement,
obtained by a relativization of REFFRes,s, for which lower bounds are easier to get. In this
paper we focus mainly on giving an answer to the question.

1.1 Results in This Paper
The result that requires the most work is the following lower bound.

I Theorem 1. For each ε > 0 there is δ > 0 and an integer t0 such that if n, r, s, t are
integers satisfying t ≥ s ≥ n+ 1, r ≥ n ≥ 2, t ≥ r3+ε, t ≥ t0, and F is an unsatisfiable CNF
consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn, then any resolution refutation of
REFFs,t has length greater than 2tδ .

We then show that this theorem implies an exponential resolution size lower bound for the
encoding of the refutation statement for which the lower bound question in [2] is originally
asked.

The formula REFFs,t in the theorem is a variant of the refutation statement insisting that
the resolution refutation it describes has the form of a levelled graph. A similar simplifying
assumption, making it more practical to design random restrictions, is used in [11] for a
propositional version of the coloured polynomial local search principle. Our proof proceeds
with defining a random restriction tailored to REFFs,t and to an adversary argument. The
nature of the refutation statement and the fact that the relations between refutation lines are
encoded in unary, rather than in binary, necessitate a more complicated adversary argument
than in [8] or [11], and this in turn poses more requirements on the random restriction. We
discuss these details after the proof, in Remarks 20 and 21.

We see two reasons for working with the unary encoding of REFFs,t. First, REFFs,t is weaker
than refutation statements encoded in binary or relativized refutation statements. Hence
lower bounds for REFFs,t imply lower bounds for the other encodings. Second, researchers
who dealt with propositional encodings of reflection principles or refutation statements opted
for the unary encoding [1, 7, 9].

Besides these two reasons, we need to work with the unary encoding to give an answer to
the above mentioned lower bound question from [2]. Our answer is stated in the following
theorem, the proof of which (an easy reduction to Theorem 1) is in the full version of this
paper [5]. Below, REF(F, s̃) denotes the encoding of the resolution refutation statement in
[2]. We can assume that the formula REFFRes,s is the same as REF(F, s).

I Theorem 2. For each ε > 0 there is δ > 0 and an integer t0 such that if n, r, s̃ are integers
satisfying r ≥ n ≥ 2,

⌊
s̃

n+1

⌋
≥ r3+ε,

⌊
s̃

n+1

⌋
≥ t0, and F is an unsatisfiable CNF consisting of

r clauses C1, . . . , Cr in n variables x1, . . . , xn, then any resolution refutation of REF(F, s̃)
has length greater than 2b

s̃
n+1 c

δ

.

Our next result is that the negation of the reflection principle for Resolution, expressed by
the formula SATn,r ∧REFn,rs,t , exponentially separates the system Res(2) from Resolution. It
was shown by Atserias and Bonet [1] that a similar encoding of the negation of the reflection

M.Garlík 37:3

principle separates the two theories almost-exponentially (giving a 2Ω(2logε n) resolution lower
bound and a polynomial Res(2) upper bound). The exponential separation of Res(2) from
Resolution was originally proved in [10] using a variation of the graph ordering principle.
Our lower bound is stated in Theorem 3 below.

I Theorem 3. For every c > 4 there is δ > 0 and an integer n0 such that if n, r, s, t are
integers satisfying t ≥ s ≥ n+ 1, r ≥ n ≥ n0, nc ≥ t ≥ r4, then any resolution refutation of
SATn,r ∧ REFn,rs,t has length greater than 2nδ .

The proof of the theorem also yields new examples of CNFs exponentially separating Res(2)
from Resolution.

I Theorem 4. Let δ1 > 0 and let {An}n≥1 be a family of unsatisfiable CNFs such that An is
in n variables, has the number of clauses polynomial in n, and has no resolution refutations
of length at most 2nδ1 . Then there is δ > 0 and a polynomial p such that An ∧ REFAnn+1,p(n)

has no resolution refutations of length at most 2nδ and has polynomial size Res(2) refutations.

A Res(2) upper bound for SATn,r ∧ REFn,rs,t , needed for completing the separation by
this formula as well as by the formulas in Theorem 4, is stated in the following theorem.

I Theorem 5. The negation of the reflection principle for Resolution expressed by the formula
SATn,r ∧ REFn,rs,t has Res(2) refutations of size O(trn2 + tr2 + st2n3 + st3n).

A polynomial size Res(2) upper bound on a similar encoding of the negation of the
reflection principle for Resolution was proved in [1]. We simplify the proof and adapt it to
SATn,r ∧ REFn,rs,t (see the full version [5]).

1.2 Outline of This Paper
The rest of the paper is organized as follows.

In Section 2 we give the necessary preliminaries.
In Section 3, Resolution of s levels of t clauses is introduced, and the clauses of the

refutation statement REFFs,t for this refutation system are listed. We also state here a
quadratic simulation of Resolution by this system.

In Section 4 we prove Theorem 1.
In Section 5 we define the formula SATn,r ∧ REFn,rs,t and we prove Theorems 3 and 4.

2 Preliminaries

For an integer s, the set {1, . . . , s} is denoted by [s]. We write dom(f), im(f) for the domain
and image of a funciton f . If x is a propositional variable, the positive literal of x, denoted
by x1, is x, and the negative literal of x, denoted by x0, is ¬x. A clause is a set of literals.
A clause is written as a disjunction of its elements. A term is a set of literals, and is written
as a conjunction of the literals. A CNF is a set of clauses, written as a conjunction of the
clauses. A k-CNF is a CNF whose every clause has at most k literals. A DNF is a set of
terms, written as a disjunction of the terms. A k-DNF is a DNF whose every term has
at most k literals. We will identify 1-DNFs with clauses. A clause is non-tautological if it
does not contain both the positive and negative literal of the same variable. A clause C is a
weakening of a clause D if D ⊆ C. A clause D is the resolvent of clauses C1 and C2 on a
variable x if x ∈ C1,¬x ∈ C2 and D = (C1 \ {x}) ∪ (C2 \ {¬x}). If E is a weakening of the
resolvent of C1 and C2 on x, we say that E is obtained by the resolution rule from C1 and
C2, and we call C1 and C2 the premises of the rule.

MFCS 2019

37:4 Resolution Lower Bounds for Refutation Statements

Let F be a CNF and C a clause. A resolution derivation of C from F is a sequence of
clauses Π = (C1, . . . , Cs) such that Cs = C and for all u ∈ [s], Cu is a weakening of a clause
in F , or there are v, w ∈ [u− 1] such that Cu is obtained by the resolution rule from Cv and
Cw. The length of the derivation Π is s. For u ∈ [s], the height of u in Π is the maximum h

such that there is a subsequence (Cu1 , . . . , Cuh) of Π in which uh = u and for each i ∈ [h− 1],
Cui is a premise of a resolution rule by which Cui+1 is obtained in Π. The height of Π is the
maximum height of u in Π for u ∈ [s]. A resolution refutation of F is a resolution derivation
of the empty set from F .

A partial assignment to the variables x1, . . . , xn is a partial map from {x1, . . . , xn} to
{0, 1}. Let σ be a partial assignment. The CNF F �σ is formed from F by removing every
clause containing a literal satisfied by σ, and removing every literal falsified by σ from the
remaining clauses. If Π = (C1, . . . , Cs) is a sequence of clauses, Π �σ is formed from Π by
the same operations. Note that if Π is a resolution refutation of F , then Π�σ is a resolution
refutation of F �σ.

The Res(k) refutation system is a generalization of Resolution. Its lines are k-DNFs and
it has the following inference rules (A,B are k-DNFs, j ∈ [k], and l, l1, . . . , lj are literals):

A ∨ l1 B ∨ (l2 ∧ · · · ∧ lj)
∧-introduction

A ∨B ∨ (l1 ∧ · · · ∧ lj)
Axiomx ∨ ¬x

A ∨ (l1 ∧ · · · ∧ lj) B ∨ ¬l1 ∨ · · · ∨ ¬lj
Cut

A ∨B

A Weakening
A ∨B

Let F be a CNF. A Res(k) derivation from F is a sequence of k-DNFs (D1, . . . , Ds) so that
each Di either belongs to F or follows from the preceding lines by an application of one of
the inference rules. The size of a Res(k) derivation is the number of symbols in it.

3 Resolution Refutations of s Levels of t Clauses

We introduce a variant of Resolution in which the clauses forming a refutation are arranged
in layers.

I Definition 6. Let F be a CNF of r clauses in n variables x1, . . . , xn. We say that F has
a resolution refutation of s levels of t clauses if there is a sequence of clauses Ci,j indexed
by all pairs (i, j) ∈ [s]× [t], such that each clause C1,j on the first level is a weakening of a
clause in F , each clause Ci,j on level i ∈ {2, . . . , s} is a weakening of the resolvent of two
clauses from level i− 1 on a variable, and the clause Cs,t is empty.

The following proposition shows that this system quadratically simulates Resolution and
preserves the refutation height. The proof (in the full version [5] of the paper) uses a simple
self-replicating pattern both to transport a premise of the resolution rule to the required
level and to fill in all clauses Ci,j that do not directly participate in the simulation.

I Proposition 7. If a (n− 1)-CNF F in n variables has a resolution refutation of height h
and length s, then F has a resolution refutation of h levels of 3s clauses.

We proceed to our formalization of the refutation statement for this refutation system.
Let n, r, s, t be integers. Let F be a CNF consisting of r clauses C1, . . . , Cr in n variables
x1, . . . , xn. We define a propositional formula REFFs,t expressing that F has a resolution
refutation of s levels of t clauses.

We first list the variables of REFFs,t. D-variables D(i, j, k, b), i ∈ [s], j ∈ [t], k ∈
[n], b ∈ {0, 1}, encode clauses Ci,j as follows: D(i, j, k, 1) (resp. D(i, j, k, 0)) means that
the literal xk (resp. ¬xk) is in Ci,j . L-variables L(i, j, j′) (resp. R-variables R(i, j, j′)),

M.Garlík 37:5

i ∈ {2, . . . , s}, j, j′ ∈ [t], say that Ci−1,j′ is a premise of the resolution rule by which Ci,j is
obtained, and it is the premise containing the positive (resp. negative) literal of the resolved
variable. V -variables V (i, j, k), i ∈ {2, . . . , s}, j ∈ [t], k ∈ [n], say that Ci,j is obtained by
resolving on xk. I-variables I(j,m), j ∈ [t],m ∈ [r], say that C1,j is a weakening of Cm.

REFFs,t is the union of the following fifteen sets of clauses:

¬I(j,m) ∨D(1, j, k, b) j∈ [t],m∈ [r], b∈{0, 1}, xbk∈Cm, (1)

clause C1,j contains the literals of Cm assigned to it by I(j,m),

¬D(i, j, k, 1) ∨ ¬D(i, j, k, 0) i∈ [s], j∈ [t], k∈ [n], (2)

no clause Ci,j contains xk and ¬xk at the same time,

¬L(i, j, j′) ∨ ¬V (i, j, k) ∨D(i− 1, j′, k, 1) i∈{2, . . . , s}, j, j′∈ [t], k∈ [n], (3)
¬R(i, j, j′) ∨ ¬V (i, j, k) ∨D(i− 1, j′, k, 0) i∈{2, . . . , s}, j, j′∈ [t], k∈ [n], (4)

clause Ci−1,j′ used as the premise given by L(i, j, j′) (resp. R(i, j, j′)) in resolving on xk
must contain xk (resp. ¬xk),

¬L(i, j, j′) ∨ ¬V (i, j, k) ∨ ¬D(i− 1, j′, k′, b) ∨D(i, j, k′, b)
i∈{2, . . . , s}, j, j′∈ [t], k, k′∈ [n], b∈{0, 1}, (k′, b) 6= (k, 1), (5)

¬R(i, j, j′) ∨ ¬V (i, j, k) ∨ ¬D(i− 1, j′, k′, b) ∨D(i, j, k′, b)
i∈{2, . . . , s}, j, j′∈ [t], k, k′∈ [n], b∈{0, 1}, (k′, b) 6= (k, 0), (6)

clause Ci,j derived by resolving on xk must contain each literal different from xk (resp. ¬xk)
from the premise given by L(i, j, j′) (resp. R(i, j, j′)),

¬D(s, t, k, b) k∈ [n], b∈{0, 1}, (7)

clause Cs,t is empty,

V (i, j, 1) ∨ V (i, j, 2) ∨ . . . ∨ V (i, j, n) i∈{2, . . . , s}, j∈ [t], (8)
I(j, 1) ∨ I(j, 2) ∨ . . . ∨ I(j, r) j∈ [t], (9)
L(i, j, 1) ∨ L(i, j, 2) ∨ . . . ∨ L(i, j, t) i∈{2, . . . , s}, j∈ [t], (10)
R(i, j, 1) ∨R(i, j, 2) ∨ . . . ∨R(i, j, t) i∈{2, . . . , s}, j∈ [t], (11)
¬V (i, j, k) ∨ ¬V (i, j, k′) i∈{2, . . . , s}, j∈ [t], k, k′∈ [n], k 6= k′, (12)
¬I(j,m) ∨ ¬I(j,m′) j∈ [t],m,m′∈ [r],m 6= m′, (13)
¬L(i, j, j′) ∨ ¬L(i, j, j′′) i∈{2, . . . , s}, j, j′, j′′∈ [t], j′ 6= j′′, (14)
¬R(i, j, j′) ∨ ¬R(i, j, j′′) i∈{2, . . . , s}, j, j′, j′′∈ [t], j′ 6= j′′, (15)

the V, I, L,R-variables define functions with the required domains and ranges.

4 A Lower Bound on Lengths of Resolution Refutations of REFF
s,t

We restate Theorem 1 from the Introduction.

I Theorem 8. For each ε > 0 there is δ > 0 and an integer t0 such that if n, r, s, t are
integers satisfying

t ≥ s ≥ n+ 1, r ≥ n ≥ 2, t ≥ r3+ε, t ≥ t0, (16)

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,
then any resolution refutation of REFFs,t has length greater than 2tδ .

MFCS 2019

37:6 Resolution Lower Bounds for Refutation Statements

The rest of this section is devoted to a proof of the theorem. We argue by contradiction.
Fix ε > 0 and assume that for each δ > 0 and t0 there are integers n, r, s, t satisfying (16),
an unsatisfiable CNF F , and a resolution refutation Π of REFFs,t, such that F consists of r
clauses C1, . . . , Cr in n variables x1, . . . , xn, and Π has length at most 2tδ .

The forthcoming distribution on partial assignments to the variables of REFFs,t employs in
its definition and analysis two important parameters, p and w. We choose them as function
of t and ε as follows:

p = t−a with a = min
{

2 + ε/2
3 + ε/2 ,

3
4

}
, w = t4/5.

We now fix values of t0, δ for which we will get the desired contradiction. Take t0 so large
and δ > 0 so small that the inequalities

max
{
e−

pw
3 + 2s · e−

pt
3 , e−

pt
8r

}
· 2t

δ

+ 3s · e−
pt
3 + 3p+ 67p3st < 1, (17)

10pt+ 4w <
t

4 , (18)

ee
ln(t)− pt3 < 2, (19)

hold for any n, r, s, t satisfying (16).

I Definition 9. For i ∈ [s], j, j′ ∈ [t], k ∈ [n], b ∈ {0, 1},m ∈ [r], we say that (i, j) is the
home pair of the variable D(i, j, k, b) (resp. R(i, j, j′); L(i, j, j′); V (i, j, k′); I(j,m) if i = 1).

We write V (i, j, ·) to stand for the set {V (i, j, k) : k ∈ [n]}. Similarly, we write
I(j, ·), L(i, j, ·), R(i, j, ·) to stand for the corresponding sets of variables, and we denote
by D(i, j, ·, ·) the set of variables {D(i, j, k, b) : k ∈ [n], b ∈ {0, 1}}.

Let σ be a partial assignment. We say that V (i, j, ·) is set to k by σ if σ(V (i, j, k)) = 1
and σ(V (i, j, k′)) = 0 for all k′ ∈ [n], k′ 6= k. Similarly for I(j, ·), L(i, j, ·), R(i, j, ·). We say
that D(i, j, ·, ·) is set to a clause Ci,j by σ if for all k ∈ [n], b ∈ {0, 1}, σ(D(i, j, k, b)) = 1 if
xbk ∈ Ci,j and σ(D(i, j, k, b)) = 0 if xbk 6∈ Ci,j .

For Y ∈ {D(i, j, ·, ·), V (i, j, ·), I(j, ·), R(i, j, ·), L(i, j, ·), }, we say that Y is set by σ if Y
is set to v by σ for some value v. We will often omit saying “by σ” if σ is clear from the
context.

I Definition 10. A random restriction ρ is a partial assignment to the variables of REFFs,t
given by the following experiment:
1. For each pair (i, j) ∈ [s]× [t], with independent probability p include (i, j) in a set AD.

Then for each (i, j) ∈ AD and for each k ∈ [n], independently, with probability 1/2 choose
between including the literal xk or ¬xk in a clause Ci,j . Set D(i, j, ·, ·) to Ci,j .

2. For each j ∈ [t], with independent probability p include the pair (1, j) in a set AI . Then
for each (1, j) ∈ AI \AD, independently, choose at random m ∈ [r] and set I(j, ·) to m.

3. For each pair (i, j) ∈ {2, . . . , s}× [t], with independent probability p include (i, j) in a set
AV . Then for each (i, j) ∈ AV , independently, choose at random k ∈ [n] and set V (i, j, ·)
to k.

4. For each pair (i, j) ∈ {2, . . . , s} × [t], with independent probability p include the pair
(i, j) in a set ARL. Then, for each i ∈ {2, . . . , s}, define Ai := ARL ∩ ({i} × [t]) and do
the following. If |Ai| > 2pt, define hi := ∅, Bi−1 := ∅. Otherwise, choose at random
an injection hi from {L(i, j, ·) : (i, j) ∈ Ai} ∪ {R(i, j, ·) : (i, j) ∈ Ai} to [t]. Define
Bi−1 := {(i− 1, j) : j ∈ im(hi)}. Set L(i, j, ·) to hi(L(i, j, ·)) and R(i, j, ·) to hi(R(i, j, ·))
for all (i, j) ∈ Ai.

M.Garlík 37:7

I Lemma 11. With probability at least 1− 3s · e−pt/3, all of the following are satisfied.
(i) For each i ∈ [s], the cardinality of AD ∩ ({i} × [t]) is at most 2pt.
(ii) For each i ∈ {2, . . . , s}, the cardinality of Ai is at most 2pt and the cardinality of

AV ∩ ({i} × [t]) is at most 2pt.
(iii) The cardinality of AI is at most 2pt.

Proof. By the Chernoff bound and the union bound it follows that item i is false with
probability at most s · e−pt/3. Similarly for the remaining items. J

I Definition 12. Denote by Gρ the graph with vertices AD ∪AV ∪AI ∪ARL ∪
⋃
i∈[s−1]Bi,

and with edges only between vertices on neighboring levels, such that (i, j) is connected by
an edge to (i− 1, j′) if and only if hi(L(i, j, ·)) = j′ (then (i− 1, j′) is called the left child of
(i, j)) or hi(R(i, j, ·)) = j′ (then (i− 1, j′) is the right child of (i, j)).

The following lemma will be used later to show that a random restriction likely does not
falsify any clause of REFFs,t.

I Lemma 13. With probability at least 1− 3p− 67p3st, the following are satisfied.
(i) (s, t) 6∈ (AD ∪ARL ∪AV).
(ii) There is no triple ((i1, j1), (i2, j2), (i3, j3)) of elements of [s] × [t], such that all the

following hold:
(a) For each u∈ [3] there is X∈{D,V, I,RL} with (iu, ju)∈AX ,
(b) |{(iu, ju, X) : u ∈ [3], X∈{D,V, I,RL}, (iu, ju)∈AX}| ≥ 3,
(c) the subgraph of Gρ consisting of the vertices that are in the triple and their children

and all edges that go from a vertex of the triple to its children, is connected.

Proof. The probability that item i is true is (1− p)3 ≥ 1− 3p.
Regarding item ii, we distinguish several cases based on the relative positions of the

elements in a triple ((i1, j1), (i2, j2), (i3, j3)). Note that the order in which the elements of
the triple are listed does not matter in what we are proving, but some of the elements may
coincide. When considering the cases, recall that due to our choice of the function hi in the
definition of ρ, two vertices in Gρ cannot share a child.

In case all the elements of the triple are the same, iib is satisfied only if the element is
chosen to AX for three distinct values of X. This cannot happen on level 1, and on the
other levels it happens with probability p3. There are st many triples considered in the
present case, so by the union bound the probability that there is any such triple satisfying
all conditions in ii is at most p3st.

In case (i1, j1) 6= (i2, j2) = (i3, j3), condition iic is satisfied only if i1 = i2 +1 or i2 = i1 +1.
In each of these two subcases, there are at most st2 such triples. In the former subcase, we
must have (i1, j1) ∈ ARL and at the same time hi1(R(i1, j1, ·)) = j2 or hi1(L(i1, j1, ·)) = j2.
This happens with probability at most 2p/t. Also, (i2, j2) has to be in AX and AX′ for
distinct X,X ′, which happens with probability at most 3p2. So, the probability that any
triple considered in this subcase satisfies iia - iic is at most st2 · 6p3/t = 6p3st. In the latter
subcase, (i2, j2) has to be in ARL, connected to (i1, j1), and additionally it has to be in AD
or AV , while (i1, j1) has to be in arbitrary possible AX . This happens with probability at
most 2p/t · 2p · 3p = 12p3/t, so the probability that any such triple satisfies iia - iic is at most
12p3st.

In case all the elements of the triple are distinct, we again consider two subcases: first,
i1 = i2 + 1 = i3 + 2, and second, i1 − 1 = i2 = i3. Each subcase concerns at most st3
triples. In the first subcase, (i3, j3) has to be a child of (i2, j2), which in turn has to be
a child of (i1, j1), and (i3, j3) also has to be in arbitrary possible AX . This happens with

MFCS 2019

37:8 Resolution Lower Bounds for Refutation Statements

probability at most 12p3/t2. Hence the probability that any such triple satisfies iia - iic is
at most 12p3st. In the second subcase, (i1, j1) has to have children (i2, j2) and (i3, j3), and
each child has to be in some AX for any suitable X. This happens with probability at most
2p/(t(t− 1)) · (3p)2 = 18p3/(t(t− 1)) ≤ 36p3/t2. Hence the probability that any such triple
satisfies iia - iic is at most 36p3st. J

We now define some specific ways to measure a clause and we use them in the next lemma
to describe how a clause simplifies under a restriction.

I Definition 14. Let E be a clause in Π�ρ, and let (i, j) ∈ [s]× [t]. If E contains a literal of
a variable from D(i, j, ·, ·) (resp. R(i, j, ·); L(i, j, ·); V (i, j, ·); I(j, ·) and i = 1), we say that
the pair (i, j) is D-mentioned (resp. R-mentioned; L-mentioned; V -mentioned; I-mentioned)
in E.

We say that (i, j) is V -important (resp. L-important; R-important; I-important) in E

if E contains the negative literal of a variable in V (i, j, ·) (resp. L(i, j, ·);R(i, j, ·); I(j, ·)
and i = 1) or if E contains at least n/2 (resp. t/2; t/2; r/2) positive literals of variables
in V (i, j, ·) (resp. L(i, j, ·); R(i, j, ·); I(j, ·) and i = 1). A pair is D-important in E if it is
D-mentioned in E.

I Lemma 15. With probability at least 1 − max
{
e−

pw
3 + 2s · e−

pt
3 , e−

pt
8r

}
· 2tδ , for every

clause E in Π�ρ all of the following are satisfied.
(i) At most w many pairs (i, j) are D-mentioned in E.
(ii) At most w many pairs (1, j) are I-important in E.
(iii) At most w many pairs (i, j) are V -important in E.
(iv) At most w many pairs (i, j) are L-important in E.
(v) At most w many pairs (i, j) are R-important in E.
(vi) For each m ∈ [r], |{j : I(j,m) ∈ E}| ≤ t

4 .
(vii) For each i ∈ {s− n+ 1, . . . , s− 1} and k ∈ [n], |{j : V (i, j, k) ∈ E}| ≤ t

4 .

Proof. It is sufficient to prove that if E′ is a clause in Π that violates any of i - vii, then
with probability at least 1−max

{
e−

pw
3 + 2s · e−

pt
3 , e−

pt
8r

}
, E′ is satisfied by ρ. Since Π has

length at most 2tδ , the lemma then follows by the union bound.
Regarding item i, assume that E′ in Π D-mentions more than w pairs (i, j). This means

that a literal of a variable in D(i, j, ·, ·) is in E′ for more than w many pairs (i, j). For each
such (i, j), such a literal is satisfied by ρ with probability at least p/2. So the probability
that none of these literals in E′ is satisfied is at most (1− p/2)w < e−pw/2.

Regarding item ii, suppose that more than w pairs (1, j) are I-important in E′. For
each such (1, j), the probability that (1, j) ∈ AI \ AD is p(1 − p), and provided this
happens, the probability that ρ satisfies a literal in E′ of a variable in I(j, ·) is at least
min{(r − 1)/r, 1/2} = 1/2. Hence the probability that E′ is not satisfied by ρ is at most
(1− p(1− p)/2)w < (1− p/3)w < e−pw/3 (the first inequality follows from (18)).

Regarding item iii, a calculation similar to that for ii gives that a clause E′ in Π with
more than w many V -important pairs (i, j) is not satisfied by ρ with probability at most
(1− p/2)w < e−pw/2.

Regarding item iv, suppose that more than w many pairs (i, j) from {2, . . . , s} × [t]
are L-important in E′. For each i ∈ {2, . . . , s}, assume without loss of generality that the
set of pairs (i, j) that are L-important in E′ is the set {(i, 1), . . . , (i, wi)}; denote it by Wi.
Note that the distribution of ρ does not change if we choose Ai and hi in t many steps as
follows. Start with Ai,0 = hi,0 = ∅. At step j = 1, 2, . . . , t, first add (i, j) to Ai,j−1 with
probability p to get Ai,j . Then, if |Ai,j | ≤ 2pt and (i, j) ∈ Ai,j , choose at random two distinct

M.Garlík 37:9

elements j′, j′′ from [t] \ im(hi,j−1), and define hi,j := hi,j−1 ∪ {(L(i, j, ·), j′), (R(i, j, ·), j′′)}.
If |Ai,j | ≤ 2pt and (i, j) /∈ Ai,j , define hi,j := hi,j−1. If |Ai,j | > 2pt define hi,j := ∅. This
finishes step j. Finally, define Ai := Ai,t and hi := hi,t.

For i ∈ {2, . . . , s}, let Hi be the set of literals in E′ of a variable in L(i, j, ·) for some
(i, j) ∈ Wi. Also, for (i, j) ∈ Wi, let Ti,j be the set of those j′ ∈ [t] such that the partial
assignment given by setting L(i, j, ·) to j′ satisfies some literal inHi. We know that |Ti,j | ≥ t/2
for each (i, j) ∈Wi.

The event that no literal in Hi is satisfied by ρ is a subset of the union of events (a)
|Ai,t| > 2pt, and (b) |Ai,wi | ≤ 2pt and for each (i, j) ∈ Ai,wi , hi,j(L(i, j, ·)) /∈ Ti,j . Event (a)
happens with probability at most e−pt/3 by the Chernoff bound. We bound the probability
of event (b). For each j ∈ [wi], if (i, j) ∈ Ai,j and |Ai,j | ≤ 2pt, then the probability that
hi,j(L(i, j, ·)) ∈ Ti,j is at least (|Ti,j \ im(hi,j−1)|)/t ≥ (t/2− 4pt)/t = (1− 8p)/2 ≥ 1/3 (the
last inequality follows from (18)). Therefore, denoting ` := min{2pt, wi}, the probability of
event (b) is at most

∑̀
k=0

(
wi
k

)
pk(1− p)wi−k

(
2
3

)k
≤

wi∑
k=0

(
wi
k

)(
2p
3

)k
(1− p)wi−k = (1− p/3)wi .

Thus, the probability that no literal in Hi is satisfied by ρ is at most e−pt/3 + e−pwi/3, and,
denoting S := {i ∈ {2, . . . , s} : wi 6= 0}, the probability that no literal in

⋃
i∈S Hi is satisfied

by ρ is at most

∏
i∈S

(
e−

pwi
3 + e−

pt
3

)
≤ e−

pw
3 +

|S|∑
k=1

(
|S|
k

)
e−

ptk
3

≤ e−
pw
3 + |S| · e−

pt
3

|S|∑
k=1

(
|S| − 1
k − 1

)
e−

pt(k−1)
3

= e−
pw
3 + |S| · e−

pt
3 ·
(

1 + e−
pt
3

)|S|−1

≤ e−
pw
3 + s · e−

pt
3 · ee

ln(t)− pt3 ≤ e−
pw
3 + 2s · e−

pt
3 ,

where the penultimate inequality follows from |S| − 1 ≤ s ≤ t, and the last inequality follows
from (19).

Item v is handled in the same way as iv.
Regarding item vi, suppose that for some m ∈ [r] there are more than t/4 of I(j,m) in E′.

Similarly to the case ii, each such I(j,m) is satisfied by ρ with independent probability at least
p(1−p)/r > p/(2r), so E′ is not satisfied with probability at most (1−p/(2r))t/4 < e−pt/(8r).

Item vii is treated similarly to vi, with the resulting probability of not satisfying E′ being
(1− p/n)t/4 < e−pt/(4n) < e−pt/(8r), where the last inequality follows from (16). J

By (17) and by Lemmas 11, 13, and 15, there is a restriction ρ satisfying all the assertions
of the lemmas. Fix any such ρ.

I Definition 16. A partial assignment σ to the variables of REFFs,t is called an admissible
assignment if it extends ρ and satisfies all the following conditions.
(C1) For each (i, j) ∈ [s]× [t], D(i, j, ·, ·) (resp. V (i, j, ·), I(j, ·), L(i, j, ·), R(i, j, ·)) either is

set to some clause (resp. some k ∈ [n], some m ∈ [r], some j′ ∈ [t], some j′ ∈ [t]) by σ
or contains no variable that is in dom(σ).

(C2) For each (i, j) ∈ [s] × [t], if L(i, j, ·) or R(i, j, ·) is set to some j′ ∈ [t], then both
D(i, j, ·, ·) and D(i− 1, j′, ·, ·) are set.

MFCS 2019

37:10 Resolution Lower Bounds for Refutation Statements

(C3) For each (i, j) ∈ [s]× [t], if D(i, j, ·, ·) is set, then V (i, j, ·) is set (if i ∈ {2, . . . , s}) or
I(j, ·) is set (if i = 1).

(C4) For each (i, j) ∈ [s]× [t], if D(i, j, ·, ·) is set to a clause Ci,j , then Ci,j is non-tautological
and has at least min{s− i, n} many literals. If D(i, j, ·, ·) is set to a clause Ci,j with
less than n literals and V (i, j, ·) is set to some k ∈ [n], then none of the literals of xk is
in Ci,j .

(C5) If D(s, t, ·, ·) is set, it is set to the empty clause.
(C6) For each j ∈ [t], if D(1, j, ·, ·) and I(j, ·) are set, then σ satisfies all clauses in (1) with

this j.
(C7) For each i ∈ {2, . . . , s}, j, j′ ∈ [t], if L(i, j, ·) (resp. R(i, j, ·)) is set to j′ and both

V (i, j, ·), D(i− 1, j′, ·, ·) are set, then σ satisfies all clauses in (3) (resp. (4)) with these
i, j, j′.

(C8) For each i ∈ {2, . . . , s}, j, j′ ∈ [t], if L(i, j, ·) (resp. R(i, j, ·)) is set to j′ and V (i, j, ·),
D(i, j, ·, ·), D(i − 1, j′, ·, ·) are set, then σ satisfies all clauses in (5) (resp. (6)) with
these i, j, j′.

(C9) For each i ∈ {2, . . . , s}, the binary relation hσ,i := {(Z(i, j, ·), j′) : j, j′ ∈ [t], Z ∈
{L,R}, and Z(i, j, ·) is set to j′ by σ} is a partial injection from {Z(i, j, ·) : j ∈ [t], Z ∈
{L,R}} to [t].

For the proofs of the following three lemmas, see the full version [5].

I Lemma 17. No clause in REFFs,t �ρ is falsified by any admissible assignment.

I Lemma 18. There is an admissible assignment.

I Lemma 19. Suppose that a clause E in Π�ρ is obtained by the resolution rule from clauses
E0 and E1. Suppose further that there is an admissible assignment σ which satisfies both
conditions
(i) every literal in E of a variable in dom(σ) is falsified by σ,
(ii) for each Z ∈ {D,V, I,R, L}, each Z-variable with a home pair Z-important in E is in

dom(σ).
Then there is an admissible assignment τ and b ∈ {0, 1} such that i and ii hold with τ in
place of σ and Eb in place of E.

These three lemmas easily imply a contradiction, which concludes the proof of Theorem 8.
I Remark 20. If we assume s = n+ 1 in Theorem 8 (instead of assuming only s ≥ n+ 1)
then we can allow t to be smaller: it is enough to assume that t ≥ r2+ε. This can be useful
if one wants to reduce the number of variables of REFFs,t while keeping the lower bound of
the theorem valid. The latter can be shown by making only the following modification in
the proof of Theorem 8: change the definition of p to p = s−1/3t−a

′ with a′ = min
{

1+ε
3+ε ,

1
2

}
,

and change the definition of w to w = s1/3t3/5.
We note that if in the definition of REFFs,t we encode the functions determined by V -

and I-variables in binary instead of in unary, the assumption t ≥ r3+ε in Theorem 8 is not
necessary (and the proof of the theorem simplifies somewhat), and, in addition, the L- and
R-variables can be encoded in binary too (with some further simplifications of the proof).
This reduces the number of variables of REFFs,t in two ways, by allowing a smaller t and by
using a more efficient encoding.
I Remark 21. Most of the obstacles our proof has to overcome are caused by the nature of
the object described by REFFs,t and by the fact that the functions determined by V, I, L,R-
variables are encoded in unary, rather than in binary. This forces us to work with several

M.Garlík 37:11

notions of width of two kinds, and we cannot keep as an invariant of the maintained partial
assignment that it falsifies all literals of a clause as we traverse the refutation (as is the case
e.g. in [11]). Moreover, keeping falsified just the literals with important indices and adding
some simple conditions about not directly falsifying an axiom (a method which works e.g.
in [8] for the pigeonhole principle) is not enough either, because we need to be prepared
to consistently answer the prover’s questions about clauses situated at remote parts of the
same not too small component (learnt through the L- and R-variables). This is further
complicated by the need to respond by adding a fresh literal to a clause that has too few
literals to make sure its width grows fast enough (such clauses originate in the component
of the empty clause), and by the necessity to arrive to a weakening of a clause in F when
asked how a clause on level 2 is derived; both are more difficult to meet under the unary
encoding and pose specific requirements on random restrictions. Our strategy stores some
useful information in the form of negating some other literals than just those with important
indices in a clause, as can be seen in the hierarchy of setting of variables of different kinds in
Definition 16.

5 Reflection Principle for Resolution

We express the negation of the reflection principle for Resolution by a CNF in the form
of a conjunction SATn,r ∧ REFn,rs,t . The only shared variables by the formulas SATn,r and
REFn,rs,t encode a CNF with r clauses in n variables. The meaning of SATn,r is that the
encoded CNF is satisfiable, while the meaning of REFn,rs,t is that it has a resolution refutation
of s levels of t clauses. A formal definition is given next.

Formula SATn,r has the following variables. Variables C(m, k, b), m ∈ [r], k ∈ [n], b ∈
{0, 1}, encode clauses Cm as follows: C(m, k, 1) (resp. C(m, k, 0)) means that the literal xk
(resp. ¬xk) is in Cm. Variables T (k), k ∈ [n], and variables T (m, k, b), m ∈ [r], k ∈ [n], b ∈
{0, 1}, encode that an assignment to variables x1, . . . , xn satisfies the CNF {C1, . . . , Cr}.
The meaning of T (k) is that the literal xk is satisfied by the assignment. The meaning of
T (m, k, 1) (resp. T (m, k, 0)) is that clause Cm is satisfied through the literal xk (resp. ¬xk).

We list the clauses of SATn,r:

T (m, 1, 1) ∨ T (m, 1, 0) ∨ . . . ∨ T (m,n, 1) ∨ T (m,n, 0) m ∈ [r], (20)
¬T (m, k, 1) ∨ T (k) m ∈ [r], k ∈ [n], (21)
¬T (m, k, 0) ∨ ¬T (k) m ∈ [r], k ∈ [n], (22)
¬T (m, k, b) ∨ C(m, k, b) m ∈ [r], k ∈ [n], b ∈ {0, 1}, (23)

The meaning of (20) is that clause Cm is satisfied through at least one literal. The meaning
of (21) and (22) is that if Cm is satisfied through a literal, then the literal is satisfied. The
meaning of (23) is that if Cm is satisfied through a literal, then it contains the literal.

Variables of REFn,rs,t are the variables C(m, k, b) of SATn,r together with all the variables
of REFFs,t for some (and every) F of r clauses in n variables. That is, REFn,rs,t has the
following variables:

C(m, k, b) m ∈ [r], k ∈ [n], b ∈ {0, 1},
D(i, j, k, b) i ∈ [s], j ∈ [t], k ∈ [n], b ∈ {0, 1},
R(i, j, j′) and L(i, j, j′) i ∈ {2, . . . , s}, j, j′ ∈ [t],
V (i, j, k) i ∈ {2, . . . , s}, j ∈ [t], k ∈ [n],
I(j,m) j ∈ [t],m ∈ [r].

MFCS 2019

37:12 Resolution Lower Bounds for Refutation Statements

The clauses of REFn,rs,t are (2) - (15) of REFFs,t together with the following clauses (to
replace clauses (1)):

¬I(j,m) ∨ ¬C(m, k, b) ∨D(1, j, k, b) j ∈ [t],m ∈ [r], k ∈ [n], b ∈ {0, 1}, (24)

saying that if clause C1,j is a weakening of clause Cm, then the former contains each literal
of the latter.

We now prove the lower bound for SATn,r∧REFn,rs,t stated in the Introduction as Theorem
3 and restated below as Theorem 22.

I Theorem 22. For every c > 4 there is δ > 0 and an integer n0 such that if n, r, s, t are
integers satisfying

t ≥ s ≥ n+ 1, r ≥ n ≥ n0, nc ≥ t ≥ r4, (25)

then any resolution refutation of SATn,r ∧ REFn,rs,t has length greater than 2nδ (which is
exponential in the size of the formula).

Proof. Fix c > 4. We first observe that if Π is a resolution refutation of SATn,r ∧ REFn,rs,t
and σ is a partial assignment such that its domain are all C-variables, then Π�σ is either a
refutation of REFn,rs,t �σ, or a refutation of SATn,r �σ. This is because Π�σ is a resolution
refutation and the two restricted formulas do not share any variables.

Let F be a CNF with r clauses in n variables, and let σF be a partial assignment such
that its domain are all C-variables and σF evaluates them so that they describe the clauses
of F . Notice that REFn,rs,t � σF is REFFs,t, since σF turns the clauses (24) into the clauses
(1) (and removes the satisfied clauses). Therefore, in the case that Π�σF is a refutation of
REFn,rs,t �σF and F is unsatisfiable, the lower bound of Theorem 8 applies (setting ε = 1 in
that theorem, there is n0 such that conditions (16) on n, r, s, t follow from (25)): the theorem
yields some δ1 > 0 such that the length of Π�σF is at least 2nδ1 .

Let us now consider the case that Π�σF is a refutation of SATn,r �σF . Let SATF stand
for SATn,r �σF . There is a substitution τ to the variables of SATF that turns the clauses
of SATF into all the clauses of F together with some tautological clauses. It is defined
as follows. If σF (C(m, k, b)) = 0, then τ(T (m, k, b)) = 0. This satisfies (21) - (23) and
deletes T (m, k, b) from (20). If σF (C(m, k, b)) = 1, then (23) has been satisfied and we define
τ(T (m, k, b)) = xbk and τ(T (k)) = xk. This choice turns (21) - (22) into a tautological clause
and correctly substitutes the remaining literals of (20) to yield the m-th clause of F . Thus,
if Π�σF is a refutation of SATn,r �σF , the substitution τ takes it into a not larger resolution
refutation of F (since tautological clauses can be removed from any resolution refutation).

It remains to take any unsatisfiable formula F whose number of clauses is polynomially
related to the number of variables and that requires resolution refutations of exponential
length, e.g. the pigeonhole principle [6]. A trivial modification of F to serve also in the
extreme case r = n allowed by (25) will yield δ2 > 0 such that any resolution refutation of F
has length greater than 2nδ2 , where n is the number of variables of F .

Setting δ to the minimum of δ1 and δ2 concludes the proof of the theorem. J

A similar proof gives Theorem 4. We restate the theorem below for convenience.

I Theorem 23. Let γ > 0 and let {An}n≥1 be a family of unsatisfiable CNFs such that An
is in n variables, has the number of clauses polynomial in n, and has no resolution refutations
of length at most 2nγ . Then there is δ > 0 and a polynomial p such that An ∧ REFAnn+1,p(n)

has no resolution refutations of length at most 2nδ and has polynomial size Res(2) refutations.

M.Garlík 37:13

Proof. Let p(n) ≥ max{r4, t0}, where r is the maximum of the number of clauses of An
and n, and t0 is given by Theorem 8 for ε = 1. This theorem and the assumptions on An
give the required lower bound. To get the upper bound, start with the Res(2) refutation of
SATn,r∧REFn,rn+1,p(n) given by Theorem 5. Define substitutions σAn and τ like in the proof of
Theorem 22 with An in place of F , and observe again that ((SATn,r ∧REFn,rn+1,p(n))�σAn)�τ
is An ∧ REFAnn+1,p(n) together with some tautological clauses. J

References
1 Albert Atserias and María Luisa Bonet. On the automatizability of resolution and related

propositional proof systems. Information and Computation, 189(2):182–201, 2004.
2 Albert Atserias and Moritz Müller. Automating Resolution is NP-Hard. arXiv e-prints, April

2019. arXiv:1904.02991v1.
3 María Luisa Bonet, Toniann Pitassi, and Ran Raz. On Interpolation and Automatization for

Frege Systems. SIAM J. Comput., 29(6):1939–1967, 2000. doi:10.1137/S0097539798353230.
4 Stephen A. Cook and Robert A. Reckhow. The Relative Efficiency of Propositional Proof

Systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.
5 Michal Garlík. Resolution Lower Bounds for Refutation Statements. arXiv e-prints, May 2019.

arXiv:arXiv:1905.12372v1.
6 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2–3):297–308,

1985.
7 Jan Krajíček, Alan Skelley, and Neil Thapen. NP search problems in low fragments of bounded

arithmetic. The Journal of Symbolic Logic, 72(2):649–672, 2007.
8 Pavel Pudlák. Proofs as Games. American Mathematical Monthly, 107(6):541–550, 2000.

doi:10.2307/2589349.
9 Pavel Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer

Science, 295:323–339, 2003.
10 Nathan Segerlind, Samuel R. Buss, and Russel Impagliazzo. A switching lemma for small

restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing, 33(5):1171–
1200, 2004.

11 Neil Thapen. A Tradeoff Between Length and Width in Resolution. Theory of Computing,
12(5):1–14, 2016.

MFCS 2019

http://arxiv.org/abs/1904.02991v1
https://doi.org/10.1137/S0097539798353230
http://arxiv.org/abs/arXiv:1905.12372v1
https://doi.org/10.2307/2589349

Tangles and Single Linkage Hierarchical Clustering
Eva Fluck
RWTH Aachen University, Germany
fluck@cs.rwth-aachen.de

Abstract
We establish a connection between tangles, a concept from structural graph theory that plays a
central role in Robertson and Seymour’s graph minor project, and hierarchical clustering. Tangles
cannot only be defined for graphs, but in fact for arbitrary connectivity functions, which are functions
defined on the subsets of some finite universe, which in typical clustering applications consists of
points in some metric space.

Connectivity functions are usually required to be submodular. It is our first contribution to
show that the central duality theorem connecting tangles with hierarchical decompositions (so-called
branch decompositions) also holds if submodularity is replaced by a different property that we call
maximum-submodular.

We then define a natural, though somewhat unusual connectivity function on finite data sets
in an arbitrary metric space and prove that its tangles are in one-to-one correspondence with the
clusters obtained by applying the well-known single linkage clustering algorithms to the same data
set.

The idea of viewing tangles as clusters has first been proposed by Diestel and Whittle [5] as an
approach to image segmentation. To the best of our knowledge, our result is the first that establishes
a precise technical connection between tangles and clusters.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Unsupervised learning and clustering

Keywords and phrases Tangles, Branch Decomposition, Duality, Hierarchical Clustering, Single
Linkage

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.38

1 Introduction

Connectivity in graphs and connectivity systems is a widely studied topic in theoretical
computer science, e.g. [11, 8, 6, 7, 5]. On the other hand similarity, especially clustering,
is an important and well studied topic in Data Science, e.g. [2, 4, 3, 10, 12]. We study the
connection between both concepts by interpreting similarity as connectivity, thus two points
are highly connected if their data is very similar and two sets are highly connected if they
contain similar data points. Both communities will benefit from such a connection, as it
opens up a basis for a wide range of new results. For example connectivity systems provide
us with witnesses for the absence of highly connected regions, which is not yet established for
clusters, as well as tree like representations of all those highly connected regions. Additionally
there is large variety of efficient algorithms to compute or approximate different kind of
clusters, which can possibly be used to find algorithms for computing highly connected
regions in connectivity systems.

The concept of connectivity systems is based on the notion of connectivity in graphs.
Such systems consist of a universe U of usually finitely many elements and some set function
on subsets of U describing the connectivity between a set and its complement. These so called
connectivity functions are symmetric and submodular. In this context two complementary
questions are of interest [9]:

© Eva Fluck;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 38; pp. 38:1–38:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9643-6081
mailto:fluck@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Tangles and Single Linkage Hierarchical Clustering

1. What are the highly connected regions of the universe?
2. How can we decompose the universe along low order separations?

An answer to the first question can be given by tangles, which describe highly connected
regions in a non-rigorous way. For every low order separation the tangle describes on which
side of the separation the large part of the region can be found. Nevertheless, a separation
may cut off small parts of the region. In this way, for any single point it is not clearly
defined whether it is part of the region or not. On the other hand, the orientation has to be
consistent, meaning that all orientations have to point towards the same region.

The second question is addressed by branch decompositions. They contain a ternary
tree and a mapping of the elements to the leafs of the tree. Then, the edges of the tree
represent separations of the universe. The width of such a decomposition is the largest value
of any separation induced by the tree. Both concepts have been introduced on graphs by
Robertson and Seymour [11]. An overview on both branch decompositions and tangles for
integer-valued functions, as well as their connection can be found in a survey of Grohe [9],
which can be translated to real-valued functions. Branch decompositions and tangles address
contrary questions, but they are dual. There is a tangle of a certain value if and only if
there is no branch decomposition of smaller value. This duality result has first been shown
on graphs in [11]. There have been other set functions, that are not submodular, for which
duality has been shown. For example Adler et al. [1] have shown duality up to a constant
factor for so called hypertangle number and hyperbranch width in hypergraphs. Diestel and
Oum [6] developed a general duality theorem in combinatorial structures.

Besides tangles, there is another approach to identify highly similar (connected) regions,
called clustering (e.g. [2, 4, 3, 10, 12]). Clustering is the umbrella term for different techniques
to define sets of data points that are very similar to each other and not so similar to the data
points contained in other sets. Thus, a question arises: How do clustering and tangles relate?
A first approach towards this question was done by Diestel and Whittle [5], where they
analyzed tangles in digital images as a way to describe the meaningful parts of the image.
We consider hierarchical clustering algorithms as introduced by Carlson and Mémoli [2]. The
basis of such an algorithm is a function that describes the distance between two sets. Single
linkage clustering for example considers the distance of two sets to be the smallest distance
between any element from one set to any element from the other set. The hierarchical
clustering algorithm then merges the sets with the smallest distance, assigning the resulting
partition said value. We allow more than one merge at once, if the distances are equal. The
resulting sequence of partitions is represented by a so called dendogram.

1.1 Results
To find a correspondence between tangles and clustering one of the main goals is to find
connectivity functions, or functions with similar properties, that represent the different
clustering methods. Our main result is, that we are able to specify a function that is
correspondent to hierarchical clustering using single linkage. For an arbitrary metric d: U ×
U → R, the set function corresponding to single linkage is the minimum distance function
δd : 2U → R, defined by

δd(X) = max
x∈X,y /∈X

exp(−d(x, y)),

for all X ∈ 2U \ {∅, U} and δd(∅) = δd(U) = 0. An introduction of this function is given in
Section 3.

E. Fluck 38:3

We show that this function is not a classical connectivity function, since it is not
submodular. Therefore we define a different property, that we call maximum-submodularity.
Our first theorem proves duality between branch decompositions and tangles of functions
with this property.

I Theorem 1. Let U be a finite set and let φ be a maximum-submodular connectivity function.
The maximum order of a tangle of φ equals the minimum order of a branch decomposition of
φ. The existence of one is witness to the non-existence of the other.

A formal version of this theorem and its proof are shown in Section 4. This duality is a key
result in the theory of tangles of connectivity systems and suggests that the chosen property
on the functions results in a similarly deep theory. It allows us to use maximum-submodular
connectivity functions to establish a connection between tangles and clustering.

Our second main result says that the tangles of the minimum distance function are
in one-to-one correspondence with the resulting dendogram of single linkage hierarchical
clustering. The technical notions appearing in the statement of the theorem will be explained
later in this paper.

I Theorem 2. Let (U,d) be a metric space.
1. For every r ∈ R and every cluster B of the dendogram resulting from single linkage with
|B| > 1,

T := {X ⊆ U | δd(X) < exp(−r), B ⊆ X}

is a δd-tangle of U of order exp(−r).
2. For every δd-tangle T of U of order k we can identify a cluster B of the dendogram

resulting from single linkage with |B| > 1 such that

T = {X ⊆ U | δd(X) < k, B ⊆ X}.

For every non-singular set contained in a partition of the dendogram we find a distinct
δd-tangle and vice versa. This is to the best of our knowledge the first precise technical
connection between tangles and clusters.

2 Preliminaries and Definitions

In our definitions we follow [9]. Our goal is to describe connectivity within some data set
U . Therefore we define set functions κ, that aim to describe how strong the connection is
between a set and its complement. We say κ is normalized if κ(∅) = 0, κ is symmetric if
κ(X) = κ(X), for all X ⊆ U and κ is submodular if κ(X) + κ(Y) ≥ κ(X ∩ Y) + κ(X ∪ Y),
for all X,Y ⊆ U . A set function that is normalized, symmetric and submodular is called
submodular connectivity function.

I Example 3 (see [9]). Let G = (V,E) be a graph with edge weights wE : E → R. The
weighted edge-connectivity function ν : 2V → R, defined as

ν(X) :=
∑

u∈X,v∈V \X,(u,v)∈E

wE(u, v),

is a submodular connectivity function.

MFCS 2019

38:4 Tangles and Single Linkage Hierarchical Clustering

We introduce a different type of function, that also describes connectivity. To show
that this type has similar properties, we first take a look at basic concepts from the theory
of connectivity systems. Most of these concepts have only been studied for integer-valued
functions, but for our needs all properties are translatable to real-valued functions. We start
with a formal definition of tangles, which are a way to describe highly connected regions.

I Definition 4. Let κ be a symmetric set function on the universe U . A κ-tangle of order
ord(T) = k ≥ 0 is a set T ⊆ 2U such that:
T.0 κ(X) < k for all X ∈ T ,
T.1 for all X ⊆ U with κ(X) < k, either X ∈ T or X ∈ T holds,
T.2 X1 ∩X2 ∩X3 6= ∅ for all X1, X2, X3 ∈ T and
T.3 {x} /∈ T for all x ∈ U .

We define the tangle number tn(κ) of a symmetric set function κ to be the largest possible
order for which we can still define a κ-tangle.

We use the following well-known lemma, which states that tangles are in a way closed
under intersection and supersets.

I Lemma 5 (see [9]). Let T be a κ-tangle of order k. Then it holds that
1. for all X ∈ T and all Y ⊇ X, if κ(Y) < k then Y ∈ T and
2. for all X,Y ∈ T , if κ(X ∩ Y) < k then X ∩ Y ∈ T .

A different way to describe connectivity in a universe is given by branch decompositions.
Here we do not look for highly connected regions, but ask ourselves how we can separate the
universe into its single elements, using only separations of small value.

I Definition 6. Let U be a finite set.
A pre-decomposition of U is a pair (T, γ) consisting of a ternary (undirected) tree T and
a mapping γ : −→E (T)→ 2U , from the directed edges of T to subsets of U , such that
γ(t, u) = γ(u, t), for all (t, u) ∈ −→E (T), and
γ(s, u1) ∪ γ(s, u2) ∪ γ(s, u3) = U , for all internal nodes s ∈ V (T) with N(s) =
{u1, u2, u3}.

For leaves ` ∈ L(T) with neighbor N(`) = {u}, we write γ(`) instead of γ(u, `). We call
the γ(`) atoms and define At(T, γ) := {γ(`) | ` ∈ L(T)}.
A pre-decomposition is complete if |γ(`)| = 1, for all leaves ` ∈ L(T).
A pre-decomposition is exact at an internal node t ∈ V (T) with N(t) = {u1, u2, u3} if all
γ(t, ui) are mutually disjoint.
A decomposition is a pre-decomposition that is exact at all internal nodes.
A branch decomposition is a complete decomposition.
Let κ be a set function on U . The width of a pre-decomposition (T, γ) is

wd(T, γ) := max{κ(γ(t, u)) | (t, u) ∈ −→E (T)}.

We define the branch width bw(κ) of a symmetric set function κ to be the smallest possible
width wd(T, γ) of any branch decomposition (T, γ) on U . For submodular connectivity
functions duality between branch decompositions and tangles has been proven. The first
to find this duality in graphs were Robertson and Seymour [11]. Duality between branch
decompositions and tangles states that a branch decomposition of a certain width is a witness
for the non-existence of a tangle of any larger order and vice versa. It follows that for any
submodular connectivity function κ it holds that

tn(κ) = bw(κ).

E. Fluck 38:5

3 The Minimum Distance Function

I Definition 7 (Minimum Distance). Let d: U × U → R be an arbitrary metric. For a finite
data set U , the minimum distance function δd : 2U → R, is defined as follows:

δd(X) :=
{

0 if X = ∅ or X = ∅,
maxx∈X,x′∈X exp(−d(x, x′)) otherwise.

This definition yields that X has a high value if there is a point outside of X very close
to a point in X. The transformation exp(−c · f(x, y)), for some constant c and some function
f, is often used in clustering applications to transform a dissimilarity function f like a metric
into a similarity function. The minimum distance function is in general not submodular, as
can be seen with a small example. For an arbitrary x ∈ R+ define a one-dimensional universe
containing only the following four points a1 = x, a2 = x+ 1, a3 = −x and a4 = −x− 1. Let
X = {a1, a2}, Y = {a1, a3} and the metric d(u, v) = |u− v| is the absolute of the difference.
Then δd(X) = exp(−2x) < δd(Y) = δd(X ∩ Y) = δd(X ∪ Y) = exp(−1), for all x > 1

2
We define a new property, that is similar to submodularity, which allows us to develop

similar theories as for submodular connectivity functions.

I Definition 8. A set function κ on a finite set U is maximum-submodular if, for all
X,Y ⊆ U ,

max(κ(X), κ(Y)) ≥ max(κ(X ∩ Y), κ(X ∪ Y)).

This property is neither a generalization of submodularity nor a specialization. For
instance ν as in Example 3 is submodular but not maximum-submodular and in the next
lemma we see that the minimum distance function, which in general is not submodular, is
maximum-submodular. We call a normalized, symmetric and maximum-submodular set
function maximum-submodular connectivity function.

I Lemma 9. The minimum distance function is a maximum-submodular connectivity func-
tion.

Proof. The minimum distance function is normalized by definition and symmetric since
metrics are symmetric. If X or Y are equal to ∅ or U , maximum-submodularity trivially
holds as {X,Y } = {X ∪ Y,X ∩ Y } in these cases. Otherwise, we choose u ∈ X ∩ Y and
v ∈ X ∩ Y such that d(u, v) = δd(X ∩ Y). Analogously we choose u′ ∈ X ∪ Y = X ∩ Y and
v′ ∈ X ∪ Y . Then w.l.o.g. we distinguish four cases, depending on v and v′.
Case 1: v ∈ X ∩ Y and v′ ∈ X ∩ Y hold: Then w.l.o.g. v = u′ and u = v′ hold. Therefore

δd(X ∩ Y) = δd(X ∪ Y) and thus δd(X) ≥ δd(X ∩ Y) and δd(Y) ≥ δd(X ∪ Y) hold.
Case 2: v ∈ X ∩ Y and v′ ∈ X ∩ Y hold: It follows that δd(X) ≥ δd(X ∩ Y) and δd(Y) ≥

δd(X ∪ Y) hold.
Case 3: v, v′ ∈ X ∩ Y holds: It follows that δd(X) ≥ δd(X ∩ Y) and δd(Y) ≥ δd(X ∪ Y)

hold.
Case 4: v ∈ X ∩ Y and v′ ∈ X ∩ Y hold: In this case it holds that δd(Y) ≥ δd(X ∩ Y) and

δd(Y) ≥ δd(X ∪ Y). Therefore we have δd(Y) ≥ max(δd(X ∩ Y), δd(X ∪ Y)) and the
inequality holds.

As all other cases are symmetric to the four cases shown above, the inequality holds for all
X,Y ⊆ U . J

MFCS 2019

38:6 Tangles and Single Linkage Hierarchical Clustering

Next, we consider tangles of the Minimum Distance Function. Firstly, we give an example
of such a tangle.

I Example 10. Let U ⊂ Rn be a finite set of points. Let x1, x2 ∈ U be two points such that
d(x1, x2) = min{d(x, y) | x, y ∈ U, x 6= y}. Then, for every k ≤ exp(−d(x1, x2)),

T := {X ⊆ U | δd(X) < k, x1, x2 ∈ X}

is a δd-tangle of order k.
T satisfies (T.0), (T.2) and (T.3) by construction. To see that (T.1) is satisfied note that

if x1 ∈ X and x2 ∈ X holds then δd(X) = exp(−d(x1, x2)) ≥ k holds.

Having this example we realize that the tangles described are the only δd-tangles.

I Lemma 11. Every δd-tangle of order k is of the form described as in Example 10. That
is, we can identify two points u, v ∈ U such that exp(−d(u, v)) ≥ k and for all X ∈ T we
have u, v ∈ X.

Proof. To prove this we define the relation δdk := {(u, v) | exp(− d(u, v)) ≥ k} and consider
the graph Gk := (U, δdk). For every set X ⊆ U with δd(X) < k and every connected
component C of Gk, holds either V (C) ⊆ X or V (C) ⊆ X by definition. Thus for every δd-
tangle T of order ≤ k it holds that all X ∈ T are disjoint unions of connected components of
Gk. Additionally, using Lemma 5 (2) every such T is closed under intersection, as for two sets
X,Y ∈ T and all connected components C of Gk either V (C) ⊆ X ∩Y or V (C)∩X ∩Y = ∅
and thus δd(X ∩ Y) < k. Suppose for contradiction there is a δd-tangle T of order k such
that there is no connected component of Gk, of size at least two, that is contained in all
X ∈ T . Let C0, . . . , Cn be an enumeration of all connected components of Gk with |Ci| ≥ 2.
Then we can identify a sequence X0, . . . , Xn ∈ T such that V (Ci) * Xi, thus V (Ci)∩Xi = ∅.
We set Y1 := X0 ∩X1 and Yi+1 := Yi ∩Xi+1. Since T is closed under intersection, we get
Y1, . . . , Yn ∈ T . As T is a tangle, |Yn| > 1 has to hold. For every subset Y ⊆ Yn we have
κ(Y) < k as Yn ∩

⋃n
i=0 Ci = ∅. Take an enumeration of all elements y1, . . . , ym ∈ Yn and

construct a series of sets Z1, . . . , Z` ∈ T such that |Z`| = 1. Clearly this contradicts the
existence of T . If {y1} ∈ T set Z1 := {y1}, else set Z1 := Yn\{y1} = Yn ∩ {y1} ∈ T . If
|Zi| = 1 set ` = i and stop the construction. Otherwise if {yi+1} ∈ T set Zi+1 := {yi+1},
else set Zi+1 := Zi\{yi+1} = Zi ∩ {yi+1} ∈ T . As |Zi| > |Zi+1| this construction terminates
and yields the desired contradiction. J

From this lemma an important corollary follows. In Section 5 we use this to identify for
each tangle a cluster resulting from single linkage hierarchical clustering.

I Corollary 12. Let T be a δd-tangle of order k over the universe U . There is a unique
connected component C of the graph G = (U, δdk), with δdk := {(u, v) | exp(−d(u, v)) ≥ k},
such that C ⊆ X, for all X ∈ T .

Proof. We already showed that there exists some component C such that C ⊆ X, for all
X ∈ T . Assume there is some component C ′ 6= C such that C ′ ⊆ X, for all X ∈ T . Then
we have C ′ ∈ T and thus C ⊆ C ′ which contradicts C ′ 6= C. J

4 Duality for Submodular Bounded Functions

Now we prove duality for all maximum-submodular connectivity functions, thus also for
the minimal distance function. We achieve a result similar to the theory for submodular
connectivity functions, first shown in [11]. To formulate the Duality Theorem we first need a
definition.

E. Fluck 38:7

I Definition 13. Let κ be a symmetric set function on U and A ⊆ 2U .
A pre-decomposition (T, γ) is over A if At(T, γ) ⊆ A.
A κ-tangle T avoids A if T ∩ A = ∅.

The Duality Theorem states that there can not be any decomposition over a family of
sets, if there is a tangle avoiding this family and vice versa. The proof yields a construction
of such a decomposition. The following theorem is a precise formulation of Theorem 1.

I Theorem 14 (Duality Theorem of Submodular Bounded Functions). Let κ be a maximum-
submodular connectivity function on U . Let A ⊆ 2U such that A is closed under taking
subsets and Sing(U) ⊆ A, where Sing(U) is the set of all singletons from U . Then there is a
decomposition of width less than k over A if and only if there is no κ-tangle of order k that
avoids A.

Assuming the theorem holds, we can directly derive the following corollary using that
every branch decomposition of U is complete, thus is over Sing(U) and every κ-tangle avoids
Sing(U) by definition.

I Corollary 15. Let κ be a maximum-submodular connectivity function on U . It holds that

tn(κ) = bw(κ).

Looking at the proof of duality for submodular connectivity functions as it is presented
in [9], we see that they do not use any properties of the set function, besides symmetry and
a transformation from a pre-decomposition into a decomposition of equal width. Therefore,
we can adapt that proof if we are able to do a similar transformation. The following lemma
shows how to achieve exactness at every node of a pre-decomposition.

I Lemma 16 (Exactness Lemma). Let κ be a maximum-submodular connectivity function on
U and (T, γ) be a pre-decomposition of U . Then there is a mapping γ′ : −→E (T) → 2U such
that (T, γ′) is a decomposition of U satisfying

wd(T, γ′) ≤ wd(T, γ) and
γ′(`) ⊆ γ(`), for all leaves ` ∈ L(T).

Proof. We iteratively construct γ′ from γ, keeping the invariants
wd(T, γ′) ≤ wd(T, γ) and
γ′(`) ⊆ γ(`), for all leaves ` ∈ L(T).

We pick an arbitrary leaf `start ∈ L(T) and set γ′(`start, s) := γ(`start, s) and γ′(s, `start) :=
γ(s, `start) for s ∈ N(`start). If T only consists of at most two nodes we are done, since
(T, γ′) is already a decomposition. Otherwise, we traverse the tree with breadth-first search
starting at `start. If we reach a node s ∈ V (T)\L(T) with predecessor t ∈ V (T), we do the
following. Let u1, u2 ∈ N(s) be the successors of s and define X := γ′(s, t) and Yi := γ(s, ui),
for i = 1, 2.

If X ∩ (Y1 ∪ Y2) 6= ∅ we update Yi to Yi ∩X, for i = 1, 2. This step is consistent with the
invariants as κ(Yi ∩X) ≤ max(κ(Yi ∩X), κ(Yi ∪X)) ≤ max(κ(Yi), κ(X)), where the second
inequality holds due to maximum-submodularity, and Yi ∩X ⊆ γ(s, ui), for i = 1, 2.

If Y1 ∩ Y2 6= ∅, update Y1 to Y1 ∩ Y2. This step is again consistent with the invariants as
κ(Y1 ∩ Y2) ≤ max(κ(Y1 ∩ Y2), κ(Y1 ∪ Y2)) ≤ max(κ(Y1), κ(Y2)), where the second inequality
holds due to maximum-submodularity, and Y1 ∩ Y2 ⊆ γ(s, u1).

Set γ′(s, ui) := Yi and γ′(ui, s) := γ′(s, ui), for i = 1, 2. After these steps we know that
γ′ is exact at s and we do not change γ′ for any predecessor of s.

MFCS 2019

38:8 Tangles and Single Linkage Hierarchical Clustering

When we reach a leaf ` ∈ L(T), we do not change γ′ and continue with the next node in
the breadth-first search.

This construction yields the desired mapping. J

The construction above may result in a tree with empty leafs. But such a leaf can be
easily removed by deleting it and its neighbor, connecting the resulting open edges.

Now, we are ready to prove the Duality Theorem for Submodular Bounded Functions.

Proof of Theorem 14, see [9]. For the forward direction, we let (T, γ) be a decomposition
of U over A of width less than k. Suppose, for contradiction, T is a κ-tangle of order k
that avoids A. We orient the edges E(T) such that they point in the direction of the set
that is contained in the tangle. Such a set always exists as the width is less then k. Thus,
formally we orient (s, t) ∈ E(T) towards t if γ(s, t) ∈ T , and towards s if γ(t, s) = γ(s, t) ∈ T .
As in every oriented tree, there is at least one node t ∈ V (T) such that all edges incident
to t are oriented towards t. If t ∈ L(T) then γ(t) ∈ A and γ(t) ∈ T which contradicts
the assumption that T avoids A. Thus, t is an internal node with N(t) = {u1, u2, u3}.
But since all γ(t, ui) are mutually disjoint and all γ(u1, t) ∈ T this contradicts (T.2) as
γ(t, u1) ∪ γ(t, u2) ∪ γ(t, u3) = U and thus γ(u1, t) ∩ γ(u2, t) ∩ γ(u3, t) = ∅. It follows that
such a κ-tangle can not exist and the forward direction holds.

For the backward direction assume there is no κ-tangle of order k that avoids A. We will
construct a pre-decomposition (T, γ) of U over A of width less than k. Using the Exactness
Lemma and since A is closed under taking subsets it follows that a decomposition of U over
A exists.

We construct such a pre-decomposition (T, γ) inductively on the number of sets X ⊆ U
with κ(X) < k and neither X ∈ A nor X ∈ A.

In the base case, for all X ⊆ U with κ(X) < k, holds X ∈ A or X ∈ A. We define
Y := {X | X ∈ A with κ(X) < k}. We know that Y can not be a tangle, as we assumed
that there is no tangle of order k. Since (T.0) and (T.1) hold by assumption on A, either
(T.2) or (T.3) have to be false. If Y violates (T.2) there are three sets Y1, Y2, Y3 ∈ Y
such that Y1 ∩ Y2 ∩ Y3 = ∅. Then Y1, Y2, Y3 ∈ A and Y1 ∪ Y2 ∪ Y3 = U . We set T :=
({`1, `2, `3, t}, {(`i, t) | i = 1, 2, 3}), γ(t, `i) := Yi ∈ A and γ(`i, t) := Yi. Then, (T, γ) is a
pre-decomposition of U over A. If Y violates (T.3) there is some x ∈ U such that {x} ∈ Y
and thus {x} ∈ A. Since Sing(U) ⊆ A we have {x} ∈ A. We take T := ({s, t}, {(s, t)}) and
γ(s, t) := {x}, γ(t, s) := {x}. Then (T, γ) is a pre-decomposition of U over A.

In the inductive step, we have some X ⊆ U with κ(X) < k and neither X ∈ A nor
X ∈ A. We chose X ′ such that |X ′| is minimal with respect to the conditions above. We set
A1 := A∪ 2X′ and A2 := A∪ 2X′ . By the induction hypothesis there are pre-decompositions
(T 1, γ1) over A1 and (T 2, γ2) over A2. If At(Ti, γi) ⊆ A than (Ti, γi) is a pre-decomposition
over A and we are done. Otherwise, we can assume that (T 1, γ1) is a decomposition, due
to the Exactness Lemma 16, thus the γ1(`) for all ` ∈ L(T 1) are unique. There is some
`1 ∈ L(T 1) such that γ1(`1) /∈ A. As the width of (T 1, γ1) is less than k and no true subset
X ′′ ⊂ X ′ fulfills κ(X ′′) < k and neither X ′′ ∈ A nor X ′′ ∈ A, we know that γ1(`1) = X ′

and that it is the only leaf with this condition. We denote its neighbor by s1. Let us
now consider all `21, . . . , `2m ∈ L(T 2) with γ2(`2i) /∈ A. We know that, for all `2i , we have
γ2(`2i) ⊆ X ′. We consider all s2

i with N(`2i) = {s2
i }. We modify γ2 by setting γ2(s2

i , `
2
i) := X ′

and γ2(`2i , s2
i) := X ′. The result will still be a pre-decomposition. Then, we construct a

pre-decomposition (T, γ) of U over A. We take m disjoint copies (T 1
i , γ

1
i) of (T 1, γ1). We

E. Fluck 38:9

a b c d e f g

1
2
3
4
5

(a) The dendogram corresponding to the data points
using single linkage.

a b

c

d e

f g

(b) Data points used to compute the dendogram.

Figure 1 An example of a dendogram. The distance function used is `SL(X, Y) :=
minx∈X,y∈Y ‖x − y‖, where ‖ · ‖ is the Euclidean norm. This distance function is used in single
linkage.

define

V (T) :=
⋃

1≤i≤m

V (T 1
i)\{`1i } ∪ V (T 2)\{`21, . . . , `2m}

and take the union of all edge sets where `1i is replaced by s2
i and `2i is replaced by s1

i . Then,
we define γ : E(T)→ 2U by

γ(s, t) :=


X ′ if (s, t) = (s1

i , s
2
i) for some 1 ≤ i ≤ m,

X ′ if (s, t) = (s2
i , s

1
i) for some 1 ≤ i ≤ m,

γ1(s, t) if s, t ∈ V (T 1
i) for some 1 ≤ i ≤ m,

γ2(s, t) if s, t ∈ V (T 2).

Then, (T, γ) is a pre-decomposition of U over A of width less than k. J

5 Minimum Distance Function and Hierarchical Clustering

To establish the connection between the δd-tangles and hierarchical clustering, we use Ag-
glomerative Hierarchical Clustering via single linkage on dissimilarity inputs. A dissimilarity
input is an instance, where a small function value describes a large similarity between the
points. The result of a hierarchical clustering algorithm is a dendogram. For an arbitrary set
U , P(U) denotes the set of all partitions of U .

I Definition 17 ([2]). A dendogram over a finite set U = {x1, . . . , xn} is a function
θ : [0,∞)→ P(U), satisfying the following conditions:
1. θ(0) = {{x1}, . . . , {xn}},
2. there exists t0 such that θ(t) = {U} for all t ≥ t0,
3. if r ≤ s then θ(r) is a refinement of θ(s), that is for every B ∈ θ(r) there is some B′ ∈ θ(s)

such that B ⊆ B′, and
4. for all r there exists ε > 0 such that θ(r) = θ(t) for all t ∈ [r, r + ε].

The first and second condition ensure that the trivial partitions are part of the dendogram,
with the single elements having the smallest possible value and the whole set giving an upper
bound. The third condition states that every partition results from a merge of sets contained

MFCS 2019

38:10 Tangles and Single Linkage Hierarchical Clustering

in a more refined partition. The last condition is a bit technical, and ensures that θ is right
continuous. An example of a dendogram can be seen in Figure 1. We allow more than one
cluster to merge in one step, as introduced and analyzed by Carlson and Mémoli [2]. The
single linkage clustering in this framework works as follows.

I Definition 18 ([2]). Let (U,d) be a metric space and let `SL : 2U × 2U → R be the single
linkage function on U defined by

`SL(A,B) := min
a∈A,b∈B

d(a, b).

Define a sequence of distances R0, R1, R2, . . . ∈ [0,∞) and a corresponding sequence of
partitions Θ0,Θ1,Θ2, . . . ∈ P(U) by:

R0 = 0 and Θ0 = {{x1}, . . . , {xn}}, with U = {x1, . . . , xn},
Ri+1 := minB,B′∈Θi

`SL(B,B′)
Θi+1 := Θi/ ∼Ri+1 , where B ∼Ri+1 B′ if there exists a sequence of blocks of distance
at most Ri+1, thus B = B1, . . . ,Bs = B′ ∈ Θi with `SL(Bk,Bk+1) ≤ Ri+1, for k =
1, . . . , s− 1.

Then the dendogram for single linkage is defined by

θ`SL(r) := Θi(r),

where i(r) := max{i | Ri ≤ r}.

A less technical way to describe this is, that we start with distance R0 = 0 and the
partition into single elements. Then we inductively compute the smallest pairwise distance
of any two points separated by the partition Θi, store this as the next distance value Ri+1
and merge the corresponding sets to achieve a new partition Θi+1. We repeat this step until
all sets are merged. The resulting dendogram can be interpreted as a decomposition of the
universe into its δd-tangles, where the non-singular blocks of the dendogram correspond to
the tangles. The following theorem is a precise formulation of Theorem 2.

I Theorem 19. Let (U,d) be a metric space.
1. For every r ∈ R and every block B ∈ θ`SL(r) with |B| > 1,

T := {X ⊆ U | δd(X) < exp(−r), B ⊆ X}

is a δd-tangle of U of order exp(−r).
2. For every δd-tangle T of U of order k we can identify a block B ∈ θ`SL(− log(k)) with
|B| > 1 such that

T = {X ⊆ U | δd(X) < k, B ⊆ X}.

Proof. Using the same arguments as in Example 10 the first statement holds. For the second
statement one needs the equivalence relation ∼r on U , where x ∼r y if and only if there is a
sequence of elements x = x1, . . . , xs = y ∈ U such that d(xi, xi+1) ≤ r. Carlson and Mémoli
[2] have shown that the blocks of θ`SL(r) are exactly the equivalence classes U/∼r.

Let T be a δd-tangle of order k. Using Corollary 12 we can find a connected component
C in the graph G = (U, δdk) such that C ⊆ X, for all X ∈ T . Looking at the definition
δd

k := {(u, v) | exp(−d(u, v)) ≥ k} we see that two elements u, v ∈ U are connected in G if
and only if for their distance holds d(u, v) ≤ − log(k), thus u ∼− log(k) v. It follows that the
equivalence classes of U/∼− log(k) are exactly the same as the connected components of G.
Thus, there is a block C = B ∈ θ`SL(− log(k)) that fulfills the requirement. J

E. Fluck 38:11

I Remark 20. Let us consider two popular hierarchical clustering algorithms, average linkage
and complete linkage. The algorithm is the same as in Definition 18, but the linkage function
` changes. The distance of two sets for complete linkage equals the maximum distance of any
point from one set to any point from the other set, thus `CL(X,Y) := maxx∈X,y∈Y d(x, y).
Using the same trick as for single linkage, a natural related connectivity function is κd(X) :=
minx∈X,y∈X exp(−d(x, y)), for X ∈ 2U\{∅, U}, and κd = 0, otherwise. This function is
maximum-submodular and using the Manhattan distance it is even submodular. But in
general, for an arbitrary partition P , it holds that

min
X,Y ∈P

max
x∈X ,y∈Y

d(x, y) 6= − log(max
X∈P

min
x∈X,x′∈X

exp(−d(x, x′))),

as `CL(X,X) = maxY ∈P `CL(X,Y), for arbitrary X ∈ P . This is different for single linkage.
It holds that for any partition P of the universe we have

min
X,Y ∈P

`SL(X,Y) = − log(max
X∈P

δd(X)),

as `SL(X,X) = minY ∈P `SL(X,Y), for arbitrary X ∈ P . Thus in contrast to single linkage,
the optimum of complete linkage `CL used to compute Ri+1 does not correspond to the
optimum according to the connectivity function κd. For average linkage (`AL(X,Y) :=∑

x∈X,y∈Y
d(x,y)
|X||Y |), a corresponding set function could be ϕd(X) :=

∑
x∈X,y∈X

exp(− d(x,y))
|X||X|

,
for X ∈ 2U\{∅, U}, and ϕd = 0, otherwise. It is neither submodular nor maximum-
submodular. Additionally in general `AL(X,X) is not directly computable from `AL(X,Y),
for X,Y ∈ P with P an arbitrary partition. To compute `AL(X,X), also the size of all
Y ∈ P is needed. We have

`AL(X,X) =
∑

Y ∈P,X 6=Y |Y |`AL(X,Y)∑
Y ∈P,X 6=Y |Y |

.

This makes it even harder to find a suitable connectivity function.

6 Conclusion

We establish a precise technical connection between tangles and hierarchical clustering. We
can specify this connection for the minimum distance function and single linkage clustering.
It is still an open question if there are other clustering algorithms for which we can find
corresponding set functions. One of the main obstacles here is, that tangles and the
corresponding set functions only look at global connectivity of some set to its converse
whereas hierarchical clustering looks at local connectivity between two sets. For single
linkage these two notions turned out to be the same.

Our second contribution is to show duality between tangles and branch decompositions
for a new class of functions. In our view, the key transformation in the proof of the Duality
Theorem is the Exactness Lemma (related to „shifting“ in [6]); this is where submodularity or
maximum-submodularity comes in. To broaden the theory, it will be essential to understand
under which general conditions such a transformation is possible.

MFCS 2019

38:12 Tangles and Single Linkage Hierarchical Clustering

References
1 Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree width and related hypergraph

invariants. European Journal of Combinatorics, 28(8):2167–2181, 2007. doi:10.1016/j.ejc.
2007.04.013.

2 Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of hier-
archical clustering methods. Journal of Machine Learning Research, 11(Apr):1425–1470,
2010.

3 Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu.
Hierarchical Clustering: Objective Functions and Algorithms. In Artur Czumaj, editor,
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 378–397. SIAM, 2018.
doi:10.1137/1.9781611975031.26.

4 Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 118–127.
ACM, 2016. doi:10.1145/2897518.2897527.

5 Reinhard Diestel, Fabian Hundertmark, and Sahar Lemanczyk. Profiles of Separations:
in Graphs, Matroids, and Beyond. Combinatorica, 39(1):37–75, 2019. doi:10.1007/
s00493-017-3595-y.

6 Reinhard Diestel and Sang-il Oum. Unifying Duality Theorems for Width Parameters in
Graphs and Matroids (Extended Abstract). In Dieter Kratsch and Ioan Todinca, editors,
Graph-Theoretic Concepts in Computer Science - 40th International Workshop, WG 2014,
Nouan-le-Fuzelier, France, June 25-27, 2014. Revised Selected Papers, volume 8747 of Lecture
Notes in Computer Science, pages 1–14. Springer, 2014. doi:10.1007/978-3-319-12340-0_1.

7 Reinhard Diestel and Geoff Whittle. Tangles and the Mona Lisa. ArXiv, 2016. arXiv:1603.06652
[math.CO]. arXiv:1603.06652.

8 Jim Geelen, Bert Gerards, and Geoff Whittle. Tangles, tree-decompositions and grids in
matroids. Journal of Combinatorial Theory, Series B, 99(4):657–667, 2009. doi:10.1016/j.
jctb.2007.10.008.

9 Martin Grohe. Tangled up in blue (a survey on connectivity, decompositions, and tangles).
ArXiv, 2016. arXiv:1605.06704 [cs.DM].

10 Jon M Kleinberg. An impossibility theorem for clustering. In Suzanna Becker, Sebastian
Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems
15 [Neural Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver,
British Columbia, Canada], pages 446–453. MIT Press, 2002. URL: http://papers.nips.cc/
book/advances-in-neural-information-processing-systems-15-2002.

11 Neil Robertson and Paul D Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N.

12 Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007. doi:10.1007/s11222-007-9033-z.

https://doi.org/10.1016/j.ejc.2007.04.013
https://doi.org/10.1016/j.ejc.2007.04.013
https://doi.org/10.1137/1.9781611975031.26
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1007/s00493-017-3595-y
https://doi.org/10.1007/s00493-017-3595-y
https://doi.org/10.1007/978-3-319-12340-0_1
http://arxiv.org/abs/1603.06652
https://doi.org/10.1016/j.jctb.2007.10.008
https://doi.org/10.1016/j.jctb.2007.10.008
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-15-2002
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-15-2002
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1007/s11222-007-9033-z

Approximating the Orthogonality Dimension of
Graphs and Hypergraphs
Ishay Haviv
School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv 61083, Israel

Abstract
A t-dimensional orthogonal representation of a hypergraph is an assignment of nonzero vectors in Rt

to its vertices, such that every hyperedge contains two vertices whose vectors are orthogonal. The
orthogonality dimension of a hypergraph H, denoted by ξ(H), is the smallest integer t for which
there exists a t-dimensional orthogonal representation of H. In this paper we study computational
aspects of the orthogonality dimension of graphs and hypergraphs. We prove that for every k ≥ 4, it
is NP-hard (resp. quasi-NP-hard) to distinguish n-vertex k-uniform hypergraphs H with ξ(H) ≤ 2
from those satisfying ξ(H) ≥ Ω(logδ n) for some constant δ > 0 (resp. ξ(H) ≥ Ω(log1−o(1) n)). For
graphs, we relate the NP-hardness of approximating the orthogonality dimension to a variant of a
long-standing conjecture of Stahl. We also consider the algorithmic problem in which given a graph
G with ξ(G) ≤ 3 the goal is to find an orthogonal representation of G of as low dimension as possible,
and provide a polynomial time approximation algorithm based on semidefinite programming.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Approximation
algorithms analysis

Keywords and phrases orthogonal representations of hypergraphs, orthogonality dimension, hardness
of approximation, Kneser and Schrijver graphs, semidefinite programming

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.39

Related Version A full version of the paper is available at http://arxiv.org/abs/1906.05005.

Acknowledgements We are grateful to Alexander Golovnev for useful discussions and to the an-
onymous reviewers for their valuable suggestions.

1 Introduction

A t-dimensional orthogonal representation of a hypergraph H = (V,E) is an assignment of a
nonzero real vector uv ∈ Rt to every vertex v ∈ V , such that every hyperedge e ∈ E contains
two vertices v, v′ ∈ e whose vectors uv and uv′ are orthogonal. The orthogonality dimension
of H, denoted by ξ(H), is the smallest integer t for which there exists a t-dimensional
orthogonal representation of H.1 The notion of orthogonal representations was introduced
for graphs by Lovász [38] in the study of the Shannon capacity and was later involved
in a geometric characterization of connectivity properties of graphs by Lovász, Saks, and
Schrijver [40]. The orthogonality dimension over the complex field was used by de Wolf [15] in
a characterization of the quantum one-round communication complexity of promise equality
problems and by Cameron et al. [11] in the study of the quantum chromatic number of
graphs (see also [43, 7, 8]). An extension of orthogonal representations, called orthogonal
bi-representations, was introduced by Haemers [26] and has found several further applications
to information theory and to theoretical computer science.

1 Orthogonal representations of graphs are sometimes defined in the literature as orthogonal representations
of the complement, namely, the definition requires vectors associated with non-adjacent vertices to
be orthogonal. In this paper we have decided to use the other definition because it is extended more
naturally to hypergraphs. For a graph G, one can view the notation ξ(G) as standing for ξ(G).

© Ishay Haviv;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.39
http://arxiv.org/abs/1906.05005
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

Orthogonal representations can be viewed as a generalization of hypergraph vertex
colorings, one of the most fundamental and extensively studied topics in graph theory. Recall
that a hypergraph H is said to be c-colorable if one can assign one of c colors to every vertex of
H such that no hyperedge is monochromatic. The chromatic number of H, denoted by χ(H),
is the smallest integer c for which H is c-colorable. Obviously, every c-coloring of H induces
a c-dimensional orthogonal representation of H by assigning the ith unit vector ei ∈ Rc to
every vertex colored by the ith color. On the other hand, given a t-dimensional orthogonal
representation (uv)v∈V of H one can assign to every vertex v the vector in {−1, 0,+1}t that
consists of the signs of the entries of uv, and since nonzero orthogonal vectors have distinct
sign vectors it follows that H is 3t-colorable. We conclude that every hypergraph H satisfies

log3 χ(H) ≤ ξ(H) ≤ χ(H). (1)

The upper bound in (1) can clearly be tight (take, e.g., a complete graph), and it turns out
that there exist graphs whose orthogonality dimension is exponentially smaller than their
chromatic number (see Proposition 7).

The current work studies the problem of approximating the orthogonality dimension of
graphs and hypergraphs. This research direction was already suggested in the late eighties
by Lovász et al. [40], who remarked that computing the orthogonality dimension of graphs
seems to be a difficult task (see also [39]). Nevertheless, the only hardness result we are
aware of for this graph parameter is the one of Peeters [42], who proved that for every t ≥ 3
it is NP-hard to decide whether an input graph G satisfies ξ(G) ≤ t (see also [7]). Before
stating our hardness and algorithmic results, we overview related previous work on graph
and hypergraph coloring.

1.1 Graph and Hypergraph Coloring
It is well known that the problem of deciding whether an input graph is c-colorable can be
easily solved in polynomial time for c ∈ {1, 2} and is NP-hard for every c ≥ 3 [30].

In 1976, Garey and Johnson [21] have discovered an interesting connection between
hardness of graph coloring and the multichromatic numbers of Kneser graphs. For integers
d ≥ 2s, the Kneser graph K(d, s) is the graph whose vertices are all the s-subsets of [d],
where two sets are adjacent if they are disjoint. A k-tuple coloring f of a graph G = (V,E)
is an assignment f(v) of a set of k colors to every vertex v ∈ V such that f(v) ∩ f(v′) = ∅
whenever v and v′ are adjacent in G. The kth multichromatic number of G, denoted by
χk(G), is the smallest integer c for which G has a k-tuple coloring with c colors. Equivalently,
χk(G) is the smallest integer c for which there exists a homomorphism from G to the Kneser
graph K(c, k). Note that χ1(G) is simply the standard chromatic number χ(G). In the
seventies, Stahl [45] has made the following conjecture regarding the multichromatic numbers
of Kneser graphs (see also [19]).

I Conjecture 1 ([45]). For all integers k and d ≥ 2s,

χk(K(d, s)) =
⌈k
s

⌉
· (d− 2s) + 2k.

More than forty years later, Conjecture 1 is still widely open. While the right-hand side
in the conjecture is known to form an upper bound on χk(K(d, s)) for all values of k, d
and s, the conjecture was confirmed only for a few special cases. For k = 1, the conjecture
was proved by Lovász [37] in a breakthrough application of algebraic topology confirming a
conjecture by Kneser [33]. Stahl [45] proved that the conjecture holds whenever 1 ≤ k ≤ s,

I. Haviv 39:3

d = 2s + 1, or k is divisible by s. Garey and Johnson [21] proved the case of s = 3 and
k = 4, namely, that χ4(K(d, 3)) = 2d − 4, and used it in the analysis of a reduction from
3-colorability to prove that for every c ≥ 6, it is NP-hard to distinguish between graphs G
that satisfy χ(G) ≤ c and those that satisfy χ(G) ≥ 2c− 4.

In 1993, Khanna, Linial, and Safra [32] proved that it is NP-hard to decide whether an
input graph G satisfies χ(G) ≤ 3 or χ(G) ≥ 5 (see also [25]). As observed in [6], combining
this result with the proof technique of [21] and the case of s = 3 and k = 5 in Conjecture 1
proved by Stahl [46] (who confirmed there the conjecture for s ≤ 3 and all integers k and d),
it follows that for every c ≥ 6 it is NP-hard to distinguish between the cases χ(G) ≤ c and
χ(G) ≥ 2c− 2. Brakensiek and Guruswami [6] improved this result using different techniques
and proved the NP-hardness of deciding whether a given graph G satisfies χ(G) ≤ c or
χ(G) ≥ 2c− 1 for all c ≥ 3. In a recent work of Bulín, Krokhin, and Opršal [10], the latter
condition was further improved to χ(G) ≥ 2c. We note that Dinur, Mossel, and Regev [16]
proved that assuming a certain variant of the unique games conjecture, deciding whether a
given graph G satisfies χ(G) ≤ 3 or χ(G) ≥ c is NP-hard for every c ≥ 4.

We next consider, for any constant k ≥ 3, the problem of deciding whether an input
k-uniform hypergraph (i.e., a hypergraph each of its hyperedges contains exactly k vertices)
is c-colorable. While the problem can clearly be solved in polynomial time for c = 1, it
was shown to be NP-hard for c = 2 and k = 3 by Lovász [36], motivating the study of the
following gap problem: Given an n-vertex k-uniform hypergraph H, decide whether χ(H) ≤ 2
or χ(H) ≥ c. Guruswami, Håstad, and Sudan [24] proved that the problem is NP-hard for
k ≥ 4 and every constant c ≥ 3. By combining their proof with the later PCP theorem of
Moshkovitz and Raz [41], this result also follows for the super-constant c = Ω(log logn

log log logn).
For k = 3, the NP-hardness was proved for every constant c ≥ 3 by Dinur, Regev, and
Smyth [17]. Their proof approach was extended in a recent work of Bhangale [3], who
obtained NP-hardness for every k ≥ 4 with the improved super-constant c = Ω(logδ n) where
δ > 0 is some constant. Under the complexity assumption NP * DTIME(2poly(logn)), several
stronger hardness results are known. This includes the case of k = 3 and c = Ω(3

√
log logn)

proved in [17] and the case of k ≥ 4 and c = Ω(logn
log logn) proved in [3]. For additional related

results see, e.g., [3, Table 1] and the references therein.
On the algorithmic side, significant efforts have been made in the literature to obtain

polynomial time algorithms for coloring n-vertex 3-colorable graphs using as few colors
as possible. This line of research was initiated by a simple algorithm of Wigderson [47]
that used O(

√
n) colors. In a series of increasingly sophisticated combinatorial algorithms,

Blum [4] improved the number of colors to Õ(n3/8). Then, Karger, Motwani, and Sudan [29]
introduced an algorithm based on a semidefinite relaxation and improved the number of colors
to Õ(n1/4). Combining the combinatorial approach of [4] and the semidefinite relaxation
of [29], Blum and Karger [4, 5] improved it to Õ(n3/14), which was later improved by Arora,
Chlamtac, and Charikar [2] and by Chlamtac [13] to Õ(n0.2111) and Õ(n0.2072) respectively.
The combinatorial component of these algorithms was recently improved by Kawarabayashi
and Thorup [31], who reduced the number of colors to Õ(n0.19996). Halperin et al. [27] have
obtained analogue results for coloring n-vertex c-colorable graphs for all constants c ≥ 4, e.g.,
for c = 4 there exists an efficient algorithm that uses Õ(n7/19) colors.

For hypergraphs, there exists a simple combinatorial algorithm that given an n-vertex
k-uniform 2-colorable hypergraph finds in polynomial time a coloring with Õ(n1−1/k) colors,
as was shown independently by Alon et al. [1] and by Chen and Frieze [12]. For k = 3,
this algorithm was combined in [1, 12] with the semidefinite programming approach of [29]
to obtain a better bound of Õ(n2/9), which was later improved to Õ(n1/5) by Krivelevich,

MFCS 2019

39:4 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

Nathaniel, and Sudakov [35]. We note, however, that Alon et al. [1] have provided evidence
that the powerful semidefinite approach cannot be applied to coloring k-uniform hypergraphs
for k ≥ 4.

1.2 Our Contribution

The present paper offers hardness and algorithmic results on the orthogonality dimension of
graphs and hypergraphs. We first mention that known hardness results on the chromatic
number can be used to derive hardness results for the orthogonality dimension. Indeed,
the inequalities given in (1) yield that for every integers t1 and t2, NP-hardness of deciding
whether an input k-uniform hypergraph H satisfies χ(H) ≤ t1 or χ(H) ≥ t2 immediately
implies the NP-hardness of deciding whether it satisfies ξ(H) ≤ t1 or ξ(H) ≥ log3 t2. In
particular, the hardness results of [17, 25] imply that for all constants k ≥ 3 and t ≥ 3, it is
NP-hard to decide whether an input k-uniform hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ t.
For k = 2, such a result follows from [16] under a variant of the unique games conjecture.
However, for super-constant hardness gaps this implication leads to an exponential loss.
In particular, it follows from [3] that for every k ≥ 4 it is NP-hard to distinguish n-vertex
k-uniform hypergraphs H with ξ(H) ≤ 2 from those satisfying ξ(H) ≥ Ω(log logn). We
prove that this exponential loss can be avoided.

I Theorem 2. Let k ≥ 4 be a fixed integer.
1. There exists a constant δ > 0 for which it is NP-hard to decide whether an input n-vertex

k-uniform hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ logδ n.
2. Assuming NP * DTIME(nO(log logn)), for every constant c > 0 there is no polynomial

time algorithm that decides whether an input n-vertex k-uniform hypergraph H satisfies
ξ(H) ≤ 2 or ξ(H) ≥ c · logn

log logn .

We next consider the hardness of approximating the orthogonality dimension of graphs.
Our result involves a generalization of orthogonal representations of graphs defined as follows.
A t-dimensional orthogonal k-subspace representation of a graph G = (V,E) is an assignment
of a subspace Uv ⊆ Rt with dim(Uv) = k to every vertex v ∈ V , such that the subspaces
Uv and Uv′ are orthogonal whenever v and v′ are adjacent in G. For a graph G, let ξk(G)
denote the smallest integer t for which there exists a t-dimensional orthogonal k-subspace
representation of G. Note that ξ1(G) = ξ(G) for every graph G. We prove the following
result.

I Theorem 3. For every graph F , it is NP-hard to decide whether an input graph G satisfies
ξ(G) ≤ ξ3(F) or ξ(G) ≥ ξ4(F).

With Theorem 3 in hand, it is of interest to find graphs F for which ξ4(F) is large
compared to ξ3(F). We consider here, in light of Conjecture 1, the behavior of the ξk
parameters on the Kneser graphs K(d, s). For k = 1, it was recently shown that the
orthogonality dimension and the chromatic number coincide on Kneser graphs [28]. We
further observe, as an application of a result of Bukh and Cox [9], that the values of χk and
ξk coincide on the Kneser graphs K(d, s) for every k divisible by s (that is, for all integers
` ≥ 1 and d ≥ 2s, ξ`·s(K(d, s)) = χ`·s(K(d, s)) = ` · d, and in particular ξ3(K(d, 3)) = d; see
Corollary 17). It would be natural to ask whether this is also the case for k = 4 and s = 3.

I Question 4. Is it true that for every d ≥ 6, ξ4(K(d, 3)) = 2d− 4?

I. Haviv 39:5

A positive answer to Question 4 would imply that for every t ≥ 6, it is NP-hard to decide
whether an input graph G satisfies ξ(G) ≤ t or ξ(G) ≥ 2t− 4, analogously to the hardness
result of [21] for the chromatic number.2

We finally consider the algorithmic problem in which given an n-vertex k-uniform hyper-
graph H with constant orthogonality dimension, the goal is to find an orthogonal representa-
tion of H of as low dimension as possible. It is not difficult to show that a hypergraph H
satisfies ξ(H) ≤ 2 if and only if it is 2-colorable. Hence, by the algorithm of Krivelevich et
al. [35], given an n-vertex 3-uniform hypergraph H with ξ(H) ≤ 2 it is possible to efficiently
find a coloring of H that uses Õ(n1/5) colors, and, in particular, to obtain an orthogonal
representation of H of this dimension. For graphs, the first nontrivial case is where we are
given as input an n-vertex graph G with ξ(G) ≤ 3, for which we prove the following result.

I Theorem 5. There exists a randomized polynomial time algorithm that given an n-vertex
graph G satisfying ξ(G) ≤ 3, finds a coloring of G that uses at most Õ(n0.2413) colors. In
particular, the algorithm finds an orthogonal representation of G of dimension Õ(n0.2413).

In fact, we prove a stronger statement than that of Theorem 5, allowing the input graph G to
satisfy ξk(G) ≤ 3k for some integer k (rather than the special case k = 1; see Theorem 23).

1.3 Overview of Proofs
Hardness of Approximating the Orthogonality Dimension of Hypergraphs
Theorem 2 is proved in two steps. In the first, we show that approximating the orthogonality
dimension of k-uniform hypergraphs becomes harder as the uniformity parameter k grows,
and in the second we prove the hardness result for 4-uniform hypergraphs. By combining
the two, Theorem 2 follows. We elaborate below on each of these two steps.

The uniformity reduction

Our goal is to show that for every k1 ≤ k2, one can efficiently transform a given k1-uniform
hypergraph H1 to a k2-uniform hypergraph H2 so that ξ(H1) = ξ(H2). We borrow a
reduction used in [24] for hypergraph coloring and prove that it preserves the orthogonality
dimension. For simplicity of presentation, let us consider here the case of k1 = 2 and k2 = 4.
Given an n-vertex graph G = (V,E) we construct a 4-uniform hypergraph H whose vertex
set consists of ` copies V1, . . . , V` of V . For i ∈ [`], let Ei denote the collection of 2-subsets of
Vi that correspond to the edges of G. The hyperedges of H are defined as all possible unions
of pairs of sets picked from distinct collections Ei and Ej .

As a warm-up, we observe that for a sufficiently large `, say ` = n + 1, we have
χ(G) = χ(H). Indeed, if G is c-colorable then the c-coloring of G applied to each of the
copies of V in H implies that H is c-colorable. On the other hand, if G is not c-colorable
then for every coloring of H by c colors, every graph (Vi, Ei) contains a monochromatic edge.
By ` > c, there are i 6= j and sets e1 ∈ Ei and e2 ∈ Ej such that all vertices of e1 ∪ e2 share
the same color. This implies the existence of a monochromatic hyperedge in H, hence H is
not c-colorable.

We next show that for a sufficiently large ` we have ξ(G) = ξ(H). The first direction is
equally easy, namely, if G has a t-dimensional orthogonal representation then by assigning
its vectors to every copy of V in H we get a t-dimensional orthogonal representation of

2 It can be shown, using a result of [9], that every d ≥ 6 satisfies ξ4(K(d, 3)) ≥ d4d/3e (see Lemma 16).
Combining this bound with Theorem 3, it follows that for every t ≥ 6 it is NP-hard to decide whether
an input graph G satisfies ξ(G) ≤ t or ξ(G) ≥ d4t/3e.

MFCS 2019

39:6 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

H. For the other direction, assume that G satisfies ξ(G) > t, and suppose for the sake
of contradiction that ξ(H) ≤ t, i.e., there exists a t-dimensional orthogonal representation
(uv)v∈V (H) of H. By ξ(G) > t, for every i ∈ [`] there are two vertices ai, bi ∈ Vi adjacent in
G whose vectors are not orthogonal, that is, 〈uai , ubi〉 6= 0. Now, it suffices to show that for
some i 6= j the four vectors uai , ubi , uaj , ubj are pairwise non-orthogonal, as this would imply
a contradiction to the fact that {ai, bi, aj , bj} is a hyperedge of H. It is not difficult to see
that for some i 6= j the vectors uai and ubj are not orthogonal. Indeed, let M1 ∈ R`×t be the
matrix whose rows are the vectors uai for i ∈ [`], and let M2 ∈ R`×t be the matrix whose
rows are the vectors ubi for i ∈ [`]. Consider the matrix M ∈ R`×` defined by M = M1 ·MT

2 ,
and notice that its diagonal entries are all nonzero (because 〈uai , ubi〉 6= 0 for every i) and
that its rank is at most t. Assuming that ` > t, the matrix M must have some nonzero
non-diagonal entry (otherwise its rank is `), implying that 〈uai , ubj 〉 6= 0 for some i 6= j.
This, however, still does not complete the argument, since it might be the case that for these
indices i and j, one of the inner products 〈uai , uaj 〉, 〈ubi , uaj 〉, and 〈ubi , ubj 〉 is zero, avoiding
the contradiction.

To overcome this difficulty, we use a symmetrization argument showing that the assump-
tion ξ(H) ≤ t implies that H has some t′-dimensional orthogonal representation (wv)v∈V (H),
where t′ is not too large, with the following symmetry property: For every i and j, if
〈wai , wbj 〉 6= 0 then the inner products 〈wai , waj 〉, 〈wbi , waj 〉, and 〈wbi , wbj 〉 are all nonzero.
With such an orthogonal representation, applying the above argument with ` > t′ would
certainly imply a contradiction and complete the proof. We achieve the symmetry property
for t′ = t4 using vector tensor products. Namely, we assign to every vertex ai the vector
wai = uai ⊗ ubi ⊗ uai ⊗ ubi , to every vertex bi the vector wbi = u⊗2

ai ⊗ u
⊗2
bi

, and to every
other vertex v the vector wv = u⊗4

v . It is straightforward to verify that (wv)v∈V (H) forms a
t′-dimensional orthogonal representation of H. Moreover, by standard properties of tensor
products we have

〈wai , wbj 〉 = 〈uai , uaj 〉 · 〈ubi , uaj 〉 · 〈uai , ubj 〉 · 〈ubi , ubj 〉,

which can be used to obtain that if 〈wai , wbj 〉 6= 0 then the other three inner products
〈wai , waj 〉, 〈wbi , waj 〉, and 〈wbi , wbj 〉 are nonzero as well. This completes the proof sketch
for k1 = 2 and k2 = 4. For the proof of the general case, we generalize the tensor-based
argument to k-tuples of vertices and extend the matrix reasoning applied above using bounds
on off-diagonal Ramsey numbers.

Hardness for 4-uniform hypergraphs

We next consider the hardness of approximating the orthogonality dimension of 4-uniform
hypergraphs. A significant difficulty in proving such a result lies at the challenge of proving
strong lower bounds on the orthogonality dimension. For the sake of comparison, in most
hardness proofs for hypergraph coloring the lower bound on the chromatic number of the
hypergraph H constructed by the reduction is shown by an upper bound on its independence
number α(H) and the standard inequality χ(H) ≥ |V (H)|

α(H) . This approach cannot be used
for the orthogonality dimension, which in certain cases can be exponentially smaller than
this ratio (see Proposition 7). Exceptions of this approach, where the lower bound on the
chromatic number is not proved via the independence number, are the works of Dinur et
al. [17] and Bhangale [3] on which we elaborate next.

A standard technique in proving hardness of approximation results is to reduce from
the Label Cover problem, in which given a collection of constraints over a set of variables
the goal is to decide whether there exists an assignment that satisfies all the constraints or

I. Haviv 39:7

any assignment satisfies only a small fraction of them. In such reductions, every variable
over a domain [R] is encoded via an error-correcting code known as the long code, and the
constraints are replaced by “inner” constraints designed for the specific studied problem. One
way to view the long code is as the graph whose vertices are all subsets of [R] where two sets
are adjacent if they are disjoint [18]. In the hardness proof of [17] for the chromatic number
of 3-uniform hypergraphs, this graph was replaced by the induced subgraph that consists
only of subsets of a given size (i.e., a Kneser graph), where a label α ∈ [R] is encoded by the
2-coloring of the vertices according to whether the sets contain α or not. The analysis of [17]
is crucially based on the large chromatic number of Kneser graphs [37] and on the property
that every coloring of Kneser graphs with number of colors smaller than their chromatic
number enforces a large color class that includes a monochromatic edge. The latter property
was proved in [17] using the chromatic number of the Schrijver graph [44], a vertex-critical
subgraph of the Kneser graph. The approach of [17] was recently extended by Bhangale [3],
who used in his long code construction only the vertices of the Schrijver graph. The fact that
this subgraph has much fewer vertices and yet large chromatic number has led to improved
hardness factors. However, for the analysis to work the “inner” constraints had to include
four vertices, and this is the reason that the result was obtained for 4-uniform hypergraphs
(and not for 3-uniform hypergraphs as in [17]).

In the current work we prove the hardness of approximating the orthogonality dimension
of 4-uniform hypergraphs using the reduction applied in [3] for hypergraph coloring. While
we achieve the same hardness factors as in [3], the analysis relies on several different
ideas and tools. This includes the aforementioned symmetrization argument for orthogonal
representations, a lower bound of Golovnev et al. [23] on the sparsity of low rank matrices
with nonzero entries on the diagonal, and the orthogonality dimension of Schrijver graphs
determined in [28] (see Theorem 8).

Hardness of Approximating the Orthogonality Dimension of Graphs
Theorem 3 relates the hardness of approximating the orthogonality dimension of graphs
to orthogonal subspace representations. Our starting point is the NP-hardness of deciding
whether an input graph G satisfies ξ(G) ≤ 3 [42]. Following an approach of Garey and
Johnson [21], our reduction constructs a graph G′ defined as the lexicographic product of
some fixed graph F and the input graph G. Namely, we replace every vertex of F by a copy
of G and replace every edge of F by a complete bipartite graph between the vertex sets
associated with its endpoints (see Definition 11). We then show that if ξ(G) ≤ 3 then G′
has a ξ3(F)-dimensional orthogonal representation, whereas if ξ(G) ≥ 4 the orthogonality
dimension of G′ is at least ξ4(F). It would be interesting to figure out the best hardness
factors that Theorem 3 can yield (see Question 4). We note, though, that our approach is
limited to multiplicative hardness gaps bounded by 2, as it is easy to see that every graph F
satisfies ξ4(F) ≤ ξ3(F) + ξ1(F) ≤ 2 · ξ3(F).

Coloring Graphs with Orthogonality Dimension Three
Consider the problem in which given an n-vertex graph G satisfying ξ(G) ≤ 3, the goal
is to find an orthogonal representation of G of as low dimension as possible. Employing
an approach of [14], we attempt to find a coloring of G with a small number of colors, as
this in particular gives an orthogonal representation of the same dimension. As mentioned
before, for every c ≥ 3 there are known efficient algorithms for coloring n-vertex c-colorable
graphs, however, our only guarantee on G is that its orthogonality dimension is at most 3.

MFCS 2019

39:8 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

Interestingly, it follows from a theorem of Kochen and Specker [34] (see also [22]) that the
largest possible chromatic number of such a graph is 4. It follows that given an n-vertex
graph G with ξ(G) ≤ 3, one can simply apply the efficient algorithm of [27] for coloring
4-colorable graphs to obtain a coloring of G by Õ(nγ) colors where γ = 7/19 ≈ 0.368.

To improve on this bound, we show an efficient algorithm that finds a large independent
set in a given graph G satisfying ξ(G) ≤ 3. We consider two cases according to the maximum
degree in the graph. If G has a vertex of large degree then the algorithm finds a large
independent set in its neighborhood. This can be done since the assumption ξ(G) ≤ 3
implies that the neighborhood of every vertex of G is 2-colorable (just as for 3-colorable
graphs). Otherwise, in case that all the degrees in G are small, we use an algorithm of
Karger et al. [29] based on a semidefinite relaxation of the chromatic number, called the
vector chromatic number. Our analysis relies on a result by Lovász [38] relating the (strict)
vector chromatic number of graphs to their orthogonality dimension. Now, by repeatedly
omitting independent sets in G, we obtain a coloring that uses Õ(n1/4) colors. This can be
slightly improved to Õ(n0.2413) by applying the refined analysis of Arora et al. [2] for the
rounding algorithm of [29].

As already mentioned, our algorithm can handle any graph G that satisfies ξk(G) ≤ 3k
for some integer k, rather than for k = 1 (see Theorem 23). The generalized analysis involves
a connection, recently proved by Bukh and Cox [9], between the (strict) vector chromatic
number and the graph parameters ξk.

1.4 Outline
The rest of the paper is organized as follows. In Section 2, we provide some background on
the orthogonality dimension and on the Kneser and Schrijver graphs. In Section 3, we prove
our hardness and algorithmic results on the orthogonality dimension of graphs, confirming
Theorems 3 and 5. The analysis of the uniformity reduction and the proof of Theorem 2 can
be found in the full version of the paper.

2 Preliminaries

2.1 Orthogonality Dimension
We define the orthogonality dimension of hypergraphs over a general field.

I Definition 6. A t-dimensional orthogonal representation of a hypergraph H = (V,E) over
a field F is an assignment of a vector uv ∈ Ft with 〈uv, uv〉 6= 0 to every vertex v ∈ V ,
such that for every hyperedge e ∈ E there are two vertices v, v′ ∈ e satisfying 〈uv, uv′〉 = 0.
The orthogonality dimension of a hypergraph H = (V,E) over F, denoted by ξ(H,F), is the
smallest integer t for which there exists a t-dimensional orthogonal representation of H over
F. For the real field R, we let ξ(H) stand for ξ(H,R).

The following proposition shows that there are graphs whose orthogonality dimension is
exponentially smaller than their chromatic number.

I Proposition 7. There exists an explicit family of graphs Gt such that ξ(Gt) ≤ t and
χ(Gt) ≥ 2Ω(t).

Proof. Let t be an integer divisible by 4. Consider the graph Gt = (V,E) whose vertices are
all the t

2 -subsets of [t] where two sets A,B ∈ V are adjacent if their intersection size satisfies
|A ∩ B| = t

4 . Notice that by |A| = |B| = t
2 , this condition is equivalent to |A4 B| = t

2 .

I. Haviv 39:9

Assign to every vertex A the vector uA ∈ {±1}t where (uA)i = +1 if i ∈ A and (uA)i = −1
otherwise. We claim that (uA)A∈V is an orthogonal representation of Gt. Indeed, for every
adjacent vertices A,B ∈ V we have

〈uA, uB〉 = (−1) · |A4B|+ (t− |A4B|) = t− 2 · |A4B| = 0.

This implies that ξ(Gt) ≤ t. On the other hand, by a celebrated result of Frankl and Rödl [20],
α(Gt) ≤ 2c·t for some c < 1, implying that

χ(Gt) ≥
|V |
α(Gt)

≥

(
t
t/2
)

2c·t ≥ 2(1−c−o(1))·t,

completing the proof. J

2.2 Kneser and Schrijver Graphs
For integers d ≥ 2s, the Kneser graph K(d, s) is the graph whose vertices are all the s-subsets
of [d], where two sets are adjacent if they are disjoint.

A set A ⊆ [d] is said to be stable if it does not contain two consecutive elements modulo
d (that is, if i ∈ A then i+ 1 /∈ A, and if d ∈ A then 1 /∈ A). In other words, a stable subset
of [d] is an independent set in the cycle Cd with the numbering from 1 to d along the cycle.
For integers d ≥ 2s, the Schrijver graph S(d, s) is the graph whose vertices are all the stable
s-subsets of [d], where two sets are adjacent if they are disjoint.

The orthogonality dimension of the Kneser and Schrijver graphs was determined in [28]
using topological methods.

I Theorem 8 ([28]). For every d ≥ 2s, ξ(K(d, s)) = ξ(S(d, s)) = d− 2s+ 2.

The number of vertices in K(d, s) is clearly
(
d
s

)
. We need the following simple bound,

given in [17], on the number of vertices in S(d, s).

I Lemma 9 ([17]). For every d ≥ 2s, the number of vertices in S(d, s) is at most
(

d
d−2s

)
.

3 The Orthogonality Dimension of Graphs

In this section we focus on the orthogonality dimension of graphs and prove Theorems 3
and 5.

3.1 Orthogonal Subspace Representations
We generalize the notion of orthogonal representations over the real field by assigning to every
vertex a subspace of a given dimension, so that adjacent vertices are assigned to orthogonal
subspaces.

IDefinition 10. A t-dimensional orthogonal k-subspace representation of a graph G = (V,E)
is an assignment of a subspace Uv ⊆ Rt with dim(Uv) = k to every vertex v ∈ V , such that
the subspaces Uv and Uv′ are orthogonal whenever v and v′ are adjacent in G. For a graph
G, let ξk(G) denote the smallest integer t for which there exists a t-dimensional orthogonal
k-subspace representation of G.

Clearly, ξ(G) = ξ1(G) for every graph G. It is also easy to see that the multichromatic
numbers of graphs, defined in Section 1.1, bound the parameters ξk from above, namely,
ξk(G) ≤ χk(G) for every G and k.

MFCS 2019

39:10 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

3.2 Hardness
In this section we prove Theorem 3, namely that for every graph F , it is NP-hard to decide
whether an input graph G satisfies ξ(G) ≤ ξ3(F) or ξ(G) ≥ ξ4(F). The proof employs the
notion of lexicographic product of graphs, defined as follows.

I Definition 11. The lexicographic product of the graphs G1 = (V1, E1) and G2 = (V2, E2),
denoted by G1 •G2, is the graph whose vertex set is V1 × V2 where two vertices (x1, y1) and
(x2, y2) are adjacent if either {x1, x2} ∈ E1 or x1 = x2 and {y1, y2} ∈ E2.

One can view the graph G1 •G2 as the graph obtained from G1 by replacing every vertex by
a copy of G2 and replacing every edge by a complete bipartite graph between the vertex sets
associated with its endpoints. We need the following property of the orthogonality dimension
of lexicographic products of graphs.

I Lemma 12. For every two graphs G1 and G2, ξ(G1 •G2) = ξk(G1) where k = ξ(G2).

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs and denote k = ξ(G2).
We first prove that ξ(G1 • G2) ≥ ξk(G1). Denote t = ξ(G1 • G2), then there exists a

t-dimensional orthogonal representation (u(x,y))(x,y)∈V1×V2 of G1 •G2. For every x ∈ V1, let
Ux denote the subspace of Rt spanned by all vectors u(x,y) with y ∈ V2. By the definition
of G1 •G2, the subspaces Ux and Ux′ are orthogonal whenever x and x′ are adjacent in G1.
Further, for every x ∈ V1, the restriction of the given orthogonal representation to the copy
of G2 associated with x forms an orthogonal representation of G2, so by k = ξ(G2) it follows
that dim(Ux) ≥ k. This implies that there exists a t-dimensional orthogonal k-subspace
representation of G1, hence ξk(G1) ≤ t, as required.

We next prove that ξ(G1 • G2) ≤ ξk(G1). Denote t = ξk(G1), then there exists a
t-dimensional orthogonal k-subspace representation (Ux)x∈V1 of G1. By k = ξ(G2), there
exists a k-dimensional orthogonal representation (uy)y∈V2 of G2. For every x ∈ V1, the fact
that dim(Ux) = k implies that there exists an orthogonal linear transformation Tx from
Rk onto Ux. We assign to every vertex (x, y) ∈ V1 × V2 of G1 • G2 the nonzero vector
w(x,y) = Tx(uy) ∈ Rt. We claim that this is a t-dimensional orthogonal representation of
G1 •G2. To see this, let (x1, y1) and (x2, y2) be two adjacent vertices in G1 •G2. If x1 and
x2 are adjacent in G1 then the subspaces Ux1 and Ux2 are orthogonal, hence the vectors
w(x1,y1) ∈ Ux1 and w(x2,y2) ∈ Ux2 are orthogonal as well. Otherwise, x1 = x2 and the vertices
y1 and y2 are adjacent in G2. This implies that the vectors uy1 and uy2 are orthogonal, and
since Tx1 preserves inner products it follows that Tx1(uy1) and Tx1(uy2) are orthogonal, and
we are done. J

Equipped with Lemma 12, we are ready to prove Theorem 3.

Proof of Theorem 3. Fix a graph F . We reduce from the NP-hard problem of deciding
whether an input graph G satisfies ξ(G) ≤ 3 [42]. The reduction maps an input graph G to
the lexicographic product G′ = F •G of F and G. The graph G′ can clearly be constructed
in polynomial time. The correctness of the reduction follows from Lemma 12. Indeed, we
have ξ(G′) = ξk(F) for k = ξ(G), so if ξ(G) ≤ 3 then ξ(G′) ≤ ξ3(F) and if ξ(G) ≥ 4 then
ξ(G′) ≥ ξ4(F). J

3.3 Algorithm
Before presenting our algorithm, we provide some background on the vector chromatic
number of graphs.

I. Haviv 39:11

3.3.1 Vector Chromatic Number
Consider the following two relaxations of the chromatic number of graphs, due to Karger,
Motwani, and Sudan [29].

I Definition 13. For a graph G = (V,E) the vector chromatic number of G, denoted by
χv(G), is the minimal real value of κ > 1 for which there exists an assignment of a unit real
vector uv to every vertex v ∈ V such that 〈uv, uv′〉 ≤ − 1

κ−1 whenever v and v′ are adjacent
in G.

I Definition 14. For a graph G = (V,E) the strict vector chromatic number of G, denoted
by χ(s)

v (G), is the minimal real value of κ > 1 for which there exists an assignment of a
unit real vector uv to every vertex v ∈ V such that 〈uv, uv′〉 = − 1

κ−1 whenever v and v′ are
adjacent in G.

It is well known and easy to verify that for every graph G, χv(G) ≤ χ(s)
v (G) ≤ χ(G). Karger

et al. [29] have obtained the following algorithmic result.

I Theorem 15 ([29]). There exists a randomized polynomial time algorithm that given an
n-vertex graph G with maximum degree at most ∆ and χv(G) ≤ κ for some κ ≥ 2, finds an
independent set of size Ω̃(n

∆1−2/κ).

Note that the well-known Lovász ϑ-function, introduced in [38], is known to satisfy
ϑ(G) = χ

(s)
v (G) for every graph G [29]. Combining this with a result of [38], it follows that

the orthogonality dimension forms an upper bound on the strict vector chromatic number,
that is, ξ(G) ≥ χ(s)

v (G) for every graph G. This was recently generalized by Bukh and Cox
as follows (see [9, Proposition 23]).

I Lemma 16 ([9]). For every graph G and an integer k, ξk(G) ≥ k · χ(s)
v (G).

We derive that the graph parameters ξk and χk coincide on Kneser graphs K(d, s)
whenever k is divisible by s.

I Corollary 17. For all integers ` ≥ 1 and d ≥ 2s, ξ`·s(K(d, s)) = ` · d.

Proof. For the upper bound on ξ`·s(K(d, s)), recall that Conjecture 1 was confirmed for
k = ` · s in [45], hence ξ`·s(K(d, s)) ≤ χ`·s(K(d, s)) = ` · d. For the lower bound, combine
Lemma 16 with the fact that χ(s)

v (K(d, s)) = d
s (see [38]), to get that ξ`·s(K(d, s)) ≥ ` ·d. J

3.3.2 The Algorithm
We present an efficient algorithm that given a graph G that satisfies ξ(G) ≤ 3 (or, more
generally, ξk(G) ≤ 3k for some k), finds a coloring of G with relatively few colors. We use
the following simple claim of Blum [4] which reduces the algorithmic task of coloring a graph
to the algorithmic task of finding a large independent set in it.

I Claim 18 ([4]). Let G be a graph family which is closed under taking induced subgraphs,
let c1, c2 > 1 be arbitrary fixed constants, and let f : N→ N be any non-decreasing function
satisfying c1 · f(n) ≤ f(2n) ≤ c2 · f(n) for all sufficiently large n. Then if there exists a
(randomized) polynomial time algorithm which finds an independent set of size f(n) in any
n-vertex graph G ∈ G, then there exists a (randomized) polynomial time algorithm which
finds an O(n

f(n))-coloring of any n-vertex graph G ∈ G.

We need the following two simple lemmas.

MFCS 2019

39:12 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

I Lemma 19. Let G = (V,E) be a graph such that ξk(G) ≤ 2k for some integer k. Then G
is 2-colorable.

Proof. Let G = (V,E) be a graph satisfying ξk(G) ≤ 2k, and let (Uv)v∈V be a 2k-dimensional
orthogonal k-subspace representation of G. It suffices to prove that every connected compon-
ent of G is 2-colorable. Fix a vertex v in some connected component of G, and observe that
there exists a unique subspace of R2k of dimension k orthogonal to Uv. This implies that the
orthogonal subspace representation of G provides a 2-coloring of the connected component
of v, where the vertices of even distance from v are assigned to Uv and the vertices of odd
distance from v are assigned to its orthogonal complement U⊥v , so we are done. J

For a graph G and a vertex v, let N(v) denote the neighborhood of v in G and let G[N(v)]
denote the subgraph of G induced by N(v).

I Lemma 20. Let G = (V,E) be a graph such that ξk(G) ≤ 3k for some integer k. Then
for every vertex v ∈ V the subgraph G[N(v)] is 2-colorable.

Proof. Let G = (V,E) be a graph satisfying ξk(G) ≤ 3k, and let (Uv)v∈V be a 3k-dimensional
orthogonal k-subspace representation of G. Let v ∈ V be a vertex in G. The subspace Uv is
orthogonal to all subspaces Uv′ with v′ ∈ N(v). By dim(Uv) = k, the orthogonal complement
of Uv in R3k has dimension 2k. It follows that G[N(v)] admits a 2k-dimensional orthogonal
k-subspace representation, hence by Lemma 19 it is 2-colorable, as required. J

We are ready to prove the following result.

I Theorem 21. There exists a randomized polynomial time algorithm that given an n-vertex
graph G that satisfies ξk(G) ≤ 3k for some k, finds a coloring of G that uses at most Õ(n1/4)
colors. In particular, the algorithm finds an orthogonal representation of G of dimension
Õ(n1/4).

Proof. By Claim 18 it suffices to show that there exists a randomized polynomial time
algorithm that given an n-vertex graph G = (V,E) with ξk(G) ≤ 3k for some k, finds in
G an independent set of size Ω̃(n3/4). We consider two possible cases. Suppose first that
there exists a vertex v ∈ V in G whose degree is at least ∆ = n3/4. Then by Lemma 20
the subgraph G[N(v)] is 2-colorable, so we can find an independent set in G of size at least
∆
2 by finding in polynomial time a 2-coloring of G[N(v)] and taking a largest color class.
Otherwise, the maximum degree of G is at most ∆. By Lemma 16 we have

χv(G) ≤ χ(s)
v (G) ≤ ξk(G)

k
≤ 3,

so by Theorem 15 we can find in polynomial time an independent set of size Ω̃(n
∆1/3) ≥ Ω̃(n3/4),

and we are done. J

To improve the number of used colors, we employ the following result that stems from the
analysis by Arora et al. [2] of the semidefinite relaxation of [29]. (For an explicit statement,
see [14, Lemma 4.12], applied with σ = 0.5, c ≈ 0.04843726, and δ ≈ 0.7587.)

I Theorem 22 ([2]). There exists a randomized polynomial time algorithm that given an
n-vertex graph G with maximum degree at most ∆ = n0.7587 and χv(G) ≤ 3, finds an
independent set in G of size at least Ω̃(n ·∆−0.3179) ≥ Ω̃(n0.7587).

By applying Theorem 22 instead of Theorem 15 in the proof of Theorem 21, we obtain
the following slight improvement, confirming Theorem 5.

I. Haviv 39:13

I Theorem 23. There exists a randomized polynomial time algorithm that given an n-vertex
graph G that satisfies ξk(G) ≤ 3k for some k, finds a coloring of G that uses at most
Õ(n0.2413) colors.

References
1 Noga Alon, Pierre Kelsen, Sanjeev Mahajan, and Ramesh Hariharan. Approximate Hypergraph

Coloring. Nord. J. Comput., 3(4):425–439, 1996. Preliminary version in SWAT’96.
2 Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approximation guarantee for

chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 215–224, 2006.

3 Amey Bhangale. NP-hardness of coloring 2-colorable hypergraph with poly-logarithmically
many colors. In Proceedings of the 45th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 15:1–15:11, 2018.

4 Avrim Blum. New Approximation Algorithms for Graph Coloring. J. ACM, 41(3):470–516,
1994.

5 Avrim Blum and David R. Karger. An O(n3/14)-Coloring Algorithm for 3-Colorable Graphs.
Inf. Process. Lett., 61(1):49–53, 1997.

6 Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and Hyper-
graph Colorings. In Proceedings of the 31st Conference on Computational Complexity (CCC),
pages 14:1–14:27, 2016.

7 Jop Briët, Harry Buhrman, Debbie Leung, Teresa Piovesan, and Florian Speelman. Round
Elimination in Exact Communication Complexity. In Proceedings of the 10th Conference on
the Theory of Quantum Computation, Communication and Cryptography (TQC), volume 44
of LIPIcs, pages 206–225, 2015.

8 Jop Briët and Jeroen Zuiddam. On the orthogonal rank of Cayley graphs and impossibility of
quantum round elimination. Quantum Information & Computation, 17(1&2):106–116, 2017.

9 Boris Bukh and Christopher Cox. On a Fractional Version of Haemers’ Bound. IEEE Trans.
Inform. Theory, 65(6):3340–3348, 2019.

10 Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
satisfaction. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), pages 602–613, 2019.

11 Peter J. Cameron, Ashley Montanaro, Michael W. Newman, Simone Severini, and Andreas J.
Winter. On the Quantum Chromatic Number of a Graph. Electr. J. Comb., 14(1), 2007.

12 Hui Chen and Alan M. Frieze. Coloring Bipartite Hypergraphs. In Proceedings of the 5th
International Conference on Integer Programming and Combinatorial Optimization (IPCO),
pages 345–358, 1996.

13 Eden Chlamtac. Approximation Algorithms Using Hierarchies of Semidefinite Programming
Relaxations. In Proceedings of the 48th Symposium on Foundations of Computer Science
(FOCS), pages 691–701, 2007.

14 Eden Chlamtáč and Ishay Haviv. Linear Index Coding via Semidefinite Programming. Com-
binatorics, Probability & Computing, 23(2):223–247, 2014. Preliminary version in SODA’12.

15 Ronald de Wolf. Quantum Computing and Communication Complexity. PhD thesis, Uni-
versiteit van Amsterdam, 2001.

16 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for Approximate Coloring.
SIAM Journal on Computing, 39(3):843–873, 2009. Preliminary version in STOC’06.

17 Irit Dinur, Oded Regev, and Clifford D. Smyth. The Hardness of 3-Uniform Hypergraph
Coloring. Combinatorica, 25(5):519–535, 2005. Preliminary version in FOCS’02.

18 Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover. Annals
of Mathematics, 162(1):439–485, 2005. Preliminary version in STOC’02.

19 Peter Frankl and Zoltán Füredi. Extremal problems concerning Kneser graphs. J. Comb.
Theory, Ser. B, 40(3):270–284, 1986.

MFCS 2019

39:14 Approximating the Orthogonality Dimension of Graphs and Hypergraphs

20 Peter Frankl and Vojtěch Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259–
286, 1987.

21 Michael R. Garey and David S. Johnson. The Complexity of Near-Optimal Graph Coloring.
J. ACM, 23(1):43–49, 1976.

22 Chris D. Godsil and Joseph Zaks. Colouring the Sphere. University of Waterloo research
report, CORR 88-12, 1988.

23 Alexander Golovnev, Oded Regev, and Omri Weinstein. The Minrank of Random Graphs.
IEEE Trans. Inform. Theory, 64(11):6990–6995, 2018. Preliminary version in RANDOM’17.

24 Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. Hardness of Approximate Hyper-
graph Coloring. SIAM J. Comput., 31(6):1663–1686, 2002. Preliminary version in FOCS’00.

25 Venkatesan Guruswami and Sanjeev Khanna. On the Hardness of 4-Coloring a 3-Colorable
Graph. SIAM J. Discrete Math., 18(1):30–40, 2004. Preliminary version in CCC’00.

26 Willem H. Haemers. An upper bound for the Shannon capacity of a graph. In Algebraic
methods in graph theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János
Bolyai, pages 267–272. North-Holland, Amsterdam, 1981.

27 Eran Halperin, Ram Nathaniel, and Uri Zwick. Coloring k-colorable graphs using relatively
small palettes. J. Algorithms, 45(1):72–90, 2002. Preliminary version in SODA’01.

28 Ishay Haviv. Topological Bounds on the Dimension of Orthogonal Representations of Graphs.
Eur. J. Comb., 81:84–97, 2019.

29 David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate Graph Coloring by
Semidefinite Programming. J. ACM, 45(2):246–265, 1998. Preliminary version in FOCS’94.

30 Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a Symposium
on the Complexity of Computer Computations, pages 85–103, 1972.

31 Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-Colorable Graphs with Less than
n1/5 Colors. J. ACM, 64(1):4:1–4:23, 2017. Preliminary versions in FOCS’12 and STACS’14.

32 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the Hardness of Approximating the
Chromatic Number. Combinatorica, 20(3):393–415, 2000. Preliminary version in ISTCS’93.

33 Martin Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2):27,
1955.

34 Simon Kochen and E. P. Specker. The Problem of Hidden Variables in Quantum Mechanics.
Journal of Mathematics and Mechanics, 17(1):59–87, 1967.

35 Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating Coloring and
Maximum Independent Sets in 3-Uniform Hypergraphs. J. Algorithms, 41(1):99–113, 2001.
Preliminary version in SODA’01.

36 László Lovász. Coverings and colorings of hypergraphs. In Proceedings of the 4th Southeastern
Conf. on Comb., pages 3–12. Utilitas Math., 1973.

37 László Lovász. Kneser’s Conjecture, Chromatic Number, and Homotopy. J. Comb. Theory,
Ser. A, 25(3):319–324, 1978.

38 László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7,
1979.

39 László Lovász. Chapter 5: Orthogonal representations and their dimen-
sion. Lecture notes: Selected topics in graph theory, 2016. Available at
https://http://web.cs.elte.hu/ lovasz/kurzusok/orth16-2.pdf.

40 László Lovász, Michael Saks, and Alexander Schrijver. Orthogonal representations and
connectivity of graphs. Linear Algebra and its Applications, 114/115:439–454, 1989. Special
Issue Dedicated to Alan J. Hoffman.

41 Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5):29:1–
29:29, 2010. Preliminary version in FOCS’08.

42 René Peeters. Orthogonal representations over finite fields and the chromatic number of graphs.
Combinatorica, 16(3):417–431, 1996.

43 Giannicola Scarpa and Simone Severini. Kochen-Specker sets and the rank-1 quantum
chromatic number. IEEE Trans. Inform. Theory, 58(4):2524–2529, 2012.

I. Haviv 39:15

44 Alexander Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., 26(3):454–
461, 1978.

45 Saul Stahl. n-Tuple colorings and associated graphs. J. Comb. Theory, Ser. B, 20(2):185–203,
1976.

46 Saul Stahl. The multichromatic numbers of some Kneser graphs. Discrete Mathematics,
185(1-3):287–291, 1998.

47 Avi Wigderson. Improving the Performance Guarantee for Approximate Graph Coloring. J.
ACM, 30(4):729–735, 1983. Preliminary version in STOC’82.

MFCS 2019

Domination Above r-Independence:
Does Sparseness Help?
Carl Einarson
Royal Holloway, University of London, UK
einarson.carl@gmail.com

Felix Reidl
Birkbeck, University of London, UK
f.reidl@dcs.bbk.ac.uk

Abstract
Inspired by the potential of improving tractability via gap- or above-guarantee parametrisations,
we investigate the complexity of Dominating Set when given a suitable lower-bound witness.
Concretely, we consider being provided with a maximal r-independent set X (a set in which all
vertices have pairwise distance at least r + 1) along the input graph G which, for r ≥ 2, lower-bounds
the minimum size of any dominating set of G. In the spirit of gap-parameters, we consider a
parametrisation by the size of the “residual” set R := V (G) \N [X].

Our work aims to answer two questions: How does the constant r affect the tractability of the
problem and does the restriction to sparse graph classes help here? For the base case r = 2, we
find that the problem is paraNP-complete even in apex- and bounded-degree graphs. For r = 3, the
problem is W[2]-hard for general graphs but in FPT for nowhere dense classes and it admits a linear
kernel for bounded expansion classes. For r ≥ 4, the parametrisation becomes essentially equivalent
to the natural parameter, the size of the dominating set.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Dominating Set, Above Guarantee, Kernel, Bounded Expansion, Nowhere
Dense

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.40

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.09180

Acknowledgements We thank our anonymous reviewer for helpfully pointing out how to achieve a
linear kernel in Theorem 14.

Introduction

The research of above/below guarantee parameters as first used by Mahajan and Raman [22]
was an important step towards studying problems whose natural parameters provided only
trivial and unsatisfactory answers. Case in point, the motivation for Mahajan and Raman was
the observation that every CNF-SAT formula with m clauses trivially has an assignment that
satisfies ≥ dm/2e clauses, thus question for the maximum number of satisfied clauses is only
interesting if k > dm/2e, which of course renders the parametrised approach unnecessary.
They therefore proposed to study parametrisations “above guarantee”: going with the
previous example, we would ask to satisfy dm/2e+ k clauses or ‘k above guarantee’. After
some isolated results in that direction (e.g. [15, 17]) the programme took up steam after
Mahajan et al. presented several results and pointers in new directions [23] (e.g. [3, 16, 18, 17]).
In particular, Cygan et al. broke new ground for Multiway Cut and Vertex Cover with
algorithms that run in O∗(4k) time, where k is the gap parameter between an appropriate
LP-relaxation and the integral optimum [5]. Lokshtanov et al. improved the Vertex Cover
case to O∗(2.3146k) using a specialized branching algorithm [21].

© Carl Einarson and Felix Reidl;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 40; pp. 40:1–40:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:einarson.carl@gmail.com
https://orcid.org/0000-0002-2354-3003
mailto:f.reidl@dcs.bbk.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.40
https://arxiv.org/abs/1906.09180
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Domination above r-independence

The latter result highlights an important realization: these alternative, smaller parameters
might not only provide the means to investigate problems without “good” natural parameters,
it might also provide us with faster algorithms in practise! Gap- and above-guarantee
parameters are attractive because there is a reasonable chance that they are small in
real-world scenarios, something we often cannot expect from natural parameters.

To the best of our knowledge, so far no gap-parameter results are known for domination
problems and an above/below-guarantee result is only known in bounded-degree graphs [23].
This is probably due to the fact that there are no simple “natural” upper/lower bounds and
in the case of gap-parameters the LP-dualities do not provide much purchase. We therefore
explore this topic under the most basic assumptions: we are provided with a witness for a
lower bound on the domination number as input and consider parametrisations that arise
from this additional information. In the case of Dominating Set, the witness takes the
form of a 2-independent set, that is, a set in which all vertices have pairwise distance at least
three. Note that this approach also captures a form of duality: the LP-dual of dominating
set describes a 2-independent set, however, in general the two optima are arbitrarily far
apart. Recently, Dvořák highlighted this connection [7] and proved that in certain sparse
classes the gap between the dual optima is bounded by a constant.

Thus, assume we are given a maximal 2-independent set X alongside the input graph G. A
parametrisation by |X| would go against the spirit of gap-parameters, instead we parametrise
by the size of residual set R := V (G) \N [X], that is, all vertices that lie at distance two
from X (since X is maximal, no vertex can have distance three or more). We choose this
particular parameter for two reasons:
(i) For |R| = 0 the problem is decidable in polynomial time since the domination number

of the graph is precisely |X|.
(ii) The set X ∪R is a dominating set of G.

The first property is of course an important pre-requisite for the problem to be in FPT under
this parametrisation, while the second property guarantees us that the dominating set size
lies in-between |X| and |X|+ |R|.

Our first investigatory dimension is the constant r = 2 in the 2-independent set: intuitively,
increasing the minimum distance between vertices in X increases the size of the parameter |R|
and imposes more structure on the input instance. Our second dimension encompasses an
approach that has been highly successful in improving tractability of domination problems:
restricting the inputs to sparse graphs. While Dominating Set is W[2]-complete in general
graphs, Alber et al. showed that it is fpt in planar graphs [1]; Alon and Gutner later proved
that assuming degeneracy is sufficient [4]. Philip, Raman, and Sikdar extended this result
yet further to graphs excluding a fixed bi-clique and also proved that it admits a polynomial
kernel [25]. A related line of research was the hunt for linear kernels in sparse classes.
Beginning with such a kernel on planar graphs by Alber, Fellows, and Niedermeier [2],
results on apex-minor free graphs [10], graphs excluding a minor [11] and classes excluding
a topological minor [12] were soon proven. Recently, a linear kernel for graphs of bounded
expansion [6] (and an almost-linear kernel for nowhere dense graphs [9]) has subsumed all
previous results.

Our investigation of Dominating Set parametrised above an r-independent set, for r ≥ 2,
led us to the following results. For r = 2, the problem is paraNP-complete already for |R| = 1,
squashing all hope for an FPT or even XP algorithm. This also holds true if the inputs are
restricted to sparse graph classes (apex-graphs/graphs of maximum degree six).

For r = 3, the problem is W[2]-hard in general graphs but admits an XP-algorithm. In
nowhere dense and bounded expansion classes, it is fixed-parameter tractable. We further
show, in the probably most technical part of this paper, that it admits a linear kernel in
bounded expansion classes.

C. Einarson and F. Reidl 40:3

Finally, for r ≥ 4 the problem remains W[2]-hard in general graphs and essentially
degenerates to Dominating Set (hence, all the above mentioned results in sparse classes
translate in the parametrisation above r-independence).

1 Preliminaries

A set X ⊆ V (G) is r-independent if each pair of distinct vertices in X have distance at
least r+1, thus an independent set is 1-independent. We write N(v) and N [v], respectively,
for the neighbourhood and the closed neighbourhood of a vertex v. We extend this notation
to sets as follows: for X ⊆ V (G) we let N(X) be all vertices not in X that have a neighbour
in X and N [X] := X ∪ N(X). We let N i(X) be all vertices not in X that are at most
distance i from any vertex in X and we let N i[X] = X ∪N i(X). A vertex set Z ⊆ V (G) is
dominated by a set D ⊆ V (G) if for every vertex z ∈ Z we have N [z] ∩D 6= ∅, D is then
called a Z-dominator. We let ds(G) denote the size of a minimum dominating set of G.

Input: A graph G, a maximal r-independent set X ⊆ V (G), an integer p.
Parameter: The size of the residual set R := V (G) \N [X].
Problem: Does G have a dominating set of size p?

Dominating Set above r-independence

Note that X ∪R is trivially a dominating set and that, for r ≥ 2, it holds that ds(G) ≥ |X|,
thus we will tacitly assume in the following that |X| ≤ p ≤ |X|+ |R| since all other instances
are trivial.

We will frequently invoke the terms bounded expansion and nowhere dense to describe
graph classes. The definitions of these terms requires the introduction of several concepts
which will not be useful for the remainder of the paper, we refer the reader to the book by
Nešetřil and Ossona de Mendez [24]. In this context, it is important to know that bounded
expansion classes generalize most structurally sparse classes (planar, bounded genus, bounded
degree, H-minor free, H-topological minor free) and nowhere dense classes contain bounded
expansion classes in turn. The following lemma and propositions for those two sparse graph
classes will be needed in the remainder of this paper:

I Lemma 1 (Twin class lemma [13, 26]). For every bipartite nowhere dense class there exists
a constant ω and a function f(s) = O(so(1)) such that for every member G = (X,Y,E) of
the class it holds that
1. |{u | deg(u) > 2τ}u∈Y | ≤ 2τ · |X|, and
2. |{N(u)}u∈Y | ≤ (min{4τ , ω(eτ)ω}+ 2τ) · |X|.
where τ = f(|X|) = O(|X|o(1)). If G is from a bounded expansion class, τ can be assumed a
constant as well.

We will also frequently invoke the following result regarding first-order (FO) model checking
in bounded expansion and nowhere dense classes:

I Proposition 2 (Dvořák, Král, and Thomas [8]). For every bounded expansion class, the
first-order model checking problem is solvable in linear fpt-time parametrised by the size of
the input formula.

This result has since been extended to nowhere dense classes as well. Here, almost linear
fpt-time means running time of the form O(f(k) · n1+o(1)) for some function f .

MFCS 2019

40:4 Domination above r-independence

Figure 1 Sketch of reduction from 3SAT to Dominating Set above 2-independent set. The left
side shows the basic reduction, the right side shows the bounded-degree replacement gadget for the
clause part, with the tree-gadget Γ highlighted on the bottom right. The 2-independent set X is
coloured blue and N [X] is shaded in grey. In both constructions the set R consists only of y3.

I Proposition 3 (Grohe, Kreutzer, and Siebertz [14]). For every nowhere dense class, he
first-order model checking problem is solvable in almost linear fpt-time parametrised by the
size of the input formula.

2 Above 2-independence: hard as nails

In this section we will show that when we let r = 2, we find that the problem is paraNP-
complete for |R| = 1, hence this parametrisation does not even admit an XP-algorithm. In
the following we first present a reduction from 3SAT and then discuss how to modify it to
reduce into sparse graph classes.

Since X is a (maximal) 2-independent set, we know that each vertex in R is a neighbour
of some vertex in N(X), otherwise we could add this vertex to X. Let us now describe the
reduction. Let φ be 3SAT-instance with variables x1, . . . , xn and clauses C1, . . . , Cm. We
construct G as follows (cf. Figure 1):
1. For each variable xi, add a triangle with vertices xi, ti, fi.
2. For each clause Cj add a vertex cj . If the variable xi occurs positively in Cj , add the

edge cjti; if it occurs negatively, add the edge cjfi.
3. Add a single vertex y1 to the graph and connect it to each clause variable ci. Add two

further vertices y2, y3 and add the edges y1y2 and y2y3.
We further set X := {x1, . . . , xn, y1} as our 2-independent set; notice that the only vertex
not contained in N [X] is y3. Hence, R := {y3}.

I Lemma 4. φ is satisfiable iff G has a dominating set of size |X|.

Proof. Assume φ is satisfiable and fix one satisfying assignment I. We construct a dominating
set D as follows: if xi is true under I, add ti to D; otherwise add fi. Since I satisfies every
clause of φ the dominating set so far dominates every clause vertex and, of course, every
variable gadget. The remaining undominated vertices are y1, y2, y3, thus adding y2 to D
yields a dominating set of G of size |X|.

C. Einarson and F. Reidl 40:5

In the other direction, assume that D is a dominating set of G of size |X|. Since y3 is a
pendant vertex we can assume that y2 ∈ D (if y3 would be in D we could exchange it for y2).
That leaves |X| − 1 = n vertices in D, precisely the number of variable-gadgets. Since every
variable gadget must include at least one vertex of D, we conclude the every such gadget
contains precisely one dominating vertex. Since that depletes our budget, no other vertex is
contained in D.

By the usual exchange argument we may assume that the dominating vertex in each
variable gadget is either fi or ti and not xi for 1 ≤ i ≤ n; hence the dominating vertices
inside the variable gadgets encode a variable assignment ID of φ. Finally, note that the
clause vertices are not dominated by y2 and y1 is not contained in D. Hence, they must be
completely dominated by vertices contained in the variable gadgets. Then, by construction,
the assignment ID satisfies φ and the claim follows. J

We conclude that 3SAT many-one reduces to Dominating Set above 2-independence already
with |R| = 1. We obtain the following two corollaries that demonstrate that sparseness
cannot help tractability here:

I Corollary 5. Dominating Set above 2-independence is paraNP-complete in apex-graphs.

Proof. We use the above construction but reduce from a planar variant of 3SAT. To ensure
that we can construct variable-gadgets without edge crossings, we choose to reduce from
Lichtenstein’s Planar 3SAT variant [20] which ensures that the following graph G′ derived
from the Planar 3SAT instance φ is planar:
1. Every variable xi of φ is represented by two literal vertices ti, fi with the edge tifi ∈ G′
2. Each clause Cj is represented by a vertex cj . If the variable xi occurs positively in Cj ,

the edge cjti exits; if it occurs negatively, the edge cjfi exists.
To complete G′ to G we have to add the vertices xi and connect them to ti, fi. This is clearly
possible without breaking planarity (picture placing xi on the middle of the line segment fiti
and moving it perpendicular by a small amount, then the edges xifi and xiti can be embedded
without crossing other edges). The vertices y2, y3 can be placed anywhere; finally the vertex y1
will break planarity (the embedding does not guarantee that the clause vertices lie on the
outer face of the graph) and we conclude that G is indeed an apex-graph. J

I Corollary 6. Dominating Set above 2-independence is paraNP-complete in graphs of
maximum degree six.

Proof. We reduce from (3,4)SAT (NP-hardness shown in [27]) in which every clause has
size three and every variable occurs in at most four clauses. We use the above construction
with one modification. Instead of connecting all clause vertices to one vertex we create a
bounded-degree tree with the clause-vertices as its leaves.

We begin by partitioning the clause vertices in pairs Pi; if there is an odd number of
vertices the last group will have three vertices. Then, for each group Pi = {c, c′}, we add two
vertices si, ri, connect the clause-vertices c and c′ to si, and add the edge siri. We further
add each si to our 2-independent set X and then create a set L1 consisting of each ri. Now
we iteratively construct the next level of the tree, starting with L := L1:
1. If L = {r1}, create a single vertex y3, connect it to r1 and finish, otherwise proceed with

the next step.
2. Partition the vertices in L into ` groups {li, ri} of pairs. If |L| is odd, the last group will

be a triple {li, ci, ri} instead.
3. For each group, create a tree-gadget Γi, with vertices {a1, a2, s

i, ri} (and a3 if the group
contains a third vertex), and edges lia1, ria2, (cia3), a1s

i, a2s
i, (a3s

i), and siri.
4. Add each si to X, let L now be the set of all ri (for 1 ≤ i ≤ `) and continue with Step 1.

MFCS 2019

40:6 Domination above r-independence

Figure 1, on the right side, shows an example of this construction. We note that, in the
last tree-gadget, si and ri are the same vertices as y1 and y2 respectively in the figure. We
conclude the construction by adding each xi from the variable-gadgets to X and setting
p := |X|. Notice that the only vertex not contained in N [X] is y3 and thus R := {y3}.

Since each variable in (3,4)SAT can be in up to four clauses, the maximum degree for ti
and fi is six. All clause-vertices have degree at most four and all other types of vertices have
a degree not higher than that, hence the claimed degree-bound holds. It is left to show that
φ is satisfiable iff there is a dominating set of size p = |X| in the graph.

Let us assume that φ is satisfiable and fix one satisfying assignment I. We construct a
dominating set as follows, beginning in the same way as in Lemma 4: if xi is true under I,
add ti to D, otherwise add fi. Since I satisfies every clause of φ the dominating set so far
dominates every clause vertex and every variable gadget. Now, the remaining undominated
vertices are the tree-vertices, and our remaining budget is |X| − n which is equal to the
amount of tree-gadgets. Since every clause vertex is already dominated we can, for each
tree-gadget Γi = {a1, a2, s

i, ri}, add ri to the dominating set. This will dominate si and the
corresponding a1 or a2 in the tree-gadget below it, hence we can dominate all vertices of the
graph within the budget |X|.

In the other direction, assume that D is a dominating set of G of size |X|. Since y3 is
a pendant vertex we can assume that y2 ∈ D. Thus, in the last tree-gadget ri (y2) is in
the dominating set. This means that in order for a1 and a2 to be dominated, ri in both
tree-gadgets above has to be in the dominating set. This holds for all tree-gadgets, all the way
up to the clause vertices. Since we now have one vertex per tree-gadget in the dominating
set this leaves n vertices. Just as in Lemma 4, we note that, for each variable gadget, either
ti or fi is in the dominating set. We know that the clause variables are not dominated by
anything in the tree gadgets and thus must be dominated by the variable vertices. As stated
in Lemma 4, the dominating vertices inside the variable gadgets encode a variable assignment
ID that satisfies φ and the claim follows. J

3 Above 3-independence: sparseness matters

3.1 W[2]-hardness in general graphs
In the following we present a result for Dominating Set above 3-independence, namely that
it is W[2]-hard in general graphs. We show this by reduction from Colourful Dominating
Set parametrised by the number of colours k:

Input: A graph G with a vertex partition C0, C1, . . . , Ck.
Problem: Is there a set that dominates C0 and uses exactly one vertex from each

set C1, . . . , Ck?

Colourful Dominating Set parametrised by k

It is easy to verify that Colourful Dominating Set is W[2]-hard by reducing from
Red-Blue Dominating Set: we copy the blue set k times and make each copy a colour
set Ci, 1 ≤ i ≤ k, and let C0 be the red set.

I Lemma 7. Dominating Set above r-independence is W[2]-hard for r ≥ 2.

Proof. Let I = (G,C0, C1, . . . , Ck) be an instance of Colourful Dominating Set. We
construct an instance (G′, X, k) of Dominating Set above r-independence as follows (cf.
Figure 2):

C. Einarson and F. Reidl 40:7

Figure 2 Sketch of reduction from Colourful Dominating Set to Dominating Set above
r-independent set for r ≥ 2. The set X contains only the vertex a0, the remaining vertices ai are all
contained in the residual R.

1. Begin with G′ equal to G; then
2. for each block Ci, i ≥ 1, add edges to make G[Ci] a complete graph and add an additional

vertex ai with neighbourhood Ci; then
3. add a vertex a0 and connect it to all vertices in C0 ∪ C1 ∪ . . . Ck.
Let X = {a0} be the r-independent set (which it clearly is for any r) and thus R =
{a1, . . . , ak}. Note that the graph G′ trivially has a dominating set of size k + 1; the set
{a0, a1, . . . , ak}. We now claim that I has a colourful dominating set of size k iff G′ has a
dominating set of size k.

Assume that I has a solution of size k and fix one such colourful dominating set D. Note
that D in G′ a) dominates all of C0 (because it dominates C0 in G) and b) dominates each
set Ci ∪ {ai}, i ≥ 1 (because D intersects each such Ci), and of course the vertex a0. Hence,
D is a dominating set of G′ as well.

In the other direction, assume that D is a dominating set of G′ of size k. Since each ai,
i ≥ 1, is only connected to vertices in the corresponding set Ci, at least one vertex from each
set Ci ∪ {ai} needs to be in D. Since there are k such sets we conclude that D intersects
each set Ci ∪ {ai} in precisely one vertex. We can further modify any such solution to not
take the ai-vertices by taking an arbitrary vertex from Ci instead, thus assume that D has
this form in the following. But then D is of course also a dominating set of size k for G, as
claimed. J

3.2 Tractability in sparse graphs
In the following we present two positive results, namely that Dominating Set above 3-
independence is fpt in nowhere dense classes and that it admits a polynomial kernel in
bounded expansion classes. The algorithm further implies an XP algorithm in general graphs.
The following annotated domination problem will occur as a subproblem:

Input: A graph G, a subset Y ⊆ V (G), a collection of vertex sets R1, . . . , R`, and
an integer k.

Problem: Is there a set of size k that dominates V (G) \ Y and contains at least one
vertex in each Ri?

Annotated Dominating Set

In the following algorithm we will group vertices of N(X) according to their neighbour-
hood in R (or a subset of R). We will call those groups R-neighbourhood classes. We
will write γ(G, Y, {R1, . . . , R`}) to denote the size of an optimal solution of Annotated
Dominating Set.

MFCS 2019

40:8 Domination above r-independence

I Lemma 8. Dominating set above 3-independence can be solved in linear fpt-time in any
graph class of bounded expansion.

Proof. First we guess the intersection DR of an optimal solution (should it exist) with R
in O(2|R|) time. Let R′ ⊆ R be those vertices of R that are not dominated by DR. Define

R := {N(v) ∩R′}v∈N(X)

as the neighbourhoods induced in R′ by vertices in N(X). By Lemma 1, we have that |R| =
O(|R′|) since G is from a class with bounded expansion (note that the partition into such
neighbourhoods is computable in linear time using the partition-refinement data struc-
ture [19]). Accordingly, in time O(2|R|) = 2O(|R′|), we can guess a subset R′ ⊆ R such
that an optimal solution covers exactly the neighbourhoods R′ (if R′ does not cover R′ we
abort this branch of the computation). We are now left with the task of choosing vertices
from N [X] to a) cover the neighbourhoods R′ and b) dominate the vertices in N [X] which
are not dominated by DR.

We introduce the following notation to ease our task: for a collection of R-neighbourhoods
S ⊆ R′ and a set Y ⊆ N(X), let S−1(Y) := {Yi ⊆ Y | N(y) = S for all y ∈ Yi}S∈S .
That is, S−1(Y) contains those R′-neighbourhood classes in Y whose neighbourhood is
contained in S. Let x1, . . . , x` be an ordering of X and let Hi := G[N [xi]]; we will describe a
dynamic-programming algorithm over the ordering x1, . . . , x`. Let Ti[S] be the minimum size
of a partial solution in N [{x1, . . . , xi}] that covers the neighbourhoods S ⊆ R′ and together
with DR dominates all of G[

⋃
1≤j≤iN [xj]]. We initialize T0[S] := ∞ for all ∅ 6= S ⊆ R′

and T0[∅] := 0, then compute the following entries with the recurrence1

Ti+1[S] := min
S1∪S2=S

(
Ti[S1] + γ

(
Hi+1, N(DR) ∩N [xi+1],S−1

2 (N(xi+1))
))
.

Note that γ(. . .) is the minimum size of a set that dominates N [xi] \N(DR) while choosing
at least one vertex from each member of S−1

2 (N(xi)) (if ∅ ∈ S−1
2 (N(xi) we assume that

γ(. . .) = ∞). The latter constraint corresponds to dominating the neighbourhoods of S2
in R′ by using vertices from N [xi]. Once the DP table T` has been computed, the size of an
optimal solution is the value in T`[R′].

It remains to be noted that every neighbourhood graph Hi admits a dominating set of
size one, hence the annotated dominating set has size at most |S2|+ 1 = O(|R|). Thus, the
problem of finding an annotated dominating set is FO-expressible by a formula of size O(|R|)
and we can solve the subproblem of computing γ(. . .) in time O(f(|R|) · |N [xi]|) for some
function f using Proposition 2. As a result, we obtain a linear dependence on the input
size (note that |E| = O(|V |)) in the running time and thus the problem is solvable in linear
fpt-time. J

The same proof works for nowhere dense classes by applying Proposition 3 instead of
Proposition 2:

I Corollary 9. Dominating set above 3-independence can be solved in almost linear fpt-time
in any nowhere dense class.

We finally note that the algorithm described in the proof of Lemma 8 only needs a black-box
fpt-algorithm for Annotated Dominating Set to run in fpt time, thus it is very likely
that Dominating set above 3-independence is in FPT for other highly structured but not

1 A proof for the correctness of the recurrence can be found in the full version available at https:
//arxiv.org/abs/1906.09180

https://arxiv.org/abs/1906.09180
https://arxiv.org/abs/1906.09180

C. Einarson and F. Reidl 40:9

necessarily sparse graph classes. We can run the same algorithm on general graphs to obtain
an XP-algorithm using the bound |R| ≤ 2|R′| and a simple brute-force in XP-time on the
Annotated Dominating Set subinstance during the DP.

I Corollary 10. Dominating set above 3-independence is in XP.

3.3 Kernelization in sparse graphs
Let us now set up the necessary machinery for the kernelization. A boundaried graph ◦G is a
tuple (G,R) where G is a graph and R ⊆ V (G) is the boundary. We also write ∂◦G to denote
the boundary. For a graph G and an induced subgraph H, the boundary ∂GH ⊆ V (H) are
those vertices of H that have neighbours in V (G) \ V (H). Thus for every subgraph H of G
there is a naturally associated boundaried graph ∂H = (H, ∂GH).

For a boundaried graph ◦H and subsets A,B ⊆ ∂◦H a set D ⊆ V (◦H) is an (A,B)-
dominator of ◦H if D ∩ ∂◦H = A and D dominates the set (V (◦H) \ ∂◦H) ∪ B. We
let ds(◦H,A,B) denote the size of a minimum (A,B)-dominator of ◦H. A replacement for H
is a boundaried graph (H ′, B) with H[B] = H ′[B]. The operation of replacing H by H ′ in G,
written as G[H → H ′], consist of removing the vertices V (H) \B from G, then adding H ′
to G with B in H ′ identified with B in G (we assume that the vertices V (H ′) \ B do not
occur in G).

I Lemma 11. Let (G,X, p) be an instance of Dominating Set above 3-independence
where G is from a bounded expansion class. Let x ∈ X, Hx = G[N2[x]] and R′ = N2[x] ∩
R. Then, in fpt-time with parameter |R′|, we can compute a replacement H ′x for Hx of
size O(4|R′||R′|) such that ds(G[Hx → H ′x]) = ds(G). Moreover, the replacement H ′x is a
subgraph of Hx and contains x.

Proof. For every pair of subsets A,B ∈ R′ we compute a minimal (A,B)-dominator SA,B
for ◦Hx = (Hx, R

′). Since this problem is expressible by an FO-formula of size O(|R′|), we
can employ Proposition 2 to compute the set SA,B in linear fpt-time with parameter |R′|.
Note that SA,B will, besides the vertices in A, contain at most |B|+ 1 additional vertices,
since |B| vertices suffice to dominate B and the vertex x dominates all of V (Hx) \R.

Let S =
⋃
A,B⊆R′ SA,B ∪ R′ ∪ {x} be the union of all such computed solutions and

the boundary. By construction, |S| ≤ (4|R′| + 1)|R′|+ 1. Since all (A,B)-dominators live
inside S, we can safely remove the edges from Hx that do not have any endpoint in S, call the
resulting graph H̃x. Let Y := V (H̃x) \ S and let Y1, . . . , Yt be a partition of Y into S-twin
classes (thus all vertices in Yi have the same neighbourhood in S and no other class has this
neighbourhood). Note that Y is an independent set in H̃x.

Let H ′x be obtained from H̃x by removing all but two representatives from every twin-class,
denote those by Y ′i ⊆ Yi. Clearly, every (A,B)-dominator of H̃x is still an (A,B)-dominator
of H ′x, we need to proof the other direction. Let D′ be an (A,B)-dominator of H ′. If D′ ⊆ S
then D′ is still an (A,B)-dominator for H. The same holds if D′ intersects every twin-class
in at most one vertex: each such class either has size one, in which case it has size one in H̃x

as well, or it has size two and the vertex not contained in D′ is dominated by a vertex in S.
In either case, D′ dominates all of Y and thus is an (A,B)-dominator of H̃x and therefore
of Hx. Thus, assume that D′ fully contains some class Y ′i . Clearly, only one vertex of Y ′i
is enough to dominate N(Y ′i) (and potentially vertices in B), thus we can modify D′ by
picking the central vertex x instead to dominate the other vertex of Y ′i (which of course
also dominates all of Yi in H̃x). This can, of course, only happen once, otherwise we would
reduce the size of the supposedly minimal set D′. This leads us back to the previous case
and we conclude that there exists an (A,B)-dominator of H̃x and thus Hx of equal size.

MFCS 2019

40:10 Domination above r-independence

We conclude that ds(◦Hx, A,B) = ds(◦H ′x, A,B) for every choice of A,B ⊆ R′; which
implies that ds(G[Hx → H ′x]) = ds(G). Finally, by the twin-class lemma, |H ′x| = O(|S|) =
O(4|R′||R′|) since τ is a constant in bounded expansion classes. J

I Lemma 12. Let (G,X, p) be an instance of Dominating Set above 3-independence
where G is from a bounded expansion class. Let R′ ⊆ R be a subset and let X ′ ⊆ X be those
vertices x ∈ X with N2(x) ∩ R = R′. Let H be the induced subgraph on R′ ∪

⋃
x∈X′ N [x].

Assuming X ′ is not empty we can, in fpt-time with parameter |R′|, compute a replacement H ′
for H of size O(|R′|2|R′|+24|R′|) alongside an offset c such that ds(G[H ′ → H]) = ds(G)− c.
Moreover, the replacement H ′ is a subgraph of H.

Proof. Let X ′ := {x1, . . . , x`} and define the graphs Hi := G[N2[xi]] for 1 ≤ i ≤ `. We
first we apply Lemma 11 to replace every subgraph Hi by a subgraph H ′i of size O(4|R′||R′|)
in linear fpt-time with parameter R′. For simplicity, let us call the resulting graph G and
relabel the graphs H ′i to Hi (note that Lemma 11 ensures that dominating set size does not
change and that X is still a 3-independent set of the resulting graph).

For every xi ∈ X ′ we compute a characteristic vector χi indexed by pairs of subsets of R′
with the following semantic: for A,B ⊆ R′ we set χi[A,B] = ds(◦Hi, A,B). If χi[A,B] is
larger than |A|+ |B|+ 1 we simply set χi[A,B] =∞.

Note that the constraint subproblem to compute χi[A,B] is FO-expressible, by a formula
of size O(|R′|), thus we can compute the vectors χi for 1 ≤ i ≤ ` in linear time fpt-time with
parameter O(|R′|) using Proposition 2. Let ≡χ be the equivalence relation over the graphs Hi

defined as Hi ≡χ Hj ⇐⇒ χi = χj and let H := {Hi}1≤i≤`/ ≡χ be the corresponding
partition into equivalence classes under ≡χ. Note that |H| ≤ (|R′|+ 1)2|R′| since that is the
number of possible characteristic vectors.

The construction of H ′ is now simple: in every equivalence class C ∈ H we select
min{|C|, |R|} subgraphs and remove the rest; clearly H ′ is a subgraph of H of the claimed
size. We let the offset c to be equal to the number of subgraphs removed in this way.

We are left to show that ds(G[H ′ → H]) = ds(G)− c. Consider any minimal dominating
set D for G. We call a graph Hi interesting under D if D intersects Hi in any vertex
besides xi.

B Claim 13. There exists a solution D′ of size equal to D under which at most |R′| graphs
per equivalence class C ∈ H are interesting.

Proof. Consider any such class C ∈ H. If |C| ≤ |R′| we are done, so assume otherwise.
Let R′′ ⊆ R′ be the set of vertices that are dominated through vertices in graphs contained
in C and select up to |R′′| many graphs that together already dominate R′′; we let D′ to be
equivalent to D on these graphs. Any graph H ∈ C not selected in this way only needs to
dominate itself and we add its centre vertex V (H) ∩X to D′. Since every graph needs to
intersect any dominating set in at least one vertex, |D′| ≤ |D| and since D is minimal we
must have |D′| = |D|. Finally, only the |R′′| ≤ |R′| selected graphs are interesting under D′,
as claimed. C

Thus, let us assume in the following that D is such a minimal solution under which at
most |R′| graphs per class C ∈ H are interesting. For such a solution D of H, we construct
a solution D′ of H ′ of size |D| − c as follows. For a class C ∈ H, let C′ ⊆ C be those
graphs that are contained in H ′ and let I ⊆ C be the graphs that are interesting under D.
Since |C| ≤ |C′|, we can pair every graph Hi ∈ C with a graph Hi′ ∈ C′. Fix such a
pair Hi, Hi′ , let A = R′ ∩D and let B be those vertices of R′ that are exclusively dominated
vertices in Hi. Since χi[A,B] = χi′ [A,B], there must exist a set of |D ∩ V (Hi)| vertices

C. Einarson and F. Reidl 40:11

in Hi′ that dominate Hi′ and B. If we repeat this construction for every graph Hi ∈ C with
their respective pair in C′ and then pick the centre vertex X ∩ V (Hj) for all Hj ∈ C′ \ C,
then the resulting set D′ has size ≤ |D| − c and dominates all of H ′.

The same proof works in reverse if we start with a dominating set D′ of H ′ to construct a
dominating setD ofH with |D| ≤ |D′|+c; thus we conclude that ds(G[H ′ → H]) = ds(G)−c
and the claim follows. J

I Theorem 14. Dominating Set above 3-independence has a linear kernel in bounded
expansion graphs.

Proof. Let (G,X, p) be the input instance and let x1, . . . , x` be the members of the
3-independent set X. We define the graphs Hi := G[N2[xi]] and their respective R-
neighbours Ri := N2[xi] ∩ R for 1 ≤ i ≤ `. Let τ be as in Lemma 1. We partition
the graphs {Hi}1≤i≤` into two sets L, S where Hi ∈ L iff |Ri| > 2τ ; and S contains all
remaining graphs.

Let us first reduce S. Let R := {Ri | Hi ∈ S} be the R-neighbourhoods of the graphs
collected in S. By the twin class lemma, |R| ≤ (4τ+2τ)|R|, however, for each member R′ ∈ R
we might have many graphs in S that intersect R in precisely this set R′.

Fix R′ ∈ R for now and let S[R′] be those graphs of S that intersect R in R′. Let HR′ :=
G[
⋃
H∈S[R′] V (H)] be the joint graph of the subgraphs in S[R′]. Since |R′| ≤ 2τ , and τ

is a constant depending only on the graph class, we can apply Lemma 12 to compute a
replacement H ′R′ of size O(|R′|2|R′|+24|R′|) with offset c in polynomial time. We apply the
replacement G[HR′ → H ′R′] and decrease p by c. Repeating this procedure for all R′ ∈ R
yields a graph G1 (a subgraph of G) in which the small graphs S in total contain at most
|R| ·O(|τ |2τ+24τ) = O(|R|) vertices, a 3-independent set X ′ ⊆ X of G1, and a new input p′.
This concludes our reduction for S.

Let us now deal with L in G1. By the twin class lemma, |L| ≤ 2τ |R|. But then |X ′| has
size bounded in O(|R|) and we conclude that the size of a minimal dominating set for G1 is
bounded by O(|R|), hence we assume that p′ is bounded by O(|R|) (otherwise the instance
is positive and we can output a trivial instance). We now apply the existing linear kernel [6]
for Dominating Set to G1. The output of the kernelization is a subgraph of the original
graph, hence we collect the remaining vertices of the 3-independent set X ′′ ⊆ X ′ in order to
output a well-formed instance (G′′, X ′′, p′′). This concludes the proof. J

4 Above 4-independence: simple domination

In the case where the lower-bound set X is 4-independent we now have that for distinct x, x′ ∈
X it holds that N2(x) ∩ N2(x′) = ∅, thus for each x ∈ X the set N2(x) ∩ R can only be
dominated from R and N(x). Let us call an instance (G,X) reduced if for every x ∈ X the
intersection N2(x)∩R is non-empty. We can easily pre-process our input instance to enforce
this property: if such an x would exist we can simply remove N [x] from G to obtain an
equivalent instance. In a reduced instance the parameter |R| is necessarily big compared
to |X|:

I Observation 15. For every reduced instance (G,X) of Dominating Set above 4-
independence it holds that |R| ≥ |X|.

I Corollary 16. Let G be a graph class for which Dominating Set is in FPT. Then
Dominating Set above 4-independence is in FPT for G as well.

MFCS 2019

40:12 Domination above r-independence

I Corollary 17. Let G be a graph class for which Dominating Set admits a polynomial
kernel. Then Dominating Set above 4-independence admits a polynomial kernel for G as
well.

On the other hand, we showed in Section 3.1 that the problem remains W[2]-hard for any r ≥ 2
in general graphs.

5 Conclusion

We considered Dominating Set parametrised by the residual of a given r-independent set
and investigated how the value of r and the choice of input graph classes affect its tractability.
We observed that the tractability does improve from r = 2 to r = 3 as it goes from being
paraNP-complete to ‘merely‘ W[2]-hard and at least admits an XP-algorithm. Larger values
of r, however, do not increase the tractability as the problem becomes essentially equivalent
to Dominating Set.

If we consider sparse classes (bounded expansion and nowhere dense), the improvement in
tractability from r = 2 to r = 3 is much more pronounced; changing from paraNP-complete to
FPT and even admitting a linear kernel in bounded expansion classes. We very much believe
that the kernel can be extended to nowhere dense classes, but leave that quite technical task
as an open question.

References
1 J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed Parameter

Algorithms for DOMINATING SET and Related Problems on Planar Graphs. Algorithmica,
33(4):461–493, 2002.

2 J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for Dominating
Set. JACM, 51:363–384, 2004.

3 N. Alon, G. Gutin, E. Jung Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT Above a Tight
Lower Bound. Algorithmica, 61(3):638–655, 2011.

4 N. Alon and S. Gutner. Linear Time Algorithms for Finding a Dominating Set of Fixed Size
in Degenerated Graphs. Algorithmica, 54(4):544–556, 2009.

5 M. Cygan, M. Pilipczuk, M. Pilipczuk, and J.O. Wojtaszczyk. On multiway cut parameterized
above lower bounds. TOCT, 5(1):3, 2013.

6 P.G. Drange, M. Sortland Dregi, F. V. Fomin, S. Kreutzer, D. Lokshtanov, M. Pilipczuk,
M. Pilipczuk, F. Reidl, F. Sánchez Villaamil, S. Saurabh, S. Siebertz, and S. Sikdar. Kerneliz-
ation and Sparseness: the Case of Dominating Set. In STACS, volume 47 of LIPIcs, pages
31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

7 Z. Dvořák. On distance r-dominating and 2r-independent sets in sparse graphs. CoRR,
abs/1710.10010, 2017. arXiv:1710.10010.

8 Zdenek Dvorak, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013.

9 K. Eickmeyer, A. C. Giannopoulou, S. Kreutzer, O. Kwon, M. Pilipczuk, R. Rabinovich, and
S. Siebertz. Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs.
In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 63:1–63:14, 2017.

10 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and Kernels.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 503–510, 2010. doi:10.1137/1.
9781611973075.43.

http://arxiv.org/abs/1710.10010
http://dx.doi.org/10.1137/1.9781611973075.43
http://dx.doi.org/10.1137/1.9781611973075.43

C. Einarson and F. Reidl 40:13

11 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected)
dominating set on H -minor-free graphs. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,
pages 82–93. SIAM, 2012. doi:10.1137/1.9781611973099.7.

12 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected)
dominating set on graphs with excluded topological subgraphs. In 30th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2013, February 27 - March 2,
2013, Kiel, Germany, volume 20 of LIPIcs, pages 92–103. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2013. doi:10.4230/LIPIcs.STACS.2013.92.

13 J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. Sánchez
Villaamil, and S. Sikdar. Kernelization Using Structural Parameters on Sparse Graph Classes.
J. Comput. Syst. Sci., 84:219–242, 2017.

14 M. Grohe, S. Kreutzer, and Siebertz S. Deciding First-Order Properties of Nowhere Dense
Graphs. J. ACM, 64(3):17:1–17:32, 2017.

15 G. Gutin, E.J. Kim, M. Lampis, and V. Mitsou. Vertex cover problem parameterized above
and below tight bounds. Theory of Computing Systems, 48(2):402–410, 2011.

16 G. Gutin, E.J. Kim, M. Mnich, and A. Yeo. Betweenness parameterized above tight lower
bound. Journal of Computer and System Sciences, 76(8):872–878, 2010.

17 G. Gutin, A. Rafiey, S. Szeider, and A. Yeo. The linear arrangement problem parameterized
above guaranteed value. Theory of Computing Systems, 41(3):521–538, 2007.

18 G. Gutin, L. van Iersel, M. Mnich, and A. Yeo. All Ternary Permutation Constraint Satisfaction
Problems Parameterized above Average Have Kernels with Quadratic Numbers of Variables.
In Proc. of the 18th ESA, volume 6346 of Lecture Notes in Computer Science, pages 326–337.
Springer, 2010.

19 M. Habib, C. Paul, and L. Viennot. A Synthesis on Partition Refinement: A Useful Routine
for Strings, Graphs, Boolean Matrices and Automata. In STACS 98, 15th Annual Symposium
on Theoretical Aspects of Computer Science, Paris, France, February 25-27, 1998, Proceedings,
volume 1373 of Lecture Notes in Computer Science, pages 25–38. Springer, 1998. doi:
10.1007/BFb0028546.

20 D. Lichtenstein. Planar Formulae and Their Uses. SIAM J. Comput., 11(2):329–343, 1982.
21 D. Lokshtanov, NS Narayanaswamy, V. Raman, MS Ramanujan, and S. Saurabh. Faster

parameterized algorithms using linear programming. TALG, 11(2):15, 2014.
22 M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut.

Journal of Algorithms, 31(2):335–354, 1999.
23 M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values.

Journal of Computer and System Sciences, 75(2):137–153, 2009.
24 J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms, volume 28

of Algorithms and Combinatorics. Springer, 2012.
25 G. Philip, V. Raman, and S. Sikdar. Polynomial kernels for dominating set in graphs of

bounded degeneracy and beyond. ACM Transactions on Algorithms, 9(1), 2012.
26 F. Reidl. Structural sparseness and complex networks. Dr., Aachen, Techn. Hochsch., Aachen,

2016. Aachen, Techn. Hochsch., Diss., 2015.
27 C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,

8(1):85–89, 1984.

MFCS 2019

http://dx.doi.org/10.1137/1.9781611973099.7
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.92
http://dx.doi.org/10.1007/BFb0028546
http://dx.doi.org/10.1007/BFb0028546

Reducing the Domination Number of Graphs via
Edge Contractions
Esther Galby
Department of Informatics, University of Fribourg, Fribourg, Switzerland
esther.galby@unifr.ch

Paloma T. Lima
Department of Informatics, University of Bergen, Bergen, Norway
paloma.lima@uib.no

Bernard Ries
Department of Informatics, University of Fribourg, Fribourg, Switzerland
bernard.ries@unifr.ch

Abstract
In this paper, we study the following problem: given a connected graph G, can we reduce the
domination number of G by at least one using k edge contractions, for some fixed integer k ≥ 0?
We show that for k ≤ 2, the problem is coNP-hard. We further prove that for k = 1, the problem
is W[1]-hard parameterized by the size of a minimum dominating set plus the mim-width of the
input graph, and that it remains NP-hard when restricted to P9-free graphs, bipartite graphs
and {C3, . . . , C`}-free graphs for any ` ≥ 3. Finally, we show that for any k ≥ 1, the problem is
polynomial-time solvable for P5-free graphs and that it can be solved in FPT-time and XP-time
when parameterized by tree-width and mim-width, respectively.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases domination number, blocker problem, graph classes

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.41

1 Introduction

In a graph modification problem, we are usually interested in modifying a given graph
G, via a small number of operations, into some other graph G′ that has a certain desired
property. This property often describes a certain graph class to which G′ must belong. Such
graph modification problems allow to capture a variety of classical graph-theoretic problems.
Indeed, if for instance only k vertex deletions are allowed and G′ must be a stable set or a
clique, we obtain the Stable Set or Clique problem, respectively.

Now, instead of specifying a graph class to which G′ should belong, we may ask for a
specific graph parameter π to decrease. In other words, given a graph G, a set O of one or
more graph operations and an integer k ≥ 1, the question is whether G can be transformed
into a graph G′ by using at most k operations from O such that π(G′) ≤ π(G)− d for some
threshold d ≥ 0. Such problems are called blocker problems as the set of vertices or edges
involved can be viewed as “blocking” the parameter π. Notice that identifying such sets may
provide important information about the structure of the graph G.

Blocker problems have been well studied in the literature (see for instance [1, 2, 3, 4,
6, 9, 14, 15, 16, 17, 19]) and their relations to other well-known graph problems have been
presented (see for instance [9, 15]). So far, the literature mainly focused on the following
graph parameters: the chromatic number, the independence number, the clique number,
the matching number and the vertex cover number. Furthermore, the set O consisted of a
single graph operation, namely either vertex deletion, edge contraction, edge deletion or edge

© Esther Galby, Paloma T. Lima, and Bernard Ries;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 41; pp. 41:1–41:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esther.galby@unifr.ch
mailto:paloma.lima@uib.no
mailto:bernard.ries@unifr.ch
https://doi.org/10.4230/LIPIcs.MFCS.2019.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 On Reducing the Domination Number

addition. Since these blocker problems are usually NP-hard in general graphs, a particular
attention has been paid to their computational complexity when restricted to special graph
classes.

In this paper, we focus on another parameter, namely the domination number γ, and we
restrict O to a single graph operation, the edge contraction. More specifically, let G = (V,E)
be a graph. The contraction of an edge uv ∈ E removes vertices u and v from G and replaces
them by a new vertex that is made adjacent to precisely those vertices that were adjacent to
u or v in G (without introducing self-loops nor multiple edges). We say that a graph G can
be k-contracted into a graph G′, if G can be transformed into G′ by a sequence of at most k
edge contractions, for an integer k ≥ 1 (note that contracting an edge cannot increase the
domination number). We will be interested in the following problem, where k ≥ 1 is a fixed
integer.

k-Edge Contraction(γ)
Instance: A connected graph G = (V,E)
Question: Can G be k-edge contracted into a graph G′ such that γ(G′) ≤ γ(G)− 1?

In other words, we are interested in a blocker problem with parameter γ, graph operations
set O = {edge contraction} and threshold d = 1. Notice that if γ(G) = 1, that is, G
contains a dominating vertex, then G is always a No-instance for k-Edge Contraction(γ).
Reducing the domination number using edge contractions was first considered in [13]; given
a graph G = (V,E), the authors denote by ctγ(G) the minimum number of edge contractions
required to transform G into a graph G′ such that γ(G′) ≤ γ(G)− 1 and prove that for a
connected graph G such that γ(G) ≥ 2, we have ctγ(G) ≤ 3. It follows that a connected
graph G with γ(G) ≥ 2 is always a Yes-instance of k-Edge Contraction(γ), if k ≥ 3.
The authors [13] further give necessary and sufficient conditions for ctγ(G) to be equal to 1,
respectively 2.

I Theorem 1 ([13]). For a connected graph G, the following holds.
(i) ctγ(G) = 1 if and only if there exists a minimum dominating set in G that is not a

stable set.
(ii) ctγ(G) = 2 if and only if every minimum dominating set in G is a stable set and there

exists a dominating set D in G of size γ(G) + 1 such that G[D] contains at least two
edges.

To the best of our knowledge, a systematic study of the computational complexity of
k-Edge Contraction(γ) has not yet been attempted in the literature. We here initiate
such a study as it has been done for other parameters and several graph operations. Our
paper is organised as follows1. In Section 2, we present definitions and notations that
are used throughout the paper. In Section 3, we prove the (co)NP-hardness of k-Edge
Contraction(γ) for k = 1, 2. We further show that 1-Edge Contraction(γ) is W[1]-hard
parameterized by the size of a minimum dominating set plus the mim-width of the input
graph, and that it remains NP-hard when restricted to P9-free graphs, bipartite graphs
and {C3, . . . , Cl}-free graphs for any l ≥ 3. Finally, we present in Section 4 some positive
results; in particular, we show that for any k ≥ 1, k-Edge Contraction(γ) is polynomial-
time solvable for P5-free graphs and that it can be solved in FPT-time and XP-time when
parameterized by tree-width and mim-width, respectively.

1 Proofs marked by ♠ are omitted due to space constraints.

E. Galby, P. T. Lima, and B. Ries 41:3

2 Preliminaries

Throughout the paper, we only consider finite, undirected, connected graphs that have no
self-loops or multiple edges. We refer the reader to [8] for any terminology and notation
not defined here and to [7] for basic definitions and terminology regarding parameterized
complexity.

Let G = (V,E) be a graph and let u ∈ V . We denote by NG(u), or simply N(u) if it is
clear from the context, the set of vertices that are adjacent to u i.e., the neighbors of u, and
let N [u] = N(u) ∪ {u}. Two vertices u, v ∈ V are said to be true twins (resp. false twins), if
N [u] = N [v] (resp. if N(u) = N(v)).

For a family {H1, . . . ,Hp} of graphs, G is said to be {H1, . . . ,Hp}-free if G has no induced
subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1 we may write H1-free instead of
{H1}-free. For a subset V ′ ⊆ V , we let G[V ′] denote the subgraph of G induced by V ′, which
has vertex set V ′ and edge set {uv ∈ E | u, v ∈ V ′}.

We denote by dG(u, v), or simply d(u, v) if it is clear from the context, the length of a
shortest path from u to v in G. Similarly, for any subset V ′ ⊆ V , we denote by dG(u, V ′), or
simply d(u, V ′) if it is clear from the context, the minimum length of a shortest path from u

to some vertex in V ′ i.e., d(u, V ′) = minv∈V ′ d(u, v).
For a vertex v ∈ V , we write G − v = G[V \ {v}] and for a subset V ′ ⊆ V we write

G− V ′ = G[V \ V ′]. For an edge e ∈ E, we denote by G\e the graph obtained from G by
contracting the edge e. The k-subdivision of an edge uv consists in replacing it by a path
u-v1-. . .-vk-v, where v1, . . . , vk are new vertices.

For n ≥ 1, the path and cycle on n vertices are denoted by Pn and Cn respectively. A
graph is bipartite if every cycle contains an even number of vertices.

A subset S ⊆ V is called a stable set of G if any two vertices in S are nonadjacent; we
may also say that S is stable. A subset D ⊆ V is called a dominating set, if every vertex in
V \D is adjacent to at least one vertex in D; the domination number γ(G) is the number of
vertices in a minimum dominating set. For any v ∈ D and u ∈ N [v], v is said to dominate u
(in particular, v dominates itself); furthermore, u is a private neighbor of v with respect to D
if u has no neighbor in D\{v}. We say that D contains an edge (or more) if the graph G[D]
contains an edge (or more). The Dominating Set problem is to test whether a given graph
G has a dominating set of size at most `, for some given integer ` ≥ 0.

3 Hardness results

In this section, we present hardness results for the k-Edge Contraction(γ) problem. Recall
that for k ≥ 3, the problem is trivial; we show that for k = 1, 2, it becomes (co)NP-hard. To
this end, we introduce the following problem.

Contraction Number(γ,k)
Instance: A connected graph G = (V,E).
Question: Is ctγ(G) = k?

I Theorem 2. Contraction Number(γ,3) is NP-hard.

Proof. We reduce from 1-in-3 Positive 3-Sat, where each variable occurs only positively,
each clause contains exactly three positive literals, and we want a truth assignment such that
each clause contains exactly one true variable. This problem is known to be NP-complete
[11]. Given an instance Φ of this problem, with variable set X and clause set C, we construct

MFCS 2019

41:4 On Reducing the Domination Number

an equivalent instance GΦ of Contraction Number(γ,3) as follows. For any variable
x ∈ X, we introduce a copy of C3, which we denote by Gx, with two distinguished truth
vertices Tx and Fx (see Fig. 1); in the following, the third vertex of Gx is denoted by ux. For
any clause c ∈ C containing variables x1, x2 and x3, we introduce the gadget Gc depicted
in Fig. 1 (where it is connected to the corresponding variable gadgets). The vertex set of
the clique Kc corresponds to the set of subsets of size 1 of {x1, x2, x3} (hence the notation);
for any i ∈ {1, 2, 3}, the vertex xi (resp. x′i) is connected to every vertex vS ∈ Kc such that
xi 6∈ S (resp. xi ∈ S). Finally, for i = 1, 2, 3, we add an edge between ti (resp. x′i) and the
truth vertex Txi

(resp. Fxi
). Our goal now is to show that Φ is satisfiable if and only if

ctγ(GΦ) = 3. In the remainder of the proof, given a clause c ∈ C, we denote by x1, x2 and
x3 the variables occuring in c and thus assume that ti (resp. x′i) is adjacent to Txi (resp.
Fxi

) for i ∈ {1, 2, 3}. Let us first start with some easy observations.

Tx3

ux3
Fx3

Tx2

ux2
Fx2

Tx1

ux1
Fx1

t3 a3 b3 x3

t2 a2 b2 x2

t1 a1 b1 x1

v{x3}

v{x2}

v{x1}

x′
3

x′
2

x′
1

clique Kc

Figure 1 The gadget Gc together with Gxi , i = 1, 2, 3, for a clause c ∈ C containing variables x1,
x2 and x3 (the rectangle indicates that the corresponding set of vertices induces a clique).

I Observation 1. Let D be a dominating set of GΦ. Then for any x ∈ X, |D ∩ V (Gx)| ≥ 1
and for any c ∈ C, |D ∩ V (Gc)| ≥ 4. In particular, |D| ≥ |X|+ 4|C|.

Clearly, for any x ∈ X, |D ∩ V (Gx)| ≥ 1 since ux must be dominated. Also, in order to
dominate vertices a1, a2, a3 and v{x1} in some gadget Gc, we need at least 4 distinct vertices,
since their neighborhoods are pairwise disjoint and so, |D ∩ V (Gc)| ≥ 4, for any c ∈ C.

IObservation 2. Let D be a dominating set of GΦ. For any clause gadget Gc and i ∈ {1, 2, 3},
D ∩ {ai, bi, xi} 6= ∅.

This immediately follows from the fact that every vertex bi needs to be dominated and
its neighbors are ai and xi for i ∈ {1, 2, 3}.

I Observation 3. Let D be a dominating set of GΦ. For any clause gadget Gc, if |D ∩
V (Gc)| = 4, then D ∩ {ti, x′i} = ∅ and |D ∩ {ai, bi, xi}| = 1, for any i ∈ {1, 2, 3}.

If ti ∈ D for some i ∈ {1, 2, 3}, then it follows from Observation 2 that |D∩{aj , bj , xj}| = 1
for any j ∈ {1, 2, 3}. This implies that at least two vertices among x1, x2 and x3 belong
to D for otherwise there would exist j ∈ {1, 2, 3} such that v{xj} is not dominated. In
particular, there must exist j 6= i such that xj ∈ D; but then, aj is not dominated. Similarly,
if x′i ∈ D for some i ∈ {1, 2, 3}, it follows from Observation 2 that |D ∩ {aj , bj , xj}| = 1 for
any j ∈ {1, 2, 3}. But then, in order to dominate the vertices of Kc, either xi ∈ D in which
case ai is not dominated; or {xj , j 6= i} ⊂ D and aj with j 6= i, is not dominated.

Now suppose that |D ∩ {ai, bi, xi}| ≥ 2 for some i ∈ {1, 2, 3}. Then by Observation 2, we
conclude that |D ∩ {ak, bk, xk}| = 1 for k 6= i and |D ∩ {ai, bi, xi}| = 2. This implies that

E. Galby, P. T. Lima, and B. Ries 41:5

D ∩ V (Kc) = ∅ for otherwise we would have |D ∩ V (Gc)| ≥ 5. But then, since x′i 6∈ D, D
must contain at least two vertices among x1, x2 and x3 in order to dominate the vertices of
Kc; in particular, there exists j 6= i such that xj ∈ D and so, aj is not dominated.

I Observation 4. Let D be a minimum dominating set of GΦ and suppose that ctγ(GΦ) = 3.
Then for any vertices u, v ∈ D, we have d(u, v) ≥ 3.

Indeed, if u, v are adjacent, we conclude by Theorem 1(i) that ctγ(GΦ) = 1; and if u, v are
at distance 2 then D ∪ {w}, where w is the vertex on a shortest path from u to v, contains
two edges and we conclude by Theorem 1(ii) that ctγ(GΦ) = 2.

I Observation 5. Let D be a minimum dominating set of GΦ and suppose that ctγ(GΦ) = 3.
Then for any clause gadget Gc and i ∈ {1, 2, 3}, ai ∈ D if and only if Txi 6∈ D.

This readily follows from Observation 4. Further note that we may assume that for any
i ∈ {1, 2, 3}, ai ∈ D if and only if Fxi ∈ D; Txi 6∈ D is equivalent to {Fxi , uxi} ∩D 6= ∅ and
if Txi

6∈ D, we may always replace D by (D\{uxi
}) ∪ {Fxi

}.

I Observation 6. Let D be a minimum dominating set of GΦ and suppose that ctγ(GΦ) = 3.
Then for any clause gadget Gc, |D ∩ {a1, a2, a3}| ≤ 2.

If it weren’t the case then, by Observation 4, no xi or bi (i = 1, 2, 3) would belong toD. But
since x1, x2 and x3 must be dominated, it follows that D ∩ V (Kc) 6= ∅ and by Observation 5,
we conclude that D contains two vertices at distance two (namely, v{xi} ∈ D ∩ V (Kc) and
Fxi for some i ∈ {1, 2, 3}), which contradicts Observation 4.

I Observation 7. Let D be a minimum dominating set of GΦ and suppose that ctγ(GΦ) = 3.
Then for any clause gadget Gc, |D ∩ {b1, b2, b3}| ≤ 1.

Indeed, if we assume, without loss of generality, that b1, b2 ∈ D, then by Observation 4,
D∩V (Kc) = ∅. It then follows from Observation 4 that x′3 ∈ D for otherwise V{x3} would not
be dominated. But then D ∩ V (Gx3) = ∅ by Observation 4, which contradicts Observation 1.

I Claim 1. γ(GΦ) = |X|+ 4|C| if and only if ctγ(GΦ) = 3.

Assume that γ(GΦ) = |X|+ 4|C| and consider a minimum dominating set D of GΦ. We
first show that D is a stable set which would imply that ctγ(GΦ) > 1 (see Theorem 1(i)).
First note that Observation 1 implies that |D ∩ V (Gx)| = 1 and |D ∩ V (Gc)| = 4, for any
variable x ∈ X and any clause c ∈ C. It then follows from Observation 3 that no truth
vertex is dominated by some vertex ti or x′i in some clause gadget Gc with i ∈ {1, 2, 3}; in
particular, this implies that there can exist no edge in D having one endvertex in some
gadget Gx (x ∈ X) and the other in some gadget Gc (c ∈ C). Hence, it is enough to show
that for any c ∈ C, D ∩ V (Gc) is a stable set.

Now consider a clause gadget Gc. It follows from Observation 3 that if there exists
i ∈ {1, 2, 3} such that ai 6∈ D then bi ∈ D since ai must be dominated (also note that by
Observation 3, if ai ∈ D then bi 6∈ D). Hence, for any i ∈ {1, 2, 3}, exactly one of ai and
bi belongs to D. But then, by Observation 3 and since |D ∩ V (Gc)| = 4 , we immediately
conclude that D ∩ V (Gc) is a stable set and so, D is a stable set.

Now, suppose to the contrary that ctγ(GΦ) = 2 i.e., there exists a dominating set D′ of
GΦ of size γ(GΦ) + 1 containing two edges e and e′ (see Theorem 1(ii)). First assume that
there exists x ∈ X such that |D′ ∩V (Gx)| = 2. Then, for any x′ 6= x, |D′ ∩V (Gx′)| = 1; and
for any c ∈ C, |D′ ∩ V (Gc)| = 4 which by Observation 3 implies that {ti, x′i} ∩D′ = ∅ for
any i ∈ {1, 2, 3}. Since as shown previously, D′ ∩ V (Gc) is then a stable set, it follows that
D′ contains at most one edge, a contradiction.

MFCS 2019

41:6 On Reducing the Domination Number

Thus, there must exist some c ∈ C such that |D′ ∩ V (Gc)| = 5. We then claim
that {a1, a2, a3} 6⊂ D′. Indeed, since x1, x2, x3, v{x1}, v{x2} and v{x3} must be dominated,
D′ ∩ V (Kc) 6= ∅ (otherwise, at least three additional vertices of Gc would be required to
dominate x1, x2 and x3), say v{x1} ∈ D′ without loss of generality. But then, |N [x1]∩D′| = 1
as x1 must be dominated and |D′∩V (Gc)| = 5 and so,D′ contains at most one edge. Therefore,
there must exist i ∈ {1, 2, 3} such that ai 6∈ D′, say a1 6∈ D′ without loss of generality. Then,
since a1 must be dominated, either t1 ∈ D′ or b1 ∈ D′.

Assume first that t1 belongs to D′ (note that {b1, x1}∩D′ 6= ∅ by Observation 2). We then
claim that either e or e′ has an endvertex in {aj , bj , xj} for some j 6= 1. Indeed, if it weren’t
the case, then t1 would be an endvertex of neither e nor e′ for otherwise Tx1 ∈ D′ which
implies that D′∩{v{x1}, x

′
1} 6= ∅ as |D′∩V (Gx1)| = 1 and x′1 should be dominated. But then,

D′ contains at most one edge as 5 = |D′∩V (Gc)| ≥ |{t1}|+|D′∩{b1, x1}|+|D′∩{v{x1}, x
′
1}|+

|D′ ∩ {aj , bj , xj , j 6= 1}| ≥ 1 + 1 + 1 + 2 and neither e nor e′ has an endvertex in {aj , bj , xj}
for some j 6= 1 by assumption, a contradiction. Since e and e′ have at most one common
endvertex, it then follows that |D′∩V (Gc)| ≥ |{t1}|+ |D′∩{aj , bj , xj , j 6= 1}|+ 3 ≥ 1 + 2+ 3,
a contradiction. Thus, either e or e′ has an endvertex in {aj , bj , xj} for some j 6= 1, say j = 2
without loss of generality. Suppose that x2 is an endvertex of e. Then the other endvertex
of e should be b2 for otherwise it belongs to Kc and thus, a2 would not be dominated. But
then, we conclude by Observation 2 and the fact that |D′ ∩ V (Gc)| = 5, that D′ contains
only one edge. Thus, e = a2b2 or e = a2t2 and since v{x1} must be dominated, necessarily
x3 ∈ D′; but then, a3 is not dominated. Therefore, it must be that b1 belongs to D′; and we
conclude similarly that if a2 (resp. a3) is not in D′ then b2 (resp. b3) belongs to D′.

Now, since t1, a1 6∈ D′, it follows that Tx1 ∈ D′ for otherwise t1 would not be dominated.
But |D′ ∩ V (Gx)| = 1 and so, Fx1 6∈ D′; thus, D′ ∩ {x′1, v{x1}} 6= ∅ as x′1 must be dominated
and we may assume, without loss of generality, that in fact, v{x1} ∈ D′. Then, if D′ ∩
{v{x2}, v{x3}} = ∅, necessarily Fx2 , Fx3 ∈ D′; indeed, since |D′ ∩ V (Gc)| = 5, at least one
among x′2 and x′3 does not belong to D′, say x′2 without loss of generality. But if x′3 ∈ D′,
then exactly one of aj and bj , for j 6= 1 belongs to D′ (recall that if aj 6∈ D′ then bj ∈ D′)
and therefore, D′ contains at most one edge. Thus, Fx2 , Fx3 ∈ D′ which implies that
D′ ∩ {tj , aj} 6= ∅ for j 6= 1 as tj must be dominated. But by Observation 2 and the fact
that |D′ ∩ V (Gc)| = 5, we have that |D′ ∩ {t2, t3}| ≤ 1 and so, D′ contains at most one edge.
Thus, D′ ∩{v{x2}, v{x3}} 6= ∅ and since by Observation 2 |D′ ∩V (Kc)| ≤ 2, we conclude that
in fact |D′ ∩ V (Kc)| = 2. But then, exactly one among aj and bj belongs to D′ for j 6= 1
and so, D′ contains only one edge. Consequently, no such dominating set D′ exists and thus,
ctγ(GΦ) = 3.

Conversely, assume that ctγ(GΦ) = 3 and consider a minimum dominating set D of GΦ. It
readily follows from Observations 1 and 4 that for any variable x ∈ X, |D ∩ V (Gx)| = 1.
Now consider a clause gadget Gc. Then, by Observation 4, we obtain that ti 6∈ D (resp.
x′i 6∈ D) for i ∈ {1, 2, 3}, as otherwise it would be within distance at most 2 from the vertex
in D belonging to the gadget Gxi

.
Now since for any i ∈ {1, 2, 3}, ti 6∈ D, if ai 6∈ D then bi ∈ D as ai must be dominated

(also note that by Observation 4, if ai ∈ D then bi 6∈ D). Thus, by Observations 6 and 7,
we conclude that for any clause gadget Gc, |D ∩ {a1, a2, a3}| = 2 and |D ∩ {b1, b2, b3}| = 1,
say a1, a2, b3 ∈ D without loss of generality. But then, v{x3} must belong to D; indeed,
since b3 ∈ D, it follows that Tx3 ∈ D for otherwise t3 is not dominated. Observation 4 then
implies that x′3 6∈ D and thus, it can only be dominated by v{x3}. But then, it follows from
Observation 5 that every vertex in Gc is dominated and we conclude that |D ∩ V (Gc)| = 4
by minimality of D. Consequently, |D| = |X|+ 4|C| which concludes the proof of Claim 1.

E. Galby, P. T. Lima, and B. Ries 41:7

I Claim 2. γ(GΦ) = |X|+ 4|C| if and only if Φ is satisfiable.

Assume first that γ(GΦ) = |X|+ 4|C| and consider a minimum dominating set D of GΦ.
We construct a truth assignment from D satisfying Φ as follows. For any x ∈ X, if Tx ∈ D,
set x to true; otherwise, set x to false. We claim that each clause c ∈ C has exactly one true
variable. Indeed, it follows from Observation 1 that |D ∩V (Gc)| = 4 for any c ∈ C, and from
Claim 1 that ctγ(GΦ) = 3. But then, by Observation 3, for any i ∈ {1, 2, 3}, ai 6∈ D if and
only if bi ∈ D (ai would otherwise not be dominated). It then follows from Observations 6
and 7 that |D ∩ {a1, a2, a3}| = 2 and |D ∩ {b1, b2, b3}| = 1 for any c ∈ C; but by Observation
5 we conclude that bi ∈ D if and only if Txi

∈ D, which proves our claim.
Conversely, assume that Φ is satisfiable and consider a truth assignment satisfying Φ. We

construct a dominating set D of GΦ as follows. If variable x is set to true, we add Tx to D;
otherwise, we add Fx to D. For any clause c ∈ C and i ∈ {1, 2, 3}, if Txi

∈ D, then add bi to
D; otherwise, add ai to D. Since every clause has exactly one true variable, it follows that
|D ∩ {b1, b2, b3}| = 1 and |D ∩ {a1, a2, a3}| = 2; finally add v{xi} to D where bi ∈ D. Now
clearly |D ∩ V (Gc)| = 4 and every vertex in Gc is dominated. Thus, |D| = |X|+ 4|C| and so
by Observation 1, γ(GΦ) = |X|+ 4|C|, which concludes this proof.

Now combining Claims 1 and 2, we have that Φ is satisfiable if and only if ctγ(GΦ) = 3
which completes the proof of Theorem 2. J

By observing that for any graph G, G is a Yes-instance for Contraction Number(γ,3)
if and only if G is a No-instance for 2-Edge Contraction(γ), we deduce the following
corollary from Theorem 2.

I Corollary 3. 2-Edge Contraction(γ) is coNP-hard.

It is thus coNP-hard to decide whether ctγ(G) ≤ 2 for a graph G; and in fact, it is
NP-hard to decide whether equality holds, as stated in the following.

I Theorem 4 (♠). Contraction Number(γ,2) is NP-hard.

We finally consider the case k = 1.

I Theorem 5. 1-Edge Contraction(γ) is NP-hard even when restricted to Pt-free graphs,
with t ≥ 9.

Proof. We reduce from Dominating Set: given an instance (G, `) of this problem, we
construct an equivalent instance G′ of 1-Edge Contraction(γ) as follows. We denote
by {v1, . . . , vn} the vertex set of G. The graph G′ consists of ` + 1 copies of G, denoted
by G0, . . . , G`, connected in such a way that for any 1 ≤ i ≤ ` and 1 ≤ k ≤ n, the copies
vik ∈ V (Gi) and v0

k ∈ V (G0) of a vertex vk of G are true twins in the subgraph of G′ induced
by V (G0) ∪ V (Gi); and for any 1 ≤ i, j ≤ ` and 1 ≤ k ≤ n, the copies vik ∈ V (Gi) and
vjk ∈ V (Gj) of a vertex vk of G are false twins in the subgraph of G′ induced by

⋃
1≤p≤` V (Gp).

Next, we add ` + 1 pairwise nonadjacent vertices x1, . . . , x`+1, which are made adjacent
to every vertex in G0; xi is further made adjacent to every vertex in Gi, for all 1 ≤ i ≤ `.
Finally, we add a vertex y adjacent to only x`+1 (see Fig. 2). Note that the fact that for
all 1 ≤ k ≤ n and 1 ≤ i, j ≤ `, vik and vjk (resp. vik and v0

k) are false (resp. true) twins
within the graph induced by

⋃
1≤p≤` V (Gp) (resp. V (G0) ∪ V (Gi)) is not made explicit on

Fig. 2 for the sake of readability. In the following, we denote by X = {x1, . . . , x`+1} and
V =

⋃
0≤p≤` V (Gp). We now claim the following.

I Claim 3. γ(G′) = min{γ(G) + 1, `+ 1}.

MFCS 2019

41:8 On Reducing the Domination Number

G0

x1

G1

x2

G2

. . .x`

G`

x`+1y

Figure 2 The graph G′ (thick lines indicate that the vertex xi is adjacent to every vertex in G0

and Gi, for i = 1, . . . , `+ 1).

It is clear that {x1, . . . , x`+1} is a dominating set of G′; thus, γ(G′) ≤ `+ 1. If γ(G) ≤ `
and {vi1 , . . . , vik} is a minimum dominating set of G, it is easily seen that {v0

i1
, . . . , v0

ik
, x`+1}

is a dominating set of G′. Thus, γ(G′) ≤ γ(G) + 1 and so, γ(G′) ≤ min{γ(G) + 1, ` + 1}.
Now, suppose to the contrary that γ(G′) < min{γ(G) + 1, `+ 1} and consider a minimum
dominating D′ set of G′. We first make the following simple observation.

I Observation 8. For any dominating set D of G′, D ∩ {y, x`+1} 6= ∅.

Now, since γ(G′) < ` + 1, there exists 1 ≤ i ≤ ` such that xi 6∈ D′ (otherwise,
{x1, . . . , x`} ⊂ D′ and combined with Observation 8, D′ would be of size at least ` + 1).
But then, D′′ = D′ ∩ V must dominate every vertex in Gi, and so |D′′| ≥ γ(G). Since
|D′′| ≤ |D′|−1 (recall that D′∩{y, x`+1} 6= ∅), we then have γ(G) ≤ |D′|−1, a contradiction.
Thus, γ(G′) = min{γ(G) + 1, `+ 1}.

We now show that (G, `) is a Yes-instance for Dominating Set if and only if G′ is a
Yes-instance for 1-Edge Contraction(γ).

First assume that γ(G) ≤ `. Then, γ(G′) = γ(G) + 1 by the previous claim, and if
{vi1 , . . . , vik} is a minimum dominating set of G, then {v0

i1
, . . . , v0

ik
, x`+1} is a minimum

dominating set of G′ which is not stable. Hence, by Theorem 1(i), G′ is a Yes-instance for
1-Edge Contraction(γ).

Conversely, assume that G′ is a Yes-instance for 1-Edge Contraction(γ) i.e., there
exists a minimum dominating set D′ of G′ which is not stable (see Theorem 1(i)). Then,
Observation 8 implies that there exists 1 ≤ i ≤ ` such that xi 6∈ D′; indeed, if it weren’t the
case, then by Claim 3 we would have γ(G′) = `+ 1 and thus, D′ would consist of x1, . . . , x`
and either y or x`+1. In both cases, D′ would be stable, a contradiction. It follows that
D′′ = D′ ∩ V must dominate every vertex in Gi and thus, |D′′| ≥ γ(G). But |D′′| ≤ |D′| − 1
(recall that D′ ∩ {y, x`+1} 6= ∅) and so by Claim 3, γ(G) ≤ |D′| − 1 ≤ (` + 1) − 1 that is,
(G, `) is a Yes-instance for Dominating Set.

B Claim 6 (♠). If G is a 2K2-free graph, then G′ is a P9-free graph.

Since Dominating Set is NP-complete on 2K2-free graphs [5], the above claim concludes
the proof of Theorem 5. J

Given the NP-hardness of 1-Edge Contraction(γ) and its close relation to Dominat-
ing Set, it is natural to consider the complexity of the problem when parameterized by the
size of a minimum dominating set of the input graph. In the following, we show that 1-Edge
Contraction(γ) is W[1]-hard when parameterized by γ+mimw, where mimw denotes the
maximum induced matching-width parameter (in short, mim-width). For a formal definition

E. Galby, P. T. Lima, and B. Ries 41:9

and basic properties of this width measure we refer the reader to [18]. We first state two
simple facts regarding the mim-width of a graph.

I Observation 9. Let G be a graph and u, v ∈ V (G) be two vertices that are true (resp.
false) twins in G. Then mimw(G− v) = mimw(G).

I Observation 10. Let G be a graph and v ∈ V (G). Then mimw(G) ≤ mimw(G− v) + 1.

I Theorem 7. 1-Edge Contraction(γ) is W[1]-hard parameterized by γ +mimw.

Proof. We give a parameterized reduction from Dominating Set parameterized by solution
size plus mim-width, which is a problem that was recently shown to be W[1]-hard by Fomin
et al. [10]. Given an instance (G, `) of Dominating Set, the construction of the equivalent
instance G′ for 1-Edge Contraction(γ) is the same as the one introduced in the proof of
Theorem 5; and it is there shown that G is a Yes-instance for Dominating Set if and only
if G′ is a Yes-instance for 1-Edge Contraction(γ). Now, note that G′ can be obtained
from G by the addition of true twins (the set V (G1)), the addition of false twins (the sets
V (G2), . . . , V (G`)), and the addition of ` + 2 vertices (x1, . . . , x`+1, y). By Observation 9,
the addition of true (resp. false) twins does not increase the mim-width of a graph and,
by Observation 10, the addition of a vertex can only increase the mim-width of G by one;
thus, mimw(G′) ≤ mimw(G) + `+ 2 and since γ(G′) ≤ `+ 1 by Claim 3, we conclude that
mimw(G′) + γ(G′) ≤ mimw(G) + 2`+ 3. J

In order to obtain complexity results for further graph classes, let us now consider
subdivisions of edges.

I Lemma 8 (♠). Let G be a graph and let G′ be the graph obtained by 3-subdividing every
edge of G. Then G is a Yes-instance for 1-Edge Contraction(γ) if and only if G′ is a
Yes-instance for 1-Edge Contraction(γ).

By 3-subdividing every edge of a graph G sufficiently many times, we deduce the following
two corollaries from Lemma 8.

I Corollary 9. 1-Edge Contraction(γ) is NP-hard when restricted to bipartite graphs.

I Corollary 10. For any ` ≥ 3, 1-Edge Contraction(γ) is NP-hard when restricted to
{C3, . . . , C`}-free graphs.

We finally observe that, even if an edge is given, deciding whether contracting this
particular edge decreases the domination number is unlikely to be solvable in polynomial
time as shown in the following result.

I Theorem 11. There exists no polynomial-time algorithm deciding whether contracting a
given edge decreases the domination number, unless P = NP.

Proof. We denote by Edge Contraction(γ) the problem that takes as an input a graph
G = (V,E) and an edge e ∈ E, and asks whether γ(G\e) ≤ γ(G)− 1. We show that if Edge
Contraction(γ) can be solved in polynomial time, then Dominating Set can also be
solved in polynomial time. Since Dominating Set is a well-known NP-complete problem,
the result follows.

Let (G, `) be an instance for Dominating Set and let e be an edge of G. We run the
polynomial time algorithm for Edge Contraction(γ) to determine if γ(G \ e) = γ(G)− 1;
we then have two possible scenarios.

MFCS 2019

41:10 On Reducing the Domination Number

Case 1. (G, e) is a Yes-instance for Edge Contraction(γ). Since γ(G \ e) = γ(G)− 1, we
know that G has a dominating set of size ` if and only if G \ e has a dominating set of size
`− 1. Hence, we obtain that (G \ e, `− 1) is an equivalent instance for Dominating Set.

Case 2. (G, e) is a No-instance for Edge Contraction(γ). Since γ(G \ e) = γ(G), we
know that G has a dominating set of size ` if and only if G \ e has a dominating set of size `.
In this case, we obtain that (G \ e, `) is an equivalent instance for Dominating Set.

In both cases, the ensuing equivalent instance has one less vertex. Thus, by applying the
polynomial-time algorithm for Edge Contraction(γ) at most n times, we obtain a trivial
instance for Dominating Set and can therefore correctly determine its answer. J

4 Algorithms

We now deal with cases in which k-Edge Contraction(γ) is tractable, for k = 1, 2. A first
simple approach to the problem, from which we obtain Proposition 12, is based on brute
force.

I Proposition 12. For k = 1, 2, k-Edge Contraction(γ) can be solved in polynomial
time for a graph class C, if either
(a) C is closed under edge contractions and Dominating Set can be solved in polynomial

time on C; or
(b) for every G ∈ C, γ(G) ≤ q, where q is some fixed constant; or
(c) C is the class of (H +K1)-free graphs, where |VH | = q is a fixed constant and k-Edge

Contraction(γ) is polynomial-time solvable on H-free graphs.

Proof. In order to prove item (a), it suffices to note that if we can compute γ(G) and γ(G\e),
for any edge e of G, in polynomial time, then we can determine whether a graph G is a
Yes-instance for 1-Edge Contraction(γ) in polynomial time (we may proceed in a similar
fashion for 2-Edge Contraction(γ)).

For item (b), we proceed as follows. Given a graph G of C, we first check whether G has
a dominating vertex. If it is the case, then G is a No-instance for k-Edge Contraction(γ)
for both k = 1, 2. Otherwise, we may consider any subset S ⊂ V (G) with |S| ≤ q and check
whether it is a dominating set of G. Since there are at most O(nq) possible such subsets,
we can determine the domination number of G and check whether the conditions given in
Theorem 1 (i) or (ii) are satisfied in polynomial time.

Finally, so as to prove item (c), we provide the following algorithm that works similarly
for k = 1 and k = 2. Let H and q be as stated and let G be an instance of k-Edge
Contraction(γ) on (H +K1)-free graphs. We first test whether G is H-free (note that
this can be done in time O(nq)). If this is the case, we use the polynomial-time algorithm
for k-Edge Contraction(γ) on H-free graphs. Otherwise, G has an induced subgraph
isomorphic to H; but since G is a (H+K1)-free graph, V (H) must then be a dominating set of
G and so, γ(G) ≤ q. We then conclude by Proposition 12(b) that k-Edge Contraction(γ)
is also polynomial-time solvable in this case. J

Proposition 12(b) provides an algorithm for 1-Edge Contraction(γ) parameterized
by the size of a minimum dominating set of the input graph running in XP-time. Note that
this result is optimal as 1-Edge Contraction(γ) is W[1]-hard with such parameterization
from Theorem 7.

E. Galby, P. T. Lima, and B. Ries 41:11

We further show that even though simple, this brute force method provides polynomial-
time algorithms for a number of relevant classes of graphs, such as graphs of bounded
tree-width and graphs of bounded mim-width. We first state the following result and
observation.

I Theorem 13. [18] Given a graph G and a decomposition of width t, Dominating Set
can be solved in time O∗(3t) when parameterized by tree-width, and in time O∗(n3t) when
parameterized by mim-width.

I Observation 11. mimw(G \ e) ≤ mimw(G) + 1.

Indeed, note that the graph G \ e can be obtained from G by the removal of the vertices u
and v where e = uv, and the addition of a new vertex whose neighborhood is NG(u)∪NG(v).
The result then follows from Observation 10 and the fact that vertex deletion does not
increase the mim-width of a graph.

I Proposition 14. Given a decomposition of width t, k-Edge Contraction(γ) can be
solved in time O∗(3t) in graphs of tree-width at most t and in time O∗(n3t) in graphs of
mim-width at most t, for k = 1, 2.

Proof. We use the above-mentioned brute force approach and Theorem 13. That is, for
k = 1, the algorithm first computes γ(G) and then computes γ(G \ e) for every e ∈ E(G).
For k = 2, the algorithm proceeds similarly for every pair of edges. We next show that
the width parameters increase by a constant when contracting at most two edges. It is a
well-known fact that tw(G \ e) ≤ tw(G) and so, tw(G \ {e, f}) ≤ tw(G). By Observation 11,
mimw(G \ e) ≤ mimw(G) + 1 which implies that mimw(G \ {e, f}) ≤ mimw(G) + 2. Also
note that, given a tree (resp. mim) decomposition of width t for G, we can construct in
polynomial time decompositions of width t (resp. at most t+ 2) for G \ e and G \ {e, f}. This
implies that γ(G \ e) and γ(G \ {e, f}) can also be computed in time O∗(3t) if G is a graph
of tree-width at most t, and in time O∗(n3t) if G is a graph of mim-width at most t. J

Proposition 14 provides an algorithm for 1-Edge Contraction(γ) parameterized by
mim-width running in XP-time; this result is optimal as 1-Edge Contraction(γ) is
W[1]-hard parameterized by mim-width from Theorem 7.

Since Dominating Set is polynomial-time solvable in P4-free graphs (see [12]), it follows
from Proposition 12(a) that k-Edge Contraction(γ) can also be solved efficiently in this
graph class. However, Dominating Set is NP-complete for P5-free graphs (see [5]) and
thus, it is natural to examine the complexity of k-Edge Contraction(γ) for this graph
class. As we next show, k-Edge Contraction(γ) is in fact polynomial-time solvable on
P5-free graphs, for k = 1, 2.

I Lemma 15. If G is a P5-free graph with γ(G) ≥ 3, then ctγ(G) = 1.

Proof. Let G = (V,E) be a P5-free graph and D be a minimum dominating set of G. Suppose
that D is a stable set and consider u, v ∈ D such that d(u, v) = maxx,y∈D d(x, y). Since G is
P5-free, d(u, v) ≤ 3 and, since D is stable, d(u, v) ≥ 2. We distinguish two cases depending
on this distance.

MFCS 2019

41:12 On Reducing the Domination Number

Case 1. d(u, v) = 3. Let x (resp. y) be the neighbor of u (resp. v) on a shortest path
from u to v. Then, N(u) ∪N(v) ⊆ N(x) ∪N(y); indeed, if a is a neighbor of u, then a is
nonadjacent to v (recall that d(u, v) = 3) and thus, a is adjacent to either x or y for otherwise
a, u, x, y and v would induce a P5 in G. The same holds for any neighbor of v. Consequently,
(D\{u, v}) ∪ {x, y} is a minimum dominating set of G which is not stable; the result then
follows from Theorem 1(i).

Case 2. d(u, v) = 2. Since D is stable and d(u, v) = maxx,y∈D d(x, y) = 2, it follows that
every w ∈ D\{u, v} is at distance two from both u and v. Let x (resp. y) be the vertex on a
shortest path from u (resp. v) to some vertex w ∈ D\{u, v}.

Suppose first that x = y. If every private neighbor of w with respect to D is adjacent
to x then (D\{w}) ∪ {x} is a minimum dominating set of G which is not stable; the result
then follows from Theorem 1(i). We conclude similarly if every private neighbor of u or v
with respect to D is adjacent to x. Thus, we may assume that w (resp. u; v) has a private
neighbor t (resp. r; s) with respect to D which is nonadjacent to x. Since G is P5-free, it
then follows that r, s and t are pairwise adjacent. But then, t, r, u, x and v induce a P5, a
contradiction.

Finally, suppose that x 6= y (we may also assume that uy, vx 6∈ E as we otherwise fall
back in the previous case). Then, xy ∈ E for u, x, w, y and v would otherwise induce a P5.
Now, if a is a private neighbor of u with respect to D then a is adjacent to either x or y
(a, u, x, y and v otherwise induce a P5); we conclude similarly that any private neighbor of v
with respect to D is adjacent to either x or y. If b is adjacent to both u and v but not w,
then it is adjacent to x (and y) as v, b, u, x and w (u, b, v, y and w) would otherwise induce
a P5. But then, (D\{u, v}) ∪ {x, y} is a minimum dominating set of G which is not stable;
thus, by Theorem 1(i), ctγ(G) = 1 which concludes the proof. J

I Theorem 16. k-Edge Contraction(γ) is polynomial-time solvable on P5-free graphs,
for k = 1, 2.

Proof. If G has a dominating vertex, then G is clearly a No-instance for both k = 1, 2.
Now, for every uv ∈ E(G), we check whether {u, v} is a dominating set. If it is the case,
then by Theorem 1(i), G is a Yes-instance for k-Edge Contraction(γ) for k = 1, 2. If
no edge of G is dominating, we consider all the pairs of nonadjacent vertices of G. If there
exists such a pair dominating G and k = 1 then by Theorem 1(i), we have a No-instance
for 1-Edge Contraction(γ) since this implies that every minimum dominating set of G
is stable. For the case k = 2, if G has two nonadjacent vertices dominating G, we then
consider all triples of vertices of G to check whether there exists one which is dominating
and contains at least two edges (see Theorem 1(ii)). Finally, both for k = 1 and k = 2, if
G has no dominating set of size at most two, then by Lemma 15, G is a Yes-instance for
k-Edge Contraction(γ). J

5 Conclusion

In this paper, we studied the k-Edge Contraction(γ) problem and provided the first
complexity results. In particular, we showed that 1-Edge Contraction(γ) is NP-hard
for Pt-free graphs, t ≥ 9, but polynomial-time solvable for P5-free graphs; it would be
interesting to determine the complexity status for P`-free graphs, for ` ∈ {6, 7, 8}. Similarly,
the complexity of 2-Edge Contraction(γ) for Pt-free graphs, with t ≥ 6, remains an
interesting open problem.

E. Galby, P. T. Lima, and B. Ries 41:13

References
1 Cristina Bazgan, Sonia Toubaline, and Zsolt Tuza. The most vital nodes with respect to

independent set and vertex cover. Discrete Applied Mathematics, 159:1933–1946, October
2011. doi:10.1016/j.dam.2011.06.023.

2 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten. Critical edges for the assignment
problem: Complexity and exact resolution. Operations Research Letters, 41:685–689, November
2013. doi:10.1016/j.orl.2013.10.001.

3 Cédric Bentz, Costa Marie-Christine, Dominique de Werra, Christophe Picouleau, and Bernard
Ries. Blockers and Transversals in some subclasses of bipartite graphs : when caterpillars are
dancing on a grid. Discrete Mathematics, 310:132–146, January 2010. doi:10.1016/j.disc.
2009.08.009.

4 Cédric Bentz, Costa Marie-Christine, Dominique de Werra, Christophe Picouleau, and Bernard
Ries. Weighted Transversals and Blockers for Some Optimization Problems in Graphs, pages
203–222. Progress in Combinatorial Optimization. ISTE-WILEY, 2012.

5 Alan A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing
Letters, 19(1):37–40, 1984. doi:10.1016/0020-0190(84)90126-1.

6 Marie-Christine Costa, Dominique de Werra, and Christophe Picouleau. Minimum d-blockers
and d-transversals in graphs. Journal of Combinatorial Optimization, 22(4):857–872, 2011.
doi:10.1007/s10878-010-9334-6.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg; New York, fourth edition, 2010.

9 Öznur Yaşar Diner, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Contraction
Blockers for Graphs with Forbidden Induced Paths. In Algorithms and Complexity, pages
194–207, Cham, 2015. Springer International Publishing.

10 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the Tractability of
Optimization Problems on H-Graphs. In ESA 2018, volume 112 of LIPIcs, pages 30:1–30:14,
2018. doi:10.4230/LIPIcs.ESA.2018.30.

11 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

12 Teresa W. Haynes, S. T. Hedetniemi, and Peter J. Slater. Fundamentals of domination in
graphs. New York : Marcel Dekker, 1998.

13 Jia Huang and Jun-Ming Xu. Domination and Total Domination Contraction Numbers of
Graphs. Ars Combinatoria, 94, January 2010.

14 Foad Mahdavi Pajouh, Vladimir Boginski, and Eduardo Pasiliao. Minimum Vertex Blocker
Clique Problem. Networks, 64, August 2014. doi:10.1002/net.21556.

15 Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Reducing the Clique and Chromatic
Number via Edge Contractions and Vertex Deletions. In ISCO 2016, volume 9849 of LNCS,
pages 38–49, 2016. doi:10.1007/978-3-319-45587-7_4.

16 Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Blocking Independent Sets for
H-Free Graphs via Edge Contractions and Vertex Deletions. In TAMC 2017, volume 10185 of
LNCS, pages 470–483, 2017. doi:10.1007/978-3-319-55911-7_34.

17 Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Critical vertices and edges in H-free
graphs. Discrete Applied Mathematics, 257:361–367, 2019. doi:10.1016/j.dam.2018.08.016.

18 Martin Vatshelle. New width parameters of graphs. PhD thesis, University of Bergen, Norway,
2012.

19 Öznur Yaşar Diner, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Contraction
and deletion blockers for perfect graphs and H-free graphs. Theoretical Computer Science,
746:49–72, 2018. doi:10.1016/j.tcs.2018.06.023.

MFCS 2019

https://doi.org/10.1016/j.dam.2011.06.023
https://doi.org/10.1016/j.orl.2013.10.001
https://doi.org/10.1016/j.disc.2009.08.009
https://doi.org/10.1016/j.disc.2009.08.009
https://doi.org/10.1016/0020-0190(84)90126-1
https://doi.org/10.1007/s10878-010-9334-6
https://doi.org/10.4230/LIPIcs.ESA.2018.30
https://doi.org/10.1002/net.21556
https://doi.org/10.1007/978-3-319-45587-7_4
https://doi.org/10.1007/978-3-319-55911-7_34
https://doi.org/10.1016/j.dam.2018.08.016
https://doi.org/10.1016/j.tcs.2018.06.023

Measuring what Matters: A Hybrid Approach to
Dynamic Programming with Treewidth
Eduard Eiben
Department of Informatics, University of Bergen, Bergen, Norway
eduard.eiben@uib.no

Robert Ganian
Vienna University of Technology, Vienna, Austria
rganian@gmail.com

Thekla Hamm
Vienna University of Technology, Vienna, Austria
thekla.hamm@tuwien.ac.at

O-joung Kwon
Department of Mathematics, Incheon National University, Korea
ojoungkwon@inu.ac.kr

Abstract
We develop a framework for applying treewidth-based dynamic programming on graphs with “hybrid
structure”, i.e., with parts that may not have small treewidth but instead possess other structural
properties. Informally, this is achieved by defining a refinement of treewidth which only considers
parts of the graph that do not belong to a pre-specified tractable graph class. Our approach
allows us to not only generalize existing fixed-parameter algorithms exploiting treewidth, but also
fixed-parameter algorithms which use the size of a modulator as their parameter. As the flagship
application of our framework, we obtain a parameter that combines treewidth and rank-width to
obtain fixed-parameter algorithms for Chromatic Number, Hamiltonian Cycle, and Max-Cut.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized complexity, treewidth, rank-width, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.42

Funding E. Eiben was supported by Pareto-Optimal Parameterized Algorithms (ERC Starting
Grant 715744). R. Ganian acknowledges support by the Austrian Grant Agency (FWF, project
P31336 NFPC), and is also affiliated with FI MUNI, Czech Republic. O. Kwon was supported by
the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No.
NRF-2018R1D1A1B07050294).

1 Introduction

Over the past decades, the use of structural properties of graphs to obtain efficient algorithms
for NP-hard computational problems has become a prominent research direction in computer
science. Perhaps the best known example of a structural property that can be exploited in
this way is the tree-likeness of the inputs, formalized in terms of the decomposition-based
structural parameter treewidth [35]. It is now well known that a vast range of fundamental
problems admit so-called fixed-parameter algorithms parameterized by the treewidth of the
input graph – that is, can be solved in time f(k) · nO(1) on n-vertex graphs of treewidth k
(for some computable function f). We say that such problems are FPT parameterized by
treewidth.

© Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@uib.no
mailto:rganian@gmail.com
mailto:thekla.hamm@tuwien.ac.at
mailto:ojoungkwon@inu.ac.kr
https://doi.org/10.4230/LIPIcs.MFCS.2019.42
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 A Hybrid Approach to Dynamic Programming with Treewidth

On the other hand, dense graphs are known to have high treewidth and hence require the
use of different structural parameters; the classical example of such a parameter tailored to
dense graphs is clique-width [8]. Clique-width is asymptotically equivalent to the structural
parameter rank-width [34], which is nowadays often used instead of clique-width due to a
number of advantages (rank-width is much easier to compute [26] and can be used to design
more efficient fixed-parameter algorithms than clique-width [21, 22]). While rank-width (or,
equivalently, clique-width) dominates1 treewidth and can be used to “lift” fixed-parameter
algorithms designed for treewidth to well-structured dense graphs for a number of problems,
there are also important problems which are FPT parameterized by treewidth but W[1]-hard
(and hence probably not FPT) parameterized by rank-width. The most prominent examples of
such problems are Chromatic Number [18], Hamiltonian Cycle [18], and Max-Cut [19].

Another generic type of structure used in algorithmic design is based on measuring the
size of a modulator (i.e., a vertex deletion set) [5] to a certain graph class. Basic examples of
parameters based on modulators include the vertex cover number (a modulator to edgeless
graphs) [16] and the feedback vertex set number (a modulator to forests)[3]. For dense graphs,
modulators to graphs of rank-width 1 have been studied [13, 30], and it is known that for
every constant c one can find a modulator of size at most k to graphs of rank-width c (if
such a modulator exists) in time f(k) · n [29]. However, the algorithmic applications of such
modulators have remained largely unexplored up to this point.

Our Contribution. We develop a class of hybrid parameters which combines the foremost
advantages of treewidth and modulators to obtain a “best-of-both-worlds” outcome. In
particular, instead of measuring the treewidth of the graph itself or the size of a modulator to
a graph class H, we consider the treewidth of a (torso of a) modulator to H. This parameter,
which we simply call H-treewidth, allows us to lift previously established tractability results
for a vast number of problems from treewidth and modulators to a strictly more general setting.
As our first technical contribution, we substantiate this claim with a meta-theorem that
formalizes generic conditions under which a treewidth-based algorithm can be generalized to
H-treewidth; the main technical tool for the proof is an adaptation of protrusion replacement
techniques [2, Section 4].

As the flagship application of H-treewidth, we study the case where H is the class Rc

of graphs of rank-width at most c (an arbitrary constant). Rc-treewidth hence represents a
way of lifting treewidth towards dense graphs that lies “between” treewidth and rank-width.
We note that this class of parameters naturally incorporates a certain scaling trade-off:
Rc-treewidth dominates Rc−1-treewidth for each constant c, but the runtime bounds for
algorithms using Rc-treewidth are worse than those for Rc−1-treewidth.

Our first result for Rc-treewidth is a fixed-parameter algorithm for computing the
parameter itself. We then develop fixed-parameter algorithms for Chromatic Number,
Hamiltonian Cycle and Max-Cut parameterized by Rc-treewidth; moreover, in 2 out
of these 3 cases the parameter dependencies of our algorithms are essentially tight. These
algorithms represent generalizations of:
1. classical fixed-parameter algorithms parameterized by treewidth [12],
2. polynomial-time algorithms on graphs of bounded rank-width [22], and
3. (not previously known) fixed-parameter algorithms parameterized by modulators to graph

classes of bounded rank-width.

1 Parameter α dominates parameter β if for each graph class with bounded β, α is also bounded.

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:3

The main challenge for all of these problems lies in dealing with the fact that some parts
of the graph need to be handled using rank-width based techniques, while for others we use
treewidth-based dynamic programming. We separate these parts from each other using the
notion of nice H-tree decompositions. The algorithm then relies on enhancing the known
dynamic programming approach for solving the problem on treewidth with a subroutine
that not only solves the problem on the part of the graph outside of the modulator, but
also serves as an interface by supplying appropriate records to the treewidth-based dynamic
programming part of the algorithm. At its core, each of these subroutines boils down to
solving an “extended” version of the original problem parameterized by the size of a modulator
to Rc; in particular, each subroutine immediately implies a fixed-parameter algorithm for
the respective problem when parameterized by a modulator to constant rank-width. To give
a specific example for such a subroutine, in the case of Chromatic Number one needs to
solve the problem parameterized by a modulator to Rc where the modulator is furthermore
precolored.

To avoid any doubt, we make it explicitly clear that the runtime of all of our algorithms
utilizing Rc-treewidth has a polynomial dependency on the input where the degree of this
polynomial depends on c (as is necessitated by the W[1]-hardness of the studied problems
parameterized by rank-width).

Related Work. Previous works have used a combination of treewidth with backdoors, a
notion that is closely related to modulators, in order to solve non-graph problems such as
Constraint Satisfaction [25], Boolean Satisfiability [24] and Integer Program-
ming [23]. Interestingly, the main technical challenge in all of these papers is the problem
of computing the parameter, while using the parameter to solve the problem is straightfor-
ward. In the algorithmic results presented in this contribution, the situation is completely
reversed: the main technical challenge lies in developing the algorithms (and most notably
the subroutines) for solving our targeted problems. Moreover, while the aforementioned three
papers focus on solving a single problem, here we aim at identifying and exploiting structural
properties that can be used to solve a wide variety of graph problems.

Other parameters which target inputs with hybrid structure include sm-width [36] and
well-structured modulators [14]. It is not difficult to show that these are different (both
conceptually and factually) from Rc-treewidth.

2 Preliminaries

For i ∈ N, let [i] denote the set {1, . . . , i}. All graphs in this paper are simple and undirected.
We refer to the standard textbook [11] for basic graph terminology. For S ⊆ V (G), let G[S]
denote the subgraph of G induced by S. For v ∈ V (G), the set of neighbors of v in G is
denoted by NG(v) (or N(v) when G is clear from the context). For A ⊆ V (G), let NG(A)
denote the set of vertices in G−A that have a neighbor in A. For a vertex set A, an A-path
is a path whose endpoints are contained in A and all the internal vertices are contained in
G−A.

A setM of vertices in a graph G is called a modulator to a graph classH if G−M ∈ H. The
operation of collapsing a vertex set X, denoted G ◦X, deletes X from the graph and adds an
edge between vertices u, v ∈ V (G−X) if uv /∈ E(G) and there is an u-v path with all internal
vertices in G[X]. We assume that the reader is familiar with parameterized complexity [9, 12],
notably with notions such as FPT, W[1], treewidth and Courcelle’s Theorem.

MFCS 2019

42:4 A Hybrid Approach to Dynamic Programming with Treewidth

Rank-width. For a graph G and U,W ⊆ V (G), let AG[U,W] denote the U ×W -submatrix
of the adjacency matrix over the two-element field GF(2), i.e., the entry au,w, u ∈ U and
w ∈ W , of AG[U,W] is 1 if and only if {u,w} is an edge of G. The cut-rank function
ρG of a graph G is defined as follows: For a bipartition (U,W) of the vertex set V (G),
ρG(U) = ρG(W) equals the rank of AG[U,W].

A rank-decomposition of a graph G is a pair (T, µ) where T is a tree of maximum degree 3
and µ : V (G)→ {t | t is a leaf of T} is a bijective function. For an edge e of T , the connected
components of T − e induce a bipartition (X,Y) of the set of leaves of T . The width of an
edge e of a rank-decomposition (T, µ) is ρG(µ−1(X)). The width of (T, µ) is the maximum
width over all edges of T . The rank-width of G, rw(G) in short, is the minimum width over
all rank-decompositions of G. We denote by Ri the class of all graphs of rank-width at most
i. A rooted rank-decomposition is obtained from a rank-decomposition by subdividing an
arbitrarily chosen edge, and the newly created vertex is called the root.

Unlike clique-width, rank-width can be computed exactly by a fixed-parameter algorithm
(which also outputs a corresponding rank-decomposition) [26].

Monadic Second-Order Logic. Counting Monadic Second-Order Logic (CMSO1) is a basic
tool to express properties of vertex sets in graphs. The syntax of CMSO1 includes logical
connectives ∧,∨,¬,⇔,⇒, variables for vertices and vertex sets, quantifiers ∃,∀ over these
variables, and the relations a ∈ A where a is a vertex variable and A is a vertex set variable;
adj(a, b), where a and b are vertex variables and the interpretation is that a and b are
adjacent; equality of variables representing vertices and sets of vertices; Parity(A), where A
is a vertex set variable and the interpretation is that |A| is even.

The CMSO1 Optimization problem is defined as follows:

CMSO1-OPT
Instance: A graph G, a CMSO1 formula φ(A) with a free set variable A, and opt ∈

{min,max}.
Task: Find an interpretation of the set A in G such that G models φ(A) and A is of

minimum/maximum (depending on opt) cardinality.

From the fixed-parameter tractability of computing rank-width [26], the equivalence of
rank-width and clique-width [34] and Courcelle’s Theorem for graphs of bounded clique-
width [7] it follows that:

I Fact 1 ([21]). CMSO1-OPT is FPT parameterized by rw(G) + |φ|, where G is the input
graph and φ is the CMSO1 formula.

3 H-Treewidth

The aim of H-treewidth is to capture the treewidth of a modulator to the graph class H.
However, one cannot expect to obtain a parameter with reasonable algorithmic applications
by simply measuring the treewidth of the graph induced by a modulator to H – instead, one
needs to measure the treewidth of a so-called torso, which adds edges to track how the vertices
in the modulator interact through H. To substantiate this, we observe that Hamiltonian
Cycle would become NP-hard even on graphs with a modulator that (1) induces an edgeless
graph, and (2) is a modulator to an edgeless graph, and where (3) each connected component
outside the modulator has boundedly many neighbors in the modulator [1].

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:5

Figure 1 Left: A graph G with a tree as a modulator to H (the part in H is depicted hatched).
Right: The corresponding H-torso.

The notion of a torso has previously been algorithmically exploited in other settings [23,
25, 33], and its adaptation is our first step towards the definition of H-treewidth (see also
Figure 1).

I Definition 1 (H-Torso). Let G be a graph and X ⊆ V (G). For a graph class H, G ◦X is
an H-torso of G if each connected component C of G[X] satisfies C ∈ H.

I Definition 2 (H-Treewidth). The H-treewidth of a graph G is the minimum treewidth of
an H-torso of G. We denote the H-treewidth of G by twH(G).

Typically, we will want to consider a graph class H for which certain problems are
polynomial-time tractable. Hence, we will assume w.l.o.g. that (∅, ∅) ∈ H. From the definition
we easily observe that twH(G) ≤ tw(G) for every G and H.

3.1 Nice H-Tree-Decompositions
Just like for tree decompositions, we can also define a canonical form of decompositions which
has properties that are convenient when formulating dynamic programs using H-treewidth.
Intuitively, a nice H-tree decomposition behaves like a nice tree decomposition on the torso
graph (see points 1-3), with the exception that the neighborhoods of the collapsed parts
must occur as special boundary leaves (see points 4-5).

I Definition 3 (Nice H-Tree-Decomposition). A nice H-tree decomposition of a graph G
is a triple (X,T, {Bt | t ∈ V (T)}) where X ⊆ V (G) such that G ◦ X is an H-torso,
(T, {Bt | t ∈ V (T)}) is a rooted tree decomposition of G ◦X, and:
1. Every node in T has at most two children.
2. If a node t has children t1 6= t2, then Bt = Bt1 = Bt2 and we call t a join node.
3. If a node t has exactly one child t′, then either (a) there exists x ∈ V (G) \Bt′ such that

Bt = Bt′ ∪ {x} and we call t an introduce node, or (b) there exists x ∈ V (G) \Bt such
that Bt′ = Bt ∪ {x} and we call t a forget node.

4. If a node t is a leaf, then (a) |Bt| = 1 and we call t a simple leaf, or (b) Bt = N(C) for
some connected component C of G[X] and we call t a boundary leaf.

5. For each connected component C of G[X] there is a unique leaf t with Bt = N(C).

An illustration of a nice H-tree decomposition showcasing how it differs from a nice tree
decomposition is provided in Figure 2; in line with standard terminology for treewidth, we call
the sets Bt bags. The width of a nice H-tree decomposition is simply the width of (T, {Bt | t ∈
V (T)}). Given a node t in a nice H-tree decomposition T , we let Yt be the set of all vertices

MFCS 2019

42:6 A Hybrid Approach to Dynamic Programming with Treewidth

. . .

. . .
. . .

N(C)

C

bags of the original
tree decomposition
of G ◦X

copies of the bag B
containing N(C)

path introducing
B \N(C)

Figure 2 Part of a nice H-tree-decomposition (blue) including a boundary leaf (bold) and a
connected component C (hatched) of X.

contained in the bags of the subtree rooted at t, i.e., Yt = Bt∪
⋃

p is separated from the root by t Bp.
It is possible to show that computing a nice H-tree decomposition of bounded width can be
reduced to finding an appropriate H-torso (this is because a nice H-tree decomposition can
be obtained straightforwardly from a nice tree decomposition of the torso).

Hence, we can state the problem of computing a decomposition as follows:

H-Treewidth Parameter: k
Instance: A graph G, an integer k.
Task: Find an H-torso U of G such that tw(U) ≤ k, or correctly determine that no

such H-torso exists.

An Algorithmic Meta-Theorem. Before proceeding to the flagship application of H-
treewidth where H is the class of graphs of bounded rank-width, here we give a generic
set of conditions that allow fixed-parameter algorithms for problems parameterized by H-
treewidth. Specifically, we consider graph problems that are finite-state [6] or have finite
integer index [2, 4, 20]. Informally speaking, such problems only transfer a limited amount of
information across a small separator in the input graph and hence can be solved “indepen-
dently” on both sides of such a separator. Since these notions are only used in this section,
we provide concise definitions below.

First of all, we will need the notion of boundaried graphs and gluing. A graph Ḡ is
called t-boundaried if it contains t distinguished vertices identified as bG

1 , . . . , b
G
t . The gluing

operation ⊕ takes two t-boundaried graphs Ḡ and H̄, creates their disjoint union, and then
alters this disjoint union by identifying the boundaries of the two graphs (i.e. by setting
bG

i = bH
i for each i ∈ [t]).

Consider a decision problem P whose input is a graph. We say that two t-boundaried
graphs C̄ and D̄ are equivalent, denoted by C̄ ∼P,t D̄, if for each t-boundaried graph H̄ it
holds that C̄ ⊕ H̄ ∈ P if and only if D̄ ⊕ H̄ ∈ P. We say that P is finite-state (or FS, in
brief) if, for each t ∈ N, ∼P,t has a finite number of equivalence classes.

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:7

Next, consider a decision problem Q whose input is a graph and an integer. In this case
we say that two t-boundaried graphs C̄ and D̄ are equivalent (denoted by C̄ ∼Q,t D̄) if
there exists an offset δ(C̄, D̄) ∈ Z such that for each t-boundaried graph H̄ and each q ∈ Z:
(C̄⊕H̄, q) ∈ Q if and only if (D̄⊕H̄, q+δ(C̄, D̄)) ∈ Q.We say that Q has finite integer index
(or is FII, in brief) if, for each t ∈ N, ∼Q,t has a bounded number of equivalence classes.

We note that a great number of natural graph problems are known to be FS or FII. For
instance, all problems definable in Monadic Second Order logic are FS [2, Lemma 3.2], while
examples of FII problems include Vertex Cover, Independent Set, Feedback Vertex
Set, Dominating Set, to name a few [20]. We say that a FS or FII problem P is efficiently
extendable on a graph class H if there is a fixed-parameter algorithm (parameterized by t)
that takes as input a t-boundaried graph Ḡ such that the boundary is a modulator to H and
outputs the equivalence class of Ḡ w.r.t. ∼P,t.

I Theorem 4. Let P be a FS or FII graph problem and H be a graph class such that (1) P is
efficiently extendable on H, (2) P is FPT parameterized by treewidth, and (3) H-treewidth
is FPT. Then P is FPT parameterized by H-treewidth.

Proof Sketch. We can solve P as follows. First of all, we use Point (3) to compute an H-torso
G ◦ X of treewidth k, where k is the H-treewidth. Next, for each connected component
C of G[X], we use the fact that C ∈ H and Point (1) to compute the equivalence class
of the boundaried graph H̄ = G[C ∪N(C)] where the boundary is N(C). Note that since
tw(G ◦X) ≤ k and N(C) forms a clique in G ◦X, |N(C)| ≤ k and hence this step takes only
fixed-parameter time. Next, we use a brute-force enumeration argument to compute a bounded-
size representative of the equivalence class of H̄, and replace H̄ with this representative.
After doing this exhaustively, we obtain a graph G′ of bounded treewidth, for which we can
invoke Point (2). J

4 Rc-Treewidth

This section focuses on the properties of Rc-treewidth, a hierarchy of graph parameters that
represent our flagship application of the generic notion of H-treewidth.

Comparison to Known Parameters. It follows from the definition of H-treewidth that Rc-
treewidth dominates treewidth (for every c ∈ N). Similarly, it is obvious that Rc-treewidth
dominates the size of a modulator to Rc (also for every c ∈ N). The following lemma shows
that, for every fixed c, Rc-treewidth is dominated by rankwidth.

I Lemma 5. Let c ∈ N. If twRc(G) = k then rw(G) ≤ c+ k + 1.

Proof. Let the Rc-treewidth of G be witnessed by some nice Rc-tree-decomposition
(X,T, {Bt | t ∈ V (T)}) of width k.

We can obtain a rank-decomposition (T ′, µ) of G from (X,T, {Bt | t ∈ V (T))} as follows:
For vertices v of G ◦ X such that there is no leaf node t ∈ V (T) with Bt = {v}, let

t ∈ V (T) be a forget node with child t′ such that Bt ∪ {v} = Bt′ . Turn t′ into a join node
by introducing t1, t2 with Bt1 = Bt2 = Bt′ as children of t′, attaching the former child
of t′ to t1 and a new leaf node tv with Btv

= {v} below t2. Note that this preserves the
fact that for any v ∈ V (G) \ X, T [{u ∈ V (T) | v ∈ Bu}] is a tree. Now we can choose
for each v ∈ V (G ◦ X) some µ(v) ∈ V (T) such that Bt = {v}. This defines an injection
from V (G ◦X) to the leaves of T . However not every leaf of T is mapped to by µ. On one
hand there are the boundary leaf nodes, below which we will attach subtrees to obtain a

MFCS 2019

42:8 A Hybrid Approach to Dynamic Programming with Treewidth

rank-decomposition of G. On the other hand there may be v ∈ V (G ◦ X) for which the
choice of µ(v) was not unique, i.e. there is t 6= µ(v) with Bt = {v}. For all such v and t we
delete all nodes on the root-t-path in T that do not lie on a path from the root to a vertex
in {µ(w) | w ∈ V (G ◦X)} ∪ {t′ | t′ boundary leaf node}. This turns µ into an injection from
V (G ◦X) to the leaves of T , that is surjective on the non-boundary leaf nodes.

Next, we extend (T, µ) to a rank-decomposition of G by proceeding in the following way
for each connected component C of G[X]:
Let tC ∈ V (T) be the boundary leaf node with Bt = N(C). Since rw(C) ≤ c, we find a
rank-decomposition (TC , µC) of C with width at most c. Attach TC below tC .
Let T ′ be the tree obtained by performing these modifications for all connected components
C. Consider the rank-decomposition of G given by(

T ′, v 7→

{
µ(v) if v ∈ V (G ◦X)
µC(v) if v ∈ C for some C as above

)
.

We show that its width is at most c+ k + 1. Any edge e of T ′ is of one of the following
types:

e corresponds to an edge already contained in T : Then e induces a bipartition (XG, YG)
of V (G). Fix t ∈ V (T) to be the vertex in which e starts.
Let x ∈ XG and y ∈ YG be such that xy ∈ E(G). Observe that e does not separate
neighbors in X as these lie within the same connected component of G[X] whose rank-
decomposition is, by construction, attached completely within one of the two subtrees of
T ′ separated by e. So, we consider x ∈ V (G ◦X). If y ∈ V (G ◦X) then x and y occur
together in some bag of the original tree of the tree decomposition, and as remarked
earlier this is still the case modified tree. This implies that at least one of {x, y} must
be present in Bt. If y /∈ V (G ◦ X), by the construction of T ′, y corresponds to a leaf
ty ∈ V (T ′) in a subtree attached to T rooted at tC ∈ V (T) with BtC

= N(C) 3 x and
tC and ty are not separated by the removal of e. Also, x corresponds to a leaf tx ∈ V (T)
which is in the subtree of T ′− e not containing ty, i.e. the subtree not containing tC . This
means any subtree containing tC and tx also contains t, and since (T, {Bt | t ∈ V (T)}) is
a tree-decomposition and x ∈ Btx ∩BtC

this means x ∈ Bt.
In both cases at least one of {x, y} is in Bt. Since this argument applies for every edge
crossing the bipartition (XG, YG), it follows that AG[XG, YG] may only contain “1” entries
in rows and columns that correspond to the vertices in Bt. Since |Bt| ≤ k + 1, it holds
that AG[XG, YG] can be converted into a zero matrix by deleting at most k+ 1 rows plus
columns, which is a sufficient condition for AG[XG, YG] having rank at most k + 1.
e corresponds to an edge in a rank-decomposition of some connected component C
of G[X]: Then e induces a bipartition (XG, YG) of V (G) and a bipartition (XC , YC),
where XC = XG ∩ C and YC = YG ∩ C, of C. Since vertices of C are only connected to
vertices in N(C) outside of C and N(C) ⊆ Bt for some t ∈ V (T), we have ρG(XG) ≤
ρC(XC) + |N(C)| ≤ c+ k + 1.
e corresponds to an edge connecting the rank-decomposition of some connected component
C of G[X] to T : Then the bipartition induced is (C, V (G) \ C) and as N(C) ⊆ Bt for
some t ∈ V (T) ρG(C) ≤ |N(C)| ≤ k + 1. J

Next, we compare Rc-treewidth to Telle and Saether’s sm-width [36].

I Lemma 6. Rc-treewidth and sm-width are incomparable.

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:9

Computing Rc-Treewidth. Our aim here is to determine the complexity of computing
our parameters, i.e., finding a torso of small treewidth. Obtaining such a torso is a base
prerequisite for our algorithms. We formalize the problem below.

Rc-Treewidth Parameter: k
Instance: A graph G, an integer k.
Task: Find a Rc-torso U of G such that tw(U) ≤ k, or correctly determine that no such

Rc-torso exists.

I Lemma 7. Rc-Treewidth is FPT.

5 Algorithms Exploiting Modulators to Rc

For a problem P to be FPT parameterized by Rc-treewidth, P must necessarily be FPT
parameterized by treewidth and also FPT parameterized by the size of a modulator to Rc.
However, it is important to note that the latter condition is not sufficient; indeed, one can
easily invent artificial problems that are defined in a way which make them trivial in both of
the cases outlined above, but become intractable (or even undecidable) once parameterized
by Rc-treewidth. That is, after all, why we need the notion of efficient extendability in
Theorem 4.

Hence, in order to develop fixed-parameter algorithms for Chromatic Number, Hamil-
tonian Cycle and Max-Cut parameterized by Rc-treewidth, we first need to show that
they are not only FPT parameterized by the size of a modulator to Rc, but they are also
efficiently extendable. Such a result would be sufficient to employ Theorem 4 together with
Lemma 7 in order to establish the desired fixed-parameter tractability results. That is also
our general aim in this section, with one caveat: in order to give explicit and tight upper
bounds on the parameter dependency of our algorithms, we provide algorithms that solve
generalizations of Chromatic Number, Hamiltonian Cycle and Max-Cut parameter-
ized by the size of a modulator to Rc, whereas it will become apparent in the next section
that these generalizations precisely correspond to the records required by the treewidth-based
dynamic program that will be used in the torso. In other words, the efficient extendability of
our problems on Rc is not proved directly but rather follows as an immediate consequence of
our proofs in this section and the correctness of known treewidth-based algorithms.

Chromatic Number. In Chromatic Number, we are given a graph G and asked for the
smallest number χ(G) such that the vertex set of G can be properly colored using χ(G) colors,
i.e., the smallest number χ(G) such that V (G) can be partitioned into χ(G) independent
sets. Our aim in this section is to solve a variant of Chromatic Number on graphs with a
k-vertex modulator X to Rc where X is precolored:

Rc-Precoloring Extension Parameter: k
Instance: A graph G, a k-vertex modulator X ⊆ V (G) to Rc and a coloring of X.
Task: Compute the smallest number of colors required to extend the coloring of X to a

proper coloring of G.

I Theorem 8. Rc-Precoloring Extension can be solved in time 2O(k)nO(1).

MFCS 2019

42:10 A Hybrid Approach to Dynamic Programming with Treewidth

Proof Sketch. Let G be a graph together with a k-vertex modulator X to Rc and a proper
coloring of X by colors [k]; let colX be the set of colors assigned to at least one vertex in X.
For disjoint vertex sets S and Q of G, two vertices v and w in S are twins with respect to Q
if N(v) ∩Q = N(w) ∩Q. A twin class of S with respect to Q is a maximal subset of S that
consists of pairwise twins w.r.t. Q.

Our starting point is a rooted rank-decomposition (T, µ) of G−X of width at most c,
which may be computed in time O(n3) [26]. On a high level, our algorithm will apply dynamic
programming along (T, µ) where it will group colors together based on which twin classes
they occur in (analogously as in the XP algorithm for Chromatic Number parameterized
by clique-width, due to Kobler and Rotics [31]), but keep different (more detailed) records
about the at most k colors used in X.

For each t ∈ V (T), let St be the set of all vertices that are assigned to the descendants of
t, and let Gt := G[St ∪X]. By our definition of (T, µ), recall that ρG−X(St) ≤ c and that
there are at most z = 2c twin classes of St w.r.t. V (G) \ (X ∪ St). We will refer to these twin
classes as Rt

1, R
t
2, . . . , R

t
z.

We are now ready to formally define the dynamic programming table Mt that stores the
information we require at a node t of T . For b1, b2, . . . , bk ⊆ [z] and { dZ ∈ [n] | Z ⊆ [z] }, we
let Mt(b1, b2, . . . , bk, { dZ | Z ⊆ [z] }) = 1 if there is a proper coloring of Gt such that (1) for
every i ∈ [k], the color i appears in twin classes in {Rt

j : j ∈ bi} and does not appear in other
twin classes, and (2) for every Z ⊆ [z], dZ is the number of colors from {k+1, k+2, . . . , n} that
appear in twin classes of {Rt

j : j ∈ Z} and do not appear in other twin classes. On the other
hand, if no such proper coloring exists then we let Mt(b1, b2, . . . , bk, { dZ | Z ⊆ [z] }) = 0.

The table Mt will be filled in a leaf-to-root fashion. Observe that by definition of dZ ’s,
for distinct subsets Z1, Z2 of [z], dZ1 and dZ2 count disjoint sets of colors. This provides
an easy way to count the total number of colors used. Since all vertices in G −X appear
below the root node r, the minimum number of colors required for a proper coloring of
G will be the minimum value of

∣∣colX ∪ { i ∈ [k] | bi 6= ∅ }
∣∣ +

∑
Z⊆[z] dZ , over all tuples

(b1, b2, . . . , bk, { dZ | Z ⊆ [z] }) whose Mr value is 1. J

Hamiltonian Cycle. In Hamiltonian Cycle, we are given an n-vertex graph G and asked
whether G contains a cycle of length n as a subgraph. Note that if we restrict G to some
subset of vertices Y ⊆ V (G), then what remains from a Hamiltonian Cycle in G is a set of
paths that start and end in the neighborhood of V (G) \ Y . Hence, the aim of this section is
to solve the following generalization of Hamiltonian Cycle:

Rc-Disjoint Paths Cover Parameter: k
Instance: A graph G, a k-vertex modulator X ⊆ V (G) to Rc, and m ≤ k pairs

(s1, t1), . . . , (sm, tm) of vertices from X with si 6= ti for all i ∈ [m].
Task: Decide whether there are internally vertex-disjoint paths P1, P2, . . . , Pm in G such

that Pi is a path from si to ti and every vertex in G−X belongs to precisely one
path in P1, P2, . . . , Pm.

I Theorem 9. Rc-Disjoint Paths Cover can be solved in time 2O(k)nO(1).

Proof Sketch. Let G be a graph, X be a k-vertex modulator to Rc, and (s1, t1), . . . , (sm, tm)
be m pairs of vertices from X. Our starting point is once again a rooted rank-decomposition
(T, µ) of G −X of width at most c, which may be computed in time O(n3) [26]. We will
obtain a fixed-parameter algorithm for checking the existence of such paths P1, . . . , Pm in G
by expanding the records used in Espelage, Gurski and Wanke’s algorithm [15] for computing
Hamiltonian Cycle parameterized by clique-width.

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:11

To follow partial solutions on each subgraph Gt, we consider certain generalizations of
path-partitions of subgraphs of G. For a subgraph H of G, an X-lenient path-partition P of
H is a collection of paths in H that are internally vertex-disjoint and share only endpoints
in X such that

⋃
P∈P V (P) = V (H). For convenience, we consider a path as an ordered

sequence of vertices, and for a path P = v1v2 · · · vx, we define `(P) = v1 and r(P) = vx.
We proceed by introducing our dynamic programming table. For each node t of T , we

use the following tuples (D,SP) as indices of the table. Let D = {db1,b2 ∈ {0, 1, . . . , n} |
(b1, b2) ∈ [z] × [z]}. The integer db1,b2 will represent the number of paths in an X-lenient
path-partition of Gt that are fully contained in Gt −X and whose endpoints are contained
in Rt

b1
and Rt

b2
. Let SP be a set such that

for each i ∈ {1, . . . ,m}, (i, 0, x), (0, i, x), (i, i) with some x ∈ [z] are the only possible
tuples in SP,
each integer in {1, . . . ,m} appears at most once as an ` among all tuples (`, 0, p) or (`, `)
in SP, and similarly, each integer in {1, . . . ,m} appears at most once as an r among all
tuples (0, r, p) or (r, r) in SP.

In short, the tuple (i, 0, t) indicates the existence of a path starting in si and ending at a
vertex in Rt

x. Similarly, (0, i, t) indicates the existence of a path starting in ti and ending in
Rt

x. The tuple (i, i) indicates the existence of a path starting in si and ending in ti. Note
that there are at most (n+ 1)z2 possibilities for D. For an element of SP, there are 2mz + 1
possible elements in SP, and thus there are at most 22kz+1 possibilities for SP. This implies
that the number of possible tuples (D,SP) is bounded by (n+ 1)z222kz+1.

We define a DP table Mt such that Mt(D,SP) = 1 if there is an X-lenient path-partition
P = P1] P2 of Gt such that
P1 is the subset of P that consists of all paths fully contained in Gt −X,
for every db1,b2 ∈ D, there are exactly db1,b2 distinct paths in P1 with endpoints in Rt

b1

and Rt
b2
,

for every (`, r, p) or (`, r) ∈ SP, there is a unique path P ∈ P2 such that
if ` = i > 0, then `(P) = si, and if r = i > 0, then r(P) = ti,
if ` = 0, then `(P) ∈ Rt

p, and if r = 0, then r(P) ∈ Rt
p,

In this case, we say that the X-lenient path-partition P is a partial solution with respect
to (D,SP), and also (D,SP) is a characteristic of P. We define Qt as the set of all tuples
(D,SP) where Mt(D,SP) = 1.

The table Mt is filled in a leaf-to-root fashion. Since all vertices in G−X appear below
the root node ro, to decide whether there is a desired X-lenient path-partition, it suffices to
confirm that there are D and SP such that Mro(D,SP) = 1, for every db1,b2 ∈ D, db1,b2 = 0,
and for every i ∈ {1, 2, . . . ,m}, (i, i) ∈ SP.

The proof can be completed by describing a dynamic program to fill in the table Mt for
each node t ∈ V (T) in a leaf-to-root fashion. J

Max-Cut. The third problem we consider is Max-Cut, where we are given an integer `
together with an n-vertex graph G and asked whether V (G) can be partitioned into sets V1
and V2 such that the number of edges with precisely one endpoint in V1 (called the cut size)
is at least `.
Rc-Max-Cut Extension Parameter: k
Instance: A graph G, a k-vertex modulator X ⊆ V (G) to Rc, s ⊆ X, and ` ∈ N.
Task: Is there a partition of V (G) into sets V1 and V2 such that X ∩ V1 = s and the

number of edges between V1 and V2 is at least `.

I Theorem 10. Rc-Max-Cut Extension can be solved in polynomial time.

MFCS 2019

42:12 A Hybrid Approach to Dynamic Programming with Treewidth

6 Algorithmic Applications of Rc-Treewidth

In this section, we show that Chromatic Number, Hamiltonian Cycle and Max-Cut
are FPT parameterized by Rc-treewidth. As our starting point, recall that each of these
problems admits a fixed-parameter algorithm when parameterized by treewidth which is
based on leaf-to-root dynamic programming along the nodes of a nice tree decomposition.
Notably, the algorithms are based on defining a certain record δ(P,Q) (for vertex sets P , Q)
such that δ(Bt, Yt) captures all the relevant information required to solve the problem on
G[Yt] and to propagate this information from a node t to its parent. The algorithms compute
these records on the leaves of the tree decomposition by brute force, and then dynamically
update these records while traversing a nice tree decomposition towards the root; once the
record δ(Br, Yr) is computed for the root r of the decomposition, the algorithm outputs the
correct answer.

Our general strategy for solving these problems will be to replicate the records employed
by the respective dynamic programming algorithm A used for treewidth, but only for the
nice Rc-tree decomposition of the torso of the input graph G. Recall that aside from the
“standard” simple leaf nodes, nice Rc-tree decompositions also contain boundary leaf nodes,
which serve as separators between the torso and a connected component C with rank-width
at most c. For A to work correctly with the desired runtime, we need to compute the record
for each boundary leaf node using a subprocedure that exploits the bounded rank-width of
C; in particular, we will see that this amounts to solving the problems defined in Section 5.
Before proceeding to the individual problems, we provide a formalization and proof for the
general ideas outlined above.

I Lemma 11. Let P be a graph problem which can be solved via a fixed-parameter algorithm
A parameterized by treewidth, where A runs in time f(k′) · n′a and operates by computing a
certain record δ in a leaves-to-root fashion along a provided nice width-k′ tree decomposition
of the n′-vertex input graph.

Let Q be obtained from P by receiving the following additional information in the input:
(1) a nice Rc-tree decomposition (X,T, {Bt | t ∈ V (T)}) of width k for the input n-vertex
graph G, and (2) for each boundary leaf node t corresponding to the neighborhood of a
connected component C of G[X], the record δ(Bt, Bt ∪ C).

Then, Q can be solved in time f(k) · na.

Chromatic Number. Chromatic Number is W[1]-hard parameterized by rank-width [17]
but can be solved in time 2O(tw(G)·log tw(G)) · n on n-vertex graphs when a minimum-width
tree-decomposition is provided with the input [28]; moreover, it is known that this runtime
is essentially tight [32].

It is well known that the chromatic number is at most tw(G) + 1. One possible way of
defining records in order to achieve a runtime of 2O(tw(G)·log tw(G)) · n is to track, for each
proper coloring of vertices in a bag Bt, the minimum number of colors required to extend such
a coloring to Yt [28]. Formally, let St be the set of all colorings of Bt with colors [tw(G) + 1],
and let α(Bt, Yt) : St → Z be defined as follows:

α(Bt, Yt)(s) = −1 if s is not a proper coloring of G[Bt].
α(Bt, Yt)(s) = q if q is the minimum number of colors used by any proper coloring of
G[Yt] which extends s.

Using Theorem 8, we can compute such α(Bt, Yt)(s) for every proper coloring s of Bt.
Hence, combining Lemma 11 and Theorem 8, we obtain:

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:13

I Theorem 12. Chromatic Number can be solved in time 2O(k log(k)) · nO(1) if a nice
Rc-tree decomposition of width k is provided on the input.

Hamiltonian Cycle. Hamiltonian Cycle is W[1]-hard parameterized by rank-width [17]
but can be solved in time 2O(tw(G)·log tw(G)) · n on n-vertex graphs when a minimum-width
tree-decomposition is provided with the input via standard dynamic programming. This
algorithm can be improved to run in time 2O(tw(G)) · n) by applying the advanced rank-based
approach of Cygan, Kratsch and Nederlof [10] to prune the number of records. To simplify
our exposition, here we focus on extending the standard dynamic programming algorithm
which yields a slightly super-exponential runtime.

One possibility for defining the records for Hamiltonian Cycle is to track all possible
ways one can cover Yt by paths that start and end in Bt (intuitively, this corresponds to
what remains of a hypothetical solution if we “cut off” everything above Yt) [12]. Formally,
let Bt

� be defined as follows:
if |Bt| > 2, then Bt

� is the set of graphs with at most |Bt| edges and degree at most 2
over vertex set Bt;
if |Bt| = 2, then Bt

� contains three (multi)graphs over vertex set Bt: the edgeless graph,
the graph with one edge, and the multigraph with two edges and no loops;
if |Bt| = 1, then Bt

� contains an edgeless graph and a graph with a single loop, both over
the single vertex in Bt;
if |Bt| = 0, then Bt

� = {YES, NO}.

We let β(Bt, Yt) : Bt
� → {0, 1}, where for Q ∈ Bt

� we set β(Bt, Yt)(Q) = 1 if and only if
there exists a set P of paths in G[Yt] and a bijection that maps each (v1, . . . , v`) ∈ P to an
edge (v1, v`) ∈ E(Q) such that each vertex v ∈ G[Yt \Bt] is contained in precisely one path
in P . In the special case where Bt = ∅, our records explicitly state whether G[Yt] contains a
Hamiltonian cycle or not.

As before, we can now shift our attention to the problem of computing our records in
boundary leaf nodes. We do so by looping over all of the at most k2k-many graphs Q ∈ Bt

�;
for each such Q we check whether G[Yt]− Bt can be covered by internally vertex-disjoint
paths connecting the pairs of vertices in Bt that form the endpoints of the edges in Q. Hence,
we are left with the Rc-Disjoint Paths Cover problem. From Theorem 9 and Lemma 11,
we obtain:

I Theorem 13. Hamiltonian Cycle can be solved in time 2O(k log(k)) · nO(1) if a nice
Rc-tree decomposition of width k is provided on the input.

Max-Cut. Max-Cut is another problem that is W[1]-hard parameterized by rank-width [19]
but admits a simple fixed-parameter algorithm parameterized by treewidth – notably, it can
be solved in time 2O(tw(G)) ·n on n-vertex graphs when a minimum-width tree-decomposition
is provided with the input via standard dynamic programming [9, 12].

The simplest way of defining the records for Max-Cut is to keep track of all possible
ways the bag Bt can be partitioned into V1 and V2, and for each entry in our table we keep
track of the maximum number of crossing edges in Yt compatible with that entry. Formally,
let γ(Bt, Yt) : 2Bt → N0, where for each s ∈ 2Bt it holds that γ(Bt, Yt)(s) is the maximum
cut size that can be achieved in G[Yt] by any partition (V1, V2) satisfying V1 ∩ Bt = s. As
before, from Theorem 10 and Lemma 11, we obtain:

I Theorem 14. Max-Cut can be solved in time 2k · nO(1), if a nice Rc-tree decomposition
of width k is provided on the input.

MFCS 2019

42:14 A Hybrid Approach to Dynamic Programming with Treewidth

7 Concluding Remarks

While the technical contribution of this paper mainly focused on Rc-treewidth, a parameter
that allows us to lift fixed-parameter algorithms parameterized by treewidth to well-structured
dense graph classes, it is equally viable to consider H-treewidth for other choices of H.
Naturally, one should aim at graph classes where problems of interest become tractable,
but it is also important to make sure that a (nice) H-tree decomposition can be computed
efficiently (i.e., one needs to obtain analogues to our Lemma 7). Examples of graph classes
that may be explored in this context include split graphs, interval graphs, and more generally
graphs of bounded mim-width [27].

References
1 Takanori Akiyama, Takao Nishizeki, and Nobuji Saito. NP-completeness of the Hamiltonian

cycle problem for bipartite graphs. J. Inform. Process., 3:73–76, January 1980.
2 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, November 2016.
doi:10.1145/2973749.

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for Treewidth:
A Combinatorial Analysis through Kernelization. SIAM J. Discrete Math., 27(4):2108–2142,
2013.

4 Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction Algorithms for Graphs
of Small Treewidth. Inf. Comput., 167(2):86–119, 2001.

5 Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics,
127(3):415–429, 2003.

6 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Inf. Comput., 85(1):12–75, 1990.

7 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

8 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Texts in Computer
Science. Springer, 2013.

10 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity Checking Via Bases of
Perfect Matchings. J. ACM, 65(3):12:1–12:46, 2018.

11 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer
Verlag, New York, 2nd edition, 2000.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

13 Eduard Eiben, Robert Ganian, and O-joung Kwon. A single-exponential fixed-parameter
algorithm for distance-hereditary vertex deletion. J. Comput. Syst. Sci., 97:121–146, 2018.

14 Eduard Eiben, Robert Ganian, and Stefan Szeider. Solving Problems on Graphs of High
Rank-Width. Algorithmica, 80(2):742–771, 2018.

15 Wolfgang Espelage, Frank Gurski, and Egon Wanke. Deciding Clique-Width for Graphs of
Bounded Tree-Width. J. Graph Algorithms Appl., 7(2):141–180, 2003.

16 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph Layout Problems Parameterized by Vertex Cover. In Proc. ISAAC 2008,
volume 5369 of Lecture Notes in Computer Science, pages 294–305. Springer, 2008.

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Clique-width: on
the price of generality. In Proc. SODA 2009, pages 825–834. SIAM, 2009.

https://doi.org/10.1145/2973749
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5

E. Eiben, R. Ganian, T. Hamm, and O. Kwon 42:15

18 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
Clique-Width Parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010.

19 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost Optimal
Lower Bounds for Problems Parameterized by Clique-Width. SIAM J. Comput., 43(5):1541–
1563, 2014.

20 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219–242, 2017.

21 Robert Ganian and Petr Hlinený. On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discrete Applied Mathematics, 158(7):851–867, 2010.

22 Robert Ganian, Petr Hlinený, and Jan Obdrzálek. A unified approach to polynomial algorithms
on graphs of bounded (bi-)rank-width. Eur. J. Comb., 34(3):680–701, 2013.

23 Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. Going Beyond Primal Treewidth
for (M)ILP. In Proc. AAAI 2017, pages 815–821. AAAI Press, 2017.

24 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Backdoor Treewidth for SAT. In Proc.
SAT 2017, volume 10491 of Lecture Notes in Computer Science, pages 20–37. Springer, 2017.

25 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Combining Treewidth and Backdoors
for CSP. In Proc. STACS 2017, volume 66 of LIPIcs, pages 36:1–36:17. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

26 Petr Hliněný and Sang-il Oum. Finding Branch-Decompositions and Rank-Decompositions.
SIAM J. Comput., 38(3):1012–1032, June 2008. doi:10.1137/070685920.

27 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. A Unified Polynomial-Time Algorithm for
Feedback Vertex Set on Graphs of Bounded Mim-Width. In Proc. STACS 2018, volume 96 of
LIPIcs, pages 42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

28 Klaus Jansen and Petra Scheffler. Generalized Coloring for Tree-like Graphs. Discrete Applied
Mathematics, 75(2):135–155, 1997.

29 Mamadou Moustapha Kanté, Eun Jung Kim, O-joung Kwon, and Christophe Paul. An FPT
Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion. Algorithmica,
79(1):66–95, 2017. doi:10.1007/s00453-016-0230-z.

30 Eun Jung Kim and O-joung Kwon. A Polynomial Kernel for Distance-Hereditary Vertex
Deletion. In Proc. WADS 2017, volume 10389 of Lecture Notes in Computer Science, pages
509–520. Springer, 2017.

31 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003.

32 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly Superexponential Parameterized
Problems. SIAM J. Comput., 47(3):675–702, 2018.

33 Dániel Marx and Paul Wollan. Immersions in Highly Edge Connected Graphs. SIAM J.
Discrete Math., 28(1):503–520, 2014.

34 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

35 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

36 Sigve Hortemo Sæther and Jan Arne Telle. Between Treewidth and Clique-Width. In Proc.
WG 2014, pages 396–407, 2014.

MFCS 2019

https://doi.org/10.1137/070685920
https://doi.org/10.1007/s00453-016-0230-z
https://doi.org/10.1016/j.jctb.2005.10.006

The Power Word Problem
Markus Lohrey
Universität Siegen, Germany

Armin Weiß
Universität Stuttgart, Germany

Abstract
In this work we introduce a new succinct variant of the word problem in a finitely generated group
G, which we call the power word problem: the input word may contain powers px, where p is a
finite word over generators of G and x is a binary encoded integer. The power word problem is a
restriction of the compressed word problem, where the input word is represented by a straight-line
program (i.e., an algebraic circuit over G). The main result of the paper states that the power word
problem for a finitely generated free group F is AC0-Turing-reducible to the word problem for F .
Moreover, the following hardness result is shown: For a wreath product G o Z, where G is either
free of rank at least two or finite non-solvable, the power word problem is complete for coNP. This
contrasts with the situation where G is abelian: then the power word problem is shown to be in TC0.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases word problem, compressed word problem, free groups

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.43

Related Version A full version [27] of the paper is available on arXiv https://arxiv.org/abs/1904.
08343.

Funding Markus Lohrey: Funded by DFG project LO 748/12-1.
Armin Weiß: Funded by DFG project DI 435/7-1.

Acknowledgements We thank Laurent Bartholdi for pointing out the result [5, Theorem 6.6] on the
bound of the order of elements in the Grigorchuk group, which allowed us to establish Theorem 10.

1 Introduction

Algorithmic problems in group theory have a long tradition, going back to the work of Dehn
from 1911 [9]. One of the fundamental group theoretic decision problems introduced by
Dehn is the word problem for a finitely generated group G (with a fixed finite generating set
Σ): does a given word w ∈ Σ∗ evaluate to the group identity? Novikov [34] and Boone [8]
independently proved in the 1950’s the existence of finitely presented groups with undecidable
word problem. On the positive side, in many important classes of groups the word problem
is decidable, and in many cases also the computational complexity is quite low. Famous
examples are finitely generated linear groups, where the word problem belongs to deterministic
logarithmic space (L for short) [22] and hyperbolic groups where the word problem can be
solved in linear time [17] as well as in LOGCFL [23].

In recent years, also compressed versions of group theoretical decision problems, where
input words are represented in a succinct form, have attracted attention. One such succinct
representation are so-called straight-line programs, which are context-free grammars that
produce exactly one word. The size of such a grammar can be much smaller than the
word it produces. For instance, the word an can be produced by a straight-line program
of size O(logn). For the compressed word problem for the group G the input consists of
a straight-line program that produces a word w over the generators of G and it is asked
whether w evaluates to the identity element of G. This problem is a reformulation of the

© Markus Lohrey and Armin Weiß;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://arxiv.org/abs/1904.08343
https://arxiv.org/abs/1904.08343
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 The Power Word Problem

circuit evaluation problem for G. The compressed word problem naturally appears when
one tries to solve the word problem in automorphism groups or semidirect products [25,
Section 4.2]. For the following classes of groups, the compressed word problem is known to
be solvable in polynomial time: finite groups (where the compressed word problem is either
P-complete or in NC2 [6]), finitely generated nilpotent groups [20] (where the complexity is
even in NC2), hyperbolic groups [18] (in particular, free groups), and virtually special groups
(i.e, finite extensions of subgroups of right-angled Artin groups) [25]. The latter class covers
for instance Coxeter groups, one-relator groups with torsion, fully residually free groups and
fundamental groups of hyperbolic 3-manifolds. For finitely generated linear groups there
is still a randomized polynomial time algorithm for the compressed word problem [26, 25].
Simple examples of groups where the compressed word problem is intractable are wreath
products G o Z with G a non-abelian group: for every such group the compressed word
problem is coNP-hard [25] (this includes for instance Thompson’s group F); on the other
hand, if, in addition, G is finite, then the (ordinary) word problem for G o Z is in NC1 [37].

In this paper, we study a natural variant of the compressed word problem, called the
power word problem. An input for the power word problem for the group G is a tuple
(p1, x1, p2, x2, . . . , pn, xn) where every pi is a word over the group generators and every xi
is a binary encoded integer (such a tuple is called a power word); the question is whether
px1

1 px2
2 · · · pxn

n evaluates to the group identity of G.
From a power word (p1, x1, p2, x2, . . . , pn, xn) one can easily (e.g. by an AC0-reduction)

compute a straight-line program for the word px1
1 px2

2 · · · pxn
n . In this sense, the power word

problem is at most as difficult as the compressed word problem. On the other hand, both
power words and straight-line programs achieve exponential compression in the best case; so
the additional difficulty of the the compressed word problem does not come from a higher
compression rate but rather because straight-line programs can generate more “complex”
words.

Our main results for the power word problem are the following; in each case we compare
our results with the corresponding results for the compressed word problem:

The power word problem for every finitely generated nilpotent group is in DLOGTIME-
uniform TC0 and hence has the same complexity as the word problem (or the problem of
multiplying binary encoded integers). The proof is a straightforward adaption of a proof
from [33]. There, the special case, where all words pi in the input power word are single
generators, was shown to be in DLOGTIME-uniform TC0. The compressed word problem
for every finitely generated nilpotent group belongs to the class DET ⊆ NC2 and is hard
for the counting class C=L in case of a torsion-free nilpotent group [20].
The power word problem for a finitely generated group G is NC1-many-one-reducible to
the power word problem for any finite index subgroup of G. An analogous result holds
for the compressed word problem as well [20].
The power word problem for a finitely generated free group is AC0-Turing-reducible to
the word problem for F2 (the free group of rank two) and therefore belongs to L. In
contrast, it was shown in [24] that the compressed word problem for a finitely generated
free group of rank at least two is P-complete.
The power word problem for a wreath product G o Z with G finitely generated abelian
belongs to DLOGTIME-uniform TC0. For the compressed word problem for G o Z with G
finitely generated abelian only the existence of a randomized polynomial time algorithm
for the complement is known [21].
The power word problem for the wreath products F2 o Z and every wreath product G o Z,
where G is finite and non-solvable, is coNP-complete. For these groups this sharpens the
corresponding coNP-hardness result for the compressed word problem [25].

M. Lohrey and A. Weiß 43:3

Table 1 Our results on the power word problem compared to previous results on the (compressed)
word problem. Here WP stands for “word problem”.

class of groups PowerWP CompressedWP WP
nilpotent groups TC0 DET, C=L-hard [20] TC0 [35]
Grigorchuk group G La) PSPACE L [13]
non-abelian f.g. free Lb) P-complete [24] L [22]
G o Z for G f.g. abelian TC0 coRP [21] TC0 [30]
G o Z for G finite non-solvable coNP-complete PSPACE, coNP-hard [25] NC1 [37]
F2 o Z coNP-complete PSPACE, coNP-hard [25] Lb) [37]
finite extension of a f.g. group H NC1-many-one-reducible to PowerWP(H)

(resp. CompressedWP(H) [20], resp. WP(H) [37])

a) AC0-many-one-reducible to the word problem of G.
b) AC0-Turing-reducible to the word problem of F2.

The power word problem for the Grigorchuk group is uAC0-many-one-reducible to the
word problem. The word problem for the Grigorchuk group is in L [13], which implies that
the compressed word problem is in PSPACE. However, there is no non-trivial lower-bound
known for the compressed word problem for the Grigorchuk group.

Table 1 summarizes the above results. Due to space constraints we present only short proof
skteches for our main theorems; proofs of all lemmas can be found in the full version [27].

Related work. Implicitly, (variants of) the power word problem have been studied before.
In the commutative setting, Ge [14] has shown that one can verify in polynomial time an
identity αx1

1 αx2
2 · · ·αxn

n = 1, where the αi are elements of an algebraic number field and the
xi are binary encoded integers.

Another problem related to the power word problem is the knapsack problem [12, 28, 31]
for a finitely generated group G (with generating set Σ): for a given sequence of words
w,w1, . . . , wn ∈ Σ∗, the question is whether there exist x1, . . . , xn ∈ N such that w =
wx1

1 · · ·wxn
n holds in G. For many groups G one can show that if such x1, . . . , xn ∈ N exist,

then there exist such numbers of size 2poly(N), where N = |w|+ |w1|+ · · ·+ |wn| is the input
length. This holds for instance for right-angled Artin groups (also known as graph groups).
In this case, one nondeterministically guesses the binary encodings of numbers x1, . . . , xn and
then verifies, using an algorithm for the power word problem, whether wx1

1 · · ·wxn
n w−1 = 1

holds. In this way, it was shown in [28] that for every right-angled Artin group the knapsack
problem belongs to NP (using the fact that the compressed word problem and hence the
power word problem for a right-angled Artin group belongs to P).

In [16], Gurevich and Schupp present a polynomial time algorithm for a compressed
form of the subgroup membership problem for a free group F , where group elements are
represented in the form ax1

1 ax2
2 · · · axn

n with binary encoded integers xi. The ai must be
standard generators of the free group F . This is the same input representation as in [33]
and is more restrictive then our setting, where we allow powers of the form wx for w an
arbitrary word over the group generators (on the other hand, Gurevich and Schupp consider
the subgroup membership problem, which is more general than the word problem).

MFCS 2019

43:4 The Power Word Problem

2 Preliminaries

Words. An alphabet is a (finite or infinite) set Σ; an element a ∈ Σ is called a letter. The
free monoid over Σ is denoted by Σ∗, its elements are called words. The multiplication of the
monoid is concatenation of words. The identity element is the empty word 1. The length
of a word w is denoted by |w|. If w, p, x, q are words such that w = pxq, then we call x a
factor of w, p a prefix of w, and q a suffix of w. We write v ≤pref w (resp. v <pref w) if v is
a (strict) prefix of w and v ≤suff w (resp. v <suff w) if v is a (strict) suffix of w.

String rewriting systems. Let Σ be an alphabet and S ⊆ Σ∗ × Σ∗ be a set of pairs, called
a string rewriting system. We write ` → r if (`, r) ∈ S. The corresponding rewriting
relation =⇒

S
over Σ∗ is defined by: u =⇒

S
v if and only if there exist `→ r ∈ S and words

s, t ∈ Σ∗ such that u = s`t and v = srt. We also say that u can be rewritten to v in
one step. We write u k=⇒

S
v if u can be rewritten to v in exactly k steps, i.e., if there

are u0, . . . , uk with u = u0, v = uk and ui =⇒
S

ui+1 for 0 ≤ i ≤ k − 1. We denote the

transitive closure of =⇒
S

by +=⇒
S

=
⋃
k≥1

k=⇒
S

and the reflexive and transitive closure by
∗=⇒
S

=
⋃
k≥0

k=⇒
S

. Moreover ∗⇐⇒
S

is the reflexive, transitive, and symmetric closure of =⇒
S

;
it is the smallest congruence containing S. The set of irreducible word with respect to S is
IRR(S) = {w ∈ Σ∗ | there is no v with w =⇒

S
v}.

Free groups. LetX be a set andX−1 =
{
a−1

∣∣ a ∈ X }
be a disjoint copy ofX. We extend

the mapping a 7→ a−1 to an involution without fixed points on Σ = X ∪X−1 by (a−1)−1 = a

and finally to an involution without fixed points on Σ∗ by (a1a2 · · · an)−1 = a−1
n · · · a−1

2 a−1
1 .

For an integer z < 0 and w ∈ Σ∗ we write wz for (w−1)−z. The string rewriting system
S =

{
aa−1 → 1

∣∣ a ∈ Σ
}
is strongly confluent and terminating meaning that for every

word w ∈ Σ∗ there exists a unique word red(w) ∈ IRR(S) with w ∗=⇒
S

red(w) (for precise
definitions see e.g. [7, 19]). Words from IRR(S) are called freely reduced. The system S

defines the free group FX = Σ∗/S with basis X. More concretely, elements of FX can be
identified with freely reduced words, and the group product of u, v ∈ IRR(S) is defined
by red(uv). With this definition red : Σ∗ → FX becomes a monoid homomorphism that
commutes with the involution ·−1: red(w)−1 = red(w−1) for all words w ∈ Σ∗. If |X| = 2,
we write F2 for FX . It is known that for every countable set X, F2 contains an isomorphic
copy of FX .

Finitely generated groups and the power word problem. A group G is called finitely
generated if there exist a finite a finite set X and a surjective group homomorphism h : FX →
G. In this situation, the set Σ = X ∪X−1 is called a finite (symmetric) generating set for G.
For words u, v ∈ Σ∗ we usually say that u = v in G or u =G v in case h(red(u)) = h(red(v)).
The word problem for the finitely generated group G, WP(G) for short, is defined as follows:

input: a word w ∈ Σ∗.
question: does w =G 1 hold?

A power word (over Σ) is a tuple (p1, x1, p2, x2, . . . , pn, xn) where p1, . . . , pn ∈ Σ∗ are words
over the group generators (called the periods of the power word) and x1, . . . , xn ∈ Z
are integers that are given in binary notation. Such a power word represents the word
px1

1 px2
2 · · · pxn

n . Quite often, we will identify the power word (p1, x1, p2, x2, . . . , pn, xn) with
the word px1

1 px2
2 · · · pxn

n . Moreover, if xi = 1, then we usually omit the exponent 1 in a power

M. Lohrey and A. Weiß 43:5

word. The power word problem for the finitely generated group G, PowerWP(G) for short,
is defined as follows:

input: a power word (p1, x1, p2, x2, . . . , pn, xn).
question: does px1

1 px2
2 · · · pxn

n =G 1 hold?
Due to the binary encoded exponents, a power word can be seen as a succinct description
of an ordinary word. Hence, a priori, the power word problem for a group G could be
computationally more difficult than the word problem. We will see examples of groups G,
where PowerWP(G) is indeed more difficult than WP(G) (under standard assumptions
from complexity theory), as well as examples of groups G, where PowerWP(G) and WP(G)
are equally difficult.

Wreath products. Let G and H be groups. Consider the direct sum K =
⊕

h∈H Gh,
where Gh is a copy of G. We view K as the set G(H) of all mappings f : H → G such that
supp(f) := {h ∈ H | f(h) 6= 1} is finite, together with pointwise multiplication as the group
operation. The set supp(f) ⊆ H is called the support of f . The group H has a natural left
action on G(H) given by hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding
semidirect product G(H) oH is the (restricted) wreath product G oH. In other words:

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).

Complexity. We assume that the reader is familiar with the complexity classes P, NP, and
coNP and many-one reductions; see e.g. [2] for details. We use circuit complexity for classes
below deterministic logspace (L for short).

A language L ⊆ {0, 1}∗ is AC0-Turing-reducible to K ⊆ {0, 1}∗ if there is a family of
constant-depth, polynomial-size Boolean circuits with oracle gates for K deciding L. More
precisely, L ⊆ {0, 1}∗ belongs to AC0(K) if there exists a family (Cn)n≥0 of circuits which,
apart from the input gates x1, . . . , xn are built up from not, and, or, and oracle gates for K
(which output 1 if and only if their input is in K). All gates may have unbounded fan-in,
but there is a polynomial bound on the number of gates and wires and a constant bound
on the depth (length of a longest path from an input gate xi to the output gate o). Finally,
Cn accepts exactly the words from L ∩ {0, 1}n, i.e., if each input gate xi receives the input
ai ∈ {0, 1}, then a distinguished output gate evaluates to 1 if and only if a1a2 · · · an ∈ L.

In the following, we only consider DLOGTIME-uniform AC0(K) for which we write
uAC0(K). DLOGTIME-uniform means that there is a deterministic Turing machine which
decides in time O(logn) on input of two gate numbers (given in binary) and the string 1n
whether there is a wire between the two gates in the n-input circuit and also computes the
type of a given gate. For more details on these definitions we refer to [36]. If the languages
K and L in the above definition of uAC0(K) are defined over a non-binary alphabet Σ, then
one first has to fix a binary encoding of words over Σ.

The class uTC0 is defined as uAC0(Majority) where Majority is the problem to
determine whether the input contains more 1s than 0s. The class NC1 is the class of languages
accepted by Boolean circuits of bounded fan-in and logarithmic depth. When talking about
hardness for uTC0 or NC1 we use uAC0-Turing reductions unless stated otherwise. As a
consequence of Barrington’s theorem [3], we have NC1 = uAC0(WP(A5)) where A5 is the
alternating group over 5 elements [36, Corollary 4.54]. Moreover, the word problem for any
finite group G is in NC1. Robinson proved that the word problem for the free group F2 is
NC1-hard [35], i.e., NC1 ⊆ uAC0(WP(F2)).

MFCS 2019

43:6 The Power Word Problem

3 Results

In this section we state our (and prove the easy) results on the power word problem. Outlines
of the proofs of Theorems 2, 8 and 9 can be found in Sections 4 and 5, respectively.

I Theorem 1. If G is a finitely generated nilpotent group, then PowerWP(G) is in uTC0.

Proof. In [33], the so-called word problem with binary exponents was shown to be in uTC0

for finitely generated nilpotent groups. We can apply the same techniques as in [33]: we
compute Mal’cev normal forms of all pi [33, Theorem 5], then use the power polynomials
from [33, Lemma 2] to compute Mal’cev normal forms with binary exponents of all pxi

i .
Finally, we compute the Mal’cev normal form of px1

1 · · · pxn
n again using [33]. J

I Theorem 2. The power word problem for a finitely generated free group is AC0-Turing-
reducible to the word problem for the free group F2.

Notice that if the free group has rank one, then the power word problem is in uTC0 because
iterated addition is in uTC0.

I Remark 3. If the input is of the form (p1, x1, p2, x2, . . . , pn, xn) where all pi are freely
reduced, then the reduction in Theorem 2 is a uTC0-many-one reduction.

I Remark 4. One can consider variants of the power word problem, where the exponents are
not given in binary representation but in even more compact forms. Power circuits as defined
in [32] are such a representation that allow non-elementary compression for some integers.
The proof of Theorem 2 involves iterated addition and comparison of exponents. For power
circuits iterated addition is in uAC0 (just putting the power circuits next to each other), but
comparison (even for equality) is P-complete [38]. Hence, the variant of the power word
problem, where exponents are encoded with power circuits is P-complete for free groups.

I Remark 5. The proof of Theorem 2 can be easily generalized to free products. However, in
order to have a simpler presentation we only state and prove the result for free groups and
postpone the free product case to a future full version.

It is easy to see that the power word problem for every finite group belongs to NC1. The
following result generalizes this fact:

I Theorem 6. Let G be finitely generated and let H ≤ G have finite index. Then
PowerWP(G) is NC1-many-one-reducible to PowerWP(H).

Proof sketch. W.l.o.g. we can assume that H is a finitely generated normal subgroup and
R is a finite set of representatives of Q := G/H with 1 ∈ R. As a first step we replace in
the input power word every pxi

i by hyi

i p
zi
i where xi = yi |Q|+ zi, 0 ≤ zi < |Q| and hi is a

word over the generators of H with p|Q|i =G hi. Moreover, we write pzi
i as a word without

exponents. Using the conjugate collection process from [35, Theorem 5.2], the result can be
rewritten in the form hr where h is a power word in the subgroup H and r ∈ R. J

As an immediate consequence of Theorem 2, Theorem 6 and the NC1-hardness of the
word problem for F2 [35, Theorem 6.3] we obtain:

I Corollary 7. The power word problem for every finitely generated virtually free group is
AC0-Turing-reducible to the word problem for the free group F2.

I Theorem 8. For every finitely generated abelian group G, PowerWP(G o Z) is in uTC0.

M. Lohrey and A. Weiß 43:7

I Theorem 9. Let G be either a finite non-solvable group or a finitely generated free group
of rank at least two. Then PowerWP(G o Z) is coNP-complete.

I Theorem 10. The power word problem for the Grigorchuk group (as defined in [15] and
also known as first Grigorchuk group) is uAC0-many-one-reducible to its word problem.

Theorem 10 applies only if the generating set contains a neutral letter. Otherwise, the
reduction is in uTC0. It is well-know that the word problem for the Grigorchuk group is in L
(see e.g. [13]). Thus, also the power word problem is in L.

Proof sketch of Theorem 10. By [5, Theorem 6.6], every element of length N in the Grig-
orchuk group has order at most CN3/2 for some constant C. Since the order of every element
is a power of two, we can reduce all exponents modulo the smallest power of two ≥ CN3/2

where N is the length of the longest period pi. After that the words are short and can be
written without exponents. J

4 Proof of Theorem 2

The proof of Theorem 2 consists of two main steps: first we do some preprocessing leading to
a particularly nice instance of the power word problem. While this preprocessing is simple
from a theoretical point of view, it is where the main part of the workload is performed
during the execution of the algorithm. Then, in the second step, all exponents are reduced
to polynomial size. After this shortening process, the power word problem can be solved by
the ordinary word problem. The most difficult part is to prove correctness of the shortening
process. For this, we introduce a rewriting system over an extended alphabet of words with
exponents. We outline the proof in a sequence of lemmas which all follow rather easily from
the previous ones and we give some small hints how to prove the lemmas.

Preprocessing. We use the notations from the paragraph on free groups in Section 2. In
particular, recall that S =

{
aa−1 → 1

∣∣ a ∈ Σ
}
. Fix an arbitrary order on the input

alphabet Σ. This gives us the lexicographic order on Σ∗, which is denoted by �. Let
Ω ⊆ IRR(S) ⊆ Σ∗ denote the set of words w such that

w is non-empty,
w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Σ),
w is primitive (i.e, w cannot be written as un for n ≥ 2),
w is lexicographically minimal among all cyclic permutations of w and w−1 (i.e., w � uv
for all u, v ∈ Σ∗ with vu = w or vu = w−1).

Notice that Ω consists of Lyndon words [29, Chapter 5.1] with the stronger requirement of
being freely reduced, cyclically reduced and also minimal among the conjugacy class of the
inverse. The first aim is to rewrite the input power word in the form

w = s0p
x1
1 s1 · · · pxn

n sn with pi ∈ Ω and si ∈ IRR(S). (1)

The reason for this lies in the following crucial lemma which essentially says that, if a long
factor of pxi

i cancels with some pxj

j , then already pi = pj . Thus, only the same pi can cancel
implying that we can make the exponents of the different pi independently smaller.

I Lemma 11. Let p, q ∈ Ω, x, y ∈ Z and let v be a factor of px and w a factor of qy. If
vw

∗=⇒
S

1 and |v| = |w| ≥ |p|+ |q| − 1, then p = q.

MFCS 2019

43:8 The Power Word Problem

Proof. Since p and q are cyclically reduced, v and w are freely reduced, i.e., v = w−1 as words.
Thus, v has two periods |p| and |q|. Since v is long enough, by the theorem of Fine and Wilf
[10] it has also a period of gcd(|p| , |q|). This means that also p and q have period gcd(|p| , |q|)
(since cyclic permutations of p and q are factors of v). Assuming gcd(|p| , |q|) < |p|, would
mean that p is a proper power contradicting the fact that p is primitive. Hence, |p| = |q|.
Since |v| ≥ |p|+ |q| − 1 = 2 |p| − 1, p is a factor of v, which itself is a factor of q−y. Thus, p
is a cyclic permutation of q or of q−1. By the last condition on Ω, this implies p = q. J

I Lemma 12. The following is in uAC0(WP(F2)): given a power word v, compute a power
word w of the form (1) such that v =FX

w.

The proof of this lemma is straightforward using [39, Proposition 20] in order to compute
freely reduced words. We call these steps the preprocessing steps. Henceforth, we will assume
that the inputs for the power word problem are given in the form (1).

The symbolic reduction system. We define the infinite alphabet ∆ = ∆′ ∪ ∆′′ with
∆′ = Ω× (Z \ {0}) and ∆′′ = IRR(S) \ {1}. We write px for (p, x) ∈ ∆′. A word over ∆ can
be read as a word over Σ in the natural way. Formally, we can define a canonical projection
π : ∆∗ → Σ∗ that maps a symbol a ∈ ∆ to the corresponding word over Σ, but most of the
times we will not write π explicitly.

Whenever there is the risk of confusion, we write |v|Σ to denote the length of v ∈ ∆∗
read over Σ (i.e., |v|Σ = |π(v)|) whereas |v|∆ is the length over ∆. Moreover, we denote
the number of occurrences of letters from ∆′ in w with |w|∆′ . Finally, for a symbol s ∈ ∆′′
define λ(s) = |s|Σ and for px ∈ ∆′ set λ(px) = |p|Σ. For u = a1 · · · am ∈ ∆∗ with ai ∈ ∆ for
1 ≤ i ≤ m we define λ(u) =

∑m
i=1 λ(ai). Thus, λ(u) is the number of letters from Σ required

to write down u ignoring the binary exponents.
A word w as in (1), which has been preprocessed as in the previous section, can be viewed

as word over ∆ with w ∈ ((∆′′ ∪ {1})∆′)∗(∆′′ ∪ {1}), |w|∆′ = n and |w|∆ ≤ 2n+ 1 (we only
have ≤ because some si might be empty).

We define the infinite string rewriting system T over ∆∗ by the following rewrite rules,
where px, py, qy ∈ ∆′, s, t ∈ ∆′′, r ∈ ∆′′ ∪ {1}, and d, e ∈ Z. Here, p0 is identified with the
empty word. Note that the strings in the rewrite rules are over the alphabet ∆, whereas the
strings in the if-conditions are over the alphabet Σ.

pxpy → px+y (2)

pxqy → px−drqy−e if p 6= q, pxqy
+=⇒
S

px−drqy−e ∈ IRR(S) for (3)

r = p′q′ with p′ <pref p
sign(x) and q′ <suff q

sign(y)

st→ r if st +=⇒
S

r ∈ IRR(S) (4)

pxs→ px−dr if pxs +=⇒
S

px−dr ∈ IRR(S) for (5)

r = p′s′ with p′ <pref p
sign(x) and s′ <suff s

spx → rpx−d if spx +=⇒
S

rpx−d ∈ IRR(S) for (6)

r = s′p′ with s′ <pref s and p′ <suff p
sign(x)

I Lemma 13. The following length bounds hold in the above rules:
in rule (3): 0 < |r|Σ ≤ |p|Σ + |q|Σ, |d| ≤ |q|Σ, and |e| ≤ |p|Σ
in rules (5) and (6): |d| ≤ |s|Σ.

M. Lohrey and A. Weiß 43:9

The inequalities |d| ≤ |q|Σ and |e| ≤ |p|Σ follow from Lemma 11. The other inequalities are
obvious. The next lemma is also straightforward from the definition.

I Lemma 14. For u ∈ ∆∗ we have u =FX
1 if and only if u ∗=⇒

T
1.

I Lemma 15. Let u ∈ ∆∗. If u ∗=⇒
T

v, then u ≤k=⇒
T

v for k = 2 |u|∆ + 4 |u|∆′ ≤ 6 |u|∆.

Proof sketch. The proof is based on the fact that at most 2|u|∆′ − 3 applications of rules of
the form (3) can occur. These are the only length increasing rules. All other rules either
decrease the number of non-reduced two-letter factors of u (this can happen at most |u|∆ − 1
times) or decrease the length of u (this can happen at most |u|∆ + 2|u|∆′ − 3 times). J

Consider a word u ∈ ∆∗ and p ∈ Ω. Let ∆p = {px | x ∈ Z \ {0}}. We can write u
uniquely as u = u0p

y1u1 · · · pymum with ui ∈ (∆ \∆p)∗. We define ηip(u) =
∑i
j=1 yj and

ηp(u) = ηmp (u). By Lemma 13 we know that all rules of T change ηp(·) by at most λ(u). We
can use this observation in order to show the next lemma by induction on k.

I Lemma 16. Let u k=⇒
T

v. Then for all v′ ≤pref v with v′ ∈ ∆∗ there is some u′ ∈ ∆∗ with
u′ ≤pref u and |ηp(u′)− ηp(v′)| ≤ (k + 1)2 λ(u).

The shortened version of a word. Take a word u ∈ ∆∗ and p ∈ Ω and write u as
u = u0p

y1u1 · · · pymum with ui ∈ (∆ \ ∆p)∗ (we are only interested in the case that px
appears as a letter in u for some x ∈ Z). Let C be a finite set of finite, non-empty, non-
overlapping intervals of integers, i.e., we can write C = { [`j , rj] | 1 ≤ j ≤ k } for k = |C| and
`j ≤ rj for all j. We can assume that the intervals are ordered increasingly, i.e., we have
rj < `j+1. We set dj = rj − `j + 1 > 0. We say that u is compatible with C if ηip(u) 6∈ [`j , rj]
for any i, j. If w is compatible with C, we define the shortened version SC(u) of u: for
i ∈ {1, . . . ,m} we set

Ci = Ci(u) =
{{

j
∣∣ 1 ≤ j ≤ k, ηi−1

p (u) < `j ≤ rj < ηip(u)
}

if yi > 0{
j
∣∣ 1 ≤ j ≤ k, ηip(u) < `j ≤ rj < ηi−1

p (u)
}

if yi < 0,

i.e., Ci collects all intervals between ηi−1
p (u) and ηip(u). Then SC(u) is defined by

SC(u) = u0p
z1u1 · · · pzmum where

zi = yi − sign(yi) ·
∑
j∈Ci

dj =
{
yi −

∑
j∈Ci

dj if yi > 0,
yi +

∑
j∈Ci

dj if yi < 0.

A straightforward computation yields the next lemma:

I Lemma 17. For all i we have zi 6= 0 and sign(zi) = sign(yi). In particular, if u ∈ IRR(T),
then also SC(u) ∈ IRR(T).

Furthermore, we define distp(u, C) = min
{ ∣∣ηip(u)− x

∣∣ ∣∣ 0 ≤ i ≤ m,x ∈ [`, r] ∈ C
}
. Note

that distp(u, C) > 0 if and only if u is compatible with C. Moreover, if distp(u, C) = a,
v = v0p

z1v1 · · · pzmvm, and
∣∣ηip(u)− ηip(v)

∣∣ ≤ b for all i ≤ m, then distp(v, C) ≥ a− b.

I Lemma 18. If distp(u, C) > (k + 1)2 λ(u) and u k=⇒
T

v, then SC(u) k=⇒
T

SC(v).

MFCS 2019

43:10 The Power Word Problem

c5

c6

c2

c3

c9

c7

c8

c1

c4

d1

d3

d4

d7

Figure 1 The red shaded parts represent the intervals from the set CK
u,p in (7). The differences

c3 − c2, c6 − c5, c7 − c6 and c9 − c8 are strictly smaller than 2K.

Proof sketch. The first step for proving this lemma is to show that if distp(u, C) > λ(u) and
u =⇒

T
v, then SC(u) =⇒

T
SC(v). To see this this, we distinguish between the rules applied:

When applying one of the rules (3)–(6), we have Ci(u) = Ci(v) for all i since the exponents
are only changed slightly. Thus, the shortening process does the same on v as on u. When
applying a rule (2), the exponents are added, which is compatible with the shortening process.
Now we obtain the lemma by induction on k. In order to see that distp(u, C) > λ(u) is
satisfied in the inductive step, we use Lemma 16. J

We define a set of intervals which should be “cut out” from u as follows: We write
{ c1, . . . , cl } =

{
ηip(u)

∣∣ 0 ≤ i ≤ m
}
with c1 < · · · < cl and we set

CKu,p = { [cj +K, cj+1 −K] | 1 ≤ j ≤ l − 1, cj+1 − cj ≥ 2K } . (7)

Notice that distp(u, CKu,p) = K (given that CKu,p 6= ∅). The situation is shown in Figure 1.

I Proposition 19. Let p ∈ Ω, u = u0p
y1u1 · · · pymum ∈ ∆∗ with ui ∈ (∆ \ ∆p)∗, and

K = (6 |u|∆ + 1)2 λ(u) + 1. Then u =FX
1 if and only if SC(u) =FX

1 for C = CKu,p.

Proof. By Lemma 14 we have u =FX
1 if and only if u ∗=⇒

T
1. Let k = 6 |u|∆. By Lemma 15,

for all u ∗=⇒
T

v we have u ≤k=⇒
T

v. By the choice of C, we have distp(u, C) > (k + 1)2 λ(u).

Hence, we can apply Lemma 18, which implies that SC(u) ∗=⇒
T

SC(v) where v is a T -reduced
(thus freely reduced) word for u. Clearly, if v is the empty word, then SC(v) will be the
empty word. On the other hand, if v is non-empty, then SC(v) is non-empty and T -reduced
by Lemma 17. Hence, we have u =FX

1 if and only if SC(u) =FX
1. J

I Lemma 20. Let p, u, K, and C be as in Proposition 19 and SC(u) = u0p
z1u1 · · · pzmum.

Then |zi| ≤ m · (2 · (6 |u|∆ + 1)2 · λ(u) + 1) for all 1 ≤ i ≤ m.

M. Lohrey and A. Weiß 43:11

Proof of Theorem 2. We start with the preprocessing as described in Lemma 12 leading to
a word w = s0p

x1
1 s1 · · · pxn

n sn with pi ∈ Ω and si ∈ IRR(S) as in (1). After that we apply
the shortening procedure for all p ∈ { pi | 1 ≤ i ≤ n }. This can be done in parallel for all p,
as the outcome of the shortening only depends on the p-exponents. By Lemma 20 this leads
to a word ŵ of polynomial length. Finally, we can test whether ŵ =FX

1 using one oracle
gate for WP(F2) (recall that F2 contains a copy of FX). The computations for shortening
only involve iterated addition (and comparisons of integers), which is in uTC0 and, thus, can
be solved in uAC0 with oracle gates for WP(F2). J

5 The power word problem in wreath products

The goal of this section is to prove Theorems 8 and 9. We first fix some notation. Let G
be a finitely generated group with the finite symmetric generating set Σ. For Z we fix the
generator a. Hence Σ ∪ {a, a−1} is a symmetric generating set for the wreath product G o Z.
For a word w = v0a

e1v1 · · · aenvn with ei ∈ {−1, 1} and vi ∈ Σ∗ let σ(w) = e1 + · · · + en.
With I(w) we denote the interval [b, c] ⊆ Z, where b (resp., c) is the minimal (resp., maximal)
integer of the form e1 + · · ·+ ei for 0 ≤ i ≤ n. Note that if w represents (f, d) ∈ G o Z, then
d = σ(w), supp(f) ⊆ I(w) and 0, d ∈ I(w).

Periodic words over groups. We recall a construction from [12]. With G+ we denote
the set of all tuples (g0, . . . , gq−1) over G of arbitrary length q ≥ 1. With Gω we denote
the set of all mappings f : N → G. Elements of Gω can be seen as infinite sequences (or
words) over the set G. We define the binary operation ⊗ on Gω by pointwise multiplication:
(f ⊗ g)(n) = f(n)g(n). The identity element is the mapping id with id(n) = 1 for all n ∈ N.
For f1, f2, . . . , fn ∈ Gω we write

⊗n
i=1 fi for f1 ⊗ f2 ⊗ · · · ⊗ fn. If G is abelian, we write∑n

i=1 fi for
⊗n

i=1 fi. A function f ∈ Gω is periodic with period q ≥ 1 if f(k) = f(k + q) for
all k ≥ 0. In this case, f can specified by the tuple (f(0), . . . , f(q − 1)). Vice versa, a tuple
u = (g0, . . . , gq−1) ∈ G+ defines the periodic function fu ∈ Gω with fu(n · q + r) = gr for
n ≥ 0 and 0 ≤ r < q. One can view this mapping as the sequence uω obtained by taking
infinitely many repetitions of u. Let Gρ be the set of all periodic functions from Gω. If f1
is periodic with period q1 and f2 is periodic with period q2, then f1 ⊗ f2 is periodic with
period q1q2 (in fact, lcm(q1, q2)). Hence, Gρ forms a countable subgroup of Gω. Note that
Gρ is not finitely generated: The subgroup generated by elements fi ∈ Gρ with period qi
(1 ≤ i ≤ n) contains only functions with period lcm(q1, . . . , qn). For n ≥ 0 we define the
subgroup Gρn of all f ∈ Gρ with f(k) = 1 for all 0 ≤ k ≤ n − 1. We consider the uniform
membership problem for subgroups Gρn, Membership(Gρ∗) for short:

input: tuples u1, . . . , un ∈ G+ (elements of G are represented by finite words over Σ) and
a binary encoded number m.
question: does

⊗n
i=1 fui

belong to Gρm?
The following result was shown in [12]:

I Theorem 21. For every finitely generated abelian group G, Membership(Gρ∗) is in uTC0.

I Lemma 22. Let w ∈ (Σ ∪ {a, a−1})∗ with σ(w) 6= 0, n ≥ 1, and I(wn) = [b, c]. Moreover,
let s = c − b + 1 be the size of the interval I(w) and let (g, n · σ(w)) ∈ G o Z be the group
element represented by wn. Then g is periodic on the interval [b+ s, c− s] with period |σ(w)|.

I Example 23. Let us consider the wreath product Z o Z and let the left copy of Z in the
wreath product be generated by b. Consider the word w = ba−1babab3ab3ab5a−1b and let
n = 8. We have σ(w) = 2 and I(w) = [−1, 3]. Moreover, w represents the group element

MFCS 2019

43:12 The Power Word Problem

(f, 2) with f(−1) = 1, f(0) = 2, f(1) = 3, f(2) = 4, and f(3) = 5. Let us now consider the
word w8. The following diagram shows how to obtain the corresponding element of Z o Z:

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 4 6 9 6 9 6 9 6 9 6 9 6 9 6 8 4 5

We have I(w8) = [−1, 17] and σ(w8) = 8σ(w) = 16. If (g, 16) is the group element represented
by w8, then the function g is periodic on the interval [2, 14] (which includes the interval
[−1 + s, 17− s], where s = |I(w)| = 5) with period 2.

Proofs of Theorem 8 and 9. A conjunctive truth-table reduction is a Turing reduction
where the output is the conjunction over the outputs of all oracle gates.

I Proposition 24. For every finitely generated group G, PowerWP(G o Z) is conjunctive
truth-table uTC0-reducible to Membership(Gρ∗) and PowerWP(G).

Proof sketch. Let w = ux1
1 ux2

2 · · ·u
xk

k be the input power word and let (f, d) ∈ G o Z be the
element represented by w. We can check in uTC0 whether d = 0. The difficult part is to
check whether f is the zero-mapping. For this we compute an interval I (of exponential size)
that contains the support of f . We then partition I into two sets C and I \C. The set C has
polynomial size and we can check whether f is the zero-mapping on C using polynomially
many oracle calls to PowerWP(G). The complement I \ C can be written as a union of
polynomially many intervals. The crucial property of C is that on each of these intervals f
can be written as a sum of periodic sequences; for this we use Lemma 22. Using oracle calls
to Membership(Gρ∗) allows us to check whether f is the zero mapping on I \ C. J

Since for a finitely generated abelian group G, one can solve PowerWP(G) in uTC0,
Theorem 8 is a consequence of Proposition 24 and Theorem 21.

We split the proof of Theorem 9 into three propositions: one for the upper bound and
two for the lower bounds. It is straightforward to show that if the word problem for the
finitely generated group G belongs to coNP, then also Membership(Gρ∗) belongs to coNP.
Since coNP is closed under conjunctive truth-table uTC0-reducibility, Proposition 24 yields:

I Proposition 25. Let G be a finitely generated group such that PowerWP(G) belongs to
coNP. Then also PowerWP(G o Z) belongs to coNP.

I Proposition 26. If G is a finite, non-solvable group, PowerWP(G o Z) is coNP-hard.

Proof sketch. Barrington [4] proved the following result: Let C be a fan-in two boolean
circuit of depth d with n input gates x1, . . . , xn. From C one can compute a sequence of
triples (a so-called G-program) PC = (k1, g1, h1)(k2, g2, h2) · · · (k`, g`, h`) ∈ ([1, n]×G×G)∗
of length ` ≤ (4|G|)d such that for every input valuation v : {x1, . . . , xn} → {0, 1} the
following two statements are equivalent:
(a) C evaluates to 0 under the input valuation v.
(b) c1c2 · · · c` = 1 in G, where ci = gi if v(xki

) = 0 and ci = hi if v(xki
) = 1.

M. Lohrey and A. Weiß 43:13

This G-program is constructed as a sequence of iterated commutators, based on the observa-
tion that [g, h] = 1 if and only if g = 1 or h = 1 (given some reasonable assumptions on g
and h). Every formula C in conjunctive normal form can be written as a circuit of depth
O(log |C|). Hence the G-program PC has length polynomial in |C|. From [4] it is easy to see
that on input of the formula C, the G-program PC can be computed in logspace.

Let PC = (k1, g1, h1) · · · (k`, g`, h`) and x1, . . . , xn be the variables in C. We compute
in logspace the n first primes p1, . . . , pn and M =

∏n
i=1 pi (the latter in binary notation).

Let a denote the generator of Z in the wreath product G o Z. We now compute for every
1 ≤ i ≤ ` the power word wi = (hi(agi)pki

−1a)M/pkia−M and set wC = w1w2 · · ·w`. The
group element of G o Z represented by wC is of the form (f, 0).

We claim that wC = 1 in G oZ if and only if C is unsatisfiable: For a number z ∈ [0,M−1]
we define the valuation vz : {x1, . . . , xn} → {0, 1} by vz(xi) = 1 if z ≡ 0 mod pi and vz(xi) =
0 otherwise. By the Chinese remainder theorem, for every valuation v : {x1, . . . , xn} → {0, 1}
there exists z ∈ [0,M − 1] with v = vz. Based on the above statements (a) and (b), the final
step of the proof checks that f(z) = 1 if and only if C evaluates to 0 under vz. J

I Proposition 27. Let F be a finitely generated free group of rank at least two. Then
PowerWP(F o Z) is coNP-hard.

The proof is almost the same as for Proposition 26. The difference is that we mimic Robinson’s
proof that the word problem for F2 is NC1-hard [35] instead of Barrington’s result.

6 Further Research

We conjecture that the method of Section 4 can be generalized to right-angled Artin groups
(RAAGs – also known as graph groups) and hyperbolic groups, and hence that the power word
problem for a RAAG (resp., hyperbolic group) G is AC0-Turing-reducible to the word problem
for G. One may also try to prove transfer results for the power word problem with respect
to group theoretical constructions, e.g., graph products, HNN extensions and amalgamated
products over finite subgroups. For finitely generated linear groups, the power word problem
leads to the problem of computing matrix powers with binary encoded exponents. The
complexity of this problem is open; variants of this problem have been studied in [1, 11].

Another open question is what happens if we allow nested exponents. We conjecture
that in the free group for any nesting depth bounded by a constant the problem is still in
uAC0(WP(F2)). However, for unbounded nesting depth it is not clear what happens: we
only know that it is in P since it is a special case of the compressed word problem; but it
still could be in uAC0(WP(F2)) or it could be P-complete or somewhere in between.

References
1 Eric Allender, Nikhil Balaji, and Samir Datta. Low-Depth Uniform Threshold Circuits and

the Bit-Complexity of Straight Line Programs. In Proceedings of the 39th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2014, Part II, volume
8635 of Lecture Notes in Computer Science, pages 13–24. Springer-Verlag, 2014. doi:10.1007/
978-3-662-44465-8_2.

2 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

3 David A. Mix Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1. In Juris Hartmanis, editor, Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 1–5. ACM, 1986. doi:10.1145/12130.12131.

MFCS 2019

https://doi.org/10.1007/978-3-662-44465-8_2
https://doi.org/10.1007/978-3-662-44465-8_2
https://doi.org/10.1145/12130.12131

43:14 The Power Word Problem

4 David A. Mix Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1. Journal of Computer and System Sciences, 38(1):150–164,
1989. doi:10.1016/0022-0000(89)90037-8.

5 Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ. Branch groups. In Handbook of
algebra, Vol. 3, pages 989–1112. Elsevier/North-Holland, Amsterdam, 2003. doi:10.1016/
S1570-7954(03)80078-5.

6 Martin Beaudry, Pierre McKenzie, Pierre Péladeau, and Denis Thérien. Finite Monoids: From
Word to Circuit Evaluation. SIAM Journal on Computing, 26(1):138–152, 1997.

7 Ron Book and Friedrich Otto. String-Rewriting Systems. Springer-Verlag, 1993.
8 William W. Boone. The word problem. Annals of Mathematics, 70(2):207–265, 1959.
9 Max Dehn. Ueber unendliche diskontinuierliche Gruppen. Mathematische Annalen, 71:116–144,

1911.
10 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings

of the American Mathematical Society, 16:109–114, 1965.
11 Esther Galby, Joël Ouaknine, and James Worrell. On Matrix Powering in Low Dimensions. In

Proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, volume 30 of LIPIcs, pages 329–340. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.329.

12 Moses Ganardi, Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack Problems for
Wreath Products. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, volume 96 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2018. URL: http://www.dagstuhl.de/dagpub/978-3-95977-062-0.

13 Max Garzon and Yechezkel Zalcstein. The complexity of Grigorchuk groups with application
to cryptography. Theoretical Computer Science, 88(1):83–98, 1991.

14 Guoqiang Ge. Testing Equalities of Multiplicative Representations in Polynomial Time
(Extended Abstract). In Proceedings of the 34th Annual Symposium on Foundations of
Computer Science, FOCS 1993, pages 422–426. IEEE Computer Society, 1993.

15 Rostislaw I. Grigorchuk. Burnside’s problem on periodic groups. Functional Analysis and Its
Applications, 14:41–43, 1980.

16 Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM Journal
on Computing, 37:425–459, 2007.

17 Derek Holt. Word-hyperbolic groups have real-time word problem. International Journal of
Algebra and Computation, 10:221–227, 200.

18 Derek Holt, Markus Lohrey, and Saul Schleimer. Compressed Decision Problems in Hyperbolic
Groups. In Proceedings of the 36th International Symposium on Theoretical Aspects of
Computer Science, STACS 2019, volume 126 of LIPIcs, pages 37:1–37:16. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.37.

19 Matthias Jantzen. Confluent String Rewriting, volume 14 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1988.

20 Daniel König and Markus Lohrey. Evaluation of Circuits Over Nilpotent and Polycyclic
Groups. Algorithmica, 80(5):1459–1492, 2018. doi:10.1007/s00453-017-0343-z.

21 Daniel König and Markus Lohrey. Parallel identity testing for skew circuits with big powers
and applications. International Journal of Algebra and Computation, 28(6):979–1004, 2018.
doi:10.1142/S0218196718500431.

22 Richard J. Lipton and Yechezkel Zalcstein. Word Problems Solvable in Logspace. Journal of
the ACM, 24:522–526, 1977.

23 Markus Lohrey. Decidability and complexity in automatic monoids. International Journal of
Foundations of Computer Science, 16(4):707–722, 2005.

24 Markus Lohrey. Word Problems and Membership Problems on Compressed Words. SIAM
Journal on Computing, 35(5):1210–1240, 2006. doi:10.1137/S0097539704445950.

25 Markus Lohrey. The Compressed Word Problem for Groups. Springer Briefs in Mathematics.
Springer-Verlag, 2014. doi:10.1007/978-1-4939-0748-9.

https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/S1570-7954(03)80078-5
https://doi.org/10.1016/S1570-7954(03)80078-5
https://doi.org/10.4230/LIPIcs.STACS.2015.329
http://www.dagstuhl.de/dagpub/978-3-95977-062-0
https://doi.org/10.4230/LIPIcs.STACS.2019.37
https://doi.org/10.1007/s00453-017-0343-z
https://doi.org/10.1142/S0218196718500431
https://doi.org/10.1137/S0097539704445950
https://doi.org/10.1007/978-1-4939-0748-9

M. Lohrey and A. Weiß 43:15

26 Markus Lohrey and Saul Schleimer. Efficient computation in groups via compression. In
Proceedings of the 2nd International Symposium on Computer Science in Russia, CSR 2007,
volume 4649 of Lecture Notes in Computer Science, pages 249–258. Springer-Verlag, 2007.

27 Markus Lohrey and Armin Weiß. The power word problem. CoRR, abs/1904.08343, 2019.
URL: https://arxiv.org/abs/1904.08343.

28 Markus Lohrey and Georg Zetzsche. Knapsack in Graph Groups. Theory of Computing
Systems, 62(1):192–246, 2018. doi:10.1007/s00224-017-9808-3.

29 M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and Its
Applications. Addison-Wesley, 1983. Reprinted by Cambridge University Press, 1997.

30 Alexei Miasnikov, Svetla Vassileva, and Armin Weiß. The Conjugacy Problem in Free Solvable
Groups and Wreath Products of Abelian Groups is in TC0. Theory of Computing Systems,
63(4):809–832, 2018. doi:10.1007/s00224-018-9849-2.

31 Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack Problems in Groups.
Mathematics of Computation, 84(292):987–1016, 2015.

32 Alexei Myasnikov, Alexander Ushakov, and Won Dong-Wook. Power Circuits, exponential
Algebra, and Time Complexity. International Journal of Algebra and Computation, 22(6):3–53,
2012.

33 Alexei Myasnikov and Armin Weiß. TC0 circuits for algorithmic problems in nilpotent groups.
In Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, volume 83 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.23.

34 Pyotr S. Novikov. On the algorithmic unsolvability of the word problem in group theory.
Trudy Mat. Inst. Steklov, pages 1–143, 1955. In Russian.

35 David Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, University of
California, San Diego, 1993.

36 Heribert Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.
37 Stephan Waack. The parallel complexity of some constructions in combinatorial group theory.

Journal of Information Processing and Cybernetics, 26(5-6):265–281, 1990.
38 Armin Weiß. On the Complexity of Conjugacy in Amalgamated Products and HNN Extensions.

Dissertation, Institut für Formale Methoden der Informatik, Universität Stuttgart, 2015.
39 Armin Weiß. A Logspace Solution to the Word and Conjugacy problem of Generalized

Baumslag-Solitar Groups. In Algebra and Computer Science, volume 677 of Contemporary
Mathematics, pages 185–212. American Mathematical Society, 2016.

MFCS 2019

https://arxiv.org/abs/1904.08343
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1007/s00224-018-9849-2
https://doi.org/10.4230/LIPIcs.MFCS.2017.23

Upper Bounds on the Length of Minimal
Solutions to Certain Quadratic Word Equations
Joel D. Day1

Loughborough University, UK
Kiel University, Germany
J.Day@lboro.ac.uk

Florin Manea
Kiel University, Germany
flm@informatik.uni-kiel.de

Dirk Nowotka
Kiel University, Germany
dn@informatik.uni-kiel.de

Abstract
It is a long standing conjecture that the problem of deciding whether a quadratic word equation has
a solution is in NP. It has also been conjectured that the length of a minimal solution to a quadratic
equation is at most exponential in the length of the equation, with the latter conjecture implying
the former. We show that both conjectures hold for some natural subclasses of quadratic equations,
namely the classes of regular-reversed, k-ordered, and variable-sparse quadratic equations. We also
discuss a connection of our techniques to the topic of unavoidable patterns, and the possibility of
exploiting this connection to produce further similar results.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words; Theory
of computation → Problems, reductions and completeness

Keywords and phrases Quadratic Word Equations, Length Upper Bounds, NP, Unavoidable Patterns

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.44

Funding Florin Manea’s work was supported by the DFG grant MA 5725/2-1.

1 Introduction

A word equation is an equation α = β in which the two sides, α and β, are words consisting
of letters from a terminal alphabet Σ = {a, b, . . .} and variables from a set X = {x, y, z, . . .}.
It has a solution if the variables may be substituted for words over Σ in such a way that the
two sides become identical. For example, the equation abxby = xbyxb has a solution where
x is substituted by a, and y is substituted by ab. Usually such a substitution is represented
by a morphism h : (X ∪Σ)∗ → Σ∗ which preserves the terminal symbols (i.e.h(a) = a for all
a ∈ Σ). Situated in the intersection between computer science and algebra, word equations
are an important tool for describing structural relations between words, and as such are of
interest in a variety of areas, ranging from combinatorial group and monoid theory [20, 19, 7],
to unification [25, 12, 14], database theory [11, 10], model checking, verification and security,
where there has been much interest recently in developing so-called string solvers capable of
dealing with word equations such as HAMPI [17], CVC4 [3], Stranger [28], ABC [2], Norn
[1], S3P [27] and Z3str3 [4]. Of course, not all equations have solutions (consider the trivial
example ax = bx, or less trivial ones such as abcx = xcba), and the problem of deciding
whether a given equation has a solution – the satisfiability problem – has been at the

1 Corresponding author

© Joel D. Day, Florin Manea, and Dirk Nowotka;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:J.Day@lboro.ac.uk
mailto:flm@informatik.uni-kiel.de
mailto:dn@informatik.uni-kiel.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

centre of research on word equations since their inception. It is not difficult to see that the
satisfiability problem contains an inherent degree of computational complexity. In particular,
there are several simple reductions from NP-complete problems such as the membership
problem for pattern languages [9, 8] and linear arithmetic. On the other hand, bounding
the complexity from above has proven considerably more challenging. After considerable
effort, Makanin [21] famously showed that the satisfiability problem for word equations is
algorithmically decidable. This result was later improved by Plandowski [23] who gave an
algorithm which requires only polynomial space, and more recently this has been refined
further to linear space by Jeż [13, 15] using the elegant method of recompression. Nevertheless,
determining the precise complexity, and in particular whether the problem is contained in
NP, remains one of the outstanding open problems in the area.

One method for obtaining upper bounds on the complexity is to consider the lengths of
minimal solutions – those for which no shorter solution exists to the same equation. Since
it may easily be checked in polynomial time (in the length of the substitution) whether a
given substitution satisfies a given word equation: simply apply the substitution to each side
and compare the resulting words, we have a clear relation between the lengths of minimal
solutions and the complexity of the satisfiability problem. If the minimal solutions are
guaranteed to be short enough (e.g. polynomial in the length of the equation), we have a
non-deterministic polynomial time algorithm which simply guesses a solution and then checks
it. In fact, Plandowski and Rytter [24] showed that minimal solutions may be compressed
substantially in such a way that their compressed versions may still be checked efficiently, so
a similar approach works for equations whose minimal solutions are at most exponentially
long in the length of the equation. Unfortunately, the best known upper bound on the length
of minimal solutions to word equations in general is double exponential. It is worth pointing
out that it is not difficult to construct examples of equations for which the lengths of minimal
solutions are (single) exponential in the length of the equation.

In the absence of matching upper and lower bounds on the complexity for the whole
class of word equations, it makes sense to first consider subclasses. For example, equations
with at most two distinct variables (which may each occur multiple times) can be solved
in polynomial time (see, e.g. [6]), and thus do not exhibit the same intractability as more
general classes, while another class which is generally well understood is the class of equations
in which variables may only occur on one side (i.e. either α ∈ Σ∗ or β ∈ Σ∗). In this case,
the satisfiability problem is simply the (NP-complete) problem of pattern matching with
variables, for which the computational complexity has been studied extensively. Aside from
these examples, however, there seem to be surprisingly few classes of equations for which
the satisfiability problem is known to be contained in NP, especially amongst those with
corresponding hardness results.

Quadratic word equations are word equations in which each variable may occur at most
twice – although the number of variables is unrestricted. There are many reasons that the
quadratic equations form a particularly interesting subclass of equations. On one hand,
NP-hardness remains (see [8]) but also even for the very restricted case in which the variables
must occur in exactly the same order on both sides and only the terminal symbols may vary
(see [5]). On the other hand, unlike the general case, there is a straightforward proof that
the satisfiability problem for quadratic word equations is decidable, using so-called Nielsen
transformations (see [18]). Moreover, while examples of equations with three occurrences of
each variable are known for which the minimal solutions are exponentially long in the length
of the equation, no such examples are known for quadratic equations. However, while these
results seem to indicate that quadratic equations may not be as complex as the general case,

J. D. Day, F. Manea, and D. Nowotka 44:3

understanding quadratic equations, and in particular determining whether the satisfiability
of quadratic equations is in NP, has proven exceptionally difficult and as with the general
case, remains a long-standing open problem.

Our Contribution. In the current paper, we further develop a method for showing upper
bounds on the length of solutions to quadratic word equations first introduced in [5], and
use it to obtain such bounds for several subclasses of quadratic equations. The method
extends the existing technique of filling the positions (see [16, 24]), and relies on arranging
the individual positions of a solution, as referenced by their origin (e.g. the third letter in
the second occurrence of the variable x) into chains, which may be represented as words
(chain-words). This chains-representation of solutions is discussed in detail in Section 3.

We show firstly that quadratic equations with a high concentration of terminal symbols
and variables occurring only once – with few variables occurring the maximal two times – have
minimal solutions at length at most n22O(V 4) where V is the number of variables occurring
twice and n is the length of the equation. Using the previously mentioned algorithm of
Plandowski and Rytter, it follows that for the class of equations for which V < log(n), which
we shall refer to as variable-sparse quadratic equations, the satisfiability problem is in NP.
Moreover, by observing that variables occurring only once do not have a dramatic impact on
the length of minimal solutions (Proposition 2), we also obtain that if V is bounded by a
constant, the satisfiability problem may be solved in polynomial time.

As a straightforward consequence, we are also able to show that equations which may be
obtained by concatenating many “small” quadratic equations (over disjoint, constant-size sets
of variables) also have short solutions, thus may be solved in non-deterministic polynomial
time. Such equations may be arbitrarily disordered at a local level – we do not restrict
the structure of each individual equation before concatenating – but possess a global order
in which the sets of variables must occur from left to right in each side of the equation.
Since these equations, which we shall call k-ordered equations, generalise the regular-ordered
equations considered in [5], we also get the corresponding NP-hardness lower bound in this
case. Thus, the remaining “interesting”, cases must possess some global disorder among the
variables.

Our main result (Theorem 21) establishes upper bounds of n23n on the length of minimal
solutions to a subclass of quadratic equations for which this necessary separation of the
variables is maximal, namely the class of regular-reversed equations, in which the variables
occur in the opposite order on the LHS as on the RHS. We also show (Proposition 14) that this
bound is close to the best that we may expect using our approach. The proof of Theorem 21,
although technical, revolves around two simple operations on the chains-representation of
a solution. The first is a compression of certain subchains, which produces a new, shorter
solution to an equation of the same length. In a sense, this kind of compression generalises
the Nielsen transformations mentioned previously. The second operation, given by Lemma 22
and taking advantage of the structure induced by the carefully chosen compression, is a
simple deletion of a variable from the equation (and solution) such that the property of being
chain-square-free is preserved.

The final part to our contribution focusses on potential forward steps in the general case,
and as such begins to explore a connection to the topic of avoidability of patterns within the
field of combinatorics on words. Our main result in this direction is a characterisation of
possible chain words in the case of regular equations (equations in which each variable occurs
at most once on each side) which is considerably simpler than the more abstract definition
given in Section 3. This leaves open a particular interesting problem to determine whether

MFCS 2019

44:4 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

there exist “long” non-repetitive (square-free) words satisfying this characterisation, where
a negative answer, for an appropriate definition of “long”, would, due to results presented
in Section 3, yield that the satisfiability problem for this large subclass of quadratic word
equations is in NP. We also discuss, with Lemma 27 as an example, how looking at various
structures other than direct repetitions might also be sufficient to obtain the same result.

The rest of the paper is organised as follows. In Section 2, we establish the basic notations
and definitions we will need, along with some preliminary results. In Section 3, we shall
introduce the main framework used to establish our results. This section recaps the main
construction (the chains representation of solutions) and lemma (Lemma 11) originally
presented in [5] which form the basis of the framework, and mentions some new additional
useful results such as Lemma 12 and Proposition 14. Our main results concerning upper
bounds on the length of minimal solutions to equations are presented in Sections 4 and 5.
Finally, in Section 6, we present our characterisation of chain-words and discuss the connection
to the topic of avoidability of patterns and the resulting possibilities for exploiting Lemma 11
in Section 3 further.

2 Preliminaries

Let Σ be an alphabet. We denote by Σ∗ the set of all words over Σ. The empty word is
denoted ε. A word u is a prefix of a word w if there exists v such that w = uv. Similarly, u
is a suffix of w if there exists v such that w = vu, and u is a factor of w if there exist v, v′
such that w = vuv′. A square is a word ww for some w ∈ Σ∗\{ε}. The length of a word w is
denoted |w|, and the number of occurrences of a letter a in a word w is denoted |w|a. The ith
letter of w, as counted from the left, is denoted w[i]. The reversal of a word w is the word
wR = w[|w|]w[|w| − 1] . . . w[2]w[1]. For two alphabets Σ1,Σ2, a morphism h : Σ1

∗ → Σ2
∗ is

a mapping such that, for all u, v ∈ Σ1
∗, h(u)h(v) = h(uv). Thus, a morphism is uniquely

defined by its image on each letter in Σ1. In the rest of the paper, we shall distinguish
between two alphabets: an (infinite) set X of variables, and a terminal alphabet Σ. We shall
generally assume that the terminal alphabet contains at least two letters, but otherwise its
cardinality will not be important for our purposes. For a word α ∈ (X ∪Σ)∗, we shall denote
the set {x ∈ X | |α|x ≥ 1} by var(α) and the set {a ∈ Σ | |α|a ≥ 1} by alph(α). We shall say
a morphism h : (X ∪ Σ)∗ → Σ∗ is a substitution if h(a) = a for all a ∈ Σ.

A word equation is a tuple (α, β) (usually written as α = β) such that α, β ∈ (X ∪Σ)∗. α
and β are called the left hand side (LHS) and right hand side (RHS) respectively. Solutions
are substitutions h : (var(αβ) ∪ Σ)∗ → Σ∗ such that h(α) = h(β). The length of a word
equation α = β is |αβ|. The length of a solution h to the equation is |h(α)|. A solution is
minimal if no shorter solution exists. The Satisfiability Problem is the decision problem of
determining whether, for a given word equation, there exists a solution. The following result
of Plandowski and Rytter establishes a relationship between the length of minimal solutions
(when they exist) and the computational complexity of the satisfiability problem.

I Theorem 1 ([24]). Suppose that for a given class of word equations, there exists a polynomial
P such that any equation in the class which has a solution, has one whose length is at most
2P (n) where n is the length of the equation. Then the satisfiability problem for that class is
in NP.

A word equation α = β is quadratic if |α|x + |β|x ≤ 2 for every x ∈ X. It is regular if
|α|x ≤ 1 and |β|x ≤ 1 for all x ∈ X. It is regular-ordered if it is regular, and the variables
occur in the same order in both sides of the equation (i.e. there do not exist x, y ∈ X and
α′, β′ ∈ (X ∪ Σ)∗ such that xα′y is a factor of α and yβ′x is a factor of β). It was shown
in [5] that the satisfiability for regular-ordered word equations is NP-hard.

J. D. Day, F. Manea, and D. Nowotka 44:5

Finally, we remark that, when considering asymptotic bounds on the length of minimal
solutions to quadratic equations, it is not necessary to consider equations in which a variable
occurs only once. Hence we shall, unless otherwise stated, consider classes of equations in
which the variables occur exactly twice. All of our results providing upper bounds on the
length of minimal solutions (and thus containment in NP) can easily be adapted for classes
permitting variables which occur only once.

I Proposition 2. Let α = β be a quadratic word equation and let h : (var(αβ) ∪ Σ)∗ → Σ∗
be a minimal solution. Let X1 be the set of variables occurring exactly once in αβ and let
X2 be the set of variables occurring twice. Let g : (var(αβ) ∪ Σ)∗ → (var(αβ) ∪ Σ)∗ be the
morphism such that g(x) = h(x) if x ∈ X1 and g(x) = x otherwise. Then the equation
g(α) = g(β) has length less than 2|αβ|, and has a minimal solution h′ : (X2 ∪ Σ)∗ → Σ∗
such that |h′(g(α))| = |h(α)|.

3 A Method for Upper Bounds

Despite Theorem 1, showing inclusion in NP often remains a challenge, particularly among
those classes for which the corresponding NP-hardness lower bound exists. In the present
section, we outline a framework, first presented in [5] for reasoning about the (non)-minimality
of solutions which we shall rely on in the proofs of most of our results. The main idea centers
around the simple principle that a solution is not minimal if we can remove some parts of it to
obtain another, shorter solution. While this is in itself a trivial statement, the consequences
of our approach will lead, as we shall see in Section 6, to an entirely non-trivial method of
reasoning generally about the lengths of minimal solutions to quadratic equations and a
surprising link to the topic of avoidability of patterns, a central theme within combinatorics
on words.

Positions in a Solution. Our approach extends the method of “filling the positions”, used
to determine whether a word equation has a solution when the lengths of the substitutions for
the variables are given explicitly (see [16, 24] for an overview). In this respect, we must first
specify precisely what we mean by a position. For our reasoning, it will be convenient to be
able to reference parts of the substitution/solution both purely from their location in the full
image, and relative to the part of the equation – an occurrence of a variable or terminal symbol
– from which they originate. Accordingly, for an equation E given by α = β and a substitution
h : (var(αβ)∪Σ)∗ → Σ∗ such that |h(α)| = |h(β)|, we define the set of absolute positions of h
w.r.t. E as APhE = {i | 1 ≤ i ≤ |h(α)|}, and the set of relative positions (or just positions) of
h w.r.t. E as RPhE = {(x, i, d) | x ∈ var(αβ)∪ alph(αβ), 1 ≤ i ≤ |αβ|x, and 1 ≤ d ≤ |h(x)|}.

Intuitively, the relative position (x, i, d) corresponds to “the dth letter in the image of the
ith occurrence of x”, where occurrences are counted from left to right in αβ. As such, we
have exactly two relative positions corresponding to each absolute position (one for the LHS
and one for the RHS). Let fhE : RPhE → APhE be the (non-injective) function mapping a
relative position to the corresponding absolute position. More formally, for a relative position
r = (x, i, d), let fhE(r) be the unique integer j such that j − d = |h(γ)| mod |h(α)| where γ
is the prefix of αβ up to, but not including, the ith occurrence of x (i.e. the longest prefix of
αβ such that |γ|x < i). We shall say that a relative position (x, i, d) ∈ RPhE is a terminal
position if x ∈ Σ (in which case it is guaranteed that d = 1), and otherwise we shall say that
the position is non-terminal and belongs to the variable x.

MFCS 2019

44:6 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

x y a y

a z b b x z

a a a b b a a a b a a
a a a b b a a a b a ah(β)

h(α)

A

B

C

D

Figure 1 The solution h given by h(x) = aaab, h(y) = baa and h(z) = aa to the equation E

given by xyay = azbbxz. Each individual rectangle is a position in RPh
E . For example, A is the

position (x, 1, 3), while D is the position (z, 2, 2), and C is the (terminal) position (a, 1, 1). The
positions A and B are neighbours. B and D are siblings, meaning that A is the successor of D.

Neighbours and Siblings. We shall now introduce the two relations on the set of relative
positions used in the method of filling the positions. Firstly, we shall say that two relative
positions r1, r2 are siblings if there exist x, d, i, i′ with i 6= i′ such that r1 = (x, i, d) and
r2 = (x, i′, d). Secondly, we shall say that two relative positions r1 and r2 are neighbours if
fhE(r1) = fhE(r2) and r1 6= r2. The following remarks are immediate:
I Remark 3. Each relative position r = (x, i, d) has exactly one neighbour. It has exactly
|αβ|x − 1 siblings. In particular, if α = β is quadratic, then either r is a terminal position or
r has at most one sibling.

While we will not give a full description of the method of filling the positions in the
present paper, it essentially consists of constructing, for a given equation E and solution h,
the equivalence relation RhE obtained by the reflexive and transitive closure of the union of
the neighbour and sibling relations. The following remarks are standard facts regarding the
method of filling the positions and can easily be verified.
I Remark 4. A substitution h : (var(αβ)∪Σ)∗ → Σ∗ is a solution to the equation E given by
α = β if and only if |h(α)| = |h(β)| and, for any two positions r1 = (x, i, d), r2 = (x′, i′, d′)
such that (r1, r2) ∈ RhE , we have that h(x)[d] = h(x′)[d′].
I Remark 5. If h : (var(αβ) ∪ Σ)∗ → Σ∗ is a solution to the equation E given by α = β,
and there exists an equivalence class of the relation RhE which does not contain a terminal
position, then the positions belonging to this class can be substituted by any word without
affecting the fact that h is a solution. In particular, they can be substituted by the empty
word (i.e. removed altogether), so the solution is not minimal.

The Chains Representation and Chain-words. Suppose now that we have a quadratic
equation E given by α = β and a solution h : (var(αβ) ∪ Σ)∗ → Σ∗ to E. From now on, we
shall only consider quadratic equations. Then by Remark 3, we can organise the relative
positions into sequences, or chains using the sibling and neighbour relations as follows.

I Definition 6 (Chains Representation of a Solution). A sequence r1, r2, . . . , rn of positions
from RPhE is a chain-sequence of h with respect to E if

r1 = (x1, i1, d1) where either x1 is a terminal symbol from Σ or |αβ|x1 = 1,
r2 is the neighbour of r1,
rn = (xn, in, dn) where either xn is a terminal symbol from Σ or |αβ|xn

= 1,
for all j, 2 < j ≤ n, rj is the neighbour of the sibling of rj−1.

The set of all chain-sequences is the chains-representation of h with respect to E. For a
position r in a chain, the next position r′ in the chain, if it exists, is called the successor
of r, while r is the predecessor of r′. For the sake of brevity, we shall usually refer to
chain-sequences simply as “chains”.

J. D. Day, F. Manea, and D. Nowotka 44:7

I Remark 7. Throughout the rest of the paper, we shall only consider solutions for which
all equivalence classes of the relation RhE contain a terminal position (otherwise, we can
just erase the appropriate parts to obtain a shorter solution, see Remark 5). Under this
assumption, all positions r ∈ RPhE which are not terminal and have a sibling r′ will occur
(exactly once) in exactly one chain, while terminal positions and positions without a sibling
will occur twice (once at the start of a chain-sequence, and once at the end). Thus the
length of the solution will be at most half the sum of the lengths of all chains in the chains
representation.
I Remark 8. For every chain r1, r2, . . . , rn in the chains representation, there will also exist a
dual chain rn, rn−1, . . . , r2, r1 where, for 2 ≤ i ≤ n− 1, ri denotes the sibling of ri. Similarly,
for every subchain ri, ri+1, . . . , rj such that ri and rj are not terminal positions, there exists
a dual subchain rj , rj−1, . . . , ri, obtained by reversing and swapping each position for its
neighbour. Each equivalence class of the relation RhE corresponds exactly to the positions
contained within one chain and its dual.
I Remark 9. In the particular case of regular equations, the sibling of a position will always
occur on the opposite side of the equation. Since the same is always true by definition for
the neighbour of a position, it follows that the successor in the chains representation of a
position will belong to the same side. In particular, every position (x, i, d) in the chain which
belongs to a variable, with the exception of the first, will have the same value i.

I Definition 10 (Chain-Words and Similarity). Let ΓhE be the set {(x, i) | x ∈ var(αβ) and i ∈
{1, 2}}, and let ρ : RPhE → ΓhE be the projection of RPhE onto the first two elements (so that
ρ((x, i, d)) = (x, i)). For each chain-sequence C = r1, r2, . . . , rn of h with respect to E, the
chain-word induced by C is the word w = ρ(r2)ρ(r3) . . . ρ(rn−1) (over the alphabet ΓhE). The
set of all chain-words induced by chain-sequences of h w.r.t. E is denoted ∆h,E. We shall
say that two (sub)chains are similar if they induce the same chain-words.

The following lemma is the main motivation for extending the framework of filling the
positions to take into account the additional order expressed in the chains representation.
It shall provide the basis for our reasoning later that long solutions to (certain) equations
cannot be minimal due to the fact that their chains must contain some repetitive structure.

I Lemma 11 ([5]). Let E be a quadratic word equation given by α = β and let h : (var(αβ)∪
Σ)∗ → Σ∗ be a solution to E. If there exists a chain-word w ∈ ∆h,E such that w contains a
square, then h is not minimal.

If, for a solution h : (var(αβ) ∪ Σ)∗ → Σ∗ to an equation α = β, there does not exist a
chain-word which contains a square, we shall say that the chains-representation is square-free,
or that the solution h is chain-square-free. The simplest examples of solutions which are not
chain-square-free are when two occurrences of the same variable overlap (i.e. the parts of
the solution word corresponding to the occurrences of these variables intersect), leading to a
square of length one in a chain-word. Generalising this slightly to squares of length two, the
following lemma gives another simple example of when a solution is not chain-square-free,
which is used in the proofs of our later results.

I Lemma 12. Let h : (var(αβ) ∪ Σ)∗ → Σ∗ be a solution to a quadratic equation E

given by α = β. Let i, i′, j, j′ ∈ {1, 2} with i 6= i′ and j 6= j′, and let x, y ∈ var(αβ).
If fhE((x, i, 1)) ≤ fhE((y, j, 1)) ≤ fhE((x, i, |h(x)|)) ≤ fhE((y, j, |h(y)|)) and fhE((x, i′, 1)) ≤
fhE((y, j′, 1)) ≤ fhE((x, i′, |h(x)|)) ≤ fhE((y, j′, |h(y)|)), then h is not chain-square-free.

The following gives a full example of a solution to a quadratic equation along with its
chains representation. The solution is not chains-square-free, and thus a shorter one exists.

MFCS 2019

44:8 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

I Example 13. Consider the equation E given by xyay = azbbxz over variables x, y, z ∈ X
and terminal symbols a, b ∈ Σ. Consider the solution h : ((x, y, z) ∪ Σ)∗ → Σ∗ such that
h(x) = aaab, h(y) = baa and h(z) = aa. Then the set of relative positions is:

RPhE = {(x, 1, 1), (x, 1, 2), (x, 1, 3), (x, 1, 4), (x, 2, 1), (x, 2, 2), (x, 2, 3), (x, 2, 4),
(y, 1, 1), y(1, 2), (y, 1, 3), (y, 2, 1), (y, 2, 2), (y, 2, 3),
(z, 1, 1), (z, 1, 2), (z, 2, 1), (z, 2, 2), (a, 1, 1), (a, 2, 1), (b, 1, 1), (b, 2, 1)},

the chains-representation of h consists of the four chains:

C1 = (a, 1, 1), (x, 2, 3), (z, 1, 2), (y, 2, 3), (x, 2, 2), (z, 1, 1), (y, 2, 2), (x, 2, 1), (a, 2, 1)
C2 = (b, 1, 1), (x, 1, 4), (y, 2, 1), (b, 2, 1)
C3 = (a, 2, 1), (x, 1, 1), (y, 1, 2), (z, 2, 1), (x, 1, 2), (y, 1, 3), (z, 2, 2), (x, 1, 3), (a, 1, 1)
C4 = (b, 2, 1), (y, 1, 1), (x, 2, 4), (b, 1, 1)

where C1 and C3 are dual, as are C2 and C4. The set of chain-words is given as follows,
where for ease of reading, the elements (x, 1),(x, 2), (y, 1), (y, 2), (z, 1) and (z, 2) of ΓhE are
denoted A,B,C,D,E and F respectively.

∆h,E = {BEDBEDB,AD,ACFACFA,CB}.

The fact that one of the chain-words contains a square (e.g.BEDBED in the first one)
means that, due to Lemma 11, a shorter solution exists. In this case, we have the solution h′
given by h′(x) = aab, h′(y) = ba and h′(z) = a.

Finally, we point out that this general approach of analysing the chain-words for squares
can, at best, give exponential upper bounds on the length of minimal solutions to quadratic
word equations, and additionally that the property of being chain-square-free, while necessary,
is not sufficient for being minimal.

I Proposition 14. Let n ∈ N. Then the equation xnxn−1 . . . x1a = ax1 . . . xn−1xn has a
solution h : (var(αβ) ∪ Σ)∗ → Σ∗ which is not minimal but is chain-square-free such that
|h(xnxn−1 . . . x1a)| = 2n.

4 Variable-Sparse and k-Ordered Quadratic Equations

We begin in the current section by considering quadratic equations without many repeating
variables – those equations α = β for which the set {x | |αβ|x = 2} is “small”. Let the
variable-sparse equations be defined as follows.

I Definition 15. A word equation α = β is variable-sparse if |{x | |αβ|x ≥ 2}| ≤ log(|αβ|).

While there are practical reasons to care about variable-sparse equations – it seems
reasonable to expect that equations encountered in practice may often have this form – we
can also take advantage of the insights gained by considering this class to settle the complexity
of another, more general class, namely the k-ordered equations, which complements, and
thus motivates, the class of regular-reversed equations considered in the next section.

As the next proposition shows, the lengths of possible chains in the chains-representation
of a minimal solution is bounded by a double-exponential function in number of repeating
variables, and consequently so is the length of minimal solutions. The double-exponential
bound is derived from the upper bound on lengths of minimal solutions to the whole class of

J. D. Day, F. Manea, and D. Nowotka 44:9

word equations (see [22]), and thus we do not expect it to be tight. However, it is sufficient
to show that in the case of variable-sparse quadratic equations, minimal solutions are at
most single exponential in the length of the equation, and thus that the satisfiability problem
for this class is contained in NP.

I Proposition 16. Let α = β be a quadratic equation and let V = |{x | |αβ|x = 2}|. If
there exists a solution to α = β, then there exists a solution h : (var(αβ) ∪ Σ)∗ → Σ∗ to
α = β such that each chain in the chains representation of h w.r.t. α = β has length at most
22O(V 4) . Consequently, if h is minimal, then |h(α)| ≤ |αβ|22O(V 4) . Moreover, it follows that
the satisfiability problem for the class of variable-sparse quadratic equations is in NP.

If we limit the number of variables further, bounded by a constant instead of log(|αβ|),
then the bound on the length of minimal solutions becomes polynomial in the length of the
equation, and we are able to infer the following.

I Proposition 17. Let V ∈ N be a constant. Then the satisfiability problem for the class of
quadratic equations with at most V variables can be solved in polynomial time.

The k-ordered equations generalise the regular-ordered equations considered in [5], and
essentially rely on the same idea of an order in which the variables must occur from left to
right in both sides of the equation. However, this order is only enforced on small subsets of
variables as a whole, and does not dictate the local order in which variables in a single subset
may occur. For example, x1x2x3x4x5x6 = x3x2x1x6x4x5 is 3-ordered, but not 2-ordered.

I Definition 18. Let k ∈ N and let α = β be a quadratic word equation. Then α = β is
k-ordered if there exist pairwise disjoint sets of variables X1, X2, . . . , X` with |Xi| ≤ k for
1 ≤ i ≤ `, and αi, βi ∈ (Xi ∪Σ)∗ for 1 ≤ i ≤ ` such that α = α1α2 . . . α` and β = β1β2 . . . β`.

Length bounds for minimal solutions to k-ordered equations can be derived in a relatively
straightforward manner from Proposition 17: after removing variables occurring only once
(see Proposition 2), a basic length argument can be used to (non-deterministically) divide a
k-ordered equation into linearly many individual equations over pairwise disjoint sets Xi of
at most k variables Xi. Since these equations do not share any variables, solutions to the
original equation can be obtained by simply combining solutions to the individual equations,
which if they exist, due to Proposition 16, may be chosen to be short.

I Proposition 19. Let k ∈ N be a constant and let α = β be a k-ordered quadratic word
equation. Let h : (var(αβ) ∪ Σ)∗ → Σ∗ be a minimal solution to α = β. Then |h(α)| ≤
|αβ|22O(k4) . Thus, the satisfiability problem for k-ordered quadratic equations is in NP.

5 Regular-Reversed Quadratic Equations

Proposition 19 settles the complexity of the satisfiability problem for a large class of quadratic
equations, in which the variables occur according to some global order on both sides of the
equation. In the present section, we present our main result, concerning a class of equations
which are, in a sense, opposite to k-ordered equations, namely the regular-reversed equations,
in which the orders in which variables occur on each side are reversed. More formally, we
define regular-reversed equations as follows:

I Definition 20. Let π : (X ∪ Σ)∗ → X∗ be the morphism such that π(x) = x if x ∈ X and
π(x) = ε otherwise. A quadratic word equation α = β is regular-reversed if π(α) = π(β)R.

MFCS 2019

44:10 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

Since the equations described in Proposition 14 are in fact regular-reversed, we cannot
hope to achieve polynomial bounds on the length of minimal solutions by relying on Lemma 11;
the proposition tells us that in fact, exponentially long chain-square-free solutions exist.
Nevertheless, we are able to exploit Lemma 11 to obtain exponential upper bounds, which
due to Theorem 1, is sufficient to show that the satisfiability problem is NP for this class.

I Theorem 21. Let α = β be a regular-reversed equation with n distinct variables. Let
h : (var(αβ) ∪ Σ)∗ → Σ∗ be a chain-square-free solution to α = β. Then |h(α)| ≤ 23n|αβ|.
Consequently, the satisfiability of regular-reversed equations is in NP.

The proof in full is rather technical and too long to include in the main exposition.
However, in order to give a flavour of the reasoning, we include the following crucial lemma.
Essentially, the lemma tells us that if a regular-reversed equation has a chain-square-free
solution fulfilling certain combinatorial conditions, then we may erase a variable from both
the equation and solution, to obtain a shorter equation over fewer variables and a new, shorter
solution which is at least half as long as the original, but which remains chain-square-free.
This reduction in the number of variables allows us to apply a straightforward induction,
which, due to the linear reduction in the size of the solution in each step, yields exponential
bounds on the length of chain-square-free (and hence also on minimal) solutions. The
majority of the remaining effort in the proof is focused on reaching a point at which these
combinatorial conditions are met. It is a straightforward observation that if the conditions are
met, then the solution is not minimal, highlighting the usefulness of using chain-square-free
solutions in place of minimal ones.

I Lemma 22. Let α = β be a regular-reversed equation given by u0x1u1x2 . . . xnun =
vnxnvn−1xn−1 . . . v1x1v0 where ui, vi ∈ Σ∗ for 0 ≤ i ≤ n, and xi ∈ X for 1 ≤ i ≤ n.
Suppose there exists a chain-square-free solution h : (var(αβ) ∪ Σ)∗ → Σ∗ such that for some
1 ≤ p < q ≤ n:
(1) h(u0x1 . . . up−1xp) = h(vnxn . . . vp) and h(upxp+1 . . . un−1xnun) = h(xpvp−1 . . . x1v0),

and
(2) |h(upxp+1 . . . xq)| < |h(xp)| and |h(xqvq−1 . . . vp)| ≤ |h(xp)|, and
(3) |h(upxp+1 . . . xquq)|+ |h(vqxqvq−1 . . . vp)| ≥ |h(xp)|.
Then the substitution g : ((var(αβ)\{xp}) ∪ Σ)∗ → Σ∗ given by g(x) = h(x) for all x ∈
var(αβ)\{xp} is a chain-square-free solution to the equation α′ = β′ obtained by erasing xp
from α and β, and moreover |g(α′)| ≥ |h(α)|

2 .

Proof. To see that g is a solution to α′ = β′, let w = h(u0x1 . . . up−1) and let w′ =
h(vp−1 . . . x1v0). Note that g(vnxn . . . vp) = wh(xp) and g(upxp+1 . . . un−1xnun) = h(xp)w′.
It follows that g(α′) = wh(xp)w′ = g(β′), while h(α) = wh(xp)h(xp)w′ = h(β). It follows
immediately that |h(xp)| ≤ |h(α)|

2 , and thus that |g(α′)| = |h(α)|−|h(xp)| ≥ |h(α)|
2 . It remains

to see that g is chain-square-free, for which we must understand the chains representation
of g compared to that of h. In particular, we shall show (via Claims 23 and 24) that the
chain(-words) of g are obtained by simply removing positions belonging to the variable xp
from the chain(-words) of h. Before we prove this statement, we observe some basic facts
about the sibling and neighbour relations for each solution. Note firstly that RPgα′=β′ =
RPhα=β\{(xp, i, d) | i ∈ {1, 2}, d ∈ [1..|h(xp)|]}. Moreover, note that two positions r1, r2 ∈
RPgα′=β′ are siblings in the chains representation of g if and only if they are siblings in the
chains representation of h. Finally, for each r ∈ RPgα′=β′ , we have fgα′=β′(r) = fhα=β(r)− µ
where µ = 0 if fhα=β(r) ≤ |wh(xp)| and µ = |h(xp)| otherwise. Consequently, for any position
r ∈ RPgα′=β′ such that fhα=β(r) ≤ |w| or fhα=β(r) > |h(α)| − |w′|, the neighbour of r in the
chains representation of g is the same as the neighbour of r in the chains representation of h.

J. D. Day, F. Manea, and D. Nowotka 44:11

The following two claims describe the successor relation (and hence the chains) for g
w.r.t. α′ = β′ in terms of the successor relation for h w.r.t. α = β.

B Claim 23. Let r, r′ be a subchain of some chain in the chains representation of h w.r.t.
α = β. Suppose that neither r nor r′ belongs to xp. Then r, r′ is also a subchain of some
chain in the chains representation of g w.r.t. α′ = β′.

Proof (Claim 23). Let r = r if r belongs to a terminal symbol, and let r be the sibling of
r otherwise. Note that since r does not belong to xp, the definition of r is the same for
both chains-representations. Moreover, note that since no variables occur only once in
the equations α = β and α′ = β′, the successor of r is the neighbour of r in both chains
representations. If fhα=β(r) ≤ |w| or fhα=β(r) > |h(α)| − |w′|, then as previously mentioned,
the neighbour of r, and hence successor of r, is the same in both chains representations and
the claim follows. If instead |w| < fhα=β(r) ≤ |h(α)| − |w′|, then either r belongs to xp, or
the neighbour of r in the chains representation of h w.r.t α = β belongs to xp. If r belongs
to xp, then r belongs to xp which is a contradiction. Similarly, since the neighbour of r is the
successor of r, namely r′, if it belongs to xp, then we again get a contradiction, so neither
case is possible under the assumptions of the claim. C

B Claim 24. Let r, r′,r′′ be a subchain of some chain in the chains representation of h w.r.t.
α = β such that r′ belongs to xp. Then neither r nor r′ belongs to xp, and moreover, r, r′′ is
also a subchain of some chain in the chains representation of g w.r.t. α′ = β′.

Proof (Claim 24). The fact that r and r′′ do not belong to xp follows immediately from the
fact that h is chain-square-free along with Remark 9. As before, let r = r if r belongs to
a terminal symbol and let r be the sibling of r otherwise. Again, note that since r does
not belong to xp, the definition of r is the same for both chains-representations. Let r′ be
the sibling of r′ in the chains representation of h w.r.t α = β (recall that xp occurs twice
in α = β, so the sibling exists). Then r′ is the neighbour of r and r′′ is the neighbour of r′
in the chains representation of h w.r.t α = β. We shall proceed by distinguishing two cases
based on r′. Suppose firstly that r′ = (xp, 2, d) for some d ∈ [1..|h(xp)|] (so r′ belongs to
the occurrence of xp on the RHS). Then |wh(xp)| < fhα=β(r′) = fhα=β(r) ≤ |h(α)| − |w′| and
fhα=β(r′) + |h(xp)| = fhα=β(r′). Hence fgα′=β′(r) = fhα=β(r)− |h(xp)|, and

fhα=β(r′′) = fhα=β(r′) = fhα=β(r′)− |h(xp)| = fhα=β(r)− |h(xp)| ≤ |h(α)| − |w′| − |h(xp)|.

Since |h(α)| − |w′| − |h(xp)| = |wh(xp)|, this implies that fgα′=β′(r′′) = fhα=β(r′′). Thus:

fgα′=β′(r) = fhα=β(r)− |h(xp)| = fhα=β(r′)− |h(xp)| = fhα=β(r′) = fhα=β(r′′) = fgα′=β′(r′′).

Symmetrically, if instead r′ = (xp, 1, d) for some d ∈ [1..|h(xp)|] (so r′ belongs to the
occurrence of xp on the LHS), then in the same manner, we can derive:

fgα′=β′(r) = fhα=β(r) = fhα=β(r′) = fhα=β(r′)− |h(xp)| = fhα=β(r′′)− |h(xp)| = fgα′=β′(r′′).

In both cases we get that fgα′=β′(r) = fgα′=β′(r′′), so r′′ and r are neighbours in the
chains representation of g w.r.t α′ = β′ and hence r′′ is the successor of r in the chains
representation of g w.r.t α′ = β′ and the statement of the claim follows. C

It follows easily from Claims 23 and 24 that each chain in the chains representation
of g is obtained by removing all positions belonging to xp from some chain in the chains-
representation of h. It remains to check that the act of removing the positions belonging to
xp does not introduce any squares in the resulting chain-words.

MFCS 2019

44:12 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

A

B

C

D

E

F

h(α)

h(β)

. . .

. . .

xp xk

x` xp

Figure 2 By Condition (1), the two occurrences of xp are adjacent. Consequently, if (xk, i′, d1)
and (xp, i, d2) are neighbours, and (x`, i, d3) and (xp, i′, d2) are neighbours, then it cannot be the case
that (xk, i′, d4) and (x`, i, d5) are neighbours. The case i = 2 is shown. The case i = 1 is symmetric
and may be obtained by swapping the locations of xk and x`. The positions (xk, i′, d1), (xp, i, d2),
(xp, i′, d2), (x`, i, d3), (xk, i′, d4) and (x`, i, d5) are marked as A, B, C, D, E and F respectively.

Suppose for contradiction that a new square is introduced. That is, there exists a subchain
C in the chains representation of h for which the induced chain-word is not a square, but for
which the chain-word induced by the new subchain Ĉ obtained by removing all positions
belonging to xp from C is a square. There are two ways in which this may happen. The
first is that the original subchain C has the form C ′, (xp, i, d1), C ′′ where C ′ and C ′′ are
subchains of length at least one and are similar (thus inducing a square in the chain-word
once the central (xp, i, d) is removed). Note that in this case there might be further positions
belonging to xp in C ′ and C ′′, but the act of removing them will not alter their similarity so
we do not need to keep track of them explicitly.

By Condition (3), every position belonging to xp is either the successor, or predecessor
of a position which is either terminal or belongs to a variable xj with p < j ≤ q. Since the
subchains C ′ and C ′′ do not contain terminal positions (this would contradict the assumption
that they are similar), they must both either start with a position belonging to some xj
with p < j ≤ q, or both end with a position to belonging to some xj with p < j ≤ q. It
follows from Condition (2) that the neighbour of any position belonging to xj must belong
to xp. Thus the successor and predecessor of a position belonging to xj must also belong
to xp. However, this implies that the original subchain C occurs directly before, or after a
position (xp, i, d2) (by Remark 9, it will have the same index i as the position (xp, i, d1)).
However, this results in a subchain of the form (xp, i, d2), C ′, (xp, i, d1), C ′′ or of the form
C ′, (xp, i, d1), C ′′, (xp, i, d2), which in either case induces chain-word containing a square, a
contradiction to the fact that h is chain-square-free.

The second possibility is that C may be divided into two further subchains C ′ and
C ′′ (so C = C ′, C ′′), where C ′ and C ′′ are not similar, but become similar once positions
belonging to xp are removed. This implies the existence of (not necessarily consecutive)
subchains (xk, i, d1), (xp, i, d2), (x`, i, d3) and (xk, i, d4), (x`, i, d5) of C (one occurring in C ′
and the other in C ′′). Clearly, since h is chain-square-free, we must have that k 6= ` 6= p. Let
i′ = i + 1 mod 2. Then (xk, i′, d1) and (xp, i, d2) are neighbours, (xp, i′, d2) and (x`, i, d3)
are neighbours and (xk, i′, d4) and (x`, i, d5) are neighbours. However this is only possible
if the two occurrences of xp in the solution h(x) are not adjacent (see Fig. 2), or more
precisely, it implies that fhα=β((xp, 1, |h(xp)|)) < fhα=β((xp, 2, 1))− 1. This clearly contradicts
Condition (1). In all cases we get a contradiction, so g must be chain-square-free as claimed.

J

6 Avoiding Squares and other Patterns

Lemma 11 invites an obvious question: do there exist long solutions for which the chain-words
(which must then also be long) are square-free? This question is particularly interesting as a
negative answer for the appropriate meaning of long would be sufficient to show that the

J. D. Day, F. Manea, and D. Nowotka 44:13

satisfiability of quadratic word equations is in NP. For regular equations with two variables,
the chain-words will be over an alphabet of size two, meaning we get an immediate answer:
a quick exhaustive search reveals that any word over two letters of length at least 4 contains
a square. Thus, for a regular equation with two variables, the chain-words of a minimal
solution can have length at most 3, and thus, any minimal solution must have length at most
3n where n is the number of terminal symbols in the equation.

Unfortunately, a famous result of Thue [26] reveals that there exist infinitely long words
over three letters which do not contain squares, meaning such a simple proof will not work
for equations with more variables. This does not mean, however, that Lemma 11 is of no
use in more the more general case. It is easily established that not all words may occur as
chain-words of some solution to an equation (note, e.g. that the number of possible different
factors of length two in a chain-word is 2n− 1 where n is the number of variables, while in
general there are n2 such factors). The next theorem gives a characterisation of when a word
w is a chain-word of some solution to a regular word equation.

I Theorem 25. Let w be a word and let Γ be the alphabet of letters occurring in w. There
exists a regular word equation E with solution h such that w is a chain-word in ∆h,E if and
only if, there exist letters $,# /∈ Γ and linear orders <1, <2 on the sets Γ∪ {#} and Γ∪ {$}
respectively such that for every u ∈ Γ∗ and A,B,C,D ∈ Γ ∪ {$,#} with A 6= B and C 6= D,
if AuC and BuD are both factors of #w$, then either that A <2 B and C <1 D or that
B <2 A and D <1 C.

I Corollary 26. Let E be a regular word equation and let h be a solution to E. Let w ∈ ∆h,E.
Let A,B,C,D be letters from w such that A 6= B and C 6= D Then for any word u, at least
one of AuC, BuC, AuD, BuD is not a factor of w.

While this characterisation appears not to reveal immediately whether “long” square-free
chain-words exist, we can make use of it to derive further conditions which may be more
useful. As an example. we show in the following lemma that chain-words avoiding squares
must also avoid other types of pattern (which are not necessarily avoidable in general).

I Lemma 27. Let E be a quadratic word equation given by α = β and let h : (var(αβ)∪Σ)∗ →
Σ∗ be a solution to E. If there exists a chain-word w ∈ ∆E,h which contains factor of the
form x1x2x3x4x2x1x3 such that x3 is not a prefix of x1 or x2, then there exists a (possibly
distinct from w) chain-word w′ ∈ ∆E,h which contains a square.

Unlike squares, it follows from the famous Zimin algorithm [18] that all words which
are “long enough” will encounter a factor of the form x1x2x3x4x2x1x3. In other words,
x1x2x3x4x2x1x3 is an unavoidable pattern. Unfortunately, however, this does not guarantee
the additional condition that x3 is not a prefix of x1 or x2, so Lemma 27 does not immediately
provide a bound on the length of chain-square-free solutions. Nevertheless, a quick exhaustive
search again reveals that any word of length at least 8 over three letters contains such a
factor of the form x1x2x3x4x2x1x3 or its reversal where x1, x2 and x3 are all distinct letters
(and so satisfying the prefix/suffix conditions given in Lemma 27). Moreover, it is not
difficult to adapt the proof of Lemma 27 to produce other “forbidden factors” which must be
avoided in chain-words of chain-square-free solutions. Thus we expect it to be a promising
direction to try to obtain upper bounds on the lengths of (subclasses of) quadratic word
equations through the lens of unavoidable patterns: do there exist combinations of patterns
which are unavoidable, at least when considered over some over-approximation of all possible
chain-words which ultimately guarantee the existence of squares in the chain-words of the
same solutions?

MFCS 2019

44:14 Length Bounds for Minimal Solutions to Certain Quadratic Word Equations

References
1 P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Stenman. Norn:

An SMT Solver for String Constraints. In Proc. CAV 2015, volume 9206 of LNCS, pages
462–469, 2015.

2 A. Aydin, L. Bang, and T. Bultan. Automata-Based Model Counting for String Constraints.
In Proc. CAV 2015, volume 9206 of LNCS, pages 255–272, 2015.

3 C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. CVC4. In Proc. CAV 2011, volume 6806 of LNCS, pages 171–177, 2011.

4 M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with theory-aware heuristics.
In Proc. FMCAD 2017, pages 55–59. IEEE, 2017.

5 J. D. Day, F. Manea, and D. Nowotka. The Hardness of Solving Simple Word Equations. In
Proc. MFCS 2017, volume 83 of LIPIcs, pages 18:1–18:14, 2017.

6 R. Da̧browski and W. Plandowski. Solving two-variable word equations. In Proc. 31th
International Colloquium on Automata, Languages and Programming, ICALP 2004, volume
3142 of Lecture Notes in Computer Science, pages 408–419, 2004.

7 V. Diekert, A. Jez, and M. Kufleitner. Solutions of Word Equations Over Partially Commutative
Structures. In Proc. 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages
127:1–127:14, 2016.

8 V. Diekert and J. M. Robson. On Quadratic Word Equations. In Proc. 16th Annual Symposium
on Theoretical Aspects of Computer Science, STACS 1999, volume 1563 of Lecture Notes in
Computer Science, pages 217–226, 1999.

9 A. Ehrenfeucht and G. Rozenberg. Finding a Homomorphism Between Two Words is NP-
Complete. Information Processing Letters, 9:86–88, 1979.

10 D. D. Freydenberger. A Logic for Document Spanners. In Proc. 20th International Conference
on Database Theory, ICDT 2017, Leibniz International Proceedings in Informatics (LIPIcs),
2017. To appear.

11 D. D. Freydenberger and M. Holldack. Document Spanners: From Expressive Power to
Decision Problems. In Proc. 19th International Conference on Database Theory, ICDT 2016,
volume 48 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:17,
2016.

12 J. Jaffar. Minimal and Complete Word Unification. Journal of the ACM, 37(1):47–85, 1990.
13 A. Jeż. Recompression: a simple and powerful technique for word equations. In Proc. STACS

2013, volume 20 of LIPIcs, pages 233–244, 2013.
14 A. Jez. Context Unification is in PSPACE. In Proc. 41st International Colloquium on

Automata, Languages, and Programming, ICALP 2014, volume 8573 of Lecture Notes in
Computer Science, pages 244–255. Springer, 2014.

15 A. Jeż. Word Equations in Nondeterministic Linear Space. In Proc. ICALP 2017, volume 80
of LIPIcs, pages 95:1–95:13, 2017.

16 J. Karhumäki, F. Mignosi, and W. Plandowski. The expressibility of languages and relations
by word equations. Journal of the ACM (JACM), 47(3):483–505, 2000.

17 A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: a solver for string
constraints. In Proc. ISSTA 2009, pages 105–116. ACM, 2009.

18 M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983.
19 R. C. Lyndon. Equations in free groups. Transactions of the American Mathematical Society,

96:445–457, 1960.
20 R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.
21 G. S. Makanin. The problem of solvability of equations in a free semigroup. Sbornik:

Mathematics, 32(2):129–198, 1977.
22 W. Plandowski. Satisfiability of Word Equations with Constants is in NEXPTIME. In Proc.

STOC 1999, pages 721–725. ACM, 1999.

J. D. Day, F. Manea, and D. Nowotka 44:15

23 W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In Proc. FOCS
1999, pages 495–500. IEEE, 1999.

24 W. Plandowski and W. Rytter. Application of Lempel-Ziv Encodings to the Solution of Words
Equations. In Proc. ICALP 1998, volume 1443 of LNCS, pages 731–742, 1998.

25 K. U. Schulz. Word Unification and Transformation of Generalized Equations. Journal of
Automated Reasoning, 11:149–184, 1995.

26 A. Thue. Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I Mat. Nat. Kl., 7,
1906.

27 M. Trinh, D. Chu, and J. Jaffar. Progressive Reasoning over Recursively-Defined Strings. In
Proc. CAV 2016, volume 9779 of LNCS, pages 218–240, 2016.

28 F. Yu, M. Alkhalaf, and T. Bultan. STRANGER: An Automata-based String Analysis Tool
for PHP. In Proc. TACAS 2010, volume 6015 of LNCS, 2010.

MFCS 2019

The Power of the Weisfeiler-Leman Algorithm to
Decompose Graphs
Sandra Kiefer
RWTH Aachen University, Aachen, Germany
kiefer@cs.rwth-aachen.de

Daniel Neuen
RWTH Aachen University, Aachen, Germany
neuen@cs.rwth-aachen.de

Abstract
The Weisfeiler-Leman procedure is a widely-used approach for graph isomorphism testing that
works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a
fundamental tool in structural graph theory, which is often exploited in approaches to tackle the
graph isomorphism problem, is the decomposition into bi- and triconnected components.

We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposi-
tion of a graph into its triconnected components. Thus, the dimension of the algorithm needed to
distinguish two given graphs is at most the dimension required to distinguish the corresponding
decompositions into 3-connected components (assuming dimension at least 2).

Our result implies that for k ≥ 2, the k-dimensional algorithm distinguishes k-separators, i.e.,
k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also
obtain insights about the connectivity of constituent graphs of association schemes.

In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman
dimension of graphs of treewidth at most k. Using a construction by Cai, Fürer, and Immerman, we
also provide a new lower bound that is asymptotically tight up to a factor of 2.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Finite Model Theory; Theory of computation → Graph algorithms analysis

Keywords and phrases Weisfeiler-Leman, separators, first-order logic, counting quantifiers

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.45

Related Version http://arxiv.org/abs/1908.05268

1 Introduction

Originally introduced in [37], the Weisfeiler-Leman (WL) algorithm has become a – if
not the – fundamental subroutine in the context of isomorphism testing for graphs. It
is used in theoretical as well as in practical approaches to tackle the graph isomorphism
problem (see e.g. [5, 19, 31, 32, 35]), among them also Babai’s recent quasipolynomial-time
isomorphism test [4]. For every k ≥ 1, there is a k-dimensional version of the algorithm
which colors the vertex k-tuples of the input graph and iteratively refines the coloring in an
isomorphism-invariant manner.

There are various characterizations of the algorithm, which link it to other areas in
theoretical computer science (see also Further Related Work). For example, very recent
results in the context of machine learning show that the 1-dimensional version of the algorithm
is as expressive as graph neural networks with respect to distinguishing graphs [34]. Following
Grohe [16], an indicator to investigate the expressive power of the algorithm is the so-called
WL dimension of a graph, defined as the minimal dimension of the WL algorithm required
in order to distinguish the graph from every other non-isomorphic graph.

There is no fixed dimension of the algorithm that decides graph isomorphism in general,
as was proved by Cai, Fürer, and Immerman [9]. Still, when focusing on particular graph
classes, often a bounded dimension of the algorithm suffices to identify every graph in the

© Sandra Kiefer and Daniel Neuen;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4614-9444
mailto:kiefer@cs.rwth-aachen.de
https://orcid.org/0000-0002-4940-0318
mailto:neuen@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.45
http://arxiv.org/abs/1908.05268
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Weisfeiler-Leman and Graph Separators

class. This proves that for the considered class, graph isomorphism is solvable in polynomial
time, since the k-dimensional algorithm can be implemented in time O(nk+1 logn) [27].
For example, it suffices to apply the 3-dimensional WL algorithm to identify every planar
graph [29]. Also, the WL dimension of graphs of treewidth at most k is bounded by k+2 [18].
More generally, by a celebrated result by Grohe, for all graph classes with an excluded minor,
the WL dimension is bounded [15]. Very recent work provides explicit upper bounds on
the WL dimension, which are linear in the rank width [19] and in the Euler genus [17],
respectively, of the graph.

Regarding combinatorial techniques, to handle graphs with complex structures, the decom-
position into connected, biconnected, and triconnected components provides a fundamental
tool from structural graph theory. The decomposition can be computed in linear time (see
e.g. [25, 36]). Hopcroft and Tarjan used the decomposition of a graph into its triconnected
components to obtain an algorithm that decides isomorphism for planar graphs in quasi-linear
time [22, 23, 24], which was improved to linear time by Hopcroft and Wong [26].

Also, in [29], to prove the bound on the WL dimension for the class of planar graphs,
the challenge of distinguishing two arbitrary planar graphs is reduced to the case of two
arc-colored triconnected planar graphs, by exploiting the fact that the 3-dimensional WL
algorithm is able to implicitly compute the decomposition of a graph into its triconnected
components. Similarly, the bound on the WL dimension for graphs parameterized by their
Euler genus from [17] relies on an isomorphism-invariant decomposition of the graphs into
their triconnected components.

Our Contribution. We show that for k ≥ 2, the k-dimensional WL algorithm implicitly
computes the decomposition into the triconnected components of a given graph. More
specifically, we prove that already the 2-dimensional WL algorithm distinguishes separating
pairs, i.e., pairs of vertices that separate the given graph, from other vertex pairs. This
improves on a result from [29], where an analogous statement was proved for the 3-dimensional
WL algorithm. Using the decomposition techniques discussed there, we conclude that for the
k-dimensional WL algorithm with k ≥ 2, to identify a graph, it suffices to determine vertex
orbits on all arc-colored 3-connected components of it. Since it is easy to see that k = 1 does
not suffice to distinguish vertices contained in 2-separators from others, our upper bound of
2 is tight.

The expressive power of the k-dimensional algorithm corresponds to definability in the
logic Ck+1, the extension of the (k + 1)-variable fragment of first-order logic by counting
quantifiers [9, 27]. Exploiting this correspondence, our results imply that for every n ∈ N,
there is a formula ϕn(x1, x2) ∈ C3 (first-order logic with counting quantifiers over three
variables) such that for an n-vertex graph G, it holds that G |= ϕn(v, w) if and only if {v, w}
is a 2-separator in G. With only three variables at our disposal, it is not possible to take
the route of [29] by comparing certain numbers of walks between different pairs of vertices.
Instead, the formulas obtained from our proof are essentially a disjunction over all n-vertex
graphs and subformulas for two distinct graphs may look completely different, exploiting
specific structural properties of the graphs. While this makes the proof rather involved, it
also stresses the power of the 2-dimensional WL algorithm and equivalently, the expressive
power of the logic C3. We show that for all n, s ∈ N, there is a formula ϕn,s(x1, x2, x3) ∈ C3

such that for an n-vertex graph G, it holds that G |= ϕn,s(u, v, w) if and only if s = |C|,
where C is the vertex set of the connected component containing u after removing v and w
from the graph G.

S. Kiefer and D. Neuen 45:3

Our result can also be viewed in a combinatorial setting. In 1985, Brouwer and Mesner [8]
proved that the vertex connectivity of a strongly regular graph equals its degree and that
in fact, the only minimal disconnecting vertex sets are neighborhoods. Later, Brouwer
conjectured this to be true for any constituent graph of an association scheme (i.e., any
graph consisting in a single color class of the association scheme) [6]. While some progress
has been made on certain special cases [13], most prominently distance-regular graphs [7],
the general question is still open. Our results imply that any connected constituent graph
of an association scheme is either a cycle or 3-connected. Such a statement was previously
only known for symmetric association schemes [30], which are far more restricted than the
general ones.

A natural use case of these results is to determine or to improve upper bounds on the
WL dimension of certain graph classes. As a first application in this direction, we obtain
a new upper bound of k on the WL dimension for graphs of treewidth at most k. Based
on [10], we also provide a new lower bound for this graph class, thus delimiting the value of
the WL dimension of graphs of treewidth bounded by k to the interval

[
dk

2 e − 3, k
]
.

Due to space restrictions, some of the proofs and proof details have been omitted. For a
full version of this paper, we refer the reader to [28].

Further Related Work. Apart from its correspondence to counting logics, the WL algorithm
has further surprising links to other areas. For example, the algorithm has a close connection
to Sherali-Adams relaxations of particular linear programs [3, 20] and captures the same
information as certain homomorphism counts [11]. It can also be characterized via winning
strategies in so-called pebble games [21], which are a particular family of Ehrenfeucht-Fraissë
games.

As mentioned above, the 1-dimensional WL algorithm essentially corresponds to graph
neural networks. In order to make them more powerful, the authors of [34] propose an
extension of graph neural networks based on the k-dimensional WL algorithm (see also [33]).

Towards understanding the expressive power of the algorithm, in a related direction of
research, it has been studied which graph properties the WL algorithm can detect, which may
become particularly relevant in the graph-learning framework. In this context, Fürer [14] as
well as Arvind et al. [2] obtained results concerning the ability of the algorithm to detect
and count certain subgraphs.

2 Preliminaries

2.1 Graphs
A graph is a pair G =

(
V (G), E(G)

)
of a vertex set V (G) and an edge set E(G) ⊆

{
{u, v} |

u, v ∈ V (G)
}
. To give explicit reference to G, we also write V (G) for V and E(G) for E.

All graphs considered in this paper are finite, simple (i.e., they contain no loops or multiple
edges), and undirected. For v, w ∈ V , we also write vw as a shorthand for {v, w}. The
neighborhood of v is denoted by N(v), and the closed neighborhood of v is N [v] := N(v)∪{v}.
The degree of v, denoted by deg(v), is the number of edges incident with v. For X ⊆ V (G)
we define N(X) :=

(⋃
v∈X N(v)

)
\X.

A walk of length k from v to w is a sequence of vertices v = u0, u1, . . . , uk = w such that
ui−1ui ∈ E for all i ∈ {1, . . . , k}. A path of length k from v to w is a walk of length k from v

to w for which all occurring vertices are pairwise distinct. We refer to the distance between
two vertices v, w ∈ V (G) by dist(v, w). For a set A ⊆ V (G), we denote by G[A] the induced
subgraph of G on vertex set A. Also, we denote by G − A the subgraph induced by the

MFCS 2019

45:4 Weisfeiler-Leman and Graph Separators

complement of A, that is, the graph G−A := G[V (G) \A]. A set S ⊆ V (G) is a separator
of G if G− S has more connected components than G. A k-separator of G is a separator of
G of size k. A vertex v ∈ V (G) is a cut vertex if {v} is a separator of G. The graph G is
k-connected if it is connected and has no (k − 1)-separator.

An isomorphism from G to another graph H is a bijection ϕ : V (G) → V (H) that
respects the edge relation, that is, for all v, w ∈ V (G), it holds that vw ∈ E(G) if and only if
ϕ(v)ϕ(w) ∈ E(H). Two graphs G and H are isomorphic (G ∼= H) if there is an isomorphism
from G to H. We write ϕ : G ∼= H to denote that ϕ is an isomorphism from G to H.

A vertex-colored graph is a tuple (G,χ), where G is a graph and χ : V (G) → C is a
mapping into some set C of colors. Similarly, an arc-colored graph is a tuple (G,χ), where G
is a graph and χ : {(v, v) | v ∈ V (G)} ∪ {(u, v) | {u, v} ∈ E(G)} → C is a mapping into some
color set C. Typically, C is chosen to be an initial segment [n] := {1, . . . , n} of the natural
numbers. Isomorphisms between vertex- and arc-colored graphs have to respect the colors of
the vertices and arcs.

For details on the treewidth of a graph, we refer the reader to [12].

2.2 The Weisfeiler-Leman Algorithm
Let χ1, χ2 : V k → C be colorings of the k-tuples of vertices of G, where C is some finite set of
colors. We say χ2 refines χ1 if for all v̄, w̄ ∈ V k we have

(
χ2(v̄) = χ2(w̄) ⇒ χ1(v̄) = χ1(w̄)

)
.

The k-dimensional WL algorithm is a procedure that, given a graph G and a coloring χ of
its k-tuples of vertices, computes an isomorphism-invariant refinement of the coloring.

We describe the mechanisms of the algorithm in the following. For an integer k > 1 and
a vertex-colored graph (G,χ), we let χ0

G,k : V k → C be the coloring where each k-tuple is
colored with the isomorphism type of its underlying ordered colored subgraph. More formally,
χ0

G,k(v1, . . . , vk) = χ0
G,k(w1, . . . , wk) if and only if for all i ∈ [k] it holds that χ(vi) = χ(wi)

and for all i, j ∈ [k], it holds that vi = vj ⇔ wi = wj and vivj ∈ E(G)⇔ wiwj ∈ E(G). If
G is arc-colored, the arc colors must be respected accordingly.

We then recursively define the coloring χi
G,k obtained after i rounds of the algorithm.

Let χi+1
G,k(v1, . . . , vk) := (χi

G,k(v1, . . . , vk);M), whereM is a multiset defined as{{(
χi

G,k(v̄[w/1]), χi
G,k(v̄[w/2]), . . . , χi

G,k(v̄[w/k])
)∣∣w ∈ V }}

where v̄[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk).
For the 1-dimensional algorithm (i.e. k = 1), the definition is similar, but we iterate only

over the neighbors of v1, that is, the multisetM equals {{χi
G,1(w) | w ∈ N(v1)}}.

By definition, every coloring χi+1
G,k induces a refinement of the partition of the k-tuples of

vertices of the graph G with coloring χi
G,k. Thus, there is a minimal i such that the partition

of the vertex k-tuples induced by χi+1
G,k is not strictly finer than the one induced by χi

G,k. For
this value of i, we call the coloring χi

G,k the stable coloring of G and denote it by χG,k.
The original WL algorithm is its 2-dimensional variant [37]. Since that version is the

central algorithm of this paper, we omit the index 2 and write χG instead of χG,2.
For k ∈ N, the k-dimensional WL algorithm takes as input a (vertex- or arc-)colored

graph (G,χ) and returns the coloring χG,k. The procedure can be implemented in time
O(nk+1 logn) [27]. For two graphs G and H, we say that the k-dimensional WL algorithm
distinguishes G and H if there is a color c such that the sets {v̄ | v̄ ∈

(
V (G)

)k
, χG,k(v̄) = c}

and {w̄ | w̄ ∈
(
V (H)

)k
, χH,k(w̄) = c} have different cardinalities. We write G 'k H if the

k-dimensional WL algorithm does not distinguish G and H. The algorithm identifies G if it
distinguishes G from every non-isomorphic graph H.

S. Kiefer and D. Neuen 45:5

Pebble Games. For further analysis, it is often cumbersome to work with the WL algorithm
directly and more convenient to use the following characterization via pebble games, which
is known to capture the same information. Let k ∈ N. For graphs G and H on the same
number of vertices and with vertex colorings χ and χ′, respectively, we define the bijective
k-pebble game BPk(G,H) as follows:

The game has two players called Spoiler and Duplicator.
The game proceeds in rounds, each of which is associated with a pair of positions (v̄, w̄)
with v̄ ∈

(
V (G)

)` and w̄ ∈
(
V (H)

)`, where 0 ≤ ` ≤ k.
The initial position of the game is a pair of vertex tuples of equal length ` with 0 ≤ ` ≤ k.
If not specified otherwise, the initial position is the pair

(
(), ()

)
of empty tuples.

Each round consists of the following steps. Suppose the current position of the game is
(v̄, w̄) = ((v1, . . . , v`), (w1, . . . , w`)). First, Spoiler chooses whether to remove a pair of
pebbles or to play a new pair of pebbles. The first option is only possible if ` > 0, and
the latter option is only possible if ` < k.
If Spoiler wishes to remove a pair of pebbles, he picks some i ∈ [`] and the game moves
to position (v̄ \ i, w̄ \ i) where v̄ \ i := (v1, . . . , vi−1, vi+1, . . . , v`), and the tuple (w̄ \ i) is
defined in the analogous way. Otherwise, the following steps are performed.
(D) Duplicator picks a bijection f : V (G)→ V (H).
(S) Spoiler chooses v ∈ V (G). The new position is then

(
(v1, . . . , v`, v), (w1, . . . ,

w`, f(v))
)
.

If for the current position
(
(v1, . . . , v`), (w1, . . . , w`)

)
, the induced ordered subgraphs of

G and H are not isomorphic, Spoiler wins the play. More precisely, Spoiler wins if there
is an i ∈ [`] such that χ(vi) 6= χ′(wi), or there are i, j ∈ [`] such that vi = vj ⇔/ wi = wj

or vivj ∈ E(G) ⇔/ wiwj ∈ E(H). If there is no position of the play such that Spoiler
wins, then Duplicator wins.

We say that Spoiler (and Duplicator, respectively) wins the bijective k-pebble game
BPk(G,H) if Spoiler (and Duplicator, respectively) has a winning strategy for the game.

The following theorem describes the correspondence between the Weisfeiler-Leman al-
gorithm and the introduced pebble games.1

I Theorem 1 (see e.g. [9]). Let G and H be two graphs. Then G 'k H if and only if
Duplicator wins the game BPk+1(G,H).

Association Schemes. Let V be a set. An association scheme on V is an ordered partition
(R0, . . . , Rd) of V 2 such that
1. R0 = {(v, v) | v ∈ V }, and
2. for every i ∈ [d], there is a j ∈ [d] such that the set Rᵀ

i := {(w, v) | (v, w) ∈ Ri} equals
Rj , and

3. for all i, j, k, there are numbers pk
i,j such that for all (v, w) ∈ Rk,

pk
i,j =

∣∣{x ∈ V | (v, x) ∈ Ri and (w, x) ∈ Rj

}∣∣.
An association scheme is symmetric if Rᵀ

i = Ri for all i ∈ [d]. With each Ri, we associate a
directed constituent graph G(Ri) of the association scheme, defined as G(Ri) := (V,Ri ∪Rᵀ

i).

1 The pebble games in [9] are defined slightly differently. Still, a player has a winning strategy in the
game described there if and only if they have one in our game and thus, Theorem 1 holds for both
versions of the game.

MFCS 2019

45:6 Weisfeiler-Leman and Graph Separators

Every association scheme induces a coloring on V 2, in which every (v, w) is colored
with the relation it is contained in. This coloring is stable in the sense that it is not
refined by the 2-dimensional WL algorithm (when V is interpreted as the vertex set of a
complete directed graph). That is, for all j ∈ [d] and all (v1, v2), (w1, w2) ∈ Rj , it holds that
χG(Ri)(v1, v2) = χG(Ri)(w1, w2). Conversely, every colored graph G with χG(v, v) = χG(w,w)
for all v, w ∈ V (G) induces an association scheme in which the relations Ri are the color
classes of the coloring χG = χG,2.

3 One Color

Our first goal is to prove that the 2-dimensional WL algorithm distinguishes vertex pairs
that are separators in a graph from other pairs of vertices. We start with an analysis of the
graphs in which all vertices are assigned the same color by the WL algorithm. In particular,
this includes all constituent graphs of association schemes.

A main tool for the analysis are distance patterns of vertices. For a graph G and a vertex
v ∈ V (G), let D(v) := {{dist(v, w) | w ∈ V (G)}}. Note that for vertices u, v ∈ V (G) it holds
that χG(u, u) 6= χG(v, v) whenever D(u) 6= D(v) since the 2-dimensional WL algorithm
detects distances between vertex pairs.“

I Lemma 2. Let G be a graph and uv ∈ E(G). Suppose that D(u) = D(v). Then

{{dist(u,w) | w ∈ V (G) : dist(u,w) < dist(v, w)}}
= {{dist(v, w) | w ∈ V (G) : dist(v, w) < dist(u,w)}}.

Throughout the remainder of this section, if not explicitly stated otherwise, we make the
following assumption.

I Assumption 3. G is a connected graph on n vertices with the following properties:
1. χG(u, u) = χG(v, v) for all u, v ∈ V (G), and
2. G has a 2-separator {w1, w2}.

In the rest of this section, we analyze the structure of G and ultimately prove that G
must be a cycle. In particular, this completely characterizes constituent graphs of association
schemes that are connected, but not 3-connected.

Note that Assumption 3 implies that G is regular, i.e., deg(u) = deg(v) for all u, v ∈ V (G).

I Lemma 4. G is 2-connected, i.e., G does not contain any cut vertex.

This is a consequence of Condition 1 in Assumption 3, since the 2-dimensional WL
algorithm distinguishes cut vertices from other vertices (see [29, Corollary 7]). Note that the
lemma implies that each of w1 and w2 has at least one neighbor in each of the connected
components of G− w1w2.

I Lemma 5. Let C be the vertex set of a connected component of G − w1w2 such that
|C| < n

2 and let v ∈ C. Then there is no vertex u ∈ N(v) such that dist(u,w1) < dist(v, w1)
and dist(u,w2) < dist(v, w2).

Proof. Suppose towards a contradiction that such a vertex u ∈ N(v) exists. For all w ∈
V (G), we have |dist(v, w) − dist(u,w)| ≤ 1, since uv ∈ E(G). Furthermore, it holds
that

∑
w∈V (G)

(
dist(v, w) − dist(u,w)

)
= 0 because D(u) = D(v) due to Condition 1 in

Assumption 3. But dist(v, w) > dist(u,w) for all w ∈ V (G) \ C, and |V (G) \ C| > n
2 . This

is a contradiction. J

S. Kiefer and D. Neuen 45:7

I Lemma 6. Let d := dist(w1, w2) and let C be the vertex set of a connected component of
G − w1w2 such that |C| ≤ n−2

2 . Then for all v ∈ C ∪ {w1, w2} and all i ∈ {1, 2}, it holds
that dist(v, wi) ≤ d.

Proof. By symmetry, it suffices to prove dist(v, w2) ≤ d. The statement is proved by
induction on ` := dist(v, w1). For ` = 0, it holds that v = w1 and dist(w1, w2) = d. So
suppose the statement holds for all u ∈ C ∪ {w1, w2} with dist(u,w1) ≤ `. Obviously, the
statement is true if v = w1 or v = w2. So pick v ∈ C with dist(v, w1) = `+ 1. Let u ∈ N(v)
such that dist(u,w1) ≤ `. Then dist(v, w2) ≤ dist(u,w2) ≤ d by Lemma 5 and the induction
hypothesis. J

I Lemma 7. w1w2 /∈ E(G).

Proof. Suppose towards a contradiction that w1w2 ∈ E(G). Let C be the vertex set of
a connected component of G − w1w2 such that |C| ≤ n−2

2 . By Lemma 6, we conclude
that C ⊆ N(w1) ∩ N(w2). Let v ∈ C. Since G is 2-connected, the vertex w1 must have
at least one neighbor in V (G) \ C, in addition to being adjacent to C and to w2. Thus,
deg(w1) ≥ |C| + 2 > |C| − 1 + |{w1, w2}| ≥ deg(v), which contradicts G being a regular
graph. J

I Lemma 8. Suppose that N(w1) ∩N(w2) 6= ∅. Then G is a cycle.

Proof. By Lemma 7, it holds that w1w2 /∈ E(G). Furthermore, by the assumption of the
lemma, we have dist(w1, w2) = 2. Let C be the vertex set of a connected component of
G− w1w2 such that |C| ≤ n−2

2 . Also let C ′ := V (G) \ (C ∪ {w1, w2}). For i, j ≥ 1 let

Ci,j := {v ∈ C | dist(v, w1) = i and dist(v, w2) = j}.

By Lemma 6, we conclude that Ci,j = ∅ unless (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}.
Suppose there exists v ∈ C1,2. We have D(v) = D(w1) and, by Lemma 4, also N(w1) ∩

C ′ 6= ∅. Thus, there is some vertex u′ 6= w1 such that dist(w1, u
′) < dist(v, u′) and therefore,

by Lemma 2, there is also a vertex u 6= v such that dist(v, u) < dist(w1, u). For every
such vertex u, it holds that dist(w1, u) ≤ 2 and thus, u ∈ N(v). Therefore, by Lemma
2, for every vertex v′ 6= w1 with dist(w1, v

′) < dist(v, v′), it holds that v′ ∈ N(w1). This
implies that there is no v′ ∈ C ′ such that dist(w1, v

′) = 2 since such a vertex would satisfy
3 = dist(v, v′) > dist(w1, v

′).
Because w2 is not a cut vertex (cf. Lemma 4), from every v′ ∈ C ′, there is a path to w1

that does not contain w2. However, this is only possible if there is no vertex v′ ∈ C ′ such
that dist(w1, v

′) > 1, in other words: C ′ ⊆ N(w1). Since G is regular and |N(w1) \ C ′| ≥ 1,
it follows that deg(v) ≥ |C ′|+ 1. But N(v) ⊆ (C ∪ {w1}) \ {v}, which implies deg(v) ≤ |C|.
The combination of both inequalities yields |C ′|+ 1 ≤ |C|, which implies n = 2 + |C|+ |C ′| ≤
1 + 2|C| ≤ n− 1, a contradiction. So C1,2 = ∅ and by symmetry, it also holds that C2,1 = ∅.
But then C2,2 = ∅ by Lemma 5.

So C = C1,1, which means that C ⊆ N(w1) ∩N(w2). In particular, deg(w1) ≥ |C|+ 1
since |N(w1) ∩ C ′| ≥ 1. Since G is regular, this implies that deg(v) ≥ |C| + 1 for every
v ∈ C, which is only possible if N [v] = C ∪ {w1, w2}. Because C 6= ∅, this means that there
is a vertex v ∈ V (G) such that G[N [v]] contains only one non-edge. Now by Condition 1
in Assumption 3, this also has to hold for w1, and hence, since no vertex in C ∩N(w1) is
adjacent to any vertex in C ′∩N(w1), it must hold that deg(w1) = 2. Therefore, by regularity,
all vertices in G have degree 2 and thus, being connected, G is a cycle. J

I Lemma 9. G is a cycle.

MFCS 2019

45:8 Weisfeiler-Leman and Graph Separators

w1 w2

C1,3

C2,2
C3,1

C1,4

C2,3 C3,2
C4,1

C2,4
C3,3 C4,2

C3,4 C4,3

C4,4

C ′

Figure 1 Visualization of the sets Ci,j for d = 4 in the proof of Lemma 9. An arc between two
sets indicates that there may be edges connecting vertices from the two sets.

Proof Sketch. We only present a sketch here. It suffices to prove the lemma for the case
that G is a graph with a maximum edge set that satisfies Assumption 3. Indeed, if such a
graph G is a cycle, then G has n edges, and the lemma trivially holds for every graph with
less edges since every connected regular graph has at least n edges.

Let d := dist(w1, w2). By Lemmas 7 and 8, we can assume that d ≥ 3. Let C be
the vertex set of a connected component of G − w1w2 such that |C| ≤ n−2

2 . Also let
C ′ := V (G) \ (C ∪ {w1, w2}). For i, j ≥ 1 let

Ci,j := {v ∈ C | dist(v, w1) = i and dist(v, w2) = j}.

By Lemma 6, we conclude that Ci,j = ∅ unless i, j ≤ d. Furthermore, by the definition of d,
we have that Ci,j = ∅ unless i+ j ≥ d. This situation is also visualized in Figure 1.

Using similar ideas as in the proof of Lemma 8, the first step is to show that Cd,d =
Cd−1,d = Cd,d−1 = ∅. The main part of the proof is based on the following claim, which
exploits the edge maximality of the graph G.

B Claim 10. Let u, v ∈ V (G) such that dist(u, v) < d. Then there is a unique shortest path
from u to v.

Indeed, if there were a pair of vertices u, v ∈ V (G) of distance ` < d with two shortest
paths, then u and v would be “on the same side” of the separator w1w2. Hence, since the
2-dimensional WL algorithm is capable of detecting such pairs, adding all of them to the edge
set of G would result in a graph with a larger number of edges that still fulfills Assumption
3. Using similar arguments, we also obtain the following related insight.

B Claim 11. Let u, v ∈ V (G) such that ` := dist(u, v) < d. Furthermore, suppose there is a
walk u = u0, . . . , u`+1 = v of length `+ 1 from u to v. Then there is some i ∈ [`] such that
ui−1ui+1 ∈ E(G).

These two claims drastically restrict the structure of the graph G and allow us to prove
that G is a cycle. Intuitively speaking, the claims imply that, when looking towards the
connected component G[C] from any of the wi, the graph has a tree-like shape, i.e., the initial
segments of paths up to length d− 1 starting in wi form a tree rooted in wi. However, this

S. Kiefer and D. Neuen 45:9

only works out if G is a cycle. More formally, for k′ ∈ {d, . . . , 2d}, let Ck′ :=
⋃

i,j:i+j=k′ Ci,j

and let k ∈ {d, . . . , 2d} be the maximal number such that Ck 6= ∅. Then k ≤ 2d− 2 since we
already know that Cd,d = Cd−1,d = Cd,d−1 = ∅.

Consider a set Ci,k−i for some i with k − d+ 1 ≤ i ≤ d − 1 (i.e., none of the extremal
sets). Then, for all v ∈ Ci,k−i, it holds that dist(v, w1) < d and dist(v, w2) < d, which allows
us to apply Claims 10 and 11 for shortest paths from v to w1 and w2. With this, we show
that if Ci,k−i 6= ∅, then there is a vertex of degree 2, which implies that G is a cycle, since
it is regular. In the other case, Cj,k−j = ∅ for all j with k − d + 1 ≤ j ≤ d − 1. We then
consider the extremal sets and derive a contradiction from there. J

Reformulating the previous lemma, we obtain the following theorem.

I Theorem 12. Let G be a graph such that χG(u, u) = χG(v, v) for all u, v ∈ V (G). Then
(exactly) one of the following holds:
1. G is not connected, or
2. G is 3-connected, or
3. G is a cycle of length ` ≥ 4.

Note that the complete graphs on two and three vertices are 3-connected. The theorem
also implies that a connected constituent graph of an association scheme is either 3-connected
or a cycle (for other work on the connectivity of relations in association schemes, see e.g.
[6, 7, 8, 13]). It thus provides a generalization of Kodalen’s and Martin’s result in [30], where
they proved the theorem in case the graph stems from a symmetric association scheme.

4 Two Colors

Recall that our overall goal is to prove that the 2-dimensional WL algorithm assigns special
colors to 2-separators in a graph. We will use Lemma 9 to prove this in case the tuples
(u, u) and (v, v) of a 2-separator {u, v} obtain the same color under the 2-dimensional WL
algorithm. To treat the much more difficult case that u and v obtain distinct colors, we
intend to generalize the results of the previous section to two vertex colors. Maybe somewhat
surprisingly, we obtain a similar statement to Lemma 9. However, now we require the input
graphs to be 2-connected (instead of only being connected). This is a necessary condition,
since for example the star graphs K1,n for n ≥ 2 are neither 3-connected nor cycles but still
have only two vertex colors under the 2-dimensional WL algorithm.

The route to proving the statement is similar to the one described in Section 3. Still,
two colors allowing for more complexity in the graph structure, the statements and lemmas
become more involved and additional cases need to be considered.

I Lemma 13. Let G be a graph and suppose there are c1 6= c2 such that {χG(v, v) | v ∈
V (G)} = {c1, c2} for some c1 6= c2 ∈ N. Let U := {u ∈ V (G) | χG(u, u) = c1} and
V := {v ∈ V (G) | χG(v, v) = c2}. Also let U1, . . . , Uk be the vertex sets of the connected
components of G[U] and let V1, . . . , V` be the vertex sets of the connected components of G[V].
Let G′ be the graph with V (G′) = {U1, . . . , Uk, V1, . . . , V`} and UiVj ∈ E(G′) if and only if
there are u ∈ Ui, v ∈ Vj such that uv ∈ E(G).

Then χG′(Ui, Ui) = χG′(Uj , Uj) for all i, j ∈ [k] and χG′(Vi, Vi) = χG′(Vj , Vj) for all
i, j ∈ [`].

I Theorem 14. Let G be a 2-connected graph with the following properties:
1. G has a 2-separator w1w2, and
2. for every v ∈ V (G), there is an i ∈ {1, 2} such that χG(v, v) = χG(wi, wi).
Then G is a cycle.

MFCS 2019

45:10 Weisfeiler-Leman and Graph Separators

Proof Idea. By Lemma 9, we can assume without loss of generality that χG(w1, w1) 6=
χG(w2, w2). The statement is proved by induction on the graph size n. For n ≤ 4, a simple
case analysis among the possible graphs G yields the statement.

So let n ≥ 5. Again, it suffices to prove the statement for the case that G is an n-
vertex graph with a maximum edge set that satisfies the requirements of the theorem. Let
U := {u ∈ V (G) | χG(u, u) = χG(w1, w1)} and V := {v ∈ V (G) | χG(v, v) = χG(w2, w2)}.
Let U1, . . . , Uk be the vertex sets of the connected components of G[U] and let V1, . . . , V` be
the vertex sets of the connected components of G[V]. Without loss of generality, assume
that w1 ∈ U1 and w2 ∈ V1. Let C be the vertex set of a connected component of G− w1w2
such that |C| ≤ n−2

2 . Also let C ′ := V (G) \ (C ∪ {w1, w2}).
Consider the graph G′ defined in the same way as in Lemma 13. First suppose that G′

has fewer vertices than the original graph G. If the induction hypothesis is applicable to the
graph G′, it follows that G′ is a cycle and from there, it is not difficult to prove that G also
must be a cycle. However, it may happen that G′ is 3-connected in which case the induction
hypothesis cannot be applied. But this can only happen in very specific cases, which we then
treat separately.

If |V (G′)| = |V (G)|, then there are no edges connecting vertices of the same color with
respect to the 2-dimensional WL algorithm and thus, G is bipartite. In this case, we can
proceed very similarly to the proof of Lemma 9. J

5 Detecting Decompositions with Weisfeiler and Leman

Let S be a set of colors. We say a path u0, . . . , u` avoids S if χG(ui, ui) /∈ S for every
i ∈ [`− 1]. Note that we impose no restriction on the colors of the endpoints of the path. It
is easy to see that, given two vertices u, v ∈ V (G), the 2-dimensional WL algorithm is aware
of whether there is a path from u to v that avoids S.

I Lemma 15. Let G be a graph and let X := {χG(v, v) | v ∈ V (G)}. Furthermore, let
S ⊆ X and define G[[S]] = (V,E), where V = {v ∈ V (G) | χG(v, v) ∈ S} and

E = {uv | there is a path from u to v in G that avoids S}.

Then χG[[S]](u, u) = χG[[S]](v, v) for all u, v ∈ V with χG(u, u) = χG(v, v).

I Theorem 16. Let G and H be 2-connected graphs and let w1, w2 ∈ V (G) such that w1w2
forms a 2-separator in G. Also let v1, v2 ∈ V (H) and suppose χG(w1, w2) = χH(v1, v2).
Then v1v2 forms a 2-separator in H.

Proof. Let S := {χG(w1, w1), χG(w2, w2)} and let G′ := G[[S]]. Clearly, the graph G′ is
connected. We argue that G′ is 2-connected. Suppose towards a contradiction that there is a
separating vertex w in G′. Let C and C ′ be the vertex sets of two connected components of
G′ − w and let v ∈ C and v′ ∈ C ′. We show that w separates v from v′ in G. Towards a
contradiction, suppose there is a path P from v to v′ in G that does not pass w. Then there
is a corresponding path P ′ in G′, which simply skips all inner vertices of P not contained in
S. In particular, P ′ connects v and v′, but avoids w. This contradicts w being a cut vertex
in G′. Hence, G′ is 2-connected.

First suppose that |V (G′)| = 2. Let A := {v ∈ V (H) | χH(v, v) ∈ S}. Then |A| = 2 and
thus A = {v1, v2}. Moreover, H −A is disconnected, since the 2-dimensional WL algorithm
detects that G− w1w2 is disconnected. Hence, v1v2 forms a 2-separator in H.

S. Kiefer and D. Neuen 45:11

Now assume |V (G′)| ≥ 3 and suppose there is a vertex set C of a connected component of
G− w1w2 such that V (G′) ⊆ C ∪ {w1, w2}. Let C ′ be the vertex set of a second connected
component of G− w1w2 and let v ∈ C ′. Then w1 and w2 are the only vertices with color in
S that can be reached from v via a path that avoids S. Hence, using the expressive power of
the 2-dimensional WL algorithm, it is not hard to see that there must also be some u ∈ V (H)
such that v1 and v2 are the only vertices with color in S that can be reached from u via a
path that avoids S. Since |V (G′)| ≥ 3, there is some u′ ∈ V (H) such that v1 6= u′ 6= v2 and
χH(u′, u′) ∈ S because in order not to be distinguished, unions of color classes with color in
S must have the same cardinality in both graphs. But then v1v2 separates u from u′ in H
and thus, v1v2 forms a 2-separator in H.

In the other case, w1w2 forms a 2-separator in G′ and hence, G′ is a cycle by Lemma 15
and Theorem 14. Note that |V (G′)| ≥ 4 and w1w2 /∈ E(G′). It follows that H[[S]] is also a
cycle, since otherwise, the 2-dimensional WL algorithm would distinguish the graphs. Also,
|V (H[[S]])| ≥ 4 and v1v2 /∈ E(H[[S]]). So v1v2 forms a 2-separator in H[[S]] and thus, it
also forms a 2-separator in H. J

I Corollary 17. Suppose k ≥ 2. Let G and H be connected graphs. Suppose {w1, . . . , wk} ⊆
V (G) is a k-separator in G. Let {v1, . . . , vk} ⊆ V (H) and suppose χG,k(w1, . . . , wk) =
χH,k(v1, . . . , vk). Then {v1, . . . , vk} forms a k-separator in H.

Using the corollary, we can prove a strengthened version of Theorem 13 in [29]. Following
[29], we say that the k-dimensional WL algorithm determines orbits in a graph class G if for
all arc-colored graphs (G,λ), (G′, λ′) with G,G′ ∈ G, arc colorings λ, λ′ and for all vertices
v ∈ V (G) and v′ ∈ V (G′) there exists an isomorphism from (G,λ) to (G′, λ′) mapping v to
v′ if and only if χG,k(v, . . . , v) = χG′,k(v′, . . . , v′).

I Theorem 18. Let G be a minor-closed graph class and assume k ≥ 2. Suppose the k-
dimensional WL algorithm determines orbits on all arc-colored 3-connected graphs in G.
Then the k-dimensional WL algorithm distinguishes all non-isomorphic graphs in G.

Thus, since by [29], the WL dimension of the class of planar graphs is 2 or 3, the concrete
value only depends on the dimension needed to determine orbits on arc-colored triconnected
planar graphs.

For a graph G and v1, v2, v3 ∈ V (G) we define sG(v1, v2, v3) := |C|, where C is the
vertex set of the connected component of G− v1v2 that contains v3 (if v3 ∈ {v1, v2}, then
sG(v1, v2, v3) := 0).

I Theorem 19. Let G and H be two 2-connected graphs. Also let v1, v2, v3 ∈ V (G)
and w1, w2, w3 ∈ V (H) such that χG(vi, vj) = χH(wi, wj) for all i, j ∈ {1, 2, 3}. Then
sG(v1, v2, v3) = sH(w1, w2, w3).

The last theorem can also be formulated in terms of the expressive power of the 3-variable
fragment C3 of first-order logic with counting quantifiers of the form ∃≥kxϕ(x). Indeed, it
implies that for all n, s ∈ N, there is a formula ϕn,s(x1, x2, x3) ∈ C3 such that, for every
2-connected n-vertex graph G and v1, v2, v3 ∈ V (G), it holds that G |= ϕn,s(v1, v2, v3) if and
only if sG(v1, v2, v3) = s (for details about the connection between the WL algorithm and
counting logics, see e.g. [9, 27]).

6 New Bounds for Graphs of Treewidth k

As an application of the results presented so far, we investigate the WL dimension of graphs
of treewidth at most k. Up to this point, the best known upper bound on the WL dimension

MFCS 2019

45:12 Weisfeiler-Leman and Graph Separators

of such graphs has been k + 2, i.e., the (k + 2)-dimensional WL algorithm identifies every
graph of treewidth at most k [18]. In this section, we present new upper and lower bounds.

6.1 Upper Bound

The basic idea for proving a new upper bound is to provide a winning strategy for Spoiler
in the corresponding bijective pebble game and it works similarly to the proof that the
(k + 2)-dimensional WL algorithm identifies every graph of treewidth at most k [18]. The
main difference is a much more careful implementation of the general strategy in order to
get by with the desired number of pebbles. As a major ingredient, we exploit that separators
can be detected using fewer pebbles.

For a (k + 1)-tuple (v1, . . . , vk, vk+1) of vertices of a graph G, we define
sG(v1, . . . , vk, vk+1) := |C| where C is the unique connected component of G− {v1, . . . , vk}
with vk+1 ∈ C.

I Corollary 20. Suppose k ≥ 2. Let G,H be two graphs and let v1, . . . , vk+1 ∈ V (G) and
w1, . . . , wk+1 ∈ V (H) such that sG(v1, . . . , vk, vk+1) 6= sH(w1, . . . , wk, wk+1). Then Spoiler
wins the game BPk+1(G,H) from the initial position

(
(v1, . . . , vk+1), (w1, . . . , wk+1)

)
.

To build Spoiler’s strategy along a given tree decomposition, we use the following
characterization of treewidth. Let G be a graph of treewidth k. For a k-separator S ⊆ V (G)
and the vertex set C of a connected component of G− S, we define G(S,C) to be the graph
on vertex set S ∪ C obtained by inserting a clique between the vertices in S into G[S ∪ C].

I Lemma 21 (Arnborg et al. [1]). Suppose G(S,C) has at least k+ 2 vertices. Then G(S,C)
has treewidth at most k if and only if there exists v ∈ C such that for every connected
component A of G[C \ {v}], there is a k-element separator SA ⊆ S ∪ {v} such that
1. no vertex in A is adjacent to the unique element from S \ SA, and
2. G

(
SA, V (A)

)
has treewidth at most k.

Suppose G(S,C) has treewidth at most k. Let DG(S,C) denote the set of possible vertices
v ∈ C that satisfy Lemma 21.

I Theorem 22. Suppose k ≥ 2. Let G be a graph of treewidth at most k. Then the
k-dimensional WL algorithm identifies G.

Proof Idea. Given a graph G of treewidth at most k and a second non-isomorphic graph
H, we show that Spoiler wins the game BPk+1(G,H). For simplicity of notation, we
view tuples ā = (a1, . . . , ak) also as sets {a1, . . . , ak}. Suppose the game is at a position
(ā, b̄) ∈

(
V (G)

)k×
(
V (H)

)k such that G(ā, C) has treewidth k for every connected component
C of G − ā. Let m := m(ā, b̄) be the smallest number such that G − ā and H − b̄ are not
isomorphic when only considering connected components of size m. We prove by induction
on m that Spoiler wins the game. The case m = 1 is easy, since there is still one pebble left.
For the case m > 1, Spoiler finds a connected component CG of G− ā of size m that differs
from the corresponding connected component CH (specified by Duplicator’s bijection) in
the graph H − b̄. By Corollary 20, we can assume that |CG| = |CH |. Then Spoiler places a
pebble on a vertex in the set DG(ā, CG). This splits CG into smaller connected components.
Then, it can be proved that one pebble can be removed so that afterwards, we find connected
components of size at most m− 1 in which G and H differ (again using Corollary 20). J

S. Kiefer and D. Neuen 45:13

6.2 Lower Bound
For the lower bound we use a construction introduced by Cai, Fürer, and Immerman [9].
For a graph G, we let CFI(G) be the graph obtained by applying the standard Cai, Fürer,
Immerman (CFI-) construction to G, and CFIx(G) be the graph obtained by applying the
CFI-construction with one pair of edges twisted (see [9]). We shall actually not require any
further details on how the graphs CFI(G) and CFIx(G) look, since we exploit the following
theorem.

I Theorem 23 (Dawar and Richerby [10]). Let G be a connected graph such that tw(G) ≥ k+1
and deg(v) ≥ 2 for all v ∈ V (G). Then CFI(G) 'k CFIx(G).

The strategy to obtain a good lower bound is to find graphs G where we can show a
sufficiently good upper bound on the treewidth of CFI(G) and CFIx(G). For n ≥ 2, let Gn,n

be the n× n grid.

I Lemma 24. For n ≥ 2, it holds that tw(CFI(Gn,n)) ≤ 2n+5 and tw(CFIx(Gn,n)) ≤ 2n+5.

I Theorem 25. For every k ≥ 2, there are non-isomorphic graphs Gk and Hk of treewidth
at most 2k + 7 such that Gk 'k Hk.

Proof. Let Gk := CFI(Gk+1,k+1) and Hk := CFIx(Gk+1,k+1). Then the statement follows
from Theorem 23 and Lemma 24. J

For a graph class C, denote by dimWL(C) the WL dimension of C, i.e., the minimum
k ∈ N ∪ {∞} such that the k-dimensional WL algorithm identifies every graph G ∈ C. As a
corollary from Theorems 22 and 25, we obtain the following result.

I Corollary 26. Let k ≥ 2. Then dk
2 e − 3 ≤ dimWL(Tk) ≤ k, where Tk denotes the class of

graphs of treewidth at most k.

7 Conclusion

We have proved that for k ≥ 2, the k-dimensional WL algorithm implicitly computes the
decomposition of its input graph into its triconnected components. As a by-product, we
found that every connected constituent graph of an association scheme is either a cycle or
3-connected.

We have applied this insight to improve on the upper bound on the WL dimension of
graphs of bounded treewidth and have also provided a lower bound that is asymptotically
only a factor of 2 away from the upper bound.

A natural use case of our results may be determining the WL dimension of certain graph
classes that satisfy the requirements of Theorem 18. We conjecture that the 2-dimensional
WL algorithm identifies every planar graph. Indeed, using the results of this paper, it
essentially suffices to show this for triconnected planar graphs.

References
1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of Finding

Embeddings in a K-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, April 1987.
doi:10.1137/0608024.

2 Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On Weisfeiler-
Leman Invariance: Subgraph Counts and Related Graph Properties. CoRR, abs/1811.04801,
2018. arXiv:1811.04801.

MFCS 2019

http://dx.doi.org/10.1137/0608024
http://arxiv.org/abs/1811.04801

45:14 Weisfeiler-Leman and Graph Separators

3 Albert Atserias and Elitza N. Maneva. Sherali-Adams Relaxations and Indistinguishability in
Counting Logics. SIAM J. Comput., 42(1):112–137, 2013. doi:10.1137/120867834.

4 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697.
ACM, 2016. doi:10.1145/2897518.2897542.

5 László Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes. Faster Canonical
Forms for Strongly Regular Graphs. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 157–166.
IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.25.

6 Andries E. Brouwer. Spectrum and connectivity of graphs. CWI Quarterly, 9(1-2):37–40,
1996.

7 Andries E. Brouwer and Jack H. Koolen. The vertex-connectivity of a distance-regular graph.
Eur. J. Comb., 30(3):668–673, 2009. doi:10.1016/j.ejc.2008.07.006.

8 Andries E. Brouwer and Dale M. Mesner. The Connectivity of Strongly Regular Graphs. Eur.
J. Comb., 6(3):215–216, 1985. doi:10.1016/S0195-6698(85)80030-5.

9 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identifications. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

10 Anuj Dawar and David Richerby. The Power of Counting Logics on Restricted Classes of Finite
Structures. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic,
21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne,
Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer
Science, pages 84–98. Springer, 2007. doi:10.1007/978-3-540-74915-8_10.

11 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, pages 40:1–40:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.

12 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

13 Sergei Evdokimov and Ilia Ponomarenko. On the vertex connectivity of a relation in an
association scheme. Journal of Mathematical Sciences, 134(5):2354–2357, May 2006. doi:
10.1007/s10958-006-0112-z.

14 Martin Fürer. On the Combinatorial Power of the Weisfeiler-Lehman Algorithm. In Dimitris
Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity -
10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings,
volume 10236 of Lecture Notes in Computer Science, pages 260–271, 2017. doi:10.1007/
978-3-319-57586-5_22.

15 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
J. ACM, 59(5):27:1–27:64, 2012. doi:10.1145/2371656.2371662.

16 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Lecture Notes in Logic. Cambridge University Press, 2017.

17 Martin Grohe and Sandra Kiefer. A Linear Upper Bound on the Weisfeiler-Leman Dimension
of Graphs of Bounded Genus. CoRR, abs/1904.07216, 2019. arXiv:1904.07216.

18 Martin Grohe and Julian Mariño. Definability and Descriptive Complexity on Databases
of Bounded Tree-Width. In Catriel Beeri and Peter Buneman, editors, Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings.,
volume 1540 of Lecture Notes in Computer Science, pages 70–82. Springer, 1999. doi:
10.1007/3-540-49257-7_6.

19 Martin Grohe and Daniel Neuen. Canonisation and Definability for Graphs of Bounded Rank
Width. CoRR, abs/1901.10330, 2019. arXiv:1901.10330.

20 Martin Grohe and Martin Otto. Pebble Games and linear equations. J. Symb. Log., 80(3):797–
844, 2015. doi:10.1017/jsl.2015.28.

http://dx.doi.org/10.1137/120867834
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1109/FOCS.2013.25
http://dx.doi.org/10.1016/j.ejc.2008.07.006
http://dx.doi.org/10.1016/S0195-6698(85)80030-5
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/978-3-540-74915-8_10
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.40
http://dx.doi.org/10.1007/s10958-006-0112-z
http://dx.doi.org/10.1007/s10958-006-0112-z
http://dx.doi.org/10.1007/978-3-319-57586-5_22
http://dx.doi.org/10.1007/978-3-319-57586-5_22
http://dx.doi.org/10.1145/2371656.2371662
http://arxiv.org/abs/1904.07216
http://dx.doi.org/10.1007/3-540-49257-7_6
http://dx.doi.org/10.1007/3-540-49257-7_6
http://arxiv.org/abs/1901.10330
http://dx.doi.org/10.1017/jsl.2015.28

S. Kiefer and D. Neuen 45:15

21 Lauri Hella. Logical Hierarchies in PTIME. Inf. Comput., 129(1):1–19, 1996. doi:10.1006/
inco.1996.0070.

22 John E. Hopcroft and Robert Endre Tarjan. A V2 Algorithm for Determining Isomorphism of
Planar Graphs. Inf. Process. Lett., 1(1):32–34, 1971. doi:10.1016/0020-0190(71)90019-6.

23 John E. Hopcroft and Robert Endre Tarjan. Isomorphism of Planar Graphs. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of
Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 131–152.
Plenum Press, New York, 1972.

24 John E. Hopcroft and Robert Endre Tarjan. A V log V Algorithm for Isomorphism of
Triconnected Planar Graphs. J. Comput. Syst. Sci., 7(3):323–331, 1973. doi:10.1016/
S0022-0000(73)80013-3.

25 John E. Hopcroft and Robert Endre Tarjan. Dividing a Graph into Triconnected Components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

26 John E. Hopcroft and J. K. Wong. Linear Time Algorithm for Isomorphism of Planar Graphs
(Preliminary Report). In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle, and
Michael A. Harrison, editors, Proceedings of the 6th Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages 172–184. ACM, 1974.
doi:10.1145/800119.803896.

27 Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization. In Complexity Theory Retrospective, pages 59–81. Springer New York, 1990.
doi:10.1007/978-1-4612-4478-3_5.

28 Sandra Kiefer and Daniel Neuen. The power of the Weisfeiler-Leman algorithm to decompose
graphs. CoRR, abs/1908.05268, 2019. arXiv:1908.05268.

29 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler-Leman dimension of
planar graphs is at most 3. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society,
2017. doi:10.1109/LICS.2017.8005107.

30 Brian G. Kodalen and William J. Martin. On the Connectivity of Graphs in Association
Schemes. Electr. J. Comb., 24(4):P4.39, 2017. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v24i4p39.

31 Brendan D. McKay. Practical graph isomorphism. Congr. Numer., 30:45–87, 1981.
32 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,

60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.
33 Christopher Morris and Petra Mutzel. Towards a practical k-dimensional Weisfeiler-Leman

algorithm. CoRR, abs/1904.01543, 2019. arXiv:1904.01543.
34 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,

Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph
Neural Networks. CoRR, abs/1810.02244, 2018. arXiv:1810.02244.

35 Daniel Neuen. Graph Isomorphism for Unit Square Graphs. In Piotr Sankowski and Christos D.
Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24,
2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 70:1–70:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.70.

36 William T. Tutte. Graph theory. Encyclopedia of mathematics and its applications. Addison-
Wesley Pub. Co., Advanced Book Program, 1984.

37 Boris Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series 2, 1968. English translation by G. Ryabov available at
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

MFCS 2019

http://dx.doi.org/10.1006/inco.1996.0070
http://dx.doi.org/10.1006/inco.1996.0070
http://dx.doi.org/10.1016/0020-0190(71)90019-6
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1137/0202012
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1007/978-1-4612-4478-3_5
http://arxiv.org/abs/1908.05268
http://dx.doi.org/10.1109/LICS.2017.8005107
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i4p39
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i4p39
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://arxiv.org/abs/1904.01543
http://arxiv.org/abs/1810.02244
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.70
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

The Domino Problem is Undecidable on Surface
Groups
Nathalie Aubrun
LIP, ENS de Lyon – CNRS – UCBL – Université de Lyon, France
nathalie.aubrun@ens-lyon.fr

Sebastián Barbieri
University of British Columbia, Vancouver, Canada
sbarbieri@math.ubc.ca

Etienne Moutot
LIP, ENS de Lyon – CNRS – UCBL – Université de Lyon, France
University of Turku, Finland
etienne.moutot@ens-lyon.fr

Abstract
We show that the domino problem is undecidable on orbit graphs of non-deterministic substitutions
which satisfy a technical property. As an application, we prove that the domino problem is
undecidable for the fundamental group of any closed orientable surface of genus at least 2.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases tilings, substitutions, SFTs, decidability, domino problem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.46

Related Version https://arxiv.org/abs/1811.08420

Funding This work was partially supported by the ANR project CoCoGro (ANR-16-CE40-0005).

1 Introduction

Initially studied by Wang [22], the domino problem is the algorithmic question of determining
if a finite set of unit square tiles with colored edges –called Wang tiles– can be used to tile
the plane in such a way that adjacent edges of neighbor Wang tiles have the same color.
It was originally conjectured by Wang that the domino problem was decidable. However,
Berger [5] and later Robinson [21] both combined their constructions of an aperiodic set of
Wang tiles and a reduction from the halting problem of Turing machines to show that the
domino problem was in fact undecidable.

The domino problem can be naturally extended to a much broader context. Let Γ be a
labeled directed infinite graph, A a finite set, and F = {p1, . . . , pn} a finite list of colorings pi
of vertices of finite connected subgraphs of Γ by A. The domino problem of Γ is the language
of all codings of pairs (A, F) as above, for which there exists a coloring of the vertices of
Γ such that none of the pi ∈ F embed as a colored labeled subgraph. Naturally, Wang’s
domino problem can be reinterpreted in this setting by letting Γ be the bi-infinite square
grid, A the set of Wang tiles, and F the list of all horizontal or vertical pairs of tiles whose
colors do not match.

A particularly interesting case is when Γ is a labeled directed Cayley graph of a finitely
generated group G. In this case, there is a direct correspondence between colorings of the
vertices of Γ by A which avoid a list of forbidden colored subgraphs as described above,
and subshifts of finite type (SFT), that is, closed and translation invariant subsets of AG
which are determined by a finite list of forbidden patterns. What is more, it can be shown
that the domino problems of all such Cayley graphs of G are computationally many-one

© Nathalie Aubrun, Sebastián Barbieri, and Etienne Moutot;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 46; pp. 46:1–46:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathalie.aubrun@ens-lyon.fr
https://orcid.org/0000-0001-9567-2085
mailto:sbarbieri@math.ubc.ca
https://orcid.org/0000-0003-2073-4709
mailto:etienne.moutot@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.46
https://arxiv.org/abs/1811.08420
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 The Domino Problem on Surface Groups

equivalent, and thus one may speak about the domino problem of G. In the particular case
when G = Z, the domino problem is decidable: every Z-SFT can be represented by a labeled
finite graph [18], and the existence of a configuration in the SFT (i.e. a bi-infinite word)
is equivalent to the existence of a cycle in the graph. The case of Z2 coincides with the
formalism of Wang tiles, and is thus undecidable.

The domino problem on graphs other than the Cayley graphs of Z and Z2 has been
studied by several authors. The undecidability for a graph which models the hyperbolic plane
was settled by Kari [15], and can also be obtained from the construction of a hierarchical
aperiodic tiling on the hyperbolic plane by Goodman-Strauss [12] and by Margenstern [19].
There has also been research in the case of graphs which can be obtained by self-similar
substitutions [4]. For finitely generated groups, the only groups where the domino problem
is known to be decidable are virtually free groups, and it is even conjectured that they are
the only ones [3].

I Conjecture 1. A finitely generated group has decidable domino problem if and only if it is
virtually free.

An interesting take on this conjecture comes from the fact that the domino problem can be
expressed in MSO logic [22, 2]. The MSO logic over the Cayley graph of a finitely generated
group is decidable if and only if the group is context-free [17], and a group is virtually-free if
and only if it is context-free and accessible [20]. Stated differently, (using that all finitely
presented groups are accessible [11]) groups that are not virtually free have an undecidable
MSO logic. Proven true, the domino problem conjecture would show that the domino problem
fragment is “big enough” in MSO. Recent results support the conjecture: decidability of
the domino problem is a quasi-isometry invariant for finitely presented groups [10] – i.e.
a geometric property of the group – and the conjecture holds true for Baumslag-Solitar
groups [1], polycyclic groups [13] and groups of the form G1 × G2 [14]. A survey on the
domino problem for finitely generated groups can be found in [6, Chapter 9].

The results of Aubrun and Kari [15, 1] share a common factor: the domino problem is
shown to be undecidable on two specific structures that grow exponentially with integer
or rational base. But what if the structure grows with a different base? The technique
employed by those authors –reduction from the immortality problem of rational piecewise
affine maps– seems difficult to adapt in this case. A class of structures which can grow
non-regularly is given by orbit graphs of non-deterministic substitutions (Section 3). This
class of structures includes the hyperbolic plane model of [15], which can be thought of
as an orbit graph of the one-letter substitution 0 7→ 00. Using a technique involving the
superposition of two orbit graphs of substitutions, presented in [9], we show that the domino
problem is undecidable on all orbit graphs of non-deterministic substitutions that satisfy a
technical property (Section 4). As an application of the previous result we show that the
domino problem of the fundamental group of any closed orientable surface of genus at least 2
is undecidable (Section 5). Finally, we discuss the case of word-hyperbolic groups (Section 6)
and show that if a famous conjecture of Gromov –or a weaker version– holds, then the only
word-hyperbolic groups with decidable domino problem are the virtually free groups, hence
confirming the conjecture for this class of groups.

2 Subshifts on graphs and the domino problem

We define a graph Γ to be a triple (VΓ, EΓ, LΓ) where VΓ is an infinite countable set of vertices,
EΓ ⊂ V 2

Γ is the set of edges, such that | {u ∈ VΓ | (u, v) ∈ EΓ or (v, u) ∈ EΓ} | < M for every
vertex v ∈ VΓ, where M is some constant, and LΓ : EΓ → L is a labeling function which

N. Aubrun, S. Barbieri, and E. Moutot 46:3

assigns to every edge a label in a finite set L. Important examples of such graphs are Cayley
graphs of finitely generated groups. More precisely, given a finitely generated group G and a
finite set of generators S, its Cayley graph is given by VΓ = G, EΓ = {(g, gs) | g ∈ G, s ∈ S},
LΓ((g, gs)) = s. Let Γ = (VΓ, EΓ, LΓ) be a graph as defined above. Let S, T be two finite
subsets of VΓ. A mapping φ : S → T is a label preserving graph isomorphism if φ is a bijection
and

for all u, v ∈ S, (u, v) ∈ EΓ if and only if (φ(u), φ(v)) ∈ EΓ;
for all u, v ∈ S, LΓ ((u, v)) = LΓ ((φ(u), φ(v))).

Let A be a finite alphabet and Γ a graph. The set of mappings from VΓ to A, denoted
AΓ, is the set of configurations over Γ. Endowed with the prodiscrete topology, the set AΓ is
compact and metrizable. If S ⊂ VΓ is a finite and connected set of vertices, a pattern with
support S is a mapping p : S → A. A pattern p : S → A appears in a configuration x ∈ AG
(resp. in a pattern p′ : S′ → A) if there exists a finite set of vertices T ⊂ VΓ (resp. T ⊂ S′)
and a label preserving graph isomorphism φ : S → T such that pu = xφ(u) (resp. pu = p′φ(u))
for every u ∈ S. In this case, we denote p @ x (resp. p @ p′).

A subshift XF ⊂ AΓ is a set of configurations that avoid some set of forbidden patterns
F , i.e. XF :=

{
x ∈ AΓ | no pattern of F appears in x

}
. This notion extends the classical

definition of subshift for group actions to arbitrary graphs. A subshift of finite type (SFT) is
a subshift for which F can be chosen finite – equivalently, an SFT may also be defined by a
finite set of allowed patterns. In the case where the support of all the forbidden patterns in
F consist of two vertices connected by an edge, we say XF is a nearest neighbor subshift.

Given a graph Γ and a finite alphabet A, a pattern as defined above can be encoded by a
finite graph, which is an induced finite subgraph of Γ, with labels on edges and letters from
A on vertices. This is what is meant in the sequel by coding of a pattern.

Let Γ be a graph in the previous sense. The domino problem for Γ is defined as the set
DP(Γ) of codings of finite sets of forbidden patterns F such that XF 6= ∅. If the set DP(Γ) is
recursive, we say that Γ has decidable domino problem.

3 Substitutions, orbits and tilings

Inspired by [9], we associate a tiling of R2 to the orbit of an infinite word w ∈ AZ under the
action of a substitution, in which every tile codes a production rule of the substitution.

3.1 Substitution systems
We first define parent functions, which will be used to give precise descriptions of orbits of
infinite words under the action of a substitution. A parent function P : Z → Z is an onto
and non-decreasing function. In particular, such a function P satisfies that for every i ∈ Z,
P (i+ 1)− P (i) ∈ {0, 1}.

A non-deterministic substitution is a couple (A, R) where A is a finite alphabet and
R ⊂ A × A∗ is a finite set called the relation, and whose elements are called production
rules. We say that an infinite word ω ∈ AZ produces the word ω′ ∈ AZ with respect to
the parent function P if for every i ∈ Z, one has (ωi, ω′|P−1(i)) ∈ R, where ω′|P−1(i) is the
finite subword of ω′ that appears on indices {j ∈ Z | P (j) = i}. In this case, by abuse
of notation, we denote (ω, ω′) ∈ R. An orbit of a non-deterministic substitution (A, R) is
a set

{
(ωi, Pi)

}
i∈Z ∈

(
AZ × ZZ)Z such that for every i ∈ Z, Pi is a parent function, and

the word ωi produces the word ωi+1 with respect to Pi. A deterministic substitution (or
substitution for short) is a non-deterministic substitution where the relation is a function. A

MFCS 2019

46:4 The Domino Problem on Surface Groups

non-deterministic substitution (A, R) has an expanding eigenvalue if there exist λ > 1 and
v : A → R>0 such that for every (a,w) ∈ R if we write w = w1w2 . . . w|w| we have,

λ · v(a) =
|w|∑
i=1

v(wi).

I Example 2. The substitution given by the production rule 0 7→ 00 has an expanding
eigenvalue. This can be verified by choosing λ = 2 and v(0) = 1.

I Example 3. The substitution σgold given by the production rules a 7→ aab, b 7→ ba has an
expanding eigenvalue. This can checked with λ = 3+

√
5

2 and v(a) = 1+
√

5
2 , v(b) = 1.

3.2 Orbits as tilings of R2

Let (A, R) be a non-deterministic substitution with an expanding eigenvalue λ > 1 and
v : A → R>0. For every production rule (a,w) ∈ R, define the (a,w)-tile in position
(x, y) ∈ R2 as the square polygon with |w|+ 3 edges pictured below, where w = w1 . . . wk
(horizontal edges are curved to be more visible, but are in fact just straight lines).

•

• •

•• • •

(a,w)-tile

(x, y)

(x, y − log(λ))

v(a) · ey

log(λ)

1
λv(w1) · ey 1

λv(w2) · ey
. . .
. . .

. . . 1
λv(wk) · ey

I Remark 4. The length of the top edge and the sum of lengths of bottom edges of this tile
are the same. Since (A, R) has an expanding eigenvalue λ > 1 with v, one has

k∑
j=1

1
λ
v(wi) · ey = ey

λ
· λ · v(a) = v(a) · ey,

so that the bottom right vertex (x + 1
λ (v(w1) + · · ·+ v(wk)) ey, y − log(λ)) is indeed (x +

v(a) · ey, y − log(λ)).

The (A, R)-tiles is the set of all (a,w)-tiles in position (x, y) for all possible (a,w) ∈ R
and (x, y) ∈ R2. A tiling of R2 with (A, R)-tiles, or (A, R)-tiling for short, is a countable
collection of (A, R)-tiles that covers R2 and have pairwise disjoint interiors, such that tiles
are edge-to-edge –the intersection of two tiles is either empty or a full edge and two vertices.
In Figure 2 we illustrate a σgold-tiling (in blue) and a 0 7→ 00-tiling (in grey).

I Proposition 5. If a substitution (A, R) with an expanding eigenvalue admits orbits, then
there exists a tiling of R2 with (A, R)-tiles.

N. Aubrun, S. Barbieri, and E. Moutot 46:5

4 Undecidability of the domino problem on orbit graphs

Let u = (ui)i∈Z be a bi-infinite sequence of positive integers. The accumulation function of
u is the function ∆: Z→ Z given by

∆(i) =


∑i−1
k=0 uk if i ≥ 1

0 if i = 0
−
∑−1
k=i uk if i ≤ −1

.

Note that the family of discrete intervals (Ik)k∈Z where Ik = [∆(k); ∆(k+ 1)− 1] forms a
partition of Z. If P is a parent function, and if we define the sequence u by ui = |P−1(i)|
for every i ∈ Z, then we get that P (j) = i for every j ∈ [∆(i); ∆(i+ 1)− 1], where ∆ is the
accumulation function of u.

Let (A, R) be a non-deterministic substitution. Denote M = max(a,w)∈R |w|.

I Definition 6. The orbit graph associated with the orbit Ω =
{

(ωi, Pi)
}
i∈Z of (A, R) is the

graph ΓΩ with set of vertices Z2, edges EΩ and labeling function LΩ : EΩ → {next}∪[0;M−1]
given by

for every i, j ∈ Z, ((i, j), (i, j + 1)) ∈ EΩ and LΩ (((i, j), (i, j + 1))) = next;
for every i ∈ Z and every k ∈ [∆i+1(j); ∆i+1(j + 1) − 1], ((i, j), (i + 1, k)) ∈ EΩ and
LΩ (((i, j), (i+ 1, k))) = k −∆i+1(j),

where ∆i is the accumulation function associated with
(
|P−1
i (j)|

)
j∈Z for every i ∈ Z.

•

• •

•

• • • •

•

• • •

(0,−1)

(1,∆1(−1))

(1,∆1(0)− 1)

0 1

(0, 0)

(1,∆1(0))

(1,∆1(0) + 1)

(1,∆1(0) + 2)

(1,∆1(1)− 1)

0 1 2 3

(0, 1)

(1,∆1(1))

(1,∆1(1) + 1)

(1,∆1(2)− 1)

0 1 2

Figure 1 Part of an orbit graph. Dashed arrow are edges of the graph labeled with next.

In this formalism, Kari’s result for the hyperbolic plane [15] is equivalent to the statement
that all orbit graphs of the one-letter substitution 0 7→ 00 have undecidable domino problem.

I Theorem 7 (Kari [15]). For all orbit graphs of the substitution ({0}, 0 7→ 00) the domino
problem is undecidable.

The goal of this section is to show that the domino problem of any orbit graph associated
to an orbit of a non-deterministic substitution (A, R) with an expanding eigenvalue λ is
undecidable. The general idea is to show that, given any SFT over an orbit graph of 0 7→ 00, it
is possible to encode it in an orbit graph of (A, R). We do this in two steps. First (Section 4.1),
we show a variation of the “Technical Lemma” of Cohen and Goodman-Strauss [9], where we
prove that it is possible to encode the structure of orbit graphs of 0 7→ 00 in an SFT over
(A, R). Then (Section 4.2), we prove that in addition to the structure of its orbit graph, it is
also possible to encode any SFT over orbit graphs of 0 7→ 00 in an SFT over (A, R).

MFCS 2019

46:6 The Domino Problem on Surface Groups

4.1 Superposition of orbits

Let us fix a non-deterministic substitution (A, R) with an expanding eigenvalue λ > 2
– this latter assumption ensures that letters of an alphabet B described below are non-
degenerate, and will be suppressed later. Without loss of generality, we may choose the
function v : A → R>0 associated to λ such that v(a) > 4 for each a ∈ A.

Let Ω be an orbit of (A, R). We shall construct a finite alphabet B and a finite set of
forbidden patterns F such that the subshift Y ⊂ BΓΩ over orbit graph ΓΩ, defined by the set
of forbidden patterns F has the following properties:

1. Y is non-empty,

2. every configuration y ∈ Y encodes an orbit graph of the substitution ({0}, 0 7→ 00).

Consider an orbit Ω of (A, R) and Φ an orbit of ({0}, 0 7→ 00). By Proposition 5 both of
these orbits can be realized as tilings of R2. Symbols from B will encode non-empty finite
regions of the tiling with ({0}, 0 7→ 00) that are witnessed by (A, R)-tiles. These regions will
be chosen in such a way that their union recovers the whole tiling and they are pairwise
disjoint (see Figure 2).

•

• • •

•

• • •

• •

•

• • •

•

• • •

•

• •

•

• • •

•

• • •

• • • • •

• • • • • • • • • • • • • • •

Figure 2 ΓΦ (in black) superimposed over an orbit graph of (A, R) (in blue) leads to the
construction of the subshift Y ⊂ BΓΩ : letters of the alphabet B are blocks of the orbit graph ΓΦ, such
as

• •
or • • • .A careful examination shows that dimensions of blocks in B are bounded: if

(t, h) denotes the width and height of a block in B, we get that mina∈Ab v(a)
4 c ≤ t ≤ maxa∈Ab1+ v(a)

2 c
and log(λ)

log(2) − 1 < h ≤ log(λ)
log(2) + 1. Thus B is finite, and the assumption λ > 2 and v(a) > 4 ensures

that blocks have non-degenerate dimensions.

The set of forbidden patterns F is the finite set of patterns that do not correspond to a
valid encoding of the orbit graph of ({0}, 0 7→ 00). In other words, we allow only patterns in
which the finite regions of ({0}, 0 7→ 00) that are encoded are consistent from one neighbor
to one other. We thus obtain an SFT Y on ΓΩ which encodes Φ and is non-empty.

I Lemma 8. For every orbit Ω of (A, R) the subshift of finite type Y ⊂ BΓΩ is non-empty.

N. Aubrun, S. Barbieri, and E. Moutot 46:7

4.2 Simulation of SFTs over of 0 7→ 00 on orbit graphs of (A, R)
Let Ω and Φ be orbits of (A, R) and ({0}, 0 7→ 00) respectively, and ΓΩ, ΓΦ be orbit graphs of
Ω and Φ respectively. Let Σ be a finite alphabet and FΣ a set of nearest neighbor forbidden
patterns on ΓΦ over the alphabet Σ. We denote by XΣ the SFT defined by forbidden patterns
FΣ. In order to encode XΣ into ΓΩ, we use the same method as above for Y , but enrich the
patterns of 0 7→ 00 with colors taken from Σ. We then construct forbidden patterns that
ensure that no forbidden patterns from FΣ appear.

More formally, we define BΣ as the set of pairs (b, pb) such that b ∈ B and pb : Γb → Σ
is a pattern. For a pattern p on ΓΩ with alphabet BΣ denote by πB(p) the restriction to
the first coordinate of BΣ. And denote by q(p) : ΓπB(p) → Σ the pattern over ({0}, 0 7→ 00)
whose support is the graph ΓπB(p) and is obtained by pasting together the corresponding
patterns pb on the second coordinate of BΣ.

Define FB,Σ as the set of all patterns p over the alphabet BΣ which have supports which
consist in three vertices {u, v, w} in ΓΩ such that (u, v), (u,w) are edges, L((u, v)) = next
and L((u,w)) = ` for some ` appearing in the parent matching labels of the orbit graph ΓΩ,
and that satisfy one of the following two properties:
1. The pattern πB(p) obtained by restricting p to the first coordinate of BΣ is in F ;
2. The pattern q(p) obtained by pasting the patterns of p described by the second coordinate

of BΣ contains a forbidden pattern from FΣ.

Clearly FB,Σ has finitely many patterns (up to label preserving graph isomorphism). For
any orbit Ω of (A, R) we define the subshift of finite type YΣ ⊂ (BΣ)ΓΩ as the set of all
colorings of ΓΩ by BΣ where no pattern from FB,Σ appears.

This construction leads to the following Lemma, expressing the fact that XΣ is indeed
encoded into YΣ.

I Lemma 9. Let XΣ be the subshift on ΓΦ with alphabet Σ defined by the nearest neighbor
forbidden patterns FΣ and let YΣ ⊂ (BΣ)ΓΩ be defined as above. Then YΣ = ∅ if and only if
XΣ = ∅.

I Remark 10. The alphabet BΣ and the set of forbidden patterns FB,Σ which define YΣ only
depend upon Σ, FΣ and the substitution (A, R), and not on the choice of the orbit Ω of
(A, R).

I Theorem 11. The domino problem is undecidable on any orbit graph of a non-deterministic
substitution with an expanding eigenvalue.

Proof. Let us first assume that the expanding eigenvalue λ associated to (A, R) satisfies
λ > 2. Let Σ and FΣ be respectively an alphabet and a nearest neighbor set of forbidden
patterns for an orbit graph ΓΦ of an orbit Φ of ({0}, 0 7→ 00) which define a nearest neighbor
SFT XΣ. By Lemma 9 we know that XΣ = ∅ if and only if YΣ = ∅. Furthermore, we claim
that the alphabet and set of forbidden patterns which define YΣ can be constructed effectively
from Σ and FΣ. Indeed, the subshift Y does not depend upon Σ and thus its alphabet B and
forbidden patterns F can be hard-coded in the algorithm. It is easy to see that from B one
can effectively construct the alphabet BΣ and the forbidden patterns FB,Σ which define YΣ.

These two facts together show that if DP(ΓΩ) is decidable and λ > 2, then so is DP(ΓΦ).
Using the result of Kari (Theorem 7) we have that DP(ΓΦ) is undecidable, hence DP(ΓΩ) is
also undecidable.

For the case where 1 < λ ≤ 2, we consider the relation Rm defined recursively by:
R1 = R.

MFCS 2019

46:8 The Domino Problem on Surface Groups

Rk+1 is the set of all pairs (a, (c11 . . . c1`1)(c21 . . . c2`2) . . . (c1k . . . c1`k
)) in A × A∗ for which

there is a pair (a, b1 . . . bk) ∈ Rk such that (bi, ci1 . . . ci`i
) ∈ R for each i ∈ {1, . . . , k}.

In other words, Rm is the set of all relations that can be obtained by starting with a symbol
a ∈ A and replacing m times each letter by the right hand side of a production rule of R. Let
n ∈ N such that λn > 2 and note that the substitution (A, Rn) has the expanding eigenvalue
λn > 2. Lemma 9 then provides an encoding of the substitution ({0}, 0 7→ 00) on orbit
graphs of (A, Rk) for any k ∈ {0, . . . , n− 1}, in the form of SFTs Y n,kΣ such that Y n,kΣ = ∅ if
and only if XΣ = ∅. Then we are able to build an SFT Z on ΓΩ which encodes a copy of
Y k,nΣ for each k ∈ {0, . . . , n− 1}. One can verify that Z = ∅ if and only if XΣ = ∅, leading
to the same reduction as in the case λ > 2. J

5 The domino problem for surface groups

A fundamental result of geometry is that up to homeomorphism, closed orientable surfaces
are completely classified by their genus g: any such surface is either homeomorphic to a
sphere or to a finite connected sum of tori. In this section we shall classify the domino
problem of their fundamental groups.

5.1 Surface groups
The surface group of genus g is the group defined by the following presentation:

Gg = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]〉,

where [a, b] = aba−1b−1 is the commutator of a and b. It is interesting to notice that
Z2 = 〈a, b | aba−1b−1〉 is the surface group of genus 1, and hence by Berger’s result [5] its
associated domino problem is undecidable.

The domino problem for a finitely generated group is known to be a commensurability
invariant [6, Corollary 9.53]. It turns out that all surface groups of genus g ≥ 2 are
commensurable [8, Proposition 6.7]. By combining these two facts, it would be enough to
prove the undecidability of the domino problem for just the surface group of genus 2. In
the sequel, we shall denote by G the surface group of genus 2, i.e. the group with finite
presentation

G = 〈a, b, c, d | [a, b][c, d]〉,

denote by S the symmetric closure of its generating set {a, b, c, d}, and by 1G its identity.

The Cayley graph of G associated with the presentation above is not an orbit graph of
some substitution with an expanding eigenvalue, but can be seen as such just by assigning
different labels to the edges. Moreover we shall see that these labels can be obtained locally,
which means that we can code the relabeling inside an SFT.

5.2 Finding a substitution in the surface group of genus 2
The goal of this section is to establish a parallel between the Cayley graph of the surface
group CG := Γ(G,S) and the orbit graph of a particular substitution.

The group G has only one relation [a, b][c, d] = 1G. Thus the only minimal cycles of the
Cayley graph are cyclic permutations of [a, b][c, d]. We call them elementary cycles. Moreover,
any edge in the Cayley graph is part of at least one elementary cycle, since all generators and
their inverses appear in the relation. Let d(g, h) be the smallest number of elementary cycles

N. Aubrun, S. Barbieri, and E. Moutot 46:9

that must be crossed to go from g to h in CG. Let Bi = {g ∈ G | d(1G, g) ≤ i} be the ball of
radius i and Ci = {g ∈ G | d(1G, g) = i} be the sphere of radius i, so that Bi+1 \Bi = Ci+1.

Consider an element g ∈ Ci for i ≥ 1. There are exactly two elements s ∈ S such that
gs ∈ Ci. There can be either (a) one or (b) none s ∈ S so that gs ∈ Ci−1. We must
therefore have that there are 5 and 6 values s ∈ S such that gs ∈ Ci+1 for types (a) and
(b) respectively. More precisely, it can be verified that the sequence of elements of Ci+1
that is obtained by following an elementary cycle from an element of type (a) in Ci has
the type sequence ab5ab5ab5ab5ab4 and the sequence of types for an element of type (b) is
ab5ab5ab5ab5ab5ab4.

This leads us to define the substitution s : {a, b} → {a, b}∗ given by{
s(a) = (ab5)4ab4

s(b) = (ab5)5ab4.

From now on, we fix Ω =
(
ωi, Pi

)
i∈Z an orbit of the substitution s defined above, and

denote by Γ its associated orbit graph. Let us note that s admits an expanding eigenvalue
(λ = 17 + 12

√
2 and v(b)/v(a) = 1+

√
2

2).
The similarities between the two graphs will allow us to perform a reduction from the

domino problem on Γ (shown to be undecidable in Section 4) to the domino problem on the
surface group of genus 2. In order to do this reduction, all we need is a computable map
which sends sets of pattern codings over Γ into sets of pattern codings over CG such that the
sets defining a non-empty subshift are mapped into sets defining a non-empty subshift and
vice-versa. This is not trivial because some of the edges are lost going from Γ to CG. In order
to recover those edges, we shall construct an SFT X over G which locally recovers the lost
information and use it to build the bijection needed for the reduction. Note that technically
we do not need an SFT to do so, a computable bijection would be enough. However doing it
with an SFT provides a locally computable mapping, which is a nice bonus.

Definition of X

To define the SFT X, we introduce a notion of directions that corresponds to following edges
of the orbit graph. These directions depend on the element of the group we consider, but
can nevertheless be defined by local rules. The alphabet of X contains the correspondence
between generators and local directions. More formally, we first consider the general alphabet
A0, consisting of the tuples (c, (h1, d1), (h2, d2), . . . , (h8, d8)) such that

c ∈ {�,�} is the color of the cell,
(h1, . . . , h8) is a permutation of S ∪ S−1 = {a, a−1, b, b−1, c, c−1, d,−1 },
d1, . . . , d8 ∈ {←,→, ↑, ↓1, ↓2, ↓3, ↓4, ↓5, ↓6} the directions associated to each generator.

Let x ∈ AG0 be a configuration over A0. For every g ∈ G, if the first coordinate of xg is
c = � (resp. �), we call xg a black (resp. white) cell.

The alphabet A1 ⊆ A0 is made of three types of elements with more precise directions
imposed, depending on the color c:

(�, (h1,←), (h2,→), (h3, ↑), (h4, ↓1), (h5, ↓2), (h6, ↓3), (h7, ↓4), (h8, ↓5))

(�, (h1,←), (h2,→), (h3, ↓1), (h4, ↓2), (h5, ↓3), (h6, ↓4), (h7, ↓5), (h8, ↓6))

Black cells have directions left, right, up and down, whereas whites ones have only left, right
and down. Note that for black and white cells, up, left and right are unique. We can then
define their top, left and right neighbors.

MFCS 2019

46:10 The Domino Problem on Surface Groups

I Definition 12. Let x ∈ AG1 be a configuration over A1 and g ∈ G. We define:
gh1 the left neighbor of g in x, denoted by ←x(g),
gh2 is the right neighbor of g in x, denoted by →x(g),
if xg is a black cell, gh3 is the top neighbor of g in x, denoted by ↑x(g),
for i ∈ {1, ..., 5}, gh3+i (for a white cell, i ∈ {1, ..., 6}, gh2+i) is the i-th bottom neighbor
of g in x, denoted by ↓i,x(g).

Using local rules, we forbid elementary cycles that do not have the colors shown on
Figure 3. We also impose the orientations to be as drawn. For example, the right of a is g2,
its top is g−1

1 , and the other directions of a are not constrained by this cycle. Similarly, the
left of b is g−1

2 , its right g3 and other directions unconstrained. To do so, we call F1 the set
of all elementary cycles that are not of the form of Figure 3.

∗

a
g2

b
g3 g4 g5 g6 g7

g1 g8

∗
g8 ∗

a
g2

b
g3 g4 g5 g6

g1 g7

Figure 3 The two possible types of colorings of cycles. There are no color constraints on ∗ , and
the cycle g1 . . . g8 is any cyclic permutation of [a, b][c, d].

We add the constraint that directions must be consistent between adjacent cells, by
forbidding the finite set F2 , which is the set of patterns on the support {1G, h} for h ∈ G,
such that x1G

and xh are linked by mismatching directions. That is,

F2 =

pattern p of support{1G, h}

∣∣∣∣∣∣∣∣∣∣
←p(1G) = h and →p(h) 6= 1G or
→p(1G) = h and ←p(h) 6= 1G or
↑p(1G) = h and ∀i, ↓i,p(h) 6= 1G or

∃i, ↓i,p(1G) = h and ↑p(h) 6= 1G

 .

We define X as the set of all configurations over A1 where no forbidden patterns from F1∪F2
appear. By definition, X is an SFT.

The subshift of finite type X

We construct a configuration x in the SFT X ⊂ AG1 as the limit of a sequence of configurations
(yn)n∈N of another SFT X2 ⊂ (A1 ∪ {orange})G, where

orange :=
(
�, (a, ↓1), (a−1, ↓2), (b, ↓3), (b−1, ↓4), (c, ↓5), (c−1, ↓6), (d, ↓7), (d−1, ↓8)

)
,

and we extend the definition of neighbors consistently. X2 is defined by F1 ∪ F2 the same
finite set of forbidden patterns as X. Intuitively, because the letter orange has only bottom
neighbors, an orange cell can only appear once in a configuration of X2. Moreover, one can
build bigger and bigger circles around the orange cell by simply sticking elementary cycles
around, colored as on Figure 3, leading to the following lemma.

I Lemma 13. For every i, there exists a pattern pi ∈ (A1 ∪ {orange})Bi containing no
forbidden patterns of F and such that (pi)g is an orange cell if and only if g = 1G.

From Lemma 13, we can build a configuration y in X2 that contains only one orange cell
at the origin. And from it, we can deduce the non-emptiness of X.

N. Aubrun, S. Barbieri, and E. Moutot 46:11

I Proposition 14. The subshift X is non-empty.

Proof. By compactness of (A1 ∪ {orange})G and Lemma 13, there exists a configuration
y ∈ X2 which coincides with the pattern pi on Bi for all i ∈ N. In particular, the orange cell
appears only at the origin. The SFT X consists of all configurations on X2 where the orange
tile does not appear. By definition of y, we can find arbitrarily large regions where � does
not appear at all. We can then extract a sequence of configurations (yn)n∈N of X2 such that
the orange cell does not appear in (yn)|Bn

. Any accumulation point of the sequence (yn)n∈N
does not contain the orange cell and is thus in X. J

If we carefully look at configurations in X, we observe that they are all structured with
infinite lines of → and ←. Moreover these infinite lines can be ordered with no ambiguity.
This is expressed in Lemma 15: any element g of G can be reached from the identity 1G by
first going to the appropriate infinite line, and then moving to the left or right up to g. Fix
some x ∈ X, and define →−1

x (g) :=←x(g) and ↓−1
1,x(g) :=↑x(g).

I Lemma 15. For any g ∈ G, there exists i, j such that g =→j
x◦ ↓i1,x(1G).

Proof idea. The key idea here is that we can always reorder the operations by taking another
way in the graph. Starting from any path from 1G to g, we can transform it into this “normal
form” by taking a longer path that uses only ↓1 then → operations. J

5.2.1 A bijection between Z2 and the surface group
Let x ∈ X be fixed. We define fx : Z2 → G by fx(i, j) =→j

x◦ ↓i1,x(1G) for every i, j ∈ Z.

I Lemma 16. For every x ∈ X, the function fx is a bijection.

Proof idea. It is enough to show that for any group element g ∈ G, there exist uniquely
defined i, j ∈ Z such that g =→j

x◦ ↓i1,x(1G). The key ingredient to prove the uniqueness of
this representation is to notice that any cycle in the Cayley graph of G contains as many
↑ as ↓ operations, which can be proven by induction on the size of the cycle and a careful
examination of different cases. J

We can moreover prove that fx also preserves locality, in the sense that neighborhoods
are almost preserved, as stated in the following lemma.

I Lemma 17. The following equivalences are true:

1.
{

(u, v) ∈ EΓ

LΓ(u, v) = next
⇔ fx(v) =→x(fx(u))

2.
{

(u, v) ∈ EΓ

LΓ(u, v) = k ∈ {0, . . . ,M − 1}
⇔ fx(v) =→k

x◦ ↓1,x(fx(u))

where M is the number of sons of u.

The bijection fx itself cannot be a label preserving graph isomorphism, since we lack
some edges of Γ in CG, but it nevertheless enjoys a useful property: if ϕ is a label preserving
graph isomorphism for Γ, then so is fx ◦ϕ ◦ f−1

x for CG,x, and if ϕ is a label preserving graph
isomorphism for CG,x, then so is f−1

x ◦ϕ ◦ fx for Γ, where CG,x is a relabeling of Cg according
to the configuration x. So roughly speaking, any local pattern is preserved by fx or by f−1

x .

I Corollary 18. Let A be a finite alphabet. For any configuration c ∈ AG,
p @ c⇒ f−1

x (p) @ f−1
x (c). Conversely for any d ∈ AΓ, q @ d⇒ fx(q) @ fx(d).

MFCS 2019

46:12 The Domino Problem on Surface Groups

5.3 The reduction
We now have everything in hand to prove the undecidability of the domino problem on the
surface group of genus 2.

I Theorem 19. The domino problem is undecidable on the surface group of genus 2.

Proof. Recall that Γ is the orbit graph of an orbit of the substitution s defined on page 9.
Let A be a finite alphabet and Y ⊆ AΓ an SFT over Γ, given by a finite set of forbidden
patterns FY . We define Z the SFT over G with set of forbidden patterns FZ := fx(FY),
where fx is defined in Lemma 16. We prove that Z = ∅ if and only if Y = ∅.

Assume Z = ∅ and consider a configuration c ∈ AG. The configuration d := f−1(c) is
thus in AΓ. Since Z = ∅, necessarily c contains a forbidden pattern p from the set FZ . Since
p @ c, Corollary 18 implies that f−1

x (p) @ f−1
x (c) = d. So a pattern f−1

x (p) from FY appears
in any configuration c ∈ AG, i.e. the subshift Y is empty. Similar arguments show that if Y
is empty then so is Z, and the reduction is completed. J

I Corollary 20. The domino problem is undecidable for every surface group of positive genus.

Proof. The undecidability of the domino problem is a commensurability invariant [6, Corol-
lary 9.53], and all surface groups of genus g ≥ 2 are commensurable [8, Proposition 6.7]. By
combining these two facts with Theorem 19, we obtain the undecidability of domino problem
for surface groups of any genus g ≥ 2. As the domino problem on Z2 –the surface group of
genus 1– is undecidable, we obtain our result. J

6 Remarks about word-hyperbolic groups

Surface groups of genus g ≥ 2 are special cases of a larger class of groups called word-hyperbolic.
They can be characterized as the finitely presented groups for which Dehn’s algorithm solves
the word problem. An important property of the domino problem is that groups which
contain subgroups with undecidable domino problem have themselves undecidable domino
problem [6, Proposition 9.3.30]. This means that every group which contains an embedded
copy of a surface group has undecidable domino problem. This is of special relevance due to
the following conjecture by Gromov.

I Conjecture 21 (Gromov). Every one-ended word-hyperbolic group contains an embedded
copy of the surface group of genus 2.

In particular, if Gromov’s conjecture holds, every one-ended word-hyperbolic group would
automatically have undecidable domino problem. A group can have either 0, 1, 2 or infinitely
many ends. In the case when it has 0 ends it is finite and thus its domino problem is trivially
decidable, and whenever it has 2 ends it is virtually Z and thus it is also decidable. In the
case of a finitely presented group G, a fundamental result by Dunwoody [11] shows that if G
has infinitely many ends it can be expressed as the fundamental group of a finite graph of
groups such that every edge is a finite group and all vertices are either finite or 1-ended. It
can also be shown [16] that G is virtually free if and only if all of the vertex groups in its
decomposition are finite. Therefore, if G is not virtually free, it must contain a one-ended
subgroup. In the case of word-hyperbolic groups, every such group in the decomposition
must also be word-hyperbolic [7]. In other words, every word-hyperbolic group which is not
virtually free contains a one-ended word-hyperbolic group. This implies the following.

N. Aubrun, S. Barbieri, and E. Moutot 46:13

I Proposition 22. If Gromov’s conjecture holds then the domino problem conjecture holds
for all word-hyperbolic groups.

In fact, we could obtain the same result with an even weaker version of Gromov’s
conjecture. We say a group G acts translation-like on a metric space (X, d) if the action
is free and supx∈X d(x, gx) <∞ for every g ∈ G. Clearly, if H is a subgroup of G then H
acts translation like on any Cayley graph of G by multiplication. A theorem by Jeandel [14]
shows that if a finitely presented group H acts translation like on a Cayley graph of a finitely
generated group G, then the domino problem of H is many-one reducible to the domino
problem on G, in particular, we obtain that any group on which the surface group of genus 2
acts translation-like has undecidable domino problem.

I Proposition 23. If every 1-ended word-hyperbolic group admits a translation-like action of
the surface group of genus 2, then the domino problem conjecture holds for all word-hyperbolic
groups.

References
1 Nathalie Aubrun and Jarkko Kari. Tiling Problems on Baumslag-Solitar groups. In MCU’13,

pages 35–46, 2013.
2 Alexis Ballier and Emmanuel Jeandel. Tilings and model theory. First Symposium on Cellular

Automata Journées Automates Cellulaires., 2008.
3 Alexis Ballier and Maya Stein. The domino problem on groups of polynomial growth. Groups,

Geometry, and Dynamics, 12(1):93–105, March 2018. doi:10.4171/ggd/439.
4 Sebastián Barbieri and Mathieu Sablik. The Domino Problem for Self-similar Structures.

In Pursuit of the Universal, pages 205–214. Springer International Publishing, 2016. doi:
10.1007/978-3-319-40189-8_21.

5 Robert Berger. The Undecidability of the Domino Problem. PhD thesis, Harvard University,
1964.

6 Valérie Berthé and Michel Rigo, editors. Sequences, Groups, and Number Theory. Springer
International Publishing, 2018. doi:10.1007/978-3-319-69152-7.

7 Brian H. Bowditch. Cut points and canonical splittings of hyperbolic groups. Acta Mathematica,
180(2):145–186, 1998. doi:10.1007/bf02392898.

8 Vaughn Climenhaga and Anatole Katok. From Groups to Geometry and Back (Student
Mathematical Library). American Mathematical Society, 2017.

9 David Cohen and Chaim Goodman-Strauss. Strongly aperiodic subshifts on surface groups.
Groups, Geometry, and Dynamics, 11(3):1041–1059, 2017. doi:10.4171/ggd/421.

10 David Bruce Cohen. The large scale geometry of strongly aperiodic subshifts of finite type.
Advances in Mathematics, 308:599–626, 2017.

11 Martin J. Dunwoody. The accessibility of finitely presented groups. Inventiones Mathematicae,
81(3):449–457, October 1985. doi:10.1007/bf01388581.

12 Chaim Goodman-Strauss. A hierarchical strongly aperiodic set of tiles in the hyperbolic plane.
Theoretical Computer Science, 411(7):1085–1093, 2010. doi:10.1016/j.tcs.2009.11.018.

13 Emmanuel Jeandel. Aperiodic Subshifts on Polycyclic Groups. CoRR, abs/1510.02360, 2015.
URL: http://arxiv.org/abs/1510.02360.

14 Emmanuel Jeandel. Translation-like Actions and Aperiodic Subshifts on Groups. CoRR,
abs/1508.06419, 2015. URL: http://arxiv.org/abs/1508.06419.

15 Jarkko Kari. On the Undecidability of the Tiling Problem. In Current Trends in Theory and
Practice of Computer Science (SOFSEM), pages 74–82, 2008.

16 Abraham Karrass, Alfred Pietrowski, and Donald Solitar. Finite and infinite cyclic extensions
of free groups. Journal of the Australian Mathematical Society, 16(04):458, December 1973.
doi:10.1017/s1446788700015445.

MFCS 2019

https://doi.org/10.4171/ggd/439
https://doi.org/10.1007/978-3-319-40189-8_21
https://doi.org/10.1007/978-3-319-40189-8_21
https://doi.org/10.1007/978-3-319-69152-7
https://doi.org/10.1007/bf02392898
https://doi.org/10.4171/ggd/421
https://doi.org/10.1007/bf01388581
https://doi.org/10.1016/j.tcs.2009.11.018
http://arxiv.org/abs/1510.02360
http://arxiv.org/abs/1508.06419
https://doi.org/10.1017/s1446788700015445

46:14 The Domino Problem on Surface Groups

17 Dietrich Kuske and Markus Lohrey. Logical aspects of Cayley-graphs: the group case. Annals
of Pure and Applied Logic, 131(1–3):263–286, 2005. doi:10.1016/j.apal.2004.06.002.

18 Douglas A Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.

19 Maurice Margenstern. The domino problem of the hyperbolic plane is undecidable. Theoretical
Computer Science, 407(1-3):29–84, November 2008. doi:10.1016/j.tcs.2008.04.038.

20 David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata, and second-order
logic. Theoretical Computer Science, 37(0):51–75, 1985. doi:10.1016/0304-3975(85)90087-8.

21 Raphael M Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones
Mathematicae, 12:177–209, 1971.

22 Hao Wang. Proving theorems by pattern recognition II. Bell System Technical Journal,
40(1-3):1–41, 1961.

https://doi.org/10.1016/j.apal.2004.06.002
https://doi.org/10.1016/j.tcs.2008.04.038
https://doi.org/10.1016/0304-3975(85)90087-8

P-Optimal Proof Systems for Each NP-Set but no
Complete Disjoint NP-Pairs Relative to an Oracle
Titus Dose
Julius-Maximilians-Universität Würzburg, Germany

Abstract
Pudlák [17] lists several major conjectures from the field of proof complexity and asks for oracles
that separate corresponding relativized conjectures. Among these conjectures are:

DisjNP: The class of all disjoint NP-pairs has no many-one complete elements.
SAT: NP contains no many-one complete sets that have P-optimal proof systems.
UP: UP has no many-one complete problems.
NP ∩ coNP: NP ∩ coNP has no many-one complete problems.

As one answer to this question, we construct an oracle relative to which DisjNP, ¬SAT, UP, and
NP∩coNP hold, i.e., there is no relativizable proof for the implication DisjNP∧UP∧NP∩coNP ⇒ SAT.
In particular, regarding the conjectures by Pudlák this extends a result by Khaniki [9]. Since Khaniki
[9] constructs an oracle showing that the implication SAT ⇒ DisjNP has no relativizable proof, we
obtain that the conjectures DisjNP and SAT are independent in relativized worlds, i.e., none of the
implications DisjNP ⇒ SAT and SAT ⇒ DisjNP can be proven relativizably.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Proof complexity; Theory of computation → Oracles and decision trees

Keywords and phrases NP-complete, proof systems, disjoint NP-pair, oracle, UP

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.47

Related Version A full version [4] of the paper is available at https://arxiv.org/abs/1904.06175.

1 Introduction

The main motivation for the present paper is an article by Pudlák [17] that is “motivated
by the problem of finding finite versions of classical incompleteness theorems”, investigates
major conjectures in the field of proof complexity, discusses their relations, and draws
new connections between the conjectures. Among others, Pudlák conjectures the following
assertions (note that within the present paper all reductions are polynomial-time-bounded):

CON (resp., SAT): coNP (resp., NP) contains no many-one complete sets that have
P-optimal proof systems
CONN: coNP contains no many-one complete sets that have optimal proof systems,
(note that CONN is the non-uniform version of CON)
DisjNP (resp., DisjCoNP): The class of all disjoint NP-pairs (resp., coNP-pairs) has no
many-one complete elements,
TFNP: The class of all total polynomial search problems has no complete elements,
NP ∩ coNP (resp., UP): NP ∩ coNP (resp., UP, the class of problems accepted by NP
machines with at most one accepting path for each input) has no many-one complete
elements.

The following figure contains the conjectures by Pudlák and illustrates the state of the
art regarding (i) known implications and (ii) separations in terms of oracles that prove the
non-existence of relativizable proofs for implications. O denotes the oracle constructed in
the present paper.

© Titus Dose;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.47
https://arxiv.org/abs/1904.06175
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

DisjNP

CONN UP

CON

CON ∨ SAT

P 6= NP

NP ∩ coNP SAT

TFNP

DisjCoNP
[5]

[5]

[3]

O

O

O

[9]

[6]

[13]

Figure 1 Solid arrows mean implications. All implications in the graphic can be proven with
relativizable proofs. A dashed arrow from A to B means that there is an oracle X against the
implication A ⇒ B, i.e., relative to X, it holds A ∧ ¬B. Pudlák [17] also defines the conjecture RFN1

and lists it between CON ∨ SAT and P 6= NP, i.e., CON ∨ SAT ⇒ RFN1 ⇒ P 6= NP. Khaniki [9] even
shows CON ∨ SAT ⇔ RFN1, which is why we omit RFN1 in the figure.

The main conjectures of [17] are CON and TFNP. Let us give some background on these
conjectures (for details we refer to [16]) and on the notion of disjoint pairs. The first main
conjecture CON refers to the notion of proof systems introduced by Cook and Reckhow [2],
who define a proof system for a set A to be a polynomial-time computable function whose
range is A. The remainder of this paragraph originates from [5]. CON has an interesting
connection to some finite version of an incompleteness statement. Denote by ConT (n) the
finite consistency of a theory T , i.e., ConT (n) is the statement that T has no proofs of
contradiction of length ≤ n. Krajícek and Pudlák [12] raise the conjectures CON and CONN

and show that the latter is equivalent to the statement that there is no finitely axiomatized
theory S which proves the finite consistency ConT (n) for every finitely axiomatized theory T
by a proof of polynomial length in n. In other words, ¬CONN expresses that a weak version
of Hilbert’s program (to prove the consistency of all mathematical theories) is possible [15].
Correspondingly, ¬CON is equivalent to the existence of a theory S such that, for any fixed
theory T , proofs of ConT (n) in S can be constructed in polynomial time in n [12].

The conjecture TFNP was raised by Megiddo and Papadimitriou, is implied by the non-
existence of disjoint coNP-pairs [1, 17], and implies that no NP-complete set has P-optimal
proof systems [1, 17]. It states the non-existence of total polynomial search problems that
are complete with respect to polynomial reductions.

The notion of disjoint NP-pairs, i.e., pairs (A,B) with A ∩B = ∅ and A,B ∈ NP, was
introduced by Grollman and Selman [7] in order to characterize promise problems. Razborov
[18] connects it with the concept of propositional proof systems (pps), i.e., proof systems
for the set of propositional tautologies TAUT, defining for each pps f a disjoint NP-pair,
the so-called canonical pair of f , and showing that the canonical pair of an optimal pps f is
complete. Hence, DisjNP⇒ CONN.

In contrast to the many implications only very few oracles were known separating two
of the relativized conjectures [17], which is why Pudlák asks for further oracles showing
relativized conjectures to be different.

Khaniki [9] partially answers this question: besides proving two of the conjectures to
be equivalent, he presents two oracles V and W showing that SAT and CON (just as TFNP

T. Dose 47:3

and CON) are independent in relativized worlds, which means that none of the two possible
implications between the two conjectures has a relativizable proof. To be more precise,
relative to V, there exist P-optimal propositional proof systems but no many-one complete
disjoint coNP-pairs, where, as mentioned above, the latter implies TFNP and SAT. Relative
to W , there exist no P-optimal propositional proof systems and each total polynomial search
problem has a polynomial-time solution, where the latter implies ¬SAT [10].

Dose and Glaßer [5] construct an oracle X that also separates some of the above relativized
conjectures. Relative to X there exist no many-one complete disjoint NP-pairs, UP has
many-one complete problems, and NP ∩ coNP has no many-one complete problems. In
particular, relative to X, there do not exist P-optimal propositional proof systems. Thus,
among others, X shows that the conjectures CON and UP as well as NP ∩ coNP and UP
cannot be proven equivalent with relativizable proofs.

In another paper [3], the author adds one more oracle to this list proving that there is no
relativizable proof for the implication TFNP⇒ DisjCoNP.

Our Contribution

In the present paper we construct an oracle O relative to which
1. The class of all disjoint NP-pairs has no many-one complete elements.
2. NP contains no many-one complete sets that have P-optimal proof systems.
3. UP has no many-one complete problems.
4. NP ∩ coNP has no many-one complete problems.
Indeed, relative to O there even exist no disjoint NP-pairs hard for NP∩ coNP, which implies
both 1 and 4. Among others, the oracle shows that there are no relativizable proofs for the
implications NP ∩ coNP⇒ SAT and UP⇒ SAT. Let us now focus on the properties 1 and 2
of the oracle. Regarding these, our oracle has similar properties as the aforementioned oracle
W by Khaniki [9]: both oracles show that there is no relativizable proof for the implication
CON⇒ SAT. Relative to Khaniki’s oracle W it even holds that each total polynomial search
problem has a polynomial time solution, which implies not only ¬SAT but also that all
optimal proof systems for SAT are P-optimal [10]. Regarding Pudlák’s conjectures, however,
our oracle O extends Khaniki’s result as relative to O we have the even stronger result
that there is no relativizable proof for the implication DisjNP ⇒ SAT. Since due to the
oracle V by Khaniki [9] none of the implications DisjCoNP⇒ DisjNP, TFNP⇒ DisjNP, and
SAT⇒ DisjNP can be proven relativizably, our oracle shows that DisjNP is independent of
each of the conjectures DisjCoNP, TFNP, and SAT in relativized worlds, i.e., none of the six
possible implications has a relativizable proof.

2 Preliminaries

Major parts of this section are copied from our paper [5] coauthored by Christian Glaßer.
Throughout this paper let Σ be the alphabet {0, 1}. We denote the length of a word w ∈ Σ∗
by |w|. Let Σ≤n = {w ∈ Σ∗ | |w| ≤ n} and Σ>n = {w ∈ Σ∗ | |w| > n}. The empty word
is denoted by ε and the i-th letter of a word w for 0 ≤ i < |w| is denoted by w(i), i.e.,
w = w(0)w(1) · · ·w(|w| − 1). If v is a prefix of w, i.e., |v| ≤ |w| and v(i) = w(i) for all
0 ≤ i < |v|, then we write v v w. For any finite set Y ⊆ Σ∗, let `(Y) df=

∑
w∈Y |w|.

Z denotes the set of integers, N denotes the set of natural numbers, and N+ = N− {0}.
The set of primes is denoted by P = {2, 3, 5, . . .} and P≥3 denotes the set P− {2}.

We identify Σ∗ with N via the polynomial-time computable, polynomial-time invertible
bijection w 7→

∑
i<|w|(1 + w(i))2|w|−1−i, which is a variant of the dyadic encoding. Hence,

notations, relations, and operations for Σ∗ are transferred to N and vice versa. In particular,

MFCS 2019

47:4 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

|n| denotes the length of n ∈ N. We eliminate the ambiguity of the expressions 0i and 1i by
always interpreting them over Σ∗.

Let 〈·〉 :
⋃
i≥0 Ni → N be an injective, polynomial-time computable, polynomial-time

invertible pairing function such that |〈u1, . . . , un〉| = 2(|u1|+ · · ·+ |un|+ n).
Given two sets A and B, A − B denotes the set difference between A and B. The

complement of a set A relative to the universe U is denoted by A = U − A. The universe
will always be apparent from the context. Furthermore, the symmetric difference is denoted
by 4, i.e., A4B = (A−B) ∪ (B −A) for arbitrary sets A and B.

The domain and range of a function t are denoted by dom(t) and ran(t), respectively.
FP, P, and NP denote standard complexity classes [14]. Define coC = {A ⊆ Σ∗ | A ∈ C}

for a class C. UP is the class of all problems accepted by nondeterministic polynomial-time
Turing machines with at most one accepting path for each input. If A,B ∈ NP (resp.,
A,B ∈ coNP) and A ∩ B = ∅, then we call (A,B) a disjoint NP-pair (resp., a disjoint
coNP-pair). The set of all disjoint NP-pairs (resp., coNP-pairs) is denoted by DisjNP (resp.,
DisjCoNP). We also consider all these complexity classes in the presence of an oracle O and
denote the corresponding classes by FPO, PO, NPO, and so on.

Let M be a Turing machine. MD(x) denotes the computation of M on input x with
D as an oracle. For an arbitrary oracle D we let L(MD) = {x | MD(x) accepts}. For
a deterministic polynomial-time Turing transducer (i.e., a Turing machine computing a
function), depending on the context, FD(x) either denotes the computation of F on input x
with D as an oracle or the output of this computation.

I Definition 1. A sequence (Mi)i∈N+ is called standard enumeration of nondeterministic,
polynomial-time oracle Turing machines, if it has the following properties:
1. All Mi are nondeterministic, polynomial-time oracle Turing machines.
2. For all oracles D and all inputs x the computation MD

i (x) stops within |x|i + i steps.
3. For every nondeterministic, polynomial-time oracle Turing machine M there exist in-

finitely many i ∈ N such that for all oracles D it holds that L(MD) = L(MD
i).

4. There exists a nondeterministic, polynomial-time oracle Turing machine M such that
for all oracles D and all inputs x it holds that MD(〈i, x, 0|x|i+i〉) nondeterministically
simulates the computation MD

i (x).
Analogously we define standard enumerations of deterministic, polynomial-time oracle Turing
transducers.

Throughout this paper, we fix some standard enumerations. Let M1,M2, . . . be a standard
enumeration of nondeterministic polynomial-time oracle Turing machines. Then for every
oracle D, the sequence (Mi)i∈N+ represents an enumeration of the languages in NPD, i.e.,
NPD = {L(MD

i) | i ∈ N}, where as usual a computation MD
i (x) accepts if and only if it has

at least one accepting path. Let F1, F2, . . . be a standard enumeration of polynomial time
oracle Turing transducers. By the properties of standard enumerations, for each oracle D
the following problem is NPD-complete (in particular it is in NPD):

KD = {〈0i, 0t, x〉 |MD
i (x) accepts within t steps}.

Let D be an oracle and A,B,A′, B′ ⊆ Σ∗ such that A∩B = A′∩B′ = ∅. In this paper we
always use the following reducibility for disjoint pairs [18]. (A′, B′) is polynomially many-one
reducible to (A,B), denoted by (A′, B′)≤pp,D

m (A,B), if there exists f ∈ FPD with f(A′) ⊆ A
and f(B′) ⊆ B. If A′ = B′, then we also write A′≤p,D

m (A,B) instead of (A′, B′)≤pp,D
m (A,B).

We say that (A,B) is ≤pp,D
m -hard (≤pp,D

m -complete) for DisjNPD if (A′, B′)≤pp,D
m (A,B)

for all (A′, B′) ∈ DisjNPD (and (A,B) ∈ DisjNPD). Moreover, a pair (A,B) is ≤p,D
m -hard

for NPD ∩ coNPD if A′≤p,D
m (A,B) for every A ∈ NPD ∩ coNPD.

T. Dose 47:5

I Definition 2 ([2]). A function f ∈ FP is called proof system for the set ran(f). For
f, g ∈ FP we say that f is simulated by g (resp., f is P-simulated by g) denoted by f ≤ g

(resp., f ≤p g), if there exists a function π (resp., a function π ∈ FP) and a polynomial p
such that |π(x)| ≤ p(|x|) and g(π(x)) = f(x) for all x. A function g ∈ FP is optimal (resp.,
P-optimal), if f ≤ g (resp., f ≤p g) for all f ∈ FP with ran(f) = ran(g). Corresponding
relativized notions are obtained by using PO, FPO, and ≤p,O in the definitions above.

The following proposition states the relativized version of a result by Köbler, Messner, and
Torán [11], which they show with a relativizable proof.

I Proposition 3 ([11]). For every oracle O, if A has a PO-optimal (resp., optimal) proof
system and B≤p,O

m A, then B has a PO-optimal (resp., optimal) proof system.

I Corollary 4. For every oracle O, if there exists a ≤p,O
m -complete A ∈ NPO that has a

PO-optimal (resp., optimal) proof system, then all sets in NPO have PO-optimal (resp.,
optimal) proof systems.

Let us introduce some notations that are designed for the construction of oracles [5]. The
support supp(t) of a real-valued function t is the subset of the domain that consists of all
values that t does not map to 0. We say that a partial function t is injective on its support if
t(i, j) = t(i′, j′) for (i, j), (i′, j′) ∈ supp(t) implies (i, j) = (i′, j′). If a partial function t is
not defined at point x, then t ∪ {x 7→ y} denotes the extension of t that at x has value y.

If A is a set, then A(x) denotes the characteristic function at point x, i.e., A(x) is 1
if x ∈ A, and 0 otherwise. An oracle D ⊆ N is identified with its characteristic sequence
D(0)D(1) · · · , which is an ω-word. In this way, D(i) denotes both, the characteristic function
at point i and the i-th letter of the characteristic sequence, which are the same. A finite word
w describes an oracle that is partially defined, i.e., only defined for natural numbers x < |w|.
We can use w instead of the set {i | w(i) = 1} and write for example A = w ∪B, where A
and B are sets. For nondeterministic oracle Turing machines M we use the following phrases:
a computation Mw(x) definitely accepts, if it contains a path that accepts and the queries
on this path are < |w|. A computation Mw(x) definitely rejects, if all paths reject and all
queries are < |w|. For a nondeterministic Turing machine M we say that the computation
Mw(x) is defined, if it definitely accepts or definitely rejects. For a polynomial time oracle
transducer F , the computation Fw(x) is defined, if all queries are < |w|.

3 Oracle Construction

The following lemma is a slightly adapted variant of a result from [5].

I Lemma 5. For all y ≤ |w| and all v w w it holds y ∈ Kv ⇔ y ∈ Kw.

I Theorem 6. There exists an oracle O such that the following statements hold:
DisjNPO contains no pairs that are ≤p,O

m -hard for NPO ∩ coNPO.
Each L ∈ NPO has PO-optimal proof systems.
UPO contains no ≤p,O

m -complete problems.
Observe that the first of the three statements implies that both DisjNPO contains no
≤pp,O

m -complete pairs and NPO ∩ coNPO contains no ≤p,O
m -complete problems.

MFCS 2019

47:6 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

Proof. Let D be a (possibly partial) oracle and p (resp., q) be in P3 (resp., P1). We define

ADp := {0p
k

| k ∈ N+,∃
x∈Σpkx ∈ D and x odd} ∪ {0pk | k ∈ N+}

BDp := {0p
k

| k ∈ N+,∃
x∈Σpkx ∈ D and x even}

CDq := {0q
k

| k ∈ N+,∃
x∈Σqkx ∈ D}

Note that ADp , BDp ∈ NPD and ADp = BDp if |Σpk ∩D| = 1 for each k ∈ N+. In that case
ADp ∈ NPD ∩ coNPD. Moreover, CDq ∈ UPD if and only if |Σqk ∩D| ≤ 1 for each k ∈ N+.

For the sake of simplicity, let us call a pair (Mi,Mj) an NPD ∩ coNPD-machine if
L(MD

i) = L(MD
j). For i ∈ N+ and x, y ∈ N we write c(i, x, y) := 〈0i, 0|x|i+i, x, y〉. Thus,

|c(i, x, y)| is even. Note that throughout this proof we sometimes omit the oracles in the
superscript, e.g., we write NP or Ap instead of NPD or ADp . However, we do not do that in
the “actual” proof but only when explaining ideas in a loose way in order to give the reader
the intuition behind the occasionally very technical arguments.
Preview of construction. We sketch some of the very basic ideas our construction uses.
1. For all positive i 6= j the construction tries to achieve that (Mi,Mj) is not an NP∩ coNP-

machine. If this is not possible, then (L(Mi), L(Mj)) inherently is an NP∩coNP-machine.
Once we know this, we choose some odd prime p and diagonalize against all FP-functions
such that Ap = Bp and Ap is not ≤p

m-reducible to (L(Mi), L(Mj)).
2. For all i ≥ 1 the construction intends to make sure that Fi is not a proof system for K.

If this is not possible, then Fi inherently is a proof system for K and then we start to
encode the values of Fi into the oracle. However, it is important to also allow encodings
for functions that are not known to be proof systems for K yet. Regarding the P-optimal
proof systems, our construction is based on ideas by Dose and Glaßer [5].

3. For all i ≥ 1 the construction tries to ensure that Mi is not a UP-machine. If this is not
possible, we know that Mi inherently is a UP machine, which enables us to diagonalize
against all FP-functions so that Cq for some q that we choose is not reducible to L(Mi).

B Claim 7. Let w ∈ Σ∗ be an oracle, i ∈ N+, and x, y ∈ N such that c(i, x, y) ≤ |w|. Then
the following holds.
1. Fwi (x) is defined and Fwi (x) < |w|.
2. Fwi (x) ∈ Kw ⇔ Fwi (x) ∈ Kv for all v w w.

During the construction we maintain a growing collection of requirements that is repre-
sented by a partial function belonging to the set

T =
{
t : N+ ∪ (N+)2 → Z | dom(t) is finite, t is injective on its support,

t(N+) ⊆ {0} ∪ N+

t({(i, i) | i ∈ N+}) ⊆ {0} ∪ {−q | q ∈ P1}
t({(i, j) ∈ (N+)2 | i 6= j}) ⊆ {0}∪{−p | p ∈ P3}

}
.

A partial oracle w is called t-valid for t ∈ T if it satisfies the following properties.
V1 For all i ∈ N+ and all x, y ∈ N, if c(i, x, y) ∈ w, then Fwi (x) = y ∈ Kw.

(meaning: if the oracle contains the codeword c(i, x, y), then Fwi (x) outputs y ∈ Kw;
hence, c(i, x, y) ∈ w is a proof for y ∈ Kw)

V2 For all distinct i, j ∈ N+, if t(i, j) = 0, then there exists x such that Mw
i (x) and Mw

j (x)
definitely accept.
(meaning: for every extension of the oracle, (L(Mi), L(Mj)) is not a disjoint NP-pair.)

T. Dose 47:7

V3 For all distinct i, j ∈ N+ with t(i, j) = −p for some p ∈ P3 and each k ∈ N+, it holds (i)
|Σpk ∩ w| ≤ 1 and (ii) if w is defined for all words of length pk, then |Σpk ∩ w| = 1.
(meaning: if t(i, j) = −p, then ensure that Ap = Bp (i.e., Ap ∈ NP ∩ coNP) relative to
the final oracle.)

V4 For all i ∈ N+ with t(i) = 0, there exists x such that Fwi (x) is defined and Fwi (x) /∈ Kv

for all v w w.
(meaning: for every extension of the oracle, Fi is not a proof system for K)

V5 For all i ∈ N+ and x ∈ N with 0<t(i)≤c(i, x, Fwi (x))< |w|, it holds c(i, x, Fwi (x)) ∈ w.
(meaning: if t(i) > 0, then from t(i) on, we encode the values of Fi into the oracle.
Note that V5 is not in contradiction with e.g. V3 or V7 as |c(·, ·, ·)| is even.)

V6 For all i ∈ N+ with t(i, i) = 0, there exists x such that Mw
i (x) is defined and has two

accepting paths.
(meaning: for every extension of the oracle, Mi is not a UP-machine.)

V7 For all i ∈ N+ with t(i, i) = −q ∈ P1 and each k ∈ N+, it holds |Σqk ∩ w| ≤ 1.
(meaning: if t(i, i) = −q, ensure that Cq is in UP.)

B Claim 8. Let t, t′ ∈ T such that t′ is an extension of t. For all oracles w ∈ Σ∗, if w is
t′-valid, then w is t-valid.

B Claim 9. Let t ∈ T and u, v, w ∈ Σ∗ be oracles such that u v v v w and both u and w
are t-valid. Then v is t-valid.

Oracle construction. Let T be an enumeration of
⋃3
i=1(N+)i having the property that

(i, j) appears earlier than (i, j, r) for all i, j, r ∈ N+. Each element of T stands for a task.
We treat the tasks in the order specified by T and after treating a task we remove it and
possibly other tasks from T . We start with the nowhere defined function t0 and the t0-valid
oracle w0 = ε. Then we define functions t1, t2, . . . in T such that ti+1 is an extension of ti
and partial oracles w0 vp w1 vp w2 vp . . . such that each wi is ti-valid. Finally, we choose
O =

⋃∞
i=0 wi (note that O is totally defined since in each step we strictly extend the oracle).

We describe step s > 0, which starts with a ts−1-valid oracle ws−1 and extends it to a ts-valid
ws wp ws−1 (it will be argued later that all these steps are indeed possible). Let us recall that
each task is immediately deleted from T after it is treated.

Task i: Let t′ = ts−1 ∪ {i 7→ 0}. If there exists a t′-valid v wp ws−1, then let ts = t′ and
ws = v. Otherwise, let ts = ts−1 ∪ {i 7→ |ws−1|} and choose ws = ws−1b for b ∈ {0, 1}
such that ws is ts-valid.
(meaning: try to ensure that Fi is not a proof system for K. If this is impossible, require
that the values of Fi are encoded into the oracle.)
Task (i, j) with i 6= j: Let t′ = ts−1 ∪ {(i, j) 7→ 0}. If there exists a t′-valid v wp ws−1,
then let ts = t′ as well as ws = v and delete all tasks (i, j, ·) from T . Otherwise, let
z = |ws−1|, choose p ∈ P3 greater than |z| and all p′ with p′ ∈ P≥3 and −p′ ∈ ran(ts−1),
let ts = ts−1 ∪ {(i, j) 7→ −p}, and choose ws = ws−1b for b ∈ {0, 1} such that ws is
ts-valid.
(meaning: try to ensure that (L(Mi), L(Mj)) is not a disjoint NP-pair. If this is impossible,
choose a sufficiently large prime p. It will be made sure later that Ap does not reduce to
(L(Mi), L(Mj)).)
Task (i, j, r) with i 6= j: It holds ts−1(i, j) = −p for a prime p ∈ P3, since otherwise, this
task would have been deleted in the treatment of task (i, j). Define ts = ts−1 and choose
a ts-valid ws wp ws−1 such that for some n ∈ N+ one of the following two statements
holds:

MFCS 2019

47:8 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

0n ∈ Avp for all v w ws and Mws
i (Fwsr (0n)) definitely rejects.

0n ∈ Bvp for all v w ws and Mws
j (Fwsr (0n)) definitely rejects.

(meaning: make sure that it does not hold Ap≤p
m(L(Mi), L(Mj)) via Fr)

Task (i, i): Let t′ = ts−1∪{(i, i) 7→ 0}. If there exists a t′-valid v wp ws−1, then let ts = t′ as
well as ws = v and delete all tasks (i, i, ·) from T . Otherwise, let z = |ws−1|, choose q ∈ P1
greater than |z| and all p′ with p′ ∈ P≥3 and −p′ ∈ ran(ts−1), let ts = ts−1∪{(i, i) 7→ −q},
and choose ws = ws−1b for b ∈ {0, 1} such that ws is ts-valid.
(meaning: try to ensure that Mi is not a UP-machine. If this is impossible, choose a
sufficiently large prime q. It will be made sure later that Cq does not reduce to L(Mi).)
Task (i, i, r): It holds ts−1(i, j) = −q for a prime q ∈ P1, since otherwise, this task would
have been deleted in the treatment of task (i, i). Define ts = ts−1 and choose a ts-valid
ws wp ws−1 such that for some n ∈ N+ one of the following conditions holds:

0n ∈ Cvq for all v w ws and Mws
i (Fwsr (0n)) definitely rejects.

0n /∈ Cvq for all v w ws and Mws
i (Fwsr (0n)) definitely accepts.

(meaning: make sure that it does not hold Cq≤p
mL(Mi) via Fr)

We now show that the construction is possible. For that purpose, we first describe how a
valid oracle can be extended by one bit such that it remains valid.

B Claim 10. Let s ∈ N and w ∈ Σ∗ be a ts-valid oracle with w w ws. It holds for z = |w|:
1. If z = c(i, x, y) for i ∈ N+ and x, y ∈ N, 0 < ts(i) ≤ z, and Fwi (x) = y, then y ∈ Kv for

all v w w.
2. There exists b ∈ {0, 1} such that wb is ts-valid. In detail, the following statements hold.

a. If |z| is odd and for all p ∈ P and k ∈ N+ with −p ∈ ran(ts) it holds |z| 6= pk, then w0
and w1 are ts-valid.

b. If there exist p ∈ P3 and k ∈ N+ with −p ∈ ran(ts) such that |z| = pk, z 6= 1pk , and
w ∩ Σpk = ∅, then w0 and w1 are ts-valid.

c. If there exist p ∈ P3 and k ∈ N+ with −p ∈ ran(ts) such that z = 1pk and w∩Σpk = ∅,
then w1 is ts-valid.

d. If there exist q ∈ P1 and k ∈ N+ with −q ∈ ran(ts) such that |z| = qk and w∩Σqk = ∅,
then w0 and w1 are ts-valid.

e. If z = c(i, x, y) for i ∈ N+ and x, y ∈ N, 0 < ts(i) ≤ z, and Fwi (x) = y, then w1 is
ts-valid and Fw1

i (x) = y.
f. In all other cases (i.e., none of the assumptions in (a)–(e) holds) w0 is ts-valid.

In order to show that the above construction is possible, assume that it is not possible
and let s > 0 be the least number such that it fails in step s.

If step s treats a task t ∈ N+ ∪ (N+)2, then ts−1(t) is not defined, since the value of t is
defined in the unique treatment of the task t. If ts(t) is chosen to be 0, then the construction
clearly is possible. Otherwise, due to the choice of ts(t), the ts−1-valid oracle ws−1 is even
ts-valid and Claim 10 ensures that there exists a ts-valid ws−1b for some b ∈ {0, 1}. Hence,
the construction does not fail in step s, a contradiction.

For the remainder of the proof that the construction above is possible we assume that
step s treats a task (i, j, r) ∈ (N+)3. We treat the cases i = j and i 6= j simultaneously
whenever it is possible. Recall that in the case i = j we work for the diagonalization ensuring
that L(Mi) is not a complete UP-set and in the case i 6= j we work for the diagonalization
ensuring that the pair (L(Mi), L(Mj)) is not hard for NP ∩ coNP.

In any case, ts = ts−1 and ts(i, j) = −p for some p ∈ P≥3 (recall p ∈ P1 if i = j and
p ∈ P3 if i 6= j). Let γ(x) = (xr + r)i+j + i+ j and choose n = pk for some k ∈ N+ such that

22n−2 > 2n+1 · γ(n) (1)

T. Dose 47:9

and ws−1 is not defined for any word of length n. Note that γ(n) is not less than the running
time of each of the computations MD

i (FDr (0n)) and MD
j (FDr (0n)) for any oracle D.

We define u w ws−1 to be the minimal ts-valid oracle that is defined for all words of
length < n. Such an oracle exists by Claim 10.2. Moreover, for z ∈ Σn, let uz wp u be the
minimal ts-valid oracle that contains z and that is defined for all words of length ≤ γ(n). By
Claim 10.2, such oracles exist and uz ∩Σn = {z} (in detail, the second part follows from (2b,
2c, and 2f) or (2d and 2f) depending on whether p ∈ P3 or p ∈ P1, for the first part we also
need that each valid oracle can be extended by one bit without losing its validity).

B Claim 11. Let z ∈ Σn.
1. For each α ∈ uz ∩ Σ>n one of the following statements holds.

α = 1p′κ for some p′ ∈ P3 with −p′ ∈ ran(ts) and some κ > 0.
α = c(i′, x, y) for some i′, x, y ∈ N with i′ > 0, 0 < ts(i′) ≤ c(i′, x, y), Fuzi′ (x) = y, and
y ∈ Kuz .

2. For all p′ ∈ P3 with −p′ ∈ ran(ts) and all κ > 0, if n < p′
κ ≤ γ(n), then uz∩Σp′κ = {1p′κ}.

Proof. 1. Let α ∈ uz ∩ Σ>n. Moreover, let u′ be the prefix of uz that has length α, i.e., α is
the least word that u′ is not defined for. In particular, it holds u′ ∩ Σ≤n = uz ∩ Σ≤n and
thus, z ∈ u′. As u v u′ v uz and both u and uz are ts-valid, Claim 9 yields that u′ is also
ts-valid. Let us apply Claim 10.2 to the oracle u′. If one of the cases 2a, 2b, 2d, and 2f can
be applied, then u′0 is ts-valid and can be extended to a ts-valid oracle u′′ with |u′′| = |uz|
by Claim 10.2. As u′′ and uz agree on all words < α and α ∈ u′′ − uz, we obtain z ∈ u′′ and
u′′ < uz. This is a contradiction to the choice of uz (recall that uz is the minimal ts-valid
oracle that is defined for all words of length ≤ γ(n) and contains z).

Hence, by Claim 10.2, either (i) α = 1p′κ for some p′ ∈ P3 and κ > 0 with −p′ ∈ ran(ts)
or (ii) α = c(i′, x, y) for i′, x, y ∈ N, i′ > 0, 0 < ts(i′) ≤ α, and Fu′

i′ (x) = y. In the latter
case Fu′

i′ (x) is defined by Claim 7 and y ∈ Kv for all v w u′ by Claim 10.1, which implies
Fuzi′ (x) = y ∈ Kuz .

2. As −p′ ∈ ran(ts) and uz is ts-valid, V3 yields that there exists β ∈ Σp′κ ∩ uz. Let β
be the minimal element of Σp′κ ∩ uz. It suffices to show β = 1p′κ . For a contradiction, we
assume β < 1p′κ . Let u′ be the prefix of uz that is defined for exactly the words of length
< p′

κ. Then u v u′ v uz and both u and uz are ts-valid. Then by Claim 9, the oracle u′
is ts-valid as well. By Claim 10.2 u′ can be extended to a ts-valid oracle u′′ that satisfies
|u′′| = |uz| and u′′ ∩ Σp′κ = {1p′κ}. The last property guarantees that u′′ < uz because
β ∈ uz − u′′ and the oracles u′′ and uz agree on all words smaller than β. As furthermore
z ∈ u′′, we obtain a contradiction to the choice of uz. This finishes the proof of Claim 11.

C

We study the case that for some odd (resp., even) z ∈ Σn the computation Muz
i (Fuzr (0n))

(resp., Muz
j (Fuzr (0n))) rejects. Then it even definitely rejects since uz is defined for all words

of length γ(n). If i 6= j, then p ∈ P3 and since z ∈ uz, we have 0n ∈ Avp for all v w uz (resp.,
0n ∈ Bvp for all v w uz if z is even). Analogously, if i = j, then p ∈ P1 and as z ∈ uz, we
have 0n ∈ Cvp for all v w uz. Hence, in all these cases we can choose ws = uz and obtain a
contradiction to the assumption that step s of the construction fails.

Therefore, for the remainder of the proof that the construction is possible we assume
the following: For each z ∈ Σn odd (resp., even) the computation Muz

i (Fuzr (0n)) (resp.,
Muz
j (Fuzr (0n))) definitely accepts.
Let Uz for z ∈ Σn odd (resp., z ∈ Σn even) be the set of all those oracle queries of the

least accepting path ofMuz
i (Fuzr (0n)) (resp., Muz

j (Fuzr (0n))) that are of length ≥ n. Observe

MFCS 2019

47:10 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

`(Uz) ≤ γ(n). Moreover, define Q0(Uz) := Uz and for m ∈ N, define

Qm+1(Uz) :=
⋃

c(i′,x,y)∈Qm(Uz)
i′,x,y∈N,i′>0

{q ∈ Σ≥n | q is queried by Fuzi′ (x)}.

Let Q(Uz) :=
⋃
m∈NQm(Uz). Note that all words in Q(Uz) have length ≥ n.

B Claim 12. Let z ∈ Σn. Then `(Q(Uz)) ≤ 2`(Uz) ≤ 2γ(n) and for all q ∈ Q(Uz), |q| ≤ γ(n).

Proof. We show that for all m ∈ N, `(Qm+1(Uz)) ≤ 1/2 · `(Qm(Uz)). Then
∑s
m=0

1/2m ≤ 2
for all s ∈ N implies `(Q(Uz)) ≤ 2 · `(Uz). Moreover, from `(Uz) ≤ γ(n) and `(Qm+1(Uz)) ≤
1/2 · `(Qm(Uz)) the second part of the claim follows.

Let m ∈ N and consider an arbitrary element α of Qm(U). If α is not of the form c(i′, x, y)
for i′ ∈ N+ and x, y ∈ N, then α generates no elements in Qm+1(U). Assume α = c(i′, x, y)
for i′ ∈ N+ and x, y ∈ N. The computation Fuzi′ (x) runs for at most |x|i′ + i′ < |α|/2 steps,
where “<” holds by the definition of c(·, ·, ·) and the properties of the pairing function 〈·〉.
Hence, the set of queries Q of Fuzi′ (x) satisfies `(Q) < |α|/2. Consequently,

`(Qm+1(U)) ≤
∑

c(i′,x,y)∈Qm(Uz)
i′,x,y∈N,i′>0

`
(
{q ∈ Σ≥n | q is queried by Fuzi′ (x)}

)

≤
∑

c(i′,x,y)∈Qm(Uz)
i′,x,y∈N,i′>0

|c(i′,x,y)|/2 ≤ `(Qm(Uz))/2,

which finishes the proof of Claim 12. C

For z, z′ ∈ Σn we say that Q(Uz) and Q(Uz′) conflict if there is a word α ∈ Q(Uz) ∩Q(Uz′)
in uz4uz′ . In that case, we say Q(Uz) and Q(Uz′) conflict in α. Note that whenever Q(Uz)
and Q(Uz′) conflict in a word α, then α ∈ uz ∪ uz′ . The next three claims show that for
all z ∈ Σn odd and z′ ∈ Σn even, the sets Q(Uz) and Q(Uz′) conflict in a word of length n.
Indeed, then they conflict in z or z′ as these are the only words of length n in uz ∪ uz′ .

B Claim 13. Let z, z′ ∈ Σn such that z is odd and z′ is even. If Q(Uz) and Q(Uz′) conflict,
then they conflict in a word of length n.

Proof. Let α be the least word in which Q(Uz) and Q(Uz′) conflict. Then α ∈ uz4uz′ . By
symmetry, it suffices to consider the case α ∈ uz − uz′ . For a contradiction, assume that
|α| > n. Then by Claim 11, two situations are possible.

1. Assume α = 1p′κ for p′ ∈ P3 with −p′ ∈ ran(ts) and κ > 0. Then by Claim 11.2,
α ∈ uz′ , a contradiction. Hence, α 6= 1p′κ for all p′ ∈ P3 with −p′ ∈ ran(ts) and κ > 0.

2. Here, α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < ts(i′) ≤ c(i′, x, y) and
Fuzi′ (x) = y ∈ Kuz . By construction, it holds ts(i′) = ts−1(i′) ≤ |ws−1| ≤ |u| < α. Thus,
F
uz′
i′ (x) 6= y, since otherwise, by the ts-validity of uz′ and V5, it would hold α ∈ uz′ .

Consequently, Fuz′
i′ (x) 6= Fuzi′ (x). Hence, there exists a query β that is asked by both Fuzi′ (x)

and Fuz′
i′ (x) and that is in uz4uz′ (otherwise, both computations would output the same

word). By definition of Q(Uz) and Q(Uz′), it holds β ∈ Q(Uz) ∩Q(Uz′). Hence, Q(Uz) and
Q(Uz′) conflict in β and |β| ≤ |x|i′ + i′ < |c(i′, x, y)| = |α|, in contradiction to the assumption
that α is the least word which Q(Uz) and Q(Uz′) conflict in. C

For showing that for all odd z ∈ Σn and all even z′ ∈ Σn the sets Q(Uz) and Q(Uz′)
conflict, we need one more claim. Let t′ be defined such that dom(t′) = dom(ts)−{(i, j)} and
t′(i′, j′) = ts(i′, j′) for (i′, j′) ∈ dom(t′). Then u and uz for z ∈ Σn are t′-valid by Claim 8.

T. Dose 47:11

B Claim 14. Let t ∈ {t′, ts} and z, z′ ∈ Σn such that Q(Uz) and Q(Uz′) do not conflict.
For each t-valid oracle v wp u that is defined for exactly the words of length ≤ n and that
satisfies v(q) = uz(q) for all |v| > q ∈ Q(Uz) and v(q) = uz′(q) for all |v| > q ∈ Q(Uz), there
exists a t-valid oracle v′ wp v with |v′| = |uz|, v′(q) = uz(q) for all |v′| > q ∈ Q(Uz), and
v′(q) = uz′(q) for all |v′| > q ∈ Q(Uz).

Proof. Let w w u with |w| < |uz|, w(q) = uz(q) for all |w| > q ∈ Q(Uz), and w(q) = uz′(q)
for all |w| > q ∈ Q(Uz′). Moreover, let α = |w|. It suffices to show the following:

If α = 0p′κ for some p′ ∈ P3 with −p′ ∈ ran(t) and κ > 0, then there exists a t-valid
w′ wp w that is defined for the words of length p′

κ, undefined for all words of greater
length, and that satisfies w′(q) = uz(q) for all |w′| > q ∈ Q(Uz) and w′(q) = uz′(q) for
all |w′| > q ∈ Q(Uz′).
Note that in this case |w′| ≤ |uz| as uz is defined for exactly the words of length ≤ γ(n).
If α is not of length p′

κ for all p′ ∈ P3 with −p′ ∈ ran(t) and all κ > 0, then there
exists b ∈ {0, 1} such that wb is t-valid, wb(q) = uz(q) for all |wb| > q ∈ Q(Uz) and
wb(q) = uz′(q) for all |wb| > q ∈ Q(Uz′).

We study three cases.
1. Assume α = 0p′κ for some p′ ∈ P3 with −p′ ∈ ran(t) and κ > 0. Then we let w′ wp w

be the minimal oracle that is defined for all words of length p′κ and contains 1p′κ , i.e.,
w′ = w ∪ {1p′κ} when interpreting the oracles as sets. As uz ∩Σp′κ = uz′ ∩Σp′κ = {1p′κ}
by Claim 11.2, we obtain w′(q) = uz(q) for all |w′| > q ∈ Q(Uz) and w′(q) = uz′(q) for
all |w′| > q ∈ Q(Uz′). Moreover, by Claim 10.2b and Claim 10.2c, the oracle w′ is t-valid.

2. Now assume that α = c(i′, x, y) for i′ ∈ N+ and x, y ∈ N with 0 < t(i′) ≤ α such that one
of the conditions Fuzi′ (x) = y and Fuz′

i′ (x) = y holds. By Claim 10.1, then even one of
the two conditions Fuzi′ (x) = y ∈ Kuz and Fuz′

i′ (x) = y ∈ Kuz′ holds. By symmetry, if
suffices to argue for the case Fuzi′ (x) = y ∈ Kuz . Recall that the oracles uz and uz′ are
t-valid. Hence, by V5 and 0 < t(i′) ≤ α < |uz|, it holds α ∈ uz. We consider two cases
depending on whether Fwi′ (x) returns y. In any case, if α ∈ Q(Uz) (resp., α ∈ Q(Uz′)),
then Fwi′ (x) = Fuzi′ (x) (resp., Fwi′ (x) = F

uz′
i′ (x)), since for all queries q of Fuzi′ (x) (resp.,

F
uz′
i′ (x)), it holds q ∈ Q(Uz) (resp., q ∈ Q(Uz′)), |q| ≤ |x|i′ + i′ < |α|, and by assumption,
w(q) = uz(q) (resp., w(q) = uz′(q)).
(i) Assume Fwi′ (x) = y. Choose b = 1. As w is t-valid, 0 < t(i′) ≤ α, and Fwi′ (x) = y,

Claim 10.2e yields that w1 is t-valid. As α ∈ uz, we have w1(q) = uz(q) for all
|w1| > q ∈ Q(Uz). It remains to show that w1(q) = uz′(q) for all |w1| > q ∈ Q(Uz′).
If α /∈ Q(Uz′), this trivially holds. If α ∈ Q(Uz′), then as observed above, Fuz′

i (x) =
Fwi (x) = y. Hence, as uz′ is t-valid and 0 < t′(i′) ≤ α < |uz′ |, it holds α ∈ uz′ by
V5. Thus, w1(q) = uz′(q) for all |w1| > q ∈ Q(Uz′).

(ii) Assume Fwi′ (x) 6= y. Choose b = 0. Then Claim 10.2f states that wb is t-valid.
It holds α /∈ Q(Uz), since otherwise, as observed above, Fwi′ (x) = Fuzi′ (x) = y,
which would yield a contradiction. Thus, wb(q) = uz(q) for all |wb| > q ∈ Q(Uz).
It remains to show wb(q) = uz′(q) for all |wb| > q ∈ Q(Uz′). If α /∈ Q(Uz′),
this trivially holds and otherwise, it also holds, since as observed above, we have
F
uz′
i′ (x) = Fwi′ (x) 6= y, which implies α /∈ uz′ (by V1, α ∈ uz′ would imply
F
uz′
i′ (x) = y).

3. We now consider the remaining cases, i.e., we may assume: (i) α is not of length p′κ for
all p′ ∈ P3 and κ > 0 with −p′ ∈ ran(t) and (ii) if α = c(i′, x, y) for some i′ ∈ N+ and
x, y ∈ N with 0 < t(i′) ≤ α, then none of the conditions Fuzi′ (x) = y and Fuz′

i′ (x) = y

holds.

MFCS 2019

47:12 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

In this case, it holds α /∈ uz ∪ uz′ by Claim 11.1. We choose b = 0 and obtain that
wb(q) = uz(q) for all |wb| > q ∈ Q(Uz) and wb(q) = uz′(q) for all |wb| > q ∈ Q(Uz′).
Moreover, by Claim 10.2, wb is t-valid. This shows Claim 14. J

B Claim 15. For all odd z ∈ Σn and all even z′ ∈ Σn, Q(Uz) and Q(Uz′) conflict.

Proof. Let us first show that α ∈ Q(Uα) for all α ∈ Σn. For a contradiction, assume
α /∈ Q(Uα) for some α ∈ Σn. We study the cases i = j and i 6= j separately.

First assume i = j. In this case p ∈ P1. Let u′ be the oracle that is defined for exactly
the words of length ≤ n and satisfies u′ = u when the oracles are considered as sets. Then u′
is ts-valid by Claim 10.2d and u′ and uα agree on all words in Σn ∩Q(Uα) as uα ∩Σn = {α}
and α /∈ Q(Uα). Thus, we can apply Claim 14 to the oracle u′ for z = z′ = α. Hence, there
exists a ts-valid oracle v satisfying |v| = |uz|, v ∩Σn = ∅, and v(q) = uα(q) for all q ∈ Q(Uα).
By the latter property and the fact that Uα ⊆ Q(Uα) contains all queries asked by the least
accepting path of Muα

i (Fuαr (0n)), this path is also an accepting path of the computation
Mv
i (F vr (0n)). As v is defined for all words of length ≤ γ(n), the computation Mv

i (F vr (0n)) is
defined. Thus, 0n /∈ Cv′

q for all v′ w v and Mv
i (F vr (0n)) definitely accepts, in contradiction

to the assumption that step s of the construction fails.
Now let us consider the case i 6= j. Here p ∈ P3. By symmetry, it suffices to consider

the case that α is odd. Let α′ be the minimal even element of Σn that is not in Q(Uα).
Such α′ exists as it holds 2n−1 > 4(γ(n)) > 2γ(n) by (1), `(Q(Uα)) ≤ 2γ(n) by Claim 12,
and hence, `(Q(Uα)) ≤ 2γ(n) < 2n−1 = |{α′′ ∈ Σn | α′′ even}|. Now choose u′ to be the
oracle that is defined for exactly the words of length ≤ n and that satisfies u′ = u ∪ {α′}
when the oracles are considered as sets. Then u′ is ts-valid by Claim 10.2b and Claim 10.2f.
Moreover, as α, α′ /∈ Q(Uα), the oracles u′ and uα agree on all words in Σn ∩Q(Uα). Thus,
we can apply Claim 14 to the oracle u′ for z = z′ = α and obtain a ts-valid oracle v that
is defined for all words of length ≤ γ(n) and satisfies both v ∩ Σn = {α′} and v(q) = uα(q)
for all q ∈ Q(Uα). The latter property and the fact that Uα ⊆ Q(Uα) contains all queries
asked by the least accepting path of Muα

i (Fuαr (0n)) yield that this path is also an accepting
path of the computation Mv

i (F vr (0n)). As v is defined for all words of length ≤ γ(n), the
computation Mv

i (F vr (0n)) definitely accepts. Let us study two cases depending on whether
Mv
j (F vr (0n)) definitely accepts or definitely rejects (note that this computation is defined as

v is defined for all words of length ≤ γ(n)):
Assume that Mv

j (F vr (0n)) definitely accept. Let s′ be the step that treats the task
(i, j). Hence, s′ < s since ts(i, j) is defined. By Claim 8, the oracle v is ts′−1-valid.
Now, as both Mv

i (F vr (0n)) and Mv
j (F vr (0n)) definitely accept, v is even t′′-valid for

t′′ = ts′−1 ∪ {(i, j) 7→ 0}. But then the construction would have chosen ts′ = t′′ and a
suitable oracle ws′ (e.g., ws′ = v), a contradiction.
Assume that Mv

j (F vr (0n)) definitely rejects. As v ∩ Σn = {α′}, it holds 0n ∈ Bv′

p for all
v′ w v. This is a contradiction to the assumption that step s of the construction fails.

Hence, from now on we may assume that α ∈ Q(Uα) for all α ∈ Σn. Moreover, assume
there are z odd and z′ even such that Q(Uz) and Q(Uz′) do not conflict. Then let u′ wp u
be the minimal oracle that is defined for all words of length ≤ n and contains z and z′, i.e.,
interpreting oracles as sets it holds u′ = u ∪ {z, z′}. Since −p /∈ ran(t′), the oracle u′ is
t′-valid by Claim 10.2a. If Claim 14 cannot be applied to the oracle u′ for z and z′, then
z ∈ Q(Uz′) or z′ ∈ Q(Uz). Since we observed above that z ∈ Q(Uz) and z′ ∈ Q(Uz′) and
moreover, uz ∩Σn = {z} and uz′ ∩Σn = {z′}, in this case Q(Uz) and Q(Uz′) conflict. Hence,
it remains to consider the case that Claim 14 can be applied to the oracle u′ for z and z′.

Applying Claim 14, we obtain a t′-valid v w u′ that is defined for all words of length
≤ γ(n) and that satisfies v(q) = uz(q) for all q ∈ Q(Uz) and v(q) = uz′(q) for all q ∈ Q(Uz′).

T. Dose 47:13

Let s′ be the step in which (i, j) is treated. As ts(i, j) is defined, it holds s′ < s. Hence,
t′ is an extension of ts′−1 and by Claim 8, v is ts′−1-valid. We claim that v is t′′-valid
for t′′ = ts′−1 ∪ {(i, j) 7→ 0}. Once this is proven, we obtain a contradiction as then the
construction would have chosen ts′ = t′′ and an appropriate ws′ (e.g. ws′ = v). Then our
assumption is wrong and for all odd z ∈ Σn and all even z′ ∈ Σn, Q(Uz) and Q(Uz′) conflict.

It remains to prove that v is t′′-valid for t′′ = ts′−1 ∪ {(i, j) 7→ 0}. We study two cases.
Case 1: first we assume that i 6= j, i.e., it suffices to prove thatMv

i (F vr (0n)) andMv
j (F vr (0n))

definitely accept. Recall that Muz
i (Fuzr (0n)) and Muz′

j (Fuz′
r (0n)) definitely accept. More-

over, v(q) = uz(q) for all q ∈ Q(Uz) and v(q) = uz′(q) for all q ∈ Q(Uz′) and in particular,
v is defined for all words in Q(Uz) ∪ Q(Uz′). This implies that the least accepting
paths of Muz

i (Fuzr (0n)) and Muz
i (Fuzr (0n)) are also accepting paths of the computations

Mv
i (F vr (0n)) and Mv

j (F vr (0n)).
Case 2: assume that i = j, i.e., we have to prove that on some input x the computation

Mv
i (x) has two accepting paths. As observed above, z ∈ Q(Uz) and z′ ∈ Q(Uz′). As

Q(Uz) and Q(Uz′) do not conflict, it holds z /∈ Q(Uz′), which implies Q(Uz) 6= Q(Uz′).
Let κ ∈ N be minimal such that Qκ(Uz) 6= Qκ(Uz′) and for a contradiction, assume κ > 0.
Let α ∈ Qκ(Uz)4Qκ(Uz′). Without loss of generality, we assume α ∈ Qκ(Uz)−Qκ(Uz′).
Then there exist i′, x, y ∈ N with i′ > 0 such that c(i′, x, y) ∈ Qκ−1(Uz) and Fuzi′ (x) asks
the query α. By the choice of κ, it holds Qκ−1(Uz′) = Qκ−1(Uz) and thus, c(i′, x, y) ∈
Qκ−1(Uz′). Consequently, all queries of Fuz′

i′ (x) are in Qκ(Uz′). However, α /∈ Qκ(Uz′)
and therefore, α cannot be asked by Fuz′

i′ (x). This shows that there is a word β ∈ uz4uz′

asked by both Fuzi′ (x) and Fuz′
i′ (x) (otherwise, the two computations would ask the same

queries). But then β ∈ Qκ(Uz) ∩Qκ(Uz′), which implies that Q(Uz) and Q(Uz′) conflict,
a contradiction. Hence, we obtain κ = 0 and Uz = Q0(Uz) 6= Q0(Uz′) = Uz′ . Recall that
Uz (resp., Uz′) is the set consisting of all oracle queries of the least accepting path P
(resp., P ′) of the computation Muz

i (Fuzr (0n)) (resp., Muz′
i (Fuz′

r (0n))). As uz(q) = v(q)
for all q ∈ Q(Uz) ⊇ Uz and uz′(q) = v(q) for all q ∈ Q(Uz′) ⊇ Uz′ , the paths P and P ′
are accepting paths of the computation Mv

i (F vr (0n)). Finally, P and P ′ are distinct paths
since Uz 6= Uz′ . This finishes the proof that v is t′′-valid. Hence, the proof of Claim 15 is
complete. J

The remainder of the proof that the construction is possible is based on an idea by
Hartmanis and Hemachandra [8]. Consider the set

E = {{z, z′} | z, z′ ∈ Σn, z odd ⇔ z′ even, (z ∈ Q(Uz′) ∨ z′ ∈ Q(Uz))}

=
⋃
z∈Σn

{{z, z′} | z′ ∈ Σn, z odd⇔ z′ even, z′ ∈ Q(Uz)}. (2)

Let z, z′ ∈ Σn such that (z odd⇔ z′ even). By Claim 15 and Claim 13, Q(Uz) and Q(Uz′)
conflict in a word of length n. Then, as observed above, they conflict in z or z′, i.e., z ∈ Q(Uz′)
or z′ ∈ Q(Uz). This shows E = {{z, z′} | z, z′ ∈ Σn, z odd ⇔ z′ even} and thus, |E| = 22n−2.
By Claim 12, for each z ∈ Σn it holds |Q(Uz)| ≤ `(Q(Uz)) ≤ 2γ(n). Consequently,

|E|
(2)
≤
∑
z∈Σn

|Q(Uz)| ≤ 2n · 2γ(n) = 2n+1 · γ(n)
(1)
< 22n−2 = |E|,

a contradiction to the assumption that the construction fails in step s treating the task
(i, j, r). This shows that the construction is possible and O is well-defined. It remains to
show that DisjNPO contains no pair ≤p,O

m -hard for NPO ∩ coNPO, each problem in NPO has
PO-optimal proof systems, and UPO has no ≤p,O

m -complete problem. As the corresponding
proofs are rather straightforward, we omit them. This completes the proof of Theorem 6. J

MFCS 2019

47:14 P-Optimal Proof Systems for Each NP-Set but no Complete Disjoint NP-Pairs

References
1 O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the existence of

optimal proof systems. Theor. Comput. Sci., 410(38-40):3839–3855, 2009. doi:10.1016/j.
tcs.2009.05.021.

2 S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of
Symbolic Logic, 44:36–50, 1979.

3 T. Dose. Complete Disjoint coNP-Pairs but no Complete Total Polynomial Search Problems
Relative to an Oracle. arXiv e-prints, pages 1–13, March 2019. arXiv:1903.11860.

4 T. Dose. P-Optimal Proof Systems for Each Set in NP but no Complete Disjoint NP-pairs
Relative to an Oracle. arXiv e-prints, pages 1–19, April 2019. arXiv:1904.06175.

5 T. Dose and C. Glaßer. NP-completeness, proof systems, and disjoint NP-pairs. Technical
Report 19-050, Electronic Colloquium on Computational Complexity (ECCC), 2019.

6 C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-Pairs. SIAM Journal on
Computing, 33(6):1369–1416, 2004.

7 J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988.

8 J. Hartmanis and L. A. Hemachandra. Complexity Classes without Machines: On Complete
Languages for UP. Theor. Comput. Sci., 58:129–142, 1988. doi:10.1016/0304-3975(88)
90022-9.

9 E. Khaniki. New relations and separations of conjectures about incompleteness in the finite
domain. arXiv e-prints, pages 1–25, April 2019. arXiv:1904.01362.

10 J. Köbler and J. Messner. Is the Standard Proof System for SAT P-Optimal? In S. Kapoor
and S. Prasad, editors, FSTTCS 2000: Foundations of Software Technology and Theoretical
Computer Science, pages 361–372, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

11 J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise
classes. Information and Computation, 184(1):71–92, 2003.

12 J. Krajícek and P. Pudlák. Propositional Proof Systems, the Consistency of First Order
Theories and the Complexity of Computations. Journal of Symbolic Logic, 54:1063–1079, 1989.

13 M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure properties. Journal
of Computer and System Sciences, 46:295–325, 1993.

14 C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts,
1994.

15 P. Pudlák. On the lengths of proofs of consistency. In Collegium Logicum, pages 65–86.
Springer Vienna, 1996.

16 P. Pudlák. Logical Foundations of Mathematics and Computational Complexity - A Gen-
tle Introduction. Springer monographs in mathematics. Springer, 2013. doi:10.1007/
978-3-319-00119-7.

17 P. Pudlák. Incompleteness in the Finite Domain. The Bulletin of Symbolic Logic, 23(4):405–441,
2017.

18 A. A. Razborov. On provably disjoint NP-pairs. Electronic Colloquium on Computational
Complexity (ECCC), 1(6), 1994.

https://doi.org/10.1016/j.tcs.2009.05.021
https://doi.org/10.1016/j.tcs.2009.05.021
http://arxiv.org/abs/1903.11860
http://arxiv.org/abs/1904.06175
https://doi.org/10.1016/0304-3975(88)90022-9
https://doi.org/10.1016/0304-3975(88)90022-9
http://arxiv.org/abs/1904.01362
https://doi.org/10.1007/978-3-319-00119-7
https://doi.org/10.1007/978-3-319-00119-7

Semicomputable Points in Euclidean Spaces
Mathieu Hoyrup
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
mathieu.hoyrup@inria.fr

Donald M. Stull
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
donald.stull@inria.fr

Abstract
We introduce the notion of a semicomputable point in Rn, defined as a point having left-c.e. projec-
tions. We study the range of such a point, which is the set of directions on which its projections are
left-c.e., and is a convex cone. We provide a thorough study of these notions, proving along the
way new results on the computability of convex sets. We prove realization results, by identifying
computability properties of convex cones that make them ranges of semicomputable points. We
give two applications of the theory. The first one provides a better understanding of the Solovay
derivatives. The second one is the investigation of left-c.e. quadratic polynomials. We show that
this is, in fact, a particular case of the general theory of semicomputable points.

2012 ACM Subject Classification Theory of computation → Computability

Keywords and phrases Semicomputable point, Left-c.e. real, Convex cone, Solovay reducibility,
Genericity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.48

Related Version A full version of the paper is available at https://hal.inria.fr/hal-02154825v1.

Funding Donald M. Stull: Supported by Inria Nancy Grand-Est.

1 Introduction

The general goal of this paper is to improve our understanding of weak notions of computability
in computable analysis. Usually these notions are more difficult to understand than plain
computability, and have a rich theory. For instance we mention the notions of computably
enumerable (c.e.) subsets of N, left-c.e. reals numbers, left-c.e. real functions, c.e. closed
subsets of Rn, co-c.e. closed sets, etc.

A closed subset of Rn is co-c.e. if its complement is a computable union of rational balls.
When a closed set can be described by a few parameters, such as a simple geometrical figure,
what properties must these parameters satisfy to make it a co-c.e. closed set? The case of
filled triangles has been studied in [5], but the case of disks is more challenging.

A function f : R→ R is left-c.e. if there is a program that takes x as input and outputs
better and better approximations of f(x) from the left (with no assumption on the speed
of convergence to f(x)). When a function is described by a few parameters, such as a
polynomial, what properties must these parameters satisfy to make it a left-c.e. function?

The cases of co-c.e. disks and left-c.e. polynomials are surprisingly two instances of a
common framework that we investigate in this paper. In both cases, the object can be
identified with a point in some Euclidean space (for instance, a polynomial is a vector of
coefficients) and the computability notion can be expressed as the point having uniformly
left-c.e. projections in some set of directions (the directions (1, X,X2) in the case of quadratic
polynomials). This observation leads us to introduce and study the notion of a semicomputable
point in Euclidean spaces. It is an extension to several dimensions of a notion introduced

© Mathieu Hoyrup and Donald M. Stull;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 48; pp. 48:1–48:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mathieu.hoyrup@inria.fr
mailto:donald.stull@inria.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.48
https://hal.inria.fr/hal-02154825v1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Semicomputable Points in Euclidean Spaces

in [5] in the plane. In particular we define the semicomputability range of a point as the set
of directions in which it is left-c.e., and investigate the possible sets that can be obtained as
ranges of semicomputable points.

The extension from the plane to higher-dimensional Euclidean spaces is not a straightfor-
ward generalization because many subtleties appear in R3. For instance, the range of a point
is a convex cone, so it is determined by two angles in R2 but can have many different shapes
in R3. Another example is that the operation of taking the conical hull of two convex cones,
while simple in R2, is not as simple in R3 in terms of computability.

The main results of the paper are realizations results: given a convex cone in Rn with
some computability property, there exists a semicomputable point in Rn whose range is
exactly that cone:

Theorem 4.6: every Σ0
2 cone is the range of some semicomputable point. If its closure is

not Π0
2 then the point is non-uniformly left-c.e. in the directions of the cone.

Theorem 4.8: every salient Π0
2 convex cone is the range of some semicomputable point.

Moreover, that point is uniformly left-c.e. in the directions of the cone.

In Section 2.4 we give results about computability of convex sets and convex cones. In
Section 3 we define semicomputable points of Rn and develop a thorough study of this notion.
In particular we define the range of a semicommputable point, which is the set of directions
in which its projections are left-c.e. In Section 4 we prove the main results of the paper, in
which we identify classes of convex cones that can be realized as ranges of semicomputable
points. In Section 5 we use these results to study Solovay derivatives and precisely identify
the possible shapes of the functions S(aX + b, c) and S(aX + b, c) when a, b, c are fixed
and X varies over the computable reals. In Section 6 we investigate the left-c.e. quadratic
polynomials, which can be identified with semicomputable points with a certain range.

2 Background

2.1 Computability in Euclidean spaces
We endow Rn with the inner product 〈x, y〉 =

∑n
i=1 xiyi, where x = (x1, . . . , xn) and y =

(y1, . . . , yn), the associated norm ‖x‖ =
√
〈x, x〉 and the distance d(x, y) = ‖x− y‖. An

open set U ⊆ Rn is effectively open if it is the union of a computable sequence of
rational open balls (centered at rational points with rational radii). Let A ⊆ Rn be a
closed set. A is c.e. closed if A contains a dense computable sequence, or equivalently the
function x 7→ d(x,A) = miny∈A d(x, y) is right-c.e. A is co-c.e. closed if the complement
of A is effectively open, or equivalently the function x 7→ d(x,A) is left-c.e. A closed set
is computably closed if it is both c.e. closed and co-c.e. closed. A compact set K is
effectively compact if the set of finite lists of rational balls covering K is c.e. A compact
set is effectively compact if and only if it is co-c.e. closed. More details on these notions can
be found in [3].

A real number is left-c.e. if it is the limit of a computable increasing sequence of rational
numbers. A real number x is right-c.e. if −x is left-c.e. It is computable if it is both
left-c.e. and right-c.e. If D ⊆ Rn then a function f : D → [−∞,+∞] is left-c.e. if there exist
uniformly effective open sets (Uq)q∈Q such that for all q ∈ Q, f−1(q,+∞) = D ∩ Uq. f is
right-c.e. if −f is left-c.e.

Let f : Rm × Rn be left-c.e.. If K ⊆ Rn is effectively compact then fmin : Rm → R
defined by fmin(x) = miny∈K f(x, y) is left-c.e. If A ⊆ Rn is c.e. closed then fsup : Rm → R
defined by fsup(x) = supy∈A f(x, y) is left-c.e.

M. Hoyrup and D.M. Stull 48:3

Each of these computability notions can be relativized to any oracle. We will be particu-
larly interested in their relativization to the halting set, denoted by ∅′. For instance, a real
is ∅′-left-c.e. if it is left-c.e. relative to ∅′.

2.2 Solovay derivatives
The quantitative study of Solovay reducibility was initiated in [1] and continued in [7] and
[5]. We briefly recall that if a, b are real numbers such that b is left-c.e., then we define

S(a, b) = inf{q ∈ Q : qb− a is left-c.e.},
S(a, b) = sup{q ∈ Q : qb− a is right-c.e.}.

We say that a is Solovay reducible to b if S(a, b) < +∞ and S(a, b) > −∞. Intuitively, it
means that a is easier to approximate than b in the following sense: if S(a, b) < q and S(a, b) >
r, then there exist computable sequences ai, bi converging to a, b such that r ≤ a−ai

b−bi
≤ q.

Some left-c.e. real numbers are Solovay complete, meaning that each left-c.e. number is
reducible to them, and it is proved in [1] that if b is Solovay complete, then S(a, b) = S(a, b).

2.3 Background on convex cones
We give the minimal amount of background on convex analysis and refer the reader to
[2] for more details. A cone is a set C ⊆ Rn that is closed under multiplication by a
nonnegative scalar. A convex cone is a cone that is convex, i.e. a set that is closed under
addition and multiplication by a nonnegative scalar. The dual of a set C is the closed
convex cone C∗ = {x ∈ Rn : ∀y ∈ C, 〈x, y〉 ≥ 0}. (C∗)∗ is the smallest closed convex cone
containing C. In particular if C is a closed convex cone then (C∗)∗ = C.

For x 6= 0, let Hx = {z : 〈x, z〉 ≥ 0} be the half-space delimited by the hyperplane
orthogonal to x, in the direction of x. One has C∗ =

⋂
x∈C Hx. As a result, d(z, C∗) ≥

supx∈C d(z,Hx) and we show that equality holds. Observe that d(z,Hx) = max(− 〈z,x〉‖x‖ , 0).

I Lemma 2.1. Let C be a convex set. One has d(z, C∗) = supx∈C d(z,Hx).

For a convex cone C, let C1 be the intersection of C with the unit sphere. In the previous
lemma, one has d(z, C∗) = supx∈C1 d(z,Hx) if C is a convex cone.

A convex cone is flat if it contains some x 6= 0 and its opposite −x. It is called salient if
it is not flat. C is salient if and only if C∗ is full-dimensional if and only if there exist ε > 0
and y such that 〈x, y〉 > ε for all x ∈ C1.

If A ⊆ Rn is a full-dimensional convex set, then A ⊆ int(A) and int(A) ⊆ A. In particular,
among the class of full-dimensional convex sets, every closed set is regular closed and every
open set is regular open.

2.4 Computability of convex sets and cones
Computability of convex sets has been investigated in [6] and [9]. Here we present new results
that are used to prove the results of the paper and are of independent interest.

I Proposition 2.2. Let C ⊆ Rn be a closed convex cone.
C is co-c.e. closed ⇐⇒ C∗ is c.e. closed,
C is c.e. closed ⇐⇒ C∗ is co-c.e. closed,
C is computably closed ⇐⇒ C∗ is computably closed.

MFCS 2019

48:4 Semicomputable Points in Euclidean Spaces

Proof. If C is c.e. closed then let (xi)i∈N be a dense computable sequence in C. One
has C∗ =

⋂
iHxi

which is therefore co-c.e. closed.
If C is co-c.e. then the intersection C1 of C with the unit sphere is effectively compact.

By Lemma 2.1 one has d(z, C∗) = maxx∈C d(z,Hx) = maxx∈C1 d(z,Hx) which is a right-
c.e. function of z, so C∗ is c.e. closed.

The other implications can be obtained by observing that (C∗)∗ = C. J

Observe that these results relativize to any oracle. The first equivalence in the next result
was proved by Ziegler [9].

I Proposition 2.3. Let C ⊆ Rn be a full-dimensional closed convex set.
C is co-c.e. closed ⇐⇒ the set of rational points outside C is c.e.,
C is c.e. closed ⇐⇒ its interior is effectively open.

Proof. If C is co-c.e. closed then the set of rational points outside C is obviously c.e.
Conversely, assume that the set of rational points outside C is c.e. Let C0 ⊆ C be any
fixed full-dimensional rational polytope. Given z ∈ Rn, one can compute the convex hull
of C0 ∪ {z} and in particular enumerate its interior Uz. As Uz is dense in that convex hull,
one has z /∈ C ⇐⇒ Uz contains a rational point outside C. It gives a procedure that given z,
halts exactly when z /∈ C, showing that C is co-c.e.

If the interior of C is effectively open then one can enumerate the rational points in the
interior, which are dense in C. Conversely, if C is c.e. closed then let (xi)i∈N be a dense
computable sequence in C. A point z belongs to the interior of C iff there exist n+1 points in
the sequence such that z belongs to the interior of their convex hull, which gives a procedure
that halts exactly when z ∈ int(C). J

The assumption that C is full-dimensional is needed. For the first item, if C contains
no rational point then no information about C can be obtained from an enumeration of the
rationals ouside C (i.e., all the rational points). For the second item, C needs to have a
non-empty interior.

I Lemma 2.4. Let A,B ⊆ Rn be c.e. closed convex sets.
If A ∩B has non-empty interior then A ∩B is c.e. closed.
A ∩B is ∅′-co-c.e. closed. There exist A,B ⊆ R3 such that A ∩B is not ∅′-c.e. closed.

Proof. The interiors of A and B are effectively open and dense in A and B respectively.
Their intersection is effectively open and dense in A ∩B, which is then c.e. closed.

In general, if A,B are c.e. closed then they are ∅′-computable and in particular ∅′-co-
c.e. closed and so is their intersection.

There exists a right-c.e. convex function f : R→ R such that f−1(0) is not ∅′-c.e. closed.
Let α > 0 be ∅′-right-c.e. but not ∅′-left-c.e. There exists a sequence of uniformly left-
c.e. reals αi > 0 such that α = infi αi. Let fi(x) = max(0, x− αi) and f =

∑
i 2−ifi. The

functions fi are uniformly right-c.e. so f is right-c.e., and f−1(0) = [0, α] is not ∅′-c.e. closed
because α is not ∅′-left-c.e.

Let A = {(x, y) : y ≥ f(x)} be the epigraph of f and B = {(x, y) : y ≤ 0}. A and B are
c.e. closed but A ∩B = {(x, 0) : f(x) = 0} is not ∅′-c.e. closed. J

I Proposition 2.5. Let C ⊆ Rn be a full-dimensional closed convex set.
C is ∅′-co-c.e. closed ⇐⇒ the set of rational points outside C is ∅′-c.e. ⇐⇒ C is Π0

2,
C is ∅′-c.e. closed ⇐⇒ its interior is ∅′-effectively open ⇐⇒ C contains a dense Σ0

2-set.

M. Hoyrup and D.M. Stull 48:5

Proof. Several equivalences are obtained by relativizing Proposition 2.3, we prove the others.
Any set that is ∅′-co-c.e. is Π0

2, and if C is Π0
2 then the set of rational points ouside C is

obviously ∅′-c.e.
Any ∅′-effectively open set is a Σ0

2-set, and int(C) is dense in C. If C contains a
dense Σ0

2-set, then, with ∅′ as oracle, one can compute a dense sequence in that set, so C
is ∅′-c.e. closed. J

Again the full dimension assumption is needed. For the first item, there exists a Π0
2-

singleton whose unique element is not computable relative to ∅′ (even relative to any ∅(n), n ∈
N, see Proposition 1.8.62 in [8]). For the second item, if x is ∅′-computable but not computable,
then {x} is ∅′-c.e. closed convex but does not contain any non-empty Σ0

2-set.

3 Semicomputable point

The notions of left-c.e. and right-c.e. real number can be extended to higher dimensions. A
first extension to points of the plane has been introduced in [5]. We pursue this extension
to Rn for any n ≥ 1. Although the definition extends immediately to this more general
setting, the results are more involved because higher dimensions allow richer behaviors. For
instance, a convex cone in R2 is delimited by two directions only, while a convex cone in R3

is a delimited by an uncountable set of directions.

I Definition 3.1. A point x ∈ Rn is semicomputable if there exist n linearly independent
rational vectors v1, . . . , vn such that each 〈vi, x〉 is left-c.e., 1 ≤ i ≤ n.

I Definition 3.2. Let D ⊆ Rn be a closed convex cone. We say that x ∈ Rn is D-c.e. if the
mapping d ∈ D 7→ 〈d, x〉 is left-c.e.

Observe that this notion really makes sense when D is full-dimensional (or full-dimensional
in some computable subspace), otherwise x could be D-c.e. only because the elements of D
encode information about x. For instance, if ‖x‖ is left-c.e. and D = {λx : λ ≥ 0} then the
mapping d ∈ D 7→ 〈d, x〉 = ‖d‖ · ‖x‖ is left-c.e., which should not be interpreted as “x is
left-c.e. in some direction”.

The closedness condition on D is justified by the next observation: D can always be
assumed to be closed.

I Proposition 3.3. Let x ∈ Rn and D ⊆ Rn be a full-dimensional convex cone. If the
mapping d ∈ D 7→ 〈d, x〉 is left-c.e. then x is D-c.e.

Proof. Let d0 ∈ D be a rational vector in the interior of D. Let d ∈ D be given as oracle.
The vectors dn = (1− 2−n)d+ 2−nd0 are uniformly computable in d and belong to D. The
number 〈d, x〉 is the effective limit of 〈dn, x〉, which is left-c.e. uniformly in n and d, so 〈d, x〉
is left-c.e. uniformly in d. J

Being C∗-c.e. can be dually expressed in terms of C.

I Proposition 3.4. Let x ∈ Rn and C ⊆ Rn be a closed convex cone.
When C is co-c.e. closed, x is C∗-c.e. ⇐⇒ x+ C is co-c.e. closed,
When C is c.e. closed and full-dimensional, x is C∗-c.e. ⇐⇒ x− C is c.e. closed.

Proof.
If x is C∗-c.e. then the complement of x+ C is effectively open. Indeed, y /∈ x+ C ⇐⇒
y − x /∈ C ⇐⇒ infd∈C∗ 〈d, y − x〉 < 0 which is a c.e. condition as C∗ is c.e. closed
and 〈d, y − x〉 is right c.e. in d, y.

MFCS 2019

48:6 Semicomputable Points in Euclidean Spaces

If x+C is co-c.e. then let K ∈ N be an upper bound on ‖x‖ and A = (x+C) ∩B(0,K).
A is effectively compact, contains x and for d ∈ C∗, 〈d, x〉 = minz∈A 〈d, z〉 which is a
left-c.e. function of d.
If x is C∗-c.e. then int(x− C) is effectively open. Indeed y ∈ int(x− C) ⇐⇒ x− y ∈
int(C) ⇐⇒ mind∈C∗1 〈d, x− y〉 > 0 which is a c.e. condition as C∗1 is effectively compact
and 〈d, x− y〉 is left-c.e. in d, y.
If x−C is c.e. closed and (xi)i∈N is a dense computable sequence in x−C, then for d ∈ C∗
one has 〈d, x〉 = supi 〈d, xi〉 which is left-c.e. uniformly in d. J

I Proposition 3.5. Let C ⊆ Rn be a closed convex cone.
If x+ C is co-c.e. closed for some x ∈ Rn, then C is co-c.e. closed.
If x+ C is c.e. closed for some x ∈ Rn, then C is c.e. closed.

Proof. Let E ⊆ Rn be a set such that 0 belongs to the convex hull of E. One has C∗ =⋃
e∈E(C+ e)∗. Indeed, if y ∈ C∗ then there exists e ∈ E such that 〈e, y〉 ≥ 0, so y ∈ (C+ e)∗.

Conversely, if y ∈ (C + e)∗ and c ∈ C then 〈y, c〉 = limn→∞
1
n 〈y, e+ nc〉 ≥ 0 so y ∈ C∗.

Given x, there exists a finite set E of rational points such that the convex hull of x+ E

contains 0. As a result, C∗ =
⋃
e∈E(C+x+e)∗. If C+x is co-c.e. closed then each (C+x+e)∗

is c.e. closed so C∗ is c.e. closed, hence C is co-c.e. closed. If C + x is c.e. closed then
each (C + x+ e)∗ is co-c.e. closed so C∗ is co-c.e. closed, hence C is c.e. closed. J

It was proved in [7] and [5] that if f is computable and differentiable at c then S(f(c), c) =
S(f(c), c) = f ′(c). If x = (c, f(c)) and v = (1, f ′(c)) then it means that 〈d, x〉 is left-c.e. for
all rational directions d such that 〈d, v〉 > 0. We now investigate when this is uniform in d,
i.e. when x is {v}∗-c.e.

I Proposition 3.6 (Positive case). Let f : R → R be computable and convex or concave.
If c ∈ R is left-c.e. and x = (c, f(c)) and v = (1, f ′−(c)) where f ′−(c) is the left-derivative of f
at c, then x is {v}∗-c.e.

Proof. Assume that f is convex, the other case is obtained by considering −f . Let ci
be a computable increasing sequence converging to x. Let q, r be rational numbers such
that r < f ′−(c) < q. Compute i such that f(ci+1)−f(ci)

ci+1−ci
> r. For j ≥ i one has r <

f(c)−f(cj)
c−cj

≤ f ′(c) < q, so rc − f(c) = infj≥i rcj − f(cj) and qc − f(c) = supj≥i qcj − f(cj)
are respectively right-c.e. and left-c.e., uniformly in r and q. J

I Proposition 3.7 (Negative case). Let c ∈ R be left-c.e. and f : R→ R be computable and
such that f ′(c) = 0 and f(c) is not right-c.e. Let x = (c, f(c)) and v = (1, f ′(c)) = (1, 0). x
is not {v}∗-c.e.

Proof. Simply take d = (0,−1) ∈ {v}∗. d is computable but 〈d, x〉 = −f(c) is not left-c.e. J

Said differently, in that case qc− f(c) is non-uniformly left-c.e. for rationals q > 0.

3.1 Converging sequences
We may equivalently define semicomputable points to be those points which are the limit of
a computable sequence converging in some restricted region of the space, namely a salient
convex cone. There is a precise relation between the cones where such sequences can live
and the cones of directions in which the point is left-c.e.

The first observation is straightforward.

M. Hoyrup and D.M. Stull 48:7

I Proposition 3.8. Let x ∈ Rn and C ⊆ Rn be a convex cone. If there exists a computable
sequence xi converging to x in x− C, then x is C∗-c.e.

Proof. If d ∈ C∗ then 〈d, x− xi〉 ≥ 0 so 〈d, x〉 = supi 〈d, xi〉 is left-c.e. uniformly in d. J

In general it is not an equivalence. However when C is c.e. closed, or equivalently when C∗
is co-c.e. closed, the equivalence holds.

I Proposition 3.9. Let x ∈ Rn and C ⊆ Rn be a salient c.e. closed convex cone. x

is C∗-c.e. ⇐⇒ there exists a computable sequence converging to x in x− C.

Proof. Assume that x is C∗-c.e. The interior of x − C is an effective open set. Indeed, y
belongs to that set iff mind∈C∗1 〈d, x− y〉 > 0, which is a c.e. condition as C∗1 is effectively
compact. As a result, there is a computable enumeration (yi)i∈N of the rational vectors
in that set. Define a computable sequence (xi)i∈N as follows: take xi+1 ∈

∫
(x − C) such

that y0, . . . , yi ≺ xi+1.
As C is salient, the growing sequence xi converges to a point in x− C. As it eventually

exceeds each yi, the limit must be x. J

3.2 Taking unions of convex cones

In R2, let P,Q be full-dimensional closed convex cones and R be the conical hull of P ∪Q.
If x ∈ R2 is P -c.e. and Q-c.e., then x is R-c.e. However we will see below (Theorem 3.12)
that this property fails in higher dimensions. We first show that it can be recovered under
computability assumptions on P,Q.

I Proposition 3.10. Let P,Q ⊆ Rn be closed convex cones, R be the conical hull of P ∪Q
and x ∈ Rn be P -c.e. and Q-c.e.

If P and Q are c.e. closed then R is c.e. closed and x is R-c.e.,
If P and Q are co-c.e. closed and R is salient, then R is co-c.e. closed and x is R-c.e.

In the second statement, the condition that R is salient is needed otherwise the complexity
of R can increase, as we now show.

I Proposition 3.11. If P,Q ⊆ Rn are co-c.e. closed convex cones and R is the convex cone
induced by P ∪Q, then R is ∅′-c.e. closed. In dimension n ≥ 3 one can take P,Q so that R
is not ∅′-co-c.e. closed.

The proof essentially uses Lemma 2.4. Indeed, P ∗ and Q∗ are c.e. closed and R∗ = P ∗ ∩Q∗.
One can embed the convex sets A,B from Lemma 2.4 in R3 and take their conical hulls.

We will see that the second item fails when R is not salient (Corollary 4.7). We now
build a simpler example without the co-c.e. assumption about P and Q.

I Theorem 3.12. In dimension n ≥ 3, there exist closed convex cones P,Q ⊆ Rn and a
point x ∈ Rn that is P -c.e. and Q-c.e. but not R-c.e., where R is the conical hull of P ∪Q.

The idea of the proof is to build a, b, c such that qc − a and rc − b are uniformly left-
c.e. for q > S(a, c) and r > S(b, c), but sc−(a+b) is non-uniformly left-c.e. for q > S(a+b, c).
To do this, we take a = f(c) ang b = g(c) where f, g satisfy the conditions of Proposition 3.6
but f + g satisfies the conditions of Proposition 3.7.

MFCS 2019

48:8 Semicomputable Points in Euclidean Spaces

3.3 Semicomputability range of a point
I Definition 3.13. If x ∈ Rn then its semicomputability range, or simply range, is the
set of computable d ∈ Rn such that 〈d, x〉 is left-c.e., and is denoted by range(x).

One of the main goals of the paper is to investigate the following problem.

I Problem 1. What sets can be realized as range(x) for some x?

Let Rc be the field of computable real numbers. From the definition we see that range(x)
contains computable points from Rnc only. By abuse of language, when we write A ⊆ range(x)
we mean A ∩ Rnc ⊆ range(x), and similarly, range(x) = A means range(x) = A ∩ Rnc . The
interior of range(x) is meant to be the interior of range(x) in the subspace topology on Rnc .

I Proposition 3.14. Let x ∈ Rn:
1. range(x) is a convex cone over the field Rc.
2. If D ⊆ Rn is a closed polygonal convex cone with computable coordinates, then x is D-

c.e. ⇐⇒ D ⊆ range(x).
3. If D ⊆ Rn be a closed convex cone contained in the interior of range(x), then x is D-c.e.

Proof.
1. Straightforward.
2. x is D-c.e. ⇐⇒ x is d-c.e. for each extreme direction d ∈ D ⇐⇒ each such direction

belongs to range(x).
3. There exists a rational polygonal convex cone E containing D and contained in range(x).

By 2., x is E-c.e. hence D-c.e. J

We will see that range(x) is not necessarily closed (in the subspace Rnc), and that the
third item sometimes fails when D is just contained in range(x) (Theorem 4.6).

I Proposition 3.15. Let x ∈ Rn be a semicomputable point. Let D ⊆ Rn be a closed convex
cone such that x is D-c.e. and range(x) = D. Then D is ∅′-co-c.e. closed.

Proof. Let M be a machine that given a rational point d ∈ D approximates 〈d, x〉 from
the left. With ∅′ as oracle, given a rational point d, one can compute x, 〈d, x〉 and M(d)
and eventually see whether M(d) 6= 〈d, x〉, which means that d /∈ D. As a result, the set of
rational points outside D is c.e. relative to ∅′ so D is Π0

2 by Proposition 2.5. J

We will see that this is tight: every ∅′-co-c.e. closed convex cone can be obtained (Theorem
4.8).

3.4 Solovay complete coordinates
When one of the coordinates of x ∈ Rn is Solovay complete, the range of x is easily described.

I Proposition 3.16. Let x = (x1, . . . , xn) ∈ Rn where x1 is Solovay complete. Let v =
(1, S(x2, x1), . . . , S(xn, x1)). One has range(x) = {v}∗.

For a closed convex cone C,

v ∈ int(C) =⇒ x is C∗-c.e. =⇒ v ∈ C.

Proof. A computable sequence xi converging to x must asymptotically converge along the
direction v, for each rational d such that 〈d, v〉 > 0, one eventually has 〈d, x− xi〉 > 0,
so 〈d, x〉 is left-c.e. The set of such vectors d is dense in {v}∗.

M. Hoyrup and D.M. Stull 48:9

If v belongs to the interior of C then C∗ is contained in the interior of {v}∗ = range(x)
so x is C∗-c.e. by Proposition 3.14 item 3. If x is C∗-c.e. then C∗ ⊆ range(x) ⊆ {v}∗,
i.e. v ∈ C. J

In particular, if d is a computable vector such that 〈d, v〉 > 0, then 〈d, x〉 is left-c.e.

4 Realizing convex cones

In this section we investigate the possible ranges of semicomputable points. In order to realize
a given convex cone D, we build a point that is left-c.e. along each computable direction
in D, and no more. To do so, we make the point generic in some sense. Let us briefly recall
from [4] the notion of genericity that we need.

4.1 Genericity

I Definition 4.1. Let A ⊆ Rn. A point x ∈ A is generic inside A if for every effective
open set U ⊆ Rn, either x ∈ U or there exists a neighborhood B of x such that B∩U ∩A = ∅.

I Example 4.2.
Taking A = X, being generic inside X amounts to being 1-generic,
Every x is obviously generic inside {x},
In the space of real numbers with the Euclidean topology, a real number x ∈ (0, 1) is said
to be right-generic if x is generic inside [x, 1],

The last example is a particular instance of the following general situation.
If τ ′ is a weaker topology on X then we define S(x) as the intersection of the τ ′-open

sets containing x. Equivalently, S(x) = {y ∈ X : x ≤τ ′ y} where ≤τ ′ is the specialization
pre-order defined by x ≤ y iff every τ ′-neighborhood of x contains y.

Let τ be the Euclidean topology on Rn.

I Theorem 4.3 (Theorem 4.1.1 in [4]). Let τ ′ a topology that is effectively weaker than τ ,
such that emptiness of finite intersections of basic open sets in τ and τ ′ is decidable. There
exists a point x that is computable in (Rn, τ ′) and generic inside S(x).

For instance, the topology τ ′ generated by the semi-lines (q,+∞) is effectively weaker than τ ,
and its specialization pre-order is the natural ordering ≤ on R. Theorem 4.3 implies the
existence of right-generic left-c.e. reals.

I Proposition 4.4. Let C ⊆ Rn be a closed convex cone. If x is generic inside x + C

then range(x) ⊆ C∗.

Proof. Let d /∈ C∗ be computable and assume that α := 〈d, x〉 is left-c.e. The set U = {y :
〈d, y〉 < α} is effectively open and x /∈ U . As d /∈ C∗ there exists c ∈ C such that 〈d, c〉 < 0.
For ε > 0, 〈d, x+ εc〉 < 〈d, x〉 = α so x + εc ∈ U ∩ (x + C). As a result, x belongs to the
closure of U ∩ (x+ C) so x is not generic inside x+ C. J

In particular, if x is C∗-c.e. and generic inside x+ C then range(x) = C∗.

MFCS 2019

48:10 Semicomputable Points in Euclidean Spaces

4.2 Realizing convex cones
Theorem 4.3 can now be applied to obtain a first class of cones realized as ranges of points.

I Theorem 4.5 (C.e. closed cones). Let C ⊆ Rn be a co-c.e. closed convex cone. There
exists x that is C∗-c.e. and generic inside x+ C, hence range(x) = C∗.

Proof. C∗ is c.e. closed, llet di ∈ C∗ be a computable dense sequence. Consider the
topology τ ′ generated by the basic open sets Ui,j = {x : 〈di, x〉 > qj}, where (qj)j∈N is some
computable enumeration of the positive rational numbers. One easily checks that emptiness
of finite intersections of basic open sets in τ, τ ′ is decidable, so we can apply Theorem 4.3.
We obtain a point x that is computable in (Rn, τ ′), i.e. the numbers 〈di, x〉 are uniformly
left-c.e. hence x is C∗-c.e. and C∗ ⊆ range(x). Moreover x is generic inside S(x) = x+ C,
hence range(x) ⊆ C∗ by Proposition 4.4. J

Therefore, any c.e. closed convex cone can be realized as the range of a point. We can
extend the result to other classes of closed convex cones. To do so, we need to refine the
construction techniques.

I Theorem 4.6 (Σ0
2 cones). Let (Dk)k∈N be a growing sequence of uniformly co-c.e. closed

convex cones in Rn. There exists x such that for any co-c.e. closed convex cone K, x
is K-c.e. ⇐⇒ K is contained in some Dk. In particular, range(x) =

⋃
kDk.

In particular, any ∅′-effectively open convex cone is the range of a point.
We can use this result to give a counter-example to Proposition 3.10 when the cone is

not salient.

I Corollary 4.7. There exists co-c.e. closed convex cones P,Q ⊆ R3 and a point x that
is P -c.e. and Q-c.e. but not R-c.e., where R is the convex cone induced by P ∪Q.

Proof. Take P,Q from Proposition 3.11. The induced cone R is ∅′-c.e. closed but not ∅′-co-
c.e. closed. By Proposition 2.3, R contains a dense Σ0

2-set R′, and we can assume that R′
contains P and Q (otherwise replace R′ with R′ ∪ P ∪Q). By Theorem 4.6 there exists x
such that range(x) = R′, x is P -c.e. and Q-c.e. But x is not R-c.e., otherwise R would
be ∅′-co-c.e. closed by Proposition 3.15. J

I Theorem 4.8 (Π0
2 cones). Let D ⊆ Rn be a salient Π0

2 convex cone. There exists x that
is D-c.e. and such that range(x) = D.

4.3 Beyond linear maps
If x is C∗-c.e. and generic inside x+ C then we know for which computable linear maps f :
Rn → R the number f(x) is left-c.e.: exactly when f ∈ C∗ (f can be identified with the
vector v such that f(x) = 〈v, x〉).

Genericity has also consequences on functions f : Rn → R that are not linear but
totally differentiable. We recall that if f is totally differentiable at x then there exists a
vector gradf(x) such that f(x+ h) = f(x) + 〈gradf(x), h〉+ o(h).

I Proposition 4.9. Let C ⊆ Rn be a closed convex cone. Let x ∈ Rn be C∗-c.e. and generic
inside x+ C. Let f : Rn → R be computable and totally differentiable at x.

If gradf(x) ∈ int(C∗) then f(x) is left-c.e.
If gradf(x) /∈ C∗ then f(x) is not left-c.e.

M. Hoyrup and D.M. Stull 48:11

Proof. Let D∗ ⊆ int(C∗) be a computable polygonal convex salient cone containing gradf(x)
in its interior. There exists δ > 0 such that 〈gradf(x), d〉 > δ for all d ∈ D1. As x is D∗-c.e.,
there exists a computable sequence xi ∈ x−D converging to x by Proposition 3.9. Therefore
one has f(xi) = f(x)−〈gradf(x), (x− xi)〉+o(x−xi) < f(x)−‖x− xi‖ δ+o(x−xi) < f(x)
for i larger than some i0, so f(x) = supi≥i0 f(xi) is left-c.e.

Assume that gradf(x) /∈ C∗ and that α := f(x) is left-c.e. The set U = {y : f(y) < α}
is effectively open. As gradf(x) /∈ C∗, there exists c ∈ C such that 〈gradf(x), c〉 < 0. One
has f(x+εc) = f(x)+ε〈gradf(x), c〉+o(ε) < f(x) for sufficiently small ε, so x+εc ∈ U∩(x+C).
Therefore x /∈ U and belongs to the closure of (x+ C) ∩ U , contradicting the assumption
that x is generic inside x+ C. J

5 Application to the Solovay derivatives

We pursue the study of the Solovay derivatives S(a, b) and S(a, b) started in [5] in the general
case, i.e. without assuming that b is Solovay complete. The general goal is to find ways to
calculate S(a, b) and S(a, b) for given a, b. Although formulae are available in some cases, we
investigate one of the simplest situations in which no general formula exists:

I Problem 2. If a, b, c ∈ R are fixed, what can be the shapes of the functions S(aX + b, c)
and S(aX + b, c), where X varies among the computable real numbers?

When c is Solovay complete, one has S(x, c) := S(x, c) = S(x, c) for any d-c.e. x and

S(aX + b, c) = S(a, c)X + S(b, c).

However in general only inequalities can be derived (see [5]):

If X ≥ 0, If X ≤ 0,
S(aX + b, c) ≤ S(a, c)X + S(b, c) S(aX + b, c) ≤ S(a, c)X + S(b, c)
S(aX + b, c) ≥ S(a, c)X + S(b, c). S(aX + b, c)) ≥ S(a, c)X + S(b, c).

It seems at first that these two functions of X should be very rigid because a, b, c are
fixed, so their local shape should not depend too much on X. However, we will see that, up
to some geometrical contraints, they can have a wide variety of possible shapes. Fortunately,
we can use the notions and results of this paper to precisely identify the class of possible
shapes of these two functions. The idea is geometrical: these functions can be read in some
way from the convex cone range(x), where x = (a, b, c). Therefore their shapes are precisely
the shapes that can be obtained from arbitrary convex cones. Let R = [−∞,+∞].

I Definition 5.1. Let F be the family of pairs of functions (f, g) from R to R such that:
f ≥ g,
f is convex and g is concave (i.e., the epigraphs of f and −g are convex sets),
Every line segment joining the graph of f to the graph of g lies below the graph of f and
above the graph of g.

The third condition implies that limx→−∞ f ′(x) = limx→+∞ g′(x) and limx→+∞ f ′(x) =
limx→−∞ g′(x). Examples of such pairs are: f(X) = −g(X) =

√
1 +X2, or f(X) = X2

and g(X) = −∞.
The main result of this section is that F captures essentially the possible shapes of (S(aX+

b, c), S(aX + b, c)), up to computability conditions.

MFCS 2019

48:12 Semicomputable Points in Euclidean Spaces

I Theorem 5.2. Let a, b, c ∈ R with c left-c.e. and non-computable. One has (S(aX +
b, c), S(aX + b, c)) ∈ F . Conversely,

Any pair (f, g) ∈ F where f is ∅′-left-c.e. and g is ∅′-right-c.e. can be realized,
Any pair (f, g) ∈ F where f is ∅′-right-c.e. and g is ∅′-left-c.e. can be realized,

To prove this result we show that the pairs (f, g) ∈ F are exactly the functions that can
be read on convex cones in R3 in the following way: given a cone C in R3, the intersection
of C with the planes y = ±1 convex sets, and the curves delimiting them are exactly the
pairs (f, g) ∈ F .

Now, if x = (a, b, c) ∈ R∗ then the pair (S(aX + b, c), S(aX + b, c)) is obtained in this
way from the cone C = range(x), so it belongs to F . A pair (f, g) ∈ F can be realized by
building a point whose range induces (f, g), which can be done by imposing computability
conditions on f and g and applying the results from Section 4.

6 Left-c.e. quadratic polynomials

In this section, we briefly investigate the quadratic real polynomials Pa,b,c(X) = aX2 +bX+c
that are left-c.e. functions of X. Our main problem is the following:

I Problem 3. For which triples (a, b, c) is the polynomial Pa,b,c left-c.e.?

The key observation is that Pa,b,c(X) is linear in (a, b, c), which allows to think of a
left-c.e. polynomial as a semicomputable point (a, b, c) ∈ R3. More precisely, the order-
ing (a, b, c) � (a′, b′, c′) defined by Pa,b,c ≤ Pa′,b′,c′ is a vector space ordering. Hence its
positive cone is a convex cone C = {(a, b, c) ∈ R3 : Pa,b,c ≥ 0} = {(a, b, c) ∈ R3 : a, c ≥
0 and b2 ≤ 4ac}. Its dual is C∗ = {(a, b, c) ∈ R3 : a, c ≥ 0 and b2 ≤ ac} and is the closure of
the conical hull of the vectors (X2, X, 1), with X ∈ R.

Thus Pa,b,c is left-c.e. if and only if (a, b, c) is C∗-c.e. This reformulation allows us to
think geometrically about left-c.e. polynomials, and to apply the results of this paper to
these objects. Let us list a few properties of left-c.e. polynomials, some of them being derived
from the analysis developed in the paper:
1. There is a symmetry between a and c and between b and −b. More precisely, Pa,b,c is

left-c.e. ⇐⇒ Pa,b,c, Pc,b,a, Pa,−b,c and Pc,−b,a are left-c.e. for X ≥ 1.
2. If Pa,b,c is left-c.e. then a, c are left-c.e. and b is d-c.e. (b is a difference of left-c.e. numbers).
3. If a is Solovay complete left-c.e. then (Proposition 3.16)

S(b, a)2 < 4S(c, a) =⇒ Pa,b,c is left-c.e. =⇒ S(b, a)2 ≤ 4S(c, a).

4. Let Pa,b,c be left-c.e. For computable X > 0,

− 1√
X
≤ S(b, aX + c) and S(b, aX + c) ≤ 1√

X
.

Indeed, aX2 + bX + c is left-c.e. for all computable X ∈ R ⇐⇒ 1√
Y

(aY + c) ± b is
left-c.e. for all computable Y > 0 (take Y = X2).

5. Let x = (a, b, c) be C∗-c.e. and generic inside x+ C (it exists as C∗ is computable, see
Theorem 4.3). Pa,b,c is left-c.e. and for computable X > 0,

− 1√
X

= S(b, aX + c) and S(b, aX + c) = 1√
X
.

The second equality is obtained as follows: for a rational q < 1√
X
, (qX,−1, q) /∈ C∗ =

range(x) so q(aX + c)− b is not left-c.e., hence S(b, aX + c) = 1√
X
.

M. Hoyrup and D.M. Stull 48:13

Although b is Solovay reducible to aX + c for each computable X > 0, b is not reducible
to neither a nor c and S(b, a) = S(b, c) = −∞ and S(b, a) = S(b, c) = +∞. Indeed,
for q ∈ Q, both (q,±1, 0) and (0,±1, q) are outside C∗.

6. The condition that Pa,b,c is left-c.e. cannot be reduced to a finite number of linear
combination of a, b, c being left-c.e. Indeed, such a condition would express that the
point (a, b, c) is D-c.e. for some polygonal convex cone D, but the convex cone C∗ is not
polygonal (it is determined by infinitely many directions).

7. The condition that Pa,b,c is left-c.e. cannot be characterized by simply considering the
values of S(b, c), S(b, c), S(a, c), S(a, c), S(b, a), S(b, a). Indeed, these values only reflect
the intersections of range(a, b, c) with the three planes z = 0, x = 0 and y = 0, which do
not determine completely range(a, b, c).

We do not know if it is possible to better understand Problem 3, i.e. whether it is possible
to reduce this property to more fundamental properties of a, b, c. The results presented above
suggest a negative answer to that question.

We mention that a similar analysis can be made of co-c.e. disks in the plane. The disk
centered at (a, b) with radius c is co-c.e. if and only if the point (a, b, c) ∈ R3 is C∗-c.e.,
where C = C∗ = {(x, y, z) : z ≤ 0, x2 + y2 ≤ z2}. Again C∗ is not polygonal so one cannot
reduce the condition that the disk is co-c.e. to a finite number of conditions.

References
1 George Barmpalias and Andrew Lewis-Pye. Differences of halting probabilities. J. Comput.

Syst. Sci., 89:349–360, 2017.
2 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

New York, NY, USA, 2004.
3 Vasco Brattka and Gero Presser. Computability on subsets of metric spaces. Theoretical

Computer Science, 305(1-3):43–76, 2003.
4 Mathieu Hoyrup. Genericity of Weakly Computable Objects. Theory Comput. Syst., 60(3):396–

420, 2017.
5 Mathieu Hoyrup, Diego Nava Saucedo, and Don M. Stull. Semicomputable Geometry. In

Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 129:1–129:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

6 Martin Kummer and Marcus Schäfer. Computability of convex sets. In Ernst W. Mayr and
Claude Puech, editors, STACS 95, pages 550–561, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg.

7 Joseph S. Miller. On Work of Barmpalias and Lewis-Pye: A Derivation on the D.C.E. Reals.
In Adam R. Day, Michael R. Fellows, Noam Greenberg, Bakhadyr Khoussainov, Alexander G.
Melnikov, and Frances A. Rosamond, editors, Computability and Complexity - Essays Dedicated
to Rodney G. Downey on the Occasion of His 60th Birthday, volume 10010 of Lecture Notes in
Computer Science, pages 644–659. Springer, 2017.

8 André Nies. Computability and randomness. Oxford logic guides. Oxford University Press,
2009.

9 Martin Ziegler. Computability on Regular Subsets of Euclidean Space. Mathematical Logic
Quarterly, 48(S1):157–181, 2002.

MFCS 2019

Bounded-Depth Frege Complexity of Tseitin
Formulas for All Graphs
Nicola Galesi
Dipartimento di Informatica, Sapienza Università di Roma, Via Salaria 113, Rome, Italy
nicola.galesi@uniroma1.it

Dmitry Itsykson
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
dmitrits@pdmi.ras.ru

Artur Riazanov
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
aariazanov@gmail.com

Anastasia Sofronova
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, Fontanka 27, St. Petersburg, Russia
St. Petersburg State University, 7-9 Universitetskaya Emb., St. Petersburg, Russia
ana.a.sofronova@gmail.com

Abstract
We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires
proofs of size 2tw(G)Ω(1/d)

in depth-d Frege systems for d < K log n
log log n

, where tw(G) is the treewidth of
G. This extends Håstad recent lower bound for the grid graph to any graph. Furthermore, we prove
tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if
a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof
of size 2tw(G)O(1/d)

poly(s). Through this result we settle the question posed by M. Alekhnovich and
A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Tseitin formula, treewidth, AC0-Frege

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.49

Related Version A full version is available as ECCC report TR19-069 https://eccc.weizmann.ac.
il/report/2019/069/.

Funding The research is supported by Russian Science Foundation (project 16-11-10123).

Acknowledgements The authors thank Navid Talebanfard for discussions on the lower bound. Nicola
also thanks Paul Wollan for introducing him to the tree-cutwidth. Dmitry is a Young Russian
Mathematics award winner and would like to thank sponsors and jury of the contest.

1 Introduction

Propositional proof complexity is motivated by the result of Cook and Reckhow [12] saying
that if there is a propositional proof system in which any unsatisfiable formula F has a short
proof of unsatisfiability (of size polynomial in the size of F), then NP = coNP. In the last
30 years the complexity of proofs was investigated for several proof systems with the aim
of finding concrete evidence, and eventually a proof, that for all proof systems there is a
propositional formula which is not efficiently provable, i.e. requires super-polynomial proof

© Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 49; pp. 49:1–49:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.galesi@uniroma1.it
mailto:dmitrits@pdmi.ras.ru
mailto:aariazanov@gmail.com
mailto:ana.a.sofronova@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.49
https://eccc.weizmann.ac.il/report/2019/069/
https://eccc.weizmann.ac.il/report/2019/069/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

size. The approach followed to prove such lower bounds was essentially borrowed from circuit
complexity. Lines in a proof are Boolean formulas and we can define different proof system
according to the circuit complexity of such formulas. For example resolution, a well-known
refutational system for CNFs, corresponds to a system where formulas are of depth 1. In
circuit complexity we keep on trying to strength lower bounds to computationally more
powerful class of circuits. In proof complexity we follow the analogous approach: to strength
lower bounds to systems working on formulas computationally more powerful. The hope is
that techniques used to prove lower bounds for classes of Boolean circuits could be lifted
to work with proof systems operating with formulas in the same circuit class. At present
however we are far from such ideal situation and in fact, in terms of circuit classes, lower
bounds for proof systems are well below those for Boolean circuits.

The complexity of proofs in resolution is largely studied. The first lower bound for (a
restriction of) resolution was given by Tseitin in [35]. To obtain his result Tseitin introduced
a class of formulas (nowadays known as Tseitin formulas) encoding a generalisation of the
principle that the sum of the degrees of all vertices in a graph is an even number. A Tseitin
formula T(G, f) is defined for every undirected graph G(V,E) and a charging function
f : V → {0, 1}. We introduce a propositional variable for every edge of G so that T(G, f) is
a CNF representation of a linear system over the field GF(2) that for every vertex v ∈ V
states that the sum of all edges incident to v equals f(v). Tseitin formulas, usually defined
on graphs with good expansion properties, are among the main examples we could prove
lower bounds for in different proof systems. For unrestricted resolution it was Urquhart in
[36] and later Ben-Sasson and Wigderson [8] who proved exponential lower bounds for Tseitin
formulas over constant-degree expander graphs. Another example of an important principle
largely studied in proof complexity is the Pigeonhole principle, PHPn. Haken [19], Beame
and Pitassi [4] and Ben-Sasson Wigderson [8] proved exponential resolution lower bounds
for CNF encoding of the negation of PHPn, which were later generalized and improved in
several other works [13, 30, 32, 33, 9, 24].

Bounded-depth Frege extends resolution since the formulas in the line of proofs are
computable by AC0 circuits, i.e. constant-depth circuits with unbounded fan-in gates. The
importance of understanding the complexity of proofs in bounded-depth-Frege systems was
due at least to two reasons: (1) for general Frege systems, where formulas have no restrictions,
i.e. are of depth O(logn), Buss in [10] proved that the Pigeonhole principle can be proved in
polynomial size, hence obtaining an exponential separation with resolution. (2) Lower bounds
for AC0-circuits were known [21, 15] and hence we could hope for applying lower bound
techniques for AC0 to lower bounds to bounded-depth Frege. Studying the complexity of
proofs in bounded-depth Frege is of the utmost importance since it is a frontier proof system,
i.e. one of the strongest propositional proof systems with known significant lower bounds at
the moment. Any advance is then a step towards proving lower bounds for AC0[2]-Frege, i.e.
a bounded-depth Frege admitting also formulas with parity gates, which are unknown at
the moment, though we know since a long time exponential lower bounds for AC0[2] circuits
[34, 31, 25]. In this work we contribute to the complexity of proofs in bounded-depth Frege
proving new lower bounds for Tseitin formulas.

Ajtai in [1] was the first to prove a lower bound in bounded-depth Frege. He showed that
a proof of PHPn must have a super-polynomial size. His result was later followed by several
results simplifying his technique [5] and improving the lower bound [27, 26] showing that any
polynomial-size Frege proof of PHPn must have depth Ω(log logn). The proof complexity of
Tseitin formulas in bounded-depth Frege was first considered by Urquhart and Fu in [37], a
work where they simplified and adapted the lower bound for the PHPn to the case of Tseitin

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:3

formulas over a complete graph. Ben-Sasson in [7], proved exponential lower bounds for
the Tseitin formulas over constant-degree expander graphs using a new reduction from the
pigeonhole principle [37]. All these lower bounds are adaptation of the technique of [27, 26],
hence vanish when the depth of formulas in the proof is more than log logn. In a very recent
major breakthrough [28] showed that Tseitin formulas over a 3-expander graph of n nodes
requires super-polynomial bounded-depth Frege proofs at depth O(

√
logn). Their result was

later improved to depth up to C log n
log log n by Håstad in [22] but for Tseitin formulas defined only

on the 2-dimensional grid, where C is a positive constant.
Proofs of T(G, f) were studied in terms of the treewidth of G, tw(G), for resolution

[2, 17] and for OBDD proof systems [18]. We use Håstad result to prove tight bounds on the
complexity of proofs in bounded-depth Frege of T(G, f) over any graph G in terms of the
treewidth of G. Our main result is the following theorem:

I Theorem 1. There is a constant K such that for any graph G over n nodes and for
all d ≤ K log n

log log n , every depth-d Frege proof of ¬T(G, f) has size at least 2tw(G)Ω(1/d) .
Furthermore, for all large enough d there exist depth-d Frege proofs of ¬T(G, f) of size
2tw(G)O(1/d)poly(|T(G, f)|).

A class of unsatisfiable CNFs Fn is (quasi-)automatizable in a proof systems S, if there
exists a deterministic algorithm that, given F in Fn returns a proof in S in time which is
(quasi-)polynomial in |F |+ |τF |, where |τF | is the size of shortest proof of F in S. Theorem 1,
together with the results from [17, 20, 2, 3] implies that for any graph G, the class of Tseitin
formulas is quasi-automatizable in all systems between treelike resolution and constant-depth
Frege. This answers the problem of [2] of extending to all graphs the quasi-automazibablity
of T(G, f) in resolution, known only for graphs with bounded cyclicity [2].

Using a result in [3, 23] we can also prove that the size of proofs of T(G, f) in proof systems
between tree-like resolution and bounded-depth Frege are quasi-polynomially correlated, i.e.
if T(G, f) has a proof of size S in bounded-depth Frege, then it has a proof of size at most
2poly(log(S+|T(G,f)|)) in treelike resolution and vice versa. This result provides evidence to
the conjecture of Urquhart that the shortest resolution proofs of T(G, f) are regular. Finally
other consequences of Theorem 1 are: (1) It gives polynomial size Frege proofs of T(G, f) of
depth log(tw(G)). (2) It improves the lower bounds of [7, 28] since expanders have treewidth
Ω(n) and on such graphs our lower bound is 2nΩ(1/d) , which works for larger d than [7, 28];
(3) Induces a strict depth-hierarchy for the proof complexities of Tseitin formulas over an
infinite sequence of graphs Gn.

Overview of the proof technique

In Theorem 17 we prove the lower bound from Theorem 1. The proof is based on the
improvement of the Excluded Grid Theorem by Robertson and Seymour recently obtained by
Chuzhoy [11]: an arbitrary graph G contains as a minor a r×r grid, where r = Ω

(
tw(G)1/37).

More precisely we use the corollary of this result (see Corollary 8) stating that any graph G
has a wall of size r as a topological minor (i.e. can be obtained from G by several removing
of vertices, edges and suppressions, see Fig. 1 and Fig. 3). Our proof consists of two parts: at
first, we show that if H is a topological minor of G, then any bounded-depth Frege proof of a
Tseitin formula T(G, f) can be transformed to a proof of a T(H, f ′), with constant increase
in depth and polynomial increase in size. And then we prove a lower bound on the size of
depth-d Frege proof of Tseitin formulas based on walls. In this proof we use the lower bound
for grid graphs proved by Håstad [22].

MFCS 2019

49:4 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

In Theorem 18 we prove the upper bound from Theorem 1. We consider the compact
representation of linear functions Fn

2 → F2 on variables x1, x2, . . . , xn by propositional
formulas of depth d and of size 2nO(1/d) . We show that for linear functions f and g if the
equations f(x) = a and g(x) = b are given in our representation, then there is a derivation of
(h+ g)(x) = a+ b of depth d and of size 2nO(1/d) . We also show that if a linear equation is
represented in CNF, then it is possible to infer its compact representation with depth d and
size 2nO(1/d) . Since a Tseitin formula is an unsatisfiable system of linear equations written in
CNF, hence it is possible to prove a Tseitin formula in size 2mO(1/d) and depth d, where m is
the number of edges in G. However we wish to have the treewidth of G instead of m. We
consider a tree-partition of a graph G, the vertices of G are split into bags and there exists a
tree such that bags are nodes of this tree and if two vertices of G are connected, then they
are either in one bag or in adjacent bags. It is known that there is a tree partition where the
size of bags are at most O(tw(G)∆(G)) [38]. Since the number of edges touching a given
bag is O(tw(G)∆(G)2) we can use the compact representation to take care of the equations
involving the parity of sum of adjacent bags with proofs growing in terms of the treewidth
of G.

Organization
The paper is divided into four sections. After the Preliminary section, we have Section 3 for
the lower bound (Theorem 17), Section 4 for the upper bound (Theorem 18). Proofs omitted
due to space constraints may be found in [16].

2 Preliminaries

2.1 Formulas and restrictions
We consider propositional formulas over binary ∨ and ∧, unary ¬ and Boolean constants 0,1.
We represent formulas as rooted trees such that internal vertices are labeled with connectives
and leaves are labeled with propositional variables or Boolean constants. The depth of a
formula is the maximal number of alternations of types of connectives over all the paths
from the root to a leaf plus one.

We assume that disjunctions with unbounded fanin are represented via binary disjunctions.
By default, we mean that

∨n
i=1 xi is right-associative; i.e., denotes (. . . (x1 ∨ x2) ∨ . . .) ∨

xn−1) ∨ xn; we also assume the same for
∧
.

We denote by vars(F) the set of variables of a formula F . A partial assignment α for
a formula F is mapping from vars(F) → {0, 1, ∗}, where α(x) = ∗ if x is unassigned. We
denote by dom(α) = α−1({0, 1}) the set of variables in F which α assigns a Boolean value.

2.2 Pudlák-Buss games
We use the game interpretation of Frege proofs introduced by Pudlák and Buss [29]. Let
us define a game with two players Pavel and Sam. The game starts with initial conditions
of the form ϕ1 = a1, . . . , ϕk = ak, where ϕ1, ϕ2, . . . , ϕk are propositional formulas and
a1, a2, . . . , ak ∈ {0, 1} such that

∧k
i=1(ϕi = ai) is identically false. Sam claims that he knows

an assignment of variables that satisfies
∧k

i=1(ϕi = ai), the goal of Pavel is to convict Sam. At
each his move Pavel asks Sam the value of a propositional formula and Sam gives an answer.
The game stops when Pavel convicts Sam, namely Pavel finds an immediate contradiction
among initial conditions and Sam’s answers. An immediate contradiction with a Boolean

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:5

connective ◦ of arity t is a set of (t+ 1) formulas α1, . . . , αt and ◦(α1, . . . , αt) with claimed
values a1, . . . , at and b such that ◦(a1, . . . , ak) 6= b. In particular, 0 with claimed value 1 is
an immediate contradiction.

A strategy of Pavel is a function that maps initial conditions and the history of a game
to a propositional formula (request). A winning strategy is a strategy that allows Pavel
to convict Sam for any behaviour of Sam. A winning strategy of Pavel can be represented
as a binary tree whose nodes are labeled with Pavel’s requests and edges correspond to
Sam’s answers. A leaf of the tree corresponds to an immediate contradiction among initial
conditions and equalities corresponding to the path from the root to this leaf.

A Pudlák-Buss game derivation of a formula ψ from formulas ϕ1, ϕ2, . . . , ϕs is a tree of a
Pavel’s winning strategy in a game with initial conditions ϕ1 = 1, ϕ2 = 1, . . . , ϕs = 1, ψ = 0.
In that follows by derivations we always mean Pudlák-Buss game derivations. We are
interested in the two complexity parameters of derivations: 1) the size of a derivation S that
equals the total size of formula ψ and all formulas that are used as labels of nodes; 2) the
depth of a derivation d is the maximum depth of ψ and formulas that are used as labels
of nodes. We use the notation ϕ1, . . . , ϕs `d ψ for a derivation of ψ from ϕ1, ϕ2, . . . , ϕs of
depth at most d. A derivation of ϕ is a derivation of ϕ from the empty set of formulas.

I Lemma 2. Assume that there is a derivation ϕ1, . . . , ϕk `d1 ψ1 of size S1 and also there is
a derivation ϕ1, . . . , ϕk, ψ1 `d2 ψ2 of size S2, then there is a derivation ϕ1, . . . , ϕk `max{d1,d2}
ψ2 of size S1 + S2.

Proof. Let us create the new tree with the root labelled with ψ1 such that edge form the
root labelled with 0 goes to the root of the first derivation and edge labelled with 1 goes to
the root of the second derivation. J

I Lemma 3. 1. If a formula ϕ has a Frege derivation of size S and depth d, then ϕ has a
Pudlák-Buss game derivation of size O(S2) and depth d. 2. If ϕ has a Pudlák-Buss game
derivation of size S and depth d, then ϕ has a Frege derivation of size O(S3) and depth
d+O(1).

I Lemma 4. Let ψ1 and ψ2 be two formulas of depth at most d such that | vars(ψ1) ∪
vars(ψ2)| = k and ψ1 semantically implies ψ2. Then there exists a derivation ψ1 `d ψ2 of
size at most 2k

(
|ψ1|2 + |ψ2|2

)
.

A shortcut contradiction for the disjunction is a situation where Pavel asks Sam formulas∨k
i=1 αi and αj for j ∈ [k] and gets the answers 0 and 1 respectively. Similarly a shortcut

contradiction for the conjunction is a situation where Pavel asks Sam formulas
∧k

i=1 αi and
αj for j ∈ [k] and gets the answers 1 and 0. An ordinary derivation is a derivation which
does not use shortcut contradictions.

I Lemma 5. Consider a derivation of size S and of depth d that uses shortcut contradictions
in leaves. Then there is an ordinary derivation of size at most S3 and of depth d.

Tseitin Formulas. Let G(V,E) be an undirected graph and v ∈ V . We denote by E(v) the
set of edges in E incident with v and by N(v) the set of neighbours u ∈ V of v, i.e. the u
such that (u, v) ∈ E(v).

A vertex-charging for G(V,E) is a mapping f : V −→ {0, 1}. We say that f is an
odd-charging of G if

∑
v∈V f(v) ≡ 1 mod 2. The Tseitin formulas defined on G using

variables xe, e ∈ E are the formulas: T(G, f) :=
∧

v∈V Par(v), where Par(v) is a CNF formula
representing

⊕
e∈E(v) xe = f(v).

MFCS 2019

49:6 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

I Lemma 6 ([36]). T(G, f) is unsatisfiable if and only if there is a connected component U
of G such that the restriction of f on U is odd-charging.

In this work we will work with the tautological form of Tseitin formulas in the form of
¬T(G, f).

2.3 Grids, Walls, Minors, Topological Minors and Treewidth
We consider 4 structural operations on undirected graphs G = (V,E) possibly with parallel
edges, but without loops. We follow [6, 14].

edge removal of e ∈ E. It produces the graph [G\e] = (V,E\{e}).
vertex removal of v ∈ V . It produces the graph [G\v] = (V \{v}, E\E(v)), where E(v) is
the set of edges in E incident with v ∈ V .
edge contraction of e = (uv) ∈ E. Is the replacement of u and v with a single vertex such
that edges incident to the new vertex are the edges other than e that were incident with
u or v. The resulting graph G?e has one edge less than G.
vertex suppression of a vertex v in G of degree 2. Let u and w be v’s neighbours in G.
The suppression of v is obtained by deleting v along with two edges (uv) and (wv) and
adding a new edge (wu) (possibly parallel to an existing one). The resulting graph [G\sv]
has one vertex less than G. See Figure 1.

w v u

w u

Figure 1 Suppression of v
from G.

Figure 2 The grid H5,5. Figure 3 The wall W5.

A graph H is a minor of G if H can be obtained from G by a sequences of edge and
vertex removals and edge contractions. A graph H is a topological minor of G if H can be
obtained from G by a sequence of edge removals, vertex removals and by vertex suppressions
[6, 14].

The grid Hm,n is the graph of the cellular rectangle m× n; it has (m+ 1)(n+ 1) vertices
and n(m + 1) + m(n + 1) edges, among them n(m + 1) horizontal and m(n + 1) vertical
edges. See fig. 2.

The wall Wn is a subgraph of Hn,n that is obtained by the removing of several vertical
edges. Vertical edges of Hn,n are in n rows and we enumerate them in every row from the
left to the right. In the odd rows we remove all vertical edges with even numbers and in
even rows we remove all vertical edges with odd numbers. See fig. 3.

A tree decomposition of an undirected graph G(V,E) is a tree T = (VT , ET) such that
every vertex u ∈ VT corresponds to a set Xu ⊆ V and it satisfies the following properties: 1.
The union of Xu for u ∈ VT equals V . 2. For every edge (a, b) ∈ E there exists u ∈ VT such
that a, b ∈ Xu. 3. If a vertex a ∈ V is in the sets Xu and Xv for some u, v ∈ VT , then it is
also in Xw for all w on the path between u and v in T .

The width of a tree decomposition is the maximum |Xu| for u ∈ VT minus one. A
treewidth of a graph G is the minimal value of the width among all tree decompositions of
the graph G.

Recall the following Theorem proved in [11].

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:7

I Theorem 7 ([11]). If G has a treewidth t, then it has the grid Hr,r as a minor, where
r = Ω(t1/37).

The following Corollary was mentioned in [6].

I Corollary 8 ([6]). If G a has treewidth t, then it has the wall Wr as a topological minor,
where r = Ω(t1/37).

3 The Lower Bound

3.1 Topological Minors and Tseitin Formulas
Le ϕ be a formula and let α be a partial assignment to variables of ϕ. Define ϕ[α] to be the
formula obtained from ϕ substituting each variable x in the domain of α, with the constant
assigned to x by α. Notice that ϕ and ϕ[α] have the same size and depth.

I Lemma 9. Let Φa and Φ′a for a ∈ A be propositional formulas of depth at most d such
that | vars(Φa) ∪ vars(Φ′a)| ≤ k. Assume that for all a ∈ A, Φa is semantically equivalent
to Φ′a. Then ¬

∧
a∈A Φ′a `d+O(1) ¬

∧
a∈A′ Φa of size at most 2kpoly

(∑
a∈A (|Φa|+ |Φ′a|)

)
,

where A′ = {a ∈ A | Φa is not identically true}.

I Lemma 10 ([18]). Let G(V,E) be a connected graph and H(V ′, E′) be a connected subgraph
of G with E′ 6= ∅ that is obtained from G by the deletion of some vertices and edges. For
every unsatisfiable Tseitin formula T(G, f) there exists a partial assignment α to variables
xe for e ∈ E \ E′ such that α does not falsify any clause of T(G, f).

I Lemma 11. Let G(V,E) be a connected graph and H(V ′, E′) be a connected subgraph of
G. Assume that there is a derivation `d ¬T(G, f) of size S. Then for some f ′ there is a
derivation `d+O(1) ¬T(H, f ′) of size S + poly(|T(G, f)|).

Proof. Let T be the game tree of `d ¬T(G, f). Let α be given by Lemma 10 that is defined
on all variables xe for e ∈ E \E′ and does not falsify any clause of T(G, f). T [α] be the tree
obtained form T applying the substitution α to all the queried formulas. Size and depth do
not change, hence T [α] defines a derivation `d¬T(G, f)[α] of size S. ¬T(G, f) has the form
¬
∧

v∈V Par(v), where Par(v) is a parity condition of the vertex v. Hence, ¬T(G, f)[α] is of
the form ¬

∧
i Par(v)[α]. If v /∈ V ′, then α assigns values to all variables from Par(v), since

α does not falsify Par(v), α satisfies Par(v), hence Par(v)[α] is identically true. If v ∈ V ′,
then Par(v)[α] is a parity statement depending on variables xe, where e ∈ E′ is incident
to v. Hence, for v ∈ V ′, Par(v)[α] is semantically equivalent to a parity condition of a
Tseitin formula T(H,ϕ′) for some charging ϕ′. Let ∆ be the maximal degree of G. Then
every parity condition of T(H,ϕ′) or T(G,ϕ) depends on at most ∆ variables. Notice that
since we represent parities in CNF, |T(G, f)| ≥ 2∆. By Lemma 9, there is a derivation
¬T(G, f)[α] `O(1) ¬T(H, f ′) of size poly(|T(G, f)|). The claim follows using the size S,
depth d derivation of ¬T(G, f)[α] together with Lemma 2. J

A 1-substitution for a formula ϕ is a partial function mapping variables of ϕ into its
literals. After applying a 1-substitution σ to ϕ, the depth of the new formula ϕ[σ] can
increase by one. However 1-substitutions are closed under composition: if σ1 maps [y 7→ ¬z]
and σ2 maps [x 7→ ¬y], then σ = σ1 ◦ σ2 is the 1-substitution [x 7→ z, y 7→ ¬z]. We use
1-substitutions to handle in T(G, f) the operation of vertex suppression on the graph G. Let
G = (V,E) be a graph and v ∈ V be a node and let T(G, f) be a Tseitin formula on G. Let v

MFCS 2019

49:8 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

be a degree-2 vertex v in G with neighbours u and w. Consider the following 1-substitution
σv and the charge function fv for [G\sv]:

σv =
{

[xvw 7→ xwu, xvu 7→ xwu] if f(v) = 0
[xvw 7→ xwu, xvu 7→ ¬xwu] if f(v) = 1 fv(z) =

{
f(z) if z ∈ V \ {u, v}
f(u) + f(v) if z = u

Let G(V,E) be a graph and f : V → {0, 1} be a charging. Let A be a finite set. We say
that a formula Ψ is a pseudo Tseitin formula based on G and f with fake vertices in A, and
we write Ψ is T∗A(G, f), if Ψ has the form

∧
v∈V ∪A ψv, where

1. for all v ∈ V , ψv is a propositional formula depending on variables xe for all edges e
incident to v. And ψv is semantically equivalent to the parity condition Par(v) of T(G, f).

2. for all v ∈ A, ψv is a tautology.

I Lemma 12. Let G(V,E) be a connected constant-degree graph over n vertices. Let [G\sv]
be the graph obtained after the suppression of a degree-2 vertex v in G. If Ψ is T∗A(G, f),
then Ψ[σv] is T∗A∪{v}([G\sv], fv).

Proof. Assume that v is linked to two vertices w and u in G. Let A be the set of fake
vertices of Ψ so Ψ has the form

∧
x∈V ∪A ψx, hence Ψ[σv] is

∧
x∈V ∪A ψx[σv]. For x ∈ A, ψ(x)

is a tautology, hence ψx[σv] is also a tautology. By the definition of σv, ψv[σv] is a tautology.
It is not hard to verify that for x ∈ V \ {v}, ψx[σv] is equivalent to parity condition of
T([G\sv], fv). Hence, Ψ[σv] is T∗A∪{v}([G\sv], fv) J

I Lemma 13. Let G(V,E) be a graph and f : V → {0, 1} and W = {v1, . . . , vk} be degree 2
nodes in V suppressed in that order from G and [G\sW] be the resulting graph. Let σi be the
corresponding 1-substitutions and let σ = σk ◦ . . . ◦ σ1. There is a charging fk of G such that
if Ψ is T∗A(G, f), then Ψ[σ] is T∗A∪W ([G\sW], fk).

I Lemma 14. Let G be a connected graph on n vertices and with the maximal degree at
most 3. Let H be obtained from G by several suppressions. Assume that there is a derivation
of ¬T(G, f) of size S and depth d. Then for some charging fk there is a derivation of
¬T(H, fk) of size O(S) + poly(n) and depth d+O(1).

Proof. Assume that, in order, to get H from G we have to apply suppressions for vertices
W = {v1, . . . , vk}. Let σi be the 1-substitutions corresponding to the suppression of vi, and
let σ = σk ◦ · · · ◦ σ1. T(G, f) is T∗∅(G, f). Let fk be the charging given by Lemma 13 applied
to T(G, f) and [G\sW] = H. Then T(G, f)[σ] is T∗W (H, fk). We apply the 1-substitution σ
to the given derivation of ¬T(G, f) and we get a derivation of ¬T(G, f)[σ] of size O(S) and
depth at most d+ 1. By Lemma 9, applied on T(G, f)[σ] and T(H, fk), there is a derivation
¬T(G, f)[σ] `d+O(1) ¬T(H, fk) of size poly(n). Combining the two derivations together by
Lemma 2 we obtain a derivation `d+O(1) T(H, fk) of size O(s) + poly(n). J

3.2 From Walls To Grids
I Lemma 15. If there exists a derivation `d ¬T(Wn, f) of size S, then there exists a
derivation `d+O(1) ¬T(Mn, f

′) of size O(S) + poly(n), where Mn is a connected constant-
degree graph that contains Hn,bn−1

2 c
as a subgraph.

Proof. Consider a set I of all the horizontal edges of Wn that belong to odd columns (on
fig. 4 and 5 edges from I are red). I is a matching, i.e. no two edges from I are incident
to the same vertex. If we contract all edges from I, we get the graph Mn that for odd n

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:9

coincides with Hn, n−1
2

and for even n coincides with a graph that is obtained from Hn,bn
2 c

by the removal of several edges from the last vertical (see fig. 4 and 5). For every e ∈ I we
denote its left vertex by ue and the right vertex by ve. Let Eue

be the set of edges of Wn

incident to ue except e. Let τe denote a CNF formula encoding
⊕

f∈Eue
xf = f(ue).

Consider a game tree T for the derivation of the Tseitin tautology ¬T(Wn, f) of size S
and depth d. To every formula used in this tree we apply the substitution that replaces every
occurrence of xe with τe. We denote the resulting tree by T ′.

Notice that T ′ is a correct game tree of a derivation `d+O(1) ¬F , where F is obtained
from T(Wn, f) by the same substitution. The depth of this derivation is increased by at
most a constant since in several leaves we hang a formula of constant depth; here we also use
that I is a matching and thus we do not add new occurrences of variables corresponding
edges from I. The size of τe is O(1), hence any formula from the derivation is increased in at
most a constant factor, thus the size of the derivation defined by the tree T ′ is O(S).

We define a function f ′ on vertices of Mn as follows. If a vertex w of the graph Mn is
obtained by merging the vertices w′, w′′ of the graphWn, then f ′(w) = (f(w′)+f(w′′)) mod 2.
If the vertex w of Hn,bn/2c is obtained from the vertex w of Wn, then f ′(w) = f(w).

Now we show how to derive ¬T(Mn, f
′) from ¬F . T(Wn, f) is a Tseitin formula and

it has the following structure:
∧

v∈V ψv, where V is the set of vertices of Wn and ψv is a
CNF formula encoding a parity condition for the vertex v. F differs from T(Wn, f) only in
conditions corresponding to vertices that are incident to an edge from I (if n is even, then
there are vertices in Wn that are not incident to any edge from I). Notice that F has the
form

∧
v∈V ψ

′
v where ψ′v is obtained by substitution from ψv. Let w = ue for some e ∈ I,

then the formula ψ′w is identically true. If w = ve, then the condition ψ′w is equivalent to the
parity condition of the merged vertex {ue, ve} in the Tseitin formula T(Mn, f

′), but ψ′w is
not written in canonical form.

Since all degrees in Mn are at most 4, then by Lemma 9 there exists a derivation
¬F `d+O(1) ¬T(Mn, f

′) of size poly(n). The claim follows by Lemma 2. J

Figure 4 W6 is contracted to M6. Figure 5 W5 is contracted to M5.

3.3 Putting it all together
We use Håstad’s Theorem from [22].

I Theorem 16 ([22]). There is a constant K > 0 such that for d ≤ K log n
log log n any depth d

derivation of ¬T(Hn,n, f)) has size at least 2nΩ(1/d) .

I Theorem 17. There exist constants K > 0 and C > 0 such that for every connected graph
G of treewidth t and every d ≤ K log n

log log n − C, any depth d derivation of ¬T(G, f)) has size at
least 2tΩ(1/d) .

MFCS 2019

49:10 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

Proof. Suppose that ¬T(G, f) have a derivation of size S and depth d. By Corollary 8 we
know that G contains the wall Wr as a topological minor, where r = Ω(t1/37). Consider a
sequence of operations (edge/vertex removals and suppressions) that transform G to Wr.
Assume that removals do not follow suppressions. And let G′ be a subgraph of G that is
obtained from G by application of all removals (hence, Wr can be obtained from G′ by
application of several suppressions).

By Lemma 11, for some f ′ there is a derivation of ¬T(G′, f ′) of size poly(|T(G, f)|) + S

and depth d+O(1). SinceWr can be obtained from G′ by application of several suppressions,
G′ is connected. Suppressions can not increase the degrees, hence all degrees in G′ are at most
3. By Lemma 14, for some f ′′ there is a derivation of ¬T(Wr, f

′′) of size poly(|T(G, f)|) +S

and depth d + O(1). By Lemma 15, for some f ′′′ there is a derivation of ¬T(Mr, f
′′′) of

size poly(|T(G, f)|) + O(S) and depth d + O(1), where Mr is connected constant-degree
graph containing Hb(r−1)/2c as a subgraph. And finally by Lemma 11, for some f ′′′′ there is
a Frege derivation of T(Hb(r−1)/2c, f

′′′′) of size poly(|T(G, f)|) +O(S) and depth d+O(1).
Notice that S is the size of a derivation of ¬T(G, f), hence S ≥ |T(G, f)|. Thus, for some
constants C and c there is a derivation of ¬T(Hb(r−1)/2c, f

′′′′) of size Sc and depth d+ C.
By Theorem 16, there is a constant K such that if d + C ≤ K log n

log log n , then Sc ≥
2b(r−1)/2cΩ(1/(d+C)) . Hence S ≥ 2rΩ(1/d) and, thus, S ≥ 2tΩ(1/d) . J

4 The Upper Bound

In this section we prove the following Theorem:

I Theorem 18. Let G(V,E) be a connected undirected graph and T(G, f) be an unsatisfiable
Tseitin formula. Then for all large enough d the formula ¬T(G, f) has a derivation of depth
d and size 2tw(G)O(1/d)poly(|T(G, f)|).

In order to prove Theorem 18 we define a compact representation of parity by depth-d
formulas, then we show that we can efficiently derive the sum of F2-linear equations using
the compact representation of parities. And then we prove Theorem 18 using a tree-partition
of the graph G.

4.1 A compact representation of parity
Let t1, t2, . . . , td be natural numbers, where d is a non-negative integer. Let U0, U1, . . . , Ud

be partitions of a finite set F . We say that a list of partitions U = (U0, U1, . . . , Ud) is a
(t1, . . . , td)-refinement of F if the following conditions hold:
1. U0 consists of the only element U0,1 = F .
2. For every i, Ui+1 is a subpartition of Ui such that every element of Ui is split into ti+1

parts. Hence, Ui split F into mi parts: Ui,1, Ui,2, . . . , Ui,mi
, where mi =

∏i
j=1 tj .

3. All elements of Ud have cardinality at most 1.

Let U be a (t1, . . . , td)-refinement of a set F and let Ui,j be one of the blocks of this
refinement. Then U induces on each of the blocks Uij a (ti+1, . . . , td)-refinement U ′ which is
obtained by restricting Ui, . . . , Ud to the set Uij . U ′ is called a sub-refinement of Uij in U .

I Lemma 19. Let F be a set of size n and d ≥ 0 be an integer. Let t1, . . . , td be integers
such that t1 · t2 · . . . · td ≥ n. Then there exists a (t1, . . . , td)-refinement U of F .

For a ∈ {0, 1} and natural number n we define a Boolean function PARITYa
n : {0, 1}n →

{0, 1}n such that PARITYa
n(x1, . . . , xn) = 1 iff

⊕n
i=1 xi = a for all x1, . . . , xn ∈ {0, 1}.

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:11

I Lemma 20. Let n and d be positive integers and U be a (t1, t2, . . . , td)-refinement of [n].
Then there exists a formula representing PARITYb

n of depth at most 3d + 1 and of size∏d
i=1 2ti+1ti.

Proof. Let us prove by backward induction on i from d to 0 that for every j ∈ [
∏i

k=1 tk],
there is a formula representing

⊕
k∈Ui,j

xk of depth 3(d− i) and of size
∏d

q=i+1 2tq+1tq. If
i = d, then |Ud,j | ≤ 1, hence

⊕
k∈Ui,j

xk is either 0 or a variable xk and thus has size 1 and
depth 0.

Assume that i < d. Let `1, `2, . . . , `ti+1 be such that Ui,j = Ui+1,`1tUi+1,`2t· · ·tUi+1,`ti+1
.

Let for r ∈ [ti1], βr be a representation of
⊕

k∈Ui+1,`r
xk of size

∏d
q=i+2 2tq+1tq and depth

3(d− i− 1) that exists by the induction hypothesis. Consider a CNF-representation of β1 ⊕
. . .⊕βti+1 :

⊕
k∈Ui,j

xk =
∧

S⊆{1,...,ti+1}
|S| mod 2=0

(∨
s∈S ¬βs ∨

∨
s6∈S βs

)
. After the substitution of the

representations of β1, . . . , βti+1 we obtain a formula of size at most 2ti+1ti+1 ·
∏d

q=i+2 2tq+1tq +
2ti+1ti+1 ≤

∏q
q=i+1 2tq+1tq and of depth 3(d− i− 1) + 3 = 3(d− i).

Therefore we have constructed a representation of PARITY1
n of the needed size and

depth. The representation of PARITY0
n could be constructed as ¬ϕ where ϕ is the obtained

representation of PARITY1
n. J

We call the representation of PARITYa
n obtained by Lemma 20 the compact representation

of PARITYa
n with respect to a (t1, . . . , td)-refinement U .

Let us define for S ⊆ [n] and for a ∈ {0, 1}, PARITYa
n,S(x1, . . . , xn) = (¬a)⊕

⊕
i∈S xi.

We define a compact representation of PARITYa
n,S with respect to a (t1, . . . , td)-refinement U

as the result of substitutions xj := 0 for all j 6∈ S to the compact representation of PARITYa
n

with respect to U . We denote the compact representation of PARITYa
n,S(x1, x2, . . . , xn)

w.r.t. U by Φa(S,U).

I Lemma 21. Let U be a (t1, . . . , td)-refinement of [n] and U ′ be a sub-refinement of Uij in
U . Then for every S ⊆ Uij there exists a derivation Φa(S,U ′) `3d+O(1) Φa(S,U) of size at
most 4|Φa(S,U)|3.

4.2 Summation of linear equations
Let S4T be the symmetric difference of sets S and T i.e. S4T = (S ∪ T) \ (S ∩ T).

I Lemma 22. Let U be a (t1, . . . , td)-refinement of [n]. Let S1, S2, . . . , Sk ⊆ [n] and
a1, . . . , ak ∈ {0, 1}. Then there exists a constant c such that:
1. There exists a derivation Φa1(S1, U),Φa2(S2, U), . . . ,Φak (Sk, U) `3d+O(1) Φa1⊕...⊕ak

(S14 . . .4Sk, U) of size at most c · k · |Φ1(∅, U)|6.
2. If

∧
i∈[k]

(⊕
j∈Si

xj = ai

)
is unsatisfiable then there exists a derivation

Φa1(S1, U),Φa2(S2, U), . . . ,Φak (Sk, U) `3d+O(1) 0 of size at most c · k · |Φ1(∅, U)|6.

4.3 Tree-partition width
Let G(V,E) be an undirected graph and S1, . . . , Sm be a partition of V . S1, . . . , Sm is a
tree-partition of G if there exists a tree T ([m], ET) such that every edge e of G connects
either two vertices from the same part Si or connects a vertex from Si and a vertex from Sj ,
where i and j are adjacent in T , i.e. (i, j) ∈ ET . A width of a tree-partition S1, S2, . . . , Sm

is the size of the largest set Si for i ∈ [m]. A tree-partition width of a graph G is the smallest
width among all tree-partitions of G. We denote the tree-partition width of G by tpw(G).

MFCS 2019

49:12 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

If we add a new vertex in the middle of every edge (i, j) of the tree T and put the set
Si ∪ Sj on it, we will get a tree decomposition of G, hence tw(G) ≤ 2tpw(G)− 1.

The following theorem shows an inequality in the other direction.

I Theorem 23 ([38]). If tw(G) ≥ 1, then tpw(G) ≤ 10∆(G)tw(G), where ∆(G) is the
maximum degree of G.

So, tw(G) and tpw(G) coincide up to a multiplicative constants for constant degree
graphs.

I Theorem 24. Let G(V,E) be a connected graph and let a Tseitin formula T(G, f) be
unsatisfiable. Then there exists a derivation `3d+O(1) T(G, f) of size at most poly(|T(G, f)|) ·
2(tpw(G)∆(G))O(1/d) , where ∆(G) is the maximum degree of G.

Proof. Let S1, . . . , Sm be a tree-partition of G with width tpw(G) and let T ([m], ET) be
the corresponding tree. W.l.o.g. we assume that T is a rooted tree with the root m; for all
i ∈ [m− 1], p(i) denotes its parent and for all i ∈ [m], s(i) denotes the set of direct successors
of i . W.l.o.g. we assume that p(i) > i for all i ∈ [m− 1].

Since T(G, f) is unsatisfiable and G is connected,
⊕

v∈V f(v) =
⊕

i∈[m]
⊕

v∈Si
f(v) = 1.

We consider the sum
⊕

i∈[m]
⊕

e∈E(Si,V \Si) xe. Since each xe occurs in the sum exactly twice,
the sum (modulo 2) is 0 for all values of xe. Then for each assignment to {xe}e∈E there
exists i0 such that

⊕
v∈Si0

f(v) 6=
⊕

e∈E(Si0 ,V \Si0) xe. The first part of Pavel’s strategy is to
find such i0.

Pavel will request parity of the sum of all edges between Si and Sj for all (i, j) ∈ ET . In
order to represent these formulas in a compact way we now define m different (t1, . . . , td)-
refinements W 1, . . . ,Wm; for every i, W i is a refinement of the set E

(
Si,
⋃

j∈s(i) Sj

)
of all

edges connecting a vertex from Si with a vertex from
⋃

j∈s(i) Sj . We construct appropriate
refinements W i later.

Pavel asks Sam the values of
⊕

e∈E(Si,Sp(i)) xe represented as Φ1 (E (Si, Sp(i)
)
,W p(i))

for i ∈ [m − 1] in the increasing order until he finds i0 such that
⊕

e∈E(Si0 ,V \Si0) xe 6=⊕
v∈Si0

f(v).
At the moment when Sam has answered the value of Φ1 (E (Si, Sp(i)

)
,W p(i)) the values

of
⊕

e∈E(Si,Sj) xe for each j such that (i, j) ∈ ET are all determined, thus, the value of⊕
e∈E(Si,V \Si) xe is determined. If

⊕
e∈E(Si,V \Si) xe 6=

⊕
v∈Si

f(v) Pavel proceeds to the
next part of his strategy. Otherwise he continues to ask Sam similar questions corresponding
to the vertices with larger indices.

Now we describe the strategy of Pavel in case if he finds i0. We are going to describe this
case in terms of derivation using Lemma 2 multiple times. Consider a linear system that
consists of the equation

⊕
e∈E(Si0 ,V \Si0) xe = 1⊕

⊕
v∈Si0

f(v) and all parity conditions of
T(G, f) of the vertices from Si0 . This linear system is unsatisfiable. We are going to use
Lemma 22. In order to do it we need to derive the representations of these linear equations
w.r.t. some refinement Q of a superset of E(Si0 , V).

Let for i ∈ [m], U i be a (t1, t2, . . . , td)-refinement of the set E(Si) of all edges connect-
ing two vertices from Si (we construct these refinements in the end of the proof together
with the refinementsW i). Let us define a (3, t1, . . . , td)-refinement Q as a union of (t1, . . . , td)-
refinements W i0 ,W p(i0) and U i0 such that Q1 = {E(Si0 ,

⋃
j∈s(i0) Sj),

E(Sp(i0),
⋃

j∈s(p(i0)) Sj), E(Si0)} and for every j ∈ {2, 3, . . . , d + 1}, Qj is the union of
W i0

j−1,W
p(i0)
j−1 and U i0

j−1.
Let aj be Sam’s answer to the question

⊕
e∈E(Si0 ,Sj) xe for each j that is a neighbour of i0

in T , hence we may assume that Φaj (E(Si0 , Sj),W i0) for j ∈ s(i0) and Φap(i0)(E(Si0 , Ep(i0)),

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:13

W p(i0)) are already derived. By Lemma 21, we derive Φaj (E(Si0 , Sj), Q) from Φaj (E(Si0 , Sj),
W i0) for j ∈ s(i0) and Φap(i0)(E(Si0 , Sp(i0)), Q) from Φap(i0)(E(Si0 , Sp(i0)),W p(i0)), where aj

are Sam’s answers to the corresponding questions.

By the first part of Lemma 22 we derive Φ
1⊕
(⊕

v∈Si0
f(v)
)

(E(Si0 , V \ Si0), Q) from the
set of formulas {Φaj (E(Si0 , Sj), Q) | (i0, j) ∈ ET }. We assume that the parity conditions
of the vertices of G in T(G, f) represented as CNF are asked at the beginning of the game
i.e. for each v ∈ V we know that the CNF representation of

⊕
u:(u,v)∈E xe is true (if any

clause of T(G, f) is false Pavel queries all subformulas of T(G, f) except subformulas of the
clauses and gets an immediate contradiction, if any of the parity conditions is false it yields
an immediate contradiction with the corresponding subset of clauses). Thus, by Lemma 4
we derive the representations of parity conditions of the vertices from Si0 w.r.t. Q. Since the
corresponding linear system is unsatisfiable, using the second part of Lemma 22 we get a
contradiction.

B Claim 25. The size of the described game tree is at most
m · 23∆(G)∆2(G)tpw(G)2O

(∑d

i=1
ti

)
.

Let us choose ti = (∆(G)tpw(G))2/d for all i ∈ [d]. Since |Si| ≤ tpw(G), |E(Si)| +∣∣∣E (Si,
⋃

j∈s(i) Sj

)∣∣∣ ≤ ∆(G)tpw(G). Hence, the condition
∏d

i=1 ti ≥ ∆(G)tpw(G) ≥

|E(Si)| +
∣∣∣E (Si,

⋃
j∈s(i) Sj

)∣∣∣ holds and, thus, for all i ∈ [m] the refinements U i,W i ex-
ist by Lemma 19. If we substitute choosen values in the bound from Clam 25, we get the
upper bound m · 2O(3∆(G)+d(∆(G)tpw(G))2/d) = poly(|T(G, f)|) · 2(∆(G)tpw(G))O(1/d)

. J

Now we are ready to prove Theorem 18.

Proof of Theorem 18. Theorem 24 and Theorem 23 imply that there exists a constant c and
a derivation `3d+O(1) ¬T(G, f) of size at most poly(|T(G, f)|)2(10∆2(G)tw(G))c/d . If tw(G) >
∆(G) then we can rewrite our upper bound on the size as poly(|T(G, f)|)2(10tw(G))3c/d .
If tw(G) > 1 then it is poly(|T(G, f)|)2(tw(G))O(1/d) . If tw(G) = 1 then it is simply
poly(|T(G, f)|). Otherwise if tw(G) ≤ ∆(G) we can rewrite the upper bound as
poly(|T(G, f)|)· 2(10∆(G))3c/d = poly(|T(G, f)|) if 3c/d ≤ 1. Thus, for d ≥ 3c the up-
per bound is poly(|T(G, f)|)· 2tw(G)3c/d . Therefore, for the both cases we have the needed
upper bound. J

References
1 Miklós Ajtai. The Complexity of the Pigeonhole Principle. Combinatorica, 14(4):417–433,

1994. doi:10.1007/BF01302964.
2 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, Branch-Width and Tseitin tau-

tologies. Computational Complexity, 20(4):649–678, 2011. doi:10.1007/s00037-011-0033-1.
3 Paul Beame, Chris Beck, and Russell Impagliazzo. Time-Space Trade-offs in Resolution:

Superpolynomial Lower Bounds for Superlinear Space. SIAM J. Comput., 45(4):1612–1645,
2016. doi:10.1137/130914085.

4 Paul Beame and Toniann Pitassi. Simplified and Improved Resolution Lower Bounds. In 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 274–282. IEEE Computer Society, 1996. doi:10.1109/SFCS.
1996.548486.

5 Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approximation and Small-Depth
Frege Proofs. SIAM J. Comput., 21(6):1161–1179, 1992. doi:10.1137/0221068.

MFCS 2019

https://doi.org/10.1007/BF01302964
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1137/130914085
https://doi.org/10.1109/SFCS.1996.548486
https://doi.org/10.1109/SFCS.1996.548486
https://doi.org/10.1137/0221068

49:14 Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

6 Rémy Belmonte, Archontia Giannopoulou, Daniel Lokshtanov, and Dimitrios M. Thilikos.
The Structure of of W4-Immersion-Free Graphs. ICGT 2014, Arxiv: 1602.02002, February
2016. arXiv:1602.02002.

7 Eli Ben-Sasson. Hard examples for the bounded depth Frege proof system. Computational
Complexity, 11(3-4):109–136, 2002. doi:10.1007/s00037-002-0172-5.

8 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J.
ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.

9 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower bound for the pigeonhole
principle in tree-like Resolution by asymmetric Prover-Delayer games. Inf. Process. Lett.,
110(23):1074–1077, 2010. doi:10.1016/j.ipl.2010.09.007.

10 Samuel R. Buss. Polynomial Size Proofs of the Propositional Pigeonhole Principle. J. Symb.
Log., 52(4):916–927, 1987. doi:10.2307/2273826.

11 Julia Chuzhoy. Excluded Grid Theorem: Improved and Simplified. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 645–654.
ACM, 2015. doi:10.1145/2746539.2746551.

12 Stephen A. Cook and Robert A. Reckhow. The Relative Efficiency of Propositional Proof
Systems. J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702.

13 Stefan S. Dantchev and Søren Riis. Tree Resolution Proofs of the Weak Pigeon-Hole Principle.
In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago,
Illinois, USA, June 18-21, 2001, pages 69–75. IEEE Computer Society, 2001. doi:10.1109/
CCC.2001.933873.

14 Zdenek Dvorák and Paul Wollan. A Structure Theorem for Strong Immersions. Journal of
Graph Theory, 83(2):152–163, 2016. doi:10.1002/jgt.21990.

15 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and the Polynomial-Time
Hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431.

16 Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova. Bounded-depth
Frege complexity of Tseitin formulas for all graphs. Technical Report 19-069, Electronic
Colloquium on Computational Complexity (ECCC), 2019. URL: https://eccc.weizmann.ac.
il/report/2019/069.

17 Nicola Galesi, Navid Talebanfard, and Jacobo Torán. Cops-Robber Games and the Resolution
of Tseitin Formulas. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 311–326. Springer,
2018. doi:10.1007/978-3-319-94144-8_19.

18 Ludmila Glinskih and Dmitry Itsykson. On Tseitin formulas, read-once branching programs
and treewidth. Electronic Colloquium on Computational Complexity (ECCC), 26:20, 2019.
URL: https://eccc.weizmann.ac.il/report/2019/020.

19 Armin Haken. The Intractability of Resolution. Theor. Comput. Sci., 39:297–308, 1985.
doi:10.1016/0304-3975(85)90144-6.

20 Daniel J. Harvey and David R. Wood. The treewidth of line graphs. Journal of Combinatorial
Theory, Series B, 132:157–179, 2018. doi:10.1016/j.jctb.2018.03.007.

21 J. Hastad. Computational Limitations of Small-Depth Circuits. MIT press, 1987.
22 Johan Håstad. On Small-Depth Frege Proofs for Tseitin for Grids. In Chris Umans, editor,

58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 97–108. IEEE Computer Society, 2017. doi:10.1109/
FOCS.2017.18.

23 Dmitry Itsykson and Vsevolod Oparin. Graph Expansion, Tseitin Formulas and Resolution
Proofs for CSP. In Andrei A. Bulatov and Arseny M. Shur, editors, Computer Science -
Theory and Applications - 8th International Computer Science Symposium in Russia, CSR

http://arxiv.org/abs/1602.02002
https://doi.org/10.1007/s00037-002-0172-5
https://doi.org/10.1145/375827.375835
https://doi.org/10.1016/j.ipl.2010.09.007
https://doi.org/10.2307/2273826
https://doi.org/10.1145/2746539.2746551
https://doi.org/10.2307/2273702
https://doi.org/10.1109/CCC.2001.933873
https://doi.org/10.1109/CCC.2001.933873
https://doi.org/10.1002/jgt.21990
https://doi.org/10.1007/BF01744431
https://eccc.weizmann.ac.il/report/2019/069
https://eccc.weizmann.ac.il/report/2019/069
https://doi.org/10.1007/978-3-319-94144-8_19
https://eccc.weizmann.ac.il/report/2019/020
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1016/j.jctb.2018.03.007
https://doi.org/10.1109/FOCS.2017.18
https://doi.org/10.1109/FOCS.2017.18

N. Galesi, D. Itsykson, A. Riazanov, and A. Sofronova 49:15

2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings, volume 7913 of Lecture Notes in
Computer Science, pages 162–173. Springer, 2013. doi:10.1007/978-3-642-38536-0_14.

24 Dmitry Itsykson, Vsevolod Oparin, Mikhail Slabodkin, and Dmitry Sokolov. Tight Lower
Bounds on the Resolution Complexity of Perfect Matching Principles. Fundam. Inform.,
145(3):229–242, 2016. doi:10.3233/FI-2016-1358.

25 S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012.
26 Jan Krajícek, Pavel Pudlák, and Alan R. Woods. An Exponenetioal Lower Bound to the

Size of Bounded Depth Frege Proofs of the Pigeonhole Principle. Random Struct. Algorithms,
7(1):15–40, 1995. doi:10.1002/rsa.3240070103.

27 Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential Lower Bounds for the
Pigeonhole Principle. Computational Complexity, 3:97–140, 1993. doi:10.1007/BF01200117.

28 Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. Poly-logarithmic
Frege depth lower bounds via an expander switching lemma. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 644–657. ACM, 2016.
doi:10.1145/2897518.2897637.

29 Pavel Pudlák and Samuel R. Buss. How to lie without being (easily) convicted and the lengths
of proofs in propositional calculus. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer
Science Logic, pages 151–162, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

30 Ran Raz. Resolution lower bounds for the weak pigeonhole principle. J. ACM, 51(2):115–138,
2004. doi:10.1145/972639.972640.

31 A. Razborov. Lower Bounds on the Size of Bounded Depth Networks Over a Complete Basis
with Logical Addition. Matematicheskie Zametki, 41:598–607, 1987.

32 Alexander A. Razborov. Resolution lower bounds for the weak functional pigeonhole principle.
Theor. Comput. Sci., 303(1):233–243, 2003. doi:10.1016/S0304-3975(02)00453-X.

33 Alexander A. Razborov. Resolution lower bounds for perfect matching principles. J. Comput.
Syst. Sci., 69(1):3–27, 2004. doi:10.1016/j.jcss.2004.01.004.

34 Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:
10.1145/28395.28404.

35 G.S. Tseitin. On the complexity of derivation in the propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic Part II. A. O. Slisenko, editor, a968.

36 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. doi:
10.1145/7531.8928.

37 Alasdair Urquhart and Xudong Fu. Simplified Lower Bounds for Propositional Proofs. Notre
Dame Journal of Formal Logic, 37(4):523–544, 1996. doi:10.1305/ndjfl/1040046140.

38 David R. Wood. On tree-partition-width. European Journal of Combinatorics, 30(5):1245–1253,
2009. Part Special Issue on Metric Graph Theory. doi:10.1016/j.ejc.2008.11.010.

MFCS 2019

https://doi.org/10.1007/978-3-642-38536-0_14
https://doi.org/10.3233/FI-2016-1358
https://doi.org/10.1002/rsa.3240070103
https://doi.org/10.1007/BF01200117
https://doi.org/10.1145/2897518.2897637
https://doi.org/10.1145/972639.972640
https://doi.org/10.1016/S0304-3975(02)00453-X
https://doi.org/10.1016/j.jcss.2004.01.004
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/7531.8928
https://doi.org/10.1145/7531.8928
https://doi.org/10.1305/ndjfl/1040046140
https://doi.org/10.1016/j.ejc.2008.11.010

On the Expressivity of Linear Recursion Schemes
Pierre Clairambault
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Andrzej S. Murawski
Department of Computer Science, University of Oxford, UK

Abstract
We investigate the expressive power of higher-order recursion schemes (HORS) restricted to linear
types. Two formalisms are considered: multiplicative additive HORS (MAHORS), which feature
both linear function types and products, and multiplicative HORS (MHORS), based on linear
function types only.

For MAHORS, we establish an equi-expressivity result with a variant of tree-stack automata.
Consequently, we can show that MAHORS are strictly more expressive than first-order HORS, that
they are incomparable with second-order HORS, and that the associated branch languages lie at the
third level of the collapsible pushdown hierarchy.

In the multiplicative case, we show that MHORS are equivalent to a special kind of pushdown
automata. It follows that any MHORS can be translated to an equivalent first-order MHORS in
polynomial time. Further, we show that MHORS generate regular trees and can be translated to
equivalent order-0 HORS in exponential time. Consequently, MHORS turn out to have the same
expressive power as 0-HORS but they can be exponentially more concise.

Our results are obtained through a combination of techniques from game semantics, the geometry
of interaction and automata theory.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases higher-order recursion schemes, linear logic, game semantics, geometry of
interaction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.50

Funding Pierre Clairambault: Supported by ANR RAPIDO (ANR-14-CE25-0007) and Labex
MiLyon (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007), operated by the French National Research Agency (ANR).
Andrzej S. Murawski: Supported by a Royal Society Leverhulme Trust Senior Research Fellowship
(LT170023).

Acknowledgements We would like to thank Sylvain Salvati for consultations on formal languages.

1 Introduction

Higher-order recursion schemes (HORS) have recently emerged as a promising technique for
model-checking higher-order programs [17]. Linear higher-order recursion schemes (LHORS)
were introduced in [5] to facilitate a finer analysis of HORS by mixing intuitionistic and
linear types. In this paper, we investigate the expressivity of their purely linear fragment.

First, we consider multiplicative additive HORS (MAHORS), which in addition to the
linear function types (() feature product types (&), and thus allow for sharing but not
re-use. We show that MAHORS are equivalent to a tree-generating variant of tree-stack
automata (TSA), originally introduced to capture multiple context-free languages in the
word language setting [7]. The translation from MAHORS to TSA amounts to representing
the game semantics of MAHORS in the spirit of abstract machines derived from Girard’s
Geometry of Interaction (GoI) [11, 6]. The GoI view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related to the
syntactic structure of the term. Somewhat suprisingly, so far this nearly automata-theoretic

© Pierre Clairambault and Andrzej S. Murawski;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 On the Expressivity of Linear Recursion Schemes

Γ, x ∶ ϕ ∣ ∆ ⊢ x ∶ ϕ Γ ∣ ∆, x ∶ ϕ ⊢ x ∶ ϕ
Γ ∣ ∆ ⊢ t ∶ ϕ1 & ϕ2

Γ ∣ ∆ ⊢ πi t ∶ ϕi Γ ∣ ∆ ⊢ � ∶ ϕ

Γ ∣ ∆1 ⊢ t ∶ ϕ(ψ Γ ∣ ∆2 ⊢ u ∶ ϕ
Γ ∣ ∆1,∆2 ⊢ t u ∶ ψ

Γ ∣ ∆, x ∶ κ ⊢ t ∶ ϕ
Γ ∣ ∆ ⊢ λxκ. t ∶ κ(ϕ

Γ ∣ ∆ ⊢ ti ∶ ϕi (i ∈ {1,2})
Γ ∣ ∆ ⊢ ⟨t1, t2⟩ ∶ ϕ1 & ϕ2

Figure 1 Typing rules for the additive linear λ-calculus.

flavour of GoI has not been exploited to establish connections with automata models, and
we believe we are the first to do so explicitly. As a consequence, we can conclude that the
branch languages of trees generated by MAHORS are multiple context-free and, thus, that
they belong to the third level of the collapsible pushdown hierarchy [12]. In addition, we
show that MAHORS are strictly more expressive than first-order HORS1, and that they are
not comparable with second-order HORS.

Secondly, we consider multiplicative HORS (MHORS), featuring linear function types
only. In this case, our earlier MAHORS-to-TSA translation specialises to a translation into a
special kind of tree-generating pushdown automata (LPDA) in which reachable configurations
must be reached in a unique run. We show that MHORS and LPDA are equi-expressive and,
moreover, that any MHORS can be translated to an equivalent MHORS of order 1. Further,
using reachability techniques for pushdown automata, we show that LPDA are equivalent to
bounded pushdown automata that forget elements stored at the bottom of the stack after
the stack height exceeds a certain depth. It follows that MHORS generate regular trees,
though the MHORS representation may be exponentially more succinct than order-0 HORS.

2 Linear Recursion Schemes

In this section we introduce the object of study of this paper, MAHORS and MHORS.
The main ingredient of MAHORS is the linear λ-calculus with products – also called the

additive linear λ-calculus, as the product is an additive connective in the sense of Linear
Logic [10]. The following definitions follow [5], restricting type formers to linear connectives
(note that [5] imposes some syntactic restrictions on the shape of types and terms that we
can drop here to simplify presentation, as they play no role in the technical development).

Types are formed with the ground type o and the connectives (and &. We define the
typed terms directly by the typing rules of Figure 1. Typing judgments have the form
Γ ∣ ∆ ⊢ t ∶ ϕ, where Γ and ∆ are two lists of variable declarations. Intuitively, ∆ is the main
context containing variables that can be used at most once (such terms are often called affine
but we opt for the name linear nonetheless). In contrast, Γ comprises duplicable variables
that may be reused at will, as witnessed by the application rule. In M(A)HORS, Γ will be
used only for terminal and non-terminal symbols. Linear λ-terms are equipped with standard
reduction rules; we write ▷β for β-reduction for functions and products, whose definition
can be found e.g. in [5]. Any term t has a normal form, written BT(t).

Trees arise as ground-type terms typable in replicable contexts representing a ranked
alphabet. Recall that in HORS, a symbol b of arity n is represented as a constant b ∶ o →
⋅ ⋅ ⋅ → o→ o with n arguments. Here, a ranked alphabet Σ may be represented in two distinct

1 Type order is defined by ord(o) = 0 and ord(θ → θ′) = max(ord(θ) + 1,ord(θ′)). The order of a HORS
is the highest order of (the types of) its non-terminals.

P. Clairambault and A. S. Murawski 50:3

ways: multiplicatively, with b ∶ o(. . .(o(o, or additively, with b ∶ &no(o, where &no

stands for o&⋯& o (n copies)2. The choice does not impact how finite trees are represented:
in both cases a ▷β-normal Σ ∣ _ ⊢ t ∶ o (if not �) must start with a variable from Σ with some
arity n, followed by n ▷β-normal sub-trees; i.e. it represents a tree (with certain branches
possibly leading to �). The multiplicative vs additive distinction matters in the definition of
schemes, though: with additive typing, resources (variables) may be shared when calculating
two sub-branches of an infinite tree, which is disallowed with multiplicative typing.

Linear recursion schemes consist of a system of recursive equations, where each clause is
given by a λ-term with a restricted shape. A term Γ ∣ _ ⊢ t ∶ ϕ is called applicative if it is
▷β-normal, and has the form λxϕ1

1 . . . λxϕn
n . t′ where t′ has no abstraction.

I Definition 1. A Multiplicative Additive Recursion Scheme (MAHORS) is a 4-
tuple G = ⟨Σ,N ,R, S⟩ where: (1) Σ is a ranked alphabet; (2) N is a finite set of typed
non-terminals; we use upper-case letters F,G,H, . . . to range over them. We denote the type
of F by N(F) and write F ∶ N (F); (3) S ∈ N is a distinguished start symbol of type o; and
(4) R is a function associating to each F in N an applicative term Σ,N ∣ _ ⊢ R(F) ∶ N(F),
with Σ represented additively. A MHORS is defined as a MAHORS where Σ is represented
multiplicatively and the typing of N does not involve products.

If G = ⟨Σ,N ,R, S⟩ is a MAHORS, then for each F ∈ N and n ∈ N there is Σ ∣ _ ⊢
unfn(F) ∶ N(F) defined by unf0(F) = � and unfn+1(F) = R(F)[unfn(G)/G ∣ G ∈ N]. The
family (unfi(F))i∈N forms a chain for ≤ defined as usual by � ≤ t, closed by congruence. As
evaluation is monotone, (BT(unfi(F))i∈N also forms a chain, hence it has a lub which may
be defined as the ideal completion of finite normal terms Σ ∣ _ ⊢ t ∶ o ordered by ≤. We may
then define BT(G) = ⊔i∈N BT(unfi(S)), the infinite tree generated by G.

Our schemes comprise an explicit divergence symbol �. This is unusual, but does not
affect expressivity as it could always be defined with a new non-terminal with rule R(Ω) = Ω.
Finally, we identify silently trees and terms Σ ∣ _ ⊢ t ∶ o.

3 Finite Memory Game Semantics and Geometry of Interaction

Game semantics is a semantic technique to give a compositional interpretation of higher-order
programs [14]. By presenting higher-order computation as a game between two players
embodying the program and its execution environment (Player for the program, Opponent
for the environment), it effectively reduces higher-order computation to an exchange of
tokens between terms. At first forgetting recursion, we briefly review the interpretation of
the linear λ-calculus with products in simple games, then introduce its refined interpretation
as finite-memory strategies, which will inform the translation of M(A)HORS to TSA.

3.1 Games and strategies
A game is a tuple A = ⟨MA, λA, PA⟩ where MA is a set of moves, λA ∶ MA → {O,P} is
a polarity function (we write MO

A = λ−1
A ({O}) and MP

A = λ−1
A ({P})), and PA ⊆ M∗

A is a
non-empty prefix-closed set of valid plays, whose elements are O-starting and alternating:
if s = s1 . . . sn ∈ PA, then λA(s1) = O and λA(si) ≠ λA(si+1). We write ε ∈ PA for the empty
play and s ⊑ s′ for the prefix ordering.

2 [5] considers also intermediate typings, but this does not contribute extra expressivity.

MFCS 2019

50:4 On the Expressivity of Linear Recursion Schemes

(o1 (o2) (o3 (o4
○4●2○1 ●3

Figure 2 A play on J(o(o)(o(oK. Figure 3 Composition of history-free skeletons.

Games represent types. Plays in a game for a type ϕ represent executions on ϕ following
(for this paper) a call-by-name evaluation strategy. For instance, Figure 2 shows a play in the
game for (o(o)(o(o, read from top to bottom. We use indices on atom occurrences
and moves for disambiguation, but the usual convention in game semantics is to signify the
identity of moves simply by their position under the corresponding type component. After
Opponent (○, the environment) starts computation by the initial move on the right, Player
(●, the program) responds by interrogating its function argument. Opponent, playing for this
argument, calls its argument. Player terminates by calling its second argument. This play is,
in fact, the maximal play of the interpretation of λfo(o. λxo. f x ∶ (o(o)(o(o.

Each type ϕ may be interpreted as a game JϕK. The game JoK has MJoK = {○} with
λ(o) = O, and PJoK = {ε, ○}. To match the type constructor (, the linear arrow game
A(B has as moves the tagged disjoint union MA(B =MA +MB = {1} ×MA ∪ {2} ×MB

with polarity λA(B(1, a) = λA(a) and λA(B(2, b) = λB(b), where O = P and P = O.
The plays PA(B include all O-starting, alternating sequences s ∈ M∗

A(B such that the
restrictions s � A ∈ M∗

A and s � B ∈ M∗
B, defined in the obvious way, are in PA and PB

respectively. Hence, A(B can be viewed as playing the two games A and B in parallel,
with the polarity reversed in A, in such a way that any play must start in B and Player is
able to switch between the components. With these definitions the reader can check that
J(o(o)(o(oK = (JoK(JoK)((JoK(JoK) includes four moves corresponding to the
four atom occurrences, and has only two maximal plays: the one in Figure 2, and ○4●3.

The tensor game A⊗B has moves MA⊗B =MA +MB , polarity λA⊗B(1, a) = λA(a) and
λA⊗B(2, b) = λB(b), and plays are those s ∈M∗

A⊗B that are alternating, O-starting and such
that s � A ∈ PA and s � B ∈ PB. Dually to (, it follows from the definition that here only
O can change between components. The product game A&B has the same moves and
polarity as A⊗B, but only the plays where either s � A or s � B is empty. Hence, with their
first move, Opponent fixes the component in which the rest of the game will be played.

A strategy σ on A, written σ ∶ A, is σ ⊆ P ev
A (writing P ev

A for the set of even-length
plays) which is non-empty, closed under even-length prefix, and deterministic, in the sense
that if sab, sab′ ∈ σ, then b = b′. The interpretation of terms yields strategies; for instance

Jλfo(o. λxo. f x ∶ (o(o)(o(oK = {ε, ○4●2, ○4 ●2 ○1●3}

is a strategy on J(o(o)(o(oK with moves following the naming convention of Figure 2.
The interpretation of terms exploits a number of constructions on strategies. In particular,

to compute the composition of σ ∶ A (B and τ ∶ B (C we first let σ, τ interact by
considering all sequences in (MA +MB +MC)∗ whose restrictions to A,B and B,C are
respectively in σ and τ ; and then project those to PA(C to obtain τ ○ σ ∶ A(C. We omit
the details [14]. Overall, the structure needed to interpret the linear λ-calculus with products
is succinctly summarized by stating that games and strategies form a symmetric monoidal
closed category with products [14] – to any _ ∣ x1 ∶ ϕ1, . . . , xn ∶ ϕn ⊢ t ∶ ϕ this lets us associate
JtK ∶ ⊗1≤i≤nJϕiK(JϕK in such a way that this is invariant under reduction – note however
that in this paper, we avoid the categorical language as much as possible.

P. Clairambault and A. S. Murawski 50:5

(o1 (o2) (((o3 (o4) & (o5 (o6))
○4●2○1 ●3

(o1 (o2) (((o3 (o4) & (o5 (o6))
○6●2○1 ●5

Figure 4 The two maximal plays of contraction on Jo(oK.

3.2 History-free and finite memory strategies
A strategy σ ∶ A is history-free if its behaviour only depends on the last move, i.e. there is a
partial function f ∶MO

A ⇀MP
A such that for all s ∈ σ, for all sa ∈ PA, we have sab ∈ σ iff f(a)

is defined and b = f(a). It is key in AJM games [1] that, without products, terms yield history-
free strategies. If σ ∶ A is history-free, it is characterized by the corresponding partial function
f ∶MO

A ⇀MP
A , known as its history-free skeleton. For instance, the strategy Jλfo(o. λxo. f xK

with a unique maximal play in Figure 2, has history-free skeleton {○4 ↦ ●2, ○1 ↦ ●3}.
One can also directly interpret terms as history-free skeletons: this is usually referred to

as Geometry of Interaction [11], which has close ties with game semantics [3]. In particular,
composition of history-free strategies can be performed directly on skeletons. If σ ∶ A(B

and τ ∶ B(C are history-free, their history-free skeletons, which have the types

fσ ∶MP
A +MO

B ⇀MO
A +MP

B fτ ∶MP
B +MO

C ⇀MO
B +MP

B ,

may be composed via feedback on B, pictured in Figure 3. For any Opponent move in
A(C, we apply the corresponding function fσ or fτ . As long as the response is in B, we
keep applying fσ and fτ alternately. This process may stay in B forever (a livelock, in which
case the composition fτ○σ is undefined), but otherwise we eventually get a Player move in
A(C as required; defining a partial function fτ○σ ∶MO

A(C ⇀MP
A(C . One may visualize a

token entering on the left carrying an Opponent move, then bouncing in B until it eventually
exits on the right. Other constructions used in the interpretation may be presented similarly,
altogether giving (for the linear λ-calculus) a presentation of evaluation through a finite
automaton called a token machine, where a token enters through an Opponent move, and
bounces through the term until it eventually exits, giving the result of computation [18].

This is our starting point to represent evaluation of M(A)HORS via an automaton.
However, there is an issue: strategies for linear λ-terms with products are not in general history-
free. For instance, Figure 4 displays the two maximal plays of a contraction/duplication
strategy Jλfo(o. ⟨f, f⟩ ∶ (o (o) (((o (o) & (o (o))K. It reacts to ○1 differently
depending on the history. To account for this, one may replace partial functions f ∶MO

A ⇀MP
A

with f ∶MO
A ×M⇀MP

A ×M, i.e. transducers, whereM, the memory, is a finite set (see the
memoryful geometry of interaction of [13] – however, we are not aware of this being used to
define finite memory strategies). We give below a definition in this spirit, adapted to ease the
translation to TSA and to deal with the branching in M(A)HORS due to terminal symbols.

We fix a ranked alphabet Σ (the multiplicative/additive distinction plays no role here).

I Definition 2. A transducer T on a game A, written T ∶ A, is T = ⟨M− ⊎M+,m0, δ−, δ+⟩
whereM− is a finite set of passive memory states with a distinguished initial memory
state m0 ∈ M−,M+ is a finite set of active memory states, and transition functions:

δ− ∶ M− ×MO
A → M+

δ+ ∶ M+ ⇀ M+ + M− ×MP
A + {b(m1, . . . ,m∣b∣) ∣mi ∈ M+, b ∈ Σ} .

MFCS 2019

50:6 On the Expressivity of Linear Recursion Schemes

δT ⊙S+ ((m−
S ,m

+
T)) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(m−
S ,m

′) if δT+ (m+
T) =m′

b((m−
S ,m1), . . . , (m−

S ,m∣b∣)) if δT+ (m+
T) = b(m1, . . . ,m∣b∣)

((m−
S ,m

−
T), (2, c)) if δT+ (m+

T) = (m−
T , (2, c))

(δS− (m−
S , (2, b)),m−

T) if δT+ (m+
T) = (m−

T , (1, b))

δT ⊙S+ ((m+
S ,m

−
T)) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(m′,m−
T) if δS+ (m+

S) =m′

b((m1,m
−
T), . . . , (m∣b∣,m−

T)) if δS+ (m+
S) = b(m1, . . . ,m∣b∣)

((m−
S ,m

−
T), (1, a)) if δS+ (m+

S) = (m−
S , (1, a))

(m−
S , δ

T
− (mT− , (1, b))) if δS+ (m+

S) = (m−
S , (2, b))

Figure 5 Positive transitions of the composition of strategic transducers.

Any transducer T on JoK will be called closed. Apart from the forced initial δ−(m0, ○), it
is a finite tree-generating automaton, producing a tree Tree(T). But in general transducers
may play on arbitrary games. In passive states, a transducer is waiting for an Opponent move,
while in active states, it is performing internal computation that may result in a terminal
symbol or in a Player move and the transition to a passive state. If δ+(m) = b(m1, . . . ,m∣b∣),
it produces the terminal symbol b; exploring the ith child results in continuing with mi.

Like strategies, transducers can be composed.

I Definition 3. Let S = (MS
− ⊎MS

+ ,m
S
0 , δ

S
− , δ

S
+) ∶ A(B and T = (MT

− ⊎MT
+ ,m

T
0 , δ

T
− , δ

T
+) ∶

B (C be transducers. The transducer T ⊙ S on game A(C has MT ⊙S
− = MS

− ×MT
−

and MT ⊙S
+ = MS

+ ×MT
− ⊎MS

− ×MT
+ , with initial state (mS0 ,mT0). The transition func-

tion is defined via δT ⊙S− ((m−
S ,m

−
T), (2, c)) = (m−

S , δ
T
− (m−

T , (2, c))), δT ⊙S− ((m−
S ,m

−
T), (1, a)) =

(δS− (m−
S , (1, a)),m−

T), and positive transitions given in Figure 5.

Besides composition, all operations on strategies used in the interpretation of the linear
λ-calculus with products have a counterpart on transducers. Altogether, for any Σ ∣ x1 ∶
ϕ1, . . . , xn ∶ ϕn ⊢ t ∶ ϕ, this yields a transducer jto ∶ ⊗1≤i≤nJϕiK (JϕK. In particular, if
Σ ∣ _ ⊢ t ∶ o, this yields a closed transducer jto ∶ JoK. It is obtained directly by induction on
syntax following denotational semantics, and in particular in polynomial time. We can prove:

I Proposition 4. For any Σ ∣ _ ⊢ t ∶ o, Tree(jto) = BT(t).

The proof works by linking transducers with game semantics. The simple game semantics
presented above cannot directly deal with the presence of non-terminals replicable at will
and the associated branching, so we must first extend it to “tree-generating game semantics”.
The details, though rather direct, are too lengthy for the paper, so we instead present the
connection ignoring the terminal symbols.

Ignoring branching transitions, transducers generate strategies. Writing m− a→m+ when
δ−(m−, a) =m+, m+

1 →m+
2 when δ+(m+

1) =m+
2 and m+ b→m− when δ+(m+) = (m−, b); the set

Traces(T) comprises all sequences s1 . . . s2n ∈M∗
A such that (with m0, . . . ,mn ∈ M−)

m0
s1→→∗s2→ m1

s3→→∗s4→ m2 . . . mn−1
s2n−1→ →∗s2n→ mn .

We say that T is a strategic transducer if for all s ∈ Traces(T) ∩ PA, if sa ∈ PA and
sab ∈ Traces(T), then sab ∈ PA. Then, Traces(T) ∩ PA is a strategy written Strat(T). We
say that σ ∶ A has finite memory if σ = Strat(T) for a strategic transducer T . We also
recover history-free strategies as those for whichM− is a singleton. For instance, the strategy
in Figure 4 is generated usingM− = {m0,m1} andM+ =M− ×MO

Jo(oK, δ−(m,a) = (m,a),
δ+(_ , ○4) = (m0, ●2), δ+(_ , ○6) = (m1, ●2), δ+(m0, ○1) = (m0, ●3) and δ+(m1, ○1) = (m1, ●5).

Proposition 4 boils down to the fact that all constructions on transducers in the inter-
pretation preserve strategic transducers, and match operations on strategies – for instance,
Strat(T ⊙ S) = Strat(T) ○ Strat(S). This entails that for all t, Strat(jto) = JtK. But for
closed transducers jto and tree-generating game semantics, Tree(jto) = Strat(jto). Since game
semantics is invariant under reduction, JtK = JBT(t)K = BT(t), and Proposition 4 follows.

P. Clairambault and A. S. Murawski 50:7

Figure 6 Illustration of a state of the n-th unfolding.

4 Game Semantics to TSA

The previous section lets us associate, to any Σ ∣ _ ⊢ t ∶ o, a finite tree-generating automaton.
We extend this with recursion in two steps: first we evaluate finite unfoldings using finite
automata, and then we build a single automaton with additional memory (a Tree Stack
Automaton) whose runs amount to dynamically exploring these finite unfoldings.

4.1 Unfolding recursive calls
Let us fix a M(A)HORS G = ⟨Σ,N ,R, S⟩. By definition, for each F ∈ N we have Σ,N ∣ _ ⊢
R(F) ∶ N(F). Let N ∈ N be such that for all F,G ∈ N , G appears at most N times in R(F).
For all F ∈ N , we choose a term Σ ∣ N1, . . . ,NN ⊢ R′(F) ∶ N(F) obtained by giving different
names G1, . . . ,Gp (p ≤ N) to all occurrences of G ∈ N in R(F). How these names are assigned
does not matter. Although R′ differs from R, it can be equivalently used to define the finite
approximations of BT(G). For each F ∈ N and n ∈ N, we redefine Σ ∣ _ ⊢ unfn(F) ∶ N(F)
by setting unf0(F) = �, and unfn+1(F) = R′(F)[unfn(G)/Gi ∣ G ∈ Ni,1 ≤ i ≤ N]. Although
defined differently, this gives the same result as in Section 2.

But, unlike the original unfolding, this one can be replicated with strategic transducers.
For each F ∈ N , the interpretation of the previous section yields a strategic transducer:

jR′(F)o ∶ ⊗
1≤i≤N

⊗
G∈N

JN(G)K(JN(F)K .

The unfolding above can then be replicated as follows.

I Proposition 5. Setting T 0
F = � with all positive transitions undefined, and T n+1

F = jR′(F)o⊙
(⊗1≤i≤N ⊗G∈N T nG) ∶ JN(F)K, for all n ∈ N, we have Tree(T nS) = BT(unfn(S)).

Proof. By the substitution lemma for symmetric monoidal closed categories with products,
syntactic substitution matches composition in the denotational model. It follows by induction
that for all F ∈ N , for all n ∈ N, junfn(F)o and T nF are transducers generating the same finite
memory strategy. By Proposition 4, Tree(T nS) = Tree(junfn(S)o) = BT(unfn(S)). J

Figure 6 displays the structure of transducer compositions arriving at the finite tree
automaton T nS , for a M(A)HORS G whereR(S) has two occurrences of F and two occurrences
of G, R(F) has two occurrences of G, and R(G) has two occurrences of F . Each node stands

MFCS 2019

50:8 On the Expressivity of Linear Recursion Schemes

for the matching strategic transducer (corresponding to a non-terminal), edges represent
compositions. Running T nS passes control between the composed transducers, with always
exactly one active after the initial transition. Figure 6 shows a possible state during a run:
the grey area marks nodes that have already been explored. Outside of the grey area, the
(local) transducer memory must be m0. The green node is active, and all others passive.
Following the transition function of jR(G)o, we may next update the local memory m4,
produce a terminal and branch, or update to a passive state and send control up or down.

4.2 Tree Stack Automata
Now we give a single automaton with infinite memory whose bounded restrictions match
the approximations above. It has a stack to deal with recursion, such that each state of the
stack corresponds to a node in Figure 6. As these nodes stand for strategic transducers, they
all have a finite memory. Accordingly, the automaton maintains a store associating, to each
previously visited stack state/node, its local memory, accessed or updated only when visiting
that node. We think of the store as a tree: the stack alphabet denotes directions, and stack
values denote positions in the tree, i.e. nodes in (the infinite version of) Figure 6. Pushes
and pops correspond to moving up and down the tree. Such an automata model is known as
a Tree Stack Automaton (TSA) [7] – here, we introduce tree-generating TSA.

I Definition 6. A tree-generating TSA A is a tuple ⟨Σ,Q,Γ,M, δ, q0, γ0,m0⟩ where Σ is a
ranked alphabet of terminals, Q is a set of states, Γ is a finite stack alphabet,M is a finite
memory alphabet, q0 ∈ Q is the starting state, γ0 /∈ Γ is the bottom-of-stack marker and
m0 ∈ M is the initial local memory. Letting Γ● = Γ⊎ {γ0}, the transition function δ has type:

δ ∶ Q ×M× Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q ×M× ({upγ ∣γ ∈ Γ} + {down}) .

Informally, the transitions operate as follows. Initially, only γ0 is on the stack. Subse-
quently, given state q, local memory m, and top of the stack γ ∈ Γ●:
1. if δ(q,m, γ) = q′, the automaton changes state to q′, leaving the stack and local memory

unchanged;
2. if δ(q,m, γ) = b(q1, . . . , q∣b∣), it outputs b ∈ Σ and branches – to explore the ith child

(1 ≤ i ≤ ∣b∣) it proceeds to state qi leaving other components unchanged;
3. if δ(q,m, γ) = (q′,m′,upγ′), it updates the local memory to m′, changes state to q′ and

pushes γ′ onto the stack / moves up in direction γ′ (if this is the first visit to that node,
its local memory is set to m0);

4. if δ(q,m, γ) = (q′,m′,down), it updates the local memory to m′ and the state to q′, and
then pops / moves down (we adopt the convention that γ0 cannot be popped so, if γ = γ0
in this case, the automaton blocks).

Running a TSA A produces a possibly infinite tree Tree(A).
In the degenerate case whereM= {m0}, tree-generating TSAs turn out to be precisely

tree-generating deterministic pushdown automata (PDA): the local memory cannot store
information, so only the stack remains. In general, however, it is not hard to see that TSAs
are Turing-complete; fortunately we will only need TSAs satisfying a further condition called
restriction [7]. A tree-generating TSA is k-restricted if every node can be accessed from
below at most k times. It is restricted if it is k-restricted for some k ∈ N.

We implement the evaluation of a MAHORS G with a restricted TSA A(G) with states

Q = (∑
F ∈N

MO
⊗1≤i≤N ⊗G∈N JN(G)K(JN(F)K) + (∑

F ∈N
MjR′(F)o

+).

P. Clairambault and A. S. Murawski 50:9

(Move(F,a), (F,m),_) ↦ State(F, δF− (m,a))
(State(F,m),_ ,_) ↦ State(F,m′) if δF+ (m) =m′

(State(F,m),_ ,_) ↦ b(State(F,m1), . . . ,State(F,m∣b∣)) if δF+ (m) = b(m1, . . . ,m∣b∣)
(State(F,m),_ ,_) ↦ (Move(G, (2, a)), (F,m′),up(F,i)) if δF+ (m) = (m′, (1, i,G, a)) with a ∈MO

N(G)
(State(G,m),_ , (F, i)) ↦ (Move(F, (1, i,G, a)), (G,m′),down) if δG+ (m) = (m′, (2, a)) with a ∈MP

N(G)

Figure 7 Transition function for the GoI TSA.

We use constructors Move and State to refer to elements from the left and right components
of Q respectively. The memory alphabet isM=∑F ∈NM

jR′(F)o
− / ≡, where ≡ is the smallest

equivalence relation with (F,m0) ≡ (G,m0) for all F,G ∈ N . We writem0 for this equivalence
class, providing the initial memory state. The stack alphabet is Γ = N ×N where N is the
smallest integer such that all non-terminals have fewer than N occurrences in R(F), for all
F ∈ N . The start state is q0 = Move(S, ○) and the transition function is given in Figure 7.

The TSA A(G) is designed so that a run of stack size bounded by n simulates a run of
T nS . When in state State(F,m), the automaton is currently operating in a F node of T nS (as
in Figure 6), performing internal computation following δF+ . If this internal computation
produces a move, this move will be addressed either up or down the stack, depending of
whether it is a Player move in N(F) (in which case we must move down), or an Opponent
move in ⊗1≤i≤N ⊗G∈N JN(G)K (in which case we must move up, passing the control to a
recursive call). If the state is State(G,m) and the top of the stack is (F, i), that means that
we are currently running non-terminal G, which was called as the i-th occurrence of G in F .
So the stack, together with the non-terminal symbol in the state, indicate the address of a
node in Figure 6. When moving up or down the stack, we first change to a transient state
Move(F,a) in which the automaton reads the input move using δF− and resumes as above.

I Theorem 7. For any MAHORS G, there exists a restricted TSA A(G) (constructed in
polynomial time) such that Tree(A(G)) = BT(G).
Proof. For n ≥ 1, write Treen(A(G)) for the tree obtained from the truncated run-tree where
the stack size is bounded by n− 1 (where γ0 has size 0). By construction, this truncated run-
tree is weakly bisimilar to that of T nS . In particular, Treen(A(G)) = Tree(T nS) = BT(unfn(S))
by Proposition 5, so Tree(A(G)) = BT(G) by continuity.

This TSA is restricted: for any type ϕ, there is a bound on the length of plays in PJϕK –
in fact MJϕK is finite, and plays in PJϕK cannot use the same move twice. Let k be an upper
bound to the maximal length of a play in P⊗G∈N JN(G)K. Then, A(G) is k-restricted. Indeed,
fix a stack value γn+1γn . . . γ0 with γn+1 = (F, i). Then, all transitions moving between
γn+1 . . . γ0 and γn . . . γ0 carry a move from M⊗G∈N JN(G)K. By construction, the sequence of
such moves forms a play in P⊗G∈N JN(G)K. Hence, it is bounded by k. J

If the input scheme is an MHORS then each R′(F) is interpreted by a history-free
strategy: MjR′(F)o

− is a singleton. Consequently, A(G) has trivial memory and is in fact
simply a PDA. This PDA is still k-restricted but also satisfies a stronger linearity property:

I Lemma 8. Let G be an MHORS. Then the tree-generating PDA A(G) is linear, in the
sense that the associated graph of reachable configurations is a tree.

Proof. A strategic transducer on A is reversible if for each a ∈MP
A there is at most one

m ∈ M+ such that δ+(m) = (_ , a) and for each m ∈ M+ there is at most one (m′, a) ∈
M− ×MO

A such that δ−(m′, a) = m or at most one m′ ∈ M+ such that δ(m′) = m, and the
two possibilities are mutually exclusive. Reversible strategic transducers are closed under
all operations used in the interpretation, hence if Σ ∣ ∆ ⊢ t ∶ A involves no product, jto is
reversible (this phenomenon is well-known in GoI [6]). This entails that A(G) is linear. J

MFCS 2019

50:10 On the Expressivity of Linear Recursion Schemes

5 TSA to MAHORS

In this section we show how to simulate a k-restricted TSA A = ⟨Σ,Q,Γ,M, δ, q0, γ0,m0⟩ in
MAHORS, i.e. we establish the converse of Theorem 7.

Let B = ∣Γ∣ and Γ = {γ1,⋯, γB}. Nodes of the tree store will be represented using non-
terminals Fu1,⋯,uB ;d

q,m,γ , where (q,m, γ) ∈ Q ×M× Γ● represent the current state, node label
and top of the stack respectively, d (1 ≤ d ≤ k+1) is the number of times the node has already
been visited from below and each uj (0 ≤ uj ≤ k, 1 ≤ j ≤ B) is the number of times that the
jth child has been visited from below. For brevity, we will write u⃗ instead of u1,⋯, uB .

For 1 ≤ d ≤ k, F u⃗;d
q,m,γ has B+1 arguments: the first B arguments are used to simulate upγj

(1 ≤ j ≤ B) and the last one corresponds to down. Each of the arguments is a Q-indexed tuple
of continuations, so that projection can be used to select the right component to model the
associated state change. When moving up the tree (upγj

), we call the jth argument passing
as an argument another continuation that makes it possible to return (move down) later.
Dually, when moving down the tree, we call the last argument passing as an argument a
continuation that represents a further visit up. Using these ideas, one could code unrestricted
TSA in an untyped setting, but we shall rely on carefully crafted types that allow, for each
node, for up to k visits from below. In particular, if the automaton is moving down having
visited a node k times from below, the corresponding upwards continuation for the k + 1 visit
is of type o, i.e. it is not usable for any future calls. The rules for 1 ≤ d ≤ k are summarised
in the table below, using λ notation for brevity (for F u⃗;k+1

q,m,γ we set F u⃗;k+1
q,m,γ x1⋯xB = �).

δ(q,m, γ) rule
q′ F u⃗;d

q,m,γ x1⋯xBy = F u⃗;d
q′,m,γ x1⋯xBy

b(q1,⋯, q∣b∣) F u⃗;d
q,m,γ x1⋯xBy = b ⟨F u⃗;d

q1,m,γ x1⋯xBy,⋯, F u⃗;d
q∣b∣,m,γ x1⋯xBy⟩

(q′,m′,down) F u⃗;d
q,m,γ x1⋯xBy = (πq′y) ⟨F u⃗;d+1

q′′,m′,γ x1⋯xB ∣ q′′ ∈ Q⟩
(q′,m′,upγj

) F u⃗;d
q,m,γ x1⋯xBy = (πq′xj) ⟨λzTj .F

u⃗+ej ;d
q′′,m′,γ x1⋯xj−1zxj+1⋯xBy ∣ q′′ ∈ Q⟩

In the down case, note that the q′th component of y is used to model state change and
that the continuation features m′ instead of m to reflect the local memory update. Note also
the change from d to d + 1, which updates the count of visits from below.

In the up case, the q′th component of xj is used to model state change and the direction
of the upward move (γj). The use of the same γ on both sides captures the same position on
the stack and m′ is used on the rhs to simulate the local memory update. d does not change,
because the continuation represents revisiting the node from above (rather than from below).
However, once the node is revisited from above in the future, its jth child will have been
visited uj + 1 times from below: hence the change to uj (we write u⃗ + ej for u⃗ with the jth
component incremented by 1). In the up case, we use a λ-term inside a rule to highlight the
intention more clearly, this can be avoided by using an auxiliary non-terminal.

The start symbol S ∶ o has rule S = (F 0,⋯,0;1
q0,m0,γ0

)N1⋯NB⟨� ∣ q ∈ Q⟩. The divergent terms
correspond to our convention that the automaton blocks when down is called at the root node.
Nj (1 ≤ j ≤ B) stands for ⟨Nq,j ∣ q ∈ Q⟩, where Nq,j are auxiliary non-terminals that represent
nodes visited for the first time. They are subject to the rule Nq,jy = F 0,⋯,0;1

q,m0,γj
N1⋯NBy.

The scheme depends on types of the form Ti (0 ≤ i ≤ k) defined by Tk = o and Ti =
(Ti+1(o) (o, where T stands for &q∈QT , i.e. ∣Q∣ copies of T . In particular, we have
F u⃗;d
q,m,γ ∶ Tu1 (⋯(TuB

(Td−1 and Nq,j ∶ T0.

I Theorem 9. For any restricted TSA, there exists an equivalent MAHORS (constructible
in exponential time).

In conjunction with Theorem 7, this shows that MAHORS and restricted TSA are equivalent.

P. Clairambault and A. S. Murawski 50:11

6 Expressivity of MAHORS

It is easy to see that any (classic) first-order recursion scheme (1-HORS) can be viewed
as a MAHORS, simply by giving the terminals types of the form o& ⋯ & o(o. Hence,
MAHORS are at least as expressive as first-order HORS. Next, informed by results from the
preceding sections, we can discuss their relationship with schemes of higher orders. Because
our TSA model is a tree-generating variant of the automata from [7], which capture multiple
context-free languages [21], we can immediately conclude the following.

I Lemma 10. The branch language of a tree generated by a MAHORS is multiple context-free.

Thanks to the Lemma, we can show that MAHORS and second-order HORS are incomparable.

I Example 11. There exists a second-order HORS, which is not equivalent to any MAHORS.
For example, consider the 2-HORS given by: S = Fb, Ff = a(f$)(F (Gf)), Gfx = f(fx),
where a ∶ o → o → o, b ∶ o → o and $ ∶ o are terminals and F ∶ (o → o) → o and G ∶ (o →
o) → o→ o are non-terminals. The scheme generates an infinite tree whose finite branches
correspond to the language L = {anb2n−1

$ ∣n ≥ 1}. Because it is known that L is not multiple
context-free [21, Lemma 3.5], it cannot be the branch language of a MAHORS by Lemma 10.

I Example 12. We give a MAHORS that is not equivalent to any second-order HORS,
exploiting the fact that the language L = {w#w#w ∣w ∈D}, where D is the Dyck language
(D = ε ∣ [D]D), is not indexed [8] (see also page 2 of [16]). The MAHORS given below (using
λ-syntax for brevity) has been obtained by lifting the grammar rules for D to triples of words,
encoded with the type T3 = ((o(o)((o(o)((o(o)(o)(o. Consequently, it
generates a tree whose finite branches are the words of L prefixed by a segment of b’s and
followed by $. The terminal b ∶ (o& o)(o represents rule choice and the other terminals
([,],# ∶ o (o, $ ∶ o) are used to build the word. The scheme relies on the following
non-terminals: S ∶ o, D ∶ T3, K ∶ (o(o)((o(o)((o(o) and I ∶ o(o, which are
subject to the following rules:

S =D(λxyz.x(#(y(#(z$))))), Kxyv = [(x(](yv))), Iv = v,
Df = b⟨fIII,D(λx1y1z1.D(λx2y2z2.f(Kx1x2)(Ky1y2)(Kz1z2)))⟩

If the scheme were equivalent to a 2-HORS, the language of its branches would be accepted
by a 2-CPDA [12], i.e. it would be indexed [2]. However, indexed languages are closed under
homomorphism, so L would be indexed too, because erasing b’s and $ is a homomorphism.

Lemma 10 identifies a strong restriction on branch languages of trees generated by
MAHORS. Since multiple context-free languages form a subset of third-order collapsible
pushdown languages [20], it is natural to ask whether every MAHORS might be equivalent to
a third-order HORS. One could try to establish this, for example, by showing that, for every
restricted TSA, there is an equivalent MAHORS that uses third-order types. Unfortunately,
our proof of Theorem 7 uses types whose order grows linearly in the restriction parameter
k. At the time of writing, we believe this necessary to capture the complexity of run-trees
generated by our (infinite-)tree-generating TSA, though we are aware that similar hierarchies
for (finite-)word languages and (finite-)tree languages do collapse, e.g. second-order abstract
categorial grammars [19, 15]. The main difficulty that prevents us from translating TSA
into MAHORS of order 3 is that there may be infinitely many (sub)runs that start from a
given node, visit only nodes above it and return to the same node, and all such runs have to
be captured in a single MAHORS. In contrast, for word languages, when TSA are seen as
acceptors of finite words, it suffices to focus on the representation of a single run [7].

MFCS 2019

50:12 On the Expressivity of Linear Recursion Schemes

7 Multiplicative HORS (MHORS)

In this section we consider MHORS, i.e. &-free MAHORS. Recall from Lemma 8 that, for any
MHORS, there exists an equivalent linear PDA (LPDA) ⟨Σ,Q,Γ, δ, q0, γ0⟩ with transition
function δ ∶ Q × Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q × ({upγ ∣γ ∈ Γ} + {down}) such
that any reachable configuration must be reachable through a unique path. Next we prove
the converse using first-order MHORS only. In combination with Lemma 8, this amounts to
a polynomial-time translation from arbitrary MHORS to first-order MHORS.

In what follows, we view an LPDA as a pushdown system with a successor relation ⇒, in
order to exploit standard reachability techniques [4, 9]. We work with configurations of the
form (q, t) ∈ Q × (Γ●)∗. As we do not have the space to review all the necessary definitions,
let us just recall that the techniques employ multi-automata over Γ● to recognise sets of
configurations. Multi-automata are finite-state machines with multiple initial states, one for
each state of the analysed pushdown system. Let iq be the initial state of a multi-automaton
corresponding to q ∈ Q. Then a multi-automaton is said to recognise (q, t) if it accepts t once
started from iq (this corresponds to processing stack content top-down). In particular, we
take advantage of the following facts.

For any LPDA A, there exists a multi-automaton Aera, constructible in polynomial time,
which captures erasable stack content, i.e. {(q, t) ∈ Q × Γ∗ ∣ ∃q′ ∈ Q. (q, t) ⇒∗ (q′, ε)}.
Using terminology from [4], this corresponds to pre∗(Q × {ε}). Hence, given A, one can
calculate the relation RA = {(q, γ, q′) ∈ Q × Γ ×Q ∣ (q, γ) ⇒∗ (q′, ε)} in polynomial time.
For any LPDA A, there exists a multi-automaton Area, constructible in polynomial time,
which represents all configurations reachable from (q0, γ0), i.e. all (q, tγ0) such that
(q0, γ0) ⇒∗ (q, tγ0). This corresponds to representing post∗({(q0, γ0)}) [9].

I Lemma 13. For any LPDA A, there exists an equivalent MHORS (of order 1) and its
construction can be carried out in polynomial time.

Proof. The translation is similar to the PDA-to-1-HORS translation in [12] except that
reachability analysis (RA) is used to identify places where variables actually get used. This
is needed to produce a term that is linearly typable. J

Consequently, LPDA and MHORS are equivalent. We end this section by showing they
generate regular trees. Our first lemma states that, if the stack of an LPDA grows sufficiently,
there is a point after which elements lying below a certain level will no longer be accessible.

I Lemma 14. Let s ∈ Γ∗. There exists a bound Hs ≥ 0 such that, for any t ∈ Γ∗, if (q, tsγ0)
is reachable and ∣t∣ >Hs then there is no q′ such that (q, t) ⇒∗ (q′, ε).

Proof. Consider X = {(q, sγ0) ∣ (q0, γ0) ⇒∗ (q, sγ0)}. Observe that 0 ≤ ∣X ∣ ≤ ∣Q∣. Because
we work with an LPDA, there can be at most ∣Q∣ runs from (q0, γ0) to X. Let Hs be
the maximum stack height occurring in these runs (take 0 if X = ∅). Suppose (q, tsγ0) is
reachable and ∣t∣ > Hs. If we had (q, t) ⇒∗ (q′, ε) for some q′ then there would be a run
(q0, γ0) ⇒∗ (q, tsγ0) ⇒∗ (q′, sγ0) in which the stack height exceeds Hs (because it visits
(q, tsγ0)). This contradicts the choice of Hs. J

The above bound depends on s. We show that there is a uniform bound, polynomial
with respect to the size of A. First, given s ∈ Γ∗, the multi-automaton Area discussed earlier
can be modified to represent {(q, t) ∣ (q0, γ0) ⇒∗ (q, tsγ0)} simply by changing the accepting
states of Area (to those from which an original accepting state is reachable via an sγ0-labelled
path). Let Asrea be the resultant automaton. Note that the size of Asrea is bounded by a
polynomial in ∣A∣ that is independent of s, because the only difference between Asrea and
Area is the set of accepting states, and its size bounded by ∣Q∣.

P. Clairambault and A. S. Murawski 50:13

Observe that {(q, t) ∣ (q0, γ0) ⇒∗ (q, tsγ0), (q, t) ⇒∗ (q′, ε) for some q′} is exactly the set
of configurations that are represented by both Asrea and Aera. Consider the product A′ of
the two multi-automata. By Lemma 14, A′ cannot have reachable loops. Consequently, the
longest word that it accepts from any initial state is bounded by the number of states of the
automaton, which is polynomial in ∣A∣. As this reasoning is independent of s, we obtain:

I Lemma 15. For any LPDA A, there exists a bound H, polynomial in ∣A∣, such that, for
any s, t ∈ Γ∗, if (q, tsγ0) is reachable and ∣t∣ >H then there is no q′ such that (q, t) ⇒∗ (q′, ε).

This implies that an LPDA can only use H top elements from its stack, i.e. its stack
can be simulated by a finite state automaton, which is exponentially bigger. Because any
0-HORS is also an MHORS, MHORS and 0-HORS are equivalent, i.e. they generate exactly
the regular trees. However, it is worth noting that MHORS may be more succinct.

I Example 16. The MHORS built from terminals a, b ∶ o(o, non-terminals S ∶ o,Fi ∶ o(o

(1 ≤ i ≤ n) with S = Fn(bS), F0(x) = ax and Fi(x) = Fi−1(Fi−1x) for 1 ≤ i ≤ n generates an
infinite branch (a2n

b)ω, which could only be generated by a 0-HORS of exponential size in n.

References
1 Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full Abstraction for PCF.

Inf. Comput., 163(2):409–470, 2000. doi:10.1006/inco.2000.2930.
2 Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. Safety Is not a Restriction at Level 2

for String Languages. In Proceedings of FOSSACS, volume 3441 of Lecture Notes in Computer
Science, pages 490–504. Springer, 2005.

3 Patrick Baillot. Approches dynamiques en sémantique de la logique linéaire: jeux et géométrie
de l’interaction. PhD thesis, Aix-Marseille 2, 1999.

4 Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of Pushdown
Automata: Application to Model-Checking. In Proceedings of CONCUR, volume 1243 of
Lecture Notes in Computer Science, pages 135–150. Springer, 1997.

5 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski. Linearity in higher-order
recursion schemes. PACMPL, 2(POPL):39:1–39:29, 2018.

6 Vincent Danos and Laurent Regnier. Reversible, Irreversible and Optimal lambda-Machines.
Theor. Comput. Sci., 227(1-2):79–97, 1999.

7 Tobias Denkinger. An Automata Characterisation for Multiple Context-Free Languages.
In Proceedings of DLT, volume 9840 of Lecture Notes in Computer Science, pages 138–150.
Springer, 2016.

8 Joost Engelfriet and Sven Skyum. Copying Theorems. Inf. Process. Lett., 4(6):157–161, 1976.
9 Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient Algorithms

for Model Checking Pushdown Systems. In Proceedings of CAV, volume 1855 of Lecture Notes
in Computer Science, pages 232–247. Springer, 2000.

10 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
11 Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System F. Studies in Logic

and the Foundations of Mathematics, 127:221–260, 1989.
12 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible

Pushdown Automata and Recursion Schemes. ACM Trans. Comput. Log., 18(3):25:1–25:42,
2017.

13 Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interaction:
from coalgebraic components to algebraic effects. In Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria,
July 14 - 18, 2014, pages 52:1–52:10, 2014. doi:10.1145/2603088.2603124.

14 Martin Hyland. Game semantics. Semantics and logics of computation, 14:131, 1997.

MFCS 2019

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1145/2603088.2603124

50:14 On the Expressivity of Linear Recursion Schemes

15 Makoto Kanazawa. Second-Order Abstract Categorial Grammars as Hyperedge Replacement
Grammars. Journal of Logic, Language and Information, 19(2):137–161, 2010.

16 Makoto Kanazawa and Sylvain Salvati. The Copying Power of Well-Nested Multiple Context-
Free Grammars. In Proceedings of LATA, volume 6031 of Lecture Notes in Computer Science,
pages 344–355. Springer, 2010.

17 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Proceedings of POPL, pages 416–428, 2009.

18 Olivier Laurent. A Token Machine for Full Geometry of Interaction. In Proceedings of TLCA,
pages 283–297, 2001. doi:10.1007/3-540-45413-6_23.

19 Sylvain Salvati. Encoding second order string ACG with deterministic tree walking transducers.
In Proceedings of FG, pages 143–156. CSLI Publications, 2006.

20 Sylvain Salvati. MIX is a 2-MCFL and the word problem in Z2 is captured by the IO and the
OI hierarchies. J. Comput. Syst. Sci., 81(7):1252–1277, 2015.

21 Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On Multiple Context-
Free Grammars. Theor. Comput. Sci., 88(2):191–229, 1991.

https://doi.org/10.1007/3-540-45413-6_23

Uniform Random Expressions Lack Expressivity
Florent Koechlin
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, France
florent.koechlin@u-pem.fr

Cyril Nicaud
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, France
cyril.nicaud@u-pem.fr

Pablo Rotondo
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, France
pablo.rotondo@u-pem.fr

Abstract
In this article, we question the relevance of uniform random models for algorithms that use expressions
as inputs. Using a general framework to describe expressions, we prove that if there is a subexpression
that is absorbing for a given operator, then, after repeatedly applying the induced simplification to
a uniform random expression of size n, we obtain an equivalent expression of constant expected size.
This proves that uniform random expressions lack expressivity, as soon as there is an absorbing
pattern. For instance, (a + b)? is absorbing for the union for regular expressions on {a, b}, hence
random regular expressions can be drastically reduced using the induced simplification.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Random expressions, simplification algorithms, analytic combinatorics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.51

1 Introduction

Although the classical paradigm to analyze the efficiency of an algorithm is to study its worst
case complexity, in many situations it is not a relevant way to describe what is observed
in practice, when one actually implements and tests the algorithm. This is typically the
case when worst case instances are very unlikely, and when the algorithm behaves well on
most inputs. A natural way to deal with this issue is to set a probability distribution on the
inputs of size n, for each n, and to study the average running time of the algorithm when the
inputs are randomly chosen following the prescribed distribution.1 The textbook example
is QuickSort algorithm with a simple choice of pivot, which runs in O(n logn) expected
time and O(n2) in the worst case. But the average case analysis raises the question of the
input distribution, which is usually a difficult one. The result on QuickSort holds when
the input is a permutation taken uniformly at random, but are real-life arrays uniformly
shuffled? Probably not, whatever “real-life” means. For QuickSort, one can randomize the
choice of the pivot to ensure the O(n logn) expected running time, which is equivalent to
uniformly shuffling the input. This is probably not a good idea in practice though, since
we lose the property that some input can be often partially sorted: popular programming
languages as Python or Java now use the recent TimSort algorithm that takes advantage of
the presortedness of the input.

1 There are other relevant theoretical alternatives, as the smoothed analysis of algorithms, but we will
only consider average case analysis in this article.

© Florent Koechlin, Cyril Nicaud, and Pablo Rotondo;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.koechlin@u-pem.fr
mailto:cyril.nicaud@u-pem.fr
mailto:pablo.rotondo@u-pem.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.51
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Uniform Random Expressions Lack Expressivity

Still, if one wants to test the efficiency of an implementation of an algorithm, or to compare
two tools, and if there are not sufficiently many benchmarks available, doing the analysis on
random inputs sounds reasonable. In addition, using the uniform distribution has several
advantages: it ensures a lot of diversity on the generated input (as they are all equally likely)
and there are several very generic methods to perform the random generation efficiently: the
two main ones being the recursive method [20] and Boltzmann samplers [7]; both directly
translate a combinatorial description of the inputs into a uniform random generator. And
also, beyond the experiments, the theoretical average case analysis of the algorithm can be
done using techniques from discrete probabilities or from analytic combinatorics.

In this article we focus on algorithms whose inputs are formulas, encoded by expressions.
Informally, an expression is a tree, whose internal nodes are labelled with operators, and
whose leaves are labelled with variables or constants. Such trees are very natural ways to
represent formulas in many different contexts; several examples are given in Fig. 1. Observe
that the equivalent reverse polish notation of the expression can be obtained by a simple
tree traversal.

∨

∧ ¬

x2x1 ¬

x3

(x1 ∧ ¬x3) ∨ ¬x2

?

•

b +

a ε

(b · (a + ε))?

⇒

� #

∨ ¬

a b c

�(a ∨ b)⇒ #¬c

exp

/

x +

1 x

exp(x
1+x)

Figure 1 Four expression trees and their associated formulas. From left to right: a logical formula,
a regular expression, an LTL formula and a function.

We define the set of expressions by the finite sets of operators of any given degree: for
regular expressions on an alphabet {a, b}, we consider that there are three kinds of leaves
{a, b, ε}, one unary internal node {?} for the Kleene star and two binary internal nodes
{•,+} for the concatenation and the union. We define the size of an expression as its number
of nodes (including leaves). For the set of regular expressions LR, we have the following
formal inductive description:

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR

+
+
/\

LR LR

. (1)

Observe that if we consider plane trees (where the children of a node are ordered, as when they
are drawn on a plan), Eq. (1) is an unambiguous description of the expressions in LR. It is,
of course, not an unambiguous description of the associated languages, since a given language
admits several representations using expressions. It is clear that the other expressions of
Fig. 1 also have a specification that is similar to Eq. (1). Efficient methods were developed
in the field of analytic combinatorics to deal with that kind of combinatorial inductive
descriptions. In a nutshell, we first associate the formal power series L(z) :=

∑
n≥0 `nz

n,
where `n is the number of expressions of size n. Eq. (1) translates into an equation on L(z):

L(z) = zφ(L(z)), with φ(X) = 3 +X + 2X2. (2)

Then we see L(z) as a function from C to C, which is analytic at 0, and use its functional
equation Eq. (2) to derive a lot of information on `n, typically asymptotic equivalents.
When considering the uniform distribution, one can easily go further and introduce formal
parameters in the specification (for instance, the number of unary operators), which can also

F. Koechlin, C. Nicaud, and P. Rotondo 51:3

be interpreted in the analytic world, and directly obtain statistics of interest (for instance, the
asymptotic equivalent of the expected number of unary operators). Combinatorial structures
whose generating series satisfy an implicit functional equation L(z) = zφ(L(z)) are called
simple varieties of trees (there are some analytic conditions on φ, which are always satisfied
in the sequel), and we refer the reader to the textbook on analytic combinatorics [9, VII.3.]
for further information. For the remainder of this introduction, the reader has just to keep
in mind that the technical framework used to deal with uniform random expressions is well
established.

As can be expected at this point of the discussion, there are a lot of results in the literature
on simple varieties of trees and on specific random expressions. They exhibit some kind of
“universal” behavior: for instance, the number of such trees always grows in `n ∼ αβnn−3/2,
for some computable constants α and β [16]. Their expected height is asymptotically
equivalent to γ

√
n, for some computable γ [8]. In [10], the authors proved that if a uniform

random expression is compressed by identifying common subexpressions (changing the tree
into a directed acyclic graph), the expected size of the result is asymptotically equivalent
to δn√

logn
. It was also established [11] that computing the derivative of a random function,

defined by a tree as in Fig. 1, costs Θ(n3/2) in expected time and space. Concerning regular
expressions, the second author studied a standard construction that builds an ε-free non-
deterministic automaton recognizing the same language [18]: he proved that there is an
expected linear number of transitions in the resulting automaton, although it is Θ(n2) in
the worst case. This result was subsequently refined and adapted to various other similar
constructions by Moreira, Reis and their co-authors (see [2] for a survey). A lot of efforts were
also made for Boolean formulas, in slightly different settings: we consider the set Fk of the 22k

Boolean formulas on k variables. For a suitable set of logical operators, for instance {∨,∧},
and for any n ≥ 1, we consider the probability pn(f) that a random Boolean expression
represents the Boolean function f ∈ Fk; then we let n tend to infinity, and it can be proved
that pn(f) has a limit p(f), and that p is a probability distribution on Fk. So the distribution
is different, and more theoretical than what is usually used for testing implementations.
But, since it relies on uniform random expressions, that kind of distributions has a lot of
similarities with uniform random expressions (see [12] for a survey). While investigating this
distribution on Boolean formulas, its lack of complexity was discovered: with high probability
the formulas obtained are very simple [13, 14]. In fact, there is an older result in Nguyên
Thê PhD’s dissertation [17, Ch 4.4], where he considered and/or Boolean expressions whose
leaves are either true, false or a literal; he studied the impact of inductively applying 8
different reduction rules, such as true ∨ φ→ true, on uniform random expressions of size
n, and proved that the expected size of the simplified expression tends to a constant as
n tends to infinity. This was a very negative result for uniformly chosen random Boolean
expressions (with {∨,∧} operators and {true, false, x} leaves), as most of them can be
drastically simplified using simple rules.

In this article, we aim at extending Nguyên Thê’s result to much more general families of
expressions, proving its universality in the context of simple varieties of trees. Informally,
our main result is the following:

I Theorem. Consider a simple variety of expressions, where there is a tree pattern P that
is an absorbing element for one of the operators ~. We consider the simplification algorithm
that consists in inductively changing a ~-node by P whenever one of its children can be
simplified into P. Then the expected size of the simplification of a uniform random expression
of size n tends to a constant as n tends to infinity.

MFCS 2019

51:4 Uniform Random Expressions Lack Expressivity

0 5k 10k 15k 20k 25k 30k
0

5k

10k

15k

20k

25k

30k

size of the regular expression

si
ze

of
th

e
si

m
p
li
fi
ed

ex
p
re

ss
io

n

Figure 2 Experimental study of the size of a random uniform regular expression after applying
the simplification rules E + P P and P + E P.

As an example, the tree pattern P corresponding to (a+ b)? is absorbing for the union + of
regular expressions: for any regular expression E, one can simplify E + P or P + E into P
without changing the described language. Hence, applying this simple simplification rule to
a very large random regular expression results in an expression of constant expected size.
Also, the tree pattern associated with x1 ∨ ¬x1 is absorbing for ∨, since it evaluates to true:
random Boolean expressions are also drastically simplified using this transformation rule.
It is the same for LTL formulas, and for functions: if there is the constant 0 (or a way to
produce it with a tree pattern) and the multiplication, then the same phenomenon occurs. In
fact, for most natural notions of expressions, there are absorbing patterns for some operators,
and uniform random expressions lack expressivity, since they can be simplified into much
smaller equivalent expressions with high probability. This is a universal and negative result
on uniform random expressions, which is worth knowing when designing empirical tests.
Indeed, comparing two tools on uniform random expressions probably consists in simply
comparing their efficiency for simplifying the input (preprocessing step). It also questions
the relevance of further theoretical studies on that kind of models. The consequences are
discussed in details in Section 4.

To conclude this introduction, we would like to mention that our result is not always
easy to observe experimentally. We implemented uniform random samplers for regular
expressions, and computed (experimentally) the expected size when using the fact that
(a+ b)? is absorbing for +. The results are depicted on Fig. 2. It is not clear that the curve
converges to some constant, as stated by our theorem. In fact, if we compute the value
of the limit (we used SageMath software for the computations) we obtain a bit more than
3 624 217, a huge constant. This value can be considerably reduced if we introduce several
more rewriting rules (see Section 4 for the details).

2 Definitions and settings

2.1 Combinatorial constructions and analytic combinatorics
In this article, the proofs rely on mathematical techniques developed in the framework of
analytic combinatorics [9]. In this section, we recall the basic tools of this theory that will be
used in the sequel (more advanced results will be introduced when needed). A combinatorial
class is a set C equipped with a notion of size | · | (a mapping from C to Z≥0) such that for
any n ∈ Z≥0 there are finitely many elements of C of size n. Let Cn = {C ∈ C : |C| = n}

F. Koechlin, C. Nicaud, and P. Rotondo 51:5

and let cn = |Cn| be its cardinality. The ordinary generating series (OGS for short) of
the combinatorial class C is the formal power series C(z) :=

∑
C∈C z

|C| =
∑
≥0 cnz

n. Let
[zn]C(z) := cn denote the n-th coefficient of C(z).

LetA and B be two combinatorial classes, and let A(z) andB(z) be their OGS, respectively.
If A and B are disjoint, then the OGS of their union is simply A(z) +B(z). Moreover, if we
define the size of a pair (α, β) in A× B as the sum of the sizes of α and β, then A× B is a
combinatorial class with OGS A(z)B(z), as a simple computation shows. There are many
other set constructions on combinatorial classes that directly translate on OGS, but we will
not need them in the sequel (see [9, Part A]).

Let us take an example that will be used throughout this article, the combinatorial set
LR of regular expressions on the alphabet {a, b}. Its elements are plane rooted trees, whose
nodes (internal and leaves) are labelled: leaves are labelled with a, b or ε, unary nodes are
labelled with ?, and binary nodes with • or +. Rooted means that there is a root (contrary to
the graph-theory notion of tree), and plane means that the order of the children matters:

+
/\
a b

and
+
/\
b a

are different elements of LR. Encoding trees as tuples (for instance (•, left, right)
for a tree of root • and left and right children left and right), we have the identity:

LR = {a, b, ε} ∪ {?} × LR ∪ {•,+} × LR × LR, (3)

which we rewrite as in Eq. (1) for readability: LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR

+
+
/\

LR LR

. From
this we directly obtain the following functional equation for the associated OGS LR(z):

LR(z) = 3z + zLR(z) + 2zLR(z)2 = zφ(LR(z)), with φ(y) = 3 + y + 2y2.

Going further, one can also encode statistics on the elements of a combinatorial class into
generating series. Let ξ be a mapping from a combinatorial class C to Z≥0. We are interested
in the double sequence cn,k that counts the number of elements C ∈ Cn such that ξ(C) = k.
The associated bivariate generating series (BGS for short) is by definition:2

C(z, u) :=
∑
C∈C

z|C|uξ(C) =
∑
n,k≥0

cn,kz
nuk.

When the statistics ξ is additive, which means that it is defined on pairs by ξ((α, β)) =
ξ(α) + ξ(β), then we also have a generic dictionary to translate combinatorial constructions
into BGS directly (see [9, Ch III]). This is for instance the case if ξ is the number of a-leaves
in a regular expression. Moreover, formal differentiation with respect to u allows us to
compute the expected value of ξ for the uniform distribution: by definition, the expectation
of ξ for objects of size n is En[ξ] = 1

|Cn|
∑
C∈Cn

ξ(C). But observe that

d

du
C(z, u) = d

du

∑
C∈C

z|C|uξ(C) =
∑
n≥0

(∑
C∈Cn

ξ(C)uξ(C)−1

)
zn.

Hence, if we extract the n-th coefficient3 in z, and set u = 1, we have cn times the expectation.
We thus get the following formula to compute the expectation for the uniform distribution:

En[ξ] =
[zn] dduC(z, u)

∣∣∣
u=1

[zn]C(z, 1) . (4)

2 Observe that C(z, 1) = C(z).
3 Recall that it is exactly what the operator [zn] does.

MFCS 2019

51:6 Uniform Random Expressions Lack Expressivity

Higher moments are obtained similarly, by differentiating several times with respect to u.
Let us continue our example on regular expressions over a binary alphabet by studying

the statistics ξ associated with the number of unary operators ? in an expression. The
technique consists in marking the ?-nodes (we use a circle, symbolically) and in changing the
marks into the formal variable u when translating the combinatorial specification:

LR = a+ b+ ε+
©?
|
LR

+
•
/\

LR LR

+
+
/\

LR LR

−→ LR(z, u) = 3z + zuLR(z, u) + 2zLR(z, u)2.

After differentiating with respect to u and setting u = 1 we get:

d

du
LR(z, u)

∣∣∣
u=1

= zLR(z)
1− z − 4zLR(z) . (5)

At this point, the values of interests are hidden as coefficients of formal power series, and
we need to extract or estimate them. This is where we use complex analysis: when their
radius of convergence at 0 is not zero, the formal power series are seen as functions from C
to C. Using theorems developed in the field, this proves very useful to obtain an asymptotic
equivalent of the n-th coefficient. We will not state formally the theorems here, because there
are some analytic conditions on the series that must be satisfied and that are a bit too long
for this extended abstract (we refer to the textbook [9] for all the details). What is needed
to know is the following: since we are doing combinatorics, the coefficients in our series C(z)
are non-negative reals. Hence, Pringsheim’s theorem applies and yields that, if finite, the
radius of convergence ρ of C(z) is a singularity. If there are no other singularity of modulus
ρ then, together with other analytic conditions, the behavior of the function C(z) as z → ρ

determines the asymptotic equivalent of [zn]C(z) as n → ∞. For instance, the Transfer
Theorem [9, Ch VI.3] states that, under analytic conditions, if C(z) ∼z→ρ λ(1− z/ρ)−α with
α /∈ {0,−1,−2, . . .}, then [zn]C(z) ∼ λρ−nnα−1/Γ(α), where Γ is Euler’s gamma-function,
the generalization of factorial.

Back to our example, as a polynomial equation of degree two, Eq. (2) can be solved
in LR(z). Only one of the two solutions is combinatorially meaningful (the other one has
negative coefficients). The result is amenable to the Transfer Theorem, with ρR = 2

√
6−1

23 and
an exponent −α = −1/2 near ρR, yielding [zn]LR(z) ∼ λρ−nR n−3/2, for some computable
λ > 0. Similarly, we can estimate the expected number of ?-nodes using Eq. (4) and applying
the Transfer Theorem to Eq. (5). This routine exercise yields that the expected number of
?-nodes is asymptotically equivalent to γn, for some computable positive constant γ.

Observe that the latter result has a direct consequence on the algorithm applying the
simplification pattern (T ?)? T ?: since it cannot remove more nodes than there are stars
in the expression, the expected size after simplification is in Θ(n). In fact, we can easily be
more precise using our tools, as stated in the following proposition.

I Proposition 1. Consider the algorithm that simplifies consecutive stars in a regular expres-
sion. For the uniform distribution on LR, the expected size after reduction is asymptotically
equivalent to κn, with κ = 4

529 (126 +
√

6) ≈ 0.97.

Hence, this simplification rule is not powerful enough to demonstrate the lack of expressivity.

2.2 Combinatorial expressions: simple varieties of trees
As announced above, our combinatorial model for expressions is the notion of simple varieties
of trees [9, VII.3]. We consider expressions as a combinatorial class of L defined in terms of
a sequence of sets of labels A = (Ai)i∈Z≥0 indexed by their arity (or degree): f ∈ Ai has

F. Koechlin, C. Nicaud, and P. Rotondo 51:7

arity i and labels nodes with i children. For instance, the set of regular expressions over
the alphabet {a, b}, can be described in this formalism using A0 = {ε, a, b}, A1 = {?}, and
A2 = {+, •}, the other Ai’s being empty for i ≥ 3.

To avoid trivially uninteresting cases, we define combinatorial expressions as follows:
I Definition 2. A set of combinatorial expressions of labels A = (Ai)i∈Z≥0 is a combinatorial
set of rooted plane trees whose nodes of arity i are labelled with elements of a finite set Ai,
under the additional conditions that A0 6= ∅ and that there exists i ≥ 2 such that Ai 6= ∅. Its
characteristic series is the formal power series φ(y) =

∑
i≥0 φiz

i, where φi = |Ai|.
Note that there can be infinitely many non-empty Ai and that a label can be in several Ai’s:
we can have the union label in Ai for any i ≥ 2, to take its associativity into account.

If L is a set of combinatorial expressions of characteristic series φ(y), then we have the
fundamental formal equation for its OGS L(z):

L(z) = z φ(L(z)) . (6)

In our running example, rational expressions, φ is a quadratic polynomial and Eq. (6)
can be solved explicitly. But usually this is not the case. Fortunately, we can still work
out the asymptotic equivalents directly from the functional equation Eq. (6), using implicit
functions. Several conditions, gathered under the name of Smooth inverse-function schema
for trees [9, Definition VII.3], need to be checked in order to apply this fundamental result:
I Definition 3 (Smooth inverse-function schema for trees [9]). A function L(z) satisfying
the functional equation L(z) = zφ(L(z)) is said to belong to the smooth inverse-function
schema if L(z) is analytic at z = 0, φ(y) is analytic at y = 0, φ(0) 6= 0, the coefficients
of φ are non-negative, φ is not linear, and finally there exists a solution τ of the equation
φ(τ)− τφ′(τ) = 0, with 0 < τ < ρφ where ρφ is the radius of convergence of φ.

Let us check this definition when L is a set of combinatorial expressions of characteristic
series φ(y). The fact that φ(y) is analytic at 0 means that there are not too many operators
of arity i (typically, not super-exponential in i), which is indeed the case for all the examples
of Fig. 1. The other conditions are satisfied by definition, except the last one. The solution
τ always exists, but we have to ensure that it is smaller than the radius of convergence of φ.
The following elementary observation is quite useful:
I Remark 4. If φ is a polynomial, i.e. only finitely many Ai’s are non-empty, then a set of
expressions of characteristic series φ belongs to the smooth inverse-function schema.
Consider a variation on regular expressions L′R, where A0 = {ε, a, b}, A1 = {?}, A2 = {+, •},
and Ai = {+} for any i ≥ 3. Its characteristic series is φ(y) = 3+y+2y2 + y3

1−y = 1
1−y +y2 +2.

Its radius of convergence is ρφ = 1, and the positive solution of φ(τ) − τφ′(τ) = 0 is√
5−1
2 ≈ 0.618. Then the characteristic series belong to the smooth inverse-function schema.
The following theorem is a key property in analytic combinatorics for the functions

belonging to the smooth inverse-function schema. It is stated when φ(y) is aperiodic, i.e.
when φ(y) = ψ(yd) implies d = 1. This is not a real restriction as shown in [9, Ex. VI.17],
and this implies that L(z) is also aperiodic and then has a unique dominant singularity.
I Theorem 5 (see [5, 9, 16]). Let L(z) that belongs to the smooth inverse-function schema
with L(z) = zφ(L(z)). Assume that φ(y) is aperiodic, then L(z) has a unique dominant
singularity ρL = τ/φ(τ). Moreover, there exist two analytic functions g(z) and h(z) analytic
at z = ρL, such that, around z = ρL we have:

L(z) = g(z)− h(z)
√

1− z/ρL, with h(ρL) 6= 0. (7)

Moreover, we have [zn]L(z) ∼ CL
ρ−n

L

n3/2 , for some computable positive constant CL.

MFCS 2019

51:8 Uniform Random Expressions Lack Expressivity

3 Main results

3.1 Simplification using an absorbing pattern: main result
Let L be a set of combinatorial expressions of sets of labels (Ai)i≥0. Let P be an element of
L and let ~ be an element of Aa for some a ≥ 2. If L ∈ L, the simplification of L following
the absorbing pattern P for ~ is the element S ∈ L obtained by applying bottom-up the
following rewriting rule:

~

C1 . . . Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

More formally, the simplification s(L,P,~) of L following the absorbing pattern P for ~
is inductively defined by: s(L,P,~) = L if L has size 1, s(L,P,~) = P if the root of L is ~
and at least one of its children C is such that s(C,P,~) = P, and

s(L,P,~) = (⊕, s(C1,P,~), . . . , s(Cd,P,~)), otherwise for L = (⊕, C1, . . . , Cd).

Of course, this simplification is purely syntactic, but the idea behind is that, when interpreted,
the pattern P represents an absorbing element for the operator ~, hence the name. For
instance, the pattern P = (a + b)? and operator ~ = + correspond to the fact that for
languages, P represents Σ?, which is absorbing for the union +.

Let σP,~(L) = |s(L,P,~)| denote the size of the simplification of L, or just σ(L) when
there is no ambiguity about the P and the ~ considered. Our main result concerns the
random variable σ when L is taken uniformly at random in Ln.

I Theorem 6. Let L be a set of combinatorial expressions whose OGS L(z) belongs to the
smooth inverse-function schema L(z) = φ(L(z)), with φ aperiodic. Let P ∈ L and let ~ be
an operator of arity at least 2 of L. Then the expected size of the simplification of a uniform
random expression of size n in L following the absorbing pattern P for ~ tends to a constant
as n tends to infinity: limn→∞ En[σ] = δ, for some positive δ. Furthermore, all moments of
σ also converge: for every i ∈ Z≥1, limn→∞ En[σi] = δi for some positive δi.

Observe that it is not because the expectation converges that the moments converge too.
Moreover, convergence of the moments has an implication in the analysis of algorithm, as
stated in the following corollary.

I Corollary 7. Let L be a set of expressions that satisfies the conditions of Theorem 6.
Consider a polynomial time algorithm working on elements of L. If we first simplify the
expression before running the algorithm, then the process takes O(1) expected time. The
simplification itself is done in linear expected time.

Hence, the automaton construction studied in [18] is useless in the uniform random
setting, since the output automaton has size polynomial in the input in the worst case. It is
thus of expected constant size if we first simplify the input, according to Corollary 7.

We fix L, φ, P and ~ for the remainder of Section 3, which is devoted to the proof of our
main theorem, i.e., Theorem 6. A discussion of its consequences can be found in Section 4.

3.2 Completely reducible expression trees
An expression tree L ∈ L is completely reducible when s(L,P,~) = P . We first study the set
R ⊂ L of all the completely reducible expression trees and denote by R(z) its OGS.

F. Koechlin, C. Nicaud, and P. Rotondo 51:9

Let p = |P| and let a be the arity of ~. An element of R is either P itself, or a tree of
root ~ such that at least one of its subexpression is completely reducible. Hence, translating
into OGS, we have the following equation for R(z):

R(z) = zp + z ((L(z))a − (L(z)−R(z))a) . (8)

We can also easily establish the following property:

I Lemma 8. The radii of convergence of R(z) and L(z) are equal. Moreover, there exists
NR ∈ Z≥0 such that for every n ≥ NR, [zn]R(z) > 0.

We need to be more precise, as a fine grain description of R(z) is an important ingredient
of our proof of Theorem 6. We use an advanced analytic result established4 by Drmota [5,
Th. 1 and Prop. 3]. His theorem provides a precise estimate of the solutions of strongly
connected systems of equations involving analytic functions around their (then) shared
dominant singularity.

I Proposition 9. The probability that a uniform random expression in Ln is completely
reducible tends to a strictly positive constant γ as n→∞. Furthermore, locally around z = ρ,
we have

R(z) = gR(z)− hR(z)
√

1− z

ρ
, (9)

where ρ is the radius of convergence of L(z) and R(z), and the functions gR(z) and hR(z)
are analytic around z = ρ, and hR(ρ) 6= 0.

Proof sketch. We define a complementary class G := L \ R of elements that do not reduce
(completely) to P. Let G(z) denote its OGS. We observe that from Eq. (8) we have{

R(z) = zp + z
(

(G(z) +R(z))a −G(z)a
)
,

G(z) = z φ
(
G(z) +R(z)

)
+ zG(z)a ,

(10)

where φ(x) = φ(x) − xa. We demonstrate, simultaneously, that R(z) and G(z) verify the
conclusions of the proposition by applying Drmota’s multidimensional version of Theorem 5
(see [5, Thm. 1 and Prop. 3]). Thus we consider the implicit system above, in the variables
z, R and G, and prove that it satisfies the conditions of Drmota’s Theorem. This will then
imply immediately our desired conclusions. We consider the corresponding algebraic system

[R,G] = F (z,R,G), where F (z,R,G) =
[
zp + z

(
(G+R)a −Ga

)
, z φ

(
G+R

)
+ zGa

]
.

Now we need to check that all the hypotheses of Drmota’s theorem are satisfied; this includes
studying the Jacobian matrix of the system, which is

J(z,R,G) =
(
za(G+R)a−1 za((G+R)a−1 −Ga−1)
zφ′(G+R) zφ′(G+R) + zaGa−1

)
.

Once done, we obtain Eq. (9).
From this formula and the Transfer Theorem, we conclude that [zn]R(z) satisfies an

asymptotic formula similar to the one of [zn]L(z) in Theorem 5, but with a different
multiplicative constant. This yields the existence of γ and thus concludes the proof. J

4 It turns out that Drmota’s theorem needs a little rectification, given in [1]. The theorem, among other
things, gives a way to localize the dominant singularity, which was proved wrong. Fortunately, we do
not need to rely on this to characterize the singularity in our case, so there is no issue for us, as we do
not use the incorrect part of this result.

MFCS 2019

51:10 Uniform Random Expressions Lack Expressivity

I Remark 10. If we had several reduction rules with the same pattern, rather than just one,
the conclusions from Proposition 9 remain true. For instance, for regular expressions, we
could add the reduction rule P? P in addition to the fact that P is absorbing for +.

For this we introduce an auxiliary series A(x) =
∑
i≥1 aix

i where ai is the number
of operations of arity i having P as an absorbing element. The system in the proof of
Proposition 9 rewritesR(z) = zp + z

(
A(G(z) +R(z))−A(G(z))

)
,

G(z) = z φ
(
G(z) +R(z)

)
+ zA(G(z)) ,

(11)

with φ(x) = φ(x)−A(x). The limit probability γ of Proposition 9 admits an elegant formula

γ = A′(τL)−A′(τL − τR)
φ′(τL)−A′(τL − τR) , where τL = L(ρ) and τR = R(ρ).

3.3 Estimating the expectation and the moments
Following the method explained in Section 2.1, we use bivariate generating series to keep
track of the size of the reduced expression. We therefore define L(z, u) and R(z, u) by (recall
that σ(L) is the size of the simplification of L):

L(z, u) =
∑
L∈L

z|L|uσ(L) and R(z, u) =
∑
R∈R

z|R|uσ(R).

Of course, since all elements of R simplify to P, we have R(z, u) = upR(z), with p = |P|.
As in Section 2.1, we want to mark the expressions so that the number of marks is equal

to the size of the simplified expression. For this, we put one mark on the nodes that are not
simplified, and p marks on the root of a subtree that simplifies to P, to take into account
the size of P once reduced. We just have to reformulate the combinatorial specification
and to enrich it with marks. As an example, let us consider regular expressions LR, with
P = (a+ b)? and ~ = +. We mark an element L ∈ LR the following way (we denote by RR
the completely reducible regular expressions):

If L ∈ RR then we add p marks at the root.
If the root of L is not +, then we mark its children inductively (if any), and mark the
root of L.
If the root of L is + and its children are all not in RR, then we mark its children
inductively, and mark the root of L.

©?

�

+

b?

+

a b

�

b b

◦◦◦◦

simplifies to P:
just add four
marks ◦

This expression has size 9 after simplificiation.

F. Koechlin, C. Nicaud, and P. Rotondo 51:11

This way of rewriting the decomposition of LR is unambiguous except for P which is in
RR and which can also be built by the standard induction, so we have to remove it once in
the specification. This yields, where L◦R and R◦R respectively denote the marked versions of
LR and RR, and where G◦R := L◦R \ R◦R:

L◦R = (RR − P)◦◦◦◦+ a + b + ε +
©?
|
L◦

R

+
�
/\

L◦
R L

◦
R

+
⊕
/\

G◦
R G

◦
R

.

From this we get LR(z, u) = (R(z)− z4)u4 + 3zu+ uzLR(z, u) + zuLR(z, u)2 + zuGR(z, u)2.

This construction generalizes easily, and we get the following lemma.

I Lemma 11. We have the following equation for the BGS L(z, u) where z counts the size
of an expression and u the size of its simplification:

L(z, u) = (R(z)− zp)up + zu
(
φ(L(z, u)) + (L(z, u)−R(z, u))a

)
, (12)

where φ(x) = φ(x)− xa and where a is the arity of ~.

At this point, we want to apply Eq. (4) to compute the expectation of σ. Hence, we
differentiate with respect to u, set u = 1 and re-arrange the expression, obtaining

d

du
L(z, u)

∣∣∣
u=1

=
N
(
z, L(z), R(z)

)
D
(
z, L(z), R(z), φ′(L(z))

) , where N and D are polynomials. (13)

From this, and using an adaptation of another result of Drmota [6, Lemma 2.26] to handle
quotients, we get the following lemma.

I Lemma 12. There exist two functions g̃(z) and h̃(z) that are analytic at z = ρ, such that
locally around z = ρ we have the expansion d

duL(z, u)
∣∣∣
u=1

= g̃(z)− h̃(z)
√

1− z/ρ.

We can now conclude the proof of the first part of Theorem 6: using the Transfer Theorem,
we obtain from Lemma 12 that, if h̃(ρ) > 0, then [zn] dduL(z, u)|u=1 ∼ h̃(ρ)

2
√
π
ρ−nn−3/2, so that,

by Theorem 5, En[σ] tends to the constant δ = h̃(ρ)
2CL
√
π
, since ρ = ρL. The other cases are

not possible, as h̃(ρ) < 0 yields a negative asymptotic equivalent and h̃(ρ) = 0 implies that
the expected size of the simplification tends to 0, but it is not possible as it is at least p > 0.
I Remark 13. Using a computer algebra software, we can deal symbolically with all the
formulas obtained in the article. When applied to regular expressions, we obtain that
δ ≈ 3, 624, 217.39, which is a prohibitively large number for most simulations, while the
proportion of completely reducible expressions tends to γ ≈ 0.0016336.

The proof for higher moments follows a similar principle as for the expectation; when
we differentiate several times on u Eq. (12) from Lemma 11, we get the same factor for
the highest order derivative, hence the same denominator D(z, L(z), R(z), φ′(L(z))) as in
Eq. (13). As the remaining terms also fulfill a local expansion like the one in Lemma 12, we
can conclude exactly as for the expectation.

4 Conclusion

We have seen in this paper that uniform random expressions have to be considered with
great care when using them to analyze the efficiency of algorithms or tools. As soon as there
is an absorbing pattern, everything becomes mostly trivial, even for polynomial algorithms
or constructions, as stated in Corollary 7.

MFCS 2019

51:12 Uniform Random Expressions Lack Expressivity

One could alter the specifications to try to obtain a different behavior. For instance, by
weighting some of the labels (trying to get less ? in random expressions). This can easily
be done directly on the specification, by adding several identical operators or even positive
weights on the operators. The random generation can still be done quite efficiently. However,
we have not changed the framework, and if we try to specify weighted regular expressions
with, for instance:

LR = 10× a+ 10× b+ ε+
?
|
LR

+ 20×
•
/\

LR LR

+ 15×
+
/\

LR LR

, (14)

we can still apply Theorem 6, we just get a larger limit for the expected size.
Another idea is to specify expressions using combinatorial systems. For instance, we can

prevent consecutive stars in regular expressions using the system:

LR = S + T ; S =
?
|
T

; T = a+ b+ ε+
•
/\

LR LR

+
+
/\

LR LR

.

This is not covered by our main theorem, but it is work in progress to prove that the same
result holds, using Drmota’s tools to handle systems of equations like this one.

0 5k 10k 15k 20k
0%

20%

40%

60%

80%

100%

size of the regular expression

n
u
m
b
er

of
co
m
p
le
te
ly

re
d
u
ci
b
le

Figure 3 Experimental study of the pro-
portion of completely reducible, for BST-like
distribution, with P(?) = P(•) = P(+) = 1

3 .

0 500 1,000 1,500 2,000
0

20

40

60

80

size of the regular expression

si
ze

of
th

e
si

m
p
li
fi
ed

ex
p
re

ss
io

n

Figure 4 Experimental study of the size
of a random uniform regular expression after
applying a large set of simplification rules.

Yet a third idea is to completely change the distribution on the set of expressions. The
other natural probability on trees is the so-called BST-like distribution, obtained on regular
expressions as follows to generate an expression of size n: if n = 1 return a, b or ε; if n = 2
return a?, b? or ε?; otherwise, randomly choose an operator in {?, •,+} and if it is binary,
choose the size of its left child uniformly in {1, . . . , n− 2}. This distribution is not uniform,
but it is often used for testing tools. See [19] for a theoretical study using this distribution
on regular expressions. It is not clear if the conclusion of Theorem 6 still holds for these
distributions, but we believe that they are not interesting either: on Fig. 3, we experimentally
computed the ratio of expressions that can be simplified into (a + b)?, using a whole set
of simplification rules, and obtained that this ratio tends to 1 as n tends to infinity: the
situation is even worse than in the uniform case (see also [3, 4]).

If we apply this whole set of simplification rules to uniform random regular expressions,
we get the curve depicted in Fig. 4. Apparently, the expected size of the simplified expression
tends to a value around 75, which is large, but much smaller than the value 3,624,217 obtained
for just using the absorbing pattern.

The real conclusion is that natural distributions on trees seem to be useless when it
comes to obtaining good distributions on formulas. At this point, we have no idea on how to
produce a good distribution in the general framework, sufficiently simple to have efficient
random samplers and to be amenable to mathematical analysis.

F. Koechlin, C. Nicaud, and P. Rotondo 51:13

References

1 Jason P. Bell, Stanley Burris, and Karen A. Yeats. Characteristic Points of Recursive Systems.
Electr. J. Comb., 17(1), 2010.

2 Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. Average Size of
Automata Constructions from Regular Expressions. Bulletin of the EATCS, 116, 2015.

3 Nicolas Broutin and Cécile Mailler. And/or trees: A local limit point of view. Random Struct.
Algorithms, 53(1):15–58, 2018. doi:10.1002/rsa.20758.

4 Brigitte Chauvin, Danièle Gardy, and Cécile Mailler. A sprouting tree model for random
boolean functions. Random Struct. Algorithms, 47(4):635–662, 2015. doi:10.1002/rsa.20567.

5 Michael Drmota. Systems of functional equations. Random Struct. Algorithms, 10(1-2):103–124,
1997.

6 Michael Drmota. Random Trees: An Interplay Between Combinatorics and Probability. Springer
Publishing Company, Incorporated, 1st edition, 2009.

7 Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann Samplers
for the Random Generation of Combinatorial Structures. Combinatorics, Probability &
Computing, 13(4-5):577–625, 2004.

8 Philippe Flajolet and Andrew M. Odlyzko. The Average Height of Binary Trees and Other
Simple Trees. J. Comput. Syst. Sci., 25(2):171–213, 1982. doi:10.1016/0022-0000(82)
90004-6.

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Univer-
sity Press, 2009. URL: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521898065.

10 Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic Variations on the Common
Subexpression Problem. In Mike Paterson, editor, Automata, Languages and Programming,
17th International Colloquium, ICALP90, Warwick University, England, UK, July 16-20, 1990,
Proceedings, volume 443 of Lecture Notes in Computer Science, pages 220–234. Springer, 1990.
doi:10.1007/BFb0032034.

11 Philippe Flajolet and Jean-Marc Steyaert. A Complexity Calculus for Recursive Tree Al-
gorithms. Mathematical Systems Theory, 19(4):301–331, 1987. doi:10.1007/BF01704918.

12 Danièle Gardy. Random Boolean expressions. In David, René, Gardy, Danièle, Lescanne,
Pierre, Zaionc, and Marek, editors, Computational Logic and Applications, CLA ’05, volume
DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA ’05) of DMTCS
Proceedings, pages 1–36, Chambéry, France, 2005. Discrete Mathematics and Theoretical
Computer Science. URL: https://hal.inria.fr/hal-01183339.

13 Antoine Genitrini and Bernhard Gittenberger. No Shannon effect on probability distributions
on Boolean functions induced by random expressions. In Discrete Mathematics and Theoretical
Computer Science, pages 303–316. Discrete Mathematics and Theoretical Computer Science,
2010.

14 Antoine Genitrini, Bernhard Gittenberger, and Cécile Mailler. No Shannon effect induced by
And/Or trees. In 25th International Meeting on Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithms, pages 109–120, 2014.

15 Jonathan Lee and Jeffrey Shallit. Enumerating Regular Expressions and Their Languages. In
Michael Domaratzki, Alexander Okhotin, Kai Salomaa, and Sheng Yu, editors, Implementation
and Application of Automata, 9th International Conference, CIAA 2004, Kingston, Canada,
July 22-24, 2004, volume 3317 of Lecture Notes in Computer Science, pages 2–22. Springer,
2004.

16 A Meir and J.W Moon. On an asymptotic method in enumeration. Journal of Combinatorial
Theory, Series A, 51(1):77–89, 1989. doi:10.1016/0097-3165(89)90078-2.

17 Michel Nguyên-Thê. Distribution of Valuations on Trees. Theses, Ecole Polytechnique X,
February 2004. URL: https://pastel.archives-ouvertes.fr/pastel-00000839.

MFCS 2019

https://doi.org/10.1002/rsa.20758
https://doi.org/10.1002/rsa.20567
https://doi.org/10.1016/0022-0000(82)90004-6
https://doi.org/10.1016/0022-0000(82)90004-6
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
https://doi.org/10.1007/BFb0032034
https://doi.org/10.1007/BF01704918
https://hal.inria.fr/hal-01183339
https://doi.org/10.1016/0097-3165(89)90078-2
https://pastel.archives-ouvertes.fr/pastel-00000839

51:14 Uniform Random Expressions Lack Expressivity

18 Cyril Nicaud. On the Average Size of Glushkov’s Automata. In Adrian-Horia Dediu, Armand-
Mihai Ionescu, and Carlos Martín-Vide, editors, Language and Automata Theory and Ap-
plications, Third International Conference, LATA 2009, Tarragona, Spain, April 2-8, 2009.
Proceedings, volume 5457 of Lecture Notes in Computer Science, pages 626–637. Springer,
2009.

19 Cyril Nicaud, Carine Pivoteau, and Benoît Razet. Average Analysis of Glushkov Automata
under a BST-Like Model. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages 388–399. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

20 Albert Nijenhuis and Herbert S Wilf. Combinatorial algorithms for computers and calculators.
Computer Science and Applied Mathematics, New York: Academic Press, 1978, 2nd ed., 1978.

21 Mike Paterson, editor. Automata, Languages and Programming, 17th International Colloquium,
ICALP90, Warwick University, England, UK, July 16-20, 1990, Proceedings, volume 443 of
Lecture Notes in Computer Science. Springer, 1990. doi:10.1007/BFb0032016.

https://doi.org/10.1007/BFb0032016

Lower Bounds for Multilinear Order-Restricted
ABPs
C. Ramya
Chennai Mathematical Institute, Chennai, India
ramya@cse.iitm.ac.in

B. V. Raghavendra Rao
IIT Madras, Chennai, India
bvrr@cse.iitm.ac.in

Abstract
Proving super-polynomial lower bounds on the size of syntactic multilinear Algebraic Branching
Programs (smABPs) computing an explicit polynomial is a challenging problem in Algebraic
Complexity Theory. The order in which variables in {x1, . . . , xn} appear along any source to sink
path in an smABP can be viewed as a permutation in Sn. In this article, we consider the following
special classes of smABPs where the order of occurrence of variables along a source to sink path is
restricted:
1. Strict circular-interval ABPs: For every sub-program the index set of variables occurring in

it is contained in some circular interval of {1, . . . , n}.
2. L-ordered ABPs: There is a set of L permutations (orders) of variables such that every source

to sink path in the smABP reads variables in one of these L orders, where L ≤ 2n1/2−ε
for some

ε > 0.
We prove exponential (i.e., 2Ω(nδ), δ > 0) lower bounds on the size of above models computing an
explicit multilinear 2n-variate polynomial in VP.

As a main ingredient in our lower bounds, we show that any polynomial that can be computed
by an smABP of size S, can be written as a sum of O(S) many multilinear polynomials where each
summand is a product of two polynomials in at most 2n/3 variables, computable by smABPs. As a
corollary, we show that any size S syntactic multilinear ABP can be transformed into a size SO(

√
n)

depth four syntactic multilinear ΣΠΣΠ circuit where the bottom Σ gates compute polynomials on
at most O(

√
n) variables.

Finally, we compare the above models with other standard models for computing multilinear
polynomials.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Circuit complexity

Keywords and phrases Computational complexity, Algebraic complexity theory, Polynomials

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.52

Related Version A full version of the paper is available at [17], https://arxiv.org/abs/1901.04377.

1 Introduction

Algebraic Complexity Theory is concerned with the classification of polynomials based on
the number of arithmetic operations required to compute a polynomial from variables and
constants. Arithmetic circuits are standard models for algebraic computation. One of the
primary tasks in Algebraic Complexity Theory is to prove lower bounds on the size of
arithmetic circuits computing an explicit polynomial. Valiant [23] conjectured that the
polynomial defined by the permanent of an n × n symbolic matrix is not computable by
polynomial size arithmetic circuits. This is known as Valiant’s hypothesis and is one of the
central questions in Algebraic Complexity Theory.

© C. Ramya and B.V. Raghavendra Rao;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ramya@cse.iitm.ac.in
mailto:bvrr@cse.iitm.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2019.52
https://arxiv.org/abs/1901.04377
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Lower Bounds for Multilinear Order-Restricted ABPs

The best known size lower bound for general classes of arithmetic circuits is only super-
linear in the number of variables [5]. Despite several approaches, the problem of proving
lower bounds for general classes of arithmetic circuits has remained elusive. Naturally, there
have been efforts to prove lower bounds for special classes of arithmetic circuits which led to
the development of several lower bound techniques. Structural restrictions such as depth
and fan-out, semantic restrictions such as multilinearity and homogeneity have received
widespread attention in the literature.

Agrawal and Vinay [1] showed that proving exponential lower bounds for depth four
circuits is sufficient to prove Valiant’s hypothesis. This initiated several attempts at proving
lower bounds for constant depth circuits. (See [21] for a detailed survey of these results.)

Among other restrictions, multilinear circuits where every gate computes a multilinear
polynomial are well studied. Multilinear circuits are natural models for computing multilinear
polynomials. It is sometimes more useful to consider a natural syntactic sub-class of
multilinear circuits. A circuit is syntactic multilinear if the children of every product gate
depend on disjoint sets of variables. Raz [18] obtained super-polynomial lower bounds
on the size of syntactic multilinear formulas computing the determinant or permanent
polynomial. This was improved to an exponential lower bound for constant-depth multilinear
circuits [20, 7, 6]. However, the best known lower bound for general syntactic multilinear
circuits is almost quadratic in the number of variables [2].

Algebraic Branching Programs (ABPs) are special classes of arithmetic circuits that have
been studied extensively in the past. Nisan [15] obtained an exact complexity characterization
of ABPs in the non-commutative setting. The problem of proving size lower bounds for
the class of algebraic branching programs is widely open, even with restrictions such as
homogeneity or syntactic multilinearity. When the ABP is restricted to be homogeneous, the
best known lower bound is only quadratic in the number of variables [13]. The situation is
not better in the case of syntactic multilinear ABPs, where no super-quadratic lower bound
is known [2].

Models and results. In this article, we are interested in syntactic multilinear ABPs in
which the order of appearance of variables along any path in the ABP is restricted. To begin
with, we give a decomposition theorem for smABPs. The decomposition obtains two disjoint
sets E1 and E2 of edges in the branching program P with source s and sink t such that the
polynomial computed by P can be expressed as a sum of

∑
(u,v)∈E1

[s, u] · label(u, v) · [v, t] and∑
(w,a)∈E2

[s, w] · label(w, a) · [a, t], where [p, q] is the polynomial computed by sub-program
in P with source p and sink q. Also, the sets E1 and E2 are chosen carefully such that the
sub-programs obtained are more or less balanced in terms of the number of variables.

In the following theorem, for nodes u, v in an smABP P , we denote [u, v] is the polynomial
computed by sub-program in P with source u and sink v. Also, let Xu,v denote the set of all
variables that occur as labels in any path from node u to node v in P . More formally, we
prove:

I Theorem 1. Let P be an smABP of size S computing f ∈ F[x1, . . . , xn]. There exists
edges {(u1, v1), . . . , (um, vm)} and {(w1, a1), . . . , (wr, ar)} in P such that
(1) For i ∈ [m], n/3 ≤ |Xs,ui | ≤ 2n/3; and
(2) For i ∈ [r], |Xs,wi | < n/3 and |Xai,t| ≤ 2n/3; and
(3) f =

∑m
i=1[s, ui] · label(ui, vi) · [vi, t] +

∑r
i=1[s, wi] · label(wi, ai) · [ai, t].

Let ΣΠ[
√
n](ΣΠ)[

√
n] denote the class of depth four arithmetic circuits where the top layer

of Π gates are products of at most O(
√
n) polynomials each being a multilinear polynomial

on O(
√
n) variables. As an immediate corollary of the above decomposition, we obtain the

following low-arity version of the depth reduction in [1, 22] for the case of smABPs:

C. Ramya and B. V. R. Rao 52:3

I Corollary 1. Let P be a syntactic multilinear ABP of size S computing a polynomial f
in F[x1, . . . , xn]. Then there exists a ΣΠ[

√
n](ΣΠ)[

√
n] syntactic multilinear formula of size

2O(
√
n logS) computing f .

Using the structural property of the parse trees of formulas obtained from smABPs, we
prove exponential size lower bounds for two classes of smABPs with restrictions on the
variable order.
(1) Strict circular-interval ABPs: A strict circular-interval ABP is an smABP in which
the index set of variables in every subprogram is contained in some circular-interval in
{1, . . . , n} (see Section 4.1 for a formal definition). Every multilinear polynomial can be
computed by a strict circular-interval ABP and hence it is a universal model for computing
multilinear polynomials. We obtain an exponential lower bound on the size of any strict
circular-interval ABP computing the explicit multilinear polynomial defined by Raz and
Yehudayoff in [19] (see Section 2 for definition of the polynomial).

I Theorem 2. There exists an explicit multilinear polynomial g in F[x1, . . . , xn] such that
any strict circular-interval ABP computing g requires size 2Ω(

√
n/ logn).

Another sub-class of smABPs that we study is the class of bounded-order smABPs.
(2) L-ordered smABPs: Jansen [11] introduced Ordered smABPs which are branching
programs with source s and sink t such that every path from s to t reads variables in a fixed
order π ∈ Sn. Jansen [11] translated the exponential lower bound for the non-commutative
model in [15] to ordered smABPs. Ordered smABPs have also been studied in the context of
the polynomial identity testing problem. Further, it is shown in [12] that ordered smABPs are
equivalent to Read-Once Oblivious Algebraic Branching Programs (ROABPs for short., see
Section 2 for a definition). Polynomial time white-box and quasi-polynomial time black-box
algorithms were obtained for identity testing of polynomials computed by ordered smABPs,
(see [12, 9, 10] and the references therein).

A natural generalization of ordered smABPs is to allow multiple orders. An smABP is
L-ordered if variables can occur along any source to sink path in one of the L fixed orders.
Since there are at most 2n multilinear monomials in n variables, any multilinear n variate
polynomial can be computed by 2n-ordered ABPs. In this article, by exploiting a simple
structural property of L-ordered ABPs, we prove a sub-exponential lower bound for sum of
L-ordered smABPs when L = O(2n1/2−ε) for some ε > 0:

I Theorem 3. Let L ≤ 2n1/2−ε
, ε > 0 and f1, . . . , fm ∈ F[x1, . . . , xn] be multilinear polyno-

mials computed by L-ordered ABPs of size S1, . . . , Sm respectively. There exists an explicit
multilinear polynomial g in F[x1, . . . , xn] such that if g = f1+· · ·+fm then eitherm = 2Ω(n1/40)

or there is an i ∈ [m] such that Si = 2Ω(n1/40).
Further, we compare strict circular-interval ABPs and L-ordered ABPs to other mulitlinear

models of computation. We show that the construction given in [12] for the equivalence of
ROABPs and 1-ordered ABPs can be generalized to L-ordered smABPs. In particular, in
Theorem 11 we prove that an L-ordered ABP of size S can be transformed into an equivalent
L-pass smABP (see Section 2 for a definition) of size poly(S,L). Though the overall idea is
simple, the construction requires a lot of book-keeping of variable orders. In the context of
strict circular-interval ABPs, we compare strict circular-interval ABPs with the simplest class
of smABPs: Read-Once Oblivious Algebraic Branching Programs. [15] gives exponential size
lower bounds for ROABPs (ABPs on n variables with n+ 1 layers such that every edge from
a node in one layer Li to a node in the successive layer is labeled by a uni-variate polynomial
in F[xi]). Trivially, every strict circular-interval ABP is an ROABP. In Corollary 16, we show
that a generalization of strict circular-interval ABPs called circular-interval ABPs are more
powerful than sum of ROABPs.

MFCS 2019

52:4 Lower Bounds for Multilinear Order-Restricted ABPs

Related works. In an independent and simultaneous work, Kumar, Oliveira and Sapthar-
ishi [14] show an improved depth reduction (along with several other results) for syntactic
multilinear circuits. In [14] (Lemma 6.1 together with Theorem 5.1), the authors show that
any multi-k-ic circuit of size S can be transformed into an equivalent multi-k-ic ΣΠ(ΣΠ)t
circuit of size 2kt · SO(kn/t). Thus, we have k = 1 in the case of syntactic multilinear circuits
and the circuit size bound in Lemma 6.1 of [14] matches the size bound in Corollary 1 of
this paper when t =

√
n. However, Corollary 1 works for syntactic multilinear ABPs while

the result in [14] is for the more general class of syntactic multilinear circuits.
In [16], the authors prove lower bounds for sum of L-pass ABPs computing a multilinear

polynomial in VP. The result in Theorem 3 is much stronger than the results in [16],
since it allows exponentially many orders, whereas the arguments in [16] work only when
L = o(n1/12).

Saptharishi and coauthors (through a personal communication) have shown that L-
ordered smABPs can be written as a sum of L ROABPs. While, this will help in significantly
improving the lower bound given in Theorem 3, the restriction on L will be much smaller
than 2n1/2−ε as far as we are aware.

In [4], Arvind and Raja considered interval ABPs where for every node v reachable from
the source, the index set of variables in the sub-program with v as the sink node must be an
interval in [1, n]. They proved an exponential size lower bound for interval ABPs assuming
the sum-of-squares conjecture. Although our model is more restrictive than the one in [4],
our lower bound argument is unconditional.

Proofs that are omitted due to space constraints can be found int he full version [17].

2 Preliminaries

In this section, we include necessary definitions of models and notations used in this article.
Let F be a field and X = {x1, . . . , xn} denote a finite set of variables.

An arithmetic circuit C over F is a directed acyclic graph with vertices of in-degree zero
or two. A vertex of out-degree 0 is called an output gate. A node of in-degree zero is called
an input gate and is labeled by elements from X ∪ F. Every other gate is labeled either
by + or ×. Every gate in C naturally computes a polynomial in F[X] and the polynomial
computed by C is the polynomial computed at the output gate. When the circuit has more
than one output gate, the circuit computes a set of polynomials. The size of C is the number
of gates in C and depth of C is the length of the longest path from an input gate to the output
gate in C. An arithmetic formula is an arithmetic circuit where the underlying undirected
graph is a tree.

A parse tree T of an arithmetic formula F is a sub-tree of F containing the output gate
of F such that for every + gate v of F that is included in T , exactly one child of v is in T
and for every × gate u that is in T , both children of u are in T .

An algebraic branching program (ABP) P is a directed acyclic graph with one vertex s of
in-degree zero (source) and one vertex t of out-degree zero (sink). The vertices of the graph
are partitioned into layers L0, L1, . . . , L` where edges are from vertices in layer Li to those
in Li+1 for every 0 ≤ i ≤ ` − 1. The source node s is the only vertex in layer L0 and the
sink t is the only vertex in layer L`. Every edge in e in P is labeled by an element in X ∪ F
(denoted by label(e)). The width of P is maxi{|Li|} and size is the number of nodes in P .
For a path ρ the weight, wt(ρ) be the product of its edge labels. The polynomial computed
by an ABP P is the sum of weights of all s to t paths in P . For nodes u and v in P , let
[u, v]P denote the polynomial computed by the sub-program of P with u as the source node
and v as the sink node. We drop the subscript from [u, v]P when P is clear from the context.

C. Ramya and B. V. R. Rao 52:5

Let Xu,v denote the set of all variables that occur as labels in any path from u to v in P .
An ABP P is said to be syntactic multilinear (smABP) if every variable occurs at most

once in every s to t path in P , it is said to be an oblivious ABP if for every layer L in P ,
there is a variable xiL such that every edge from the layer L is labeled from {xiL} ∪ F. A
Read-Once Oblivious (ROABP) is an oblivious smABP such that every variable appears as
an edge label in at most one layer.

Anderson et al. [3] defined the class of L-pass smABPs. An oblivious smABP P is L-pass,
if there are layers i1 < i2 < . . . < iL such that for every j, between layers ij and ij+1
the program P is an ROABP. Let π be a permutation of {1, . . . , n} and P be an smABP
computing an n-variate multilinear polynomial. An s to t path ρ in P is said to be consistent
with π, if the variable labels in ρ occur as per the order given by π, i.e., if xi and xj occur as
edge labels in ρ in that order, then π(i) < π(j). For a node v of P , v is said to be consistent
with π, if every s to v path is consistent with π.

An smABP P is said to be L-ordered, if there are L permutations π1, . . . , πL such that
for every s to t path ρ in P , there is an 1 ≤ i ≤ L such that ρ is consistent with πi.

We now review the partial derivative matrix of a polynomial introduced in [18]. Let
X = Y ∪Z be such that Y ∩Z = ∅ and |Y | = |Z|. It is convenient to represent the partition
X = Y ∪ Z as an injective function ϕ : X → Y ∪ Z. For a polynomial f , let fϕ be the
polynomial obtained by substituting each variable xi = ϕ(xi) for 1 ≤ i ≤ n.

I Definition 1 (Partial Derivative Matrix., [18]). Let f ∈ F[X] be a multilinear polynomial.
The partial derivative matrix of f (denoted byMf) with respect to the partition ϕ : X → Y ∪Z
is a 2m × 2m matrix defined as follows. For multilinear monomials p and q in variables Y
and Z respectively, the entry Mf [p, q] is the coefficient of the monomial pq in fϕ.
For a polynomial f and a partition ϕ, let rankϕ(f) denote the rank of the matrix Mfϕ over
the field F. The following properties of rankϕ(f) are useful:

I Lemma 4 ([18], Propositions 3.1, 3.2 and 3.3). Let f, g ∈ F[Y, Z] be multilinear polyno-
mials. Then, (1) rankϕ(f + g) ≤ rankϕ(f) + rankϕ(g); (2) If var(f) ∩ var(g) = ∅, then
rankϕ(fg) = rankϕ(f) · rankϕ(g); and (3) If f ∈ F[Y1, Z1] for Y1 ⊆ Y,Z1 ⊆ Z, then
rankϕ(f) ≤ 2min{|Y1|,|Z1|}.

Let D denote the uniform distribution on the set of all partitions ϕ : X → Y ∪ Z, where
|Y | = |Z| = |X|/2. The following is known about the rank of ROABPs:

I Lemma 5 ([16], Corollary 1). Let f be an N -variate multilinear polynomial computed by
an ROABP of size S. Then,

Pr
ϕ∼D

[rankϕ(f) ≤ SlogN2N/2−N
1/5

] ≥ 1− 2−N
1/5
.

We need the following polynomial defined in [19] to prove lower bounds:

I Definition 2 (Full rank Polynomial., [19]). Let n ∈ N be even and W = {wi,k,j}i,k,j∈[n].
For any two integers i, j ∈ N, we define an interval [i, j] = {k ∈ N, i ≤ k ≤ j}. Let
|[i, j]| = j − i + 1, Xi,j = {xp | p ∈ [i, j]}. Let G = F(W), the rational function field. For
every [i, j] such that |[i, j]| is even we define a polynomial gi,j ∈ G[X] as gi,j = 1 when
|[i, j]| = 0 and if |[i, j]| > 0 then, gi,j , (1 +xixj)gi+1,j−1 +

∑
k
wi,k,jgi,kgk+1,j . where xk, wi,k,j

are distinct variables, i ≤ k ≤ j and the summation is over k ∈ [i+ 1, j − 2] such that |[i, k]|
is even. Let g , g1,n.

It is known that for any partition ϕ ∼ D, rankϕ(g) is the maximum possible value:

I Lemma 6 ([19], Lemma 4.3). Let n ∈ N be even and G be as above. Let g ∈ G[X] be the
polynomial in Definition 2. Then for any ϕ ∼ D, rankϕ(g) = 2n/2.

MFCS 2019

52:6 Lower Bounds for Multilinear Order-Restricted ABPs

3 A variable-balanced decomposition for syntactic multilinear ABPs

In this section, we give a new decomposition for smABPs. The decomposition can be seen as
a variable-balanced version of the well known decomposition of arithmetic circuits given by
Valiant et al. [24] for the case of smABPs. In fact, we show that a smABP can be divided
into sub-programs that are almost balanced in terms of the number of variables.

I Theorem 1. Let P be an smABP of size S computing f ∈ F[x1, . . . , xn]. There exists
edges {(u1, v1), . . . , (um, vm)} and {(w1, a1), . . . , (wr, ar)} in P such that
(1) For i ∈ [m], n/3 ≤ |Xs,ui | ≤ 2n/3; and
(2) For i ∈ [r], |Xs,wi | < n/3 and |Xai,t| ≤ 2n/3; and
(3) f =

∑m
i=1[s, ui] · label(ui, vi) · [vi, t] +

∑r
i=1[s, wi] · label(wi, ai) · [ai, t].

Proof. The proof is by a careful subdivision of the program P . We assume without loss of
generality that t is reachable from every node in P and that every node in P has in-degree
and out-degree at most 2. Consider the following coloring procedure:
(1) Initialize by coloring t as blue. Repeat (2) until no new node is colored.
(2) Consider node u that is colored blue such that at least one of nodes v or w are uncolored,

where (v, u) and (w, u) are the only edges incoming to u. For a ∈ {v, w} do following :
a. If |Xs,a| > 2n/3, then color a as blue.
b. If n/3 ≤ |Xs,a| ≤ 2n/3, then color a as red.
c. If |Xs,a| < n/3, then color a as green.

At the end of the above coloring procedure we have the following:
1. For every node u with incoming edges (v, u) and (w, u), if u is colored blue then both v

and w are colored.
2. For every directed s t path ρ in P , exactly one of the following holds:

a. ρ has exactly one edge (v, w) such that v is colored red and w is colored blue.
b. ρ has exactly one edge (v, w) such that v is colored green and w is colored blue.

3. If a node u is colored blue, then every node v reachable from u must have color blue.

Property 1 follows from the fact that a node v is colored if and only if there is an edge (v, u)
such that u is colored blue. For property 3, clearly, a node u is colored blue if and only if
|Xs,u| > 2n/3, thus every node reachable from a blue node is also colored blue. For property
2, let ρ be a directed s t path and v be the first node along ρ that is colored blue. Note
|Xs,s| = 0, so s cannot be colored blue. Clearly, every node that follows v in ρ is colored blue
and v 6= s. Let u be the node that immediately precedes v in ρ, then clearly, u is either red
or green. Uniqueness follows from the fact that no node that precedes u in ρ is colored blue
and every node that succeeds v in ρ is colored blue, hence there cannot be another such edge.

Let Erb = {(u, v) ∈ P | u is colored red and v is colored blue} and Egb = {(u, v) ∈
P | u is colored green and v is colored blue}. Let Erb = {(u1, v1), . . . , (um, vm)} and Egb =
{(w1, a1), . . . , (wr, ar)} where m, r ≤ 2S. We now prove that sets Erb and Egb satisfy the
required properties.
(1) For i ∈ [m], since (ui, vi) ∈ Erb, ui is colored red. By Step 2(b) of the coloring procedure,

n/3 ≤ |Xs,ui | ≤ 2n/3.
(2) For i ∈ [r], since (wi, ai) ∈ Egb, wi is colored green and ai is colored blue. By Step 2(c)

of the coloring procedure, |Xs,wi | < n/3 and by Step 2(a), |Xs,ai | > 2n/3. Since P is
syntactic multilinear, |Xs,ai |+ |Xai,t| ≤ n implying |Xai,t| ≤ n/3.

C. Ramya and B. V. R. Rao 52:7

(3) By Property 2, s t paths in P are partitioned into paths that have exactly one edge
in Erb and paths that have exactly one edge in Egb. Therefore,

f =
∑
ρ:s t

wt(ρ) =
∑

ρ:s t, ρ∩Erb 6=∅

wt(ρ) +
∑

ρ:s t, ρ∩Egb 6=∅

wt(ρ)

=
m∑
i=1

[s, ui] · label(ui, vi) · [vi, t] +
r∑
i=1

[s, wi] · label(wi, ai) · [ai, t]. J

The above decomposition allows us to obtain low-depth formulas for syntactic multilinear
ABPs with quasi-polynomial blow-up in size. In the following, we show that a syntactic
multilinear ABP can be computed by a log-depth syntactic multilinear formula where each
leaf represents a multilinear polynomial in O(

√
n) variables.

I Lemma 7. Let P be a syntactic multilinear ABP of size S computing a multilinear
polynomial f ∈ F[x1, . . . , xn]. Then, there is a syntactic multilinear formula Φ with gates of
unbounded fan-in computing f of size SO(logn) and depth O(logn) such that every leaf w in
Φ represents a multilinear polynomial [u, v]Pw for some nodes u, v in Pw with |Xu,v| ≤

√
n,

where Pw is a sub-program of P . Further, any parse tree of Φ has at most 3
√
n leaves.

Proof. Let nodes s and t be source and sink of P . The proof constructs a formula Φ by
induction on the number of variables |Xs,t| in the program P .
Base Case : If |Xs,t| ≤

√
n, then φs,t is a leaf gate with label [s, t].

Induction Step : For induction step, suppose |Xs,t| >
√
n. By Theorem 1, we have

f =
m∑
i=1

[s, ui] · label(ui, vi) · [vi, t] +
r∑
i=1

[s, wi] · label(wi, ai) · [ai, t], (1)

where ui, vi, wi and ai are nodes in P , with |Xs,t|/3 ≤ |Xs,ui | ≤ 2|Xs,t|/3 and |Xs,wi | +
|Xai,t| ≤ 2|Xs,t|/3. Further, [s, ui] · label(ui, vi) (resp., [s, wi] · label(wi, ai)) is an smABP
with at most 2|Xs,t|/3 + 1 (resp., |Xs,t|/3) variables. Let

f =
m∑
i=1

gihi +
r∑
i=1

g′ih
′
i, (2)

where gi = [s, ui] · label(ui, vi), hi = [vi, t], g′i = [s, wi] · label(wi, ai) and h′i = [ai, t]. For
any i, if |Xs,wi |+ |Xai,t| <

√
n, then we set g′i = [s, wi] · label(wi, ai) · [ai, t] and h′i = 1. By

induction, suppose φi (resp. φ′i) be the multilinear formula that computes gi (resp. g′i) and ψi
(resp. ψ′i) be that for hi (resp. h′i). Set Φ =

∑m
i=1(φi×ψi)+

∑r
i=1(φ′i×ψ′i). Let T (n) denote

the size of the resulting formula on n variables. Then, T (n) ≤ 2 · S · 2 · T (2n/3) = SO(logn).
Thus, Φ is a syntactic multilinear formula of size SO(logn) and depth O(logn) computing f .
By construction, every leaf represents a multilinear polynomial [u, v]P for some nodes u, v in
P with |Xu,v| ≤

√
n.

It remains to prove that any parse tree of Φ has at most 3
√
n leaves. We begin with a

description of the process for constructing parse sub-trees of Φ. By Equation (2), constructing
a parse tree of Φ is equivalent to the process:
1. Choose b ∈ {0, 1} (corresponds to choosing one of the summations in Equation (2)).
2. If b = 0 choose i ∈ {1, . . . ,m}, else if b = 1 choose j ∈ {1, . . . , r}.
3. Repeat steps 1 and 2 for sub-formulas φi, φ′i, ψi and ψ′i (depending on choice of b).

Consider any parse tree T of Φ. It is enough to prove that every leaf in T that is not
labeled by 1 is a polynomial in at least

√
n/3 variables. Since Φ is syntactic multilinear,

it follows that any parse tree of Φ has at most 3
√
n leaves, as required. However, it may

MFCS 2019

52:8 Lower Bounds for Multilinear Order-Restricted ABPs

be noted that this may not be true always. Instead, we argue that every leaf in T can be
associated with a set of at least

√
n/3 variables such that no other leaf in T can be associated

with these variables, hence implying that the number of leaves in any parse tree T of Φ is at
most 3

√
n.

Consider a leaf v in T having less than
√
n/3 variables. Let u be the first sum gate on the

path from v to root with |Xu| >
√
n. Note that such a node u exists always, excluding the

cases when the smABP P is a just a product of variable disjoint ABPs. Rest of the argument
is split based on whether b = 0 or b = 1 at the step for choosing v in the construction of parse
tree T . For the remainder of this proof, for any gate u, let Xu denote the set of variables in
the sub-formula rooted at u in Φ.

Firstly, suppose that in the construction of T , b = 0 at the step for choosing v. Then, either
v = [p, ui]·label(ui, vi) or v = [vi, q] for some nodes p, q, ui, vi in P , where ui (respectively vi) is
colored red (respectively blue) when the coloring procedure (described in the proof of Theorem
1) is performed on the sub-program with source p and sink q. If v = [p, ui] · label(ui, vi),
|Xv| ≥ |Xp,ui | ≥ |Xu|/3 ≥

√
n/3, a contradiction to fact that v is a leaf in T with fewer

than
√
n/3 variables. Hence, v = [vi, q]. Set A(v) = Xu \ (Xp,ui ∪ {label(ui, vi)}). Clearly,

as |Xu| ≥
√
n and |Xp,ui | ≤ 2|Xu|/3, we have |A(v)| ≥

√
n/3.

When b = 1, we have the following possibilities:
Case 1 v = [p, wi] · label(wi, ai) · [ai, q]. In this case, set A(v) = Xu. Then |A(v)| ≥

√
n/3.

Case 2 v = [p, wi] · label(wi, ai). In this case, set A(v) = Xu \ Xai,q. Then |A(v)| =
|Xu| − |Xai,q| ≥

√
n/3 as |Xai,q| ≤ 2|Xu|/3 and |Xu| >

√
n.

Case 3 v = [ai, q]. Set A(v) = Xu \ (Xp,wi ∪{label(wi, ai)}). Then |A(v)| = |Xu|− |Xp,wi | ≥√
n/3 as |Xp,wi | ≤ 2|Xu|/3 and |Xu| >

√
n.

It remains to prove that, for any two distinct leaves v and v′ in T such that A(v) and
A(v′) are defined, A(v) ∩A(v′) = ∅. Let u and u′ respectively be parents of v and v′ in T .

When u = u′, there are four possibilities for v and v′: v = [p, wi] · label(wi, ai) · [ai, q] and
v′ = 1, v = 1 and v′ = [p, wi] · label(wi, ai) · [ai, q], v = [p, wi] · label(wi, ai) and v′ = [ai, q],
or v′ = [p, wi] · label(wi, ai) and v = [ai, q]. As A(v) is defined only for non-constant leaves,
the only case is when v = [p, wi] · label(wi, ai), v′ = [ai, q] or vice-versa. In either of the
cases, we have A(v) ∩ A(v′) = ∅. Now suppose, u 6= u′ and A(v) ∩ A(v′) 6= ∅. Then, we
have Xu ∩ Xu′ 6= ∅ as A(v) ⊆ Xu and A(v′) ⊆ Xu′ . From the fact that u and u′ appear
in the same parse tree we can conclude that the least common ancestor of u and u′ in Φ
must be a × gate. Let [p, q] and [p′q′] be the sub-programs of P that correspond to u and u′
respectively. By the construction of Φ, we can conclude that either there is a path from q to
p′ or there is a path from q′ to p in P . Either of the cases is a contradiction to the fact that
P is syntactic multilinear. J

Now, we obtain a reduction to depth-4 formulas for syntactic multilinear ABPs. Denote
by Σ[T]Π[d](ΣΠ)[r] the class ΣTi=1ΠO(d)

j=1 Qij where Qij ’s are mulitlinear polynomials in O(r)
variables. As a corollary to Lemma 7, we have the following reduction to syntactic multilinear
ΣΠ[

√
n](ΣΠ)[

√
n] formulas for smABPs.

I Corollary 1. Let P be a syntactic multilinear ABP of size S computing a polynomial f
in F[x1, . . . , xn]. Then there exists a ΣΠ[

√
n](ΣΠ)[

√
n] syntactic multilinear formula of size

2O(
√
n logS) computing f .

Proof. Let P be a syntactic multilinear ABP of size S computing a multilinear polynomial
f in F[x1, . . . , xn] and Φ be the equivalent syntactic multilinear formula with the properties
mentioned in Lemma 7. The leaves of any parse tree of Φ represents the multilinear

C. Ramya and B. V. R. Rao 52:9

polynomial [u, v]Pw for some nodes u, v in Pw, a sub-program of P . As Φ is a formula,
every parse tree T of Φ is uniquely identified by the set of 3

√
n leaves in T where every

leaf in Φ represents a multilinear polynomial computed by some sub-program [u, v]Pw
for some nodes u, v in Pw, a sub-program of P . Hence, it suffices to count the number
of sub-programs of P . As every sub-program ([u, v]) in P is obtained by choosing two
vertices u and v in P , there are at most

(
S
2
)
sub-programs of P . The number of parse

trees of Φ are SO(
√
n) = 2O(

√
n logS). As f =

∑
T :parse tree of Φm(T) where m(T) is the

product of multilinear polynomials corresponding to the leaves of Φ in T , there exists
a ΣΠ[

√
n](ΣΠ)[

√
n] syntactic multilinear formula with gates of unbounded fan-in of size

2O(
√
n logS) computing f . J

4 Lower Bounds for special classes of smABPs

This section is devoted to lower bounds for restricted classes of smABPs. Our arguments
rely on the depth reduction proved in Section 3 and the full rank polynomial given by Raz
and Yehhudayoff [19] (see Defintion 2).

4.1 Lower Bounds for strict circular-interval ABPs
In this section, we prove an exponential size lower bound for a special class of smABPs that
we call as strict circular-interval ABPs.

An set I ⊆ {1, . . . , n} is a circular π-interval if I = {π(i), π(i + 1), . . . , π(j)} for some
i, j ∈ [n], i < j or I = {π(i), π(i + 1), . . . , π(n), π(1), . . . , π(j)} for some i, j ∈ [n], i > j.
These intervals are called circular intervals as every such interval [i, j] in {1, . . . , n} can be
viewed as a chord on the circle containing n points. Two circular intervals I and J are said
to be overlapping if the corresponding chords in the circle intersect and non-overlapping
otherwise. We define a special class of syntactic multilinear ABPs where the set of variables
involved in every sub-program is in some circular π-interval.

I Definition 3 (Strict circular-interval ABP). Let π ∈ Sn be a permutation. A syntactic
mulitlinear ABP P is said to be a strict π-circular-interval ABP if
1. For any pair of nodes u, v in P , the index set of Xu,v is contained in some circular

π-interval Iuv in [1, n]; and
2. For any u, a, v in P , the circular π-intervals Iua and Iav are non-overlapping.
P is said to be strict circular-interval ABP if it is a strict π-circular-interval ABP for some
permutation π.

We require a few preliminaries to prove the lower bound:
1. For every permutation π in Sn, define the partition ϕπ : X → Y ∪ Z such that

for all 1 ≤ i ≤ n/2 ϕ(xπ(i)) = yi and ϕ(xπ(n/2+i)) = zi. (3)

2. For any π in Sn, |ϕπ(X)∩Y | = |ϕπ(X)∩Z| = |X|/2. For the polynomial g in Definition 2,
rankϕπ (g) = 2n/2 by Lemma 6.

3. For any set Xi ⊆ X, let ϕπ(Xi) = {ϕπ(x) | x ∈ Xi}. We say Xi is monochromatic if
either ϕπ(Xi) ∩ Y = ∅ or ϕπ(Xi) ∩ Z = ∅. Observe that if Xi is monochromatic then
for any polynomial pi ∈ F[Xi], we have rankϕπ(pi) ≤ 1. Further, we say set Xi ⊆ X is
bi-chromatic if ϕπ(Xi) ∩ Y 6= ∅ and ϕπ(Xi) ∩ Z 6= ∅.

In the following theorem, we show that for any strict circular-interval ABP P computing
a polynomial f , there is a partition ϕ such that rankϕ(f) is small.

MFCS 2019

52:10 Lower Bounds for Multilinear Order-Restricted ABPs

I Theorem 8. Let P be a strict circular-interval ABP of size S computing f in F[x1, . . . , xn].
There exists a ϕ : X → Y ∪ Z with |ϕ(X) ∩ Y | = |ϕ(X) ∩ Z| = |X|/2 such that rankϕ(f) ≤
2
√
n logn logS+

√
n.

Proof. Let Φ be the syntactic multilinear formula constructed from P as given by Lemma 7.
Note that any parse tree of Φ has at most 3

√
n leaves. The number of parse trees of Φ is at

most
(2O(

√
n logn logS)

3
√
n

)
≤ 2ε

√
n logn logS . Let T be any parse tree of Φ with leaves w1, . . . , w`

computing polynomials p1, . . . , p`. We have f =
∑
T :parse tree of Φm(T) where m(T) be the

product of multilinear polynomials corresponding to the leaves of Φ in T . Let X1, . . . , X` ⊆ X
be such that pi is a polynomial in F[Xi]. For every i ∈ [`], letMi = {j | xj ∈ Xi} be the index
set of Xi. As P is a strict circular-interval ABP, we have that sets M1, . . . ,M` are circular
π-intervals in {1, . . . , n} for some π ∈ Sn. Let ϕπ : X → Y ∪ Z be the partition function
described in Equation (3). If Xi is bi-chromatic then rankϕπ(pi) ≤ 2

√
n/2 as |Xi| ≤

√
n by

construction of formula Φ when wi is a leaf in Φ.
A crucial observation is that for any parse tree T of Φ, at most two of ϕπ(X1), . . . , ϕπ(X`)

are bi-chromatic. This is because the existence of bi-chromatic sets ϕπ(Xi), ϕπ(Xj), ϕπ(Xk)
for some i, j, k ∈ [`] implies that the circular π-intervals Mi,Mj ,Mk are overlapping from
the way partition ϕπ is defined. As Xi, Xj , Xk are variable sets associated with leaves of
the same parse tree T , we can conclude that when ϕπ(Xi), ϕπ(Xj), ϕπ(Xk) are bi-chromatic
there exists nodes u, a, v in P such that circular π-intervals Iua and Iav are overlapping, a
contradiction to the fact that P is a strict circular-interval ABP.

Therefore, in any parse tree T of Φ, at most two of ϕπ(X1), . . . , ϕπ(X`) are bi-chromatic
say ϕπ(Xi) and ϕπ(Xj). Hence rankϕπ(pi) ≤ 2

√
n/2 and rankϕπ(pj) ≤ 2

√
n/2. Also,

rankϕπ (pk) ≤ 1 for all k 6= i, j. Thus, rankϕπ (f) ≤ 2ε logn logS
√
n+
√
n. J

With the above, we can prove Theorem 2:

I Theorem 2. There exists an explicit multilinear polynomial g in F[x1, . . . , xn] such that
any strict circular-interval ABP computing g requires size 2Ω(

√
n/ logn).

Proof. Let P be a strict circular-interval ABP of size S = 2o(
√
n/ logn) computing g and

Φ be the syntactic multilinear formula obtained from P using Lemma 7. By Theorem
8, there exists a partition ϕ : X → Y ∪ Z with |ϕ(X) ∩ Y | = |ϕ(X) ∩ Z| = |X|/2 such
that rankϕ(g) ≤ 2

√
n+ε logn logS

√
n < 2n/2. However, by Lemma 6, rankϕ(g) = 2n/2, a

contradiction. Hence, S = 2Ω(
√
n/ logn). J

4.2 Lower bound for sum of L-ordered ABPs
In this section, we show that by observing a simple property of the ABP to formula conversion
given in Lemma 7, we can obtain lower bounds for L-ordered ABPs for larger sub-exponential
values L. In the following lemma, we observe that in the formula obtained from an L-ordered
ABP using Lemma 7, a lot of the leaves in any parse tree are in fact 1-ordered ABPs:

I Lemma 9. Let P be an L-ordered ABP and F be the syntactic multilinear formula obtained
from P using Lemma 7. Then, for any parse tree T of F , all but at most O(logL) many
leaves of T are 1-ordered ABPs (ROABPs).

Proof. Let T be any parse tree of F with leaves w1, . . . , w` and let p1, . . . , p` be the polynomi-
als labeling w1, . . . , w`. From the construction given in the proof of Lemma 7, corresponding
to each leaf wi there are nodes ui, vi in P such that polynomial pi = [ui, vi] · label(vi, ui+1).
Consider the syntactic multilinear ABP P ′ obtained by placing programs

[u1, v1] · label(v1, u2), [u2, v2] · label(v2, u3), . . . , [ui, vi] · label(vi, ui+1), . . . , [u`, v`]

C. Ramya and B. V. R. Rao 52:11

in the above order. From the construction above, P ′ is a sub-program of P and hence the
number of variable orders in P ′ is a lower bound on the number of variable orders in P . If
ri is the number of variable orders in the sub-program [ui, vi], the total number of variable
orders in the sub-program P ′ (and hence P) is at least r1 · r2 · · · r`. Since the number of
distinct orders is at most L, we conclude that |{i | ri ≥ 2}| ≤ logL, as required. J

Let D denote the uniform distribution on the set of all partitions ϕ : X → Y ∪ Z with
|Y | = |Z|. In the following lemma, we show that rank of a polynomial computed by an
L-ordered ABP is far from being full. Proof can be found in the full version of the article [17].

I Lemma 10. Let P be an L-ordered ABP of size S computing a polynomial f in F[x1, . . . , xn].
Then for k = n1/20, Prϕ∼D[rankϕ(f) > 2logn logS

√
n · 2n/2−k

√
n] ≤ S2 · 2−O(n1/20).

Now, we are ready to prove Theorem 3:

I Theorem 3. Let L ≤ 2n1/2−ε
, ε > 0 and f1, . . . , fm ∈ F[x1, . . . , xn] be multilinear polyno-

mials computed by L-ordered ABPs of size S1, . . . , Sm respectively. There exists an explicit
multilinear polynomial g in F[x1, . . . , xn] such that if g = f1+· · ·+fm then eitherm = 2Ω(n1/40)

or there is an i ∈ [m] such that Si = 2Ω(n1/40).

Proof. Set k = n1/20. Suppose, for every i, fi is computed by L-ordered ABP of size 2n1/40 .
Then, rankϕ(fi) > 2

√
n logn log(2n

1/40
)2n/2−k

√
n with probability at most 22n1/402−n1/20 when

ϕ ∼ D. Therefore, probability that there is a i such that rankϕ(fi) > 2
√
n logn logS2n/2−k

√
n is

at most m22n1/402−n1/20
< 1 for m < 2n1/40 . By union bound, there is a ϕ ∼ D such that for

every i, rankϕ(fi) < 2
√
n logn log(2n

1/40
)2n/2−k

√
n < 2n/2. But by Lemma 6, rankϕ(g) = 2n/2

for every partition ϕ, which is a contradiction. Hence, either m = 2Ω(n1/40) or there is an
i ∈ [m] such that Si = 2Ω(n1/40). J

5 Comparison with other multilinear circuit models

In this section, we compare strict circular-interval ABPs and L-ordered ABPs to other well
known models for computing mulitlinear polynomials.

5.1 L-ordered to L-pass
In this section, we show that L-ordered ABPs can be transformed into ABPs that make at
most L passes on the input, although in different orders.

I Theorem 11. Let P be an L-ordered ABP of size S computing a polynomial f ∈
F[x1, . . . , xn]. Then there is an L-pass ABP Q of size poly(L, S) computing f .

Proof. Let P be an L-ordered ABP of size S computing a polynomial f . Let L0, L1, . . . , L`
be the layers of P where source s and sink t are the only nodes in layers L0 and L`
respectively. Let ui1, . . . , uiw be nodes in Li, where w ≤ S is the width of P . Without loss
of generality assume every node in P has in-degree and out-degree at most two, and every
layer except L0 and L` has exactly w nodes. Also, every s to t path in P respects one of the
permutations π1, π2, . . . , πL. We now construct an L-pass ABP Q that reads variables in
the order (xπ1(1), xπ1(2), . . . , xπ1(n)), . . . , (xπL(1), xπL(2), . . . , xπL(n)). The source and sink of
ABP Q are denoted by s′ and t′ respectively. The number of layers in Q will be bounded
by L(` + 1) and are labeled as Lir, i ∈ [L], r ∈ {0, . . . , `}. Intuitively, for a node urj in
layer Lr in P , we have L copies, u1rj , u2rj . . . , uLrj in Q, where uirj is a vertex in layer Lir.

MFCS 2019

52:12 Lower Bounds for Multilinear Order-Restricted ABPs

Intuitively, uirj would have all paths from s to urj that respect the permutation πi, but none
of the permutations πp for p < i. To ensure that the resulting ABP is L-pass, we place the
layers as follows : L11, . . . , L1`, L21, . . . , L2`, . . . , LL1, . . . , LL`. We construct Q as follows :
(1) Base Case : In ABP P , for every edge e from source s in layer L0 to node u1j , j ≤ w

in layer L1 labeled by label(e) ∈ X ∪ F, if label(e) = xk, then add the edge (s′, um1j)
with label xk where m is the smallest value such that xk is consistent with πm, if
label(e) = α ∈ F, then add the edge (s′, um1j) with label α.

(2) Induction Step : Consider layer Lr, r ∈ {1, . . . , `}:
a. For every node urj in layer Lr of P , with 1 ≤ j ≤ w and every edge e of the form

e = (urj , ur+1,j′) do the following:
Case 1: label(e) = xk ∈ X. For every 1 ≤ i ≤ L, let m be the smallest index such

that every path from s′ to uirj concatenated with the edge e is consistent with πm.
Note that, by the construction, m ≥ i. Add the edge (uirj , umr+1j′) in Q for every
i with label xk. For every 1 ≤ i ≤ L, note that the choice of m is unique.

Case 2: label(e) = α ∈ F. For every 1 ≤ i ≤ L, add edge (uirj , uir+1j) with label α.
b. Create the node t′ in Q, and add edges (ui`1, t′) with label 1 for every 1 ≤ i ≤ L.

Note that in the above construction, the resulting branching program will not be layered.
It can be made layered by adding suitable new vertices and edges labeled by 1 ∈ F. The
correctness of the construction follows from the following claim whose proof is can be found
in the full version [17].

B Claim 12.
(1) Q is an L-pass syntactic multilinear ABP and has size poly(L, S).
(2) For 1 ≤ r ≤ ` and node urj in layer Lr in P , 1 ≤ j ≤ w, [s, urj]P =

∑L
i=1[s′, uirj]Q. J

5.2 Circular-Interval ABP vs. Sum of ROABPs
In this section, we define circular-interval ABPs (a generalization of strict circular-interval
ABPs) and compare them to sum of ROABPs (and sum of strict circular-interval ABPs).

I Definition 4 (Circular-Interval ABP). Let π ∈ Sn be a permutation. A syntactic mulitlinear
ABP P is said to a π-circular-interval ABP if for any node v in P , the index set of Xs,v is
contained in some circular π-interval Isv in [1, n]. P is said to be circular-interval ABP if it
is a π-circular-interval ABP for some permutation π in Sn.

Let h = (hn)n≥0 be the family of multilinear polynomials defined by Dvir et al. [8].
The following properties of the polynomial h are straightforward from Theorem 3.4 of [8]

and the definition of circular-interval ABPs:

I Lemma 13 ([8], Theorem 3.4). (i) Over any field F, the mulitlinear ABP R computing h is
a circular-interval ABP of polynomial size. (ii) For any partition Π ∼ D, rankΠ(h) = 2n/2.

Now, in order to separate circular-interval ABPs from ROABPs, it suffices to construct
one partition Π such that rankΠ(f) < 2n/2 where f is the polynomial computed by an
ROABP. This is guaranteed by the following lemma, whose proof is based on the ideas in [8]
and [16]:

I Lemma 14. Let Q be an ROABP computing a multilinear polynomial f ∈ F[x1, . . . , xN]
and ΦQ be the multilinear formula obtained from Q computing f. Then rankΠ(f) ≤ |ΦQ| ·
2n/2−n1/5000 with probability at least 1− nΩ(logn) for Π ∼ D.

C. Ramya and B. V. R. Rao 52:13

I Theorem 15. Let f1, . . . fm in F[x1, . . . , xn] be multilinear polynomials computed by
ROABPs of size R1, . . . , Rm respectively. There exists an explicit multilinear polynomial
h in F[x1, . . . , xn] computable by circular-interval ABPs of polynomial size, such that if
h = f1 + · · ·+ fm then, either m = nΩ(logn) or there is an i ∈ [m] with Ri = 2Ω(n1/6000/logN).

As an immediate corollary to Theorem 15, we have the following:

I Corollary 16. There is a super-polynomial separation between ROABPs and circular
interval ABPs.

References
1 Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In FOCS,

pages 67–75, 2008. doi:10.1109/FOCS.
2 Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing Sets and an Almost Quadratic

Lower Bound for Syntactically Multilinear Arithmetic Circuits. In 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 11:1–11:16,
2018. doi:10.4230/LIPIcs.CCC.2018.11.

3 Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee
Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs.
TOCT, 10(1):3:1–3:30, 2018. doi:10.1145/3170709.

4 Vikraman Arvind and S. Raja. Some Lower Bound Results for Set-Multilinear Arithmetic
Computations. Chicago J. Theor. Comput. Sci., 2016, 2016. URL: http://cjtcs.cs.uchicago.
edu/articles/2016/6/contents.html.

5 Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theor. Comput.
Sci., 22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

6 Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A Near-
Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits. Electronic Colloquium
on Computational Complexity (ECCC), 25:62, 2018. URL: https://eccc.weizmann.ac.il/
report/2018/062.

7 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth Multilinear Formula
Lower Bounds for Iterated Matrix Multiplication, with Applications. In 35th Symposium on
Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, pages 21:1–21:15, 2018. doi:10.4230/LIPIcs.STACS.2018.21.

8 Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 615–624,
2012. doi:10.1145/2213977.2214034.

9 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 867–875, 2014. doi:
10.1145/2591796.2591816.

10 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width, and
Any-Order, Read-Once Oblivious Arithmetic Branching Programs. Theory of Computing,
13(1):1–21, 2017. doi:10.4086/toc.2017.v013a002.

11 Maurice J. Jansen. Lower Bounds for Syntactically Multilinear Algebraic Branching Programs.
In Mathematical Foundations of Computer Science 2008, 33rd International Symposium,
MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings, pages 407–418, 2008. doi:
10.1007/978-3-540-85238-4_33.

12 Maurice J. Jansen, Youming Qiao, and Jayalal Sarma. Deterministic Black-Box Identity Testing
π-Ordered Algebraic Branching Programs. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, pages 296–307, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.296.

MFCS 2019

https://doi.org/10.1109/FOCS.
https://doi.org/10.4230/LIPIcs.CCC.2018.11
https://doi.org/10.1145/3170709
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.1016/0304-3975(83)90110-X
https://eccc.weizmann.ac.il/report/2018/062
https://eccc.weizmann.ac.il/report/2018/062
https://doi.org/10.4230/LIPIcs.STACS.2018.21
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1145/2591796.2591816
https://doi.org/10.4086/toc.2017.v013a002
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.296

52:14 Lower Bounds for Multilinear Order-Restricted ABPs

13 Mrinal Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs. In
Ryan O’Donnell, editor, 32nd Computational Complexity Conference (CCC 2017), volume 79 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–19:16. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.19.

14 Mrinal Kumar, Rafael Mendes de Oliveira, and Ramprasad Saptharishi. Towards Optimal
Depth Reductions for Syntactically Multilinear Circuits. Electronic Colloquium on Computa-
tional Complexity (ECCC), 26:19, 2019. URL: https://eccc.weizmann.ac.il/report/2019/
019.

15 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

16 C. Ramya and B. V. Raghavendra Rao. Lower Bounds for Special Cases of Syntactic
Multilinear ABPs. In Computing and Combinatorics - 24th International Conference,
COCOON 2018, Qing Dao, China, July 2-4, 2018, Proceedings, pages 701–712, 2018.
doi:10.1007/978-3-319-94776-1_58.

17 C. Ramya and B. V. Raghavendra Rao. Lower bounds for multilinear bounded order ABPs.
CoRR, abs/1901.04377, 2019. arXiv:1901.04377.

18 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. ACM, 56(2), 2009. doi:10.1145/1502793.1502797.

19 Ran Raz and Amir Yehudayoff. Balancing Syntactically Multilinear Arithmetic Circuits.
Computational Complexity, 17(4):515–535, 2008. doi:10.1007/s00037-008-0254-0.

20 Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear
Circuits. Computational Complexity, 18(2):171–207, 2009. doi:10.1007/s00037-009-0270-8.

21 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity, 2017.
URL: https://github.com/dasarpmar/lowerbounds-survey/releases.

22 Sébastien Tavenas. Improved Bounds for Reduction to Depth 4 and Depth 3. In MFCS, pages
813–824, 2013. doi:10.1007/978-3-642-40313-2_71.

23 Leslie G. Valiant. Completeness Classes in Algebra. In STOC, pages 249–261, 1979. doi:
10.1145/800135.804419.

24 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Computation
of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983. doi:10.1137/
0212043.

https://doi.org/10.4230/LIPIcs.CCC.2017.19
https://eccc.weizmann.ac.il/report/2019/019
https://eccc.weizmann.ac.il/report/2019/019
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/978-3-319-94776-1_58
http://arxiv.org/abs/1901.04377
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1007/s00037-009-0270-8
https://github.com/dasarpmar/lowerbounds-survey/releases
https://doi.org/10.1007/978-3-642-40313-2_71
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/800135.804419
https://doi.org/10.1137/0212043.
https://doi.org/10.1137/0212043.

On the Symmetries of and Equivalence Test for
Design Polynomials
Nikhil Gupta
Department of Computer Science and Automation, Indian Institute of Science, India
nikhilg@iisc.ac.in

Chandan Saha
Department of Computer Science and Automation, Indian Institute of Science, India
chandan@iisc.ac.in

Abstract
In a Nisan-Wigderson design polynomial (in short, a design polynomial), every pair of monomials
share a few common variables. A useful example of such a polynomial, introduced in [34], is the
following:

NWd,k(x) =
∑

h∈Fd[z], deg(h)≤k

d−1∏
i=0

xi,h(i),

where d is a prime, Fd is the finite field with d elements, and k � d. The degree of the gcd of
every pair of monomials in NWd,k is at most k. For concreteness, we fix k = d

√
de. The family

of polynomials NW := {NWd,k : d is a prime} and close variants of it have been used as hard
explicit polynomial families in several recent arithmetic circuit lower bound proofs. But, unlike the
permanent, very little is known about the various structural and algorithmic/complexity aspects
of NW beyond the fact that NW ∈ VNP. Is NWd,k characterized by its symmetries? Is it circuit-
testable, i.e., given a circuit C can we check efficiently if C computes NWd,k? What is the complexity
of equivalence test for NW, i.e., given black-box access to a f ∈ F[x], can we check efficiently if
there exists an invertible linear transformation A such that f = NWd,k(A · x)? Characterization of
polynomials by their symmetries plays a central role in the geometric complexity theory program.
Here, we answer the first two questions and partially answer the third.

We show that NWd,k is characterized by its group of symmetries over C, but not over R. We also
show that NWd,k is characterized by circuit identities which implies that NWd,k is circuit-testable in
randomized polynomial time. As another application of this characterization, we obtain the “flip
theorem” for NW.

We give an efficient equivalence test for NW in the case where the transformation A is a
block-diagonal permutation-scaling matrix. The design of this algorithm is facilitated by an almost
complete understanding of the group of symmetries of NWd,k: We show that if A is in the group
of symmetries of NWd,k then A = D · P , where D and P are diagonal and permutation matrices
respectively. This is proved by completely characterizing the Lie algebra of NWd,k, and using an
interplay between the Hessian of NWd,k and the evaluation dimension.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Nisan-Wigderson design polynomial, characterization by symmetries, Lie
algebra, group of symmetries, circuit testability, flip theorem, equivalence test

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.53

Acknowledgements We would like to thank Neeraj Kayal, Meena Mahajan for some insightful
discussions on the design polynomial family. NG would also like to thank Anuj Tawari for his time in
sitting through a few presentations on the proof of Theorem 4. We also thank anonymous reviewers
for their comments.

© Nikhil Gupta and Chandan Saha;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nikhilg@iisc.ac.in
mailto:chandan@iisc.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2019.53
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 On the Symmetries of and Equivalence Test for Design Polynomials

1 Introduction

Proving super-polynomial lower bounds for Boolean and arithmetic circuits computing
explicit functions is the holy grail of circuit complexity. Over the past few decades, research
on lower bounds has gradually pushed the frontier by bringing in novel methods in the arena
and carefully building upon the older ones. Some of the notable achievements are – lower
bounds for AC0 circuits [2, 17, 26], monotone circuits [3, 57], ACC(p) circuits [58, 62] and
ACC circuits [52, 63] in the Boolean case, and lower bounds for homogeneous depth three
circuits [54], multilinear formulas [55,56], homogeneous depth four circuits [23,31,42] and
the lower bound on the depth of circuits for MaxFlow [46] in the arithmetic case. The slow
progress in circuit lower bounds is explained by a few “barrier” type results, particularly by
the notion of natural proofs [59] for Boolean circuits, and the notion of algebraically natural
proofs [13, 21] for arithmetic circuits 1. Most lower bound proofs, but not all 2, do fit in the
natural proof framework.

It is apparent from the concept of natural proofs and its algebraic version that in order to
avoid this barrier, we need to develop an approach that violates the so called constructivity
criterion or the largeness criterion. Focusing on the latter criterion, it means, if an explicit
function has a special property that random functions do not have, and if a lower bound
proof for circuits computing this explicit function uses this special property critically, then
such a proof circumvents the natural proof barrier automatically. For polynomial functions
(simply polynomials), characterization by symmetries is such a special property3, and the
geometric complexity theory (GCT) program [51] is an approach to proving super-polynomial
arithmetic circuit lower bound by crucially exploiting this property of the permanent and
the determinant polynomials. From hereon, our discussion will be restricted to polynomial
functions and arithmetic circuits.

The permanent family is complete for the class VNP and the determinant family is
complete for the class VBP under p-projections. The class VBP ⊆ VP consists of polynomial
families that are computable by poly-size algebraic branching programs; this class has another
interesting complete family, namely the iterated matrix multiplication (IMM) family. These
three polynomial families have appeared in quite a few lower bound proofs [9, 15, 20, 23,
36, 42, 45, 54–56] in the arithmetic circuit literature. That permanent and determinant
are characterized by their respective groups of symmetries are classical results [16, 44]. It
has also been shown that IMM is characterized by its symmetries [19, 32]. There are two
other polynomial families in VP, the power symmetric polynomials and the sum-product
polynomials, that are known to possess this rare property (see Section 2 in [8]). However,
the elementary symmetric polynomial is not characterized by its symmetries [27].

In the recent years, another polynomial, namely the Nisan-Wigderson design polynomial
(in short, design polynomial), and close variants of it have been used intensely as hard
explicit polynomials in several lower bound proofs for depth three, depth four and depth
five circuits [10, 12, 31, 33–35, 37–42]. In some cases, the design polynomial (Definition 7)
yielded lower bounds that are not known yet for the permanent, determinant and IMM (as

1 Presently, the evidences in favor of existence of one-way functions (which implies the natural proof
barrier) are much stronger than that of existence of succinct hitting-set generators (which implies the
algebraically natural proof barrier). However, there are a few results in algebraic complexity that exhibit,
unconditionally [11] or based on more plausible complexity theoretic assumptions [5], the limitations of
some of the current techniques in proving lower bounds for certain restricted arithmetic models.

2 like the lower bounds for monotone and ACC circuits
3 A random polynomial is not characterized by its symmetries with high probability (see Proposition
3.4.9 in [22])

N. Gupta and C. Saha 53:3

in [12,33,37,40]). It can be easily shown that the design polynomial defines a family in VNP
(see Observation B.1 in [24]). But, very little is otherwise known about the various structural
and algorithmic/complexity aspects of this family. Like the permanent, is it characterized by
its symmetries? Is it circuit testable? What is the complexity of equivalence test for the
Nisan-Wigderson design polynomial? It is reasonable to seek answers to these fundamental
questions for a natural family like the design polynomials. Moreover, in the light of some
recent developments in GCT [7,28,29], it may be worth studying other polynomial families
(like the design polynomials and the IMM) that have some of the “nice features” of the
permanent and the determinant and that may also fit in the GCT framework. We refer the
reader to [1, 22, 50, 60] for an overview of GCT. If the design polynomial family turns out
to be in VP then that would be an interesting result by itself with potentially important
complexity theoretic and algorithmic consequences. If a polynomial has a small depth-4
circuit, then it is a projection of a small NW design polynomial (see Observation B.2 in [24])

In this article, we answer some of the above questions on the design polynomial pertaining
to its group of symmetries. Our results accord a fundamental status to this polynomial.

1.1 Our results
Some of the basic definitions and notations are given in Section 2. The design polynomial
NWd,k is defined (in Definition 7) using two parameters, d (the degree) and k (the “inter-
section” parameter). Our results hold for any k ∈ [1, d4 − 5], but (from the lower bound
point of view) it is best to think of k as dε for some arbitrarily chosen constant ε ∈ (0, 1).
The number of variables in NWd,k is n = d2. Any polynomial can be expressed as an affine
projection of NWd,k, for a possibly large d (see Observation B.2 in [24]). For notational
convenience, we will drop the subscripts d and k whenever they are clear from the context.
Let Gf be the group of symmetries of a polynomial f over an underlying field F (see Definition
12).

I Theorem 1 (Characterization by symmetries). Let F = C and f be a homogeneous degree-d
polynomial in n = d2 variables. If GNW ⊆ Gf then f = α · NW for some α ∈ C.

The theorem, proven in Section 3, holds over any field F having a d-th root of unity ζ 6= 1
and |F| 6= d+ 1. We also show in Section 4.3 that NW is not characterized by its symmetries
over R,Q and finite fields not containing a d-th primitive root of unity – in contrast, the
permanent is characterized by its symmetries over these fields. The symmetries of NW have a
nice algorithmic application: Although, it is not known if NW is computable by a poly(d) size
circuit (Definition 6), the following theorem shows that checking if a given circuit computes
NW can be done efficiently. In this article, whenever we mention size-s circuit, we mean
size-s circuit with degree bounded by δ(s), which is an arbitrarily fixed polynomial function4
of s. Let x be the set of n variables of NW. We will identify a circuit with the polynomial
computed by it.

I Theorem 2 (Circuit testability). There is a randomized algorithm that takes input as
black-box access to a circuit C(x) of size s over a finite field F, where |F| ≥ 4 · δ(s) (recall
δ(s) is an upper bound on the degree of size s circuits), and determines correctly whether or
not C(x) = NW with high probability, using poly(s) field operations.

4 This is the interesting scenario in algebraic complexity theory as polynomial families in VP admit
circuits with degree bounded by a polynomial function of size.

MFCS 2019

53:4 On the Symmetries of and Equivalence Test for Design Polynomials

A suitable version of the theorem also holds over Q,R and C. Such a theorem is known for
the permanent with two different proofs, one using self-reducibility of the permanent [43]
and the other using its symmetries [48]. We do not know if NW has a self-reducible property
like the permanent, but its symmetries are powerful enough to imply the above result. The
theorem is proven in Section 5 by showing that NW is characterized by circuit identities over
any field (see Definition 18). This characterization, which uses the symmetries of NW, also
implies the following result. For this result, we can assume δ(s) ≥ d, without any loss of
generality.

I Theorem 3 (Flip theorem). Suppose NW is not computable by circuits of size s over a
finite field F, where |F| ≥ 4 · δ(s) and δ(s) is an upper bound on the degree of size s circuits.
Then, there exist points a1, . . . ,am ∈ Fn, where m = poly(s), such that for every circuit C
over F of size at most s, there is an ` ∈ [m] satisfying C(a`) 6= NW(a`). A set of randomly
generated points a1, . . . ,am ∈r Fn has this property with high probability. Moreover, black-box
derandomization of polynomial identity testing for size-(10s) circuits over F using poly(s)
field operations implies that the above-mentioned points can be computed deterministically
using poly(s) field operations.

An appropriate version of the theorem also holds over Q,R and C. The flip theorem is
known for the permanent [48,49] 5. Similar theorems have also been shown for the 3SAT
problem [4,14]. Results of this kind show that if a certain function (3SAT or permanent or
NW) is not computable by small circuits then there exists a short list of efficiently computable
“hard instances” that fail all small circuits.
We show another algorithmic application of the knowledge of the symmetries of NW in solving
a natural case of the equivalence test problem for NW, namely block-diagonal permutation-
scaling equivalence test (BD-PS equivalence test, in short). An equivalence test for NW
checks if a given polynomial f ∈ F[x] satisfies f = NW(A · x), where A is an invertible linear
transformation. A BD-PS equivalence test is the special case where A is a product of a
block-diagonal permutation matrix and an invertible scaling matrix. The following theorem
is proved in Section 6.

I Theorem 4 (BD-PS equivalence test for NW). Let k ∈ [1, d3], F be a finite field such that
d - (|F| − 1) and |F| ≥ 4d. There is a randomized algorithm that takes input black-box access
to a degree d polynomial f ∈ F[x] and correctly decides if f is BD-PS equivalent to NW with
high probability. If the answer is yes then it outputs a A such that f = NW(A · x), where A
is a product of a block-diagonal permutation matrix and an invertible scaling matrix. The
running time is poly(d, log |F|).

An appropriate version of the theorem holds over R (details given in Section F.4 of [24]).
Efficient equivalence tests are known for the Permanent and IMM over C, Q and finite
fields [30, 32] and for the Determinant over C and finite fields [18,30]. In [30], it was shown
that equivalence test for the Permanent reduces to permutation-scaling (PS) equivalence test.
We show in Section 6 that equivalence test for NW reduces to block-permuted equivalence
test6,i.e., we can assume without loss of generality that A is a block-permuted matrix.
Theorem 4 solves the equivalence test for NW in the case where A is a block-diagonal matrix
and additionally has the permutation-scaling (PS) structure. Even this case is quite nontrivial
and may serve as an important ingredient for an efficient general equivalence test for NW.

5 We have borrowed the name “flip theorem” from these work.
6 It decides if there exists a block-permuted matrix (Definition 8) A ∈ GLd2 (F) such that f = NW(A · x)

N. Gupta and C. Saha 53:5

The design of the test in Theorem 4 is facilitated by a near complete understanding of the
symmetries of NW as stated in the following theorem. The proof is given in Section 4.2.

I Theorem 5 (Structure of GNW). Let F be the underlying field of size greater than
(
d
2
)
and

char(F) 6= d. If A ∈ GNW then A = D · P , where D,P ∈ GNW are diagonal and permutation
matrices respectively.

The group of symmetries of the permanent has a similar structure [44]. The above
structure also plays a crucial role in showing that NW is not characterized by its symmetries
over R. The proof of the theorem involves a complete characterization of the Lie algebra of
NW, and an interplay between the Hessian of NW and the evaluation dimension measure.
We first prove the structural results (Theorems 1 and 5) and then show their algorithmic
applications (Theorems 2, 3 and 4). The proof details are shifted to the appendix. A
comparison between the Permanent and NW is summarized in a table in Section A of [24].

2 Preliminaries

Notations. The set of natural numbers is N = {0, 1, 2 . . .} and N× = N\{0}. For r ∈ N×,
[r] = {0, . . . , r − 1}. The general linear group GLr(F) is the group of all r × r invertible
matrices over F. Throughout this article, poly(r) means rO(1) and exp(r) means 2r. For
a prime d, Fd is the finite field of order d whose elements are naturally identified with
[d] = {0, 1, . . . , d− 1}. Let x be the following disjoint union of variables,

x :=
⊎
i∈[d]

xi, (1)

where xi := {xi,0, . . . , xi,d−1}. The total number of variables in x is n = d2. F[x] and
Fd[z] denote the rings of multivariate and univariate polynomials over F and Fd in x
and z variables respectively, and the set Fd[z]k := {h ∈ Fd[z] : deg(h) ≤ k}. We will
represent elements of F by lower case Greek alphabets (α, β, ...), elements of Fd by lower
case Roman alphabets (a, b, ...), multivariate polynomials over F by f, g and q, univariate
polynomials over Fd by p and h, matrices over F by capital letters (A,B,C, ...), and the
set of variables by x,y, z and vectors over F by a,b. Variable sets are interpreted as
column vectors when left multiplied to a matrix. For instance, in A · x, x is the vector
(x0,0 x0,1 . . . x0,d−1 . . . xd−1,0 xd−1,1 . . . xd−1,d−1)T , and we say A is applied on x.

2.1 Algebraic preliminaries
A polynomial f is homogeneous if the degree of all the monomials of f are the same.
Polynomial f ∈ F[x] is set-multilinear in the sets x0, . . . ,xd−1 (as defined in Equation (1)) if
every monomial contains exactly one variable from each set xi for i ∈ [d].

I Definition 6 (Arithmetic circuit). An arithmetic circuit C over F is a directed acyclic graph
in which a node with in-degree zero is labelled with either a variable or an F-element, an
edge is labelled with an F-element, and other nodes are labelled with + and ×. Computation
proceeds in a natural way: a node with in-degree zero computes its label, an edge scales
a polynomial by its label, and a node labelled with +/× computes the sum/product of the
polynomials computed at the end of the edges entering the node. The polynomials computed
by nodes with out-degree zero are the outputs of C. The size of C is the sum of the number
of nodes and edges in the graph. The degree of C is the maximum over the degree of the
polynomials computed at all nodes of C.

MFCS 2019

53:6 On the Symmetries of and Equivalence Test for Design Polynomials

I Definition 7 (Nisan-Wigderson polynomial). Let d > 2 be a prime and k ∈ N. The Nisan-
Wigderson design polynomial is defined as in [34] (which is inspired by the Nisan-Wigderson
set-systems [53]),

NWd,k(x) :=
∑

h∈Fd[z]k

∏
i∈Fd

xi,h(i).

It is a degree-d homogeneous and set-multilinear polynomial in n = d2 variables, having
dk+1 monomials. We drop the subscripts d, k for notational convenience. NW satisfies the
“low intersection” property, meaning any two monomials of NW have at most k variables in
common. This follows because the monomials are obtained from polynomials in Fd[z]k.

I Definition 8 (Block-permuted matrix). A matrix A ∈ Fd2×d2 is a block-permuted matrix
with block size d if A = B · (P ⊗ Id), where B ∈ Fd2×d2 is a block-diagonal matrix with block
size d, P ∈ Fd×d is a permutation matrix, and Id is the d× d identity matrix.

I Definition 9 (Evaluation dimension). Let f ∈ F[y] and z ⊆ y. The evaluation dimension
of f with respect to z is, evalDimz(f) := dim(F-span {f(y)|z=a : a ∈ F|z|}).

I Definition 10 (Hessian). Let f ∈ F[y] be a polynomial in y = {y1, y2, . . . , yn} variables.
The Hessian of f is the following matrix in (F[y])n×n,

Hf (y) :=
(∂2f

∂yi · ∂yj
)
i,j∈[n] .

The following property of Hf (y) that can be proved using chain-rule of derivatives.

I Lemma 11 (Lemma 2.6 of [8]). Let g ∈ F[y] and f = g(A · y) for some A ∈ Fn×n. Then,
Hf (y) = AT ·Hg(A · y) ·A.

I Definition 12 (Group of symmetries). Let f ∈ F[y] be an n-variate polynomial. The set
Gf = {A ∈ GLn(F) : f(A · y) = f(y)} forms a group under matrix multiplication and it is
called the group of symmetries of f over F.

I Definition 13 (Lie algebra). Let f ∈ F[y] be a polynomial in y = {y1, y2, . . . , yn} variables.
The Lie algebra of f , denoted by gf , is the set of matrices B = (bi,j)i,j∈[n] ∈ Fn×n satisfying
the relation

∑
i,j∈[n] bi,j · yj ·

∂f
∂yi

= 0.

It is easy to check that gf is a vector space over F. The following property relates the Lie
algebras of f(y) and f(A · y) for A ∈ GLn(F). See Proposition 58 of [30] for its proof.

I Lemma 14 (Conjugacy of Lie algebras). Let g ∈ F[y] be an n-variate polynomial. If
f(y) = g(A · y) for A ∈ GLn(F), then gf = A−1 · gg ·A.

I Lemma 15. [30] Given black-box access to an n-variate degree d polynomial f ∈ F[x], a
basis of gf can be computed in randomized poly(n, d, ρ) time, where ρ is the bit complexity of
the coefficients of f .

Over C, the Lie algebra gf is related to the group of symmetries Gf as stated in the
following definition. For B ∈ Cn×n, let eB :=

∑
i∈N

Bi

i! ∈ Cn×n (the series always converges).

I Definition 16 (Continuous and discrete symmetries). Let f ∈ C[y]. If A ∈ gf then etA ∈ Gf
for every t ∈ R (see [25] for a proof of this fact). Elements of the set {etA : A ∈ gf and t ∈ R}
are the continuous symmetries of f . All the other symmetries in Gf are the discrete symmetries
of f .

N. Gupta and C. Saha 53:7

I Definition 17 (Characterization by symmetries). A homogeneous degree-d polynomial g ∈
F[y] is said to be characterized by its symmetries if for every degree-d homogeneous polynomial
f ∈ F[y], Gg ⊆ Gf implies that f(y) = α · g(y) for some α ∈ F.

IDefinition 18 (Characterization by circuit identities). Let g ∈ F[y] be an n-variate polynomial,
and z,u be two sets of constantly many variables and |z| = c. Suppose that there exist
m = poly(n) polynomials q1(z,u), . . . , qm(z,u) over F such that for every i ∈ [m], qi is
computable by a constant size circuit and there exist Ai1, . . . , Aic ∈ F[u]n×n computable
by poly(n) size circuits, and the following condition is satisfied: For f ∈ F[y], qi(f(Ai1 ·
y), . . . , f(Aic · y),u) = 0 for every i ∈ [m] if and only if f = α · g for some α ∈ F. Then, g
is characterized by circuit identities over F.

The above definition is taken (after slight modifications to suit our purpose) from
Definition 3.4.7 in [22] and is attributed to an article by Mulmuley [47].

3 Characterization of NW by symmetries and circuit identities

3.1 Symmetry characterization: Theorem 1
Let F be a field having a d-th root of unity ζ 6= 1 and |F| 6= d + 1.7 As d is a prime, ζ is
primitive, i.e., ζd = 1 and ζt 6= 1 for 0 < t < d. The rows and columns of a matrix in GNW
are indexed by the set {(i, j) : i, j ∈ Fd}.

B Claim 19. The following matrices in Fn×n are in GNW:
1. Aβ, a diagonal matrix with Aβ((i, j), (i, j)) = βi ∈ F× for i, j ∈ [d], s.t.

∏
i∈[d] βi = 1.

2. A`, a diagonal matrix with ((i, j), (i, j))-th entry as ζi`·j for i, j ∈ [d] and ` ∈ [d− k − 1].
8

3. Ah, h ∈ Fd[z]k,such that Ah((i, j), (i, j + h(i))) = 1 for i, j ∈ [d] and other entries are 0.
The proof of Claim 19 is given in Section C.1 in [24]. The matrices Aβ are the continuous
symmetries while A`, Ah are discrete symmetries of NW for all choices of β, `, h. The
symmetries in 2 are very different from the symmetries of the Determinant and the Permanent.
The following Claim immediately implies Theorem 1. Its proof is given in Section C.2 in [24].

B Claim 20. Let f be a homogeneous degree-d polynomial in F[x]. If Gf contains Aβ, A`
and Ah (for all choices of β, ` and h, mentioned above) then f = α · NW for some α ∈ F.

3.2 Characterization by circuit identities
Here we show that NW is characterized by circuit identities (Definition 18). The lemma
is crucially used to prove Theorems 2 and 3 in Section 5. Its proof is given in Section C.3
in [24].

I Lemma 21. Polynomial NW is characterized by circuit identities over any field F.

4 Lie algebra and symmetries of NW

We first give a complete description of the Lie algebra of NW by giving an explicit F-basis.
Then, using this knowledge, we analyse the structure of the symmetries of NW and prove

7 For a prime d, |F| = d+ 1 if and only if d is a Mersenne prime.
8 Recall, [d− k − 1] = {0, 1, . . . , d− k − 2}

MFCS 2019

53:8 On the Symmetries of and Equivalence Test for Design Polynomials

Theorem 5. Thereafter, using Theorem 5, we show that NW is not characterized by its
symmetries over fields that do not contain a d-th primitive root of unity. The rows and
columns of a n×n matrix in gNW and GNW are indexed by the set {(i, j) : i, j ∈ Fd}, which is
naturally identified with the x-variables, where x = (x0,0 . . . x0,d−1 . . . xd−1,0 . . . xd−1,d−1)T .

4.1 Lie algebra of NW
It turns out that the Lie algebra of NW is a subspace of the Lie algebra of every set-multilinear
polynomial. (The default partition of a set-multilinear polynomial is x =]i∈[d]xi.)

I Lemma 22. Let F be a field and char(F) 6= d. The dimension of gNW over F is d− 1, and
the diagonal matrices B1, . . . , B` (defined below) form a F-basis of gNW. For ` ∈ {1, . . . , d−1},

(B`)(i,j),(i,j) =


1, if i = 0, j ∈ [d]

−1, if i = `, j ∈ [d]
0, otherwise.

The lemma is proven in Section D.1 in [24] by carefully analysing a system of linear equa-
tions obtained from the monomials of NW. It follows that every B ∈ gNW is of the form
diag(α0, . . . , αd−1)⊗ Id, where each αi ∈ F and

∑
i∈[d] αi = 0. The continuous symmetries

of NW consist of matrices A = diag(β0, . . . , βd−1)⊗ Id, where each βi ∈ C and
∏
i∈[d] βi = 1.

4.2 Structure of GNW: Theorem 5
Lemma 22 implies the following.

B Claim 23. Every A ∈ GNW is a block-permuted matrix with block size d.

The proof of the claim is given in Section D.2 in [24]. Using Claim 23, Hessian and the
evaluation dimension of NW, we give a proof of Theorem 5 in Section D.3 in [24].

4.3 NW is not characterized by its symmetries over R
Let F be either R,Q or a finite field such that d - |F| − 1. Then, F does not contain a d-th
primitive root of unity, and so the matrices A`, for ` ∈ [d− k − 1] mentioned in Claim 19,
are no longer the symmetries of NW over F. The next lemma shows that over such F all the
diagonal symmetries of NW are of the type Aβ mentioned in Claim 19. This then implies
the following theorem, which may seem somewhat surprising as we do not know all the
permutation symmetries of NW. The proofs are given in Section D.4 in [24].

I Lemma 24. If D ∈ GNW is a diagonal matrix over F then D = diag(β0, . . . , βd−1) ⊗ Id,
where each βi ∈ F and

∏
i∈[d] βi = 1.

I Theorem 25. NW is not characterized by its symmetries over F.

5 Circuit testability and the flip theorem for NW

In this and the next section, we show that the knowledge of the symmetries of NW plays a
crucial role in answering some of the algorithmic questions related to NW. This section is
devoted to Theorems 2 and 3. The main ingredient of their proofs is Lemma 21. We present
the circuit testing algorithm here and push the proof of the Flip theorem to Section E in [24].

N. Gupta and C. Saha 53:9

Proof of Theorem 2. Let C be a given circuit of size s over F that computes an n-variate
polynomial f = C(x). Naturally, deg(f) ≤ δ(s). Algorithm 1 intends to check, in steps 2 and
3, if f satisfies the identities given in the proof of Lemma 21. If f 6= α · NW for all α ∈ F,
then at least one of the identities is not satisfied. For the polynomials q1, q2 and q3 defined
in the proof of Lemma 21, observe that the degree of q1(f(Ai(u) · x), f(x), u) is bounded by
2 · δ(s), whereas the degrees of q2(f(Aa,r · x), f(x)) and q3(f(At · x)) are at most δ(s). As
|F| ≥ 4 · δ(s), by Schwartz-Zippel lemma [61,64], step 4 returns “False” with probability at
least 1

2 . If f = α · NW for some α ∈ F then all the identities are satisfied, and step 7 ensures
that α = 1. Clearly, the algorithm uses poly(s) field operations. The success probability is
boosted from 1

2 to 1− exp(−s) by repeating the algorithm poly(s) times. J

Algorithm 1 Circuit testing for NW.

Input: Black-box access to a circuit C of size s over F.
Output: “True” if C(x) = NW, else “False”.

1. Pick a ∈r Fn and µ ∈r F.
2. for i ∈ [d], a ∈ F×d , r ∈ [k + 1], t ∈ [d]\[k + 1] do
3. if (C(Ai(µ) · a)− µ · C(a) 6= 0) or (C(Aa,r · a)− C(a) 6= 0) or (C(At · a) 6= 0) then
4. return “False”.
5. end if
6. end for
7. Let b ∈ Fn be an assignment obtained by setting xi0 = 1, for i ∈ [d], and all other

variables to zero. If f(b) 6= 1, return “False”. Else, return “True”.

6 Equivalence test for NW

First, we show a randomized reduction of equivalence test for NW to block-permuted
equivalence test (in short, BP equivalence test) in Lemma 26. Then, we give an efficient
equivalence test for NW in the special case where the linear transformation is block-diagonal
and is a product of a permutation matrix and a scaling matrix (Theorem 4).

I Lemma 26 (Reduction to BP equivalence test). Let F be a field such that char(F) 6= d

and |F| ≥ 2d2. There is a randomized algorithm that takes input as black-box access to a
degree d polynomial f ∈ F[x] and does the following with high probability: It outputs black-box
access to a degree d polynomial g ∈ F[x] such that f is equivalent to NW if and only if g is
BP equivalent to NW. Moreover, the transformation for f can be recovered efficiently from
the transformation for g. The running time of this reduction is poly(d, ρ), where ρ is bit
complexity of the coefficients of f 9.

Proof of correctness. The efficiency of Step 1 follows from Lemma 15. The correctness of
Step 2 and 3 follow from the next claim whose proof is given in Section F.1 in [24].

B Claim 27. With high probability, matrix D can be computed in poly(d, ρ) time. Moreover,
f is equivalent to NW if and only if f(D · x) is BP equivalent to NW.

9 We assume that univariate polynomial factorization over F can be done in polynomial time.

MFCS 2019

53:10 On the Symmetries of and Equivalence Test for Design Polynomials

Algorithm 2 Reduction of equivalence test for NW to BP equivalence test.

Input: Black-box access to f ∈ F[x].
Output: Black-box access to g ∈ F[x].

1. Compute a basis L1, . . . , Lr of gf . If r 6= d− 1, output “f is not equivalent to NW”.
2. Let S be an arbitrary subset of F of size d2. Let L = a1L1 + . . .+ arLr, where ai ∈r S.

Compute D ∈ GLd2(F) such that D−1 · L ·D = diag(β1, . . . , βd)⊗ Id, where βj ∈ F. If
no such D exists then output “f is not equivalent to NW.”

3. Output black-box access to f(D · x).

6.1 BD-PS equivalence test for NW: Theorem 4
Lemma 26 implies that to solve equivalence test for NW it is sufficient to focus on BP
equivalence test. Here, we solve a special case of BP equivalence test, namely BD-PS
equivalence test. We prove Theorem 4 in two steps: first we reduce BD-PS equivalence
test to scaling equivalence test and then solve the scaling equivalence test. The algorithm
pretends that f is BD-PS equivalent to NW and computes a block-diagonal permutation
matrix A and an invertible scaling matrix B. In the end, the circuit testing algorithm of NW
(Algorithm 1) is used to check if f(A−1 ·B−1 · x) = NW.

6.1.1 Reduction of BD-PS equivalence test to scaling equivalence test
Assume f = NW(B · A · x), where A is a block-diagonal permutation matrix and B is an
invertible scaling matrix. Algorithm 3 does not explicitly use the knowledge of the entries
of B. Thus, we may assume without loss of generality that B = Id2 . Then, the task
reduces to solving the BD permutation equivalence test for NW. We identify matrix A with
d permutations σ0, . . . , σd−1 on [d] as A = diag(Mσ0 , . . . ,Mσd−1), where Mσi

is the d × d
permutation matrix corresponding to σi 10.

I Observation 6.1. Suppose f is BD permutation equivalent to NW, i.e. f = NW(A · x).
Then, a monomial

∏
i∈Fd

xi,h(i) of NW gets mapped to a unique monomial
∏
i∈Fd

xi,σi(h(i))
of f .

Algorithm 3 starts by assuming that σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1. The
symmetries of NW allow us to make this assumption (Claim 28). The aim is to figure out all
the entries of σi 11. This is done by carefully picking a bunch of polynomials from Fd[z]k
(which we call nice polynomials) and then exploiting the association between f and NW
mentioned in Observation 6.1 using these polynomials. The algorithm works over every field.

Proof of correctness. The following claims argue the correctness of the algorithm. Their
proofs are given in Section F.2 in [24]. In these claims, ρ is the bit complexity of the
coefficients of f .

B Claim 28. (Canonical form of σ0, . . . , σd−1): Suppose f ∈ F[x] is BD permutation
equivalent to NW. Then, there exist permutations σ0, . . . , σd−1 on [d] such that σ0(0) =
· · · = σk(0) = 0, σ0(1) = 1 and A = diag(Mσ0 , . . . ,Mσd−1) satisfies f = NW(A · x).

10For i, r, s ∈ [d],Mσi (r, s) = 1 if and only if σi(r) = s.
11σi is treated as an ordered tuple (σi(0), . . . , σi(d− 1))

N. Gupta and C. Saha 53:11

Algorithm 3 Block-diagonal permutation equivalence test for NW .

Input: Black-box access to f ∈ F[x].
Output: Black-box access to g ∈ F[x] such that if f is BD-PS equivalent to NW then g is
scaling equivalent to NW.

1. Assume that σ0(0) = · · · = σk(0) = 0 and σ0(1) = 1 (Claim 28).
2. Construct a list of nice polynomials in Fd[z]k (Definition 29) as mentioned in Claim 30.
3. Recover (d− k) distinct entries of each σ0, . . . , σd−1 as mentioned in Claim 31.
4. Let N be a d× d matrix, where the columns and rows are indexed by (σ0, . . . , σd−1) and

(0, . . . , d− 1) respectively and for l, i ∈ [d], N(l, i) := σi(l). Pick l0, . . . , lk ∈ [d] such that
in each of the rows indexed by l0, . . . , lk at least k + 1 entries are known (Claim 32).

5. Use l0, . . . , lk ∈ [d] to recover all the entries of the rows of N as mentioned in Claim 33.
Compute A = diag(Mσ0 , . . . ,Mσd−1) and return black box access to f(A−1 · x)

I Definition 29. (List of nice polynomials in Fd[z]k): {h0, . . . , hd−k−1} ⊆ Fd[z]k is called a
list of nice polynomials if the following properties are satisfied:
1. For distinct r1, r2 ∈ [d − k], hr1(`) = hr2(`) for every ` ∈ [k] and hr1(`) 6= hr2(`) for

every ` ∈ {k, . . . , d− 1}.
2. For every r ∈ [d− k], σ0(hr(0)), . . . , σk(hr(k)) can be computed in poly(d, ρ) time.

B Claim 30. A list of d−k nice polynomials {h0, . . . , hd−k−1} can be computed in poly(d, ρ)
time.
Using the list of nice polynomials, we recover d− k distinct entries of σ0, . . . , σd−1.

B Claim 31. Given a list of nice polynomials {h0, . . . , hd−k−1}, we can recover d− k distinct
entries in each of σ0, . . . , σd−1 in poly(d, ρ) time.

The matrix N defined in the algorithm is filled with some known entries and some unknowns.
The goal is to recover all the entries of N which is accomplished by the following claims.

B Claim 32. Suppose k ∈ [1, d3]. Then, there exist k + 1 rows in N such that in each of
these rows at least k + 1 entries are known.

B Claim 33. Using k + 1 rows of N indexed by l0, . . . , lk (as mentioned in Step 4), we can
recover all the entries of N in poly(d, ρ) time.

6.1.2 Scaling equivalence test for NW
We present an algorithm for solving the scaling equivalence test for NW over a finite field F,
where d - |F| − 1. The same algorithm with appropriate modifications works over R. More
details on this are given in Section F.4 in [24]. Assume that f is scaling equivalent to NW.

Proof of correctness. The following claims and observations argue the correctness of the
algorithm. The proofs of the claims are given in Section F.3 in [24].

B Claim 34. We can assume that α1,0 = . . . = αd−1,0 = 1 without loss of generality.

The following observation can be proved easily.

I Observation 6.2. Given a monomial m, we can recover the coefficient of m in f in
poly(d, ρ) time.

B Claim 35. In Step 4, αi,j can be computed in poly(d, ρ) time. Further, f = NW(B · x).

MFCS 2019

53:12 On the Symmetries of and Equivalence Test for Design Polynomials

Algorithm 4 Scaling equivalence test for NW over finite fields.

Input: Black box access to f ∈ F[x].
Output: An invertible diagonal matrix B such that f = NW(B · x).

1. Let B = diag(α0,0, . . . , αd−1,d−1), where {αi,j : i, j ∈ [d]} are unknown. Set α1,0 =
. . . = αd−1,0 = 1 (Claim 34).

2. Let S = (0, z, . . . , (d− 1)z, 1, z + 1 . . . , (d− 1)z + 1, . . . , d− 2, z + d− 2 . . . , (d− 1)z +
d− 2, d− 1) be the ordered set of d2− d+ 1 polynomials in F[z]. For every h ∈ S, query
the coefficient ch of the monomial

∏
i∈Fd

xi,h(i) from the black-box of f (Observation
6.2).

3. Let C be a 0/1 matrix of size (d2−d+1)×(d2−d+1) whose rows and columns are indexed
by S and y = (y0,0, . . . , y0,d−1, y1,1, . . . , y1,d−1, . . . , yd−1,1, . . . , yd−1,d−1), respectively,
such that for h ∈ S and yi,j ∈ y, the (h, yi,j)-th entry of C is 1 if h(i) = j. (It is argued
in Claim 39 in [24] that |det(C)| is a power of d). Compute the inverse of det(C) in
Z|F|−1 and denote it by γ. (Note that y does not contain the variables {y1,0, . . . , yd−1,0}.)

4. Fix αi,j ∈ {α0,0, . . . , αd−1,d−1} \ {α1,0, . . . , αd−1,0} arbitrarily. For every h ∈ S, compute
the minor of C with respect to the row and column indexed by h and yi,j respectively
and call it δh. Set αi,j =

∏
h∈S c

(δh·γ) mod (|F|−1)
h .

5. Set B = diag(α0,0, . . . , αd−1,d−1). Return B. (see Claim 35)

7 Few problems

In conclusion, we state a few problems on the NW polynomial which, if resolved, would shed
more light on this fundamental polynomial family.
1. Is the NW = {NWd,k : d is a prime} family VNP-complete for a suitable choice of k (say,

k = dε for a constant ε > 0)?
2. Is there an efficient algorithm to check if NW(a) = 0 at a given point a ∈ {0, 1}n ? This

problem was also posed in [6] 12.
3. Is there an efficient general equivalence test for NW? Theorem 4 may turn out to be a

vital ingredient in such a test.
4. Give a complete description of the permutation symmetries of NW. Are all the permutation

symmetries captured in Lemma 45 mentioned in Section D in [24]?

For the permanent polynomial, the solutions to these problems are well known.

References
1 Scott Aaronson. P=?NP. Electronic Colloquium on Computational Complexity (ECCC), 24:4,

2017.
2 Miklós Ajtai. Σ1

1 -formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,
1983.

3 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, 1987.

4 Albert Atserias. Distinguishing SAT from Polynomial-Size Circuits, through Black-Box Queries.
In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006,
Prague, Czech Republic, pages 88–95, 2006.

12We thank Andrej Bogdanov for pointing this out to us.

N. Gupta and C. Saha 53:13

5 Markus Bläser, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Generalized matrix
completion and algebraic natural proofs. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 1193–1206, 2018.

6 Andrej Bogdanov and Muli Safra. Hardness Amplification for Errorless Heuristics. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23,
2007, Providence, RI, USA, Proceedings, pages 418–426, 2007.

7 Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No Occurrence Obstructions in
Geometric Complexity Theory. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 386–395, 2016.

8 Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic Complexity and
Beyond. Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011.

9 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth Multilinear Formula
Lower Bounds for Iterated Matrix Multiplication, with Applications. In 35th Symposium on
Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, pages 21:1–21:15, 2018.

10 Suryajith Chillara and Partha Mukhopadhyay. Depth-4 Lower Bounds, Determinantal Com-
plexity: A Unified Approach. In 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, pages 239–250,
2014.

11 Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson. Barriers for
Rank Methods in Arithmetic Complexity. In 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 1:1–1:19, 2018.

12 Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi. Functional Lower Bounds
for Arithmetic Circuits and Connections to Boolean Circuit Complexity. In 31st Conference
on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
33:1–33:19, 2016.

13 Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers to
proving algebraic circuits lower bounds. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 653–664, 2017.

14 Lance Fortnow, Aduri Pavan, and Samik Sengupta. Proving SAT does not have small circuits
with an application to the two queries problem. J. Comput. Syst. Sci., 74(3):358–363, 2008.

15 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower Bounds for
Depth-4 Formulas Computing Iterated Matrix Multiplication. SIAM J. Comput., 44(5):1173–
1201, 2015.

16 Georg Frobenius. Ueber die darstellung der endlichen gruppen durch linearc substitutionen.
Sitzungber. der Berliner Akademie, 7:994–1015, 1897.

17 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and the Polynomial-
Time Hierarchy. In 22nd Annual Symposium on Foundations of Computer Science, Nashville,
Tennessee, USA, 28-30 October 1981, pages 260–270, 1981.

18 Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equivalence test
over finite fields and over Q. Electronic Colloquium on Computational Complexity (ECCC),
26:42, 2019.

19 Fulvio Gesmundo. Gemetric aspects of iterated matrix multiplication. Journal of Algebra,
461:42–64, 2016.

20 Dima Grigoriev and Marek Karpinski. An Exponential Lower Bound for Depth 3 Arithmetic
Circuits. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 577–582, 1998.

21 Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. Towards an
algebraic natural proofs barrier via polynomial identity testing. CoRR, abs/1701.01717, 2017.

MFCS 2019

53:14 On the Symmetries of and Equivalence Test for Design Polynomials

22 Joshua Abraham Grochow. Symmetry and equivalence relations in classical and geometric
complexity theory. PhD thesis, Department of Computer Science, The University of Chicago,
Chicago, Illinois, 2012.

23 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the
Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014.

24 Nikhil Gupta and Chandan Saha. On the symmetries of and equivalence test for design
polynomials. ECCC, 2019. URL: https://eccc.weizmann.ac.il/report/2018/164/.

25 Brian C Hall. Lie Groups, Lie Algebras and Representations An Elementary introduction.
Springer, second edition, 2015.

26 Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 6–20, 1986.

27 Jesko Hüttenhain. The Stabilizer of Elementary Symmetric Polynomials. CoRR,
abs/1607.08419, 2016. URL: https://arxiv.org/abs/1607.08419.

28 Christian Ikenmeyer, Ketan D. Mulmuley, and Michael Walter. On vanishing of Kronecker
coefficients. Computational Complexity, 26(4):949–992, 2017.

29 Christian Ikenmeyer and Greta Panova. Rectangular Kronecker Coefficients and Plethysms in
Geometric Complexity Theory. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 396–405, 2016.

30 Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 643–662, 2012.

31 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential Lower
Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM J. Comput., 46(1):307–335,
2017.

32 Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of Full
Rank Algebraic Branching Programs. In 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, pages 21:1–21:61, 2017.

33 Neeraj Kayal and Chandan Saha. Lower Bounds for Depth-Three Arithmetic Circuits with
small bottom fanin. Computational Complexity, 25(2):419–454, 2016.

34 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound
for regular arithmetic formulas. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 146–153, 2014.

35 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower Bound for
Depth Three Arithmetic Circuits. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 33:1–33:15, 2016.

36 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and of
depth four formulas with low individual degree. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 626–632, 2016.

37 Mrinal Kumar and Ramprasad Saptharishi. An Exponential Lower Bound for Homogeneous
Depth-5 Circuits over Finite Fields. In 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, pages 31:1–31:30, 2017.

38 Mrinal Kumar and Shubhangi Saraf. Superpolynomial Lower Bounds for General Homogeneous
Depth 4 Arithmetic Circuits. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
751–762, 2014.

39 Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas:
it’s all about the top fan-in. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 136–145, 2014.

https://eccc.weizmann.ac.il/report/2018/164/
https://arxiv.org/abs/1607.08419

N. Gupta and C. Saha 53:15

40 Mrinal Kumar and Shubhangi Saraf. Arithmetic Circuits with Locally Low Algebraic Rank.
In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo,
Japan, pages 34:1–34:27, 2016.

41 Mrinal Kumar and Shubhangi Saraf. Sums of Products of Polynomials in Few Variables: Lower
Bounds and Polynomial Identity Testing. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 35:1–35:29, 2016.

42 Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arithmetic
Circuits. SIAM J. Comput., 46(1):336–387, 2017.

43 Richard J. Lipton. New Directions In Testing. In Distributed Computing And Cryptography,
Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, October 4-6, 1989, pages
191–202, 1989.

44 Marvin Marcus and Francis May. The permanent function. Canadian Journal of Mathematics,
14:177–189, 1962.

45 Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and permanent
problem. International Mathematics Research Notes, 2004(79):4241–4253, 2004.

46 Ketan Mulmuley. Lower Bounds in a Parallel Model without Bit Operations. SIAM J. Comput.,
28(4):1460–1509, 1999.

47 Ketan Mulmuley. On P vs. NP, Geometric Complexity Theory, and the Flip I: a high level
view. CoRR, abs/0709.0748, 2007.

48 Ketan Mulmuley. Explicit Proofs and The Flip. CoRR, abs/1009.0246, 2010. URL: http:
//arxiv.org/abs/1009.0246.

49 Ketan Mulmuley. On P vs. NP and geometric complexity theory: Dedicated to Sri Ramakrishna.
J. ACM, 58(2):5:1–5:26, 2011.

50 Ketan Mulmuley. The GCT program toward the P vs. NP problem. Commun. ACM,
55(6):98–107, 2012.

51 Ketan Mulmuley and Milind A. Sohoni. Geometric Complexity Theory I: An Approach to the
P vs. NP and Related Problems. SIAM J. Comput., 31(2):496–526, 2001.

52 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 890–901, 2018.

53 Noam Nisan and Avi Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

54 Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial Derivatives.
Computational Complexity, 6(3):217–234, 1997.

55 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. ACM, 56(2):8:1–8:17, 2009.

56 Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear
Circuits. Computational Complexity, 18(2):171–207, 2009.

57 Alexander A. Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Soviet Mathematics Doklady, 31:354–357, 1985.

58 Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

59 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

60 Kenneth W. Regan. Understanding the Mulmuley-Sohoni Approach to P vs. NP. Bulletin of
the EATCS, 78:86–99, 2002.

61 Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27(4):701–717, 1980.

MFCS 2019

http://arxiv.org/abs/1009.0246
http://arxiv.org/abs/1009.0246

53:16 On the Symmetries of and Equivalence Test for Design Polynomials

62 Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 77–82, 1987.

63 Ryan Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32, 2014.
64 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algeb-

raic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979.

The Complexity of
Homomorphism Indistinguishability
Jan Böker
RWTH Aachen University, Aachen, Germany
boeker@informatik.rwth-aachen.de

Yijia Chen
Fudan University, Shanghai, China
yijiachen@fudan.edu.cn

Martin Grohe
RWTH Aachen University, Aachen, Germany
grohe@informatik.rwth-aachen.de

Gaurav Rattan
RWTH Aachen University, Aachen, Germany
rattan@informatik.rwth-aachen.de

Abstract
For every graph class F , let HomInd(F) be the problem of deciding whether two given graphs are
homomorphism-indistinguishable over F , i.e., for every graph F in F , the number hom(F, G) of
homomorphisms from F to G equals the corresponding number hom(F, H) for H. For several natural
graph classes (such as paths, trees, bounded treewidth graphs), homomorphism-indistinguishability
over the class has an efficient structural characterization, resulting in polynomial time solvability [6].

In particular, it is known that two non-isomorphic graphs are homomorphism-indistinguishable
over the class Tk of graphs of treewidth k if and only if they are not distinguished by k-dimensional
Weisfeiler-Leman algorithm, a central heuristic for isomorphism testing: this characterization implies
a polynomial time algorithm for HomInd(Tk), for every fixed k ∈ N. In this paper, we show that
there is a polynomial-time-decidable class F of undirected graphs of bounded treewidth such that
HomInd(F) is undecidable.

Our second hardness result concerns the class K of complete graphs. We show that HomInd(K)
is co-NP-hard, and in fact, we show completeness for the class C=P (under P-time Turing reductions).
On the algorithmic side, we show that HomInd(P) can be solved in polynomial time for the class P
of directed paths. We end with a brief study of two variants of the HomInd(F) problem: (a) the
problem of lexographic-comparison of homomorphism numbers of two graphs, and (b) the problem
of computing certain distance-measures (defined via homomorphism numbers) between two graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-
atics of computing → Graph theory

Keywords and phrases graph homomorphism numbers, counting complexity, treewidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.54

Funding Gaurav Rattan: Supported by DFG grant RA 3242/1-1.

1 Introduction

A classic theorem due to Lovász [12] states that two graphs G,H are isomorphic if and only
if for every graph F the number hom(F,G) of homomorphisms from F to G is equal to the
number hom(F,H) of homomorphisms from F to H. Jointly with Dell, the last two authors
of this paper recently proved [6] that two graphs are fractionally isomorphic, or equivalently,
can be distinguished by the colour refinement algorithm (see e.g. [8]), if and only if for every
tree T it holds that hom(T,G) = hom(T,H). Another well-known fact (see e.g. [20]) is that

© Jan Böker, Yijia Chen, Martin Grohe, and Gaurav Rattan;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 54; pp. 54:1–54:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4584-121X
mailto:boeker@informatik.rwth-aachen.de
https://orcid.org/0000-0001-7033-9593
mailto:yijiachen@fudan.edu.cn
https://orcid.org/0000-0002-0292-9142
mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-5095-860X
mailto:rattan@informatik.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.54
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 The Complexity of Homomorphism Indistinguishability

two graphs are co-spectral, that is, their adjacency matrices have the same sequence of
eigenvalues, if and only if for every cycle C it holds that hom(C,G) = hom(C,H). Thus
counting homomorphisms from all graphs in some class gives us very interesting equivalence
relations, which we call homomorphism indistinguishability: for every class F of graphs, two
graphs G,H are homomorphism-indistinguishable over F (for short: F-HI) if and only if for
every F ∈ F it holds that hom(F,G) = hom(F,H).1 Thus two graphs are G-HI for the class
G of all graphs if and only if they are isomorphic. They are T -HI for the class T of trees if
and only if they are fractionally isomorphic, and they are C-HI for the class C of cycles if
and only if they are co-spectral. We have also proved in [6] that for every k, two graphs are
Tk-HI for the class Tk of all graphs of tree width at most k if and only if the k-dimensional
Weisfeiler-Leman algorithm does not distinguish them, and we gave a characterisation of
P-HI for the class P of paths in terms of a natural system of linear equations. Furthermore,
the first author of this paper recently proved that two directed graphs are A-HI for the class
A of all directed acyclic graphs if and only if they are isomorphic [3] (also see [13]).

It follows from these results that the problem of deciding whether two graphs are
homomorphism-indistinguishable over some class has a quite interesting complexity theoretic
behaviour. For every class F of graphs, let HomInd(F) be the problem of deciding whether
two given graphs are F -HI. Since the graph isomorphism problem is in solvable in quasipoly-
nomial time [2], HomInd(G) is in quasipolynomial time. Furthermore, it is an immediate
consequence of the characterisations above that HomInd(T), HomInd(C), HomInd(P), and
HomInd(Tk) for all k ≥ 1 are in polynomial time. This prompts the question whether
HomInd(F) is in quasipolynomial time, or even in polynomial time, for every class F of
graphs. While this seems unlikely, it is not obvious what complexities one might expect for
HomInd(F) as F ranges over all classes of graphs. We study these and related questions
here.

Homomorphism counts give us embeddings of graphs into an infinite dimensional vec-
tor space: for a class F , we can associate with every graph G a homomorphism vector
HomF (G) :=

(
hom(F,G)

∣∣ F ∈ F) ∈ RF . Then HomInd(F) is simply the problem of
deciding whether two graphs have the same homomorphism vector. Defining a metric or,
even better, an inner product on the range vector space, we obtain a (pseudo-)metric on
the class of all graphs (where two non-isomorphic graphs may have distance 0). We will
also study the problem of approximately computing the distance between two graphs with
respect to metrics obtained this way. Such metrics are important for machine learning tasks
such as clustering and classification on graphs. In fact, homomorphism vectors are closely
related to the so-called graph kernels (see, e.g. [16, 17, 21]): almost all such graph kernels
are defined as the inner products of homomorphism vectors for natural graph classes. Thus
our results shed some new light on the complexity of computing these kernels.

At first sight, HomInd(F) looks like a problem in co-NP: to witness that G and H are
not F -HI we just have to nondeterministically guess one F ∈ F and verify that hom(F,G) 6=
hom(F,H). But this argument is flawed for several reasons. First of all, it assumes that
for given F,G we can compute hom(F,G) in polynomial time, which in general is not the
case. Let #Hom(F) be the problem of computing hom(F,G), given F ∈ F and G. Then
for the class G of all graphs, #Hom(G) is #P-complete. Under the complexity assumption
that #W[1] 6= FPT, it is known that #Hom(F) is in P if and only if F has bounded tree

1 We note that homomorphism indistinguishability is incomparable to homomorphic equivalence; remember
that two graphs G, H are homomorphically equivalent if there is a homomorphism from G to H and a
homomorphism from H to G.

J. Böker, Y. Chen, M. Grohe, and G. Rattan 54:3

width [5]. This result extends to directed graphs and in fact all classes of relational structures
of bounded arity. But even for F with tractable #Hom(F), the problem HomInd(F) is not
necessarily in co-NP, because the witness F may be very large compared to G and H.

I Theorem 1. There is a polynomial-time-decidable class F of undirected graphs of bounded
tree width such that HomInd(F) is undecidable.

We also prove a version of the above theorem for directed graphs (Theorem 15): the
graphs in the corresponding class F are just directed paths padded by isolated vertices. And
we cannot only prove undecidability, but also use similar arguments to obtain all kinds of
complexities. So the complexity landscape for problems HomInd(F), which started out in
quasi-polynomial time, looks fairly complicated. But admittedly the classes F we can use
to prove Theorem 1 are quite esoteric from a graph theoretic point of view. What about
“natural” graph classes? For the class K of all complete graphs, the corresponding problem
HomInd(K) turns out to be hard.

I Theorem 2. HomInd(K) is co-NP-hard.

For an upper bound, note that HomInd(K) ∈ P#P, because to decide whether for two
n-vertex graphs G,H it holds that hom(K,G) = hom(K,H) for all complete graphs K, we
only need to check the equality for all K of size at most n. Actually, we pinpoint the exact
complexity of HomInd(K) by proving it to be complete for the complexity class C=P (see
Theorem 18). This implies that HomInd(K) is not in the polynomial hierarchy PH unless
PH collapses (see Corollary 22).

We also look at tractable cases of the homomorphism indistinguishability problem. In
particular, we prove that HomInd(P→) is in P for the class P→ of directed paths (see
Theorem 23).

In the last section we look at variants of HomInd(F). A first such variant is the problem
HomLex(F) of lexicographically comparing the homomorphism vectors over F of two input
graphs. Of course the lexicographical order depends on some order of the graphs in F ; the
simple classes F we consider (directed paths and cycles as well as complete graphs) have only
one graph per size, and we can use the natural order by size. We prove that HomLex(P→)
and HomLex(C→) are in polynomial time for the classes P→ and C→ of directed paths and
cycles and that HomLex(K) is #P-complete.

Finally, we study the problem of computing the distance between two graphs with respect
to various metrics defined on the homomorphism vectors HomF (G). We prove that if F is a
polynomial time enumerable class of graphs for which #Hom(F) is in polynomial time then
the distance between two graphs can be approximated up to an arbitrarily small additive
error ε in polynomial time. This is not a deep result, but we believe it is quite relevant,
because computing distances between graphs (even approximately) with respect to various
distance measures tends to be a very hard algorithmic problem (e.g. [1, 9, 11, 14, 15]). Here
we have a family of natural metrics for which it is tractable.

2 Preliminaries

Directed Graphs. A directed graph (or digraph) G consists of a finite set of vertices V (G)
(or VG) and a set of edges E(G) ⊆ V × V . A subgraph H of a directed graph G is a graph
satisfying VH ⊆ VG and EH ⊆ EG ∩ (VH × VH). We assume familiarity with the basic
terminology from graph theory, e.g., path, cycle etc., which can be found in e.g., [7]. Given
two digraphs G and H, a homomorphism from G to H is an edge-preserving mapping from
V (G) to V (H), i.e., a mapping ϕ : VG → VH such that its natural extension to VG × VG

satisfies ϕ(EG) ⊆ EH .

MFCS 2019

54:4 The Complexity of Homomorphism Indistinguishability

A set X of vertices of a directed graph G is a clique if for all distinct x, y ∈ X, either
(x, y) ∈ E(G) or (y, x) ∈ E(G). For every k ≥ 1, let ck(G) be the number of cliques of size
k in G. For every directed graph G and every k ≥ 1, let dk(G) be the number of directed
paths of length k − 1 in G. We call a directed graph P a partial order if it is acyclic and the
edge relation is transitive. Observe that if P is a partial order then the edge relation induces
a linear order on every clique. Furthermore, a subgraph Q of P is a directed path if and
only if V (Q) is a clique in P . Thus for every k ≥ 1 we have ck(P) = dk(P).

Denote hom(G,H) to be the number of homomorphisms from G to H. For a class F of
graphs and a graph G, the homomorphism vector of G over F is

HomF (G) :=
(
hom(F,G)

∣∣ F ∈ F).
Undirected Graphs. The notions of subgraph, homomorphisms and homomorphism vector
have analogous standard definitions in the undirected case. Denote the edge {u, v} of an
undirected graph as uv. Let Kk denote the undirected k-clique, i.e. the graph defined by
V (G) = [k] and E(G) =

([k]
2
)
.

I Definition 3. Let G,H be two undirected graphs. The product graph G⊗H is defined by

V (G⊗H) := V (G)× V (H),
E(G⊗H) :=

{
{(u, v), (u′, v′)}

∣∣ uu′ ∈ E(G) and vv′ ∈ E(H)
}
.

Let G,H be two graphs, and k ≥ 1. The following folklore lemma states that the
homomorphism numbers are multiplicative for the above-mentioned product operation.

I Lemma 4. For every graph F , hom(F,G⊗H) = hom(F,G) · hom(F,H).

It is well-known that for every k ∈ N and every graph G, ck(G) = hom(Kk,G)
k! .

I Corollary 5. ck(G⊗H) = k! · ck(G) · ck(H).

The following construction will be useful later.

I Proposition 6. Let n, `, k be fixed positive integers such that k ≤ n and ` ≤
(

n
k

)
. In time

poly(n), we can construct a graph P satisfying ck(P) = `.

Proof. Let

n1 := max
{
n′
∣∣∣ n′ ≥ k and

(
n′

k

)
≤ `
}
, i1 := max

{
i
∣∣∣ i · (n1

k

)
≤ `
}
.

Clearly, k ≤ n1 ≤ n and 1 ≤ i1, and both can be computed in time poly(n). Moreover, the
remainder

`′ := `− i1 ·
(
n1

k

)
< `

satisfies 0 ≤ `′ <
(

n1
k

)
. An exhaustive application of this rule ensures the existence of numbers

1 ≤ s ≤ n, 1 ≤ i1, . . . , is, and ns < ns−1 < · · · < n1 ≤ n such that

` = i1 ·
(
n1

k

)
+ · · ·+ is ·

(
ns

k

)
.

Moreover, all i1, . . . , is and n1, . . . , ns can be computed in time poly(n). Finally, the desired
graph P consists of i1 disjoint copies of Kn1 , i2 disjoint copies of Kn2 , and so on. Clearly,
ck(P) = ` by our construction. J

J. Böker, Y. Chen, M. Grohe, and G. Rattan 54:5

Cayley-Hamilton. The famous Cayley-Hamilton theorem states that the substitution of a
matrix in its characteristic polynomial results in the zero matrix. Formally, let A ∈ Fn×n be
a square matrix over a field F.

I Theorem 7 (Cayley-Hamilton). Let p(λ) = det(λIn−A) denote the characteristic polynomial
of A. Then, p(A) = 0.

Let sum(A) denote the sum of all entries of A. Recall that the trace of a matrix A,
denoted by tr(A), is the sum of diagonal entries of A. The following lemma is standard.

I Lemma 8. Let A = A(G) be the adjacency matrix of a digraph G and k ≥ 1. The number
of walks of length k in A is equal to sum(Ak). Equivalently, sum(Ak) = hom(Pk, G).

Similarly, the number of closed walks of length k in G is equal to tr(Ak). Equivalently,
tr(Ak) = hom(Ck, G).

The following is a consequence of the Cayley-Hamilton theorem and is utilised in Section 6
for our tractability result regarding HomInd(P→) for the class P→ of directed paths.

I Corollary 9. Let A ∈ Fn×n. There exist a1, . . . , an ∈ R such that for every ` ≥ 0

An+` =
∑
i∈[n]

aiA
i+`−1.

Thus

sum(An+`) =
∑
i∈[n]

ai · sum(Ai+`−1) and tr(An+`) =
∑
i∈[n]

ai · tr(Ai+`−1).

3 Combinatorial Constructions

Theorem 10 presents our main construction, which is at the heart of both our undecidability
results in Section 4 and our hardness results in Section 5. Essentially, for an arbitrary k ≥ 1,
we construct two partial orders that have the same number of directed paths on i vertices
for every i ≥ 1 except for i = k. Hence, these partial orders are distinguished by the directed
path of length k − 1 but not by any other directed path.

I Theorem 10. For every k ≥ 1, there are partial orders Pk, Qk of order |Pk|, |Qk| ≤
max{1, 2(k − 1)} such that

di(Pk) = di(Qk) for 1 ≤ i ≤ k − 1, (1)
dk(Pk) = 1, dk(Qk) = 0, (2)
di(Pk) = di(Qk) = 0 for all i > k. (3)

Proof. For a directed graph G, a set X ⊆ V (G), and a fresh vertex x 6∈ V (G), let G .X x

be the graph obtained from G by adding vertex x and edges from all vertices in X to x.
Formally, V (G .X x) := V (G) ∪ {x} and E(G .X x) := E(G) ∪ {(x′, x) | x′ ∈ X}.

Let us describe the construction of the directed graphs Pk, Qk. Let vi for i ≥ 1 and wi

for i ≥ 2 be fresh vertices. Let

V1 := {v1}, P1 := (V1, ∅),
W1 := ∅, Q1 := (W1, ∅),
V2 := {v1, v2}, P2 :=

(
{V2, {(v1, v2)}

)
,

W2 := {v1, w2} Q2 :=
(
W2, ∅

)
,

MFCS 2019

54:6 The Complexity of Homomorphism Indistinguishability

and for k ≥ 2, noting that Wk−1 ⊆ Vk and Vk−1 ⊆Wk, let

Vk+1 := Vk ∪ {vk+1, wk}, Pk+1 := (Pk .Vk
vk+1) .Wk−1 wk,

Wk+1 := Wk ∪ {vk, wk+1}, Qk+1 := (Qk .Wk
wk+1) .Vk−1 vk.

Figure 1 illustrates the construction for 1 ≤ k ≤ 4.

P1, Q1

P2, Q2

P3, Q3

P4, Q4

Figure 1 The graphs Pk, Qk for k = 1, . . . , 4.

Note that both Pk and Qk are directed acyclic graphs. Obviously, we have |Vk|, |Wk| ≤
max{1, 2(k − 1)} for all k. By G[X], we denote the induced subgraph of a set X in a graph
G. Observe that for all ` ≥ k ≥ 1 we have P`[X] = Pk[X] for all X ⊆ Vk and Q`[Y] = Qk[Y]
for all Y ⊆Wk.

B Claim 11. For all ` > k ≥ 1 it holds that P`[Wk] = Qk and Q`[Vk] = Pk.

Proof. It suffices to prove the claim for ` = k + 1. The proof is by induction on k. For
k = 1, 2, the assertion is immediate from Figure 1. For the inductive step, let k ≥ 2. By the
induction hypothesis, we have Pk[Wk−1] = Qk−1. To construct Qk from Qk−1, we add the
vertex wk and edges from all vertices in Wk−1 to wk. Moreover, we add vk−1 and edges from
all vertices in Vk−2 to vk−1. Both of these vertices and all these edges are present in Pk+1:

vk−1 and edges from all vertices in Vk−2 to vk−1 have already been added in the transition
from Pk−2 to Pk−1;
wk and edges from all vertices in Wk−1 to wk are added in the transition from Pk to
Pk+1.

Thus Pk+1[Wk] = Qk. The argument that Qk+1[Vk] = Pk is similar. C

Since Vk+1 = Vk ∪Wk ∪ {vk+1} and Wk+1 = Vk ∪Wk ∪ {wk+1}, a consequence of this
claim is that

Pk+1 ∩Qk+1 = Pk+1 \ {vk+1} = Qk+1 \ {wk+1} = Pk ∪Qk. (4)

J. Böker, Y. Chen, M. Grohe, and G. Rattan 54:7

B Claim 12. The edge relations of Pk and Qk are transitive.

Proof. This follows by induction from (4), because vk and wk have out-degree 0 in Pk, Qk,
respectively. C

Thus Pk and Qk are partial orders.

B Claim 13. For all graphs G and all subsets X ⊆ G we have

c1
(
G .X x) = c1(G) + 1, (5)

ci

(
G .X x) = ci(G) + ci−1

(
G[X]

)
for i ≥ 2. (6)

Proof. Straightforward. C

Thus for k ≥ 2 and i ≥ 2 we have

ci(Pk+1) = ci(Pk) + ci−1(Pk) + ci−1(Qk−1) (7)

and similarly

ci(Qk+1) = ci(Qk) + ci−1(Qk) + ci−1(Pk−1). (8)

Now we prove (1)-(3) by induction on k. We have already noted that it holds for k = 1, 2.
For the inductive step, let k ≥ 2 and i ≥ 1.
Case 1: i = 1. We have c1(Pk+1) = |Vk+1| = 2k = |Wk+1| = c1(Qk+1).
Case 2: 2 ≤ i ≤ k − 1. We have ci(Pk) = ci(Qk), ci−1(Pk) = ci−1(Qk) and ci−1(Pk−1) =

ci−1(Qk−1) by the induction hypothesis, and by (7) and (8) this implies ci(Pk+1) =
ci(Pk+1).

Case 3: i = k. We have ci(Pk) = ci(Qk) + 1 and ci−1(Pk) = ci−1(Qk) and ci−1(Pk−1) =
ci−1(Qk−1) + 1 by the induction hypothesis. Thus by (7) and (8),

ci(Pk+1) = ci(Pk) + ci−1(Pk) + ci−1(Qk−1)
= ci(Qk) + 1 + ci−1(Qk) + ci−1(Pk−1)− 1 = ci(Qk+1),

which completes the proof of (1).
Case 4: i = k + 1. We have ci(Pk) = ci(Qk) = 0 and ci−1(Pk) = 1, ci−1(Qk) = 0 and

ci−1(Pk−1) = ci−1(Qk−1) = 0 by the induction hypothesis. Thus by (7) and (8),

ci(Pk+1) = ci(Pk) + ci−1(Pk) + ci−1(Qk−1) = 1,
ci(Qk+1) = ci(Qk) + ci−1(Qk) + ci−1(Pk−1) = 0.

This proves (2).
Case 5: i ≥ k + 2. We have ci(Pk) = ci(Qk) = ci−1(Pk) = ci−1(Qk) = ci−1(Pk−1) =

ci−1(Qk−1) = 0 by the induction hypothesis. Thus by (7) and (8), ci(Pk+1) = ci(Qk+1) =
0. This proves (3).

Now assertions (1)–(3) follow, because for partial orders G we have ck(G) = dk(G) for all
k ≥ 1. J

As the construction of Theorem 10 yields partial orders, for which directed path counts
and clique counts are the same, we also obtain an undirected version for clique counts with
Corollary 14.

MFCS 2019

54:8 The Complexity of Homomorphism Indistinguishability

I Corollary 14. For every k ≥ 1 there are undirected graphs Gk, Hk of order |Gk|, |Hk| ≤
max{1, 2(k − 1)} such that

ci(Gk) = ci(Hk) for 1 ≤ i ≤ k − 1, (9)
ck(Gk) = 1, ck(Hk) = 0, (10)
ci(Gk) = ci(Hk) = 0 for all i > k. (11)

Proof. Let Gk, Hk be the undirected graphs underlying the partial orders Pk, Qk of The-
orem 10. J

We also show how to generalise Theorem 10 and Corollary 14 such that number of directed
paths of length k − 1 and the number of cliques of size k in these graphs, respectively, can
freely be chosen. The exact statements and their proofs can be found in the full version of
the paper.

4 Undecidability Results

We proceed to derive undecidability results for HomInd(F) using the combinatorial con-
structions of Section 3. Before we prove our main theorem (Theorem 1), the following version
for the case of directed graphs will be necessary.

I Theorem 15. There is a polynomial time decidable class F of directed graphs of tree width
1 such that HomInd(F) is undecidable.

Proof. Let us fix some Gödel numbering of deterministic Turing machines such that Mj

denotes the machine with Gödel number j. For every pair (j, t) ∈ N2, let Fj,t be the graph
that is the disjoint union of a directed path P→j+1 of length (j + 1) and an independent set of
size t. Let F be the class of all graphs Fj,t such that Mj halts in t steps when started on the
empty input word. Clearly, F is decidable in polynomial time.

Observe that for every graph G and all j, t ∈ N we have

hom(Fj,t, G) = hom(Pj+1, G) · |G|t. (12)

Let Gk, Hk be the graphs constructed in Theorem 10. It is easy to note that hom(F0,t, G1) =
1 6= 0 = hom(F0,t, H1) and hom(Fj,t, G1) = hom(Fj,t, H1) = 0 for j ≥ 1. For k ≥ 2, recall
that |Gk| = |Hk| = 2(k − 1) and that hom(P→j , Gk) = hom(P→j , Hk) if and only if j 6= k.
Thus it follows from (12) that for all j, t we have

hom(Fj,t, Gk) 6= hom(Fj,t, Hk) ⇐⇒ j = k − 1. (13)

This implies

HomF (Gk) 6= HomF (Hk) ⇐⇒ F(k−1),t ∈ F for some t ∈ N
⇐⇒ Mk−1 halts on the empty input word.

This proves that HomInd(F) is undecidable. Since every graph in F is a directed path with
some padded isolated vertices, the treewidth of F is 1. Hence, proved. J

The above proof can be easily modified to invoke Corollary 14 instead of Theorem 10,
which yields the following corollary.

I Corollary 16. There is a polynomial time decidable class F of undirected graphs such that
HomInd(F) is undecidable.

J. Böker, Y. Chen, M. Grohe, and G. Rattan 54:9

In particular, every graph in this class of undirected graphs is a clique (padded with
isolated vertices), and therefore, this class has unbounded treewidth. Our main theorem,
Theorem 1, is a sharper version of the above corollary.

4.1 Proof of Theorem 1

The proof of Theorem 1 is obtained by replacing the directed graphs Fj,t, Gk, Hk (constructed
in the proof of Theorem 15) by their suitably-defined undirected versions F̃j,t, G̃k, H̃k. The
two key requirements of this transformation are (a) the homomorphism numbers are preserved,
i.e., hom(Fj,t, Gk) = hom(F̃j,t, G̃k) and hom(Fj,t, Hk) = hom(F̃j,t, H̃k), and (b) the treewidth
of the transformed graphs is bounded. To satisfy these properties, we devise suitable gadgets
to encode the direction of an edge: our gadgets employ homomorphically incomparable
Kneser graphs in order to control the homomorphism numbers of the resulting undirected
graphs. The end result of our gadget construction is the following technical lemma (note
that our construction there does not exploit any special properties of the present graphs and
works for arbitrary directed graphs). The proof is deferred to the full version of the paper.

Let F be the class of all directed graphs Fj,t arising in the proof of Theorem 15, such
that HomInd(F) is undecidable.

I Lemma 17. Given graphs Fj,t, Gk, Hk (constructed in the proof of Theorem 15), we can
construct corresponding undirected graphs F̃j,t, G̃k, H̃k in polynomial time, satisfying the
following properties.
1. For all j, t ∈ N there exists a positive integer Cj,t such that for every k ∈ N,

hom(F̃j,t, G̃k) = Cj,t · hom(Fj,t, Gk),

hom(F̃j,t, H̃k) = Cj,t · hom(Fj,t, Hk).

2. There exists a fixed positive integer ` such that for every j, t ∈ N, the graph F̃j,t has
treewidth at most `.

3. Let F̃ be the class of all undirected graphs F̃j,t such that Fj,t ∈ F . Then F̃ is polynomial
time decidable.

From the above lemma, we can deduce Theorem 1 as follows.

Proof of Theorem 1. The proof follows the proof of Theorem 15 closely. By Lemma 17 and
Equation 13,

hom(F̃j,t, G̃k) 6= hom(F̃j,t, H̃k) ⇐⇒ j = k − 1. (14)

This implies

HomF̃ (G̃k) 6= HomF̃ (H̃k) ⇐⇒ F̃(k−1),t ∈ F̃ for some t ∈ N

⇐⇒ F(k−1),t ∈ F for some t ∈ N
⇐⇒ Mk−1 halts on the empty input word.

This proves that HomInd(F̃) is undecidable. By Lemma 17, F̃ has bounded treewidth and
is polynomial-time-decidable. Hence, proved. J

MFCS 2019

54:10 The Complexity of Homomorphism Indistinguishability

5 Hardness for Cliques

The construction of Corollary 14 allows for a simple proof of the co-NP-hardness of
HomInd(K).

Proof of Theorem 2. We reduce the co-NP-hard problem

Clique = {(F, k) | F graph without a k-clique}

to HomInd(K). To this end, we use Corollary 14 to construct two graphs Gk and Hk in
time polynomial in k ≤ n. Then, the graphs

F1 := F ⊗Gk and F2 := F ⊗Hk.

can be constructed in time poly(n). Corollary 5, together with (9)-(11), implies that

ci(F1) = ci(F2) for 1 ≤ i ≤ k − 1, (15)
ck(F1) = k! · ck(F), ck(F2) = 0, (16)
ci(F1) = ci(F2) = 0 for all i > k. (17)

Hence, the mapping F 7→ (F1, F2) is the desired polynomial-time many-one reduction as
ck(F) = 0 if and only if ci(F1) = ci(F2) for every i ≥ 1. J

A more refined argument gives us a more precise classification of the complexity of
HomInd(K).

I Theorem 18. HomInd(K) is complete for C=P under polynomial time Turing reductions.

The complexity class C=P was introduced in [18, 22]. Here we use the following equivalent
definition from [10].

I Definition 19. Let L be a decision problem. Then L ∈ C=P if and only if there is a function
f in #P and a function g computable in polynomial time such that for every instance x of L

x ∈ L ⇐⇒ f(x) = g(x).

Before giving the proof of Theorem 18, we derive some of its consequences, which shows
that HomInd(K) is apparently much harder than co-NP as stated in Theorem 2, and in fact,
unlikely to be in the polynomial hierarchy (PH).

It is clear that every problem in C=P can be decided in polynomial time with an oracle
to a problem in #P. The following slightly weak converse is also easy to see (cf. [4], Section
1.2).

I Proposition 20. P#P ⊆ NPC=P.

Thus Theorem 18 implies that:

I Corollary 21. P#P ⊆ NPHomInd(K).

Combined with renowned Toda’s Theorem [19], we conclude that HomInd(K) is above
the polynomial hierarchy.

I Corollary 22. HomInd(K) is not in PH, unless PH collapses.

Now we are ready to prove Theorem 18: the proof is deferred to the full version of the
paper.

J. Böker, Y. Chen, M. Grohe, and G. Rattan 54:11

6 Tractable Cases

I Theorem 23. HomInd(F) can be solved in polynomial time for the class F of directed
paths.

The proof of the theorem is deferred to the full version of the paper.

7 Related Problems

For a class of graphs F , let Fk denote the class of all graphs F ∈ F of order k. For classes
F where there is at most one graph F ∈ F of order k for every k ≥ 1, it is only natural to
consider the entries hom(F,G) of a homomorphism vector HomF (G) as sorted by the order
of F . Then it becomes possible to compare these vectors using the lexicographical ordering
≤`, and for such a class F , we let HomLex(F) denote the following decision problem: given
graphs G and H, decide whether HomF (G) ≤` HomF (H).

For the classes of directed paths and directed cycles, the proof of Theorem 23 immediately
yields that the corresponding decision problems can be decided in polynomial time as, given
graphs G and H with |V (G)| = |V (H)| = n, it suffices to consider the first 2n paths and n
cycles, respectively.

I Theorem 24. HomLex(F) can be solved in polynomial time for the class of directed paths
and the class of directed cycles.

For the class of all complete graphs, the hardness of the HomLex(K) is expected.

I Theorem 25. HomLex(K) is complete for #P under polynomial time Turing reductions.

The proof is deferred to the full version of the paper.
A more interesting direction is to consider the similarity of homomorphism vectors as

this induces a measure of similarity on the graphs themselves (see e.g. [13], Lemma 10.22
and Lemma 10.32). It is not clear how exactly the distance of homomorphism vectors should
be defined, but some natural candidates are the following:
(a) d1

F (G,H) :=
∑
k≥1
Fk 6=∅

1
kk|Fk|

∑
F∈Fk

|hom(F,G)− hom(F,H)|

(b) d∞F (G,H) :=
∑
k≥1
Fk 6=∅

1
kk

max
F∈Fk

|hom(F,G)− hom(F,H)|

(c) d2
F (G,H) :=

√√√√√∑
k≥1
Fk 6=∅

1
kk|Fk|

∑
F∈Fk

(hom(F,G)− hom(F,H))2

The scaling by kk in the definitions is quite arbitrary and ensures that the sums converge:
Let G and H be graphs with |V (G)| ≥ |V (H)|. As the number of homomorphisms from a
k-vertex graph to an n-vertex graph is at most nk, we for example have

k

√
1

kk|Fk|
∑

F∈Fk

|hom(F,G)− hom(F,H)| ≤ k

√
|V (G)|k
kk

= |V (G)|
k

k→∞−−−−→ 0,

which implies convergence of the sum in the definition of d1
F by the root test. Of course, one

may also scale by a different factor, e.g., k!, and possibly even make it depend on the orders
of G and H. It is not hard to see that d1

F , d∞F , and d2
F are pseudometrics on graphs. For d2

F ,

MFCS 2019

54:12 The Complexity of Homomorphism Indistinguishability

this follows directly from the fact that it is the pseudometric induced by an inner product on
homomorphism vectors proposed by Dell, Grohe, and Rattan [6].

For “simple-enough” classes of graphs, these pseudometrics can be computed up to an
arbitrarily small additive error ε in polynomial time in the straightforward way: compute
“enough” terms by computing the first graphs in F and then counting homomorphisms from
them one by one. To this end, we call a class of graphs F polynomial-time enumerable if
there is a polynomial-time algorithm that, on input 1k, outputs all graphs in Fk. Theorem 26
only considers d1

F for simplicity, but the calculations can directly be adapted to d∞F and d2
F .

The proof is deferred to the full version of the paper.

I Theorem 26. Let F be a polynomial-time enumerable class of graphs for which #Hom(F)
is in polynomial time. Then, for every ε > 0, there is a polynomial-time algorithm Dε

F
that takes two graphs G and H as input and outputs a real number Dε

F (G,H) such that
|d1
F (G,H)−Dε

F (G,H)| ≤ ε holds for all G and H.

Among the classes to which Theorem 26 applies are the class C of all cycles, the class P
of all paths, and for every fixed d ≥ 1, the class of all complete d-ary trees.

8 Conclusion

We established the rich complexity-theoretic behaviour of the problem HomInd(F) for
a variety of graph classes. It was already known that this problem can be solved in
polynomial time for the class of paths, trees and bounded treewidth graphs. Our results are
complementary: there exist polynomial-time-decidable graph classes for which this problem
is undecidable, even though these graph classes satisfy strong structural restrictions (such as
bounded treewidth). For the class of complete graphs and directed paths, we also provide
tight upper and lower bounds for the complexity of HomInd(F). Our techniques rely on
combinatorial constructions of graphs with almost-identical homomorphism vectors: these
constructions might be of independent interest.

Perhaps the most interesting direction of further work is the study of graph metrics
induced by homomorphism vectors. These metrics induce natural measures of similarity
between graphs: such measures serve as an important black-box component for the design of
practical graph learning algorithms. Therefore, a better understanding of these metrics will
enable a theoretical analysis of practical graph learning tools.

References
1 V. Arvind, J. Köbler, S. Kuhnert, and Y. Vasudev. Approximate Graph Isomorphism. In

B. Rovan, V. Sassone, and P. Widmayer, editors, Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science, volume 7464 of Lecture Notes
in Computer Science, pages 100–111. Springer Verlag, 2012.

2 L. Babai. Graph Isomorphism in Quasipolynomial Time. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC ’16), pages 684–697, 2016.

3 J. Böker. Color Refinement, Homomorphisms, and Hypergraphs. arXiv e-prints, page
arXiv:1903.12432, March 2019.

4 R. Curticapean. Parity Separation: A Scientifically Proven Method for Permanent Weight Loss.
In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors, Proceedings
of the 43rd International Colloquium on Automata, Languages and Programming (Track A),
volume 55 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

J. Böker, Y. Chen, M. Grohe, and G. Rattan 54:13

5 V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen from the other
side. Theoretical Computer Science, 329(1-3):315–323, 2004.

6 H. Dell, M. Grohe, and G. Rattan. Lovász Meets Weisfeiler and Leman. In I. Chatzigiannakis,
C. Kaklamanis, D. Marx, and D. Sannella, editors, Proceedings of the 45th International
Colloquium on Automata, Languages and Programming (Track A), volume 107 of LIPIcs, pages
40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

7 R. Diestel. Graph Theory. Springer Verlag, 4th edition, 2010.
8 M. Grohe, K. Kersting, M. Mladenov, and P. Schweitzer. Color Refinement and its Applications.

In G. Van den Broeck, K. Kersting, S. Natarajan, and D. Poole, editors, An Introduction to
Lifted Probabilistic Inference. Cambridge University Press, 2017. To appear. URL: https:
//lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cr.pdf.

9 M. Grohe, G. Rattan, and G. Woeginger. Graph Similarity and Approximate Isomorphism.
In I. Potapov, P.G. Spirakis, and J. Worrell, editors, Proceedings of the 43rd International
Symposium on Mathematical Foundations of Computer Science, volume 117 of LIPIcs, pages
20:1–20:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

10 L. A. Hemaspaandra and H. Vollmer. The satanic notations: counting classes beyond #P and
other definitional adventures. SIGACT News, 26(1):2–13, 1995.

11 A. Kolla, I. Koutis, V. Madan, and A.K. Sinop. Spectrally Robust Graph Isomorphism. In
I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, editors, Proceedings of the 45th
International Colloquium on Automata, Languages, and Programming, volume 107 of LIPIcs,
pages 84:1–84:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

12 L. Lovász. Operations with Structures. Acta Mathematica Hungarica, 18:321–328, 1967.
13 L. Lovász. Large Networks and Graph Limits. American Mathematical Society, 2012.
14 V. Nagarajan and M. Sviridenko. On the maximum quadratic assignment problem. In

Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
516–524, 2009.

15 R. O’Donnell, J. Wright, C. Wu, and Y. Zhou. Hardness of Robust Graph Isomorphism,
Lasserre Gaps, and Asymmetry of Random Graphs. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1659–1677, 2014.

16 N. Shervashidze, P. Schweitzer, E.J. van Leeuwen, K. Mehlhorn, and K.M. Borgwardt.
Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12:2539–2561,
2011.

17 N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient graphlet
kernels for large graph comparison. In Artificial Intelligence and Statistics, pages 488–495,
2009.

18 J. Simon. On Some Central Problems in Computational Complexity. PhD thesis, Cornell
University, 1975.

19 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

20 E. R. Van Dam and W. H. Haemers. Which graphs are determined by their spectrum? Linear
Algebra and its applications, 373:241–272, 2003. doi:10.1016/S0024-3795(03)00483-X.

21 S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borgwardt;. Graph Kernels.
Journal of Machine Learning Research, 11:1201–1242, 2010.

22 K. W. Wagner. Some Observations on the Connection Between Counting an Recursion.
Theoretical Computuer Science, 47(3):131–147, 1986.

MFCS 2019

https://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cr.pdf
https://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cr.pdf
https://doi.org/10.1016/S0024-3795(03)00483-X

SZX-Calculus: Scalable Graphical Quantum
Reasoning
Titouan Carette
CNRS, LORIA, Inria Mocqua, Université de Lorraine, F 54000 Nancy, France
titouan.carette@loria.fr

Dominic Horsman
LIG, Université Grenoble Alpes, France
dominic.horsman@univ-grenoble-alpes.fr

Simon Perdrix
CNRS, LORIA, Inria Mocqua, Université de Lorraine, F 54000 Nancy, France
https://members.loria.fr/SPerdrix/
simon.perdrix@loria.fr

Abstract
We introduce the Scalable ZX-calculus (SZX-calculus for short), a formal and compact graphical
language for the design and verification of quantum computations. The SZX-calculus is an extension
of the ZX-calculus, a powerful framework that captures graphically the fundamental properties of
quantum mechanics through its complete set of rewrite rules. The ZX-calculus is, however, a low
level language, with each wire representing a single qubit. This limits its ability to handle large and
elaborate quantum evolutions. We extend the ZX-calculus to registers of qubits and allow compact
representation of sub-diagrams via binary matrices. We show soundness and completeness of the
SZX-calculus and provide two examples of applications, for graph states and error correcting codes.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum computing, categorical quantum mechanics, completeness, scalab-
ility

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.55

Related Version Full proofs for this paper can be found at arXiv:1905.00041 [7].

Funding This work is funded by ANR-17-CE25-0009 SoftQPro, PIA-GDN/Quantex, and LUE
project UOQ.

1 Introduction

The ZX-calculus is an intuitive and powerful graphical language for quantum computing,
introduced by Coecke and Duncan [11]. Quantum processes can be represented by ZX-
diagrams, which can be seen intuitively as a generalisation of quantum circuits. The language
is also equipped with a set of rewrite rules which preserves the represented quantum evolution.
Unlike quantum circuits, the ZX-calculus has been proved to be complete for various universal
fragments of pure quantum mechanics [26, 23, 27, 28, 43], and also mixed states quantum
mechanics [8]. Completeness means that any equality can be derived in this language: if two
diagrams represent the same quantum process then they can be transformed one into the other
using the rewriting rules of the language. Completeness opens avenues for various applications
of the ZX-calculus in quantum information processing, including circuit optimisation [16, 30]
– which out-performs all other technics for T-count reductions [34] – error correcting codes
[17, 21, 9], lattice surgery [14], measurement-based quantum computing [19, 15, 32] etc.
Automated tools for quantum reasoning, e.g. Quantomatic [35] and PyZX [33], are also
based on the ZX-calculus. The ZX-calculus is also used as intermediate representation in a
commercial quantum compiler [12].

© Titouan Carette, Dominic Horsman, and Simon Perdrix;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1618-4081
mailto:titouan.carette@loria.fr
mailto:dominic.horsman@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-1808-2409
https://members.loria.fr/SPerdrix/
mailto:simon.perdrix@loria.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://arxiv.org/abs/1812.09114
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 SZX-Calculus

The cornerstone of the ZX-calculus is that fundamental properties of quantum mechanics
can be captured graphically. The language remains, however, relatively low level: each wire
represents a single qubit, a feature that limits the design of larger-scale and more complex
quantum procedures. We address in this paper the problem of scalability of the ZX-calculus.
In [9], the authors – including one of the present paper – demonstrated that the ZX-calculus
can be used in practice to design and verify quantum error correcting codes. They introduced
various shortcuts to deal with the scalability of the language: mainly the use of thick wires
to represent registers of qubits and matrices to represent sub-diagrams, and hence reason
about families of diagrams in a compact way. However, the approach lacked a general theory
and fundamental properties like soundness and completeness.

Contributions. We introduce the Scalable ZX-calculus, SZX calculus for short, to provide
theoretical foundations to this approach. We extend the ZX-calculus to deal with registers of
qubits by introducing some new generators and rewrite rules. We show soundness – i.e. the
new generators can be used in a consistent way – as well as completeness of the SZX-calculus.
A simple but key ingredient is the introduction of two generators, not present in [9], for
dividing and gathering registers of qubits. A wire representing a register of (n+m)-qubits can
be divided into two wires representing respectively n and m qubits. Similarly two registers
can be gathered into a single larger one. We also extend the generators of the ZX-calculus so
that they can act not only on a single qubit but on a register of qubits. The SZX-calculus
is then constructed as a combination of the ZX-calculus and the sub-language made of the
divider and the gatherer, by adding the necessary rewrite rules describing how these two
sub-languages interact. We show that the SZX-calculus is universal, sound, and complete,
providing an intuitive and formal language to represent quantum operations on an arbitrarily
large finite number of qubits. The use of the divider and the gatherer allows one to derive
inductive (graphical) proofs.

Furthermore, the SZX-calculus provides the fundamental structures – namely the (co)co-
mutative Hopf algebras – to develop a graphical theory of binary matrices, following work
on graphical linear algebra [5]. As a consequence, we introduce an additional generator
parametrized by a binary matrix together with four simple rewrite rules. Note that, while
matrices were also used in [9], we introduce here a more elementary generator acting on
a single register (1 input/1 output) rather than two registers (2 inputs/2 outputs). We
prove completeness of the SZX-calculus augmented with these matrices. The use of matrices
allows a compact representation where subdiagrams can be replaced by matrices. Moreover,
basic matrix arithmetic can be done graphically. It makes the SZX-calculus with matrices a
powerful tool for formal and compact quantum reasoning.

In section 5, we show the SZX-calculus in action. The main application of the SZX-
calculus we consider in this paper is the graph state formalism [24]. We show how graph states
can be represented using SZX-diagrams and how some fundamental properties like fixpoint
properties, local complementation, and pivoting can be derived in the calculus. We also
consider error correcting code examples in order to show that the techniques for the design
and verification of codes developed in [9] can be performed smoothly in the SZX-calculus.

Related works. Scalability is crucial in the development of the ZX-calculus and more
generally for graphical languages. We review here some contributions in this domain that we
briefly compare to our approach.

The !-boxes formalism [31] is a meta language for graphical languages, which has been
extensively used in the development of the automated tool Quantomatic. A !-box is a region
(subdiagram) of a diagram which can be discarded or duplicated. There is also a first order

T. Carette, D. Horsman, and S. Perdrix 55:3

logic handling families of equations between concrete (i.e. !-box free) diagrams. In contrast,
the scalable ZX is not a meta-language but an actual graphical language equipped with an
equational theory (namely a coloured PROP). There is no obvious way to compare these two
approaches (even in terms of expressive power).

Monoidal multiplexing [10] corresponds to two categorical constructions which allow
representing n diagrams in parallel. Roughly speaking, one of the two constructions would
be equivalent to the use of big wires for the subclass of SZX-diagrams which are matrix,
divider and gatherer-free. It is worth noticing that, to our knowledge, monoidal multiplexing
has never been combined with the matrix approach, even though both were developed in the
same line of research on graphical linear algebra.

Recently, Miatto [39] has independently introduced a graphical calculus involving matrices,
and the equivalent of green spiders, dividers and gatherers. This graphical calculus has been
developed in the context of the tensor networks, and the author mainly shows that 6 kinds
of matrix products can be represented graphically. We note that the represented matrices
do not coincide with the ones we are axiomatising: the matrices represented in Miatto’s
language correspond to C2m×2n matrices whereas ours are in Fm×n2 , hence the equations
differ. It is however worth noting that equation Fig.6 in [39] essentially corresponds to the
equation governing the interaction between green spiders and the divider given in section 3.3.

Structure of the paper. We first present the ZX-calculus in section 2, then we introduce
the SZX-calculus in section 3, and an axiomatisation of binary matrices for compressing
diagrams in section 4. Finally, in section 5, we use the SZX-calculus for error correcting
codes and graph states. Full proofs for this paper can be found at arXiv:1905.00041 [7].

2 Background: the ZX-calculus

A ZX-diagram D : k → ` with k inputs and ` outputs is generated by: ∀n,m ∈ N, ∀α ∈ R,

α : n→ m : 1→ 1 : 0→ 2 : 2→ 2

α : n→ m : 1→ 1 : 2→ 0 : 0→ 0

and the two compositions: for any ZX-diagrams D0 : a→ b, D1 : b→ c, and D2 : c→ d:

D1 ◦ D0 = D1 ...D0 and D0 ⊗ D2 =
D0

D2

For any n,m, ZX[n,m] is the set of all ZX-diagrams of type n→ m. The ZX-diagrams
are representing quantum processes: for any ZX-diagram D : n→ m its interpretation JDK ∈
M2m×2n(C) is inductively defined as: JD1 ◦D0K = JD1K ◦ JD0K, JD0 ⊗D2K = JD0K⊗ JD2K,
and

r
α

z
:= |0m〉〈0n|+ eiα|1m〉〈1n| J K := |0〉〈0|+ |1〉〈1|

r
α

z
:= |+m〉〈+n|+ eiα|−m〉〈−n| J K := |+〉〈0|+ |−〉〈1|

r z
:= |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|

q y
:= 1

q y
:= |00〉+ |11〉

q y
:= 〈00|+ 〈11|

Where |0〉:=
(1

0
)
, |1〉:=

(0
1
)
, |+〉:=|0〉+|1〉√

2 , |−〉:=|0〉−|1〉√
2 , |ak+1〉:=|a〉⊗|ak〉, |a0〉:=1, and 〈a|:=|a〉†,

moreover n and m are respectively the number of inputs and outputs of the spiders.
When equal to zero, the angle of the green or red spider is omitted:

MFCS 2019

https://arxiv.org/abs/1812.09114

55:4 SZX-Calculus

...... := 0 and := 0

ZX-diagrams are universal for pure qubit quantum mechanics: ∀n,m ∈ N, and ∀M ∈
M2n×2m(C), there exists a ZX-diagram D : n→ m such that JDK = M .

ZX-diagrams also come with a set of graphical rewrite rules, or axioms, which allows
one to transform a diagram preserving its interpretation. Some of them are gathered under
the Only Topology Matters paradigm. When using these we label the equality by top. Two
diagrams that can be transformed into each other by moving around the wires are equal.
This can be derived from the following rules:

= = = = =
D... ...

... = D

...

The last set of rule expresses the naturality of the swap; in other words, that all the
generators can be passed through wires.

The legs of the spiders of ZX-calculus can be exchanged and bent. This implies that
diagrams are essentially graphs with inputs and outputs.

α = α α
...

...
= α

...

...

Finally, the rules that are not purely topological are given in Figure 1.

α

β

...
...

...

...

...
s1= α+β

w1= w2=
α s2=

c= b= α
h= α

α2α1
e=

β1 β2 β3

π γ
β1 = arg(z) + arg(z′)
β2 = 2 arg(i+ | z

z′ |)
β3 = arg(z)− arg(z′)
γ = x+ − arg(z) + π−β2

2

Figure 1 Axioms of the ZX-calculus, where x+ := α1+α2
2 , x− := x+ − α2, z := − sin(x+) +

i cos(x−), z′ := cos(x+)− i sin(x−) and z′ = 0⇒ β2 = 0. In the upper left rule, there must be at
least one wire between the spiders annotated by α and β. The colour-swapped version of those rules
also holds. A label is given to each axiom, above the equals sign, for later reference.

We write ZX ` D = D′ when D can be transformed into D′ using the rules of the
ZX-calculus. The rules of the ZX-calculus are sound: for any ZX-diagrams D,D′, ZX ` D =
D′ ⇒ JDK = JD′K i.e., the rules preserve the interpretation of the language. The language is
also complete: for any ZX-diagrams D,D′, JDK = JD′K⇒ ZX ` D = D′ i.e., whenever two
diagrams represent the same quantum evolution, we can transform one into the other using
the rules of the language [43].

3 The scalable ZX-calculus

In the ZX-calculus, each wire represents a single qubit. Therefore, a system acting on n

qubits will be represented by an n-input diagram. This quickly leads to intractable diagrams
when it comes to big systems. The extension to the SZX-calculus presented here provides a
more compact notation.

T. Carette, D. Horsman, and S. Perdrix 55:5

3.1 Divide and gather, a calculus for big wires

The input (resp. output) type of a ZX-diagram is its number of input wires, and hence
number of input qubits. In the SZX-calculus, wires represent registers of qubits. A wire
of type 1n represents a register of n qubits. A type of the SZX-calculus is then a formal
sum of the form

∑
i 1ni , the empty sum being denoted by 0. In other words, the set of

types of SZX-calculus is the free monoid over N∗, the set of positive integers. We denote
it 〈N∗〉. Graphically, we represent the wire of type 1n by an bold font wires labelled by
n1, a label that is omitted when it is not ambiguous. A normal font wire always denotes a
single qubit register of type 11. By convention the sum of m wires of type 1n is denoted mn

with 0n = m0 = 0. n1 is simply written n. Given a type a =
∑
i 1ni , its size is defined as

S(a) :=
∑
i ni.

Big wires can be divided into smaller ones and, conversely, can be gathered to form bigger
ones. For any n ∈ N, we introduce two new generators: the divider and gatherer of size n.
They are depicted as follows:

1n+1
1

1n
1n+1

1
1n

We take the convention that the divider and the gatherer of size 0 are the identity. We
define a fragment of the SZX, the wire calculus W.

I Definition 1 (W-calculus). The W-calculus is defined as the graphical language generated
by identity wires, the dividers, and the gatherers of any size, and satisfying the elimination
rule E= and the expansion rule P= .

The roles of the dividers and gatherers in the equations are perfectly symmetric, so each
time something is shown for dividers it also holds for gatherers by symmetry.

We now show a coherence theorem for scalable calculi: the rewiring theorem. It states
that two diagrams of the W-calculus with the same type are equal.

I Theorem 2. Let ω ∈W[a, b] and ω′ ∈W[c, d]: W ` ω = ω′ ⇔ a = c and b = d

This theorem has strong consequences. We can define generalized dividers able to divide
any wire of size 1a+b into a wire of size 1a and a wire of size 1b.

1a1a+b 1b

Those generalized dividers have a unique possible interpretation as diagrams of W-calculus
given by their types, and we know exactly the equations they verify: all the well typed ones.
In particular, an associativity-like law holds for generalized wires allowing us to define n-ary
generalized dividers.

:= =

Each time we use the property that any well typed equation in W is true, we will label
the equality by R.

1 On a blackboard the bold font might be advantageously replaced by struck-out wires.

MFCS 2019

55:6 SZX-Calculus

3.2 The SZX-diagrams
We now fuse the W-calculus and the ZX-calculus into one language: the full SZX-calculus.

The generators of SZX-diagrams are: ∀n,m ∈ N∗,∀k, ` ∈ N, ∀α ∈ Rn,

α : kn→`n : 1n→1n : 0→2n : 1n+1→1+1n : 1n→1n
α : kn→`n : 1n+1m→1m+1n : 2n→0 : 1+1n→1n+1 : 0→0

SZX-generators can be combined using the usual sequential and spacial compositions to form
SZX-diagrams. Note that for n = m = 1 we recover all the generators of the ZX-calculus.
We denote them, as in the ZX-calculus, using thin wires e.g. for : 11 → 11.
Any big wire can be labelled by its size n : 1n → 1n to avoid ambiguity. Such labels will
be used mainly for scalars i.e. diagrams with no input/output. Each green or red spider is
parametrised by a vector α ∈ Rn of angles. With slight abuse of notation we use a single
angle α0 ∈ R to denote the vector (α0, . . . , α0) ∈ Rn when the spider has at least one leg
(k + ` > 0) so that this leg can be labelled by n to avoid a potential ambiguity. Like in the
ZX-calculus, the angle α0 is omitted when α0 = 0.

The interpretation of ZX-diagrams is extended to SZX-diagrams as follows: for any SZX-
diagram D : a→ b, its interpretation JDKs is a triplet (M,a, b) where M ∈M2S(b)×2S(a)(C).
JDKs is inductively defined as: JD1 ◦D0Ks = (M1 ◦M0, a, c), JD0 ⊗D2Ks = (M0 ⊗M2, a+
c, b+ d) where JD0Ks = (M0, a, b), JD1Ks = (M1, b, c), and JD2Ks = (M2, c, d). Moreover:

J Ks:= (1√
2n

∑
x,y∈{0,1}n

(−1)x•y|y〉〈x|, 1n, 1n)
q y

s
:= (idn+1, 1n+1, 1+1n)

r
α

z

s
:= (

∑
x∈{0,1}n

eix•α|xk〉〈x`|, kn, `n)
q y

s
:= (idn+1, 1+1n, 1n+1)

r
α

z

s
:= J Ks

⊗` ◦
r

α
z

s
◦ J Ks

⊗k
r z

s
:= (

∑
x∈{0,1}n

|xx〉, 0, 2n)
r z

s
:= (

∑
x∈{0,1}n,y∈{0,1}m

|yx〉〈xy|, 1n+1m, 1m+1n)
r z

s
:= (

∑
x∈{0,1}n

〈xx|, 2n, 0)

J Ks:= (idn, 1n, 1n)
q y

s
:= 1

Where ∀u, v ∈ Rm, u • v =
∑m
i=1 uivi, M⊗0 = 1, and M⊗k+1 = M ⊗M⊗k.

I Theorem 3 (Universality). SZX-diagrams are universal for pure qubit quantum mechanics:
∀a, b ∈ 〈N∗〉,∀M ∈M2S(b)×2S(a)(C), ∃D : a→ b such that JDKs = (M,a, b).

3.3 The calculus
The SZX-calculus is based on distribution rules that allow dividers and gatherers to go
through the big generators. For this to work we need first to ensure that the swap behaves
naturally with respect to dividers and gatherers. This is given by the following two rules:

= =

Then the rules governing the interaction between dividers, gatherers and the so-called cups
and caps are:

U= A=

We put labels over the equals signs to allow subsequent reference to the rules. These
rules are sufficient to fully describe possible interactions between wires of any size, gatherers
and dividers. It remains to specify how dividers and gatherers interact with big generators:

T. Carette, D. Horsman, and S. Perdrix 55:7

α::β... ...
Z=

β

α

...
...

... ...

...
α::β... ...

X=
β

α

...
...

... ...

...
W=

Where α::β means that we append the phase α ∈ R to the (generalized) phase β ∈ Rn.
This completes the set of rules of the SZX-calculus. Note that all rules agree with the

interpretation, ensuring soundness of the SZX-calculus.
We see that any big generator sn is in fact just n copies of the corresponding size

one generator s acting in parallel. That is, a parallel composition but with a particular
permutation of the inputs and outputs. Such constructions are called multiplexed diagrams
in [10]. Multiplexed diagrams are shown to satisfy the same equations as size 1 diagrams.
The following lemma states the same results for big generators:

I Lemma 4. For any rule of the ZX-calculus, and any n ∈ N∗, the equation obtained by
replacing each generator by its big version of size n is provable in the SZX-calculus.

We can go even further than Lemma 4. In fact, the SZX-calculus is complete:

I Theorem 5. ∀a, b ∈ 〈N∗〉,∀D,D′ ∈ SZX[a, b], JDKs = JD′Ks ⇒ SZX ` D = D′.

Theorem 5 has interesting graphical consequences, ensuring that the Only Topology
Matters paradigm applies to the SZX-calculus. In particular, swaps of any size behave
naturally with respect to any diagram:

D... ...
... = D

...

This suggests a more compact presentation close to the one of the ZX-calculus, given in
the next subsection.

3.4 Compact axiomatisation
Assuming that Only Topology Matters, the SZX-calculus enjoys a more compact axiomatisa-
tion:

Z1= α::β
Z2=

β

α W=

α

β

...
...

...

...

...
S= α+β

W1= W2= α
H’= α

c= b=
α s2=

P= α2α1
e=

β1 β2 β3

π γ

β1 = arg(z) + arg(z′)
β2 = 2 arg(i+ | z

z′ |)
β3 = arg(z)− arg(z′)
γ = x+ − arg(z) + π−β2

2

Figure 2 Axioms of the SZX-calculus, where x+ := α1+α2
2 , x− := x+ − α2, z := − sin(x+) +

i cos(x−), z′ := cos(x+)− i sin(x−) and z′ = 0⇒ β2 = 0. In the spider fusion rule, there must be at
least one wire between the spiders annotated by α and β. The colour-swapped versions of those
rules also hold. The bold font wires stand for wires of any size n ≥ 1.

MFCS 2019

55:8 SZX-Calculus

I Lemma 6. All the rules of the SZX-calculus can be derived from the compact axioms of
Figure 2 together with the Only Topology Matters paradigm.

4 Axiomatising binary matrices for compressing diagrams

In this section, we introduce a new generator for the SZX-calculus, parametrized by a binary
matrix, allowing us to represent large graphical structures in a compact way: ∀n,m ∈ N∗,
∀A ∈ Fm×n2 , A : 1n → 1m. All-ones matrices will be omitted: := J where
∀i, j, Ji,j = 1. The new generator is interpreted as follows:

∀A ∈ Fm×n2 ,
r

A
z

s
= (|x〉 7→ |Ax〉, 1n, 1m)

where the matrix product Ax is in F2 and x is seen as a column vector i.e. (Ax)i =∑n
k=1 Ai,kxk mod 2.

I Remark 7. Note that, compared to [9], the matrix is not necessarily connected to green
and red spiders. It is therefore a more elementary generator.

Those matrices are required to satisfy the four axioms given in Figure 3, which are sound.

0
0=

1
1=

[
A
B

]
L=

A

B
[CD] C=

C

D

m

Figure 3 Axioms for matrices, where A ∈ Fa×n2 , B ∈ Fb×n2 , C ∈ Fm×c2 and D ∈ Fm×d2 .
[
A
B

]
and

[CD] are block matrices.

I Remark 8. The rules of the ZX-calculus define a scaled Hopf algebra between the green
and red structure. This algebra is commutative and cocommutative with a trivial antipode.
Thus, following the work of [44], the notion of {0, 1}-matrices naturally emerges. It is worth
noticing that it coincides with the matrices we are introducing in this section. Notice however
that our axiomatisation of the matrices strongly relies on their interaction with the divider
and the gatherer, which are not present in [44].

In the following, the SZX-calculus refers to the SZX-calculus augmented with the matrix
generators and the axioms of Figure 3.

Useful equations can be derived. First, matrices are copied and erased by green nodes.

I Lemma 9. For any A ∈ Fm×n2 , SZX `
A K=

A

A and SZX `
A G=

We define backward matrices as follows: A :=
A

.

I Lemma 10. ∀A ∈ Fm×n2 , SZX `
A

m
H=

At
n

where At is the transpose of A.

As a consequence, conjugating by Hadamard () reverses the orientation and transposes
the matrix (up to scalars). Since conjugating by Hadamard colour-swaps the spiders and
preserves the other generators of the language, one can derive from any equation a new one
(up to scalars) which consists in colour-swapping the spiders, transposing the matrices and
then changing their orientation. For instance Lemma 9 gives that matrices are cocopied and
coerased by red nodes:

T. Carette, D. Horsman, and S. Perdrix 55:9

I Lemma 11. For any A ∈ Fm×n2 , SZX `
A

n

J=
A

A

m

and SZX `
A

n
F=

m

Basic matrix operations like addition and multiplication (in F2) can be implemented
graphically:

I Lemma 12. For any A,B ∈ Fm×n2 , and any C ∈ Fk×m2 , SZX `
A

B

m

p=
A+B

and

SZX `
A C m=

CA
.

Whereas all the previous properties about matrices are angle-free, some spiders whose
angles are multiple of π can be pushed through matrices as follows:

I Lemma 13. For any A ∈ Fm×n2 , any v ∈ Fn2 and any u ∈ Fm2 ,

SZX `
πv A N=

πAvA
and SZX `

πuA O=
πAtu A

Injective matrices enjoy some specific properties:

I Lemma 14. For any A ∈ Fm×n2 , the following properties are equivalent:
(1) A is injective. (3) SZX `

A A I1=

(2) SZX `
A

m

=

n

(4) SZX `

A

A =
A

By Hadamard conjugation, we obtain some dual properties for surjective matrices:

I Lemma 15. For any A ∈ Fm×n2 , the following properties are equivalent:
(1) A is surjective. (3) SZX `

A A S1=

(2) SZX `
A

= (4) SZX `
A
m

=

A

A

n

Due to the universality of the SZX-calculus, matrices are expressible as SZX-diagrams,
and the matrix generator A is actually a compact representation of a green/red bipartite
graphs whose biadjacency matrix is A:

I Lemma 16. For any A ∈ Fm×n2 , SZX `
A B= A... ...

|A|−m

where A represents
in the RHS diagram the adjacency matrix of the bipartite green/red graph, and |A| is the
number of 1 in A.

Lemma 16 and 5 imply the completeness of the SZX-calculus with matrices:

I Theorem 17. SZX-calculus with matrices is complete.

5 Applications

This section provides two examples of the SZX-calculus in action.

MFCS 2019

55:10 SZX-Calculus

5.1 Application to graph states
Graph states [24] form a subclass of quantum states that can be represented by simple
undirected graphs where each vertex represents a qubit and the edges represent intuitively
the entanglement between qubits. The graph state formalism is widely used in quantum
information processing, providing combinatorial characterisations of quantum properties
in measurement-based quantum computing [40, 13, 6], secret sharing [37, 29, 25], error
correcting codes [41, 4] etc. Graph states are also strongly related to the ZX-calculus [18]
where they have been used for instance in proving the completeness of some fragments [1, 20].
A graph state is a particular kind of stabilizer state and thus can be defined as a fixpoint:
given a graph G of order n, the corresponding graph state |G〉 is a the unique state (up to
a global phase) such that for any vertex u, applying X = J π K on u and Z = J π K on
its neighbours leaves the state unchanged. The global phase is fixed by the extra condition
〈0n|G〉 = 1√

n
.

A graph state admits a simple representation as a ZX-diagram: each vertex is represented
by a green spider connected to an output, and each edge is represented by a Hadamard (

) connecting the corresponding green dots. In the following, we provide two alternative,
scalable, representations of graph states: the first is a compact matrix-based representation of
bipartite graph states, the second is an inductive definition of arbitrary graph state, allowing
inductive proofs. In both representations, we provide diagrammatic proofs of some key
properties of the graph states.

First, any bipartite graph state can be depicted with a SZX-diagram via its biadjacency
matrix:

I Lemma 18. For any bipartite graph G with biadjacency matrix Γ ∈ Fm×n2 ,
u

v
Γ

n }

~

s

= (|G〉, 0, 1n+m)

Proof of Lemma 18. The last two components are straightforward typing, for the first one
we use the characterization of |G〉 by its stabilizer [24]. |G〉 is the unique (up to a scalar)
common fix point of XuZNu

for all vertices u of G. Each subset of vertices is identified with
its characteristic vector, e.g. Nuπ is a vector with a π at the position i if the i-th vertex is
a neighbour of u, and 0 otherwise. The following proof uses the fact that Γtu = Nu. We
assume u is in the first part of the bipartite graph (the other case is similar):

Nuπ
Γ

Nuπ

n

s1=
Γ

n

It remains to take care of the scalar. We see that
√

2n+m〈0n+m|G〉 = 1:

Γ
n

X,Z=
Γ n

h=
Γ n

G=
n n

s2= J

A fundamental property of graph states is that graph transformations (like pivoting and
local complementation) can be performed on graph states using local operations. Given a
bipartite graph G, pivoting according to an edge (u, v) produces a graph denoted G ∧ uv
where the labels u and v are exchanged and their neighbourhood is complemented: for any
w ∈ Nu \ v and t ∈ Nv \ u, w and t are connected in G ∧ uv iff they are not connected in G.
Pivoting can be implemented on bipartite graph states by simply applying Hadamard on u

T. Carette, D. Horsman, and S. Perdrix 55:11

and v: Hu,v|G〉 = |G ∧ uv〉 [42, 38]. This property can be derived in the SZX-calculus, and
its proof, given in arXiv:1905.00041 due to space limits, provides an interesting example of
the SZX-calculus in action:

I Lemma 19. Given a bipartite graph G and an edge (u, v),

SZX `
ΓG

n

=
ΓG∧uv

n

where ΓG (resp. ΓG∧uv) is the biadjacency matrix of G (resp. G∧uv) such that u corresponds
to the first row (resp. column) and v to the first column (resp. row).

Now we introduce a general inductive definition of graph state boxes, which associates a
SZX-diagram with any (not necessarily bipartite) graph.

I Definition 20. Given a graph G with ordered vertices, the corresponding graph state box
is defined by:

K1 := and G := G\u
τ−1τ

where K1 is the graph of order 1, u is the first vertex of G, τ is a permutation on the list of
vertices of G\u which puts the neighbourhood of u first and then the other vertices.

I Lemma 21.
r
G

z

s
= (|G〉, 0, 1n).

We will now use the SZX-calculus to show the property known as local complementation.
Given a vertex u of a graph G the local complementation of G according to u is the graph
G ? u which is G where all edges between neighbours of u have been complemented, that is,
edges became non-edges and non-edges became edges.

I Theorem 22. For any graph G and vertex u, SZX ` G ? u = G

-1
2 u 1

2 Nu
.

5.2 Application to error correcting codes
The original motivation for the development of a scalable ZX-calculus was the design of
tripartite Coherent Parity Checking (CPC) error correcting codes [9]. We reformulate here in
the SZX-calculus the definition of those codes and the proof of some elementary properties.

The idea is to spread the information of some logical qubits over a bigger number of
physical qubits. In our example the code is parametrized by three matrices B ∈ Fa×b2 ,
P ∈ Fc×b2 and C ∈ Fc×a2 . The aim is to encode b logical qubits into a+b+c physical ones.

I Definition 23. The tripartite CPC encoder E : 1b → 1a+1b+1c and decoder D :
1a+1b+1c → 1b defined by the matrices B ∈ Fa×b2 , P ∈ Fc×b2 and C ∈ Fc×a2 are:

E :=
B Ct

P t

a+b−c

D :=
BCt

P t

a+b−c

We can prove that the code is correct when there are no errors, in other words:

MFCS 2019

https://arxiv.org/abs/1812.09114

55:12 SZX-Calculus

I Lemma 24. The encoder is an isometry that is SZX ` D ◦ E = .

We now end by showing what happens when errors go through the decoder: x, y and z
(resp. x′, y′, z′) are vectors of phase flip errors (resp. bit flip errors). The implementation
of the decoder involves some measurements, which according to Lemma 25, produce some
syndromes (|x| =

∑
i xi mod 2, z+Cx+Py, x′+y′+Ctz′+BP tz′, and |z′|) which guide us to

correct the middle wire. Of course the exact protocol and its efficiency depend on clever
choices of B, P and C, see [9] for details.

I Lemma 25. The following equalities hold in the SZX-calculus:

yπ

BCt

P t

zπ

xπ

a+b−c

= (
Btx+y

)
π

(z+Cx+Py)π

|x|π

BCt

P t

a+b−c

y′π

BCt

P t

z′π

x′π

a+b−c

=

(
x′+y′+Ctz′+BP tz′

)
π

(
y′+P tz′

)
π

|z′|π

BCt

P t

a+b−c

6 Conclusion and further work

We have introduced the SZX-calculus, a formal and compact graphical language for quantum
reasoning, and proved its universality, soundness, and completeness. This work is addressing
two main objectives. First, to demonstrate that some of the ingredients for scalability which
were sketched out in [9] – like the thick wires and the use of matrices – together with
some new ingredients – like the divider and the gatherer – can be axiomatised to provide
a complete scalable graphical language. Our second objective was to provide a sufficiently
precise definition of the language to consider an implementation in a graphical proof assistant
like Quantomatic. This last point would pave the way towards the formal verification of
large scale quantum protocols and algorithms.

We aim to provide a language ready for applications and available to most of the
quantum computing community. For this reason, we have deliberately avoided a categorical
presentation. A fully categorical description of the scalable construction will be the subject
of further work. We nevertheless provide here a sketch of how our construction can be
generalised in a categorical setting. Graphical languages can be defined as props, see [3] and
[44], that is symmetric strict monoidal categories whose set of objects is freely generated by
one object we denote 1. In fact it is possible to define a scalable construction for any coloured
prop. Given a set C of colours we can define two 〈〈C〉− ε〉-coloured props DC and GC whose
objects are formal sums of 1nc

and morphisms are respectively generated by dividers and
gatherers for each pair (n, c). The elimination rule is a distribution rule as in [36], which
allows us to define the composed prop DC ;GC . The prop of wires WC is then defined as
this composition quotiented by the expansion rule. This last pro satisfies a rewire theorem
similar to Theorem 2. Then given a C-coloured prop P, we define the 〈〈C〉 − ε〉-coloured
prop P which has the same generators and equations as those of P on wires of size 1. Finally
the scalable prop SP is defined as the composition of prop DC ; P;GC quotiented by the
expansion rule. The corresponding distribution rules follows the same pattern as in 3.3. Such
a generalization gives scalable versions of any graphical language based on props such as the
ZW–calculus [22], the ZH-calculus [2] or IH [5].

T. Carette, D. Horsman, and S. Perdrix 55:13

References
1 Miriam Backens. The ZX-Calculus is Complete for Stabilizer Quantum Mechanics. New

Journal of Physics, 16(9):093021, September 2014. doi:10.1088/1367-2630/16/9/093021.
2 Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum

computations involving classical non-linearity. In Peter Selinger and Giulio Chiribella, editors,
Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax,
Canada, 3-7th June 2018, volume 287 of Electronic Proceedings in Theoretical Computer
Science, pages 23–42. Open Publishing Association, 2019. doi:10.4204/EPTCS.287.2.

3 John C Baez, Brandon Coya, and Franciscus Rebro. Props in network theory. arXiv preprint
arXiv:1707.08321, 2017. arXiv:1707.08321.

4 BA Bell, DA Herrera-Martí, MS Tame, D Markham, WJ Wadsworth, and JG Rarity. Experi-
mental demonstration of a graph state quantum error-correction code. Nature communications,
5:3658, 2014.

5 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting Hopf algebras. Journal of
Pure and Applied Algebra, 221(1):144–184, 2017.

6 Daniel E Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. Generalized flow and
determinism in measurement-based quantum computation. New Journal of Physics, 9(8):250,
2007. URL: http://stacks.iop.org/1367-2630/9/i=8/a=250.

7 Titouan Carette, Dominic Horsman, and Simon Perdrix. SZX-calculus: Scalable graphical
quantum reasoning, 2019. arXiv:1905.00041.

8 Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of
Graphical Languages for Mixed States Quantum Mechanics. In International Colloquium on
Automata, Languages, and Programming (ICALP’19), 2019.

9 Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic Horsman.
Graphical structures for design and verification of quantum error correction. arXiv preprint
arXiv:1611.08012, 2016. arXiv:1611.08012.

10 Apiwat Chantawibul and Paweł Sobociński. Monoidal Multiplexing. In International Col-
loquium on Theoretical Aspects of Computing, pages 116–131. Springer, 2018.

11 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011.

12 Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and
Seyon Sivarajah. On the qubit routing problem. arXiv preprint arXiv:1902.08091, 2019.
arXiv:1902.08091.

13 Vincent Danos, Elham Kashefi, Prakash Panangaden, and Simon Perdrix. Extended Measure-
ment Calculus. Semantic Techniques in Quantum Computation, 2010.

14 Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code
lattice surgery, 2017. arXiv:1704.08670.

15 Ross Duncan. A graphical approach to measurement-based quantum computing. arXiv
preprint arXiv:1203.6242, 2012. arXiv:1203.6242.

16 Ross Duncan, Aleks Kissinger, Simon Pedrix, and John van de Wetering. Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus. arXiv preprint arXiv:1902.03178,
2019. arXiv:1902.03178.

17 Ross Duncan and Maxime Lucas. Verifying the Steane code with Quantomatic. Electronic
Proceedings in Theoretical Computer Science, 171:33–49, 2014. arXiv preprint arXiv:1902.03178.
arXiv:1902.03178.

18 Ross Duncan and Simon Perdrix. Graph states and the necessity of Euler decomposition. In
Conference on Computability in Europe (CiE), pages 167–177. Springer, 2009.

19 Ross Duncan and Simon Perdrix. Rewriting Measurement-Based Quantum Computations
with Generalised Flow. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm
Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming,
pages 285–296, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

MFCS 2019

https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.4204/EPTCS.287.2
http://arxiv.org/abs/1707.08321
http://stacks.iop.org/1367-2630/9/i=8/a=250
http://arxiv.org/abs/1905.00041
http://arxiv.org/abs/1611.08012
http://arxiv.org/abs/1902.08091
http://arxiv.org/abs/1704.08670
http://arxiv.org/abs/1203.6242
http://arxiv.org/abs/1902.03178
http://arxiv.org/abs/1902.03178

55:14 SZX-Calculus

20 Ross Duncan and Simon Perdrix. Pivoting Makes the ZX-Calculus Complete for Real Stabilizers.
In QPL 2013, Electronic Proceedings in Theoretical Computer Science, pages 50–62, 2013.
doi:10.4204/EPTCS.171.5.

21 Craig Gidney and Austin G Fowler. Efficient magic state factories with a catalyzed |CCZ> to
2|T> transformation. arXiv preprint arXiv:1812.01238, 2018. arXiv:1812.01238.

22 Amar Hadzihasanovic. The algebra of entanglement and the geometry of composition. arXiv
preprint arXiv:1709.08086, 2017. arXiv:1709.08086.

23 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two Complete Axiomatisations
of Pure-state Qubit Quantum Computing. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, pages 502–511, New York, NY, USA,
2018. ACM. doi:10.1145/3209108.3209128.

24 Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, M Nest, and H-J Briegel. En-
tanglement in graph states and its applications. Proceedings of the International School of
Physics “Enrico Fermi” on “Quantum Computers, Algorithms and Chaos”, 2006. arXiv:
quantph/0602096.

25 Jérôme Javelle, Mehdi Mhalla, and Simon Perdrix. New Protocols and Lower Bounds for
Quantum Secret Sharing with Graph States. In Kazuo Iwama, Yasuhito Kawano, and Mio
Murao, editors, Theory of Quantum Computation, Communication, and Cryptography, volume
7582 of Lecture Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-35656-8_1.

26 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of
the ZX-calculus for Clifford+ T quantum mechanics. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 559–568. ACM, 2018.

27 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A Generic Normal Form for
ZX-Diagrams and Application to the Rational Angle Completeness. In Proceedings of the
34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2019. arXiv:
1805.05296.

28 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the ZX-Calculus.
arXiv preprint arXiv:1903.06035, 2019. arXiv:1903.06035.

29 Elham Kashefi, Damian Markham, Mehdi Mhalla, and Simon Perdrix. Information flow in
secret sharing protocols. In Proc. 5th Workshop on Developments in Computational Models
(DCM)., volume 9, pages 87–97. EPTCS, 2009.

30 Aleks Kissinger and Arianne Meijer-van de Griend. CNOT circuit extraction for topologically-
constrained quantum memories. arXiv preprint arXiv:1904.00633, 2019. arXiv:1904.00633.

31 Aleks Kissinger and David Quick. A first-order logic for string diagrams. arXiv preprint
arXiv:1505.00343, 2015. arXiv:1505.00343.

32 Aleks Kissinger and John van de Wetering. Universal MBQC with generalised parity-phase
interactions and Pauli measurements. arXiv:1704.06504, 2017. arXiv:1704.06504.

33 Aleks Kissinger and John van de Wetering. PyZX, 2018. URL: https://github.com/
Quantomatic/pyzx.

34 Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus. arXiv
preprint arXiv:1903.10477, 2019. arXiv:1903.10477.

35 Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic
reasoning. In International Conference on Automated Deduction, pages 326–336. Springer,
2015.

36 Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163, 2004.
37 Damian Markham and Barry C. Sanders. Graph States for Quantum Secret Sharing. Physical

Review A, 78:042309, 2008. URL: doi:10.1103/PhysRevA.78.042309.
38 Mehdi Mhalla and Simon Perdrix. Graph states, pivot minor, and universality of (X, Z)-

measurements. arXiv preprint arXiv:1202.6551, 2012. arXiv:1202.6551.
39 Filippo M Miatto. Graphical Calculus for products and convolutions. arXiv preprint

arXiv:1903.01366, 2019. arXiv:1903.01366.

https://doi.org/10.4204/EPTCS.171.5
http://arxiv.org/abs/1812.01238
http://arxiv.org/abs/1709.08086
https://doi.org/10.1145/3209108.3209128
http://arxiv.org/abs/quantph/0602096
http://arxiv.org/abs/quantph/0602096
https://doi.org/10.1007/978-3-642-35656-8_1
http://arxiv.org/abs/1805.05296
http://arxiv.org/abs/1805.05296
http://arxiv.org/abs/1903.06035
http://arxiv.org/abs/1904.00633
http://arxiv.org/abs/1505.00343
http://arxiv.org/abs/1704.06504
https://github.com/Quantomatic/pyzx
https://github.com/Quantomatic/pyzx
http://arxiv.org/abs/1903.10477
doi:10.1103/PhysRevA.78.042309
http://arxiv.org/abs/1202.6551
http://arxiv.org/abs/1903.01366

T. Carette, D. Horsman, and S. Perdrix 55:15

40 Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-based quantum
computation on cluster states. Physical Review A, 68(2), August 2003. doi:10.1103/physreva.
68.022312.

41 D. Schlingemann and R. F. Werner. Quantum error-correcting codes associated with graphs.
Physical Review A, 65, 2001. doi:10.1103/PhysRevA.65.012308.

42 Maarten Van den Nest. Local equivalence of stabilizer states and codes. PhD thesis, Faculty of
Engineering, K.U. Leuven, Belgium, May 2005.

43 Renaud Vilmart. A Near-Optimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum
Mechanics. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 2019. arXiv:1812.09114.

44 Fabio Zanasi. Interacting Hopf Algebras: the theory of linear systems. arXiv preprint
arXiv:1805.03032, 2018. arXiv:1805.03032.

MFCS 2019

https://doi.org/10.1103/physreva.68.022312
https://doi.org/10.1103/physreva.68.022312
https://doi.org/10.1103/PhysRevA.65.012308
http://arxiv.org/abs/1812.09114
http://arxiv.org/abs/1805.03032

On the Stretch Factor of Polygonal Chains
Ke Chen
Department of Computer Science, University of Wisconsin–Milwaukee, USA
kechen@uwm.edu

Adrian Dumitrescu
Department of Computer Science, University of Wisconsin–Milwaukee, USA
dumitres@uwm.edu

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de

Csaba D. Tóth
Department of Mathematics, California State University Northridge, Los Angeles, CA
Department of Computer Science, Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Abstract
Let P = (p1, p2, . . . , pn) be a polygonal chain. The stretch factor of P is the ratio between the total
length of P and the distance of its endpoints,

∑n−1
i=1 |pipi+1|/|p1pn|. For a parameter c ≥ 1, we call

P a c-chain if |pipj |+ |pjpk| ≤ c|pipk|, for every triple (i, j, k), 1 ≤ i < j < k ≤ n. The stretch factor
is a global property: it measures how close P is to a straight line, and it involves all the vertices of
P ; being a c-chain, on the other hand, is a fingerprint-property: it only depends on subsets of O(1)
vertices of the chain.

We investigate how the c-chain property influences the stretch factor in the plane: (i) we show
that for every ε > 0, there is a noncrossing c-chain that has stretch factor Ω(n1/2−ε), for sufficiently
large constant c = c(ε); (ii) on the other hand, the stretch factor of a c-chain P is O

(
n1/2), for every

constant c ≥ 1, regardless of whether P is crossing or noncrossing; and (iii) we give a randomized
algorithm that can determine, for a polygonal chain P in R2 with n vertices, the minimum c ≥ 1 for
which P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n log n) space.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Theory of computation → Computational geometry

Keywords and phrases polygonal chain, vertex dilation, Koch curve, recursive construction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.56

Related Version A full version is available on the arXiv under http://arxiv.org/abs/1906.10217.

Funding Wolfgang Mulzer : Partially supported by ERC STG 757609.
Csaba D. Tóth: Supported in part by NSF CCF-1422311 and CCF-1423615.

Acknowledgements This work was initiated at the Fields Workshop on Discrete and Computational
Geometry, held July 31–August 4, 2017, at Carleton University. The authors thank the organizers
and all participants of the workshop for inspiring discussions and for providing a great research
atmosphere. This problem was initially posed by Rolf Klein in 2005. We would like to thank Rolf
Klein and Christian Knauer for interesting discussions on the stretch factor and related topics.

1 Introduction

Given a set S of n point sites in the plane, what is the best way to connect S into a geometric
network (graph)? This question has motivated researchers for a long time, going back as far
as the 1940s, and beyond [19,35]. Numerous possible criteria for a good geometric network

© Ke Chen, Adrian Dumitrescu, Wolfgang Mulzer, and Csaba D. Tóth;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 56; pp. 56:1–56:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kechen@uwm.edu
mailto:dumitres@uwm.edu
mailto:mulzer@inf.fu-berlin.de
mailto:csaba.toth@csun.edu
https://doi.org/10.4230/LIPIcs.MFCS.2019.56
http://arxiv.org/abs/1906.10217
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 On the Stretch Factor of Polygonal Chains

have been proposed, perhaps the most basic being the length. In 1955, Few [20] showed that
for any set of n points in a unit square, there is a traveling salesman tour of length at most√

2n+ 7/4. This was improved to at most 0.984
√

2n+ 11 by Karloff [23]. Similar bounds
also hold for the shortest spanning tree and the shortest rectilinear spanning tree [13, 16, 21].
Besides length, two further key factors in the quality of a geometric network are the vertex
dilation and the geometric dilation [31], both of which measure how closely shortest paths in
a network approximate the Euclidean distances between their endpoints.

The dilation (also called stretch factor [29] or detour [1]) between two points p and q in a
geometric graph G is defined as the ratio between the length of a shortest path from p to q
and the Euclidean distance |pq|. The dilation of the graph G is the maximum dilation over
all pairs of vertices in G. A graph in which the dilation is bounded above by t ≥ 1 is also
called a t-spanner (or simply a spanner if t is a constant). A complete graph in Euclidean
space is clearly a 1-spanner. Therefore, researchers focused on the dilation of graphs with
certain additional constraints, for example, noncrossing (i.e., plane) graphs. In 1989, Das
and Joseph [15] identified a large class of plane spanners (characterized by two simple local
properties). Bose et al. [6] gave an algorithm that constructs for any set of planar sites
a plane 11-spanner with bounded degree. On the other hand, Eppstein [18] analyzed a
fractal construction showing that β-skeletons, a natural class of geometric networks, can
have arbitrarily large dilation.

The study of dilation also raises algorithmic questions. Agarwal et al. [1] described
randomized algorithms for computing the dilation of a given path (on n vertices) in R2 in
O(n logn) expected time. They also presented randomized algorithms for computing the
dilation of a given tree, or cycle, in R2 in O(n log2 n) expected time. Previously, Narasimhan
and Smid [30] showed that an (1 + ε)-approximation of the stretch factor of any path, cycle,
or tree can be computed in O(n logn) time. Klein et al. [24] gave randomized algorithms for
a path, tree, or cycle in R2 to count the number of vertex pairs whose dilation is below a
given threshold in O(n3/2+ε) expected time. Cheong et al. [12] showed that it is NP-hard to
determine the existence of a spanning tree on a planar point set whose dilation is at most a
given value. More results on plane spanners can be found in the monograph dedicated to
this subject [31] or in several surveys [8, 17,29].

We investigate a basic question about the dilation of polygonal chains. More precisely,
we ask how the dilation between the endpoints of a polygonal chain (which we will call
the stretch factor, to distinguish it from the more general notion of dilation) is influenced
by fingerprint properties of the chain, i.e., by properties that are defined on O(1)-size
subsets of the vertex set. Such fingerprint properties play an important role in geometry,
where classic examples include the Carathéodory property1 [26, Theorem 1.2.3] or the Helly
property2 [26, Theorem 1.3.2]. In general, determining the effect of a fingerprint property
may prove elusive: given n points in the plane, consider the simple property that every 3
points determine 3 distinct distances. It is unknown [9, p. 203] whether this property implies
that the total number of distinct distances grows superlinearly in n.

Furthermore, fingerprint properties appear in the general study of local versus global
properties of metric spaces that is highly relevant to combinatorial approximation algorithms
that are based on mathematical programming relaxations [5]. In the study of dilation,

1 Given a finite set S of points in d dimensions, if every d + 2 points in S are in convex position, then S
is in convex position.

2 Given a finite collection of convex sets in d dimensions, if every d + 1 sets have nonempty intersection,
then all sets have nonempty intersection.

K. Chen, A. Dumitrescu, W. Mulzer, and C.D. Tóth 56:3

interesting fingerprint properties have also been found. For example, a (continuous) curve C
is said to have the increasing chord property [14,25] if for any points a, b, c, d that appear
on C in this order, we have |ad| ≥ |bc|. The increasing chord property implies that C has
(geometric) dilation at most 2π/3 [33]. A weaker property is the self-approaching property: a
(continuous) curve C is self-approaching if for any points a, b, c that appear on C in this
order, we have |ac| ≥ |bc|. Self-approaching curves have dilation at most 5.332 [22] (see
also [3]), and they have found interesting applications in the field of graph drawing [4, 7, 32].

We introduce a new natural fingerprint property and see that it can constrain the stretch
factor of a polygonal chain, but only in a weaker sense than one may expect; we also provide
algorithmic results on this property. Before providing details, we give a few basic definitions.

Definitions. A polygonal chain P in the Euclidean plane is specified by a sequence of n
points (p1, p2, . . . , pn), called its vertices. The chain P consists of n−1 line segments between
consecutive vertices. We say P is simple if only consecutive line segments intersect and they
only intersect at their endpoints. Given a polygonal chain P in the plane with n vertices
and a parameter c ≥ 1, we call P a c-chain if for all 1 ≤ i < j < k ≤ n, we have

|pipj |+ |pjpk| ≤ c|pipk|. (1)

Observe that the c-chain condition is a fingerprint condition that is not really a local dilation
condition – it is more a combination between the local chain substructure and the distribution
of the points in the subchains.

The stretch factor δP of P is defined as the dilation between the two end points p1 and
pn of the chain:

δP =
∑n−1

i=1 |pipi+1|
|p1pn|

.

Note that this definition is different from the more general notion of dilation (also called
stretch factor [29]) of a graph which is the maximum dilation over all pairs of vertices. Since
there is no ambiguity in this paper, we will just call δP the stretch factor of P .

For example, the polygonal chain P = ((0, 0), (1, 0), . . . , (n, 0)) is a 1-chain with stretch
factor 1; and Q = ((0, 0), (0, 1), (1, 1), (1, 0)) is a (

√
2 + 1)-chain with stretch factor 3.

Without affecting the results, the floor and ceiling functions are omitted in our calculations.
For a positive integer t, let [t] = {1, 2, . . . , t}. For a point set S, let conv(S) denote the
convex hull of S. All logarithms are in base 2, unless stated otherwise.

Our results. We deduce three upper bounds on the stretch factor of a c-chain P with n
vertices (Section 2). In particular, we have (i) δP ≤ c(n− 1)log c, (ii) δP ≤ c(n− 2) + 1, and
(iii) δP = O

(
c2√n− 1

)
.

From the other direction, we obtain the following lower bound (Section 3): For every
c ≥ 4, there is a family Pc = {P k}k∈N of simple c-chains, so that P k has n = 4k + 1 vertices
and stretch factor (n− 1)

1+log(c−2)−log c
2 , where the exponent converges to 1/2 as c tends to

infinity. The lower bound construction does not extend to the case of 1 < c < 4, which
remains open.

Finally, we present two algorithmic results (Section 4): (i) A randomized algorithm that
decides, given a polygonal chain P in R2 with n vertices and a threshold c > 1, whether P is
a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space. (ii) As a corollary, there

is a randomized algorithm that finds, for a polygonal chain P with n vertices, the minimum
c ≥ 1 for which P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space.

MFCS 2019

56:4 On the Stretch Factor of Polygonal Chains

2 Upper Bounds

At first glance, one might expect the stretch factor of a c-chain, for c ≥ 1, to be bounded by
some function of c. For example, the stretch factor of a 1-chain is necessarily 1. We derive
three upper bounds on the stretch factor of a c-chain with n vertices in terms of c and n
(cf. Theorems 1–3); see Fig. 1 for a visual comparison between the bounds. For large n,
the bound in Theorem 1 is the best for 1 ≤ c ≤ 21/2, while the bound in Theorem 3 is the
best for c > 21/2. In particular, the bound in Theorem 1 is tight for c = 1. The bound in
Theorem 2 is the best for c ≥ 2 and n ≤ 111c2.

500 1000 1500 2000

2

4

6

8

10

Figure 1 The values of n and c for which (i) Theorem 1, (ii) Theorem 2, and (iii) Theorem 3
give the current best upper bound.

Our first upper bound is obtained by a recursive application of the c-chain property. It
holds for any positive distance function that may not even satisfy the triangle inequality.

I Theorem 1. For a c-chain P with n vertices, we have δP ≤ c(n− 1)log c.

Proof. We prove, by induction on n, that

δP ≤ cdlog(n−1)e, (2)

for every c-chain P with n ≥ 2 vertices. In the base case, n = 2, we have δP = 1 and
cdlog(2−1)e = 1. Now let n ≥ 3, and assume that (2) holds for every c-chain with fewer than
n vertices. Let P = (p1, . . . , pn) be a c-chain with n vertices. Then, applying (2) to the first
and second half of P , followed by the c-chain property for the first, middle, and last vertex
of P , we get

n−1∑
i=1
|pipi+1| ≤

dn/2e−1∑
i=1

|pipi+1|+
n−1∑

i=dn/2e

|pipi+1|

≤ cdlog(dn/2e−1)e (|p1pdn/2e|+ |pdn/2epn|
)

≤ cdlog(dn/2e−1)e · c|p1pn|

≤ cdlog(n−1)e|p1pn|,

so (2) holds also for P . Consequently,

δP ≤ cdlog(n−1)e ≤ clog(n−1)+1 = c · clog(n−1) = c (n− 1)log c,

as required. J

K. Chen, A. Dumitrescu, W. Mulzer, and C.D. Tóth 56:5

Our second bound interprets the c-chain property geometrically and makes use of the
fact that P resides in the Euclidean plane.

I Theorem 2. For a c-chain P with n vertices, we have δP ≤ c(n− 2) + 1.

c−1
2

p1

1
pn

c−1
2

c
2

c
2

Figure 2 The entire chain P lies in an ellipse with foci p1 and pn.

Proof. Without loss of generality, assume that |p1pn| = 1. Since P is a c-chain, for every
1 < j < n, we have |p1pj |+ |pjpn| ≤ c|p1pn| = c. If we fix the points p1 and pn, then every
pj lies in an ellipse E with foci p1 and pn, for 1 < j < n, see Figure 2. The diameter of E
is its major axis, whose length is c. Since E contains all vertices of the chain P , we have
|p1p2|, |pn−1pn| ≤ c+1

2 ≤ c and |pjpj+1| ≤ c for all 1 < j < n − 1. Therefore the stretch
factor of P is bounded above by

δP =
∑n−1

j=1 |pjpj+1|
|p1pn|

= |p1p2|+ |pn−1pn|+
n−2∑
j=2
|pjpj+1|

≤ c+ 1
2 + c+ 1

2 + c(n− 3) = c(n− 2) + 1,

as required. J

Our third upper bound uses a volume argument to bound the number of long edges in P .

I Theorem 3. Let P = (p1, . . . , pn) be a c-chain, for some constant c ≥ 1, and let L =∑n−1
i=1 |pipi+1| be its length. Then L = O

(
c2√n− 1

)
|p1pn|, hence δP = O

(
c2√n− 1

)
.

Proof. We may assume that p1pn is a horizontal segment of unit length. By the argument
in the proof of Theorem 2, all points pi (i = 1, . . . , n) are contained in an ellipse E with foci
p1 and pn, where the major axis of E has length c. Let U be the minimal axis-aligned square
containing E; its side is of length c.

We set x = 8c2/
√
n− 1; and let L0 and L1 be the sum of lengths of all edges in P of

length at most x and more than x, respectively. By definition, we have L = L0 + L1 and

L0 ≤ (n− 1)x = (n− 1) · 8c2/
√
n− 1 = 8c2√n− 1. (3)

We shall prove that L1 ≤ 8c2√n− 1, implying L ≤ 2x(n− 1) = O
(
c2√n− 1

)
. For this, we

further classify the edges in L1 according to their lengths: For ` = 0, 1, . . . ,∞, let

P` =
{
pi : 2`x < |pipi+1| ≤ 2`+1x

}
. (4)

Since all points lie in an ellipse of diameter c, we have |pipi+1| ≤ c, for all i = 0, . . . , n− 1.
Consequently, P` = ∅ when c ≤ 2`x, or equivalently log(c/x) ≤ `.

MFCS 2019

56:6 On the Stretch Factor of Polygonal Chains

We use a volume argument to derive an upper bound on the cardinality of P`, for
` = 0, 1, . . . , blog(c/x)c. Assume that pi, pk ∈ P`, and w.l.o.g., i < k. If k = i + 1, then
by (4), 2`x < |pipk|. Otherwise,

2`x < |pipi+1| < |pipi+1|+ |pi+1pk| ≤ c|pipk|, or
2`x

c
< |pipk|.

Consequently, the disks of radius

R = 2`x

2c = 4 · 2`c√
n− 1

(5)

centered at the points in P` are interior-disjoint. The area of each disk is πR2. Since P` ⊂ U ,
these disks are contained in the R-neighborhood UR of the square U , i.e., the Minkowski
sum R+ U . For ` ≤ log(c/x), we have 2`x ≤ c, hence R = 2`x

2c ≤
c

2c = 1
2 ≤

c
2 . Then we can

bound the area of UR from above as follows:

area(UR) < (c+ 2R)2 ≤ (2c)2 = 4c2. (6)

Since UR contains |P`| interior-disjoint disks of radius R, we obtain

|P`| ≤
area(UR)
πR2 <

4c2

πR2 = 16c4

π22`x2 . (7)

For every segment pi−1pi with length more than x, we have that pi ∈ P`, for some ` ∈
{0, 1, . . . , blog(c/x)c}. The total length of these segments is

L1 ≤
blog(c/x)c∑

`=0
|P`| · 2`+1x <

blog(x/c)c∑
`=0

16c4

π22`x2 · 2
`+1x =

blog(x/c)c∑
`=0

32c4

π2`x

<
32c4

πx

∞∑
`=0

1
2`

= 64c4

πx
= 8c2

π
·
√
n− 1,

as required. Together with (3), this yields L ≤ 8
(
1 + c2/π

)
·
√
n− 1. J

3 Lower Bounds

We now present our lower bound construction, showing that the dependence on n for the
stretch factor of a c-chain cannot be avoided.

I Theorem 4. For every constant c ≥ 4, there is a set Pc = {P k}k∈N of simple c-chains, so
that P k has n = 4k + 1 vertices and stretch factor (n− 1)

1+log(c−2)−log c
2 .

By Theorem 3, the stretch factor of a c-chain in the plane is O
(
(n− 1)1/2) for every

constant c ≥ 1. Since

lim
c→∞

1 + log(c− 2)− log c
2 = 1

2 ,

our lower bound construction shows that the limit of the exponent cannot be improved.
Indeed, for every ε > 0, we can set c = 22ε+1

22ε−1 , and then the chains above have stretch factor
(n− 1)

1+log(c−2)−log c
2 = (n− 1)1/2−ε = Ω(n1/2−ε).

We first construct a family Pc = {P k}k∈N of polygonal chains. Then we show, in
Lemmata 5 and 6, that every chain in Pc is simple and indeed a c-chain. The theorem follows
since the claimed stretch factor is a consequence of the construction.

K. Chen, A. Dumitrescu, W. Mulzer, and C.D. Tóth 56:7

Construction of Pc. The construction here is a generalization of the iterative construction
of the Koch curve; when c = 6, the result is the original Cesàro fractal (which is a variant
of the Koch curve) [10]. We start with a unit line segment P 0, and for k = 0, 1, . . . , we
construct P k+1 by replacing each segment in P k by four segments such that the middle
three points achieve a stretch factor of c∗ = c−2

2 (this choice will be justified in the proof of
Lemma 6). Note that c∗ ≥ 1, since c ≥ 4.

We continue with the details. Let P 0 be the unit line segment from (0, 0) to (1, 0); see
Figure 3 (left). Given the polygonal chain P k (k = 0, 1, . . .), we construct P k+1 by replacing
each segment of P k by four segments as follows. Consider a segment of P k, and denote
its length by `. Subdivide this segment into three segments of lengths (1

2 −
a
c∗

)`, 2a
c∗
`, and

(1
2 −

a
c∗

)`, respectively, where 0 < a < c∗
2 is a parameter to be determined later. Replace the

middle segment with the top part of an isosceles triangle of side length a`. The chains P 0,
P 1, P 2, and P 4 are depicted in Figures 3 and 4.

(0, 0)
1

(1, 0) (0, 0)

1
2 −

a
c∗

a a

1
2 −

a
c∗

(1, 0)

2a
c∗

Figure 3 The chains P 0 (left) and P 1 (right).

Note that each segment of length ` in P k is replaced by four segments of total length
(1 + 2a(c∗−1)

c∗
)`. After k iterations, the chain P k consists of 4k line segments of total length(

1 + 2a(c∗−1)
c∗

)k

.
By construction, the chain P k (for k ≥ 1) consists of four scaled copies of P k−1. For

i = 1, 2, 3, 4, let the ith subchain of P k be the subchain of P k consisting of 4k−1 segments
starting from the ((i− 1)4k−1 + 1)th segment. By construction, the ith subchain of P k is
similar to the chain P k−1, for i = 1, 2, 3, 4.3 The following functions allow us to refer to
these subchains formally. For i = 1, 2, 3, 4, define a function fk

i : P k → P k as the identity
on the ith subchain of P k that sends the remaining part(s) of P k to the closest endpoint(s)
along this subchain. So fk

i (P k) is similar to P k−1. Let gi : Pc \ {P 0} → Pc be a piecewise
defined function such that gi(C) = σ−1 ◦ fk

i ◦ σ(C) if C is similar to P k, where σ : C → P k

is a similarity transformation. Applying the function gi on a chain P k can be thought of as
“cutting out” its ith subchain.

Figure 4 The chains P 2 (left) and P 4 (right).

3 Two geometric shapes are similar if one can be obtained from the other by translation, rotation, and
scaling; and are congruent if one can be obtained from the other by translation and rotation.

MFCS 2019

56:8 On the Stretch Factor of Polygonal Chains

Clearly, the stretch factor of the chain monotonically increases with the parameter a.
However, if a is too large, the chain is no longer simple. The following lemma gives a sufficient
condition for the constructed chains to avoid self-crossings.

I Lemma 5. For every constant c ≥ 4, if a ≤ c−2
2c , then every chain in Pc is simple.

Proof. Let T = conv(P 1). Observe that T is an isosceles triangle; see Figure 5 (left). We
first show the following:

B Claim. If a ≤ c−2
2c , then conv(P k) = T for all k ≥ 1.

Proof. We prove the claim by induction on k. It holds for k = 1 by definition. For the
induction step, assume that k ≥ 2 and that the claim holds for k − 1. Consider the chain
P k. Since it contains all the vertices of P 1, T ⊂ conv(P k). So we only need to show that
conv(P k) ⊂ T .

1
2 −

a
c∗

a a

1
2 −

a
c∗

2a
c∗

p

t

a
(

1
2 −

a
c∗

)
(

1
2 −

a
c∗

)2

Figure 5 Left: Convex hull T of P 1 in light gray; Right: Convex hulls of gi(P 2), i = 1, 2, 3, 4, in
dark gray, are contained in T .

By construction, P k ⊂
⋃4

i=1 conv(gi(P k)); see Figure 5 (right). By the inductive hypoth-
esis, conv(gi(P k)) is an isosceles triangle similar to T , for i = 1, 2, 3, 4. Since the bases of
conv(g1(P k)) and conv(g4(P k)) are collinear with the base of T by construction, due to
similarity, they are contained in T . The base of conv(g2(P k)) is contained in T . In order to
show conv(g2(P k)) ⊂ T , by convexity, it suffices to ensure that its apex p is also in T . Note
that the coordinates of the top point is t =

(
1/2, a

√
c2
∗ − 1/c∗

)
, so the supporting line ` of

the left side of T is

y =
2a
√
c2
∗ − 1
c∗

x, and

p =
(

1
2 −

a

2c∗
−
a2 (c2

∗ − 1
)

c2
∗

,

(
a

2c∗
+ a2

c2
∗

)√
c2
∗ − 1

)
.

By the condition of a ≤ c−2
2c = c∗

2(c∗+1) in the lemma, p lies on or below `. Under the same
condition, we have conv(g3(P k)) ⊂ T by symmetry. Then P k ⊂

⋃4
i=1 conv(gi(P k)) ⊂ T .

Since T is convex, conv(P k) ⊂ T . So conv(P k) = T , as claimed. C

We can now finish the proof of Lemma 5 by induction. Clearly, P 0 and P 1 are simple.
Assume that k ≥ 2, and P k−1 is simple. Consider the chain P k. For i = 1, 2, 3, 4, gi(P k) is
similar to P k−1, hence simple by the inductive hypothesis. Since P k =

⋃4
i=1 gi(P k), it is

sufficient to show that for all i, j ∈ {1, 2, 3, 4}, where i 6= j, a segment in gi(P k) does not
intersect any segments in gj(P k), unless they are consecutive in P k and they intersect at a
common endpoint. This follows from the above claim together with the observation that for
i 6= j, the intersection gi(P k) ∩ gj(P k) is either empty or contains a single vertex which is
the common endpoint of two consecutive segments in P k. J

K. Chen, A. Dumitrescu, W. Mulzer, and C.D. Tóth 56:9

In the remainder of this section, we assume that

a = c− 2
2c = c∗

2(c∗ + 1) . (8)

Under this assumption, all segments in P 1 have the same length a. Therefore, by construction,
all segments in P k have the same length

ak =
(

c∗
2(c∗ + 1)

)k

.

There are 4k segments in P k, with 4k + 1 vertices, and its stretch factor is

δP k = 4k

(
c∗

2(c∗ + 1)

)k

=
(

2c∗
c∗ + 1

)k

.

Consequently, k = log4(n− 1) = log(n−1)
2 , and

δP k =
(

2c∗
c∗ + 1

) log(n−1)
2

=
(

2c− 4
c

) log(n−1)
2

= (n− 1)
1+log(c−2)−log c

2 ,

as claimed. To finish the proof of Theorem 4, it remains to show the constructed polygonal
chains are indeed c-chains.

I Lemma 6. For every constant c ≥ 4, Pc is a family of c-chains.

We first prove a couple of facts that will be useful in the proof of Lemma 6. We defer an
intuitive explanation until after the formal statement of the lemma.

I Lemma 7. Let k ≥ 1 and let P k = (p1, p2, . . . , pn), where n = 4k + 1. Then the following
hold:
(i) There exists a sequence (q1, q2, . . . , qm) of m = 2 · 4k−1 points in R2 such that the chain

Rk = (p1, q1, p2, q2, . . . , pm, qm, pm+1) is similar to P k.
(ii) For k ≥ 2, define g5 : Pc \ {P 0, P 1} → Pc by

g5(P k) =
(
g3 ◦ g2(P k)

)
∪
(
g4 ◦ g2(P k)

)
∪
(
g1 ◦ g3(P k)

)
∪
(
g2 ◦ g3(P k)

)
.

Then g5(P k) is similar to P k−1.

Part (i) of Lemma 7 says that given P k, we can construct a chain Rk similar to P k

by inserting one point between every two consecutive points of the left half of P k, see
Figure 6 (left). Part (ii) says that the “top” subchain of P k that consists of the right half of
g2(P k) and the left half of g3(P k), see Figure 6 (right), is similar to P k−1.

Figure 6 Left: Chain P k with the scaled copy of itself Rk (in red); Right: Chain P k with its
subchain g5(P k) marked by its convex hull.

MFCS 2019

56:10 On the Stretch Factor of Polygonal Chains

Proof of Lemma 7. For (i), we review the construction of P k, and show that Rk and P k

can be constructed in a coupled manner. In Figure 7 (left), consider P 1 = (p1, p2, p3, p4, p5).
Recall that all segments in P 1 are of the same length a = c∗

2(c∗+1) . The isosceles triangles
∆p1p2p3 and ∆p1p3p5 are similar. Let σ : ∆p1p3p5 → ∆p1p2p3 be the similarity transfor-
mation. Let q1 = σ(p2) and q2 = σ(p4). By construction, the chain R1 = (p1, q1, p2, q2, p3)
is similar to P 1. In particular, all of its segments have the same length. So the isosceles
triangle ∆p1q1p2 is similar to ∆p1p3p5. Moreover, its base is the segment p1p2, so ∆p1q1p2
is precisely conv(g1(P 2)), see Figure 7 (right).

p1 p2

p3

p4 p5

q1

q2

v1 v2

v3

v4 v5

v6

v7 v8

v9

v10 v11

v17

Figure 7 Left: the chains P 1 and R1 (red); Right: the chains P 2 and R1 (red).

Write P 2 = (v1, v2, . . . , v17), then v3 = q1 by the above argument and v7 = q2 by
symmetry. Now ∆v1v2v3, ∆v3v4v5, ∆v5v6v7, and ∆v7v8v9 are four congruent isosceles
triangles, all of which are similar to ∆v1v9v17, since the angles are the same. Repeat the
above procedure on each of them to obtain R2 = (v1, u1, v2, u2, . . . , v8, u8, v9), which is similar
to P 2. Continue this construction inductively to get the desired chain Rk for any k ≥ 1.

For (ii), see Figure 7 (right). By definition, g5(P 2) is the subchain (v7, v8, v9, v10, v11).
Observe that the segments v7v8 and v10v11 are collinear by symmetry. Moreover, they are
parallel to v1v17 since ∠v7v8v9 = ∠v1v5v9. So g5(P 2) is similar to P 1; see Figure 7 (left).
Then for k ≥ 2, g5(P k) is the subchain of P k starting at vertex v7, ending at vertex v11. By
the construction of P k, g5(P k) is similar to P k−1. J

Due to space constraints, the proof of Lemma 6 is deferred to the full version.

4 Algorithm for Recognizing c-Chains

In this section, we design a randomized Las Vegas algorithm to recognize c-chains. More
precisely, given a polygonal chain P = (p1, . . . , , pn), and a parameter c ≥ 1, the algorithm
decides whether P is a c-chain, in O

(
n2.5 polylog n

)
expected time. By definition, P =

(p1, . . . , pn) is a c-chain if |pipj | + |pjpk| ≤ c |pipk| for all 1 ≤ i < j < k ≤ n; equivalently,
pj lies in the ellipse of major axis c with foci pi and pk. Consequently, it suffices to test,
for every pair 1 ≤ i < k ≤ n, whether the ellipse of major axis c|pipk| with foci pi and pk

contains pj , for all j, i < j < k. For this, we can apply recent results from geometric range
searching.

I Theorem 8. There is a randomized algorithm that can decide, for a polygonal chain
P = (p1, . . . , pn) in R2 and a threshold c > 1, whether P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space.

Agarwal, Matoušek and Sharir [2, Theorem 1.4] constructed, for a set S of n points in
R2, a data structure that can answer ellipse range searching queries: it reports the number
of points in S that are contained in a query ellipse. In particular, they showed that, for
every ε > 0, there is a constant B and a data structure with O(n) space, O

(
n1+ε

)
expected

K. Chen, A. Dumitrescu, W. Mulzer, and C.D. Tóth 56:11

preprocessing time, and O
(
n1/2 logB n

)
query time. The construction was later simplified

by Matoušek and Patáková [27]. Using this data structure, we can quickly decide whether a
given polygonal chain is a c-chain.

Proof of Theorem 8. Subdivide the polygonal chain P = (p1, . . . , pn) into two subchains of
equal or almost equal sizes, P1 = (p1, . . . , pdn/2e) and P2 = (pdn/2e, . . . , pn); and recursively
subdivide P1 and P2 until reaching 1-vertex chains. Denote by T the recursion tree. Then,
T is a binary tree of depth dlogne. There are at most 2i nodes at level i; the nodes at level i
correspond to edge-disjoint subchains of P , each of which has at most n/2i edges. Let Wi be
the set of subchains on level i of T ; and let W =

⋃
i≥0 Wi. We have |W | ≤ 2n.

For each polygonal chain Q ∈ W , construct an ellipse range searching data structure
DS(Q) described above [2] for the vertices of Q, with a suitable parameter ε > 0. Their
overall expected preprocessing time is

dlog ne∑
i=0

2i ·O
((n

2i

)1+ε
)

= O

n1+ε

dlog ne∑
i=0

(
1
2i

)ε
 = O

(
n1+ε

)
,

their space requirement is
∑dlog ne

i=0 2i ·O
(
n/2i

)
= O(n logn), and their query time at level i

is O
((
n/2i

)1/2 polylog
(
n/2i

))
= O

(
n1/2 polylog n

)
.

For each pair of indices 1 ≤ i < k ≤ n, we do the following. Let Ei,k denote the ellipse of
major axis c|pipk| with foci pi and pk. The chain (pi+1, . . . , pk−1) is subdivided into O(logn)
maximal subchains in W , using at most two subchains from each set Wi, i = 0, . . . , dlogne.
For each of these subchains Q ∈W , query the data structure DS(Q) with the ellipse Ei,k. If
all queries are positive (i.e., the count returned is |Q| in all queries), then P is a c-chain;
otherwise there exists j, i < j < k, such that pj /∈ Ei,k, hence |pipj | + |pjpk| > c|pipk|,
witnessing that P is not a c-chain.

The query time over all pairs 1 ≤ i < k ≤ n is bounded above by

(
n

2

) 2dlog ne∑
i=0

O
((
n/2i

)1/2 polylog
(
n/2i

))
=
(
n

2

)
·O
(
n1/2 polylog n

)
= O

(
n2.5 polylog n

)
.

This subsumes the expected time needed for constructing the structures DS(Q), for all
Q ∈W . So the overall running time of the algorithm is O

(
n2.5 polylog n

)
, as claimed. J

In the decision algorithm above, only the construction of the data structures DS(Q),
Q ∈W , uses randomization, which is independent of the value of c. The parameter c is used
for defining the ellipses Ei,k, and the queries to the data structures; this part is deterministic.
Hence, we can find the optimal value of c by Meggido’s parametric search [28] in the second
part of the algorithm.

Meggido’s technique reduces an optimization problem to a corresponding decision problem
at a polylogarithmic factor increase in the running time. An optimization problem is amenable
to this technique if the following three conditions are met [34]: (1) the objective function
is monotone in the given parameter; (2) the decision problem can be solved by evaluating
bounded-degree polynomials, and (3) the decision problem admits an efficient parallel
algorithm (with polylogarithmic running time using polynomial number of processors). All
three conditions hold in our case: The area of each ellipse with foci in S monotonically
increases with c; the data structure of [27] answers ellipse range counting queries by evaluating

MFCS 2019

56:12 On the Stretch Factor of Polygonal Chains

polynomials of bounded degree; and the
(

n
2
)
queries can be performed in parallel. Alternatively,

Chan’s randomized optimization technique [11] is also applicable. Both techniques yield the
following result.

I Corollary 9. There is a randomized algorithm that can find, for a polygonal chain P =
(p1, . . . , pn) in R2, the minimum c ≥ 1 for which P is a c-chain in O

(
n2.5 polylog n

)
expected

time and O(n logn) space.

We remark that, for c = 1, the test takes O(n) time: it suffices to check whether points
p3, . . . , pn lie on the line spanned by p1p2, in that order.

5 Concluding Remarks

We end with some final observations and pointers for further research.

1. For k ≥ 1, let P k
∗ = g2(P k) ∪ g3(P k), see Figure 8 (right). It is easy to see that P k

∗ is a
c-chain with n = 4k/2 + 1 vertices and has stretch factor

√
c(c− 2)/8(n−1)

1+log(c−2)−log c
2 .

Since
√
c(c− 2)/8 ≥ 1 for c ≥ 4, this improves the result of Theorem 4 by a constant

factor. Since this construction does not improve the exponent, and the analysis would be
longer (requiring a case analysis without new insights), we omit the details.

Figure 8 The chains P 4 (left) and P 4
∗ (right).

2. If c is used instead of c∗ = (c− 2)/2 in the lower bound construction, then the condition
c ≥ 4 in Theorem 4 can be replaced by c ≥ 1, and the bound can be improved from
(n− 1)

1+log(c−2)−log c
2 to (n− 1)

1+log c−log(c+1)
2 . However, we were unable to prove that the

resulting P k’s, k ∈ N, are c-chains, although a computer program has verified that the
first few generations of them are indeed c-chains.

3. The volume argument in Theorem 3 easily generalizes to higher dimensions. If P be a
c-chain in Rd for fixed c ≥ 1 and d ≥ 2, then δP = O

(
c2(n− 1)1−1/d

)
. It is interesting

to find out whether extra dimension(s) allows one to achieve a larger stretch factor.
4. The upper bounds in Theorem 1–3 are valid regardless of whether the chain is crossing

or not. On the other hand, the lower bound in Theorem 4 is given by noncrossing chains.
A natural question is whether a sharper upper bound holds if the chains are required to
be noncrossing. More specifically, can the exponent of n in the upper bound be reduced
to 1/2− ε, where ε > 0 depends on c?

5. Our algorithm in Section 4 can recognize c-chains with n vertices in O
(
n2.5 polylog n

)
expected time and O(n logn) space, using ellipse range searching data structures. It is
likely that the running time can be improved in the future, perhaps at the expense of
increased space, when suitable time-space trade-offs for semi-algebraic range searching
become available. The existence of such data structures is conjectured [2], but currently
remains open.

K. Chen, A. Dumitrescu, W. Mulzer, and C.D. Tóth 56:13

References
1 Pankaj K. Agarwal, Rolf Klein, Christian Knauer, Stefan Langerman, Pat Morin, Micha

Sharir, and Michael A. Soss. Computing the Detour and Spanning Ratio of Paths, Trees,
and Cycles in 2D and 3D. Discrete & Computational Geometry, 39(1-3):17–37, 2008. doi:
10.1007/s00454-007-9019-9.

2 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On Range Searching with Semialgebraic
Sets. II. SIAM J. Computing, 42(6):2039–2062, 2013. doi:10.1137/120890855.

3 Oswin Aichholzer, Franz Aurenhammer, Christian Icking, Rolf Klein, Elmar Langetepe, and
Günter Rote. Generalized self-approaching curves. Discrete Applied Mathematics, 109(1-2):3–
24, 2001. doi:10.1016/S0166-218X(00)00233-X.

4 Soroush Alamdari, Timothy M. Chan, Elyot Grant, Anna Lubiw, and Vinayak Pathak.
Self-approaching Graphs. In Walter Didimo and Maurizio Patrignani, editors, Proc. 20th
Symposium on Graph Drawing (GD), volume 7704 of LNCS, pages 260–271, Berlin, 2012.
Springer. doi:10.1007/978-3-642-36763-2_23.

5 Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh
Vempala. Local Versus Global Properties of Metric Spaces. SIAM J. Computing, 41(1):250–271,
2012. doi:10.1137/090780304.

6 Prosenjit Bose, Joachim Gudmundsson, and Michiel H. M. Smid. Constructing Plane Spanners
of Bounded Degree and Low Weight. Algorithmica, 42(3-4):249–264, 2005. doi:10.1007/
s00453-005-1168-8.

7 Prosenjit Bose, Irina Kostitsyna, and Stefan Langerman. Self-Approaching Paths in Simple
Polygons. In Boris Aronov and Matthew J. Katz, editors, Proc. 33rd Symposium on Compu-
tational Geometry (SoCG), volume 77 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl, 2017.
doi:10.4230/LIPIcs.SoCG.2017.21.

8 Prosenjit Bose and Michiel H. M. Smid. On plane geometric spanners: A survey and
open problems. Computational Geometry: Theory and Applications, 46(7):818–830, 2013.
doi:10.1016/j.comgeo.2013.04.002.

9 Peter Brass, William O. J. Moser, and János Pach. Research Problems in Discrete Geometry.
Springer, New York, 2005.

10 Ernesto Cesàro. Remarques sur la courbe de von Koch. Atti della R. Accad. della Scienze
fisiche e matem. Napoli, 12(15), 1905. Reprinted as §228 in Opere scelte, a cura dell’Unione
matematica italiana e col contributo del Consiglio nazionale delle ricerche, Vol. 2: Geometria,
analisi, fisica matematica, Rome, dizioni Cremonese, pp. 464–479, 1964.

11 Timothy M. Chan. Geometric Applications of a Randomized Optimization Technique. Discrete
& Computational Geometry, 22(4):547–567, 1999. doi:10.1007/PL00009478.

12 Otfried Cheong, Herman J. Haverkort, and Mira Lee. Computing a minimum-dilation spanning
tree is NP-hard. Computational Geometry: Theory and Applications, 41(3):188–205, 2008.
doi:10.1016/j.comgeo.2007.12.001.

13 Fan R. K. Chung and Ron L. Graham. On Steiner trees for bounded point sets. Geometriae
Dedicata, 11(3):353–361, 1981. doi:10.1007/BF00149359.

14 Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy. Unsolved Problems in Geometry,
volume 2 of Unsolved Problems in Intuitive Mathematics. Springer, New York, 1991. doi:
10.1007/978-1-4612-0963-8.

15 Gautam Das and Deborah Joseph. Which Triangulations Approximate the Complete Graph?
In Hristo Djidjev, editor, Proc. International Symposium on Optimal Algorithms, volume 401
of LNCS, pages 168–192, Berlin, 1989. Springer. doi:10.1007/3-540-51859-2_15.

16 Adrian Dumitrescu and Minghui Jiang. Minimum rectilinear Steiner tree of n points in
the unit square. Computational Geometry: Theory and Applications, 68:253–261, 2018.
doi:10.1016/j.comgeo.2017.06.007.

17 David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia, editors,
Handbook of Computational Geometry, chapter 9, pages 425–461. Elsevier, Amsterdam, 2000.

MFCS 2019

https://doi.org/10.1007/s00454-007-9019-9
https://doi.org/10.1007/s00454-007-9019-9
https://doi.org/10.1137/120890855
https://doi.org/10.1016/S0166-218X(00)00233-X
https://doi.org/10.1007/978-3-642-36763-2_23
https://doi.org/10.1137/090780304
https://doi.org/10.1007/s00453-005-1168-8
https://doi.org/10.1007/s00453-005-1168-8
https://doi.org/10.4230/LIPIcs.SoCG.2017.21
https://doi.org/10.1016/j.comgeo.2013.04.002
https://doi.org/10.1007/PL00009478
https://doi.org/10.1016/j.comgeo.2007.12.001
https://doi.org/10.1007/BF00149359
https://doi.org/10.1007/978-1-4612-0963-8
https://doi.org/10.1007/978-1-4612-0963-8
https://doi.org/10.1007/3-540-51859-2_15
https://doi.org/10.1016/j.comgeo.2017.06.007

56:14 On the Stretch Factor of Polygonal Chains

18 David Eppstein. Beta-skeletons have unbounded dilation. Computational Geometry: Theory
and Applications, 23(1):43–52, 2002. doi:10.1016/S0925-7721(01)00055-4.

19 László Fejes Tóth. Über einen geometrischen Satz. Mathematische Zeitschrift, 46:83–85, 1940.
20 Leonard Few. The shortest path and the shortest road through n points. Mathematika,

2(2):141–144, 1955. doi:10.1112/S0025579300000784.
21 Edgar N. Gilbert and Henry O. Pollak. Steiner minimal trees. SIAM Journal on Applied

Mathematics, 16(1):1–29, 1968. doi:10.1137/0116001.
22 Christian Icking, Rolf Klein, and Elmar Langetepe. Self-approaching curves. Mathematical

Proceedings of the Cambridge Philosophical Society, 125(3):441–453, 1999.
23 Howard J. Karloff. How Long can a Euclidean Traveling Salesman Tour Be? SIAM Journal

on Discrete Mathematics, 2(1):91–99, 1989. doi:10.1137/0402010.
24 Rolf Klein, Christian Knauer, Giri Narasimhan, and Michiel H. M. Smid. On the dilation

spectrum of paths, cycles, and trees. Computational Geometry: Theory and Applications,
42(9):923–933, 2009. doi:10.1016/j.comgeo.2009.03.004.

25 David G. Larman and Peter McMullen. Arcs with increasing chords. Mathematical
Proceedings of the Cambridge Philosophical Society, 72(2):205–207, 1972. doi:10.1017/
S0305004100047022.

26 Jiří Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

27 Jiří Matoušek and Zuzana Patáková. Multilevel Polynomial Partitions and Simplified
Range Searching. Discrete & Computational Geometry, 54(1):22–41, 2015. doi:10.1007/
s00454-015-9701-2.

28 Nimrod Megiddo. Linear-Time Algorithms for Linear Programming in R3 and Related
Problems. SIAM J. Computing, 12(4):759–776, 1983. doi:10.1137/0212052.

29 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

30 Giri Narasimhan and Michiel H. M. Smid. Approximating the Stretch Factor of Euclidean
Graphs. SIAM J. Comput., 30(3):978–989, 2000. doi:10.1137/S0097539799361671.

31 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge University
Press, 2007. doi:10.1017/CBO9780511546884.

32 Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter. On self-approaching and increasing-
chord drawings of 3-connected planar graphs. Journal of Computational Geometry, 7(1):47–
69, 2016. URL: http://jocg.org/index.php/jocg/article/view/223, doi:10.20382/jocg.
v7i1a3.

33 Günter Rote. Curves with increasing chords. Mathematical Proceedings of the Cambridge
Philosophical Society, 115(1):1–12, 1994. doi:10.1017/S0305004100071875.

34 Jeffrey S. Salowe. Parametric search. In Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 43, pages 969–982. CRC Press,
Boca Raton, 2nd edition, 2004. doi:10.1201/9781420035315.

35 Samuel Verblunsky. On the shortest path through a number of points. Proceedings of the
American Mathematical Society, 2:904–913, 1951. doi:10.1090/S0002-9939-1951-0045403-1.

https://doi.org/10.1016/S0925-7721(01)00055-4
https://doi.org/10.1112/S0025579300000784
https://doi.org/10.1137/0116001
https://doi.org/10.1137/0402010
https://doi.org/10.1016/j.comgeo.2009.03.004
https://doi.org/10.1017/S0305004100047022
https://doi.org/10.1017/S0305004100047022
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1137/0212052
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://doi.org/10.1137/S0097539799361671
https://doi.org/10.1017/CBO9780511546884
http://jocg.org/index.php/jocg/article/view/223
https://doi.org/10.20382/jocg.v7i1a3
https://doi.org/10.20382/jocg.v7i1a3
https://doi.org/10.1017/S0305004100071875
https://doi.org/10.1201/9781420035315
https://doi.org/10.1090/S0002-9939-1951-0045403-1

Deleting Edges to Restrict the Size of an
Epidemic in Temporal Networks
Jessica Enright
Global Academy of Agriculture and Food Security, University of Edinburgh, UK
jessica.enright@ed.ac.uk

Kitty Meeks
School of Computing Science, University of Glasgow, UK
kitty.meeks@glasgow.ac.uk

George B. Mertzios
Department of Computer Science, Durham University, UK
george.mertzios@durham.ac.uk

Viktor Zamaraev
Department of Computer Science, Durham University, UK
viktor.zamaraev@durham.ac.uk

Abstract
Spreading processes on graphs are a natural model for a wide variety of real-world phenomena,
including information or behaviour spread over social networks, biological diseases spreading over
contact or trade networks, and the potential flow of goods over logistical infrastructure. Often,
the networks over which these processes spread are dynamic in nature, and can be modeled with
graphs whose structure is subject to discrete changes over time, i.e. with temporal graphs. Here, we
consider temporal graphs in which edges are available at specified timesteps, and study the problem
of deleting edges from a given temporal graph in order to reduce the number of vertices (temporally)
reachable from a given starting point. This could be used to control the spread of a disease, rumour,
etc. in a temporal graph. In particular, our aim is to find a temporal subgraph in which a process
starting at any single vertex can be transferred to only a limited number of other vertices using
a temporally-feasible path (i.e. a path, along which the times of the edge availabilities increase).
We introduce a natural deletion problem for temporal graphs and we provide positive and negative
results on its computational complexity, both in the traditional and the parameterised sense (subject
to various natural parameters), as well as addressing the approximability of this problem.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Temporal networks, spreading processes, graph modification, parameterised
complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.57

Funding Kitty Meeks: supported by a Royal Society of Edinburgh Personal Research Fellowship,
funded by the Scottish Government.
George B. Mertzios: partially supported by the EPSRC Grants EP/P020372/1.
Viktor Zamaraev: supported by the EPSRC Grant EP/P020372/1.

Acknowledgements The authors wish to thank Bruno Courcelle and Barnaby Martin for useful
discussions and hints on monadic second order logic.

1 Introduction and motivation

A temporal graph is, loosely speaking, a graph that changes with time. A great variety
of modern and traditional networks can be modeled as temporal graphs; social networks,
wired or wireless networks which change dynamically, transportation networks, and several
physical systems are only a few examples of networks that change over time [31,38]. Due to

© Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jessica.enright@ed.ac.uk
mailto:kitty.meeks@glasgow.ac.uk
mailto:george.mertzios@durham.ac.uk
mailto:viktor.zamaraev@durham.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.57
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

its vast applicability in many areas, this notion of temporal graphs has been studied from
different perspectives under various names such as time-varying [1,24,44], evolving [11,15,22],
dynamic [14, 27], and graphs over time [33]; for a recent attempt to integrate existing
models, concepts, and results from the distributed computing perspective see the survey
papers [12–14] and the references therein. Mainly motivated by the fact that, due to causality,
entities and information in temporal graphs can “flow” only along sequences of edges whose
time-labels are increasing, most temporal graph parameters and optimization problems
that have been studied so far are based on the notion of temporal paths (see Definition 2
below) and other path-related notions, such as temporal analogues of distance, diameter,
reachability, exploration, and centrality [2–4,19,21,35,37]. Recently, non-path temporal graph
problems have also been addressed theoretically, including for example temporal variations
of coloring [36], vertex cover [5], and maximal cliques [30,49,50].

Inspired by the foundational work of Kempe et al. [32], we adopt a simple model for
such time-varying networks, in which the vertex set remains unchanged while each edge is
equipped with a set of time-labels.

I Definition 1 (temporal graph). A temporal graph is a pair (G,λ), where G = (V,E) is an
underlying (static) graph and λ : E → 2N is a time-labelling function which assigns to every
edge of G a set of discrete-time labels.

For every edge e ∈ E in the underlying graph G of a temporal graph (G,λ), λ(e) denotes
the set of time slots at which e is active in (G,λ).

Unless stated otherwise, to simplify the presentation of our results we restrict our
attention in this paper to temporal graphs in which each edge is assigned a singleton set by
the time-labelling function, that is, in which each edge is active at exactly one time.

Spreading processes on networks or graphs are a topic of significant research across
network science [7], and a variety of application areas [28, 29], as well as inspiring more
theoretical algorithmic work [23]. Part of the motivation for this interest is the usefulness
of spreading processes for modelling a variety of natural phenomena, including biological
diseases spreading over contact networks, and rumours or news (both fake and real) spreading
over information-passing networks. The rise of quantitative approaches in modelling these
phenomena is supported by the increasing number and size of network datasets that can be
used as denominator graphs on which processes can spread (e.g. human mobility and contact
networks [42], agricultural trade networks [39], and social networks [34]). Typically, a vertex
in one of these networks represents some entity that has a state in the process (for example,
being infected with a disease, or holding a belief), and edges represent contacts over which
the state can spread to other vertices.

Our work is partly motivated by the need to control contagion (be it biological or
informational) that may spread over contact networks. Data specifying timed contacts that
could spread an infectious disease are recorded in a variety of settings, including movements of
humans via commuter patterns and airline flights [16], and fine-grained recording of livestock
movements between farms in most European nations [40]. There is very strong evidence
that these networks play a critical role in large and damaging epidemics, including the 2009
H1N1 influenza pandemic [10] and the 2001 British foot-and-mouth disease epidemic [28].
Because of the key importance of timing in these networks to their capacity to spread disease,
methods to assess the susceptibility of temporal graphs and networks to disease incursion
have recently become an active area of work within network epidemiology in general, and
within livestock network epidemiology in particular [9, 41,47,48].

Here, similarly to [20], we focus our attention on deleting edges from (G,λ) in order
to limit the temporal connectivity of the remaining temporal subgraph. To this end, the
following temporal extension of the notion of a path in a static graph is fundamental [32, 35].

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:3

I Definition 2 (temporal path). A temporal path from u to v in a temporal graph (G,λ) is
a path from u to v in G, composed of edges e0, e1, . . . , ek such that each edge ei is assigned a
time t(ei) ∈ λ(ei), where t(ei) < t(ei+1) for 0 ≤ i < k.

In many applications, it may be more realistic to generalise our notion of temporal paths
so that the time between arriving at and leaving any vertex must fall within some fixed range.
For example, in the context of disease transmission, an upper bound on the permitted time
between entering and leaving a vertex might represent the time within which an infection
would be detected and eliminated (thus ensuring no further transmission). On the other
hand, a lower bound might represent the time between individuals being exposed to an
infection and becoming infectious themselves. We formalise this as follows:

I Definition 3. Let (G,λ) be a temporal graph and let α ≤ β ∈ N. An (α, β)-temporal path
from u to v in (G,λ) is a path from u to v in G, composed of edges e0, e1, . . . , ek, such that each
edge ei, 0 ≤ i < k, is assigned a time t(ei) from its image in λ, where α ≤ t(ei+1)− t(ei) ≤ β.

Our contribution

We consider a natural deletion problem for temporal graphs, namely Temporal Reachab-
ility Edge Deletion (for short, TR Edge Deletion), as well as its optimisation version,
and study its computational complexity, both in the traditional and the parameterised sense,
subject to natural parameters. Given a temporal graph (G,λ) and two natural numbers k, h,
the goal is to delete at most k edges from (G,λ) such that, for every vertex v of G, there
exists a temporal path to at most h− 1 other vertices.

In Section 3, we show that TR Edge Deletion is NP-complete, even on very restricted
classes of graphs. We give two different reductions. The first shows that, assuming the
Exponential Time Hypothesis, it is unlikely that we can improve significantly on a brute-force
approach when considering how the running-time depends on the input size and the number
of permitted deletions. The second demonstrates that TR Edge Deletion is para-NP-hard
(i.e. NP-hard even for constant-valued parameters) with respect to each one of the parameters
h, maximum degree ∆G, or lifetime of (G,λ) (i.e. the maximum label assigned by λ to any
edge of G).

In Section 4, we turn our attention to approximation algorithms for the optimisation
version of the problem, Min TR Edge Deletion, in which the goal is to find a minimum-size
set of edges to delete. We begin by describing a polynomial-time algorithm to compute an
h-approximation to Min TR Edge Deletion on arbitrary temporal graphs, then show
how similar techniques can be applied to compute a c-approximation on inputs in which the
underlying graph has cutwidth c. We conclude our consideration of approximation algorithms
by showing that in general there is unlikely to be a polynomial-time algorithm to compute
any constant-factor approximation, even on temporal graphs of lifetime two.

In Section 5, we consider exact FPT algorithms. Our hardness results show that the
problem remains intractable when parameterised by h or ∆G alone; here we obtain an
FPT algorithm by parameterising simultaneously by h, ∆G and the treewidth tw(G) of the
underlying (static) graph G. In doing so, we demonstrate a general framework in which a
celebrated result by Courcelle, concerning relational structures with bounded treewidth (see
Theorem 14) can be applied to solve problems in temporal graphs.

We note that all of our results can be applied, with minor modifications to the proofs, to
the setting of (α, β)-temporal paths.

MFCS 2019

57:4 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

2 Preliminaries

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges,
respectively. An edge between two vertices u and v of G is denoted by uv, and in this
case u and v are said to be adjacent in G. Given a temporal graph (G,λ), where G =
(V,E), the maximum label assigned by λ to an edge of G, called the lifetime of (G,λ), is
denoted by T (G,λ), or simply by T when no confusion arises. That is, T (G,λ) = max{t ∈
λ(e) : e ∈ E}. Throughout the paper we consider temporal graphs with finite lifetime T .
Furthermore, we assume that the given labelling λ is arbitrary, i.e. (G,λ) is given with
an explicit list of labels for every edge. Thus, the size of the input temporal graph (G,λ)
is O

(
|V |+ T +

∑T
t=1 |Et|

)
= O(n + mT): when we are considering temporal graphs in

which edges are active at a single timestep, it suffices to only consider the space required to
represent the single time assigned to each edge, and thus the size of the temporal graph is
O(n+m log T). We say that an edge e ∈ E appears at time t if t ∈ λ(e), and in this case we
call the pair (e, t) a time-edge in (G,λ). Given a subset E′ ⊆ E, we denote by (G,λ) \ E′

the temporal graph (G′, λ′), where G′ = (V,E \ E′) and λ′ is the restriction of λ to E \ E′.
We say that a vertex v is temporally reachable from u in (G,λ) if there exists a temporal

path from u to v. Furthermore we adopt the convention that every vertex v is temporally
reachable from itself. The temporal reachability set of a vertex u, denoted by reachG,λ(u), is
the set of vertices which are temporally reachable from vertex u. The temporal reachability of
u is the number of vertices in reachG,λ(u). Furthermore, the maximum temporal reachability
of a temporal graph is the maximum of the temporal reachabilities of its vertices.

In this paper we mainly consider the following problem.

Temporal Reachability Edge Deletion (TR Edge Deletion)

Input: A temporal graph (G,λ), and k, h ∈ N.
Output: Is there a set E′ ⊆ E(G), with |E′| ≤ k, such that the maximum temporal
reachability of (G,λ) \ E′ is at most h?

Note that the problem clearly belongs to NP as a set of edges acts as a certificate (the
reachability set of any vertex in a given temporal graph can be computed in polynomial
time [3, 32, 35]). It is worth noting here that the (similarly-flavored) deletion problem for
finding small separators in temporal graphs was studied recently, namely the problem of
removing a small number of vertices from a given temporal graph such that two fixed vertices
become temporally disconnected [26,51].

3 Computational hardness

The main results of this section demonstrate that TR Edge Deletion is NP-complete even
under very strong restrictions on the input. Our first result shows that the trivial brute-force
algorithm, running in time nO(k), in which we consider all possible sets of k edges to delete,
cannot be significantly improved in general.

I Theorem 4. TR Edge Deletion is W[1]-hard when parameterised by the maximum
number k of edges that can be removed, even when the input temporal graph has lifetime 2.
Moreover, assuming ETH, there is no f(k)τo(k) time algorithm for TR Edge Deletion,
where τ is the size of the input temporal graph.

The W[1]-hardness reduction of Theorem 4 also implies that the problem TR Edge
Deletion is NP-complete, even on temporal graphs with lifetime at most two. We note
that, for temporal graphs of lifetime one, the problem is solvable in polynomial time: in

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:5

this setting, the reachability set of each vertex is precisely its closed neighbourhood, so the
problem reduces to that of deleting a set of at most k edges so that every vertex has degree
at most h− 1 which is solvable in polynomial time [43, Theorem 33.4].

We now demonstrate that TR Edge Deletion remains NP-complete on temporal graphs
of lifetime two even if the underlying graph has bounded degree and the maximum permitted
size of a temporal reachability set is bounded by a constant.

I Theorem 5. TR Edge Deletion is NP-complete, even when the maximum temporal
reachability h is at most 7 and the input temporal graph (G,λ) has:
1. maximum degree ∆G of the underlying graph G at most 5, and
2. lifetime at most 2.
Therefore TR Edge Deletion is para-NP-hard with respect to each of the parameters h,
∆G, and lifetime T (G,λ).

Proof. As we mentioned in Section 2, the problem trivially belongs to NP. Now we give a
reduction from the following well-known NP-complete problem [46].

3,4-SAT

Input: A CNF formula Φ with exactly 3 variables per clause, such that each variable
appears in at most 4 clauses.
Output: Does there exists a truth assignment satisfying Φ?
Let Φ be an instance of 3, 4-SAT with variables x1, . . . , xn, and clauses C1, . . . , Cm.

We may assume without loss of generality that every variable xi appears at least once
negated and at least once unnegated in Φ. Indeed, if a variable xi appears only negated
(resp. unnegated) in Φ, then we can trivially set xi = 0 (resp. xi = 1) and then remove from Φ
all clauses where xi appears; this process would provide an equivalent instance of 3,4-SAT
of smaller size. Now we construct an instance ((G,λ), k, h) of TR Edge Deletion which is
a yes-instance if and only if Φ is satisfiable.

vxi

xixi

2

11111

2

Figure 1 The gadget corresponding to variable xi. The number beside an edge is the time step
at which that edge appears. The bold edges are the ones we refer to as literal edges.

We construct (G,λ) as follows. For each variable xi we introduce in G a copy of the
subgraph shown in Figure 1, which we call an xi-gadget. There are three special vertices in
an xi-gadget: xi and xi, which we call literal vertices, and vxi

which we call the head vertex
of the xi-gadget. All the edges incident to vxi appear in time step 1, the other two edges of
xi-gadget, which we call literal edges, appear in time step 2. Additionally, for every clause

MFCS 2019

57:6 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

Cs we introduce in G: 1) a clause vertex Cs that is adjacent to the three literal vertices
corresponding to the literals of Cs, and 2) one more vertex adjacent only to Cs, which we
call the satellite vertex of Cs. All the new edges incident to Cs appear in time step 1. See
Figure 2 for an illustration. Finally, we set k = n and h = 7.

First recall that, in Φ, every variable xi appears at least once negated and at least once
unnegated. Therefore, since every variable xi appears in at most four clauses in Φ, it follows
that each of the two vertices corresponding to the literals xi, xi is connected to at most
three clause gadgets. Therefore the degree of each vertex corresponding to a literal in the
constructed temporal graph (G,λ) (see Figure 2) is at most five. Moreover, it can be easily
checked that the same also holds for every other vertex of (G,λ), and thus ∆G,λ ≤ 5.

We continue by observing temporal reachabilities of the vertices of (G,λ). A literal vertex
can temporally reach only the corresponding clause vertices, and the two neighbours in its
gadget. Since every literal belongs to at most 4 clauses in Φ, the temporal reachability of the
literal vertex in (G,λ) is at most 7 (including the vertex itself). The head vertex of a gadget
temporally reaches only the vertices of the gadget, hence the temporal reachability of any
head vertex in (G,λ) is 8. Any other vertex belonging to a gadget can temporally reach only
its unique neighbour in G and so has temporal reachability 2. Every clause vertex can reach
only the corresponding literal vertices, their neighbours incident to the literal edges, and its
own satellite vertex. Hence the temporal reachability of every clause vertex in (G,λ) is 8.
Finally, every satellite vertex reaches only its neighbour, and thus its temporal reachability
is 2. Therefore in our instance of TR Edge Deletion we only need to care about temporal
reachabilities of the clause and head vertices.

Now we show that, if there is a set E of n edges such that the maximum temporal
reachability of the modified graph (G,λ) \ E is at most 7, then Φ is satisfiable. First, notice
that since the temporal reachability of every head vertex is decreased in the modified graph
and the number of gadgets is n, the set E contains exactly one edge from every gadget. Hence,
as the temporal reachability of every clause vertex Cs is also decreased, set E must contain
at least one literal edge that is incident to a literal neighbour of Cs. We now construct a
truth assignment as follows: for every literal edge in E we set the corresponding literal to
TRUE. If there are unassigned variables left we set them arbitrarily, say, to TRUE.

Since E has one edge in every gadget, every variable was assigned exactly once. Moreover,
by the above discussion, every clause has a literal that is set to TRUE by the assignment.
Hence the assignment is well-defined and satisfies Φ.

To show the converse, given a truth assignment (α1, . . . , αn) satisfying Φ we construct a
set E of n edges such that the maximum temporal reachability of (G,λ) \ E is at most 7.
For every i ∈ [n] we add to E the literal edge incident to xi if αi = 1, and the literal edge
incident to xi otherwise. By the construction, E has exactly one edge from every gadget.
Moreover, since the assignment satisfies Φ, for every clause Cs set E contains at least one
literal edge corresponding to one of the literals of Cs. Hence, by removing E from (G,λ), we
strictly decrease temporal reachability of every head and clause vertex. J

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:7

vxi

xixi

2

11111

2

vxj

xjxj

2

11111

2

vxk

xkxk

2

11111

2

Cs

111

1

Figure 2 A subgraph of a temporal graph corresponding to an instance of 3,4-SAT.

4 Approximability

Given the strength of the hardness results proved in Section 3, it is natural to ask whether the
problem admits efficient approximation algorithms for the following optimisation problem.

Minimum Temporal Reachability Edge Deletion (Min TR Edge Deletion)

Input: A temporal graph (G,λ) and h ∈ N.
Output: A set X of edges of minimum size such that the maximum temporal reachability
of (G,λ) \X is at most h?

We begin with some more notation. If (G,λ) is a temporal graph and v ∈ V (G), we say
that T is a reachable subtree for v if T is a subtree of G, v ∈ V (T) and, for all u ∈ V (T)\{v},
there is a temporal path from v to u in (T, λ′), where λ′ is the restriction of λ to the edges
of T . We first observe that, if a temporal graph has maximum reachability more than h, we
can efficiently find a minimal reachable subtree witnessing this fact.

I Lemma 6. Let (G,λ) be a temporal graph, and h a positive integer. There is an algorithm
running in polynomial time which, on input ((G,λ), h),
1. if the maximum temporal reachability of (G,λ) is at most h, outputs “YES”;
2. if the maximum temporal reachability of (G,λ) is greater than h, outputs a vertex v ∈ V (G)

and a reachable subtree T for v where T has exactly h+ 1 vertices.

Let h be a positive integer and (G = (V,E), λ) be a temporal graph. We say that edge
set E′ ⊆ E is a valid deletion of (G = (V,E), λ) with respect to h if the maximum temporal
reachability of (G = (V,E), λ)\E′ is at most h. Where h is clear from the context, we may
not refer to it explicitly. We now make a simple observation about valid deletions.

I Lemma 7. Let (G,λ) be a temporal graph and h a positive integer. Suppose that T is a
reachable subtree for some v ∈ V (G) and that T has more than h vertices. If E′ ⊆ E(G) is a
valid deletion with respect to h, then |E′ ∩ E(T)| ≥ 1.

Using these two observations, we now describe our first approximation algorithm.

I Theorem 8. There exists a polynomial-time algorithm to compute an h-approximation to
Min TR Edge Deletion, where h denotes the maximum permitted reachability.

MFCS 2019

57:8 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

Proof. Let ((G,λ), h) be an input instance of Min TR Edge Deletion, and let Eopt ⊆ E
be a minimum-cardinality edge set such that (G,λ) \Eopt has temporal reachability at most
h. It suffices to demonstrate that we can find in polynomial time a set E′ ⊆ E such that
(G,λ) \ E′ has temporal reachability at most h, and |E′| ≤ h|Eopt|. We claim that the
following algorithm achieves this.
1. Initialise E′ := ∅.
2. While (G,λ) has reachability greater than h:

a. Find a pair (v, T) such that v ∈ V (G), T is a reachable subtree for v and |T | = h+ 1.
b. Add E(T) to E′, and update (G,λ)← (G,λ) \ E′.

3. Return E′.

We begin by considering the running time of this algorithm. By Lemma 6 we can
determine whether to execute the while loop and, if we do enter the loop, execute Step
2(a), all in polynomial time. Steps 1 and 2(b) can clearly both be carried out in linear time.
Moreover, the total number of iterations of the while loop is bounded by the number of edges
in G, so we see that the algorithm will terminate in polynomial time.

At every iteration, the algorithm removes exactly h edges, while the optimum deletion
set Eopt must remove at least one of these h edges. Therefore, in total, we remove at most
h|Eopt| edges. To complete the proof, we observe that, by construction, the identified set E′

is a valid deletion set. J

We now demonstrate that we can improve on this general approximation algorithm when
the underlying graph has certain useful temporal properties, in particular when the cutwidth
is bounded.

The cutwidth of a graph G = (V,E) is the minimum integer c such that the vertices of
G can be arranged in a linear order v1, . . . , vn, called a layout, such that for every i with
1 ≤ i < n the number of edges with one endpoint in v1, ..., vi and one in vi+1, ..., vn is at
most c. Given a layout v1, v2, . . . , vn, we say that edges with one endpoint in v1, ..., vi and
one in vi+1, ..., vn span vi, vi+1, and say that the maximum number of edges spanning a pair
of consecutive vertices is the cutwidth of the layout. For any constant c, Thilikos et al. [45]
give a linear-time algorithm to generate a layout of cutwidth at most c if one exists.

We can use a similar argument to that in Theorem 8 to give a polynomial-time algorithm
to compute a c-approximation to Min TR Edge Deletion, where c is the cutwidth of
the input temporal graph. In addition to Lemma 7, we will also make use of the following
definition and observation:

Let G = (V,E) be a graph. We say that an edge set ES ⊆ E is an edge separator that
separates G into GA = (VA, EA) and GB = (VB , EB) if, in GS = (V,E\ES) no vertex in VA
is reachable from VB .

I Lemma 9. Let h be a positive integer and (G = (V,E), λ) be a temporal graph with an
edge separator ES that separates G into GA = (VA, EA) and GB = (VB , EB). If, for the
given h, E′

A and E′
B are valid deletion sets for (GA, λ|EA

), (GB , λ|EB
), respectively, then

E′
A ∪ E′

B ∪ ES is a valid deletion set for (G = (V,E), λ).

We now describe a cutwidth approximation algorithm:

I Theorem 10. There exists a polynomial-time algorithm to compute a c-approximation to
Min TR Edge Deletion provided that a layout of cutwidth c is given.

Proof (Sketch). Let ((G = (V,E), λ), h) be the input to Min TR Edge Deletion, and
suppose that the layout v1, . . . , vn of V , with cutwidth c, is given. We claim that the following
algorithm returns a c-approximation to Min TR Edge Deletion in polynomial time:

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:9

1. Initialise E′ := ∅.
2. Initialise i := 0.
3. While (G,λ) has reachability greater than h:

a. Find the maximum j ∈ {i, . . . , n} such that the maximum reachability in the subgraph
(G[{vi, . . . , vj}], λ|E(G[{vi,...,vj}])) is at most h.

b. Add all edges that span vj , vj+1 to E′, and and update (G,λ)← (G,λ) \ E′.
c. Update i← j + 1

4. Return E′. J

For any fixed cutwidth c, using the layout generation algorithm given by Thilikos et
al. [45] and the algorithm described above, we can give a cutwidth-approximation to Min
TR Edge Deletion for graphs with cutwidth c.

I Corollary 11. There exists a polynomial-time algorithm to compute a c-approximation to
Min TR Edge Deletion whenever the cutwidth of the input graph is bounded above by c.

Note that as paths have cutwidth one, Corollary 11 gives us an exact polynomial-time
algorithm for Min TR Edge Deletion on paths.

We conclude this section by demonstrating that there is unlikely to be a polynomial-time
algorithm to compute any constant factor approximation to Min TR Edge Deletion in
general, even for temporal graphs of lifetime two.

I Theorem 12. Unless P = NP , Min TR Edge Deletion cannot be approximated in
polynomial time to within a factor of (1− o(1)) ln log2

√
n, where n is the number of vertices

in the input temporal graph, even if the input temporal graph has lifetime two.

5 An exact FPT algorithm

In this section we show that TR Edge Deletion admits an FPT algorithm, when simul-
taneously parameterised by h, ∆G, and tw(G), where ∆G is the maximum degree of G and
tw(G) is the treewidth of G. It is worth noting that, although the parameters h and ∆G

may at first seem to be large, parameterising only by these two parameters is not enough, as
our results in the previous sections (see e.g. Theorem 5) imply that TR Edge Deletion is
para-NP-hard, when simultaneously parameterised by h and ∆G.

Our results in this section (see Theorem 16) illustrate how a celebrated theorem by
Courcelle (see Theorem 14) can be applied to solve temporal graph problems, following
a general framework that could potentially be applied to many other temporal problems
as well: (i) we define a suitable family τ of relations (i.e. a suitable relational vocabulary)
and a Monadic Second Order (MSO) formula φ (of length `) that expresses our temporal
graph problem at hand; (ii) we represent an arbitrary input temporal graph (G,λ) with an
equivalent relational structure A (of treewidth at most t); (iii) we apply Courcelle’s general
theorem which solves our problem at hand in time linear to the size of the relational structure
A, whenever both ` and t are bounded; that is, in time f(t, `) · ||A||.

Here, we apply this general framework to the particular problem TR Edge Deletion
(by appropriately defining τ , φ, and A) such that ` only depends on our parameter h, while
t only depends on tw(G) and ∆G; this yields our FPT algorithm. Here, as it turns out, the
size of A is quadratic on the size of the input temporal graph (G,λ). Before we present the
main result of this section (see Section 5.2), we first present in Section 5.1 some necessary
background on logic and on tree decompositions of graphs and relational structures. For any
undefined notion in Section 5.1, we refer the reader to [25].

MFCS 2019

57:10 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

5.1 Preliminaries for the algorithm

Treewidth of graphs
Given any tree T , we will assume that it contains some distinguished vertex r(T), which we
will call the root of T . For any vertex v ∈ V (T) \ {r(T)}, the parent of v is the neighbour
of v on the unique path from v to r(T); the set of children of v is the set of all vertices
u ∈ V (T) such that v is the parent of u. The leaves of T are the vertices of T whose set of
children is empty. We say that a vertex u is a descendant of the vertex v if v lies somewhere
on the unique path from u to r(T). In particular, a vertex is a descendant of itself, and every
vertex is a descendant of the root. Additionally, for any vertex v, we will denote by Tv the
subtree induced by the descendants of v.

We say that (T,B) is a tree decomposition of G if T is a tree and B = {Bs : s ∈ V (T)} is
a collection of non-empty subsets of V (G) (or bags), indexed by the nodes of T , satisfying:
(1) for all v ∈ V (G), the set {s ∈ T : v ∈ Bs} is nonempty and induces a connected subgraph

in T ,
(2) for every e = uv ∈ E(G), there exists s ∈ V (T) such that u, v ∈ Bs.
The width of the tree decomposition (T,B) is defined to be max{|Bs| : s ∈ V (T)} − 1, and
the treewidth of G is the minimum width over all tree decompositions of G.

Although it is NP-hard to determine the treewidth of an arbitrary graph [6], the problem
of determining whether a graph has treewidth at most w (and constructing such a tree
decomposition if it exists) can be solved in linear time for any constant w [8]; note that this
running time depends exponentially on w.

I Theorem 13 (Bodlaender [8]). For each w ∈ N , there exists a linear-time algorithm, that
tests whether a given graph G = (V,E) has treewidth at most w, and if so, outputs a tree
decomposition of G with treewidth at most w.

Relational structures and monadic second order logic
A relational vocabulary τ is a set of relation symbols. Each relation symbol R has an arity,
denoted arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure, consists of a set A,
called the universe, and an interpretation RA ⊆ Aarity(R) of each relation symbol R ∈ τ . We
write a ∈ RA or RA(a) to denote that the tuple a ∈ Aarity(R) belongs to the relation RA.

We briefly recall the syntax and semantics of first-order logic. We fix a countably infinite
set of (individual) variables, for which we use small letters. Atomic formulas of vocabulary τ
are of the form:
1. x = y or
2. R(x1 . . . xr),
where R ∈ τ is r-ary and x1, . . . , xr, x, y are variables. First-order formulas of vocabulary τ
are built from the atomic formulas using the Boolean connectives ¬,∧,∨ and existential and
universal quantifiers ∃,∀.

The difference between first-order and second-order logic is that the latter allows quanti-
fication not only over elements of the universe of a structure, but also over subsets of the
universe, and even over relations on the universe. In addition to the individual variables
of first-order logic, formulas of second-order logic may also contain relation variables, each
of which has a prescribed arity. Unary relation variables are also called set variables. We
use capital letters to denote relation variables. To obtain second-order logic, the syntax of
first-order logic is enhanced by new atomic formulas of the form X(x1 . . . xk), where X is
k-ary relation variable. Quantification is allowed over both individual and relation variables.

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:11

A second-order formula is monadic if it only contains unary relation variables. Monadic
second-order logic is the restriction of second-order logic to monadic formulas. The class of
all monadic second-order formulas is denoted by MSO.

A free variable of a formula φ is a variable x with an occurrence in φ that is not in the
scope of a quantifier binding x. A sentence is a formula without free variables. Informally, we
say that a structure A satisfies a formula φ if there exists an assignment of the free variables
under which φ becomes a true statement about A. In this case we will write A |= φ.

Treewidth of relational structures
The definition of tree decompositions and treewidth generalizes from graphs to arbitrary
relational structures in a straightforward way. A tree decomposition of a τ -structure A is a
pair (T,B), where T is a tree and B a family of subsets of the universe A of A such that:
(1) for all a ∈ A, the set {s ∈ V (T) : a ∈ Bs} is nonempty and induces a connected subgraph

(i.e. subtree) in T ,
(2) for every relation symbol R ∈ τ and every tuple (a1, . . . , ar) ∈ RA, where r := arity(R),

there is a s ∈ V (T) such that a1, . . . , ar ∈ Bs.

The width of the tree decomposition (T,B) is the number max{|Bs| : s ∈ V (T)} − 1. The
treewidth tw(A) of A is the minimum width over all tree decompositions of A.

We will make use of the version of Courcelle’s celebrated theorem for relational structures
of bounded treewidth, which, informally, says that the optimization problem definable by
an MSO formula can be solved in FPT time with respect to the treewidth of a relational
structure. The formal statement is an adaptation of an analogous theorem (see Theorem 9.21
in [18]) for the model-checking problem [17].

I Theorem 14 ([18]). Let φ be an MSO formula with a free set variable E, and let A be a
relational structure on universe A, where tw(A) ≤ t. Then, given a width-t tree decomposition
of A, a minimum-cardinality set E ⊆ A such that A satisfies φ(E) can be computed in time

f(t, `) · ||A||,

where f is a computable function, ` is the length of φ, and ||A|| is the size of A.

5.2 The FPT algorithm
In this section we present an FPT algorithm for TR Edge Deletion when parameterised
simultaneously by three parameters: h, tw(G) and ∆G. Our strategy is first, given an input
temporal graph (G,λ), to construct a relational structure AG,λ whose treewidth is bounded
in terms of tw(G) and ∆G. Then we construct an MSO formula φh with a unique free set
variable E, such that AG,λ satisfies φh(E) for some E ⊆ A if and only if the maximum
reachability of (G,λ) \E is at most h. Finally, we apply Theorem 14 to find the minimum
cardinality of such a set E ⊆ A. If the minimum cardinality is at most k, then ((G,λ), k, h)
is a yes-instance of the problem, otherwise it is a no-instance.

We note that in the case we consider here in which each edge is active at a single timestep
the construction below might be simplified slightly; however, in order to demonstrate the
flexibility of this general framework, we choose to define a relational structure which would
allow us to represent temporal graphs in which edges may be active at more than one timestep.
Observe that Theorem 16 can immediately be adapted to this more general context if we
replace ∆G by the maximum temporal total degree of the input temporal graph (i.e. the
maximum number of time-edges incident with any vertex).

MFCS 2019

57:12 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

Given a temporal graph (G,λ), we define a relational structure AG,λ as follows. The
ground set AG,λ consists of

the set V (G) of vertices in G,
the set E(G) of edges in G, and
the set of all time-edges of (G,λ), i.e. the set Λ(G,λ) = {(e, t) | e ∈ E(G), t ∈ λ(e)}.

On this ground set AG,λ, we define two binary relations R and L as follows:
1. ((e1, t1), (e2, t2)) ∈ R if and only if the following conditions hold:

a. (e1, t1), (e2, t2) ∈ Λ(G,λ);
b. e1, e2 share a vertex in G;
c. t1 < t2.

2. (e, (e, t)) ∈ L if and only if (e, t) ∈ Λ(G,λ).
First we show that the treewidth of AG,λ is bounded by a function of tw(G) and ∆G.

I Lemma 15. The treewidth of AG,λ is at most (2∆G + 1)(tw(G) + 1)− 1.

Using this, we now provide the main result of this section.

I Theorem 16. TR Edge Deletion admits an FPT algorithm with respect to the combined
parameters h, tw(G), and ∆G.

6 Conclusions and open problems

In this paper we studied the problem of removing a small number of edges from a given
temporal graph (i.e. a graph that changes over time) to ensure that every vertex has a
temporal path to at most h other vertices. The main motivation for this problem comes from
the need to limit spreading processes on dynamic graphs. Such a graph could, for example,
capture potentially-infectious contacts between individuals, and removing an edge would
correspond to restricting or prohibiting contact between two entities in order to limit the
spread of an epidemic.

We show that our problem is W[1]-hard when parameterised by the maximum number k
of edges that can be removed and, assuming the Exponential Time Hypothesis, we cannot
significantly improve on the brute-force algorithm that considers all possible deletions sets
of k edges. On the positive side, we prove that this problems admits a fixed-parameter
tractable (FPT) algorithm with respect to the combination of three parameters: the treewidth
tw(G) of the underlying graph G, the maximum allowed temporal reachability h, and the
maximum degree ∆G of (G,λ). Moreover, we show that the latter two parameters combined
(i.e. without the treewidth tw(G)) are not enough for deriving an FPT algorithm as the
problem is para-NP-complete with respect to both of these parameters. On the other hand,
it remains open whether this problem is FPT, when parameterised by treewidth tw(G),
combined with only one of the other two parameters h and ∆G. We also consider the
approximability of this problem, and give two polynomial-time approximation algorithms.
The first computes an h-approximation on an arbitrary input graph, where h denotes the
maximum allowable temporal reachability, and the second computes a c-approximation on
graphs of cutwidth c. We complement these positive results by showing that no constant-
factor approximation algorithm exists for general input graphs unless P = NP . A natural
open problem is whether we can improve these approximation algorithms. Our lower bound
rules out a (log log h)-factor approximation, but a significant improvement on our factor h
approximation may be possible.

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:13

References
1 Eric Aaron, Danny Krizanc, and Elliot Meyerson. DMVP: foremost waypoint coverage of

time-varying graphs. In Proceedings of the 40th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), pages 29–41, 2014.

2 E. Akrida, G.B. Mertzios, S. Nikoletseas, C. Raptopoulos, P.G. Spirakis, and V. Zamaraev.
How fast can we reach a target vertex in stochastic temporal graphs?, 2019. Technical Report
available at https://arxiv.org/abs/1903.03636.

3 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral
networks with random availability of links: The case of fast networks. Journal of Parallel and
Distributed Computing, 87:109–120, 2016.

4 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of
optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,
2017.

5 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. In Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP), 2018. To appear. Technical Report available
at https://arxiv.org/abs/1802.07103.

6 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277—-284, 1987.

7 Alain Barrat, Marc Barthlemy, and Alessandro Vespignani. Dynamical Processes on Complex
Networks. Cambridge University Press, New York, NY, USA, 1st edition, 2008.

8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
In Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages
226–234, 1993.

9 Alfredo Braunstein and Alessandro Ingrosso. Inference of causality in epidemics on temporal
contact networks. Scientific Reports, 6:27538, 2016. doi:10.1038/srep27538.

10 Dirk Brockmann and Dirk Helbing. The Hidden Geometry of Complex, Network-Driven
Contagion Phenomena. Science, 342(6164):1337–1342, 2013. doi:10.1126/science.1245200.

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing Shortest, Fastest, and
Foremost Journeys in Dynamic Networks. International Journal of Foundations of Computer
Science, 14(2):267–285, 2003.

12 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:
Formal Models and Metrics. Technical report, Defence R&D Canada, April 2013. URL:
https://hal.archives-ouvertes.fr/hal-00865762.

13 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:
Problems, Analysis, and Algorithmic Tools. Technical report, Defence R&D Canada, April
2013. URL: https://hal.archives-ouvertes.fr/hal-00865764.

14 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems (IJPEDS), 27(5):387–408, 2012.

15 Andrea E. F. Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo
Silvestri. Flooding Time of Edge-Markovian Evolving Graphs. SIAM Journal on Discrete
Mathematics (SIDMA), 24(4):1694–1712, 2010.

16 Vittoria Colizza, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. The role of
the airline transportation network in the prediction and predictability of global epidemics.
Proceedings of the National Academy of Sciences, 103(7):2015–2020, 2006. doi:10.1073/pnas.
0510525103.

17 Bruno Courcelle, 2018. Personal communication.
18 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a

language-theoretic approach. Cambridge University Press, 2012.
19 Jessica Enright and Kitty Meeks. Changing times to optimise reachability in temporal graphs.

Technical Report available at https://arxiv.org/abs/1802.05905.

MFCS 2019

https://arxiv.org/abs/1903.03636
https://arxiv.org/abs/1802.07103
https://doi.org/10.1038/srep27538
https://doi.org/10.1126/science.1245200
https://hal.archives-ouvertes.fr/hal-00865762
https://hal.archives-ouvertes.fr/hal-00865764
https://doi.org/10.1073/pnas.0510525103
https://doi.org/10.1073/pnas.0510525103
https://arxiv.org/abs/1802.05905

57:14 Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks

20 Jessica Enright and Kitty Meeks. Deleting edges to restrict the size of an epidemic: a new
application for treewidth. Algorithmica, 80(6):1857–1889, 2018.

21 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On Temporal Graph Exploration. In
Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 444–455, 2015.

22 Afonso Ferreira. Building a Reference Combinatorial Model for MANETs. IEEE Network,
18(5):24–29, 2004.

23 Stephen Finbow and Gary MacGillivray. The Firefighter Problem: a survey of results, directions
and questions. Australasian J. Combinatorics, 43:57–78, 2009. URL: http://ajc.maths.uq.
edu.au/pdf/43/ajc_v43_p057.pdf.

24 Paola Flocchini, Bernard Mans, and Nicola Santoro. Exploration of Periodically Varying
Graphs. In Proceedings of the 20th International Symposium on Algorithms and Computation
(ISAAC), pages 534–543, 2009.

25 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
26 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche. Temporal graph

classes: A view through temporal separators. In 44th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), 2018. To appear. Technical Report available
at https://arxiv.org/abs/1803.00882.

27 George Giakkoupis, Thomas Sauerwald, and Alexandre Stauffer. Randomized Rumor Spreading
in Dynamic Graphs. In Proceedings of the 41st International Colloquium on Automata,
Languages and Programming (ICALP), pages 495–507, 2014.

28 Daniel T. Haydon, Rowland R. Kao, and Paul R. Kitching. The UK foot-and-mouth disease
outbreak—the aftermath. Nature Reviews Microbiology, 2(8):675, 2004.

29 Itai Himelboim, Marc A. Smith, Lee Rainie, Ben Shneiderman, and Camila Espina. Clas-
sifying Twitter Topic-Networks Using Social Network Analysis. Social Media + Society,
3(1):2056305117691545, 2017. doi:10.1177/2056305117691545.

30 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the
Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35:1–35:16, 2017.

31 Petter Holme and Jari Saramäki, editors. Temporal Networks. Springer, 2013.
32 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems

for temporal networks. In Proceedings of the 32nd annual ACM symposium on Theory of
computing (STOC), pages 504–513, 2000.

33 Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph Evolution: Densification and
Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 2007.

34 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

35 G.B. Mertzios, O. Michail, I. Chatzigiannakis, and P.G. Spirakis. Temporal network optimiza-
tion subject to connectivity constraints. Algorithmica, pages 1416–1449, 2019.

36 George B Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph
coloring. In Proceedings of the 33st AAAI Conference on Artificial Intelligence (AAAI), (to
appear).

37 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016.

38 Othon Michail and Paul G. Spirakis. Elements of the Theory of Dynamic Networks. Commu-
nications of the ACM, 61(2):72–72, 2018.

39 A. Mitchell, D. Bourn, J. Mawdsley, W. Wint, R. Clifton-Hadley, and M. Gilbert. Character-
istics of cattle movements in Britain – an analysis of records from the Cattle Tracing System.
Animal Science, 80(3):265?273, 2005. doi:10.1079/ASC50020265.

40 Andrew Mitchell, David Bourn, J. Mawdsley, William Wint, Richard Clifton-Hadley, and
Marius Gilbert. Characteristics of cattle movements in Britain – an analysis of records from
the Cattle Tracing System. Animal Science, 80(3):265–273, 2005.

http://ajc.maths.uq.edu.au/pdf/43/ajc_v43_p057.pdf
http://ajc.maths.uq.edu.au/pdf/43/ajc_v43_p057.pdf
https://arxiv.org/abs/1803.00882
https://doi.org/10.1177/2056305117691545
http://snap.stanford.edu/data
https://doi.org/10.1079/ASC50020265

J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev 57:15

41 Maria Noremark and Stefan Widgren. EpiContactTrace: an R-package for contact tracing
during livestock disease outbreaks and for risk-based surveillance. BMC Veterinary Research,
10(1), 2014. doi:10.1186/1746-6148-10-71.

42 Piotr Sapiezynski, Arkadiusz Stopczynski, Radu Gatej, and Sune Lehmann. Tracking human
mobility using wifi signals. PloS One, 10(7):e0130824, 2015.

43 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag
Berlin Heidelberg, 2003.

44 John Kit Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Characterising temporal
distance and reachability in mobile and online social networks. ACM Computer Communication
Review, 40(1):118–124, 2010.

45 Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.2004.
12.001.

46 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984.

47 Eugenio Valdano, Luca Ferreri, Chiara Poletto, and Vittoria Colizza. Analytical Computation
of the Epidemic Threshold on Temporal Networks. Phys. Rev. X, 5:021005, April 2015.
doi:10.1103/PhysRevX.5.021005.

48 Eugenio Valdano, Chiara Poletto, Armando Giovannini, Diana Palma, Lara Savini, and Vittoria
Colizza. Predicting Epidemic Risk from Past Temporal Contact Data. PLoS Computational
Biology, 11(3):e1004152, March 2015. doi:10.1371/journal.pcbi.1004152.

49 Jordan Viard, Matthieu Latapy, and Clémence Magnien. Revealing contact patterns among
high-school students using maximal cliques in link streams. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 1517–1522, 2015.

50 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

51 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. On efficiently finding
small separators in temporal graphs. Technical Report available at https://arxiv.org/abs/
1803.00882.

MFCS 2019

https://doi.org/10.1186/1746-6148-10-71
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1103/PhysRevX.5.021005
https://doi.org/10.1371/journal.pcbi.1004152
https://arxiv.org/abs/1803.00882
https://arxiv.org/abs/1803.00882

Constant Delay Enumeration with
FPT-Preprocessing for Conjunctive Queries of
Bounded Submodular Width
Christoph Berkholz
Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
berkholz@informatik.hu-berlin.de

Nicole Schweikardt
Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
schweikn@informatik.hu-berlin.de

Abstract
Marx (STOC 2010, J. ACM 2013) introduced the notion of submodular width of a conjunctive
query (CQ) and showed that for any class Φ of Boolean CQs of bounded submodular width, the
model-checking problem for Φ on the class of all finite structures is fixed-parameter tractable (FPT).
Note that for non-Boolean queries, the size of the query result may be far too large to be computed
entirely within FPT time. We investigate the free-connex variant of submodular width and generalise
Marx’s result to non-Boolean queries as follows: For every class Φ of CQs of bounded free-connex
submodular width, within FPT-preprocessing time we can build a data structure that allows to
enumerate, without repetition and with constant delay, all tuples of the query result. Our proof
builds upon Marx’s splitting routine to decompose the query result into a union of results; but we
have to tackle the additional technical difficulty to ensure that these can be enumerated efficiently.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Finite Model Theory; Theory of computation → Fixed parameter tractability;
Theory of computation → Database theory; Theory of computation → Database query processing
and optimization (theory)

Keywords and phrases conjunctive queries, constant delay enumeration, hypertree decompositions,
submodular width, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.58

Funding Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
SCHW 837/5-1.

1 Introduction

In the past decade, starting with Durand and Grandjean [19], the fields of logic in computer
science and database theory have seen a large number of contributions that deal with the
efficient enumeration of query results. In this scenario, the objective is as follows: given a
finite relational structure (i.e., a database) and a logical formula (i.e., a query), after a short
preprocessing phase, the query results shall be generated one by one, without repetition,
with guarantees on the maximum delay time between the output of two tuples. In this vein,
the best that one can hope for is constant delay (i.e., the delay may depend on the size of
the query but not on that of the input structure) and linear preprocessing time (i.e., time
f(ϕ)·O(N) where N is the size of a reasonable representation of the input structure, ϕ is the
query, and f(ϕ) is a number only depending on the query but not on the input structure).
Constant delay enumeration has also been adopted as a central concept in factorised databases
that gained recent attention [37, 36].

© Christoph Berkholz and Nicole Schweikardt;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 58; pp. 58:1–58:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:berkholz@informatik.hu-berlin.de
mailto:schweikn@informatik.hu-berlin.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Constant Delay Enumeration with FPT-Preprocessing

Quite a number of query evaluation problems are known to admit constant delay algorithms
preceded by linear or pseudo-linear time preprocessing. This is the case for all first-order
queries, provided that they are evaluated over classes of structures of bounded degree [19,
27, 13, 30], low degree [20], bounded expansion [28], locally bounded expansion [41], and
on classes that are nowhere dense [39]. Also different data models have been investigated,
including tree-like data and document spanners [8, 29, 7]. Recently, also the dynamic setting,
where a fixed query has to be evaluated repeatedly against a database that is constantly
updated, has received quite some attention [31, 13, 12, 25, 14, 5, 35, 34, 6].

This paper deals with the classical, static setting without database updates. We focus on
evaluating conjunctive queries (CQs, i.e., primitive-positive formulas) on arbitrary relational
structures.1 In the following, FPT-preprocessing (resp., FPL-preprocessing) means prepro-
cessing that takes time f(ϕ)·NO(1) (resp., f(ϕ)·O(N)), and constant delay means delay f(ϕ),
where f is a computable function, ϕ is the query, and N is the size of the input structure.

Bagan et al. [10] showed that every free-connex acyclic CQ allows constant delay enu-
meration after FPL-preprocessing. More refined results in this vein are due to Bagan [9]
and Brault-Baron [16]; see [40] for a survey. Bagan et al. [10] complemented their result
by a conditional lower bound: assuming that Boolean matrix multiplication cannot be
accomplished in time O(n2), self-join-free acyclic CQs that are not free-connex cannot be
enumerated with constant delay and FPL-preprocessing. This demonstrates that even if the
evaluation of Boolean queries is easy (as known for all acyclic CQs [42]), the enumeration
of the results of non-Boolean queries might be hard (here, for acyclic CQs that are not
free-connex).

Bagan et al. [10] also introduced the notion of free-connex (fc) treewidth (tw) of a CQ
and showed that for every class Φ of CQs of bounded fc-tw, within FPT-preprocessing time,
one can build a data structure that allows constant delay enumeration of the query results.
This can be viewed as a generalisation, to the non-Boolean case, of the well-known result
stating that the model-checking problem for classes of Boolean CQs of bounded treewidth is
FPT. Note that for non-Boolean queries – even if they come from a class of bounded fc-tw –
the size of the query result may be NΩ(||ϕ||), i.e., far too large to be computed entirely within
FPT-preprocessing time; and generalising the known tractability result for Boolean CQs to
the non-Boolean case is far from trivial.

In a series of papers, the FPT-result for Boolean CQs has been strengthened to more and
more general width-measures, namely to classes of queries of bounded generalised hypertree
width (ghw) [23], bounded fractional hypertree width (fhw) [24], and bounded submodular
width (subw) [33]. The result on bounded fhw has been generalised to the non-Boolean
case in the context of factorised databases [37], which implies constant delay enumeration
after FPT-preprocessing for CQs of bounded free-connex fractional hypertree width (fc-fhw).
Related data structures that allow constant delay enumeration after FPT-preprocessing for
(quantifier-free) CQs of bounded (fc-)fhw have also been provided in [18, 26].

An analogous generalisation of the result on bounded submodular width, however, is still
missing. The present paper’s main result closes this gap: we show that on classes of CQs of
bounded fc-subw, within FPT-preprocessing time one can build a data structure that allows
constant delay enumeration of the query results. And within the same FPT-preprocessing
time, one can also construct a data structure that enables to test in constant time whether
an input tuple belongs to the query result. Our proof uses Marx’s splitting routine [33] to
decompose the query result of ϕ on A into the union of results of several queries ϕi on several

1 In this paper, structures will always be finite and relational.

C. Berkholz and N. Schweikardt 58:3

structures Ai but we have to tackle the additional technical difficulty to ensure that the
results of all the ϕi on Ai can be enumerated efficiently. Once having achieved this, we can
conclude by using an elegant trick provided by Durand and Strozecki [21] for enumerating,
without repetition, the union of query results.

As an immediate consequence of the lower bound provided by Marx [33] in the context
of Boolean CQs of unbounded submodular width, one obtains that our main result is tight
for certain classes of CQs, namely, recursively enumerable classes Φ of quantifier-free and
self-join-free CQs: assuming the exponential time hypothesis (ETH), such a class Φ allows
constant delay enumeration after FPT-preprocessing if, and only if, Φ has bounded fc-subw.

Let us mention a related recent result which, however, is incomparable to ours. Abo Kha-
mis et al. [3] designed an algorithm for evaluating a quantifier-free CQ ϕ of submodular width
w within time O(Nw)·(logN)f(ϕ) + O(r· logN); and an analogous result is also achieved
for non-quantifier-free CQs of fc-subw w [2]. Here, N is the size of the input structure, r
is the number of tuples in the query result, and f(ϕ) is at least exponential in number of
variables of ϕ. In particular, the algorithm does not distinguish between a preprocessing
phase and an enumeration phase and does not provide a guarantee on the delay. Also, due
to the factor (logN)f(ϕ), where f(ϕ) is not bounded in terms of w, it seems unlikely that
the approach can easily be adapted to yield a method for constant delay enumeration after
FPT-preprocessing for classes of CQs of bounded fc-subw.

Outline. The rest of the paper is structured as follows. Section 2 provides basic notations
concerning structures, queries, and constant delay enumeration. Section 3 recalls concepts
of (free-connex) decompositions of queries, provides a precise statement of our main result,
and collects the necessary tools for obtaining this result. Section 4 is devoted to the detailed
proof of our main result. We conclude in Section 5. Due to space restrictions, some proof
details had to be deferred to the full version of the paper.

2 Preliminaries

In this section we fix notation and summarise basic definitions.

Basic notation. We write N and R>0 for the set of non-negative integers and reals, respect-
ively, and we let N>1 := N \ {0} and [n] := {1, . . . , n} for all n ∈ N>1. By 2S we denote the
power set of a set S. Whenever G denotes a graph, we write V (G) and E(G) for the set of
nodes and the set of edges, respectively, of G. Whenever writing a to denote a k-tuple (for
some arity k ∈ N), we write ai to denote the tuple’s i-th component; i.e., a = (a1, . . . , ak).
For a k-tuple a and indices i1, . . . , i` ∈ [k] we let πi1,...,i`(a) := (ai1 , . . . , ai`). For a set S of
k-tuples we let πi1,...,i`(S) := {πi1,...,i`(a) : a ∈ S}.

If h and g are mappings with domains X and Y , respectively, we say that h and g are
joinable if h(z) = g(z) holds for all z ∈ X ∩ Y . In case that h and g are joinable, we write
h on g to denote the mapping f with domain X ∪ Y where f(x) = h(x) for all x ∈ X

and f(y) = g(y) for all y ∈ Y . If A and B are sets of mappings with domains X and Y ,
respectively, then A on B := {h on g : h ∈ A, g ∈ B, and h and g are joinable}.

We use the following further notation where A is a set of mappings with domain X

and h ∈ A. For a set I ⊆ X, the projection πI(h) is the restriction h|I of h to I; and
πI(A) := {πI(h) : h ∈ A}. For objects z, c where z 6∈ X, we write h ∪ {(z, c)} for the
extension h′ of h to domain X ∪ {z} with h′(z) = c and h′(x) = h(x) for all x ∈ X.

MFCS 2019

58:4 Constant Delay Enumeration with FPT-Preprocessing

Signatures and structures. A signature is a finite set σ of relation symbols, where each
R ∈ σ is equipped with a fixed arity ar(R) ∈ N>1. A σ-structure A consists of a finite set A
(called the universe or domain of A) and an ar(R)-ary relation RA ⊆ Aar(R) for each R ∈ σ.
The size ||σ|| of a signature σ is |σ|+

∑
R∈σ ar(R). We write nA to denote the cardinality

|A| of A’s universe, we write mA to denote the number of tuples in A’s largest relation,
and we write NA or ||A|| to denote the size of a reasonable encoding of A. To be specific,
let NA = ||A|| = ||σ|| + nA +

∑
R∈σ ||RA||, where ||RA|| = ar(R)·|RA|. Whenever A is clear

from the context, we will omit the superscript ·A and write n,m,N instead of nA,mA, NA.
Consider signatures σ and τ with σ ⊆ τ . The σ-reduct of a τ -structure B is the σ-structure
A with A = B and RA = RB for all R ∈ σ. A τ -expansion of a σ-structure A is a τ -structure
B whose σ-reduct is A.

Conjunctive Queries. We fix a countably infinite set var of variables. We allow queries to
use arbitrary relation symbols of arbitrary arities. An atom α is of the form R(v1, . . . , vr)
with r = ar(R) and v1, . . . , vr ∈ var. We write vars(α) to denote the set of variables occurring
in α. A conjunctive query (CQ, for short) is of the form ∃z1 · · · ∃z`

(
α1 ∧ · · · ∧ αd

)
, where

` ∈ N, d ∈ N>1, αj is an atom for every j ∈ [d], and z1, . . . , z` are pairwise distinct elements
in vars(α1) ∪ · · · ∪ vars(αd). For such a CQ ϕ we let atoms(ϕ) = {α1, . . . , αd}. We write
vars(ϕ) and σ(ϕ) for the set of variables and the set of relation symbols occurring in ϕ,
respectively. The set of quantified variables of ϕ is quant(ϕ) := {z1, . . . , z`}, and the set of
free variables is free(ϕ) := vars(ϕ) \ quant(ϕ). We sometimes write ϕ(x1, . . . , xk) to indicate
that x1, . . . , xk are the free variables of ϕ. The arity of ϕ is the number k := |free(ϕ)|. The
query ϕ is called quantifier-free if quant(ϕ) = ∅, it is called Boolean if its arity is 0, and it is
called self-join-free if no relation symbol occurs more than once in ϕ.

The semantics are defined as usual: A valuation for ϕ on a σ(ϕ)-structure A is
a mapping β : vars(ϕ) → A. A valuation β is a homomorphism from ϕ to a A if
for every atom R(v1, . . . , vr) ∈ atoms(ϕ) we have

(
β(v1), . . . , β(vr)

)
∈ RA. The query

result JϕKA of a CQ ϕ on the σ(ϕ)-structure A is defined as the set {πfree(ϕ)(β) :
β is a homomorphism from ϕ to A}. Often, we will identify the mappings g ∈ JϕKA with
tuples (g(x1), . . . , g(xk)), where x1, . . . , xk is a fixed listing of the free variables of ϕ.

The size ||ϕ|| of a query ϕ is the length of ϕ when viewed as a word over the alphabet
σ(ϕ) ∪ vars(ϕ) ∪ {∃, ∧ , (,) } ∪ { , }.

Model of computation. For the complexity analysis we assume the RAM-model with a
uniform cost measure. In particular, storing and accessing elements from a structure’s universe
requires O(1) space and time. For an r-ary relation RA we can construct in time O(‖RA‖) an
index that allows to enumerate RA with O(1) delay and to test for a given r-tuple a whether
a ∈ RA in time O(r). Moreover, for every {i1, . . . , i`} ⊆ [r] we can build a data structure
where we can enumerate for every `-tuple b the selection {a ∈ RA : πi1,...,i`(a) = b} with
O(1) delay. Such a data structure can be constructed in time O(‖RA‖), for instance by a
linear scan over RA where we add every tuple a ∈ RA to a list Lπi1,...,i`

(a). Using a constant
access data structure of linear size, the list Lb can be accessed in time O(`) when receiving
an `-tuple b.

Constant delay enumeration and testing. An enumeration algorithm for query evaluation
consists of two phases: the preprocessing phase and the enumeration phase. In the prepro-
cessing phase the algorithm is allowed to do arbitrary preprocessing on the query ϕ and
the input structure A. We denote the time required for this phase by tp. In the subsequent

C. Berkholz and N. Schweikardt 58:5

enumeration phase the algorithm enumerates, without repetition, all tuples (or, mappings)
in the query result JϕKA, followed by the end-of-enumeration message EOE. The delay td is
the maximum time that passes between the start of the enumeration phase and the output
of the first tuple, between the output of two consecutive tuples, and between the last tuple
and EOE.

A testing algorithm for query evaluation also starts with a preprocessing phase of time tp
in which a data structure is computed that allows to test for a given tuple (or, mapping) b
whether it is contained in the query result JϕKA. The testing time tt of the algorithm is an
upper bound on the time that passes between receiving b and providing the answer.

One speaks of constant delay (testing time) if the delay (testing time) depends on the
query ϕ, but not on the input structure A.

We make use of the following result from Durand and Strozecki, which allows to efficiently
enumerate the union of query results, provided that each query result in the union can be
enumerated and tested efficiently. Note that this is not immediate, because the union might
contain many duplicates that need to be avoided during enumeration.

I Theorem 2.1 ([21]). Suppose that there is an enumeration algorithm A that receives a
query ϕ and a structure A and enumerates JϕKA with delay td(ϕ) after tp(ϕ,A) preprocessing
time. Further suppose that there is a testing algorithm B that receives a query ϕ and a
structure A and has tp(ϕ,A) preprocessing time and tt(ϕ) testing time. Then there is an
algorithm C that receives ` queries ϕi and structures Ai and allows to enumerate

⋃
i∈[`]JϕiK

Ai

with O(
∑
i∈[`] td(ϕi) +

∑
i∈[`] tt(ϕi)) delay after O(

∑
i∈[`] tp(ϕi,Ai)) preprocessing time.

Proof (sketch). The induction start ` = 1 is trivial. For the induction step `→ `+ 1 start
an enumeration of

⋃
i∈[`]JϕiK

Ai and test for every tuple whether it is contained in Jϕ`+1KA`+1 .
If the answer is no, then output the tuple. Otherwise discard the tuple and instead output
the next tuple in an enumeration of Jϕ`+1KA`+1 . Subsequently enumerate the remaining
tuples from Jϕ`+1KA`+1 . J

3 Main Result

At the end of this section, we provide a precise statement of our main result. Before we can
do so, we have to recall the concept of free-connex decompositions of queries and the notion
of submodular width. It will be convenient for us to use the following notation.

I Definition 3.1. Let ϕ = ∃z1 · · · ∃z`
(
α1 ∧ · · · ∧ αd

)
be a CQ and S ⊆ vars(ϕ). We write

ϕ〈S〉 for the CQ that is equivalent to the expression(
∃y1 · · · ∃yr α1

)
∧ · · · ∧

(
∃y1 · · · ∃yr αd

)
, (1)

where {y1, . . . , yr} = vars(ϕ) \ S.

Note that ϕ〈S〉 is obtained from ϕ by discarding existential quantification and projecting
every atom to S, hence free(ϕ〈S〉) = S. However, Jϕ〈S〉KA shall not be confused with the
projection of JϕKA to S. In fact, it might be that JϕKA is empty, but Jϕ〈S〉KA is not, as the
following example illustrates:

ϕ = E(x, y) ∧ E(y, z) ∧ E(x, z) and (2)
ϕ〈{x, z}〉 ≡ ∃yE(x, y) ∧ ∃yE(y, z) ∧ ∃yE(x, z) (3)

≡ E(x, z) . (4)

MFCS 2019

58:6 Constant Delay Enumeration with FPT-Preprocessing

3.1 Constant delay enumeration using tree decompositions
We use the same notation as [22] for decompositions of queries: A tree decomposition (TD,
for short) of a CQ ϕ is a tuple TD = (T, χ), for which the following two conditions are
satisfied:
1. T = (V (T), E(T)) is a finite undirected tree.
2. χ is a mapping that associates with every node t ∈ V (T) a set χ(t) ⊆ vars(ϕ) such that

a. for each atom α ∈ atoms(ϕ) there exists t ∈ V (T) such that vars(α) ⊆ χ(t), and
b. for each variable v ∈ vars(ϕ) the set χ−1(v) := {t ∈ V (T) : v ∈ χ(t)} induces a

connected subtree of T (this condition is called path condition).

To use a tree decomposition TD = (T, χ) of ϕ for query evaluation one considers, for
each t ∈ V (T) the query ϕ〈S〉 for S := χ(t), evaluates this query on the input structure
A, and then combines these results for all t ∈ V (T) along a bottom-up traversal of T . If
the query is Boolean, this yields the result of ϕ on A; if it is non-Boolean, JϕKA can be
computed by performing additional traversals of T . This approach is efficient if the result
sets Jϕ〈χ(t)〉KA are small and can be computed efficiently (later on, we will sometimes refer
to the sets Jϕ〈χ(t)〉KA as projections on bags).

The simplest queries where this is the case are acyclic queries [11, 15]. A number of
equivalent characterisations of the acyclic CQs have been provided in the literature (cf.
[1, 23, 25, 17]); among them a characterisation by Gottlob et al. [23] stating that a CQ is
acyclic if and only if it has a tree-decomposition where every bag is covered by an atom, i.e.,
for every bag χ(t) there is some atom α in ϕ with χ(t) ⊆ vars(α). The approach described
above leads to a linear time algorithm for evaluating an acyclic CQ ϕ that is Boolean, and if
ϕ is non-Boolean, JϕKA is computed in time linear in ||A||+ | JϕKA|. This method is known
as Yannakakis’ algorithm. But this algorithm does not distinguish between a preprocessing
phase and an enumeration phase and does not guarantee constant delay enumeration. In fact,
Bagan et al. identified the following additional property that is needed to ensure constant
delay enumeration.

I Definition 3.2 ([10]). A tree decomposition TD = (T, χ) of a CQ ϕ is free-connex if there
is a subset U ⊆ V (T) that induces a connected subtree of T and that satisfies the condition
free(ϕ) =

⋃
t∈U χ(t).

Bagan et al. [10] identified the free-connex acyclic CQs, i.e., the CQs ϕ that have a
free-connex tree decomposition where every bag is covered by an atom, as the fragment of the
acyclic CQs whose results can be enumerated with constant delay after FPL-preprocessing:

I Theorem 3.3 (Bagan et al. [10]). There is a computable function f and an algorithm
which receives a free-connex acyclic CQ ϕ and a σ(ϕ)-structure A and computes within
tp = f(ϕ)O(||A||) preprocessing time and space a data structure that allows to
(i) enumerate JϕKA with f(ϕ) delay and
(ii) test for a given tuple (or, mapping) b if b ∈ JϕKA within f(ϕ) testing time.

The approach of using free-connex tree decompositions for constant delay enumeration
can be extended from acyclic CQs to arbitrary CQs. To do this, we have to compute for every
bag χ(t) in the tree decomposition the projection Jϕ〈χ(t)〉KA. This reduces the task to the
acyclic case, where the free-connex acyclic query contains one atom α with vars(α) = χ(t) for
every bag χ(t) and the corresponding relation is defined by Jϕ〈χ(t)〉KA. Because the runtime
in this approach is dominated by computing Jϕ〈χ(t)〉KA, it is only feasible if the projections
are efficiently computable for every bag. If the decomposition has bounded treewidth or

C. Berkholz and N. Schweikardt 58:7

bounded fractional hypertree width, then it is possible to compute Jϕ〈χ(t)〉KA for every bag
in time f(ϕ)·||A||O(1) [24], which in turn implies that the result can be enumerated after
FPT-preprocessing time for CQs of bounded fc-tw [10] and for CQs of bounded fc-fhw [37].

3.2 Submodular width and statement of the main result
Before providing the precise definition of the submodular width of a query, let us first consider
an example. The central idea behind algorithms that rely on submodular width [33, 3, 38] is to
split the input structure into several parts and use for every part a different tree decomposition
of ϕ. This will give a significant improvement over the fractional hypertree width, which uses
only one tree decomposition of ϕ. A typical example to illustrate this idea is the following
4-cycle query (see also [3, 38]): ϕ4 := E12(x1, x2) ∧ E23(x2, x3) ∧ E34(x3, x4) ∧ E41(x4, x1).

There are essentially two non-trivial tree decompositions TD′ = (T, χ′), TD′′ = (T, χ′′)
of ϕ4, which are both defined over the two-vertex tree T = ({t1, t2}, {(t1, t2)}) by χ′(t1) =
{x1, x2, x3}, χ′(t2) = {x1, x3, x4} and χ′′(t1) = {x2, x3, x4}, χ′′(t2) = {x1, x2, x4}. Both tree
decompositions lead to an optimal fractional hypertree decomposition of width fhw(ϕ4) = 2.
Indeed, for the worst-case instance A with

EA12 = EA34 := [`]× {a} ∪ {b} × [`] EA23 = EA41 := [`]× {b} ∪ {a} × [`]

we have ‖A‖ = O(`) while the projections on the bags have size Ω(`2) in both decompositions:2

Jϕ4〈χ′(t1)〉KA = Jϕ4〈χ′(t2)〉KA = [`]× {a} × [`] ∪ {b} × [`]× {b},
Jϕ4〈χ′′(t1)〉KA = Jϕ4〈χ′′(t2)〉KA = [`]× {b} × [`] ∪ {a} × [`]× {a}.

However, we can split A into A′ and A′′ such that Jϕ4KA is the disjoint union of Jϕ4KA
′ and

Jϕ4KA
′′ and the bag-sizes in the respective decompositions are small:

EA
′

12 = EA
′

34 := {b} × [`] EA
′

23 = EA
′

41 := [`]× {b}

EA
′′

12 = EA
′′

34 := [`]× {a} EA
′′

23 = EA
′′

41 := {a} × [`]

Jϕ4〈χ′(t1)〉KA
′

= Jϕ4〈χ′(t2)〉KA
′

= {b} × [`]× {b},

Jϕ4〈χ′′(t1)〉KA
′′

= Jϕ4〈χ′′(t2)〉KA
′′

= {a} × [`]× {a}.

Thus, we can efficiently evaluate ϕ4 on A′ using TD′ and ϕ4 on A′′ using TD′′ (in time
O(`) in this example) and then combine both results to obtain ϕ4(A). Using the strategy
of Alon et al. [4], it is possible to split every database A for this particular 4-cycle query
ϕ4 into two instances A′ and A′′ such that the bag sizes in TD′ on A′ as well as in TD′′

on A′′ are bounded by ‖A‖3/2 and can be computed in time O(‖A‖3/2) (see [3, 38] for a
detailed account on this strategy). As both decompositions are free-connex, this also leads
to a constant delay enumeration algorithm for ϕ4 with O(‖A‖3/2) time preprocessing, which
improves the O(‖A‖2) preprocessing time that follows from using one decomposition.

In general, whether such a data-dependent decomposition is possible is determined
by the submodular width subw(ϕ) of the query. The notion of submodular width was
introduced in [33]. To present its definition, we need the following terminology. A function
g : 2vars(ϕ) → R>0 is

monotone if g(U) 6 g(V) for all U ⊆ V ⊆ vars(ϕ).

2 recall from Section 2 our convention to identify mappings in query results with tuples; the free variables
are listed canonically here, by increasing indices

MFCS 2019

58:8 Constant Delay Enumeration with FPT-Preprocessing

edge-dominated if g(vars(α)) 6 1 for every atom α ∈ atoms(ϕ).
submodular, if g(U) + g(V) > g(U ∩ V) + g(U ∪ V) for every U, V ⊆ vars(ϕ).

We denote by S(ϕ) the set of all monotone, edge-dominated, submodular functions
g : 2vars(ϕ) → R>0 that satisfy g(∅) = 0, and by T(ϕ) the set of all tree decompositions
of ϕ. The submodular width of a conjunctive query ϕ is

subw(ϕ) := sup
g∈S(ϕ)

min
(T,χ)∈T(ϕ)

max
t∈V (T)

g(χ(t)). (5)

In particular, if the submodular width of ϕ is bounded by w, then for every submodular
function g there is a tree decomposition in which every bag B satisfies g(B) 6 w.

It is known that subw(ϕ) 6 fhw(ϕ) for all queries ϕ [33, Proposition 3.7]. Moreover,
there is a constant c and a family of queries ϕ such that subw(ϕ) 6 c is bounded and
fhw(ϕ) = Ω(

√
log ‖ϕ‖) is unbounded [32, 33]. The main result in [33] is that the submodular

width characterises the tractability of Boolean CQs in the following sense.

I Theorem 3.4 ([33]).
(1) There is a computable function f and an algorithm that receives a Boolean CQ ϕ,

subw(ϕ), and a σ(ϕ)-structure A and evaluates ϕ on A in time f(ϕ)||A||O(subw(ϕ)).
(2) Let Φ be a recursively enumerable class of Boolean, self-join-free CQs of unbounded

submodular width. Assuming the exponential time hypothesis (ETH) there is no algorithm
which, upon input of a query ϕ ∈ Φ and a structure A, evaluates ϕ on A in time
||A||o(subw(ϕ)1/4).

The free-connex submodular width of a conjunctive query ϕ is defined in a similar way
as submodular width, but this time ranges over the set fcT(ϕ) of all free-connex tree
decompositions of ϕ (it is easy to see that we can assume that fcT(ϕ) is finite).

fc-subw(ϕ) := sup
g∈S(ϕ)

min
(T,χ)∈fcT(ϕ)

max
t∈V (T)

g(χ(t)). (6)

Note that if ϕ is either quantifier-free or Boolean, we have fc-subw(ϕ) = subw(ϕ). In
general, this is not always the case. Consider for example the following quantified version
ϕ′4 := ∃x1∃x3 ϕ4 of the quantifier-free 4-cycle query ϕ4. Here we have subw(ϕ′4) = 3

2 ,
but fc-subw(ϕ′4) = 2: one can verify fc-subw(ϕ′4) > 2 by noting that every free-connex
tree decomposition contains a bag {x1, x2, x3, x4} and taking the submodular function
g(U) := 1

2 |U |. Now we are ready to state the main theorem of this paper.

I Theorem 3.5. For every δ > 0 and w > 1 there is a computable function f and an
algorithm which receives a CQ ϕ with fc-subw(ϕ) 6 w and a σ(ϕ)-structure A and computes
within tp = f(ϕ)||A||(2+δ)w preprocessing time and space f(ϕ)||A||(1+δ)w a data structure that
allows to
(i) enumerate JϕKA with f(ϕ) delay and
(ii) test for a given tuple (or, mapping) b if b ∈ JϕKA within f(ϕ) testing time.

The following corollary is an immediate consequence of Theorem 3.5 and Theorem 3.4. A
class Φ of CQs is said to be of bounded free-connex submodular width if there exists a number
w such that fc-subw(ϕ) 6 w for all ϕ ∈ Φ. And by an algorithm for Φ that enumerates with
constant delay after FPT-preprocessing we mean an algorithm that receives a query ϕ ∈ Φ
and a σ(ϕ)-structure A and spends f(ϕ)||A||O(1) preprocessing time and then enumerates
JϕKA with delay f(ϕ), for a computable function f .

C. Berkholz and N. Schweikardt 58:9

I Corollary 3.6.
(1) For every class Φ of CQs of bounded free-connex submodular width, there is an algorithm

for Φ that enumerates with constant delay after FPT-preprocessing.
(2) Let Φ be a recursively enumerable class of quantifier-free self-join-free CQs and assume

that the exponential time hypothesis (ETH) holds.
Then there is an algorithm for Φ that enumerates with constant delay after FPT-
preprocessing if, and only if, Φ has bounded free-connex submodular width.

4 Proof of the Main Result

To prove Theorem 3.5, we make use of Marx’s splitting routine for queries of bounded
submodular width. In the following, we will adapt the main definitions and concepts
from [33] to our notions. While doing this, we provide the following additional technical
contributions: First, we give a detailed time and space analysis of the algorithm and improve
the runtime of the consistency algorithm [33, Lemma 4.5] from quadratic to linear (see
Lemma 4.2). Second, we fix an oversight in [33, Lemma 4.12] by establishing strong M -
consistency (unfortunately, this fix incurs a blow-up in running time). Afterwards we prove
our main theorem, where the non-Boolean setting requires us to relax Marx’s partition into
refinements (Lemma 4.5) so that the subinstances are no longer disjoint.

Let ϕ be a quantifier-free CQ with vars(ϕ) = {x1, . . . , xk}, and let σ := σ(ϕ). For every
S = {xi1 , . . . , xi`} ⊆ vars(ϕ) where i1 < · · · < i` we set xS := (xi1 , . . . , xi`) and let RS /∈ σ
be a fresh `-ary relation symbol. For every collection s ⊆ 2vars(ϕ) we let

σs := σ ∪ {RS : S ∈ s} and (7)
ϕs := ϕ ∧

∧
S∈sRS(xS). (8)

A refinement of ϕ and a σ-structure A is a pair (s,B), where s ⊆ 2vars(ϕ) is closed under
taking subsets and B is a σs-expansion of A. Note that if (s,B) is a refinement of ϕ and
A, then JϕsKB ⊆ JϕKA. In the following we will construct refinements that do not change
the result relation, i. e., JϕsKB = JϕKA. Subsequently, we will split refinements in order to
partition the query result.

The following definition collects useful properties of refinements. Recall from Section 2 that
for a CQ ψ and a structure B, the query result JψKB actually is a set of mappings from free(ψ)
to B. For notational convenience we define RBS := JRS(xS)KB and use the set RBS of mappings
instead of the relation RBS . In particular, by addressing/inserting/deleting a mapping
h : S → B from RBS we mean addressing/inserting/deleting the tuple (h(xi1), . . . , h(xi`))
from RBS , where (xi1 , . . . , xi`) = xS .

I Definition 4.1. Let ϕ be a quantifier-free σ-CQ, A a σ-structure, (s,B) a refinement of ϕ
and A, and M an integer.
1. The refinement (s,B) is consistent if

RBS = Jϕs〈S〉KB for all S ∈ s and (9)
RBS = πS

(
RBT
)
for all S, T ∈ s with S ⊂ T . (10)

2. The refinement (s,B) is M -consistent if it is consistent and

S ∈ s ⇐⇒ for all T ⊆ S: | Jϕs〈T 〉KB| 6M . (11)

3. The refinement (s,B) is strongly M -consistent if it is M -consistent and

S ∈ s, T ∈ s, (S ∪ T) /∈ s =⇒ | Jϕs〈S ∪ T 〉KB| > M . (12)

MFCS 2019

58:10 Constant Delay Enumeration with FPT-Preprocessing

The proof of the following lemma is deferred to the full version of the paper.

I Lemma 4.2. There is an algorithm that receives a refinement R = (s,B) of ϕ and A and
computes in time O(|s| · ‖B‖) a consistent refinement (s,B′) with RB′

S ⊆ RBS for all S ∈ s

and JϕsKB
′ = JϕsKB.

I Lemma 4.3. Let ϕ be a quantifier-free CQ, let A be a σ(ϕ)-structure where the largest
relation contains m tuples, and let M > m. There is an algorithm that computes in time
O(2|vars(ϕ)| ·M2) and space O(2|vars(ϕ)| ·M) a strongly M -consistent refinement (s,B) that
satisfies JϕKA = JϕsKB.

Algorithm 1 Computing a strongly M -consistent refinement.
1: INPUT: quantifier-free CQ ϕ(x1, . . . , xk), σ(ϕ)-structure A
2: s← ∅ ; B ← A
3: repeat
4: for ` = 1, · · · , k do . Step 1: Ensure consition (11).
5: for S = {xi1 , . . . , xi`} ⊆ vars(ϕ) do
6: if S /∈ s and S \ {x} ∈ s for all x ∈ S then
7: RBS ← ∅
8: Choose x ∈ S arbitrary
9: for h ∈ RBS\{x} and c ∈ A do
10: if h ∪ {(x, c)} ∈ Jϕs〈S〉KB then RBS ← RBS ∪ {h ∪ {(x, c)}}
11: if |RBS | 6M then s← s ∪ {S}
12:
13: for S, T ∈ s such that S ∪ T /∈ s do . Step 2: Ensure condition (12).
14: for g ∈ RBS and h ∈ RBT do
15: if g on h ∈ Jϕs〈S ∪ T 〉KB then RBS∪T ← RBS∪T ∪ {g on h}
16: if |RBS∪T | > M then break
17: if |RBS∪T | 6M then s← s ∪ {S ∪ T}
18:
19: (s,B)← Consistent(s,B) . Step 3: Apply Lemma 4.2 to ensure (9), (10).
20: until s remains unchanged
21: return (s,B)

Proof. The pseudocode of the algorithm is shown in Algorithm 1. For computing the
strongly M -consistent refinement we first compute all sets S where for all T ⊆ S we have
| Jϕs〈T 〉KB| 6M ; as in [33], we say that such sets S are M -small. First note that the empty
set isM -small. For nonempty sets S we know that S is onlyM -small if for every x ∈ S the set
S \ {x} is M -small and hence already included in s. If this is the case, then Jϕs〈S〉KB can be
computed in time O(M ·n) by testing for every h ∈ RBS\{x} (for an arbitrary x ∈ S) and every
element c in the structure’s universe, whether h ∪ {(x, c)} ∈ Jϕs〈S〉KB. If |Jϕs〈S〉KB| 6 M ,
then we include S and RBS := Jϕs〈S〉KB into our current refinement. Afterwards, we want
to satisfy the condition on strong M -consistency (12) by trying all pairs of M -small sets S
and T . This is the bottleneck of our algorithm and requires time O(|RBS | · |RBT |) 6 O(M2).
In the third step we apply Lemma 4.2 to enforce consistency of the current refinement. In
particular, every set S ∪ T that was found in step 2 becomes M -small. Note that after
deleting tuples to ensure consistency, new sets may become M -small. Therefore, we have to

C. Berkholz and N. Schweikardt 58:11

repeat steps 1–3 until no more sets became M -small. Overall, we repeat the outer loop at
most 2k times, step 1 takes time 2O(k) ·M · n, step 2 takes time 2O(k) ·M2 and step 3 takes
time 2O(k) ·M . Since n 6M this leads to the required running time. J

The key step in the proof of Theorem 3.5 is to compute f(ϕ) strongly M -consistent
refinements (si,Bi) of ϕ and A such that JϕKA =

⋃
iJϕsiKBi . In addition to being strongly

M -consistent, we want the structures Bi to be uniform in the sense that the degree of tuples
(i. e. the number of extensions) is roughly the average degree. We make this precise in a
moment, but for illustration it might be helpful to consult the example from Section 3.2
again. In every relation in A there is one vertex (a or b) of out-degree ` and there are `
vertices of out-degree 1. Hence the average out-degree is 2`/(`+ 1) and the vertex degrees are
highly imbalanced. However, after splitting the instance in A′ and A′′, in every relation, all
vertices have either out-degree ` or 1 and the out-degree of every vertex matches the average
out-degree of the corresponding relation. The next definition generalises this to tuples of
variables. We call a refinement (s,B) non-trivial, if every additional relation in the expansion
B is non-empty. For a non-trivial consistent refinement (s,B) and S, T ∈ s, S ⊆ T , we let

avgdeg(S, T) := |RBT |/|RBS | and (13)
maxdeg(S, T) := max

g∈RB
S

{
h ∈ RBT : πS(h) = g

}
. (14)

Note that consistency ensures that these numbers are well-defined and non-zero. Fur-
thermore, we can compute them from (s,B) in time O(|s|2 · ‖B‖). By definition we have
maxdeg(S, T) > avgdeg(S, T). The next definition states that maximum degree does not
deviate too much from the average degree.

I Definition 4.4. Let (s,B) be a non-trivial consistent refinement of ϕ and A, and let m be
the number of tuples of largest relation of A. The refinement (s,B) is ε-uniform if for all
S, T ∈ s with S ⊆ T we have maxdeg(S, T) 6 mε · avgdeg(S, T).

The next lemma uses Marx’s splitting routine to obtain a partition into strongly M -
consistent ε-uniform refinements, for M := mc.

I Lemma 4.5. Let ϕ be a quantifier-free CQ, let A be a σ(ϕ)-structure where the largest
relation contains m tuples, and let c > 1 and ε > 0 be real numbers. There is a computable
function f and an algorithm that computes in time O(f(ϕ, c, ε) ·m2c) and space O(f(ϕ, c, ε) ·
mc) a sequence of ` 6 f(ϕ, c, ε) strongly mc-consistent ε-uniform refinements (si,Bi) such
that JϕKA is the disjoint union of the sets Jϕsi

KBi

Proof (sketch). We follow the same splitting strategy as in [33], but use the improved
algorithm from Lemma 4.3 to ensure strong mc-consistency. Starting with the trivial
refinement (∅,A), in each step we first apply Lemma 4.3 to ensure strong mc-consistency.
Afterwards, we check whether the current refinement (s,B) contains sets S, T ∈ s that
contradict ε-uniformity, i. e., S ⊆ T and maxdeg(S, T) > mε · avgdeg(S, T). If this is the
case, we split the refinement (s,B) into (s,B′) and (s,B′′) such that RBS is partitioned into
tuples of small degree and tuples of large degree:

RB
′

U = RB
′′

U := RBU for all U ∈ s \ {S}, (15)

RB
′

S :=
{
g ∈ RBS :

∣∣{h ∈ RBT : πS(h) = g
}∣∣ 6 mε/2 · avgdeg(S, T)

}
(16)

RB
′′

S :=
{
g ∈ RBS :

∣∣{h ∈ RBT : πS(h) = g
}∣∣ > mε/2 · avgdeg(S, T)

}
(17)

MFCS 2019

58:12 Constant Delay Enumeration with FPT-Preprocessing

It is clear that JϕKB is the disjoint union of JϕKB
′ and JϕKB

′′ and that the recursion terminates
at some point with a sequence of strongly mc-consistent ε-uniform refinements that partition
JϕKA. It is also not hard to show that the height of the recursion tree is bounded by
2O(|vars(ϕ)|)· cε (see [33, Lemma 4.11]). Hence, by Lemma 4.3 the procedure can be implemented
in time O(f(ϕ, c, ε) ·m2c) and space O(f(ϕ, c, ε) ·mc). J

The nice thing about ε-uniform and strongly mc-consistent refinements is that they define,
for small enough ε, a submodular function g ∈ S(ϕ), which in turn guarantees the existence
of a tree decomposition with small projections on the bags. The following lemma from [33,
Lemma 4.12] provides these functions. However, there is an oversight in Marx’s proof and in
order to fix this, we have to ensure strong mc-consistency instead of only mc-consistency as
stated in [33, Lemma 4.12]. As suggested by Marx (personal communication), an alternative
way to achieve strong mc-consistency would be to enforce m2c-consistency, which leads to
the same runtime guarantees, but requires more space.

I Lemma 4.6. Let (s,B) be an ε-uniform strongly mc-consistent refinement of ϕ and A, and
let c > 1 and |vars(ϕ)|−3 > ε > 0 be real numbers. Then gs,B : 2vars(ϕ) → R>0 is a monotone,
edge-dominated, submodular function that satisfies gs,B(∅) = 0:

gs,B(U) :=
{

(1− ε1/3) · logm
(
|RBU |

)
+ h(U) if U ∈ s

(1− ε1/3) · c+ h(U) if U /∈ s,
(18)

where h(U) := 2ε2/3|U | − ε|U |2 > 0 for all U ⊆ vars(ϕ).

The proof can be copied verbatim from Marx’s proof of [33, Lemma 4.12] by using the
notion of strong consistency instead of plain consistency and is provided in the full version of
the paper. Now we are ready to prove our main theorem.

Proof of Theorem 3.5. We fix c = (1 + δ)w and let ε be the minimum of
(
1− 1/(1 + δ)

)4
and |vars(ϕ)|−4. Suppose that ϕ is of the form ∃x1 · · · ∃xk ϕ̃ where ϕ̃ is quantifier-free. We
apply Lemma 4.5 to ϕ̃, A, c, ε to obtain in time O(f(ϕ)m2c) a sequence of ` 6 f(ϕ) strongly
mc-consistent ε-uniform refinements (si,Bi) such that Jϕ̃KA is the disjoint union of Jϕ̃s1KB1 ,
. . . , Jϕ̃s`

KB` . By Lemma 4.6 we have gsi,Bi ∈ S(ϕ̃) = S(ϕ) for every i ∈ [`]. Hence, by the
definition of free-connex submodular width (5), we know that there is a free-connex tree
decomposition (Ti, χi) of ϕ such that gsi,Bi(χi(t)) 6 w for every t ∈ V (Ti). Note that by the
choice of c , ε and the non-negativity of h (see Lemma 4.6) we have

w = c/(1 + δ) 6 (1− ε1/4) · c < (1− ε1/3) · c+ h(U). (19)

Hence, gsi,Bi
(U) 6 w implies U ∈ s and therefore |RBi

U | = | Jϕsi
〈U〉KBi | 6 mc by (9) and (11).

Thus, every bag of the free-connex tree-decomposition (Ti, χi) is small in the ith refinement.
However, (Ti, χi) is a tree-decomposition of ϕ, but not necessarily of ϕsi

! In fact, ϕsi
can be

very dense, e. g., if si = 2vars(ϕ). To take care of this, we thin out the refinement and only
keep those atoms and relations that correspond to bags of the decomposition. In particular,
for every i ∈ [`] we define ψ̃i :=

∧
t∈V (Ti)Rχi(t)(xχi(t)) and let ψi := ∃x1 · · · ∃xk ψ̃i be the

quantified version. Note that ψi is a free-connex acyclic CQ. Additionally, we let Ci be the
σ(ψi)-reduct of Bi. We argue that Jϕ̃si

KBi ⊆ Jψ̃iKCi ⊆ Jϕ̃KA. The first inclusion holds because
ϕ̃si and Bi refine ψ̃i and Ci. The second inclusion holds because every atom from ϕ̃ is contained
in a bag of the decomposition and is hence covered by an atom in ψ̃i because of consistency.
It therefore also follows that πF

(
Jϕ̃si

KBi
)
⊆ πF

(
Jψ̃iKCi

)
⊆ πF

(
Jϕ̃KA

)
for F := free(ϕ), and

hence Jϕsi
KBi ⊆ JψiKCi ⊆ JϕKA. Overall, we have that JϕKA =

⋃
i∈[`]JψiK

Ci , where the union
is not necessarily disjoint, each ψi is free-connex acyclic, and ‖Ci‖ = O(|vars(ϕ)|2m(1+δ)w).
By combining Theorem 3.3 with Theorem 2.1, the theorem follows. J

C. Berkholz and N. Schweikardt 58:13

5 Final Remarks

In this paper, we have investigated the enumeration complexity of conjunctive queries and
have shown that every class of conjunctive queries of bounded free-connex submodular width
admits constant delay enumeration with FPT-preprocessing. These are by now the largest
classes of CQs that allow efficient enumeration in this sense.

For quantifier-free self-join-free CQs this upper bound is matched by Marx’s lower bound
[33]. I. e., recursively enumerable classes of quantifier-free self-join-free CQs of unbounded free-
connex submodular width do not admit constant delay enumeration after FPT-preprocessing
(assuming the exponential time hypothesis ETH).

A major future task is to obtain a complete dichotomy, or at least one for all self-join-free
CQs. The gray-zone for the latter are classes of CQs that have bounded submodular width,
but unbounded free-connex submodular width. An intriguing example in this gray-zone is the
k-star query with a quantified center, i. e., the query ψk of the form ∃z

∧k
i=1Ri(z, xi). Here

we have subw(ψk) = 1 and fc-subw(ψk) = k. It is open whether the class Ψ = {ψk : k ∈ N>1}
admits constant delay enumeration with FPT-preprocessing.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do Shannon-type inequalities, sub-

modular width, and disjunctive datalog have to do with one another? CoRR, abs/1612.02503,
2016. arXiv:1612.02503.

3 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What Do Shannon-type Inequalities,
Submodular Width, and Disjunctive Datalog Have to Do with One Another? In Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
PODS 2017, pages 429–444, 2017. doi:10.1145/3034786.3056105.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and Counting Given Length Cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

5 Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumeration on Trees under Relabelings.
In 21st International Conference on Database Theory, ICDT 2018, March 26-29, 2018, Vienna,
Austria, pages 5:1–5:18, 2018. doi:10.4230/LIPIcs.ICDT.2018.5.

6 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on
Trees with Tractable Combined Complexity and Efficient Updates. CoRR, abs/1812.09519,
2018. arXiv:1812.09519.

7 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-Delay
Enumeration for Nondeterministic Document Spanners. In 22nd International Conference on
Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, pages 22:1–22:19, 2019.
doi:10.4230/LIPIcs.ICDT.2019.22.

8 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, pages 167–181,
2006. doi:10.1007/11874683_11.

9 Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation
de requêtes logiques. (Algorithms and complexity of enumeration problems for the evaluation
of logical queries). PhD thesis, University of Caen Normandy, France, 2009. URL: https:
//tel.archives-ouvertes.fr/tel-00424232.

10 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries
and Constant Delay Enumeration. In Proceedings of the 16th Annual Conference of the
EACSL, CSL’07, Lausanne, Switzerland, September 11–15, 2007, pages 208–222, 2007. doi:
10.1007/978-3-540-74915-8_18.

11 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of
Acyclic Database Schemes. J. ACM, 30(3):479–513, 1983. doi:10.1145/2402.322389.

MFCS 2019

http://webdam.inria.fr/Alice/
http://arxiv.org/abs/1612.02503
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1007/BF02523189
https://doi.org/10.4230/LIPIcs.ICDT.2018.5
http://arxiv.org/abs/1812.09519
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://doi.org/10.1007/11874683_11
https://tel.archives-ouvertes.fr/tel-00424232
https://tel.archives-ouvertes.fr/tel-00424232
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1145/2402.322389

58:14 Constant Delay Enumeration with FPT-Preprocessing

12 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries
under Updates. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS’17, Chicago, IL, USA, May 14–19, 2017, pages 303–318,
2017. Full version available at http://arxiv.org/abs/1702.06370. doi:10.1145/3034786.
3034789.

13 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD Queries
Under Updates on Bounded Degree Databases. In Michael Benedikt and Giorgio Orsi, editors,
20th International Conference on Database Theory, ICDT 2017, March 21–24, 2017, Venice,
Italy, volume 68 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ICDT.2017.8.

14 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under Updates
and in the Presence of Integrity Constraints. In 21st International Conference on Database
Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, pages 8:1–8:19, 2018. doi:10.4230/
LIPIcs.ICDT.2018.8.

15 Philip A. Bernstein and Nathan Goodman. Power of Natural Semijoins. SIAM J. Comput.,
10(4):751–771, 1981. doi:10.1137/0210059.

16 Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques propos-
itionnelle et du premier ordre. (The relevance of the list: propositional logic and complex-
ity of the first order). PhD thesis, University of Caen Normandy, France, 2013. URL:
https://tel.archives-ouvertes.fr/tel-01081392.

17 Johann Brault-Baron. Hypergraph Acyclicity Revisited. ACM Comput. Surv., 49(3):54:1–54:26,
2016. doi:10.1145/2983573.

18 Shaleen Deep and Paraschos Koutris. Compressed Representations of Conjunctive Query
Results. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 307–322, 2018. doi:
10.1145/3196959.3196979.

19 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4), 2007. doi:10.1145/
1276920.1276923.

20 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order
queries over databases of low degree. In Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June
22–27, 2014, pages 121–131, 2014. doi:10.1145/2594538.2594539.

21 Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems
with Second-order Variables. In Computer Science Logic, 25th International Workshop /
20th Annual Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen, Norway,
Proceedings, pages 189–202, 2011. doi:10.4230/LIPIcs.CSL.2011.189.

22 Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree Decompos-
itions: Questions and Answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pages 57–74, 2016. doi:10.1145/2902251.2902309.

23 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions and Tractable
Queries. J. Comput. Syst. Sci., 64(3):579–627, 2002. doi:10.1006/jcss.2001.1809.

24 Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers. ACM Trans.
Algorithms, 11(1):4:1–4:20, 2014. doi:10.1145/2636918.

25 Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Al-
gorithm: Compact and Efficient Query Processing Under Updates. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, pages 1259–1274, 2017. doi:10.1145/3035918.3064027.

26 Ahmet Kara and Dan Olteanu. Covers of Query Results. In 21st International Conference on
Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, pages 16:1–16:22, 2018.
doi:10.4230/LIPIcs.ICDT.2018.16.

http://arxiv.org/abs/1702.06370
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.ICDT.2017.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.1137/0210059
https://tel.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/2983573
https://doi.org/10.1145/3196959.3196979
https://doi.org/10.1145/3196959.3196979
https://doi.org/10.1145/1276920.1276923
https://doi.org/10.1145/1276920.1276923
https://doi.org/10.1145/2594538.2594539
https://doi.org/10.4230/LIPIcs.CSL.2011.189
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/2636918
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.4230/LIPIcs.ICDT.2018.16

C. Berkholz and N. Schweikardt 58:15

27 Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded
degree. Logical Methods in Computer Science, 7(2), 2011. doi:10.2168/LMCS-7(2:20)2011.

28 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 -
27, 2013, pages 297–308, 2013. doi:10.1145/2463664.2463667.

29 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.
ACM Trans. Comput. Log., 14(4):25:1–25:12, 2013. doi:10.1145/2528928.

30 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005133.

31 Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers under
updates. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 67:1–
67:10, 2014. doi:10.1145/2603088.2603137.

32 Dániel Marx. Tractable Structures for Constraint Satisfaction with Truth Tables. Theory
Comput. Syst., 48(3):444–464, 2011. doi:10.1007/s00224-009-9248-9.

33 Dániel Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive
Queries. Journal of the ACM (JACM), Volume 60, Issue 6, Article No. 42, November 2013.
doi:10.1145/2535926.

34 Matthias Niewerth. MSO queries on trees: Enumerating answers under updates using
forest algebras. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 769–778, 2018. doi:
10.1145/3209108.3209144.

35 Matthias Niewerth and Luc Segoufin. Enumeration of MSO Queries on Strings with Constant
Delay and Logarithmic Updates. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages
179–191, 2018. doi:10.1145/3196959.3196961.

36 Dan Olteanu and Maximilian Schleich. Factorized Databases. SIGMOD Record, 45(2):5–16,
2016. doi:10.1145/3003665.3003667.

37 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query
Results. ACM Trans. Database Syst., 40(1):2:1–2:44, 2015. doi:10.1145/2656335.

38 Francesco Scarcello. From Hypertree Width to Submodular Width and Data-dependent
Structural Decompositions. In Proceedings of the 26th Italian Symposium on Advanced
Database Systems, Castellaneta Marina (Taranto), Italy, June 24-27, 2018., 2018. URL:
http://ceur-ws.org/Vol-2161/paper24.pdf.

39 Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO Queries over
Nowhere Dense Graphs. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 151–163,
2018. doi:10.1145/3196959.3196971.

40 Luc Segoufin. Constant Delay Enumeration for Conjunctive Queries. SIGMOD Record,
44(1):10–17, 2015. doi:10.1145/2783888.2783894.

41 Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries over Databases
with Local Bounded Expansion. In 20th International Conference on Database Theory, ICDT
2017, March 21–24, 2017, Venice, Italy, pages 20:1–20:16, 2017. doi:10.4230/LIPIcs.ICDT.
2017.20.

42 Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 82–94,
1981.

MFCS 2019

https://doi.org/10.2168/LMCS-7(2:20)2011
https://doi.org/10.1145/2463664.2463667
https://doi.org/10.1145/2528928
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1145/2603088.2603137
https://doi.org/10.1007/s00224-009-9248-9
https://doi.org/10.1145/2535926
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3196959.3196961
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2656335
http://ceur-ws.org/Vol-2161/paper24.pdf
https://doi.org/10.1145/3196959.3196971
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.4230/LIPIcs.ICDT.2017.20
https://doi.org/10.4230/LIPIcs.ICDT.2017.20

Counting Homomorphisms Modulo a Prime
Number
Amirhossein Kazeminia
Simon Fraser University, Canada
amirhossein.kazeminia@sfu.ca

Andrei A. Bulatov
Simon Fraser University, Canada
abulatov@sfu.ca

Abstract
Counting problems in general and counting graph homomorphisms in particular have numerous
applications in combinatorics, computer science, statistical physics, and elsewhere. One of the
most well studied problems in this area is #GraphHom(H) – the problem of finding the number
of homomorphisms from a given graph G to the graph H. Not only the complexity of this basic
problem is known, but also of its many variants for digraphs, more general relational structures,
graphs with weights, and others. In this paper we consider a modification of #GraphHom(H), the
#pGraphHom(H) problem, p a prime number: Given a graph G, find the number of homomorphisms
from G to H modulo p. In a series of papers Faben and Jerrum, and Göbel et al. determined
the complexity of #2GraphHom(H) in the case H (or, in fact, a certain graph derived from H)
is square-free, that is, does not contain a 4-cycle. Also, Göbel et al. found the complexity of
#pGraphHom(H) when H is a tree for an arbitrary prime p. Here we extend the above result to
show that the #pGraphHom(H) problem is #pP-hard whenever the derived graph associated with
H is square-free and is not a star, which completely classifies the complexity of #pGraphHom(H)
for square-free graphs H.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases graph homomorphism, modular counting, computational hardness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.59

Acknowledgements This work was supported by an NSERC Discovery grant

1 Introduction

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the
vertex set of G to that of H. Graph homomorphisms provide a powerful framework to
model a wide range of combinatorial problems in computer science, as well as a number
of phenomena in combinatorics and graph theory, such as graph parameters [13, 14]. Two
of the most natural problems related to graph homomorphisms is GraphHom(H): Given
a graph G, decide whether there is a homomorphism from G to a fixed graph H, and its
counting version #GraphHom(H) of finding the number of such homomorphisms. Special
cases of these problems include the k-Colouring and #k-Colouring problems (H is a k-clique),
Bipartiteness (H is an edge), counting independent sets (H is an edge with a loop at one
vertex) and many others.

In general the GraphHom(H) and #GraphHom(H) problems are NP-complete and #P-
complete, respectively. However, for certain graphs H these problems are significantly easier.
Hell and Nesetril [12] were the first to address this phenomenon in a systematic way. They
proved that the GraphHom(H) problem is polynomial time solvable if and only if H has a loop
or is bipartite, and GraphHom(H) is NP-complete otherwise. In the counting case a similar
result was obtained by Dyer and Greenhill [3], in this case the #GraphHom(H) problem

© Amirhossein Kazeminia and Andrei A. Bulatov;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 59; pp. 59:1–59:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amirhossein.kazeminia@sfu.ca
mailto:abulatov@sfu.ca
https://doi.org/10.4230/LIPIcs.MFCS.2019.59
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Counting Homomorphisms Modulo a Prime Number

is solvable in polynomial time if and only if H a complete graph with all loops present or
a complete bipartite graph, otherwise the problem is #P-complete. This result was later
generalized to computing partition functions for weighted graphs with nonnegative weights
by Bulatov and Grohe [1], graphs with real weights by Goldberg et al. [10], and finally for
complex weights by Cai et al. [2]. There have also been major attempts to find approximation
algorithms for the number of homomorphisms and other related graph parameters, see,
e.g. [5, 6, 11].

The modification of the #GraphHom(H) problem we consider in this paper concerns find-
ing the number of homomorphisms modulo a natural number k. The corresponding problem
will be denoted by #kGraphHom(H). Although modular counting has been considered by
Valiant [17] in the context of holographic algorithms, Faben and Jerrum [4] were the first
who systematically considered the problem #2GraphHom(H). In particular, they posed a
conjecture stating that this problem is polynomial time solvable if and only if a certain graph
H∗2 derived from H (to be defined later in this section) contains at most one vertex, and is
complete in the class ⊕P = #2P otherwise. Note that hardness results in this area usually
show completeness in a complexity class #kP of counting the number of accepting paths
in polynomial time nondeterministic Turing machines modulo k. The standard notion of
reduction in this case is Turing reduction. Faben and Jerrum proved their conjecture in the
case when H is a tree. This result has been extended by Göbel et al. first to the class of
cactus graphs [7] and then to square-free graphs [8] (a graph is a square-free if it does not
contain a 4-cycle).

In this paper we follow the lead of Göbel et al. [9] and consider the problem
#pGraphHom(H) for a prime number p. We only consider loopless graphs without par-
allel edges. There are similarities with the (mod 2) case. In particular, the derived graph
constructed in [4] can also be constructed following the same principles, it is denoted H∗p,
and it suffices to study #pGraphHom(H) for this only. On the other hand, the problem is
richer, as, for example, the polynomial time solvable cases include complete bipartite graphs.
Göbel et al. [9] considered the case when H is a tree. Recall that a star is a complete
bipartite graph of the form K1,n. Stars are the only complete bipartite graphs that are trees,
and also the only complete bipartite graphs that are square-free. The main result of [9]
establishes that #pGraphHom(H), H is a tree, is polynomial time solvable if and only if H∗p
is a star. We generalize this result to arbitrary square-free graphs.

I Theorem 1. Let H be a square-free graph and p a prime number. Then the
#pGraphHom(H) problem is solvable in polynomial time if and only if the graph H∗p is
a star, and is #pP-complete otherwise.

We now explain the main ideas behind our result, as well as, the majority of results in
this area. As it was observed by Faben and Jerrum [4], the automorphism group Aut(H) of
graph H plays a very important role in solving the #pGraphHom(H) problem. Let ϕ be a
homomorphism from a graph G to H. Then composing ϕ with an element from Aut(H) we
again obtain a homomorphism from G to H. The set of all such homomorphisms forms the
orbit of ϕ under the action of Aut(H). If Aut(H) contains an automorphism π of order p
(that is, p is the smallest number such that πp is the identity permutation), the cardinality
of the orbit of ϕ is divisible by p, unless π ◦ ϕ = ϕ, that is, the range of ϕ is the set of
fixed points Fix(π) of π (a ∈ V (H) is a fixed point of π if π(a) = a). Let Hπ denote the
subgraph of H induced by Fix(π). We write H ⇒p H

′ if there is π ∈ Aut(H) such that H ′ is
isomorphic to Hπ. We also write H ⇒∗p H ′ if there are graphs H1, . . . ,Hk such that H is
isomorphic to H1, H ′ is isomorphic to Hk, and H1 ⇒p H2 ⇒p · · · ⇒p Hk.

A. Kazeminia and A. A. Bulatov 59:3

I Lemma 2 ([4]). Let H be a graph and p a prime. Up to an isomorphism there is a unique
smallest (in terms of the number of vertices) graph H∗p such that H ⇒∗p H∗p, and for any
graph G it holds

|Hom(G,H)| ≡ |Hom(G,H∗p)| (mod p).

Moreover, H∗p does not have automorphisms of order p.

The easiness part of Theorem 1 follows from the classification of the complexity of
#GraphHom(H) by Dyer and Greenhill [3]. Since whenever #GraphHom(H) is polynomial
time solvable, so is #pGraphHom(H) for any p, Lemma 2 implies that if H∗p is a complete
graph with all loops present or a complete bipartite graph the problem #pGraphHom(H)
is also solvable in polynomial time. We restrict ourselves to loopless square-free graphs,
therefore, as H∗p is isomorphic to an induced subgraph of H, [3] only guarantees polynomial
time solvability when H∗p is a star.

Another ingredient in our result is the #pP-hard problem we reduce to #pGraphHom(H).
In most of the cited works the hard problem used to prove the hardness of #2GraphHom(H)
is the problem #2IS of finding the parity of the number of independent sets. This problem
was shown to be #2P-complete by Valiant [17]. We use a slightly different problem. For
two positive real numbers λ1, λ2, let #pBISλ1,λ2 denote the following problem of counting
weighted independent sets in bipartite graphs

Name: #pBISλ1,λ2

Input: a bipartite graph G
Output: Zλ1,λ2(G) =

∑
I∈IS(G) λ

|VL∩I|
1 λ

|VR∩I|
2 (mod p).

It was shown by Göbel et al. in [9] that #pBISλ1,λ2 is #pP-complete for any λ1, λ2,
unless one of them is equal to 0 (mod p). The main technical statement we prove here is the
following

I Theorem 3. Let H be a square-free graph such that H∗p is not a star. Then there are
λ1, λ2 6≡ 0 (mod p) such that #pBISλ1,λ2 is polynomial time reducible to the
#pGraphHom(H) problem.

We note that the requirement of being square-free is present in all results on modular
counting of graph homomorphisms, explicitly or implicitely (when the graph class in question
consists of square-free graphs). Clearly, this is an artifact of the techniques used in all these
works, and so overcoming this requirement would be a substantial achievement.

2 Preliminaries

We use [n] to denote the set {1, 2, 3, ..., n}. Also, we usually abbreviate A \ {x} to A − x.
Let k be a positive integer, then for a function f its k-fold composition is denoted by
f (k) = f ◦ f ◦ · · · ◦ f .

Graphs. In this paper, graphs are undirected, and have no parallel edges or loops. For a
graph G, the set of vertices of G is denoted by V (G), and the set of edges is denoted by
E(G). We use uv to denote an edge of G. The set of neighbours of a vertex v ∈ V (G) is
denoted by NG(v) = {u ∈ V (G) : uv ∈ E(G)}, and the degree of v is denoted by deg(v).

A set I ⊆ V (G) is an independent set of G if and only if uv is an edge of G for no u, v ∈ I.
The set of all independent sets of G is denoted by IS(G). If G is a bipartite graph, the parts
of a bipartition of V (G) will be denoted VR(G) and VL(G) in no particular order.

MFCS 2019

59:4 Counting Homomorphisms Modulo a Prime Number

Homomorphisms. A homomorphism from a graph G to a graph H is a mapping ϕ from
V (G) to V (H) which preserves edges, i.e. for any uv ∈ E(G) the pair ϕ(u)ϕ(v) is an edge of
H. The set of all homomorphisms from G to H, is denoted by Hom(G,H). For a graph H
the problem of counting homomorphism from a graph G to H is denoted by #GraphHom(H).
The problem of finding the number of homomorphisms from a given graph G to H modulo k
is denoted by #kGraphHom(H):

Name: #kGraphHom(H)
Input: a graph G
Output: |Hom(G,H)| (mod k).

It will be convenient to denote the vertices of the graph H by lowercase Greek letters.
A homomorphism ϕ from G toH is an isomorphism if it is bijective and for all u, v ∈ V (G),

uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). An automorphism of G is an isomorphism from
graph G to itself. The automorphism group of G is denoted by Aut(G). An automorphism
π is an automorphism of order k if k is the smallest positive integer such that π(k) is the
identity transformation. A fixed point of an automorphism π of G is a vertex v ∈ V (G) such
that v = π(v).

Partially labelled graphs. A partial function from X to Y is a function f : X ′ → Y for
a subset X ′ ⊆ X. For a graph H, a partial H-labelled graph G is a graph G (called the
underlying graph of G) equipped with a pinning function τ , which is a partial function from
V (G) to V (H). A homomorphism from a partial H-labelled graph G = (G, τ) to a graph H is
a homomorphism σ : G→ H that extends the pinning function τ , that is, for all v ∈ dom(τ),
σ(v) = τ(v). The set of all such homomorphisms is denoted by Hom(G, H).

In certain situations it will be convenient to use a slightly different view on collections of
homomorphisms of H-labelled graphs. A set of homomorphisms ϕ from a graph G to H that
maps vertices x1, x2, ..., xr ∈ V (G) to the vertices y1, y2, ..., yr ∈ V (H) such that ϕ(xi) = yi
for i ∈ [r] is denoted by Hom((G, x1, x2, ..., xr), (H, y1, y2, ..., yr)).

Counting complexity classes. The class #P is defined to be the class of problems of
counting the accepting paths in a polynomial time nondeterministic Turing machine. This
means every problem in NP has an associated counting problem in #P, so for A ∈ NP,
an associated counting problem will be denoted by #A. (Strictly speaking for every such
problem the corresponding counting one is not uniquely defined, but in our case there will
always be the “natural” one.) Classes #kP, where k is a natural number are defined in a
similar way, as counting the accepting paths in a polynomial time nondeterministic Turing
machine modulo k. For A ∈ NP the corresponding problem in #kP is denoted by #kA.

Several kinds of reductions between counting problems have appeared in the literature.
The first one, parsimonious, was introduced in the foundational papers [15, 16] by Valiant. A
counting problem A is parsimoniously reducible to a counting problem B, denoted A ≤ B, if
there is a polynomial time algorithm that, given an instance I of A, produces an instance J
of B such that the answers to I and J are the same. The other type of reduction frequently
used for counting problems is Turing reduction. Counting problem A is Turing reducible
to problem B, denoted A ≤T B, if there exists a polynomial time algorithm solving A and
using B as an oracle.

These two types of reductions can be applied to modular counting as well. Turing
reduction does not require any modifications. For parsimonious reduction we say that a
problem A from #kP is parsimoniously reducible to a problem B from #kP if there is a

A. Kazeminia and A. A. Bulatov 59:5

polynomial time algorithm that, given an instance I of A, produces an instance J of B
such that the answers to I and J are congruent modulo k. In this paper we mostly claim
Turing reducibility, although our main technical result constructs a parsimonious reduction.
However, the proof of Theorem 1 involves other reductions that are not always parsimonious.
Problem #kA is said to be #kP-complete if it belongs to #kP and every problem from #kP
is Turing reducible to #kA.

3 Outline of the proof

In this section we outline our proof strategy and formally introduce all the necessary
intermediate problems and existing results. Fix a prime number p.

As it was observed in the introduction, Lemma 2 proved by Faben and Jerrum [4] combined
with the classification by Dyer and Greenhill [3] proves the easiness part of Theorem 1. We
therefore focus on proving the hardness part. Again, by Lemma 2 we may assume that H
does not have automorphisms of order p.

For the hardness part, we use two auxiliary problems. The first one is the problem
#pBISλ1,λ2 mentioned in the introduction. Let λ1, λ2 ∈ {0, . . . p−1}, and letG = (VL∪VR, E)
be a bipartite graph. Define the following weighted sum over independent sets of G:

Zλ1,λ2(G) =
∑

I∈IS(G)

λ
|VL∩I|
1 λ

|VR∩I|
2 .

The problem of computing function Zλ1,λ2(G) for a given bipartite graph G, prime number
p and λ1, λ2 ∈ {0, . . . p− 1}, is defined as follows:

Name: #pBISλ1,λ2

Input: a bipartite graph G
Output: Zλ1,λ2(G) (mod p).

The complexity of #pBISλ1,λ2 was determined by Göbel, Lagodzinski and Seidel [9].

I Theorem 4. [9] If λ1 ≡ 0 (mod p) or λ2 ≡ 0 (mod p) then the problem #pBISλ1,λ2 is
solvable in polynomial time, otherwise it is #pP-complete.

The second auxiliary problem has been used in all works on #pGraphHom(H) starting
from the initial paper by Faben and Jerrum [4]. It is the problem of counting homomorphisms
from a given partially H-labelled graph G to a fixed graph H modulo prime p.

Name: #pPartHom(H)
Input: a partial H-labelled graph G = (G, τ)
Output: |Hom(G, H)| (mod p).

The chain of reductions we use to prove the hardness part of Theorem 1 is the following:

#pBISλ1,λ2 ≤T #pPartHom(H∗p) ≤T #pGraphHom(H∗p) ≤T #pGraphHom(H). (1)

The last reduction is by Lemma 2. Acually, the two last problems in the chain are
polynomial time interreducible through (modular) parsimonious reduction. The second step,
the reduction from #pPartHom(H) to #pGraphHom(H) was proved by Göbel, Lagodzinski
and Seidel [9].

I Theorem 5. [9] Let p be a prime number and let H be a graph that does not have any
automorphism of order p. Then #pPartHom(H) can be reduced to #pGraphHom(H) through
a polynomial time Turing reduction.

MFCS 2019

59:6 Counting Homomorphisms Modulo a Prime Number

Finally, the first reduction in the chain is our main contribution. We show it in three steps.
Recall that we are reducing the problem of finding of the number of (weighted) independent
sets in a bipartite graph to the problem of finding the number of extensions of a partial
homomorphism from a given graph to H. First, in Section 4 starting from a bipartite graph
G we replace its vertices and edges with gadgets, whose exact structure we do not specify
at that point. We call those gadget the vertex and edge gadgets. Then we show that if the
vertex and edge gadgets satisfy certain conditions, in terms of the number of homomorphisms
of certain kind from the gadgets to H (Theorem 7), then Zλ1,λ2(G) (mod p) can be found
in polynomial time from |Hom(G, H)| (mod p), where G is the partially H-labelled graph
constructed in the reduction. In the second step, Section 5, we introduce several variants
of vertex and edge gadgets and show some of their properties. Finally, in Section 6 we
consider several cases depending on the degree sequence of the graph H. In every case we
construct vertex and edge gadgets that satisfy the conditions of Theorem 7, thus completing
the reduction.

4 Hardness gadgets

Our goal in this section is to describe a general scheme of a reduction from #pBISλ1,λ2 to
#pPartHom(H), where p is prime and H is a square-free graph.

The general idea is, given a bipartite graph G = (VL ∪ VR, E), where VL, VR is the
bipartition of G, to construct a new partially H-labelled graph G′, which is obtained from
G by adding a copy of a vertex gadget J to every vertex of G, and replacing every edge
from E with a copy of an edge gadget K. The gadgets are partially H-labelled graphs and
their pinning functions will define the pinning function of G′. Since G is a bipartite graph,
the vertex gadget comes in two versions, left, JL, and right, JR. Also, both vertex gadgets
have a distinguished vertex, s for JL and t for JR. The edge gadget K has two distinguished
vertices, s and t. These distinguished vertices will be identified with the vertices of the
original graph G, as shown in Fig. 1.

Figure 1 The structure of graph G′. The original graph G is on the left. The resulting graph
G′ is on the right: vertex gadgets JL,JR are added to every vertex, and the only edge vx of G is
replaced with a copy of gadget K.

The gadgets JL,JR are associated with sets ∆1,∆2 ⊆ V (H) and vertices δ1 ∈ ∆1, δ2 ∈ ∆2,
respectively. The pinning functions of JL,JR will be defined in such a way that for any
homomorphism ϕ of JL (JR) to H, vertex s (respectively, t) is forced to be mapped to ∆1
(respectively, ∆2). For x ∈ VL let JL(x) denote the copy of JL connected to x, that is, s
in JL(x) is identified with x. For y ∈ VR the copy JR(y) is defined in the same way. The
vertices δ1, δ2 will help to encode independent sets of G. Specifically, with every independent
set I of G we will associate a set of homomorphisms ϕ : G′ → H such that for every vertex
x ∈ VL, x ∈ I if and only if ϕ(x) 6= δ1 (recall that x is also a vertex of G′ identified with s
in JL(x)); and similarly, for every y ∈ VR, y ∈ I if and only if ϕ(y) 6= δ2. Finally, the edge
gadgets K(x, y) replacing every edge xy ∈ E make sure that every homomorphism from G′
to H is associated with an independent set.

A. Kazeminia and A. A. Bulatov 59:7

Note that just an association of independent sets with collections of homomorphisms is
not enough, the number of homomorphisms in those collections have to allow one to compute
the function Zλ1,λ2(G).

Next we introduce conditions such that if for the graph H there are vertex and edge
gadgets satisfying these conditions, then #pBISλ1,λ2 for some nonzero (modulo p) λ1, λ2 is
reducible to #pPartHom(H).

I Definition 6 (Hardness gadget). A graph H has hardness gadgets if there are ∆1,∆2 ⊆
V (H), vertices δ1 ∈ ∆1 and δ2 ∈ ∆2, and three partially H-labelled graphs JL, JR, and K
that satisfy the following properties:
(i) |∆1| − 1 6≡ 0 (mod p) , |∆2| − 1 6≡ 0 (mod p);
(ii) for any homomorphism σ : JL → H (σ : JR → H) it holds that σ(s) ∈ ∆1 (respectively,

σ(t) ∈ ∆2); for any homomorphism σ : K → H it holds that σ(s) ∈ ∆1, σ(t) ∈ ∆2;
(iii) for any γ1 ∈ ∆1, γ2 ∈ ∆2, it holds |Hom((JL, s), (H, γ1))| ≡ |Hom((JR, t), (H, γ2))| ≡ 1

(mod p), and
for any γ1 6∈ ∆1, γ2 6∈ ∆2, it holds Hom((JL, s), (H, γ1)) = Hom((JL, s), (H, γ1)) = ∅;

(iv) for any α1 ∈ ∆1 − δ1, α2 ∈ ∆2 − δ2, it holds Hom((K, s, t), (H,α1, α2)) = ∅;
(v) for any α1 ∈ ∆1 − δ1, it holds |Hom((K, s, t), (H,α1, δ2))| ≡ 1 (mod p);
(vi) for any α2 ∈ ∆2 − δ2, it holds |Hom((K, s, t), (H, δ1, α2))| ≡ 1 (mod p);
(vii) |Hom((K, s, t), (H, δ1, δ2))| ≡ 1 (mod p).

Now we are ready to state the main result of this section.

I Theorem 7. If H has hardness gadgets, then for some λ1, λ2 6≡ 0 (mod p) the problem
#pBISλ1,λ2 is polynomial time reducible to #pPartHom(H). In particular, #pPartHom(H)
is #pP-complete.

5 Hardness gadgets and nc-walks

In this section we make the next iteration in constructing hardness gadgets and give a generic
structure of such gadgets that will later be adapted to specific types of the graph H.

These gadgets make use of the square-freeness of graph H that we will apply in the
following form.

IObservation 8. Let H be a square-free graph. Then for any α, β ∈ H, |NH(α)∩NH(β)| ≤ 1.

Proof. If there are two different elements γ, δ in NH(α) ∩ NH(β), then α, γ, β, δ form a
4-cycle. J

We call a walk in H a non-consecutive-walk or nc-walk, if it does not traverse an edge
forth and then immediately back. More formally, an nc-walk is a walk v0, v1, . . . , vk such
that for no i ∈ [k − 1] we have vi−1 = vi+1.

5.1 Edge gadget
Let W = γ0γ1 · · · γk be an nc-walk in H of length at least one. Then the edge gadget K is a
path sv1v2 · · · vk−1t, where each vi is connected to another vertex ui which is pinned to γi.
More formally, the gadget K = (K, τ) is defined as follows

V (K) = {s, t} ∪ {vi, ui : i ∈ [k − 1]},
E(K) = {vivi+1 : i ∈ [k − 2]} ∪ {viui : i ∈ [k − 1]} ∪ {sv1, vk−1t}.

MFCS 2019

59:8 Counting Homomorphisms Modulo a Prime Number

The pinning function is τ(ui) = γi for all i ∈ [k − 1].
The next two lemmas give some of the properties listed in Definition 6.

I Lemma 9 (Shifting). Let H, W = γ0γ1 · · · γk, and K be as above. Then
(1) For every θ ∈ NH(γ0) − γ1 and σ ∈ Hom((K, s), (H, θ)), we have σ(vi) = γi−1 for all

i ∈ [k − 1].
(2) For every θ ∈ NH(γk)− γk−1 and σ ∈ Hom((K, t), (H, θ)), we have σ(vi) = γi+1 for all

i ∈ [k − 1].

Proof. If k = 1, then both cases are trivial. We prove item (1) by induction on j ∈ [k − 1],
item (2) can be proved using γkγk−1 · · · γ0 instead of γ0γ1 · · · γk.

For j = 1, the vertex v1 must be mapped to a common neighbour of θ and γ1 because
τ(u1) = γ1. It means σ(v1) ∈ NH(θ) ∩NH(γ1) = {γ0}, because γ0 ∈ NH(θ) ∩NH(γ1) and
H is a square-free graph.

Now assume that σ(vj−1) = γj−2. Similar to the base case, σ(vj) ∈ NH(γj−2) ∩NH(γj).
By the same argument, the only member of this intersection is γj−1. Thus, σ(vj) = γj−1. J

I Lemma 10 (Counting). Let H be a square-free graph and let W = γ0γ1 · · · γk, k ≥ 1 be
an nc-walk in H. For any αs ∈ NH(γ0)−γ1 and αt ∈ NH(γk)−γk−1 the following equalities
hold
(1) Hom((K, s, t), (H,αs, αt)) = ∅,
(2) |Hom((K, s, t), (H, γ1, αt))| = 1,
(3) |Hom((K, s, t), (H,αs, γk−1))| = 1,

(4) |Hom((K, s, t), (H, γ1, γk−1))| = 1 +
k−1∑
i=1

(deg(γi)− 1).

5.2 Vertex gadgets
In this section we construct a vertex gadget. The main role of these gadgets is to restrict the
possible images of the designated vertices s and t as required in Definition 6(ii), and then do
it in such a way that property (iii) in Definition 6 is also satisfied. We present vertex gadgets
of two types.

For the graph H and vertices α, β ∈ V (H), we define gadgets JL = (JL, τL) and
JR = (JR, τR) as follows: Graphs JL, JR are just edges sx and ty, respectively. The pinning
functions are given by τL(x) = α, τR(y) = β.

The next lemma follows straightforwardly from the definitions and guarantees that these
gadgets satisfy items (iii) and (ii) of Definition 6 (note that (1) is a direct implication of (3)).

I Lemma 11. For graph H, vertices α, β ∈ V (H), and ∆1 = NH(α),∆2 = NH(β) the
following hold
(1) if σ ∈ Hom(JL, H) then σ(s) ∈ ∆1, and if σ ∈ Hom(JR, H) then σ(t) ∈ ∆2,
(2) for any γ1 ∈ ∆1 and γ2 ∈ ∆2, it holds that |Hom((JL, s), (H, γ1))| =
|Hom((JR, t), (H, γ2))| = 1,

(3) for any γ′1 6∈ ∆1 and γ′2 6∈ ∆2, it holds that Hom((JL, s), (H, γ′1)) =
Hom((JR, t), (H, γ′2)) = ∅.

The other type of a vertex gadget uses a cycle in H.
Let C = θγ1γ2 · · · γkθ be a cycle in H of length at least three. Gadgets JCL = (JCL, τCL)

and JCR = (JCR, τCR) are defined as follows

V (JCL) = {s} ∪ {vi, ui : i ∈ [k]} ∪ {x},
E(JCL) = {vivi+1 : i ∈ [k − 1]} ∪ {viui : i ∈ [k]} ∪ {sv1, vks, sx}.

A. Kazeminia and A. A. Bulatov 59:9

The pinning function is given by τ(ui) = γi for all i ∈ [k] and τ(x) = θ.
The gadget JCR is defined in the same way, except s is replaced with t.

I Lemma 12. For a square-free graph H, a cycle C = θγ1γ2 · · · γkθ in H of length at least
three, and ∆ = {γ1, γk} the following hold
(1) if σ ∈ Hom(JCL, H) or σ ∈ Hom(JCR, H), then σ(s) ∈ {γ1, γk} and σ(t) ∈ {γ1, γk},

respectively;
(2) for any γ ∈ ∆ it holds |Hom((JCL, s), (H, γ))| = |Hom((JCR, t), (H, γ))| = 1,
(3) for any γ′ 6∈ ∆ it holds Hom((JCL, s), (H, γ′)) = Hom((JCR, t), (H, γ′)) = ∅,

6 The hardness of #pPartHom(H)

In this section we prove the hardness part of Theorem 1. More specifically we will apply
Theorem 7 and the constructions from Section 5 to show that #pBISλ1,λ2 is Turing reducible
to #pPartHom(H).

We consider three cases depending on the existence of vertices of certain degree in H. In
each of the three cases we use slightly different variations of vertex and edge gadgets.

Case 1. The graph H has at least two vertices α and β such that deg(α), deg(β) 6≡ 1
(mod p).

Let S = {γ ∈ V (H) : deg(γ) 6≡ 1 mod p}; we know that S contains at least two elements.
Pick α, β ∈ S such that the distance between them is minimal. Let W = αγ1 · · · γk−1γkβ be
a shortest path between α, β. By the choice of W , deg(γi) ≡ 1 (mod p) for all i ∈ [k].

We make an edge gadget K = (K, τ) for this case based on this path as defined in
Section 5.1. More precisely,

V (K) = {s, t} ∪ {vi, ui : i ∈ [k]},
E(K) = {{vi, vi+1} : i ∈ [k − 1]} ∪ {{vi, ui} : i ∈ [k]} ∪ {{s, v1}, {vk, t}}.

The labelling function is given by τ(ui) = γi for all i ∈ [k].
Any path is a nc-walk, so we can apply Lemma 10 to W . For the gadgets we use

∆1 = NH(α),∆2 = NH(β) and δ1 = γ1, δ2 = γk. This satisfies property (i) of hardness
gadgets, because deg(α), deg(β) 6≡ 1 (mod p). Then for any αs ∈ ∆1 − δ1 and αt ∈ ∆− δ2
we have
(1) |Hom((K, s, t), (H,αs, αt))| = 0;
(2) |Hom((K, s, t), (H, γ1, αt))| ≡ 1 (mod p);
(3) |Hom((K, s, t), (H,αs, γk))| ≡ 1 (mod p)
Also, for any i ∈ [k] we have deg(γi) ≡ 1 (mod p), and so

|Hom((K, s, t), (H, γ1, γk))| = 1 +
k∑
i=1

(deg(γi)− 1) = 1 + 0 ≡ 1 (mod p).

Hence,
(4) |Hom((K, s, t), (H, γ1, γk))| ≡ 1 (mod p).

Thus K satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.
For a vertex gadget we use the first type, that is JL,JR are just edges sx and ty,

respectively, see Fig. 2. By Lemma 11 these gadgets satisfy properties (ii) and (iii) of
hardness gadgets.

Thus Theorem 7 yields a required reduction.

MFCS 2019

59:10 Counting Homomorphisms Modulo a Prime Number

Figure 2 Vertex and edge gadgets based on the path W = αγ1 · · · γkβ. The vertex gadgets JL

and JR are shown as dot-dashed boxes. The pinning function is shown by dashed lines.

Case 2. Graph H has exactly one vertex θ such that deg(θ) 6≡ 1 (mod p).
In this case we further split into two subcases. However, before we proceed with that we

rule out the case of trees.

I Lemma 13. Let H be a tree that has no automorphism of order p and is not a star. Then
H has at least two vertices α and β such that deg(α), deg(β) 6≡ 1 (mod p).

Thus, we may assume that H is not a tree.

Case 2.1. The vertex θ, deg(θ) 6≡ 1 (mod p), is on a cycle C.
In this case the edge gadget is based on the cycle C. More precisely, let C = θγ1γ2 · · · γkθ

be a cycle in H of length at least 3 and such that for all i ∈ [k] it holds that deg(vi) ≡ 1
(mod p) and deg(θ) 6≡ 1 (mod p). We define gadget K = (K, τ) as follows:

V (K) = {s, t} ∪ {vi, ui : i ∈ [k]};
E(K) = {vivi+1 : i ∈ [k − 1]} ∪ {viui : i ∈ [k]} ∪ {sv1, vkt};
the labeling function is given by τ(ui) = γi for all i ∈ [k].

Set ∆1 = ∆2 = NH(θ) and δ1 = γ1, δ2 = γk. These parameters satisfy property (i)
of a hardness gadget, because deg(θ) 6≡ 1 (mod p). A cycle is a nc-walk, so we can apply
Lemma 10 to obtain the following

I Lemma 14. Let H be a square-free graph and K an edge gadget based on the cycle
C = θγ1γ2 · · · γkθ in H. For any αs ∈ ∆1 − δ1 and αt ∈ ∆2 − δ2,
(1) |Hom((K, s, t), (H,αs, αt))| = 0;
(2) |Hom((K, s, t), (H, δ1, αt))| ≡ 1 (mod p);
(3) |Hom((K, s, t), (H,αs, δ2))| ≡ 1 (mod p);
(4) |Hom((K, s, t), (H, δ1, δ2))| ≡ 1 (mod p).

Proof. The cycle C is a nc-walk. Therefore by Lemma 10 items (1), (2), and (3) hold. For
item (4) note that deg(γi) ≡ 1 (mod p) for all i ∈ [k], therefore

|Hom((K, s, t), (H, γ1, γk))| = 1 +
k∑
i=1

(deg(γi)− 1) = 1 + 0 ≡ 1 (mod p). J

By Lemma 14 gadget K satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.
For vertex gadgets we take JL,JR (which are just edges) defined in Section 5.2, with

α = β = θ, see Fig 3. By Lemma 11, these gadgets satisfy properties (ii) and (iii) of hardness
gadgets.

Finally, by Theorem 7 #pBISλ1,λ2 is Turing reducible to #pPartHom(H).

A. Kazeminia and A. A. Bulatov 59:11

Figure 3 Hardness gadgets corresponding to a cycle C = θγ1 · · · γkθ. The vertex gadgets JL and
JR are shown by dot-dashed lines. The pinning function is shown by dashed lines.

Case 2.2. The vertex θ is not on any cycle.

Since H is not a tree, it contains at least one cycle; let C be such a cycle. Let P =
γ0γk+1γk+2 · · · γk+k′θ be a shortest path from a vertex γ on cycle C = γ0γ1γ2 · · · γkγ0 to θ.
Note that deg(γi) ≡ 1 (mod p) for all γi, i ∈ {0, . . . , k + k′}. Edge gadget K in this case is
based on the walk W = θγk+k′ · · · γk+2γk+1γ0γ1γ2 · · · γkγk+1γk+2 · · · γk+k′θ. Note that, W
is an nc-walk. More precisely, the gadget K = (K, τ) is defined as follows:

V (K) = {s, t} ∪ {vi, ui : i ∈ [k + 2k′ + 2]};
E(K) = {vivi+1 : i ∈ [k + 2k′ + 1]} ∪ {viui : i ∈ [k + 2k′ + 2]} ∪ {sv1, vk+2k′+1t};
the pinning function is given by

τ(ui) =


γk+k′+1−i 1 ≤ i ≤ k′,
γi−k′−1 k′ + 1 ≤ i ≤ k + k′ + 1,
γ0 i = k + k′ + 2,
γi−k′−2 k + k′ + 3 ≤ i ≤ k + 2k′ + 2.

Set δ1 = δ2 = γk+k′ and ∆1 = ∆2 = NH(θ). These parameters satisfy property (i) of
hardness gadgets, because deg(θ) 6≡ 1 (mod p). As W is an nc-walk, by Lemma 10 for any
α ∈ NH(θ)− γk+k′ , we have
(1) |Hom((K, s, t), (H,α, α))| = 0;
(2) |Hom((K, s, t), (H, γk+k′ , α))| ≡ 1 (mod p);
(3) |Hom((K, s, t), (H,α, γk+k′))| ≡ 1 (mod p).
Also, deg(γi) ≡ 1 (mod p) for all i ∈ [k + k′] ∪ {0}. Therefore

|Hom((K, s, t), (H, γk+k′ , γk+k′))| = 1 +
k+k′∑
i=1

(deg(γi)− 1) = 1 + 0 ≡ 1 (mod p).

Hence,
(4) |Hom((K, s, t), (H, γk+k′ , γk+k′))| ≡ 1 (mod p).
Thus the gadget K satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.

Finally, for vertex gadgets we again use gadgets JL,JR introduced in Section 5.2, with
α = β = θ, see Fig 4. By Lemma 11, these gadgets satisfy properties (ii) and (iii) of hardness
gadgets. Thus, by Theorem 7 #pBISλ1,λ2 , λ1 = λ2 = |NH(θ)| − 1 is Turing reducible to
#pPartHom(H).

MFCS 2019

59:12 Counting Homomorphisms Modulo a Prime Number

Figure 4 Gadget K based on the nc-walk W = θγk+k′ · · · γk+2γk+1γ0γ1γ2 · · · γk

γvk+1γk+2 · · · γk+k′θ. The vertex gadgets JL and JR corresponding to θ are shown by dot-dashed
lines. The pinning function is shown by dashed lines.

Case 3. For every vertex γ ∈ V (H) it holds deg(γ) ≡ 1 (mod p).

By Lemma 13, H is not a tree, therefore it contains a cycle C = θγ1γ2 · · · γkθ such that
k ≥ 3. Set δ1 = γ1, δ2 = γk and ∆1 = ∆2 = {γ1, γk}. These parameters satisfy property (i)
of hardness gadget, because |∆1| = |∆2| 6≡ 1 (mod p). An edge gadget K is based on this
cycle C. Since deg(γ) ≡ 1 (mod p) for every γ ∈ V (H), as in Lemma 14 by Lemma 10 K
satisfies properties (iv), (v), (vi), and (vii) of hardness gadgets.

For vertex gadgets we choose JCL,JCR defined in Section 5.2, see Fig 5. By Lemma 12,
these gadgets satisfy properties (ii) and (iii) of hardness gadgets. Therefore, by Theorem 7,
#pBISλ1,λ2 , λ1 = λ2 = |{γ1, γk}| − 1 = 1 is Turing reducible to #pPartHom(H).

Figure 5 Hardness gadgets based on cycle C = θγ1 · · · γkθ.
On the left are the vertex gadgets JCL and JCR shown by dot-dashed lines. JCL is the cycle
containing vertex s, and JCR is the cycle containing vertex t. The remaining vertices of the gadgets
are not labelled. The pinning function is shown by dashed lines.
On the right, the edge gadget K is highlighted. Again, the pinning function is represented by dashed
lines.

Note that the reduction in Case 3 can also be used to prove the result in Case 2.2, as it
only depends on the existence of a cycle all of whose vertices have degrees ≡ 1 (mod p). We,
however, believe that the construction in Case 2.2 is simple, more transparent and deserves
being considered.

A. Kazeminia and A. A. Bulatov 59:13

References
1 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor. Comput.

Sci., 348(2-3):148–186, 2005.
2 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph Homomorphisms with Complex Values: A Dicho-

tomy Theorem. In Automata, Languages and Programming, 37th International Colloquium,
ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, pages 275–286, 2010.

3 Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.
Random Structures and Algorithms, 17(3–4):260–289, 2000.

4 John Faben and Mark Jerrum. The Complexity of Parity Graph Homomorphism: An Initial
Investigation. Theory of Computing, 11:35–57, 2015.

5 Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. Approximately Counting H-Colorings
is #BIS-Hard. SIAM J. Comput., 45(3):680–711, 2016.

6 Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. A Complexity Trichotomy for
Approximately Counting List H -Colorings. TOCT, 9(2):9:1–9:22, 2017.

7 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. The Complexity of Counting
Homomorphisms to Cactus Graphs Modulo 2. ACM Trans. Comput. Theory, 6(4):17:1–17:29,
August 2014.

8 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. Counting Homomorphisms to
Square-Free Graphs, Modulo 2. ACM Trans. Comput. Theory, 8(3):12:1–12:29, May 2016.

9 Andreas Göbel, J. A. Gregor Lagodzinski, and Karen Seidel. Counting Homomorphisms to
Trees Modulo a Prime. In 43rd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 49:1–49:13, 2018.

10 Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A Complexity Dichotomy
for Partition Functions with Mixed Signs. SIAM J. Comput., 39(7):3336–3402, 2010.

11 Leslie Ann Goldberg and Heng Guo. The Complexity of Approximating complex-valued Ising
and Tutte partition functions. Computational Complexity, 26(4):765–833, 2017.

12 Pavol Hell and Jaroslav Nešetřil. On the Complexity of H-coloring. Journal of Combinatorial
Theory, Ser.B, 48:92–110, 1990.

13 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, 2004.

14 László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications.
American Mathematical Society, 2012.

15 Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci.,
8:189–201, 1979.

16 Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput.,
8(3):410–421, 1979.

17 Leslie G. Valiant. Accidental Algorthims. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’06, pages 509–517, 2006.

MFCS 2019

Approximate Counting CSP Seen from the Other
Side
Andrei A. Bulatov
School of Computing Science, Simon Fraser University, Canada
abulatov@sfu.ca

Stanislav Živný
Department of Computer science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
In this paper we study the complexity of counting Constraint Satisfaction Problems (CSPs) of the
form #CSP(C,−), in which the goal is, given a relational structure A from a class C of structures
and an arbitrary structure B, to find the number of homomorphisms from A to B. Flum and Grohe
showed that #CSP(C,−) is solvable in polynomial time if C has bounded treewidth [FOCS’02].
Building on the work of Grohe [JACM’07] on decision CSPs, Dalmau and Jonsson then showed
that, if C is a recursively enumerable class of relational structures of bounded arity, then assuming
FPT 6= #W[1], there are no other cases of #CSP(C,−) solvable exactly in polynomial time (or even
fixed-parameter time) [TCS’04].

We show that, assuming FPT 6= W[1] (under randomised parametrised reductions) and for
C satisfying certain general conditions, #CSP(C,−) is not solvable even approximately for C of
unbounded treewidth; that is, there is no fixed parameter tractable (and thus also not fully polynomial)
randomised approximation scheme for #CSP(C,−). In particular, our condition generalises the case
when C is closed under taking minors.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases constraint satisfaction, approximate counting, homomorphisms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.60

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.
Andrei A. Bulatov: Andrei Bulatov was supported by an NSERC Discovery grant.
Stanislav Živný: Stanislav Živný was supported by a Royal Society University Research Fellowship.

1 Introduction

The Constraint Satisfaction Problem (CSP) asks to decide the existence of a homomorphism
between two given relational structures (or to find the number of such homomorphisms). It
has been used to model a vast variety of combinatorial problems and has attracted much
attention. Since the general CSP is NP-complete (#P-complete in the counting case) and
because one needs to model specific computational problems, various restricted versions
of the CSP have been considered. More precisely, let C and D be two classes of relational
structures. In this paper we will assume that structures from C,D only have predicate
symbols of bounded arity. The constraint satisfaction problem (CSP) parametrised by C
and D is the following computational problem, denoted by CSP(C,D): given A ∈ C and
B ∈ D, is there a homomorphism from A to B? CSPs in which both input structures are
restricted have not received much attention (with a notable exception of matrix partitions
[19, 20] and assorted graph problems on restricted classes of graphs). However, the two most

© Andrei A. Bulatov and Stanislav Živný;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abulatov@sfu.ca
https://orcid.org/0000-0002-0263-159X
mailto:standa.zivny@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.60
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Approximate Counting CSP Seen from the Other Side

natural restrictions have been intensively studied over the last two decades. Let − denote
the class of all (bounded-arity) relational structures, or, equivalently, indicate that there are
no restrictions on the corresponding input structure.

Problems of the form CSP(−, {B}), where B is a fixed finite relational structure, are
known as nonuniform or language-restricted CSPs [33]. For instance, if B = K3 is the
complete graph on 3 vertices then CSP(−, {B}) is the standard 3-Colouring problem [27].
The study of nonuniform CSPs has been initiated by Schaefer [38] who considered the case of
CSP(−, {B}) for 2-element structures B. The complexity of CSP(−, {H}), for a fixed graph
H, was studied under the name of H-colouring by Hell and Nešetřil [32]. General nonuniform
CSPs have been studied extensively since the seminal paper of Feder and Vardi [21] who in
particular proposed the so-called Dichotomy Conjecture stating that every nonuniform CSP
is either solvable in polynomial time or is NP-complete. The complexity of nonuniform CSPs
has been resolved only recently in two independent papers by Bulatov [3] and Zhuk [39], which
confirmed the dichotomy conjecture of Feder and Vardi and also its algebraic version [4].

CSPs restricted on the other side, that is, of the form CSP(C,−), where C is a fixed
(infinite) class of finite relational structures, are known as structurally-restricted CSPs. For
instance, if C = ∪k≥1{Kk} is the class of cliques of all sizes then CSP(C,−) is the standard
Clique problem [27]. In this case the complexity of CSPs is related to various “width”
parameters of the associated class of graphs. For a relational structure A let G(A) denote
the Gaifman graph of A, that is, the graph whose vertices are the elements of A, and vertices
v, w are connected with an edge whenever v and w occur in the same tuple of some relation
of A. Then G(C) denotes the class of Gaifman graphs of structures from C, and we refer
to the treewidth of G(A) as the treewidth of A. Dalmau, Kolaitis, and Vardi showed that
CSP(C,−) is in PTIME if C has bounded treewidth modulo homomorphic equivalence [10].
Grohe then showed that, assuming FPT 6= W[1], there are no other cases of (bounded arity)
CSP(C,−) solvable in polynomial time (or even fixed-parameter time, where the parameter is
the size of the left-hand side structure) [29]. The case of structures with unbounded arity was
extensively studied by Gottlob et al. who introduced the concept of bounded hypertree width
in an attempt to characterise structurally restricted CSPs solvable in polynomial time [28].
The search for a right condition is still going on, and the most general structural property
that guarantees that CSP(C,−) is solvable in polynomial time is fractional hypertree width
introduced by Grohe and Marx [30].

An important problem related to the CSP is counting: Given a CSP instance, that is,
two relational structures A and B, find the number of homomorphisms from A to B. We
again consider restricted versions of this problem. More precisely, for two classes C and D of
relational structures, #CSP(C,D) denotes the following computational problem: given A ∈ C
and B ∈ D, how many homomorphisms are there from A to B? This problem is referred
to as a counting CSP. Similar to decision CSPs, problems of the form #CSP(−,D) and
#CSP(C,−) are the two most studied ways to restrict the counting CSP, and the research
on these problems follows a similar pattern as their decision counterparts.

For a fixed finite relational structure B, the complexity of the nonuniform problem
#CSP(−, {B}) was characterised for graphs by Dyer and Greenhill [17] and for 2-element
structures by Creignou and Hermann [8]. The complexity of the general nonuniform counting
CSPs was resolved by Bulatov [5] and Dyer and Richerby [18]. As in the case of the
decision version the complexity of nonuniform counting CSPs is determined by their algebraic
properties, and every such CSP is either solvable in polynomial time or is #P-complete.
These dichotomy results were later extended to the case of weighted counting CSP, for which
Cai and Chen obtained a complexity classification of counting CSPs with complex weights [6].

A.A. Bulatov and S. Živný 60:3

The complexity of counting CSPs with restrictions on the left hand side structures also
turns out to be related to treewidth. Flum and Grohe showed that #CSP(C,−) is solvable
in polynomial time if C has bounded treewidth [22]. Dalmau and Jonsson then showed that,
assuming FPT 6= #W[1], there are no other cases of (bounded arity) #CSP(C,−) solvable
exactly in polynomial time (or, again, even fixed-parameter time) [9]. Note that the result of
Dalmau and Jonsson states that the class C itself has to be of bounded treewidth, while in
Grohe’s characterisation of polynomial-time solvable decision CSPs of the form CSP(C,−)
it is the class of cores of structures from C that has to have bounded treewidth. To the
best of our knowledge there has been no research on counting problems over structures of
unbounded arity except for the work of Brault-Baron et al., who showed that the (unbounded
arity) structurally-restricted #CSP(C,−) are solvable in polynomial time for the class C of
β-acyclic hypergraphs [2].1

The results we have mentioned so far concern exact counting; however, many applications
of counting problems allow for approximation algorithms as well. For nonuniform CSPs the
complexity landscape is much more complicated than the dichotomy results for decision CSPs
or exact counting. The analogue of “easily solvable” problems in this case are those that admit
a Fully Polynomial Randomised Approximation Scheme (FPRAS): a randomised algorithm
that, given an instance and an error tolerance ε ∈ (0, 1) returns in time polynomial in the
size of the instance and ε−1 a result which is with high probability a multiplicative (1 + ε)-
approximation of the exact solution. The parametrised version of this algorithmic model
is known as a Fixed Parameter Tractable Randomised Approximation Scheme (FPTRAS).
Beyond counting nonuniform CSPs, however, it was conjectured by Dyer et al. [15] that there
is an infinite hierarchy of approximation complexities attainable by such problems. Only a
handful of results exist for the approximation complexity of counting nonuniform CSPs. The
approximation complexity of #CSP(−, {B}) for 2-element structures B was characterised
by Dyer at al. [16], where a trichotomy theorem was proved: for every 2-element structure
B the problem #CSP(−, {B}) either admits an FPRAS, or is interreducible with #SAT or
with the problem #BIS of counting independent sets in bipartite graphs. Apart from this
only partial results are known. If B is a connected graph and #CSP(−, {B}) does not admit
an FPRAS, then Galanis, Goldberg and Jerrum [25] showed that #CSP(−, {B}) is at least
as hard as #BIS. Also, if every unary relation is a part of B a complexity classification of
#CSP(−, {B}) can be extracted from the results of Chen et al. [7],2 see also [26].

Our Contribution

It should be clear by now that the picture painted by the short survey above misses one piece:
the approximation complexity of structurally restricted CSPs. This is the main contribution
of this paper.

Let C be a class of bounded-arity relational structures. If the treewidth of C modulo
homomorphic equivalence is unbounded then, by Grohe’s result [29], it is hard to test for
the existence of a homomorphism from A to B, where A ∈ C, for any instance A,B of
CSP(C,−). Using standard techniques (see, e.g., the proof of [34, Proposition 3.16]), this
implies, assuming that FPT 6= #W[1] (under randomised parametrised reductions [14]), that

1 Brault-Baron et al. [2] show their tractability results for so-called CSPs with default values, which in
particular includes #CSP(C,−) as defined here.

2 Chen et al. [7] studied the weighted version of #CSP(−, {B}), and although their result does not
provide a complete characterisation of the weighted problem, it allows to determine the complexity of
#CSP(−, {B}) as defined here.

MFCS 2019

60:4 Approximate Counting CSP Seen from the Other Side

there is not an FPTRAS for #CSP(C,−), let alone an FPRAS. Consequently, the tractability
boundary for approximate counting of #CSP(C,−) lies between bounded treewidth and
bounded treewidth modulo homomorphic equivalence.

As our main result, we show that for C such that a certain class of graphs (to be
defined later) is a subset of G(C), #CSP(C,−) cannot be solved even approximately for C of
unbounded treewidth, assuming FPT 6= W[1] (under randomised parametrised reductions).
Before we introduce the classes of graphs we use, we review how the hardness of CSP(C,−)
or #CSP(C,−) is usually proved.

We follow the hardness proof of Grohe for decision CSPs [29], which was lifted to
exact counting CSPs by Dalmau and Jonsson [9]. In fact Grohe’s result had an important
precursor [31]. The key idea is a reduction from the parametrised Clique problem to
CSP(C,−). Let G = (V,E) and k be an instance of the p-Clique problem, where k is the
parameter. Broadly speaking, the reduction works as follows. For a class of unbounded
treewidth, the Excluded Grid Theorem of Robertson and Seymour [37] guarantees the
existence of the (k×

(
k
2
)
)-grid (as a minor of some structure A ∈ C), which is used to encode

the existence of a k-clique in G as a certain structure B. The encoding usually means that
G has a k-clique if and only if there is a homomorphism from A to B whose image covers a
copy of the grid built in B. For decision CSPs, the correctness of the reduction – that there
are no homomorphisms from A to B not satisfying this condition – is achieved by dealing
with coloured grids [31] or by dealing with structures whose cores have unbounded treewidth
(with another complication caused by minor maps) [29]. For the complexity of exact counting
CSPs, the correctness of the reduction [9] is achieved by employing interpolation or the
inclusion-exclusion principle, a common tool in exact counting.

None of these two methods can be applied to approximate solving #CSP(C,−). We
cannot assume that the class of cores of C has unbounded treewidth, because then by [29]
even the decision problem cannot be solved in polynomial time, which immediately rules out
the existence of an FPRAS. Interpolation techniques such as the inclusion-exclusion principle
are also well known to be incompatible with approximate counting. The standard tool in
approximate counting to achieve the same goal of prohibiting homomorphisms except ones
from a certain restricted type, is to use gadgets to amplify the number of homomorphisms
of the required type. We give a reduction from p-#Clique to #CSP(C,−) by using “fan-
grids”, formally introduced in Section 3.3. Unfortunately, due to the delicate nature of
approximation preserving reductions, we cannot use minors and minor maps and have to
assume that “fan-grids” themselves are present in G(C). (In Section 5, we will briefly discuss
how a weaker assumption can be used to obtain the same result.) By the Excluded Grid
Theorem [37], if C is closed under taking minors, then G(C) contains all the fan-grids (details
are given in Section 3.3 and in particular in Lemma 4). Thus, the classes C for which we
establish the hardness of #CSP(C,−) includes the classes C that are closed under taking
minors.3

3 We remark that the hardness for C closed under taking minors follows from Grohe’s classification [29]
of decision CSPs. Indeed, for C of unbounded treewidth, the Excluded Grid Theorem [37] gives grids
of arbitrary sizes. Since every planar graph is a minor of some grid [11], C contains all planar graphs.
As there exist graphs of arbitrary large treewidth that are also minimal with respect to homomorphic
equivalence, Grohe’s result gives W[1]-hardness of CSP(C,−) and hence #CSP(C,−) cannot have an
FPRAS/FPTRAS.

A.A. Bulatov and S. Živný 60:5

2 Preliminaries

N denotes the set of positive integers. For every n ∈ N, we let [n] = {1, . . . , n}.

2.1 Relational Structures and Homomorphisms
A relational signature is a finite set τ of relation symbols R, each with a specified arity ar(R).
A relational structure A over a relational signature τ (or a τ -structure, for short) is a finite
universe A together with one relation RA ⊆ Aar(R) for each symbol R ∈ τ . The size ‖A‖ of
a relational structure A is defined as

‖A‖ = |τ |+ |A|+
∑
R∈τ
|RA| · ar(R).

Let R be a binary relational symbol. We will sometimes view graphs as {R}-structures.
A homomorphism from a relational τ -structure A (with universe A) to a relational

τ -structure B (with universe B) is a mapping ϕ : A → B such that for all R ∈ τ and all
tuples x ∈ RA we have ϕ(x) ∈ RB.

Two structures A and B are homomorphically equivalent if there is a homomorphism
from A to B and a homomorphism from B to A.

Let C be a class of relational structures. We say that C has bounded arity if there is a
constant r ≥ 1 such that for every τ -structure A ∈ C and R ∈ τ , we have that ar(R) ≤ r.

2.2 Treewidth and Minors
The notion of treewidth, introduced by Robertson and Seymour [36], is a well-known measure
of the tree-likeness of a graph [11]. Let G = (V (G), E(G)) be a graph. A tree decomposition
of G is a pair (T, β) where T = (V (T), E(T)) is a tree and β is a function that maps each
node t ∈ V (T) to a subset of V (G) such that
1. V (G) =

⋃
t∈V (T) β(t),

2. for every u ∈ V (G), the set {t ∈ V (T) | u ∈ β(t)} induces a connected subgraph of T ,
and

3. for every edge {u, v} ∈ E(G), there is a node t ∈ V (T) with {u, v} ⊆ β(t).
The width of the decomposition (T, β) is max{|β(t)| | t ∈ V (T)}− 1. The treewidth tw(G) of
a graph G is the minimum width over all its tree decompositions.

Let A be a relational structure over relational signature τ . The Gaifman graph (also
known as primal graph) of A, denoted by G(A), is the graph whose vertex set is the universe
of A and whose edges are the pairs (u, v) for which there is a tuple x and a relation symbol
R ∈ τ such that u, v appear in x and x ∈ RA.

Let C be a class of relational structures. We say that C has bounded treewidth if there
exists w ≥ 1 such that tw(A) = tw(G(A)) ≤ w for every A ∈ C. We say that C has bounded
treewidth modulo homomorphic equivalence if there exists w ≥ 1 such that every A ∈ C is
homomorphically equivalent to A′ with tw(A′) ≤ w.

A graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges (for more details, see, e.g., [11]).

For k, ` ≥ 1, the (k× `)-grid is the graph with the vertex set [k]× [`] and an edge between
(i, j) and (i′, j′) iff |i− i′|+ |j − j′| = 1. Treewidth and minors are intimately connected via
the celebrated Excluded Grid Theorem of Robertson and Seymour.

I Theorem 1 ([37]). For every k there exists a w(k) such that the (k × k)-grid is a minor
of every graph of treewidth at least w(k).

MFCS 2019

60:6 Approximate Counting CSP Seen from the Other Side

Let C be a class of relational structures. We say that C if closed under taking minors
if for every A ∈ C and for every minor H of G(A), there is a structure A′ ∈ C such that
G(A′) is isomorphic to H.

3 Counting CSP

3.1 Exact Counting CSP

Let C be a class of relational structures. We will be interested in the computational complexity
of the following problem.

Name: #CSP(C,−)
Input: Two relational structures A and B over the same signature with A ∈ C.
Output: The number of homomorphisms from A to B.

We say that #CSP(C,−) is in FP, the class of function problems solvable in polynomial
time, if there is a deterministic algorithm that solves any instance A,B of #CSP(C,−) in
time (‖A‖+ ‖B‖)O(1).

We will also consider the parametrised version of #CSP(C,−).

Name: p-#CSP(C,−)
Input: Two relational structures A and B over the same signature with A ∈ C.
Parameter: ‖A‖.
Output: The number of homomorphisms from A to B.

We say that p-#CSP(C,−) is in FPT, the class of problems that are fixed-parameter
tractable, if there is a deterministic algorithm that solves any instance A,B of p-#CSP(C,−)
in time f(‖A‖) · ‖B‖O(1), where f : N→ N is an arbitrary computable function.

The class W[1], introduced in [12], can be seen as an analogue of NP in parameterised
complexity theory. Proving W[1]-hardness of a problem (under a parametrised reduction
which may be randomised), is a strong indication that the problem is not solvable in fixed-
parameter time as it is believed that FPT 6= W[1]. For counting problems, #W[1] is the
parametrised analogue of #P. Similarly to the belief that FP 6= #P, it is believed that FPT
6= #W[1]. We refer the reader to [24] for the definitions of W[1] and #W[1], and for more
details on parameterised complexity in general.

Dalmau and Jonsson established the following result.

I Theorem 2 ([9]). Assume FPT 6= #W[1] under parametrised reductions. Let C be a
recursively enumerable class of relational structures of bounded arity. Then, the following are
equivalent:
1. #CSP(C,−) is in FP.
2. p-#CSP(C,−) is in FPT.
3. C has bounded treewidth.

The following problem is an example of a #W[1]-hard problem, as established by Flum
and Grohe [23].

Name: p-#Clique
Input: A graph G and k ∈ N.
Parameter: k.
Output: The number of cliques of size k in G.

A.A. Bulatov and S. Živný 60:7

Note that p-#Clique can be modelled as p-#CSP(C,−) if we set C to be the set of
cliques of all possible sizes. The decision version of p-#Clique was shown to be W[1]-hard
by Downey and Fellows [13].

Name: p-Clique
Input: A graph G and k ∈ N.
Parameter: k.
Output: Decide if G contains a clique of size k.

3.2 Approximate Counting CSP

In view of our complete understanding of the exact complexity of #CSP(C,−) for C of
bounded arity (cf. Theorem 2), we will be interested in approximation algorithms for
#CSP(C,−). In particular, are there any new classes C of bounded arity for which the
problem #CSP(C,−) can be solved efficiently (if only approximately)? We will provide a
partial answer to this question (cf. Theorem 3): for certain general bounded-arity classes C
(which include classes that are closed under taking minors), the answer is no!

The notion of efficiency for approximate counting is that of a fully polynomial randomised
approximation scheme [35] and its parametrised analogue, a fixed parameter tractable
randomised approximation scheme, originally introduced by Arvind and Raman [1]. We now
define both concepts.

A randomised approximation scheme (RAS) for a function f : Σ∗ → N is a randomised
algorithm that takes as input (x, ε) ∈ Σ∗ × (0, 1) and produces as output an integer random
variable X satisfying the condition Pr(|X − f(x)| ≤ εf(x)) ≥ 3/4. A RAS for a counting
problem is called fully polynomial (FPRAS) if on input of size n it runs in time p(n, ε−1) for
some fixed polynomial p. A RAS for a parametrised counting problem is called fixed parameter
tractable (FPTRAS) if on input of size n with parameter k it runs in time f(k) · p(n, ε−1),
where p is a fixed polynomial and f is an arbitrary computable function.

To compare approximation complexity of (parametrised) counting problems two types
of reductions are used. Suppose f, g : Σ∗ → N. An approximation preserving reduction
(AP-reduction) [15] from f to g is a probabilistic oracle Turing machine M that takes as
input a pair (x, ε) ∈ Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle
call made by M is of the form (w, δ), where w ∈ Σ∗ is an instance of g, and 0 < δ < 1 is an
error bound satisfying δ−1 ≤ poly(|x|, ε−1); (ii) the TM M meets the specification for being a
randomised approximation scheme for f whenever the oracle meets the specification for being
a randomised approximation scheme for g; and (iii) the running time of M is polynomial in
|x| and ε−1.

Similar to [34] we also use the parametrised version of AP-reductions. Again, let f, g :
Σ∗ → N. A parametrised approximation preserving reduction (parametrised AP-reduction)
from f to g is a probabilistic oracle Turing machine M that takes as input a triple (x, k, ε) ∈
Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle call made by M is of
the form (w, k′, δ), where w ∈ Σ∗ is an instance of g, k′ ≤ h(k) for some computable function
h, and 0 < δ < 1 is an error bound satisfying δ−1 ≤ poly(|x|, ε−1); (ii) the TM M meets
the specification for being a randomised approximation scheme for f whenever the oracle
meets the specification for being a randomised approximation scheme for g; and (iii) M is
fixed-parameter tractable with respect to k and polynomial in |x| and ε−1.

MFCS 2019

60:8 Approximate Counting CSP Seen from the Other Side

Figure 1 Fan-grid. Fan vertices are shown by larger dots.

3.3 Main Result
The following concept plays a key role in this paper. Let k, r, `1, `2 ∈ N. The fan-grid
L(k, r, `1, `2) is a graph with vertex set L1 ∪ L2, where L1 = {(i, p) | i ∈ [k], p ∈ [r]},
L2 = M1 ∪ · · · ∪M12, where M1, . . . ,M12 are disjoint and |Mi| = `1 for i ∈ [4], and |Mi| = `2
for i ∈ {5, . . . , 12}. Vertices from L1 will be called grid vertices. Vertices u1 = (1, 1),
u2 = (1, r), u3 = (k, 1), u4 = (k, r), u5 = (1, 3), u6 = (1, r − 3), u7 = (k, 3), u8 = (k, r − 3),
u9 = (3, 1), u10 = (4, r), u11 = (k − 2, 1), u12 = (k − 3, r) will be called fan vertices, and
u1, u2, u3, u4 will be called corner vertices. The edges of the fan grid are as follows: (i, p)(i′, p′)
for |i− i′|+ |p− p′| = 1, and wui for each w ∈Mi and i ∈ [12], see Figure 1.

We call a class C of relational structures of bounded arity a fan class if either C has
bounded treewidth or for any parameters k, r, `1, `2 ∈ N we have that G(C) contains the
fan-grid L(k, r, `1, `2).

The following is our main result.

I Theorem 3 (Main). Assume FPT 6= W[1] under randomised parametrised reductions. Let
C be a recursively enumerable class of relational structures of bounded arity. If C is a fan
class then the following are equivalent:
1. #CSP(C,−) is polynomial time solvable.
2. #CSP(C,−) admits an FPRAS.
3. p-#CSP(C,−) admits an FPTRAS.
4. C has bounded treewidth.

Let C be a recursively enumerable class of relational structures of bounded arity and
closed under taking minors. We claim that C is a fan class and thus Theorem 3 applies to such
C. For this we need Theorem 1. In particular, for any k, r, `1, `2 ∈ N, if C is not of bounded
treewidth then, by Theorem 1, G(C) contains an (s×s)-grid, where s = max(k+2`1, r+2`2),
and thus also a (k + 2`1) × (r + 2`2)-grid. The following simple lemma then shows that
fan-grids are minors of grids (of appropriate size).

I Lemma 4. L(k, r, `1, `2) is a minor of (t× t′)-grid, where t = k + 2`1, t′ = r + 2`2.

4 Proof of Theorem 3

Conditions (1) and (4) in Theorem 3 are equivalent by [9]. Implications “(1)⇒ (2)⇒ (3)” are
obvious; implication “(4) ⇒ (1)” is by the standard treewidth-based dynamic programming
for exact counting. Our main contribution is to prove the “(3) ⇒ (4)” implication.

A.A. Bulatov and S. Živný 60:9

4.1 Construction
Let G = (V,E) be a graph with n = |V | and m = |E|. Let k ∈ N. We construct a graph
H(G, k,W1,W2) forW1,W2 > 2(n+m) as follows. Let r =

(
k
2
)
and let % be a correspondence

between [r] and the set of 2-element sets {{i, j} | i, j ∈ [k], i 6= j}. For i ∈ [k] and p ∈ [r], we
write i ∈ p rather than i ∈ %(p). The vertex set of H(G, k,W1,W2) is the union of two sets
H1 ∪H2, defined by

H1 = {(v, e, i, p) | v ∈ V, e ∈ E, and v ∈ e ⇐⇒ i ∈ p},
H2 = K1 ∪ · · · ∪K12,

where K1, . . . ,K12 are disjoint and |Ki| = W1 for i ∈ [4], |Ki| = W2 for i ∈ {5, . . . , 12}.
As in fan-grids, vertices of the form (v, e, 1, 1), (v, e, 1, r), (v, e, k, 1), (v, e, k, r), (v, e, 1, 3),

(v, e, 1, r − 3), (v, e, k, 3), (v, e, k, r − 3), (v, e, 3, 1), (v, e, 4, r), (v, e, k − 2, 1), (v, e, k − 3, r)
will be called fan vertices, and vertices of the form (v, e, 1, 1), (v, e, 1, r), (v, e, k, 1), (v, e, k, r)
will be called corner vertices.

The edge set of H(G, k,W1,W2) consists of the following pairs:
(v, e, i, p)(v′, e, i′, p) such that |i− i′| = 1;
(v, e, i, p)(v, e′, i, p′) such that |p− p′| = 1;
u(v, e, 1, 1) for u ∈ S1 ⊆ K1 and (v, e, 1, 1) ∈ H1, where S1 is an arbitrary subset of K1
whose cardinality is such that the degree of (v, e, 1, 1) is exactly W1;
similarly, u(v, e, 1, r), u(v, e, k, 1), u(v, e, k, r), u(v, e, 1, 3), u(v, e, 1, r − 3), u(v, e, k, 3),
u(v, e, k, r − 3), u(v, e, 3, 1), u(v, e, 4, r), u(v, e, k − 2, 1), u(v, e, k − 3, r) for u ∈ Sj ⊆ Kj

(for j = 2, . . . , 12 in this order) and (v, e, 1, r), (v, e, k, 1), (v, e, k, r), (v, e, 1, 3), (v, e, 1, r−
3), (v, e, k, 3), (v, e, k, r − 3), (v, e, 3, 1), (v, e, 4, r), (v, e, k − 2, 1), (v, e, k − 3, r) ∈ H1,
where S2, . . . , S12 are arbitrary subsets whose cardinality is such that the degree of
(v, e, 1, r), (v, e, k, 1), (v, e, k, r) is exactly W1 and the degree of the remaining vertices
from the list is exactly W2.

Note that the sizes of sets K1, . . . ,K12 are chosen in such a way that all the corner
vertices have degree W1 and the remaining fan vertices have degree W2.

We study homomorphisms from L(k, r, `1, `2) to H(G, k,W1,W2). A homomorphism
ϕ : L(k, r, `1, `2)→ H(G, k,W1,W2) is said to be corner-to-corner (or c-c for short) if

ϕ(1, 1), ϕ(1, r), ϕ(k, 1), ϕ(k, r) ∈ {(v, e, 1, 1), (v, e, 1, r), (v, e, k, 1), (v, e, k, r) | v ∈ V, e ∈ E}.

Homomorphism ϕ is called identity (skew identity) if ϕ(i, p) ∈ {(v, e, i, p) | v ∈ V, e ∈ E}
(respectively, ϕ(i, p) ∈ {(v, e, k − i+ 1, p) | v ∈ V, e ∈ E}) for all i ∈ [k] and p ∈ [r].

We define the weight of a homomorphism ϕ from L(k, r, `1, `2) restricted to L1 (the set
of grid vertices) to H(G, k,W1,W2) as the number of extensions of ϕ to a homomorphism
from L(k, r, `1, `2).

4.2 Weights of Homomorphisms
We start with a simple lemma.

I Lemma 5. The weight of an identity or skew identity homomorphism is W 4`1
1 W 8`2

2 .

Proof. The images of grid vertices (the set L1) under identity and skew identity homomorph-
isms are fixed, while vertices from L2 can be mapped to any neighbour of the corresponding
fan vertex independently. Since the degree of a corner vertex (v, e, i, p) with i ∈ {1, k} and
p ∈ {1, r} is W1, and the degree of any other fan vertex is W2, the result follows. J

MFCS 2019

60:10 Approximate Counting CSP Seen from the Other Side

The next lemma, which can proved using Lemma 5, is essentially [9, Lemma 3.1] adapted
to our setting, which in turn builds on [29, Lemma 4.4].

I Lemma 6. Let N be the number of k-cliques in G. Then there are 2NW 4`1
1 W 8`2

2 k! identity
and skew identity homomorphisms.

Next we establish an upper bound on the total weight of homomorphisms that are neither
identity nor skew identity.

I Lemma 7. Let G = (V,E) has n = |V | vertices and m = |E| edges, let k = 4k′ for some
k′, and let T = logW2 W1. If

`1 >
8T`2

T − 1 ,

then the total weight of homomorphisms that are neither identity nor skew identity is at most

W 4`1
1 W 6`2

2 (2n+m)2`2 · (4W1 + 8W2 + nmkr)kr.

The key ideas in the proof of Lemma 7 are the following: Firstly, we show that c-c
homomorphisms dominate non-c-c homomorphisms. Secondly, using crucially the special
structure of fan grids and our choice of k being a multiple of four, we establish an upper
bound on any c-c homomorphism that is neither identity nor skew identity. Finally, we give
an upper bound on the number of all homomorphisms. These three ingredients together
allows us to establish the required bound.

We now have all results required to relate the number of k-cliques in a given graph G and
the number of homomorphisms from L(k, r, `1, `2) to H(G,K,W1,W2), for appropriately
chosen values of `1, `2,W1,W2.

I Lemma 8. Let N ≥ 0 be the number of k-cliques in G, where k = 4k′ for some k′,
n = V (G), m = E(G), and 2n + m > 6. Let M = M(`1, `2,W1,W2) be the number
of homomorphisms from L(k, r, `1, `2), r =

(
k
2
)
, to H(G, k,W1,W2). If W2 = (2n + m)2,

W1 = W 2
2 , `2 = 8kr, and `1 = 17`2, then we have

N <
M

2W 4`1
1 W 8`2

2 k!
< N + 1

2 .

Finally, as Lemmas 7 and 8 are only proved for k = 4k′, we need to show that the problem
for other values of the parameter can be reduced to k of such form. The following lemma
takes care of that. Let 4p-#Clique denote the following problem

Name: 4p-#Clique
Input: A graph G and k ∈ N.
Parameter: k.
Output: The number of cliques of size 4k in G.

I Lemma 9. There is a parametrised AP-reduction from p-#Clique to 4p-#Clique.

In particular, Lemma 9 establishes #W[1]-hardness of the 4p-#Clique problem.

4.3 Putting the Pieces Together
Proof of Theorem 3. As we mentioned earlier, conditions (1) and (4) are equivalent, the
implications “(1) ⇒ (2) ⇒ (3)” are trivial and the implication “(4) ⇒ (1)” is known: if C
has bounded treewidth then, by [22, Proposition 7], #CSP(C,−) belongs to FP.

A.A. Bulatov and S. Živný 60:11

The rest of the proof establishes “(3) ⇒ (4)”. Assume that #CSP(C,−) admits an
FPTRAS for a fan class C. Our goal is to show that C has bounded treewidth. For the sake
of contradiction, assume that C has unbounded treewidth. We will exhibit a parametrised
reduction from p-#Clique to p-#CSP(C,−), which gives an FPTRAS for p-#Clique
assuming an FPTRAS for p-#CSP(C,−). Under the assumption that FPT 6= W[1] (under
randomised parametrised reductions [14]), the W[1]-hardness of p-Clique established in [13]
implies, by [34, Corollary 3.17], the non-existence of an FPTRAS for the p-#Clique problem,
a contradiction.

Let G = (V,E) and k be an instance of the p-#Clique problem. By Lemma 9, we can
assume that k = 4k′. First, we show that if G has any k-cliques at all, it can be assumed to
have many k-cliques. Let s ∈ N and Gs is defined as follows. V (Gs) = {v1, . . . , vs | v ∈ V }
and viwj ∈ E(Gs), for v, w ∈ V and i, j ∈ [s], if and only if vw ∈ E. In other words, every
vertex v of G is replaced with s distinct vertices v1, . . . , vs, and every edge vw is replaced
with a complete bipartite graph Ks,s.

B Claim 1. If N is the number of k-cliques in G, then Gs contains skN k-cliques.

Proof of Claim 1. As is easily seen, for any indices i1, . . . , ik ∈ [s] the vertices v1
i1
, . . . , vkik

induce a clique in Gs if and only if v1, . . . , vk is a clique in G. Moreover, no clique in Gs
contains vertices vi, vj for v ∈ V and i, j ∈ [s]. The result follows. C

For a given instance G = (V,E), k of p-#Clique and error tolerance ε ∈ (0, 1) using
Claim 1, we first reduce it to the instance Gs, k of p-#Clique, where

s >

(
1 + ε/2

ε

) 1
k

.

Such a choice of s guarantees that if Gs contains any k-clique, it contains at least 1+ε/2
ε

k-cliques. For simplicity we will have this assumption directly for G. We will also assume
that if n = |V | and m = |E|, then 2n+m > 6.

Now we construct an instance A,B of p-#CSP(C,−) such that an ε/2-approximation
of the number of homomorphisms from A to B yields an ε-approximation of the number
of k-cliques in G. Structures A,B will be chosen to be (essentially) A = L(k, r, `1, `2) and
B = H(G, k,W1,W2), where the parameters `1, `2,W1,W2 are set according to Lemma 8.
Let r =

(
k
2
)
, `1 = 17`2, and `2 = 8kr.

Since C is a fan class and we assume that C is not of bounded treewidth, there is a
structure A in C such that L(k, r, `1, `2) is the Gaifman graph G(A) of A.

We enumerate the class C until we find such an A. Since L(k, r, `1, `2) does not contain
triangles, we can without loss of generality assume that A is τ -structure where τ consists
of a single binary relation symbol; i.e., A is a graph and hence L(k, r, `1, `2). Let B =
H(G, k,W1,W2), where W1 = (2n + m)4 and W2 = (2n + m)2. Since the parameters
n,m, `1, `2,W1,W2 satisfy the conditions of Lemma 8, by that lemma we have

N <
M

2W 4`1
1 W 8`2

2 k!
< N + 1

2 , (1)

where N is the number of k-cliques in G, which we want to approximate within ε, and M is
the number of homomorphisms from A to B, for which we have an FPTRAS by assumption.
Let Q = M/(2W 4`1

1 W 8`2
2 k!). The FPTRAS for p-#CSP(C,−) applied with error tolerance

ε/2 produces a number M ′ such that

(1− ε/2)M < M ′ < (1 + ε/2)M. (2)

MFCS 2019

60:12 Approximate Counting CSP Seen from the Other Side

We then return bQ′c, where

Q′ = M ′

2W 4`1
1 W 8`2

2 k!
.

It remains to show that (1− ε)N < Q′ < (1 + ε)N . On one hand, we have

Q′ > (1− ε/2)Q ≥ (1− ε/2)N ≥ (1− ε)N,

where the first inequality follows from (2) and the definitions of Q and Q′, the second
inequality follows from (1) and the definitions of Q and N , and the third inequality is trivial.

On the other hand, we have

Q′ < (1 + ε/2)Q < (1 + ε/2)(N + 1
2),

where again the first inequality follows from (2) and the second inequality follows from (1).
Assume first that N = 0. Then Q′ < 1+ε/2

2 , and by the assumption ε < 1 we have
bQ′c = 0 as required. Otherwise by the assumption on the number of k-cliques in G,
N > 1+ε/2

ε ; therefore

Q′ < (1 + ε/2)(N + 1
2) = (1 + ε/2)N + 1 + ε/2

2 < (1 + ε/2)N + (ε/2)N = (1 + ε)N.

Observe that the reduction runs in time f(k) · poly(n + m, ε−1) and is a parametrised
AP-reduction. Thus, the reduction gives an FPTRAS for N . Theorem 3 is proved. J

5 Conclusions

We do not know whether Theorem 3 holds for all classes of (bounded-arity) relational
structures.

With more technicalities (but the same ideas as presented in this extended abstract), one
can weaken the assumption on a fan class to obtain the same result (Theorem 3). In particular,
it suffices to require that there are polynomials f1, f2, f3, f4 such that for any parameters
k, r, `1, `2 ∈ N, G(C) contains the fan-grid L(k′, r′, `′1, `′2), where k′ = f1(k, r, `1, `2) ≥ k,
r′ = f2(k, r, `1, `2) ≥ r, `′1 = f3(k, r, `1, `2) ≥ `1, `′2 = f4(k, r, `1, `2) ≥ `2. This can be
achieved by making use of Lemma 9 (as it would not be possible to test directly for cliques
of all sizes) and by a modification of the construction from Section 4.1 (to accommodate for
the fact that some fan-grids may not correspond to cliques due to incompatible numbers).

References
1 Vikraman Arvind and Venkatesh Raman. Approximation Algorithms for Some Parameterized

Counting Problems. In Proceedings of the 13th International Symposium on Algorithms and
Computation (ISAAC’02), volume 2518 of Lecture Notes in Computer Science, pages 453–464.
Springer, 2002. doi:10.1007/3-540-36136-7_40.

2 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding Model Counting for
beta-acyclic CNF-formulas. In Proceedings of the 32nd International Symposium on Theoretical
Aspects of Computer Science (STACS’15), pages 143–156, 2015. doi:10.4230/LIPIcs.STACS.
2015.143.

3 Andrei Bulatov. A dichotomy theorem for nonuniform CSP. In Proceedings of the 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’17), pages 319–330. IEEE,
2017.

https://doi.org/10.1007/3-540-36136-7_40
https://doi.org/10.4230/LIPIcs.STACS.2015.143
https://doi.org/10.4230/LIPIcs.STACS.2015.143

A.A. Bulatov and S. Živný 60:13

4 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

5 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. Journal
of the ACM, 60(5):34, 2013. doi:10.1145/2528400.

6 Jin-Yi Cai and Xi Chen. Complexity of Counting CSP with Complex Weights. Journal of the
ACM, 64(3):19:1–19:39, 2017. doi:10.1145/2822891.

7 Xi Chen, Martin E. Dyer, Leslie Ann Goldberg, Mark Jerrum, Pinyan Lu, Colin McQuillan,
and David Richerby. The complexity of approximating conservative counting CSPs. Journal
of Computer and System Sciences, 81(1):311–329, 2015.

8 Nadia Creignou and Miki Hermann. Complexity of Generalized Satisfiability Counting
Problems. Information and Computation, 125(1):1–12, 1996.

9 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theoretical Computer Science, 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.
08.008.

10 Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming (CP’02), volume 2470 of Lecture Notes in
Computer Science, pages 310–326. Springer, 2002. doi:10.1007/3-540-46135-3_21.

11 Reinhard Diestel. Graph Theory. Springer, fourth edition, 2010.
12 Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness

I: Basic Results. SIAM Journal on Computing Computing, 24(4):873–921, 1995. doi:10.1137/
S0097539792228228.

13 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1–2):109–131, 1995.

14 Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Parameterized Circuit
Complexity and the W Hierarchy. Theoretical Computer Science, 191(1-2):97–115, 1998.
doi:10.1016/S0304-3975(96)00317-9.

15 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
Relative Complexity of Approximate Counting Problems. Algorithmica, 38(3):471–500, 2004.
doi:10.1007/s00453-003-1073-y.

16 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy
for Boolean #CSP. Journal of Computer and System Sciences, 76(3-4):267–277, 2010. doi:
10.1016/j.jcss.2009.08.003.

17 Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomorphisms.
Random Struct. Algorithms, 17(3-4):260–289, 2000.

18 Martin E. Dyer and David Richerby. An Effective Dichotomy for the Counting Constraint
Satisfaction Problem. SIAM Journal on Computing, 42(3):1245–1274, 2013. doi:10.1137/
100811258.

19 Tomás Feder, Pavol Hell, Daniel Král’, and Jiří Sgall. Two algorithms for general list matrix
partitions. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’05), pages 870–876, 2005.

20 Tomás Feder, Pavol Hell, and Wing Xie. Matrix Partitions with Finitely Many Obstructions.
Electr. J. Comb., 14(1), 2007.

21 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

22 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. In
Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS’02), page
538. IEEE Computer Society, 2002. doi:10.1109/SFCS.2002.1181978.

23 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
Journal on Computing, 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

MFCS 2019

https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1145/2528400
https://doi.org/10.1145/2822891
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1007/3-540-46135-3_21
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/S0304-3975(96)00317-9
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1137/100811258
https://doi.org/10.1137/100811258
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1109/SFCS.2002.1181978
https://doi.org/10.1137/S0097539703427203

60:14 Approximate Counting CSP Seen from the Other Side

24 Jörg Flum and Martin Grohe. Parametrized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006.

25 Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. Approximately Counting H -
Colorings is #BIS-Hard. SIAM Journal on Computing, 45(3):680–711, 2016.

26 Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. A Complexity Trichotomy for
Approximately Counting List H -Colorings. ACM Transactions on Computation Theory,
9(2):9:1–9:22, 2017. doi:10.1145/3037381.

27 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

28 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decomposition and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002. doi:10.1006/jcss.
2001.1809.

29 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1–24, 2007. doi:10.1145/1206035.1206036.

30 Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers. ACM
Transactions on Algorithms, 11(1):4:1–4:20, 2014. doi:10.1145/2636918.

31 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable? In Proceedings 33rd ACM Symposium on Theory of Computing (STOC’01),
pages 657–666. ACM, 2001. doi:10.1145/380752.380867.

32 Pavol Hell and Jaroslav Nešetřil. On the Complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

33 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000. doi:10.1006/
jcss.2000.1713.

34 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170–194, 2016. doi:10.1016/j.dam.2015.06.
019.

35 Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
Cambridge, second edition, 2017. Randomization and Probabilistic techniques in Algorithms
and Data Analysis.

36 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

37 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

38 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOCS’78), pages 216–226, 1978.

39 Dmitriy Zhuk. The Proof of CSP Dichotomy Conjecture. In Proceedings of the 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’17), pages 331–342. IEEE,
2017.

https://doi.org/10.1145/3037381
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/2636918
https://doi.org/10.1145/380752.380867
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(86)90030-4

Uniformisation Gives the Full Strength of Regular
Languages
Nathan Lhote
University of Warsaw, Poland
http://di.ulb.ac.be/verif/lhote/
nlhote@mimuw.edu.pl

Vincent Michielini
University of Warsaw, Poland
michielini@mimuw.edu.pl

Michał Skrzypczak
University of Warsaw, Poland
https://www.mimuw.edu.pl/~mskrzypczak/
mskrzypczak@mimuw.edu.pl

Abstract
Given R a binary relation between words (which we treat as a language over a product alphabet
A×B), a uniformisation of it is another relation L included in R which chooses a single word over B,
for each word over A whenever there exists one. It is known that MSO, the full class of regular
languages, is strong enough to define a uniformisation for each of its relations. The quest of this
work is to see which other formalisms, weaker than MSO, also have this property. In this paper, we
solve this problem for pseudo-varieties of semigroups: we show that no nonempty pseudo-variety
weaker than MSO can provide uniformisations for its relations.

2012 ACM Subject Classification Theory of computation → Regular languages

Keywords and phrases pseudo-variety, finite word, semigroup, uniformisation, regular language

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.61

Funding The first two authors have been supported by the European Research Council (ERC) grant
under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator
Grant LIPA, grant agreement No. 683080). The first author has also been supported by the DeLTA
project (ANR-16-CE40-0007). The last author has been supported by Poland’s National Science
Centre (NCN) (grant No. 2016/21/D/ST6/00491).

1 Introduction

Regular languages of finite words lie at the core of modern automata theory. The study of
their properties has led to multiple fundamental discoveries. Among these discoveries was
a formal introduction of the model of non-deterministic automata by Rabin and Scott [16].
Later, the results of Büchi, Elgot, and Trakhtenbrot [2, 7, 25] laid the foundations of
the correspondence between automata and Monadic Second-Order (MSO) logic. That
correspondence is now considered a golden standard, with notable extensions to other
structures, like finite and infinite trees. Another breakthrough obtained over finite words
was the effective characterisation of the class of star-free languages by McNaughton, Papert
and Schützenberger [19, 11]. Again, this result has opened a rich area of extensions, first to
infinite words [24], and later to other structures and classes of languages [23, 21, 1]. From
the perspective of these results, the theory of regular languages of finite words can be seen
as a test ground for novel problems and methods.

The situation is a bit different with the problem of uniformisation. This problem asks,
to find an effectively definable graph of a function that is contained in a given relation R.

© Nathan Lhote, Vincent Michielini, and Michał Skrzypczak;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 61; pp. 61:1–61:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://di.ulb.ac.be/verif/lhote/
mailto:nlhote@mimuw.edu.pl
mailto:michielini@mimuw.edu.pl
https://www.mimuw.edu.pl/~mskrzypczak/
mailto:mskrzypczak@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.61
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Uniformisation Gives the Full Strength of Regular Languages

Thus, it can be seen as an instance of the choice axiom: the relation R(x, y) admits multiple
witnesses y for each argument x and our task is to choose one of them. The origins of that
problem come from descriptive set theory, with the famous theorems like that of Novikov
and Kondô [9, Theorem 36.12].

The problem of uniformisation was translated to the context of automata theory by
Rabin [15], directly for the most complex structures – infinite trees. In that context, the
relation R is given by an MSO-definable language over a product alphabet A× B, and the
question of uniformisation asks to find an MSO-definable language that realises a function
from structures over A to structures over B. Therefore, the question of uniformisability can
be read as the problem of effective selection of witnesses – a way of making non-determin-
ism somehow controlled. In the course of research over that problem, it was shown that
MSO-definable uniformisation is always possible over infinite words [20, 10, 17]; but not
over infinite trees [8, 4]. In parallel, a study of sequential uniformisation was performed in
the context of games and problems of synthesis [3].

The fact that MSO has1 the uniformisation property over finite words is easy to prove
and is considered folklore: it is enough to choose the lexicographically minimal witness.
That is probably the reason why the case of finite words was somehow ignored in the study
of uniformisation problems. It was opened by a recent paper [12], where the author asks
about the possibility to uniformise for certain logics weaker than MSO. The results of
that work are not unequivocal. On the one hand, it is shown that for multiple pairs of
logics L1 ⊆ L2 ⊆ MSO, there exists a relation R definable in L1 with no L2-definable
uniformisation. On the other hand, it is shown that each relation definable in FO[]
(First-Order logic with only equality and letter tests) can be effectively uniformised within
First-Order logic with the order predicate. This leads to an intriguing graph of logics, one
(not) uniformising another. To simplify the situation, the author formulated the above
question for L1 = L2, i.e. the problem whether a given logic uniformises itself. Based on the
provided results, the following conjectured:

I Conjecture 1 (Conjecture 1 in [12]). Let L be a fragment of MSO such that FO2[] ⊆ L
and L satisfies some closure properties (to be specified). If L has the uniformisation property,
then L is MSO.

The main result of the present paper is a positive answer to the above conjecture. The
assumption that the logic FO2[] (the two-variable fragment of First-Order logic) is contained
in a given logic turned out to be unnecessary, and the relevant closure properties boil down
to the standard notion of a pseudo-variety.

I Theorem 2. MSO is the unique nonempty self-uniformisable pseudo-variety of semigroups.

A class of languages corresponds to a pseudo-variety of semigroups if it is closed under
Boolean combinations, left and right quotients, and pre-images under non-erasing homomorph-
isms. It is known that most of the classically considered logics correspond to pseudo-varieties
of semigroups [18]. Since we restrict to semigroups instead of monoids (i.e. we require the
considered homomorphisms of words to be non-erasing), this definition also captures logics
with successor instead of the order. Among the notable examples of logics that do not
correspond to pseudo-varieties of semigroups are the logics with modulo predicates, like
FO[≤,MOD2]. These logics are not covered by the presented arguments. To deal with
them, one would need to consider homomorphisms of words that are length-preserving or
length-multiplying, see e.g. [14].

1 We identify a logic with the class of languages it defines. Therefore MSO = REG, i.e. the class of all
regular languages.

N. Lhote, V. Michielini, and M. Skrzypczak 61:3

When read in terms of logics, the above result says that most of the widely considered
formalisms over finite words weaker than MSO do not have the uniformisation property.
As generally in the case of negative results, the consequences of that are more theoretical
than practical: there is no hope in finding a robust formalism, that would be easier to handle
than MSO and still retain the ability to choose unique witnesses.

The provided proof is independent from the results of [12] – instead of comparing two
logics L1 ⊆ L2, we focus on one formalism L with the assumption that L can uniformise itself.
Based on that assumption, we gradually bootstrap the expressive power of the considered
formalism. It is done in a sequence of steps, showing that L must be able to express more
and more complex properties: test the letters that appear in a given word; recognise the
order in which the letters appear; etc. Each of these steps is based on the assumption that L
has the uniformisation property and therefore must be sensitive to certain modifications of
the input words. Thus, the proofs of the lemmas are of a similar structure.

Nevertheless, we believe that it is non-trivial and instructive to see the ways in which uni-
formisability guarantees the considered expressive abilities. The difficulty of these arguments
lies in the fact that the assumptions about L speak about the algebraic properties of the
semigroups recognising languages in L, while the notion of uniformisability is a set-theoretical
property of the actual languages in L.

While the proof goes on, we have more and more tools at hand, but at the same time we
need to prove stronger and stronger expressibility properties about L. Ultimately, it turns
out that L is able to guess evaluations with respect to arbitrary finite semigroups (i.e. in
a sense is closed under projection) and therefore must contain all regular languages of finite
words. From this perspective, the proof can be seen as a variety of concrete recipes (ranging
from the least complex properties to the most complex) explaining what is the interplay
between the considered expressibility property and uniformisability.

Although the results are expressed over finite words, we believe that similar arguments
can be adapted to the more complex structures, like infinite words or finite trees. Therefore,
finite words are used here again as a testing ground, providing new understanding that can
later be transferred to richer structures.

The paper is organised as follows. Section 2 is devoted to an introduction of all relevant
technical notions. Then, Sections 3.1 up to 3.7 gradually increase the expressive power of
the considered class of languages L. Finally, in Section 4 we conclude.

2 Technical background

Words and languages

We identify each natural number n with the set {0, . . . , n−1}, and we denote the set of all
natural numbers by ω. An alphabet A is any finite set. A function from a natural number n
to an alphabet A is called a (finite) word over A. The natural number n is the length of w,
and we denote it by |w|. For each i ∈ n the element w(i) ∈ A is called the ith letter of w.
We write w = w(0) · w(1) · · ·w(n−1), but notice that this notation is ambiguous when the
alphabet is not clear in the context: if we write w = a · b, we do not know a priori if we see w
as a word over {a, b}, or over any other alphabet containing {a, b}. We extend this notation:
if w1 and w2 are two words over A, then w1 ·w2, the concatenation of w1 and w2, is the word
w over A of length |w1|+ |w2| defined by w(i) = w1(i) for i ∈ |w1| and w(i) = w2(i− |w1|)
for i ≥ |w1|.

A word of length 0 is denoted by ε and called the empty word. The set of all words over A
is denoted by A∗, An is the set of all words of length n ∈ ω, and A+ is A∗ \ {ε}, i.e. the set
of nonempty words over A. Note that ∅∗ = {ε} and ∅+ = ∅.

MFCS 2019

61:4 Uniformisation Gives the Full Strength of Regular Languages

In this paper, a language of words over an alphabet A is any subset2 of A+. Once again,
notice that a language has to be given with its alphabet. To avoid any ambiguity like the
one above, we sometimes write 〈L,A〉 to emphasise the choice of the alphabet.

In order to ease the reading of the paper, we will denote by A,A0,A1 . . . alphabets of
letters a, b, . . . , x, y . . . and by B,B0,B1 . . . alphabets of symbols �, •,4, . . . Words over the
alphabets of letters will be denoted by u, v, w . . . while words over the alphabets of symbols
will be denoted by π, σ, τ, . . .

Semigroups and pseudo-varieties

In this paper, the classes of languages which we focus on correspond to pseudo-varieties
of semigroups.

A semigroup is a set S provided with an associative binary operation, which we will
denote by ·. We identify the semigroup 〈S, ·〉 with its set S. For s ∈ S and for a natural
number n ≥ 1, sn denotes the product s · · · s, where s appears n times. An element e ∈ S is
said to be idempotent if e2 = e.

It is considered folklore to prove that for every finite semigroup S, there exists a natural
number n ≥ 1 such that sn is idempotent for each s ∈ S. We denote this natural number by
](S). When the semigroup is known from the context, we just write] instead of](S). Notice
that in the literature the symbol ω is often used instead of].

If S is a semigroup, then S′ ⊆ S is said to be a sub-semigroup of S if it is stable by the
operation of S, that is, if for all s, t in S′, s · t ∈ S′. Finally, if S1 and S2 are two semigroups,
then S1 × S2 provided with the operation defined by 〈s1, s2〉 · 〈t1, t2〉 = 〈s1 · s2, t1 · t2〉 is also
a semigroup. It is called the product of S1 and S2.

Let S1 and S2 be two semigroups. A homomorphism from S1 to S2 is a function α from
S1 to S2 such that for all x, y in S1, we have α(x · y) = α(x) · α(y). Such a homomorphism
is surjective (resp. injective, bijective) if so is the respective function α.

For each alphabet A, the set A+ provided with the concatenation operation, is a semigroup
that is known as the free semigroup on A. The fact that a homomorphism α : A+ → S must
preserve the operations of the semigroups, implies that α is uniquely determined by its action
on the single letters in A.

The following variant of Ramsey’s theorem is often used when working with finite
semigroups.

I Theorem 3 (Simon [22], see also Section II.11.1 in [13]). Let A be an alphabet and α

a homomorphism from A+ to some finite semigroup S. For each natural number n ≥ 2, there
exists a natural number N(n) such that for each word w over A of length at least N(n), there
exists an idempotent e in S and a decomposition w = u · w0 · · ·wn−1 · v, where for all i ∈ n,
wi is nonempty and α(wi) = e.

Let L be a language of words over some alphabet A and let S be a finite semigroup. We
say that S recognises L if there exists a homomorphism α from A+ to S and T ⊆ S such
that L = α−1(T). In such a case we also say that the tuple 〈S, α, T 〉 recognises L.

A language of words over A is regular if it is recognised by some finite semigroup S. We
denote the class of all regular languages by REG. As mentioned in the introduction, the
class REG coincides with the class of languages definable in Monadic Second-Order logic
(denoted MSO); however as logic is not directly involved in the presentation, we will rather
use REG to emphasise the automata- and semigroup-based approach.

2 It is more standard to define languages as subsets of A∗ but then the natural algebraic structures are
monoids, and not semigroups.

N. Lhote, V. Michielini, and M. Skrzypczak 61:5

Let L be a class of languages and S a class of finite semigroups, we say that L corresponds
to S if it is exactly the class of languages recognised by the semigroups S of S. Notice that,
under this assumption, L only contains regular languages.

We define now an important notion: the notion of pseudo-varieties.

I Definition 4. Let S be a class of finite semigroups. We say that S is a pseudo-variety of
(finite) semigroups if it has the following properties:

if S1 ∈ S and if S2 is a sub-semigroup of S1, then S2 ∈ S,
if S1 and S2 are in S, then the product semigroup S1 × S2 is in S,
if S1 ∈ S and if there exists a surjective homomorphism from S1 to S2, then S2 ∈ S.

The following theorem is a part of the so-called Eilenberg’s variety theory.

I Theorem 5 (Eilenberg [6]). Let L be a class of regular languages. Then the following
propositions are equivalent:

L corresponds to a pseudo-variety of semigroups;
L has the following closure properties:

L is closed under Boolean operations: for each 〈L1,A〉 and 〈L2,A〉 in L, 〈L1 ∪ L2,A〉
and 〈Lc

1 := A+ \ L1,A〉 are in L (and therefore also 〈L1 ∩ L2,A〉),
L is closed under quotients: for each 〈L,A〉 ∈ L and each word w ∈ A+, 〈w−1 · L,A〉
and 〈L ·w−1,A〉 are in L, where w−1 ·L = {u ∈ A+ | w ·u ∈ L}, and L ·w−1 is defined
symmetrically,
L is closed under pre-images of semigroup homomorphisms: for each alphabet A,
language 〈L,B〉 ∈ L, and homomorphism ϕ from A+ to B+, the language 〈ϕ−1(L),A〉
is in L.

All the classes of languages discussed in [12] are pseudo-varieties of semigroups. The most
common are MSO and FO[<] (First-Order logic with the order). Other examples include
FO2[<], the fragment of FO[<] where only two distinct variables are allowed; and FO[s],
where instead of the order one allows the successor function s.

Uniformisation

Let A and B be two alphabets. If a ∈ A and � ∈ B are two letters then their pair is denoted(
a
�

)
∈ A× B. Let w, π be two words over A and B respectively, such that |w| = |π|. Then

the pair 〈w, π〉 ∈ A∗ × B∗ can be identified with
(
w
π

)
, the word over the product alphabet

A× B satisfying
(
w
π

)
(i) =

(w(i)
π(i)

)
for all i ∈ |w|. This vertical notation is also extended to

sets of words of fixed length, for instance,
({a,b}

�

)
=
{(

a
�

)
,
(
b
�

)}
is a set of two letters in

A× B.
Let R ⊆ (A × B)+. Based on the previous identification, R can be seen as a binary

relation between words over A and words over B. The projection of R is the set of words
w ∈ A+ such that there exists a word π ∈ B|w| with

(
w
π

)
∈ R. We denote this set by Π(R).

A uniformisation of R is a relation F ⊆ R such that Π(F) = Π(R), and being functional,
i.e. if

(
w
π1

)
∈ F and

(
w
π2

)
∈ F then π1 = π2. In that case, for each word w ∈ Π(R), the

unique π such that
(
w
π

)
∈ F is called the image of w by F .

A class L of languages is said to have the uniformisation property if each relation R ∈ L
admits a uniformisation F ∈ L. We also call such a class self-uniformisable. The fact that
REG (i.e. the class of all regular languages) has the uniformisation property is considered
folklore.

MFCS 2019

61:6 Uniformisation Gives the Full Strength of Regular Languages

3 Proof of the theorem

We now begin the proof of Theorem 2. For the rest of the section, L denotes a class of regular
languages corresponding to a nonempty pseudo-variety S of semigroups, and we assume that
L has the uniformisation property. In the following subsections, we show that L contains
certain specific languages and allows to express more and more complex properties of words.
Ultimately, we show in Subsection 3.7 that L can validate evaluations with respect to finite
semigroups, and therefore can recognise all regular languages.

3.1 Testing letters
Recall that by Theorem 5 we know that L is closed under Boolean operations. Also, as
S is nonempty, we know that every full language A+ over some alphabet A belongs to L:
A+ = α−1(S), for any semigroup S ∈ S, and any homomorphism from A+ to S.

This section is devoted to a first step of the proof: we show that L must be able to detect
which letters appear in the given word. More formally, the main result of this section is the
following lemma.

I Lemma 6. For all alphabets A1 ⊆ A2, the language 〈A+
1 ,A2〉 is in L.

One can equivalently state the above lemma by saying that FO1[] ⊆ L, or that S contains
the pseudo-variety J1 of finite idempotent commutative semigroups, see [5]. However, the
above statement seems to better fit the rest of the presentation.

This whole subsection is devoted to a proof of Lemma 6. To prove it, notice first that
it is enough to show that the semigroup 2 = {0, 1} with the operation max belongs to S.
Indeed, given two alphabets A1 ⊆ A2 one can consider the homomorphism α from words
over A2 to 2, defined by α(a) = 0 for a ∈ A1 and α(a) = 1 otherwise. Then, A+

1 = α−1({0}),
and therefore belongs to L.

Let R be the full relation between words over A = {x} and words over B = {�,4}:
R = 〈(A× B)+,A× B〉. As discussed above, R is in L. By the assumption, L must contain
a uniformisation F of R that is recognised by some tuple 〈S, α, T 〉, with S ∈ S.

Let N = N(2) be the number we obtain from Theorem 3 applied for S and α in the
particular case n = 2. Consider the word w = xN , and take the unique word π ∈ {�,4}N
such that

(
w
π

)
∈ F . For convenience, for all i ∈ j ∈ N+1, we write wi,j (resp. πi,j) for the

word w(i) . . . w(j−1) (resp. π(i) . . . π(j−1)), and si,j for α(
(wi,j
πi,j

)
).

By the definition of N , we know that there exists an idempotent e of S, and i ∈ j ∈ k ∈
N+1, such that si,j = sj,k = e. Since j − i > 0 and |B| ≥ 2, there exists a word π′ ∈ Bj−i
distinct from πi,j . We define s′ = α(

(wi,j
π′
)
).

As e is idempotent, we know that for every ` ≥ 1 we have s0,i · e` · sk,N = s0,N ∈ T .
Recall that] =](S) is a number such that for every s ∈ S the element s] is idempotent.
Consider the particular case of the above equality for ` = 3×], we obtain:(w0,i

π0,i

)
·
((wi,j

πi,j

)
·
(wi,j
πi,j

)
·
(wi,j
πi,j

))]
·
(wk,N
πk,N

)
∈ F.

As π′ 6= πi,j and F is a uniformisation, we know that

(w0,i
π0,i

)
·
((wi,j

πi,j

)
·
(wi,j
π′

)
·
(wi,j
πi,j

))]
·
(wk,N
πk,N

)
/∈ F.

N. Lhote, V. Michielini, and M. Skrzypczak 61:7

This implies that e′ :=
(
si,j ·s′ ·si,j

)] =
(
e ·s′ ·e

)] 6= e. Now, we set s0 = e and s1 = e′. As
both e and e′ are idempotents, we know that s0 · s0 = s0 and s1 · s1 = s1. Moreover, because
e is idempotent, it is immediate to see that s1 · s0 =

(
e · s′ · e

)] · e =
(
e · s′ · e

)] = s1, and that
we also have s0 ·s1 = s1 symmetrically. Therefore, the subset {s0, s1} of S is a sub-semigroup
and it is isomorphic to 〈2,max〉. Because S is stable by taking sub-semigroups and images
by surjective images, 〈2,max〉 ∈ S. This concludes the proof of Lemma 6.

3.2 Changing alphabets
The aim of this short section is to show that L is strong enough not to depend on the actual
alphabet of a given language. This property is expressed by the following two lemmas.

I Lemma 7. Let A1 ⊆ A2 be two alphabets and L ⊆ A+
1 . If 〈L,A2〉 ∈ L then 〈L,A1〉 ∈ L.

Proof. Let 〈S, α, T 〉 be a tuple recognising L, with S ∈ S. Let βbe the homomorphism from
A+

1 to S defined by β(a) = α(a) for a ∈ A1. Then, by the assumption, we have L = β−1(T),
and therefore 〈L,A1〉 ∈ L. J

I Lemma 8. Let A1 ⊆ A2 be two alphabets and L ⊆ A+
1 . If 〈L,A1〉 ∈ L then 〈L,A2〉 ∈ L.

Proof. Let 〈L,A1〉 ∈ L with and 〈S1, α1, T1〉 a tuple recognising it, with S1 ∈ S. Assume
that A1 ⊆ A2. We prove that 〈L,A2〉 is in L.

We showed in the proof of Lemma 6 that the semigroup 〈2,max〉 is in S. This implies that
S1 × 2, with the natural product operation, is also in S. Now, let β be the homomorphism
from A+

2 to S1 × S2 defined by β(a) = 〈α1(a), 0〉 for a ∈ A1, and β(a) = 〈α1(a), 1〉 for
a ∈ A2 \ A1.

It is easy to verify that L = β−1(T1 × {0}), and therefore, 〈L,A2〉 ∈ L. J

Lemmas 7 and 8 imply that if L ⊆ A+
1 ∩A

+
2 , then 〈L,A1〉 ∈ L iff. 〈L,A2〉 ∈ L. Therefore,

we can simply say that L ∈ L, without being specific about its alphabet. Thus, from that
moment on we will speak simply about languages L, instead of 〈L,A〉.

Using Lemma 6, we can deduce the following result:

I Corollary 9. Let a be any letter if an alphabet A. By [∃a]A we denote the language of
words over A that contain at least one occurrence of a. Then [∃a]A ∈ L.

Moreover, by A⊕ if we denote the set of all words w over A such that each letter of A
appears in w, then A⊕ too is in L.

Proof. It is enough to observe that [∃a]A =
(
(A \ {a})+)c, where c denotes the complement

over the full language A+. Lemma 6 tells us that (A \ {a})+ ∈ L, and, since L is closed
under Boolean combinations, [∃a]A ∈ L.

Now, A⊕ =
⋂
a∈A[∃a]A, and therefore A⊕ ∈ L. J

3.3 Counting letters
Our next step towards Theorem 2 is to notice that L is able to test single occurrences of
letters, as expressed by the following lemma:

I Lemma 10. Let a be a letter of an alphabet A. Then the language of words over A having
exactly one occurrence of a is in L. We denote this language by [∃=1a]A.

MFCS 2019

61:8 Uniformisation Gives the Full Strength of Regular Languages

Similarly as in the case of Lemma 6, the above lemma can be equivalently expressed by
saying that FO2[] ⊆ L (i.e. the two-variable fragment of FO without any predicates except
equality and letter tests).

To prove the above lemma, consider three distinct letters, x, y, and z, and four distinct
symbols ⊗, ⊕, 	, and �. Let Rx and Ry be the relations defined as:

Rx =
{(

x
⊕
)
,
(
x
	
)
,
(y
⊗
)
,
(
z
�
)}⊕

,

Ry =
{(

x
⊗
)
,
(y
⊕
)
,
(y
	
)
,
(
z
�
)}⊕

.

We know that Rx and Ry are in L because of Corollary 9. Finally, we define R = Rx∪Ry,
which is in L because it is closed under unions.

Since L has the uniformisation property, there exists F ∈ L uniformising R. Let 〈S, α, T 〉,
with S ∈ S, be a triple recognising F .

Now, for p, q ∈ ω, we define Lxp and Lyq as the following two relations:

Lxp =
{(

u
σ

)
∈
{(

x
⊗
)
,
(
z
�
)}+ | ⊗ appears exactly p times in σ

}
,

Lyq =
{(

v
τ

)
∈
{(y
⊗
)
,
(
z
�
))
}+ | ⊗ appears exactly q times in τ

}
.

Notice that
⋃
p∈ω L

x
p =

{(
x
⊗
)
,
(
z
�
)}+ and similarly

⋃
q∈ω L

y
q =

{(y
⊗
)
,
(
z
�
)}+.

B Claim 11. At least one of the two following propositions is true:
for all p ≥ 2 we have α(Lx1) ∩ α(Lxp) = ∅,
for all q ≥ 2 we have α(Ly1) ∩ α(Lxq) = ∅.

Proof. Assume the contrary and take:

p ≥ 2,
(
u1
σ1

)
∈ Lx1 , and

(up
σp

)
∈ Lxp such that α(

(
u1
σ1

)
) = α(

(up
σp

)
); and (1)

q ≥ 2,
(
v1
τ1

)
∈ Ly1, and

(vp
τq

)
∈ Lyq such that α(

(
v1
τ1

)
) = α(

(vq
τq

)
). (2)

Let w be the word up · vq · z and assume that π is the unique word over {⊕,	,⊗,�} such
that

(
w
π

)
∈ F . Clearly, w is in the projection of both Rx and Ry; suppose that

(
w
π

)
∈ Rx

(the case
(
w
π

)
∈ Ry is symmetric). As Rx determines the symbols below the letters y and z,

we know that π is of the form σ · τq · �, for some word σ over {⊕,	,�} of length |up|.
Consider now the new word w′ over {x, y, z} defined with w′ = u1 · vq · z. We know that

w′ belongs to the projection of Ry but not to the projection of Rx, because u1 has only
one occurrence of x. Let π′ be the unique word such that

(
w′

π′

)
∈ F . Similarly as before,

π′ = σ1 · τ ′ · � for some word τ ′ over {⊕,	,�} of length |vq|.
Using (1) we know that α(

(
u1
σ1

)
) = α(

(up
σp

)
), and therefore

(up
σp

)
·
(vq
τ ′
)
·
(
z
�
)
∈ F , whose

projection onto A equals w, which contradicts the fact that F is a uniformisation. J

By the symmetry, let us assume that the first item of Claim 11 holds, i.e. for all
(
u1
σ1

)
∈ Lx1

and
(up
σp

)
∈ Lxp with p ≥ 2, we have α(

(
u1
σ1

)
) 6= α(

(up
σp

)
).

B Claim 12. The language Lx1 is in L.

Proof. The language Lx0 = {
(
z
�
)
}+ is in L. Therefore,

⋃
p≥1 L

x
p = {

(
x
⊗
)
,
(
z
�
)
}+ \ Lx0

also belongs to L. Thus, the above assumption about α-values implies the claim, because
Lx1 = α−1(α(Lx1)) ∩

⋃
p≥1 L

x
p . C

N. Lhote, V. Michielini, and M. Skrzypczak 61:9

Now take a ∈ A as in the statement of Lemma 10. Consider a homomorphism β from A+ to
{
(
x
⊗
)
,
(
z
�
)
}+ defined by β(a) =

(
x
⊗
)
and β(b) =

(
z
�
)
for b 6= a. We have [∃=1a]A = β−1(F x1),

and, because L is closed under pre-images under homomorphisms, [∃=1a]A is in L. This
concludes the proof of Lemma 10.

With a similar – yet more technical – proof, one can show that for all p ∈ ω, L contains
[∃=pa]A, the language of words over A having exactly p letters a, but this point will not
be involved in the following demonstrations. This results show that L must contain FO[],
First-Order logic with only equalities between positions and letter tests. Recall that by
Proposition 2 in [12], FO[] can be uniformised within FO[<]. This explains why our proof
of Theorem 2 needs to use the fact that L uniformises itself more than once.

I Corollary 13. By modifying the homomorphism used in the proof of Lemma 10, we obtain
that if A1 ⊆ A2 then the language [∃=1A1]A2 of words over A2 that contain exactly one
occurrence of a letter from A1 also belongs to L.

3.4 Order on letters

Our next goal is to introduce the order < on the positions of letters in a given word. This is
achieved gradually, with the first instance of the order expressed by the following lemma:

I Lemma 14. Let A be an alphabet and a0, . . . , ap−1 be p ≥ 1 pairwise distinct letters, that
do not belong to A. Then the language L = A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ is in L.

Proof. The proof is quite similar to the previous one. We consider two distinct letters, x and
y, and p+1 distinct symbols �, 40, . . . ,4p−1, and we define the relation R := C⊕, where C
is the alphabet {

(y
�

)
} ∪ {

(x
4i
)
| i ∈ p}.

We know that R ∈ L and therefore it admits a uniformisation F ∈ L. Let 〈S, α, T 〉 be
a triple recognising it, with S ∈ S. Fix] =](S).

We define now the word u = y] · x · y] · · · y] · x · y], where x appears exactly p times.
Since u is in the projection of R, it also belongs to the projection of F . Let π be the image
of u by F , i.e. the unique word π satisfying

(
u
π

)
∈ F . The word π is necessarily of the shape

�] · 4σ(0) ·�] · · ·�] · 4σ(p−1) ·�], where σ is a permutation of p = {0, . . . , p−1}.
Let e = α(

(y
�

)]) ∈ S. By the definition of](S), e is idempotent. Consider β the
homomorphism from words over A′ := At{ai | i ∈ p} to S defined by β(ai) = e ·α(

(x
4σ(i)

)
) ·e

for i ∈ p, and β(a) = e for a ∈ A.
Now, consider σ′ a second permutation of p, and w the word w0 · aσ′(0) · w1 · · ·wp−1 ·

aσ′(p−1) · wp ∈ A′∗, where the wi’s are arbitrary words over A. Because e is idempotent, we
know that

β(w) = α(
(y
�

)] · (x
4σ′(σ(0))

)
·
(y
�

)] · · · (y�)] · (x
4σ′(σ(p−1))

)
·
(y
�

)]).
Since F is a uniformisation, β(w) ∈ T if and only if σ′ is the identity. Therefore,

β−1(T) ∩
⋂
i∈p

[∃=1ai]A′ = A∗ · a0 · A∗ · · ·A∗ · ap−1 · A∗ = L.

Using Lemma 10, each of the languages [∃=1 ai]A′ is in L. Because L is closed under
intersections, we can conclude that L is in L. J

MFCS 2019

61:10 Uniformisation Gives the Full Strength of Regular Languages

3.5 Subsequences
Now we need to strengthen the above lemma, to be able to compare the positions of not
necessarily distinct letters. This ability is expressed by the following lemma:

I Lemma 15. Let A be an alphabet, and let a0, . . . , ap−1 be letters of A, with p ≥ 1. Then the
language A∗ ·a0 ·A∗ · · ·A∗ ·ap−1 ·A∗ is in L. We denote this language by [∃a0<a1< . . .<ap−1]A.

Again, this lemma is equivalent to saying that BΣ1[<] ⊆ L (i.e. Boolean combinations of
existential First-Order sentences with the order) or equivalently that the pseudo-variety of
J-trivial semigroups J is contained in S.

Let B := {40, . . . ,4p−1,�} be an alphabet containing p+1 pairwise distinct symbols.
First, we consider the following relation:

R =
(A
�

)∗ · (a0
40

)
·
(A
�

)∗ · · · (A
�

)∗ · (ap−1
4p−1

)
·
(A
�

)∗
It is immediate to see that Π(R) is exactly [∃a0< . . .<ap−1]A. Consider the relations
R1 := R ·

(•
•
)
·
(A
�

)∗ and R2 :=
(A
�

)∗ · (••) ·R, where • is a fresh letter (i.e. not in A nor in
B).

To conclude the proof of Lemma 15, we will use a fairly technical fact. It may be seen as
an abstract generalisation of the technique used in the proof of Lemma 3 in [12].

I Fact 16. Let R be a relation over a product alphabet A× B, i.e. R ⊆
(
A× B

)+. Assume
that •, � are two symbols, with • /∈ A. Define R1 := R ·

(•
•
)
·
(A
�

)∗, R2 :=
(A
�

)∗ · (••) · R,
and P := R1 ∪R2. If P is in L then Π(R) is in L.

Proof. Let F ∈ L be a uniformisation of the above relation P , and let 〈S, α, T 〉 be a triple
recognising F , with S ∈ S.

Let β be the homomorphism from A+ to S defined by β(a) = α(
(
a
�

)
), for all a ∈ A. Put

L := Π(R). Notice that if for all words w1, w2 in A+, the equality β(w1) = β(w2) implies
the equivalence w1 ∈ L⇔ w2 ∈ L, then in fact L is in L, because β−1(β(L)

)
= L ∈ L.

We show now that this implication holds for all w1, w2. Suppose that there exist w1 ∈ L
and w2 ∈ Lc such that β(w1) = β(w2), in order to provide a contradiction.

Let w be the word w1 · • ·w1, over the alphabet At{•}. This word w is in Π(R1)∩Π(R2),
let π the unique word over B ∪ {•,�} such that

(
w
π

)
∈ F .

We suppose for instance that
(
w
π

)
∈ R1 (the case

(
w
π

)
∈ R2 is symmetric). Because

• /∈ A, π is necessarily of the shape π1 · • ·�|w1|, with π1 ∈ B|w1|.
Let now w′ be the word w2 · • · w1 and let π′ be the unique word such that

(
w′

π′

)
∈ F .

Again, π′ is of the shape �|w2| · • · π′1, with π′1 ∈ B|w1|. Since β(w2) = β(w1), we know
that α(

(w′

�|w2|·•·π′1

)
) = α(

(w
�|w1|·•·π′1

)
). The latter value does not belong to T because(w

�|w1|·•·π′1

)
/∈ F – we know that F is a uniformisation and π 6= �|w1| · • · π′1. This means

that
(
w′

π′

)
is not in F , contradicting the assumption, and concluding the proof of this fact. J

Now we go back to the proof of Lemma 15. The letters
(a0
40

)
, . . . ,

(ap−1
4p−1

)
,
(•
•
)
are all

pairwise distinct, and none of them is in the alphabet A× {�}. Therefore, Lemma 14 tells
us that R1 and R2 are in L. This means that P := R1 ∪ R2 is in L, and we can conclude
with Fact 16 that [∃a0< . . .<ap−1]A = Π(R) is in L.

I Corollary 17. Let A0, . . . ,Ap−1 be pairwise disjoint alphabets contained in A. Then the
language L = A∗0 · A∗1 . . .A∗p−1 \ {ε} is in L.

Proof. It is enough to observe that L =
⋂
i∈j∈p

⋂
ai∈Ai

⋂
aj∈Aj [∃aj < ai]cA (where A is

the union of the Ai’s). J

N. Lhote, V. Michielini, and M. Skrzypczak 61:11

3.6 Polynomials
We will now prove a variant of Lemma 15 for polynomials. A monomial is a language of
the shape L0 · L1 · · ·Lp−1, where each Li is either of the form A∗i , or a set of single-letter
words over Ai, and such that at least one of the Li’s is of the latter kind. An example of
a monomial is the language

{a, b}∗ · {x, y} · {x}∗.

Notice that the alphabets Ai are not required to be pairwise disjoint in that definition.
A polynomial is a finite union of monomials. This section is devoted to a proof of the
following lemma.

I Lemma 18. Any polynomial is in L.

First notice that L is closed under unions and therefore it is enough to prove the lemma
for monomials. Consider a monomial L over an alphabet A, i.e. L = Aξ0

0 ·A
ξ1
1 · · ·A

ξp−1
p−1 , where

each ξi is either ∗ or 1 (because A1
i = Ai). Take A′ := A t {•}, B := {∆0, . . . ,∆p−1, •,�}.

Let R :=
(A0

∆0

)ξ0 · · ·
(Ap−1

∆p−1

)ξp−1 , R1 := R ·
(•
•
)
·
(A
�

)∗, and R2 :=
(A
�

)∗ · (••) ·R.
Notice that

R1 =
(A0

∆0

)∗ · · · (Ap−1
∆p−1

)∗ · (••)∗ · (A
�

)∗ ∩ [∃=1(•
•
)]

A′×B ∩
⋂
i∈p

Ξi, (3)

where each Ξi is either:
(
A′ × B

)+ if ξi = ∗; or
[
∃=1Ai × {∆i}

]
A′×B if ξi = 1. Now, the first

ingredient on the right-hand side of (3) is as in Corollary 17 and thus belongs to L. The
other ingredients also belong to L, see Lemma 10, and Corollary 13. Similarly we know that
R2 ∈ L. Thus, Fact 16 implies that L = Π(R) ∈ L, which concludes the proof of Lemma 18.
I Remark 19. The family of polynomials is closed under union and concatenation.

3.7 Semigroups
We can now conclude the proof of Theorem 2. Let L be a regular language over some
alphabet A, that is recognised by a tuple 〈S, α, T 〉 with a finite semigroup S that may
a priori not belong to S. Our aim is to prove that L ∈ L.

Consider a word
(
w
σ

)
∈
(
A× S

)+ of length n. We say that such a word is an evaluation
if for every i ∈ n we have σ(i) = α

(
w(0) · · ·w(i)

)
. Notice that in that case w ∈ L if and

only if σ(n−1) ∈ T . Let E be the set of words
(
w
σ

)
∈
(
A × S

)+ that are evaluations and
σ(n−1) ∈ T .

B Claim 20. Using the above notions, we have Π(E) = L.

Proof. Every word w ∈ An with n ≥ 1 admits a unique word σ ∈ Sn such that
(
w
σ

)
is

an evaluation. In that case α(w) = σ(n−1). Thus, w ∈ L iff. σ(n−1) ∈ T iff.
(
w
σ

)
∈ E. C

Our aim is to show that a variant of the set of evaluations E belongs to L and then
invoke Fact 16 to project away the S coordinate of the evaluations.

Consider a, b ∈ A and r, s ∈ S and define

Ia,r :=
(
a
r

)
·
(
A
S

)∗
, Ma,r,b,s :=

(
A
S

)∗ · (ar) · (bs) · (A
S

)∗
, Fa,r :=

(
A
S

)∗ · (ar).
Let W be the union of the languages: Ia,r ranging over a ∈ A, r ∈ S such that α(a) 6= r;

Ma,r,b,s ranging over those a, b ∈ A, r, s ∈ S such that r · α(b) 6= s; and Fa,r ranging over
r /∈ T . Notice that W defined that way is a polynomial.

MFCS 2019

61:12 Uniformisation Gives the Full Strength of Regular Languages

B Claim 21. The complement of W equals E.

Proof. Clearly E ∩W = ∅. Thus, it is enough to prove that if
(
w
σ

)
/∈W then

(
w
σ

)
∈ E. Let

n = |w| = |σ|. Since
(
w
σ

)
/∈W , we know that σ(n−1) ∈ T (see the languages Fa,r), thus it is

enough to show that
(
w
σ

)
is an evaluation. It is done inductively, for i = 0, 1, . . . , n−1. The

fact that σ(0) = α
(
w(0)

)
follows from the assumption that

(
w
σ

)
/∈W (see the languages Ia,r).

Take i < n−1 and assume that σ(i) = α
(
w(0) · · ·w(i)

)
. Observe that σ(i+1) must equal

σ(i) · α
(
w(i+1)

)
(see the languages Ma,r,b,s). Thus, σ(i+1) = α

(
w(0) · · ·w(i+1)

)
. C

Consider fresh letters • and •, and the alphabets A′ := A t {•}, S′ := S t {•,∆}. Let:

R1 := W ·
(•
•
)
·
(A

∆
)∗
, R2 :=

(A
∆
)∗ · (••) ·W,

R′1 := Rc
1 ∩

(
A
S

)∗ · (••) · (A
∆
)∗
, R′2 := Rc

2 ∩
(A

∆
)∗ · (••) · (A

S

)∗
, P := R′1 ∪R′2.

Notice that both R1 and R2 are polynomials (see Remark 19) and therefore all the five
relations defined above belong to L.

B Claim 22. Using the above notions, we have

R′1 = E ·
(•
•
)
·
(A

∆
)∗
, R′2 =

(A
∆
)∗ · (••) · E.

Proof. These equalities follow directly from the definition and Claim 21. C

Therefore, Fact 16 applied to P guarantees that Π(E) ∈ L. Thus, by Claim 20 we know
that L ∈ L. This concludes the proof of Theorem 2.

4 Conclusions

The main result of this work shows that among pseudo-varieties of semigroups, only REG
=MSO is strong enough to have the uniformisation property over finite words. It seems
that exactly the same techniques work also for infinite words and finite trees, however the
technical details are more involved there. This means that, to be able to choose witnesses
in a definable way, one needs to have access to the unrestricted quantification over these
witnesses (i.e. monadic quantifiers).

The actual arguments used in the presented proof are rather direct: they boil down to
finding an appropriate relation R that is definable in the considered formalism, such that
any uniformisation of R must provide some added expressive power. However, the difficulty
of that reasoning lies in the deliberate design of the relations R. From this perspective, the
proof can be read as a collection of instances showing how uniformisability (or generally
ability to choose witnesses) leads to an increased expressive power.

The results of this work are in a sense negative, showing that all formalisms below MSO
do not admit uniformisation. However, still some relations can be uniformised within the
limited expressive power. This leads to the following decision problem:

I Problem 23. Given a regular language R over a product alphabet A×B, decide if R admits
an FO[<]-definable uniformisation.

Note that even if R itself is not FO[<]-definable, it might be the case that there is
an FO[<]-definable uniformisation of R. The status of this problem is open at the moment.

N. Lhote, V. Michielini, and M. Skrzypczak 61:13

References
1 Mikołaj Bojańczyk. Effective characterizations of tree logics. In PODS, pages 53–66, 2008.
2 Julius Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Mathematical

Logic Quarterly, 6(1–6):66–92, 1960.
3 Julius Richard Büchi and Lawrence H. Landweber. Solving Sequential Conditions by Finite-

State Strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.
4 Arnaud Carayol and Christof Löding. MSO on the infinite binary tree: Choice and order. In

CSL, pages 161–176, 2007.
5 Volker Diekert, Paul Gastin, and Manfred Kufleitner. A Survey on Small Fragments of

First-Order Logic over Finite Words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008.
doi:10.1142/S0129054108005802.

6 Samuel Eilenberg. Automata, languages, and machines. Pure and Applied Mathematics.
Elsevier Science, 1974.

7 Calvin C. Elgot. Decision Problems of Finite Automata Design and Related Arithmetics.
Transactions of the American Mathematical Society, 98(1):21–51, 1961.

8 Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem. Journal of Symbolic
Logic, 48(4):1105–1119, 1983.

9 Alexander Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.
10 Shmuel Lifsches and Saharon Shelah. Uniformization and Skolem Functions in the Class of

Trees. Journal of Symbolic Logic, 63(1):103–127, 1998.
11 Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T. Press research

monographs. M.I.T. Press, 1971.
12 Vincent Michielini. Uniformization Problem for Variants of First Order Logic over Finite

Words. In DLT, pages 516–528, 2018.
13 Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic and

Games. Elsevier, 2004.
14 Jean-Éric Pin and Howard Straubing. Some results on C-varieties. ITA, 39(1):239–262, 2005.

doi:10.1051/ita:2005014.
15 Michael Oser Rabin. Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society, 141:1–35, 1969.
16 Michael Oser Rabin and Dana Scott. Finite Automata and Their Decision Problems. IBM

Journal of Research and Development, 3(2):114–125, April 1959.
17 Alexander Rabinovich. On decidability of monadic logic of order over the naturals extended

by monadic predicates. Information and Computation, 205(6):870–889, 2007.
18 Jan Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14(1):1–10,

1982.
19 Marcel Paul Schützenberger. On Finite Monoids Having Only Trivial Subgroups. Information

and Control, 8(2):190–194, 1965.
20 Dirk Siefkes. The recursive sets in certain monadic second order fragments of arithmetic. Arch.

Math. Logik, 17(1–2):71–80, 1975.
21 Imre Simon. Piecewise testable events. In Automata Theory and Formal Languages, pages

214–222, 1975.
22 Imre Simon. Word Ramsey theorems. In B. Bollobas, editor, Graph Theory and Combinatorics,

pages 283–291. Academic Press, London, 1984.
23 Denis Thérien and Thomas Wilke. Over Words, Two Variables Are as Powerful as One

Quantifier Alternation. In STOC, pages 234–240, 1998.
24 Wolfgang Thomas. Star-Free Regular Sets of omega-Sequences. Information and Control,

42(2):148–156, 1979.
25 Boris A. Trakhtenbrot. Finite automata and the monadic predicate calculus. Siberian

Mathematical Journal, 3(1):103–131, 1962.

MFCS 2019

https://doi.org/10.1142/S0129054108005802
https://doi.org/10.1051/ita:2005014

New Pumping Technique for 2-Dimensional VASS
Wojciech Czerwiński
University of Warsaw, Poland
wczerwin@mimuw.edu.pl

Sławomir Lasota
University of Warsaw, Poland
sl@mimuw.edu.pl

Christof Löding
RWTH Aachen, Germany
loeding@informatik.rwth-aachen.de

Radosław Piórkowski
University of Warsaw, Poland
r.piorkowski@mimuw.edu.pl

Abstract
We propose a new pumping technique for 2-dimensional vector addition systems with states (2-VASS)
building on natural geometric properties of runs. We illustrate its applicability by reproving an
exponential bound on the length of the shortest accepting run, and by proving a new pumping lemma
for languages of 2-VASS. The technique is expected to be useful for settling questions concerning
languages of 2-VASS, e.g., for establishing decidability status of the regular separability problem.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Formal languages and automata theory

Keywords and phrases vector addition systems with states, pumping, decidability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.62

Related Version https://arxiv.org/abs/1906.10494

Funding This research was supported by Polish NCN grants “Separation problems in automata the-
ory” (2016/21/D/ST6/01376), “Automatic analysis of concurrent systems” (2017/27/B/ST6/02093)
and “Symbolic computations on first-order definable objects” (2016/21/B/ST6/01505).

1 Introduction

Vector addition systems [8] are a widely accepted model of concurrency equivalent to Petri
nets. Another equivalent model, called vector addition systems with states (VASS) [7], is
an extension of finite automata with integer counters, on which the transitions can perform
operations of increment or decrement (but no zero tests), with the proviso that counter
values are 0 initially and must stay non-negative along a run. The number of counters d
defines the dimension of a VASS. For brevity, we call a VASS of dimension d a d-VASS.
Formally, every transition of a d-VASS V has adjoined a vector v ∈ Zd describing the effect of
executing this transition on counter values; thus a transition is a triple (q, v, q′) ∈ Q×Zd×Q,
where Q is the set of control states of V . A finite path, i.e., a sequence of transitions of the
form π = (q0, v1, q1), (q1, v2, q2), . . . , (qn−1, vn, qn), induces a run if the counter values stay
non-negative, i.e., v1 + . . .+ vi ∈ Nd for every i.

In this paper we concentrate on pumping, i.e., techniques exploiting repetitions of states
in runs. Pumping is an ubiquitous phenomenon which typically provides valuable tools in
proving short run properties, or showing language inexpressibility results. It seems to be
particularly relevant in case of VASS, as even the core of the seminal decision procedure for

© Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 62; pp. 62:1–62:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6169-868X
mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
mailto:sl@mimuw.edu.pl
mailto:loeding@informatik.rwth-aachen.de
https://orcid.org/0000-0002-9643-182X
mailto:r.piorkowski@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.62
https://arxiv.org/abs/1906.10494
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 New Pumping Technique for 2-Dimensional VASS

the reachability problem in VASS by Mayr and Kosaraju [11, 9] is fundamentally based on
pumping: briefly speaking, the decision procedure decomposes a VASS into a finite number
of VASS, each of them admitting a property that every path can be pumped up so that
it induces a run. Pumping techniques are used even more explicitly when dealing with
subclasses of VASS of bounded dimension. The PSpace upper bound for the reachability
problem in 2-VASS [2] relies on various un-pumping transformations of an original run,
leading to a simple run of at most exponential length, in the form of a short path with
adjoined short disjoint cycles. A smart surgery on those simple runs was also used to obtain
a stronger upper bound (NL) in case when the transition effects are represented in unary [6].
Un-pumping is also used in [3] to provide a quadratic bound on the length of the shortest
run for 1-VASS, also known as one counter automata without zero tests, and for unrestricted
one counter automata. See also [1, 10] for pumping techniques in one counter automata.

Figure 1 Thin (above) and thick run (below). Points correspond to counter values, and control
states along a run are ignored.

Contribution. The above-mentioned techniques are mostly oriented towards reachable
sets, and henceforth may ignore certain runs as long as the reachable set is preserved. In
consequence, they are not very helpful in solving decision problems formulated in terms
of the whole language accepted by a VASS, like the regular separability problem (cf. the
discussion below). Our primary objective is to design a pumping infrastructure applicable to
every run of a 2-VASS. Therefore, as our main technical contribution we perform a thorough
classification of runs, in the form of a dichotomy (see the illustrations on the right): for every
run π of a 2-VASS, whose initial and final values of both counters are 0,

either π is thin, by which we mean that the counter values along the run stay within
belts, whose direction and width are all bounded polynomially in the number of states
and the largest absolute value of vectors of the 2-VASS;
or π is thick, by which we mean that a number of cycles is enabled along the run, the effect
vectors of these cycles span (slightly oversimplifying) the whole plane, and furthermore
the lengths of cycles and the extremal factors of π are all bounded polynomially in M
and exponentially in n. (For the sake of simplicity some details are omitted here; the
fully precise statement of the dichotomy is Theorem 3.1 in Section 3).

The dichotomy immediately entails a pumping lemma for 2-VASS by using, essentially, the
pumping scheme of 1-VASS in case of thin runs, and the cycles enabled along a run in case
of thick runs (cf. Theorem 4.1). As a more subtle application of the dichotomy, we derive an
alternative proof of the exponential run property (shown originally in [2]), which immediately
implies PSpace-membership of the reachability problem (cf. Theorem 4.2).

W. Czerwiński, S. Lasota, C. Löding, and R. Piórkowski 62:3

Further applications. We envisage other possible applications of the dichotomy. One
important case can be the regular separability problem: given two labeled 2-VASS V1 and V2,
decide if there is a regular language separating languages of V1 and V2, i.e., including one of
them and disjoint from the other. The problem is decidable in PSpace for 1-VASS [5] while
the decidability status for 2-VASS is still open. A cornerstone of the decision procedure
of [5] is a well-behaved over-approximation of a language of a 1-VASS V by a sequence of
regular languages (Vn)n∈N, where the precision of approximation increases with increasing
n. In case of 1-VASS, the language Vn is obtained by abstraction of V modulo n; on the
other hand, as argued in [5], the very same approach necessarily fails for dimensions larger
than 1. It seems that our dichotomy classification of runs of a 2-VASS prepares the ground
for the right definition of abstraction Vn modulo n. Indeed, intuitively speaking, as long as
the run stays within belts, 1-dimensional counting modulo n along the direction of a belt
is sufficient; otherwise, a 2-dimensional abstraction modulo n can be applied as soon as a
sufficient number of pumpable cycles has been identified along a run.

As our approach builds on natural geometric properties of runs, we believe that it can
be generalized to dimensions larger than 2. However, one should not expect efficient length
bounds from this generalization itself, as already in dimension 3 the prefix of a run preceding
the first pumpable cycle has non-elementary length (the length can be as large as tower of n
exponentials in the composition of n copies of the Hopcroft and Pansiot example [7]).

2 Preliminaries

2-dimensional vector addition systems with states. We use standard symbols Q,Z,N for
the sets of rationals, integers, and non-negative integers, respectively. Whenever convenient
we use subscripts to specify subsets, e.g., Q≥0 for non-negative rationals. We refer to elements
of Z2 briefly as vectors. Non-negative vectors are elements of N2, and positive vectors are
elements of Z2

>0. A vector with only non-negative coordinates and at least one positive
coordinate is called semi-positive; it is either positive, or vertical of the form (0, a), or
horizontal of the form (a, 0), for a ∈ Z>0.

A 2-dimensional vector addition system with states (2-VASS) V consists of a finite set
of control states Q and a finite set of transitions T ⊆ Q× Z2 ×Q. We refer to the vector
v as the effect of a transition (p, v, q). A path in V from control state p to q is a sequence
of transitions π = (q0, v1, q1), (q1, v2, q2), . . . , (qn−1, vn, qn) ∈ T ∗ where p = q0 and q = qn; it
is called a cycle whenever the starting and ending control states coincide (q0 = qn). The
effect of a path is defined as eff(π) = v1 + . . .+ vn ∈ Z2, and its length is n. A cycle is called
non-negative, semi-positive or positive, if its effect is so.

A configuration of V is an element of Conf = Q×N2. A transition t = (p, v, q) is enabled
in a configuration c = (p′, u) if p = p′ and u+ v ∈ N2. Analogously, a path π is enabled in a
configuration c = (p′, u) if q0 = p′ and ui = u+ v1 + . . .+ vi ∈ N2 for every i. In such case
we say that π induces a run of the form

ρ = (c0, t1, c1), (c1, t2, c2), . . . , (cn−1, tn, cn) ∈ (Conf× T × Conf)∗

with intermediate configurations ci = (qi, ui), from the source configuration src(ρ) = c0 to
the target one trg(ρ) = cn. If the source configuration c0 is clear from the context, we do not
distinguish between a path enabled in c0 and a run with source c0, and simply say that the
path is the run. A (0, 0)-run is a run whose source and target are (0, 0)-configurations, i.e.,
a configuration whose vector is (0, 0).

MFCS 2019

62:4 New Pumping Technique for 2-Dimensional VASS

We will sometimes relax the non-negativeness requirement on some coordinates: For
j ∈ {1, 2}, we say that a path π is {j}-enabled in a configuration c = (p′, u) if q0 = p′ and
(u+ v1 + . . .+ vi)[j] ∈ N for every i. We also say that π is ∅-enabled in c if just q0 = p′.

The reversal of a 2-VASS V = (Q,T), denoted rev(V), is a 2-VASS with the same control
states and with transitions {(q,−v, p) | (p, v, q) ∈ T}. We sometimes speak of the reversal
rev(ρ) of a run ρ of V , implicitly meaning a run in the reversal of V .

As the norm of v = (v1, v2) ∈ Q2, we take the largest of absolute values of v1 and v2,
‖v‖ := max{|v1|, |v2|}. By the norm of a configuration c = (q, v) we mean the norm of its
vector v, and by the norm ‖V ‖ of a 2-VASS V we mean the largest among norms of effects
of transitions.

u1

u2

u3

u4
u5

u6

u7

u8

u9u10
u11

Figure 2 Above u1 � u2 � . . . � u11 � u1. Also, u4 � u9, but u4 6� u11 and u11 � u4. Pairs of
vectors ui, ui+6 are contralinear, for i = 1, . . . , 5.

Sequential cones. For a vector v ∈ Z2, define the half-line induced by v as `v := Q≥0 · v =
{αv | α ∈ Q≥0}. We call two vectors v, w colinear if `v = `w, and contralinear if `v = `−w.
For two vectors u, v ∈ Z2 \ {(0, 0)}, define the angle][u, v] ⊆ Q2 as the union of all half-lines
which lie clock-wise between `u and `v, including the two half-lines themselves. In particular,
][v, v] = `v. Analogously we define the sets][u, v),](u, v] and](u, v) which exclude one
or both of the half-lines. We refer to an angle of the form][v,−v] as half-plane. We write
v � u when u ∈](v,−v), i.e., u is oriented clock-wise with respect to v (see Figure 2 for an
illustration). Note that � defines a total order on pairwise non-colinear non-negative vectors.

By the cone of a finite set of vectors {v1, . . . , vk} ⊆ Z2 we mean the set of all non-negative
rational linear combinations of these vectors:

Cone(v1, . . . , vk) := {Σkj=1 ajvj ∈ Q2 | a1, . . . , ak ∈ Q≥0}.

We call the cone of a single vector Cone(v) = `v trivial, and the cone of zero vectors
Cone(∅) = {(0, 0)} degenerate. Two non-zero vectors v1 and v2 can be in four dis-
tinct relations: (i) they are colinear, (ii) they are contralinear, (iii) v1 � v2 and hence
Cone(v1, v2) =][v1, v2], (iv) v2 � v1 and hence Cone(v1, v2) =][v2, v1].

I Lemma 2.1. Every cone either equals the whole plane Q2, or is included in some half-plane.

Proof. Assume, w.l.o.g. that the vectors v1, . . . , vk are non-zero and include no colinear
pair. Suppose there is a contralinear pair vi, vj among v1, . . . , vk. If all other vectors vh
satisfy vi � vh � vj then Cone(v1, . . . , vk) is included in the half-plane][vi, vj]. Otherwise
Cone(v1, . . . , vk) is the whole plane.

Now suppose there is no contralinear pair among v1, . . . , vk. If some three vi, vj , vh of
them satisfy vi � vj � vh � vi then Cone(v1, . . . , vk) includes the three angles][vi, vj],
][vj , vh] and][vh, vi], the union of which is the whole plane. Otherwise, the relation � is

W. Czerwiński, S. Lasota, C. Löding, and R. Piórkowski 62:5

transitive and hence defines a (strict) total order on {v1, . . . , vk}. The minimal and maximal
element vi and vj w.r.t. the order satisfy vi � vj , and hence Cone(v1, . . . , vk) =][vi, vj] is
included in the half-plane][vi,−vi]. J

The sequential cone of vectors v1, . . . , vk ∈ Z2 imposes additional non-negativeness
conditions, namely for every i, the partial sum a1v1 + . . .+ aivi must be non-negative (this
is required later, when pumping cycles in a run whose effects are v1, . . . , vk in that order):

SeqCone(v1, . . . , vk) := {Σkj=1 ajvj ∈ Q2
≥0 | a1, . . . , ak ∈ Q≥0, ∀i Σij=1 ajvj ∈ Q2

≥0}.

Note that v1 may be assumed w.l.o.g. to be semi-positive, but other vectors vi are not
necessarily non-negative; and that every sequential cone is a subset of the non-negative
orthant Q2

≥0. Importantly, contrarily to cones, the order of vectors v1, . . . , vk matters for
sequential cones. In fact, sequential cones are just convenient syntactic sugar for cones of
pairs of non-negative vectors:

I Lemma 2.2. For all vectors v1, . . . , vk, the sequential cone SeqCone(v1, . . . , vk), if not
degenerate, equals Cone(u, v), for two non-negative vectors u, v, and each of them either
belongs to {v1, . . . , vk}, or is horizontal, or vertical.

Proof. We proceed by induction on k. For k = 1 we have SeqCone(v1) = `v1 =
Cone(v1, v1). Let v0 and h0 denote some fixed vertical and horizontal vector, respectively.
For the induction step we assume SeqCone(v1, . . . , vk−1) = Cone(u, v) for non-negative
vectors u, v; and compute the value of SeqCone(v1, . . . , vk), separately in each of the
following distinct cases (assume w.l.o.g. u � v):

I II
III

IVV

VI

v0

h0

u

v

SeqCone(v1, . . . , vk) =



Cone(vk, v) if vk ∈][v0, u)
Cone(u, v) if vk ∈][u, v]
Cone(u, vk) if vk ∈](v, h0]
Cone(u, h0) if vk ∈](h0,−u]
Cone(v0, h0) if vk ∈](−u,−v)
Cone(v0, v) if vk ∈][−v, v0).

J

3 Thin-Thick Dichotomy

The main result of this section (cf. Theorem 3.1 below) classifies (0, 0)-runs in a 2-VASS
into thin and thick ones. Throughout this section we consider an arbitrary fixed 2-VASS
V = (Q,T).
Let n = |Q| and M = ‖V ‖.

MFCS 2019

62:6 New Pumping Technique for 2-Dimensional VASS

A

W

Figure 3 Thin run within belts Bv,W .

Thin runs. The belt of direction v ∈ N2 and width W is the set

Bv,W = {u ∈ N2 | dist(u, `v) ≤W},

where dist(u, `v) denotes the Euclidean distance between the point u and the half-line `v.
For A ∈ N, we call Bv,W an A-belt if ‖v‖ ≤ A and W ≤ A. We say that a run ρ of V is
A-thin if for every configuration c in ρ there exists an A-belt B such that c ∈ Q×B.

Thick runs. Let A ∈ N. Four cycles π1, π2, π3, π4 ∈ T ∗ are A-sequentially enabled in a run
ρ if their lengths are at most A, and the run ρ factors into ρ = ρ1 ρ2 ρ3 ρ4 ρ5 so that (denote
by v1, v2, v3, v4 the effects of π1, π2, π3, π4, respectively):

The effect v1 is semi-positive, the cycle π1 is enabled in c1 := trg(ρ1), and both coordinates
are bounded by A along ρ1.
If v1 is positive then π2 is ∅-enabled in c2 := trg(ρ2). Otherwise (let j be the coordinate
s.t. v1[j] = 0) π2 is {j}-enabled in c2 := trg(ρ2), and jth coordinate is bounded by A
along ρ2.
The cycle πi is ∅-enabled in ci := trg(ρi), for i = 3, 4.

We also say that the four vectors v1, v2, v3, v4 are A-sequentially enabled in ρ, quantifying
the cycles existentially. A (0, 0)-run τ is called A-thick if it partitions into τ = ρ ρ′ so that
1. some vectors v1, v2, v3, v4 are A-sequentially enabled in ρ,
2. some vectors v′1, v′2, v′3, v′4 are A-sequentially enabled in rev(ρ′),
3. SeqCone(v1, v2, v3, v4) ∩ SeqCone(v′1, v′2, v′3, v′4) is non-trivial.

Figure 4 illustrates the geometric ideas underlying these three conditions for A-thick runs.
Concerning condition 1, a cycle π1 depicted by a dotted line, with vertical effect v1, can
be used to increase the second (vertical) coordinate arbitrarily, which justifies the relaxed
requirement that a cycle π2 with effect v2 is only {1}-enabled. Note that the norm of
the configuration enabling π1, as well as the first coordinate of the configuration enabling
π2, are bounded by A. Concerning condition 2, a cycle π′1 with positive effect v′1 can be
used to increase both coordinates arbitrarily; therefore a cycle π′2 with effect v′2 is only
required to be ∅-enabled, and no coordinate of the configuration enabling π′2 is required to
be bounded by A. In the illustrated example, vectors v′3 and v′4 are not needed; formally,
one can assume v′2 = v′3 = v′4 and ρ′3 = ρ′4 = ε. Condition 3 ensures that the cycles

W. Czerwiński, S. Lasota, C. Löding, and R. Piórkowski 62:7

A

ρ

ρ′
v′2

v1

v2

v4

v3

v′1

Figure 4 Thick run. Blue angles denote sequential cones SeqCone(v1, v2), SeqCone(v1, v2, v3)
and SeqCone(v1, v2, v3, v4), respectively, and green angle denotes SeqCone(v′

1, v
′
2).

π1, . . . , π4 and π′1, . . . , π′4 can be pumped such that the pumped versions of ρ and ρ′ are still
connected. In the illustrated example, observe that SeqCone(v1, v2) ∩ SeqCone(v′1) = ∅.
Intuitively, both coordinates in the target of ρ can be increased arbitrarily using v1 and v2,
and similarly both coordinates of the target of rev(ρ′) can be increased arbitrarily using
v′1, but “directions of increase” are non-crossing. Adding v3 and v′2 is not sufficient, as still
SeqCone(v1, v2, v3) ∩ SeqCone(v′1, v′2) = ∅. When vector v4 is adjoined, condition 3 holds
as SeqCone(v1, v2, v3, v4) = Q2

≥0. Finally, the four vectors are really needed here, e.g.,
vector v3 can not be omitted as SeqCone(v1, v2, v4) = SeqCone(v1, v2).

Here is the main result of this section:

I Theorem 3.1 (Thin-Thick Dichotomy). There is a polynomial p such that every (0, 0)-run
in a 2-VASS V is either p(nM)n-thin or p(nM)n-thick.

For the proof of Theorem 3.1 we need the following core fact (for space reasons, the proof is
only in the full version of the paper):

I Lemma 3.2 (Non-negative Cycle Lemma). There is a polynomial P such that every run
ρ in V from a (0, 0)-configuration to a target configuration of norm larger than P (nM)n,
contains a configuration enabling a semi-positive cycle of length at most P (nM).

Proof of Theorem 3.1. Let P be the polynomial from Lemma 3.2. The polynomial p
required in Theorem 3.1 can be chosen arbitrarily as long as p(x) ≥

√
2 ·
(
P (x) + (x+ 1)3) ·x.

for all x; note that the following inequality follows:

p(nM)n ≥
√

2 ·
(

(P (nM))n + (nM + 1)3) · nM. (1)

In the sequel we deliberately confuse configurations c = (q, v) with their vectors v:
whenever convenient, we use c to denote the vector v, hoping that this does not lead to any
confusion.

Let τ be a (0, 0)-run of V which is not p(nM)n-thin, i.e., τ contains therefore a configura-
tion t which lies outside of all the p(nM)n-belts. We need to demonstrate points 1–3 in the

MFCS 2019

62:8 New Pumping Technique for 2-Dimensional VASS

definition of thick run. To this aim we split τ into τ = ρ ρ′ where trg(ρ) = t = src(ρ′), and
are going to prove the following two claims (a) and (a’). Let D := P (nM)n + (nM + 1)3.
For x, y ∈ Q2, let dist(x, y) denote their Euclidean distance.

(a) Some vectors v1, v2, v3, v4 are P (nM)n-sequentially enabled in ρ, and the sequential cone
SeqCone(v1, v2, v3, v4) contains a point u ∈ Q2

≥0 with ‖u− t‖ ≤ D.
(a’) Some vectors v′1, v′2, v′3, v′4 are P (nM)n-sequentially enabled in rev(ρ′), and the sequential

cone SeqCone(v′1, v′2, v′3, v′4) contains a point u ∈ Q2
≥0 with ‖u− t‖ ≤ D.

In simple words, instead of proving point 3, we prove that both sequential cones contain a
point v which is sufficiently close to t.

B Claim 3.3. The conditions (a) and (a’) guarantee that τ is thick.

Indeed, points 1–2 in the definition of thick run are immediate as P (nM) ≤ p(nM). For point
3, observe that the inequality (1) implies p(nM)n ≥

√
2 ·D, which guarantees that the circle

{u ∈ Q2
≥0 | dist(u, t) ≤

√
2 ·D} does not touch any half-line `w induced by a non-negative

vector w with ‖w‖ ≤ p(nM)n. In consequence, neither does the square X := {u ∈ Q2
≥0 | ‖u−

t‖ ≤ D} inscribed in the circle, and henceX lies between two consecutive half-lines `w induced
by a non-negative vector w with ‖w‖ ≤ p(nM)n. Hence, as SeqCone(v1, v2, v3, v4) contains
some point of X, by Lemma 2.2 it includes the whole X, and likewise SeqCone(v′1, v′2, v′3, v′4).
In consequence, the whole X is included in SeqCone(v1, v2, v3, v4)∩SeqCone(v′1, v′2, v′3, v′4)
which entails point 3. Claim 3.3 is thus proved.

As condition (a’) is fully symmetric to (a), we focus exclusively on proving condition (a),
i.e., on constructing sequentially enabled vectors v1, v2, v3, v4.

Vector t lies outside of p(nM)n-belts, hence outside of all the P (nM)n-belts, therefore
its norm ‖t‖ > P (nM)n. Relying on Lemma 3.2, let c1 be the first configuration in the run
ρ which enables a semi-positive cycle π1 of length bounded by P (nM), and let v1 = eff(π1).
We start with the following obvious claim (let v0 be some vertical vector, e.g. v0 = (0, 1)):

B Claim 3.4. SeqCone(v0) contains a point u ∈ Q2
≥0 such that ‖u− c1‖ ≤ P (nM)n + nM .

Indeed, due to Lemma 3.2 we may assume ‖c1‖ ≤ P (nM)n +M and hence u = (0, 0) does
the job.
Recall that the relation � defines a total order on pairwise non-colinear non-negative vectors.

B Claim 3.5. We can assume w.l.o.g. that v1 � t.

Indeed, if v1 and t were colinear then t ∈ Cone(v1) and hence condition (a) would hold.
Split ρ into the prefix ending in c1 and the remaining suffix: ρ = ρ1 σ, where trg(ρ1) =

c1 = src(σ). As the next step we will identify a configuration c2 in σ which satisfies Claim 3.6
(which will serve later as the basis of induction) and enables a cycle π2 with effect v2 (as
stated in Claim 3.7).

B Claim 3.6. SeqCone(v0, v1) contains a point u ∈ Q2
≥0 such that ‖u− c2‖ ≤ P (nM)n +

2nM .

The proof of Claim 3.6 depends on whether v1 is positive. If v1 is so, we simply duplicate
the first cycle: c2 := c1 and π2 := π1, and use Claim 3.4. Otherwise v1 is vertical due to
Claim 3.5. If t[1] ≤ W = P (nM)n + (n + 1)M then condition (a) holds immediately as
SeqCone(v1) = `v1 contains a point u ∈ Q2

≥0 with ‖u − t‖ ≤ P (nM)n + (n + 1)M ≤ D.
Therefore suppose t[1] > P (nM)n + (n + 1)M , and define the sequence d1, . . . , dm of
configurations as follows (cf. Figure 5): let d1 := c1, and let di+1 be the first configuration in

W. Czerwiński, S. Lasota, C. Löding, and R. Piórkowski 62:9

W

c1 = d1

d2

d3

τ

d4

π2 d5

Figure 5 Proof of Claim 3.6.

σ with di+1[1] > di[1]. Recall that d1[1] ≤ P (nM)n+M , and observe that di+1[1] ≤ di[1]+M .
Thus by the pigeonhole principle m > n and hence for some i < j ≤ n+ 1 the configurations
di and dj must have the same control state. The infix σij of the path σ from di to dj is
thus a cycle, enabled in di, whose effect is positive on the first (horizontal) coordinate. Let
c2 := di. As c2[1] ≤ P (nM)n + (n + 1)M , SeqCone(v0, v1) = `v0 contains necessarily a
point u ∈ Q2

≥0 such that ‖u− c2‖ ≤ P (nM)n + (n+ 1)M , which proves Claim 3.6.

B Claim 3.7. The configuration c2 {1}-enables a cycle π2 of length bounded by p(nM)n,
such that the first coordinate of eff(π2) is positive.

Recalling the proof of the previous claim, observe that the first (horizontal) coordinate in the
infix σij is bounded by P (nM)n + (n+ 1)M , and think of the second (vertical) coordinate
as irrelevant. Let π2 be the path inducing σij . For bounding the length of π2, as long as π2
contains a cycle α with vertical effect (0, w), remove α from π2. This process ends yielding a
cycle π2 of length at most (P (nM)n + (n + 1)M) · n, and hence at most p(nM)n (by the
inequality (1)), which is {1}-enabled in c2, but not necessarily enabled. Let v2 := eff(π2).

B Claim 3.8. We can assume w.l.o.g. that v2 � t.

Indeed, if v1 = v2 then Claim 3.5 does the job; otherwise v1 is vertical and then t � v2 (or t
colinear with v2) would imply t ∈ SeqCone(v1, v2), hence condition (a) would hold again.

Split σ further into the prefix ending in c2 and the remaining suffix: σ = ρ2σ
′, where

trg(ρ2) = c2 = src(σ′). If σ′ contains a configuration which ∅-enables a simple cycle whose
effect w belongs to][t,−v2) then t ∈ SeqCone(v2, w) and hence condition (a) holds. We
aim at achieving this objective incrementally (cf. Figure 6).

For i ≥ 2, let ci+1 be the first configuration in σ′ after ci that ∅-enables a simple cycle
πi+1 with effect vi+1 ∈](vi,−vi). As discussed above, if vi+1 ∈][t,−vi) for some i then
t ∈ SeqCone(vi, vi+1) and hence condition (a) holds. Assume therefore that the sequence
v1, . . . , vm so defined satisfies vi+1 ∈](vi, t) for all i ≥ 2. Let cm+1 := t. As vectors
v3, . . . , vm are pairwise different, semi-positive and, being effects of simple cycles, have norms
at most nM , we know that m ≤ (nM + 1)2 + 1.

B Claim 3.9. For every i = 1, . . . ,m, SeqCone(v0, vi) contains a point u ∈ Q2
≥0 such that

‖u− ci+1‖ ≤ P (nM)n + (i+ 1)nM .

MFCS 2019

62:10 New Pumping Technique for 2-Dimensional VASS

v2

v3
v4

t

c2

c3

c4

Figure 6 Incremental construction of v1, . . . , vm.

Proof. By induction on i. The induction base is exactly Claim 3.6. For the induction step,
we are going to show that SeqCone(v0, vi) contains a vector u such that ‖u − ci+1‖ ≤
P (nM)n + (i + 1)nM . Decompose the infix of σ′ which starts in ci and ends in ci+1 into
simple cycles, plus the remaining path ρ̄ of length at most n. The norm of the effect v̄ of ρ̄ is
hence bounded by nM , and we have

ci+1 = ci + s+ v̄,

where s is the sum of effects of all the simple cycles. By the definition of vi+1, the effects
of all the simple cycles belong to the half-plane][−vi, vi], and hence there belongs s. By
induction assumption there is u′ ∈ SeqCone(v0, vi−1) such that ‖u′− ci‖ ≤ P (nM)n+ inM .
As vi−1 � vi, we also have u′ ∈ SeqCone(v0, vi). Consider the point

u := u′ + s

which necessarily belongs to the half-plane][−vi, vi] but not necessarily to SeqCone(v0, vi) =
][−vi, vi] ∩Q2

≥0. Ignoring this issue, by routine calculations we get

‖u−ci+1‖ = ‖u′+s−ci−s−v̄‖ ≤ ‖u′−ci‖+‖v̄‖ ≤ ‖u′−ci‖+nM ≤ P (nM)n+(i+1)nM

as required for the induction step. Finally, if u /∈ Q2
≥0, translate u towards ci+1 until it

enters the non-negative orthant Q2
≥0; clearly, the translation can only decrease the value of

‖u− ci+1‖. J

Applying the claim to i = m, and knowing that m ≤ (nM + 1)2 + 1, we get some point u ∈
SeqCone(v0, vm) such that ‖u−t‖ ≤ P (nM)n+((nM+1)2+1)·nM ≤ P (nM)n+(nM+1)3.
Furthermore, relying on the assumptions that t lies outside of all p(nM)n-belts and that
v1 � t we prove, similarly as in the proof of Claim 3.3, that v1 � u and hence the point u
belongs also to SeqCone(v1, vm). This completes the proof of Theorem 3.1. J

4 Dichotomy in Action

This section illustrates applicability of Theorem 3.1. As before, we use symbols n and M for
the number of control states, and the norm of a 2-VASS, respectively. As the first corollary
we provide a pumping lemma for 2-VASS: in case of thin runs apply, essentially, pumping
schemes of 1-VASS, and in case of thick runs use the cycles enabled along a run. As another
application, we derive an alternative proof of the exponential run property for 2-VASS.

W. Czerwiński, S. Lasota, C. Löding, and R. Piórkowski 62:11

I Theorem 4.1 (Pumping). There is a polynomial p such that every (0, 0)-run τ in a
2-VASS of length greater that p(nM)n factors into τ = τ0 τ1 . . . τk (k ≥ 1), so that for
some non-empty cycles α1, . . . , αk of length at most p(nM)n, the path τ0 α

i
1 τ1 α

i
2 . . . , α

i
k τk

is a (0, 0)-run for every i ∈ N. Furthermore, the lengths of τ0 and τk are also bounded by
p(nM)n.

I Theorem 4.2 (Exponential run). There is a polynomial p such that for every (0, 0)-run τ
in a 2-VASS, there is a (0, 0)-run of length bounded by p(nM)n with the same source and
target as τ .

We fix from now on a 2-VASS V = (Q,T) and the polynomial p of Theorem 3.1. Let
A = p(nM)n. Both proofs proceed separately for thin and thick runs τ . The former (fairly
standard) case is treated in the full version of the paper, so assume below τ to be A-thick.
The polynomials required in Theorems 4.1 and 4.2 can be read out from the constructions.

We rely on the standard tool, cf. Prop. 2 in [4] (the norm of a system of inequalities is
the largest absolute value of its coefficient, and likewise we define the norm of a solution):

I Lemma 4.3. Let U be a system of d linear inequalities of norm M with k variables. Then
the smallest norm of a non-negative-integer solution of U is in O(k ·M)d.

Consider a split τ = ρρ′, where ρ = ρ1 ρ2 ρ3 ρ4 ρ5 and ρ′ = ρ′5 ρ
′
4 ρ
′
3 ρ
′
2 ρ
′
1, as well as cycles

π1, . . . , π4 and π′1, . . . , π′4 given by the definition of thick run. Let v1, . . . , v4 and v′1, . . . , v′4
be the respective effects of π1, . . . , π4 and π′1, . . . , π′4. For j = 1, . . . , 4 let cj = trg(ρj) and
for j = 2, . . . , 4 let ej ∈ N2 be the minimal non-negative vector such that the configuration
cj + ej enables cycle πj . We define the following system U of linear inequalities with 6
variables a1, a2, a3, a4, x, y (max is understood point-wise):

a1v1 ≥ e2 (2)
a1v1 + a2v2 ≥ max(e2, e3) (3)

a1v1 + a2v2 + a3v3 ≥ max(e3, e4) (4)
a1v1 + a2v2 + a3v3 + a4v4 = (x, y) ≥ e4 (5)

(Observe that when v1[j] = 0, i.e., in case when v1 is vertical or horizontal, ej = 0 and therefore
one of the two first inequalities is always satisfied, namely a1v1[j] ≥ e2[j].) Likewise, we have
a system of inequalities U ′ with 6 variables a′1, a′2, a′3, a′4, x′, y′. Observe that the sequential
cone SeqCone(v1, v2, v3, v4) contains exactly (projections on (x, y) of) non-negative rational
solutions of the modified system U (0,0) obtained by replacing all the right-hand sides with
(0, 0). Likewise we define U ′(0,0). Finally, we define the compound system C by enhancing
the union of U and U ′ with two additional equalities (likewise we define the system C(0,0))

(x, y) = (x′, y′). (6)

B Claim 4.4. C admits a non-negative integer solution (a1, a2, a3, a4, x, y, a
′
1, a
′
2, a
′
3, a
′
4, x
′, y′).

Proof. The system C(0,0) admits a non-negative rational solution as the intersection of the
cones SeqCone(v1, v2, v3, v4) and SeqCone(v′1, v′2, v′3, v′4) is non-empty by assumption. As
intersection of cones is stable under multiplications by non-negative rationals, the solution
can be scaled up arbitrarily, to yield a non-negative integer one, and even a non-negative
integer solution of the stronger system C. J

B Claim 4.5. For every non-negative integer solution of C, for the cycles defined as αj := π
aj

j

and α′j := (π′j)
a′

j , for j = 1, 2, 3, 4, the following path is a (0, 0)-run:

ρ1 α1 ρ2 α2 ρ3 α3 ρ4 α4 ρ5 ρ
′
5 α
′
4 ρ
′
4 α
′
3 ρ
′
3 α
′
2 ρ
′
2 α
′
1 ρ
′
1.

MFCS 2019

62:12 New Pumping Technique for 2-Dimensional VASS

Proof. The first two inequalities (2) enforce that the first cycle π1 is repeated sufficiently many
a1 times so that π2 is enabled in configuration trg(ρ1 α1 ρ2). Then the next two inequalities (3)
enforce that π1 and π2 are jointly repeated sufficiently many a1, a2 times so that π2 is still
enabled after its last repetition (which guarantees that every of intermediate repetitions of π2
is also enabled), and that π3 is enabled in configuration trg(ρ1 α1 ρ2 α2 ρ3). Likewise for (4).
Finally, the inequalities (5) enforce that π1, . . . , π4 are jointly repeated sufficiently many times
so that π4 is still enabled after its last repetition. Analogous argument, but in the reverse
order, applies for the repetitions of π′4, . . . , π′1. Finally, equalities (6) ensure that the total
effect of α1, . . . , α4 is precisely compensated by the total effect of rev(α′1), . . . , rev(α′4). J

Proof of Theorem 4.1. Consider a solution of C. In particular the sum eff(α1)+ . . .+eff(αj),
as well as eff(rev(α′1)) + . . .+ eff(rev(α′j)), is necessarily non-negative for every j = 1, . . . , 4.
Therefore, as a direct corollary of Claim 4.5, for every i ∈ N the path

ρ1 α
i
1 ρ2 α

i
2 ρ3 α

i
3 ρ4 α

i
4 ρ5 ρ

′
5 (α′4)i ρ′4 (α′3)i ρ′3 (α′2)i ρ′2 (α′1)i ρ′1

is also a (0, 0)-run. For bounding the lengths of cycles we use Claim 4.4 and apply Lemma 4.3
to C, to deduce that C admits a non-negative integer solution of norm polynomial in
A = p(nM)n. This, together with the bounds on lengths of cycles π1, . . . , π4 and π′1, . . . , π′4
in the definition of A-thick run, entails required bounds on the lengths of the pumpable
cycles. Finally, the lengths of the extremal factors ρ1 and ρ′1 can be also bounded: if ρ1
(resp. ρ′1) is long enough it must admit a repetition of configuration, we add one more cycle
determined by the first (resp. last) such repetition, thus increasing k from 8 to 10. J

For proving Theorem 4.2 we will need a slightly more elaborate pumping. By the definition
of thick run, both coordinates are bounded by A along ρ1 and ρ′1. W.l.o.g. assume that no
configuration repeats in each of the two runs, and hence their lengths are bounded by A2.

Let Cδ denote the union of of U and U ′ enhanced, this time, by the two equalities

(x, y) + (δx, δy) = (x′, y′).

The two additional variables δx, δy describe, intuitively, possible differences between the total
effect of πa1

1 , . . . , πa4
4 and the total effect of rev(π′1)a′

1 , . . . , rev(π′4)a′
4 . The projection of any

solution of Cδ on variables (δx, δy) we call below a shift.

B Claim 4.6. For some non-negative integer m bounded polynomially with respect to A, all
the four vectors (0,m), (m, 0), (0,−m) and (−m, 0) are shifts.

Proof. We reason analogously as in the proof of Claim 4.4, but this time we rely on the
assumption that intersection of the cones SeqCone(v1, v2, v3, v4) and SeqCone(v′1, v′2, v′3, v′4)
is non-trivial, and hence contains, for some v ∈ Q2

>0 and a ∈ Q>0, the points v and v+ (0, a).
By scaling we obtain an integer point v′ ∈ N2 and a non-negative integer m1 ∈ N so that
v′ and v′ + (0,m1) both belong to the intersection of cones. Therefore the vector (0,m1)
is a shift. Likewise we obtain three other non-negative integers m2,m3,m4 ∈ N such that
(m2, 0), (0,−m3) and (−m4, 0) are all shifts. Each of the integers m1, . . . ,m4 can be bounded
polynomially in A using Lemma 4.3. As shifts are stable under multiplication by non-negative
integers, it is enough to take as m the least common multiple of the four integers. J

Proof of Theorem 4.2. We use m from the last claim to modify all factors of τ except for
ρ1 and ρ′1, in order to reduce their lengths to at most n · m2. W.l.o.g. assume m to be
larger than A (take a sufficient multiplicity of m otherwise); this assumption allows us to

W. Czerwiński, S. Lasota, C. Löding, and R. Piórkowski 62:13

v′2

v1

v2

v4

v3

v′1
v′2

v1

v2

v4

v3

v′1

Figure 7 Contracted paths ρ̃, ρ̃′ (left) and reconstructed (0, 0)-run τ̄ = ρ̄ ρ̄′ (right).

proceed uniformly, irrespectively whether v1 is positive or not. Observe that any path longer
than n ·m2 must contain two configurations with the same control state whose vectors are
coordinate-wise congruent modulo m. As long as this happens, we remove the infix; note
that this operation changes the effect of the whole path by a multiplicity of m on every
coordinate. If this operation is performed on factors ρ2, ρ3, ρ4, ρ5, ρ

′
5, ρ
′
4, ρ
′
3, ρ
′
2, the paths

ρ, ρ′ are transformed into contracted paths (see the left picture in Figure 7) of the form:

ρ̃ = ρ1 ρ̃2 ρ̃3 ρ̃4 ρ̃5, ρ̃′ = ρ̃′5 ρ̃
′
4 ρ̃
′
3 ρ̃
′
2 σ1,

each of total length at most 5n ·m2. Importantly, their effects eff(ρ̃) and eff(ρ̃′) are bounded
polynomially in A, and their difference is (coordinate-wise) divisible by m:

eff(ρ̃)− eff(rev(ρ̃′)) = (am, bm) for some integers a, b ∈ Z polynomial in A.

Our aim is now to pump up the cycles π1, . . . , π4 and rev(π′1), . . . , rev(π′4) (see the right
picture in Figure 7), to finally end up with the paths of the form

ρ̄ = ρ1 π
a1
1 ρ̃2 π

a2
2 ρ̃3 π

a3
3 ρ̃4 π

a4
4 ρ̃5, ρ̄′ = ρ̃′5 (π′4)a

′
4 ρ̃′4 (π′3)a

′
3 ρ̃′3 (π′2)a

′
2 ρ̃′2 (π′1)a

′
1 ρ′1, (7)

such that τ̄ = ρ̄ ρ̄′ is a (0, 0)-run. In other words, we aim at eff(ρ̄) = eff(rev(ρ̄′)). We are
going to use Lemma 4.3 twice. For j = 2, . . . , 5 let cj := eff(ρ1ρ̃2 . . . ρ̃j) ∈ Z2, and let fj
be the minimal non-negative vector such that the configuration cj−1 + fj enables ρ̃j . For
j = 2, . . . , 4 let ej ∈ N2 be the minimal non-negative vector such that the configuration cj+ej
enables πj . Finally, let e5 be the minimal non-negative vector such that c5 + e5 ≥ (0, 0).
Analogously to the system U (2)–(5), we define the system Ũ of linear inequalities:

a1mv1 ≥ max(e2, f2)
a1mv1 + a2mv2 ≥ max(e2, e3, f3)

a1mv1 + a2mv2 + a3mv3 ≥ max(e3, e4, f4)
a1mv1 + a2mv2 + a3mv3 + a4mv4 ≥ max(e4, e5, f5)

In words, Ũ requires that every prefix of ρ̄ is enabled in the source (0, 0)-configuration,
and that the number of repetitions of every cycle πi is divisible by m. Clearly Ũ has a
non-negative integer solution, as v1 is either positive, or vertical or horizontal in which case

MFCS 2019

62:14 New Pumping Technique for 2-Dimensional VASS

v2 is positive on the relevant coordinate. Likewise we define a system of inequalities Ũ ′ that
requires that every prefix of rev(ρ̄′) is enabled in the target (0, 0)-configuration. Consider
some fixed solutions of Ũ and Ũ ′ bounded, by the virtue of Lemma 4.3, polynomially in A.
We have thus two fixed runs ρ̄ and rev(ρ̄′) of the form (7), with source vector (0, 0); the
number of repetitions of each cycles is divisible by m, and the difference of their effects is
(coordinate-wise) divisible by m:

eff(ρ̄)− eff(rev(ρ̄′)) = (am, bm) for some integers a, b ∈ Z polynomial in A.

As shifts are closed under addition, by Claim 4.6 we know that (am, bm) is a shift. Substituting
(am, bm) for (δx, δy) in the system Cδ yields a system which admits, again by Lemma 4.3,
a solution bounded polynomially in A. We use such a solution to increase the numbers of
repetitions of respective cycles a1, . . . , a4 and a′4, . . . , a′1 in ρ̄ and ρ̄′, respectively. This turns
the path τ̄ = ρ̄ ρ̄′ into a (0, 0)-run of length bounded polynomially in A. J

References
1 Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan,

and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In Proc.
LICS’16, pages 207–216, 2016.

2 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-
ability in Two-Dimensional Vector Addition Systems with States Is PSPACE-Complete. In
Proc. LICS’15, pages 32–43, 2015.

3 Dmitry Chistikov, Wojciech Czerwinski, Piotr Hofman, Michal Pilipczuk, and Michael Wehar.
Shortest Paths in One-Counter Systems. In Proc. of FOSSACS’16, pages 462–478, 2016.

4 Dmitry Chistikov and Christoph Haase. The Taming of the Semi-Linear Set. In Proc.
ICALP’16, pages 128:1–128:13, 2016.

5 Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata. In
LICS’17, pages 1–12, 2017.

6 Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in Two-Dimensional Unary
Vector Addition Systems with States is NL-Complete. In Proc. of LICS ’16, pages 477–484,
2016.

7 John E. Hopcroft and Jean-Jacques Pansiot. On the Reachability Problem for 5-Dimensional
Vector Addition Systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/0304-3975(79)
90041-0.

8 Richard M. Karp and Raymond E. Miller. Parallel Program Schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969.

9 S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Preliminary
Version). In STOC’82, pages 267–281, 1982.

10 Michel Latteux. Langages à un Compteur. J. Comput. Syst. Sci., 26(1):14–33, 1983.
11 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In STOC’81,

pages 238–246, 1981.

https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0

Computational Complexity of Synchronization
under Regular Constraints
Henning Fernau
Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier, Germany
fernau@uni-trier.de

Vladimir V. Gusev
Leverhulme Research Centre for Functional Materials Design, University of Liverpool, UK
https://www.liverpool.ac.uk/chemistry/staff/vladimir-gusev/
vladimir.gusev@liverpool.ac.uk

Stefan Hoffmann
Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier, Germany
hoffmanns@uni-trier.de

Markus Holzer
Institut für Informatik, Universität Gießen, Germany
holzer@informatik.uni-giessen.de

Mikhail V. Volkov
Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
http://csseminar.imkn.urfu.ru/volkov/
m.v.volkov@urfu.ru

Petra Wolf
Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier, Germany
wolfp@uni-trier.de

Abstract
Many variations of synchronization of finite automata have been studied in the previous decades.
Here, we suggest studying the question if synchronizing words exist that belong to some fixed
constraint language, given by some partial finite automaton called constraint automaton. We show
that this synchronization problem becomes PSPACE-complete even for some constraint automata with
two states and a ternary alphabet. In addition, we characterize constraint automata with arbitrarily
many states for which the constrained synchronization problem is polynomial-time solvable. We
classify the complexity of the constrained synchronization problem for constraint automata with two
states and two or three letters completely and lift those results to larger classes of finite automata.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Finite automata, synchronization, computational complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.63

Funding The financial support of the last two authors by the DFG-funded project FE560/9-1 is
gratefully acknowledged. V. V. Gusev is supported by the Leverhulme Trust. M. V. Volkov is
supported by the Ministry of Science and Higher Education of the Russian Federation, project no.
1.580.2016, and the Competitiveness Enhancement Program of Ural Federal University.

Acknowledgements This project started during the workshop “Modern Complexity Aspects of
Formal Languages” that took place at Trier University on February 11–15, 2019.

1 Introduction

Synchronization is an important concept for many applied areas: parallel and distributed
programming, system and protocol testing, information coding, robotics, etc. At least some
aspects of synchronization are captured by the notion of a synchronizing automaton; for

© Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V. Volkov, and
Petra Wolf;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4444-3220
mailto:fernau@uni-trier.de
https://orcid.org/0000-0002-2815-607X
https://www.liverpool.ac.uk/chemistry/staff/vladimir-gusev/
mailto:vladimir.gusev@liverpool.ac.uk
https://orcid.org/0000-0002-7866-075X
mailto:hoffmanns@uni-trier.de
https://orcid.org/0000-0003-4224-4014
mailto:holzer@informatik.uni-giessen.de
https://orcid.org/0000-0002-9327-243X
http://csseminar.imkn.urfu.ru/volkov/
mailto:m.v.volkov@urfu.ru
https://orcid.org/0000-0003-3097-3906
mailto:wolfp@uni-trier.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.63
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Computational Complexity of Synchronization under Regular Constraints

instance, synchronizing automata adequately model situations in which one has to direct a
certain system to a particular state without a priori knowledge of its current state. We only
refer to some survey papers [24, 28], as well as to Chapter 13 in [17], that also report on
some of these applications. An automaton is called synchronizing if there exists a word that
brings it to a known state independently of the starting state. This concept is quite natural
and has been investigated intensively in the last six decades. It is related to the arguably
most famous open combinatorial question in automata theory, formulated by Černý in [8].
The Černý conjecture states that every n-state synchronizing automaton can be synchronized
by a word of length smaller or equal (n− 1)2. Although this bound was proven for several
classes of finite-state automata, the general case is still widely open. The currently best
upper bound on this length is cubic, and only very little progress has been made, basically
improving on the multiplicative constant factor in front of the cubic term, see [25, 27].

Due to the importance of this notion of synchronizing words, quite a large number of
generalizations and modifications have been considered in the literature. We only mention
four of these in the following. Instead of synchronizing the whole set of states, one could
be interested in synchronizing only a subset of states. This and related questions were
first considered by Rystsov in [23]. Instead of considering deterministic finite automata
(DFAs), one could alternatively study the notion of synchronizability for nondeterministic
finite automata [12, 21]. The notion of synchronizability naturally transfers to partially
defined transition functions where a synchronizing automata avoiding undefined transitions
is called carefully synchronizing, see [9, 20, 21]. To capture more adaptive variants of
synchronizing words, synchronizing strategies have been introduced in [19]. Recall that the
question of synchronizability (without length bounds) is solvable in polynomial time for
complete DFAs [28]. However, in all of the mentioned generalizations, this synchronizability
question becomes even PSPACE-complete. This general tendency can also be observed in
the generalization that we introduce in this paper, which we call regular constraints. These
constraints are defined by some (fixed) finite automaton describing a regular language R, and
the question is, given some DFA A, if A has some synchronizing word from R. This notion
explicitly appeared in [13] as an auxiliary tool: it was shown that the synchronization problem
of every automaton A = (Σ, Q, δ) whose letters σ have ranks at most r, i.e., |δ(Q, σ)| ≤ r, is
equivalent to the synchronization of an r-state automaton A′ under some regular constraints.

The main research question that we look into is to understand for which regular constraints
the question of synchronizability is solvable in polynomial time (as it is for R = Σ∗), or for
which it is hard. Furthermore, it would be interesting to see complexity classes different from P
and PSPACE to show up (depending on R). In our paper, we give a complete description of
the complexity status for constraints that can be described by partial 2-state deterministic
automata on alphabets with at most three letters. In this case, indeed, we only observe P and
PSPACE situations. However, we also find 3-state automata (on binary input alphabets) that
exhibit an NP-complete synchronization problem when considered as constraints. We describe
several ways how to generalize our results to larger constraint automata. Moreover, we
identify several classes of constraint automata that imply feasible synchronization problems.
We motivate our study of synchronization under regular constraints by the following example.

A motivating result. In the theory of synchronizing automata, one normally allows the
directing instruction to be an arbitrary word over the input language of the corresponding
automaton. In reality, however, available commands might be subject to certain restrictions;
for instance, it is quite natural to assume that a directing instruction should always start
and end with a specific command that first switches the automaton to a “directive” mode

H. Fernau, V. V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov, and P. Wolf 63:3

and then returns the automaton to its usual mode. In its simplest form, the switching
between “normal mode” and “directive” (synchronization) mode can be modeled as ab∗a.
This scenario produces an NP-complete synchronization problem. In order to state our first
result formally, we make use of some (standard) notions defined in Section 2.

I Proposition 1. The following problem is NP-complete: Given a deterministic finite complete
automaton A with L(A) ⊆ {a, b}∗, is there a synchronizing word w ∈ ab∗a for A?

Notice that this contrasts with the complexity of the synchronizability question for
complete DFAs, which can be solved in quadratic time; see, e.g., [24, 28]. Also, it contrasts
the complexity of synchronizability for partial DFAs, which is PSPACE-complete; see [21].

The constraint automaton describing ab∗a has three states. As we will see below, only P-
and PSPACE-results can be observed for two-state constraint automata over binary and
ternary input alphabets. Hence, in a sense, Proposition 1 is a minimal example of a complexity
status inbetween P and PSPACE. A proof sketch of Proposition 1 is given below.

Rystsov [23] considered a problem that he called Global Inclusion Problem for
Non-initial Automata. As we will see below, this problem (together with a variation)
will be the key problem in our reductions. Looking at the proof of [23, Theorem 2.1], we
can observe the following refined result. We consider the next problem that we call PΣ for
brevity. Given a complete DFA A with state set Q and input alphabet Σ, with a ∈ Σ, as
well as a designated state subset S, is there some word w ∈ {a}(Σ \ {a})∗ such that w drives
A into S, irrespectively of where A starts processing w? Trivially, PΣ is in P if |Σ| = 1.

I Theorem 2. PΣ is NP-hard if |Σ| = 2, and PSPACE-hard if |Σ| > 2.

In particular, the case distinction between binary input alphabets and larger input alphabets
(concerning hardness results) comes from the fact that the reduction of Rystsov uses DFA-
Intersection Nonemptiness, the non-emptiness of intersection problem for deterministic
finite automata on the alphabet Σ \ {a}, using Theorem 6.1 in [26] (more details in [11, 18]).
In Rystsov’s reduction, the state set of the automaton A consists of a part Q∩, which just
copies the n automata Ai (over alphabet Σ \ {a}) of a DFA-Intersection Nonemptiness
instance, together with n new states ti ∈ Q→ that move on input a into the initial state si
of Ai. Likewise, from any state qi of Ai, letter a leads to si. All transitions not yet defined
are self-loops. Set S collects all final states of all Ai. Hence, a word w ∈ (Σ\{a})∗ is accepted
by all of the Ai iff aw drives A into S, starting out from any state. The promised proof
sketch follows. Modify A to obtain an automaton A′ such that A′ has a synchronizing word
awa, with w ∈ (Σ\{a})∗ iff aw drives A into S as follows: add a new state s where all letters
loop; for all q ∈ S, replace the a-transitions leading from q into si by a-transitions leading
into s. For more details (membership in NP for Σ = {a, b} is non-trivial), see Theorem 19.

2 Preliminaries and Definitions

Throughout the paper, we consider deterministic finite automata (DFAs). Recall that a
DFA A is a tuple A = (Σ, Q, δ, q0, F), where the alphabet Σ is a finite set of input symbols, Q
is the finite state set, with start state q0 ∈ Q, and final state set F ⊆ Q. The transition
function δ : Q × Σ → Q extends to words from Σ∗ in the usual way. The function δ

can be further extended to sets of states in the following way. For every set S ⊆ Q with
S 6= ∅ and w ∈ Σ∗, we set δ(S,w) := { δ(q, w) | q ∈ S }. We sometimes refer to the
function δ as a relation and we identify a transition δ(q, σ) = q′ with the tuple (q, σ, q′).
We call A complete if δ is defined for every (q, a) ∈ Q× Σ; if δ is undefined for some (q, a),

MFCS 2019

63:4 Computational Complexity of Synchronization under Regular Constraints

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ
σ

σ
σ

σ

σ σ

σ

σ

σ

σ

σσ
σ σ

σσ
σ

σ

σ

σ

σ

σ

(a) Unary automaton Aσ consisting of 3 sun-structures.

Automata notation (code)
[1 2 ‡ - 2]

PDFA

1start 2

a

b

b

(b) Automata notation and PDFA using
its standard interpretation.

Figure 1 Illustration of sun-structures and of the notation of PDFAs.

the automaton A is called partial. If |Σ| = 1, we call A a unary automaton. The set
L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F } denotes the language accepted by A. A semi-automaton is
a finite automaton without a specified start state and with no specified set of final states.
Notice that (Σ,

(
Q
≤k
)
, δ) can be viewed as a semi-automaton for each k ≤ |Q|, when

(
Q
≤k
)
is the

set formed by all subsets of Q of cardinality at most k. The properties of being deterministic,
partial, and complete of semi-automata are defined as for DFA. When the context is clear,
we call both deterministic finite automata and semi-automata simply automata. We call a
deterministic complete semi-automaton a DCSA and a partial deterministic finite automaton
a PDFA for short. If we want to add an explicit initial state r and an explicit set of final
states S to a DCSA A or change them in a DFA A, we use the notation Ar,S .

An automaton A is called synchronizing if there exists a word w ∈ Σ∗ with |δ(Q,w)| = 1.
In this case, we call w a synchronizing word for A. For a word w, we call a state in δ(Q,w)
an active state. We call a state q ∈ Q with δ(Q,w) = {q} for some w ∈ Σ∗ a synchronizing
state. A state from which some final state is reachable is called co-accessible. For a set S ⊆ Q,
we say S is reachable from Q or Q is synchronizable to S if there exists a word w ∈ Σ∗ such
that δ(Q,w) = S. An automaton A is called returning, if for every state q ∈ Q, there exists
a word w ∈ Σ∗ such that δ(q, w) = q0, where q0 is the start state of A.

I Fact 1. [28] For any DCSA, we can decide if it is synchronizing in polynomial time
O(|Σ||Q|2). Additionally, if we want to compute a synchronizing word w, then we need
time O(|Q|3 + |Q|2|Σ|)) and the length of w will be O(|Q|3).

The following obvious remark will be used frequently without further mentioning.

I Lemma 3. Let A = (Σ, Q, δ) be a DCSA and w ∈ Σ∗ be a synchronizing word for A. Then
for every u, v ∈ Σ∗, the word uwv is also synchronizing for A.

For an automaton A over the alphabet Σ, we denote with AΣ′ for every Σ′ ⊂ Σ the
restriction of A to the alphabet Σ′. Automaton AΣ′ is obtained from A by deleting all
transitions with labels in Σ \ Σ′. We will identify A{σ} with Aσ for every σ ∈ Σ. For a
complete deterministic automaton Aσ, each connected component of Aσ consists of exactly
one cycle and some tails leading into the cycle (see Figure 1a). A cycle is a sequence of
states q1, q2, . . . , qk, for k ∈ N such that δ(qi, σ) = qi+1 and δ(qk, σ) = q1. In particular, a
cycle may consist of one single state only. The tails are only leading into the cycle since A is
deterministic. We call components of this form sun-structures as illustrated in Figure 1a.

We call two automata A and A′ isomorphic if one automaton can be obtained from
the other one by renaming states and alphabet-symbols. Notice that the number of non-
isomorphic automata can be quite huge even for small number of states and alphabet sizes;

H. Fernau, V. V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov, and P. Wolf 63:5

see [3, 10, 14]. In order to address the presented automata in a compact way, we introduce a
short notation motivated by [1, 2, 22], where we assume some order is given on the alphabet
and on the state set. Each automaton is denoted by a tuple of size |Q| · |Σ| where for each
state the mapping of this state with each alphabet symbol is listed. The states themselves
are separated by ‡-signs. For example, the first entry of the tuple denotes the transition
of the first state under the first symbol (and “-” for an undefined transition), while the
second entry denotes the transition of the first state by the second symbol, and so on. We
will always assume the first state in the ordering of the states to be the start state of the
automaton. See Figure 1b for an example. Final states are not part of this coding.
For a fixed PDFA B = (Σ, P, µ, p0, F), we define the constrained synchronization problem:

I Definition 4. L(B)-Constr-Sync
Input: DCSA A = (Σ, Q, δ).
Question: Is there a synchronizing word w for A with w ∈ L(B)?

The automaton B will be called the constraint automaton. If an automaton A is a
yes-instance of L(B)-Constr-Sync we call A synchronizing with respect to B. Occasionally,
we do not specify B and rather talk about L-Constr-Sync. We are going to inspect the
complexity of this problem for different (small) constraint automata. We assume the reader
to have some basic knowledge in computational complexity theory and formal language
theory, as contained, e.g., in [15]. For instance, we make use of regular expressions to describe
languages. We also identify singleton sets with its elements. We also make use of complexity
classes like P, NP, or PSPACE. At one point, we also mention the parameterized complexity
class XP. With ≤log

m we denote a logspace many-one reduction. If for two problems L1, L2 it
holds that L1 ≤log

m L2 and L2 ≤log
m L1, then we write L1 ≡log

m L2.
For establishing some of our results, we need the following computational problems taken

from [6], which are PSPACE-complete problems for at least binary alphabets, also see [23, 24].

I Definition 5. Sync-From-Subset
Input: DCSA A = (Σ, Q, δ) and S ⊆ Q.
Question: Is there a word w with |δ(S,w)| = 1?

I Definition 6. Sync-Into-Subset
Input: DCSA A = (Σ, Q, δ) and S ⊆ Q.
Question: Is there a word w with δ(Q,w) ⊆ S?

I Remark 7. The terminology is not homogeneous in the literature. For instance, Sync-
Into-Subset has different names in [6] and in [23].

3 Placing Constrained Problems Within Complexity Classes

In this section we present several criteria for L which lead to the membership of L-Constr-
Sync in different complexity classes, starting by studying unary languages.

I Lemma 8. Let A = ({σ}, Q, δ) be a unary synchronizing DCSA. For all i ≥ |Q| − 1, we
have δ(Q, σi) = δ(Q, σi+1). A shortest word w synchronizing S ⊆ Q obeys |w| ≤ |Q| − 1.

I Corollary 9. If L(B) ⊆ {σ}∗ for a PDFA B, then L(B)-Constr-Sync ∈ P.

I Theorem 10. If L is regular, then L-Constr-Sync is contained in PSPACE.

We continue with 1-state constraint automata and unions of constraint languages.

MFCS 2019

63:6 Computational Complexity of Synchronization under Regular Constraints

I Lemma 11. Let B = (Σ, P, µ, p0, F) be a PDFA. If L(B) = L(BΣ\{σ}) for some σ ∈ Σ,
then L(B)-Constr-Sync ≡log

m L(BΣ\{σ})-Constr-Sync.

I Corollary 12. L(B)-Constr-Sync ∈ P for every one-state constraint automaton B.

I Lemma 13. If L is a finite union of languages L1, L2, . . . , Ln such that for each 1 ≤ i ≤ n
the problem Li-Constr-Sync ∈ P, then L-Constr-Sync ∈ P.

I Theorem 14. Let L ⊆ Σ∗. If { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L } = Σ∗, L-Constr-Sync ∈ P.

Proof. Let A = (Σ, Q, δ) be a DCSA. To decide if A has a synchronizing word from L, simply
test if A is synchronizing at all, cf. Fact 1. Assume v ∈ Σ∗ is a synchronizing word for A.
By assumption, uvw ∈ L for some u,w ∈ Σ∗. Moreover, uvw also synchronizes A. J

With the same type of reasoning, one can show:

I Theorem 15. Let L ⊆ L′ ⊆ Σ∗. If L′ ⊆ { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L }, then
L-Constr-Sync ≡log

m L′-Constr-Sync.

In [28], the unconstrained synchronization problem can be decided in polynomial time
by verifying that every pair of states can be synchronized. In essence, we generalize this
algorithm here for returning constraint automata.

I Lemma 16. Let A = (Σ, Q, δ) be a DCSA. If the constraint automaton B = (Σ, P, µ, p0, F)
is returning, then A is synchronizing with respect to B if and only if for all q, q′ ∈ Q we find
w ∈ Σ∗ with µ(p0, w) = p0 such that δ(q, w) = δ(q′, w).

Proof sketch. If u ∈ L(B) is a synchronizing word for A, u collapses any pair of states, but
this is also true for w = uv with µ(p0, w) = p0 that must exist as B is returning. Repeatedly
using this idea to prolong collapsing words, the somewhat more involved argument for proving
the converse implication can be adapted from the unconstrained setting. J

As we just have to check pairs of states we can devise a polynomial-time algorithm to
decide L(B)-Constr-Sync of a returning automaton B.

I Theorem 17. If B = (Σ, P, µ, p0, F) is returning, then L(B)-Constr-Sync ∈ P.

Proof. Let A = (Σ, Q, δ) be an DCSA with n = |Q|. Let m = |P |. From A, we construct
the DCSA A≤2 = (Σ,

(
Q
≤2
)
, δ′). Then, for each two-element set {q1, q2} ∈

(
Q
≤2
)
, define

A′ = A≤2
{q1,q2},Q, identifying Q with all 1-element state sets. We check for each two-element

set {q1, q2} ∈
(
Q
≤2
)
if L(A′) ∩ L(Bp0,{p0}) 6= ∅. By Lemma 16, the DCSA A is synchronizing

with respect to B if and only if each intersection is non-empty. Each of the
(
n
2
)
intersections

can be checked by using the product-automaton construction in time O
(
(n+

(
n
2
)
)m
)
. J

Our considerations can be turned into a polynomial-time algorithm for computing a
synchronizing word for A with respect to B, which implies the following result.

I Corollary 18. If the constraint automaton B is returning, a shortest synchronizing word
with respect to B is polynomially bounded in the size of the input automaton.

I Theorem 19. Let B = (Σ, P, µ, p0, F) be a PDFA. Then, L(B)-Constr-Sync ∈ NP if
there is a σ ∈ Σ such that for all states p ∈ P , if L(Bp,{p}) is infinite, then L(Bp,{p}) ⊆ {σ}∗.

H. Fernau, V. V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov, and P. Wolf 63:7

Proof. By assumption, the letters in Σ \ {σ} do not appear in any pumpable substring.
Hence, their number in a word in L(B) is bounded by |P | = m. Therefore, any word w ∈ L(B)
can be partitioned into at most 2m− 1 substrings w = u1v1 . . . um−1vm−1um with ui ∈ {σ}∗
and vi ∈ (Σ \ {σ})∗ for all i ≤ m. Note that |vi| ≤ m− 1, for all i < m. Let A = (Σ, Q, δ) be
a yes-instance of L(B)-Constr-Sync with |Q| = n. Let k be the number of sun-structures
in Aσ. Let w ∈ L(B) be a synchronizing word for A partitioned as mentioned above.

B Claim 1. If for some i ≤ m, |ui| > (mn)k + n, then we can replace ui by some u′i ∈ {σ}∗
with |u′i| ≤ (mn)k + n, yielding a word w′ ∈ L(B) that synchronizes A.

We will now show that we can decide whether A is synchronizing with respect to B in
polynomial time using nondeterminism despite the fact that an actual synchronizing word
might be exponentially large. This problem is circumvented by some preprocessing based on
modulo arithmetics. This allows us to guess a binary representation bin(ui) of |ui| instead
of ui itself. Hence, we guess wbin = bin(u1)v1 . . . bin(um−1)vm−1 bin(um). Since all ui are
single exponential in size, the length of wbin is polynomially bounded in the size of A.

B Claim 2. For each q ∈ Q, one can compute in polynomial time numbers `(q), τ(q) ≤ n

such that, given some number x in binary, based on `(q), τ(q), one can compute in polynomial
time a number y ≤ n such that δ(q, ax) = δ(q, ay).

As B is even fixed, we can do a similar preprocessing also for B in polynomial time.
The NP-machine guesses wbin part-by-part, keeping track of the set S of active states

of A and of the current state p of B. Initially, S = Q and p = p0. When guessing the number
xi = |ui| in binary, by Claim 1 we guess log(|ui|) ≤ log((mn)k + n) ∈ O(n logn) many bits.
By Claim 2, we can update S := δ(S, σxi) and p := µ(p, σxi) in polynomial time. After
guessing vi, we can simply update S := δ(S, vi) and p := µ(p, vi) by simulating this input, as
|vi| ≤ m = |P |, which is a constant in our setting. Finally, check if |S| = 1 and if p ∈ F . J

Observe that our NP-algorithm was guessing at most b(n, k) ∈ O((k + 1) log(nm)) many bits
with b(n, k) ≤ m2 log(|Σ|) + (m− 1)(k + 1)(log(m) + log(n)). As m and |Σ| are constants
and as n, k < n depend on A, we can determinize this algorithm by testing b(n, k) many bits.

I Corollary 20. Under the assumptions of Theorem 19, L(B)-Constr-Sync is in XP with
parameter k counting the number of sun-structures in Aσ for an input DCSA A.

When k = 1, we face a one-cluster automaton, see [4].
After these more general thoughts, we focus on two-state constraint automata B, giving

a complete picture of the complexity of L(B)-Constr-Sync over alphabets Σ with |Σ| ≤ 3.

4 Constraint Automata with Two States and Two or Three Letters

There are already very many 2-state PDFA. We explain why we need to consider only one
automaton for each automaton code listed in Tables 1 and 2. Here, we consider 1 as the start
state and {2} as the set of final states and call this the standard interpretation of a code.

I Lemma 21. Let B = (Σ, P, µ) be some partial deterministic semi-automaton with two states,
i.e., P = {1, 2}. Then, for each p0 ∈ P and each F ⊆ P , either L(Bp0,F)-Constr-Sync ∈ P,
or L(Bp0,F)-Constr-Sync ≡log

m L(B′)-Constr-Sync for a PDFA B′ = (Σ, P ′, µ′, 1, {2}).

Hence, we only need to specify B = (Σ, {1, 2}, µ) in the following. Let Σij := { a ∈ Σ |
µ(i, a) = j } for 1 ≤ i, j ≤ 2. As B is deterministic, Σi1 ∩ Σi2 = ∅. Consider easy cases first.

MFCS 2019

63:8 Computational Complexity of Synchronization under Regular Constraints

Table 1 List of all PDFAs with two states and a binary alphabet, with Σ1,2 = {a, b} or Σ1,2 = {b}.

Automaton code Why in P?

[* 2 ‡ 1 *] a ∈ Σ2,1 Propos. 22, (2)
[* 2 ‡ * 1] b ∈ Σ2,1 Propos. 22, (2)
[* 2 ‡ 2 2] Σ1,1 ∪ Σ1,2 = Σ2,2 Propos. 22, (3)

[1 2 ‡ {-,2} -] Theorem 24
[1 2 ‡ - 2] Theorem 24

Automaton code Why in P?

[2 2 ‡ 2 -] Theorem 24
[2 2 ‡ - 2] Isomorphic to [2 2 ‡ 2 -]

[{2,-} 2 ‡ - -] Σ1,1 ∪ Σ2,2 = ∅ Propos. 22, (4)

[- 2 ‡ 2 -] Theorem 24
[- 2 ‡ - 2] Σ1,1 ∪ Σ1,2 = Σ2,2 Propos. 22, (3)

I Proposition 22. If one of the following conditions hold, then L(B1,{2})-Constr-Sync ∈ P:
(1) Σ1,2 = ∅, (2) Σ2,1 6= ∅, (3) Σ1,1 ∪ Σ1,2 ⊆ Σ2,2, or (4) Σ1,1 ∪ Σ2,2 = ∅.

Proof. (1) If Σ1,2 = ∅ means L(B1,{2}) = ∅. (2) If Σ2,1 6= ∅, then B is returning (Theorem 17).
(3) Lemma 11 and Theorem 14 cover this case. (4) Now, L(B1,{2}) is finite. J

For B = (Σ, {1, 2}, µ) and x ∈ Σ1,2, let Bx denote the variation with transition function µx
defined by µx = µ ∩ ({ (p, y, p) | p ∈ {1, 2}, y ∈ Σ } ∪ {(1, x, 2)}). Then Lemma 13 implies:

I Lemma 23. If L(Bx1,{2})-Constr-Sync ∈ P for each x ∈ Σ1,2 and if Σ2,1 = ∅, then
L(B1,{2})-Constr-Sync ∈ P.

Lemma 23 gives some final arguments why we only study the standard interpretation.
For 2-state constraint automata with alphabet Σ = {a, b}, in order to avoid isomorphic

automata and by Proposition 22, we can assume that either (1) a ∈ Σ1,1 and b ∈ Σ1,2 and
|Σ2,2| ≤ 1 or (2) a ∈ Σ1,2 but b /∈ Σ1,1 and |Σ2,2| > 0. See Table 1.

The constrained synchronization problem for constraint automata with a binary alphabet
is not easy in general, as we have seen already in Proposition 1 for 3-state constraint PDFA.

I Theorem 24. For any two-state binary PDFA B, L(B)-Constr-Sync ∈ P.

Proof. By Table 1, we only need to show the claim for B1 = [1 2 ‡ 2 -], B2 =
[1 2 ‡ - 2], B3 = [1 2 ‡ - -], B4 = [- 2 ‡ 2 -], and B5 = [2 2 ‡ 2 -]. Let
A = (Σ, Q, δ) be a DCSA with n := |Q|− 1. Consider the first PDFA B1 with L(B1) = a∗ba∗.
Let a`bam be some synchronizing word for A, then by Lemma 8, applied to Aa, we have
δ(Q, a`) = δ(Q, aj) for some j ≤ n, and moreover, by a similar argument, we find k ≤ n

with δ(δ(Q, ajb), am) = δ(δ(Q, ajb), ak). So, the word ajbak is synchronizing and according
to Lemma 3 the word anban is also synchronizing. In order to decide synchronizability with
respect to B1, we simply have to check this last word. With the same argument, for B2
we only have to test the word anbn, for B3 the word anb, and for B4 the word ban. As B5
accepts the union of L(B4) and a unary regular language, the claim follows with Corollary 9
and Lemma 13. J

Next, we give a full classification on the complexity of the constrained synchronization
problem for constraint automata with two states and a ternary alphabet. As can be verified
by a case-by-case analysis, the only automaton with a constrained synchronization problem
in P not covered by the generalization results in Section 3 is [1 2 - ‡ - - 2].

I Theorem 25. Let B = [1 2 - ‡ - - 2]. Then L(B)-Constr-Sync is in P.

Proof. The language accepted by the constraint automaton B = [1 2 - ‡ - - 2] is
a∗bc∗. Let A = (Σ, Q, δ) be a DCSA, n = |Q|. By arguments along the lines of the proof of
Theorem 24, one can show that there is a synchronizing word for A with respect to B if and
only if anbcn synchronizes A. This condition is easy to check. J

H. Fernau, V. V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov, and P. Wolf 63:9

Table 2 Constraint automata (2 states, 3 letters) causing PSPACE-hard synchronization.

Case Automaton code Language

1 [2 - - ‡ - 2 2] a(b+ c)∗

[2 2 2 ‡ 2 2 -] (a+ b+ c)(a+ b)∗

[2 2 - ‡ 2 - 2] (a+ b)(a+ c)∗

2 [1 1 2 ‡ - - -] (a+ b)∗c
[1 1 2 ‡ 2 - -] (a+ b)∗ca∗

[1 1 2 ‡ 2 2 -] (a+ b)∗c(a+ b)∗

[1 1 2 ‡ - - 2] (a+ b)∗cc∗

Case Automaton code Language

3 [1 2 - ‡ 2 - 2] a∗b(a+ c)∗

[1 2 2 ‡ 2 2 -] a∗(b+ c)(a+ b)∗

4 [1 2 - ‡ - 2 2] a∗b(b+ c)∗

[1 1 2 ‡ - 2 2] (a+ b)∗c(b+ c)∗

[1 2 2 ‡ - 2 2] a∗(b+ c)(b+ c)∗

The leftover two-state automata over a ternary alphabet are listed in Table 2. For all of
them, the corresponding constrained synchronization problem is PSPACE-complete (see
Theorem 26). We want to point out that there is no constraint automaton with two states
and a ternary alphabet for which the L(B)-Constr-Sync is not either PSPACE-complete or
contained in P, as we covered all possible automata of this kind.

I Theorem 26. For each constraint automaton B in Table 2 the problem L(B)-Constr-Sync
is PSPACE-hard.

Proof. We prove each case separately by giving an explicit reduction for one of the automata,
the statement for the other automata of that case follows by the same argument. Our
reductions are illustrated in Figure 2. Each reduction is starting out from (A,S), with
A = (Σ, Q, δ) being a DCSA and S ⊆ Q. Depending on the considered case, (A,S) is either
an instance of Sync-From-Subset (or of Sync-Into-Subset, resp.). We construct from A

a DCSA A′ = (Σ′, Q′, δ′), with Σ′ = Σ ∪ {σ} for an appropriately chosen letter σ /∈ Σ, such
that there exists w ∈ Σ∗ with |δ(S,w)| = 1 (or δ(Q,w) ⊆ S, resp.) if and only if A′ is
synchronizing with respect to B. This construction is described and illustrated in Figure 2.

Case 1: Consider the first automaton B = [2 - - ‡ - 2 2]. Then, L(B) = a(b+c)∗. We
reduce from the PSPACE-complete problem Sync-From-Subset for the binary alphabet
Σ = {b, c}. Since the constraint automaton forces us to read an a as the first letter, we
start synchronizing A′ with δ′(Q, a) = S. After the first a, we are allowed to read any
letter from Σ. Hence, if |δ(S,w)| = 1 by a word w ∈ Σ∗, then aw ∈ L(B) synchronizes A′.
Conversely, if there exists a word v that synchronizes A′ with respect to B, then v must
be of the form v = au with u ∈ {b, c}∗. By the definition of δ′, |δ(S, u)| = 1.
The PSPACE-hardness of constrained synchronization with respect to the PDFA [2 2 2
‡ 2 2 -] with the language (a+ b+ c)(a+ b)∗ follows with the same reduction with
the letters a and c interchanged. The same idea applies to [2 2 - ‡ 2 - 2].

Case 2: The language accepted by B = [1 1 2 ‡ - - -] is L(B) = (a+ b)∗c. We reduce
from Sync-Into-Subset. Note that by construction if A′ is synchronizing, p must
be the unique synchronization state. The state p can only be reached by a transition
with the letter c, but the constraint automaton only allows us to read one single c as
the last letter of the synchronizing word. Hence, if there exists a synchronizing word
w for A′ with respect to B, it is of the form uc with u ∈ {a, b}∗. Since δ′(Q,w) = p,
δ′(Q, u) ⊆ { q ∈ Q | δ′(q, c) = p }; by definition of δ′, this equals the set S ∪ {p}. Hence,
u synchronizes the automaton A into a subset of S. Conversely, if w is a word that
synchronizes A to a subset of S, by the construction of δ′, the word wc synchronizes A′
to {p} and since w ∈ {a, b}∗, wc ∈ L(B).

MFCS 2019

63:10 Computational Complexity of Synchronization under Regular Constraints

Sync-From-Subset (Case 1) Sync-Into-Subset (Case 2)

t

a

a a

a

a
a

p

c

A

S

δ′(q, a) :=

{
q if q ∈ S

t otherwise.

δ′(q, b) := δ(q, b)

δ′(q, c) := δ(q, c)

p

c

c c

c
c c

c

A

S

δ′(q, a) :=

{
p if q = p,

δ(q, a) otherwise.

δ′(q, b) :=

{
p if q = p,

δ(q, b) otherwise.

δ′(q, c) :=
{

p if q ∈ S ∪ {p}
q otherwise.

Sync-From-Subset (Case 3)

t

t′

b

a, c

b
b b

b

a, c a, c

b
b

b
b

A
S

S ′

δ′(p, a) :=
{

δ(p, a) if p ∈ Q

p if p ∈ S′

δ′(p, b) :=

 t if p ∈ Q \ S
p if p ∈ S

q if p ∈ S′ and p = q′
,

δ′(p, c) :=
{

δ(p, c) if p ∈ Q

p if p ∈ S′

Sync-From-Subset (Case 4)

t

r

a

a
a

b
a

a
a

b
b

b

a, c

a, c a, c a, c

A S

S ′

δ′(p, a) :=


r if p ∈ (Q \ S) ∪ {r}
p′ if p ∈ S

p if p ∈ S′

δ′(p, b) :=


δ(p, b) if p ∈ Q

t if p = r

q if p ∈ S′ and p = q′

δ′(p, c) :=


δ(p, c) if p ∈ Q

r if p = r

p if p ∈ S′

Figure 2 Schematic illustration of our reductions. Transitions inherited from A are not shown.

We can only reach the synchronizing state by reading the letter c and for each automaton
of this case we are only allowed to read one single letter c. Therefore, allowing additional
letters a and b in the synchronizing word after reading the letter c does not change the
synchronizability of A′ and hence the same construction works for the constraint automata
[1 1 2 ‡ 2 - -] and [1 1 2 ‡ 2 2 -]. The same holds if we allow only additional
letters c (and no a or b) after the first c. In A′, c only leads in the synchronization state
from states in S and is the identity on other states. Therefore, δ(q, cc) = δ(q, c) for any
state q and the construction of Case 2 also works for the constraint automaton [1 1 2
‡ - - 2].

Case 3: The language accepted by B = [1 2 - ‡ 2 - 2] is L(B) = a∗b(a + c)∗. We
reduce from Sync-From-Subset for Σ = {a, c} similar to the one in Case 1, but we
have to ensure that the whole set S is active after reading the letter b, since a preceding
a might already merge some states in S. The idea is to add for each state q ∈ S a new
state q′ for which we stay in q′ with the letters a, c and go to q with the letter b. Therefore,
we ensure that δ(Q, aib) = S for every integer i. Since, starting from the whole state set,

H. Fernau, V. V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov, and P. Wolf 63:11

A′ is precisely in the state set S after the first and only b letter, the rest of the argument
follows as in Case 1. For the constraint automaton [1 2 2 ‡ 2 2 -], accepting the
language a∗(b+ c)(a+ b)∗, the same idea applies.

Case 4: The language accepted by B = [1 2 - ‡ - 2 2] is L(B) = a∗b(b + c)∗. Here,
we do not have a special letter which appears exactly once in a word from L(B). We
will use the optional a letters in order to jump into S, since a word from L(B) that does
not contain any a must synchronize the whole state set and therefore also the subset
S. We reduce from the problem Sync-From-Subset for the alphabet Σ = {b, c}. We
decompose the state set Q with the letter a in S and Q \ S. The states in S are stored in
an annotated copy S′ of S. The other states are gathered up in a new state r. With the
first b, we restore the set S as the set of active states. The remainder of a synchronizing
word then synchronizes S.

If the set S in A is synchronizable to a single state by a word u ∈ {b, c}∗, then the
word abu ∈ L(B) synchronizes A′ since δ′(Q′, ab) = S. For the other direction, assume A′
is synchronizing with respect to B by a word w. Then w is of the form ubv with u ∈ a∗,
v ∈ {b, c}∗. If u 6= ε, then δ(Q′, ub) = S and v synchronizes S to a single state. If u = ε,
then S ⊆ δ′(Q′, b) ⊆ Q since we never synchronized any states into r and we leave all states
in the set S′ ∪ {r} with b and are not able to reach them again. In particular δ′(S′, b) = S.
Therefore, bv synchronizes S to a single state without ever leaving Q. The same idea can be
applied to the constraing automata [1 1 2 ‡ - 2 2] and [1 2 2 ‡ - 2 2]. J

5 Generalizations to Lift Results

In this section, we aim for more general results, either by lifting existing cases by homomorphic
images, or by identifying common patterns. For a map ϕ : Σ→ Γ∗ we identify it with its
natural homomorphism extension ϕ : Σ∗ → Γ∗ without further mentioning.

I Theorem 27. Let L ⊆ Γ∗ and ϕ : Σ∗ → Γ∗ be an homomorphism such that ϕ(ϕ−1(L)) = L.
Then L-Constr-Sync ≤log

m ϕ−1(L)-Constr-Sync.

A typical application of the preceding theorem is to lift hardness results from smaller to
bigger alphabets; e.g., knowing PSPACE-hardness for the constraint language a(b+ c)∗ lifts to
PSPACE-hardness for the constraint language a(b+ c+ d)∗ via ϕ : a 7→ a, b 7→ b, c 7→ c, d 7→ c.

I Remark 28. It is impossible to further generalize the previous result from homomorphisms
to mappings induced by deterministic gsm. Such a machine allows to map (a+ b)(a+ b)∗ to
a(b+ c)∗, but the constraint (a+ b)(a+ b)∗ yields a synchronization problem in P.

I Theorem 29. Let L ⊆ Σ∗. Let ϕ : Σ→ Γ∗ be an homomorphism such that ϕ(Σ) is a prefix
code. Let c ∈ Γ with {c}Γ∗ ∩ ϕ(Σ) = ∅. Let k := max{ ` ≥ 0 | ∃u, v ∈ Γ∗ : uc`v ∈ ϕ(Σ) }.
Then L-Constr-Sync ≤log

m {ck+1}ϕ(L)-Constr-Sync .

In the special case where c does not occur in ϕ(Σ) at all, it is sufficient to choose k = 0,
i.e., to consider the language {c}ϕ(L) as constraint language. With Theorem 29, we can
transfer hardness results with constraint language L over arbitrary alphabets to hardness
results with constraint languages over a binary alphabet.

I Remark 30. With the construction presented in Corollary 1 (see pp. 220-221) in [5] we can
lift our hardness results for constrained synchronization with constraint automata with two
states and a ternary alphabet to constrained synchronization problems with 6 states and a
binary alphabet. More generally we can reduce the alphabet size of a constraint automata

MFCS 2019

63:12 Computational Complexity of Synchronization under Regular Constraints

from k = |Σ| to 2 by enlarging the size of its state set from n = |Q| to k · n without affecting
the hardness of the associated constrained synchronization problem.

Up to this point, we did not make use of the fact that constraint languages considered in
this paper are given by finite automata. This changes from here onward.

It is hardness-preserving to plug sub-automata of some kind in front of an automata
with a hard constrained synchronization problem. A partial automaton A is called carefully
synchronizing if there exists a synchronizing word w for A such that the transition function
of A is defined for w on every state of A.

I Theorem 31. Let B = (ΣB, PB, µB, pB0 , F) and C = (ΣC , P C , µC , pC0 , ∅) be PDFAs with
PB ∩ P C = ∅. For px ∈ P C let ν ⊆ {px} × (ΣB ∪ ΣC) × {pB0 } define the automaton
B′ = (ΣB ∪ ΣC , PB ∪ P C , µB ∪ µC ∪ ν, pC0 , F). If the following three conditions are satisfied:
1. automaton B′ is deterministic,
2. automaton C′ = (ΣB ∪ ΣC , P C ∪ {pB0 }, µC ∪ ν ∪ {pB0 } × (ΣB ∪ ΣC) × {pB0 }) is carefully

synchronizing, and
3. there exists a synchronizing word v = v1 . . . vn for C′ such that v1 . . . vn−1 ∈ L(Cpx),

where Cpx
results from C by adding px to the set of final states,

then L(B)-Constr-Sync ≤ L(B′)-Constr-Sync.

Proof. Note that the start state of B′ is the start state of C, but the final states of B′ are the
ones from B. Let A = (ΣB, Q, δ) be a DCSA. We extend A to a DCSA A′ = (ΣB ∪ΣC , Q′, δ′)
in the following way. For every state q ∈ Q we add a copy of C to A′, where a self-loop
is added for every yet undefined transition in A′. The C-copy is connected to q with the
transitions in ν where the target pB0 is replaced by q. Since the automaton B′ is deterministic
by condition (1), the C-copies, which are added to A, are also deterministic and so is A′.

It remains to show that A is synchronizing with respect to B if and only if A′ is
synchronizing with respect to B′. For the only if direction, assume w ∈ L(B) is a synchronizing
word for A. Considering A′, condition (2) states that there exists a word v that, applied to
all states of a copy of C, leads every state of this copy through the exit state px into the
original states of A. Further, condition (3) specifies that the last state leaves through px
with the last letter of v and that this last state is the image of the start state. Hence v is
the label of a path from pC0 to pB0 in B′ and vw ∈ L(B′). Starting in all states of A′, the
active states in each C-copy act synchronously. Hence, δ′(Q′, v) = Q. Note that no state of a
C-copy is reachable by a state of Q. Since A′ acts like A on Q, |δ′(Q,w)| = 1 and vw is a
synchronizing word for A′ with respect to B′. For the other direction, we refer to the long
version of this paper. J

As an illustration, we apply Theorem 31 to a family of languages.

I Corollary 32. Let the language-family L consists of languages Li := (b∗a)i with i ≥ 2. The
constrained synchronization problem for all languages in L is NP-complete.

6 Conclusions and Prospects

We have commenced a study of synchronization under regular constraints. The complexity
landscape of 2-state constraint automata with at most ternary input alphabets is completely
understood. In particular, binary alphabets yield polynomial-time solvable synchronization
problems, while ternary alphabets split the constrained synchronization problems into
polynomial-time solvable and PSPACE-complete cases. As already seen in the introduction,
this picture changes with 3-state automata, giving an NP-complete scenario with binary

H. Fernau, V. V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov, and P. Wolf 63:13

alphabets. Our general results also imply PSPACE-complete synchronization problems for
binary constraint automata with at least six states. In the following theorem, we present a
three state constraint automaton with a binary alphabet for which the associated constrained
synchronization problem is PSPACE-complete, also because of Theorem 10.

I Theorem 33. Let B = [- 2 ‡ 3 3 ‡ 2 -] be a three state PDFA over the alphabet
{0, 1} with start state 1 and final state 3. The problem L(B)-Constr-Sync is PSPACE-hard.

Hence, binary 3-state constraint automata offer easy synchronization problems as well
as problems complete for NP and for PSPACE. However, we have no complete complexity
picture here, giving a natural research question. Motivated by a remark of Rystsov [23] in
a related setting, one could also ask if there are regular language constraints that define
synchronization problems that are complete for other levels of the polynomial-time hierarchy.
We presented several criteria for a regular language L such that L-Constr-Sync ∈ P as
well as generalization-results to transfer the obtained hardness results for fixed L to larger
classes of constraint languages, but a full classification of the complexity of L-Constr-Sync
for regular constraint languages L is still an open research problem.

References
1 Marco Almeida, Nelma Moreira, and Rogério Reis. Enumeration and generation with a

string automata representation. Theoretical Computer Science, 387(2):93–102, 2007. doi:
10.1016/j.tcs.2007.07.029.

2 Dmitry S. Ananichev, Mikhail V. Volkov, and Vladimir V. Gusev. Primitive digraphs with
large exponents and slowly synchronizing automata. Journal of Mathematical Sciences,
192(3):263–278, 2013. doi:10.1007/s10958-013-1392-8.

3 Frédérique Bassino and Cyril Nicaud. Enumeration and random generation of accessible
automata. Theoretical Computer Science, 381(1-3):86–104, 2007. doi:10.1016/j.tcs.2007.
04.001.

4 Marie-Pierre Béal, Mikhail V. Berlinkov, and Dominique Perrin. A quadratic upper bound on
the size of a synchronizing word in one-cluster automata. International Journal of Foundations
of Computer Science, 22(2):277–288, 2011. doi:10.1142/S0129054111008039.

5 Mikhail V. Berlinkov. Approximating the minimum length of synchronizing words is hard.
Theory of Computing Systems, 54(2):211–223, 2014. doi:10.1007/s00224-013-9511-y.

6 Mikhail V. Berlinkov, Robert Ferens, and Marek Szykuła. Complexity of preimage problems for
deterministic finite automata. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors,
43rd International Symposium on Mathematical Foundations of Computer Science, MFCS,
volume 117 of LIPIcs, pages 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.MFCS.2018.32.

7 Vincent D. Blondel and Natacha Portier. The presence of a zero in an integer linear recurrent
sequence is NP-hard to decide. Linear Algebra and its Applications, 351-352:91–98, 2002.
doi:10.1016/S0024-3795(01)00466-9.

8 Ján Černý. Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-
fyzikálny časopis, 14(3):208–216, 1964.

9 Michiel de Bondt, Henk Don, and Hans Zantema. Lower bounds for synchronizing word lengths
in partial automata. International Journal of Foundations of Computer Science, 30(1):29–60,
2019. doi:10.1142/S0129054119400021.

10 Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the number of distinct languages
accepted by finite automata with n states. Journal of Automata, Languages and Combinatorics,
7(4):469–486, 2002. doi:10.25596/jalc-2002-469.

11 Henning Fernau and Andreas Krebs. Problems on finite automata and the exponential time
hypothesis. Algorithms, 10(1):24, 2017.

MFCS 2019

https://doi.org/10.1016/j.tcs.2007.07.029
https://doi.org/10.1016/j.tcs.2007.07.029
https://doi.org/10.1007/s10958-013-1392-8
https://doi.org/10.1016/j.tcs.2007.04.001
https://doi.org/10.1016/j.tcs.2007.04.001
https://doi.org/10.1142/S0129054111008039
https://doi.org/10.1007/s00224-013-9511-y
https://doi.org/10.4230/LIPIcs.MFCS.2018.32
https://doi.org/10.1016/S0024-3795(01)00466-9
https://doi.org/10.1142/S0129054119400021
https://doi.org/10.25596/jalc-2002-469

63:14 Computational Complexity of Synchronization under Regular Constraints

12 Zsolt Gazdag, Szabolcs Iván, and Judit Nagy-György. Improved upper bounds on synchronizing
nondeterministic automata. Information Processing Letters, 109(17):986–990, 2009. doi:
10.1016/j.ipl.2009.05.007.

13 Vladimir V. Gusev. Synchronizing automata of bounded rank. In Nelma Moreira and
Rogério Reis, editors, Implementation and Application of Automata - 17th International
Conference, CIAA, volume 7381 of LNCS, pages 171–179. Springer, 2012. doi:10.1007/
978-3-642-31606-7_15.

14 Michael A. Harrison. A census of finite automata. Canadian Journal of Mathematics,
17:100–113, 1965. doi:10.4153/CJM-1965-010-9.

15 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2nd edition, 2001.

16 Ravindran Kannan and Richard J. Lipton. Polynomial-time algorithm for the orbit problem.
Journal of the ACM, 33(4):808–821, August 1986. doi:10.1145/6490.6496.

17 Zvi Kohavi and Niraj K. Jha. Switching and Finite Automata Theory. Cambridge University
Press, 3rd edition, 2009.

18 Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on
Foundations of Computer Science, FOCS, pages 254–266. IEEE Computer Society, 1977.
doi:10.1109/SFCS.1977.16.

19 Kim Guldstrand Larsen, Simon Laursen, and Jirí Srba. Synchronizing strategies under
partial observability. In Paolo Baldan and Daniele Gorla, editors, Concurrency Theory - 25th
International Conference, CONCUR, volume 8704 of LNCS, pages 188–202. Springer, 2014.
doi:10.1007/978-3-662-44584-6_14.

20 Pavel Martyugin. Complexity of problems concerning reset words for some partial cases of
automata. Acta Cybernetica, 19(2):517–536, 2009.

21 Pavel V. Martyugin. Computational complexity of certain problems related to carefully
synchronizing words for partial automata and directing words for nondeterministic automata.
Theory of Computing Systems, 54(2):293–304, 2014. doi:10.1007/s00224-013-9516-6.

22 Rogério Reis, Nelma Moreira, and Marco Almeida. On the representation of finite automata.
CoRR, abs/0906.2477, 2009. URL: http://arxiv.org/abs/0906.2477.

23 Igor K. Rystsov. Polynomial complete problems in automata theory. Information Processing
Letters, 16(3):147–151, 1983. doi:10.1016/0020-0190(83)90067-4.

24 Sven Sandberg. Homing and synchronizing sequences. In Manfred Broy, Bengt Jonsson,
Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing
of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5–33. Springer, 2005.
doi:10.1007/11498490_2.

25 Yaroslav Shitov. An improvement to a recent upper bound for synchronizing words of finite
automata. Technical Report arXiv:1901.06542, Cornell University, 2019.

26 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time
(preliminary report). In Proceedings of the fifth annual ACM Symposium on Theory of
Computing, STOC, pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

27 Marek Szykuła. Improving the upper bound on the length of the shortest reset word. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer
Science, STACS, volume 96 of LIPIcs, pages 56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.56.

28 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications,
Second International Conference, LATA, volume 5196 of LNCS, pages 11–27. Springer, 2008.
doi:10.1007/978-3-540-88282-4_4.

https://doi.org/10.1016/j.ipl.2009.05.007
https://doi.org/10.1016/j.ipl.2009.05.007
https://doi.org/10.1007/978-3-642-31606-7_15
https://doi.org/10.1007/978-3-642-31606-7_15
https://doi.org/10.4153/CJM-1965-010-9
https://doi.org/10.1145/6490.6496
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1007/978-3-662-44584-6_14
https://doi.org/10.1007/s00224-013-9516-6
http://arxiv.org/abs/0906.2477
https://doi.org/10.1016/0020-0190(83)90067-4
https://doi.org/10.1007/11498490_2
https://doi.org/10.1145/800125.804029
https://doi.org/10.4230/LIPIcs.STACS.2018.56
https://doi.org/10.1007/978-3-540-88282-4_4

A Constant-Time Colored Choice Dictionary with
Almost Robust Iteration
Torben Hagerup
Institut für Informatik, Universität Augsburg, 86135 Augsburg, Germany
hagerup@informatik.uni-augsburg.de

Abstract
A (colored) choice dictionary is a data structure that is initialized with positive integers n and c and
subsequently maintains a sequence of n elements of {0, . . . , c− 1}, called colors, under operations to
inspect and to update the color in a given position and to return the position of an occurrence of a
given color. Choice dictionaries are fundamental in space-efficient computing. Some applications
call for the additional operation of dynamic iteration, i.e., enumeration of the positions containing a
given color while the sequence of colors may change. An iteration is robust if it enumerates every
position that contains the relevant color throughout the iteration but never enumerates a position
more than once or when it does not contain the color in question. We describe the first choice
dictionary that executes every operation in constant amortized time and almost robust iteration
in constant amortized time per element enumerated. The iteration is robust, except that it may
enumerate some elements a second time. The data structure occupies n log2 c + O((log n)2) bits.
The time and space bounds assume that c = O((log n)1/2(log log n)−3/2).

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Succinct data structures, space efficiency, in-place chain technique, bounded
universes, amortization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.64

1 Introduction

Following similar earlier definitions [3, 5] and concurrently with that of [2], the (colored)
choice dictionary was introduced by Hagerup and Kammer [10]. It appears to be fundamental
in space-efficient computing and has already been shown to have a number of applications [2,
5, 10, 11, 12]. Its precise definition is as follows:

I Definition 1.1. A (colored) choice dictionary is a data structure that can be initialized
with integers n, c ∈ N = {1, 2, . . .} and subsequently maintains a sequence (e1, . . . , en) of n
integers drawn from {0, . . . , c− 1}, initially (0, . . . , 0), under the following operations:

color(i) (i ∈ {1, . . . , n}): Returns ei.
setcolor(j, i) (j ∈ {0, . . . , c− 1} and i ∈ {1, . . . , n}): Replaces ei by j.
choice(j) (j ∈ {0, . . . , c − 1}): With Sj = {i ∈ {1, . . . , n} : ei = j}, returns an (arbitrary)

element of Sj if Sj 6= ∅, and 0 if Sj = ∅.

We call the elements of {0, . . . , c − 1} colors. The choice dictionary is similar to an
array of colors that supports reading (color) and writing (setcolor), but with a crucial
additional operation (choice) to locate an occurrence of a given color. Our terminology will
sometimes pretend that the elements of {1, . . . , n} have colors. For j = 0, . . . , c− 1, we define
Sj = {i ∈ {1, . . . , n} : ei = j} as above and call Sj a color class.

In some applications of choice dictionaries, notably to the computation of a breadth-first
search or BFS forest of a given graph [9, 10], it is essential for a choice dictionary to support
the additional operation of iteration over a given color class (while other computation takes
place in an interleaved fashion). The BFS algorithms of [9, 10], for instance, repeatedly

© Torben Hagerup;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 64; pp. 64:1–64:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6974-2473
mailto:hagerup@informatik.uni-augsburg.de
https://doi.org/10.4230/LIPIcs.MFCS.2019.64
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

iterate over the gray vertices, those with a given distance d from a start vertex, in order to
identify the vertices at distance d+ 1. This is not straightforward because the algorithms –
in order to save colors – also color the vertices at distance d+ 1 gray. In other words, the set
of gray vertices changes while it is being iterated over. Hagerup and Kammer [10] coined the
phrase robust iteration to describe the ideal that one would like to have in such a situation.
An iteration over a dynamic set S is robust if every element that belongs to S throughout
the iteration is certain to be enumerated by the iteration, while no element is enumerated
more than once or at a time when it does not belong to S. Elements that belong to S during
part but not all of the iteration may or may not be enumerated. We say that an iteration
works in constant time if there are constant-time operations to initialize for a new iteration,
to test whether more elements remain to be enumerated, and – if so – to enumerate the next
element.

By the information-theoretic lower bound, a choice dictionary with parameters n and
c must occupy at least dn log ce bits (“log” always denotes the binary logarithm function
log2). Kammer and Sajenko [13] recently described a choice dictionary that occupies
n log c+O(logn) bits and executes every operation including iteration in constant time, but
is severely restricted:

The number c of colors must be a power of 2.
Moreover, c must be a constant.
The iteration is static: While an iteration is underway, no changes to colors are allowed.

We present a new choice dictionary that also executes every operation including iteration
in constant time and alleviates the drawbacks listed above. The number of colors is not
restricted to be a power of 2, it is not required to be a constant – but we do impose the
condition c = O((logn)1/2(log logn)−3/2) – and the iteration is dynamic and almost robust.
By “almost robust” we mean that the definition of robust iteration is satisfied, except that
some elements may be enumerated a second time (the BFS algorithms discussed above can
tolerate this). Compared to the choice dictionary of [13], the new data structure has a few
drawbacks of its own:

It is more complicated.
The operation times are amortized, not worst-case.
The number of bits needed is n log c+O((logn)2), not n log c+O(logn).

The third drawback should be seen in light of the fact that even if only the operations
color and setcolor (i.e., those of an array) are to be supported in constant time, every known
data structure that does not restrict c to be a power of 2 requires n log c+ Ω((logn)2) bits.
As for the condition c = O((logn)1/2(log logn)−3/2), it may be noted that the performance
of comparable choice dictionaries [7, 10] also degrades sharply if the number of colors exceeds
similar thresholds.

The main novelty of our work lies in the almost robust iteration. Allowing amortization
changes the ground rules of iteration and was crucial to obtaining the results described here.
It becomes feasible to begin a dynamic iteration over a color class Sj by an “internal” static
iteration that can serve, among other things, to determine |Sj |. Enumerating the elements
that belong to Sj at that time, i.e., at the start of the iteration, would satisfy the conditions
of robustness, but the elements that are enumerated must be handed to a caller one by one,
and there is no space to store them temporarily (cf. the BFS algorithms discussed above).
Once Sj is allowed to change while it is being iterated over, it becomes difficult to keep track
of which elements have already been enumerated and therefore to prevent elements from
being enumerated repeatedly and perhaps an unbounded number of times (i.e., the iteration

T. Hagerup 64:3

might not terminate). Enumerating the elements of Sj in sorted order would take care of
this problem, but constant time per element is not enough to sort. Our iteration sorts a
small part of Sj initially. If the changes to Sj during the iteration are relatively few, the
partial sorting is sufficient to guarantee robustness. If there are many changes to Sj , on the
other hand, these can “pay for” a complete sorting of what remains of Sj . An element is
enumerated at most once before and at most once after the complete sorting.

The only previous choice dictionary with robust iteration was devised by Hagerup and
Kammer [10], but for worse time and/or space bounds (e.g., constant time together with
n log c+O(n/(logn)t) bits for constant c and arbitrary fixed t ∈ N). It should be noted that
in contrast with the robust iteration of [10], if the iteration described here is terminated
early, its time bound is the same as if it had run to completion, i.e., incomplete iteration is
not supported efficiently.

2 Preliminaries

Our model of computation is the standard word RAM [1, 6] with a word length of w ∈ N
bits, where we assume that w is large enough to allow all memory words in use to be
addressed. As part of ensuring this, we assume that w ≥ logn. The word RAM has
constant-time operations for addition, subtraction and multiplication modulo 2w, division
with truncation ((x, y) 7→ bx/yc for y > 0), left shift modulo 2w ((x, y) 7→ (x� y) mod 2w,
where x� y = x · 2y), right shift ((x, y) 7→ x� y = bx/2yc), and bitwise Boolean operations
(and, or and xor (exclusive or)). The machine is also assumed to be able to compute
blog xc in constant time for every given x ∈ {1, . . . , 2w − 1}.

Like all comparable data structures, the new choice dictionary depends on standard
low-level word-RAM routines, some of which are conveniently collected in the following
lemma.

I Lemma 2.1 ([10], Lemma 3.2). Let m and f be given integers with 1 ≤ m, f < 2w and
suppose that a sequence A = (a1, . . . , am) with ai ∈ {0, . . . , 2f − 1} for i = 1, . . . ,m is given
in the form of the (mf)-bit binary representation of the integer

∑m−1
i=0 2ifai+1. Then the

following holds:
(a) Let I0 = {i ∈ {1, . . . ,m} : ai = 0}. Then, in O(1 + mf/w) time, we can test whether

I0 = ∅ and, if not, compute min I0.
(b) If an additional integer k ∈ {0, . . . , 2f − 1} is given, then O(1 + mf/w) time suffices

to compute the integer
∑m−1
i=0 2ifbi+1, where bi = 1 if k ≥ ai and bi = 0 otherwise for

i = 1, . . . ,m.
(c) If m < 2f and an additional integer k ∈ {0, . . . , 2f − 1} is given, then rank(k,A) = |{i ∈
{1, . . . ,m} : k ≥ ai}| can be computed in O(1 +mf/w) time.

3 Informal Overview

This section tries to convey the basic intuition behind the new data structure. The necessary
nitty-gritty details and calculations will be presented in the subsequent sections.

It is known from the work of Dodis, Pǎtraşcu and Thorup [4] that a sequence of n
color values drawn from {0, . . . , c − 1} can be stored in a data structure that occupies
n log c + O((logn)2) bits and supports the operations color and setcolor in constant time.
Let us call this structure a c-ary array. Our task can be viewed as that of adding efficient
choice and almost robust iteration to a c-ary array.

MFCS 2019

64:4 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

Suppose that, in addition to being represented in a c-ary array, the elements of each color
class Sj , where j ∈ {0, . . . , c− 1}, are organized in a doubly-linked list Lj . Then executing
choice(j) is trivial – return an arbitrary element of Lj – and with a little care we can also
carry out a robust iteration over Sj via a traversal of Lj during which elements that drop out
of Sj splice themselves out of Lj and elements that enter Sj are inserted at the beginning
of Lj , where they will not be enumerated – they may be “trying to sneak in again” after
having already been enumerated in the past.

The problem with the scheme outlined above is, of course, that the doubly-linked lists
L0, . . . , Lc−1 would need far too much space – Θ(n logn) bits – for two pointers for each of
the n elements. In order to alleviate this problem, we divide the n elements into equal-sized
groups and represent each group via a data structure called a container. Provided that groups
are not too large, iteration within a container can be handled efficiently with techniques
based on Lemma 2.1. If every container holds at least one element of a color class Sj , we can
therefore iterate over Sj by iterating over all containers and enumerating the elements of
Sj in each. Thus at this point the problem can be viewed as represented by the containers
that are j-free, i.e., do not contain any occurrences of j. The list Lj that we would now
like to have for each j ∈ {0, . . . , c− 1} chains together those containers that are not j-free.
In contrast with what was the case before, a container can belong to many lists, for which
reason it may need up to 2c pointers rather than just two pointers.

Even though we have reduced the need for pointers from two per element to 2c per
container, the basic problem remains that we have already used up practically all the
available space and cannot afford to store even a single pointer per container. If some color
is missing entirely from a container, however, log c bits per element is a tad more than what
is strictly necessary to record the contents of the container. Using a more efficient encoding,
we can compress the information stored in the container slightly to leave room for a couple
of pointers – provided that containers are sufficiently large. The same is true if a color is
not missing completely, but has very few occurrences, as we can then store the sequence of
these “exceptional” occurrences explicitly while using the efficient encoding for the other
elements in the container. If several colors are missing or rare in a container, we can pack the
container even more tightly. As a result, the container has room for a couple of pointers for
each such color, which in turn means that we can treat the colors somewhat independently.

Let j ∈ {0, . . . , c− 1} and let us call a container H j-sparse if the number of occurrences
of j in H is bounded by some suitably chosen r, and j-abundant otherwise. For a moment,
let us make the unrealistic assumption that all j-sparse containers are to the left of (have
smaller indices than) all j-abundant containers. Then we can keep in Lj those containers
that are j-sparse (and therefore have room for the necessary pointers) but not j-free (since
a main goal is to skip the j-free containers). To iterate over Sj , iterate both over Lj and
over the j-abundant containers. The latter is easy because the j-abundant containers, by
assumption, are consecutively numbered.

Even though the unrealistic assumption is unrealistic, we can still keep track of the
number µj of j-sparse containers and imagine that the leftmost µj containers (say that these
form the left part) “normally” are j-sparse. There may be containers that go against the
norm, j-abundant containers in the left part – call these j-masters – and j-sparse containers
in the right part, j-slaves. It is easy to see that the number of j-masters equals the number
of j-slaves, and the in-place chain technique of Katoh and Goto [14] suggests to maintain a
perfect matching between the j-masters and the j-slaves. This helps us to solve two problems:
(1) A j-master, by virtue of not being in the right part, needs to belong to Lj in order to be
iterated over, but has no room for pointers. (2) Because it is in the right part, a j-slave is

T. Hagerup 64:5

iterated over, but may be j-free, in which case it cannot “pay for” its share of the iteration.
To solve problem (1), we relocate some of the data of the master to the slave, which has
room to spare. As for problem (2), even though the slave cannot “pay”, its master can.

We cannot keep track of the number of occurrences of a color j in a container once
that number exceeds r, and therefore replace the notions j-sparse and j-abundant by
algorithmically more tractable j-weak and j-strong. A j-weak container is certain to be j-
sparse, but a j-strong container may be j-sparse or j-abundant. If the number of occurrences
of j in a j-weak container H grows beyond r, H is converted to being j-strong. A conversion
of H back to j-weak, however, takes place only if and when H is later discovered to have
fewer than r occurrences of j, and this in turn happens essentially only in connection with
an iteration over H. The iteration can “pay” a constant for each element that is enumerated,
and the operations that changed the colors of the other elements formerly of color j can
“pay” a constant for each of these. In an amortized setting, therefore, a conversion between
j-weak and j-strong can be allowed to have a cost of O(r), and r is chosen accordingly. A
budget of O(r) also covers the conversion of a j-strong container, for the purpose of iteration
over the container, from the very compact usual representation to one that supports efficient
iteration.

A final problem is represented by containers that migrate from the left to the right side
(as a consequence of a decrease in µj). Such a container might be iterated over on the left
side, because it belongs to Lj , and later again as a container on the right side. In order to
prevent elements from being enumerated repeatedly, the iteration is designed to enumerate
elements roughly in sorted order. In more detail, first the number |Lj | of containers in Lj is
determined, and then the containers in Lj that belong to a “buffer zone” of width |Lj |2 at
the right end of the left part are sorted, which can happen in O(|Lj |+ 1) time, and placed
last in Lj . If the buffer zone is consumed entirely, i.e., migrates completely to the right part
before it starts to take part in the iteration, this is evidence of so many color changes during
the iteration that we can afford to sort the remaining containers in Lj . After that point in
time, an element is enumerated at most once, but it may also have been enumerated once
before the sorting. If some part of the buffer zone remains in the left part throughout the
iteration over the part of Lj on its left, on the other hand, the order of iteration over the
containers on its left is immaterial, and the iteration is robust.

4 The Data Representation

This section describes the organization of data in the choice dictionary after it has been
initialized with parameters n, c ≥ 2 with c = O((logn)1/2(log logn)−3/2). We first describe a
slightly bigger data structure that uses n log c+O(c(logn)2) bits.

For a positive integer s = Θ(c logn), we divide the sequence (e1, . . . , en) of n color values
to be maintained into N = bn/sc subsequences of exactly s consecutive color values each,
with at most s− 1 color values left over. The left-over color values can be handled separately
in O(s log s) = O((logn)2) bits, essentially by keeping a doubly-linked list for each color of
the positions in which the color occurs. We omit the easy details and assume in the following
that n is a multiple of s. For ` = 1, . . . , N , the `th subsequence is stored in a data structure
H` called a container (as anticipated in the previous section). Each container partitions the
set {0, . . . , c − 1} of colors into a set of weak colors and the complementary set of strong
colors. If a color j ∈ {0, . . . , c− 1} is weak in a container H, we call H j-weak; otherwise
H is j-strong (again, these terms as well as notation introduced below were used already
in Section 3). For j = 0, . . . , c− 1, we keep a global count µj ∈ {0, . . . , N} of the number

MFCS 2019

64:6 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

of j-weak containers. For ` ∈ {1, . . . , N} and j ∈ {0, . . . , c− 1}, we say that H` is j-left if
` ≤ µj and j-right if ` > µj . Finally, we call H` j-free if the sequence of color values stored
in H` does not contain any occurrence of j.

Let ` ∈ {1, . . . , N} and suppose that (a0, . . . , as−1) is the subsequence of color values
stored in H` – thus ai = e(`−1)s+i+1 for i = 0, . . . , s − 1. If H` is j-weak, where j ∈
{0, . . . , c− 1}, we require the number |{i ∈ {0, . . . , s− 1} : ai = j}| of occurrences of j in H`

to be bounded by a positive integer r with r = Θ(logn/(c log logn)).
If H` is j-strong and j-right for all j ∈ {0, . . . , c− 1}, H` is atomic, by which we mean

that its representation, which we will call DW , consists of the single integer x =
∑s−1
i=0 aic

i.
Provided that we keep a table of the powers c0, c1, . . . , cs−1, we can then inspect and update
individual values in (a0, . . . , as−1) with a constant number of arithmetic operations. E.g.,
ai = bx/cic mod c for i = 0, . . . , s− 1. This does not necessarily translate into constant time,
as we may not be able to operate on integers as large as cs in constant time. To remedy
this, we obtain s as s0s1, where s0 and s1 are positive integers with s0 = Θ(logn/log c)
and s1 = Θ(c log c), and actually represent x through s1 digits – called big digits – to base
C = cs0 = nO(1). We can operate on big digits in constant time, and it is easy to see that we
can still inspect and update individual color values by operating only on the appropriate big
digit. Now we need only the powers c0, . . . , cs0−1. For reasons that will become clear shortly,
we store in fact a table of all powers bounded by C of the form ik, where i ∈ {2, . . . , c} and
k ∈ N. The number of bits required for the table is easily seen to be O(c(logn)2).

In all other cases, namely if H` is j-weak or j-left for at least one j ∈ {0, . . . , c− 1}, H` is
composite, namely represented through a collection of four substructures: DC, which stores
information concerning the roles played by the various colors in H`; DW and DW , which
specify the distribution of weak and strong colors in H`, respectively; and DP, which links
H` to other containers. The details are as follows:

First, for various subsets M of {0, . . . , c− 1} we store rankM (j) = |{i ∈M : i ≤ j}| for
j = 0, . . . , c − 1 and selectM (k) = min{j ∈ N ∪ {0} : rankM (j) = k} for k = 1, . . . , |M |.
Thus we store a table of rankM , which numbers the elements of M consecutively, and a
table of selectM , which realizes the inverse mapping. In detail, let W , W , R and R be
the sets of colors j for which H` is j-weak, j-strong, j-right and j-left, respectively, Then
we store tables of rank and select for all of the sets W , W , R and R as well as for all
unions and intersections of two of these (we actually need only a few of the tables). DC
is the collection of these tables, which occupy O(c log c) bits and can be computed from
W and R in O(c) time.
Second, DW stores the set {(i, ai) | i ∈ {0, . . . , s− 1} and ai ∈W} and, more abstractly,
maintains a subset A of {0, . . . , s−1}×{0, . . . , c−1} and supports the following operations
in constant time:

Given a pair (i, j) ∈ A, delete it from A.
Given a pair (i, j) ∈ {0, . . . , s− 1}× {0, . . . , c− 1}, insert it in A, provided that before
the operation no pair in A has first component i and fewer than r pairs in A have
second component j.
Given i ∈ {0, . . . , s− 1}, return the pair of the form (i, j) in A or an indication that A
contains no such pair.
Given (i, j) ∈ {0, . . . , s − 1} × {0, . . . , c − 1}, return the pair of the form (i′, j) in A
with i′ ≥ i for which i′ is minimal or an indication that A contains no such pair.
Given j ∈ {0, . . . , c− 1}, return the number of pairs of the form (i, j) in A.

DW can be thought of as an embellished associative array for the weak colors. What makes
its realization easy is the fact that the number of pairs in A at all times is bounded by cr,

T. Hagerup 64:7

while every component of a pair is an integer of f bits, where f = O(log s) = O(log logn).
We can simply store |A|, an integer of O(log(cr)) = O(log logn) bits, and two arrays
A1 and A2 of cr f -bit entries each such that the first |A| entries in A1 contain the first
components of the pairs in A in sorted order and the first |A| entries in A2 contain their
second components in the corresponding order, i.e., so that the two components of each
pair have the same index in A1 and A2. Each of A1 and A2 is stored as a single integer
of crf = O(logn) bits, and without loss of generality (choose s0 and hence s sufficiently
large) we will assume that DC and DW fit together in a single big digit.
To delete a pair (i, j) from A, we can form the bitwise xor of A1 with an integer that
contains the integer i in each of |A| f -bit fields and can be obtained in constant time
with a multiplication, and subsequently use the algorithm of Lemma 2.1(a) to discover
the position in A1 and A2 of the pair (i, j) (or an indication that (i, j) does not occur
in A). After subtracting 1 from the variable that stores |A|, we can easily carry out the
remainder of the operation, namely prizing out a field from A1 and A2 and closing the
gap, in constant time with a combination of bitwise Boolean operations, applications of
bit masks and shifts.
When inserting a pair (i, j) in A, rather than an exact match of i in A1, we want to find
the correct place in which to insert i while keeping A1 sorted. We therefore use part (c)
instead of part (a) of Lemma 2.1, but can otherwise proceed similarly as in the case of a
deletion. The remaining operations listed above can be implemented to work in constant
time in similar ways and are left to the interested reader (the last operation can also be
handled by maintaining an additional array of counts).
Third, the distribution of strong colors in H` is recorded in DW in one of several formats,
chosen in dependence of |W | and c: If |W | = 0, there are no strong colors in H`, and DW

is a dummy data structure (denoted by ∅, say) that takes up no space. If |W | = 1 and
c = 2, we also take DW = ∅, since the necessary information can be gleaned from DW –
an element whose color is stored in H` has the strong color precisely if it does not have
the weak color. If 1 ≤ |W | ≤ c− 2, DW stores the sequence (a′0, . . . , a′s−1), where a′i = 0
if ai ∈ W and a′i = rankW (ai) if ai ∈ W , for i = 0, . . . , s− 1, essentially in the form of
the integer y =

∑s−1
i=0 a

′
i(|W |+ 1)i. In other words, every weak color is encoded via a zero,

the strong colors are encoded via the integers 1, . . . , |W |, and the sequence of codes is
represented similarly as for atomic containers. Finally, if |W | ≥ max{c−1, 2}, we redefine
a′i as rankW (ai) − 1 for ai ∈ W and store y =

∑s−1
i=0 a

′
i|W |i. Thus for |W | = c − 1 ≥ 2

we give up on distinguishing between the weak color and one strong color.
Informally, the idea behind DW and DW is that weak colors have only few occurrences,
which can be stored in little space by listing them explicitly (in DW), while this allows
the strong colors to be represented more economically via smaller codes (in DW). Having
two distinct conventions for y is a necessary complication: We must be able to store
H` in less space even if only a single color is weak, which precludes the use of the first
convention (i.e., reserving a code value for weak colors) when |W | ≥ c− 1. On the other
hand, the second convention (not distinguishing between weak colors and the smallest
strong color j0) cannot be used when |W | = c− |W | is large, since it requires us to find
the occurrences of j0 by testing all occurrences of a zero in (a′0, . . . , a′s−1) and filtering
out those that correspond to weak colors – we cannot allow too many “false positives”.
Moreover, the case |W | = c− 1 must be handled separately in DW for c = 2 (namely not
at all), because |W | = 1 cannot be used as the basis of a positional system.
As was the case for x, if 1 ≤ |W | ≤ c− 2 or |W | ≥ max{c− 1, 2} it is necessary to express
y through a sequence of big digits but, unless |W | = c, the task is now hampered by
rounding issues. Assume that |W | ≤ c−1. The s small digits to base |W |+h, where h = 1

MFCS 2019

64:8 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

if 1 ≤ |W | ≤ c−2 and h = 0 if |W | = c−1 ≥ 2, are to be distributed over a number of big
digits to base C = cs0 . A single big digit can accommodate b(s0 ln c)/ln(|W |+ h)c small
digits. Now ln(|W |+h) = ln(c−|W |+h) = ln c+ln(1−(|W | − h)/c) ≤ ln c−(|W | − h)/c ≤
ln c− |W |/(2c) and

s0 ln c
ln(|W |+ h)

≥ s0 ln c
ln c− |W |/(2c) = s0

1− |W |/(2c ln c) ≥ s0(1 + |W |/(2c ln c)).

Since |W | ≥ 1 and s0/(c ln c) = Ω(lnn/(c(ln c)2)) = ω(1), we may conclude that a
big digit can accommodate s0(1 + Ω(|W |/(c ln c))) small digits (even taking the b· · · c
operation into account). Moreover, since

s

s0(1 + Ω(|W |/(c ln c))) = s1

1 + Ω(|W |/(c ln c)) = s1(1− Ω(|W |/(c ln c)))

and s1 = Θ(c ln c), by choosing s1 and hence s sufficiently large we can ensure that
the total number of big digits necessary to accommodate all s small digits is at most
s1 − 2K|W | for an arbitrary constant K ∈ N of our choice (but independent of s).
Fourth and finally, DP is an array that maps each color j ∈ {0, . . . , c− 1} for which H`

is j-weak or j-left to a block of three pointers, each of which points to a container or
has the value null (points to nothing). By choosing s0 and therefore s sufficiently large,
we can assume that a block fits in a big digit. Two of the pointers stored for a color j
are used to organize certain j-left containers in a doubly-linked list Lj , namely those
that are j-strong or not j-free (informally, those that might contain occurrences of j).
The third pointer, called a matching pointer, is used (has a value different from null)
only if H` is j-left and j-strong – then H` is called a j-master – or H` is j-right and
j-weak – then H` is called a j-slave. As essentially noted before, the number of j-masters
always equals the number of j-slaves, and the matching pointers form a perfect matching
between the j-masters and the j-slaves, with each matching pointer of a master pointing
to its corresponding slave, and vice versa.

In order to reduce the space needed for tables of powers of integers to O((logn)2) bits,
we replace the set {c, c− 1, . . . , 2} of possible bases used to represent the integer y of DW by
the smaller set {c, c− 1, c− 2, c− 4, c− 8, . . .}: The base c− i, where i ∈ {1, . . . , c− 2}, is
replaced by c− 2blog ic. Then y takes up more space, but the inequality 2blog(|W |−h)c ≥ |W |/2
for 0 ≤ h ≤ min{|W | − 1, 1} shows that it is still the case that y can be represented in
s1−2K|W | big digits, where W is the set of weak colors of the container under consideration.
Now we need powers of only O(log c) integers, at most one of which is smaller than

√
c, so the

number of bits needed comes to O(log c · s0 logC) = O((logn)2). This ends the description
of the structure of a composite container H`.

The use of masters and slaves is an element of the in-place chain technique of Katoh
and Goto [14]. Another element requires us to distinguish between conceptual containers
(intended until this point) and physical containers. The number of big digits needed to store
a composite container H` was bounded above by 1 + (s1 − 2K|W |) + |W ∪R|, where W and
R are the sets of colors j for which H` is j-weak and j-left, respectively. This number varies
from one (conceptual) container to another, which is precisely the problem – we cannot store
the containers in little space so as to allow constant-time access to a given container. This
problem is solved by a transfer of data between containers. For each j ∈ {0, . . . , c− 1} and
each pair (H,H ′) of containers such that H and H ′ are a j-master and its j-slave, respectively,
K big digits are relocated from H to H ′. A container chooses the at most Kc big digits to
relocate as a master to be among at least s1 − 1− c = ω(c) big digits reserved for DW and

T. Hagerup 64:9

not to overlap with the at most Kc digits received as a slave – if s1 and hence s are chosen
sufficiently large, this is always possible. The first condition means that no “bookkeeping
information” is moved to a place where it might be difficult to find (most obviously, the
pointer to a slave should not be relocated to the slave), and the second condition ensures
that a master can always access one of its relocated big digits in constant time – it must
follow a pointer chain of length 1 only.

With the transfer of data described above, the number of big digits needed by a composite
container H` changes to

1 + (s1 − 2K|W |) + |W ∪R| −K|W ∩R|+K|W ∩R|
≤ 1 + s1 −K(|W |+ |W ∩R|) + |W ∪R|
= s1 + 1− (K − 1)|W ∪R|

where, again, W , W , R and R are those of H`. Because H` is composite, |W ∪R| ≥ 1, so
that the quantity above is at most s1 − (K − 2). After the transfer of data, therefore, every
conceptual container H can be stored in a physical container of exactly s1 big digits, and if
H is composite, it additionally offers K − 2 big digits of freely usable extra space.

The P = Ns1 big digits of the N physical containers are maintained in an instance of the
ingenious data structure of Dodis et al. [4] embodied in the lemma below. The number of
bits needed is P logC +O((logP)2) = Ns1s0 log c+O((log(Ns1))2) = n log c+O((logn)2).

I Lemma 4.1 ([4], Theorem 1). There is a data structure that, given arbitrary positive
integers P and C with C = PO(1), can be initialized in O(logP) time and subsequently
maintains an array of P elements drawn from {0, . . . , C − 1} in P logC +O((logP)2) bits
such that individual array elements can be read and written in constant time.

When nothing else is stated, in the following “container” means “conceptual container”.
A subtle point is that an atomic container must be prevented from “posing as” a composite
container – there is no space for an atomic/composite bit, and every bit combination is
in use for an atomic container. If an atomic container H “claims” to be j-left for some
j ∈ {0, . . . , c− 1}, such a j can be found in constant time with DC, and the claim can be
falsified in constant time by inspection of µj . Otherwise, if H “claims” to be j-weak for some
j ∈ {0, . . . , c− 1} and hence a j-slave, the claim can be falsified in constant time by the lack
of a reverse pointer to H in its purported j-master. Thus we can always test in constant
time whether a given container is atomic or composite.

In addition to the “per-container” data detailed above, we store globally, for each color,
a choice buffer and an iteration buffer, maintained in a special loose representation that is
wasteful of space, but allows efficient operations corresponding to choice and robust iteration.
Each buffer is derived from a container H` whose index ` is remembered. If the data structure
DW of H` stores the sequence (a′0, . . . , a′s−1) of codes, the loose representation of H` consists
of the integer

∑s−1
i=0 2ifa′i, where f = dlog ce. The derivation of a choice or iteration buffer can

be carried out in O(log s0) time per big integer and O(s1 log s0) = O(c log c log logn) = O(r)
time altogether with the algorithm of Lemma 4.2 below, which is a word-parallel version
(i.e., essentially independent computations take place simultaneously in different regions of a
word) of a simple divide-and-conquer procedure.

I Lemma 4.2 ([7], Lemma 3.3 with p = 1). Given positive integers c, d, f and s with c, d ≥ 2
and f ≥ dlog2 max{c, d}e and an integer of the form

∑s−1
j=0 ajc

j , where 0 ≤ aj < min{c, d} for
j = 0, . . . , s−1, the integer

∑s−1
j=0 ajd

j can be computed in O(dsf/we(log s+(log(2+sf/w))2))
time.

MFCS 2019

64:10 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

Because each code a′i is readily available in an f -bit field in the loose representation,
we can use the algorithm of Lemma 2.1(a), applied to a buffer for a color j and derived
from a container H, to carry out a sweep of H that reports all elements stored in H whose
color is j when they are hit by the sweep. This takes O(1 + sf/w) = O(c log c) time plus
time proportional to the number of occurrences reported plus, possibly, O(r) time to skip
occurrences of weak colors with the same code as j, and clearly satisfies the conditions for
a robust iteration over H. We generally suspend the sweep as soon as we have found one
occurrence of j and resume the sweep later to find the next occurrence, for which reason
we also store with each buffer how far the current sweep over the buffer has progressed. In
the case of a choice buffer, the sweep is resumed one position earlier so that it reports the
same element as last time unless the color of that element has changed. The space needed
is O(sf) = O(c log c logn) bits per buffer and O(c2 log c logn) = O((logn)2) bits for all 2c
buffers.

When a buffer for a color j derived from a container H is replaced by a different buffer, j
is made weak in H if this is possible, i.e., if j occurs at most r times in H. The procedure
for doing this is described in the following section.

Initially all containers are 0-strong and j-weak for j = 1, . . . , c − 1, and there are no
masters or slaves.

5 Conversion Between Weak and Strong Colors

If the number of occurrences of a color j in a container H` is bounded by r, H` may be
changed from j-weak to j-strong, or vice versa. This section describes the details.

Assume first that H` is composite both before and after the change. Let the sets W , R,
etc., and the substructures DC, DW , etc., be those of H`. First, W changes in the obvious
way by gaining or losing an element, and DC is recomputed accordingly from skratch in O(c)
time. Second, up to r pairs are inserted in or removed from DW , which can happen in O(r)
time.

Consider now the necessary update of DW . Recall that in the nontrivial cases, DW is
represented by an integer y composed of s small digits to base |W | or |W |+ 1 distributed
over a number of big digits. Using the algorithm of Lemma 4.2, we first convert y to the
loose representation, which takes O(r) time as before. Informally, we must either create a
gap among the code values of the existing strong colors to make room for a new strong color
or, conversely, prize out the code value of a color that stops being strong and subsequently
close the gap that it leaves. Both of these can be done in O(r) time with the algorithm of
Lemma 2.1(b). We omit the details. For c ≥ 3, these vary a little depending on whether or
not |W | switches between c−2 and c−1, i.e., depending on whether or not the interpretation
of y switches between the first and the second convention. After the creation of a gap for the
code value of a new strong color, the r + 1 occurrences of that code are “planted” one by
one in O(r) time. Similarly, the occurrences of the code of a color that becomes weak are
replaced by the code of weak colors (i.e., zero) before the code value of the formerly strong
color is prized out. When these changes have taken place, the algorithm of Lemma 4.2 is
applied again to convert the loose representation back to the usual representation of DW as
an integer y. Altogether, the update of DW can happen in O(r) time.

The final task is to repair the matching between j-masters and j-slaves. In the special
case in which H` switches not only between j-weak and j-strong, but simultaneously between
j-left and j-right (this happens if µj switches between ` and `− 1), H` is neither a j-master
nor a j-slave neither before nor after the switch, and nothing needs to be done. Otherwise

T. Hagerup 64:11

let H 6= H` be the container that switches as above between j-left and j-right because of
the change in µj . There are two main cases: (1) If H` switches from j-weak to j-strong
and therefore µj decreases by 1 and H switches from j-left to j-right, H` either becomes
a j-master (it is j-left) or stops being a j-slave (it is j-right), and H either stops being
a j-master (it is j-strong) or becomes a j-slave (it is j-weak). In all combinations there
is a master without a slave and a slave without a master, and they are matched. (2) If
H` switches from j-strong to j-weak and H switches from j-right to j-left, the situation is
completely analogous: H` either becomes a j-slave (it is j-right) or stops being a j-master
(it is j-left), and H either stops being a j-slave (it is j-weak) or becomes a j-master (it is
j-strong). Again, there is a slave without a master and a master without a slave, and they
are matched. In each case the matching pointers are adjusted and the data relocated from
masters to slaves is moved appropriately. In addition, the substructure DC of H must be
updated. All of this can be done in O((s log c)/w) = O(r) time.

If H` is atomic either before or after the conversion, the algorithmic steps are very similar,
except that the bookkeeping information for H` is only implicit when H` is atomic. A similar
situation obtains when H` has DW = ∅ either before or after the conversion. In all cases,
the total time needed for the complete conversion is O(r).

6 The Operations

This section describes how to execute the operations color , setcolor and choice and how to
carry out an almost robust iteration.

color
In order to execute a call color(i), we identify the container H that stores the ith color value.
The substructures DW , DW and DC mentioned in the following are those of H. Accessing
DW , we can determine whether the color j to be returned is weak in H and, if so, j itself. If
j is strong and |W | ≥ 2, we can access DW to learn the code of j in H, from which j itself
can be recovered using DC. If j is strong and |W | = 1, j is the unique element of W . Once
j is known, it is returned. The execution of color takes constant time.

setcolor
Suppose that a call of setcolor changes the color of some i ∈ {1, . . . , n} from j to j′. If j′
is weak in the relevant container H and the operation causes the number of occurrences
of j′ in H to exceed r, H is first converted from j′-weak to j′-strong, as described in the
previous section. The rest of the operation is straightforward. If j is weak in H, the pair
(i, j) is removed from the substructure DW of H, and if j′ is weak in H, (i, j′) is inserted
in DW . Similarly, if j′ is strong in H and |W | ≥ 2, the code of j′ in H is obtained from
the substructure DC of H, after which it is easy to carry out the appropriate update of the
sequence (a′0, . . . , a′s−1) stored in the substructure DW . A call of setcolor needs O(r) time if
it carries out a conversion of a container and constant time if not.

choice
The execution of a call choice(j) continues the sweep over the choice buffer for the color j,
if any, until an occurrence of j is found or the sweep is complete. In the former case the
position found is returned. In the latter case, as far as possible, a container H is selected

MFCS 2019

64:12 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

that either belongs to Lj or is j-right – if there is no such container, there are no occurrences
of j, and 0 is returned. If H is j-weak, we distinguish between two cases: If H belongs to Lj ,
it is not j-free, and an occurrence of j in H can be found in constant time and returned. If
H is j-right and therefore a j-slave, it is replaced by its corresponding j-master. Now H is
strong, a new choice buffer for the color j is derived from H, and the procedure is restarted
recursively.

Almost Robust Iteration
Consider an iteration over a given color class Sj . In preparation for the iteration, we step
through the list Lj to determine |Lj |. Then, using O(logn) bits of additional space, we split
Lj into two lists L′j and L′′j , with L′j consisting of precisely those containers H` in Lj for
which ` ≤ µj − |Lj |2. The time needed to do this is O(|Lj |+ 1). Since the indices ` of the
containers in L′′j are distinct integers in the range {µj − |Lj |2 + 1, . . . , µj} of size |Lj |2, we
can sort the containers in L′′j by their indices with 2-pass radix sorting in O(|Lj |+ 1) time.
If K is chosen sufficiently large, the O(|Lj | logn) bits of additional space needed for this can
be supplied by the extra space, discussed shortly before Lemma 4.1, of the containers H`

with µj − |Lj |2 < ` ≤ µj . At this point Lj is updated to be the concatenation of L′j with
the sorted L′′j .

Now the iteration proper can begin. We move a token through Lj , always robustly
enumerating the elements of Sj in the current container H, the container that holds the
token. If H is j-strong, this is done by deriving the iteration buffer for j from H and sweeping
it, as described in Section 4. If H is j-weak, it is done similarly, by always remembering
the last occurrence enumerated and using the fourth operation listed for DW to enumerate
the next occurrence. We will speak of a sweep also in this case. If a container H drops out
of Lj because it becomes j-free while it holds the token, the token is first passed on to the
successor of H in Lj , if any.

If a container H is j-strong or not j-free and H is to be inserted in Lj because it becomes
j-left, then H is inserted at the end of Lj , i.e., so that it will still be swept. If a container is
to be inserted in Lj because it stops being j-free, however, it is inserted at the beginning of
Lj , i.e., so that it will not be swept.

Suppose that the iteration starts with µj = µ̂j . If µj decreases all the way to µ̂j − |Lj |2
(i.e., to the “border” between L′j and L′′j) before all containers in L′j have been fully swept,
the enumeration is suspended and the containers in Lj whose sweep has not yet begun are
sorted. Although it is not strictly necessary, this can happen “in-place” with Bubblesort in
O(|Lj |2) time. Then the enumeration is resumed. When the iteration reaches the end of Lj ,
it proceeds to sweep the containers Hµj+1, . . . ,HN in that order, where µj is the value of µj
when the iteration over Lj finishes.

7 Analysis of Correctness and Execution Times

The correctness of the implementation of color , setcolor and choice is easy to see or has
already been argued. Consider therefore an iteration over a color class Sj . Every element i
that belongs to Sj throughout the iteration is stored in a container H that belongs to Lj or
is j-right at the beginning of the iteration, and it is stored in H throughout any sweep over
H. During the iteration H can drop out of Lj only by becoming j-right, and if H stops being
j-right it is inserted at the end of Lj , where it will still be swept. Thus i is enumerated.

Let t0 be the point in time when the iteration over L′j ends or when what remains of Lj
is sorted, whatever happens first. Until t0 only containers in L′j are iterated over, and any
containers that enter Lj during this period are inserted at the beginning of Lj , where they

T. Hagerup 64:13

will not be iterated over. Thus no element is enumerated more than once before t0. After
t0 the enumeration happens strictly in increasing order, so again no element is enumerated
more than once. Thus an element is enumerated at most once before t0 and at most once
after t0. It is easy to see that no element is ever enumerated when it does not belong to Sj .
It follows that the iteration is almost robust, as claimed.

The basic idea of the amortized timing analysis is simple: Disregarding iteration, all
operations that involve only weak colors take constant time. Consider a point in time at
which a container H is converted from j-weak to j-strong for some color j. At that time H
contains more than r elements of color j. Because of this, before a conversion of H from
j-weak to j-strong can happen again, a buffer for the color j must be derived from H, and
the data structure must operate on each of the more than r elements of color j in H by
enumerating the element, returning it (choice) or changing its color. We can “charge” all of
the following to these more than r operations: The derivation of up to two buffers for color j
from H, the sweep over the buffers, exclusive of the time spent reporting occurrences of j
found there, and a possible conversion of H from j-strong to j-weak and back.

A problematic issue with the argument in the previous paragraph is that operations on
elements in a buffer are called upon to pay for the derivation of the buffer, which happened
earlier. For every color j other than 0 there is no problem here, since more than r operations
– which can pay for the cost – must change the colors of elements in H to j before j can
become strong in H for the first time. This argument does not apply to the color 0 because all
elements have color 0 initially. However, using the structure DW of H, a suitably represented
first buffer for the color 0 can be derived from H in a time that is at most proportional to a
constant plus the number of color changes executed on H since the initialization, so these
operations can be charged with the cost.

Certain costs of an iteration are not covered by the analysis above (and, indeed, an
iteration may temporarily “go into dept”, which is why we cannot support incomplete
iteration efficiently). First, there is the cost associated with sorting. The first sorting of part
of Lj happens in O(|Lj |+ 1) time, which is acceptable because every container that does
not drop out of Lj before it receives the iteration token eventually contributes at least one
occurrence of j to be enumerated or – if it turns out to be j-free – is converted from j-strong
to j-weak, the cost of which was considered above. The second sorting of part of Lj is carried
out, in O(|Lj |2) time, only after at least |Lj |2 operations on elements of color j have been
executed during the iteration, and the cost of the sorting can be charged to these operations.
Second, there is the cost associated with sweeping j-slaves and j-weak former j-slaves that
turn out to be j-free (so that the cost of the sweep cannot be charged to the occurrences
found). This cost, however, can be charged to the sweeping of the corresponding masters or
to the color changes that created or destroyed the matching links to these masters.

Theorem 4 of [8] furnishes a variant of the data structure of Lemma 4.1 that initializes
all array elements to zero and can itself be initialized in constant time. Storing the global
book-keeping information such as µ0, . . . , µc−1 in another instance of this data structure and
interpreting the all-zero initial values appropriately allows the choice dictionary developed
here to be initialized in constant time. We omit the details.

I Theorem 7.1. There is a choice dictionary that, for arbitrary given positive integers n and
c with c = O((logn)1/2(log logn)−3/2), can be initialized with parameters n and c in constant
time and subsequently occupies n log2 c+ O((logn)2) bits and executes color, setcolor and
choice in constant amortized time and complete almost robust iteration (an element may be
enumerated a second time) in constant amortized time per element enumerated.

MFCS 2019

64:14 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

References
1 D. Angluin and L. G. Valiant. Fast Probabilistic Algorithms for Hamiltonian Circuits and

Matchings. J. Comput. Syst. Sci., 18(2):155–193, 1979. doi:10.1016/0022-0000(79)90045-X.
2 Niranka Banerjee, Sankardeep Chakraborty, and Venkatesh Raman. Improved Space Efficient

Algorithms for BFS, DFS and Applications. In Proc. 22nd International Conference on
Computing and Combinatorics (COCOON 2016), volume 9797 of LNCS, pages 119–130.
Springer, 2016. doi:10.1007/978-3-319-42634-1_10.

3 Preston Briggs and Linda Torczon. An Efficient Representation for Sparse Sets. ACM Lett.
Program. Lang. Syst., 2(1-4):59–69, 1993. doi:10.1145/176454.176484.

4 Yevgeniy Dodis, Mihai Pǎtraşcu, and Mikkel Thorup. Changing Base Without Losing Space.
In Proc. 42nd ACM Symposium on Theory of Computing (STOC 2010), pages 593–602. ACM,
2010. doi:10.1145/1806689.1806770.

5 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-Efficient Basic Graph Algorithms.
In Proc. 32nd International Symposium on Theoretical Aspects of Computer Science (STACS
2015), volume 30 of LIPIcs, pages 288–301. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2015. doi:10.4230/LIPIcs.STACS.2015.288.

6 Torben Hagerup. Sorting and Searching on the Word RAM. In Proc. 15th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 1998), volume 1373 of LNCS, pages
366–398. Springer, 1998. doi:10.1007/BFb0028575.

7 Torben Hagerup. Small Uncolored and Colored Choice Dictionaries. Computing Research
Repository (CoRR), abs/1809.07661 [cs.DS], 2018. arXiv:1809.07661.

8 Torben Hagerup. Highly Succinct Dynamic Data Structures. In Leszek Antoni Gasieniec,
Jesper Jansson, and Christos Levcopoulos, editors, Fundamentals of Computation Theory
- 22nd International Symposium, FCT 2019, Copenhagen, Denmark, August 12-14, 2019,
Proceedings, volume 11651 of Lecture Notes in Computer Science, pages 29–45. Springer, 2019.
doi:10.1007/978-3-030-25027-0_3.

9 Torben Hagerup. Fast Breadth-First Search in Still Less Space. In Proc. 45th International
Workhop on Graph-Theoretic Concepts in Computer Science (WG 2019), LNCS. Springer,
2019, to appear.

10 Torben Hagerup and Frank Kammer. Succinct Choice Dictionaries. Computing Research
Repository (CoRR), abs/1604.06058 [cs.DS], 2016. arXiv:1604.06058.

11 Torben Hagerup, Frank Kammer, and Moritz Laudahn. Space-Efficient Euler Partition and
Bipartite Edge Coloring. Theor. Comput. Sci., 754:16–34, 2019. doi:10.1016/j.tcs.2018.
01.008.

12 Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-Efficient Biconnected Components
and Recognition of Outerplanar Graphs. Algorithmica, 81(3):1180–1204, 2019. doi:10.1007/
s00453-018-0464-z.

13 Frank Kammer and Andrej Sajenko. Simple 2f -Color Choice Dictionaries. In Proc. 29th
International Symposium on Algorithms and Computation (ISAAC 2018), volume 123 of
LIPIcs, pages 66:1–66:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

14 Takashi Katoh and Keisuke Goto. In-Place Initializable Arrays. Computing Research Repository
(CoRR), abs/1709.08900 [cs.DS], 2017. arXiv:1709.08900.

https://doi.org/10.1016/0022-0000(79)90045-X
https://doi.org/10.1007/978-3-319-42634-1_10
https://doi.org/10.1145/176454.176484
https://doi.org/10.1145/1806689.1806770
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1007/BFb0028575
http://arxiv.org/abs/1809.07661
https://doi.org/10.1007/978-3-030-25027-0_3
http://arxiv.org/abs/1604.06058
https://doi.org/10.1016/j.tcs.2018.01.008
https://doi.org/10.1016/j.tcs.2018.01.008
https://doi.org/10.1007/s00453-018-0464-z
https://doi.org/10.1007/s00453-018-0464-z
http://arxiv.org/abs/1709.08900

Fault Tolerant and Fully Dynamic DFS in
Undirected Graphs: Simple Yet Efficient
Surender Baswana
Department of Computer Science & Engineering, IIT Kanpur, Kanpur, India
sbaswana@cse.iitk.ac.in

Shiv Gupta
Department of Computer Science & Engineering, IIT Kanpur, Kanpur, India
shivguptamails@gmail.com

Ayush Tulsyan
Department of Computer Science & Engineering, IIT Kanpur, Kanpur, India
ayushtulsyan01@gmail.com

Abstract
We present an algorithm for a fault tolerant Depth First Search (DFS) Tree in an undirected graph.
This algorithm is drastically simpler than the current state-of-the-art algorithms for this problem,
uses optimal space and optimal preprocessing time, and still achieves better time complexity. This
algorithm also leads to a better time complexity for maintaining a DFS tree in a fully dynamic
environment.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Depth first search, DFS, Dynamic graph algorithms, Fault tolerant

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.65

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.01726.

Funding Surender Baswana: This research work was partly done during a visit to University of
Paderborn supported by a fellowship from the Alexander von Humboldt Foundation.

1 Introduction

Depth First Search (DFS) is a widely popular graph traversal method. The traversal routine,
formalized by Tarjan [44] in 1972, has played a crucial role in various graph problems including
reachability, bi-connectivity, topological sorting, and strongly connected components.

Given an undirected graph G = (V,E) with n = |V | vertices and m = |E| edges, DFS
traversal on the graph takes O (m+ n) time and results in a DFS tree of G.

Most of the graphs in real-world applications keep changing with time. Vertices and
edges keep entering and leaving the graph at various time steps. This dynamic aspect has
motivated researchers to design algorithms that can update the solution of the corresponding
problem efficiently after each such change in the graph. There are two models used for solving
these graph problems, namely, fault tolerant algorithms and dynamic graph algorithms.

The fault tolerant version of any problem P on a graph G is to construct a compact data
structure, using which, for any given set of failed edges or vertices F , one can efficiently
report the solution of P on G \F . Many elegant fault tolerant algorithms have been designed
for problems including connectivity [13, 21, 25], shortest paths [10, 11, 16, 20, 28], and
spanners [12, 15].

The dynamic version of any problem P on G is modeled as follows. For any online
sequence of updates (insertion or deletion of an edge/vertex), one has to report the solution
of P efficiently after every update. Note that, unlike the fault tolerant version, the updates
are persistent in dynamic version, i.e., after each update, the solution has to be reported

© Surender Baswana, Shiv Gupta, and Ayush Tulsyan;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 65; pp. 65:1–65:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbaswana@cse.iitk.ac.in
mailto:shivguptamails@gmail.com
mailto:ayushtulsyan01@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.65
https://arxiv.org/abs/1810.01726
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

taking into account all the updates made so far. Algorithms which handle both insertion and
deletion of vertices/edges are called fully dynamic graph algorithms, whereas the algorithms
that handle either insertions or deletions are called partially dynamic graph algorithms, more
specifically incremental or decremental graph algorithms, respectively. The prominent results
for dynamic graph problems include connectivity [22, 30, 32], reachability [39, 41], shortest
path [19, 29, 40], matching [6, 9, 43], spanner [8, 26, 38], min cut [45], Even-Shiloach tree [23],
minimum spanning tree [31, 35], and graph sparsifiers [1].

1.1 Previous Results on Fault Tolerant and Dynamic DFS
Franciosa et al. [24] presented an incremental algorithm for maintaining a DFS tree in a
directed acyclic graph (DAG) which takes overall O (mn) time for any sequence of m edge
insertions. For undirected graphs, Baswana and Khan [7] presented an incremental algorithm
for a DFS tree which takes overall O

(
n2) time for any sequence of edge insertions. Baswana

and Choudhary [4] designed a randomized decremental algorithm for a DFS tree in a DAG
with overall expected O (mn logn) time for any sequence of edge deletions.

None of the partially dynamic algorithms stated above achieves an o (m) bound over
the worst-case complexity of a single update. Moreover, there were no fully dynamic or
fault tolerant algorithms for DFS in undirected graphs until recently. In 2016, the first fault
tolerant algorithm was presented that takes O

(
nk log4 n

)
time to report a DFS tree for any

set of k failed vertices or edges [3]. The time complexity was further improved by Chen et
al. [17] to O

(
nk log2 n

)
. Both [3, 17] require a data structure occupying O

(
m log2 n

)
bits.

Nakamura and Sadakane [34] reduced the space occupied by the data structure to O (m logn)
bits which is indeed optimal 1. Using the standard technique of periodic rebuilding, the fault
tolerant algorithms presented in [3, 17, 34] were also extended to o (m) fully dynamic DFS
algorithms (refer to Table 1 for comparison).

Recently, Chen et al. [18] designed an O (n) time incremental algorithm for DFS tree
in undirected graphs, which is optimal if it is required to output the DFS tree after each
update. For the hardness results for the dynamic ordered DFS problem, the reader may refer
to the work of Reif [36, 37] and Miltersen et al. [33].

1.2 Familiarizing with the Fault Tolerant DFS Problem
For an undirected graph, DFS traversal results in a spanning tree rooted at the vertex from
where the DFS begins. The depth first nature of the traversal ensures the following property:

I Property 1. (DFS Property) For each vertex v ∈ V , every neighbour of v in the graph
appears either as an ancestor of v or as a descendant of v in any DFS tree.

The DFS property implies that a non-tree edge is never a cross edge - an edge whose endpoints
do not share an ancestor-descendant relationship. It is due to this reason that each non-tree
edge is called a back edge. We now define ancestor-descendant paths.

I Definition 2. (Ancestor-descendant Path) A path in a DFS tree is called an ancestor-
descendant path if its endpoints have an ancestor-descendant relationship in the tree.

In order to familiarize with the problem of fault tolerant DFS tree, we discuss another
related, but simpler problem, namely, rerooting of a DFS tree defined as follows.

1 Precisely, their data structure occupies (m+ o (m)) logn bits by using a wavelet tree.

S. Baswana, S. Gupta, and A. Tulsyan 65:3

r

s

t

u

v

w

p

x

y

z

(a) a DFS tree rooted at r.

v

u

t

s

r

w

p

x

y

z

(b) reversing path(r, v) results in trans-
forming many back edges to cross edges.

Figure 1 Non-triviality of rerooting problem.

I Problem 3. Preprocess an undirected graph G = (V,E) to build a compact data structure
so that given any vertex v ∈ V , we can report the DFS tree rooted at v efficiently.

Let T be an initial DFS tree, rooted at a vertex, say r (see Figure 1(a)). We use T (q) to
represent the subtree of T rooted at the vertex q. Also, let path (a, b) denote the path from
vertex a to b in T . For computing a DFS tree rooted at any vertex v, the first natural idea
is to just reverse the direction of the path from r to v in T . However, this may result in
transforming many back edges to cross edges and hence a violation of the DFS property (see
Figure 1(b)). To fix this problem, we may need to reroot various subtrees hanging from the
reversed path. Along these lines, [3] presented an algorithm that takes O

(
n log3 n

)
time to

compute a DFS tree rooted at any vertex.
In order to see how rerooting a DFS tree is related to the problem of fault tolerant DFS

tree, consider the failure of vertex u in Figure 1(a). The subtree T (v) is connected to the
remaining tree through many back edges, and the back edge (p, t) is incident closest to u
on the path (r, u). If we reroot the subtree T (v) at vertex p and hang it from the remaining
tree through the edge (p, t), the resulting tree will indeed be a valid DFS tree of G\{u}.

The fault tolerant DFS tree problem becomes more complex in the presence of multiple
faults. However, the distribution of faults plays an important role as follows. If the failing
vertices do not have any ancestor-descendant relationship in the DFS tree, they can be
handled independently. For example, the simultaneous failure of vertices u and x in the DFS
tree shown in Figure 1(a) requires rerooting the respective subtrees T (v) and T (y) at vertices
p and z respectively. So, even for arbitrarily large number of faults, if no two of them appear
on the same root to leaf path, we have to just reroot the corresponding disjoint subtrees of T
to report the DFS tree avoiding those failures. However, if two or more faults indeed appear
on a single root to leaf path, the problem becomes more complex. For this case, [3] presents
an algorithm which is quite different from their rerooting algorithm.

1.3 Overview of the Previous Results
We now begin with an overview of the existing algorithms for fault tolerant DFS tree. For
any set of k failures, the algorithm presented in [3] first partitions the original DFS tree
into a pool of connected components. This pool consists of k paths (specifically, ancestor-
descendant paths) and potentially a large number of subtrees. The algorithm treats each

MFCS 2019

65:4 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

of these components as a super vertex and uses them to grow the DFS tree T ∗ that avoids
all the failures. At a high level, the algorithm can be visualized as a traversal on these
super vertices. Each traversal extracts a path from the super vertex, attaches it to T ∗, and
places the remaining portion of the super vertex back into the pool. In order to pursue DFS
traversal further in an efficient manner, the algorithm needs to compute minimal adjacency
lists for the vertices of the traversed path (referred to as reduced adjacency lists). The
algorithm makes use of the following crucial property of DFS traversal.

I Property 4. (Components Property [3]) Consider any DFS Traversal on any undirected
graph G = (V,E). When the traversal reaches a vertex v ∈ V , let the set of connected
components induced by the unvisited vertices be C. If from any component c ∈ C, there exists
two edges - e to vertex v and e′ to any of the visited vertices (including v), then for building
a valid DFS tree, it is sufficient to consider only the edge e during the rest of DFS traversal,
that is, e′ can be ignored.

In order to use the above property to populate the reduced adjacency list, the algorithm
needs a data structure to answer the following queries repeatedly.

Query(w, x, y): among all the edges from w that are incident on the path(x, y) in T ,
return an edge that is incident nearest to x on the path(x, y).
Query(T (w), x, y): among all the edges from T (w) that are incident on the path(x, y) in
T , return an edge that is incident nearest to x on the path(x, y).

It is quite obvious from the description given above that these queries are quite non-trivial,
and so a sophisticated data structure is designed in [3] to answer these queries efficiently. In
addition to the complex data structure, the complete difference in the processing of a path
and a subtree obfuscates the algorithm and its analysis.

The subsequent results [17, 34] keep the algorithm unchanged and replace the data
structure used in [3] with alternate data structures. Chen et al. [17] model the two queries
mentioned above as Orthogonal Range Successor/Predecessor(ORS/ORP) queries and this
improves the query processing time. Nakamura and Sadakane [34] compressed the data
structure used in [17] using Wavelet Trees [27] to achieve optimal space. Despite these
improvements, the core of the fault tolerant algorithm remains intricate and the data
structure still remains complex. Recently, in an empirical study [5], it was found that this
algorithm, for incremental updates, performs even worse than the static DFS algorithm for
certain classes of graphs. This naturally raises the question whethere there exists a simpler
algorithm for this fundamental problem.

In addition to being complex, all these algorithms fail to exploit the distribution of the
faults to achieve efficiency. The running time of these algorithm is O (nk polylog(n)) time
irrespective of how the k faults are distributed in the DFS tree. In the extreme case, when
no two faults share the ancestor-descendant relaitonship, there is a simple O (n polylog(n))
time algorithm as described in Section 1.2. This raises the question whether it is possible to
have a fault tolerant DFS algorithm whose time complexity depends upon the maximum
number of faults lying on any ancestor-descendant path instead of the total number of faults.

1.4 Our Contribution
We take a much simpler approach as compared to the previous algorithms. We first present
a new and simple rerooting algorithm based on the following ideas. After building an initial
DFS tree, say T , we decompose T into a disjoint collection P of ancestor-descendant paths.
Similar to [3], each of these paths are treated like super vertices. At a high level, the algorithm
can still be viewed as a traversal on these super vertices. However, as the reader may also

S. Baswana, S. Gupta, and A. Tulsyan 65:5

verify, the algorithm turns out to be lighter and quite different at the core. Interestingly, the
original DFS tree alone acts as a powerful data structure to be used for rerooting or for the
computation of another valid DFS tree in the presence of faults. The algorithm crucially
exploits an implicit hierarchy among the ancestor-descendant paths in P. This hierarchy
along with the DFS property of T enables us to use much simpler queries. In particular, each
query will ask only for an edge from a vertex to one of its ancestor paths in the hierarchy.
The hierarchy allows us to represent T as another tree structure, called shallow tree. In a
nutshell, our algorithm can be viewed as an efficient DFS traversal guided by this shallow
tree.

This rerooting algorithm extends to the fault tolerant algorithm with very little and
obvious modifications. While preserving simplicity, the fault tolerant algorithm turns out to
be faster than all the previous algorithms. Moreover, our algorithm is the first to implicitly
incorporate the distribution of faults to gain efficiency. We summarize our result in the
following theorem.

I Theorem 5. An undirected graph G can be preprocessed in O (m+ n) time to build a DFS
tree, say T , and a data structure of O (m+ n) words2 such that for any set F of k failed
vertices or edges, a DFS tree of G \ F can be reported in O (n (k′ + logn) logn) time, where
k′ ≤ k is the maximum number of faults on any root-leaf path in the tree T .

We now present the highlights of our algorithm.
Drastically simpler algorithm: Our algorithm is drastically simpler and more intuitive than
the previous algorithm. We feel confident to defend that it can be taught even in an
undergraduate course on algorithms. The pseudo-codes in Algorithm 1 and Algorithm 2 are
concise and very close to the corresponding implementations.

Faster time complexity: Our algorithm takes O (n (k′ + logn) logn) time, where k′ is the
maximum number of failures on any ancestor-descendant path of the DFS tree when k

edges/vertices fail. In the worst-case k′ can be as large as k. However, k′ can be o (k) as well.
In the latter case, our result improves all the existing results significantly. Moreover, even in
the case k′ = k, our time complexity is superior to the previous best by a log factor.

Optimal preprocessing time: Our preprocessing relies upon DFS traversal only, taking
O (m+ n) time. Given a graph, in order to report the initial DFS tree, one anyway has to
run a static DFS. Hence, our preprocessing time is optimal.

Optimal space and elementary data structure: In contrast to the heavy data structure used
by [3, 17], our algorithm makes use of very elementary data structures which are compact
as well. Each vertex keeps an array storing edges incident on it from ancestors sorted
according to their levels. This data structure uses just m + n words and still achieves
O
(
n (k′ + logn) log2 n

)
time to report a DFS tree upon failure of any k vertices or edges.

By using fractional cascading [14], we get rid of one log factor while still keeping space
requirement to be O (m+ n) words.

Faster Fully Dynamic Algorithm: Using Theorem 5 and periodic rebuilding technique used
in [3], we also get the fastest algorithm for fully dynamic DFS.

I Theorem 6. Given an undirected graph, one can maintain a DFS tree for any online
sequence of insertions and deletions of vertices/edges in O

(√
mn logn

)
worst-case time per

update.

2 One word stores dlogme bits.

MFCS 2019

65:6 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

Table 1 Comparison of the existing and the new results. Note that k is the total number of
faults, whereas k′ is the maximum number of faults lying on any root-to-leaf path of the DFS tree.

[3] [17] [34] New

Space (in bits) O(m log2 n) O(m log2 n) O(m logn) O(m logn)

Preprocessing O(m logn) O(m logn) O
(
m

√
logn

)
O (m+ n)

Fault tolerant O(nk log4 n) O(nk log2 n) O(nk log3 n
log log n

) O (n(k′ + logn) logn)

Dynamic DFS O(
√
mn log2.5 n) O(

√
mn log1.5 n) O(

√
mn log1.75 n√

log log n
) O(

√
mn logn)

The new fully dynamic algorithm can be used to solve the dynamic subgraph problems
discussed in [3] and improves upon their time complexity as well. Due to space constraint,
we do not discuss these problems here. These can be accessed in the full version of the paper.

Table 1 offers a comparison of our results with all the previous results.

1.5 Organisation of the Paper
Section 2 introduces the notations and some well-known techniques/properties used through-
out the paper. Section 3 defines the shallow tree representation, a concise structure which
encapsulates the hierarchy of paths in the initial DFS tree. Section 4 is the core of our
work. Here, we describe how a DFS tree can be rerooted efficiently. Section 5 describes how
with some minor modifications to the data structure, rerooting procedure extends to a fault
tolerant algorithm. We present the fully dynamic algorithm in Section 6.

2 Preliminaries

2.1 Notations
Following notations will be used throughout this paper.

T : Any DFS tree of the original graph G.
dfn (x): The depth first number, i.e., the discovery time of the vertex x during the DFS
traversal.
v (i): the vertex x ∈ V such that dfn(x) = i.
dist (x, y): distance between the vertices x and y in the DFS tree T .

For the sake of ease of explanation, we shall assume that the graph remains connected at
all times. This assumption is without loss of generality because of the following standard
way of transforming the original graph right in the beginning - Introduce a dummy vertex r
and connect it to all vertices of the graph. Henceforth, we maintain a DFS tree rooted at r
for this augmented graph. It is easy to observe that the augmented graph remains connected
throughout and the DFS tree rooted at r will be such that the subtrees rooted at the children
of r constitute a DFS forest of the original graph.

2.2 Heavy-Light Decomposition
Sleator and Tarjan, in their seminal result on dynamic trees [42] introduced a technique of
partitioning any rooted tree called Heavy-light decomposition. Given any rooted tree, this
technique splits it into a set of vertex-disjoint ancestor-descendant paths. It marks all the

S. Baswana, S. Gupta, and A. Tulsyan 65:7

tree edges either dashed or solid - a tree edge is marked solid iff the subtree of the child
vertex is heaviest (in terms of number of vertices) among the subtrees of all its siblings and
dashed otherwise. A maximal sequence of vertices connected through solid edges constitutes
the required ancestor-descendant path. This decomposition can be carried out using DFS
traversal in O (n) time.

2.3 Fractional Cascading
Given n sorted arrays and a value x, suppose we need to find the predecessor/successor of
x in each of them. A naive way is to make a binary search on each array. Chazelle and
Guibas [14] introduced a novel tool called fractional cascading using which this problem
can be solved more efficiently. Also, Chen et al.[18] used this tool for arriving at an O (n)
algorithm for incremental updates. We adapt a customized version of their method.

I Lemma 7. Fractional cascading: Given n sorted arrays {Ai}i∈[n] each with li = |Ai|
elements and total

∑n
i li = m elements. There exists a data structure of O (m+ n) words,

which can be built in O (m+ n) time, such that for any given x, i, and k satisfying i, k ∈ [n]
and i+ k ≤ n, we can search for x (or its predecessor/successor) in all arrays Ai, . . . , Ai+k

using the data structure in O (k + logm) time.

3 Shallow Tree Representation

We now introduce the shallow tree representation for DFS tree T that plays a key role in our
algorithm. Using heavy-light decomposition, T is broken down into a set of vertex-disjoint
ancestor-descendant paths. Let’s denote this set with P. Observe that these paths are
connected through dashed edges in T . These dashed edges introduce a hierarchy among
paths in P and the shallow tree defined below captures this hierarchy.

I Definition 8. Given a DFS tree T of an undirected graph G, let P be the set of paths
obtained through heavy-light decomposition of T . Let H be the set of edges marked dashed
during the decomposition. For tree T , its shallow tree S is a rooted tree formed by collapsing
each element of P into a single node (super vertex). Note that, for each edge (y, z) ∈ H with
y = parent(z), the node in S that contains y is the parent of the node containing z.

Figure 2 demonstrates how a DFS tree is decomposed to form a set of ancestor-descendant
paths P which is subsequently used to form the shallow tree S.

To avoid ambiguity, we address the vertices in the shallow tree as “nodes” and the vertices
in the DFS tree as “vertices”. node (x) denotes the shallow tree node corresponding to the
path in P containing vertex x.

The construction of S described above ensures the following simple but crucial properties.
As a result of heavy-light decomposition of a tree T with n vertices, there can be at most
logn dashed edges on any root to leaf path in T . Recall that each edge in S corresponds
to a dashed edge. Thus, the depth of any node in tree S can’t be larger than logn. It is
because of this small depth that we choose the name shallow tree for S.
From the DFS property, neighbours of any vertex v ∈ V in the graph are either ancestors
or descendants of v in T . Consider any such neighbour u. Let p1 be the path in P
containing v and p2 be the path in P containing u. u and v may also lie in the same path
in P. From the construction of S, the nodes corresponding to p1 and p2 will share an
ancestor-descendant relation in S. So we can state the following lemma.

MFCS 2019

65:8 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

a

b

c

d e

f

g

h

i

j k

l

(a)

a

b

c

d e

f

g

h

i

j k

l

p1

p2

p3 p4

p5

p6

(b)

p1

p2 p3 p4

p5

p6

(c)

Figure 2 (a) A DFS tree T . (b) Heavy light decomposition of T and the resulting paths in P.
(c) The corresponding shallow tree.

I Lemma 9. For a DFS tree T of an undirected graph G = (V,E) with shallow tree S,
any vertex v ∈ V which lies in node µ ∈ S can have edges only to vertices lying in the
nodes which are ancestors or descendants of µ in S.

We require that the vertices of each solid path have consecutive dfn. This enables us to
represent each path p ∈ P in a compact manner using just the smallest and largest dfn of
vertices on p. For each path p, we store this pair as PathEndPoints at the corresponding
node of the shallow tree S. Assigning consecutive dfn to each solid path can be accomplished
easily - we carry out another DFS on T where for each vertex, the next vertex to be visited
is its child hanging through a solid edge. Thus, the processing of T to make the shallow tree
S requires only DFS on T and takes O (n) time.

4 Rerooting DFS Tree T

Given a DFS tree T for a graph G = (V,E) and a vertex r′ ∈ V , the objective is to compute
a DFS tree T ∗ rooted at r′ for the same graph G. First we compute the shallow tree
representation S of T . We now describe the rerooting procedure.

4.1 Reroot Procedure
The tree T ∗ is empty in the beginning and is grown gradually starting from r′. To build this
tree efficiently, we use the following two ideas. The first idea is to re-use the paths from P.
Observe that while rerooting, if we use the original adjacency list for scanning the neighbours,
we need O (m+ n) time. So the second idea is to populate for each vertex only a subset of
its adjacency list which is small and yet sufficient to compute a DFS tree (this idea was used
by [3] in the fault tolerant DFS problem). These lists we refer as reduced adjacency lists. We
take a lazy and frugal approach to populate them.

The intuition sketched above is materialized by carrying out a DFS traversal guided by
the shallow tree S. Note that a node of the shallow tree corresponds to a path in P. To
compute T ∗, our algorithm performs a sequence of steps. Each step begins with entering a
node of S through some vertex present on the path stored at the node and leaving it after
traversing the path along one direction. The first node to be visited is node(r′). We now

S. Baswana, S. Gupta, and A. Tulsyan 65:9

provide complete details of the computation involved in each step. Consider any node ν ∈ S.
Let path(y, z) be the path corresponding to ν. When the DFS traversal enters ν through a
vertex, say x, the following 3 simple operations are carried out.
1. Move towards the farther end of the path.

We determine the vertex from {y, z} farther from x. Let this vertex be y. DFS traversal
proceeds from x to y and path(x, y) is attached to the tree T ∗. Next, we update the
PathEndpoints (ν) such that it stores the endpoints of the untraversed part of path(y, z).
This choice of direction ensures that at least half of the path is traversed (referred to as
path halving technique, also used in [2, 3]).

2. Populate the reduced adjacency list of the path just traversed.
For vertices on path(x, y), we populate the reduced adjacency list L using ancestors and
descendants of ν in the shallow tree S. This will be explained below in Section 4.1.1.

3. Continue traversal.
Using the reduced adjacency list L of the traversed path computed in step 2 above, we
continue the DFS traversal along the unvisited neighbours of the vertices in the order
from y to x (opposite to the direction of traversal, due to the recursive nature of DFS).

Algorithm 1 presents the complete pseudocode of the rerooting procedure based on the
above 3 steps. All vertices are marked unvisited initially and the reduced adjacency list L is
empty. Invoking Reroot(r′) produces the DFS tree rooted at r′.

Algorithm 1 Recursive procedure to reroot the DFS Tree T .

1 Function Reroot (x)
2 (y, z)← PathEndpoints (node (x)) ;
3 if dist(x, z) > dist(x, y) then Swap (y, z); /* compute dist using dfns */
4 Attach path (x, y) to T ∗;
5 if x 6= z then
6 w ← Neighbour of x on path(y, z) nearest to z ;
7 PathEndpoints (node (x))← (w, z) ; /* untraversed path */
8 end
9 L ← ReducedAL (L, (x, y)) ; /* Update L for vertices on path(x, y) */

10 for i = dfn(y) to dfn(x) do status(v(i))← visited ;
11 for i = dfn(y) to dfn(x) do
12 foreach vertex u ∈ L(v(i)) do
13 if status(u) = unvisited then {add (v (i) , u) to T ∗; Reroot(u)} ;
14 end
15 end

4.1.1 Populating Reduced Adjacency Lists
Here we define a query Q (u, (ps, pe)), where u, ps, pe ∈ V satisfy the following constraints:

ps and pe are the endpoints of an ancestor-descendant path in T .
u is a descendant of the highest vertex on path (ps, pe), but does not lie on the path.

This query finds an edge from the vertex u that is incident to path(ps, pe) closest to pe. It
returns null if no such edge exists, otherwise it returns the endpoint other than u.

Consider any node ν ∈ S, and let path(y, z) be its corresponding path in P. When the
DFS traversal enters ν through x and proceeds towards y, we populate the reduced adjacency
lists of vertices on path(x, y) using Lemma 9 as follows.

MFCS 2019

65:10 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

Processing Ancestors of vertices on path(x, y).
For each u ∈ path(x, y) and for each ancestor µ of ν, we add Q (u, PathEndpoints (µ))
to L (u).
Processing Descendants of vertices on path(x, y).
Using the shallow tree S, one can list all the vertices that are descendants of vertices
on path(x, y) in T . From all these vertices, we query for an edge to path(x, y) which is
incident closest to y. For any descendant u, if the query Q (u, (x, y)) returns a non-null
value, say w, then we add u to L (w).

I Remark 10. In Algorithm 1, after visiting x, if we moved towards the leaf node, then the
untraversed part of ν has to be treated as an ancestor path while populating the reduced
adjacency lists of path (x, y), and as a descendant path, otherwise.

Algorithm 2 Populating reduced adjacency lists of vertices on path(x, y).

1 Function ReducedAL (L, (x, y))
2 µ← parent (node (x));
3 while µ 6= NULL do /* edges to ancestor paths */
4 for i = dfn(y) to dfn(x) do
5 L (v (i))← L (v (i)) ∪ {Q(v (i) , PathEndPoints (µ))};
6 end
7 µ← parent(µ) ;
8 end
9 if dfn (x) < dfn (y) then z ← x else z ← y; /* z is ancestor among two */

10 C ← DescT (z) \ {v (dfn (x)) , . . . , v (dfn (y))};
11 foreach u ∈ C do /* each descendant of path (x, y) */
12 w ← Q (u, (x, y)) ; /* ensure w is closest to y */
13 if w 6= NULL then L (w)← L (w) ∪ {u} ;
14 end
15 return L

In Algorithm 2, we used query Q (u, (ps, pe)) as a black box. This query can be answered very
easily as follows. The constraints of Q (u, (ps, pe)) imply that the returned edge is always an
edge from u to an ancestor of u. For answering this query, we use a data structure D which
stores the following information for each vertex u.

I Definition 11. D (u) is an array that stores each ancestor of u in T to which u is a
neighbour and it stores them in the increasing order of distance from the root of T .

This data structure enables us to answer query Q (u, (ps, pe)) using a binary search on
array D (u) and it takes O (logn) time only. Interestingly, the data structure D can be
preprocessed very easily in O (m+ n) time as follows. We visit vertices in the increasing
order of their depth first numbers. Note that for each vertex v, the neighbours of v which
have dfn larger than that of v are its descendants. For each such descendant u, we append
v to D(u). Iterating in increasing order of dfn ensures that all arrays in D are sorted as
needed.

I Theorem 12. Given a DFS Tree T of an undirected graph G, it takes O (m+ n) time
to build a data structure consisting of exactly (m + n) words which can answer the query
Q (u, (ps, pe)) in O (logn) time.

S. Baswana, S. Gupta, and A. Tulsyan 65:11

4.2 Time Complexity Analysis
During preprocessing, we construct the shallow tree S for the DFS tree T and build D. This
processing as shown earlier can be completed in O (m+ n) time. The time complexity of the
Reroot procedure is bounded by the time required to populate the reduced adjacency lists L.
This in turn, is bounded by the number of calls to query Q. To analyse the number of calls
made from any vertex w, let ν be the node in the shallow tree S, containing w. In general, if
the bound on height of S is d, ReducedAL makes worst-case d queries from w to ancestors
of ν. Also when an ancestor of ν in S, say µ, is visited during Reroot procedure, ReducedAL
makes a query from w to µ. The path halving technique (line 3 in Algorithm 1) ensures that
any node in S (or a path in P) is visited at most logn times. This implies that any such
ancestor µ may be visited at most logn times. Thus, we can have worst-case d (logn+ 1)
queries from w to its ancestor paths throughout the Reroot procedure. Summing over all
the vertices, there can be at most nd (logn+ 1) calls to query Q. Therefore, populating
the reduced adjacency lists L takes overall O

(
nd log2 n

)
time. From Section 3, we know

d ≤ logn. Thus, using Theorem 12, we can state the following lemma.

I Lemma 13. Given a DFS Tree T of an undirected graph G, it takes O (m+ n) time to
build a data structure of (m+ n) words using which we can compute a DFS Tree of G rooted
at any given vertex in O

(
n log3 n

)
time.

4.2.1 Getting rid of a log factor
Consider the moment when the Reroot procedure enters a path (y, z) through the vertex
x and reaches the endpoint y. In Algorithm 2, for each descendant w of path (x, y), we
perform query Q (w, (x, y)) separately. Instead, using Fractional Cascading, we can perform
all these queries together in an efficient manner. Among x and y, let x be the vertex closer
to the root of T . As described earlier, all the vertices of path(x, y) have consecutive dfn,
and so do the vertices of subtree T (x). Let last (x) be the vertex in T (x) with the largest
dfn. Since vertices on path (x, y) have already been visited, we need to query for edges only
from vertices with dfn between dfn (y) + 1 and dfn (last (x)). Finding edges to path (x, y)
from these vertices can be done with a single query to the fractionally cascaded D (Lemma
7). It takes O (logm+ dfn (last (x))− dfn (y)) time to execute this query. We charge the
logm part of the query time to the vertices on path (x, y) and the dfn (last (x))− dfn (y) is
distributed among the descendant vertices. Thus, each descendant vertex incurs a constant
charge.

Note that, queries to the ancestors of path (x, y) are answered using the original D itself.
Therefore, in a shallow tree of height d, each vertex v ∈ V incurs following charges during
Reroot procedure - O (d logn) when v acts as a descendant in the queries made while visiting
ancestors of v, and O (d logn+ logm) while visiting v itself. Overall the charge on any vertex
is O (d logn) and, therefore, the time complexity of Reroot procedure reduces to O (nd logn).
So we can state the following lemma.

I Lemma 14. Given an undirected graph G, the DFS tree T and corresponding shallow tree
of height d, it takes O (m+ n) time to build a data structure occupying O (m+ n) words
using which the Reroot algorithm executes in O (nd logn) time.

4.3 Correctness of Reroot Procedure
As is evident from the pseudocode of Algorithm 1, besides populating the reduced adjacency
lists, Reroot imitates a usual DFS traversal. So in order to show that Reroot computes a
valid DFS tree, we need to prove the following. Each edge e that is not added to reduced

MFCS 2019

65:12 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

adjacency list is indeed redundant and will appear as a back edge in the resulting DFS tree.
We can show this as follows.

During Reroot procedure, consider the moment when we attach some path, say path(x, y)
to T ∗. Lemma 9 implies that all the neighbours of vertices on the path(x, y) will lie either
in ancestors or in descendants of path(x, y) in the shallow tree. For each descendant vertex
v of path(x, y), we add an edge from v incident on path(x, y) closest to y (lines 12,13 of
Algorithm 2). For each ancestor path of path(x, y), say µ, we add an edge from each vertex
of path(x, y) to µ (line 5 of Algorithm 2). These ensure that at the moment path (x, y)
is visited and attached to T ∗, from each connected component in the graph induced by
unvisited vertices, the edge incident on path(x, y) closest to vertex y is added to L (if exists).
Using Components Property, it follows that all those edges incident on path(x, y), that are
not added to L, will appear as back edges in the resulting DFS tree. Hence, the traversal
performed using the reduced adjacency lists indeed results in a valid DFS tree.

5 Extension to Fault Tolerant DFS Tree

Given an undirected graph G, we build a DFS tree of G, say T , the corresponding shallow
tree S, and the fractionally cascaded D. Let F be the set of failures (edges/vertices) in G,
with |F | = k. Here, we describe how with some elementary modifications to the shallow tree
of T , procedure Reroot can be utilized to report a DFS tree of G \ F . For the given set F ,
we update the set P and the shallow tree S as follows.
1. Each vertex maintains a state: active or failed. For a failed vertex x ∈ F , we toggle x’s

state to failed. Let p ∈ P be the path containing x. We remove x from p. The resulting
smaller paths are added to P and p is removed from P.

2. For each failed edge e = (u, v), we mark the corresponding entries in the adjacency lists
of u and v as failed. Here, we do not make any changes to fractionally cascaded D. If
failed edge e is a tree-edge and was marked solid during heavy-light decomposition, P
is updated as follows. Path p ∈ P containing e is split into two smaller paths. These
smaller paths are added to P and p is removed from P.

3. After updating P, shallow tree S is updated as follows. For any path p ∈ P, let the
vertex in p closest to root of T be x. The parent of node corresponding to p in S will be
the node containing the nearest active ancestor of x.

Given the set F , we can update P and S in O (n) time as follows - Make a DFS traversal
through T while ensuring vertices are visited in increasing order of their dfn. Update P
and S as discussed above. For each failure, the number of nodes in S increases by at most
one. After k updates, S can have at most k new nodes and may not be shallow anymore.
However, the depth of a node ν in S doesn’t increase due to any failure which does not lie
on the path from ν to root of S. Thus, if the maximum number of failures on any root-leaf
path in T is k′, the height of the shallow tree will be at most k′ + logn.

To ensure that no deleted vertices/edges are traversed during Reroot procedure, we make
the following modifications. Since no changes are made to fractionally cascaded D, the result
of some query Q (v, (ps, pe)) may be an endpoint of a failed edge. In such a case, we iterate
in D (v) starting from the failed edge towards ps until we find an edge present in G \ F .
However, if we cross ps in doing so, it implies that there is no edge between vertex v and
path (ps, pe), we stop and return null. During the procedure Reroot, we spend overall O (k)
time in such iterations. Also note that each node of the updated S corresponds to a path
consisting of active vertices only. So Q (v, (ps, pe)) never returns a failed vertex. It follows
from the changes in the query and the shallow tree described above that Reroot procedure
reports a valid DFS tree of G \ F . Using Lemma 14, we can conclude the following theorem.

S. Baswana, S. Gupta, and A. Tulsyan 65:13

I Theorem 15. An undirected graph G can be preprocessed in O (m+ n) time to build a
DFS tree, say T , and a data structure of O (m+ n) words such that for any set F of k failed
vertices or edges, a DFS tree of G \ F can be reported in O (n (k′ + logn) logn) time, where
k′ ≤ k is the maximum number of faults on any root-leaf path in the tree T .

6 Fully Dynamic DFS

We first describe how the fault tolerant DFS algorithm can handle incremental updates.
Following that, we use the overlapped periodic rebuilding technique to arrive at a fully dynamic
DFS algorithm. The ideas utilized in both of these steps were used by Baswana et al. [3].

Let U be the set of updates in any undirected graph G. For the edge insertions, we
directly add them to the reduced adjacency lists of the endpoints of the edges. To handle
insertion of a vertex, we add the new vertices in V and treat their edges as edge insertions.
Observe that these modifications are sufficient to handle incremental updates. The size of the
reduced adjacency lists after |U | updates is at most n (|U |+ logn) (logn+ 1) (from Section
4.2). So the worst-case time complexity of our algorithm is O (n (|U |+ logn) logn).

We can use the Reroot procedure to report a DFS tree after every update. But as |U |
increases, the algorithm slows down. Therefore, we need to rebuild the data structures
(denoted collectively using A) periodically to maintain the efficiency. We rebuild them after,
let’s say, every c updates. It takes O (m+ n) time to rebuild the data structures. The cost
of rebuilding is amortized among the c updates. This results in an amortized runtime fully
dynamic algorithm.

To get a worst-case bound, the rebuilding is done in an overlapped fashion as follows.
The original data structures A0 are used till first 2c updates. At the end of kc updates (for
k ≥ 1), we start building Ak, the data structures for the graph after incorporating the first
kc updates. The computation of building Ak is distributed evenly over the next c updates to
the graph (from (kc+ 1) to (k + 1)c updates). However, during these updates we use Ak−1
to report the updated DFS Tree. This ensures |U | is never larger than 2c. After (k + 1)c
updates, we have Ak ready for use and we can discard Ak−1. This helps us manage our
data structures in O (m+ n) space. For this overlapped periodic rebuilding framework, the
following lemma from [3] provides the worst-case bound on the update time we can derive.

I Lemma 16. (Overlapped Periodic Rebuilding: Lemma 6.1 in [3]) Let D be a data structure
that can be used to report the solution of a graph problem after a set of U updates on an input
graph G. If D can be built in O (f) time and the solution for graph G+U can be reported in
O (h+ |U | · g)time, then D can be used to report the solution after every update in worst-case
O
(√
fg + h

)
update time, given that f/g ≤ n.

Substituting f = m, g = n logn and h = n log2 n, we obtain, O
(√
fg + h

)
= O

(√
mn logn

)
.

Hence we conclude with the following theorem.

I Theorem 17. An undirected graph can be preprocessed in O (m+ n) time to build a data
structure occupying O (m+ n) words, using which one can maintain a DFS tree for any
online sequence of insertions and deletions of vertices/edges in O

(√
mn logn

)
worst-case

time per update.

MFCS 2019

65:14 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

Fully Dynamic Graph Sparsifiers. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 335–344, 2016. doi:10.1109/FOCS.2016.44.

2 Alok Aggarwal, Richard J. Anderson, and Ming-Yang Kao. Parallel Depth-First Search in
General Directed Graphs. SIAM J. Comput., 19(2):397–409, 1990. doi:10.1137/0219025.

3 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in Undirected Graphs: breaking the O(m) barrier. In Symposium on Discrete Algorithms,
SODA, pages 730–739, 2016. doi:10.1137/1.9781611974331.ch52.

4 Surender Baswana and Keerti Choudhary. On Dynamic DFS Tree in Directed Graphs. In
MFCS, Proceedings, Part II, pages 102–114, 2015. doi:10.1007/978-3-662-48054-0_9.

5 Surender Baswana, Ayush Goel, and Shahbaz Khan. Incremental DFS algorithms: a theoretical
and experimental study. In Symposium on Discrete Algorithms, SODA, pages 53–72, 2018.
doi:10.1137/1.9781611975031.4.

6 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully Dynamic Maximal Matching
in O(log n) Update Time (Corrected Version). SIAM J. Comput., 47(3):617–650, 2018.
doi:10.1137/16M1106158.

7 Surender Baswana and Shahbaz Khan. Incremental Algorithm for Maintaining DFS Tree
for Undirected Graphs. In ICALP, Proceedings, Part I, pages 138–149, 2014. doi:10.1007/
978-3-662-43948-7_12.

8 Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized
algorithms for graph spanners. ACM Trans. Algorithms, 8(4):35:1–35:51, 2012. doi:10.1145/
2344422.2344425.

9 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic Fully
Dynamic Data Structures for Vertex Cover and Matching. SIAM J. Comput., 47(3):859–887,
2018. doi:10.1137/140998925.

10 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-Edge-Fault-Tolerant
Approximate Shortest-Path Trees. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS, pages 18:1–18:14, 2016. doi:10.4230/LIPIcs.STACS.2016.18.

11 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-Tolerant Ap-
proximate Shortest-Path Trees. Algorithmica, 80(12):3437–3460, 2018. doi:10.1007/
s00453-017-0396-z.

12 Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive and
(µ, α)-spanners. Theor. Comput. Sci., 580:94–100, 2015. doi:10.1016/j.tcs.2015.02.036.

13 Timothy M. Chan, Mihai Patrascu, and Liam Roditty. Dynamic Connectivity: Connecting to
Networks and Geometry. In Symposium on Foundations of Computer Science, FOCS, pages
95–104, 2008. doi:10.1109/FOCS.2008.29.

14 Bernard Chazelle and Leonidas J. Guibas. Fractional Cascading: I. A Data Structuring
Technique. Algorithmica, 1(2):133–162, 1986. doi:10.1007/BF01840440.

15 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault Tolerant Spanners for
General Graphs. SIAM J. Comput., 39(7):3403–3423, 2010. doi:10.1137/090758039.

16 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-Sensitivity Distance Oracles
and Routing Schemes. Algorithmica, 63(4):861–882, 2012. doi:10.1007/s00453-011-9543-0.

17 Lijie Chen, Ran Duan, Ruosong Wang, and Hanrui Zhang. Improved Algorithms for
Maintaining DFS Tree in Undirected Graphs. CoRR, abs/1607.04913, 2016. URL: http:
//arxiv.org/abs/1607.04913v2, arXiv:1607.04913.

18 Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang. An Improved
Algorithm for Incremental DFS Tree in Undirected Graphs. In SWAT, pages 16:1–16:12, 2018.
doi:10.4230/LIPIcs.SWAT.2018.16.

19 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

http://dx.doi.org/10.1109/FOCS.2016.44
http://dx.doi.org/10.1137/0219025
http://dx.doi.org/10.1137/1.9781611974331.ch52
http://dx.doi.org/10.1007/978-3-662-48054-0_9
http://dx.doi.org/10.1137/1.9781611975031.4
http://dx.doi.org/10.1137/16M1106158
http://dx.doi.org/10.1007/978-3-662-43948-7_12
http://dx.doi.org/10.1007/978-3-662-43948-7_12
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1137/140998925
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.18
http://dx.doi.org/10.1007/s00453-017-0396-z
http://dx.doi.org/10.1007/s00453-017-0396-z
http://dx.doi.org/10.1016/j.tcs.2015.02.036
http://dx.doi.org/10.1109/FOCS.2008.29
http://dx.doi.org/10.1007/BF01840440
http://dx.doi.org/10.1137/090758039
http://dx.doi.org/10.1007/s00453-011-9543-0
http://arxiv.org/abs/1607.04913v2
http://arxiv.org/abs/1607.04913v2
http://arxiv.org/abs/1607.04913
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.16
http://dx.doi.org/10.1145/1039488.1039492

S. Baswana, S. Gupta, and A. Tulsyan 65:15

20 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for Distances Avoiding a Failed Node or Link. SIAM J. Comput., 37(5):1299–1318,
2008. doi:10.1137/S0097539705429847.

21 Ran Duan. New Data Structures for Subgraph Connectivity. In ICALP, Proceedings, Part I,
pages 201–212, 2010. doi:10.1007/978-3-642-14165-2_18.

22 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

23 Shimon Even and Yossi Shiloach. An On-Line Edge-Deletion Problem. J. ACM, 28(1):1–4,
1981. doi:10.1145/322234.322235.

24 Paolo Giulio Franciosa, Giorgio Gambosi, and Umberto Nanni. The Incremental Maintenance
of a Depth-First-Search Tree in Directed Acyclic Graphs. Inf. Process. Lett., 61(2):113–120,
1997. doi:10.1016/S0020-0190(96)00202-5.

25 Daniele Frigioni and Giuseppe F. Italiano. Dynamically Switching Vertices in Planar Graphs.
Algorithmica, 28(1):76–103, 2000. doi:10.1007/s004530010032.

26 Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geometric spanners
and geometric routing. In Symposium on Discrete Algorithms, SODA, pages 591–600, 2008.
URL: http://dl.acm.org/citation.cfm?id=1347082.1347148.

27 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Symposium on Discrete Algorithms, SODA, pages 841–850, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

28 Manoj Gupta and Shahbaz Khan. Multiple Source Dual Fault Tolerant BFS Trees. In
44th International Colloquium on Automata, Languages, and Programming, ICALP, pages
127:1–127:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.127.

29 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental Single-Source
Shortest Paths on Undirected Graphs in Near-Linear Total Update Time. J. ACM, 65(6):36:1–
36:40, 2018. URL: https://dl.acm.org/citation.cfm?id=3218657, doi:10.1145/3218657.

30 Monika Rauch Henzinger and Valerie King. Randomized Fully Dynamic Graph Algorithms
with Polylogarithmic Time per Operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/
320211.320215.

31 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

32 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Symposium on Discrete Algorithms, SODA, pages 1131–1142, 2013.
doi:10.1137/1.9781611973105.81.

33 Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
Complexity Models for Incremental Computation. Theor. Comput. Sci., 130(1):203–236, 1994.
doi:10.1016/0304-3975(94)90159-7.

34 Kengo Nakamura and Kunihiko Sadakane. A Space-Efficient Algorithm for the Dynamic DFS
Problem in Undirected Graphs. In In International Workshop on Algorithms and Computation,
pages 295–307, 2017. doi:10.1007/978-3-319-53925-6_23.

35 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic Minimum
Spanning Forest with Subpolynomial Worst-Case Update Time. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS, pages 950–961, 2017. doi:10.1109/
FOCS.2017.92.

36 John H. Reif. Depth-First Search is Inherently Sequential. Inf. Process. Lett., 20(5):229–234,
1985. doi:10.1016/0020-0190(85)90024-9.

37 John H. Reif. A Topological Approach to Dynamic Graph Connectivity. Inf. Process. Lett.,
25(1):65–70, 1987. doi:10.1016/0020-0190(87)90095-0.

38 Liam Roditty. Fully Dynamic Geometric Spanners. Algorithmica, 62(3-4):1073–1087, 2012.
doi:10.1007/s00453-011-9504-7.

MFCS 2019

http://dx.doi.org/10.1137/S0097539705429847
http://dx.doi.org/10.1007/978-3-642-14165-2_18
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1016/S0020-0190(96)00202-5
http://dx.doi.org/10.1007/s004530010032
http://dl.acm.org/citation.cfm?id=1347082.1347148
http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.127
https://dl.acm.org/citation.cfm?id=3218657
http://dx.doi.org/10.1145/3218657
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.1016/0304-3975(94)90159-7
http://dx.doi.org/10.1007/978-3-319-53925-6_23
http://dx.doi.org/10.1109/FOCS.2017.92
http://dx.doi.org/10.1109/FOCS.2017.92
http://dx.doi.org/10.1016/0020-0190(85)90024-9
http://dx.doi.org/10.1016/0020-0190(87)90095-0
http://dx.doi.org/10.1007/s00453-011-9504-7

65:16 Fault Tolerant and Fully Dynamic DFS in Undirected Graphs

39 Liam Roditty and Uri Zwick. Improved Dynamic Reachability Algorithms for Directed Graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. doi:10.1137/060650271.

40 Liam Roditty and Uri Zwick. Dynamic Approximate All-Pairs Shortest Paths in Undirected
Graphs. SIAM J. Comput., 41(3):670–683, 2012. doi:10.1137/090776573.

41 Piotr Sankowski. Dynamic Transitive Closure via Dynamic Matrix Inverse (Extended Abstract).
In Symposium on Foundations of Computer Science, FOCS, pages 509–517, 2004. doi:
10.1109/FOCS.2004.25.

42 Daniel Dominic Sleator and Robert Endre Tarjan. A Data Structure for Dynamic Trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

43 Shay Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In Symposium on
Foundations of Computer Science, FOCS, pages 325–334, 2016. doi:10.1109/FOCS.2016.43.

44 Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

45 Mikkel Thorup. Fully-Dynamic Min-Cut. Combinatorica, 27(1):91–127, 2007. doi:10.1007/
s00493-007-0045-2.

http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1109/FOCS.2004.25
http://dx.doi.org/10.1109/FOCS.2004.25
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1007/s00493-007-0045-2
http://dx.doi.org/10.1007/s00493-007-0045-2

RLE Edit Distance in Near Optimal Time
Raphaël Clifford
Department of Computer Science, University of Bristol, UK
Raphael.Clifford@bristol.ac.uk

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Tomasz Kociumaka
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
Institute of Informatics, University of Warsaw, Poland
kociumaka@mimuw.edu.pl

Daniel P. Martin1

The Alan Turing Institute, British Library, London, UK
dmartin@turing.ac.uk

Przemysław Uznański
Institute of Computer Science, University of Wrocław, Poland
puznanski@cs.uni.wroc.pl

Abstract
We show that the edit distance between two run-length encoded strings of compressed lengths m

and n respectively, can be computed in O(mn log(mn)) time. This improves the previous record by
a factor of O(n/ log(mn)). The running time of our algorithm is within subpolynomial factors of
being optimal, subject to the standard SETH-hardness assumption. This effectively closes a line of
algorithmic research first started in 1993.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Data structures design and analysis

Keywords and phrases String algorithms, Compression, Pattern matching, Run-length encoding

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.66

Funding Tomasz Kociumaka: Supported by ISF grants no. 824/17 and 1278/16 and by an ERC
grant MPM under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).

1 Introduction

The edit distance is one of the most common distance measures between strings. For two
strings of length M and N respectively, the edit distance counts the minimum number of
single character insertions, deletions and substitutions needed to transform one string into
the other. The first record of an O(MN) algorithm to compute the edit distance is from
1968 [14] although it was rediscovered independently a number of times subsequently. Masek
and Paterson improved the running time to O(MN/ logN), for N ≥M , in 1980 and this is
the fastest known algorithm to date [12]. Much more recently it has been shown that no
O(MN1−ε) time edit distance algorithm can exist, subject to the strong exponential time
hypothesis (SETH) [4, 5]. As a result, it is likely that little further progress can be made in
terms of improving its worst case complexity.

1 Research carried out while the author was a member of the University of Bristol and the Heilbronn
Institute for Mathematical Research.

© Raphaël Clifford, Paweł Gawrychowski, Tomasz Kociumaka, Daniel P. Martin, and Przemysław
Uznański;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 66; pp. 66:1–66:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0599-0915
mailto:Raphael.Clifford@bristol.ac.uk
https://orcid.org/0000-0002-6993-5440
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0003-0417-1635
mailto:dmartin@turing.ac.uk
https://orcid.org/0000-0002-8652-0490
mailto:puznanski@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.66
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 RLE Edit Distance in Near Optimal Time

In this paper we focus on the problem of computing the edit distance between two
compressed strings. The run-length encoding (RLE) of a string compresses consecutive
identical symbols into a run, denoted σi if the symbol σ is repeated i times. For example
aaabbbbaaa would be compressed to a3b4a3. This form of compression is commonly used
for image compression but also has wider applications including, for example, in image
processing [9, 15] and succinct data structures [11].

In 1993 Bunke and Csirik proposed the first algorithm for computing the edit distance
between RLE strings. For two strings of RLE-compressed lengths m and n respectively, their
algorithm runs in O(mn) time in the special case where all the runs are of the same length [6].
However the running time falls back to the naive complexity of O(MN) time in the worst
case where M and N are the uncompressed lengths of the two strings. This worst case
complexity was subsequently improved to O(Nm+Mn) [3, 7] and then O(min{Nm,Mn})
time in 2007 [10]. Finally in 2013 the fastest solution prior to this current work was given
running in O(mn2) time, where n ≥ m [8]. This was the also the first algorithm for the RLE
edit distance problem whose running time did not depend on the uncompressed lengths of
the input strings.

For uncompressed strings, the longest common subsequence (LCS) problem has long
been considered a close relative of the edit distance problem. This is partly due to the
similarity of their dynamic programming solutions and partly because LCS is a special case
of edit distance when general costs are allowed for the different mismatch and substitution
operations. Moreover, the two problems have the same quadratic time upper bounds and
SETH-hardness lower bounds [5]. Somewhat surprisingly, however, the history of algorithms
for LCS and edit distance have not mirrored each other when the problems are considered
on RLE strings. In particular, an O(mn log(mn)) time algorithm for computing the LCS on
RLE strings was given in 1999 [2] which is considerably faster than has been possible up
to this point for the edit distance problem. Some work has also been carried out since that
date to improve the log factor in the running time complexity for the LCS problem [1,13].

In this paper we speed up the running time for the edit distance problem on RLE strings
by a factor of O(n/ log(mn)), matching the fastest LCS algorithm to within a logarithmic
factor and making it within subpolynomial factors of being optimal, assuming SETH holds.
As a result, our new algorithm shows that the LCS and edit distance problems are indeed of
essentially the same complexity even when the input strings are run-length encoded. This
effectively closes a line of algorithmic research first started in 1993.

I Theorem 1. Given two RLE strings of compressed length n and m respectively, there
exists an algorithm to compute their edit distance which runs in O(mn log(mn)) time.

2 Previous Work and Preliminaries

The classic dynamic programming solution for computing the edit distance between un-
compressed strings X and Y of uncompressed lengths M and N respectively, computes the
distance between all prefixes X[1, . . . , i] and Y [1, . . . , j]. The key recurrence which enables
us to do this efficiently is given by:

ED(i, j) = min(ED(i− 1, j − 1) + δ(Xi 6= Yj),ED(i− 1, j) + 1,ED(i, j − 1) + 1).

From this the classic O(MN) time solution follows directly.
The previous approaches for the edit distance problem on RLE strings take this recur-

rence and the implied dynamic programming table as their starting point. The basic idea
was introduced by Bunke and Csirk [6] whose algorithm works by dividing the dynamic
programming table into “blocks”, where each block is defined by a run in the original strings.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:3

For each block the central task is to compute its bottom row and rightmost column given
the bottom row of the block above and the rightmost column of the block to the left. For
simplicity of terminology, we will refer to the rightmost column of the block to the left and
the bottom row of the block above collectively as the input border of a block and the bottom
row and rightmost column of a block as its output border. Figure 1 illustrates an example.

In [3, 7] it was shown that the work needed to derive the values of all the output borders
of blocks is at most linear in their length. When computing the edit distance between strings
X and Y , the length of each row in the dynamic programming table is the uncompressed
length of string Y and the length of each column is the uncompressed length of X. If there
are m runs in string X and n runs in Y then the total time complexity for computing the
edit distance using their approach is therefore O(Nm+Mn).

The work closest to ours is the O(mn2) algorithm of Chen and Chao [8]. They observe
that the borders of the blocks in the dynamic programming table are piecewise linear with
gradient ±1 or 0. The borders can be therefore concisely represented by specifying their
starting values as well as the positions and types of the points of changing gradient called
the turning points. They prove that for a given block the number of turning points in
an output border is at most a constant greater than in its input border. Consequently, a
simple calculation shows that the total number of turning points is O(mn2) (for m ≤ n).
Chen and Chao arrive at their final complexity by designing a procedure that computes the
representation of the output border of a block, given the representation of its input border,
in time proportional to the number of turning points. We now summarise their approach
using our own notation.

There are two distinct types of blocks in the dynamic programming table. A match
block corresponds to a rectangle where the corresponding symbols in the two strings match.
A mismatch block corresponds to a rectangle where the corresponding symbols mismatch.
Figure 1 shows both match and mismatch blocks. Borrowing notation from [8] we say that
element (i, j) of the dynamic programming table ED is in diagonal j − i. Let (id, jd) be the
intersection of the input border with diagonal j − i.

I Lemma 2 ([8, Lemma 1]). For a match block, ED(i, j) = ED(id, jd).

Lemma 2 indicates that for a match block we can simply copy the values from the
corresponding position in the input border to derive the values of the output border. The
main challenge is therefore how to handle mismatch blocks.

a

b

a

a b a b

Figure 1 Match blocks are in grey. The thick line is for an input border and the dotted line an
output border. The input border is contained entirely inside the neighbouring match blocks.

MFCS 2019

66:4 RLE Edit Distance in Near Optimal Time

For mismatch blocks Chen and Chao’s algorithm, in a similar manner to previous RLE
edit distance algorithms, splits the problem into two parts corresponding to shortest paths
that pass through the leftmost column or the top row [3,6–8]. Consider a mismatch block
of height h and width w corresponding to runs ah−1 and bw−1 such that h ≤ w (the other
case can be processed similarly by swapping the left and the top part of the input border).
LEFT[1, h] and TOP[1, w] denotes the values of the left and the top part of the input border,
numbered in a bottom-to-top and a left-to-right direction, respectively. For an array S[1, n]
and a parameter h ∈ Z+, let S(h)[i] = min{S[j] | i− h+ 1 ≤ j ≤ i, 1 ≤ j ≤ n}. Chen and
Chao separately compute all the output border values that are derived from a value in the
left part of the input border, denoted OUTLEFT[1, w + h − 1], and similarly compute all
the output border values that are derived from a value in the top part of the input border,
denoted OUTTOP[1, w + h− 1], as follows.

OUTLEFT[i] =


LEFT(h)[i] + i− 1 for i ∈ [1, h];
LEFT(h)[h] + i− 1 for i ∈ [h,w];
LEFT(h)[i− w + h] + w − 1 for i ∈ [w,w + h− 1];

(1)

OUTTOP[i] =
{

TOP(h)[i] + h− 1 for i ∈ [1, w];
TOP(h)[i] + w + h− 1− i for i ∈ [w,w + h− 1].

(2)

We start with reformulating the algorithmic framework of Chen and Chao using the
following notation.

I Definition 3. Let S[1, n] be a 1-indexed array of length n.
For a parameter h ∈ Z+, SWM(S, h) (Sliding Window Minima) returns the array S(h) of
length n+ h− 1.
split(S,m) returns the two subarrays S[1,m], and S[m+ 1, n].
S±−→1 returns S with the gradient decreased/increased by one, or formally S′[i] = S[i]± i.
For an integer constant c, S + c returns S with every value increased by c.
initialise(`) returns an array of length ` initially filled with zeroes.
join(S1, S2) simply concatenates two arrays.

Now, equations (1) and (2) can be rephrased as Algorithms 1 and 2, respectively. The
final step of the algorithm is to compute the output border as the minimum of OUTTOP[i]
and OUTLEFT[i] for each index i. This is performed in linear time per block by Chen and
Chao [8]. In Section 3 we will design a new implementation of both algorithms and a subtle
amortised argument for this final step. The latter is based on the fundamental property of
the values in an output border summarised by Lemma 4.

I Lemma 4 ([8, Lemma 7]). If there exists an i such that OUTTOP[i] ≤ OUTLEFT[i], then
OUTTOP[j] ≤ OUTLEFT[j] for all j ≥ i.

Algorithm 1 Compute the shortest path passing through the left border.

1 S ← SWMh(LEFT[1, h], h);
2 S`, Sr ← split(S, h);
3 S1 ← S` +−→1 − 1;
4 S2 ← initialise(w − h) +−→1 + S[h] + h− 1;
5 S3 ← Sr + w − 1;
6 OUTLEFT ← join(join(S1, S2), S3);

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:5

Algorithm 2 Compute the shortest path passing through the top border.

1 S ← SWMh(TOP[1, w], h);
2 S`, Sr ← split(S,w);
3 S1 ← S` + h− 1;
4 S2 ← Sr −−→1 + w + h− 1;
5 OUTTOP ← join(S1, S2);

Before we go on to explain how we speed up the task of deriving the borders of blocks,
it is worth exploring for a moment why we cannot simply apply, perhaps with some small
modifications, the known O(mn log(mn)) time solution for LCS on RLE strings [2]. The key
obstacle comes from the different nature of optimal paths in the dynamic programming table
of the LCS and edit distance problems.

For the LCS problem on RLE strings Apostolico et al. [2] introduced two important
concepts. The first is forced paths and the second corner paths. They say that a path
beginning at the upper-left corner of a match block is forced if it traverses the block by
strictly diagonal moves and, whenever the right (respectively, lower) side of an intermediate
match block is reached, proceeds to the next match block by a straight horizontal (respectively,
vertical) line through the mismatch blocks in between. A corner path is one that enters
match blocks in the top left corner and exits only through the bottom right corner. They
show that there is always a longest common subsequence between two strings corresponding
to the concatenation of subpaths of corner and forced paths. This fact greatly reduces the
number of different paths that have to be considered and hence the complexity of solving the
overall LCS problem. However for the edit distance problem this property of forced paths
no longer holds. Figures 2 and 3 show an example of this key difference between optimal
paths under edit distance and LCS. In Figure 2 we can see that there is no optimal vertical
(or horizontal) path through the mismatch block. By contrast, there is indeed an optimal
vertical path for the LCS problem as illustrated by Figure 3.

In order to speed up edit distance computation on RLE strings we introduce a new data
structure for input borders and output borders. This will allow us to derive the values of
output borders from their respective input borders in amortised logarithmic time per border,
rather than the previous linear time. The rest of the paper is devoted to this task.

a a a a a a a a a
0 1 2 3 4 5 6 7 8 9

a 1 0 1 2 3 4 5 6 7 8
a 2 1 0 1 2 3 4 5 6 7
a 3 2 1 0 1 2 3 4 5 6
b 4 3 2 1 1 2 3 4 5 6
b 5 4 3 2 2 2 3 4 5 6
b 6 5 4 3 3 3 3 4 5 6
b 7 6 5 4 4 4 4 4 5 6
b 8 7 6 5 5 5 5 5 5 6
b 9 8 7 6 6 6 6 6 6 6
a 10 9 8 7 6 6 6 6 6 6
a 11 10 9 8 7 6 6 6 6 6
a 12 11 10 9 8 7 6 6 6 6

Figure 2 Edit distance with forced turn in
mismatch block.

a a a a a a a a a
0 0 0 0 0 0 0 0 0 0

a 0 1 1 1 1 1 1 1 1 1
a 0 1 2 2 2 2 2 2 2 2
a 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
a 0 1 2 3 4 4 4 4 4 4
a 0 1 2 3 4 5 5 5 5 5
a 0 1 2 3 4 5 6 6 6 6

Figure 3 LCS with optimal vertical path
through mismatch block.

MFCS 2019

66:6 RLE Edit Distance in Near Optimal Time

3 Efficient Manipulation of Piecewise-Linear Functions

In this section, we describe the data structure we will use to represent input borders and
output borders in the dynamic programming table. We will then show how the operations
from Definition 3 can be implemented efficiently using this data structure.

Recall that a piecewise linear function is a real-valued function F whose domain dom(F)
is a closed interval that can be represented as a union of closed intervals dom(F) =

⋃k
j=1 Ij

such that F restricted to Ij is an affine function (gjx+ hj for some coefficients gj and hj).
The input and output borders as defined in Section 2 are by definition piecewise linear.

In this section, we impose a few further restrictions:
For each integer x ∈ dom(F), the value F (x) is also an integer.
The gradient gj of each F |Ij

is −1, 0, or 1.
The endpoints of dom(F) are integers or half-integers.

The graph of a piecewise linear function F is a simple polygonal curve, and thus it can be
interpreted as a sequence of turning points connected by straight-line segments. Due to
the restrictions imposed on F , each turning point has integer or half-integer coordinates.
We represent such a function F as a sequence of segments stored in an annotated balanced
binary search tree, where each segment explicitly keeps the coordinates of its endpoints.2

We first provide a simple implementation of curves supporting a few basic operations,
and then we gradually augment it to handle more complicated operations. We conclude with
an amortised running time analysis.

3.1 Basic Operations
Our first implementation just stores the corresponding segment for each node v:

(x`, y`): The coordinates of the left endpoint of the segment corresponding to v.
(xr, yr): The coordinates of the right endpoint of the segment corresponding to v.

Nevertheless, we are already able to implement some operations useful in Algorithms 1 and 2.

Create. The create operation produces a function F whose graph consists of just one
segment S with given endpoints (x`, y`) and (xr, yr). This enables us to implement the whole
of line 4 of Algorithm 1 in worst-case constant time.

Join. The join operation takes two functions, FL and FR with domains dom(FL) = [xL, xM]
and dom(FR) = [xM , xR], respectively, and with a common endpoint FL(xM) = FR(xM). It
returns a function F with dom(F) = [xL, xR] such that FL = F |[xL,xM] and FR = F |[xM ,xR].
To implement this operation, we first join the two balanced binary search trees. If the
rightmost segment of FL has the same gradient as the leftmost segment of FR, we also join
these segments. The resulting tree represents F . The worst-case running time is logarithmic.

Split. The split operation takes a function F with dom(F) = [xL, xR] and a value xM ∈
dom(F). It returns two functions FL = F |[xL,xM] and FR = F |[xM ,xR]. To implement it, we
first descend the binary search tree to find a segment S with xM ∈ dom(S). If xM lies in the
interior of dom(S), we split this segment into two. Next, we split the binary search tree to
separate the segments to the left of xM from the segments to the right of xM . The resulting
two trees represent FL and FR, respectively. The worst-case running time is logarithmic.

2 Note that the coordinates of each internal turning point are stored with both incident segments.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:7

Combine. The combine operation takes two functions F1 and F2 over the same domain
dom(F1) = dom(F2) = [xL, xR] and returns their pointwise minimum: a function F with
dom(F) = [xL, xR] such that F (x) = min(F1(x), F2(x)) for x ∈ dom(F). We assume that
there exists xM ∈ [xL, xR] such that F1(x) > F2(x) if x < xM and F1(x) ≤ F2(x) if x ≥ xM .

If F1(xL) ≤ F2(xL), then xM = xL. Hence, we return F = F1 and discard F2. Similarly,
if F1(xR) > F2(xR), then xM = xR. Hence, we return F = F2 and discard F1.

Otherwise, we are guaranteed that F1(xM) = F2(xM). Our first task is to find xM . For
this, we locate segments S1 of F1 and S2 of F2 such that xM ∈ dom(S1) ∩ dom(S2).

We observe that S1 corresponds to the leftmost node v in the BST of F1 such that
v.yr = F1(v.xr) ≤ F2(v.xr). Hence, we perform a left-to-right in-order traversal of the BST
to find S1. For each visited node v, we evaluate F2(v.xr) by descending the BST of F2 to
find a segment whose domain contains v.xr. Symmetrically, S2 corresponds to the rightmost
node v in the BST of F2 such that F1(v.x`) > F2(v.x`) = v.y`, so we find S2 by performing
a right-to-left in-order traversal of the BST.

Next, we note that (xM , F1(xM)) = (xM , F2(xM)) is the leftmost common point of S1
and S2. Hence, we can now compute xM easily (the restrictions on F1 and F2 guarantee that
it is an integer or a half-integer). Finally, we split both F1 and F2 at xM , discard F1|[xL,xM]
and F2|[xM ,xR], join F2|[xL,xM] with F1|[xM ,xR], and return the resulting function as F .

As far as the running time is concerned, the cost is logarithmic for each discarded segment.
We can now also implement the final combine step that produces our representation of the
output border from the outputs of Algorithms 1 and 2 by finding the minimum at each index.

3.2 Shifts
Next, we extend our data structure to implement the shift operation which moves the whole
function by a given vector. It is useful in Algorithms 1 and 2 for altering S` and Sr.

Formally, given a function F with dom(F) = [xL, xR] and a vector (∆x,∆y), we transform
F into F ′ such that F ′(x) = F (x−∆x) + ∆y for each x ∈ dom(F ′) = [xL + ∆x, xR + ∆x].

This update is performed using a technique known as lazy propagation. We augment each
node v with the following extra field:

(δx, δy): A deferred shift to be propagated within the subtree of v.

This change is then lazily propagated as further operations are executed. Here, we rely on a
key structural property of BST operations:

I Observation 5. The execution of every BST operation can be extended (at the cost of an
extra multiplicative constant in the running time) with a sequence of node activations and
deactivations such that:

a node v is accessed only when it is active and has no active descendant,
when v is active, then all its ancestors are active,
no node is active at the beginning and the end of the execution.

The idea behind lazy propagation is that the deferred updates stored at a node v are
propagated when v is activated. This way, every active node has no delayed updates pending.
Hence, from the perspective of any other operation, the effect is the same as if we have
meticulously modified every node for each update.

The shift propagation is very simple: when a node v receives a request for a shift by
(∆x,∆y), then we just add (∆x,∆y) to the delayed shift (v.δx, v.δy) stored at v. Upon
activation of v, we propagate (v.δx, v.δy) to the children of v, add (v.δx, v.δy) to both (x`, y`)

MFCS 2019

66:8 RLE Edit Distance in Near Optimal Time

and (xr, yr), and reset (v.δx, v.δy) := (0, 0). To implement the shift operation, we just send
a request for a shift by (∆x,∆y) to the root node r.

The worst-case running time of a shift is constant, and the extra cost of propagation does
not increase the asymptotic running time of the remaining operations.

3.3 Gradient Changes
The gradient change operation takes a function F and a coefficient ∆g, and it transforms F
into F ′ such that F ′(x) = F (x) + ∆g · x for each x ∈ dom(F ′) = dom(F). This operation is
needed in both Algorithms 1 and 2 to transform Sr and S`, respectively.

We first note that the constraints imposed on the gradients of functions F and F ′ yield
that ∆g = −1, F is non-decreasing, and F ′ is non-increasing, or ∆g = 1, F is non-increasing,
and F ′ is non-decreasing. However, these limitations only become relevant in Section 3.4.

To implement gradient change, we just add another field to each node v:

δg: A deferred gradient change to be propagated within the subtree of v.

We now have two types of lazily propagated updates: shift and gradient change. These
two operations do not commute, so we need to decide how to interpret the two kinds of
deferred updates stored at a node v. We shall assume that the gradient change by δg is to
be performed before the shift by (δx, δy).

Thus, while shift propagation is implemented as in Section 3.2, adding ∆g to v.δg is
insufficient when a node v receives a request to change gradient by ∆g: we also need to add
∆g · δx to δy. This approach is correct since a shift by (∆x,∆y) followed by a gradient change
by ∆g is equivalent to a gradient change by ∆g followed by a shift by (∆x,∆y + ∆g ·∆x).

Upon activation of v, we first apply the deferred gradient change: we propagate it to the
children of v, increase v.y` by v.δg · v.x` and v.yr by v.δg · v.xr, and reset v.δg = 0. Then, we
handle the deferred shift as in Section 3.2.

Finally, we note that to implement the gradient change operation, we just send a request
for a gradient change by ∆g to the root node r. The worst-case running time is constant.

3.4 Sliding Window Minima
We can finally show how to implement the SWM operation efficiently on our data structure.
This is the most involved of the operations we will need. The SWM operation given a
function F with dom(F) = [xL, xR] and a window width t, returns a function F ′ with
dom(F ′) = [xL, xR + t] such that F ′(x) = min{F (x′) : x′ ∈ [x− t, x] ∩ dom(F)}.

Combinatorial Properties

We begin by observing that the SWM operation is composable.

I Observation 6. Every function F and positive window widths t, t′ satisfy
SWM(SWM(F, t), t′) = SWM(F, t+ t′).

Hence, instead of applying SWM(·, t) for an integer width t, we may equivalently apply
the SWM(·, 1) operation t times. The key property of width 1 is that the changes to the
transformed function are very local. The structure of these modifications can be described
in terms of types of turning points. We classify internal turning points by the gradients
(Increasing, Flat, or Decreasing) of the incident segments; see Table 1, where we also analyse
how a function changes in the vicinity of each turning point subject to SWM(·, 1).

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:9

Table 1 Types of internal turning points and their behaviour subject to the SWM operation.

Type DI Type ID Type IF Type FD Type FI Type DF

A point of type FD or DF remains intact.
A point of type FI or IF is shifted by (1, 0).
A point of type ID is shifted by (0.5,−0.5).
A point of type DI transformed into a point of type DF and a point of type FI, and the
latter is shifted by (1, 0).

Note that the behaviour of DI points is unlike that of other types. However, this
discrepancy disappears if we replace every DI point with two coinciding points of types DF
and FI, respectively, with an artificial length-0 segment in between. Hence, whenever a
new internal turning point is created (which happens only within the join operation), if the
turning point would be of type DI, we pre-emptively replace it by two coinciding points of
type DF and FI, respectively. Note that the resulting length-0 segment never changes its
gradient since gradient change is allowed only on a monotone function. However, when an
incident segment is modified, we may need to remove the length-0 segment. This process
cannot cascade, though, causing another length zero segment to be removed.

Next, we analyse in Table 2 how the SWM(F, 1) operation affects the endpoints of the
graph of F . In most cases, the left endpoint stays intact and the right endpoint is shifted by
(0, 1). The only exceptions are endpoints of type -I and D-, which exhibit similar behaviour
to the internal turning points of type DI. Moreover, this discrepancy also disappears if we
introduce artificial flat segments of length 0. Hence, we replace a point of type -I with two
points of type -F and FI, respectively, and a point of type D- with two points of type DF
and F-, respectively. However, this time the replacement is not pre-emptive: we perform it
as the first step in the implementation of the SWM operation. This is possible because there
are just two endpoints, while the number of internal turning points of type DI could be large.
Our gain, on the other hand, is that we avoid length-0 segments changing their gradients.

With the artificial length-0 segments in place, it is now true that the effect of the SWM
operation on each turning point can be described as a shift depending only on the type of
the point. As a result of these shifts, some segments may disappear as their length reaches 0;
in this case, we say that a segment collapses. Only segments of three kinds may collapse:

a segment between a point of type ID and point of type DF;
a segment between a point of type IF and point of type FD;
a segment between a point of type FI and point of type ID;

Table 2 Types of endpoints and their behaviour subject to the SWM operation.

Type -I Type -F Type -D Type I- Type F- Type D-

MFCS 2019

66:10 RLE Edit Distance in Near Optimal Time

When a segment collapses, it is removed and the two incident turning points are merged.3
Each segment of the three affected kinds has the collapse time, defined as the smallest t for
which SWM(·, t) makes it collapse (assuming no interaction from incident segments) equal
to the Manhattan distance between its endpoints. Note that due to the restrictions on the
piecewise linear functions considered in this section, the collapse time is always an integer.

Implementation

To implement the SWM operation, we augment each node v with the following fields:

type`, typer: The types of the turning points joined by the segment corresponding to v.
δt: The amount of a deferred SWM to be propagated within the subtree of v.
tmin: The minimum collapse time among the segments in the subtree of v.

Note that the type of each internal turning point is stored twice. Hence, whenever a node
type changes, this fact needs to be reflected at both incident segments (and we need to reach
the corresponding nodes by descending the BST; shortcuts would violate Observation 5).

The field v.tmin is of a kind we have not encountered yet: its value depends on the
corresponding values for the children of v and on other fields at v. It is brought up to date
whenever v is deactivated (so that it can be accessed only when v is inactive). We shall
assume that its value already reflects the deferred updates stored at v. The procedure of
recomputing v.tmin is simple: we determine the collapse time of the segment represented by
v (which is infinite or equal to |v.xr − v.x`| + |v.yr − v.y`| depending on the types of the
incident turning points), and take the minimum of this value and u.tmin for every child u of
v. Since v has no deferred changes when it is deactivated, the resulting minimum is v.tmin.

Propagation. The main structural modification to the lazy propagation procedures is that
we maintain an additional invariant that no deferred changes are stored on the leftmost and
on the rightmost path of the BSTs representing every function F . To maintain this invariant,
immediately after lazily updating of the whole F (sending a request to the root node r), we
descend to the leftmost and to the rightmost segment F ; this increases the cost of shift and
gradient change to logarithmic. Note that the split operation must anyway visit the nodes
representing the new boundary segments (to update the types of new endpoints). Moreover,
if a path from the root to a given node v contains no deferred updates, then this is still true
after any rebalancing of the BST (as only active nodes get rotated).

Concerning the lazy SWM propagation, we explicitly forbid requesting for SWM with
window width exceeding r.tmin, because collapsed segments need to be removed before we
proceed further. Also, the window widths (and hence the values δt) are always non-negative.

We have three kinds of deferred updates now: SWM, gradient change, and shift. We fix
the semantics of the fields δt, δg, and (δx, δy) so that an SWM of width δt is performed first,
a gradient change by δg second, and a shift by (δx, δy) last. The requests for a shift and for
a gradient change are still implemented as in Section 3.3; note that these updates do not
affect the collapse times (the three segment kinds with finite collapse times cannot appear
in monotone functions). On the other hand, the request for an SWM with a window width
∆t requires more care. We clearly need to increase δt by ∆t and decrease tmin by the same
amount. The aforementioned steps suffice if δg = 0. Otherwise, we note that the turning

3 Two adjacent segments may collapse simultaneously. In that special case, three subsequent points, of
type FI, ID, and DF, respectively, need to be deleted.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:11

points in the subtree of v are all of types DF and FD or all of types IF and FI. (Observe that
there are no deferred changes in the proper ancestors of v and that v is not on the leftmost
or rightmost path in this case.) We can easily distinguish the two cases by analysing the
endpoints of the segment corresponding to v. Moreover, the SWM operation is void in the
first of these cases, and in the second one it reduces to a shift by (∆t, 0). Hence, we shall
implement it this way rather than by modifying v.δt.

The propagation itself is relatively easy: upon activation of a node v, we first propagate
the SWM operation to the children of v, update the endpoints of the segment corresponding
to v (according to Tables 1 and 2, with the shift multiplied by δt), and finally reset δt = 0.
Then, we propagate the gradient change and the shift. This is implemented as in Section 3.3
except that the gradient change now affects not only the coordinates but also the types of
the segment’s endpoints.

SWM Procedure. To implement the SWM procedure itself, we first check the endpoint
types and perform appropriate substitutions for endpoints of type -I and D-. Next, we would
like to lazily apply the SWM operation with window width t to the root r. However, this
could result in negative collapse time r.tmin, so instead we perform SWM gradually based
on Observation 6. If r.tmin < t, we make a request for SWM with window width just r.tmin,
leaving the remaining quantity t−r.tmin for later on. This already results in r.tmin = 0, which
indicates that there is a collapsed segment. We descend the tree to find such a collapsed
segment (activating nodes on the way there and deactivating them on the way back), and
take care of this segment appropriately (this may affect neighbouring segments as well). We
repeat the process as long as r.tmin = 0. Once this value is positive again, we are ready to
proceed with further application of SWM.

As far as the running time is concerned, the cost of SWM consists of a logarithmic term
for visiting the endpoints and further logarithmic terms for each collapsed segment.

3.5 Complexity Analysis
We complete this section by showing that the aforementioned operations run in amortised
logarithmic time.

I Lemma 7. A sequence of k operations on piecewise linear functions takes O(k log k) time.

Proof. Our potential is log k multiplied by the total number of turning points in all the stored
functions. First, we observe that this potential grows by O(log k): each operation creates a
constant number of new turning points. In particular, the total number of turning points is
O(k), so manipulating BSTs takes O(log k) time. Next, we note that the worst-case running
time of most operations is O(log k), with extra O(log k) time needed for each discarded or
collapsed segment. However, every such segment decreases the potential by log k. J

4 An O(mn log(mn)) time RLE Edit Distance Algorithm

As in the previous algorithm by Chen and Chao [8], we go through the dynamic programming
table block by block. For every block, we transform the representation of its input border to
the representation of its output border. As mentioned earlier, borders are piecewise linear
with gradient ±1 or 0 so they can be maintained in the structure described in Section 3. We
will assume that the left and the top part of the input border of every block are stored in
separate structures. We start by generating the structures corresponding to the left and the
top border of the whole dynamic programming table. These left and top borders are each a

MFCS 2019

66:12 RLE Edit Distance in Near Optimal Time

single decreasing and increasing sequence, respectively. As a result, we can generate the data
structure for the parts corresponding to all blocks trivially in O(m+ n) time using m+ n

create operations. Now, we have to describe how to obtain the structure corresponding to
the right and the bottom part of the output border of the current block given the structures
corresponding to the left and the top part of its input border. We stress that any structure
will be created and then used once as an input to a further operation, which is crucial for
the amortisation argument within Lemma 7.

Recall that the semantics of split and join operating on arrays in Section 2 and of split and
join operating on piecewise linear functions in Section 3 is slightly different: split now creates
two functions that both contain the value of the original function at xM ; symmetrically, join
takes two functions defined on [xL, xM] and [xM , xR] that share the same value at xM . This
is, however, not an issue because the cases in both (1) and (2) overlap at the boundaries.

For a match block, the value stored in an element (i, j) of the output border is a copy
of the value stored in the corresponding element (id, jd) of the input border. Recalling
that (id, jd) is the intersection of the input border with diagonal j − i, this can be readily
implemented with a constant number of split and join operations.

For a mismatch block, we need to apply Algorithms 1 and 2, merge the returned solutions
by taking the minimum at every position, and finally create separate structures corresponding
to the right and the bottom part of the output border with a single split operation. Note
that while we have already observed that both input border and output border are piecewise
linear with gradient ±1 or 0, we need to make sure that the same is true for every function
obtained inside Algorithms 1 and 2, and for OUTTOP and OUTLEFT in particular.

I Lemma 8. Every function obtained in Algorithms 1 and 2 is piecewise linear with gradient
±1 or 0.

Proof. Consider Algorithm 1. It is easy to verify that S and hence also S` and Sr are
indeed piecewise linear with gradient ±1 or 0. Additionally, S`[i] is equal to the minimum in
LEFT[1, i] and so S` is non-increasing. Consequently, S1, S2, and S3 are all piecewise linear
with gradient ±1 or 0. We only need to verify that the same holds for their concatenation.
This is true because each of these three parts corresponds to a case considered in (1), and
these cases overlap at the boundaries.

Next, consider Algorithm 2. Similarly as above, it is easy to verify that S and so also
S` and Sr are piecewise linear with gradient ±1 or 0. Furthermore, Sr[i] is equal to the
minimum in TOP[w−h+ i+1, w] and so Sr is non-decreasing. Thus, S1 and S2 are piecewise
linear with gradient ±1 or 0 and the same holds for their concatenation because the cases in
(2) overlap at the boundaries. J

We now explain in detail how to implement Algorithm 1. We start with computing S`
and Sr by first calling SWM(LEFT, h − 1) and then using split. Next, S1 is obtained by
applying gradient change and shift to S`, S2 is obtained by calling create, and S3 is obtained
by applying shift to Sr. Finally, OUTLEFT is created with two calls to join.

Algorithm 2 is implemented by calling SWM(TOP, w − 1) and then using split. Next, S1
is obtained by applying shift to S`, while S2 is obtained by applying gradient change and
shift to Sr. Finally, OUTTOP is created by a single call to join.

Having obtained a representation of OUTLEFT and OUTTOP, we call combine to obtain a
representation of the output border. Such a call is valid due to Lemma 4. The overall number
of operations on structures is O(mn), making the final time complexity O(mn log(mn)) by
Lemma 7.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:13

References
1 Hsing-Yen Ann, Chang-Biau Yang, Chiou-Ting Tseng, and Chiou-Yi Hor. A fast and simple

algorithm for computing the longest common subsequence of run-length encoded strings.
Information Processing Letters, 108(6):360–364, 2008. doi:10.1016/j.ipl.2008.07.005.

2 Alberto Apostolico, Gad M. Landau, and Steven Skiena. Matching for Run-Length Encoded
Strings. Journal of Complexity, 15(1):4–16, 1999. doi:10.1006/jcom.1998.0493.

3 Ora Arbell, Gad M. Landau, and Joseph S. B. Mitchell. Edit distance of run-length encoded
strings. Information Processing Letters, 83(6):307–314, 2002. doi:10.1016/S0020-0190(02)
00215-6.

4 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (Unless SETH is False). SIAM Journal on Computing, 47(3):1087–1097, 2018. doi:
10.1137/15M1053128.

5 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string prob-
lems and dynamic time warping. In Venkatesan Guruswami, editor, 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, pages 79–97. IEEE Computer Society, 2015.
doi:10.1109/FOCS.2015.15.

6 Horst Bunke and János Csirik. An algorithm for matching run-length coded strings. Computing,
50(4):297–314, 1993. doi:10.1007/BF02243873.

7 Horst Bunke and János Csirik. An improved algorithm for computing the edit distance of
run-length coded strings. Information Processing Letters, 54(2):93–96, 1995. doi:10.1016/
0020-0190(95)00005-W.

8 Kuan-Yu Chen and Kun-Mao Chao. A fully compressed algorithm for computing the edit
distance of run-length encoded strings. Algorithmica, 65(2):354–370, 2013. doi:10.1007/
s00453-011-9592-4.

9 Stuart C. Hinds, James L. Fisher, and Donald P. D’Amato. A document skew detection
method using run-length encoding and the Hough transform. In 10th International Conference
on Pattern Recognition, ICDR 1990, volume 1, pages 464–468. IEEE Computer Society, 1990.
doi:10.1109/ICPR.1990.118147.

10 Jia Jie Liu, Guan-Shieng Huang, Yue-Li Wang, and Richard C. T. Lee. Edit distance for
a run-length-encoded string and an uncompressed string. Information Processing Letters,
105(1):12–16, 2007. doi:10.1016/j.ipl.2007.07.006.

11 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing, 12(1):40–66, 2005. URL: https://users.dcc.uchile.cl/~gnavarro/
ps/njc05.pdf.

12 William J. Masek and Mike Paterson. A faster algorithm for computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

13 Yoshifumi Sakai. Computing the longest common subsequence of two run-length encoded
strings. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, 23rd International
Symposium on Algorithms and Computation, ISAAC 2012, volume 7676 of LNCS, pages
197–206. Springer, 2012. doi:10.1007/978-3-642-35261-4_23.

14 Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968. doi:10.1007/bf01074755.

15 Dong-Hui Xu, Arati S. Kurani, Jacob D. Furst, and Daniela S. Raicu. Run-length encoding for
volumetric texture. In Juan J. Villanieva, editor, 4th IASTED International Conference on Visu-
alization, Imaging, and Image Processing, VIIP 2004. Acta Press, 2004. URL: http://facweb.
cs.depaul.edu/research/vc/Publications/final_submission_paper_452_131_last.pdf.

MFCS 2019

https://doi.org/10.1016/j.ipl.2008.07.005
https://doi.org/10.1006/jcom.1998.0493
https://doi.org/10.1016/S0020-0190(02)00215-6
https://doi.org/10.1016/S0020-0190(02)00215-6
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1007/BF02243873
https://doi.org/10.1016/0020-0190(95)00005-W
https://doi.org/10.1016/0020-0190(95)00005-W
https://doi.org/10.1007/s00453-011-9592-4
https://doi.org/10.1007/s00453-011-9592-4
https://doi.org/10.1109/ICPR.1990.118147
https://doi.org/10.1016/j.ipl.2007.07.006
https://users.dcc.uchile.cl/~gnavarro/ps/njc05.pdf
https://users.dcc.uchile.cl/~gnavarro/ps/njc05.pdf
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1007/978-3-642-35261-4_23
https://doi.org/10.1007/bf01074755
http://facweb.cs.depaul.edu/research/vc/Publications/final_submission_paper_452_131_last.pdf
http://facweb.cs.depaul.edu/research/vc/Publications/final_submission_paper_452_131_last.pdf

Indexing Graph Search Trees and Applications
Sankardeep Chakraborty
RIKEN Center for Advanced Intelligence Project, Japan
sankar.chakraborty@riken.jp

Kunihiko Sadakane
The University of Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Abstract
We consider the problem of compactly representing the Depth First Search (DFS) tree of a given
undirected or directed graph having n vertices and m edges while supporting various DFS related
queries efficiently in the RAM with logarithmic word size. We study this problem in two well-known
models: indexing and encoding models. While most of these queries can be supported easily in
constant time using O(n lg n) bits1 of extra space, our goal here is, more specifically, to beat this
trivial O(n lg n) bit space bound, yet not compromise too much on the running time of these queries.
In the indexing model, the space bound of our solution involves the quantity m, hence, we obtain
different bounds for sparse and dense graphs respectively. In the encoding model, we first give a
space lower bound, followed by an almost optimal data structure with extremely fast query time.
Central to our algorithm is a partitioning of the DFS tree into connected subtrees, and a compact
way to store these connections. Finally, we also apply these techniques to compactly index the
shortest path structure, biconnectivity structures among others.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Depth First Search Tree, Compact Data Structures, Encoding Schemes

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.67

Funding This work was partially supported by JST CREST Grant Number JPMJCR1402, Japan.

1 Introduction

Depth First Search (DFS) is a very well-known method for visiting the vertices and edges of
a directed or undirected graph. DFS differs from other ways of traversing the graph such as
Breadth First Search (BFS) by the following DFS protocol: Whenever two or more vertices
were discovered by the search method and have unexplored incident (out)edges, an (out)edge
incident on the most recently discovered such vertex is explored first. This DFS traversal
produces a rooted spanning tree (forest), called DFS tree (forest) along with assigning an
index to every vertex v i.e., the time vertex v is discovered for the first time during DFS. We
call it depth-first-index (DFI(v)). Let G = (V,E) be a graph on n = |V | vertices and m = |E|
edges where V = {v1, v2, · · · , vn}. It takes O(m+ n) time to perform a DFS traversal of G
and to generate its DFS tree (forest) with DFIs of all the vertices. The DFS rule confers a
number of structural properties on the resulting graph traversal that cause DFS to have a
large number of applications. These properties are captured in the DFS tree (forest), and can
be used crucially to design efficient algorithms for many basic and fundamental algorithmic
graph problems, namely, biconnectivity [22], 2-edge connectivity [23], strongly connected
components [22], topological sorting [22], dominators [24], st-numbering [13] and planarity
testing [17] among many others.

1 We use lg to denote logarithm to the base 2.

© Sankardeep Chakraborty and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 67; pp. 67:1–67:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankar.chakraborty@riken.jp
mailto:sada@mist.i.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.MFCS.2019.67
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Indexing Graph Search Trees and Applications

There are two versions of DFS studied in the literature. In the lexicographically smallest
DFS or lex-DFS problem, when DFS looks for an unvisited vertex to visit in an adjacency
list, it picks the “first” unvisited vertex where the “first” is with respect to the appearance
order in the adjacency list. The resulting DFS tree will be unique. In contrast to lex-DFS,
an algorithm that outputs some DFS numbering of a given graph, treats an adjacency list as
a set, ignoring the order of appearance of vertices in it, and outputs a vertex ordering Q
such that there exists some adjacency ordering R such that Q is the DFS numbering with
respect to R. We say that such a DFS algorithm performs general-DFS. In this work, we
focus only on lex-DFS, thus, given a source vertex, the DFS tree is always unique. Given
the lex-DFS tree, the non-tree edges of a given directed graph can be classified into four
categories as follows. An edge directed from a vertex to its ancestor in the tree is called a
back edge. Similarly, an edge directed from a vertex to its descendant in the tree is called a
forward edge. Further, an edge directed from right to left in the DFS tree is called a cross
edge. The remaining edges directed from left to right in the tree are called anti-cross edges.
In the undirected graphs, there are no cross edges. Note that, we can store the complete
DFS tree explicitly using O(n lgn) bits by storing pointers between nodes. In what follows,
we formally define the problem which we call the DFS-Indexing problem.

DFS-Indexing problem
Input: A directed or undirected graph G = (V,E) where |V | = n,
|E| = m, and a source vertex vs, preprocess G and answer the following
queries with respect to the DFS tree T rooted at vs:
1. Given any pair of vertices vi and vj ,

a. Who is visited first in the DFS traversal of G?
b. Is vi an ancestor of vj in T?

2. Given vi,
a. Return the parent of vi in T .
b. Return the number of children (if any) of vi in T .
c. Enumerate all the children (if any) of vi in T .
d. Return the DFI of vi.

3. Enumerate the order in which vertices of G are visited in the DFS.
4. Given 1 ≤ i ≤ n, return the vertex with DFI i.

We study the DFS-Indexing problem in two well-known models: the indexing and encoding
models [21]. In the indexing model, we wish to build an index ind after preprocessing the
input graph G such that queries can be answered using both ind and G whereas in the
encoding model, we seek to build a data structure encod after preprocessing the input graph
G such that queries have to be answered using encod only. Typically the parameters of
interest are (i) query time, (ii) space consumed (in bits) by ind and encod resp. and (iii) the
preprocessing time and space. We address all these issues in our paper for the DFS-Indexing
problem, assuming our computational model is a Random-Access-Machine with constant time
operations on O(lgn)-bit words. In both models, it is not hard to see that using O(n lgn)
bits, we can answer all the queries of the DFS-Indexing problem in the optimal O(1) time
except the query of 3 which takes O(n) time. Our main objective here is to beat this trivial
O(n lgn) bit space bound without compromising too much on the query time.

The motivation for studying this question mainly stems from the rise of the “big data”
phenomenon and its implications. To illustrate, the rate at which we store data is increasing
even faster than the speed and capacity of computing hardware. Thus, if we want to use the
stored data efficiently, we need to represent it in sophisticated ways. Many applications dealing

S. Chakraborty and K. Sadakane 67:3

with huge data structures can benefit from keeping them in compressed form. Compression
has many advantages: it can allow a representation to fit in main memory rather than
swapping out to disk, and it improves cache performance since it allows more data to fit
into the cache. However, such a data structure is only handy if it allows the application to
perform fast queries to the data, and this is the direction we want to explore for the DFS tree.
More specifically, we are interested in representing the DFS tree of a given graph compactly
while supporting all the queries mentioned above efficiently.

1.1 Representation of the Input Graph

We assume that the input graphs G = (V,E) are represented using the adjacency array
format, i.e., G is given by an array of length |V | where the i-th entry stores a pointer
to an array that stores all the neighbors of the i-th vertex. For the directed graphs, we
assume that the input representation has both in/out adjacency array for all the vertices
i.e., for directed graphs, every vertex v has access to two arrays, one array is for all the
in-neighbors of v and the other array is for all the out-neighbors of v. This form of input
graph representation has now become somewhat standard and was recently used in plenty of
other works [2, 6, 7, 8, 9, 10]. Throughout this paper, we call a graph sparse when m = O(n),
and dense otherwise (i.e., m = ω(n)).

1.2 Our Main Results and Organization of the Paper

We start by mentioning some preliminary results that will be used throughout the paper in
Section 2. Section 3 contains the description of our main index for solving the DFS-Indexing
problem in the indexing model. Our main results here can be summarized as follows,

I Theorem 1. In the indexing model, given any sparse (dense resp.) undirected or directed
graph G, there exists an O(m + n) time and O(n lgn) bits preprocessing algorithm which
outputs a data structure of size O(n) (O(n lg(m/n)) resp.) bits, using which the queries 1(a),
1(b), 2(d) and 4 can be reported in O(lgn) time, 2(a) and 2(b) in O(1) time, 2(c) in time
proportional to the number of solutions, and finally 3 can be solved in O(n) time resp. for
the DFS-Indexing problem.

We want to emphasize that obtaining better results for sparse graphs is not only interesting
from theoretical perspective but also from practical point of view as these graphs do appear
very frequently in most of the realistic network scenario in real world applications, e.g., Road
networks and the Internet.

In Section 4, we provide the detailed proof of our index in the encoding model. This
contains a space lower bound for any index for the DFS-Indexing problem, followed by an
index whose size asymptotically matches the lower bound and has efficient query time. We
summarize our main results below.

I Theorem 2. In the encoding model, the size of any data structure for the DFS-Indexing
problem must be Ω(n lgn) bits. On the other hand, given any (un)directed graph, there exists
an O(m + n) time and O(n lgn) bits preprocessing scheme that outputs an index of size
(1 + ε)n lgn + 2n + o(n) bits (for any constant ε > 0), using which the queries 1(a), 1(b),
2(a), 2(b), 2(d) can be reported in O(1) time, 2(c) in time proportional to the number of
solutions, 3 in O(n/ε) time, and finally 4 in O(1/ε) time resp. for the DFS-Indexing problem
in this setting.

MFCS 2019

67:4 Indexing Graph Search Trees and Applications

Building on all these aforementioned results, we also show a host of applications of our
techniques in designing indices for other fundamental graph problems. We provide the details
about these results in the full version of our paper. Finally, we conclude in Section 5 with
some open problems and possible future directions to explore further.

Remark. At this point we want to emphasize that our results are more general, i.e., they
can be extended to store any arbitrary labeled tree (arising from some underlying graph)
along with the mechanism for fast querying. This method is very useful as many graph
algorithms (like shortest path, minimum spanning tree, biconnectivity etc) induce a tree
structure which is used subsequently during the execution of the algorithm. Hence, we can
use our technique to store and query those trees compactly as well as efficiently. Thus,
we also believe that our algorithm may find many other potential interesting applications.
However, we chose to provide all the details in terms of DFS as DFS is very widely popular
graph traversal technique and is used as the backbone for multiple fundamental algorithms,
yet there is no explicit indexing scheme for storing DFS tree compactly. In the full version of
our paper, we show how one can extend these techniques to design indexing schemes for a
variety of other classical and fundamental graph problems.

1.3 Related Works
There already exists a large body of work concerning compactly representing various specific
classes of graphs, for example planar, constant genus graphs etc [1, 5, 16, 18, 20, 21, 25]. All
of these works are able to store an n-vertex unlabeled planar graph in O(n) bits, and some
of them even allow for O(1)-time neighbor queries. Generally what is meant by unlabeled
is that the algorithm is free to choose an ordering on the vertices (integer labels from 1 to
n). Our setting here is slightly different as we work with graphs whose vertices are labeled,
and matches closely with [3]. Also we want to support more complex queries whereas the
previous works only focused on adjacency queries mostly. Even though DFS being such
a widely known method, and having many applications, to the best of our knowledge, we
are not aware of any previous work focusing on compactly representing the DFS tree with
efficient query support.

2 Preliminaries

Rank-Select. We make use of the following theorem:

I Theorem 3 ([11]). We can store a bitstring B of length n with additional o(n) bits such
that rank and select operations (defined below) can be supported in O(1) time. Such a structure
can also be constructed from the given bitstring in O(n) time and space.

For any a ∈ {0, 1}, the rank and select operations are defined as follows :
ranka(B, i) = the number of occurrences of a in B[1, i], for 1 ≤ i ≤ n;
selecta(B, i) = the position in B of the i-th occurrence of a, for 1 ≤ i ≤ n.

When the bitvector B is sparse, the space overhead of o(n) bits can be avoided by using
the following theorem, which will also be used later in our paper.

I Theorem 4 ([21]). We can store a bitstring B of length n with m 1s using m lg(n/m)+O(m)
bits such that select1(B, 1) can be supported in O(1) time, select0(B, 1) in O(lgm) time, and
both the rank queries (rank1(B, i) and rank0(B, i)) can be supported in O(min(lgm, lgn/m))
time. Such a structure can also be constructed from B in O(n) time and space.

S. Chakraborty and K. Sadakane 67:5

Permutation. We also use the following theorem:

I Theorem 5 ([19]). A permutation π of length n can be represented using (1 + ε)n lgn bits
so that π(i) is answered in O(1) time and π−1 in time O(1/ε) for any constant ε > 0. Such
a representation can be constructed using O(n) time and space.

Succinct Tree Representation. We need following result from [15].

I Theorem 6 ([15]). There exists a data structure to succinctly encode an ordered tree with
n nodes using 2n + o(n) bits such that, given a node v, (a) child(v,i): i-th child of v, (b)
degree(v): number of children of v, (c) depth(v): depth of v, (d) selectpre(v): position of v
in preorder, (e) LA(v, i): ancestor of v at level i can be supported in O(1) time among many
others. Such a structure can also be constructed in O(n) time and space.

3 Algorithms in the Indexing Model

In this section, we provide the main algorithmic ideas needed for the solution of the DFS-
Indexing problem in the indexing model. We start by describing the preprocessing procedure
which is followed by the query algorithms.

3.1 Preprocessing Step
We first describe our algorithms for undirected graphs, and later mention the modifications
required for the case of directed graphs. The preprocessing step of the algorithm is divided
into two parts. In the first part, we perform a DFS of the input graph G along with storing
some necessary data structures. In the second step, we perform a partition of the DFS tree of
G using the well-known “tree covering technique” of the succinct data structures world [14],
and also store some auxiliary data structures. Later, in the final step of our algorithm, we
show how to use these data structures to answer the required queries. In what follows, we
describe each step in detail.

Step 1: Creating Parent-Child Array using Unary Degree Sequence Array. The main
idea of this step is to perform a DFS traversal of G and store in a compact way the parent-
child relationship of the DFS tree T . The way we achieve this is by using three bitvectors
of length O(m + n) bits. Recall that, our input graphs G = (V,E) are represented using
the standard adjacency array. Central to our preprocessing algorithm is an encoding of the
degrees of the vertices in unary. As usual, let V = {v1, v2, · · · , vn} be the vertex set of G.
The unary degree sequence encoding D of the undirected graph G has n 1s to represent the
n vertices and each 1 is followed by a number of 0s equal to its degree. Moreover, if d is the
degree of vertex vi, then d 0s following the i-th 1 in the D array corresponds to d neighbors
of vi (or equivalently the edges from vi to the d neighbors of vi) in the same order as in the
adjacency array of vi. Clearly D uses n+ 2m bits and can be obtained from the neighbors of
each vertex in O(m+ n) time. Now using rank/select queries of Theorem 3 in Section 2, the
j-th outgoing edge of vertex vi can be identified with the position p = select1(D, i) + j of D
(1 ≤ j ≤ degree(vi) where degree(vi) denotes the degree of the vertex vi). From a position
p, we can obtain an endpoint of the corresponding edge by i = rank1(D, p), and the other
endpoint is the j-th neighbor of vi where j = p− select1(D, i).

We also use two bitvectors E,P of the same length where every bit is initialized to 0,
and the bits in E,P are in one-to-one correspondence with bits in D. The bitvector E will
be used to mark the tree edges of the DFS tree T , and the bitvector P to mark the unique

MFCS 2019

67:6 Indexing Graph Search Trees and Applications

parent of every vertex in T . The marking is carried out while performing a DFS of G in the
preprocessing step. I.e., if (vi, vj) is an edge in the DFS tree where vi is the parent of vj ,
and suppose k is the index of the edge (vi, vj) in D, then the corresponding location in E is
marked as 1 during DFS. At the same time, we scan the adjacency array of vj to find the
position of vi (as G is undirected, there will be two entries for each edge in the adjacency
array), and suppose t is the index of the edge (vj , vi) in D, then the corresponding location
in P is marked as 1 during DFS. Thus, assuming G is a connected graph, once DFS finishes
traversing G, the number of ones in E is exactly the number of tree edges (which is n− 1)
and the number of ones in P will be n− 1 as root does not have any parent.

The parent of vi in T is computed in O(1) time as follows. Let vr be the root of T . Then
if i > r (resp. i < r), the marked bit representing the parent of vi is the (i− 1)-st (resp. i-th)
1 in P . Let p = select1(P, i − 1) (resp. p = select1(P, i)) and j = p − select1(D, i). Then
the parent of vi is the j-th neighbor of vi.

We use another bitvector DT of length 2n, which encodes the degree of each vertex in T by
unary sequences. Then the degree of vertex vi in T is select1(DT , i+ 1)− select1(DT , i)− 1,
and j-th child of vi in T is p-th neighbor of vi in G where p = select1(E, select1(DT , i− 1) +
j)− select1(D, i). These are computed in constant time.

Note that, the classical linear time implementation of DFS [12] uses a stack (which could
grow to O(n lgn) bits) and a color array (of size O(n) bits). Thus, the procedure takes
O(m+ n) time and O(n lgn) bits overall. First, we argue that using the same linear time,
we can also create bitvectors D,E and P and fill up them correctly. It’s easy to see that
creating D as well as initializing E and P to all zero takes O(m+ n) time. All it remains is
to show, how one can fill up E and P while performing DFS. For this purpose, we build the
data structures to support the constant time rank/select query (of Theorem 3) on D (and
on E,P as well, the reason will be clear in the query step) and use the result of the select
query to mark the tree edges on E (as they are in one-to-one correspondence). To illustrate,
suppose, while traversing from vi, DFS discovers the edge (vi, vj) as a tree edge in T where
vi is the parent of vj , and suppose vj is the c-th neighbor in vi’s adjacency array, then we
find the index of the c-th zero after i-th one in D (using select query), and the corresponding
index is marked as 1 in the E array. This takes O(1) time for each tree edge marking. After
this, we mark the index in P as 1 corresponding to the edge (vj , vi) to denote that vi is the
parent of vj . Thus, marking parent takes O(degree(vj)) time for the vertex vj . Note that,
all of this happens along with the classical stack-based DFS implementation. Thus overall
it takes O(m+ n) time, and space required to store all these arrays is O(m+ n) bits. We
refer to the bitvector D as the unary degree sequence array, E as the child array, and P the
parent array. These three arrays are stored and used for the query step of our algorithm.
Thus, we obtain the following lemma.

I Lemma 7. Given an undirected graph G, there exists an O(m+n) time and O(n lgn) bits
preprocessing algorithm to construct the unary degree sequence array, parent and child arrays
for G, each of which takes O(m+ n) bits of space.

Step 2: Decomposing the DFS tree by the Tree Covering Technique. The main idea of
this step is to perform a decomposition of the DFS tree, and along with storing some crucial
informations which will be very useful for navigating the tree during the query step of our
algorithm. For this purpose, we use the well-known tree covering technique in the context of
succinct representation of rooted ordered trees. The high level idea is to decompose the tree
into subtrees called minitrees, and further decompose the minitrees into yet smaller subtrees
called microtrees. The microtrees are small enough to be stored in a compact table. The root

S. Chakraborty and K. Sadakane 67:7

a

b c
d

e f

g h i j

l m

k

n o p

q

s t u v w

r

x y z

Figure 1 An example of Tree Covering technique with L = 5. Each closed region formed by the
dotted lines represents a minitree. Here each minitree has at most one “child” minitree (other than
the minitrees that share its root).

of a minitree can be shared by several other minitrees. To represent the tree, we only have
to represent the connections and links between the subtrees. One such tree decomposition
method was given by Farzan and Munro [14] where each minitree has at most one node,
other than the root of the minitree, that is connected to the root of another minitree. This
guarantees that in each minitree, there exists at most one non-root node which is connected
to (the root of) another minitree. We use this decomposition in our algorithms, and the
main result of Farzan et al. [14] is summarized in the following theorem:

I Theorem 8 ([14]). For any parameter L ≥ 1, a rooted ordered tree with n nodes can
be decomposed into Θ(n/L) minitrees of size at most 2L which are pairwise disjoint aside
from the minitree roots. Furthermore, aside from edges stemming from the minitree root,
there is at most one edge leaving a node of a minitree to its child in another minitree. The
decomposition can be performed in linear time using linear words of space.

See Figure 1 for an illustration. For the purpose of our algorithms, we apply Theorem 8
with L = lgn on the DFS tree T of G. For this parameter L, since the number of minitrees is
only O(n/ lgn), we can represent the structure of the minitrees within the original tree (i.e.,
how the minitrees are connected with each other) using O(n) bits by simply storing both
way pointers (so that we can traverse easily) between the roots of the minitrees. We refer
to this as the skeleton S of the DFS tree T . See Figure 2 for a demonstration of Figure 1’s
skeleton. The decomposition algorithm of [14] also ensures that each minitree has at most
one “child” minitree (other than the minitrees that share its root) in this structure. We use
this property crucially later.

MFCS 2019

67:8 Indexing Graph Search Trees and Applications

a

b d

o

q r

(((()) () (()) ()) () ((() ((() (()) () () ()) ((()) () ())) ())) () ())

a

M1 M2

M3

M4

M5 M6 M7

M8

M1 M2 M3 M4
o M5 M6 M7 o M4 M8b b d aq q r r d

(a)

(b)

(c)

x y z

β

k

n p

M4

M7

Figure 2 (a) A rough sketch of the skeleton of the tree decomposition shown in Figure 1. In
this diagram, the triangles represent the minitrees along with the roots of the minitrees are marked
inside the circle. For example, the minitrees M1 and M2 share the same root b. Also the node o

is a minitree on its own. Strictly speaking, the skeleton will not have the traingles, rather it just
contains the pointers between the roots of the minitrees (i.e., circles in this diagram). But we put
this diagram for better visual description of the compact representation of the previous diagram.

In what follows, we explain how we compactly represent the minitree structure, and we
refer to this compact representation obtained using this tree covering (TC) approach as the
TC representation of the DFS tree. Towards this, first observe that every minitree root
has unique first child and last child inside the minitree. In some cases, both are the same
(see the minitree rooted at node d of Figure 1), and in some cases, both are absent (see the
minitree rooted at node o of Figure 1). Thus, if we specify these two quantities, we can
uniquely identify the root of the minitree (along with the exact portion of the nodes which
are children of the root of this minitree and also belong to the same minitree as the first and
last child of the root) even though the root is shared between multiple minitrees. We use
this idea crucially in the design of the TC representation of the DFS tree.

We mark in a bitvector R of size n all the nodes which are the last child of a minitree
root inside a minitree. Note that, there are O(n/ lgn) such nodes which are marked as 1
in R. In the case of a minitree root not having any children, we mark the minitree root
itself as 1 in R. We also build the data structure to support O(1) time rank/select queries
on R using Theorem 3. Next, we create an array C where each of the O(n/ lgn) entries
are O(lgn) bits long, thus overall it takes O(n) bits. Basically, each entry of C stores some
informations regarding the minitree for which the last child of the minitree root is marked 1
in R. More specifically, For a typical node, say vi, which is the last child of some minitree, we
have R[i] = 1, and C[j] (where j = rank1(R, i)) comprises of the following six informations
(some of which could be empty), (i) label of the minitree root, say vr, for which vi is the
last child inside the minitree, (ii) location of the first child, say vj , of vr inside the minitree
in the adjacency array of vr, (iii) DFI of vj , (iv) the edge (vc, vd) (if any) that goes out of
the minitree, (v) the size of the subtree rooted at vc in the DFS tree, (vi) depth of vr in the

S. Chakraborty and K. Sadakane 67:9

DFS tree. The tree decomposition method ensures that a minitree has at most one edge
(vc, vd), where vc is a non-root node of minitree and vd is a root of a different minitree, that
goes out of the minitree. We also mark in a bitvector Z of size n bits all such vertices like
vc (also note, there could be O(n/ lgn) such vertices). We mark in a bitvector L all the
vertices which are the rightmost leaves of every minitree. Note that these vertices (there are,
again, O(n/ lgn) of them) have the highest DFI inside the minitree. In another bitvector
A, we mark all the roots of the minitrees as 1, and build rank/select structure on top of A.
Correspondingly, the F array will store the DFI of the roots so that we can retrieve them in
constant time. More specifically, for a minitree root vr, A[r] = 1 and F [j] (j = rank1(A, r))
will store the DFI of vr. Next we build the O(1) time level ancestor data sturcture, say
LA, on the O(n/ lgn) minitree roots (i.e., on the skeleton structure) using [4]. Thus, here,
LA takes O(n) bits and O(n) time. As a root of the minitree is shared between multiple
minitrees, from each node vi of the skeleton S (where vi is a root of a minitree), we store
pointers to all the minitrees (in C array) which has vi as their root. Overall these pointers
also consume O(n) bits. This completes the description of the TC representation. Note that,
the creation of the skeleton and the TC representation for T can be done in O(n) time using
O(n lgn) bits (using Theorem 8) after the DFS (which takes O(m+ n) time and O(n lgn)
bits). Hence, we obtain the following,

I Lemma 9. Given an undirected graph G, there exists an O(m+n) time and O(n lgn) bits
preprocessing algorithm to construct the skeleton S and the TC representation of the DFS
tree T of G, each of which occupies O(n) bits.

First observe that, the outputs of the previous step are the unary degree sequence array
(D), parent array (E), child array (P), the DT array, TC representation of T (this includes
R, C, Z, A, F and L) along with the skeleton S with pointers to C, and finally the LA
structure on S. The arrays D, E, and P take O(m+ n) bits, and the others take O(n) bits.
Now we show how to efficiently solve the DFS-Indexing problem using these structures.

Query Algorithms. Given vi, to answer 2(a) in O(1) time, we do the following. If vi is the
root of the DFS tree, we return null. Otherwise, we can compute the answer by using only
select1 queries on P and D, as described previously.

To answer 2(b) in O(1) time, we use select1 queries on the bitvector DT .
To answer 2(c), we first compute the number of children of vi in T using the query 2(b).

Then j-th child is obtained in constant time as described above.
Note that, the queries 2(a), 2(b) and 2(c) can be answered using only D, E, P and

DT arrays. Before explaining the algorithms for the rest of the queries, we first prove the
following very crucial lemma.

I Lemma 10. Given any query node vi which is not a root of a minitree, we can reconstruct
the minitree M containing vi in time proportional to the size of M along with the DFIs of all
the nodes inside M . In the same amount of time, we can also retrieve the root node of M .

Proof. First note that if a node v belongs to the minitree M , its children in T also belong
to M , except for the following two cases. The first case is that v is the root vr of M and
the second case is that v is vc of M . In the first case, as we have stored the location (in the
adjacency array) of the first child, say vj , of vr inside M in the C array, we can enumerate
all the children of vr in M in constant time for each until we hit the rightmost child of vr in
M , which is stored in R. In the second case, we can also enumerate all the children of vc

MFCS 2019

67:10 Indexing Graph Search Trees and Applications

in T in constant time for each and discard vd. For other vertices in M , we can enumerate
children using constant time for each output. Note also that going to the parent can be
performed in constant time.

The algorithm to achieve the claim can be broken down into three steps. In the first step,
given vi, we launch a DFS starting from vi, and continue till we retrieve the rightmost leaf,
say vj , of the minitree M . In second step, we follow the path in T (by going to vj ’s parent,
then its parent and so on) till we reach the rightmost child, say vk, of the root, say vr, inside
M by using the query algorithm to find the parent repeatedly. In the third and final step,
we use the C array, by using vk, to extract all the informations needed to reconstruct the
full minitree by performing another round of DFS. We provide the details below.

To perform the first step, we only need to use the parent and child related queries, whose
execution we already showed previously. Note that, as we have stored the information (in Z
array) regarding the only edge that goes out of the minitree, we never incorrectly go out of
M . Also we can verify if we have reached the unique node vj which is the rightmost leaf
of M from the L array. Once we reach vj , it’s easy to see that vk has to be an ancestor of
vj (note that vk and vj could be same in some cases). Thus, we can reach vk from vj by
repeatedly using the parent query algorithm, and this completes the second step. Finally,
once we reach vk, we use the informations in C[j] (where j = rank1(R, k)) to retrieve the
root vr of M and other informations. Then we carry out a DFS from vr by first going to
the first child of vr inside M (retrieved from C), then its first child and so on till we fully
reconstruct M . This step also requires repeated invoking of parent and child query only.

In order to retrieve the DFIs of the nodes inside M , observe that, if M doesn’t have any
child minitree (i.e., no edge is going out of M), then while doing the final DFS from vr, we
can easily compute the DFIs of all the nodes inside M . Otherwise, assume the edge (vc, vd)
goes out of M where vc belongs to M , then the DFI of next node inside M can be calculated
by adding the size of the subtree rooted at vc in T (which is stored in C) to the DFI of vc.
It is clear that all of these procedures can be performed in the time proportional to the size
of M , which is O(lgn) here. This completes the description of the proof. J

As a corollary of the previous lemma, it is easy to see that the query of 2(d) can be
reported in O(lgn) time for any node vi which is not a root of the minitree. Otherwise, it
can be done in O(1) time by reporting the value stored in F [j] where j = rank1(A, i).

To answer 1(a), first we invoke query algorithm of 2(d) for both vi and vj to retrieve
their DFIs respectively, and then answer accordingly. Thus, this also takes O(lgn) time.

Answering 1(b) involves a few cases. In the first case, if both of them belong to the
same minitree then we can figure out the answer by reconstructing the complete minitree.
Secondly, suppose vi and vj are roots of the two separate minitrees, and their depths in T are
x and y respectively (depth can be obtained from C array). Then using these values in LA
data structure, we can figure out the required answer. Finally, if both of these nodes belong
to two separate minitrees but are not the roots of the minitrees, then first we retrieve the
roots of those minitrees using Lemma 10, then follow almost the same procedure as before to
figure out the answer. Note that, in this case, it is enough to reconstruct the path from vc

(of the minitree located near to the root) to the root of that minitree (for the case when one
of the minitree root is an ancestor of the other minitree root) to figure out the answer of the
query. Thus, overall, it takes O(lgn) time.

To return the query for 3, we do a standard DFS traversal on the skeleton S and each
time we visit a new node vi in S, we follow the pointer from vi in S to the part of the C array
where the informations regarding the minitree rooted at vi is stored. Note that, vi might be
shared between multiple minitrees, hence, we always start following these pointers from left

S. Chakraborty and K. Sadakane 67:11

to right. More specifically, if vi is the root of p minitrees, we have p pointers emanating from
vi, and going to p different locations of C array. As these pointers are stored from left to
right order, which is the same order in DFS of all the minitrees that share the root vi. Thus
we follow the first pointer, and reach the specific portion of C, use Lemma 10 to generate
the complete minitree along with the DFIs of the nodes. Then if this minitree has any child
minitree, we go on to explore that and so on (by following the (vc, vd) edge stored in that
minitree). Once we finish all the descendant minitree of the first minitree rooted at vi, we
come back and start exploring the second minitree (by following the second pointer from vi)
and so on. Thus, we need to store these intermediate pointers, in stack, to know how much
progress has been made in every node’s (in skeleton) list. This procedure is continued until
all the nodes of S are exhausted. It is clear that this procedure takes O(n) time as there are
O(n/ lgn) nodes in S and for each node, we spend O(lgn) time. Also, we need O(n) bits (as
there could be O(n/ lgn) pointers) of intermediate space for the execution of the DFS.

To answer 4, first note that, in any minitree M , if there is no egde going out (i.e., no
(vc, vd) type edge), then the DFIs inside M are consecutive, i.e., in general, first child of root
inside M has the smallest DFI and the rightmost leaf in M has the maximum DFI, and the
numbers are consecutive. Otherwise, DFIs are consecutive from the root of M to the DFI of
vc, then there is a jump of DFI by the size of the subtree rooted at vc in the DFS tree, then
it’s consecutive DFI again until the rightmost leaf (which has the largest DFI inside M) of
M . Thus, the range of DFIs of the vertices inside any arbitrary minitree M can be broken
into at most two disjoint consecutive intervals. We store these (at most O(n/ lgn)) intervals
in an interval tree along with augmenting it with the last child of M inside M . Now, given i,
we first find the interval where i belongs to from the tree and simultaneously retrieve the
last child, say va, of the corresponding minitree, all using O(lgn) time. Then, we use the
information from R and C array corresponding to va to invoke Lemma 10, and retrieve the
desired vertex with DFI i using O(lgn) overall time. This completes the description of the
query algorithms for undirected graphs.

We can handle directed graphs similarly except a few changes in the data structures.
Recall that, for directed graphs, every vertex vi has access to its in-neighbors array as well
as out-neighbors array, and additionally we create two unary degree sequence arrays (each of
size O(m + n) bits), D1 for the out-neighbors and D2 for the in-neighbors. We also have
two separate arrays, say E1 (having one-to-one map with D1), for marking child of every
node and E2 (having one-to-one map with D2) where parents are marked. It is easy to see
that almost in a similar fashion as in the undirected case, we can correctly mark, for any
node vi, the children of vi in E1 array and parent of vi in E2 array using both the D1 and
D2 arrays while performing DFS of G. The second preprocessing step doesn’t require any
changes for the directed graphs. Now reporting queries also can be suitably modified to make
use of these changes without affecting the asymptotic running time of the query algorithms.
Basically the only change that takes place is as follows, whenever we need to find the parent
of a node, now we need to use the in-neighbor array whereas finding children can be handled
by consulting out-neighbor array along with the mapping with their respective unary degree
sequence array. We omit the details. Thus, we obtain the following,

I Theorem 11. Given any undirected or directed graph G, there exists an O(m+ n) time
and O(n lgn) bits preprocessing algorithm which outputs a data structure of size O(m+ n)
bits, using which the queries 1(a), 1(b), 2(d) and 4 can be reported in O(lgn) time, 2(a) and
2(b) in O(1) time, 2(c) can be answered in time proportional to the number of solutions, and
finally 3 can be solved in O(n) time respectively for the DFS-Indexing problem.

MFCS 2019

67:12 Indexing Graph Search Trees and Applications

Note that, if the given input graph is sparse (i.e., m = O(n)), then both unary degree
sequence array (D), and parent and child arrays (E,P) take O(n) bits, and every other data
structure anyway takes O(n) in total, thus, we obtain the result mentioned in Theorem 1 for
the case of sparse graphs. When the input graph is dense (i.e., m = ω(n)), we compress the
D,E, P arrays using Theorem 4. Note that we use only select1 queries on compressed arrays
and thus query time complexity on the arrays is still constant. Hence, we obtain the result
of Theorem 1 for the dense graph case. It is worth mentioning that except the case for very
dense graphs, our space bound always beats the space bound of the naive algorithm for every
edge density in the full spectrum, albeit with super-constant query time. Thus, when the
graph is sufficiently dense, it is better to use the standard solution which uses O(n lgn) bits
with constant query time. This completes the description of our algorithms in the indexing
model, and hence, the proof of Theorem 1.

4 Algorithms in the Encoding Model

Recall that in the encoding model, we seek to build a data structure encod after preprocessing
the input graph G such that queries have to be answered using encod only, without accessing
G. To this end, we first provide a lower bound for the space needed for encod to answer
queries of the DFS-Indexing problem.

4.1 Space lower-bound
Observe that, in order to correctly answer the queries, the data structure encod must contain
the information regarding the topology of the DFS tree T of the graph G along with the
labels of the vertices of T as, unlike the indexing model, we don’t have the access to G
during the query time. It’s easy to see that we need Ω(n lgn) bits to store the vertex labels
mappings. In what follows, we give a proof for the space needed to store the topology of the
DFS tree by counting the number of such trees in any arbitrary graph G.

I Lemma 12. For a graph with n vertices and m edges, the size of data structures for storing
the topology of the DFS trees is Ω

(
n lg m

n

)
bits.

Proof. Let us consider the following graph G with n vertices and m edges (m < n2/2). It
has a vertex r, k = m/n vertices u1, . . . , uk, and n−k−1 vertices v1, . . . , vn−k−1. The vertex
r is connected to all ui, and each vj is also connected to all ui. To construct a spanning
tree of G, we choose one edge among all k edges connected to each vj . Then the number of
different spanning trees of G is at least kn−k−1, and for all different spanning trees the set
of DFI’s are different. Therefore the size of data structure must be at least lg kn−k−1 bits,
which is Ω

(
n lg m

n

)
. J

Thus, the space lower bound for encod is Ω(max{n lg m
n , n lgn}) bits, which is Ω(n lgn) bits

as mentioned in Theorem 2. In what follows, we complement the above claim by providing a
simple indexing structure which asymptotically matches this lower bound.

4.2 Upper-bound
Preprocessing Step. Our index for the DFS-Indexing problem consists of two components
which we prepare during the preprocessing step. In the first component, we store, for every
vertex vi, DFI(vi) as permutation using the structure of Theorem 5 of Section 2. Secondly,
we encode the DFS tree succinctly using the structure of Theorem 6 of Section 2.

S. Chakraborty and K. Sadakane 67:13

Query Algorithm. We answer the queries using the two above mentioned structures as
follows. To answer 2(d), we just use π(i). Similarly, 4 can be answered by invoking π−1(i).
We report vi (resp. vj) as the answer for query 1(a) if π(i) < π(j) (resp. π(i) > π(j)).
We enumerate the vertex ordering as traversed in the DFS order by invoking π−1(1), then
π−1(2), and so on till π−1(n). We answer 1(b) in affirmative by checking if LA(vj , depth(vi))
matches with vi, otherwise no. To answer 2(a), we return LA(vi, depth(vi)− 1). We return
the answer of 2(b) by using the query degree(vi). Finally, we enumerate the children of a
node vi as requested in query 2(c) by using the query child(vi, 1) till child(vi, degree(vi)).
Hence we obtain the results mentioned in Theorem 2.

5 Conclusion

In this paper, we provided procedures for compactly storing the DFS tree for any graph with
efficiently supporting various queries in the indexing and encoding models, and showed how
to extend these techniques to design indexing schemes for other fundamental and basic graph
problems. With some work, our algorithm can be extended for indexing BFS tree (and other
graph search tree also) as well while supporting similar types of queries. Also, as mentioned
previously, our results are more general, and can be used in other situations as well.

This work opens up many possible future directions to explore. Can we further improve
the query time while keeping the space bound same in the indexing model? Can we prove
a space lower bound in the indexing model? Can we design compact data structures for
indexing problems like maximum flow? Finally, we conclude by remarking that using [2, 9],
we can improve the preprocessing space of our algorithms to O(n) bits (from O(n lgn) bits)
with marginal increment in the preprocessing time.

References
1 H. Acan, S. Chakraborty, S. Jo, and S. R. Satti. Succinct Data Structures for Families of

Interval Graphs. In WADS, 2019.
2 N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti. Space Efficient Linear Time

Algorithms for BFS, DFS and Applications. Theory of Computing Systems, 2018.
3 J. Barbay, L. C. Aleardi, M. He, and J. I. Munro. Succinct Representation of Labeled Graphs.

In 18th ISAAC, pages 316–328, 2007.
4 M. A. Bender and M. Farach-Colton. The Level Ancestor Problem simplified. Theor. Comput.

Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.
5 D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations of separable graphs.

In 14th SODA, pages 679–688, 2003.
6 S. Chakraborty. Space Efficient Graph Algorithms. PhD thesis. The Institute of Mathematical

Sciences, HBNI, India, 2018.
7 S. Chakraborty, S. Jo, and S. R. Satti. Improved Space-efficient Linear Time Algorithms for

Some Classical Graph Problems. CoRR, abs/1712.03349, 2017. arXiv:1712.03349.
8 S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti. A Framework for In-place Graph

Algorithms. In 26th ESA, pages 13:1–13:16, 2018.
9 S. Chakraborty, V. Raman, and S. R. Satti. Biconnectivity, st-numbering and other applications

of DFS using O(n) bits. J. Comput. Syst. Sci., 90:63–79, 2017.
10 S. Chakraborty and S. R. Satti. Space-efficient algorithms for maximum cardinality search, its

applications, and variants of BFS. J. Comb. Optim., 37(2):465–481, 2019.
11 D. Clark. Compact Pat Trees. PhD thesis. University of Waterloo, Canada, 1996.
12 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3. ed.).

MIT Press, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.

MFCS 2019

https://doi.org/10.1016/j.tcs.2003.05.002
http://arxiv.org/abs/1712.03349
http://mitpress.mit.edu/books/introduction-algorithms

67:14 Indexing Graph Search Trees and Applications

13 S. Even and R. E. Tarjan. Computing an st -Numbering. Theor. Comput. Sci., 2(3):339–344,
1976.

14 A. Farzan and J. I. Munro. Succinct representation of dynamic trees. Theor. Comput. Sci.,
412(24):2668–2678, 2011.

15 A. Farzan and J. I. Munro. A Uniform Paradigm to Succinctly Encode Various Families of
Trees. Algorithmica, 68(1):16–40, 2014.

16 L. Ferres, J. F. Sepúlveda, T. Gagie, M. He, and G. Navarro. Fast and Compact Planar
Embeddings. In 15th WADS, pages 385–396, 2017.

17 J. E. Hopcroft and R. E. Tarjan. Efficient Planarity Testing. J. ACM, 21(4):549–568, 1974.
18 J. I. Munro and P. K. Nicholson. Compressed Representations of Graphs. In Encyclopedia of

Algorithms, pages 382–386. Springer, 2016. doi:10.1007/978-1-4939-2864-4_646.
19 J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations

and functions. Theor. Comput. Sci., 438:74–88, 2012.
20 J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees.

SIAM J. Comput., 31(3):762–776, 2001.
21 G. Navarro. Compact Data Structures - A Practical Approach. Cambridge Uni-

versity Press, 2016. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
compact-data-structures-practical-approach?format=HB.

22 R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput., 1(2):146–
160, 1972.

23 R. E. Tarjan. A Note on Finding the Bridges of a Graph. Information Processing Letters,
2(6):160–161, 1974.

24 R. E. Tarjan. Finding Dominators in Directed Graphs. SIAM J. Comput., 3(1):62–89, 1974.
25 K. Yamanaka and S. Nakano. A compact encoding of plane triangulations with efficient query

supports. Inf. Process. Lett., 110(18-19):803–809, 2010.

https://doi.org/10.1007/978-1-4939-2864-4_646
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB

Additive Cellular Automata Over Finite Abelian
Groups: Topological and Measure Theoretic
Properties
Alberto Dennunzio1

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy
dennunzio@disco.unimib.it

Enrico Formenti1

Universite Côte d’Azur, CNRS, I3S, France
enrico.formenti@univ-cotedazur.fr

Darij Grinberg1

School of Mathematics, University of Minnesota, Minneapolis, USA
darijgrinberg@gmail.com

Luciano Margara1

Department of Computer Science and Engineering, University of Bologna, Campus of Cesena,
Via dell’Università 50, 47521 Cesena, Italy
luciano.margara@unibo.it

Abstract
We study the dynamical behavior of D-dimensional (D ≥ 1) additive cellular automata where the
alphabet is any finite abelian group. This class of discrete time dynamical systems is a generalization
of the systems extensively studied by many authors among which one may list [36, 43, 44, 40, 12, 11].
Our main contribution is the proof that topologically transitive additive cellular automata are
ergodic. This result represents a solid bridge between the world of measure theory and that of
topology theory and greatly extends previous results obtained in [12, 43] for linear CA over Zm i.e.
additive CA in which the alphabet is the cyclic group Zm and the local rules are linear combinations
with coefficients in Zm. In our scenario, the alphabet is any finite abelian group and the global rule
is any additive map. This class of CA strictly contains the class of linear CA over Zn

m, i.e., with the
local rule defined by n× n matrices with elements in Zm which, in turn, strictly contains the class
of linear CA over Zm. In order to further emphasize that finite abelian groups are more expressive
than Zm we prove that, contrary to what happens in Zm, there exist additive CA over suitable finite
abelian groups which are roots (with arbitrarily large indices) of the shift map.

As a consequence of our results, we have that, for additive CA, ergodic mixing, weak ergodic
mixing, ergodicity, topological mixing, weak topological mixing, topological total transitivity and
topological transitivity are all equivalent properties. As a corollary, we have that invertible transitive
additive CA are isomorphic to Bernoulli shifts. Finally, we provide a first characterization of strong
transitivity for additive CA which we suspect it might be true also for the general case.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Cellular Automata, Symbolic Dynamics, Complex Systems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.68

1 corresponding author

© Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 68; pp. 68:1–68:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dennunzio@disco.unimib.it
mailto:enrico.formenti@univ-cotedazur.fr
mailto:darijgrinberg@gmail.com
mailto:luciano.margara@unibo.it
https://doi.org/10.4230/LIPIcs.MFCS.2019.68
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

1 Introduction

Cellular automata (CA) are widely known formal models for studying and simulating complex
systems [9]. They are used in many disciplines ranging from physics to biology, stepping
through sociology and, of course, computer science (for recent results and an up-to date
bibliography on CA, see [25, 28, 17, 16, 3], while for other models of natural computing see
for instance [21, 19, 26, 18]). Their extensive use is due to the huge variety of dynamical
behaviors. In computer science, applications can be found in many different contexts such as
cryptography, pseudo-random number generation, image processing, data compression, etc.

More formally, a CA can be defined as an infinite set of finite automata arranged on
the regular lattice ZD, where D ∈ N is the dimension of the CA. Each finite automaton
has a state which is chosen from a finite set G, called the set of states or the alphabet. All
finite automata update synchronously according to a local rule which takes into account the
current state of the automaton and the states of a neighborhood N of neighboring automata.
The local rule f induces a global map F : GZD → GZD which describes the overall evolution
of the CA at each time tick.

Despite of their apparent simplicity, CA may exhibit extremely complex dynamical
behaviors. Indeed, in most cases the problem of deciding if a given CA has a certain
dynamical property or not is undecidable [5, 30, 37] and some Rice-like theorems have been
proved [34, 39]. The complex dynamics of CA has been described through a great number
of properties (see Section 2 for definitions) involving both the measure theoretical and the
topological point of views. Figure 1 illustrates the relations between those that are studied
in this paper.

Ergodic Mixing

Weak Ergodic Mixing

Ergodic

Topological Mixing

Transitive
Totally Transitive

Weak Topological Mixing

Positive Expansive

Strongly Transitive

Open

Dense Periodic OrbitsSensitive Surjective

D = 1

Figure 1 Known relations between dynamical properties of CA. An arrow with single tip indicates
that the converse relation is unknown, an arrow with double tip means that the converse relation is
false. Labels on arrows indicate that implications have been proved only for specific dimensions.
Note that there are no expansive CA in dimension D > 1.

Imposing some additional constraints to the global update map allows a complete and
efficient description of the dynamical behavior. These properties can take the form of a
conservation law [33, 29, 32, 6, 49] or superposition principles induced by an algebraic
structure imposed on the alphabet [36, 43, 44, 40, 12, 11] (in both cases the literature is
really huge, only a small excerpt is cited here).

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:3

Similarly, in this paper, it is required that the alphabet G of the CA is a finite abelian
group and its global update map is additive, i.e., an endomorphism of GZD . This is a pretty
broad requirement which characterizes a class of CA generalizing those with linear local rule
defined by n × n matrices (see the previous citations for the case n = 1 and [40, 8] for a
generic n). Indeed, the local rule of an additive CA over a group 〈G,+〉 can be written as

f(x1, . . . , xr) =
r∑

i=1
fi(xi)

where the functions fi are endomorphisms of G and {x1, . . . , xr} is the neighborhood N .
The fundamental theorem of finite abelian groups states that every finite abelian group is

isomorphic to
⊕h

i=1 Zki where the numbers k1, . . . , kh are powers of (not necessarily distinct)
primes and ⊕ is the direct sum operation. Hence, the global rule F of an additive CA over G
splits into the direct sum of a suitable number h′ of additive CA over subgroups G1, . . . , Gh′

with h′ ≤ h and such that gcd(|Gi|, |Gj |) = 1 for each pair of distinct i, j ∈ {1, . . . , h′}. Each
of them can be studied separately and then the analysis of the dynamical behavior of F can
be carried out by combining together the results obtained for each component.

In order to make things clearer, consider the following example. If F is an additive CA
over G ∼= Z4 × Z8 × Z3 × Z3 × Z25 then F splits into the direct sum of 3 additive CA over
Z4 × Z8, Z3 × Z3 and Z25, respectively. Therefore, F will be topologically transitive iff each
component is topologically transitive while F will be sensitive to initial conditions iff at least
one component is sensitive to initial conditions (see Section 2.1 for the precise definitions of
these properties).

The above considerations lead us to three distinct scenarios:

- G ∼= Zpk . Then, G is cyclic and we can define each fi simply assigning the value of
fi applied to the unique generator of G. Moreover, every pair fi, fj commutes, i.e.
fi ◦ fj = fj ◦ fi, and this makes it possible a detailed analysis of the global behavior
of F . For additive cellular automata over Zpk almost all dynamical properties are well
understood and characterized [43].

- G ∼= Zn
pk . In this case, G is not cyclic anymore and has n generators. We can define each

fi assigning the value of fi for each generator of G. This gives rise to the class of linear
CA over Zn

pk that have been studied in [20, 40, 8]. Now, fi and fj do not commute in
general and this makes the analysis of the dynamical behavior much harder. As pointed
out in [20], we also recall that linear CA over Zn

pk allow the investigation of some classes
of non-uniform CA over Zpk (for these latter see [22, 10, 24, 23]).

- G ∼=
⊕n

i=1 Zpki . In this case (Z4 × Z8 in the example), G is again not cyclic and F turns
out to be a subsystem (in the sense of topological dynamics) of a suitable linear CA. In
this last case the analysis of the dynamical behavior of F is even more complex than
in the previous case. We do not even know easy checkable characterizations of basic
properties like surjectivity or injectivity.

Even if the superposition principle still allows us to prove deep and interesting results on
the asymptotic behavior of additive CA over finite abelian groups, their dynamics is definitely
more interesting and expressive than that of linear CA over Zm and exhibits much more
complex features. As a first example, consider the set A of graphs with n nodes represented
by their adjacency matrices. A can be equipped with a binary operation “+” that makes it a
finite (or finitely generated) abelian group G (isomorphic to the group of all n× n matrices
over Z2 with the “+” operation). The group operation can be defined in many different ways,

MFCS 2019

68:4 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

Ergodic Mixing
Weak Ergodic Mixing

Ergodic

Topological Mixing

Transitive
Totally Transitive

Weak Topological Mixing

Positive Expansive

Strongly Transitive

Sensitive Dense Periodic OrbitsSurjective

Open

D = 1

Zm

Zm

Figure 2 Known relations among dynamical properties of additive CA before the present paper.
An arrow with single tip indicates that the converse relation is unknown, an arrow with double tip
means that the converse relation is false. Labels on arrows indicate that implications have been
proved only for specific alphabets or dimensions. Note that there are no expansive CA in dimension
D > 1.

e.g. sum of matrices or, for undirected graphs, product of (symmetric) matrices. The local
rule of the CA can be any map preserving the group structure. It is easy to verify that the
dynamics of this kind of automata cannot be simulated by any linear CA over Zm.

This richness in terms of expressive power is further stressed by Theorem 9 which shows
how the group structure of Zpk constraints the dynamics. However, there exist additive
one-dimensional CA over suitable abelian groups that are arbitrarily “small” roots of the
shift map, as illustrated in Example 10. This means that the group structure helps out
in constructing CA which are able of transmitting the information (encoded in the initial
configuration) at arbitrary slow speed. In particular, this allows the construction of ergodic
maps with arbitrary low Lyapunov exponents. Theorem 8 tells that the same cannot be
done by one-dimensional CA over alphabets of prime cardinality.

Figure 2 illustrates the known relations among dynamical properties of linear CA before
the present paper. Figure 3 illustrates the impact of the results of the present paper. As
a matter of fact, the overall picture have been greatly simplified and the dynamics much
better understood.

The paper is structured as follows. Section 2 introduces all the necessary background
and formal definitions. Section 3 states the main contributions of the paper and the next
one provides all the proofs. In the last section we draw our conclusions and provide some
perspectives.

2 Background

We begin by reviewing some general notions and introducing notations we will use throughout
the paper.

Let Z and N be the set of integers and natural numbers, respectively. For any v ∈ ZD we
denote ||v|| = ||(v1, . . . , vD)|| = max{|v1|, . . . , |vD|}.

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:5

Ergodic Mixing, Weak Ergodic Mixing, Ergodic
Topological Mixing, Weak Topological Mixing

Totally Transitive, Transitive

Positive Expansive

Strongly Transitive

Dense Periodic Orbits

Surjective
Open

Sensitive

D = 1

Figure 3 Relations among dynamical properties of additive CA taking into account the results
of the present paper. An arrow with single tip indicates that the converse relation is unknown, an
arrow with double tip means that the converse relation is false. Labels on arrows indicate that
implications have been proved only for specific dimensions. Note that there are no expansive CA in
dimension D > 1.

Let G be a finite alphabet. A configuration over G is a map from ZD to G. For any
configuration c ∈ GZD and any vector v ∈ ZD, c(v) is the value of c in position v. The
configuration space GZD is equipped with the distance d defined as follows

∀c, c′ ∈ GZD

, d(c, c′) =
{

0, if c = c′,

2−min{||v|| : c(v)6=c′(v)}, otherwise .

In this way, the set GZD equipped with the topology induced by d turns out to be a compact,
perfect, and totally disconnected topological space (i.e., a Cantor space). In the sequel, the
configuration space GZD will be sometimes denoted by X.

A pattern P is a function from {−`, . . . , `}D to G, for some ` ∈ N. For any ` ∈ N,
denote by P` the set of all patterns with domain {−`, . . . , `}D. For any P ∈ P`, the cylinder
individuated by the pattern P is the set [P] = {c ∈ GZD | ∀v ∈ {−`, . . . , `}D, c(v) = P (v)}.
Cylinders are clopen sets and the set {[P] : ` ∈ N, P ∈ P`} of all cylinders is a basis for the
topology induced by d.

For some fixed integer s ≥ 1, let f (named, s-sized local rule) and N (s-sized neighborhood
frame) be any map from Gs to G and an ordered set of distinct vectors u1, . . . , us, respectively.
A D-dimensional CA over G is a pair (GZD

, F), where F : GZD → GZD is the function
(named, global transition map) defined on the basis of f and N as follows

∀c ∈ GZD

,∀v ∈ ZD, F (c)(v) = f (c(v + u1), . . . , c(v + us)) . (1)

Recall that F is a uniformly continuous map w.r.t. the metric d and any function F : GZD →
GZD is the global transition map of a D-dimensional CA iff it is uniformly continuous and
shift-commuting (Hedlund’s theorem from [35]), i.e., F ◦ σu = σu ◦ F for any u ∈ ZD, where
σu : GZD → GZD is the D-dimensional shift map defined by ∀c ∈ GZD

,∀v ∈ ZD, σu(c)(v) =
c(v + u). From now on, for the sake of simplicity, we identify a CA with its global map.
Moreover, we will denote σ1 simply by σ.

MFCS 2019

68:6 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

In the sequel, the alphabet G will be an abelian group, with group operation +, neutral
element 0, and inverse operation −. In this way, both the configuration space GZD and the
set P` turn out to be abelian groups, too, where the group operation of GZD and P` is the
component-wise extension of + to GZD and P`. With an abuse of notation, we denote by
the same symbols +, 0, and − the group operation, the neutral element, and the inverse
operation, respectively, both of ZD, G, GZD , and P`. Observe that + and − are continuous
functions in the topology induced by cylinders. Hence, GZD is a compact topological group.

A configuration c ∈ GZD is said to be finite if the number of positions v ∈ ZD with
c(v) 6= 0 is finite. A CA (GZD

, F) over G is additive if

∀c, c′ ∈ GZD

, F (c+ c′) = F (c) + F (c′) .

In other words, additive D-dimensional CA over G are endomorphisms of GZD .
The sum of two additive CA F1 and F2 over G is naturally defined as the map on

GZD denoted by F1 + F2 and such that

∀c ∈ GZD

, (F1 + F2)(c) = F1(c) + F2(c) .

2.1 Topological and measure theoretic properties
We now recall the definition of some topological and measure theoretical properties for
general systems.

A discrete time dynamical system (DTDS) is a pair (X ,F), where X is any set
equipped with a distance d and F is a transformation on X which is continuous with respect
to d. Clearly, CA are DTDS. A DTDS (X ,F) is surjective, resp., open, if F is surjective,
resp., open. Open CA are surjective (for a proof see [25], for instance). Moreover, any open
one-dimensional CA F is characterized by the following property: there exists a natural
k > 0 such that for every configuration c ∈ GZD it holds that |F−1(c)| = k. Two DTDS
(X ,F) and (X ′,F ′) are isomorphic if there exists an homeomorphism ϕ : X → X ′ such that
ϕ ◦ F = F ′ ◦ ϕ.

A DTDS (X ,F) is topologically transitive (or, simply, transitive) if for all nonempty
open subsets U and V of X there exists a natural number t such that F t(U) ∩ V 6= ∅, while
it is said to be topologically mixing if for all nonempty open subsets U and V of X there
exists a natural number t0 such that the previous intersection condition holds for every t ≥ t0.
Intuitively, a topologically transitive system (X ,F) has elements of X which eventually
move under iteration of F from one arbitrarily small neighbourhood to any other. As a
consequence, the dynamical system cannot be decomposed into two disjoint open sets which
are invariant under the map F . Clearly, topological mixing is a stronger condition than
transitivity. Further, (X ,F) is topologically weakly mixing if the DTDS (X ×X ,F ×F)
is topologically transitive, while it is totally transitive if (X ,F t) is topologically transitive
for all t ∈ N. We now recall another condition stronger than transitivity. A DTDS is
strongly transitive if for any nonempty open subset U of X it holds that

⋃∞
t=1 F t(U) = X .

A DTDS (X ,F) is sensitive to initial conditions if there exists ε > 0 such that for
any δ > 0 and x ∈ X , there are an element y 6= x with d(y, x) < δ and a natural number t
such that d(F t(y),F t(x)) > ε. Roughly speaking, (X ,F) is sensitive to initial conditions, or
simply sensitive, if there exist elements arbitrarily close to x which eventually separate from
x by at least ε under iteration of F . If a DTDS is sensitive, then, for all practical purposes,
the dynamics eventually defy numerical approximation. Small errors in computation which
are introduced by round-off may become magnified upon iteration. The results of numerical
computation of an orbit, no matter how accurate, may be completely different from the real

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:7

orbit. In [13] it has been proven that, for CA, topological transitivity implies sensitivity.
Thus, for CA, the notion of topological transitivity becomes central to chaos theory. A DTDS
(X ,F) is said to be positively expansive if there exists ε > 0 such that for any pair of
elements x, y ∈ X with x 6= y there exists a natural number t such that d(F t(y),F t(x)) > ε.
If X has infinite cardinality then expansivity is a stronger condition than sensitivity (see [31]
for a study concerning expansivity and sensitivity in CA). While there are no positively
expansive D-dimensional CA when D ≥ 2, in dimension 1, expansivity implies both mixing,
strong transitivity, and openness [41].

An element x ∈ X is a periodic point for a DTDS (X ,F) if F t(x) = x for some integer
t > 0. A DTDS (X ,F) has dense periodic orbits (DPO) if the set of its periodic points
is dense in X . The popular book by Devaney [27] isolates three components as being the
essential features of chaos for DTDS: topological transitivity, sensitivity to initial conditions
and denseness of periodic orbits (see [27, Def. 8.5]).

Let (X ,M, µ) be a probability space and let (X ,F) be a DTDS where F is a measurable
map which preserves µ, i.e., µ(E) = µ(F−1(E)) for every E ∈ M. The DTDS (X ,F), or,
the map F , is ergodic with respect to µ if for every E ∈M(

E = F−1(E)
)
⇒ (µ(E) = 0 or µ(E) = 1) .

It is well known that F is ergodic iff for any pair of sets A,B ∈M it holds that

lim
n→∞

1
n

n−1∑
i=0

µ(F−i(A) ∩B) = µ(A)µ(B)

The DTDS (X ,F) is (ergodic) mixing, if for any pair of sets A,B ∈M it holds that

lim
n→∞

µ(F−n(A) ∩B) = µ(A)µ(B) ,

while it is (ergodic) weak mixing, if for any pair of sets A,B ∈M it holds that

lim
n→∞

1
n

n−1∑
i=0
|µ(F−i(A) ∩B)− µ(A)µ(B)| = 0

In order to apply ergodic theory to CA, we need to define the collectionM of measurable
subsets of GZD and a probability measure µ :M→ [0, 1]. We will use the normalized Haar
measure µH defined over the σ-algebra generated by the cylinders which is, to our knowledge,
one of the most widely used probabilistic setting in CA theory. The measure µH is defined
as the product measure induced by the uniform probability distribution over G. In this way,
for any ` ∈ N and any pattern P ∈ P`, it holds that µH([P]) = 1

|G|(2`+1)D . Since in the rest
of this paper we will only use the Haar measure, then we will write µ instead of µH .

3 Statement of the main results

In this section, we state the main results of this paper. They allow us to simplify the
relationships between the dynamical and measure theoretic properties of additive CA, as
depicted in Figure 3.

The following is the main result of the paper. It builds a bridge between two pretty
different ways of approaching the study of the dynamics of CA: measure-theoretic and
topological. The arguments used in the proofs are closely crafted on the additivity property
of the global rule and on the group structure of the alphabet, however, the overall impression
is that this tight link between topology and measure theory shall be true in a much more
general setting.

MFCS 2019

68:8 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

I Theorem 1. Let F be an additive D-dimensional CA over a finite abelian group. If F is
topologically transitive then F is ergodic.

Theorem 2 provides a new facet of the ergodicity property. This time ergodicity is related
to set theoretic properties like surjectivity and aperiodicity of finite configurations.

I Theorem 2. Any additive D-dimensional CA F over a finite abelian group is ergodic if
and only if F is surjective and no finite configuration except 0 is a periodic point for F .

The following corollary collects all the known properties which are related to ergodicity
in the context of additive CA over finite abelian groups.

I Corollary 3. Let F be an additive D-dimensional CA over a finite abelian group. The
following properties are equivalent
1. ergodic mixing;
2. weak ergodic mixing;
3. ergodicity;
4. topological mixing;
5. total transitivity;
6. weak topological mixing;
7. topological transitivity;
8. F is surjective and no finite configuration except 0 is a periodic point of F .

I Corollary 4. Let F be an additive D-dimensional CA over a finite abelian group. If F is
invertible and transitive then F is isomorphic to a Bernoulli shift.

Surjectivity has strong implications on the dynamics of general CA, the following propo-
sition and its corollary prove that in the context of additive CA, those implications are even
stronger.

I Proposition 5. Let F be an additive D-dimensional CA over a finite abelian group. If F
is surjective then it is open.

I Corollary 6. Surjectivity and openness are equivalent properties for additive D-dimensional
CA over a finite abelian group. Furthermore, they are equivalent to DPO in dimension D = 1.

The following theorem provides a first characterization of strong transitivity for additive
CA over finite abelian groups. Roughly speaking, the theorem states that this property is
conserved under translations and iterations. We wonder whether the same holds for general
CA.

I Theorem 7. Let F be and additive D-dimensional CA over a finite abelian group. The
following conditions are equivalent:
1. F is strongly transitive;
2. for every v ∈ ZD, the CA σv ◦ F is strongly transitive;
3. for every n ∈ N, the CA Fn is strongly transitive;

In the context of 1-dimensional CA, the following result characterizes the roots of powers
of the shift map. Recall that a CA F is a root of another CA F ′ if there exists an integer
n > 0 such that Fn = F ′.

I Theorem 8. [35, Thm. 18.1] Let F be a 1-dimensional CA over an alphabet G of prime
cardinality. If Fn = σm for some naturals n,m with n ≥ 1, then n|m.

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:9

In the case of linear CA over an alphabet of cardinality which is a power of a prime, the
following weaker form of Theorem 8 can be proved.

I Theorem 9. Let G = Zpk with p prime and let F be a 1-dimensional CA over G defined
by the neighborhood N = {−r, . . . , r} and the local rule f : Z2r+1

pk → Zpk expressed by the
linear combination with coefficients a−r, . . . , ar ∈ Zpk . If Fn = σm for some naturals n ≥ 1
and m ≥ 1, then m ≥ n.

The following example shows that Theorem 9 is no longer true for additive CA over finite
abelian groups.

I Example 10. Let F be the 1-dimensional CA over Zn
m defined by the neighbourhood

N = {0, 1} and the local rule f : (Zn
m)2 → Zn

m such that

∀(x0, x1) ∈ (Zn
m)2, f(x0, x1) = M0x0 +M1x1 ,

where

M0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

 and M1 =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0
1 0 0 · · · 0

 .

It is easy to check that Fn = σ contradicting the statement of Theorem 9.

Example 10 has also other important consequences. On the one hand, it provides examples
of CA that are arbitrarily “small” roots of the shift map. On the other hand, it provides the
basic building blocks for systems which are ergodic but have both arbitrarily low Lyapunov
exponents and arbitrarily low topological entropies.

4 Proofs of the main results

4.1 Useful known results
Before going into the proofs of our main results let us recall some known facts which helped
in shaping the situation depicted in Figure 2.

I Theorem 11. [50, Thm. 1.28, pag. 50] Mixing, weak mixing and ergodicity are equivalent
properties for endomorphisms of compact groups.

I Theorem 12. [4, Thm. 1] An ergodic automorphism of a compact metric abelian group is
a Bernoulli shift.

I Proposition 13. [15, Prop. 6.7, pag. 32] Ergodic (resp., weak ergodic) mixing implies
topological (resp., weak) mixing for endomorphisms of compact groups and measures with full
support.

The following will be fundamental for proving our main result.

I Theorem 14. [48, Thm. 1] Let F be any endomorphism of a compact abelian group with
normalized Haar measure. Then, F is ergodic if and only if F is surjective and Fn − I is
surjective for all n ∈ N (I is the identity map).

MFCS 2019

68:10 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

4.2 Proofs of our results
In order to make the proof of the main result more readable, we cut it into several lemmata.

I Lemma 15. Let F be an additive D-dimensional CA over a finite abelian group G. For
all n ≥ 1, it holds that

Fn − I = (F − I) ◦ (I + F + · · ·+ Fn−1) = (I + F + · · ·+ Fn−1) ◦ (F − I) (2)

Proof. It is an immediate consequence of the fact that the composition operation on the set
of additive CA is distributive over the sum operation (defined on the same set). J

I Lemma 16. Let F be an additive CA over a finite abelian group G. Let ` ∈ N and w ∈ Pl

such that (F − I)(X) ∩ [w] = ∅. Then, it holds that

∀n ≥ 1, (Fn − I)(X) ∩ [w] = ∅ .

Proof. For every natural n ≥ 1, by Lemma 15, we get

(Fn − I)(X) = (F − I)
(
(I + F + · · ·+ Fn−1)(X)

)
⊆ (F − I)(X) .

Since (F − I)(X) ∩ [w] = ∅, it follows that (Fn − I)(X) ∩ [w] = ∅. J

I Lemma 17. Let F be an additive D-dimensional CA over a finite abelian group G. If
there exist ` ∈ N and w ∈ Pl such that

∀n ≥ 1, (Fn − I)(X) ∩ [w] = ∅ ,

then F is not topologically transitive.

Proof. For the sake of argument, assume that F is topologically transitive. Choose arbitrarily
two patterns w1, w2 ∈ Pl such that w2 − w1 = w. By transitivity, there exist a configuration
c ∈ [w1] and a natural n ≥ 1 such that Fn(c) ∈ [w2]. Thus, Fn(c)− c ∈ [w], or, equivalently,
(Fn − I)(c) ∈ [w], which is a contradiction. J

At present all the necessary pieces have been built to go through the proof of Theorem 1.

Proof of Theorem 1. For the sake of argument, assume that F is transitive but not ergodic.
Since transitive CA are surjective, then, by Theorem 14, there exists n ≥ 1 such that Fn − I
is not surjective. Let H = Fn. Since H − I is not surjective and (H − I)(X) is closed, there
exist a natural ` ∈ N and a pattern w ∈ P` such that (H − I)(X) ∩ [w] = ∅. So, by Lemma
16, it follows that

∀m ≥ 1, (Hm − I)(X) ∩ [w] = ∅ .

Therefore, by Lemma 17, H is not topologically transitive. Since topologically transitive CA
are totally transitive (see [46], where the proof involving 1-dimensional CA can be extended
to any dimension D), we conclude that neither is F , which is a contradiction. J

Proof of Theorem 2. By Theorem 14, F is ergodic if and only if it is surjective and for
every natural m ≥ 1 the CA I −Fm is surjective. Fix an arbitrary natural m ≥ 1 and define
H(m) = I − Fm. The Garden-of-Eden Theorem for CA [45, 47] guarantees that H(m) is
surjective if and only if it is injective on finite configurations, i.e., H(m)(c) 6= H(m)(c′) for
every pair of distinct finite configurations c, c′ ∈ GZD . Set d = c− c′ ∈ GZD . Clearly d is a
finite configuration. Furthermore, by additivity, it holds that H(m)(c) 6= H(m)(c′) if and only
if H(m)(d) 6= 0. By definition of H(m), the condition H(m)(d) 6= 0 is true for every m ≥ 1 if
and only if Fm(d) 6= d, i.e., d is not a periodic point of F . J

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:11

Proof of Proposition 5. We are going to prove that F is open at the configuration 0 ∈ GZD ,
i.e., equivalently, for every ` ∈ N, the set F ([0]) is open, where 0 ∈ P`. Since F is an
endomorphism of the topological group GZD , we conclude that F is open.

To proceed, consider any arbitrary ` ∈ N. Clearly, it holds that GZD =
⋃

w∈P`
[w] and,

since F is surjective, we get GZD =
⋃

w∈P`
F ([w]). Thus, there exists w′ ∈ P` such that

F ([w′]) has non-empty interior. Let c ∈ [w′] be the configuration such that c(v) = 0 ∈ G for
every position v ∈ ZD with ||v|| > `. One gets F ([w′]) = F ([0] + c) = F ([0]) + F (c) (where
[0] + c and F ([0]) + F (c) denote suitable cosets of [0] and F ([0]), respectively). Therefore,
F ([0]) must have non-empty interior, too. Since F ([0]) is a subgroup of the topological group
GZD , it follows that F ([0]) is open. J

Proof of Corollary 6. It is well-known that any open D-dimensional CA is surjective. By
Proposition 5, surjective additive D-dimensional CA over a finite abelian group are open.
It is easy to see that DPO implies surjectivity in any dimension. While, by Proposition 5
and the fact that open 1-dimensional CA have DPO [7, Thm. 4.4], it follows that surjective
additive 1-dimensional CA have DPO. J

Proof of Corollary 4. By Theorem 1, F is ergodic. The thesis follows from Theorem 12. J

I Lemma 18. An additive CA F over a finite abelian group G is strongly transitive if and
only if the following condition holds: for any natural ` ∈ N and any pattern P ∈ P` there
exists t ∈ N such that 0 ∈ F t([P]).

Proof. The “only if” part trivially follows from the definition of strong transitivity. Let us
prove the “if” part. Assume that F is an additive CA over a finite abelian group G and
satisfying the condition in the statement. Consider an arbitrary natural ` ∈ N. For every
P ∈ P` let nP,` be the smallest natural t such that 0 ∈ F t([P]). Define n` = max{nP,` : P ∈
P`}. Since F (0) = 0 it holds that

∀P ∈ P`, 0 ∈ Fn`([P]) (3)

We now show that for any configuration e ∈ GZD , any natural `, and any pattern P ∈ P`

there exists t′ = n` such that e ∈ F t′([P]), that is, F is strongly transitive. Choose arbitrarily
a configuration e ∈ GZD , a natural `, and pattern P ∈ P`. Let c be any configuration
belonging to F−n`(e). If c ∈ [P] we are done. Otherwise, by (3), there exists c′ ∈ GZD such
that c+ c′ ∈ [P] and Fn`(c′) = 0. Thus, we get

Fn`(c+ c′) = Fn`(c) + Fn`(c′) = Fn`(c) + 0 = Fn`(c) = e ,

and this concludes the proof. J

Proof of Theorem 7. It is an immediate consequence of Lemma 18 and the fact that for
every v ∈ ZD and every n ∈ N both σv(0) = 0 and Fn(0) = 0 hold. J

Proof of Theorem 9. The CA F can be represented by the Laurent polynomial p(x, x−1) =∑r
i=−r aix

i ∈ Zpk [x, x−1], while σ1 can be represented by the Laurent polynomial x. Assume
that Fn = σm for some naturals n,m with n ≥ 1 and m ≥ 1. It is easy to verify that
Fn = σm if and only if

(
p(x, x−1)

)n = xm. We consider two cases. 1) If p|ai for each
i ∈ N with i 6= 0 then, by [14, Lemma 5], putting h = pk−1 ∈ N we have that

(
p(x, x−1)

)h

is a constant (i.e., it does not contain the formal variable x). Hence, for every s ∈ N it
holds that

(
p(x, x−1)

)sh 6= xmh and this contradicts that Fn = σm. 2) Otherwise, there

MFCS 2019

68:12 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

exists i 6= 0 such that gcd(ai, p) = 1 (since Fn = σm then F must be injective and so for
every other coefficient aj with i 6= j we have gcd(aj , p) = p). First of all, we prove that
there always exist n′ and m′ with m′ ≥ n′ such that Fn′ = σm′ . Indeed, by [14, Lemma
5], for h = pk−1 ∈ N we get

(
p(x, x−1)

)h = ah
i x

ih. Therefore, for t = ϕ(pk) (where ϕ is
the Euler’s totient function) we get

(
p(x, x−1)

)n′

= xm′ , i.e., Fn′ = σm′ , with n′ = ht and
m′ = iht. To conclude, assume by contradiction that Fn = σm with m < n. Then, we get
Fn′n = σm′n and Fn′n = σn′m. So, it follows that m′n = n′m, but this is not possible since
m′n ≥ n′n > n′m. Thus, it holds that m ≥ n and this concludes the proof. J

5 Conclusions and perspectives

Comparing Figure 2 and 3, one can immediately appreciate the impact of the results in the
paper. All single arrow tips (i.e. the known relations for which the opposite implication was
unknown) disappeared and several properties coalesced in the group of transitivity, total
transitivity and weak topological mixing. However, what is more important is that many
measure theoretical and topological properties coincide. These facts legitimate the following

I Conjecture 1. Transitive CA are ergodic with respect to Bernoulli measures.

Solving the previous conjecture will probably clarify also the status of the properties of
ergodic mixing, weakly ergodic mixing and topological mixing, much like it happened for the
case of endomorphisms of compact abelian groups in this paper. Investigating, the following
well-known conjecture due to Blanchard and Tisseur (see [2, Conjecture 1] and [1] for more
details) will definitively complete the overall picture.

I Conjecture 2. All surjective CA have a dense set of periodic orbits.

Another interesting research direction consists in establishing the decidability of the
dynamical properties. In the framework of general CA, recent results from Ville Lukkarila
have shown that both topological mixing and transitivity are undecidable properties [42].
Undecidability of sensitivity, surjectivity (for dimensions larger than 1) and openness (for
dimensions larger than 1) were already known for years [38, 30]. It is therefore natural to
conjecture that the remaining ones are also undecidable.

I Conjecture 3. Ergodicity, weak ergodic mixing, ergodic mixing and strong transitivity are
undecidable for CA.

We want to remark that we intentionally left out the expansivity property from Conjecture 3,
since it is so peculiar that we believe it might be decidable.

Finally, it would be very interesting to extend Theorem 7 to all CA, and not only to
additive CA. In some way, this would turn strong transitivity into the “strongest” translation
invariant property, since it is well-known that expansivity is not translations invariant and
that there are no expansive CA for dimensions greater than one.

References
1 Luigi Acerbi, Alberto Dennunzio, and Enrico Formenti. Shifting and Lifting of Cellular

Automata. In S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, Computation and
Logic in the Real World, Third Conference on Computability in Europe, CiE 2007, Siena, Italy,
June 18-23, 2007, Proceedings, volume 4497 of Lecture Notes in Computer Science, pages 1–10.
Springer, 2007. doi:10.1007/978-3-540-73001-9.

https://doi.org/10.1007/978-3-540-73001-9

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:13

2 Luigi Acerbi, Alberto Dennunzio, and Enrico Formenti. Conservation of some dynamical
properties for operations on cellular automata. Theor. Comput. Sci., 410(38-40):3685–3693,
2009.

3 Luigi Acerbi, Alberto Dennunzio, and Enrico Formenti. Surjective multidimensional cellular
automata are non-wandering: A combinatorial proof. Inf. Process. Lett., 113(5-6):156–159,
2013.

4 Nobuo Aoki. Ergodic Automorphisms of Compact Metric Groups are Isomorphic to Bernoulli
Shifts. Publications mathématiques et informatique de Rennes, S4:1–10, 1975.

5 Vincent Bernardi, Bruno Durand, Enrico Formenti, and Jarkko Kari. A New Dimension
Sensitive Property for Cellular Automata. In Jirí Fiala, Václav Koubek, and Jan Kratochvíl,
editors, Mathematical Foundations of Computer Science 2004, 29th International Symposium,
MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings, volume 3153 of Lecture
Notes in Computer Science, pages 416–426. Springer, 2004.

6 Nino Boccara and Henryk Fuks. Number-conserving cellular automaton rules. Fundam.
Inform., 52(1-3):1–13, 2002.

7 Mike Boyle and Bruce Kitchens. Periodic points for onto cellular automata. Indagationes
Mathematicae, 10(4):483–493, 1999.

8 Lieven Le Bruyn and Michel Van den Bergh. Algebraic properties of linear cellular automata.
Linear algebra and its applications, 157:217–234, 1991.

9 Gianpiero Cattaneo, Alberto Dennunzio, and Fabio Farina. A Full Cellular Automaton to
Simulate Predator-Prey Systems. In Samira El Yacoubi, Bastien Chopard, and Stefania
Bandini, editors, Cellular Automata, 7th International Conference on Cellular Automata, for
Research and Industry, ACRI 2006, Perpignan, France, September 20-23, 2006, Proceedings,
volume 4173 of Lecture Notes in Computer Science, pages 446–451. Springer, 2006.

10 Gianpiero Cattaneo, Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Non-uniform
Cellular Automata. In Adrian-Horia Dediu, Armand-Mihai Ionescu, and Carlos Martín-Vide,
editors, Language and Automata Theory and Applications, Third International Conference,
LATA 2009, Tarragona, Spain, April 2-8, 2009. Proceedings, volume 5457 of Lecture Notes in
Computer Science, pages 302–313. Springer, 2009.

11 Gianpiero Cattaneo, Alberto Dennunzio, and Luciano Margara. Solution of some conjectures
about topological properties of linear cellular automata. Theoretical Computer Science,
325(2):249–271, 2004.

12 Gianpiero Cattaneo, Enrico Formenti, Giovanni Manzini, and Luciano Margara. Ergodicity,
transitivity, and regularity for linear cellular automata over Zm. Theor. Comput. Sci., 233(1-
2):147–164, 2000.

13 Bruno Codenotti and Luciano Margara. Transitive Cellular Automata are Sensitive. The
American Mathematical Monthly, 103(1):58–62, 1996.

14 Michele d’Amico, Giovanni Manzini, and Luciano Margara. On computing the entropy of
cellular automata. Theoretical Computer Science, 290(3):1629–1646, 2003.

15 Manfred Denker, Christian Grillenberger, and Karl Sigmund. Ergodic Theory on Compact
Spaces, volume 527 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 1976.

16 Alberto Dennunzio. From One-dimensional to Two-dimensional Cellular Automata. Funda-
menta Informaticae, 115(1):87–105, 2012.

17 Alberto Dennunzio, Pietro Di Lena, Enrico Formenti, and Luciano Margara. Periodic Orbits
and Dynamical Complexity in Cellular Automata. Fundamenta Informaticae, 126(2-3):183–199,
2013.

18 Alberto Dennunzio, Enrico Formenti, and Luca Manzoni. Computing Issues of Asynchronous
CA. Fundamenta Informaticae, 120(2):165–180, 2012.

19 Alberto Dennunzio, Enrico Formenti, and Luca Manzoni. Reaction systems and extremal
combinatorics properties. Theoretical Computer Science, 598:138–149, 2015.

MFCS 2019

68:14 Additive CA Over Finite Abelian Groups: Topological & Measure Theor. Properties

20 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Luciano Margara, and Antonio E. Porreca.
On the dynamical behaviour of linear higher-order cellular automata and its decidability. Inf.
Sci., 486:73–87, 2019.

21 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, and Antonio E. Porreca. Ancestors,
descendants, and gardens of Eden in reaction systems. Theoretical Computer Science, 608:16–26,
2015.

22 Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Non-uniform cellular automata:
Classes, dynamics, and decidability. Information and Computation, 215:32–46, 2012.

23 Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Local rule distributions, language
complexity and non-uniform cellular automata. Theoretical Computer Science, 504:38–51,
2013.

24 Alberto Dennunzio, Enrico Formenti, and Julien Provillard. Three research directions in
non-uniform cellular automata. Theoretical Computer Science, 559:73–90, 2014.

25 Alberto Dennunzio, Enrico Formenti, and Michael Weiss. Multidimensional cellular automata:
closing property, quasi-expansivity, and (un)decidability issues. Theoretical Computer Science,
516:40–59, 2014.

26 Alberto Dennunzio, Pierre Guillon, and Benoît Masson. Stable Dynamics of Sand Automata.
In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, Fifth
IFIP International Conference On Theoretical Computer Science - TCS 2008, IFIP 20th World
Computer Congress, TC 1, Foundations of Computer Science, September 7-10, 2008, Milano,
Italy, volume 273 of IFIP, pages 157–169. Springer, 2008.

27 Robert Luke Devaney. An Introduction to Chaotic Dynamical Systems. Addison-Wesley
advanced book program. Addison-Wesley, 1989.

28 Pietro di Lena and Luciano Margara. Computational complexity of dynamical systems: The
case of cellular automata. Inf. Comput., 206(9-10):1104–1116, 2008.

29 Bruno Durand, Enrico Formenti, and Zsuzsanna Róka. Number-conserving cellular automata
I: decidability. Theor. Comput. Sci., 299(1-3):523–535, 2003.

30 Bruno Durand, Enrico Formenti, and Georges Varouchas. On undecidability of equicontinuity
classification for cellular automata. In Michel Morvan and Eric Rémila, editors, Discrete
Models for Complex Systems, DMCS’03, Lyon, France, June 16-19, 2003, volume AB of
Discrete Mathematics and Theoretical Computer Science Proceedings, pages 117–128. DMTCS,
2003.

31 Michele Finelli, Giovanni Manzini, and Luciano Margara. Lyapunov Exponents versus Expan-
sivity and Sensitivity in Cellular Automata. J. Complexity, 14(2):210–233, 1998.

32 Enrico Formenti and Aristide Grange. Number conserving cellular automata II: dynamics.
Theor. Comput. Sci., 304(1-3):269–290, 2003.

33 Enrico Formenti, Jarkko Kari, and Siamak Taati. On the hierarchy of conservation laws in a
cellular automaton. Natural Computing, 10(4):1275–1294, 2011.

34 Pierre Guillon and Gaétan Richard. Revisiting the Rice Theorem of Cellular Automata.
In Jean-Yves Marion and Thomas Schwentick, editors, 27th International Symposium on
Theoretical Aspects of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France,
volume 5 of LIPIcs, pages 441–452. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

35 G. A. Hedlund. Endomorphisms and Automorphisms of the shift Dynamical System. Mathe-
matical Systems Theory, 3:320–375, 1969.

36 Masanobu Ito, Nobuyasu Osato, and Masakazu Nasu. Linear cellular automata over Zm.
Journal of Computer and Systems Sciences, 27:125–140, 1983.

37 Jarkko Kari. The Nilpotency Problem of One-Dimensional Cellular Automata. SIAM J.
Comput., 21(3):571–586, 1992.

38 Jarkko Kari. Reversibility and Surjectivity Problems of Cellular Automata. J. Comput. Syst.
Sci., 48(1):149–182, 1994.

39 Jarkko Kari. Rice’s theorem for the limit sets of cellular automata. Theor. Comput. Sci.,
127(2):229–254, 1994.

A. Dennunzio, E. Formenti, D. Grinberg, and L. Margara 68:15

40 Jarkko Kari. Linear Cellular Automata with Multiple State Variables. In Horst Reichel and
Sophie Tison, editors, STACS 2000, volume 1770 of LNCS, pages 110–121. Springer-Verlag,
2000.

41 P. Kůrka. Topological and Symbolic Dynamics. Volume 11 of Cours Spécialisés. Société
Mathématique de France, 2004.

42 Ville Lukkarila. Sensitivity and Topological Mixing are Undecidable for Reversible One-
dimensional Cellular Automata. J. Cellular Automata, 5(3):241–272, 2010.

43 Giovanni Manzini and Luciano Margara. A Complete and Efficiently Computable Topological
Classification of D-dimensional Linear Cellular Automata over Zm. Theor. Comput. Sci.,
221(1-2):157–177, 1999.

44 Giovanni Manzini and Luciano Margara. Attractors of Linear Cellular Automata. J. Comput.
Syst. Sci., 58(3):597–610, 1999.

45 E. F. Moore. Machine models of self-reproduction. Proceedings of Symposia in Applied
Mathematics, 14:13–33, 1962.

46 T. K. Subrahmonian Moothathu. Homogenity of surjective cellular automata. Discrete and
continuous dynamical systems, 13:195–202, 2005.

47 J. Myhill. The converse to Moore’s garden-of-eden theorem. Proceedings of the American
Mathematical Society, 14:685–686, 1963.

48 Mazi Shirvani and Thomas D. Rogers. Ergodic endomorphisms of compact abelian groups.
Communications in Mathematical Physics, 118:401–410, 1988.

49 Shinji Takesue. Staggered invariants in cellular automata. Complex Systems, 9:149–168, 1995.
50 Peter Walters. An introduction to ergodic theory, volume 79 of Grauate text in mathematics.

Springer-Verlag, 1982.

MFCS 2019

On Synthesis of Resynchronizers for Transducers
Sougata Bose
LaBRI, University of Bordeaux, France

Shankara Narayanan Krishna
Department of Computer Science & Engineering IIT Bombay, India

Anca Muscholl
LaBRI, University of Bordeaux, France

Vincent Penelle
LaBRI, University of Bordeaux, France

Gabriele Puppis
CNRS, LaBRI, University of Bordeaux, France

Abstract
We study two formalisms that allow to compare transducers over words under origin semantics:
rational and regular resynchronizers, and show that the former are captured by the latter. We then
consider some instances of the following synthesis problem: given transducers T1, T2, construct a
rational (resp. regular) resynchronizer R, if it exists, such that T1 is contained in R(T2) under the
origin semantics. We show that synthesis of rational resynchronizers is decidable for functional,
and even finite-valued, one-way transducers, and undecidable for relational one-way transducers. In
the two-way setting, synthesis of regular resynchronizers is shown to be decidable for unambiguous
two-way transducers. For larger classes of two-way transducers, the decidability status is open.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases String transducers, resynchronizers, synthesis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.69

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.08688.

Funding DeLTA project (ANR-16-CE40-0007)

1 Introduction

The notion of word transformation is pervasive in computer science, as computers typically
process streams of data and transform them between different formats. The most basic form
of word transformation is realized using finite memory. Such a model is called finite-state
transducer and was studied from the early beginnings of automata theory. Differently from
automata, the expressiveness of transducers is significantly affected by the presence of non-
determinism (even when the associated transformation is a function), and by the capability of
processing the input in both directions (one-way vs two-way transducers). Another difference
is that many problems, notably, equivalence and containment, become undecidable when
moving from automata to transducers [11, 14].

An alternative semantics for transducers, called origin semantics, was introduced in [4]
in order to obtain canonical two-way word transducers. In the origin semantics, the output
is tagged with positions of the input, called origins, that describe where each output element
was produced. According to this semantics, two transducers may be non-equivalent even
when they compute the same relation in the classical semantics. From a computational
viewpoint, the origin semantics has the advantage that it allows to recover the decidability
of equivalence and containment of non-deterministic (and even two-way) transducers [6].

© Sougata Bose, Shankara Krishna, Anca Muscholl, Vincent Penelle, and Gabriele Puppis;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 69; pp. 69:1–69:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.69
https://arxiv.org/abs/1906.08688
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 On Synthesis of Resynchronizers for Transducers

It can be argued that comparing two transducers in the origin semantics is rather
restrictive, because it requires that the same output is generated at precisely the same place.
A natural approach to allow some ’distortion’ of the origin information when comparing
two transducers was proposed in [10]. Rational resynchronizers allow to compare one-way
transducers (hence, the name ’rational’) under origin distortions that are generated with
finite control. A rational resynchronizer is simply a one-way transducer that processes
an interleaved input-output string, producing another interleaved interleaved input-output
string with the same input and output projection. For two-way transducers (or equivalently,
streaming string transducers [1]) a different formalism is required to capture origin distortion,
since the representation of the origin information through interleaved input-output pairs
does not work anymore. To this purpose, regular resynchronizers were introduced in [6] as a
logic-based transformation of origin graphs, in the spirit of Courcelle’s monadic second-order
logic definable graph transductions [8]. In [6] it was shown that containment of two-way
transducers up to a (bounded) regular resynchronizer is decidable.

In this paper we first show that bounded regular resynchronizers capture the rational
ones. This result is rather technical, because rational resynchronizers work on explicit origin
graphs, encoded as input-output pairs, which is not the case for regular resynchronizers.
Then we consider the following problem: given two transducers T1, T2, we ask whether some
rational, or bounded regular, resynchronizer R exists such that T1 is origin-contained in T2
up to R. So here, the resynchronizer R is not part of the input, and we want to synthesize
such a resynchronizer, if one exists.

Our main contributions can be summarized as follows:
1. synthesis of rational resynchronizers for functional (or even finite-valued) one-way trans-

ducers is decidable,
2. synthesis of rational resynchronizers for unrestricted one-way transducers is undecidable,
3. synthesis of bounded regular resynchronizers for unambiguous two-way transducers is

decidable.
Somewhat surprisingly, for both decidable cases above the existence of a resynchronizer turns
out to be equivalent to the classical inclusion of the two transducers.

Full proofs of the results presented in this paper can be found in the extended version
https://arxiv.org/abs/1906.08688.

2 Preliminaries

One-way transducers

One of the simplest transducer model is the one-way non-deterministic finite-state transducer
(hereafter, simply one-way transducer), capturing the class of so-called rational relations.
This is basically an automaton in which every transition consumes one letter from the input
and appends a word of any length to the output.

Formally, a one-way transducer is a tuple T = (Σ,Γ,Q, I,E,F,L), where Σ,Γ are finite
input and output alphabets, Q is a finite set of states, I,F ⊆ Q are subsets of initial and
final states, E ⊆ Q×Σ×Q is a finite set of transition rules, and L ∶ E ⊎F → 2Γ∗ is a function
specifying a regular language of partial outputs for each transition rule and each final state.
The relation defined by T contains pairs (u, v) of input and output words, where u = a1 . . . an
and v = v1 . . . vn vn+1, for which there is a run q0 Ð

a1 ∣ v1ÐÐÐ→ q1 Ð
a2 ∣ v2ÐÐÐ→ . . . qn Ð

∣ vn+1ÐÐÐ→ such that
q0 ∈ I, qn ∈ F , (qi−1, ai, qi) ∈ E, vi ∈ L(qi−1, ai, qi), and vn+1 ∈ L(qn). The transducer is
called functional if it associates at most one output with each input, namely, if it realizes a
partial function. For example, Figure 1 shows two one-way transducers with input alphabet

https://arxiv.org/abs/1906.08688

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis 69:3

a ∣ ε

b ∣ ε

c ∣ c

c ∣ c

∣ a

∣ b

a ∣ Γ∗a

b ∣ Γ∗b

∣ Γ∗

Figure 1 Examples of functional and relational one-way transducers.

Σ = {a, b} and output alphabet Γ ⊇ Σ. The first transducer is functional, and realizes the
cyclic rotation f ∶ cu ↦ uc, for any letter c ∈ {a, b} and any word u ∈ {a, b}∗. The second
transducer is not functional, and associates with an input u ∈ Σ∗ any possible word v ∈ Γ∗ as
output such that u is a sub-sequence of v.

Two-way transducers

Allowing the input head to move in any direction, to the left or to the right, gives a more
powerful model of transducer, which captures e.g. the relation {(u,un) ∶ u ∈ Σ∗, n ∈ N}.
To define two-way transducers, we adopt the convention that, for any given input u ∈ Σ∗,
u(0) = ⊢ and u(∣u∣ + 1) = ⊣, where ⊢,⊣ ∉ Σ are special markers used as delimiters of the input.
In this way, a transducer can detect when an endpoint of the input has been reached.

A two-way transducer is a tuple T = (Σ,Γ,Q, I,E,F,L), whose components are defined
just like those of a one-way transducer, except that the state set Q is partitioned into two
subsets, Q≺ and Q≻, the set I of initial states is contained in Q≻, and the set E of transition
rules is contained in (Q ×Σ ×Q) ⊎ (Q≺ × {⊢} ×Q≻) ⊎ (Q≻ × {⊣} ×Q≺). The partitioning
of the set of states is useful for specifying which letter is read from each state: states from
Q≺ read the letter to the left, whereas states from Q≻ read the letter to the right. Given
an input u ∈ Σ∗, a configuration of a two-way transducer is a pair (q, i), with q ∈ Q and
i ∈ {1, . . . , ∣u∣ + 1}. Based on the types of source and target states in a transition rule, we can
distinguish four types of transitions between configurations (the output v is always assumed
to range over the language L(q, a, q′)):

(q, i) Ð
a ∣ v
ÐÐ→ (q′, i + 1) if (q, a, q′) ∈ E, q, q′ ∈ Q≻, and a = u(i),

(q, i) Ð
a ∣ v
ÐÐ→ (q′, i) if (q, a, q′) ∈ E, q ∈ Q≻, q′ ∈ Q≺, and a = u(i),

(q, i) Ð
a ∣ v
ÐÐ→ (q′, i − 1) if (q, a, q′) ∈ E, q, q′ ∈ Q≺, and a = u(i − 1),

(q, i) Ð
a ∣ v
ÐÐ→ (q′, i) if (q, a, q′) ∈ E, q ∈ Q≺, q′ ∈ Q≻, and a = u(i − 1).

Note that, when reading a marker ⊢ or ⊣, the transducer is obliged to make a U-turn, either
left-to-right or right-to-left. The notions of successful run, realized relation, and functional
transducer are naturally generalized from the one-way to the two-way variant, (we refer to
[6] for more details).

In [5], a slight extension of two-way transducers, called two-way transducers with common
guess, was proposed. Before processing its input, such a transducer can non-deterministically
guess some arbitrary annotation of the input over a fixed alphabet. Once an annotation is
guessed, it remains the same during the computation. Transitions may then depend on the
input letter and the guessed annotation at the current position. For example, this extension
allows to define relations of the form {(u, vv) ∣ u ∈ Σ∗, v ∈ Γ∗, ∣u∣ = ∣v∣}. Note that the
extension with common guess does not increase the expressiveness of one-way transducers,
since these are naturally closed under input projections. Likewise, common guess does not
affect the expressive power of functional two-way transducers, since one can guess a canonical
annotation at runtime.

MFCS 2019

69:4 On Synthesis of Resynchronizers for Transducers

a a a . . . a a a

b b b . . . b b b

a a a . . . a a a

b b b . . . b b b

Figure 2 Input-output pairs annotated with origin information.

Classical vs origin semantics

In the previous definitions, we associated a classical semantics to transducers (one-way
or two-way), which gives rise to relations or functions between input words over Σ and
output words over Γ. In [4] an alternative semantics for transducers, called origin semantics,
was introduced with the goal of getting canonical transducers for any given word function.
Roughly speaking, in the origin semantics, every position of the output word is annotated
with the position of the input where that particular output element was produced. This yields
a bipartite graph, called origin graph, with two linearly ordered sets of nodes, representing
respectively the input and the output elements, and edges directed from output nodes to
input nodes, representing the so-called origins. Figure 2 depicts an input-output pair (an, bn)
annotated with two different origins: in the first graph, a position i in the output has its
origin at the same position i in the input, while in the second graph it has origin at position
n − i.

Formally, the origin semantics of a transducer is a relation So ⊆ Σ∗ × (Γ ×N)∗ consisting
of pairs (u, ν), where u = a1 . . . an ∈ Σ∗ is a possible input and ν = ν1 . . . νm+1 ∈ (Γ×N)∗ is the
corresponding output tagged with input positions, as induced by a successful run of the form
(q0, i0) Ð

a1 ∣ ν1ÐÐÐ→ (q1, i1) Ð
a2 ∣ ν2ÐÐÐ→ . . . (qm, im) Ð

∣ νm+1ÐÐÐ→, with each νj ∈ (Γ × {ij})∗. We identify a
pair (u, ν) with the origin graph obtained by arranging the input elements and the output
elements along two lines (we omit the successor relation in the graph notation), and adding
edges from every output element (a, i) to the i-th element of the input. Given an origin
graph G = (u, ν), we denote by in(G), out(G), and orig(G) respectively the input word u,
the output word obtained by projecting ν onto the finite alphabet Γ, and the sequence of
input positions (origins) obtained by projecting ν onto N.

For one-way transducers, there is a simpler presentation of origin graphs in the form
of interleaved words. Assuming that the alphabets Σ and Γ are disjoint, we interleave the
input and output word by appending after each input symbol the output word produced
by reading that symbol. For example, if Σ = {a} and Γ = {b}, then a word of the form
abb . . . abb represents an origin graph (an, ν), where ∣ν∣ = 2n and ν(2i − 1) = ν(2i) = (b, i), for
all i = 1, . . . , n. Words over Σ ⊎ Γ are called synchronized words. Just as every synchronized
word represents an origin graph, a regular language over Σ ⊎ Γ represents a rational relation
with origins, or equally the origin semantics of a one-way transducer.

In general, when comparing transducers, we can refer to one of the two possible semantics.
Clearly, two transducers that are equivalent in the origin semantics are also equivalent in the
classical semantics, but the converse is not true.

3 Resynchronizations

The central concept of this paper is that of resynchronization, which is a transformation
of origin graphs that preserves the underlying input and output words. The concept was
originally introduced in [10], and mostly studied in the setting of rational relations. Here we
use the concept in the more general setting of relations definable by two-way transducers.

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis 69:5

Formally, a resynchronization is any relation R ⊆ (Σ∗ × (Γ × N)∗)2 that contains only
pairs (G,G′) of origin graphs such that in(G) = in(G′) and out(G) = out(G′), namely, with
the same projections onto the input and output alphabets.1 A resynchronization R can
be used to modify the origin information of a relation, while preserving the underlying
input-output pairs. Formally, for every relation So ⊆ Σ∗ × (Γ ×N)∗ with origins, we define
the resynchronized relation R(So) = {G′ ∈ So ∣ (G,G′) ∈ R, G ∈ So}. Note that if the origin
information is removed from both R(So) and So, then R(So) ⊆ So. Moreover, R(So) = So
when R is the universal resynchronization, that is, when R contains all pairs (G,G′), with
G,G′ ∈ Σ∗ × (Γ ×N)∗, in(G) = in(G′), and out(G) = out(G′).

Definability of resynchronized relations

An important property that we need to guarantee in order to enable some effective reasoning
on resynchronizations is the definability of the resynchronized relations. More precisely, given
a class C of transducers, we say that a resynchronization R preserves definability in C if for
every transducer T ∈ C, the relation R(T) is realized by some transducer T ′ ∈ C, that can
be effectively constructed from R and T . The class C will usually be the class of one-way
transducers or the class of two-way transducers, and this will be clear from the context.

Below, we recall the definitions of two important classes of resynchronizations, called
rational [10] and regular resynchronizers [6], that preserve definability by one-way transducers
and by two-way transducers, respectively. We will then compare the expressive power of
these two formalisms, showing that rational resynchronizers are strictly less expressive than
regular resynchronizers.

Rational resynchronizers

A natural definition of resynchronizers for one-way transducers is obtained from rational
relations over the disjoint union Σ ⊎ Γ of the input and output alphabets. Any such relation
consists of pairs of synchronized words (w,w′), and thus represents a transformation of origin
graphs. In addition, if the induced synchronized words w and w′ have the same projections
over the input and output alphabets, then the relation represents a resynchronization. We
also recall that rational relations are captured by one-way transducers, so, by analogy, we
call rational resynchronizer any one-way transducer over Σ ⊎ Γ that preserves the input and
output projections.

It is routine to see that rational resynchronizers preserve definability of relations by one-way
transducers. It is also worth noting that every rational resynchronizer is a length-preserving
transducer. By a classical result of Elgot and Mezei [9] every rational resynchronizer can be
assumed to be a letter-to-letter one-way transducer, namely, a transducer with transitions of
the form q Ð

a ∣ b
ÐÐ→ q′, with a, b ∈ Σ ⊎ Γ.

I Example 1. Consider the functional one-way transducers T1, T2 in Figure 3. The domain
of both transducers is (aa)∗. An origin graph of T1 is a one-to-one mapping from the output
to the input (each a produces one b). On the other hand, in an origin graph of T2, every a at
input position 2i+1 is the origin of two b’s at output positions 2i+1, 2i+2. The transducer R
depicted to the right of the figure transforms synchronized words while preserving their input
and output projections. It is then a rational resynchronizer. In particular, R transforms
origin graphs of T1 to origin graphs of T2.

1 In [10], resynchronizers were further restricted to contain at least the pairs of identical origin graphs. Here
we prefer to avoid this additional restriction and reason with a more general class of resynchronizations.

MFCS 2019

69:6 On Synthesis of Resynchronizers for Transducers

T1 a ∣ b

a ∣ b

a a a a . . . a a

b b b b . . . b b

T2 a ∣ bb

a ∣ ε

a a a a . . . a a

b b b b . . . b b

R
a ∣ a

b ∣ b

a ∣ b
b ∣ a

abababab . . . abab

↦

abbaabba . . . abba

Figure 3 Two functional 1NFT T1, T2, their origin graphs, and a rational resynchronizer R.

Regular resynchronizers

While languages of synchronized words are a faithful representation of rational relations, this
notation does not capture regular relations, so relations realized by two-way transducers. An
alternative formalism for resynchronizations of relations defined by two-way transducers was
proposed in [6] under the name of MSO resynchronizer (here we call it simply “resynchron-
izer”). The formalism describes pairs (G,G′) of origin graphs by means of two relations
moveγ and nextγ,γ′ (γ, γ′ ∈ Γ) in the spirit of MSO graph transductions. More precisely:

moveγ describes how the origin y of an output position x labeled by γ is redirected to
a new origin z (for short, we call y and z the source and target origins of x). Formally,
moveγ is a relation contained in Σ∗ ×N ×N that induces resynchronization pairs (G,G′)
such that, for all output positions x, if out(G)(x) = γ, orig(G)(x) = y, and orig(G′)(x) = z,
then (in(G), y, z) ∈ moveγ .
nextγ,γ′ constrains the target origins z and z′ of any two consecutive output positions
x and x + 1 that are labelled by γ and γ′, respectively. Formally, nextγ,γ′ is a relation
contained in Σ∗ ×N ×N that induces resynchronization pairs (G,G′) such that, for all
output positions x and x + 1, if out(G)(x) = γ, out(G)(x + 1) = γ′, orig(G′)(x) = z, and
orig(G′)(x + 1) = z′, then (in(G), z, z′) ∈ nextγ,γ′ .

A resynchronizer is a tuple ((moveγ)γ∈Γ, (nextγ,γ′)γ,γ′∈Γ), and defines the resynchronization
R with pairs (G,G′) induced by the relations moveγ and nextγ,γ′ , where γ, γ′ ∈ Γ.

In order to obtain a well-behaved class of resynchronizations, that in particular preserves
definability by two-way transducers, we need to enforce some restrictions. First, we require
that the relations moveγ and nextγ,γ′ are described by regular languages (or equally, definable
in monadic second-order logic). By this we mean that we encode the input positions y, z, z′
with suitable annotations over the binary alphabet B = {0,1}, so that we can identify the
relations moveγ and nextγ,γ′ with some regular languages over the expanded alphabet Σ×B2.
We call regular resynchronizer a resynchronizer where the relations moveγ and nextγ,γ′ are
given by regular languages. In addition, we also require that regular resynchronizers are
k-bounded, for some k ∈ N, in the sense that for every input u, every output letter γ, and
every target origin z, there are at most k positions y such that (u, y, z) ∈ moveγ .

I Example 2. Consider the resynchronization R of Figure 4, containing the pairs (G,G′),
where G (resp. G′) is the origin graph that maps every output position to the first (resp. last)
input position. R is “one-way”, in the sense that it contains only origin graphs that
are admissible outcomes of runs of one-way transducers. However, R is not definable by
any rational resynchronizer, since, in terms of synchronized words, it should map av u

to auv, for every a ∈ Σ, u ∈ Σ∗, and v ∈ Γ∗, which is clearly not a rational relation.
The resynchronization R can however be defined by a 1-bounded regular resynchronizer,
e.g. ((moveγ)γ∈Γ, (nextγ,γ′)γ,γ′∈Γ), with moveγ = {(u, y, z) ∣ u ∈ Σ∗, y = 1, z = ∣u∣} and

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis 69:7

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b5

Figure 4 A 1-bounded, regular resynchronization that is not rational.

nextγ,γ′ = Σ∗ ×N ×N.

One can observe that, in the previous example, next is not restricting the resynchronization
further. For other examples that use next in a non-trivial way see for instance [6, Example 13].

The notion of resynchronizer can be slightly enhanced in order to allow some additional
amount of non-determinism in the way origin graphs are transformed (this enhanced notion
is indeed the one proposed in [6]). The principle is very similar to the idea of enhancing
two-way transducers with common guess. More precisely, we allow additional monadic
parameters that annotate the input and the output, thus obtaining words over expanded
alphabets of the form Σ ×Σ′ and Γ × Γ′. A resynchronizer with parameters is thus a tuple
(ipar,opar, (moveγ)γ , (nextγ,γ′)γ,γ′), where ipar ⊆ (Σ×Σ′)∗ describes the possible annotations
of the input, opar ⊆ (Γ × Γ′)∗ describes the possible annotations of the output, and, for every
γ, γ′ ∈ Γ×Γ′, moveγ ⊆ (Σ×Σ′ ×B2)∗ describes a transformation from source to target origins
of γ-labelled output positions, and nextγ,γ′ ⊆ (Σ ×Σ′ ×B2) constraints the target origins of
consecutive output positions labelled by γ and γ′. The resynchronization pairs (G,G′) in
this case are induced by ((moveγ)γ∈Γ×Γ′ , (nextγ,γ′)γ,γ′∈Γ×Γ′) and are obtained by projecting
the input and output over the original alphabets Σ and Γ, under the assumption that the
annotations satisfy ipar and opar. A resynchronizer with parameters is called regular if all its
relations are regular. A regular resynchronizer is called bounded if is k-bounded for some k.

In [6] it was shown that, given a bounded regular resynchronizer R with parameters and
a two-way transducer T with common guess, one can construct a two-way transducer T ′
with common guess such that T ′ =o R(T). The notation T ′ =o R(T) is used to represent the
fact that T ′ and R(T) define the same relation in the origin semantics.

Unless otherwise stated, hereafter we assume that two-way transducers are enhanced with
common guess, and regular resynchronizers are enhanced with parameters.

Rational vs regular resynchronizers

Our first result shows that bounded, regular resynchronizers are more expressive than
rational resynchronizers. Consider for instance Example 1: it can be captured by the regular
resynchronizer with opar annotating even/odd positions. The resynchronizer shifts the origins
of the even positions of the output by one to the left and keeps the origins of the odd positions
unchanged. So here moveγ can be described by a regular language. On the other hand,
Example 2 shows that there are bounded, regular resynchronizers that cannot be captured
by rational resynchronizers.

I Theorem 3. For every rational resynchronizer, there is an equivalent 1-bounded regular
resynchronizer.

The proof of the above result is rather technical and can be found in the extended
version. Here we only provide a rough idea. Consider a rational resynchronizer R, that is,
a one-way transducer that transforms synchronized words while preserving the input and
output projections. For example, Figure 5 represents a possible pair of synchronized words,

MFCS 2019

69:8 On Synthesis of Resynchronizers for Transducers

a a b a a a b b a a a b a a b b b a

a b a a a b a a a b b a a b a b b a

Figure 5 A 1-bounded, regular resynchronization that is not rational.

denoted w and w′, shown in blue and in red, respectively, such that (w,w′) ∈ R. We assume
that Σ = {a} and Γ = {b}.

From the given rational resynchronizer R we construct an equivalent 1-bounded, regular
resynchronizer R′. The natural approach is to encode a successful run ρ of R over a
synchronized word w. By measuring the differences between the partial inputs and the
partial outputs that are consumed and produced along the run ρ, we obtain a partial bijection
on the input letters that represents a mapping from source origins to target origins. This
mapping determines the relation moveγ of R′, and in fact depends on a suitable additional
annotation γ of the underlying output position. The additional annotation is needed in order
to distinguish output elements with the same origin in the source, but with different origins
in the target.

For example, by referring again to the figure above, consider the first occurrence of b in
w. Its origin in w is given by the closest input letter to the left (follow the blue arrow). To
find the origin in w′, one finds the same occurrence of b in w′ (solid line), then moves to the
closest input letter to the left (red arrow), and finally maps the latter input position in w′

back to w (dashed line). The resulting position determines the new origin (w.r.t. w′) of the
considered output element.

The remaining components ipar, opar, and nextγ,γ′ of R′ are used to guarantee the
correctness of the various annotations (notably, the correctness of the encoding of the run ρ
and that of the output annotations).

4 Synthesis of Resynchronizers

Recall that containment between transducers depends on the adopted semantics. More
precisely, according to the classical semantics, T1 is contained in T2 (denoted T1 ⊆ T2) if all
input-output pairs realized by T1 are also realized by T2; according to the origin semantics,
T1 is contained in T2 (denoted T1 ⊆o T2) if all origin graphs realized by T1 are also realized
by T2. In this section, we study the following variant of the containment problem:

Resynchronizer synthesis problem.
Input: two transducers T1, T2.
Question: does there exist some resynchronization R such that T1 ⊆o R(T2).

In fact, the above problem comes in several variants, depending on the model of transducers
considered (one-way or two-way) and the class of admissible resynchronizations R (rational
or bounded regular). Moreover, for the positive instances of the above problem, we usually
ask to compute a witnessing resynchronization R from the given T1 and T2 (this is the reason
for calling the problem a synthesis problem).

Clearly, the synthesis problem for unrestricted resynchronizers is equivalent to a clas-
sical containment, that is, T1 ⊆ T2 if and only if T1 ⊆o R(T2) for some resynchronizer R.
Therefore, the synthesis problem for unrestricted resynchronizers is undecidable. Thus we

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis 69:9

will consider the synthesis problem of rational (resp. bounded regular) resynchronizers for
one-way (resp. two-way) transducers.

We also recall that rational resynchronizers preserve definability of relations by one-
way transducers [10], while bounded regular resynchronizers (which, by Theorem 3, are
strictly more expressive than rational resynchronizers) preserve definability by two-way
transducers [6]. For the sake of presentation, we shall first consider the synthesis of rational
resynchronizers in the functional one-way setting, that is, for instances given by functional
one-way transducers. We show that in this setting the problem collapses again to the
classical containment problem, which is however decidable now, that is: T1 ⊆ T2 if and only
if T1 ⊆o R(T2) for some rational resynchronizer R. The decidability result can be slightly
extended to some non-functional transducers. More precisely, we will show that synthesis
of rational resynchronizers for finite-valued one-way transducers is still decidable. When
moving to the relational case, however, the problem becomes undecidable.

The decidability status in the one-way setting could be also contrasted with the two-way
setting. In this respect, we observe that, in the functional case, the synthesis problem does not
collapse anymore to classical containment, as there are functional two-way transducers T1, T2
such that T1 ⊆ T2, but for which no bounded regular resynchronizer R satisfies T1 ⊆o R(T2)
(an example can be found at the beginning of Section 4.3). We are able to prove decidability
of synthesis of bounded, regular resynchronizers for unambiguous two-way transducers. The
decidability status, however, remains open in the functional two-way case, as well as in the
unrestricted (non-functional) two-way case.

4.1 Resynchronizing functional, one-way transducers
Recall that it can be decided in PSpace whether a transducer (be it one-way or two-way) is
functional [2], and that the classical containment problem for functional (one-way/two-way)
transducers is also in PSpace [3]. The following result shows that, for functional one-way
transducers, classical containment and rational resynchronizer synthesis are inter-reducible.

I Theorem 4. Let T1, T2 be two functional one-way transducers. The following conditions
are equivalent, and decidable:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 =o R(T2) for some rational resynchronizer R.

Proof sketch. The implications from 2. to 1. and 3. to 2. are trivial. The implication from
1. to 3. is proved by constructing a rational resynchronizer R as a product of T1, T2: at each
step, R consumes a symbol a ∈ Σ and a word v1 ∈ Γ∗ from a transition of T1 and produces
the same symbol a and possibly a different word v2 ∈ Γ∗ from a corresponding transition of
T2. The fact that R preserves the outputs relies on functionality of T1 and T2. J

A natural question arises: can a characterization similar to Theorem 4 be obtained for
transducers that compute arbitrary relations, rather than just functions? The example below
provides a negative answer to this question. Later in Section 4.2, we will see that synthesis
of rational resynchronizers for unrestricted one-way transducers is an undecidable problem.

I Example 5. Consider a one-way transducer T1 that checks that the input is from (aa)∗ and
produces a single output letter b for each consumed input letter a, and another transducer
T2 that works in two phases: during the first phase, it produces two b’s for each consumed a,
and during the second phase consumes the remaining part of the input without producing
any output. We have T1 ⊆ T2, but T1 /⊆o T2. The only resynchronization R that satisfies
T1 ⊆o R(T2) must map synchronized words from (ab)∗ to (abb)∗(a)∗, while preserving the

MFCS 2019

69:10 On Synthesis of Resynchronizers for Transducers

number of a’s and b’s. Such a transformation cannot be defined by any rational resynchronizer,
nor by a bounded regular resynchronizer.

There is however an intermediate case, between the functional and the full relational
case, for which a generalization of Theorem 4 is possible. This is the case of finite-valued
one-way transducers, that is, transducers that realize finite unions of partial functions.
The generalization exploits a result from [10], stated just below, that concerns synthesis
of bounded-delay resynchronizers. Formally, given two origin graphs G and G′ with the
same input and output projections, and given an input position y, we denote by delayG,G′(y)
the difference between the largest x ∈ dom(out(G)) such that orig(G)(x) = y and the
largest x′ ∈ dom(out(G′)) such that orig(G′)(x′) = y. Given d ∈ N, we define the d-delay
resynchronizer as the resynchronization that contains all pairs (G,G′) with the same input
and output projections and such that delayG,G′(y) ∈ [−d,+d] for all input positions y. It is
easy to see that the d-delay resynchronizer is a special case of a rational resynchronizer.

I Theorem 6 (Theorem 13 in [10]). Let T1, T2 be one-way transducers, where T2 is k-
ambiguous.2 One can compute a d-delay resynchronizer Rd, for some d ∈ N, such that T1 ⊆ T2
implies T1 ⊆o Rd(T2).

As a corollary we can generalize Theorem 4 to k-valued one-way transducers, with the
only difference that the witnessing rational resynchronizer now satisfies T1 ⊆o R(T2) rather
than T1 =o R(T2). We also recall that classical containment remains decidable for k-valued
one-way transducers, thanks to the fact that these can be effectively transformed to finite
unions of functional transducers [15]:

I Corollary 7. Let T1, T2 be k-valued one-way transducers. The following conditions are
equivalent, and decidable:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 ⊆o R(T2) for some rational resynchronizer R.

Proof. We prove the only interesting implication from 1. to 3. Suppose that T1, T2 are
k-valued one-way transducers such that T1 ⊆ T2. Using the decomposition theorem from [15],
we can construct a k-ambiguous one-way transducer T ′2 that is classically equivalent to T2
and such that T ′2 ⊆o T2. Since T1 ⊆ T ′2, by Theorem 6 we can compute a d-delay (in particular,
rational) resynchronizer Rd such that T1 ⊆o Rd(T ′2). Finally, since T ′2 ⊆o T2, T1 ⊆o Rd(T ′2),
and Rd(T ′2) ⊆o Rd(T2), we get T1 ⊆o Rd(T2). J

4.2 Resynchronizing arbitrary one-way transducers
In the previous section we saw how to synthesize a rational resynchronizer for functional, or
even finite-valued, one-way transducers. One may ask if finite-valuedness is necessary. We
already know that classical containment T1 ⊆ T2 is undecidable [11, 12] for arbitrary one-way
transducers, whereas origin-containment T1 ⊆o T2 is decidable [6]. Synthesis of a rational
resynchronizer R such that T1 ⊆o R(T2) is a question that lies between the two questions
above. We show in this section that in the case of real-time transducers with unary output
alphabet, the latter question is equivalent to language-boundedness of one-counter automata,
a problem that we define below.

A transducer is said to be real-time if it produces bounded outputs for each consumed
input symbol. A one-counter automaton (OCA) is a non-deterministic pushdown automaton

2 A transducer is k-ambiguous if each input admits at most k successful runs.

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis 69:11

with a single stack symbol, besides the bottom stack symbol. In the definition of the
language-boundedness problem, we assume that the OCA recognizes a universal language;
this assumption is used in the reduction to the synthesis problem.

Language-boundedness of OCA.
Input: An OCA A over alphabet Ω that recognizes the universal language L(A) = Ω∗.
Question: Does there exist some bound k such that every word over Ω can be accepted by

A with a run where the counter never exceeds k?

Our reductions between language-boundedness of OCA and synthesis of rational resynchron-
izers rely on the following result from [10], that implies that bounded-delay resynchronizers
are enough for synthesizing resynchronizers of real-time transducers:

I Theorem 8 (Theorem 11 in [10]). Let T1, T2 be real-time, one-way transducers and R a
rational resynchronizer such that T1 ⊆o R(T2). One can compute a d-delay resynchronizer
Rd such that T1 ⊆o Rd(T2).

I Proposition 9. Synthesis of rational resynchronizers for real-time one-way transducers
with unary output alphabet and language-boundedness of OCA are inter-reducible problems.
Moreover, in the reductions, one can assume that the left hand-side transducer is functional.

Proof sketch. Given some real-time transducers T1, T2, one constructs an OCA A that,
when the input encodes a successful run of T1, guesses and simulates an equivalent successful
run of T2. The OCA A keeps track in its counter, how ahead or behind is the partial output
produced by the encoded run of T1 compared to the partial output produced by the simulated
run T2, and accepts with an empty counter. Moreover, A accepts all inputs that do not
encode successful runs of T1: as soon as an error is detected, the counter is reset and frozen.
Thus, badly-formed encodings do not affect language-boundedness. Then, using Theorem
8, one shows that A is language-bounded if and only if T1 ⊆o R(T2) for some rational (and
w.l.o.g. bounded-delay) resynchronizer R.

In the opposite reduction, one has to construct some real-time transducers T1, T2 from a
given OCA A. Both transducers receive inputs over the same alphabet as A. T1 is a simple
functional transducer that outputs one symbol for each consumed input symbol. T2, instead,
guesses and simulates a run of A, and ouputs two symbols when the counter of the OCA
increases, and no symbol when it decreases. As before, one argues using Theorem 8 that A
is language-bounded if and only if T1 ⊆o R(T2) for some rational resynchronizer R. J

The status of the problem of language-boundedness of OCA was open, to the best of our
knowledge. Piotr Hofman communicated to us the following unpublished result, which can
be obtained by a reduction from the undecidable boundedness problem for Minsky machines
(the proof is in the extended version of this paper):

I Theorem 10 ([13]). The language-boundedness problem for OCA is undecidable.

I Corollary 11. Synthesis of rational resynchronizers for (real-time) one-way transducers is
undecidable, and this holds even when the left hand-side transducer is functional.

4.3 Resynchronizing unambiguous, two-way transducers
We now focus on the resynchronizer synthesis problem for two-way transducers. Here the
appropriate class of resynchronizations is that of regular resynchronizers, since, differently
from rational resynchronizer, they can handle origin graphs induced by two-way transducers.

MFCS 2019

69:12 On Synthesis of Resynchronizers for Transducers

The situation is more delicate, as the synthesis problem does not reduce anymore to classical
containment. As an example, consider the transducer T1 that consumes an input of the
form a∗ from left to right, while copying the letters to the output, and a two-way transducer
T2 that realizes the same function but while consuming the input in reverse. We have
that T1 ⊆ T2, but there is no resynchronizer R that satisfies T1 ⊆o R(T2) and that is
bounded and regular at the same time. As we will see, extending Theorem 4 to two-way
transducers is possible if we move beyond the class of regular resynchronizers and consider
bounded resynchronizers defined by Parikh automata. The existence of bounded regular
resynchronizers between functional two-way transducers can thus be seen as a strengthening
of the classical containment relation. Unfortunately, we are only able to solve the synthesis
problem of bounded regular resynchronizers for unambiguous two-way transducers, so the
problem remains open for functional two-way transducers.

First we introduce resynchronizers definable by Parikh automata. Formally, a Parikh
automaton is a finite automaton A = (Σ,Q, I,E,F,Z,S) equipped with a function Z ∶ E → Zk

that associates vectors of integers to transitions and a semi-linear set S ⊆ Zk. A successful
run of A is a run starting in I, ending in F and such as the sum of the weights of its
transitions belongs to S. We say that A is unambiguous if the underlying finite automaton
is. In this case, we can associate with each input u the vector A(u) ∈ Zk associated with the
unique accepting run of the underlying automaton of A on u, if this exists, otherwise A(u)
is undefined. By taking products, one can easily prove that unambiguous Parikh automata
are closed under pointwise sum and difference, that is, given A1 and A2, there are A+ and
A− such that A+(u) = A1(u) +A2(u) and A−(u) = A1(u) −A2(u) for all possible inputs u.
Hereafter, we will only consider languages recognized by unambiguous Parikh automata with
the trivial semilinear set S = {0k}.

By a slight abuse of terminology, we call Parikh resynchronizer any resynchronizer with
parameters whose relations moveγ and nextγ,γ′ are recognizable by unambiguous Parikh
automata, and ipar and opar are regular. We naturally inherit from regular resynchronizers
the notion of boundedness. Moreover, we introduce another technical notion, that will be
helpful later. Given a resynchronizer R, we define its target set as the set of all pairs (u, z)
where u is an input, z is a position in it, and (w,y, z) ∈ moveγ for some annotation w of u
with input parameters, some input position y, and some output type γ. Similarly, we define
the target set of a two-way transducer T as the set of all pairs (u, z), where u = in(G) and
z ∈ orig(G)(x) for some x ∈ dom(out(G)) and some origin graph G realized by T .

I Theorem 12. Let T1, T2 be two unambiguous two-way transducers. The following conditions
are equivalent:
1. T1 ⊆ T2,
2. T1 ⊆o R(T2) for some resynchronization R,
3. T1 =o R(T2) for some 1-bounded Parikh resynchronizer R whose target set coincides with

that of T1 and where, each relation nextγ,γ′ is regular if moveγ and moveγ′ are regular.

Proof sketch. We focus on the implication from 1. to 3., as the other implications are trivial.
Similarly to the one-way case, to synthesize a resynchronizer, we need to annotate the input
with the (unique) successful runs of T1 and T2 (if these runs exist). Since T1, T2 are two-way,
the natural way of doing it is to use crossing sequences. Thanks to the encoding of runs by
means of crossing sequence, we can describe any output position x with a pair (y, i), where
y is the origin of x (according to T1 or T2) i is the number of output positions before x with
the same origin y. Note that i is bounded, as the transducers here are unambiguous, and
hence every input position is visited at most a bounded number of times.

S. Bose, S. Krishna, A. Muscholl, V. Penelle, and G. Puppis 69:13

Given T = T1 or T = T2 and an index i, one can construct a unambiguous Parikh automaton
AT,i that, when receiving as input a word u with a marked position y, produces the unique
position x that is encoded by the pair (y, i), according to the transducer T . It follows that, for
every output element correctly annotated with γ = (a, i, j), the relation moveγ can be defined
as {(y, z) ∣ AT2,i(y) −AT1,j(z) = 0}, which is a unambiguous Parikh language. This almost
completes the definition of the Parikh resynchronizer R. The remaining components of R
consists of suitable relations nextγ,γ′ that check correctness of the annotations. In particular,
the relations nextγ,γ′ are obtained by pairing a regular property with properties defined in
terms of the prior relations moveγ and moveγ′ , and hence nextγ,γ′ is regular whenever moveγ
and moveγ′ are. J

We now explain how to exploit the above characterization to decide bounded regular
resynchronizer synthesis problem. We provide the following characterization, whose proof
follows from the previous theorem:

I Theorem 13. Let T1, T2 be two unambiguous two-way transducers such that T1 ⊆ T2,
and let R̂ be the bounded Parikh resynchronizer obtained from Theorem 12. The following
conditions are equivalent:
1. R̂ is a regular resynchronizer,
2. T1 ⊆o R(T2) for some bounded regular resynchronizer R,
3. T1 ⊆o R(T2) for some 1-bounded regular resynchronizer R,
4. T1 =o R(T2) for some 1-bounded regular resynchronizer R with the same target set as T1.

Theorems 12 and 13 together provide a characterization of those pairs of unambiguous
two-way transducers T1, T2 for which there is a bounded regular resynchronizer R such
that T1 ⊆o R(T2). The effectiveness of this characterization stems from the decidability of
regularity of languages recognized by unambiguous Parikh automata [7]. This result requires
unambiguity and uses Presburger arithmetics to determine for each (simple) loop a threshold
such that iterating the loop more than the threshold always satisfies the Parikh constraint.
The language of the Parikh automaton is regular if and only if every (simple) loop has such
a threshold. We thus conclude:

I Corollary 14. Given two unambiguous two-way transducers T1, T2, one can decide whether
there is a regular resynchronizer R such that T1 ⊆o R(T2).

5 Conclusions

We studied two notions of resynchronization for transducers with origin, called rational
resynchronizer and regular resynchronizer. Rational resynchronizers are suited for transform-
ing origin graphs of one-way transducers, while regular resynchronizers can be applied also
to origin graphs of two-way transducers. We showed that the former are strictly included
in the latter, even when restricting the origin graphs to be one-way. We then studied the
following variant of containment problem for transducers: given two transducers T1, T2,
decide whether T1 ⊆o R(T2) for some (rational or regular) resynchronizer R. That is, if
all origin graphs of T1 can be seen as some origin graph of T2 transformed according to R,
then compute such a resynchronizer R. This problem can be seen as a synthesis problem
of resynchronizers. It is shown that the synthesis problem is decidable when T1, T2 are
finite-valued one-way transducers and the resynchronizer is constrained to be rational, as well
as when T1, T2 are unambiguous two-way transducers and the resynchronizer is allowed to
be regular (and bounded). In the one-way setting, the problem turns out to be undecidable

MFCS 2019

69:14 On Synthesis of Resynchronizers for Transducers

already for unrestricted (non-functional) transducers and rational resynchronizers. In the
two-way setting, the decidability status remains open already when the transducers are not
unambiguous (be them functional or not). Concerning this last point, however, we recall that
the synthesis problem becomes undecidable as soon as we consider regular resynchronizers
that are unbounded, as in this case the problem is at least as hard as classical containment.

References
1 Rajeev Alur and Pavel Cerný. Expressiveness of streaming string transducer. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010.

2 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput.
Sci., 292:45–63, 2003.

3 Meera Blattner and Tom Head. Single-valued a-transducers. J. Comput. and System Sci.,
15:310–327, 1977.

4 Mikolaj Bojańczyk. Transducers with origin information. In International Colloquium on
Automata, Languages and Programming (ICALP’14), number 8572 in LNCS, pages 26–37.
Springer, 2014.

5 Mikolaj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which Classes of
Origin Graphs Are Generated by Transducers? In International Colloquium on Automata,
Languages and Programming (ICALP’17), volume 80 of LIPIcs, pages 114:1–114:13, 2017.

6 Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-Equivalence of
Two-Way Word Transducers Is in PSPACE. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’18), volume 122 of LIPIcs,
pages 1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

7 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained Automata.
Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013. doi:10.1142/S0129054113400339.

8 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

9 Calvin C. Elgot and Jorge E. Mezei. On Relations Defined by Generalized Finite Automata.
IBM Journal of Research and Development, 9(1):47–68, 1965. doi:10.1147/rd.91.0047.

10 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On Equivalence and
Uniformisation Problems for Finite Transducers. In International Colloquium on Automata,
Languages and Programming (ICALP’16), volume 55 of LIPIcs, pages 125:1–125:14, 2016.

11 Patrick C. Fischer and Arnold L. Rosenberg. Multi-tape one-way nonwriting automata. J.
Comput. and System Sci., 2:88–101, 1968.

12 T. V. Griffiths. The unsolvability of the equivalence problem for lambda-free nondeterministic
generalized machines. J. ACM, 15(3):409–413, 1968.

13 Piotr Hofman. Personal communication.
14 Oscar H. Ibarra. The unsolvability of the equivalence problem for e-free NGSM’s with unary

input (output) alphabet and applications. SIAM J. of Comput., 7(4):524–532, 1978.
15 Andreas Weber. Decomposing a k-Valued Transducer into k Unambiguous Ones. ITA,

30(5):379–413, 1996.

https://doi.org/10.1142/S0129054113400339
https://doi.org/10.1147/rd.91.0047

Acceptance Ambiguity for Quantum Automata
Paul C. Bell
Department of Computer Science, Byrom Street, Liverpool John Moores University,
Liverpool, L3-3AF, UK
p.c.bell@ljmu.ac.uk

Mika Hirvensalo
Department of Mathematics and Statistics, University of Turku, FI-20014, Turku, Finland
mikhirve@utu.fi

Abstract
We consider notions of freeness and ambiguity for the acceptance probability of Moore-Crutchfield
Measure Once Quantum Finite Automata (MO-QFA). We study the distribution of acceptance
probabilities of such MO-QFA, which is partly motivated by similar freeness problems for matrix
semigroups and other computational models. We show that determining if the acceptance probabilities
of all possible input words are unique is undecidable for 32 state MO-QFA, even when all unitary
matrices and the projection matrix are rational and the initial configuration is defined over real
algebraic numbers. We utilize properties of the skew field of quaternions, free rotation groups,
representations of tuples of rationals as a linear sum of radicals and a reduction of the mixed
modification Post’s correspondence problem.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum finite automata, matrix freeness, undecidability, Post’s correspond-
ence problem, quaternions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.70

Funding Mika Hirvensalo: Supported by Väisälä Foundation

1 Introduction

Measure-Once Quantum Finite Automata (MO-QFA) were introduced in [24] as a natural
quantum variant of probabilistic finite automata. The model is defined formally in Section 3,
but briefly a MO-QFA over an alphabet Σ is defined by a three tuple Q = (P, {Xa|a ∈ Σ}, u)
where P is a projection matrix, Xa is a complex unitary matrix for each alphabet letter
a ∈ Σ and u is a unit length vector with respect to the Euclidean (`2) norm. Given an input
word w = w1 · · ·wk ∈ Σ∗, then the acceptance probability fQ : Σ∗ → R of w under Q is
given by

fQ(w) = ||PXwk
· · ·Xw1u||

2
.

The related model of Probabilistic Finite Automata (PFA) with n states over an alphabet
Σ is defined as P = (x, {Ma|a ∈ Σ},y) where y ∈ Rn is the initial probability distribution
(unit length under `1 norm); x ∈ {0, 1}n is the final state vector and each Ma ∈ Rn×n is a
stochastic matrix. For a word w = w1w2 · · ·wk ∈ Σ∗, we define the acceptance probability
fP : Σ∗ → R of P as:

fP(w) = xTMwk
Mwk−1 · · ·Mw1y.

For any λ ∈ [0, 1] and automaton A (either PFA or QFA) over alphabet Σ, we define a
cut-point language to be: L≥λ(A) = {w ∈ Σ∗|fA(w) ≥ λ}, and a strict cut-point language
L>λ(A) by replacing ≥ with >. The (strict) emptiness problem for a cut-point language is
to determine if L≥λ(A) = ∅ (resp. L>λ(A) = ∅).

© Paul C. Bell and Mika Hirvensalo;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 70; pp. 70:1–70:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

 https://orcid.org/0000-0003-2620-635X
mailto:p.c.bell@ljmu.ac.uk
mailto:mikhirve@utu.fi
https://doi.org/10.4230/LIPIcs.MFCS.2019.70
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Acceptance Ambiguity for Quantum Automata

The MO-QFA model is very restricted due to unitarity constraints and can recognize
only group languages (those regular languages whose syntactic monoid is a group [10]).
Whereas the emptiness question for a strict cut-point stochastic languages is undecidable,
it surprisingly becomes decidable for MO-QFA [9]. The decidability is established via the
compactness of the group generated by unitary matrices: a compact algebraic group has
a finite polynomial basis, and the decision procedure is then based on Tarski’s quantifier
elimination theorem [9].

Another surprising undecidability result was already manifested in [9]: The emptiness
problem for non-strict (allowing equality) cut-point languages is undecidable. The sizes
of the automata exhibiting undecidability were subsequently improved in [17]. As the
aforementioned examples illuminate, the border between decidability and undecidability may
be crossed with a minor modification to the model or premises.

Underlying each linear automata model are matrices, which represent the dynamics of the
computational model as input symbols are read. For deterministic/nondeterministic finite
automata, the underlying matrices are binary matrices; for weighted automata, the matrices
are integer; for probabilistic automata the matrices are stochastic (the set of columns of each
matrix should be a probability distribution); and for quantum finite automata, the matrices
are unitary (the set of columns of each matrix should be orthonormal).

Reachability problems for matrix semigroups have attracted a great deal of attention
over the past few years. Typically in such problems we are given a finite set of generating
matrices G forming a semigroup S = 〈G〉 and we ask some question about S. As an example,
it was shown even back in 1970 by M. Paterson that the mortality problem for integer matrix
semigroups is undecidable in dimension three [25]. In this problem, G ⊆ Z3×3 and we ask
whether the zero matrix belongs to S = 〈G〉. It was later shown that the similar identity
problem (does the identity matrix belong to the semigroup generated by a given set of
generating matrices) is also undecidable for four-dimensional integral matrices [5].

A related problem is the freeness problem for integer matrices – given a set G ⊆ Fn×n,
where F is a semiring, determine if G is a code for the semigroup generated by G (i.e., if every
element of 〈G〉 has a unique factorization over elements of G). It was proven by Klarner et al.
that the freeness problem is undecidable over N3×3 in [20] and this result was improved by
Cassaigne et al. to hold even for upper-triangular matrices over N3×3 in [11].

There are many open problems related to freeness in 2× 2 matrices; see [12, 13, 14] for
good surveys. The freeness problem over H2×2 is undecidable [4], where H is the skew-field
of quaternions (in fact the result even holds when all entries of the quaternions are rationals).
The freeness problem for two upper-triangular 2× 2 rational matrices remains open, despite
many partial results being known [13].

The freeness problem for matrix semigroups defined by a bounded language was recently
studied. Given a finite set of matrices {M1, . . . ,Mk} ⊆ Qn×n, we define a bounded language
of matrices to be of the form: {M j1

1 · · ·M
jk

k |ji ≥ 0 where 1 ≤ i ≤ k}.
The freeness problem for such a bounded language of matrices asks if there exists a choice

of these variables such that j1, . . . , jk, j′1, . . . , j′k ≥ 0, where at least one ji 6= j′i such that
M j1

1 · · ·M
jk

k = M
j′1
1 · · ·M

j′k
k in which case the bounded language of matrices is not free. This

problem was shown to be decidable when n = 2, but undecidable in general [13].
In a similar vein, we may study the vector freeness and ambiguity problems, where we

are given a finite set of matrices G ⊆ Fn×n and a vector u ∈ Fn. The ambiguity problem
is to determine whether there exists two matrices M1,M2 ∈ S = 〈G〉 with M1 6= M2 such
that M1u = M2u and the freeness problem is to determine the uniqueness of factorizations
of {Mu|M ∈ S} i.e., does Mi1 · · ·Miku = Mj1 · · ·Mjk′u, where each Mt ∈ G, imply that

P. C. Bell and M. Hirvensalo 70:3

k = k′ and Mir = Mjr for 1 ≤ r ≤ k? It should be noted that these (related but distinct)
problems are more difficult to solve than freeness for matrix semigroups, since by multiplying
matrix M1 and M2 with u, some information may be lost. The motivation for such a problem
is that many linear dynamic systems/computational models are defined in this way. The
freeness question now asks whether starting from some initial point, we have two separate
computational paths which coincide at some later point, or else whether every configuration
starting from u is unique. Such vector ambiguity and freeness questions were studied in [3]
and the problems were shown to be undecidable when S ⊆ Z4×4, or when S ⊆ Q3×3. The
NP-completeness of the vector ambiguity and freeness problems for SL(2,Z) was recently
shown in [21] (where SL(2,Z) is the special linear group of 2× 2 matrices).

Whilst vector reachability questions are interesting from the point of view of dynamical
systems, many computational models have the notion of a projection being taken at the
end, in order to determine whether a computation path is successful or not. This usually
takes the form of defining a partition of configurations into accepting or nonaccepting states.
This leads to the notion of scalar reachability (also known as half-space reachability [15]),
which may be defined in terms of two vectors, u and v, where we now study the set of
scalars {uTMv|M ∈ S}. The scalar ambiguity question then asks whether or not this set
of scalars is unique i.e., does there exist two matrices M1,M2 ∈ S with M1 6= M2 such
that uTM1v = uTM2v? The difficulty with extending the undecidability result for vector
reachability is that all information about each matrix M needs to be stored within a single
scalar value uTMv in a unique way.

In [1], the freeness problem (defined formally in Section 3.1) for 4-state weighted and
6-state probabilistic automata was shown to be undecidable together with results concerning
the related ambiguity problem. The undecidability result was shown to hold even when
the input words come from a bounded language, thus the matrices appear in some fixed
order, and are taken to an arbitrary power. The problem can also be stated in terms of
formal power series: given a formal power series r, determine if r has two equal coefficients.
This problem was studied in [22] and Theorem 3.4 of [18]. As mentioned above, several
reachability problems for PFA (such as emptiness of cut-point languages) are known to be
undecidable [26], even in a fixed dimension [8, 17]. The reachability problem for PFA defined
on a bounded language (i.e., where input words are from a bounded language which is given
as part of the input) was shown to be undecidable in [2]. We may note that the scalar
freeness and ambiguity problems are a similar concept to the threshold isolation problem
which asks whether a given cutpoint may be approached arbitrarily closely and which is
known to be undecidable [6, 8].

It is therefore natural to ask whether the freeness and ambiguity problems are undecidable
for MO-QFA. This problem appears more difficult to prove than for weighted/probabilistic
automata, since the acceptance probability of a MO-QFA Q has the form fQ(w) =

∣∣∣∣PXRu
∣∣∣∣2

and it is thus difficult to encode sufficient information about the matrix X within fQ(w)
to guarantee uniqueness of matrices from G. We show that freeness and ambiguity are
undecidable for 32 (resp. 33) state MO-QFA by using an encoding of the mixed modification
Post’s Correspondence Problem and a result related to linear independence of rationals of
a basis of squarefree radicals as well as techniques from linear algebra and properties of
quaternions.

MFCS 2019

70:4 Acceptance Ambiguity for Quantum Automata

2 Notation

Let Σ = {x1, x2, . . . , xk} be a finite set of letters called an alphabet. A word w is a finite
sequence of letters from Σ, the set of all words over Σ is denoted Σ∗ and the set of nonempty
words is denoted Σ+. The empty word is denoted by ε. We use |u| to denote the length
of a word u and thus |ε| = 0. For two words u = u1u2 · · ·ui and v = v1v2 · · · vj , where
u, v ∈ Σ∗, the concatenation of u and v is denoted by u · v (or by uv for brevity) such that
u · v = u1u2 · · ·uiv1v2 · · · vj . Word uR = ui · · ·u2u1 denotes the mirror image or reverse of
word u. A subset L of Σ∗ is called a language. A language L ⊆ Σ∗ is called a bounded
language if and only if there exist words w1, w2, . . . , wm ∈ A+ such that L ⊆ w∗1w

∗
2 · · ·w∗m.

Given an alphabet Σ as above, we denote by Σ−1 the set {x−1
1 , . . . , x−1

k }, where each x−1
i is

a new letter with the property that xix−1
i = x−1

i xi = ε are the only identities of the group
〈Σ ∪ Σ−1〉. A word w = w1w2 · · ·wi ∈ (Σ ∪ Σ−1)∗ is called reduced if there does not exist
1 ≤ j < i such that wj+1 = w−1

j ; i.e., no two consecutive letters are inverse.
Given any two rings R1 and R2 we use the notation R1 ↪→ R2 to denote a monomorphism

i.e., an injective homomorphism between R1 and R2. Given a finite set G, we use the notation
〈G〉 (resp. 〈G〉gp) to denote the semigroup (resp. group) generated by G.

Semirings and quaternions
We denote by N the natural numbers, Z the integers, Q the rationals, C the complex numbers
and H the quaternions. We denote by C(Q) the complex numbers with rational parts, by
H(Q) the quaternions with rational parts and by AR the real algebraic numbers.

Given any semiring F we denote by Fi×j the set of i× j matrices over F. We denote by
ei the i’th basis vector of some dimension (which will be clear from the context).

In a similar style to complex numbers, a rational quaternion ϑ ∈ H(Q) can be written
ϑ = a+bi+cj+dk where a, b, c, d ∈ Q. To ease notation let us define the vector: µ = (1, i, j,k)
and it is now clear that ϑ = (a, b, c, d) · µ where · denotes the inner or “dot” product.

Quaternion addition is simply the componentwise addition of elements. It is well known
that quaternion multiplication is not commutative (hence they form a skew field). Multiplic-
ation is completely defined by the equations i2 = j2 = k2 = −1 , ij = k = −ji, jk = i = −kj
and ki = j = −ki. Thus for two quaternions ϑ1 = (a1, b1, c1, d1)µ and ϑ2 = (a2, b2, c2, d2)µ,
we can define their product as ϑ1ϑ2 = (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 −
d1c2)i + (a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k.

In a similar way to complex numbers, we define the conjugate of ϑ = (a, b, c, d) · µ by
ϑ = (a,−b,−c,−d) · µ. We can now define a norm on the quaternions by ||ϑ|| =

√
ϑϑ =√

a2 + b2 + c2 + d2. Any non zero quaternion has a multiplicative (and obviously an additive)
inverse [23]. The other properties of being a skew field can be easily checked.

A unit quaternion (norm 1) corresponds to a rotation in three dimensional space [23].

Linear Algebra
Given A = (aij) ∈ Fm×m and B ∈ Fn×n, we define the direct sum A ⊕ B and Kronecker
product A⊗B of A and B by:

A⊕B =
[
A 0m,n

0n,m B

]
, A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...
am1B am2B · · · ammB

 ,

P. C. Bell and M. Hirvensalo 70:5

where 0i,j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are
commutative in general. Given a finite set of matrices G = {G1, G2, . . . , Gm} ⊆ Fn×n, 〈G〉 is
the semigroup generated by G. We will use the following notations:

m⊕
j=1

Gj = G1 ⊕G2 ⊕ · · · ⊕Gm,
m⊗
j=1

Gj = G1 ⊗G2 ⊗ · · · ⊗Gm.

Given a single matrix G ∈ Fn×n, we inductively define G⊗k = G ⊗ G⊗(k−1) ∈ Fnk×nk

with G⊗1 = G as the k-fold Kronecker power of G. Similarly, G⊕k = G⊕G⊕(k−1) ∈ Fnk×nk

with G⊕1 = G. The following properties of ⊕ and ⊗ are well known; see [19] for proofs.

I Lemma 1. Let A,B,C,D ∈ Fn×n. We note that:
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) and (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C), thus A ⊗ B ⊗ C and
A⊕B ⊕ C are unambiguous.
Mixed product properties: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and (A ⊕ B)(C ⊕ D) =
(AC)⊕ (BD).
If A and B are unitary matrices, then so are A⊕B and A⊗B.

Given two vectors u ∈ Fn1 and v ∈ Fn2 , we define u ⊕ v ∈ Fn1+n2 as u ⊕ v =
(u1, . . . , un1 , v1, . . . , vn2).

3 Quantum Finite Automata and Undecidability

I Definition 2. A measure-once n-state quantum automaton (MO-QFA) over a k-letter
alphabet Σ is a triplet (P, {Xa | a ∈ Σ}, u), where P ∈ Cn×n is a projection, each Xa ∈ Cn×n
is a unitary matrix (where rows form an orthonormal set), and u ∈ Cn is a unit-length vector.

A morphism Σ∗ → 〈Xa〉 is defined as w = ai1 . . . ait 7→ Xw
def= Xi1 . . . Xit and the

acceptance probability of a MO-QFA Q is defined as fQ(w) = ||PXwRu||2. We use the
reverse of the word w, denoted wR, so that w1 is applied first, then w2 etc.

3.1 Ambiguity and Freeness for QFA
Consider a finite set of unitary matrices G = {X1, X2, . . . , Xk} ⊂ Cn×n, a projection matrix
P ∈ Zn×n and a unit column vector u ∈ Cn. Let Q = (P,G, u) be a QFA and define Λ(Q)
be the set of scalars such that Λ(Q) = {||PXu||2 ;X ∈ 〈G〉}. If for λ ∈ Λ(Q) there exists
a unique matrix X ∈ 〈G〉 such that λ = ||PXu||2, then we say that λ is unambiguous with
respect to Q. We call Λ(Q) unambiguous if every λ ∈ Λ(Q) is unambiguous.

An acceptance probability λ ∈ Λ(Q) is called free with respect to Q if

λ = ||PXi1Xi2 · · ·Ximu||
2 =

∣∣∣∣PXj1Xj2 · · ·Xjm′u
∣∣∣∣2 ,

where each Xik , Xjk′ ∈ G for 1 ≤ k ≤ m and 1 ≤ k′ ≤ m′ implies that m = m′ and each
ik = jk for 1 ≤ k ≤ m. We call Λ(Q) free if every λ ∈ Λ(Q) is free.

I Problem 3 (QFA Scalar Ambiguity). Given a Quantum Finite Automaton Q, is Λ(Q)
unambiguous?

I Problem 4 (QFA Scalar Freeness 1). Given a Quantum Finite Automaton Q, is Λ(Q) free?

1 We may also call this the injectivity problem for QFA; does there exist two distinct words w1, w2 ∈ Σ∗
such that fQ(w1) = fQ(w2)?

MFCS 2019

70:6 Acceptance Ambiguity for Quantum Automata

I Example 5. Let A =
(3

5
4
5

− 4
5

3
5

)
, P =

(
1 0
0 0

)
and u = (1, 0)T . We thus see that

Q = (P, {A}, u) is a unary 2-state QFA. Note that A represents rotations of the Euclidean
plane of angle arccos(3/5), and thus we see that fQ(ak) = ||PAku||2 is dense in [0, 1] for
k ∈ N. Since the angle of rotation of A is an irrational multiple of π, then every acceptance
probability of Q is unique, and thus Q is both free and unambiguous.

We show that freeness and ambiguity are undecidable for MO-QFA in Section 5. The
reduction is from the Mixed Modification Post’s Correspondence Problem, now defined.

I Problem 6 (Mixed Modification PCP (MMPCP)). Given set of letters Σ = {s1, . . . , s|Σ|},
binary alphabet Σ2, and pair of homomorphisms h, g : Σ∗ → Σ∗2, the MMPCP asks to decide
whether there exists a word w = x1 · · ·xk ∈ Σ+, xi ∈ Σ such that

h1(x1)h2(x2) · · ·hk(xk) = g1(x1)g2(x2) · · · gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj 6= gj .

I Theorem 7. [11] - The Mixed Modification PCP is undecidable for |Σ| ≥ 9.

I Definition 8. We call an instance of the (MM)PCP a Claus instance if the minimal
solution words are of the form w = s1x2x3 · · ·xk−1s|Σ|, where x2, . . . , xk−1 ∈ Σ− {s1, s|Σ|},
i.e., the minimal solution words must start with letter s1, end with letter s|Σ|, and all other
letters are not equal to s1 or s|Σ|.

In fact most proofs of the undecidability of (MM)PCP have this property [16]. Claus instances
can be useful for decreasing the resources required for showing certain undecidability results,
and we use this property later.

I Theorem 9. [16] - Mixed Modification PCP is undecidable for Claus instances, when
|Σ| ≥ 9.2

4 A mapping from arbitrary words to rational unitary matrices

Let Σn = {x1, x2, . . . , xn} be an n-letter alphabet for some n > 0. We begin by deriving a
monomorphism γ : Σ∗n ↪→ Q4×4 such that γ(w) is a unitary matrix for any w ∈ Σ∗n. The
mapping γ will be a composition of several monomorphisms.

Given alphabet Σn = {x1, x2, . . . , xn}, we now show that there exists a monomorphism
γ : Σ∗n ↪→ Q4×4 where γ(w) is unitary for all w ∈ Σ∗n.

We first describe a monomorphism γ1 from an arbitrary sized alphabet to a binary
alphabet. We then show monomorphism γ2 from a binary alphabet to unit quaternions, and
conclude by injectively mapping such quaternions to unitary matrices.

γ1: Let Σ2 = {a, b} be a binary alphabet. We define γ1 : Σ∗n ↪→ Σ∗2 by γ1(xk) = akb for
1 ≤ k ≤ n. It is immediate that γ1 is injective.

γ2: Define mapping γ2 : Σ∗2 ↪→ H(Q) by γ2(a) =
(3

5 ,
4
5 , 0, 0

)
· µ and γ2(b) =

(3
5 , 0,

4
5 , 0
)
· µ.

It is known that γ2 is an injective homomorphism [4] since such quaternions represent
rotations about perpendicular axes by a rational angle (not equal to 0,± 1

2 ,±1), thus
γ2 : Σ∗2 ↪→ H(Q) and γ2(w1) = γ2(w2) for w1, w2 ∈ Σ∗2 implies that w1 = w2 [27].

2 The result in [16] states undecidability for |Σ| ≥ 7 since they fix the first/last letters of a potential
solution.

P. C. Bell and M. Hirvensalo 70:7

γ3: Define γ3 : H(Q) ↪→ Q4×4 by:

γ3((r, x, y, z) · µ) =


r x y z

−x r z −y
−y −z r x

−z y −x r

 . (1)

It is well known that γ3 is a monomorphism in this case. Injectivity is clear, and using
the rules of quaternion multiplication shows that γ3 is a homomorphism.

We finally define γ = γ3 ◦ γ2 ◦ γ1 and thus by the above reasoning γ : Σ∗n ↪→ Q4×4 is an
injective homomorphism. Note that the matrix γ(w) for a word w ∈ Σ∗n contains quite a lot
of redundancy, and in fact can be uniquely described by just four elements (the top row)
as is shown by the matrix in Eqn. (1). Of course, these four elements simply correspond to
the four elements of the quaternion used in the construction of γ. Note also that γ(w) is a
unitary matrix since γ2 generates a unit quaternion (of norm 1) in each case.

Using γ, we can now find matrices A,B ∈ Q4×4, such that γ(w) ∈ 〈{A,B}〉gp for all
w ∈ Σ∗; i.e., the value of γ(w) lies within the semigroup generated by {A,B}. This will
prove useful later since we may reason about the structure of this freely presented semigroup.

I Definition 10. Given Σ2 = {a, b}, then let:

A = γ3(γ2(a)) =


3
5

4
5 0 0

− 4
5

3
5 0 0

0 0 3
5

4
5

0 0 − 4
5

3
5

 , B = γ3(γ2(b)) =


3
5 0 4

5 0
0 3

5 0 − 4
5

− 4
5 0 3

5 0
0 4

5 0 3
5

 ,

and define Γ′ = 〈{A,B}〉 ⊂ Q4×4, which is a free semigroup (freely generated by {A,B}).
All elements in the range of γ thus belong to Γ′. We define Γ ⊂ Γ′ by Γ = {γ(w)|w ∈ Σ∗n}.

5 Freeness and ambiguity for QFA with radicals

In order to prove that the ambiguity and freeness problems are undecidable for QFA defined
over rationals (with real algebraic initial vector), we require the following (folklore) theorem.
This will essentially allow us to uniquely represent a tuple of rationals as a linear sum of
radicals. For completeness, we will show a simple proof of this theorem using the theory of
field extensions.

I Theorem 11 ([7]). The (finite) set

S = {
√
m1, . . . ,

√
mn : mi are coprime square-free numbers}

is linearly independent over Q.

Proof. Define Ek = Q(√m1, . . . ,
√
mk), so E0 = Q and E1 = Q(√m1). Clearly [E0 : Q] =

1 = 20, and [E1 : Q] = 21. As each element √mi satisfies a quadratic equation over Q, the
field extension degree [En : Q] is at most 2n. The theorem is proven if we can show that
[En : Q] = 2n.

Assume the induction hypothesis true for values less than k. We will prove it true for
k + 1, as well, i.e., [Ek+1 : Ek] = 2. For this aim, we must demonstrate that √mk+1 /∈ Ek,
so let us assume the contrary, that
√
mk+1 ∈ Ek = Ek−1(

√
mk),

MFCS 2019

70:8 Acceptance Ambiguity for Quantum Automata

hence √mk+1 = a+ b
√
mk, where a, b ∈ Ek−1 Then

mk+1 = a2 +mkb
2 + 2ab

√
mk.

If ab 6= 0, then √mk ∈ Ek−1, which implies that [Ek : Ek−1] = 1, a contradiction.
If a = 0, then √mk+1 = b

√
mk, and hence √mk

√
mk+1 = bmk ∈ Ek−1. By the induction

hypothesis we then have

[Q(
√
m1, . . . ,

√
mk−1,

√
mkmk+1) : Q] = 2k,

but since the last extending element belongs to Ek−1, the extension degree cannot be more
than 2k−1, a contradiction. Here we actually need the assumption that the numbers are
coprime, since otherwise mkmk+1 would not necessarily be squarefree.

If b = 0, then √mk+1 ∈ Ek−1, and as above, the induction hypothesis gives

[Q(
√
m1, . . . ,

√
mk−1,

√
mk+1) : Q] = 2k,

but as the last extending element belongs to Ek−1, the extension degree cannot be more
than 2k−1, a contradiction. J

For example, given p1, p2, q1, q2 ∈ Q, then the equality p1
√

2 + q1
√

3 = p2
√

2 + q2
√

3 is
true iff p1 = p2 and q1 = q2.

The following technical lemma concerns the free group S generated by G = {γ2(a), γ2(b)}
and will crucially allow us to characterise elements of S which differ only in the signs of one
or more of their imaginary components. To define this lemma we require a nonstandard
inversion function defined on elements of S = 〈G〉gr. Since S is free, any reduced (i.e., not
containing consecutive inverses) qw ∈ S can be uniquely written in the form

qw = γ2(a)k0γ2(b)k1γ2(a)k2 · · · γ2(a)kn−2γ2(b)kn−1γ2(a)kn ,

where k0, kn ∈ Z and k1, . . . , kn−1 ∈ Z−{0}, i.e., an alternating product of either positive or
negative powers of γ2(a) and γ2(b) which may start and end with either element. We define
the following three functions:
i) λa(qw) = γ2(a)−k0γ2(b)k1γ2(a)−k2 · · · γ2(a)−kn−2γ2(b)kn−1γ2(a)−kn ;
ii) λb(qw) = γ2(a)k0γ2(b)−k1γ2(a)k2 · · · γ2(a)kn−2γ2(b)−kn−1γ2(a)kn ;
iii) λa,b(qw) = γ2(a)−k0γ2(b)−k1γ2(a)−k2 · · · γ2(a)−kn−2γ2(b)−kn−1γ2(a)−kn .
These three functions thus invert all γ2(a) elements in a product for λa, all γ2(b) ele-
ments in a product for λb and both γ2(a) and γ2(b) elements in a product for λa,b. As
an example, if qw = γ2(a)3γ2(b)2γ2(a)−4γ2(b), then λa(qw) = γ2(a)−3γ2(b)2γ2(a)4γ2(b),
λb(qw) = γ2(a)3γ2(b)−2γ2(a)−4γ2(b)−1 and λa,b(qw) = γ2(a)−3γ2(b)−2γ2(a)4γ2(b)−1. Biz-
zare as such a definition may appear, it allows us to exactly characterize those elements of S
which differ only in the sign of one or more of their imaginary components, as we now show.

I Lemma 12. Given a quaternion qw = γ2(w) = (r, x, y, z) · µ ∈ 〈γ2(a), γ2(b)〉gr with
w = w1w2 · · ·w|w|, each wi ∈ (Σ2 ∪ Σ−1

2) and Σ2 = {a, b}, then:
i) qwR = γ2(wR) = (r, x, y,−z) · µ;
ii) λa(qw) = (r,−x, y,−z) · µ;
iii) λb(qw) = (r, x,−y,−z) · µ;
iv) λa,b(qw) = (r,−x,−y, z) · µ.

P. C. Bell and M. Hirvensalo 70:9

Proof. We proceed via induction. For the base case, when w = ε, then qw = (1, 0, 0, 0) · µ
and qwR = λa(qw) = λb(qw) = λa,b(qw) = (1, 0, 0, 0) · µ and so the properties (trivially) hold.
For the induction hypothesis, assume i) – iv) are true for qw. We handle each property
individually.
i) By assumption, qwR = (r, x, y,−z)·µ. Since γ2(a) =

(3
5 ,

4
5 , 0, 0

)
·µ and γ2(b) =

(3
5 , 0,

4
5 , 0
)
·µ,

by the rules of quaternion multiplication, we see that:

γ2(a) · qw = 1
5 (3r − 4x, 3x+ 4r, 3y − 4z, 3z + 4y) · µ,

qwR · γ2(a) = 1
5 (3r − 4x, 3x+ 4r, 3y − 4z,−3z − 4y) · µ

Note that the fourth component is negated as expected. In a similar way, we also see that:

γ2(b) · qw = 1
5 (3r − 4y, 3x+ 4z, 3y + 4r, 3z − 4x) · µ,

qwR · γ2(b) = 1
5 (3r − 4y, 3x+ 4z, 3y + 4r,−3z + 4x) · µ

with negated fourth element. Since γ2(a−1) =
(3

5 ,−
4
5 , 0, 0

)
·µ and γ2(b−1) =

(3
5 , 0,−

4
5 , 0
)
·µ,

then the property of the fourth element being negated is also clearly true for γ2(c−1) · qw and
qwR · γ2(c−1) for c ∈ {a, b}. The other properties are similar, we give a brief proof of each.
ii) By the induction hypothesis, λa(qw) = (r,−x, y,−z) · µ and thus:

qw · γ2(a) = 1
5 (3r − 4x, 3x+ 4r, 3y + 4z, 3z − 4y) · µ,

λa(qw) · γ2(a)−1 = 1
5 (3r − 4x,−3x− 4r, 3y + 4z,−3z + 4y) · µ,

with the second and fourth components negated as required. Also,

qw · γ2(a)−1 = 1
5 (3r + 4x, 3x− 4r, 3y − 4z, 3z + 4y) · µ,

λa(qw) · γ2(a) = 1
5 (3r + 4x,−3x+ 4r, 3y − 4z,−3z − 4y) · µ,

as expected. Right multiplication of qw and λa(qw) by either γ2(b) or γ2(b)−1 retains the
given structure, as is not difficult to calculate.
iii) By the induction hypothesis, λb(qw) = (r, x,−y,−z) · µ and thus:

qw · γ2(b) = 1
5 (3r − 4y, 3x− 4z, 3y + 4r, 3z + 4x) · µ,

λb(qw) · γ2(b)−1 = 1
5 (3r − 4y, 3x− 4z,−3y − 4r,−3z − 4x) · µ,

with the third and fourth components negated as required. Also,

qw · γ2(b)−1 = 1
5 (3r + 4y, 3x+ 4z, 3y − 4r, 3z − 4x) · µ,

λb(qw) · γ2(b) = 1
5 (3r + 4y, 3x+ 4z,−3y + 4r,−3z + 4x) · µ,

as expected. Right multiplication of qw and λb(qw) by either γ2(a) or γ2(a)−1 retains the
given structure, as is not difficult to calculate.

MFCS 2019

70:10 Acceptance Ambiguity for Quantum Automata

iv) By the induction hypothesis, λa,b(qw) = (r,−x,−y, z) · µ and thus:

λa,b(qw) · γ2(a) = 1
5 (3r + 4x,−3x+ 4r,−3y + 4z, 3z + 4y) · µ,

λa,b(qw) · γ2(b) = 1
5 (3r + 4y,−3x− 4z,−3y + 4r, 3z − 4x) · µ,

λa,b(qw) · γ2(a)−1 = 1
5 (3r − 4x,−3x− 4r,−3y − 4z, 3z − 4y) · µ,

λa,b(qw) · γ2(b)−1 = 1
5 (3r − 4y,−3x+ 4z,−3y − 4r, 3z + 4x) · µ,

with the second and third components of each product negated with relation to qw · γ2(a)−1,
qw · γ2(b)−1, qw · γ2(a) and qw · γ2(b) (resp.) as required. J

The following lemma allows us to represent a quaternion (and its corresponding rotation
matrix) by using only absolute values and will be crucial later.

I Lemma 13. Given a word w ∈ Σ∗k, then γ2(γ1(w)) = (r, x, y, z) · µ is uniquely determined
by (|r|, |x|, |y|, |z|). All matrices γ(w) ∈ Γ are similarly uniquely determined by

(|γ(w)1,1|, |γ(w)1,2|, |γ(w)1,3|, |γ(w)1,4|),

i.e., by the absolute values of each element of the top row of the matrix.

Proof. Another way to state this Lemma is that if we have u = u1u2 · · ·ut and v = v1v2 · · · vt′
with each ui, vi ∈ Σ∗k, such that γ2(γ1(u)) = (a1, b1, c1, d1) · µ, γ2(γ1(v)) = (a2, b2, c2, d2) · µ
and (|a1|, |b1|, |c1|, |d1|) = (|a2|, |b2|, |c2|, |d2|), then t = t′ and ui = vi for all 1 ≤ i ≤ t. A
similar property holds for the top row of the unitary matrices when applying γ3 to these
elements. We shall now prove this.

By definition, γ2 : Σ∗2 ↪→ H(Q) maps to a free monoid S of H(Q) generated by G =
{γ2(a), γ2(b)} with γ2(a) =

(3
5 ,

4
5 , 0, 0

)
· µ and γ2(b) =

(3
5 , 0,

4
5 , 0
)
· µ. As shown in Section 4,

γ2 ◦ γ1 : Σ∗n ↪→ H(Q); i.e., γ2 ◦ γ1 is an injective homomorphism. Let Γ′ = {γ2(γ1(w′))|w′ ∈
Σ∗n} ⊆ H(Q). Clearly then, Γ′ is freely generated by {γ2(γ1(w′))|w′ ∈ Σn} by the injectivity
of γ2 ◦ γ1.

Let qw = γ2(γ1(w)) = (r, x, y, z) · µ ∈ Γ′ ⊆ S and define Qw = {(±r,±x,±y,±z) · µ},
thus |Qw| = 16. We will now show that for all q′ ∈ Qw − {qw} then q′ 6∈ Γ′ which proves the
lemma.

Since (unit) quaternion inversion simply involves negating all imaginary components,
then using the identities of Lemma 12, we can derive that q−1

w = (r,−x,−y,−z), λa(qw)−1 =
(r, x,−y, z) and λb(qw)−1 = (r,−x, y, z) which we summarize in the following table.

qw (r, x, y, z)µ q−1
w (r,−x,−y,−z)µ

λa(qw) (r,−x, y,−z)µ λa(qw)−1 (r, x,−y, z)µ

λb(qw) (r, x,−y,−z)µ λb(qw)−1 (r,−x, y, z)µ

λa,b(qw) (r,−x,−y, z)µ qwR (r, x, y,−z)µ

We might also notice other identites, such as qwR = λa,b(qw)−1 which is clear from the
definition of λa,b. Note that this table covers 8 elements of Qw.

Note qw belongs (by definition) to Γ′ = (γ2(a)+γ2(b))+ = {γ2(γ1(w′))|w′ ∈ Σn} ⊆ S.
Since 〈γ2(a), γ2(b)〉gr generates a free group, this means that no reduced element of S is
equal to a product with a nontrivial3 factor γ2(a)−1 or γ2(b)−1. Each element in the above

3 Reduced meaning the element contains no consecutive inverse elements and nontrivial meaning we
ignoring any such element adjacent to its multiplicative inverse.

P. C. Bell and M. Hirvensalo 70:11

table contains at least one nonreducible factor γ2(a)−1 or γ2(b)−1, excluding qw and qwR .
Note however that qwR trivially does not belong to Γ′ = (γ2(a)+γ2(b))+ since it necessarily
begins with nonreducible factor γ2(b).

Finally, to cover the remaining 8 elements of Qw, we consider the free group Sgr =
〈{γ2(a), γ2(b)}|∅〉gr. For any q′w ∈ Sgr then −q′w 6∈ Sgr since Sgr is free. This holds since if
−q′w ∈ S, then −1 ∈ S (because (q′w)−1 ∈ S), which gives a nontrivial identity −12 = 1 in
Sgr (a contradiction).

This covers all sixteen possible elements of Qw and shows that qw is the only member of
Qw belonging to Γ′. By the definition of γ3 : H(Q) ↪→ Q4×4, then also all matrices γ(w) ∈ Γ
are uniquely determined by (|γ(w)1,1|, |γ(w)1,2|, |γ(w)1,3|, |γ(w)1,4|) as required. J

I Theorem 14. The freeness problem for measure-once quantum finite automata is undecid-
able for 32 states over an alphabet of size 17.

Proof. We will encode an instance (h, g) of the mixed modification Post’s Correspondence
Problem into a finite set of matrices so that if there exists a solution to the instance then
there exists some scalar which is nonfree, otherwise every scalar is free.

Let Σ = {x1, x2, . . . , xn−2} and ∆ = {xn−1, xn} be distinct alphabets and h, g : Σ∗ → ∆∗
be an instance of the mixed modification PCP and let Σn = Σ ∪∆. The naming convention
will become apparent below, but intuitively we will be applying γ, from Section 4 to both
the input and output alphabets.

Recall that we showed the injectivity of γ in Section 4, and thus have a monomorphism
γ : Σ∗n ↪→ Q4×4. We define a function ϕ : Σ∗n × Σ∗n ↪→ Q32×32 by

ϕ(w1, w2) =
4⊕
j=1

γ(w1)⊕
4⊕
j=1

γ(w2).

We may note that ϕ(w1, w2) remains a unitary matrix since γ(wi) is unitary and the direct
sum of unitary matrices is unitary. Define G = {ϕ(xi, h(xi)), ϕ(xi, g(xi))|xi ∈ Σ} ⊂ Q32×32.

Let pi denote the i’th prime number and define ui = 4
√
pi · ei ∈ AR

4, vi = 4
√
p4+i · ei ∈ AR

4

for 1 ≤ i ≤ 4 (AR
4 denotes a 4-tuple of elements from AR) and u′ =

⊕4
j=1 uj⊕

⊕4
j=1 vj ∈ AR

32.
Now, we normalise this vector so that u = u′√∑8

i=1
√
pi

∈ AR
32, with u a unit vector. Note

that each element of u is a real algebraic number. Let P1 = 1 ⊕ 03 where 03 is the 3 × 3
zero matrix, thus P1 has a 1 in the upper left element and zero elsewhere. Then define
P = P⊕8

1 ∈ Q32×32. Note that P 2 = P and P is a projection matrix.

We are now ready to define our QFA Q by the triple Q = (P,G, u) and prove the claim
of the theorem.

Let X = Xi1 · · ·Xip = ϕ(xi1 , fi1(xi1)) · · ·ϕ(xip , fip(xip)), with fik ∈ {g, h} for 1 ≤ k ≤ p
be one factorization of a matrix X ∈ G. Define x = xi1 · · ·xip and f(x) = fi1(xi1) · · · fip(xip).
Then we see that:

MFCS 2019

70:12 Acceptance Ambiguity for Quantum Automata

||PXu||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
⊕4

j=1(P1γ(x)uj)⊕
⊕4

j=1(P1γ(f(x))vj)√∑8
i=1
√
pi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
⊕4

j=1(P1γ(x) 4
√
pj · ej)⊕

⊕4
j=1(P1γ(f(x)) 4

√
p4+j · ej)√∑8

i=1
√
pi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3)

=


√√√√√∑4

j=1(γ(x)1,j 4
√
pj)2 +

∑4
j=1(γ(f(x))1,j 4

√
p4+j)2√∑8

i=1
√
pi


2

(4)

=
∑4
j=1 γ(x)2

1,j
√
pj +

∑4
j=1 γ(f(x))2

1,j
√
p4+j√∑8

i=1
√
pi

. (5)

Assume that matrix X has two distinct factorizations X = Xi1 · · ·Xip = Xj1 · · ·Xjq
∈ G+

and p 6= q or Xik 6= Xjk
for some 1 ≤ k ≤ p, such that

||PXu||2 =
∣∣∣∣PXi1 · · ·Xipu

∣∣∣∣2 =
∣∣∣∣PXj1 · · ·Xjq

u
∣∣∣∣2 ,

and thus Λ(Q) is not free. Let X = Xj1 · · ·Xjq
= ϕ(xj1 , f

′
j1

(xj1)) · · ·ϕ(xjq
, f ′jq

(xjq
)), with

f ′jk
∈ {g, h} for 1 ≤ k ≤ q and define x′ = xj1 · · ·xjq and f ′(x′) = f ′j1

(xj1) · · · f ′jq
(xjp)

with each f ′jk
∈ {g, h}. Note that in Eqn. (5) the denominator is constant and thus when

determining equality
∣∣∣∣PXi1 · · ·Xipu

∣∣∣∣2 =
∣∣∣∣PXj1 · · ·Xjq

u
∣∣∣∣2 we may ignore it. By Lemma 13,

each γ(w) is uniquely determined by the absolute value of the top four elements of the matrix
(e.g. |γ(w)1,j | for 1 ≤ j ≤ 4). Since each pj is squarefree, for 1 ≤ j ≤ 8, then by Theorem 11,
the following equation is satisfied if and only if |γ(x)| = |γ(x′)| and |γ(f(x))| = |γ(f ′(x′))|:

4∑
j=1

γ(x)2
1,j
√
pj +

4∑
j=1

γ(f(x))2
1,j
√
p4+j

=
4∑
j=1

γ(x′)2
1,j
√
pj +

4∑
j=1

γ(f ′(x′))2
1,j
√
p4+j .

Finally, note that γ(x) = γ(x′) if and only if x = x′. As before, let x = xi1 · · ·xip , then
γ(f(x)) = fi1(xi1) · · · fip(xip) = fj1(xi1) · · · fjp

(xip) = γ(f ′(x′)) with some fik 6= fjk
for

1 ≤ k ≤ p if and only if the instance of the MMPCP has a solution.
If the MMPCP is undecidable for Claus instances with an alphabet of size n′ (see

Theorem 9), then the undecidability of the current theorem holds for |G| ≥ 2n′. We now
prove that the result holds for |G| ≥ 2n′ − 1. Let Σ = {x1, . . . , xn′}. Since h, g is a Claus
instance, any solution word w is of the form w = x1w

′xn′ , with w′ ∈ (Σ− {x1, xn′})∗. By
symmetry, we may assume that h1 = h and by the proof in [16], gi = g and hi = h for all
1 ≤ i ≤ t. Clearly then, one of h(xn′) and g(xn′) is a proper suffix of the other (assume that
g(xn′) is a suffix of h(xn′); the opposite case is similar). Now, redefine u′ = γ(xn′ , g(xn′))u,
remove the matrix corresponding to g(xn′) from G and redefine the matrix corresponding
to h(xn′) by h′(xn′) = γ(xn′ , h(xn′)g(xn′)−1). Since g(xn′) is a proper suffix of h(xn′), then
h(x′n)g(x′n)−1 is the prefix of h(xn′) after removing the common suffix with g(xn′). This
means that an ambiguous scalar only exists if there exists a solution to the instance of
MMPCP and we had reduced the alphabet size by 1. MMPCP is undecidable for instances
of size 9 (Theorem 9), thus the undecidability holds for MO-QFA with 32 states and an
alphabet size of 17. J

P. C. Bell and M. Hirvensalo 70:13

I Corollary 15. The ambiguity problem for measure-once quantum finite automata is unde-
cidable for 33 states over an alphabet of size 17.

Proof. The corollary follows from the proof of Theorem 14. We notice that if there exists
a solution to the encoded instance of the MMPCP, then some matrix X has two distinct
factorizations over G and therefore there exists two distinct matrix products giving the
same scalar. Our technique in this corollary is to make these two factorizations produce
distinct matrices X1 and X2, such that they still lead to the same scalar. This is simple to
accomplish by redefining the projection matrix P as P ′ = P ⊕ 0, redefining the initial vector
u as u′ = u⊕ 0 and for each matrix M ∈ G − {ϕ(x1, h(x1))}, we redefine M as M ′ = M ⊕ 1
and let ϕ(x1, h(x1)) be redefined as ϕ(x1, h(x1)) ⊕ −1. In this case, any matrix product
containing ϕ(x1, h(x1))⊕−1 will have −1 in the bottom right element, otherwise the bottom
right element is 1. Since we encode a Claus instance of MMPCP, one factorization has −1
in this case, and the other has 1, and thus we always have distinct matrices. If no solution
exists, then each matrix leads to a unique scalar anyway.

Note that we increased the number of states of the MO-QFA by 1 and also note that the
acceptance probability is unaffected by the above modifications since the projection matrix
was increased by a zero row/column. J

6 Conclusion

An interesting question is whether Theorem 14 can be shown to hold when the initial vector is
rational, rather than real algebraic. We can prove this result if a certain open problem related
to rational packing functions holds (does there exist a polynomial which maps n-tuples of
rationals to a single rational injectively). Such a function is well known for integer values
(the Cantor polynomial), but not for rational n-tuples. This seems a difficult problem to
approach however, and thus we leave the following open problem.

I Open Problem 16. Can undecidability of the ambiguity and freeness problems for MO-
QFA be shown when the initial vector, projection matrix and all unitary matrices are over
rationals?

We also note that in [1] the ambiguity and freeness problems for weighted finite automata
and probabilistic finite automata were shown to be undecidable even when the input words
were restricted to come from a given letter monotonic language, which is a restriction of
bounded languages of the form x∗1x

∗
2 · · ·x∗k where each xi is a single letter of the input

alphabet. The undecidability result of [1] used an encoding of Hilbert’s tenth problem, which
seems difficult to encode into unitary matrices and thus we pose the following open problem.

I Open Problem 17. Can the undecidability of the ambiguity and freeness problems for
MO-QFA be shown when the input word is necessarily from a given letter monotonic language?

References
1 P. C. Bell, S. Chen, and L. M. Jackson. Scalar ambiguity and freeness in matrix semigroups

over bounded languages. In Language and Automata Theory and Applications, volume LNCS
9618, pages 493–505, 2016.

2 P. C. Bell, V. Halava, and M. Hirvensalo. Decision Problems for Probabilistic Finite Automata
on Bounded Languages. Fundamenta Informaticae, 123(1):1–14, 2012.

3 P. C. Bell and I. Potapov. Periodic and infinite traces in matrix semigroups. Current Trends
in Theory and Practice of Computer Science (SOFSEM), LNCS 4910:148–161, 2008.

MFCS 2019

70:14 Acceptance Ambiguity for Quantum Automata

4 P. C. Bell and I. Potapov. Reachability problems in quaternion matrix and rotation semigroups.
Information and Computation, 206(11):1353–1361, 2008.

5 P. C. Bell and I. Potapov. On the undecidability of the identity correspondence problem and
its applications for word and matrix semigroups. International Journal of Foundations of
Computer Science, 21(6):963–978, 2010.

6 A. Bertoni, G. Mauri, and M. Torelli. Some recursively unsolvable problems relating to isolated
cutpoints in probabilistic automata. In Automata, Languages and Programming, volume 52 of
LNCS, pages 87–94, 1977.

7 A. S. Besicovitch. On the linear independence of fractional powers of integers. J. London
Math. Soc., 15:3–6, 1940.

8 V. Blondel and V. Canterini. Undecidable problems for probabilistic automata of fixed
dimension. Theory of Computing Systems, 36:231–245, 2003.

9 V. Blondel, E. Jeandel, P. Koiran, and N. Portier. Decidable and undecidable problems about
quantum automata. SIAM Journal on Computing, 34:6:1464–1473, 2005.

10 A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. SIAM
Journal on Computing, 31:1456–1478, 2002.

11 J. Cassaigne, T. Harju, and J. Karhumäki. On the undecidability of freeness of matrix
semigroups. International Journal of Algebra and Computation, 9(3-4):295–305, 1999.

12 J. Cassaigne and F. Nicolas. On the decidability of semigroup freeness. RAIRO - Theoretical
Informatics and Applications, 46(3):355–399, 2012.

13 É. Charlier and J. Honkala. The freeness problem over matrix semigroups and bounded
languages. Information and Computation, 237:243–256, 2014.

14 C. Choffrut and J. Karhumäki. Some decision problems on integer matrices. Informatics and
Applications, 39:125–131, 2005.

15 T. Colcombet, J. Ouaknine, P. Semukhin, and J. Worrell. On reachability problems for
low dimensional matrix semigroups. In ArXiV Manuscript (to appear ICALP’19), volume
arXiv:1902.09597, pages 1–15, 2019.

16 V. Halava, T. Harju, and M. Hirvensalo. Undecidability bounds for integer matrices using Claus
instances. International Journal of Foundations of Computer Science (IJFCS), 18,5:931–948,
2007.

17 M. Hirvensalo. Improved undecidability results on the emptiness problem of probabilistic and
quantum cut-point languages. SOFSEM 2007: Theory and Practice of Computer Science,
Lecture Notes in Computer Science, 4362:309–319, 2007.

18 J. Honkala. Decision problems concerning thinness and slenderness of formal languages. In
Acta Informatica, volume 35, pages 625–636, 1998.

19 R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, 1991.
20 D. A. Klarner, J.-C. Birget, and W. Satterfield. On the undecidability of the freeness of integer

matrix semigroups. International Journal of Algebra and Computation, 1 (2):223–226, 1991.
21 S.-K. Ko and I. Potapov. Vector ambiguity and freeness problems in SL(2, Z). Fandumenta

Informaticae, 162(2-3):161–182, 2018.
22 W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5. Springer, 1986.
23 E. Lengyel. Mathematics for 3D Game Programming & Computer Graphics. Charles River

Media, 2004.
24 C. Moore and J. P. Crutchfield. Quantum automata and quantum grammars. Theoretical

Computer Science, 237(1-2):275–306, 2000.
25 M. S. Paterson. Unsolvability in 3×3 matrices. Studies in Applied Mathematics, 49(1):105–107,

1970.
26 A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
27 S. Swierczkowski. A class of free rotation groups. Indag. Math., 5(2):221–226, 1994.

From Regular Expression Matching to Parsing
Philip Bille
Technical University of Denmark, DTU Compute, Denmark
phbi@dtu.dk

Inge Li Gørtz
Technical University of Denmark, DTU Compute, Denmark
inge@dtu.dk

Abstract
Given a regular expression R and a string Q, the regular expression parsing problem is to determine
if Q matches R and if so, determine how it matches, e.g., by a mapping of the characters of Q to the
characters in R. Regular expression parsing makes finding matches of a regular expression even more
useful by allowing us to directly extract subpatterns of the match, e.g., for extracting IP-addresses
from internet traffic analysis or extracting subparts of genomes from genetic data bases. We present
a new general techniques for efficiently converting a large class of algorithms that determine if a
string Q matches regular expression R into algorithms that can construct a corresponding mapping.
As a consequence, we obtain the first efficient linear space solutions for regular expression parsing.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases regular expressions, finite automata, regular expression parsing, algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.71

Related Version A full version of the paper is available at https://arxiv.org/abs/1804.02906

Funding Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178)

1 Introduction

A regular expression specifies a set of strings formed by characters combined with concate-
nation, union (|), and Kleene star (*) operators. For instance, (a|(ba))*) describes the
set of strings of as and bs, where every b is followed by an a. Regular expressions are a
fundamental concept in formal language theory and a basic tool in computer science for
specifying search patterns. Regular expression search appears in diverse areas such as internet
traffic analysis [14, 27, 17], data mining [11], data bases [19, 21], computational biology [23],
and human computer interaction [16].

Given a regular expression R and a string Q, the regular expression parsing problem [15,
8, 10, 24, 25, 18] is to determine if Q matches a string in the set of strings described by R
and if so, determine how it matches by computing the corresponding sequence of positions of
characters in R, i.e., the mapping of each character in Q to a character in R corresponding to
the match. For instance, if R = (a|(ba))*) and Q = aaba, then Q matches R and 1, 1, 2, 3
is a corresponding parse specifying that Q[1] and Q[2] match the first a in R, Q[3] match the
b in R, and Q[4] match the last a in R1. Regular expression parsing makes finding matches
of a regular expression even more useful by allowing us to directly extract subpatterns of the
match, e.g., for extracting IP-addresses from internet traffic analysis or extracting subparts
of genomes from genetic data bases.

1 Another typical definition of parsing is to compute a parse tree (or a variant thereof) of the derivation
of Q on R. Our definition simplifies our presentation and it is straightforward to derive a parse tree
from our parses.

© Philip Bille and Inge Li Gørtz;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 71; pp. 71:1–71:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1120-5154
mailto:phbi@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:inge@dtu.dk
https://doi.org/10.4230/LIPIcs.MFCS.2019.71
https://arxiv.org/abs/1804.02906
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 From Regular Expression Matching to Parsing

To state the existing bounds, let n and m be the length of the string and the regular
expression, respectively. As a starting point consider the simpler regular expression matching
problem, that is, to determine if Q matches a string in the set of strings described by R
(without necessarily providing a mapping from characters in Q to characters in R). A
classic textbook algorithm to matching, due to Thompson [26], constructs and simulates a
non-deterministic finite automaton (NFA) in O(nm) time and O(m) space. An immediate
approach to solve the parsing problem is to combine Thompson’s algorithm with backtracking.
To do so, we store all state-sets produced during the NFA simulation and then process these
in reverse order to recover an accepting path in the NFA matching Q. From the path we
then immediately obtain the corresponding parse of Q since each transition labeled by a
character uniquely corresponds to a character in R. This algorithm uses O(nm) time and
space. Hence, we achieve the same time bound as matching but increase the space by an
Ω(n) factor. We can improve the time by polylogarithmic factors using faster algorithms
for matching [22, 3, 4, 6, 7], but by a recent conditional lower bound [2] we cannot hope to
achieve Ω((nm)1−ε) time assuming the strong exponential time hypothesis. Other direct
approaches to regular expression parsing [15, 8, 10, 24, 25, 18] similarly achieve Θ(nm) time
and space (ignoring polylogarithmic factors), leaving a substantial gap between linear space
for matching and Θ(nm) space for parsing. The goal of this paper is to address this gap.

1.1 Results
We present a new technique to efficiently extend the classic state-set transition algorithms
for matching to also solve parsing in the same time complexity while only using linear space.
Specifically, we obtain the following main result based on Thompson’s algorithm:
I Theorem 1. Given a regular expression of length m and a string of length n, we can solve
the regular expression parsing problem in O(nm) time and O(n+m) space.
This is the first bound to significantly improve upon the combination of Θ(nm) time and
space. The result holds on a comparison-based, pointer machine model of computation. Our
techniques are sufficiently general to also handle the more recent faster state-set transition
algorithms [22, 4, 3] and we also obtain a similar space improvement for these.

1.2 Techniques
Our overall approach is similar in spirit to the classic divide and conquer algorithm by
Hirschberg [13] for computing a longest common subsequence of two strings in linear space.
Let A be the Thompson NFA (TNFA) for R built according to Thompson’s rules [26] (see
also Figure 1) with m states, and let Q be the string of length n.

We first decompose A using standard techniques into a pair of nested subTNFAs called
the inner subTNFA and the outer subTNFA. Each have roughly at most 2/3 of the states of
A and overlap in at most 2 boundary states. We then show how to carefully simulate A to
decompose Q into substrings corresponding to subparts of an accepting path in each of the
subTNFAs. The key challenge here is to efficiently handle cyclic dependencies between the
subTNFAs. From this we construct a sequence of subproblems for each of the substrings
corresponding to the inner subTNFAs and a single subproblem for the outer subTNFA. We
recursively solve these to construct a complete accepting path in A. This strategy leads
to an O(nm) time and O(n logm+m) space solution. We show how to tune and organize
the recursion to avoid storing intermediate substrings leading to the linear space solution
in Theorem 1. Finally, we show how to extend our solution to obtain linear space parsing
solutions for other state-set transition algorithms.

P. Bille and I. Li Gørtz 71:3

2 Preliminaries

Strings. A string Q of length n = |Q| is a sequence Q[1] . . . Q[n] of n characters drawn
from an alphabet Σ. The string Q[i] . . . Q[j] denoted Q[i, j] is called a substring of Q. The
substrings Q[1, i] and Q[j, n] are the ith prefix and the jth suffix of Q, respectively. The
string ε is the unique empty string of length zero.

Regular Expressions. First we briefly review the classical concepts used in the paper. For
more details see, e.g., Aho et al. [1]. We consider the set of non-empty regular expressions over
an alphabet Σ, defined recursively as follows. If α ∈ Σ ∪ {ε} then α is a regular expression,
and if S and T are regular expressions then so is the concatenation, (S) · (T), the union,
(S)|(T), and the star, (S)∗. The language L(R) generated by R is defined as follows. If
α ∈ Σ ∪ {ε}, then L(α) is the set containing the single string α. If S and T are regular
expressions, then L(S · T) = L(S) · L(T), that is, any string formed by the concatenation of
a string in L(S) with a string in L(T), L(S)|L(T) = L(S) ∪ L(T), and L(S∗) =

⋃
i≥0 L(S)i,

where L(S)0 = {ε} and L(S)i = L(S)i−1 · L(S), for i > 0. The parse tree T P (R) of R (not
to be confused with the parse of Q wrt. to R) is the rooted, binary tree representing the
hierarchical structure of R. The leaves of T P (R) are labeled by a character from Σ or ε and
internal nodes are labeled by either ·, |, or ∗.

Finite Automata. A finite automaton is a tuple A = (V,E,Σ, θ, φ), where V is a set of
nodes called states, E is a set of directed edges between states called transitions either labeled
ε (called ε-transitions) or labeled by a character from Σ (called character-transitions), θ ∈ V
is a start state, and φ ∈ V is an accepting state2. In short, A is an edge-labeled directed
graph with a special start and accepting node. A is a deterministic finite automaton (DFA) if
A does not contain any ε-transitions, and all outgoing transitions of any state have different
labels. Otherwise, A is a non-deterministic automaton (NFA). When we deal with multiple
automatons, we use a subscript A to indicate information associated with automaton A, e.g.,
θA is the start state of automaton A.

Given a string Q and a path P in A we say that Q and P match if the concatenation
of the labels on the transitions in P is Q. Given a state s in A we define the state-set
transition δA(s,Q) to be the set of states reachable from s through paths matching Q. For a
set of states S we define δA(S,Q) =

⋃
s∈S δA(s,Q). We say that A accepts the string Q if

φA ∈ δA(θA, Q). Otherwise A rejects q. For an accepting path P in A, we define the parse
of P for A to be the sequence of character transitions in A on P . Given a string Q accepted
by A, a parse of Q is a parse for A of any accepting path matching Q.

We can use a sequence of state-set transitions to test acceptance of a string Q of
length n by computing a sequence of state-sets S0, . . . , Sn, given by S0 = δA(θA, ε) and
Si = δA(Si−1, Q[i]), i = 1, . . . , n. We have that φA ∈ Sn iff A accepts Q. We can extend the
algorithm to also compute the parse of Q for A by processing the state-sets in reverse order
to recover an accepting path and output the character transitions. Note that for matching
we only need to store the latest two state-sets at any point to compute the final state-set Sn,
whereas for parsing we store the full sequence of state-sets.

Thompson NFA. Given a regular expression R, we can construct an NFA accepting precisely
the strings in L(R) by several classic methods [20, 12, 26]. In particular, Thompson [26]
gave the simple well-known construction shown in Figure 1. We will call an NFA constructed

2 Sometimes NFAs are allowed a set of accepting states, but this is not necessary for our purposes.

MFCS 2019

71:4 From Regular Expression Matching to Parsing

(a) (b)

(c)
(d)

α

N(S)

N(T)

ϵ

N(T)

N(S)

N(S)
ϵ

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

�

�
�

��

�
�

�

Figure 1 Thompson’s recursive NFA construction. The regular expression α ∈ Σ∪{ε} corresponds
to NFA (a). If S and T are regular expressions then N(ST), N(S|T), and N(S∗) correspond to
NFAs (b), (c), and (d), respectively. In each of these figures, the leftmost state θ and rightmost state
φ are the start and the accept nodes, respectively. For the top recursive calls, these are the start
and accept states of the overall automaton. In the recursions indicated, e.g., for N(ST) in (b), we
take the start state of the subautomaton N(S) and identify with the state immediately to the left of
N(S) in (b). Similarly the accept state of N(S) is identified with the state immediately to the right
of N(S) in (b).

with these rules a Thompson NFA (TNFA). A TNFA N(R) for R has at most 2m states,
at most 4m transitions, and can be computed in O(m) time. Note that each character in
R corresponds to a unique character transition in N(R) and hence a parse of a string Q
for N(R) directly corresponds to a parse of Q for R. The parse tree of a TNFA N(R) is
the parse tree of R. With a breadth-first search of A we can compute a state-set transition
for a single character in O(m) time. By our above discussion, it follows that we can solve
regular expression matching in O(nm) time and O(m) space, and regular expression parsing
in O(nm) time and O(nm) space.

TNFA Decomposition. We need the following decomposition result for TFNAs (see Fig-
ure 2). Similar decompositions are used in [22, 3]. Given a TNFA A with m > 2 states, we
decompose A into an inner subTNFA AI and an outer subTNFA AO. The inner subTNFA
consists of a pair of boundary states θAI

and φAI
and all states and transitions that are

reachable from θAI
without going through φAI

. Furthermore, if there is a path of ε-transitions
from φAI

to θAI
in AO, we add an ε-transition from φAI

to θAI
in AI (following the rules

from Thompson’s construction). The outer subTNFA is obtained by removing all states
and transitions of AI except θAI

and φAI
. Between θAI

and φAI
we add a special transition

labeled βAI
6∈ Σ and if AI accepts the empty string we also add an ε-transition (corresponding

to the regular expression (βAI
| ε)). The decomposition has the following properties. Similar

results are proved in [22, 3] (see also full version [5] for a the proof).

I Lemma 2. Let A be any TNFA with m > 2 states. In O(m) time we can decompose A
into inner and outer subTNFAs AO and AI such that
(i) AO and AI have at most 2

3m+ 8 states each, and
(ii) any path from AO to AI crosses θAI

and any path from AI to AO crosses φAI
.

3 String Decompositions

Let A be a TNFA decomposed into subTNFAs AO and AI and Q be a string accepted by A.
We show how to efficiently decompose Q into substrings corresponding to subpaths matched
in each subTNFA. The algorithm will be a key component in our recursive algorithm in the
next section.

P. Bille and I. Li Gørtz 71:5

ϵa
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> d

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

ϵ

ϵ ϵ

ϵ

ϵ

ϵϵ

ϵ

ϵ

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

ϵ

ϵ

ϵ

ϵϵ

ϵ

ϵ

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

ϵ

ϵ
ϵ✓AI

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓AO
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�AO
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�AI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵa
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵϵ

ϵ

ϵ

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

ϵ

ϵ

AO
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓AI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓AO
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�AO
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>�AI

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�AI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> d

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

ϵ ϵ

ϵ

ϵ

ϵϵ

ϵ

ϵ

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

AI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓AI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�AI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ϵ

A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2 Decomposition of TNFA A into subTNFAs AO and AI . The dotted ε-transition in AO

exists since AI accepts the empty string, and the dotted ε-transition in AI exists since there is a
path of ε-transitions from φAI to θAI .

Given an accepting path P in A, we define the path decomposition of P wrt. AI to
be the partition of P into a sequence of subpaths P = p1, p1, p2, p2, . . . , p`, p`, p`+1, where
the outer subpaths, p1, . . . , p`+1, are subpaths in AO and the inner subpaths, p1, . . . , p` are
the subpaths in AI . The string decomposition induced by P is the sequence of substrings
Q = q1, q1, q2, q2, . . . , q`, q`, q`+1 formed by concatenating the labels of the corresponding
subpath in A. A sequence of substrings is a substring decomposition wrt. to AI if there exists
an accepting path that induces it. Our goal is to compute a string decomposition in O(nm)
time and O(n+m) space, where n is the length of Q and m is the number of states in A.

An immediate idea would be to process Q from left to right using state-set transitions
and “collapse” the state set to a boundary state b of AI whenever the state set contains b and
there is a path from b to φA matching the rest of Q. Since AO and AI only interact at the
boundary states, this effectively corresponds to alternating the simulation of A between AO

and AI . However, because of potential cyclic dependencies from paths of ε-transition from
φAI

to θAI
in AO and θAI

to φAI
in AI we cannot immediately determine which subTNFA

we should proceed in and hence we cannot correctly compute the string decomposition. For
instance, consider the string Q = aaacdaabaacdacdaabab from Figure 3. After processing
the first two characters (aa) both θAI

and φAI
are in the state set, and there is a path from

both these states to φA matching the rest of Q. The same is true after processing the first
six characters (aaacda). In the first case the substring consisting of the next three characters
(acd) only matches a path in AI , whereas in the second case the substring consisting of
the next two characters (ab) only matches a path in AO. A technical contribution in our
algorithm in the next section is to efficiently overcome these issues by a two-step approach
that first decomposes the string into substrings and labels the substrings greedily to find a
correct string decomposition.

MFCS 2019

71:6 From Regular Expression Matching to Parsing

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Q :
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

String decomposition
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Q = a, aacda, ab, aacdacda, ab, a, b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

d
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

O
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

O
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

O
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

O
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Prefix(✓AI
)/Prefix(�AI

)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Su�x(✓AI
)/Su�x(�AI

)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Match(✓AI
)/Match(�AI

)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Partition and labeling
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3 The string decomposition of the string Q = aaacdaabaacdacdaabab wrt. AI in Figure 2
and the corresponding suffix/prefix match sets. The dark grey blocks in the prefix, suffix and match
sets are the positions contained in the sets. The blocks in the partition of the string are labeled O
and I for outer and inner, respectively. The grey blocks in the partition are the substrings that can
be parsed by both the inner and outer automaton. According to our procedure these blocks are
labeled inner.

3.1 Computing String Decompositions
We need the following new definitions. Let i be a position in Q and let s be a state in A.
We say that (i, s) is a valid pair if there is a path from θA to s matching Q[1, i] and from s

to φA matching Q[i+ 1, n]. For any set of states X in A, we say that (i,X) is a valid pair
if each pair (i, x), x ∈ X, is a valid pair. An accepting path P in A intersects a valid pair
(i,X) if some state x ∈ X is on the path, the subpath of P from θA to x matches Q[1, i], and
the subpath of P from x to φA matches Q[i+ 1, n].

Our algorithm consist of the following steps. In step 1, we process Q from left to right
and right to left to compute and store the match sets, consisting of all valid pairs for the
boundary states θAI

and φAI
. We then use the match sets in step 2 to process Q from left

to right to build a sequence of valid pairs for the boundary states that all intersect a single
accepting path P in A matching Q, and that has the property that all positions where the
accepting path P contains θAI

or φAI
correspond to a valid pair in the sequence. Finally, in

step 3 we construct the string decomposition using a greedy labeling of the sequence of valid
pairs. See Figure 3 for an example of the computation in each step.

Step 1: Computing Match Sets

First, compute the match sets given by

Match(θAI
) = {i | (i, θAI

) is a valid pair}
Match(φAI

) = {i | (i, φAI
) is a valid pair}

Thus, Match(θAI
) and Match(φAI

) are the positions in Q that correspond to a valid pair
for the boundary states θAI

and φAI
, respectively. To compute these, we first compute the

prefix match sets, Prefix(s), and suffix match sets, Suffix(s), for s ∈ {θAI
, φAI

}. A position i
is in Prefix(s) if there is a path from θA to s accepting the prefix Q[1, i], and in Suffix(s) if
there is a path from s to φA accepting the suffix Q[i+ 1, n]. To compute the prefix match
sets we perform state-set transitions on Q and A and whenever the current state-set contains
either θAI

or φAI
we add the corresponding position to Prefix(s). We compute the suffix

match sets in the same way, but now we perform the state-set transitions on Q from right to
left and A with the direction of all transitions reversed. Each step of the state-set transition
takes O(m) time and hence we use O(nm) time in total.

P. Bille and I. Li Gørtz 71:7

Finally, we compute the match sets Match(s), for s ∈ {θAI
, φAI

}, by taking the intersec-
tion of Prefix(s) and Suffix(s). In total we use O(mn) time and O(n+m) space to compute
and store the match sets.

Step 2: Computing Valid Pairs

We now compute a sequence of valid pairs

V = (i1, X1), (i2, X2), . . . , (ik, Xk)

such that 0 ≤ i1 < · · · < ik ≤ n and Xj ⊆ {θAI
, φAI

} and with the property that the states
of all pairs intersect a single accepting path P in A and at all places where P is equal to
either θAI

or φAI
correspond to a valid pair in V .

To compute the sequence we run a slightly modified state-set transition algorithm: For
i = 0, 1, . . . , n we set Si = δA(Si−1, Q[i]) (for i = 0 set S0 := δA(θA, ε)) and compute the set

X := {x | x ∈ {θAI
, φAI

} and i ∈ Match(x)} ∩ Si .

Thus X is the set of boundary states in Si that corresponds to a valid pair computed in
Step 1. If X 6= ∅ we add (i,X) to the sequence V and set Si := X.

We argue that this produces a sequence V of valid pairs with the required properties.
First note that by definition of X we inductively produce state-set S0, . . . , Sn such that Si

contains the set of states reachable from θA that match Q[1, i] and the paths used to reach
Si intersect the states of the valid pairs produced up to this point. Furthermore, we include
all positions in V where Si contains θAI

or φAI
. It follows that V satisfies the properties.

Each of modified state-set transition uses O(m) time and hence we use O(nm) time in
total. The sequence V uses O(n) space. In addition to this we store the match sets and a
constant number of active state-sets using O(n+m) space.

Step 3: Computing the String Decomposition

We now convert the sequence V = (i1, X1), (i2, X2), . . . , (ik, Xk) into a string decomposition.
First, we construct the partition q0, . . . , qk+1 of Q such that q0 = Q[1, i1], qj = Q[ij + 1, ij+1],
and qk+1 = Q[ik + 1, n]. Note that q0 and qk+1 may be the empty string. Next, we convert
this partition into a string decomposition by first labeling each substring as inner or outer
and then greedily merging these substrings to obtain an alternating sequence forming a string
decomposition. We discuss these steps in detail below.

Labeling. We label the substrings as follows. First label q0 and qk+1 with outer. For the
rest of the substrings, if Xi = {θAI

} and Xi+1 = {φAI
} then label qi with inner, and if

Xi = {φAI
} and Xi+1 = {θAI

} then label qi with outer. If either Xi or Xi+1 contain more
than one boundary state then we use state-set transitions in AI and AO to determine if AI

accepts qi or if there is a path in AO from φAI
to θAI

that matches qi. If a substring is
accepted by AI then it can be an inner substring and if there is a path in AO from φAI

to
θAI

that matches qi then it can be an outer substring. If a substring can only be either an
inner or an outer substring then it is labeled with inner or outer, respectively. Let qi be a
substring that can be both an inner or an outer substring. We divide this into two cases. If
there is an ε-path from φAI

to θAI
then label all such qi with inner. Otherwise label all such

qi with outer. See also Algorithm 1.

MFCS 2019

71:8 From Regular Expression Matching to Parsing

Algorithm 1 Labeling.

Input: A sequence V of valid pairs (i1, X1), . . . (ik, Vk) and the corresponding
partition q0, . . . , qk+1 of Q.

Output: A labeling of the partition
1 The (possible empty) substrings q0 and qk+1 are labeled outer.
2 for i = 1 to k do
3 if Xi = {θAI

} and Xi+1 = {φAI
} then /* Case 1 */

4 label qi inner.
5 else if Xi = {φAI

} and Xi+1 = {θAI
} then /* Case 2 */

6 label qi outer.
7 else if Xi or Xi+1 contains more than one boundary node then /* Case 3 */
8 Use standard state-set transitions in AI and AO to determine if AI accepts qi

or if there is a path in AO from φAI
to θAI

that matches qi.
9 if qi is only accepted by AI then /* Subcase 3a */

10 label qi inner
11 else if qi is only accepted by AO then /* Subcase 3b */
12 label qi with outer
13 else /* qi is accepted by both AI and AO */
14 There are two cases.
15 if there is an ε-path from φAI

to θAI
then /* Subcase 3c */

16 label qi inner.
17 else label qi outer. /* Subcase 3d */
18 end
19 end
20 end

For correctness first note that q0 and qk+1 are always (possibly empty) outer substrings.
The cases where both |Xi| = |Xi+1| (case 1 and 2) are correct by the correctness of the
sequence of valid pairs V . Due to cyclic dependencies we may have that Xi and Xi+1 contain
more than one boundary state. This can happen if there is an ε-path from θAI

to φAI
and/or

there is an ε-path from φAI
to θAI

. If a substring only is accepted by one of AI (case 3a)
or AO (case 3b) then it follows from the correctness of V that the labeling is correct. It
remains to argue that the labeling in the case where qi is accepted by both AI and AO is
correct. To see why the labeling in this case is consistent with a string decomposition of the
accepting path consider case 3c. Here, it is safe to label qi with inner, since if we are in φAI

after having read qi−1 we can just follow the ε-path from φAI
to θAI

and then start reading
qi from here.The argument for case 3d is similar.

Except for the state-set transitions in case 3 all cases takes constant time. The total time
of all the state-set transitions is O(nm). The space of V and the partition together with the
labeling uses O(n) space.

String decomposition. Now every substring has a label that is either inner or outer. We
then merge adjacent substrings that have the same label. This produces an alternating
sequence of inner and outer substrings, which is the final string decomposition. Such an
alternating subsequence must always exist since each pair in V intersects an accepting path.

In summary, we have the following result.

P. Bille and I. Li Gørtz 71:9

I Lemma 3. Given string Q of length n, and TNFA A with m states decomposed into AO

and AI , we can compute a string decomposition wrt. AI in O(nm) time and O(n+m) space.

4 Computing Accepting Paths

Let Q be a string of length n accepted by a TNFA A with m states. In this section we show
how to compute an accepting path for Q in A in O(nm) time and O(n+m) space. Since
an accepting path may have length Ω(nm) (there may be Ω(m) ε-transitions between each
character transition) we cannot afford to explicitly compute the path in our later o(nm) time
algorithms. Instead, our algorithm will compute compressed paths of size O(n) obtained by
deleting all ε-transitions from a path. Note that the compressed path stores precisely the
information needed to solve the parsing problem.

To compute the compressed path we define a recursive algorithm Path(A,Q) that takes
a TNFA A and a string Q and returns a compressed accepting path in A matching Q as
follows. If n < γn or m < γm, for constants γn, γm > 0 that we will fix later, we simply run
the naive algorithm that stores all state-sets during state-set simulation from left-to-right in
Q. Since one of n or m is constant this uses O(nm) = O(n+m) time and space. Otherwise,
we proceed according to the following steps.

Step 1: Decompose. We compute a decomposition of A into inner and outer subTNFAs
AI and AO and compute a corresponding string decomposition Q = q1, q1, q2, q2, q`, q`, q`+1
for Q.

Step 2: Recurse. We build a single substring corresponding to all the subpaths in AO and
` substrings for AI (one for each subpath in AI) and recursively compute the compressed
paths. To do so, construct q = q1 · βAI

· q2 · βAI
· · ·βAI

· q`+1. Recall, that βAI
is the label

of the special transition we added between θAI
and φAI

in AO. Then, recursively compute
the compressed paths

p = Path(AO, q)
pi = Path(AI , qi) 1 ≤ i ≤ `

Step 3: Combine. Finally, extract the subpaths p1, p2, . . . , p`+1 from p corresponding to
the substrings q1, q2, . . . , q`+1 and return the combined compressed path

P = p0 · p1 · p1 · p2 · p2 · · · p` · p`+1

Inductively, it directly follows that the returned compressed path is a compressed accepting
path for Q in A.

4.1 Analysis
We now show that the total time T (n,m) of the algorithm is O(nm). If n < γn or m < γm,
we run the backtracking algorithm using O(nm) = O(n + m) time and space. If n ≥ γn

and m ≥ γm, we implement the recursive step of the algorithm using O(nm) time. Let
ni be the length of the inner string qi in the string decomposition and let n0 =

∑`+1
i=1 |q̄i|.

Thus, n =
∑`+1

i=1 ni and |q̄| = n0 + `. In step 2, the recursive call to compute p takes
O(T (n0+`, 2

3m+8)) time and the recursive calls to compute p1, . . . , p` take
∑`

i=1 T (ni,
2
3m+8)

MFCS 2019

71:10 From Regular Expression Matching to Parsing

time. The remaining steps of the algorithm all take O(nm) time. Hence, we have the following
recurrence for T (n,m).

T (n,m) =
{∑`

i=1 T (ni,
2
3m+ 8) + T (n0 + `, 2

3m+ 8) +O(mn) m ≥ γm and n ≥ γn

O(m+ n) m < γm or n < γn

It follows that T (n,m) = O(nm) for γn = 2 and γm = 25 (see full version [5] for a detailed
proof).

Next, we consider the space complexity. First, note that the total space for storing R and
Q is O(n+m). To analyse the space during the recursive calls of the algorithm, consider
the recursion tree Trec for Path(A,Q). For a node v in Trec, we define Qv of length nv to be
the string and Av with mv states to be the TNFA at v. Consider a path v1, . . . , vj of nodes
in Trec from the root to leaf vj corresponding to a sequence of nested recursive calls of the
algorithm. If we naively store the subTNFAs, the string decompositions, and the compressed
paths, we use O(nvi +mvi) space at each node vi, 1 ≤ i ≤ j. By Lemma 2(i) the sum of the
sizes of the subTNFAs on a path forms a geometrically decreasing sequence and hence the
total space for the subTNFAs is

∑j
i=1 mvi = O(m). However, since each string (and hence

compressed path) at each node vi, 1 ≤ i ≤ j, may have length Ω(n) we may need Ω(n logm)
space in total for these. We show how to improve this to O(n+m) space in the next section.

4.2 Squeezing into Linear Space
We now show how to improve the space to O(n+m). To do so we show how to carefully
implement the recursion to only store the strings for a selected subset of the nodes along any
root to leaf path in Trec that in total take no more than O(n) space.

First, consider a node v in Trec and the corresponding string Qv and TNFA Av. Define
χQ

v to be the function that maps each character position in Qv (ignoring βAI
transitions) to

the unique corresponding character in Q and χA
v to be the function that maps each character

transition (non-ε transition) in Av to the unique character transition in A. Note that these
are well-defined by the construction of subproblems in the algorithm. At a node v, we
represent χQ

v by storing for each character in Qv a pointer to the corresponding character
in Q. Similarly, we represent χA

v by storing for each character transition in Av a pointer to
the corresponding character transition in A. This uses O(nv +mv) additional space. It is
straightforward to compute these mappings during the algorithm directly from the string and
TNFA decomposition in the same time. With the mappings we can now output transitions
on the compressed path as pairs of position in Q and transitions in A immediately as they
are computed in a leaf of Trec. Thus, when we have traversed a full subtree at a node we can
free the space for that node since we do not have to wait to return to the root to combine
the pieces of the subpath with other subpaths.

We combine the mappings with an ordering of the recursion according to a heavy-path
decomposition of Trec. Let v be an internal node in Trec. The string length of v is nv. We
define the heavy child of v to be a child of v of maximum string length among the children
of v. The remaining children are light children of v. We have the following key property of
light children (see full version [5] for a proof).

I Lemma 4. For any node v with light child u in Trec, we have that nu ≤ 3
4nv +O(1).

We order the recursive calls at each node v as follows. First, we recursively visit all the
light children of v and upon completing each recursive call, we free the space for that node.
Note that the mappings allow us to do this. We then construct the subproblem for the heavy
child of v, free the space for v, and continue the recursion at the heavy child.

P. Bille and I. Li Gørtz 71:11

To analyse the space of the modified algorithm, consider a path a path v1, . . . , vj of nodes
in Trec from the root to a leaf vj . We now have that only nodes vi, 1 ≤ i < j will explicitly
store a string if vi+1 is a light child of vi. By Lemma 4 the sum of these lengths form a
geometrically decreasing sequence and hence the total space is now O(n). In summary, we
have shown the following result.

I Theorem 5. Given a TNFA with m states and a string of length n, we can compute a
compressed accepting path for Q in A in O(nm) time and O(n+m) space.

Note that the algorithm works in a comparison-based, pointer model of computation. By
our discussion this immediately implies the main result of Theorem 1.

5 Speeding up the Algorithm

We now show how to adapt the algorithm to use the faster state-set simulation algorithms
such as Myers’ algorithm [22] and later variants [4, 3] that improve the O(m) bound for
a single state-set transition. These results and ours all work on a unit-cost word RAM
model of computation with w-bit words and a standard instruction set including addition,
bitwise boolean operations, shifts, and multiplication. We can store a pointer to any position
in the input and hence w ≥ log(n + m). For simplicity, we will show how to adapt the
tabulation-based algorithm of Bille and Farach-Colton [4].

5.1 Fast Matching
Let A be a TNFA with m states and let Q be a string of length n. Assume first that
the alphabet is constant. We briefly describe the main features of the algorithm by Bille
and Farach-Colton [4] that solves the matching problem in O(nm/ logn+ n+m) time and
O(nε + m) space, for any constant ε > 0. In the next section we show how to adapt the
algorithm to compute an accepting path.

Given a parameter t < w, we will construct a global table of size 2ct < 2w, for a constant
c, to speed up the state-set transition. We decompose A into a tree MS of O(dm/te) micro
TNFAs, each with at most t states. For each M ∈MS, each child C is represented by its
start and accepting state and a pseudo-transition connecting these. By similar arguments as
in Lemma 2 we can always construct such a decomposition.

We represent each micro TNFA M ∈MS uniquely by its parse tree using O(t) bits. Since
M has at most t states, we can represent the state-set for M , called the local state-set and
denoted SM , using t bits. Hence, we can make a universal table of size 2O(t) that for every
possible micro TNFA M of size ≤ t, local state-set SM , and character α ∈ Σ ∪ {ε} computes
the state-set transition δM (SM , α) in constant time.

We use the tabulation to efficiently implement a global state-set transition on A as follows.
We represent the state-set for A as the union of the local state-sets in MS. Note that parents
and children in MS share some local states, and these states will be copied in the local
state-sets.

To implement a state-set transition on A for a character α, we first traverse all transitions
labeled α in each micro TNFA from the current state-set. We then follow paths of ε transition
in two depth-first left-to-right traversal of MS. At each micro TNFA M , we compute all
states reachable via ε-transitions and propagate the shared states among parents and children
in MS. Since any cycle free path in a TNFA contains at most one back transition (see [22,
Lemma 1]) it follows that two such traversals suffices to to correctly compute all states in A
reachable via ε-transitions.

MFCS 2019

71:12 From Regular Expression Matching to Parsing

With the universal table, we process each micro TNFA in constant time, leading to
an algorithm using O(|MS|/t + n + m) = O(nm/t + n + m) time and O(2t + m) space.
Setting t = ε logn produces the stated result. Note that each state-set uses O(dm/te) space.
To handle general alphabets, we store dictionaries for each micro TNFA with bit masks
corresponding to characters appearing in the TNFA and combine these with an additional
masking step in state-set transition. The leads a general solution with the same time and
space bounds as above.3

5.2 Fast Parsing

We now show how to modify our algorithm from Section 4 to take advantage of the fast
state-set transition algorithm. Let t < w be the desired speed up as above. We have the
following two cases.

If n ≥ t and m ≥ t we implement the recursive step of the algorithm but replace all
state-set transitions, that is when we compute the match sets and valid pairs, by the fast
state-set transition algorithm. To compute the suffix match sets we need to compute fast
state-set transitions on A with the direction of all transitions reversed. To do so, we make
a new universal table of size 2O(t) for the micro TNFAs with the direction of transitions
reversed. We traverse the tree of micro TNFAs with two depth traversals as before except
that we now traverse children in right to left order to correctly compute all reachable states.
It follows that this uses O(nm/t) time.

Otherwise (n < t or m < t), we use backtracking to compute the accepting path as
follows. First, we process Q from left-to-right using fast state-set transitions to compute the
sets S0, . . . , Sn of states reachable via paths from θA for each prefix of Q. We store each
of these state-sets. This uses O(nm/t + n + m) = O(n + m) time and space. Then, we
process Q from right-to-left to recover a compressed accepting path in A. Starting from
φA we repeatedly do a fast state-set transition A with the direction of transition reversed,
compute the intersection of the resulting state-set with the corresponding state-set from
the first step, and update the state-set to a state in the intersection. We can compute the
intersection of state-sets and the update in O(m/t) time using standard bit wise operations.
We do the state-set transitions on the TNFA with directions of transitions reversed as above.
In total, this uses O(nm/t+ n+m) = O(n+m) time.

In summary, we have the following recurrence for the time T (n,m).

T (n,m) =
{∑`

i=0 T (ni,
2
3m+ 8) + T (n0 + `, 2

3m+ 8) +O
(

nm
t

)
n ≥ t and m ≥ t

O (n+m) m < t or n < t

Similar to Section 4.1 it follows that T (n,m) = O(nm/t+n+m), for 25 ≤ t < w. The space
is linear as before. Plugging in t = ε logn and including the preprocessing time and space for
the universal tables we obtain the following logarithmic improvement of Theorem 1.

I Theorem 6. Given a regular expression of length m, a string of length n, we can solve the
regular expression parsing problem in O(nm/ logn+ n+m) time and O(n+m) space.

3 Note that the time bound in the original paper has an additional m logm term [4]. Using atomic
heaps [9] to represent dictionaries for micro TNFAs this term is straightforward to improve to O(m).
See also Bille and Thorup [6, Appendix A].

P. Bille and I. Li Gørtz 71:13

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., 1986.
2 Arturs Backurs and Piotr Indyk. Which Regular Expression Patterns are Hard to Match? In

Proc. 57th FOCS, pages 457–466, 2016.
3 Philip Bille. New Algorithms for Regular Expression Matching. In Proc. of the 33rd ICALP,

pages 643–654, 2006.
4 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theor.

Comput. Sci., 409(3):486–496, 2008.
5 Philip Bille and Inge Li Gørtz. From Regular Expression Matching to Parsing. Arxiv preprint

arXiv:1804.02906, 2019.
6 Philip Bille and Mikkel Thorup. Faster Regular Expression Matching. In Proc. 36th ICALP,

pages 171–182, 2009. Full version with appendix available at http://www2.compute.dtu.dk/~
phbi/files/publications/2009fremC.pdf.

7 Philip Bille and Mikkel Thorup. Regular Expression Matching with Multi-Strings and Intervals.
In Proc. 21st SODA, pages 1297–1308, 2010.

8 Danny Dubé and Marc Feeley. Efficiently building a parse tree from a regular expression. Acta
Informatica, 37(2):121–144, 2000.

9 Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. System Sci., 48(3):533–551, 1994.

10 Alain Frisch and Luca Cardelli. Greedy regular expression matching. In Proc. 31st ICALP,
volume 3142, pages 618–629, 2004.

11 Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: Sequential pattern mining
with regular expression constraints. In Proc. 25th VLDB, pages 223–234, 1999.

12 Victor M. Glushkov. The Abstract Theory of Automata. Russian Math. Surveys, 16(5):1–53,
1961.

13 D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, 1975.

14 Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Monitoring Regular Expressions
on Out-of-Order Streams. In Proc. 23nd ICDE, pages 1315–1319, 2007.

15 Steven M Kearns. Extending regular expressions with context operators and parse extraction.
Software: Practice and Experience, 21(8):787–804, 1991.

16 Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: multitouch
gestures as regular expressions. In Proc. SIGCHI, pages 2885–2894, 2012.

17 Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner.
Algorithms to accelerate multiple regular expressions matching for deep packet inspection. In
Proc. SIGCOMM, pages 339–350, 2006.

18 Ville Laurikari. NFAs with tagged transitions, their conversion to deterministic automata and
application to regular expressions. In Proc. 7th SPIRE, pages 181–187, 2000.

19 Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for Regular Path
Expressions. In Proc. 27th VLDB, pages 361–370, 2001.

20 R. McNaughton and H. Yamada. Regular Expressions and State Graphs for Automata. IRE
Trans. on Electronic Computers, 9(1):39–47, 1960.

21 Makoto Murata. Extended path expressions of XML. In Proc. 20th PODS, pages 126–137,
2001.

22 E. W. Myers. A Four-Russian Algorithm for Regular Expression Pattern Matching. J. ACM,
39(2):430–448, 1992.

23 Gonzalo Navarro and Mathieu Raffinot. Fast and Simple Character Classes and Bounded Gaps
Pattern Matching, with Applications to Protein Searching. J. Comp. Biology, 10(6):903–923,
2003.

24 Lasse Nielsen and Fritz Henglein. Bit-coded Regular Expression Parsing. In Proc. 5th LATA,
pages 402–413, 2011.

MFCS 2019

71:14 From Regular Expression Matching to Parsing

25 Martin Sulzmann and Kenny Zhuo Ming Lu. Regular expression sub-matching using partial
derivatives. In Proc. 14th PPDP, pages 79–90, 2012.

26 K. Thompson. Regular Expression Search Algorithm. Commun. ACM, 11:419–422, 1968.
27 Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and memory-

efficient regular expression matching for deep packet inspection. In Proc. ANCS, pages 93–102,
2006.

Solving Systems of Equations in Supernilpotent
Algebras
Erhard Aichinger
Institute for Algebra, Johannes Kepler University Linz, Linz, Austria
https://www.jku.at/institut-fuer-algebra/
erhard@algebra.uni-linz.ac.at

Abstract
Recently, M. Kompatscher proved that for each finite supernilpotent algebra A in a congruence
modular variety, there is a polynomial time algorithm to solve polynomial equations over this algebra.
Let µ be the maximal arity of the fundamental operations of A, and let

d := |A|log2 µ+log2 |A|+1.

Applying a method that G. Károlyi and C. Szabó had used to solve equations over finite nilpotent
rings, we show that for A, there is c ∈ N such that a solution of every system of s equations in
n variables can be found by testing at most cnsd (instead of all |A|n possible) assignments to the
variables. This also yields new information on some circuit satisfiability problems.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Complexity classes

Keywords and phrases Supernilpotent algebras, polynomial equations, polynomial mappings, circuit
satisfiability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.72

Related Version A preliminary version is available on https://arxiv.org/abs/1901.07862.

Funding Supported by the Austrian Science Fund FWF P29931: Clonoids: a unifying approach to
equational logic and clones

Acknowledgements The author thanks G. Horváth and M. Kompatscher for dicussions on solving
equations over nilpotent algebras. Several of these discussions took place during a workshop organized
by P. Aglianò at the University of Siena in June 2018. The author also thanks A. Földvári, C. Szabó,
M. Kompatscher, and S. Kreinecker for their comments on preliminary versions of the manuscript,
and the anonymous referees for several useful suggestions.

1 Introduction

We study systems of polynomial equations over a finite algebraic structure A. Such a system
is given by equations of the form p(x1, . . . , xn) ≈ q(x1, . . . , xn), where p, q are polynomial
terms of A; a polynomial term of A is a term of the algebra A∗ which is obtained by
expanding A with one nullary function symbol for each a ∈ A. A solution to a system
pi(x1, . . . , xn) ≈ qi(x1, . . . , xn) (i = 1, . . . , s) is an element a = (a1, . . . , an) ∈ An such
that pA

i (a) = qA
i (a) for all i ∈ {1, . . . , s}. The problem to decide whether such a solution

exists has been called PolSysSat(A), and PolSat(A) if the system consists of one single
equation, and the terms of the input are encoded as strings over {x1, . . . , xn} ∪A∪F , where
F is the set of function symbols of A. A survey of results on the computational complexity of
this problem is given, e.g., in [13, 17]. In algebras such as groups, rings or Boolean algebras,
one can reduce an equation p(x) ≈ q(x) to an equation of the form f(x) ≈ y, where y ∈ A.
A system of equations of this form then has the form fi(x) ≈ yi (i = 1, . . . , s). For n ∈ N,
let Poln(A) denote the n-ary polynomial functions on A [19, Definition 4.4]. For a finite

© Erhard Aichinger;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 72; pp. 72:1–72:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8998-4138
https://www.jku.at/institut-fuer-algebra/
mailto:erhard@algebra.uni-linz.ac.at
https://doi.org/10.4230/LIPIcs.MFCS.2019.72
https://arxiv.org/abs/1901.07862
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Solving Systems of Equations in Supernilpotent Algebras

nilpotent ring or group A, [10, 12] establish the existence of a natural number dA such that
for every f ∈ Poln(A) and for every a ∈ An, there exists b such that fA(a) = fA(b) and b

has at most dA components that are different from 0. Hence the equation f(x) ≈ y has a
solution if and only if it has a solution with at most dA nonzero entries. Thus for the algebra
A, testing only vectors with at most dA nonzero entries is an algorithm, which, given an
equation f(x) ≈ y of length n, takes at most c(A) · ndA+1 many steps to find whether this
equation is solvable: there are at most

∑dA
i=0
(
n
i

)
(|A| − 1)i ≤ c1(A) · ndA many evaluations

to be done, each of them taking at most c2(A) · n many steps. The number dA in [12] is
obtained from Ramsey’s Theorem and therefore rather large. In [17], it is proved that for
every finite supernilpotent algebra in a congruence modular variety, such a number dA exists,
again using Ramsey’s Theorem. For rings, lower values of dA have been obtained in [15] (cf.
[14]). In [7, 8], A. Földvári provides polynomial time algorithms for solving equations over
finite nilpotent groups and rings relying on the structure theory of these algebras. In this
paper, we extend the method developed in [15] from finite nilpotent rings to arbitrary finite
supernilpotent algebras in congruence modular varieties. For such algebras, we compute
dA as |A|log2 µ+log2 |A|+1, where µ is the maximal arity of the fundamental operations of A
(Theorem 10). The technique that allows to generalize Károlyi’s and Szabó’s method is the
coordinatization of nilpotent algebras of prime power order by elementary abelian groups
from [1, Theorem 4.2]. The method can be generalized to systems of equations: we show for
a given finite supernilpotent algebra A in a congruence modular variety, and a given s ∈ N0,
there is a polynomial time algorithm to test whether a system of at most s polynomial
equations over A has a solution. If s is not fixed in advance, then [18, Corollary 3.13] implies
that if A is not abelian, PolSysSat(A) is NP-complete.

Let us finally explain to which class of algebras our results applies: A finite algebra A from
a congruence modular variety with finitely many fundamental operations is supernilpotent
if and only if it is a direct product of nilpotent algebras of prime power order; modulo
notational differences explained, e.g., in [1, Lemma 2.4], this result has been proved in [16,
Theorem 3.14]. Such an algebra is therefore always nilpotent, has a Mal’cev term (cf. [9,
Theorem 6.2], [16, Theorem 2.7]), and hence generates a congruence permutable variety. For
a more detailed introduction to supernilpotency and, for k ∈ N, to k-supernilpotency, we
refer to [2, 3, 1].

2 A theorem of Károlyi and Szabó

In this section, we state a special case of [15, Theorem 3.1]. Since their result is much
more general than needed for our purpose, we also include a self-contained proof, which is a
reduction Károlyi’s and Szabó’s proof to the case of elementary abelian groups.

For n ∈ N = {1, 2, 3, . . .}, we denote the set {1, 2, . . . , n} by n. Let A be a set with an
element 0 ∈ A, and let J ⊆ n. For a ∈ An, a (J) is defined by a (J) ∈ An, a (J)(j) = a(j)
for j ∈ J and a (J)(j) = 0 for j ∈ n \ J . Suppose that 1 is an element of A. Then by 1 ,
we denote the vector (1, 1, . . . , 1) in An, and for J ⊆ n, 1 (J) is the vector (v1, . . . , vn) with
vj = 1 if j ∈ J and vj = 0 if j 6∈ J . For any sets C,D, we write C ⊂ D for (C ⊆ D and
C 6= D).

We first need the following variation of [5, Theorem 1] and [15, Theorem 3.2], which is
proved using several arguments from the proof of [4, Theorem 3.1] and from [5].

I Lemma 1. Let F be a finite field, let k,m, n ∈ N, let q := |F |, let p1, . . . , pm ∈ F [x1, . . . , xn]
be polynomials such that for each i ∈ m, each monomial of pi contains at most k variables.
Then there exists J ⊆ n such that |J | ≤ km(q − 1) and pi(1 (J)) = pi(1) for all i ∈ m.

E. Aichinger 72:3

Proof. We proceed by induction on n. If n ≤ km(q − 1), then we take J := n. For the
induction step, we assume that n > km(q − 1).

We first produce a set J1 ⊂ n such that pi(1 (J1)) = pi(1) for all i ∈ m. Seeking a
contradiction, we suppose that no such J1 exists. Following an idea from the proof of [4,
Theorem 3.1], we consider the polynomials

q1(x1, . . . , xn) :=
∏m
i=1(1− (pi(x)− pi(1))q−1),

q2(x1, . . . , xn) := x1x2 · · ·xn − q1(x1, . . . , xn).

We first show that for all a ∈ {0, 1}n, q2(a) = 0. To this end, we first consider the case
a = 1 . Then q2(a) = 1−

∏m
i=1 1 = 0. If a ∈ {0, 1}n \ {1}, then by the assumptions, there

is i ∈ m such that pi(a) 6= pi(1). Then 1 − (pi(a) − pi(1))q−1 = 0. Therefore q2(a) = 0.
Hence the polynomial q2 vanishes at {0, 1}n. By the Combinatorial Nullstellensatz [4,
Theorem 1.1] applied to gj(xj) := x2

j − xj , q2 then lies in the ideal V of F [x1, . . . , xn]
generated by G = {x2

j − xj | j ∈ n}. Hence x1x2 · · ·xn − q1(x1, . . . , xn) ∈ V . Since the
leading monomials of the polynomials in G are coprime, G is a Gröbner basis of V (with
respect to x1 > x2 > · · · > xn, lexicographic order, cf. [6, p.337]). Therefore, reducing
q1(x1, . . . , xn) modulo G, we must obtain x1x2 · · ·xn as the remainder (as defined, e.g., in
[6, p.334]). Because of the form of all polynomials in G (all variables of gj occur in the
leading term of gj), none of the reduction steps increases the number of variables in any
monomial. Therefore, q1(x1, . . . , xn) must contain a monomial that contains all n variables.
Computing the expansion of q1 by multiplying out all products from its definition, we see
that each monomial in q1 contains at most km(q− 1) variables. Hence n ≤ km(q− 1), which
contradicts the assumption n > km(q − 1). This contradiction shows that there is a set
J1 ⊂ n such that pi(1 (J1)) = pi(1) for all i ∈ m. Now we let n′ := |J1|, and we assume that
J1 = {j1, . . . , jn′} with j1 < · · · < jn′ . For i ∈ m, we define p′i ∈ F [y1, . . . , yn′] by

p′i(xj1 , . . . , xjn′) = pi(x (J1)).

By the induction hypothesis, there exists J2 ⊆ n′ with |J2| ≤ km(q−1) such that p′i(1 (J2)) =
p′i(1) for all i ∈ m. Now we define J := {jt | t ∈ J2}. We have J ⊆ J1, and therefore
1 (J) = (1 (J))(J1). Then pi(1 (J)) = pi((1 (J))(J1)) = p′i(1 (J)(j1), . . . ,1 (J)(jn′)) = p′i(1 (J2)) =
p′i(1) = pi(1 (J1)) = pi(1), which completes the induction step. J

We will need the following special case of [15, Theorem 3.1]. For a set U , let P≤k(U)
denote the set {I ⊆ U : |I| ≤ k} of subsets of U with at most k elements.

I Theorem 2 (cf. [15, Theorem 3.1]). Let n ∈ N, let k ∈ N0, let p be a prime, and let m ∈ N.
Let ϕ : P≤k(n)→ Zmp . Then there is U ⊆ n with |U | ≤ km(p− 1) such that∑

J∈P≤k(n)

ϕ(J) =
∑

J∈P≤k(U)

ϕ(J).

Proof. We denote the vector ϕ(J) by ((ϕ(J))1, . . . , (ϕ(J))m), and we define m polynomial
functions f1, . . . , fm ∈ Zp[x1, . . . , xn] by

fi(x1, . . . xn) :=
∑

J∈P≤k(n)

(
(ϕ(J))i ·

∏
j∈J

xj
)
.

for i ∈ m. By Lemma 1, there is a subset U of n with |U | ≤ km(p − 1) such that for
all i ∈ m, we have fi(1) = fi(1 (U)). Hence

∑
J∈P≤k(n)(ϕ(J))i = fi(1) = fi(1 (U)) =∑

J∈P≤k(n),J⊆U (ϕ(J))i =
∑
J∈P≤k(U)(ϕ(J))i. J

MFCS 2019

72:4 Solving Systems of Equations in Supernilpotent Algebras

3 Absorbing components

Let A be a set, let 0A be an element of A, let B = (B,+,−, 0) be an abelian group,
let n ∈ N, let f : An → B, and let I ⊆ n. By Dep(f) we denote the set {i ∈ n |
f depends on its i th argument}. We say that f is absorbing in its j th argument if for all
a = (a(1), . . . ,a(n)) ∈ An with a(j) = 0A we have f(a) = 0. In the sequel, we will denote
0A simply by 0. We say that f is absorbing in I if Dep(f) ⊆ I and for every i ∈ I, f is
absorbing in its i th argument.

I Lemma 3. Let A be a set, let 0 be an element of A, let B = (B,+,−, 0) be an abelian
group, let n ∈ N, and let f : An → B. Then there is exactly one sequence (fI)I⊆n of functions
from An to B such that for each I ⊆ n, fI is absorbing in I and f =

∑
I⊆n fI . Furthermore,

each function fI lies in the subgroup F of BAn that is generated by the functions x 7→ f(x (I)),
where I ⊆ n.

Proof. We first prove the existence of such a sequence. To this end, we define fI by recursion
on |I|. We define f∅(a) := f(0, . . . , 0) and for I 6= ∅, we let

fI(a) := f(a (I))−
∑
J⊂I

fJ(a).

By induction on |I|, we see that Dep(fI) ⊆ I and that fI lies in the subgroup F. We will
now show that each fI is absorbing in I, and we again proceed by induction on |I|. Let i ∈ I,
and let a ∈ An be such that a(i) = 0. We have to show fI(a) = 0. We compute fI(a) =
f(a (I))−

∑
J⊂I fJ (a). By the induction hypothesis, we have fJ (a) = 0 for those J with i ∈ J .

Hence f(a (I))−
∑
J⊂I fJ (a) = f(a (I))−

∑
J⊆I\{i} fJ (a), and because of a (I) = a (I\{i}), this

is equal to f(a (I\{i}))−
∑
J⊆I\{i} fJ (a) = f(a (I\{i}))−

∑
J⊂I\{i} fJ (a)− fI\{i}(a). By the

definition of fI\{i}, the last expression is equal to fI\{i}(a)− fI\{i}(a) = 0. This completes
the induction proof; hence each fI is absorbing in I. In order to show f =

∑
I⊆n fI , we

choose a ∈ An and compute
∑
I⊆n fI(a) = fn(a) +

∑
I⊂n fI(a) = f(a (n))−

∑
J⊂n fJ (a) +∑

I⊂n fI(a) = f(a). This completes the proof of the existence of such a sequence.
For the uniqueness, assume that f =

∑
I⊆n fI =

∑
I⊆n gI and that for all I, fI and

gI are absorbing in I. We show by induction on |I| that fI = gI . Let I := ∅. First
we notice that f(0, . . . , 0) =

∑
J⊆n fJ(0, . . . , 0) =

∑
J⊆n gJ(0, . . . , 0). Since fJ and gJ are

absorbing, the summands with J 6= ∅ are 0, and thus f∅(0, . . . , 0) =
∑
J⊆n fJ(0, . . . , 0) =

f(0, . . . , 0) =
∑
J⊆n gJ(0, . . . , 0) = g∅(0, . . . , 0). Since both f∅ and g∅ are constant func-

tions, they are equal. For the induction step, we assume |I| ≥ 1. Let a ∈ An. Then∑
J⊆n fJ(a (I)) =

∑
J⊆n gJ(a (I)). Only the summands with J ⊆ I can be nonzero, and

therefore
∑
J⊆I fJ(a (I)) =

∑
J⊆I gJ(a (I)). By the induction hypothesis, fJ = gJ for J ⊂ I.

Therefore, fI(a (I)) = gI(a (I)). Since fI and gI depend only on the arguments at positions
in I, we obtain fI(a) = fI(a (I)) = gI(a (I)) = gI(a). Thus fI = gI . J

Actually, the component fI can be computed by fI(a) =
∑
J⊆I(−1)|I|+|J|f(a (J)).

I Definition 4. Let A be a set, let 0 be an element of A, let B = (B,+,−, 0) be an abelian
group, let n ∈ N, let f : An → B, and let J ⊆ n. Then we call the sequence (fI)I⊆n such
that for each I ⊆ n, fI is absorbing in I, and f =

∑
I⊆n fI the absorbing decomposition

of f , and fJ the J-absorbing component of f . We define the absorbing degree of f by
adeg(f) := max ({−1} ∪ {|J | : J ⊆ n and fJ 6= 0}).

E. Aichinger 72:5

I Theorem 5. Let A be a set, let 0 be an element of A, let p be a prime, let k ∈ N0, let
n ∈ N, and let f1, . . . , fm : An → Zp. We assume that each fi is of absorbing degree at most
k. Let a ∈ An. Then there is U with |U | ≤ km(p − 1) such that for all i ∈ m, we have
fi(a) = fi(a (U)).

Proof. We define a function ϕ : P≤k(n)→ Zmp by ϕ(J) := ((f1)J(a), . . . , (fm)J(a)), where
for i ∈ m,

(
(fi)J

)
J⊆n is the absorbing decomposition of fi. Then Theorem 2 yields a subset

U of n with |U | ≤ km(p− 1) such that
∑
J∈P≤k(n) ϕ(J) =

∑
J∈P≤k(U) ϕ(J). Since (fi)J = 0

for all J with |J | > k, we have
∑
J∈P≤k(n) ϕ(J) =

∑
J∈P≤k(n)((f1)J(a), . . . , (fm)J(a))

=
∑
J⊆n((f1)J(a), . . . , (fm)J(a)) = (f1(a), . . . , fm(a)) and

∑
J∈P≤k(U)

ϕ(J) =
∑

J∈P≤k(U)

((f1)J(a), . . . , (fm)J(a))

=
∑
J⊆U

((f1)J(a), . . . , (fm)J(a)) =
∑
J⊆U

((f1)J(a (U)), . . . , (fm)J(a (U)))

=
∑
J⊆n

((f1)J(a (U)), . . . , (fm)J(a (U))) = (f1(a (U)), . . . , fm(a (U))).

J

4 Polynomial mappings

In this section, we develop a property of polynomial mappings of finite supernilpotent algebras
in congruence modular varieties. We call an algebra A = (A,+,−, 0, (fi)i∈S) an expanded
group if its reduct A+ = (A,+,−, 0) is a group, an expanded abelian group if A+ is an abelian
group, and an expanded elementary abelian group if A+ is elementary abelian, meaning that
A+ is abelian and all its nonzero elements have the same prime order.

I Lemma 6. Let k, n ∈ N, let A be a k-supernilpotent expanded abelian group, and let
f ∈ Poln(A). Then f is of absorbing degree at most k.

Proof. Let J ⊆ n with |J | > k, and let fJ be the J-absorbing component of f . Let m := |J |
and let J = {i1, . . . , im}. Using Lemma 3, we obtain that the function g : Am → A defined
by g(ai1 , . . . , aim) := fJ(a) for a ∈ An is an absorbing function in Polm(A). Hence [1,
Lemma 2.3] and the remark immediately preceding that Lemma yield that g is the zero
function. Thus fJ = 0. Hence the absorbing degree of f is at most k. J

We first consider polynomial mappings of supernilpotent expanded elementary abelian
groups of prime power order.

I Theorem 7. Let k, n, s, α ∈ N, let p ∈ P, and let A be a k-supernilpotent expanded
elementary abelian group of order pα. Let F = (f1, . . . , fs) ∈ Poln(A)s, and let a ∈ An.
Then there is U ⊆ n with |U | ≤ ksα(p− 1) such that F (a) = F (a (U)).

Proof. We let π be a group isomorphism from (A,+,−, 0) to Zαp , and for a ∈ A, we denote
π(a) by (π1(a), . . . , πα(a)). For each r ∈ s and each β ∈ α, let fr,β : An → Zp be defined by
fr,β(a) = πβ(fr(a)); hence fr,β(a) is the β th component of fr(a). Since fr ∈ Poln(A) and
A is k-supernilpotent, Lemma 6 implies that each of these fr,β is of absorbing degree at most
k. Setting m := sα, Theorem 5 yields U with |U | ≤ ksα(p−1) such that fr,β(a) = fr,β(a (U))
for all r ∈ s and β ∈ α. Then clearly F (a) = F (a (U)). J

MFCS 2019

72:6 Solving Systems of Equations in Supernilpotent Algebras

We apply this result to polynomial mappings of direct products of finite supernilpotent
expanded elementary abelian groups. For a vector a ∈ An, we call the number of its nonzero
entries the weight of a; formally, wt(a) := |{j ∈ n : a(j) 6= 0}|.

I Theorem 8. Let n, s, t, k1, . . . , kt ∈ N. For each i ∈ t, let Bi a ki-supernilpotent expanded
elementary abelian group with |Bi| = pαi

i , where pi is a prime and αi ∈ N. Let A :=
∏t
i=1 Bi,

let F ∈ Poln(A)s, and let a ∈ An. Then there is y ∈ An with wt(y) ≤
∑t
i=1 kisαi(pi − 1)

such that F (a) = F (y).

Proof. For i ∈ t, let νi be the i th projection kernel. Applying Theorem 7 to A/νi, which
is isomorphic to Bi, and b := a/νi, we obtain Ui ⊆ n with |Ui| ≤ kisαi(pi − 1) such that
FA/νi(b(Ui)) = FA/νi(b). Lifting b(Ui) to A, we obtain (xi,1, . . . , xi,n) ∈ An such that
(xi,1, . . . , xi,n)/νi = b(Ui) and xi,j = 0 for j ∈ n \ Ui. Now for every j ∈ n, we define yj ∈ A
by the equations

yj ≡νi
xi,j for all i ∈ t.

For each i ∈ t, we have F (y1, . . . , yn)/νi = FA/νi(xi,1/νi, . . . , xi,n/νi) = FA/νi(b(Ui)) =
FA/νi(b) = FA/νi(a/νi) = F (a)/νi. Hence F (y) = F (a). For j ∈ n \ (U1 ∪ · · · ∪ Ut), and
for all i ∈ t, we have xi,j = 0, and therefore yj = 0. Hence the number of nonzero entries in
y is at most

∑t
i=1 |Ui| ≤

∑t
i=1 kisαi(pi − 1). J

Now we consider arbitrary finite supernilpotent algebras in congruence modular varieties.
In these algebras, we can introduce group operations preserving nilpotency using [1].

I Lemma 9. Let µ ∈ N, let A = (A, (fi)i∈S) be a finite supernilpotent algebra in a congruence
modular variety all of whose fundamental operations have arity at most µ, and let z ∈ A. Let
t ∈ N0, let p1, . . . , pt be different primes, and let α1, . . . , αt ∈ N such that |A| =

∏t
i=1 p

αi
i .

For i ∈ t, let ki := (µ(pαi
i − 1))αi−1. Then there are operations + (binary), − (unary), 0

(nullary) on A such that A′ = (A,+,−, 0, (fi)i∈S) is isomorphic to a direct product
∏t
i=1 B′i,

where each B′i is a ki-supernilpotent expanded elementary abelian group, and 0A′ = z.

Proof. Since the result is true for |A| = 1, we henceforth assume |A| ≥ 2. By [16], A is
isomorphic to a direct product

∏t
i=1 Bi of nilpotent algebras of prime power order. We

let (π1(a), . . . , πt(a)) denote the image of a of the underlying isomorphism. As a finite
supernilpotent algebra in a congruence modular variety, A is nilpotent (cf. [1, Lemma 2.4])
and therefore has a Mal’cev term [9, Theorem 6.2]. We use [1, Theorem 4.2] to expand each
Bi with operations +i and −i such that the expansion B′i is a nilpotent expanded elementary
abelian group with zero element πi(z). By [1, Theorem 1.2], B′i is ki-supernilpotent. J

We note that the supernilpotency degree of A′ may be strictly larger than the supernil-
potency degree of A.

Combining these results, we obtain the following result on polynomial mappings on
arbitrary finite supernilpotent algebras in congruence modular varieties.

I Theorem 10. Let µ ∈ N, let A be a finite supernilpotent algebra in a congruence mod-
ular variety all of whose fundamental operations have arity at most µ. Let p1, . . . , pt be
distinct primes, and let α1, . . . , αt ∈ N such that |A| =

∏t
i=1 p

αi
i . Let F ∈ Poln(A)s be a

polynomial map from An to As, and let z ∈ A. Then for every a ∈ An there is y ∈ An
such that F (y) = F (a) and |{j ∈ n : y(j) 6= z}| ≤ s

∑t
i=1(µ(pαi

i − 1))αi−1αi(pi − 1) ≤
sµ−1|A|log2 µ+log2 |A| log2 |A| ≤ s|A|log2 µ+log2 |A|+1.

E. Aichinger 72:7

Proof. Let A′ =
∏t
i=1 B′i with |B′i| = pαi

i be the expansion of A produced by Lemma 9.
Clearly, F is a also a polynomial map of A′. Let ki = (µ(pαi

i − 1))αi−1. Then Theorem 8
yields y ∈ An such that |{j ∈ n : y(j) 6= z}| ≤

∑t
i=1 kisαi(pi − 1). Using the obvious

estimate αi ≤ log2 |A|, we obtain

t∑
i=1

kisαi(pi − 1) = s

t∑
i=1

(µ(pαi
i − 1))αi−1 log2 |A|(pi − 1)

≤ s log2 |A|
t∑
i=1

µαi−1(pαi
i)αi−1pαi

i ≤ s log2 |A|
t∑
i=1

µlog2 |A|−1(pαi
i)αi

≤ sµlog2 |A|−1 log2 |A|
t∑
i=1

(pαi
i)log2 |A| ≤ sµlog2 |A|−1 log2 |A|(

t∑
i=1

pαi
i)log2 |A|

≤ sµlog2 |A|−1 log2 |A|(
t∏
i=1

pαi
i)log2 |A| ≤ sµlog2 |A|−1 log2 |A| |A|log2 |A|

= sµ−1|A|log2 µ+log2 |A| log2 |A| ≤ s|A|log2 µ+log2 |A|+1.

J

5 Systems of equations

We will now explain how these results give a polynomial time algorithm for solving systems
of a fixed number of equations over the finite supernilpotent algebra A. The size m of a
system of polynomial equations is measured as the length of the polynomial terms used to
represent the system. For measuring the “running time” of our algorithm, we count the
number of A-operations: each such A-operation, may, for example, be done by looking up
one value in the operation tables defining A.

I Theorem 11. Let A be a finite supernilpotent algebra in a congruence modular variety
all of whose fundamental operations are of arity at most µ, and let s ∈ N. We consider the
following algorithmic problem s-PolSysSat(A):

Given: 2s polynomial terms f1, g1, . . . , fs, gs over A.
Asked: Does the system f1 ≈ g1, . . . , fs ≈ gs have a solution in A?

Let m be the length of the input of this system, and let

e := s|A|log2 µ+log2 |A|+1 + 1.

Then we can decide s-PolSysSat(A) using at most O(me−1) evaluations of all terms
occuring in the system. Therefore, we have an algorithm that determines whether a system
of s polynomial equations over A has a solution using O(me) many A-operations.

Proof. Let n be the number of different variables that occur in the given system. We may
assume that these variables are x1, . . . , xn, and that our system is

∧s
i=1 fi(x1, . . . , xn) ≈

gi(x1, . . . , xn). We choose an element z ∈ A, and we will show: if this system has a solution
in An, then it has a solution in

C := {y ∈ An : |{j ∈ n : y(j) 6= z}| ≤ e− 1}.

For proving this claim, we first observe that A is a finite nilpotent algebra in a congruence
modular variety, and it therefore has a Mal’cev term d. We consider the polynomial map

MFCS 2019

72:8 Solving Systems of Equations in Supernilpotent Algebras

H = (h1, . . . , hs), where hi(x) := d(fi(x), gi(x), z) for i ∈ s and x ∈ An. Since a is a
solution of the system, H(a) = (z, z, . . . , z). By Theorem 10, there is y ∈ C such that
H(y) = H(a). Then for every i ∈ s, we have d(fi(y), gi(y), z) = z. By [9, Corollary 7.4],
the function x 7→ d(x, gi(y), z) is injective. Since d(fi(y), gi(y), z) = z = d(gi(y), gi(y), z),
this injectivity implies that fi(y) = gi(y). Hence y is a solution that lies in C.

The algorithm for solving the system now simply evaluates the system at all places in C;
if a solution is found, the answer is “yes”. If we find no solution inside C , we answer “no”,
and by the argument above, we know that in this case, the system has no solution inside An

at all.
We now estimate the complexity of this procedure: There is a c ∈ N such that for all

n ∈ N, |C| ≤ cne−1, hence we have to do O(ne−1) evaluations of all the terms fi, gi in the
system. Such an evaluation can be done using at most O(m) many A-operations. Since
the length of the input m is at least the number of variables n occuring in it, this solves
s-PolSysSat(A) using at most O(me) many A-operations. J

We remark that the exponent e involves neither the nilpotency nor the supernilpotency
degree of the algebra A; this is a result of the fact that Theorem 1.2 from [1] bounds the
supernilpotency degree of A in terms of only µ, |A|, and the height of the congruence lattice
of A, which is bounded from above by log2 |A|. In the same vein, we can now also bound
the exponent in the complexity bound for the identity checking or polynomial equivalence
problem for supernilpotent algebras (cf. [2, Theorem 2.2]). For every algebra A satisfying
the assumptions of Theorem 11, there is c ∈ N such that for any two n-ary polynomial
terms s(x1, . . . , xn) and t(x1, . . . , xn), we can check whether A |= s ≈ t using at most cnd
evaluations of both s and t, where d := (µ(|A| − 1))log2 |A|−1 comes from Corollary 1.3 of [1].

6 Circuit satisfiability

With every finite algebra A, [13] associates a number of computational problems that involve
circuits whose gates are taken from the fundamental operations of A. One of these problems
is SCsat(A). It takes as an input 2s circuits f1, g1, . . . , fs, gs over A with n input variables,
and asks whether there is an a ∈ An such that the evaluations at a satisfy fi(a) = gi(a) for
all i ∈ s. For finite algebras of finite type (i.e., with finitely many fundamental operations)
in congruence modular varieties, [18, Corollary 3.13] implies that SCsat(A) is in P when A
is abelian, and NP-complete otherwise. However, if we restrict the number s of circuits, we
obtain a different problem, which we call s-SCsat(A) in the sequel. Obviously, 1-SCsat(A)
is the circuit satisfiability problem called Csat(A) in [13]. The method used to prove
Theorem 11 immediately yields:

I Theorem 12. Let A be a finite supernilpotent algebra of finite type in a congruence modular
variety, and let s ∈ N. Then s-SCsat(A) is in P.

Hence a supernilpotent, but not abelian algebra A has s-SCsat(A) in P, whereas SCsat is
NP-complete. In the converse direction, Theorem 9.1 from [13] has the following corollary.

I Corollary 13. Let A be a finite algebra of finite type from a congruence modular variety.
If A has no homomorphic image A′ such that 2-SCsat(A′) is NP-complete, then A is
nilpotent.

Proof. Suppose that A has a homomorphic image A′ for which Csat(A′) is NP-complete.
Then also 2-SCsat(A′) is NP-complete because an algorithm solving 2-SCsat can be used
to solve an instance (∃a)(f(a) = g(a)) of Csat(A′) by solving 2-SCsat on the input

E. Aichinger 72:9

(∃a)(f(a) = g(a) & f(a) = g(a)). Thus the assumptions imply that for no homomorphic
image A′ of A, the problem Csat(A′) is NP-complete. Now by [13, Theorem 9.1], A is
isomorphic to N × D, where N is nilpotent and D is a subdirect product of 2-element
algebras each of which is polynomially equivalent to a two element lattice. If |D| > 1, then
there is a homomorphic image A2 of A such that A2 is polynomially equivalent to a two
element lattice. By [11], 2-SCsat(A2) is NP-complete, contradicting the assumptions. Hence
|D| = 1, and therefore A is nilpotent. J

References
1 E. Aichinger. Bounding the free spectrum of nilpotent algebras of prime power order. Israel J.

Math., 230(2):919–947, 2019.
2 E. Aichinger and N. Mudrinski. Some applications of higher commutators in Mal’cev algebras.

Algebra Universalis, 63(4):367–403, 2010.
3 E. Aichinger, N. Mudrinski, and J. Opršal. Complexity of term representations of finitary

functions. Internat. J. Algebra Comput., 28(6):1101–1118, 2018.
4 N. Alon. Combinatorial Nullstellensatz. Combin. Probab. Comput., 8(1-2):7–29, 1999. Recent

trends in combinatorics (Mátraháza, 1995).
5 D. Brink. Chevalley’s theorem with restricted variables. Combinatorica, 31(1):127–130, 2011.
6 D. Eisenbud. Commutative algebra. Springer-Verlag, New York, 1995.
7 A. Földvári. The complexity of the equation solvability problem over semipattern groups.

Internat. J. Algebra Comput., 27(2):259–272, 2017.
8 A. Földvári. The complexity of the equation solvability problem over nilpotent groups. Journal

of Algebra, 495:289–303, 2018.
9 R. Freese and R. N. McKenzie. Commutator Theory for Congruence Modular varieties, volume

125 of London Math. Soc. Lecture Note Ser. Cambridge University Press, 1987.
10 M. Goldmann and A. Russell. The complexity of solving equations over finite groups. Inform.

and Comput., 178(1):253–262, 2002.
11 T. Gorazd and J. Krzaczkowski. The complexity of problems connected with two-element

algebras. Rep. Math. Logic, 46:91–108, 2011.
12 G. Horváth. The complexity of the equivalence and equation solvability problems over nilpotent

rings and groups. Algebra Universalis, 66(4):391–403, 2011.
13 P. M. Idziak and J. Krzaczkowski. Satisfiability in multi-valued circuits. In LICS ’18—33rd

Annual ACM/IEEE Symposium on Logic in Computer Science, pages 550–558. ACM, New
York, 2018.

14 G. Károlyi and C. Szabó. The complexity of the equation solvability problem over nilpotent
rings. Manuscript available at http://web.cs.elte.hu/~csaba/publications/, 2015.

15 G. Károlyi and C. Szabó. Evaluation of Polynomials over Finite Rings via Additive Combinat-
orics. ArXiv e-prints, 1809.06543, 2018. arXiv:1809.06543.

16 K. A. Kearnes. Congruence modular varieties with small free spectra. Algebra Universalis,
42(3):165–181, 1999.

17 M. Kompatscher. The equation solvability problem over supernilpotent algebras with Mal’cev
term. Internat. J. Algebra Comput., 28(6):1005–1015, 2018.

18 B. Larose and L. Zádori. Taylor terms, constraint satisfaction and the complexity of polynomial
equations over finite algebras. Internat. J. Algebra Comput., 16(3):563–581, 2006.

19 R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, lattices, varieties, Volume I.
Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California, 1987.

MFCS 2019

http://web.cs.elte.hu/~csaba/publications/
http://arxiv.org/abs/1809.06543

Listing Induced Steiner Subgraphs as a Compact
Way to Discover Steiner Trees in Graphs
Alessio Conte
Dipartimento di Informatica, Università di Pisa, Italy
conte@di.unipi.it

Roberto Grossi
Dipartimento di Informatica, Università di Pisa, Italy
grossi@di.unipi.it

Mamadou Moustapha Kanté
Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
mamadou.kante@uca.fr

Andrea Marino
Dipartimento di Statistica, Informatica, Applicazioni, Università di Firenze, Italy
andrea.marino@unifi.it

Takeaki Uno
National Institute of Informatics, Tokyo, Japan
uno@nii.ac.jp

Kunihiro Wasa
National Institute of Informatics, Tokyo, Japan
wasa@nii.ac.jp

Abstract
This paper investigates induced Steiner subgraphs as a variant of the classical Steiner trees, so as to
compactly represent the (exponentially many) Steiner trees sharing the same underlying induced
subgraph. We prove that the enumeration of all (inclusion-minimal) induced Steiner subgraphs is
harder than the well-known Hypergraph Transversal enumeration problem if the number of terminals
is not fixed. When the number of terminals is fixed, we propose a polynomial delay algorithm for
listing all induced Steiner subgraphs of minimum size. We also propose a polynomial delay algorithm
for listing the set of minimal induced Steiner subgraphs when the number of terminals is 3.

2012 ACM Subject Classification Mathematics of computing → Graph enumeration

Keywords and phrases Graph algorithms, enumeration, listing and counting, Steiner trees, induced
subgraphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.73

Funding This work was partially supported by JST CREST grant number JPMJCR1401 and
JPMJCR18K3 Japan, by JSPS KAKENHI Grant Number JP19K20350 Japan, and by MIUR,
Italy. Mamadou M. Kanté is supported by French Agency for Research under the GraphEN
project (ANR-15-CE40-0009).

1 Introduction

Paths and cycles are the basic components for connecting nodes in undirected graphs. It is
natural to ask, for a given subset of nodes, how to connect them in a component of minimal
cost, where the cost is, e.g., the total sum of the weights on the edges or the number of nodes.

Classical instances of this problem follow two main patterns [7]. Some are edge-centric com-
ponents in (usually) weighted graphs, such as shortest paths/cycles, spanning trees, Steiner
trees, k-edge-connected components. Others are node-centric components in unweighted
graphs, such as induced paths, chordless cycles (holes), k-node-connected components.

© Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, and
Kunihiro Wasa;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 73; pp. 73:1–73:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:conte@di.unipi.it
mailto:grossi@di.unipi.it
mailto:mamadou.kante@uca.fr
mailto:andrea.marino@unifi.it
mailto:uno@nii.ac.jp
mailto:wasa@nii.ac.jp
https://doi.org/10.4230/LIPIcs.MFCS.2019.73
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Listing Induced Steiner Subgraphs

The above is not actually a dichotomy of edge- vs. node-centric components as, for
example, node-weighted Steiner trees lay at the cross of the two. Nevertheless, it seems that
most of the literature has been devoted to edge-centric components.

For instance, in the rich research area on Steiner trees, the online compendium in [12]
reports over 60 variations of the Steiner tree problem, but just a couple are node-centric
(survivable network design problem [3] and node weighted generalized Steiner tree [11]). The
interest in the Steiner tree problem and its variants is well rooted in real world applications.
Some examples can be seen in the 11th DIMACS challenge [8], which aimed at identifying
a benchmark for algorithms and data generators, with emphasis on network optimization,
computer-aided design, phylogenetic tree reconstruction and other applications. It is also of
great interest in implementation challenges of the parameterized community, e.g., [16], thus
we believe it is worth investigating its natural extensions in node-centric scenarios.

Induced Steiner subgraphs. Special node-centric components have been introduced by
Telle and Villanger [17] as a generalization of the induced paths.1 In this paper, we study
these components, hereafter renamed induced Steiner subgraphs as they seem to us a natural
extension to the scenario of Steiner trees. Given an undirected graph G = (V (G), E(G)) and
a subset W ⊆ V (G) of t = |W | nodes, called terminals, we want a set of nodes, minimal
under inclusion, that connects all nodes in W .

I Definition 1 (Induced Steiner Subgraph). Given W ⊆ V (G), an Induced Steiner Subgraph
of G is a set of nodes S ⊆ V (G) \W such that the induced subgraph G[S ∪W] is connected.
We say that S is a (inclusion wise) Minimal Induced Steiner Subgraph (miss) if there is no
S′ ⊂ S such that G[S′ ∪W] is connected. The nodes in S are called Steiner points.2

An example of a miss is given in Figure 1, where we illustrate also its connection with the
classical notion of Steiner tree. Similarly to how Steiner trees generalize paths between two
nodes, it can be noted that miss’s generalize induced paths, which correspond to miss’s for
|W | = 2. On the other extreme, for W = V (G), Steiner trees correspond to spanning trees
of the graph, while there would be a single empty miss corresponding to the whole graph.

Definition 1 makes sense in domains where nodes are preferred to edges in components,
for example in network design [11] and graph database query optimization [2,14]. In these
cases, rather than a minimal set of edges that ensures connection (i.e. a tree), a minimal
set of connected nodes and their induced subgraph (i.e. a miss) are sought for. Note that
the notion of induced Steiner subgraph can be easily extended to graphs with weights on
the nodes, and miss’s correspond to solutions of minimal cost (otherwise their cost could be
reduced by removing nodes). Our approach focuses on unweighted graphs, where Steiner
trees also have many applications [12].

Results. In this paper we consider the problem of output-sensitive enumeration of miss’s,
which corresponds to bounding the cost to a polynomial of the input and output size.

In Section 3 we show that the problem is harder than the well-known Trans-Enum
problem [10] for an arbitrary number of terminals. To classify its output-sensitive

1 In [17], these are called minimal T-connecting Sets and are motivated by the study of the 2-Disjoint
Connected Subgraphs problem which is the following: given a connected graph G = (V, E) and two
disjoint subsets of terminal vertices Z1, Z2 ⊆ V , decide whether there exists a partition A1, A2 of V (G),
with Z1 ⊆ A1, Z2 ⊆ A2 and G[A1], G[A2] both connected.

2 We abuse the terminology a bit and refer by S also to the induced subgraph G[S ∪W], as we enumerate
all feasible S’s while keeping the same set W . This simplifies notation in the rest of the paper.

A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, and K. Wasa 73:3

w0

w1

3

1

w2

7

2

4 5

6w3

w0

w1

3

1

w2

7

2

4 5

6w3

w0

w1

3

1

w2

7

2

4 5

6w3

Figure 1 A miss (left) and two Steiner trees corresponding to the same miss (center and right).

w0

6

1

3

5

9

4

2

1

4

2

w1

6

5 3

n-2

8

7

... n-3

n-4

w0 w1

w2

w3w4

w5

Figure 2 Left: A graph with Ω(3n/3) minimum Steiner trees and miss’s. Right: A graph with 1
miss and nn−2 minimum Steiner trees (by Cayley’s formula).

enumeration complexity, we consider the problem when the number of terminals t = |W |
is fixed. Concerning this, we show that the Extension problem (see Section 3.2) is
NP-complete already for t ≥ 2, meaning that the sub-problems of any backtracking
algorithm [10] should be carefully designed to avoid incurring instances of NP-complete
problems.
In this scenario, we propose a polynomial delay algorithm in Section 4 when the number
of terminals is t = 3. (Note that the delay is the time required to list the “next” solution.)
This is the first non-trivial case, as for t = 1 the problem is not defined, and for t = 2 it
is the well-known problem of listing induced paths.
Furthermore, we investigate in Section 2 the relationships of miss’s and Steiner trees,
proving properties which allow us to use the algorithm of Dourado et al. [9] as a subroutine
in order to list just the miss’s of minimum size with output-sensitive guarantees, for a
bounded number t of terminals.

Discussion. Given a miss S for W , we observe that each spanning tree in the induced
subgraph G[S ∪W] is a Steiner tree for W . Also the vice versa holds, so this could be
useful for the packing edge-disjoint Steiner tree problem, which received attention in recent
years [1, 4, 13] and consists of finding a largest possible set of Steiner trees that do not share
edges or nodes.

If we look for an individual min-size Steiner subgraph for W (i.e., with the least number
of nodes), it can be obtained as the subgraph induced by the Steiner points of a min-size
Steiner tree for W . A different situation occurs instead if we look for all min-size induced
Steiner subgraphs for W . A number of deep results for Steiner trees could be employed:
for example, [9] proposes an algorithm for listing them with linear delay, assuming that
the number t = |W | of terminals is O(1); [15] introduces a general enumeration framework
for matroids with certain properties, which can be applied to generalized Steiner trees,
containing as special cases minimal Steiner trees and minimal Steiner forests. Unfortunately,
this approach gives rise over and over to the same min-size Steiner subgraph in our case, as
there can be exponentially many Steiner trees for the same set of Steiner points (Fig. 2(left)).

Here comes an interesting feature of a miss, as it is a compact representation of many
Steiner trees. Observing that a min-size Steiner subgraph for W is a miss for W of minimum
size, we can thus list the miss’s for W twice: the first time to discover the minimum size, and
the second time to single out the miss’s of that size (i.e. min-size induced Steiner subgraphs).

MFCS 2019

73:4 Listing Induced Steiner Subgraphs

This approach can be dramatically more efficient than listing min-size Steiner trees to catch
min-size induced Steiner subgraphs (see Fig. 2 (right)). On the other hand, the results in
this paper (see Section 2.2) show the latter to be a viable approach if W has bounded size.

As for weighted graphs, we observe that the min-edge-weight Steiner tree problem reduces
to min-node-weight Steiner subgraph problem.3 Once we can list miss’s efficiently, we can
also find min-node-weight induced Steiner subgraphs and thus min-edge-weight Steiner trees.

In summary, finding miss’s subsumes finding min-node-weight, min-edge-weight, and min-
size Steiner trees, and becomes a sort of “universal” problem for this family of connectivity
problems on graphs that compactly represent these trees. This motivates the problem of
listing miss’s efficiently, which is central to this paper.

Previous results on miss enumeration were already obtained in [17] from an input-sensitive
point of view:4 the authors proved that the number of miss’s for t terminals, in any graph
of n nodes, is at most

(
n−t
t−2
)
· 3 n−t

3 , and propose an input-sensitive algorithm running in
O∗(

(
n−t
t−2
)
· 3 n−t

3) total time, where the O∗ notation ignores factors polynomial in n. Here we
consider the opposite direction, i.e., output-sensitive enumeration.

Preliminaries. We refer to [7] for our graph terminology. Let G = (V (G), E(G)) be an
undirected graph, where V (G) is its node set and E(G) its edge set. N(v) is the set of
neighbors of a node v. When G is clear from the context we will refer to node and edge
sets simply as V and E. For a set of nodes A ⊆ V (G), let E[A] ⊆ E(G) be the set of edges
whose endpoints are both in A, and denote by G[A] = (A,E[A]) the graph thus obtained,
also called the subgraph induced by A. A subgraph is a forest if it is acyclic, and a tree if it
is a connected forest. A node v ∈ I is a leaf if v has degree 1 in G[I]. Removing a leaf from
a tree yields a tree. Regarding the Steiner Tree/Subgraph problem, we will refer to the set
of terminal nodes as W , and to its size |W | as t. We recall that an induced Steiner subgraph
is a set of nodes S such that G[S ∪W] is connected, and is minimal if inclusion-minimal.
For a miss S, we call junctions the nodes in S ∪W which, in G[S ∪W], have either degree
≥ 3, or are terminals with degree ≥ 2.

The notions for induced Steiner subgraphs and miss given in Definition 1 can be applied
to any subset of the terminals in W : for example, S is a miss for X ⊆ W if G[S ∪X] is
connected and so on. Without loss of generality, we can assume that no two terminals in
W are connected by an edge: otherwise we can contract that edge into a single node and
eliminate the resulting duplicated edges, preserving a one-to-one correspondence between
solutions of the old graph and the new. In the following, given a set of nodes S, let W (S)
be the set of terminals in W that have neighbors in S. Note that S is an induced Steiner
subgraph for X = W (S) as long as G[S ∪W (S)] is connected. Let us make the following
observation before continuing.

I Fact 1. Let S be a miss for a set W of terminals. Then, G[S ∪W] is not 2-connected.
Moreover, G[S ∪W] cannot contain a leaf vertex v ∈ S.

Proof. Because no two terminals are adjacent, if G[S ∪W] is 2-connected, then |S| ≥ 2.
By definition of 2-connectedness, for any vertex v ∈ S, we have that G[(S \ {v}) ∪W] is
connected, contradicting the minimality of S.

If G[S ∪W] contains a leaf vertex v ∈ S, then G[(S \ {v}) ∪W] is still connected as no
path can contain v as an internal vertex, contradicting the minimality of S. J

3 It suffices to replace each each edge {x, y} with weight w by two edges {x, z} and {z, y} where z is a
new node of weight w and x and y have weight zero [11]

4 In exact exponential-time algorithms, a input-sensitive cost measures the running time in the input
length.

A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, and K. Wasa 73:5

2 Properties of Steiner Subgraphs and Listing Minimum Steiner
Subgraphs

We are interested in this section in the enumeration of miss’s of minimum size, and refer
to them as minimum miss’s. In this section we prove some useful properties of miss’s in
general, and some special properties of minimum miss’s, to outline the relationship between
minimum Steiner trees and miss’s (Section 2.1) and to get an output-sensitive algorithm for
minimum miss’s (Section 2.2).

2.1 Relationship with minimum Steiner trees
We first prove that, for a given set W of terminals, one minimum miss corresponds to many
Steiner trees (Lemma 2). We then prove an upper bound (in terms of t) for the number
of junctions and the degree of the nodes involved in a miss. We highlight here that both
upper bounds hold for any miss, minimum or not. Aside of telling that miss’s have strong
topological properties, these bounds allow us to obtain the converse of Lemma 2, that is how
to turn miss’s into Steiner trees (Lemma 5).

One-to-many correspondence to minimum Steiner trees. A minimum Steiner tree T for
the set W of terminals is clearly a spanning tree of the subgraph G[M ∪W] induced by the
set M = V (T) \W of nodes plus the terminals, and thus M is a minimum miss for W . On
the other hand, consider any minimum miss M for W : each spanning tree T of G[M ∪W] is
actually a minimum Steiner tree for W . For example, the two trees in Figure 1 correspond
to the same miss.

I Lemma 2. Given a set W of terminals and a minimum miss M for W , any spanning tree
T of the induced subgraph G[M ∪W] is a minimum Steiner tree for W .

Proof. All the terminals in W are connected through T by definition of spanning tree, so
T is a Steiner tree, not necessarily of minimum size (and the terminals are not necessarily
all in its leaves). Suppose by contradiction that there exists another Steiner tree T ′ of size
smaller than T (where T ′ can use nodes or edges outside G[M ∪W]). Then the subgraph
G[M ′ ∪W] induced by the set M = V (T ′) \W of nodes of T ′ would be a miss with fewer
nodes than G[M ∪W], contradicting the fact that the latter is a minimum miss. J

Upper bound on the number of junctions. Consider a miss S (not necessarily minimum),
and recall that a junction is either a node of S with degree at least 3 in the induced subgraph
G[S ∪W], or a terminal in W with degree at least 2 in G[S ∪W]. Although S is minimal, it
can contain arbitrarily long induced paths independently of the number t of terminals. Still,
we can bound the number of junctions in terms of t.

I Lemma 3. Given a set W of terminals, any miss S contains at most 3t junctions.

Proof. By induction on the number of terminals. Recalling that t = |W |, if t ≤ 3 then the
claim is trivially true (see also Fact 2). Assume then that t ≥ 4.

Consider the induced subgraph G[S ∪W] ignoring the rest of G. In order to prove our
claim, we replace each junction terminal v′ with a new node v, and link v′ and v together
with an edge, so that v′ becomes a leaf terminal and v is a junction. Now, as no junction
can have degree 2, we replace each induced path x1, x2, . . . , x` by an edge {x1, x`} when x1
and x` have degree 6= 2.

MFCS 2019

73:6 Listing Induced Steiner Subgraphs

25

1

4

16

210

9

3

6

5

11

1226

24

15

w4

23

w5

w6 w7

8

7

20

13

w0

19

w1

22 14

w2
21

w3

29
18

w1130

w10

27

28 w9
17

w8

Figure 3 A miss with 12 terminals and 30 junctions. Suitably enlarging the structure sets the
junctions/terminals ratio arbitrarily close to 3.

Let G′ be the resulting graph. Note that G′ and G[S ∪W] have the same number of
terminals and junctions by construction. As a result, it suffices to prove our claim using G′.
Note also that each node v in G′ has degree 1 if and only if it is a terminal, and at least 3
otherwise. If G′ is a tree, then the claim holds as the number of internal nodes of degree 3 in
a tree is upper bounded by the number of leaves.

Let us assume that G′ is not a tree. By Fact 1 we know that G[S ∪W] is not 2-connected
and by construction G′ is also not 2-connected. Let T be the tree of bi-connected components
of G′ (called blocks). Because all non-terminal nodes in G′ are junctions, each leaf block
C of T is an edge {v, w} with v a junction node and w a terminal because all the terminal
nodes are non-adjacent and a leaf block has at most one non-terminal node. Let C be a
block all of whose neighbors, except possibly 1, are leaf blocks. Such a block always exists,
e.g., we could take a non-leaf block of maximum depth after rooting the tree arbitrarily. If
except C, all the other blocks are leaf blocks (meaning that T is a star), then we are done
because C is 2-connected, meaning any node removal does not disconnect it, meaning in
turn any node must be connected to a leaf-terminal in order for it not to be redundant, so C
contains at most t nodes. Otherwise, T is not a star and then for all possible choices for C
let us take the one with biggest size. Let w1, . . . , wp be the terminals adjacent to junction
nodes in C. Clearly, by the choice of C, p ≥ 2 because either C has size ≥ 3, and at least
two of the junction nodes are adjacent to terminals, or C has size 2 and at least one of the
junction nodes is adjacent to two terminals. Let v be the junction node of C belonging to
another block that is not a leaf block (v exists by the choice of C). Notice that C has size at
most p+ 1 because except possibly v, all the junction nodes in C are adjacent to at least
one terminal. Let G′′ = G′ \ ({w1, . . . , wp} ∪ (C \ {v})) and consider v as a terminal in G′′.
It is not hard to check that G′′ is a miss for (W \ {w1, . . . , wp}) ∪ {v}. By induction G′′ has
at most 3(t− p+ 1) junctions because G′′ has t− p+ 1 terminals. And then G has at most
3(t− p+ 1) + (p+ 1) junctions, which is bounded by 3t. J

Furthermore, Figure 3 shows Lemma 3 to be tight (up to constant additive factors).

Upper bound on the node degree. Although any miss S can be arbitrarily large independ-
ently of the number t of terminals, we prove that any node cannot have degree larger than t
in G[S ∪W].

I Lemma 4. Given a set W of terminals and any miss S for W and any node v ∈ S ∪W ,
|N(v) ∩ (S ∪W)| ≤ t.

A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, and K. Wasa 73:7

Proof. Let G′ be the induced subgraph G[S ∪W]. Let us start with the case v ∈ S. For
each w ∈ W , consider one shortest path between v and w in G′, and let S′ be the set of
nodes containing all the nodes on these t shortest paths, excluding the nodes in W . Note
that S′ ⊆ S by definition. As they are all shortest paths (hence induced paths with no
shortcut edges), v can only be adjacent to the next node in each such path, and no other:
thus |N(v)∩ (S′ ∪W)| ≤ t. Since all terminals are connected to each other using these paths,
clearly S′ is a Steiner induced subgraph. Since S is minimal, the only option is S′ = S. The
case v ∈W follows along the same lines. J

Removing edges to get a minimum Steiner trees. Consider any miss S and select a subset
of edges in the induced subgraph G[S ∪W] to obtain a Steiner tree T . Lemma 3 and 4 imply
the result that any T can be obtained from S by removing at most 3t2 edges from G[S ∪W].
Note that the number of edges in G[S ∪W] could be much larger, but most of them are
incident to degree-2 nodes of G[S ∪W], and should be taken to form T (otherwise some
terminals in W would be disconnected from the others). This property holds for the special
case of minimum miss, and hence minimum Steiner tree, immediately giving the following
result.

I Lemma 5. Given a set W of terminals and any miss S for W , every Steiner tree T
contained in G[S ∪W] can be obtained by removing at most 3t2 edges.

2.2 Listing minimum Steiner subgraphs
The properties of Steiner subgraphs seen so far allow us to design an algorithm for listing
minimum Steiner subgraphs, parameterized in t. Consider a minimum miss M , and the
subgraph GM = G[M ∪W]. By Lemma 2 each spanning tree of GM is a minimum Steiner
tree. By Lemma 5, GM is turned into a spanning tree by removing α edges, for some α ≤ 3t2.
A closer look gives a suggestion on how to do that: even if the number of nodes and edges in
GM can be much larger than 3t2, there are at most 3t junctions by Lemma 3, with degree
greater than 2; the rest of the (possibly many) nodes have all degree 2, and thus their
incident edges must be taken to keep GM connected. Hence, the α edges are incident to
these junctions, each of degree at most t in GM by Lemma 4, thus giving at most 3t2 edges
to select from. As there are at most 23t2 possible choices for the α edges, there are O(23t2)
minimum Steiner trees yielding the same minimum Steiner subgraph M .

We exploit this observation by using [9] to list minimum Steiner trees of G with O(n2m+
nt−2) preprocessing time and space, and O(n) delay. To avoid duplications, as the same
minimum miss M can be obtained O(23t2) times with distinct minimum Steiner trees, we
simply define a “canonical spanning tree” T ∗ of M as an arbitrary spanning tree obtained
from GM with some deterministic procedure: when the algorithm in [9] yields T , we output
its corresponding minimum miss only if T = T ∗, and discard it otherwise (note that this
computation takes an additional O(m) time per solution).

I Theorem 6. Minimum Steiner subgraphs of G for a terminal set W can be listed with
O(n2m+ nt−2) preprocessing time and space, in O(m · 23t2) time per solution.

3 Negative Results on Minimal Steiner Subgraphs

As for the classical Steiner tree problem, finding just one miss is easy, but finding the smallest
miss, i.e., the one having minimum number of nodes, is NP-hard: as we saw in Section 2 any
spanning tree of a miss with k nodes is a Steiner tree with exactly k − 1 edges. This means

MFCS 2019

73:8 Listing Induced Steiner Subgraphs

that there is a one-to-many correspondence between miss and Steiner trees of smallest size,
and that finding a smallest miss solves the unweighted Steiner tree problem.

Concerning listing miss’s, in Section 3.1 we show that this problem is actually harder
than listing minimal hypergraph transversals. In particular, this result implies that an
output-polynomial algorithm for miss’s enumeration would imply an output-polynomial
algorithm for minimal hypergraph transversals, which is a long-standing open problem (see
the survey [10] for more information on the problem).

In Section 3.2 we investigate the reason behind the difficulty of listing miss’s, showing
that classical techniques for listing algorithms which make use of the so-called extension
problem are difficult to apply, as the extension problem for miss’s is actually NP-complete.
In particular, we prove that deciding whether a partial miss can be completed into a miss is
NP-complete. Surprisingly, our reduction shows that this result holds even if the number of
terminals, i.e. t, is bounded. This means that a general output-polynomial algorithm for
miss’s enumeration which works for any number of terminals and which is polynomial both
in the size of the graph and the number of terminals should rely on different techniques.

3.1 Listing reduction from Hypergraph Transversal Enumeration

We show that the problem of listing miss’s is at least as hard as a well-known problem,
known as Hypergraph Transversal Enumeration (in short Trans-Enum). The latter
problem deals with a hypergraph H = (X,H), where H ⊆ 2X is the set of hyperedges. A
transversal for H is a hitting set S ⊆ X for the hyperedges in H, namely, S ∩ e 6= ∅ for
each hyperedge e ∈ H. A transversal S is (inclusion-wise) minimal if no other S′ ⊂ S is a
transversal. The Trans-Enum problem asks to list all the minimal transversals for H, and
the existence of an output-polynomial algorithm for it is a long-standing open question in
the area of enumeration algorithms. Indeed, the latter would provide also the solutions for
many enumeration problems arising in several diverse areas such as data-mining, integer
programming, biology, databases, game theory, learning theory, and so on (see [10]).

In the following we show how to transform an instance of Trans-Enum, i.e. an hyper-
graph H, to an instance of miss’s enumeration, i.e. a graph G = (V,E) and a set W ⊆ V of
terminals, so for each minimal transversal of H there is a miss for W in G, and vice versa.

I Lemma 7. There is a one-to-one reduction from Trans-Enum to miss’s enumeration
(even in split graphs).

Proof. We refer to the bipartite formulation of Trans-Enum, that is we consider the
bipartite graph B whose vertices are partitioned into X and H, and whose edges represent
the membership of each vertex of X in the hyperedges of H in which it is involved, and
we look at the minimal subsets of X hitting all the vertices of H. We transform B into an
instance of miss’s enumeration, i.e. a graph G and a set W , in the following way: choose
G as a copy of B, add to G edges between all pairs of vertices of X, i.e., forming a clique,
and choose as W the vertices in H. G is by construction a split graph. A minimal hitting
set S ⊆ X hits all the vertices in H and is such that there is no S′ ⊂ S doing the same. As
G[S ∪W] is connected, while G[S′ ∪W] is not, S corresponds to a miss. Conversely, consider
a miss S in G. Thus G[S ∪W] is connected and each S′ ⊂ S is such that G[S′ ∪W] is not.
This means that for each vertex in W , i.e., a vertex in H, one of its neighbor is in S, i.e.,
an element hitting the vertex. Moreover, as S is a clique, each subset S′ is still connected,
meaning that G[S′ ∪W] disconnects some terminal in W , that is S′ does not hit some vertex
in W . Hence, S corresponds to a minimal hitting set. J

A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, and K. Wasa 73:9

3.2 Hardness of the extension problem for miss’s
Providing an output-polynomial algorithm for miss’s seems to be a challenging problem, even
for a small number of terminals. As the Extension problem is a core block of many classical
output-sensitive algorithms such as those based on binary partition or backtracking, we argue
whether we can follow this path: roughly speaking, this is the problem of deciding whether
a partial solution, e.g., a subset of nodes, can be completed into a final solution. In this
section we show the hardness of the Extension problem for miss’s.

I Problem 1 (Extension problem for miss’s). Given a graph G, a terminal set W , and
P ⊆ V (G) \W , is there a minimal induced Steiner subgraph (miss) S such that P ⊆ S?

Note that, if P = ∅, the answer is trivially always yes, as we can find a miss by simply
setting S = V (G) \W , and removing nodes from it until it is possible to do so without
disconnecting W . For t = 1 the problem is not well defined (or could be considered trivially
true if and only if P = ∅). One may think that the hardness would be influenced by the size
of W , or that of P , however, this is not the case.

For t = 2 and |P | = 1, the smallest non-trivial sizes, the problem is already hard: let
W = {w0, w1} and P = {p}; as miss’s for t = 2 are induced paths, we obtain the problem of
finding an induced path between w0 and w1 passing through p. Finding such an induced
path has been proved to be NP-complete in [6]. This immediately yields the following result.

I Theorem 8. The extension problem for miss’s is NP-complete, even for two terminals.

The difficulty of the extension problem excludes the possibility of applying some well
known general techniques, motivating the interest in this combinatorial structure and in
ad-hoc techniques for its enumeration.

4 Listing Minimal Steiner Subgraphs with Three Terminals

The problem of listing miss’s seems to be a challenging one as we have shown that the
extension problem, which is a core block of many output-sensitive listing algorithms based on
the backtracking and binary partition techniques, is NP-complete for miss’s already when the
number of terminals is 2 (see Section 3.2). Indeed, in the case of t = 2, if the partial solution
is just an arbitrary node which is not a terminal, deciding whether there is an induced path
involving that node is NP-complete [6]. However, the problem can be solved with polynomial
delay [18]: since we are listing induced paths from a source to a target, this limitation can
be overcome by suitably defining the partial solution; in this case, a partial solution always
includes a terminal, i.e. the source. The same strategy, i.e. forcing each partial solution
to include a terminal, clearly does not apply when t > 2, as extending that solution will
lead again to the hard problem of deciding whether there is an induced path involving that
terminal. We show in this section that a workaround is still possible for the special case
t = 3.

We will characterize some special instances of the extension problem, extending what we
will call a partial Steiner subgraph (pss for short), showing that we can indeed find a solution
in polynomial time, and that it is possible to obtain a complete binary partition algorithm
by just relying on these restricted instances.

To characterize a partial Steiner subgraph, let us define a removable node:

I Definition 9. Let S be a Steiner subgraph for W (S), the set of terminals in W that have
neighbors in S. Then v ∈ S is a removable node for S if G[S ∪W (S) \ {v}] is connected.

MFCS 2019

73:10 Listing Induced Steiner Subgraphs

Note that if v ∈ S is a removable node then W (S) = W (S \ {v}) (i.e., S \ {v} is still a
Steiner subgraph for W (S)).

As an example, consider Figure 1 (left), with W = {w0, w1, w2, w3}: S = {2, 3, 4, 6, 7}
has no removable node, as W (S) = W and each removal of a node of S would disconnect
at least one of the terminals from the others. On the other hand, S′ = {3, 4, 6, 7} has 4 as
removable node, since W (S) = {w1, w2, w3}.

We can now define a pss:

I Definition 10 (Partial Steiner Subgraph). S 6= ∅ is a partial Steiner subgraph (pss) if
W (S) 6= ∅,
S is a Steiner subgraph for W (S),
there is at most 1 removable node in S.

Note that a miss is also a partial Steiner subgraph, as it has no removable nodes. We
can now detail the listing procedure in Algorithm 1:

Algorithm 1 List all miss’s of G with t = 3.
Input :A graph G = (V (G), E(G)) and a terminal set W ⊆ V (G) with t = |W | = 3
Output :All miss’s of G and W

1 Call 3-enum(G, W, ∅)
2 Function 3-enum(G, W, S)
3 if W (S) = W then
4 output S // S 6= ∅
5 else
6 X ← ∅
7 foreach v ∈ V (G) \ (S ∪W) : S ∪ {v} is a pss do
8 if ∃S′ ⊇ (S ∪ {v}) : S′ is a miss in G then
9 3-enum(G \X, W, S ∪ {v})

10 X ← X ∪ {v}

In essence, every recursive node of Algorithm 1 considers a partial Steiner subgraph S:
at each step, it identifies all nodes v for which S ∪ {v} is also a partial Steiner subgraph, and
check whether it is possible to eventually extend it into a solution, if so, it recurs adding v to
S; afterwards, v is removed from the graph in subsequent recursive calls to avoid duplication
(this is modeled by the set X).

To prove that the algorithm is correct, we will use the following fact and lemma.

I Fact 2. Let S be a miss for W with t = |W | = 3. Then G[S∪W] is either (1) a subdivision
of the claw, (2) a triangle with 3 pending paths or (3) an induced path.

Proof. Assume that G[S ∪W] is neither an induced path nor a subdivision of the claw and
let P be an induced path in G[S ∪W] from two terminals wa and wb. Let P ′ be the shortest
path in G[S ∪W] from wc to P , and let v be the penultimate vertex of P ′ not in P . Because
G[P ∪ P ′ ∪W] is connected, we can conclude that S = P ∪ P ′, and no vertex of P ′, but
v, is adjacent to a vertex in P . If v is adjacent to two non-adjacent vertices x and x′ of
P ′, then any vertex in P between x and x′ can be removed without disconnecting the rest,
contradicting the minimality of S. Therefore, S is as stated. J

A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, and K. Wasa 73:11

I Lemma 11. Given a graph G and a set of terminals W ⊆ V (G) with t = |W | = 3, let S
be a pss and S′ a miss such that S ⊂ S′. Then there exists v ∈ S′ \ S such that S ∪ {v} is a
pss.

Proof. Since S ∪W (S) and S′ ∪W are connected subgraphs, and recalling from the prelim-
inaries that no two terminals are adjacent, there must exist at least a node x ∈ S′ \ S such
that S ∪ {x} ∪W (S) is connected. Let P be the set of all such nodes, and let us consider
the possible cases. To complete the proof, we need to show that for some node v ∈ P we
have that S ∪ {v} has at most one removable node, meaning it meets all conditions of a pss.
We separately prove 3 comprehensive cases:

S has no removable node. Then it must be thatW (S) = 2 and S is exactly an induced
path between two terminals wa and wb.5 Consider a shortest path from the third terminal
wc to S ∪ {wa, wb} in G[S′ ∪W], and let v be the last vertex of the path not belonging
to S ∪ {wa, wb}. It clearly belongs to P . Consider now S ∪ {v}: either v is connected to
wc, so S ∪ {v} is a miss, i.e., S′ = S ∪ {v}, or v is removable and S′ 6= S ∪ {v}. If v is
removable in S ∪ {v} and makes another vertex x removable in S ∪ {v}, then x is in a
path between two non-adjacent neighbors of v in S ∪ {wa, wb}. But then S′ \ {x} would
be a Steiner subgraph of W , a contradiction. Thus S ∪ {v} is a pss.
|P| = 1. Then all other nodes of S′ may reach S only via the single node v ∈ P . This
means that if any node of S ∪ {v} other than v is removable, i.e., does not disconnect v
from the rest of S and W (S), then it is also removable in S′, contradicting the minimality
of S′. Thus the only possible removable node in S ∪ {v} is v and S ∪ {v} is a pss.
|P| ≥ 2 and S has a removable node b. We first note that |W (S)| = 1. Indeed, if
|W (S)| = 2, then in any case of Fact 2, a connected subset S connecting two terminals
cannot be extended into a connected subset with more than one vertex from S′ \ S.
Therefore, we can conclude that S is a path from a vertex b to a terminal w, with b the
removable node of S. Because |W (S)| = 1 and b ∈ S′, then again by Fact 2 b should have
a neighbor v not adjacent to any vertex in S \ {b}. Therefore, S ∪ {v} is a path included
in S′, and is then a pss. J

Furthermore, let us prove that the extension problem for psss is solvable in polynomial
time when t = 3.

I Lemma 12. Given a graph G, terminal set W ⊆ V (G) with t = |W | = 3 and a pss S, the
question “is there a miss S′ of G such that S ⊆ S′?” can be answered in O(mn) time.

Proof. Let us consider the three possible cases based on W (S):
|W(S)| = 1. Let W (S) = {wa}; as S 6= ∅, S consists of a path from wa to the only
removable node b of S. Let R be the set of nodes not in S orW that are neighbors of either
wa or some node in S \{b}, i.e., R = {v ∈ V (G)\ (S ∪W) : N(v)∩ (W (S)∪S \{b}) 6= ∅}.
Note that connecting terminals via nodes of R makes b redundant, as such nodes can
reach wa without using b; thus we must connect at least one terminal to wa without using
nodes of R, i.e., we may use at most one node of R. Consider G \R: note that b is the
only node in S ∪ {wa} with neighbors outside the solution. How many terminals distinct
from wa are in the same connected component of G \R as b? If zero, we can answer no,
as we will need to connect the remaining two terminals via R, making b redundant (thus
the result not minimal). If two, we can answer yes, as the three terminals are in the
same connected component, and any miss of G \R will fully contain S. Finally, if one,

5 If W (S) = 1, S is an induced path from a terminal, and the node opposite to it is always removable.

MFCS 2019

73:12 Listing Induced Steiner Subgraphs

let us call it wb and let C1 be the connected component of G \R containing wa, b and
wb, and C2 the one containing the final terminal wc; recall that we may use one node
c ∈ R, and this node must connect S to C2. We try all possible choices for c, noting
that c cannot make any node of S removable other than b (otherwise it would remain
removable in S′), and when testing c we must remove all its neighbors in C1 \ S ∪W
from the graph (otherwise we may use them to bypass b, making b redundant). If any
such suitable c exists, we get a miss S′ by taking any induced path from c to wc in C2
and any induced path from b to wb in C1 \ (N(c) \ (S ∪W)), and adding them to S, and
thus we can answer yes. Otherwise, there is no other possibility of minimally connecting
wb and wc to wa without making b or some other node redundant, so we answer no.
|W(S)| = 2. Let W (S) = {wa, wb}. If there is a removable node b in S, define as before
R = {v ∈ V (G) \ (S ∪W) : N(v) ∩ (W (S) ∪ S \ {b}) 6= ∅}. In this case, we may not use
any node of R to connect the remaining terminal wc, as this would allow us to bypass
b, making it redundant. Thus if wc is in the same connected component as b in G \R,
we can answer yes, as any induced path between b and wc in this graph yields a miss
when added to S. Otherwise, there is no connection without using some node of R and
making b redundant, so we can answer no. Otherwise, if there is no removable node in S,
define R′ = {v ∈ V (G) \ (S ∪W) : N(v) ∩ (W (S) ∪ S) 6= ∅}: clearly any miss extending
S must contain at least one (actually, exactly one) node from R′, and for any v ∈ R′, v is
removable in S ∪ {v}, so we can test all possible nodes in R′ as above, since S ∪ {v} has
a removable node (trivially accounting for the special cases where v directly connects to
the third terminal resulting directly in a miss, or where v makes some other node in S
removable and thus cannot be added to S).
|W(S)| = 3. Then either S is a miss and the answer is yes, or it has removable nodes
and the answer is no.

As for the time complexity, removing a set of nodes and computing the connected
components of a graph can be done in O(m) time. The cost is dominated by cases |W(S)| = 1
and |W(S)| = 2, where we need to perform such a test for each node in R or R′, respectively.
As these sets have size O(n) we can answer the question in O(mn) time. J

We can finally claim correctness and complexity of the algorithm:

I Theorem 13. Given G and a set of terminals W ⊆ V (G) with t = |W | = 3, Algorithm 1
lists all miss’s of G for W in O(mn3) time per solution.

Proof. Firstly, the initial call with S = ∅ clearly does not trigger the output in Line 4
as W (S) = ∅. On all other recursive calls, S is a pss such that there exist some miss S′
including S (due to Line 8 in the parent call). Whenever W (S) = W , it follows that S′ = S

because S′ is minimal and cannot contain other (redundant) nodes. So the algorithm only
outputs miss’s.

Furthermore, let S∗ be an arbitrary miss, we show that it is found: let X be any recursion
node of Algorithm 1 such that no node of S∗ has been removed from G, and the current
S, called here SX , is fully contained in S∗ (X exists as both conditions are met in the
beginning, when no node has been removed from G and S = ∅). Let x be the first node of
S∗ \ SX considered on Line 7 such that SX ∪ {x} is a pss (x exists by Lemma 11): when
x is considered, clearly no node of S∗ has yet been removed from G; furthermore, the
condition in Line 8 is true by the existence of S∗, so a child recursive call is generated with
SY = SX ∪ {x} and G still fully containing S∗. By induction, the algorithm will, in some
path of the recursion tree, at each step add one more node of S∗ without removing any from
G, until eventually S∗ is found.

A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, and K. Wasa 73:13

Finally, duplication is impossible by the binary partition argument, as all solutions
generated from a recursive call on Line 9 will contain v, and all subsequent recursive calls
will remove v from G (see Line 10), thus will find different solutions.

As for the cost per solution, since all leaves of the recursion tree output solutions, it is
bound by the cost of the recursion nodes of a root-to-leaf path in the recursion tree, which
are O(n) as each node adds a node to S when recurring. In each node, we must identify
all v such that S ∪ {v} is a pss: some trivial case analysis (using Fact 2) can reveal that
this is true only when v is a neighbor only of the removable node of S, or when S has no
removable node and v has at most two neighbors in S, adjacent to each other, thus this takes
O(|N(v)|), for a total of O(

∑
v∈V (G) |N(v)|) = O(m) time. Furthermore, the test in Line 8

takes O(mn) time by Lemma 12 and is performed O(n) times, for a total cost per recursion
node of (mn2). The cost per solution of Algorithm 1 is thus O(mn3). J

5 Conclusions

We considered minimal Steiner induced subgraphs, a natural variant of Steiner trees, shifting
our focus on a node-centric view. We studied these combinatorial objects providing an
output-sensitive algorithm for minimum miss’s. On the other hand, getting all miss’s with an
output-sensitive algorithm seems to be more challenging for unbounded number of terminals,
as we have shown that this problem is actually harder than listing all the minimal hypergraph
transversals. Moreover, the fact that the extension problem is actually NP-complete, even
with bounded number of terminals, makes us thinking that an ad hoc strategy should be
thought for different sizes of W . For t = 2, the problem can be solved by known listing
algorithm for induced paths. In this paper we have provided an output-sensitive algorithm
for the case t = 3.

As a final remark, we observe that for many problems, like, for instance, listing maximum
size and maximal independent sets [5], listing minimum/maximum solutions is harder than
listing minimal/maximal solutions. In contrast, in the case of miss’s with a bounded number
of terminals, listing minimum size miss’s seems to be easier than getting all miss’s, as we
could efficiently solve the former case for t = O(1), while the latter only for t ≤ 3.

References
1 A. Aazami, J. Cheriyan, and K. R. Jampani. Approximation Algorithms and Hardness Results

for Packing Element-Disjoint Steiner Trees in Planar Graphs. Algorithmica, 63(1–2):425–456,
June 2012.

2 Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. Index-based Optimal
Algorithms for Computing Steiner Components with Maximum Connectivity. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15,
pages 459–474, New York, NY, USA, 2015. ACM. doi:10.1145/2723372.2746486.

3 Chandra Chekuri, Alina Ene, and Ali Vakilian. Node-Weighted Network Design in Planar
and Minor-Closed Families of Graphs. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts,
and Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of
Lecture Notes in Computer Science, pages 206–217. Springer, 2012.

4 Joseph Cheriyan and Mohammad R. Salavatipour. Packing element-disjoint Steiner trees. ACM
Transactions on Algorithms, 3(4):47:1–47:10, November 2007. doi:10.1145/1290672.1290684.

5 Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, and Luca Versari. Listing
Maximal Independent Sets with Minimal Space and Bounded Delay. In String Processing and

MFCS 2019

https://doi.org/10.1145/2723372.2746486
https://doi.org/10.1145/1290672.1290684

73:14 Listing Induced Steiner Subgraphs

Information Retrieval - 24th International Symposium, SPIRE 2017, Palermo, Italy, September
26-29, 2017, Proceedings, pages 144–160, 2017. doi:10.1007/978-3-319-67428-5_13.

6 Nicolas Derhy and Christophe Picouleau. Finding induced trees. Discrete Applied Mathematics,
157(17):3552–3557, 2009.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 DIMACS. 11th DIMACS Implementation Challenge. http://dimacs11.zib.de/, 2014 (page
accessed April 2019).

9 Mitre C. Dourado, Rodolfo A. Oliveira, and Fábio Protti. Algorithmic aspects of Steiner
convexity and enumeration of Steiner trees. Annals of Operations Research, 223(1):155–171,
December 2014. doi:10.1007/s10479-014-1607-5.

10 Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational Aspects of Monotone
Dualization: A Brief Survey. Discrete Appl. Math., 156(11):2035–2049, June 2008.

11 Sudipto Guha and Samir Khuller. Improved Methods for Approximating Node Weighted
Steiner Trees and Connected Dominating Sets. Information and Computation, 150(1):57–74,
1999. doi:10.1006/inco.1998.2754.

12 Mathias Hauptmann and Marek Karpinski. A Compendium on Steiner Tree Problems.
http://theory.cs.uni-bonn.de/info5/steinerkompendium/, Accessed February 2018.

13 Daiki Hoshika and Eiji Miyano. Approximation Algorithms for Packing Element-Disjoint
Steiner Trees on Bounded Terminal Nodes. IEICE Transactions, 99-A(6):1059–1066, 2016.
URL: http://search.ieice.org/bin/summary.php?id=e99-a_6_1059.

14 Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. On Minimal Steiner
Maximum-Connected Subgraph Queries. IEEE Trans. Knowl. Data Eng, 29(11):2455–2469,
2017. doi:10.1109/TKDE.2017.2730873.

15 L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On the Complexity of Some
Enumeration Problems for Matroids. SIAM Journal on Discrete Mathematics, 19(4):966–984,
January 2005. doi:10.1137/S0895480103428338.

16 PACE. The parametrized Algorithms and Computational Experiments Challenge. https:
//pacechallenge.wordpress.com/pace-2018/, 2018.

17 Jan Arne Telle and Yngve Villanger. Connecting Terminals and 2-Disjoint Connected Subgraphs.
In Graph-Theoretic Concepts in Computer Science, pages 418–428. Springer Berlin Heidelberg,
2013.

18 Takeaki Uno. An Output Linear Time Algorithm for Enumerating Chordless Cycles. IPSJ
SIG Notes, 2003(110):47–53, November 2003.

https://doi.org/10.1007/978-3-319-67428-5_13
http://dimacs11.zib.de/
https://doi.org/10.1007/s10479-014-1607-5
https://doi.org/10.1006/inco.1998.2754
http://theory.cs.uni-bonn.de/info5/steinerkompendium/
http://search.ieice.org/bin/summary.php?id=e99-a_6_1059
https://doi.org/10.1109/TKDE.2017.2730873
https://doi.org/10.1137/S0895480103428338
https://pacechallenge.wordpress.com/pace-2018/
https://pacechallenge.wordpress.com/pace-2018/

Enumeration of Preferred Extensions in Almost
Oriented Digraphs
Serge Gaspers
UNSW Sydney, Sydney, Australia
Data61, CSIRO, Australia
sergeg@cse.unsw.edu.au

Ray Li
UNSW Sydney, Sydney, Australia
rayli.main@gmail.com

Abstract
In this paper, we present enumeration algorithms to list all preferred extensions of an argumentation
framework. This task is equivalent to enumerating all maximal semikernels of a directed graph. For
directed graphs on n vertices, all preferred extensions can be enumerated in O∗(3n/3) time and there
are directed graphs with Ω(3n/3) preferred extensions. We give faster enumeration algorithms for
directed graphs with at most 0.8004 · n vertices occurring in 2-cycles. In particular, for oriented
graphs (digraphs with no 2-cycles) one of our algorithms runs in time O(1.2321n), and we show that
there are oriented graphs with Ω(3n/6) > Ω(1.2009n) preferred extensions.

A combination of three algorithms leads to the fastest enumeration times for various proportions
of the number of vertices in 2-cycles. The most innovative one is a new 2-stage sampling algorithm,
combined with a new parameterized enumeration algorithm, analyzed with a combination of the
recent monotone local search technique (STOC 2016) and an extension thereof (ICALP 2017).

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning; Theory of computation → Fixed parameter tractability; Mathematics of computing →
Enumeration

Keywords and phrases abstract argumentation, exact algorithms, exponential time algorithms,
parameterized algorithms, enumeration algorithms, semikernels in digraphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.74

Related Version https://arxiv.org/abs/1907.01006

Acknowledgements We thank Oliver Fisher for fruitful discussions and collaboration on preliminary
results in the early stages of this work.

1 Introduction

In Dung’s theory of abstract argumentation [15], an argumentation framework (AF) is a
digraph G = (V,E), where each vertex represents an argument, and an arc (u, v) ∈ E

denotes that argument u attacks argument v. There are various semantics that express
what properties a set of arguments should have for a rational agent to stand by that set of
arguments. One of the most central semantics is the preferred semantics that was already
proposed by Dung in his foundational paper [15]. Let S ⊆ V be a subset of vertices (also
called extension) of a digraph G = (V,E). The set S is conflict-free if no arc has both
endpoints in S. A vertex v ∈ V is acceptable with respect to S if for each arc (u, v) ∈ E
there is an arc (w, u) ∈ E with w ∈ S. In other words, for each argument u that attacks v,
there is an argument w in S that attacks u. We say in this case that w defends v against u.
The set S is admissible if it is conflict-free and each argument in S is acceptable with respect
to S. The set S is preferred if it is an inclusion-wise maximal admissible set.

© Serge Gaspers and Ray Li;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 74; pp. 74:1–74:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergeg@cse.unsw.edu.au
mailto:rayli.main@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.74
https://arxiv.org/abs/1907.01006
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Enumeration of Preferred Extensions in Almost Oriented Digraphs

While we will use the language of abstract argumentation, we remark that such vertex
sets have also been studied in graph theory. Neumann-Lara [27] (see also [21]) defined the
notion of semikernels. Maximal semikernels are equal to the preferred extensions in the
directed graph where all arcs are reversed. The related notion of kernels [32] has the same
correspondence with stable extensions in abstract argumentation, and was introduced as an
abstract solution concept in cooperative game theory, but has been extensively studied in
the theory of directed graphs. In particular, various issues around the enumeration of kernels
and semikernels have been considered in previous work [2, 5, 20, 29].

Motivation. A central problem in abstract argumentation is the enumeration of extensions
prescribed by a given semantics. The enumeration of preferred extensions is of particular
interest, firstly for its own sake, but also in the study of other semantics as it forms the
basis of several other semantics refining this set. A number of existing algorithms and
implementations enumerate all preferred extensions of a digraph (see, e.g., [6, 7, 9, 10,
11, 12, 14, 25, 28, 30, 31]). The enumeration of preferred extensions is also a part of the
biennial International Competition on Computational Models of Argumentation (ICCMA).
Computational problems where the enumeration of extensions are used involve answering the
questions: is a given argument in some / all preferred extensions and what is the number of
preferred extensions containing a given argument / in total. Upper bounds on the number of
extensions under various semantics have also been proposed as fundamental characteristics
to compare various semantics in abstract argumentation [3, 16].

We study the enumeration of preferred extensions in digraphs with no, or relatively few,
2-cycles (i.e., bidirectional arcs). Our aim is to determine how much the presence of 2-cycles
affects the number of preferred extensions of an AF. Mutually attacking arguments play a
special role in abstract argumentation [24], but this conflict is often resolved rather easily if
the strength of the two attacks can be evaluated [4], or the user’s preference between the two
arguments can be elicited [26, 1]. These methods of resolving conflicts motivate the study of
problems, and in particular enumeration problems, for AFs with no or few 2-cycles.

Our results. Define the resolution order of a digraph G = (V,E), denoted r(G), as the
number of vertices that belong to a 2-cycle in G. We study enumeration algorithms and
combinatorial upper bounds on the number of preferred extensions in oriented graphs
(digraphs without 2-cycles) and digraphs that have small resolution order.

Our main result is an algorithm that, for any ε > 0, enumerates all preferred extensions
of a digraph G on n vertices in time

O∗

min

ϕ2r · ϕ1−r,

((
1 + 2 1

4 − 1√
2

)r
·
(

2− 1√
2

)1−r
)1+ε

, 31/3

n
≤ O∗

((
min

(
1.5180r · 1.23211−r, 1.4822r · 1.29291−r, 1.4423

))n)
,

where r = r(G)/n, and ϕ ≈ 1.2321 is the positive root of 1− x−1 − x−8. The O∗ notation
hides factors that are polynomial in the input size. See Figure 1, which plots the base α
of the running time expressed as O∗(αn) for r varying from 0 to 1. For r = 1, this is best
possible and follows from the work in [16, 26]. At the other end of the spectrum, i.e., for
oriented graphs where r = 0, the upper bound is O∗(ϕn) ≤ O(1.2321n) and is obtained
via a carefully constructed branching algorithm and running time analysis. We also give a
lower bound on the largest number of preferred extensions an oriented graph on n vertices
may have of Ω(3n/6) ≥ Ω(1.2009n). A construction, which we call the Oriented Translation,
reducing an arbitrary digraph G = (V,E) to an oriented graph with |V | + r(G) vertices,

S. Gaspers and R. Li 74:3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.25

1.3

1.35

1.4

1.45

1.5

r

α

Figure 1 The graph depicts the base of the exponential running times O∗(αn) of the three
enumeration algorithms, according to r = r(G)/n. When r < 0.6684, our branching algorithm for
oriented graphs together with the Oriented Translation (dark green) gives the fastest algorithm.
For r > 0.8005, the algorithm based on previous work [16, 26] (orange) is fastest. In the middle
range, the combination of the 2-phase monotone local search with the parameterized enumeration
algorithm (blue) is fastest. Our lower bound on the largest number of preferred extensions is drawn
with a dashed red line.

such that there is a bijection between their preferred extensions, allows us to generalize
these upper and lower bounds to O∗

(
ϕ2·r(G) · ϕn−r(G)) ≤ O(1.5180r(G) · 1.2321n−r(G)) and

Ω(3r(G)/3 · 3(n−r(G))/6) ≥ Ω(1.4422r(G) · 1.2009n−r(G)), respectively.
Our main technical contribution is the third algorithm. It relies on a parameterized

enumeration algorithm and extensions of the recent monotone local search framework [17].
The parameterized enumeration algorithm has as input a digraph G = (V,E), a set of
arguments S, and a non-negative integer k, and it enumerates all maximal admissible
extensions T ⊆ S of G within distance k of S. Its running time can be upper bounded
by O∗(2k/2+r(G[S])/4). This is optimal, since there are instances for which the solution
consists of Ω(2k/2+r(G[S])/4) preferred extensions at distance at most k from S. Furthermore,
under the Strong Exponential Time Hypothesis, the corresponding decision problem has no
O∗(2(1−ε)(k/2+r(G[S])/4)) time solution for any ε > 0. We use this parameterized enumeration
algorithm in a new 2-phase monotone local search procedure, where we separately sample
vertices from B, the set of vertices in at least one 2-cycle, and V \ B and then apply the
parameterized enumeration algorithm. The running time analysis is a new combination of the
results in [17] for the first sampling phase and [23] for the second sampling phase, combined
with the parameterized subroutine. From a technical point of view, this is the most innovative
part of this paper. (From a conceptual point of view, the most innovative contribution is
probably the synergy between modern enumeration algorithmics and the theory of abstract
argumentation.) This results in an algorithm enumerating all preferred extensions of a given
digraph G in time O∗

((
1 + 21/4 − 2−1/2)(1+ε)·r(G) ·

(
2− 2−1/2)(1+ε)·(n−r(G))).

Interpretation of results. Figure 1 indicates we have narrowed the gap between best known
lower and upper bounds for a wide range of r and improved algorithms and combinatorial
upper bounds whenever r ≤ 0.8004. The result for r = 0 shows that for oriented graphs, our

MFCS 2019

74:4 Enumeration of Preferred Extensions in Almost Oriented Digraphs

new algorithm allows to handle instances with 75% more arguments, compared with the
previous best O(3n/3) upper bound. (We have that log1.2321(31/3) ≈ 1.7545.)

Outline. Sections 3 and 4 describe our monotone local search algorithm. Section 5 describes
our branching algorithm for oriented graphs.

First we introduce the parameterized enumeration problem that will form the subroutine
of our Monotone Local Search.

Maximal Admissible Subset Enumeration (MASE)
Input: Graph G, set S ⊆ V (G), integer k
Parameter: k

Output: Enumerate all maximal admissible sets T ⊆ S such that |S \ T | ≤ k.

There is a subtlety here with how we define maximal. We say T is a maximal admissible
subset of S if there does not exist an admissible set U such that T (U ⊆ S. Notably T is
not necessarily a preferred extension (though T is if S = V (G)).

In Section 3, we present an algorithm for MASE, parameterized by k and r(G[S]), the
resolution order of the subgraph of G induced by S.

I Theorem 1. For an instance I = (G,S, k) of MASE, let µ(I) := k
2 + r(G[S])

4 . Then MASE
can be solved in O∗(2µ(I)) time. Furthermore, there are at most 2µ(I) maximal admissible
subsets of S within distance k of S. Hence, there are at most 2µ(I) preferred extensions that
are subsets of S with size ≥ |S| − k.

Our algorithm is a standard parameterized branching algorithm. Compared to the enumera-
tion of independent sets, the primary additional tool we have is a powerful simplification
rule, (Undefendable), for vertices with in-degree 0.

In Section 4, we extend our parameterized algorithm into a general enumeration algorithm
through a novel 2-phase application of Monotone Local Search. Since 2-cycles increase the
run time of our MASE subroutine, we modify Monotone Local Search to sample separately
between a set of “bad vertices” (ones contained in a 2-cycle) and “good vertices” (ones not
contained in any 2-cycle). This presents a speed up compared to a more direct application of
the Monotone Local Search framework. We believe this may be useful for other problems.

Separately, Section 5 presents a branching algorithm for oriented graphs. Again, (Un-
defendable) plays a critical role. By carefully setting up the state we also have a simplifica-
tion rule for vertices with out-degree 0. We tailor our branching rules to take full advantage
of these two simplification rules. This is combined with a lot of careful case analysis and
ad-hoc methods (including a graph classification theorem for Case 4).

Each of our algorithms also provide a corresponding combinatorial upper bound on the
number of preferred extensions. The various enumeration algorithms and bounds are collected
in Section 6. To extend the results from Section 5 to general graphs we require the following
result which we call the Oriented Translation.

I Theorem 2. There is a linear time algorithm that transforms any AF G into an oriented
AF G′ with |V (G′)| = |V (G)|+ r(G) + 3 such that there is a bijection between the preferred
extensions of G and the preferred extensions of G′ that can be applied in linear time.

The basic idea of the construction is carefully converting 2-cycles into 4-cycles by duplicating
vertices contained in at least one 2-cycle. The construction can be found in the full version.

In the full version we include all omitted proofs (including, in particular, the case analysis
of our branching algorithms) and a few extra results:

S. Gaspers and R. Li 74:5

We apply Theorem 2 to derive complexity results on oriented graphs by extending
constructions for directed graphs. We show that:

Unless P=NP, no algorithm enumerates the admissible or preferred extensions of an AF
in output-polynomial time, even when the AF is an oriented graph.
Assuming the Strong Exponential Time Hypothesis, our algorithm for the decision variant
of MASE is optimal.
The enumeration bound in Theorem 1 is tight (i.e: there exist instances with 2µ(I)

maximal admissible subsets within distance k).

We also briefly justify the choice of the measure µ we use for our MASE algorithm by
comparing it against similar measures.

Notation. An oriented graph is a digraph with no 2-cycles.
We will use the notation N(v) to denote the set of vertices adjacent to v and N [v] to

denote N(v) ∪ {v}.
We will assume throughout that AFs have no self loops. In the full version we present

the Loopless Translation which, with a (small) constant overhead, transforms any AF into a
loopless AF with the same lattice of admissible extensions (under inclusion).

2 Background on Analysis of Branching Algorithms

All results here can be found in standard textbooks. We mostly follow Fomin & Kratsch [19].
To analyze our branching algorithms we use Measure & Conquer [18]. A measure is a

function assigning a non-negative number to each instance I.
We define the following standard terminology (e.g: see [19, 13]).

I Definition 3 (Branching Vector and Number [19]). Let µ be a measure. Let b be a branching
rule that for any input instance, say I, branches into r instances with measures µ(I) −
t1, µ(I) − t2, . . . , µ(I) − tr such that for all i, ti > 0. Then we call b = (t1, t2, . . . , tr) the
branching vector of branching rule b.

Let α be the unique positive real root of xn − xn−t1 − xn−t2 − . . .− xn−tr .
We call α the branching number of the branching vector b.

The following lemma from [22] forms the basis for the analysis of our branching algorithms.

I Lemma 4 (Combine Analysis Lemma [22]). Let A be an algorithm for a problem which for
each instance, say I, either directly solves the instance in O∗(αµ(I)

0) time or after polynomial
time, applies one of r branching rules bi, the i-th of which has branching number αi. Then A
has running time O∗(αµ(I)) where α = max0≤i≤r(αi).

The following lemma forms the basis of our enumeration bounds. The search tree of a
branching algorithm is the tree formed by the recursive calls, with the leaves being cases
that can be solved directly. In all our applications the number of leaves is an upper bound
on the number of objects being enumerated.

I Lemma 5 (Combine Analysis Lemma for Enumeration). Let A be an algorithm for a problem
which for each instance, say I, either directly solves the instance with a branching algorithm
that generates at most αµ(I)

0 leaves or applies one of r branching rules bi, the i-th of which
has branching number αi. Then the search tree for applying A to I has at most αµ(I) leaves
where α = maxi(αi).

MFCS 2019

74:6 Enumeration of Preferred Extensions in Almost Oriented Digraphs

3 Parameterized Enumeration Problems

Our algorithm for MASE follows a standard template for parameterized branching algorithms
(see Section 2 for notation). We will consider the measure µ(I) = k

2 + b
4 where k is the

number of vertices we are allowed to remove and b := r(G[S]) is the resolution order of
G[S]. We will design a branching algorithm with run time O∗(2µ(I)) which recurses into
subinstances and collates their results to obtain the maximal admissible subsets of S.

However, there is a technical difficulty in the collation step arising from the fact that a
maximal admissible subset of S′ (S may not be a maximal admissible subset of S. This
gives rise to the following subproblem:

Maximal Subset Collation
Input: Graph G, c pairs (Si, Ci) where for each i, Si ⊆ V (G) and Ci is a set containing

only maximal admissible subsets of Si

Output: A set containing all maximal elements of
⋃c

i=1 Ci

The main result we need is:

I Lemma 6. Maximal Subset Collation can be solved in O(c
∑c
i=1|Ci| · poly(|V |)) time.

An algorithm for Maximal Subset Collation can be found in the full version. It is a
consequence of Lemma 7.

3.1 An O∗(2µ(I)) algorithm for Maximal Admissible Subset
Enumeration

The overall structure of our algorithm is described in Algorithm 1.
The following table lists the branching rules in application order with the first row being

the base case. The second column describes the instances each rule is applicable to. After
applying simplification rules, our branching algorithm will always apply the first rule that is
applicable to the input instance.

Case Requirement to apply Running Time

Base S is conflict-free. Solves in O∗(1) time, returns
≤ 1 set.

1 G[S] is oriented with maximum total degree ≤ 2. Branching vector (1, 1),
branching number 2.

2 There is a 2-cycle in G[S]. Branching vector (1, 1),
branching number 2.

3 G[S] has maximum total degree ≥ 4. Branching vector (2, 1
2),

branching number ≈ 1.91.
4 G[S] contains a vertex with total degree 3. Branching vector (1, 3

2),
branching number ≈ 1.76.

We note that these requirements are exhaustive, hence there will always be at least one
applicable rule in any instance.

The base case follows trivially from the following more general result:

I Lemma 7. Suppose S ⊆ V (G) induces a DAG in G. Then S has exactly one maximal
admissible subset and it can be found in polynomial time.

The main tool for this is the following Simplification Rule which we will use repeatedly:

I Simplification Rule 1 (Undefendable). Let u ∈ S be a vertex such that there exists a
vertex a ∈ V (G), a attacks u and no vertex in S attacks a. Then there is no admissible
subset of S that contains u so we can safely set S ← S \ {u}.

S. Gaspers and R. Li 74:7

Algorithm 1 Structure of MASE branching algorithm.

Ensure: Returns all maximal admissible subsets T ⊆ S such that |S \ T | ≤ k
function MASE(S, k)

if k < 0 then
return ∅

while (Undefendable) applies do
Apply (Undefendable)

if Base Case applies then
Solve the instance directly through the base case subroutine.

else
Let bi be the first branching rule that applies.
Let (S1, k1) . . . (Sr, kr) be the subinstances obtained from applying bi.
Let Ci = MASE(Si, ki), for all 1 ≤ i ≤ r.
return Maximal_Subset_Collation((S1, C1), . . . , (Sr, Cr))

Lemma 7 follows from applying (Undefendable) to S until it is no longer applicable.
Then S is acceptable with respect to S (all vertices in V attacking S are also attacked by
S) and conflict-free (else (Undefendable) would be applicable to any vertex attacked by a
maximal vertex in G[S]). Hence, by definition, S is admissible. It is the unique maximal
admissible subset as (Undefendable) only removes vertices in no admissible subsets of S.

The above results are essentially all well known (see [14, 8] for earlier applications of
(Undefendable)). The full version contains the above argument in more detail.

Proofs of the branching cases can be found in the full version. A few short remarks:
Case 1 follows from noting G[S] must be a family of cycles.
Cases 2 and 3 follow from picking a specific vertex v then applying a 2-way branch, in

one branch enumerating all maximal admissible subsets that include v, in the other branch
enumerating all that do not include v. In case 2 we pick the vertex in the 2-cycle with higher
total degree. In case 3 we pick any vertex with total degree at least 4.

Case 4 is probably the most instructive. It best showcases the power of (Undefendable).
First we show a vertex v exists with in-degree 1, out-degree 2. Then a 2-way branch is
applied to the vertex attacking v, using (Undefendable) to improve the branch where the
vertex is excluded and v is left with in-degree 0.

3.2 Running Time Analysis
The base case is solvable in polynomial time. Each of our branching rules has branching
number ≤ 2. Hence, if we ignore the calls to Maximal Subset Collation, by the Combine
Analysis Lemma our algorithm has running time O∗(2µ(I)).

Maximal Subset Collation is applied to each admissible subset encountered by the MASE
algorithm (i.e: each leaf in the search tree) at most d times, where d is the maximum depth
of the search tree. By Lemma 6 each application incurs a O(poly(|V |)) cost (c ≤ 2 for our
branching rules). Hence the overall cost incurred by the Maximal Subset Collation step is

O(A · d · poly(|V |))

where A is the total number of admissible subsets encountered by the MASE algorithm
(equivalently, the number of leaves in the search tree). By the Combine Analysis Lemma for
Enumeration, A is O(2µ(I)). The maximum depth d is O(µ(I)) which we may take to be
O(|V |). Hence Maximal Subset Collation incurs an overhead cost of O∗(2µ(I)).

MFCS 2019

74:8 Enumeration of Preferred Extensions in Almost Oriented Digraphs

As noted, our algorithm also satisfies the requirements for applying the Combine Analysis
Lemma for Enumeration. We summarize all the above results in the following theorem.

I Theorem 8. Let µ(I) = k
2 + b

4 , where b is the resolution order of G[S]. Then MASE can
be solved in O∗(2µ(I)) time. Furthermore, there are at most 2µ(I) maximal admissible subsets
of S within distance k of S. Hence, there are at most 2µ(I) preferred extensions that are
subsets of S with size ≥ |S| − k.

4 Monotone Local Search

In this section, we apply Monotone Local Search to our O∗(2µ(I)) algorithm for Maximal
Admissible Subset Enumeration. A basic exposition of Monotone Local Search will be
provided here, see [17] for additional background. We adopt the notation of [17].

The framework normally applies to extension problems. However we can just as easily
apply it to removal problems (formally by focusing on the complement of each set, we
can turn any removal problem into an extension problem). Hence, we will freely use the
framework with removal problems instead.

For our application, the instance I is the graph G and the family we are looking to
enumerate, FI , is the set of all preferred extensions of G. We will apply Monotone Local
Search using MASE as our subroutine.

For a MASE instance I ′ = (G,X, k), let FkI,X denote the set of all maximal admissible
sets T ⊆ X such that |X \ T | ≤ k. Hence FkI,X contains all preferred extensions that are
subsets of X within distance k, but may also contain admissible extensions that are not
preferred extensions.

Because of this, our Monotone Local Search will enumerate FI , however, it may also
enumerate some non-maximal admissible extensions. Our result, Theorem 10, will account
for this, however, for simplicity we will just speak of enumerating FI throughout this section.

A naive application of the Monotone Local Search framework with our O∗
(

2 k
2 + b

4

)
algorithm for enumerating FkI,X yields an O∗

(
2 b

4

(
2− 1√

2

)n+o(n)
)
≈ O∗(1.1893b · 1.2929n)

time algorithm that enumerates all preferred extensions of G. To improve this we need a
basic understanding of how Monotone Local Search works.

4.1 Basic Overview of Monotone Local Search
We need the following definition from [17] (slightly modified to account for our preference for
removal problems):

I Definition 9 ([17]). Let U be a universe of size n and let 0 ≤ p ≤ q ≤ n. A family C ⊆
(
U
q

)
is an (n, p, q)-set-containing-family if for every set S ∈

(
U
p

)
, there exists a Y ∈ C such that

S ⊆ Y .

For any fixed s, a value t ≥ s will somehow be chosen. Then, a (n, s, t)-set-containing-
family Cs is constructed. For each set in Cs, its subsets from FI obtained by removing at
most t− s elements are then enumerated using an enumeration subroutine. This enumerates
all elements of FI with size s. Supposing the subroutine has run time O∗(αk) (where k is
the parameter), this step of Monotone Local Search has run time O∗(|Cs| · αt−s).

Repeating this for all s, Monotone Local Search has running time O∗(max
1≤s≤n

|Cs| · αt−s).

With the right choices of t and Cs, [17] shows the running time O∗((2− 1
α)n+o(n)).

S. Gaspers and R. Li 74:9

Algorithm 2 Structure of Improved Monotone Local Search algorithm.

Ensure: Returns a set containing all preferred extensions of G (and possibly some non-
preferred extensions)
function ImprovedMLS(G)

Let FI = ∅.
for b = 1 to |B| do

Let b′ = determine_b′(b).
Let Cb be a (|B|, b, b′)-set-containing-family.
for d = 1 to |D| do

Let d′ = determine_d′(d).
Let Cd be a (|D|, d, d′)-set-containing-family.
for all pairs (S, T) with S ∈ Cb, T ∈ Cd do

Let FI = FI ∪MASE(S ∪ T, (b′ − b) + (d′ − d)).
return FI

4.2 Improving our Monotone Local Search
We start with some notation. For any digraph G = (V,E), let B be the set of vertices in V
in at least one 2-cycle and let D := V \B. The key idea is we will sample vertices from B

and D separately. The overall structure is described in Algorithm 2. Except for the separate
sampling, it is identical to a standard application of Monotone Local Search.

First, we argue correctness, i.e: that every preferred extension is enumerated at least
once. Fix a preferred extension, say U , and suppose U contains b vertices in B and d vertices
in D. Then, by the definition of set-containing-families, there exists a S ∈ Cb such that
U ∩B ⊆ S and a T ∈ Cd such that U \B ⊆ T . Now we note that S ⊆ B, T ⊆ V \B to get:

|(S t T) \ U | = |S \ (U ∩B)|+ |T \ (U \B)| = (b′ − b) + (d′ − d)

Hence U is enumerated in the call to MASE(S ∪ T, (b′ − b) + (d′ − d)) as required.
Now we argue the runtime. For a fixed b, d the calls to MASE have total run time

O∗(|Cb| · |Cd| · 2
(b′−b)+(d′−d)

2 + b′
4) for some choice of b′, d′. Our overall running time is

O∗
(

max
0≤b≤|B|

max
0≤d≤|D|

|Cb| · |Cd| · 2
(b′−b)+(d′−d)

2 + b′
4

)

We can split this into two terms to get a complexity of O∗
(

max
0≤d≤|D|

|Cd| · 2
(d′−d)

2

)
multiplied

by O∗
(

max
0≤b≤|B|

|Cb| · 2
(b′−b)

2 + b′
4

)
.

We will now analyze the running time with the right choices of b′ and d′.
The first of these two terms can be analyzed using the analysis in [17]. This term is the

complexity one attains for Monotone Local Search with a O∗(2 k
2) subroutine. Hence the

analysis in [17] gives a complexity of O∗((2− 1√
2)|D|+o(|D|)).

We need the extended analysis presented in [23] to analyze the second term. This term
is the complexity one attains for Monotone Local Search with a O∗(2 k

2 + n−|X|
4) subroutine

(where k is the parameter, n = |U | the size of the underlying set and X is the set we are
extending). Hence the analysis in [23] gives a complexity of O∗((1 + 2 1

4 − 1√
2)|B|+o(|B|)).

The papers we have cited also give a corresponding combinatorial upper bound on the
number of preferred extensions. We summarize the above results as follows.

MFCS 2019

74:10 Enumeration of Preferred Extensions in Almost Oriented Digraphs

I Theorem 10. Let G = (V,E) be a digraph. Let r be the proportion of vertices in V that
are in at least one 2-cycle.

Then there exists a O∗(((1+2 1
4 − 1√

2)r(2− 1√
2)1−r)|V |+o(|V |)) ≈ O∗((1.4822r1.29291−r)|V |)

time algorithm that enumerates all preferred extensions of G; however it may also enumerate
some non-maximal admissible extensions. Furthermore, there are at most O∗(((1 + 2 1

4 −
1√
2)r(2− 1√

2)1−r)|V |) ≈ O∗((1.4822r1.29291−r)|V |) preferred extensions in G.

5 Improved Enumeration Algorithm for Oriented Graphs

Finally, we outline a branching algorithm with a finer analysis for oriented graphs. As with
MASE, we will follow a standard template for branching algorithms. A summary of the
necessary concepts can be found in Section 2. Our algorithm creates a search tree with at
most ϕn leaves where ϕ ≈ 1.2321 is the branching number for branching vector (8, 1).

In Section 6 we will use the Oriented Translation (Theorem 2) to obtain a general
enumeration algorithm parameterized by the number of vertices in at least one 2-cycle.

5.1 Overview
The overall structure of our algorithm is described in Algorithm 3.

The state of the algorithm consists of the subset Und ⊆ V (G) and a queue of vertices
Def (Und for undecided and Def for deferred). Und is the set of vertices we have yet to
make a decision on whether we should include them. Def is a queue of vertices which have
no outgoing arcs to Und. These vertices will be handled in the base case. While branching
we can essentially assume the vertices in Def do not exist.

We maintain the following invariants. We outline why they are invariant, it is straight-
forward to verify that each case of our branching algorithm maintains these invariants.
1. Und and Def are disjoint. This holds as vertices are only ever deleted from or moved

between Und and Def, never copied.
2. G[Def] is a DAG where each vertex v ∈ Def only attacks vertices that were added to Def

before v. This is crucial for the base case since a DAG has 1 maximal admissible subset.
This holds as only vertices with out-degree 0 in G[Und] are ever moved to Def.

3. There is no attack from any vertex in Def to any vertex in Und. This holds for the same
reason as Invariant 2.

Our measure is µ = |Und|. For any instance, our algorithm creates a search tree with
at most ϕµ leaves. Hence, calling OrientedEnumeration(V (G), []) will return all preferred
extensions of G by traversing a search tree with at most ϕ|V (G)| leaves.

5.2 Extra Notation
We will say a vertex has degree (a,−) if it has in-degree a, a vertex has degree (−, b) if it
has out-degree b and a vertex has degree (a, b) if it has in-degree a and out-degree b.

5.3 Simplification Rules
Both of these are applicable in polynomial time and decrease µ = |Und|.

I Simplification Rule 2 (Out-degree 0). Let v be a vertex in G[Und] with out-degree 0. Move
v from Und to the end of the queue Def.

S. Gaspers and R. Li 74:11

Algorithm 3 Structure of Oriented maximal admissible enumeration algorithm.

Require: Und∩Def = ∅.
Require: G[Def] is a DAG where each v ∈ Def only attacks vertices added to Def before v.
Require: There is no attack from any vertex in Def to any vertex in Und.
Ensure: Returns all maximal admissible subsets of Und∪Def.

function OrientedEnumeration(Und,Def)
while Any simplification rule applies do

Apply said simplification rule
if Base Case applies then

Solve the instance directly through the base case subroutine.
else

Let bi be the first branching rule that applies.
Let (U1, D1) . . . (Ur, Dr) be the subinstances obtained from applying bi.
Let Ci = OrientedEnumeration(Ui, Di), for all 1 ≤ i ≤ r.
return Maximal_Subset_Collation((U1 ∪D1, C1), . . . , (Ur ∪Dr, Cr))

I Simplification Rule 3 (In-degree 0). Let v be any vertex in G[Und] with in-degree 0.
Then by Invariant 3, v has in-degree 0 in G[Und∪Def]. Applying Simplification Rule
(Undefendable) we can set Und← Und \N(v). After that, v has out-degree 0 in G[Und]
and hence we move v from Und to Def.

Our new instance I ′ = (Und′,Def ′) has:
Und′ = Und \N [v].
Def ′ = Def ∪{v}.

Due to these rules, henceforth we may assume each vertex in G[Und] has in-degree ≥ 1,
out-degree ≥ 1 and (total) degree ≥ 2.

5.4 Branching Rules
Our algorithm will apply the first rule applicable to the instance:

Case Requirement to apply Worst case branching number

Base Und = ∅. Solves in O∗(1), returns 1 set.
1 ∃v ∈ G[Und] with total degree ≥ 7. Branching vector (8, 1),

branching number ϕ ≈ 1.2321.
2 ∃v ∈ G[Und] with degree (1,−). Branching vector (4, 3),

branching number ≈ 1.221.
3 ∃v ∈ G[Und] with in-degree 6= out-degree. Branching vector (6, 5, 5),

branching number ≈ 1.2298.
4 G[Und] has a weakly connected component where

every vertex has degree (2, 2).
Branching vector (6, 5, 5),
branching number ≈ 1.2298.

5 G[Und] has a weakly connected component where
every vertex has degree (3, 3).

Branching vector (7, 7, 7, 7),
branching number ≈ 1.219.

6 There is a weakly connected component in G[Und]
where every vertex has in-degree = out-degree.

Branching vector (7, 5, 5),
branching number ≈ 1.218.

We note the base case and cases 3 and 6 cover all possible inputs. Hence there will always
be at least one applicable rule.

MFCS 2019

74:12 Enumeration of Preferred Extensions in Almost Oriented Digraphs

Our primary strategy is to pick a specific vertex v and do a 2-way branch, separately
enumerating the maximal admissible subsets that include v and the ones that exclude v.

In the branch where we include v we must exclude v’s neighbors. Hence we create a new
instance I ′ = (Und′,Def) where Und′ = Und \N(v).
Now v is isolated in G[Und′] so by Simplification Rule 2 we may move v from Und′ to
Def ′. Hence in our new instance we finally have:

Und′ = Und \N [v].
Def ′ = Def ∪{v}.

and hence µ(I ′) = µ(I)− |N [v]| = µ(I)− deg(v)− 1.
As a technical note, not every subset enumerated in this branch contains v, however,
every maximal admissible subset that contains v will be enumerated in this branch.
In the branch where we exclude v our new instance I ′ = (Und′,Def ′) is:

Und′ = Und \{v}.
Def ′ = Def.

and hence µ(I ′) = µ(I)− 1.

Hence our branching vector is (deg(v) + 1, 1). However, often our choice of v allows us to
immediately apply our simplification rules to improve the branch where v is excluded.

Full proofs of each case can be found in the full version. A few short remarks:
In the base case, by Invariant 2, G[Und∪Def] is a DAG. The base case then follows

trivially from Lemma 7.
Case 2 is a good example of the strategy of picking a specific v to apply a 2-way branch

on. We will pick a v that allows us to apply our simplification rules in the branch where v is
excluded. However, the choice of v will depend on some case analysis on degrees of vertices.

Case 3 is similar to Case 2, a specific v is chosen on which we apply a 2-way branch.
Case 4 is done through a graph classification theorem. We classify the family of oriented

graphs where each vertex has in-degree 2, out-degree 2 and both in-neighbors adjacent (if
there is a vertex with independent in-neighbors then we instead apply a 3-way branch on
that vertex and its in-neighbors).

Case 5 is just a 4-way branch on any vertex v and its 3 in-neighbors.
For Case 6, we first show there is a vertex with degree (3, 3) attacking a vertex with

degree (2, 2), say b. Then we apply a 3-way branch on b and its 2 in-neighbors.

5.5 Summary of results
In our base case we enumerate 1 extension in polynomial time.

Otherwise, we apply a branching rule with branching number ≤ ϕ.
As in MASE, the Maximal Subset Collation subroutine does not incur additional overhead

as the search tree’s depth is bounded by |V (G)| (see Subsection 3.2 for the argument which
we can apply verbatim).

Applying the Combine Analysis Lemma and Combine Analysis Lemma for Enumeration
we obtain:

I Theorem 11. Let G = (V,E) be an oriented graph. Then there is an algorithm that
enumerates all preferred extensions of G with running time O∗(ϕ|V |) where ϕ is the unique
positive root of 1− x−1 − x−8 = 0, ϕ ≈ 1.23205 < 1.2321.

Furthermore, G has at most ϕ|V | preferred extensions.

S. Gaspers and R. Li 74:13

6 Bounds on number of preferred extensions

In this section, we collect our results bounding the number of preferred extensions.

6.1 Bounds on general directed graphs

A tight upper bound is O(3
|V |

3) [16]. This bound is easily attainable since preferred extensions
coincide with maximal independent sets(MIS) in graphs where every edge is in a 2-cycle.

We can also enumerate them in O∗(3
|V |

3). We note each MIS has a single maximal
admissible subset. We then take a branching algorithm for MIS[22], allowing us to apply
the Maximal Subset Collation subroutine to remove the non preferred extensions without
additional overhead. Hence, all preferred extensions can be enumerated in O∗(3

|V |
3).

6.2 Parameterizing by Resolution Order

We will give bounds based on r, the proportion of vertices that are in at least one 2-cycle.

6.2.1 Lower Bound

An undirected 3-cycle has 3 preferred extensions. Hence, applying the Oriented Translation
to it, we obtain an oriented structure with 6 vertices and 3 preferred extensions.

Our construction for lower bounding will be to include as many undirected 3-cycles as
possible and then include as many oriented translations of 3-cycles as possible. We can
include r|V |

3 undirected 3-cycles and (1−r)|V |
6 oriented translations, obtaining an AF with

Ω((3 r
3 3 1−r

6)|V |) ≈ ((1.44r1.21−r)|V |) preferred extensions.

6.2.2 Upper Bound

There are 3 different upper bounds that are all optimal in a different range. See also Figure 1.

(ϕ2rϕ1−r)|V | ≈ O((1.5180r1.23211−r)|V |) where ϕ is the unique positive root of 1−x−1−
x−8. This bound is obtained from using the Oriented Translation along with Theorem 11.
This is best for r up to around 0.6684.

O∗(((1 + 2 1
4 − 1√

2)r(2− 1√
2)1−r)|V |) ≈ O∗((1.4822r1.29291−r)|V |), the bound from our

2-phase Monotone Local Search. This is best for a small range where 0.6685 ≤ r ≤ 0.8004.

3
|V |

3 . This is best for r ≥ 0.8005.

7 Conclusion

We again note that the concept of an admissible (resp. preferred) extension has also been
studied as a semikernel[27] (resp. maximal semikernel) in graph theory. Hence our result
may be interpreted as a combinatorial upper bound on the number of maximal semikernels,
parameterized by the proportion of vertices in at least one 2-cycle.

MFCS 2019

74:14 Enumeration of Preferred Extensions in Almost Oriented Digraphs

References

1 Leila Amgoud and Claudette Cayrol. A Reasoning Model Based on the Production of
Acceptable Arguments. Annals of Mathematics and Artificial Intelligence, 34(1-3):197–215,
2002. doi:10.1023/A:1014490210693.

2 Cyril Banderier, Jean-Marie Le Bars, and Vlady Ravelomanana. Generating functions for
kernels of digraphs (Enumeration & asymptotics for a constraint from game theory). In
Proceedings of the 16th International Conference on Formal Power Series and Algebraic
Combinatorics (FPSAC 2004), pages 91–105, 2004.

3 Ringo Baumann and Hannes Strass. Open Problems in Abstract Argumentation. In Advances
in Knowledge Representation, Logic Programming, and Abstract Argumentation - Essays
Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture
Notes in Computer Science, pages 325–339. Springer, 2015.

4 Trevor J. M. Bench-Capon. Value Based Argumentation Frameworks. In Proceedings of the 9th
International Workshop on Non-Monotonic Reasoning (NMR 2002), volume cs.AI/0207059,
pages 443–454, 2002. URL: http://arxiv.org/abs/cs.AI/0207059.

5 Raymond Bisdorff. On enumerating the kernels in a bipolar-valued outranking digraph.
Technical Report 6, Annales du Lamsade, 2006. hal-00118995.

6 Stefano Bistarelli, Fabio Rossi, and Francesco Santini. A Comparative Test on the Enumeration
of Extensions in Abstract Argumentation. Fundamenta Informaticae, 140(3-4):263–278, 2015.

7 Martin Caminada. An Algorithm for Computing Semi-stable Semantics. In Proceedings of
the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2007), volume 4724 of Lecture Notes in Computer Science, pages
222–234. Springer, 2007.

8 Martin Caminada. An Algorithm for Computing Semi-stable Semantics. In ECSQARU 2007:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 4724 of Lecture
Notes in Computer Science, pages 222–234. Springer, Berlin, Heidelberg, 2007.

9 Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro Vallati. Computing
Preferred Extensions in Abstract Argumentation: A SAT-Based Approach. In Proceedings of
the 2nd International Workshop on Theory and Applications of Formal Argumentation (TAFA
2013), volume 8306 of Lecture Notes in Computer Science, pages 176–193. Springer, 2013.

10 Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. Algorithm Selection for Preferred
Extensions Enumeration. In Proceedings of the 5th International Conference on Computational
Models of Argument (COMMA 2014), volume 266 of Frontiers in Artificial Intelligence and
Applications, pages 221–232. IOS Press, 2014.

11 Federico Cerutti, Mauro Vallati, and Massimiliano Giacomin. On the impact of configuration on
abstract argumentation automated reasoning. International Journal of Approximate Reasoning,
92:120–138, 2018.

12 Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan
Woltran. Methods for solving reasoning problems in abstract argumentation - A survey.
Artificial Intelligence, 220:28–63, 2015.

13 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

14 Sylvie Doutre and Jérôme Mengin. Preferred Extensions of Argumentation Frameworks:
Query, Answering, and Computation. In Proceedings of the 1st International Joint Conference
on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Computer Science,
pages 272–288. Springer, 2001.

15 Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-monotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

16 Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, and Stefan Woltran. Characteristics
of multiple viewpoints in abstract argumentation. Artificial Intelligence, 228:153–178, 2015.

https://doi.org/10.1023/A:1014490210693
http://arxiv.org/abs/cs.AI/0207059

S. Gaspers and R. Li 74:15

17 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms
via monotone local search. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2016), pages 764–775. ACM, 2016.

18 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for
the analysis of exact algorithms. Journal of the ACM, 56(5):25:1–25:32, 2009.

19 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
20 Hortensia Galeana-Sánchez and Xueliang Li. Semikernels and (k, l)-Kernels in Digraphs.

SIAM Journal on Discrete Mathematics, 11(2):340–346, 1998.
21 Hortensia Galeana-Sánchez and Victor Neumann-Lara. On kernels and semikernels of digraphs.

Discrete Mathematics, 48(1):67–76, 1984.
22 Serge Gaspers. Exponential time algorithms: Structures, measures, and bounds. PhD thesis,

University of Bergen, 2008.
23 Serge Gaspers and Edward J. Lee. Exact Algorithms via Multivariate Subroutines. In

Proceedings of the 44th International Colloquium on Automata, Languages, and Programming
(ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages
69:1–69:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
ICALP.2017.69.

24 Sanjay Modgil. Hierarchical Argumentation. In Proceedings of the 10th European Conference on
Logics in Artificial Intelligence (JELIA 2006), pages 319–332, 2006. doi:10.1007/11853886_
27.

25 Sanjay Modgil and Martin Caminada. Proof Theories and Algorithms for Abstract Argu-
mentation Frameworks. In Argumentation in Artificial Intelligence, pages 105–129. Springer,
2009.

26 Sanjay Modgil and Henry Prakken. Resolutions in Structured Argumentation. In Proceedings
of the 4th International Conference on Computational Models of Argument (COMMA 2012),
volume 245 of Frontiers in Artificial Intelligence and Applications, pages 310–321. IOS Press,
2012.

27 Victor Neumann-Lara. Seminúcleos de una digráfica. Technical report, Anales del Instituto
de Matemáticas II, Universidad Nacional Autónoma México, 1971.

28 Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for decision problems in
argument systems under preferred semantics. Artificial Intelligence, 207:23–51, 2014.

29 Jayme Luiz Szwarcfiter and Guy Chaty. Enumerating the Kernels of a Directed Graph with
no Odd Circuits. Information Processing Letters, 51(3):149–153, 1994.

30 Mauro Vallati, Federico Cerutti, and Massimiliano Giacomin. Argumentation Extensions
Enumeration as a Constraint Satisfaction Problem: a Performance Overview. In Proceedings
of the International Workshop on Defeasible and Ampliative Reasoning (DARe@ECAI 2014),
volume 1212 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

31 Mauro Vallati, Federico Cerutti, and Massimiliano Giacomin. Argumentation Frameworks
Features: an Initial Study. In Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI 2014), volume 263 of Frontiers in Artificial Intelligence and Applications,
pages 1117–1118. IOS Press, 2014.

32 John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

MFCS 2019

https://doi.org/10.4230/LIPIcs.ICALP.2017.69
https://doi.org/10.4230/LIPIcs.ICALP.2017.69
https://doi.org/10.1007/11853886_27
https://doi.org/10.1007/11853886_27

Determinisation of Finitely-Ambiguous
Copyless Cost Register Automata
Théodore Lopez
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
theodore.lopez@univ-amu.fr

Benjamin Monmege
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
benjamin.monmege@univ-amu.fr

Jean-Marc Talbot
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
jean-marc.talbot@univ-amu.fr

Abstract
Cost register automata (CRA) are machines reading an input word while computing values using
write-only registers: values from registers are combined using the two operations, as well as the
constants, of a semiring. Particularly interesting is the subclass of copyless CRAs where the content of
a register cannot be used twice for updating the registers. Originally deterministic, non-deterministic
variant of CRA may also be defined: the semantics is then obtained by combining the values of all
accepting runs with the additive operation of the semiring (as for weighted automata). We show that
finitely-ambiguous copyless non-deterministic CRAs (i.e. the ones that admit a bounded number
of accepting runs on every input word) can be effectively transformed into an equivalent copyless
(deterministic) CRA, without requiring any specific property on the semiring. As a corollary, this
also shows that regular look-ahead can effectively be removed from copyless CRAs.

2012 ACM Subject Classification Theory of computation → Quantitative automata

Keywords and phrases Cost-register automata, Look-ahead removal, Unambiguity, Determinisation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.75

Funding This work has been funded by the DeLTA project (ANR-16-CE40-0007).

1 Introduction

Quantitative languages extend “classical” languages by associating with each word a weight
or a cost from an algebraic structure. Such algebraic structures could be monoids, semirings,
fields or any other convenient structures. Quantitative languages have been successfully
applied to various domains such as natural language processing [15] or modelisation of
stochastic systems [17, 16]. The seminal work on quantitative languages from Schützenberger
[18] introduces the model of weighted automata, that associates with each word a weight
from a semiring. The weight of a run is the product of its transition weights whereas the
weights of the multiple runs on a single word (due to non-determinism) are combined by
sum. Classical word languages are then the particular case of weighted languages over the
Boolean semiring. There have been a long line of research that studied properties of weighted
automata [10]. As for finite-state automata, two-way [6] and alternating [12, 7] automata
have been considered, as well as extensions to infinite words [8].

Recently, Alur et al. [3] introduced another automata model for defining mappings from
words to some algebraic structures (in particular semirings), named Cost Register Automata
(CRA). These are deterministic machines equipped with a finite collection of registers storing
values: while reading the input word, each transition reads an input letter and updates
the registers by combining the current contents of registers and values from the considered

© Théodore Lopez, Benjamin Monmege, and Jean-Marc Talbot;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 75; pp. 75:1–75:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1901-1274
mailto:theodore.lopez@univ-amu.fr
https://orcid.org/0000-0002-4717-9955
mailto:benjamin.monmege@univ-amu.fr
mailto:jean-marc.talbot@univ-amu.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.75
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

algebraic structure. A distinguished subclass of CRAs is the one of copyless CRAs: intuitively,
for such a machine, the content of a register cannot be used twice for updating the registers.
Properties regarding expressiveness of this class have been studied in [14, 13]. The decision
problem of equivalence of copyless CRA on the tropical semiring is proved undecidable in [1].
Some other works have also considered the register minimisation problem (computing the
smallest number of registers to define a particular function) for copyless CRAs [5, 9].

Following [14], we consider both deterministic and non-deterministic copyless CRAs
on semirings (to distinguish them, we call NCRA the class of non-deterministic CRAs).
Non-determinism is resolved, as in weighted automata, by the sum operation of the semiring:
the value associated with some input word is computed as the sum of the values computed
by each accepting run on this input. We investigate a limited form of non-determinism,
k-ambiguity: a non-deterministic CRA is said to be k-ambiguous if it has at most k accepting
runs per input. In the context of weighted automata, k-ambiguous weighted automata are
strictly more powerful than deterministic weighted automata, yet less powerful than weighted
automata, leading to an appealing class of weighted languages with good decision properties
(the equivalence problem becomes decidable for k-ambiguous weighted automata over the
(max,+)-semiring [11]). Surprisingly, in the context of CRAs, our main result is:

I Theorem 1. Every finitely-ambiguous copyless NCRA can be effectively transformed into
an equivalent copyless (deterministic) CRA.

Moreover, the example developed in [14, Theorem 2] allows one to build a linearly-
ambiguous copyless NCRA that cannot be recognised with a finitely-ambiguous copyless
NCRA, showing that our result cannot be improved regarding ambiguity. An alternative way
to resolve non-determinism is to consider a regular look-ahead. When reading a word from
left to right, the look-ahead provides some (regular) information about the unread suffix of
the word that allows to determine the unique transition to be applied at each step. In this
case, the machine is said to be deterministic with look-ahead. In [3], this class is introduced
and named CRA-RLA. It is proved there that for copyless CRA-RLA, the look-ahead can be
removed preserving the copyless property provided that the considered algebraic structure is
extended with unary mappings (using the so-called streaming string-to-tree transducers [2]
as an intermediate step). In [14], Mazowiecki and Riveros proved that copyless CRA, unlike
weighted automata, are not closed under reverse but claimed that “Like for unambiguous
copyless CRAs, we do not know if extending copyless CRAs with regular look-ahead results
in a more expressive model”. However, they defined the subclass of bounded-alternation
copyless CRAs which are closed under reverse and for which deterministic look-aheads do
not increase expressiveness.

A look-ahead can be given as a complete co-deterministic automaton B and transitions of
the CRA A are then parameterised by some state of B. It is folklore that one can compute
the product of A and B to obtain a machine equivalent to A which is look-ahead free, now
non-deterministic, but still unambiguous. This construction still applies when A is a copyless
CRA and the product yields an unambiguous copyless CRA. Therefore, by Theorem 1, we
close the open problem stated in [14]:

I Theorem 2. Every copyless CRA with look-ahead can be effectively transformed into an
equivalent copyless CRA.

The article is structured as follows: in Section 2, we define CRAs as well as several
subclasses (copyless CRAs, �-less CRAs, and bounded-copy CRAs). They are defined by
means of flow graphs representing the flow of registers during runs in an abstract way. The
proof of Theorem 1 is given as a cascade of three transformations leading from one subclass
to another one, that are described successively in Sections 3, 4 and 5.

T. Lopez, B. Monmege, and J.-M. Talbot 75:3

2 Cost register automata

Terms and substitutions. Fix a semiring S = (S,+,×, 0, 1) and a finite set of variables X
disjoint from S. We denote by Term(X) the set of terms generated by the grammar:

t ::= s | x | t+ t | t× t
where s ∈ S and x ∈ X . For a term t ∈ Term(X), we denote by Var(t) its set of variables.
We call t a ground term if Var(t) = ∅, and then define JtK ∈ S to be the evaluation of t with
respect to S. We call a term t ∈ Term(X) copyless if every variable appears at most once
in t. In the following, we will represent terms as binary trees, where leaves are labelled by
variables or constants, and internal nodes are labelled by operations of the semiring.

I Example 3. On the semiring (N,+,×, 0, 1), examples of terms are 3x + 1 (we often
make implicit the product operator) or y + 2zx + 3, making use of the associativity of
both operators to drop useless parentheses. On the semiring (Z ∪ {∞},min,+,∞, 0), the
same terms are written min(3 + x, 1) and min(y, 2 + z + x, 3). Other examples of terms on
the non-commutative semiring (P({a, b}∗),∪, ·, ∅, {ε}) of languages over alphabet {a, b} are
{a}x{ε, aab} ∪ y ∪ {b}. All these terms are copyless.

A substitution is a mapping σ : X → Term(X). We denote the set of all substitutions over
X by Subs(X). If t is a term, we let [x 7→ t] be the substitution defined by [x 7→ t](x) = t

and [x 7→ t](y) = y for all variables y 6= x. A ground substitution σ is a substitution where
the term σ(x) is ground for every x ∈ X . Substitutions are extended canonically to a term
morphism, and may thus be composed: σ1 ◦ σ2(x) = σ1(σ2(x)).

A valuation is defined as a substitution of the form ν : X → S. We denote the set of all
valuations over X by Val(X). Clearly, any valuation ν composed with a substitution σ defines
a ground substitution. We say that two terms t1 and t2 are equivalent (denoted by t1 ≡ t2) if
Jν(t1)K = Jν(t2)K for every valuation ν ∈ Val(X). Similarly, we say that two substitutions σ1
and σ2 are equivalent (denoted by σ1 ≡ σ2) if σ1(x) ≡ σ2(x) for every x ∈ X .

Non-deterministic cost register automata. A non-deterministic CRA (NCRA) over the
semiring S is a tuple A = (Q,Σ,X ,∆, I, νini, F, ϕ), where Q is a finite set of states, Σ is the
input alphabet, X a finite set of registers, ∆ ⊆ Q× Σ× Subs(X)×Q is the finite transition
relation with updates of the registers, I ⊆ Q is the set of initial states, νini : I → Val(X)
defines an initial valuation of the registers for each initial state, F is the set of final states and
ϕ : F → Term(X) the final output function. Transition (q, a, σ, q′) is denoted by q a|σ−−→ q′.

A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X) represents the current
values in the registers of A. Given a word w = a1 · · · an ∈ Σ∗, a run ρ of A over w is a sequence
of configurations linked by transitions (q0, ν0) a1|σ1−−−→ (q1, ν1) a2|σ2−−−→ · · · an|σn−−−−→ (qn, νn) such
that q0 ∈ I, ν0 = νini(q0), for 1 ≤ i ≤ n, qi−1

ai|σi−−−→ qi is a transition and νi(x) = Jνi−1◦σi(x)K
for each x ∈ X . A run is accepting if it ends in a final state qn ∈ F . The output of an
accepting run ρ = (q0, ν0) a1|σ1−−−→ · · · an|σn−−−−→ (qn, νn), denoted by JρK, is the value Jνn(ϕ(qn))K.
The output of A over w is defined as JAK(w) = 0 if there is no accepting run of A over w, and
JAK(w) =

∑
ρJρK over all accepting runs ρ over w otherwise. Two NCRAs are said equivalent

if they compute the same output on every input word.
For some positive k, a NCRA A is k-ambiguous if there are at most k accepting runs

over each word w. A is finitely-ambiguous if it is k-ambiguous for some k, and unambiguous
if it is 1-ambiguous. A NCRA is said to be deterministic, and denoted by CRA, if I is a
singleton and for all q ∈ Q, a ∈ Σ, there exists at most one state q′ ∈ Q and one register
update σ ∈ Subs(X) such that q a|σ−−→ q′ ∈ ∆.

MFCS 2019

75:4 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

Ax 7→ 0 B

x 7→ 0

x

0 | x 7→ 2x

1 | x 7→ 2x+ 1

1 | x 7→ 2x+ 1

0 | x 7→ 4x

x, y 7→ 0 y

0 | x 7→ 2x; y 7→ 4y

1 | x 7→ 2x+ 1; y 7→ 2x+ 1

x 7→ 0
t 7→ 1 xt

0 | x 7→ 2x; t 7→ 2t

1 | x 7→ 2x+ 1; t 7→ 1

Figure 1 Three equivalent automata: an unambiguous copyless NCRA An (on the left), a �-less
CRA Ad (in the middle), a copyless CRA Ac (on the right).

I Example 4. Consider the copyless NCRA An depicted on the left of Figure 1 over the
alphabet {0, 1} and the semiring (N,+,×, 0, 1). It has a single register x, so that we hereby
denote configurations by pairs (q, ν(x)). Every word w ∈ {0, 1}∗ has two runs, only one being
accepting: thus An is unambiguous. For instance, on the word w = 10100, the two runs are

(A, 0) 1|x7→2x+1−−−−−−−→ (A, 1) 0|x 7→2x−−−−−→ (A, 2) 1|x 7→2x+1−−−−−−−→ (A, 5) 0|x 7→2x−−−−−→ (A, 10) 0|x 7→2x−−−−−→ (A, 20)
(A, 0) 1|x7→2x+1−−−−−−−→ (A, 1) 0|x 7→2x−−−−−→ (A, 2) 1|x 7→2x+1−−−−−−−→ (B, 5) 0|x7→4x−−−−−→ (B, 20) 0|x 7→4x−−−−−→ (B, 80)

Therefore, A is a state computing the integer value of the word as binary representation
with less significant bits first. To accept, we must jump into the unique final state B while
reading the last 1 (or start directly in B if the word contains only 0s), then multiplying by 4
for each remaining 0: it is as if each 0 of the last block of 0s is considered to be duplicated
by the CRA. The same function can also be recognised by a deterministic CRA, using two
registers x and y, depicted in the middle of Figure 1. Instead of using non-determinism to
guess the last 1 of the word, Ad always computes both the multiplications by 2 and 4 in
separate registers x and y when reading 0. On each letter 1 though, the content of register
y is reset to the same content as register x: operationally, this means that the content of
register x must be duplicated when reading 1.

Flow of registers. A crucial notion in NCRAs is their ability to copy, or not, contents of
registers into several registers. A NCRA is therefore called copyless if no register updates σ
of ∆ or terms of ϕ copy some register (see [3]). A more graphical definition of copyless can
be achieved by gathering the flows of registers in a notion of flow graphs, that we define now,
inspired by a close notion of dependency graph introduced in [4]:

I Definition 5. A flow graph over the set of variables X is a (finite) directed acyclic
(multi)graph (V,E) where V = (X × {0, 1, . . . , `max})] {Ω} (with `max ≥ 0) is a finite set
of vertices (x, `) where ` is called the layer of the vertex (with `max being the maximal layer
of the flow graph), and E : V 2 → N being a multiset of edges satisfying:
1. E is consistent with the layers: E((x1, `1), (x2, `2)) 6= 0 =⇒ `2 = `1 + 1 , and
2. Ω has no outgoing edges and all its ingoing edges come from the maximal layer:

E((x, `),Ω) 6= 0 =⇒ ` = `max .

Each run ρ = q0
a1|σ1−−−→ q1

a2|σ2−−−→ · · · ak|σk−−−→ qk of a NCRA A is associated with the flow
graph GA(ρ) = (V,E) defined by: V = X ×{0, . . . , k}∪{Ω}; for ` ∈ {1, . . . , k}, and x, y ∈ X ,
E((x, ` − 1), (y, `)) is the number of occurrences of the variable x in σ`(y); E((x, k),Ω) is
the number of occurrences of x in ϕ(qk), and 0 if qk /∈ F .

Copyless restriction of NCRAs can be recovered directly on the flow graphs generated by
their runs. For this reason, we say that a vertex of a flow graph is a copy vertex if it is the
source of at least two edges. We use those to define two other related properties of the flow
graphs that will be used in the following.

T. Lopez, B. Monmege, and J.-M. Talbot 75:5

I Definition 6. A flow graph (V,E) is diamondless (shorten as �-less in the following) if
there is at most one path linking every pair of vertices. It is called k-copy if every vertex can
reach at most k copy vertices. We say that it is copyless if it is 0-copy.

I Example 7. Consider once again the word 10100, and the unique run of the CRA Ad of
Figure 1. Here is a pictural representation of the associated flow graph:

x

y
Ω

0 1 2 3 4 5

One can observe on this picture that Ad is not copyless, since register x is copied when
reading letter 1. However, there are no diamonds (neither in this particular run, nor in any
possible run), which means that Ad is �-less.

By extension, a NCRA is said to be copyless (resp. �-less or k-copy) if the flow graphs of
all possible accepting runs of the NCRA are copyless (resp. �-less or k-copy). It is said to
be bounded-copy if it is k-copy for a certain value k. This alternative definition of copyless
NCRA is equivalent to one of [3], whenever CRAs are supposed to be trimmed (i.e. all states
are reachable from the initial ones and can reach a final state). Note that in the flow graphs
of a �-less CRAs, the multiset E is indeed a set (all pairs evaluate to 0 or 1). However, this
does not imply that the CRA is copyless since a register can appear in the updates of two
different registers. The �-less property simply ensures that every register will flow at most
once in the final output, in every possible execution: there may exist copies, but when it is
the case, we are sure that at most one copy will resist up to the end; however, this exact
copy can not be known yet as it might depend on the input word.

Contribution. Our main result is Theorem 1 stated already in the introduction. As the
class of copyless CRA is obviously included into the class of finitely-ambiguous copyless
NCRA, this result implies that these two classes define the same family of functions.

I Example 8. Our running example can indeed be recognised by the copyless CRA Ac on
the right of Figure 1 which keeps in a register x the binary value of the input, and keeps in
another register t the powers of 2 corresponding to the current longest suffix of letter 0. We
multiply x by t in the final output function, and reset t when reading a letter 1.

Our construction is split into a cascade of transformations detailed in the next sections:

finitely-ambiguous
copyless NCRA

�-less
CRA

bounded-copy
CRA

copyless
CRA

Prop. 9 Prop. 11 Prop. 19

The first step in the construction is given in Section 3: a determinisation procedure of the
finitely-ambiguous copyless CRA allows us to build a (deterministic) CRA, that may not be
copyless, thus trading non-determinism for copies. This new CRA will indeed be �-less. The
second step is to reduce the number of copies in order to build an equivalent CRA that is
bounded-copy: this is not trivial since the �-less property does not forbid that unboundedly
many copies can be performed. The idea is to delay copies until a moment where we know
that enough copies have become useless. This more difficult step is the main contribution of
this article and presented in Section 4. Finally, it remains to show in Section 5 how to remove
all copies of the bounded-copy CRA, by replicating the registers as many times as needed.

MFCS 2019

75:6 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

3 From finitely-ambiguous CRAs to diamondless CRAs

As a first step in our construction, we start by transforming every k-ambiguous NCRA into
a �-less CRA: this is a determinisation step where we maintain replicas of the registers,
indexed by the states and a number in {1, . . . , k} to distinguish the k possible runs.

I Proposition 9. For every finitely-ambiguous copyless NCRA, we can compute an equivalent
�-less CRA.

I Example 10. Starting from the unambiguous copyless NCRA An of Figure 1, we obtain
a �-less CRA A′ isomorphic to the CRA Ad: the single state represents the set {A,B} of
states of A, while registers (x,A) and (x,B) of A′ are the registers x and y on the picture.

The next step aims to limit the number of copies of the �-less CRA. Indeed, �-less CRAs
are not necessarily copyless, and may even copy certain registers an unbounded number of
times (in arbitrarily long runs). This is the case for the �-less CRA Ad of Figure 1: for
instance, the flow graph associated with the run over the word 11111 · · · is of the form

x

y

· · ·
· · ·

0 1 2 3 4 5

and has thus an unbounded number of copies of register x, that are all reachable from vertex
(x, 0); thus, Ad is not bounded-copy.

4 From diamondless CRAs to bounded-copy CRAs

In this section, we prove the most difficult step of the overall construction:

I Proposition 11. For every �-less CRA, we can construct an equivalent bounded-copy CRA.

As seen in the example of the previous section, this result is not straightforward as �-less
CRAs may have an unbounded number of copies. Our approach somehow extends the one
developed for streaming string transducers in [4]. However, the proof is simpler in the case of
transducers where only a single operation exists (the product of a monoid). This allows one
to represent in an alternative way the valuation of a register as a product of constants and
other registers: instead of storing in registers the value of these products, it is going to be
abstracted, storing in fresh registers the constant values separating two consecutive registers
in products. In the setting of semirings, with two operations, it is much more intricate to do
so, since the content of a register has to be viewed now as a term involving both operations.
Hence, it is less clear a priori what could be the constants separating two “consecutive”
registers of this term. We start by clarifying this, introducing special terms we call shapes,
associated with coefficients that are these separating constants. Similar kind of shapes are
used in [14, Theorem 3] to remove unambiguous non-determinism from bounded-alternation
NCRAs, i.e. NCRAs that can only alternate a bounded number of times between sums and
products in the register updates. The treatment of shapes is more complex in our case since
we have no such limitation on alternations.

Shapes and coefficients. The shape of a term t over the set of variables X is a term with
no constants, but with additional variables, obtained as follows. First, all constants are
removed from the term to obtain a term t̃ where all leaves are labelled with variables of X :
for instance, if t = (3x1(5 + 2) + 4)× (2x2) + 3, then t̃ = x1 × x2. Doing so, we lose much

T. Lopez, B. Monmege, and J.-M. Talbot 75:7

information on the term, that we then recover by decorating every subterm t′ of t̃ with some
fresh coefficients α, β, γ, replacing the root of t′ by αt′β + γ: α, β represent respectively the
left and the right multiplicative coefficient, and γ the additive coefficient. The shape of t
is the term obtained by decorating each subterm of t̃. It is associated with a valuation χ
mapping each coefficient of the shape to its value. On the example, the shape obtained is
α3[(α1x1β1 + γ1) × (α2x2β2 + γ2)]β3 + γ3, and the valuation of its coefficients is defined
by χ(α1) = 3, χ(β1) = 7, χ(γ1) = 4, χ(α2) = 2, χ(β2) = χ(α3) = χ(β3) = 1, χ(γ2) = 0,
χ(γ3) = 3.1 For the special case of a constant term t (without any variables), the shape is
reduced to a special coefficient ω.

Shapes are canonical way to store terms. In particular, note that there is only a finite
number of shapes of copyless terms over X , denoted by Shape(X), though there are infinitely
many possible coefficient valuations associated with these shapes. This will allow us to store
the shapes in states of the bounded-copy CRA, while keeping in registers the valuations of
coefficients (that could not fit in a CRA with a finite number of states).

Given a shape τ and an associated coefficient valuation χ, we denote by χ(τ) the term
obtained by replacing each coefficient of τ by its value: thus, χ(τ) is a term over variables X .

I Proposition 12. There is a linear-time algorithm that, given a term t, builds a shape τ
of t and a coefficient valuation χ, such that t and χ(τ) are equivalent terms.

Unfolding of a CRA. In the rest of the section, we let A = (Q,Σ,X ,∆, I = {qini}, νini, F, ϕ)
be a �-less CRA. We construct another CRA A∞ = (Q′,Σ,X ′,∆′, I = {q′ini}, ν′ini, F ′, ϕ′)
equivalent to A, by unfolding: states contain shapes, and registers store the valuations of
all corresponding coefficients. At first, A∞ will thus have an infinite number of states: we
explain afterwards how to reduce it to a finite number.

States of A∞ are pairs (q, s), where q is a state of A and s maps each pair (x, `) ∈
X×{1, . . . , `max}, where `max ∈ N depends on the state ofA∞, to a term of Shape(X×{`−1}),
and each pair (x, 0) to a shape of the form ω: s records the register updates applied so far,
keeping only the shapes in memory. We call s the shape substitution of the state. Moreover,
we enforce all coefficients appearing in all the shapes of s to be different. Notice that such
a state (q, s) is associated uniquely with a flow graph G = (X × {0, . . . , `max}] {Ω}, E)
where E is the set2 defined by ((x, ` − 1), (y, `)) ∈ E iff (x, ` − 1) appears in s(y, `), and
((x, `max),Ω) ∈ E iff x ∈ ϕ(q). In the following, we use the notions of layers originating from
flow graphs directly on s. All vertices of the flow graph that cannot reach a vertex of the
maximal layer are useless : their value will not be used in the output of the CRA. Hence, we
clean up s by mapping them to constant coefficients ω. In the following, we always consider
that shape substitutions s are cleaned up this way.

Registers of A∞ are all the possible coefficients appearing in its states (notice that there is
an infinite number of them). However, at each point of the execution of A∞, only coefficients
that appear in the shape substitution of the current state are initialised, other registers being
useless at this point. We may call coefficients the registers of A∞ to emphasise their role.

The initial state is q′ini = (qini, sini) with sini mapping (x, 0) to a distinct coefficient ωx
for all x (`max = 0 for this state); hence, only coefficients ωx appear in these shapes of q′ini
and their value is given by ν′ini(q′ini)(ωx) = νini(qini)(x). All other registers can be set to 0
(their value will never be used in the following).

1 Notice that the use of separate left and right multiplicative is only necessary in non-commutative
semirings: in commutative ones, we could merge both of them in a single α coefficient.

2 E turns out to be not some arbitrary multiset, as we start from a �-less CRA A

MFCS 2019

75:8 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

ωx

ωy

ωx, ωy 7→ 0

ωy

α1xβ1+γ1

α2xβ2+γ2

α2ωxβ2+γ2

α1xβ1+γ1

α2yβ2+γ2

α2ωyβ2+γ2

ω′
y

α3xβ3+γ3

α4xβ4+γ4

α4(α1ωxβ1+γ1)β4+γ4

α3xβ3+γ3

α4xβ4+γ4

α4(α2ωxβ2+γ2)β4+γ4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

1 |
α1, α

2 7→
2

β1, β
2, γ

1, γ
2 7→

1

0 |
α1 7→ 2α2 7→ 4β1 , β2 7→ 1

1 |
α3, α4 7→ 2

β3, β4, γ3, γ4 7→ 1

0 |
α3 7→ 2
α4 7→ 4
β3, β4 7→ 1

Figure 2 An infinite CRA equivalent to the �-less CRA Ad.

Final states of F ′ are all pairs (q, s) with q ∈ F , and the associated final output ϕ′
is the term using only coefficients obtained by applying the shape substitution as many
times as the number of layers from the maximal layer, in order to remove all variables (x, `):
ϕ′(q, s) =

[
x 7→ s`max+1(x, `max) ∀x ∈ X

] (
ϕ(q)

)
where sh is the composition of s with

itself h times, and `max is the maximal layer of the flow graph associated with s.
We finally describe the transitions of A∞. For all states (q, s) ∈ Q′ and transitions

q
a|σ−−→ q′ in ∆, we add a transition (q, s) a|σ′

−−→ (q′, s′) in ∆′, where s′ is the extension of s
with an additional layer. If the maximal layer of s is `max, then the maximal layer of s′ is
`max + 1. For the additional maximal layer `max + 1, for all x ∈ X , the term σ(x) associated
with the update of the register x in A can be decomposed, by Prop. 12, into a shape τ and a
valuation χ of its fresh coefficients: we have χ(τ) ≡ σ(x). Then, we let s′(x, `max + 1) be the
shape τ in which every variable y is replaced by (y, `max). Corresponding (fresh) coefficients
κ of τ are set to their value in χ: σ′(κ) = χ(κ). Layers 0, 1, . . . , `max are kept intact, except
that vertices that can no longer reach layer `max+1 are mapped to a constant shape ω. More
precisely, for all ` ∈ {0, 1, . . . , `max} and x ∈ X , if (x, `) can reach layer `max + 1 (in the
so-extended flow graph) then s′(x, `) = s(x, `) and the corresponding coefficients κ remain
the same by the update σ′(κ) = κ. Otherwise s′(x, `) is mapped to a constant shape ω and
σ′(ω) = 0: coefficients of s(x, `) are freed, e.g. by resetting them to 0 by σ′.

I Example 13. We illustrate this construction on the �-less CRA Ad of Figure 1. A portion
of the infinite CRA is shown in Figure 2. We depict in each state the associated flow graph
(without the output vertices) as well as the shapes that are different than the corresponding
shapes in the predecessor state. In the updates, we only show the values different from 0.
Notice the dotted edge in the state reached after having read word 11: this edge disappears
from the flow graph since the vertex (y, 1) can no longer reach the maximal layer.

The infinite CRA A∞ satisfies the following invariant: each run ρ of A, ending in state q,
is bijectively mapped to a run ρ′ of A∞ that ends in a state (q, s) associated with a flow
graph isomorphic to GA(ρ). Moreover,

I Invariant 14. For all words w, if (q, ν) is the (unique) configuration reached by A over
word w, the configuration ((q′, s), ν′) reached by A′ reading w satisfies: q = q′ and for
every x ∈ X , ν(x) = Jν′ ◦ s`max+1(x, `max)K where `max + 1 is the number of layers in s.

T. Lopez, B. Monmege, and J.-M. Talbot 75:9

ωx

ωy

ωx, ωy 7→ 0

ωy

ωx

ωy

α1xβ1+γ1

α2xβ2+γ2

α2ωxβ2+γ2

1 | α1, α2 7→ 2
β1, β2, γ1, γ2 7→ 1

0 | ωx 7→ 2ωx

ωy 7→ 2ωy

1 |
ωx 7→ α1ωxβ1 + γ1
α1, α2 7→ 2
β1, β2, γ1, γ2 7→ 1

0 |

α1 7→ 2α1
β1 7→ β1
γ1 7→ 2γ1
α2 7→ 4α2
β2 7→ β2
γ2 7→ 4γ2

Figure 3 Finite CRA obtained by merging copyless layers of the CRA in Figure 2.

In particular, both CRAs are equivalent by construction since

JAK(w) = Jν(ϕ(q))K
=

q[
x 7→ ν′ ◦ s`max+1(x, `max) ∀x ∈ X

]
(ϕ(q))

y
= Jν′(ϕ′(q, s))K = JA′K(w)

The goal is now to make A∞ finite by contracting the flow graph associated with its states.
The main operation is the merging of a layer with the previous one; this merge will require
some copies of registers. Starting from the finite �-less (but not necessarily bounded-copy)
CRA A, the merge operation will turn A∞ into a finite CRA, that is moreover bounded-copy.

Merge of two consecutive layers. Let s be the shape substitution in a state of A∞ with
maximal layer `max and let L be some layer. We now explain how to merge the layers L− 1
and L of s, leading to a new shape substitution s′ with one layer less. This will require an
update σ′ of the coefficients appearing in the corresponding shapes. s′ and σ′ are defined as
follows for all layers ` ∈ {0, 1, . . . , `max}:
1. if ` < L− 1, nothing is changed: for all x ∈ X , s′(x, `) = s(x, `) and all the corresponding

coefficients κ are left unchanged, i.e. σ′(κ) = κ;
2. if ` ≥ L, we simply shift down all the layers by one: for all x ∈ X , s′(x, `) = s(x, `+ 1)

and the corresponding coefficients κ are left unchanged too;
3. if ` = L−1, we must incorporate the shapes in-between layers L−1 and L into layer L−1:

if s(x, L) is a constant shape ω, then we simply shift it as before: s′(x, L− 1) = ω and
coefficient ω is left unchanged by σ′;
otherwise, consider the term t = s2(x, L) obtained by replacing all variables y appearing
in the shape s(x, L) by the shape s(y, L − 1). Unfortunately, t may not be a shape
anymore, but Proposition 12 allows us to recover a new shape τ from t with new
coefficients whose values are given by χ. We thus have to store s′(x, L− 1) = τ in the
state of A∞ and update the coefficients accordingly, so that σ′(s′(x, L−1)) = χ(τ) ≡ t.

The most promising merge to perform in the infinite CRA A∞ in a state (q, s) is the merge
of a copyless layer L (such that the substitution [x 7→ s(x, L)] is copyless) with layer L− 1.

I Example 15. Consider the infinite CRA A∞ built in Figure 2. Three of its depicted states
contain copyless layers: notice in particular that, in the state above right, it becomes possible
to merge the first two layers after removing the useless (dotted) edge in the flow graph. After
these merges, we obtain the finite copyless (and thus bounded-copy) CRA of Figure 3.

The definition of the new transition function (and coefficient updates) given above is
correct, but not precise enough to prove afterwards that we obtain a bounded-copy CRA.
Therefore, we need to describe an operational method to build s′ and σ′ with as few copies
of coefficients as possible. There are two difficulties.

MFCS 2019

75:10 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

First, when glueing together s(x, L+ 1) with all the shapes s(y, L) (with (y, L) appearing
in s(x, L+1)), we need to gather the coefficients at the glueing interface. There are two cases:

s(x, L+1)

α1(y, L)β1+γ1

αtβ+γ
s(y, L)

α′
1(z, L)β′

1+γ′
1

ω
s(z, L)

=⇒

t

α2tβ2+γ2 ω2

Consider first the case where s(y, L) is a (non-constant) shape of the form αtβ + γ with t
a term. Let α1(y, L)β1 + γ1 be the subterm of s(x, L+ 1) where (y, L) appears. The glueing
should replace this subterm by α1(αtβ+γ)β1 +γ1 ≡ α1αtββ1 +α1γβ1 +γ1. This is obtained
by replacing it by a shape α2tβ2 + γ2 with α2, β2 and γ2 fresh coefficients that we set via
σ′(α2) = α1α, σ′(β2) = ββ1 and σ′(γ2) = α1γβ1 + γ1. Coefficients of t are preserved by the
update σ′. Notice that σ′ uses twice the content of coefficients α1 and β1.

The other case is the one where s(y, L) is a constant shape ω. Then, we replace in s(x, L+1)
the subterm α′1(y, L)β′1 + γ′1 by a fresh constant coefficient ω2, set via σ′(ω2) = α′1ωβ

′
1 + γ′1.

After glueing, in case where certain shapes we glued were constant shapes ω, a final step
is required. Either the term does not contain variables of X anymore (all variables have been
replaced by constant shapes ω), and we then replace the whole term t by a constant shape ω
with σ′(ω) = t. Or, there are still variables of X , in which case we need to remove all ω-leaves.
They are removed one by one, thus modifying the term and the update of coefficients. If
there is a subterm of the form α1(ω2 � ω3)β1 + γ1 with two ω-leaves (and � ∈ {+,×}), we
replace this subterm by a fresh constant coefficient ω4 set via σ′(ω4) = α1(ω2 � ω3)β1 + γ1.
Once removed all those terms, there might remain isolated ω-leaves: consider thus a subterm
with a single ω-leaf, e.g. of the form α1

(
(α2tβ2 + γ2)� ω3

)
β1 + γ1 with t a shape without

any ω. Notice that we can rewrite this term as:

α1
(
(α2tβ2 + γ2)� ω3

)
β1 + γ1 ≡

{
α1α2tβ2β1 + α1(γ2 + ω3)β1 + γ1 if � = +
α1α2tβ2ω3β1 + α1γ2ω3β1 + γ1 if � = ×

Then, this subterm is replaced by a shape α4tβ4 + γ4 with the coefficient updates:

σ′(α4) = α1α2 σ′(β4) =
{
β2β1 if � = +
β2ω3β1 if � = ×

σ′(γ4) = α1(γ2 � ω3)β1 + γ1

Notice the copy of ω3 in the case � = ×, and the copies of α1 and β1 in both cases.
During a whole merge step, we can show that the only coefficients to be copied are the

ones of layer L+1 and of the constant shapes ω of layer L, and these are copied at most twice.

Primarily-copyless layer. The merge of copyless layers with their predecessor may not be
sufficient to obtain a finite CRA, as shown in the following more involved example.

I Example 16. Consider the �-less CRA A3 over the semiring (P({a, b}),∪, ·, ∅, {ε}) and
alphabet {a, b}, with one state q and three registers x, y, z, that outputs ϕ(q) = x and
with transitions q a|σa−−−→ q and q a|σb−−−→ q using updates σa = [x 7→ xy, y 7→ a, z 7→ zya] and
σb = [x 7→ ε, y 7→ zb, z 7→ ε]. Here are the flow graphs G and G′ obtained after reading the
input words aaa and baba respectively:

T. Lopez, B. Monmege, and J.-M. Talbot 75:11

x

y

z

Ω

0 1 2 3

G:
x

y

z

Ω

0 1 2 3 4

G′:

The flow graph G′ illustrates that A3 is not bounded-copy, since the flow graphs on input
words (ba)n require a chain of n copies. In G though, no layer is copyless, and thus no
merging based on copyless layers can be performed. Notice that the value of register z is not
used in the output, but it would be so if the word aaa is extended with b: thus, we cannot
simply remove register z to recover some copyless layers. Here, the idea is rather to notice
that the second time we see register y being copied (in-between layers 1 and 2), we learn the
fact that indeed the previous content of register y is not copied many times (because of the
�-less hypothesis): if we do not consider this copy anymore, layer 2 becomes copyless and can
thus safely be merged with layer 1. It will cost copies, but not too much, as we will see later.

Hence, removing copyless layers is not a sufficient criterion to obtain a finite (bounded-
copy) CRA from A∞. To define the correct criterion, we distinguish some special vertices
in a flow graph. A source is a vertex (x, `) without predecessors (in the state of A∞, this
means that s(x, `) = ω). The sources of a vertex are all its ancestors that are sources: in
the previous flow graph G of Example 16, sources of (x, 2) are (x, 0), (y, 0) and (y, 1). A
source is primary if it is a source, with lowest layer, of a vertex in the maximal layer: (x, 0),
(y, 0), (z, 0) and (y, 3) are all the primary sources of G (note that (y, 3) is source with lowest
layer of (y, 3) itself), while (y, 1) and (y, 2) are not. A vertex is primary if it is a descendant
of a primary source. All other vertices are called secondary: in G, (y, 1) and (y, 2) are all
the secondary vertices. In particular, all vertices of the maximal layer are primary. On the
minimal layer, all vertices that can reach the maximal layer are primary sources. Notice that
whenever the flow graph is extended, some primary sources may turn secondary, and new
primary sources may appear, but only on the maximal layer; also, vertices may not reach the
maximal layer anymore in which case they are removed. A layer L is primarily-copyless when
only secondary vertices of layer L− 1 are possibly copied, i.e. all primary vertices (x, L− 1)
are linked to a single vertex of layer L. In G, only layers 2 and 3 are primarily-copyless.

Obviously, we do not build the infinite CRA A∞, but instead build a finite CRA A′ step
by step by extending it along transitions and directly merging each primarily-copyless layers
with the previous one, as much as possible. The idea is that merging such primarily-copyless
layers will cost some copies of coefficients, but not too many, yielding the fact that A′ is a
bounded-copy CRA with a finite number of states equivalent to the �-less CRA A. These
properties are proved in the rest of the section, and imply Proposition 11.

A′ is equivalent to A. By Invariant 14, the infinite CRA (without merge of primarily-
copyless layers) is equivalent to A. Then, we prove that it remains true when we perform
the merge of two consecutive layers. It is a consequence of the following invariant:

I Invariant 17. Let s be a shape substitution with `max + 1 layers, and let s′ and σ′ be
the shape substitution and update obtained by merging layers L and L − 1 from s. Then
σ′ ◦ s′`max(x, `max − 1) ≡ s`max+1(x, `max).

A′ is finite. Given a state (q, s) ∈ Q′, using Lemma 18 (below), s has less than |X |4 vertices.
The substitution is exactly defined by the shapes s(x, `) for every vertices (x, `). In each of
these shapes, each register in X appears at most once and there are |X |O(|X |) possible of
such shapes. Thus, |Q′| ≤ |Q| · |X |O(|X |5) and A′ is finite.

MFCS 2019

75:12 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

x

y

z

r

s

t

`i 1 2 3 4 5 6 `i+1

x

y

z

r

s

t

`i – 2 3 4 – 5 6 – `i+1

Figure 4 Merging of primarily copyless layers with the previous one.

I Lemma 18. For all states (q, s) in A′, the flow graph associated with s has less than |X |2
primary sources, |X |3 layers, and |X |4 vertices.

Proof. Recall that there are |X | vertices per layer. In the flow graph, each vertex of the
maximal layer defines exactly one minimal layer for its ancestors. All primary sources are
on those layers and there are at most |X | such layers. Each layer contains at most |X |
vertices, thus there are at most |X |2 primary sources in the flow graph. Also, this implies
that the bound on the number of vertices is a direct consequence of the bound on the
number of layers. We note `1, . . . , `k the layers where primary sources are, with k ≤ |X | and
0 = `1 < `2 < · · · < `k (the first layer contains only primary sources). For 1 ≤ i < k, we now
bound the number of layers separating `i from `i+1.

Recall that a copy vertex is a vertex with at least two out-going edges. A primary copy
vertex is a copy vertex that is primary. A bad layer is a layer that is not primarily-copyless
layer. Bad layers are exactly layers that remain after the removal of all primarily-copyless
layers. Note that by definition, a bad layer contains at least one primary copy vertex. Also,
as every primary vertex only reaches primary vertices and as the flow graph is �-less, a
primary copy vertex reaches primary vertices of the next layer that pairwise cannot flow in
the same vertex while they all flow in the maximal layer.

Figure 4 depicts vertices of a flow graph between two layers `i and `i+1 before removing
primarily copyless layers on the left and after on the right. Primary vertices are represented
in black, secondary vertices are represented in red, and vertices that cannot reach the last
layer are represented in gray. Vertices (r, `i) and (s, `i+1) are primary sources. Between `i
and `i+1, there are 3 primary copy vertices: (y, 2), (r, 3) and (r, 5). Layers `i, 1 and 2 are
merged, as well as layers 4 and 5, and also layers 6 and `i+1.

As the flow graph is �-less, every primary vertex (x, `i) flows at most once in every
primary vertex of layer `i+1. We note nx,i the number of vertices of layer `i+1 reachable
from (x, `i), we have that nx,i ≤ |X |. Then, (x, `i) reaches at most nx,i − 1 copy vertices
between layers `i (included) and `i+1 (excluded), all of which are primary. Since this holds
for all primary vertices of layer `i, there are at most |X | (|X | − 1) primary copy vertices
between layers `i and `i+1. This directly implies the same bound for the number of (bad)
layers. The argument still holds for (bad) layers between `k and the maximal layer `max of
the flow graph. As a consequence, there are at most |X |2 (|X | − 1) ≤ |X |3 layers in s. J

A′ is bounded-copy. We need some additional intuition on how secondary vertices flow.
Consider a secondary vertex v that flows into vertices of the last layer, that are primary.
Along the path from v to the last layer, there are secondary vertices, followed by primary
vertices. The first primary vertex encountered is called a target of v: in the flow graph G of

T. Lopez, B. Monmege, and J.-M. Talbot 75:13

Example 16, targets of (y, 1) are (x, 2) and (z, 2). Notice that every target is a descendant of
some primary source, by definition of primary vertices. A primary vertex is its own target.
Primary sources of a vertex are all the sources of its targets, that are primary: again in the
example G, primary sources of (y, 2) are (x, 0), (y, 0) and (z, 0).

We define a measure on the coefficients of all the shapes in a state of A′ that bounds
the number of times it can copy into other coefficients in the future. The measure of a
coefficient κ appearing in the shape of a vertex v = (x, `) of the shape substitution is defined
as the tuple ‖κ‖ = (`, p, c, `π, g) where p is the number of primary sources in s restricted
to the previous layers {0, . . . , `− 1}; c = 1 if the coefficient κ is an ω-coefficient, and c = 0
otherwise; `π is the maximal layer of a primary source of vertex v; g is the number of targets
of vertex v. We can show that along the update of every transition of A′, if a coefficient κ is
used to update the value of another coefficient κ′ then ‖κ‖ ≥ ‖κ′‖ (where tuples are ordered
lexicographically). Moreover, if κ is used in at least two coefficients, then ‖κ‖ > ‖κ′‖. We
can bound the length of all decreasing sequences of tuples by 2|X |9. When a coefficient is
copied, it flows into at most 2|X | coefficients. Thus, A′ is (2|X |)2|X |9 -copy.

5 From bounded-copy CRAs to copyless CRAs

The final step of our construction is to remove all copies from a bounded-copy CRA. This is
achieved in a purely greedy manner: it suffices to have enough replicas of each register from the
beginning, and then split the replicas evenly when the bounded-copy CRA performs copies.

I Proposition 19. For every k-copy CRA, we can construct an equivalent copyless CRA.

I Remark 20. Note that our definition of bounded-copy differs from the one of [4]. There, flow
graphs are first trimmed with respect to the output vertex, and k-copy means that there are
at most k copy vertices in the whole trimmed flow graph. In this sense, 0-copy implies �-less
in our setting. Therefore, removing copies is the core of their transformation from functional
copyless (non-deterministic) streaming string transducers into copyless deterministic ones.

This ends the proof of Theorem 1. Actually, this last step in the proof extends easily
to show that bounded-copy finitely-ambiguous CRAs can be effectively transformed into
equivalent finitely-ambiguous CRAs. Applying then Theorem 1, we obtain

I Corollary 21. Every bounded-copy finitely-ambiguous NCRA can be effectively transformed
into an equivalent copyless CRA.

6 Conclusion

We have shown a construction removing the finite-ambiguity of a copyless NCRA, with
an application to the removal of regular look-aheads in copyless CRA-RLAs in arbitrary
semirings. It can be shown that the result does no longer hold for linear-ambiguous copyless
NCRAs using the example of [14, Theorem 2], therefore finite-ambiguity seems the weakest
condition for which our result holds. Moreover, existing techniques of regular look-ahead
removal for streaming string-to-tree transducers [3] cannot be used directly, as the addition
of unary mappings update strictly increases the expressive power of copyless CRAs. Going
back to the example of Figure 1, notice that the application of our construction from the
finitely-ambiguous NCRA An yields a copyless CRA that is bigger than the alternative
solution Ac: it has more states, and more registers. As future works, we thus plan to study
minimisation of copyless CRAs in the general setting of semirings. Our results work even
for non-commutative semirings. However it heavily relies on the distributivity property of

MFCS 2019

75:14 Determinisation of Finitely-Ambiguous Copyless Cost Register Automata

semirings, in order to normalise the terms into shapes. The transformation from a �-less CRA
to a bounded-copy CRA also relies on the capability to multiply two registers (coefficients)
together: this is thus unclear how to extend our approach to the so-called additive copyless
CRAs where products in register updates must happen between a register and a constant.

References

1 Shaull Almagor, Michaël Cadilhac, Filip Mazowiecki, and Guillermo A. Pérez. Weak Cost
Register Automata Are Still Powerful. In Proceedings of the 22nd International Conference on
Developments in Language Theory (DLT 2018), volume 11088 of LNCS, pages 83–95. Springer,
2018. doi:10.1007/978-3-319-98654-8_7.

2 Rajeev Alur and Loris D’antoni. Streaming Tree Transducers. Journal of the ACM, 64(5):1–55,
August 2017. doi:10.1145/3092842.

3 Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular Functions and Cost Register Automata. In Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), pages 13–22. IEEE
Computer Society, 2013. doi:10.1109/LICS.2013.65.

4 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular Transformations of Infinite
Strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science
(LICS 2012), pages 65–74. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.18.

5 Rajeev Alur and Mukund Raghothaman. Decision Problems for Additive Regular Functions. In
Proceedings of the 40th International Colloquium on Automata, Languages, and Programming,
Part II (ICALP 2013), volume 7966 of LNCS, pages 37–48. Springer, 2013. doi:10.1007/
978-3-642-39212-2_7.

6 Marcella Anselmo. Two-Way Automata with Multiplicity. In Proceedings of the 17th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP 1990), volume 443 of
LNCS, pages 88–102. Springer, 1990.

7 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating Weighted
Automata. In Proceedings of the 17th International Conference on Fundamentals of computation
theory (FCT’09), volume 5699 of Lecture Notes in Computer Science, pages 3–13, 2009.

8 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic, 11(4), 2010. doi:10.1145/1805950.1805953.

9 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A Generalised Twinning Property
for Minimisation of Cost Register Automata. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’16), pages 857–866. ACM, 2016. doi:
10.1145/2933575.2934549.

10 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer,
2009.

11 Kosaburo Hashiguchi, Kenichi Ishiguro, and Shuji Jimbo. Decidability of The Equivalence
Problem for Finitely Ambiguous Finance Automata. International Journal of Algebra and
Computation, 12(3):445, 2002. doi:10.1142/S0218196702000845.

12 Peter Kostolányi and Filip Misún. Alternating weighted automata over commutative semirings.
Theoretical Computer Science, 740:1–27, 2018. doi:10.1016/j.tcs.2018.05.003.

13 Filip Mazowiecki and Cristian Riveros. Maximal Partition Logic: Towards a Logical Char-
acterization of Copyless Cost Register Automata. In 24th EACSL Annual Conference on
Computer Science Logic (CSL 2015), volume 41 of LIPIcs, pages 144–159. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.144.

14 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. Journal of Computer and System Sciences, 100:1–29, March
2019. doi:10.1016/j.jcss.2018.07.002.

https://doi.org/10.1007/978-3-319-98654-8_7
https://doi.org/10.1145/3092842
https://doi.org/10.1109/LICS.2013.65
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.1007/978-3-642-39212-2_7
https://doi.org/10.1007/978-3-642-39212-2_7
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/2933575.2934549
https://doi.org/10.1145/2933575.2934549
https://doi.org/10.1142/S0218196702000845
https://doi.org/10.1016/j.tcs.2018.05.003
https://doi.org/10.4230/LIPIcs.CSL.2015.144
https://doi.org/10.1016/j.jcss.2018.07.002

T. Lopez, B. Monmege, and J.-M. Talbot 75:15

15 Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. The Design Principles of a
Weighted Finite-State Transducer Library. Theoretical Computer Science, 231(1):17–32, 2000.
doi:10.1016/S0304-3975(99)00014-6.

16 Azaria Paz. Some Aspects of Probabilistic Automata. Information and Computation, 9(1):26–
60, 1966.

17 Michael O. Rabin. Probabilistic Automata. Information and Control, 6(3):230–245, 1963.
18 Marcel Paul Schützenberger. On the Definition of a Family of Automata. Information and

Control, 4(2-3):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

MFCS 2019

https://doi.org/10.1016/S0304-3975(99)00014-6
https://doi.org/10.1016/S0019-9958(61)80020-X

Aperiodic Weighted Automata and Weighted
First-Order Logic
Manfred Droste
Institut für Informatik, Universität Leipzig, Germany
droste@informatik.uni-leipzig.de

Paul Gastin
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
paul.gastin@ens-paris-saclay.fr

Abstract
By fundamental results of Schützenberger, McNaughton and Papert from the 1970s, the classes
of first-order definable and aperiodic languages coincide. Here, we extend this equivalence to a
quantitative setting. For this, weighted automata form a general and widely studied model. We
define a suitable notion of a weighted first-order logic. Then we show that this weighted first-order
logic and aperiodic polynomially ambiguous weighted automata have the same expressive power.
Moreover, we obtain such equivalence results for suitable weighted sublogics and finitely ambiguous or
unambiguous aperiodic weighted automata. Our results hold for general weight structures, including
all semirings, average computations of costs, bounded lattices, and others.

2012 ACM Subject Classification Theory of computation → Quantitative automata; Theory of
computation → Logic and verification

Keywords and phrases Weighted automata, weighted logic, aperiodic automata, first-order logic,
unambiguous, finitely ambiguous, polynomially ambiguous

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.76

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.08149

Funding Manfred Droste: Partly supported by a visiting professorship at ENS Paris-Saclay
Paul Gastin: Partly supported by the DFG Research Training Group QuantLA.

1 Introduction

Fundamental results of Schützenberger, McNaughton and Papert established that aperiodic,
star-free and first-order definable languages, respectively, coincide [40, 32]. In this paper, we
develop such an equivalence in a quantitative setting, i.e., for suitable notions of aperiodic
weighted automata and weighted first-order logic.

Already Schützenberger [39] investigated weighted automata and characterized their
behaviors as rational formal power series. Weighted automata can be viewed as classical finite
automata in which the transitions are equipped with weights. These weights could model,
e.g., the cost, reward or probability of executing a transition. The wide flexibility of this
automaton model soon led to a wealth of extensions and applications, cf. [38, 28, 2, 36, 15].
Whereas traditionally weights are taken from a semiring, recently, motivated by practical
examples, also average and discounted computations of weights were considered, cf. [8, 7].

In the boolean setting, the seminal Büchi-Elgot-Trakhtenbrot theorem [6, 21, 41] estab-
lished the expressive equivalence of finite automata and monadic second-order logic (MSO).
A weighted monadic second-order logic with the same expressive power as weighted automata
was developed in [12, 13]. This led to various extensions to weighted automata and weighted
logics on trees [19], infinite words [18], timed words [34], pictures [22], graphs [10], nested
words [11], and data words [1], but also for more complicated weight structures including

© Manfred Droste and Paul Gastin;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 76; pp. 76:1–76:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:droste@informatik.uni-leipzig.de
https://orcid.org/0000-0002-1313-7722
mailto:paul.gastin@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.76
https://arxiv.org/abs/1902.08149
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 Aperiodic Weighted Automata and Weighted First-Order Logic

average and discounted calculations [16] or multi-weights [17]. Recently, in [23], weighted
MSO logic was revisited with a more structured syntax, called core-wMSO, and shown to
be expressively equivalent to weighted automata, while permitting a uniform approach to
semirings and these more complicated weight structures.

Here, we consider the first-order fragment wFO of this weighted logic. It extends the
full classical boolean first-order logic quantitatively by adding weight constants and if-then-
else applications, followed by a first-order (universal) product and then further if-then-else
applications, finite sums, or first-order (existential) sums. We will show that its expressive
power leads to aperiodic weighted automata which, moreover, are polynomially ambiguous.
Natural subsets of connectives will correspond to unambiguous or finitely ambiguous aperiodic
weighted automata. These various levels of ambiguity are well-known from classical automata
theory [24, 42, 26, 25].

Following the approach of [23], we take an arbitrary set R of weights. A path in a
weighted automaton over R then has the sequence of weights of its transitions as its value.
The abstract semantics of the weighted automaton is defined as the function mapping each
non-empty word to the multiset of weight sequences of the successful paths executing the
given word. Correspondingly, we will define the abstract semantics of wFO sentences also as
functions mapping non-empty words to multisets of sequences of weights. Our main result
will be the following.

I Theorem 1. Let Σ be an alphabet and R a set of weights. Then the following classes of
weighted automata and weighted first-order logics are expressively equivalent:
1. Aperiodic polynomially ambiguous weighted automata (wA) and wFO sentences,
2. Aperiodic finitely ambiguous wA and wFO sentences without first-order sums,
3. Aperiodic unambiguous wA and wFO sentences without binary or first-order sums.

Note that these characterizations hold without any restrictions on the weights. The above
result applies not only to the abstract semantics. As immediate consequence, we obtain
corresponding expressive equivalence results for classical weighted automata over arbitrary
(even non-commutative) semirings, or with average or discounted calculations of weights, or
bounded lattices as in multi-valued logics. All our constructions are effective. In fact, given
a wFO sentence and deterministic aperiodic automata for its boolean subformulas, we can
construct an equivalent aperiodic weighted automaton of exponential size. We give typical
examples for our constructions. The class of arbitrary aperiodic weighted automata and
its subclasses of polynomially resp. finitely ambiguous or unambiguous weighted automata
form a proper hierarchy for each of the following semirings: natural numbers N+,×, the
max-plus-semiring Nmax,+ and the min-plus semiring Nmin,+ [14].

It should be noticed that standard constructions used to establish equivalence between
automata and MSO logic cannot be applied. Indeed, starting from an automaton A, one
usually constructs an existential MSO sentence where the existential set quantifications are
used to guess an accepting run and the easy first-order kernel is used to check that this guess
indeed defines an accepting run. Here, we cannot use quantifications ∃X over set variables X,
or their weighted equivalent

∑
X . Instead, we take advantage of the fine structure of possible

paths of polynomially ambiguous automata, namely the fact that it must be unambiguous on
strongly connected components (SCC-unambiguous), as employed for different goals already
in [24, 42]. We first give a new construction of a wFO sentence without sums starting from an
aperiodic and unambiguous automaton. Then, we extend the construction to polynomially
ambiguous aperiodic automata using first-order sums

∑
x to guess positions where the run

switches between the unambiguous SCCs. For part 2 of Theorem 1, we also prove that

M. Droste and P. Gastin 76:3

for each aperiodic finitely ambiguous weighted automaton we can construct finitely many
aperiodic unambiguous weighted automata whose disjoint union has the same semantics.

Again, for the implication from weighted formulas to weighted automata, we cannot
simply use standard constructions which crucially rely on the fact that functions defined
by weighted automata are closed under morphic images. This was used to handle first-oder
sums

∑
x and second-order sums

∑
X , but also in the more involved proof for the first-order

product
∏
x applied to finitely valued weighted automata. But it is well-known that aperiodic

languages are not closed under morphic images. Handling the first-order product
∏
x requires

a completely new and highly non-trivial proof preserving aperiodicity properties.
Detailed proofs and additional examples are given in the full version [14].

Related work. In [27], polynomially ambiguous, finitely ambiguous and unambiguous
weighted automata (without assuming aperiodicity) over commutative semirings were shown
to be expressively equivalent to suitable fragments of weighted monadic second order logic.
This was further extended in [33] to cover polynomial degrees and weighted tree automata.

A hierarchy of these classes of weighted automata (again without assuming aperiodicity)
over the max-plus semiring was described in [26]. As a consequence of pumping lemmas for
weighted automata, a similar hierarchy was obtained in [30] for the min-plus semiring.

We note that in [13, 20], an equivalence result for full weighted first-order logic was given,
but only for very particular classes of semirings or strong bimonoids as weight structures.

A characterization of the full weighted first-order logic with transitive closure by weighted
pebble automata was obtained in [5]. An equivalence result for fragments of weighted first-
order logic, weighted LTL and weighted counter-free automata over the max-plus semiring
with discounting was given in [29].

2 Preliminaries

A non-deterministic automaton is a tuple A = (Q,Σ,∆) where Q is a finite set of states,
Σ is a finite alphabet, and ∆ ⊆ Q × Σ × Q is the set of transitions. The automaton A is
complete if ∆(q, a) 6= ∅ for all q ∈ Q and a ∈ Σ. A run ρ of A is a nonempty sequence of
transitions δ1 = (p1, a1, q1), δ2 = (p2, a2, q2), . . . , δn = (pn, an, qn) such that qi = pi+1 for all
1 ≤ i < n. We say that ρ is a run from state p1 to state qn and that ρ reads, or has label,
the word a1a2 · · · an ∈ Σ+. We denote by L(Ap,q) ⊆ Σ∗ the set of labels of runs of A from p

to q. When p = q, we include the empty word ε in L(Ap,q) and say that ε labels the empty
run from p to p.

An automaton with accepting conditions is a tuple A = (Q,Σ,∆, I, F) where (Q,Σ,∆) is a
non-deterministic automaton, I, F ⊆ Q are the sets of initial and final states respectively. The
language defined by the automaton is L(A) = L(AI,F) =

⋃
p∈I,q∈F L(Ap,q). Subsequently,

we also consider automata with several accepting sets F,G, . . . so that the same automaton
may define several languages L(AI,F), L(AI,G), . . . An automaton A = (Q,Σ,∆, I, F) is
deterministic if I = {ι} is a singleton and the set ∆ of transitions is a partial function: for
all (p, a) ∈ Q× Σ there is at most one state q ∈ Q such that (p, a, q) ∈ ∆.

Next, we consider degrees of ambiguity of automata. A run in an automaton is successful,
if it leads from an initial to a final state. The automaton A is called polynomially ambiguous
if there is a polynomial p such that for each w ∈ Σ+ the number of successful paths in A for
w is at most p(|w|). Then, A is finitely ambiguous if p can be taken to be a constant. Further,
for an integer k ≥ 1, A is k-ambiguous if p = k, and unambiguous means 1-ambiguous. Notice
that k-ambiguous implies (k + 1)-ambiguous. An automaton A is at most exponentially
ambiguous.

MFCS 2019

76:4 Aperiodic Weighted Automata and Weighted First-Order Logic

A non-deterministic automaton A = (Q,Σ,∆) is aperiodic if there exists an integer
m ≥ 1, called aperiodicity index, such that for all states p, q ∈ Q and all words u ∈ Σ+, we
have um ∈ L(Ap,q) iff um+1 ∈ L(Ap,q). In other words, the non-deterministic automaton
A is aperiodic iff its transition monoid Tr(A) is aperiodic. It is well-known that aperiodic
languages coincide with first-order definable languages, cf. [40, 32, 9].

The syntax of first-order logic is given in Section 4 (FO). The semantics is defined by
structural induction on the formula and requires an interpretation of the free variables. Let
V = {y1, . . . , yn} be a finite set of first-order variables. Given a nonempty word u ∈ Σ+,
we let pos(u) = {1, . . . , |u|} be the set of positions of u. A valuation or interpretation is a
map σ : V → pos(u) assigning positions of u to variables in V. For a first-order formula ϕ
having free variables contained in V, we write u, σ |= ϕ when the word u satisfies ϕ under
the interpretation defined by σ. When ϕ is a sentence, the valuation σ is not needed and we
simply write u |= ϕ.

We extend the classical semantics by defining when the empty word ε satisfies a sentence.
We have ε |= > and if ∀xψ is a sentence then ε |= ∀xψ. The semantics ε |= ϕ is extended to
all sentences ϕ since they are boolean combinations of the basic cases above. Notice that if ϕ
has free variables then ε |= ϕ is not defined. When ϕ is a sentence we denote by L(ϕ) ⊆ Σ∗
the set of words satisfying ϕ. Notice that L(∀x⊥) = {ε} where ⊥ = ¬>.

I Theorem 2 ([40, 32, 9]). Let A be an aperiodic non-deterministic automaton. For all
states p, q of A we can construct a first-order sentence ϕp,q such that L(Ap,q) = L(ϕp,q).

For the converse of Theorem 2, we need a stronger statement to deal with formulas having
free variables. As usual, we encode a pair (u, σ) where u ∈ Σ+ is a nonempty word and
σ : V → pos(u) is a valuation by a word u over the extended alphabet ΣV = Σ × {0, 1}V .
A word u over ΣV is a valid encoding if for each variable y ∈ V, its projection on the
y-component belongs to 0∗10∗. Throughout the paper, we identify a valid word u with its
encoded pair (u, σ).

I Theorem 3 ([40, 32, 9]). For each FO-formula ϕ having free variables contained in V, we
can build a deterministic, complete and aperiodic automaton Aϕ,V = (Q,ΣV ,∆, ι, F,G) over
the extended alphabet ΣV such that for all words u ∈ Σ+

V we have:
∆(ι, u) ∈ F iff u is a valid encoding of a pair (u, σ) with (u, σ) |= ϕ,
∆(ι, u) ∈ G iff u is a valid encoding of a pair (u, σ) with (u, σ) |= ¬ϕ,
∆(ι, u) /∈ F ∪G otherwise, i.e., iff u is not a valid encoding of a pair (u, σ).

Given u ∈ Σ+ and integers k, `, we denote by u[k, `] the factor of u between positions k
and `. By convention u[k, `] = ε is the empty word when ` < k or ` = 0 or k > |u|.

We will apply the equivalence of Theorem 2 to prefixes, infixes or suffixes of words.
Towards this, we use the classical relativization of sentences. Let ϕ be a first-order sentence
and let x, y ∈ V be first-order variables. We define below the relativizations ϕ<x, ϕ(x,y) and
ϕ>y so that for all words u ∈ Σ+, and all positions i, j ∈ pos(u) = {1, . . . , |u|} we have

u, x 7→ i |= ϕ<x iff u[1, i− 1] |= ϕ

u, x 7→ i, y 7→ j |= ϕ(x,y) iff u[i+ 1, j − 1] |= ϕ

u, x 7→ j |= ϕ>x iff u[j + 1, |u|] |= ϕ

Notice that, when i = 1 or j ≤ i + 1 or j = |u|, the relativization is on the empty word,
this is why we had to define when ε |= ψ for sentences ψ. The relativization is defined by

M. Droste and P. Gastin 76:5

1 2 3 4

a | 2

a | 1

a | 3

a | 5

b | 5

b | 3

b | 1

b | 2

Figure 1 A weighted automaton, which is both aperiodic and polynomially ambiguous.

structural induction on the formulas as follows:

><x = > (Pa(z))<x = Pa(z) (y ≤ z)<x = (y ≤ z)
(¬ψ)<x = ¬(ψ<x) (ψ1 ∧ ψ2)<x = ψ<x1 ∧ ψ<x2 (∀zψ)<x = ∀z(z < x =⇒ ψ<x)

The relativizations ϕ(x,y) and ϕ>x are defined similarly. Notice that when ϕ is a sentence,
i.e., a boolean combination of formulas of the form > or ∀zψ, then the above equivalences
hold even when i = 1 for ϕ<x, or when i = |u| for ϕ>x, or when j ≤ i+ 1 for ϕ(x,y).

3 Weighted Automata

Given a set X, we let N〈X〉 be the collection of all finite multisets over X, i.e., all functions
f : X → N such that f(x) 6= 0 only for finitely many x ∈ X. The union f] g of two multisets
f, g ∈ N〈X〉 is defined by pointwise addition of functions: (f] g)(x) = f(x) + g(x) for x ∈ X.

For a set R of weights, an R-weighted automaton over Σ is a tuple A = (Q,Σ,∆,wt) where
(Q,Σ,∆) is a non-deterministic automaton and wt : ∆→ R assigns a weight to every transition.
The weight sequence of a run ρ = δ1δ2 · · · δn is wt(ρ) = wt(δ1)wt(δ2) · · ·wt(δn) ∈ R+. The
abstract semantics of A from state p to state q is the map {|Ap,q|} : Σ+ → N〈R+〉 which
assigns to a word u ∈ Σ+ the multiset of weight sequences of runs from p to q with label u:

{|Ap,q|}(u) = {{wt(ρ) | ρ is a run from p to q with label u}} .

Notice that {|Ap,q|}(u) = ∅ is the empty multiset when there are no runs of A from p

to q with label u, i.e., when u /∈ L(Ap,q). When we consider a weighted automaton
A = (Q,Σ,∆,wt, I, F) with initial and final sets of states, for all u ∈ Σ+ the semantics
{|A|} is defined as the multiset union: {|A|}(u) =

⊎
p∈I,q∈F {|Ap,q|}(u). Hence, {|A|} assigns

to every word u ∈ Σ+ the multiset of all weight sequences of accepting runs of A reading u.
The support of A is the set of words u ∈ Σ+ such that {|A|}(u) 6= ∅, i.e., supp(A) = L(A).

For instance, consider the weighted automaton A of Figure 1. We have supp(A) =
a+a(a+ b)∗b+. Consider w = am(ba)nbp with m > 1 and p > 0. We have w ∈ supp(A) and
{|A|}(w) = {{2k−1 · 1 · 3m−k−1 · 5 · (3 · 5)n · 5`−1 · 1 · 2p−` | 1 ≤ k < m and 1 ≤ ` ≤ p}}.

A concrete semantics over semirings, or valuation monoids, or valuation structures can
be obtained from the abstract semantics defined above by applying the suitable aggregation
operator aggr : N〈R+〉 → S as explained in [23], see also [14]. For the natural semiring
(N,+,×, 0, 1), the sum-product aggregation operator aggrsp(f) gives the sum over all sequences
s1s2 · · · sk in the multiset f of the products s1× s2× · · · × sk in N. We continue the example
with the automaton A of Figure 1 and the word w = am(ba)nbp with m > 1 and p > 0. The
concrete semantics is given by

[[A]](w) = aggrsp({|A|}(w)) =
∑

1≤k<m

∑
1≤`≤p

2k−1+p−`3m−k−1+n5n+` .

MFCS 2019

76:6 Aperiodic Weighted Automata and Weighted First-Order Logic

In further examples, we also use the max-plus semiring Nmax,+ = (N∪{−∞},max,+,−∞, 0)
and the min-plus semiring Nmin,+ = (N ∪ {∞},min,+,∞, 0).

Now, we investigate finitely ambiguous weighted automata. It was shown in [26] that over
the max-plus semiring Nmax,+ they are expressively equivalent to finite disjoint unions of
unambiguous weighted automata. Moreover, it was proved in [37] that a K-valued rational
transducer can be decomposed into K unambiguous transducers. In particular this implies
that a K-ambiguous weighted automaton can be decomposed into K unambiguous weighted
automata. We can prove that the same holds for aperiodic weighted automata [14].
I Theorem 4. Let K ≥ 1. Given an aperiodic K-ambiguous weighted automaton A,
we can construct aperiodic unambiguous weighted automata B1, . . . ,BK such that {|A|} =
{|B1] · · ·] BK |} = {|B1|}] · · ·] {|BK |}.

Our proof is based on lexicographic ordering of runs. The proof of [37] uses lexicographic
coverings. It would be interesting to see whether this proof also preserves aperiodicity and
to compare the complexity of the constructions.

4 Weighted First-Order Logic

In this section, we define the syntax and semantics of our weighted first-order logic. In [12, 13],
weighted MSO used the classical syntax of MSO logic; only the semantics over a semiring
was changed to use sums for disjunction and existential quantifications, and products for
conjunctions and universal quantifications. The possibility to express boolean properties in
wMSO was obtained via so-called unambiguous formulae. To improve readability, a more
structured syntax was later used [3, 16, 27], separating a boolean MSO layer with classical
boolean semantics from the higher level of weighted formulas using products (

∏
X ,
∏
x

corresponding to ∀X, ∀x) and sums (
∑
X ,
∑
x corresponding to ∃X, ∃x) with quantitative

semantics. As shown in [12, 13], in general, to retain equivalence with weighted automata,
wMSO has to be restricted. Products

∏
X over set variables are disallowed, and first-order

products
∏
x must be restricted to finitely valued series where the pre-image of each value

is recognizable. This basically means that first-order products cannot be nested or applied
after first-order or second-order sums

∑
x or

∑
X . This motivated the equivalent and even

more structured syntax of core-wMSO introduced in [23].
As in Section 3, we consider a set R of weights. The syntax of wFO is obtained from

core-wMSO by removing set variables, set quantifications and set sums. In addition to the
classical boolean first-order logic (FO), it has two weighted layers. Step formulas defined
in (step-wFO) consist of constants and if-then-else applications, where the conditions are
formulated in boolean first-order logic. Finally, wFO builds on this by performing products
of step formulas and then applying if-then-else, finite sums, or existential sums.

ϕ ::= > | Pa(x) | x ≤ y | ¬ϕ | ϕ ∧ ϕ | ∀xϕ (FO)
Ψ ::= r | ϕ ? Ψ : Ψ (step-wFO)
Φ ::= 0 |

∏
xΨ | ϕ ? Φ : Φ | Φ + Φ |

∑
xΦ (wFO)

with a ∈ Σ, r ∈ R and x, y first-order variables.
The semantics of step-wFO formulas is defined inductively. As above, let u ∈ Σ+ be a

nonempty word and σ : V → pos(u) = {1, . . . , |u|} be a valuation. For step-wFO formulas
whose free variables are contained in V, we define the V-semantics as

[[r]]V(u, σ) = r [[ϕ ? Ψ1 : Ψ2]]V(u, σ) =
{

[[Ψ1]]V(u, σ) if u, σ |= ϕ

[[Ψ2]]V(u, σ) otherwise.

M. Droste and P. Gastin 76:7

1 2

3

a | 2

b | 1

a | 3

c | 1

b | 1

c | 1

b | 1 c | 1

Figure 2 A weighted automaton, which is both aperiodic and unambiguous.

Notice that the semantics of a step-wFO formula is always a single weight from R.
For wFO formulas Φ whose free variables are contained in V, we define the V-semantics

{|Φ|}V : Σ+
V → N〈R+〉. First, we let {|Φ|}V(u) = ∅ be the empty multiset when u ∈ Σ+

V is
not a valid encoding of a pair (u, σ). Assume now that u = (u, σ) is a valid encoding of a
nonempty word u ∈ Σ+ and a valuation σ : V → pos(u). The semantics of wFO formulas is
also defined inductively: {|0|}V(u, σ) = ∅ is the empty multiset, and

{|
∏
xΨ|}V(u, σ) = {{r1r2 · · · r|u|}} where ri = [[Ψ]]V∪{x}(u, σ[x 7→ i]) for 1 ≤ i ≤ |u|

{|ϕ ? Φ1 : Φ2|}V(u, σ) =
{
{|Φ1|}V(u, σ) if u, σ |= ϕ

{|Φ2|}V(u, σ) otherwise

{|Φ1 + Φ2|}V(u, σ) = {|Φ1|}V(u, σ)] {|Φ2|}V(u, σ)

{|
∑
xΦ|}V(u, σ) =

⊎
i∈pos(u)

{|Φ|}V∪{x}(u, σ[x 7→ i]) .

The semantics of the product (first line), is a singleton multiset which consists of a weight
sequence whose length is |u|. We deduce that all weight sequences in a multiset {|Φ|}V(u, σ)
have the same length and {|Φ|}V(u, σ) ∈ N〈R|u|〉. We simply write [[Ψ]] and {|Φ|} when the
set V of variables is clear from the context.

As explained in Section 3, applying an aggregation function allows to recover the semantics
[[Φ]] over semirings such as N+,×, Nmax,+, etc. For instance, consider the function f : {a, b}+ →
N which assign to a word w ∈ {a, b}+ the length of the maximal a-block, i.e., f(w) = n if an
is a factor of w but an+1 is not. Over Nmax,+, we have f = [[Φ]] where

Φ =
∑
y,z(∀u (y ≤ u ≤ z)→ Pa(u)) ? (

∏
x(y ≤ x ≤ z) ? 1 : 0) : (

∏
x0) .

We refer to [13] for further examples of quantitative specifications in weighted logic.

5 From Weighted Automata to Weighted FO

We say that a non-deterministic automaton A = (Q,Σ,∆) is unambiguous from state p to
state q if for all words u ∈ Σ+, there is at most one run of A from p to q with label u.

I Theorem 5. Let A be an aperiodic weighted automaton which is unambiguous from p to q.
We can construct a wFO sentence Φp,q = ϕp,q ?

∏
xΨp,q : 0 where ϕp,q is a first-order sentence

and Ψp,q(x) is a step-wFO formula with a single free variable x such that {|Ap,q|} = {|Φp,q|}.

Before proving Theorem 5, we start with an example. The automaton A of Figure 2 is
unambiguous and it accepts the language L(A) = (a∗b + a∗c)+ = (a + b + c)∗(b + c). We
define a wFO sentence Φ1,3 = ϕ1,3 ?

∏
xΨ1,3(x) : 0 as follows. The FO sentence ϕ1,3 checks

that A has a run from state 1 to state 3 on the input word w, i.e., that w ∈ a∗b(a∗b+ a∗c)∗:

ϕ1,3 = ∃y (Pb(y) ∧ ∀z (z < y =⇒ Pa(z))) ∧ ∃y (¬Pa(y) ∧ ∀z (z ≤ y))

MFCS 2019

76:8 Aperiodic Weighted Automata and Weighted First-Order Logic

When this is the case, the step-wFO formula Ψ1,3(x) computes the weight of the transition
taken at a position x in the input word:

Ψ1,3(x) =(Pb(x) ∨ Pc(x)) ? 1 : ∃y (x < y ∧ Pb(y) ∧ ∀z (x < z < y =⇒ Pa(z))) ? 2 : 3 .

Notice that the same formula Ψ = Ψ2,3 = Ψ1,3 also allows to compute the sequence of weights
for the accepting runs starting in state 2. Therefore, A is equivalent to the wFO sentence

Φ = ∃y (¬Pa(y) ∧ ∀z (z ≤ y)) ?
∏
xΨ(x) : 0 .

Proof of Theorem 5. Let A = (Q,Σ,∆,wt) be the aperiodic weighted automaton. By
Theorem 2, for every pair of states r, s ∈ Q there is a first-order sentence ϕr,s such that
L(Ar,s) = L(ϕr,s). This gives in particular the first-order sentence ϕp,q which is used in Φp,q.

B Claim 6. We can construct a step-wFO formula Ψp,q(x) such that for each word u ∈ L(Ap,q)
and each position 1 ≤ i ≤ |u| in the word u, we have [[Ψp,q]](u, x 7→ i) = wt(δ) where δ is the
ith transition of the unique run ρ of A from p to q with label u.

Before proving this claim, let us show how we can deduce the statement of Theorem 5.
Clearly, if a word u ∈ Σ+ is not in L(Ap,q) then we have {|Ap,q|}(u) = ∅ = {|Φp,q|}(u).
Consider now a word u = a1a2 · · · an ∈ L(Ap,q) and the unique run ρ = δ1δ2 · · · δn of A from
p to q with label u. We have {|Ap,q|}(u) = {{wt(δ1)wt(δ2) · · ·wt(δn)}} = {|

∏
xΨp,q|}(u) where

the second equality follows from Claim 6. We deduce that {|Ap,q|} = {|Φp,q|}.
We turn now to the proof of Claim 6. Let δ = (r, a, s) ∈ ∆ be a transition of A. We

define the FO-formula with one free variable ϕδ(x) = ϕ<xp,r ∧ Pa(x) ∧ ϕ>xs,q .

B Claim 7. For each word u ∈ Σ+ and position 1 ≤ i ≤ |u|, we have u, x 7→ i |= ϕδ iff
u ∈ L(Ap,q) and δ is the ith transition of the unique run of A from p to q with label u.

Indeed, assume that u, x 7→ i |= ϕδ. Then, u[1, i− 1] |= ϕp,r and there is a run ρ′ of A
from p to r with label u[1, i− 1]. Notice that if i = 1 then p = r and ρ′ is the empty run.
Similarly, from u[i+ 1, |u|] |= ϕs,q we deduce that there is a run ρ′′ of A from s to q with
label u[i+ 1, |u|]. Finally, u, x 7→ i |= Pa(x) means that the ith letter of u is a. We deduce
that ρ = ρ′δρ′′ is a run of A from p to q with label u, hence u ∈ L(Ap,q). Moreover, ρ is the
unique such run since A is unambiguous from p to q. Now, δ is the ith transition of ρ, which
concludes one direction. Conversely, assume that u ∈ L(Ap,q) and δ is the ith transition of
the unique run of A from p to q with label u. Then, u[1, i− 1] |= ϕp,r, u[i+ 1, |u|] |= ϕs,q,
and the ith letter of u is a. Therefore, u, x 7→ i |= ϕδ. This concludes the proof of Claim 7.

Now, choose an arbitrary enumeration δ1, δ2, . . . , δk of the transitions in ∆ and define
the step-wFO formula with one free variable

Ψp,q(x) = ϕδ1(x) ? wt(δ1) : ϕδ2(x) ? wt(δ2) : · · · ϕδk (x) ? wt(δk) : wt(δk) .

We show that this formula satisfies the property of Claim 6. Consider a word u ∈ L(Ap,q)
and a position 1 ≤ i ≤ |u|. Let δ be the ith transition of the unique run of A from p to q with
label u. By Claim 7, we have u, x 7→ i |= ϕδj iff δj = δ. Therefore, [[Ψp,q]](u, x 7→ i) = wt(δ),
which concludes the proof of Claim 6. J

I Corollary 8.
1. Let A be an aperiodic and unambiguous weighted automaton. We can construct a wFO

sentence Φ which does not use any
∑
x operator or + operator, and such that {|A|} = {|Φ|}.

2. Let A be an aperiodic and finitely ambiguous weighted automaton. We can construct a
wFO sentence Φ which does not use any

∑
x operator, and such that {|A|} = {|Φ|}.

M. Droste and P. Gastin 76:9

Let A = (Q,Σ,∆) be a non-deterministic automaton. Two states p, q ∈ Q are in the
same strongly connected component (SCC), denoted p ≈ q, if p = q or there exist a run of A
from p to q and also a run of A from q to p. Note that ≈ is an equivalence relation on Q. We
denote by [p] the strongly connected component of p, i.e., the equivalence class of p under ≈.

The automaton A is SCC-unambiguous if it is unambiguous on each strongly connected
component, i.e., A is unambiguous from p to q for all p, q such that p ≈ q. A trimmed (all
states are reachable and co-reachable) and unambiguous automaton is SCC-unambiguous.

For instance, the automaton A of Figure 1 has three strongly connected components:
{1}, {2, 3} and {4}. It is not unambiguous from 1 to 4, but it is SCC-unambiguous.

I Proposition 9 ([35, 24] and [42] Thm 4.1). Let A = (Q,Σ,∆, I, F) be a trimmed non-
deterministic automaton. Then A is polynomially ambiguous iff A is SCC-unambiguous.

I Theorem 10. Let A be an aperiodic weighted automaton which is SCC-unambiguous. For
each pair of states p and q, we can construct a wFO sentence Φp,q such that {|Ap,q|} = {|Φp,q|}.
Moreover, we can construct a wFO sentence Φ such that {|A|} = {|Φ|}.

First, we give for the weighted automaton A of Figure 1 the equivalent wFO formula
Φ1,4 =

∑
y1

∑
y2
ϕ(y1, y2) ?

∏
xΨ(x, y1, y2) : 0 where ϕ and Ψ are defined below. When reading

a word w ∈ supp(A), the automaton makes two non-deterministic choices corresponding to
the positions y1 and y2 at which the transitions switching between the strongly connected
components are taken, i.e., transition from state 1 to state 2 is taken at position y1, and
transition from 3 to 4 is taken at position y2. Since the automaton is SCC-unambiguous,
given the input word and these two positions, the run is uniquely determined. Formula
ϕ(y1, y2) states that it is possible to take the switching transitions at positions y1 and y2:

ϕ(y1, y2) = y1 < y2 ∧ ∀z (z ≤ y1 → Pa(z)) ∧ Pa(y1 + 1) ∧ ∀z (y2 ≤ z → Pb(z)) .

When this is the case, the step-wFO formula Ψ(x, y1, y2) computes the weight of the transition
taken at a position x in the input word:

Ψ(x, y1, y2) = (x < y1 ∨ y2 < x) ? 2 : (x = y1 ∨ x = y2) ? 1 : Pa(x+ 1) ? 3 : 5 .

With these definitions, we obtain {|A|} = {|Φ1,4|}. The proof of Theorem 10 is in [14].
Intuitively, a run from p to q reading a word w ∈ Σ+ uses a sequence of transitions switching
between connected components of A. The positions where these switches are taken can be
described by a sequence of

∑
y-operators. Since there are only finitely many sequences of

switching transitions, they can be described by a finite sum of wFO sentences.

6 From Weighted FO to Weighted Automata

Let A = (Q,Σ,∆) and A′ = (Q′,Σ,∆′) be two non-deterministic automata over Σ. Assuming
that Q∩Q′ = ∅, we define their disjoint union as A]A′ = (Q]Q′,Σ,∆]∆′) and their product
as A×A′ = (Q×Q′,Σ,∆′′) where ∆′′ = {((p, p′), a, (q, q′)) | (p, a, p′) ∈ ∆ ∧ (p′, a, q′) ∈ ∆′}.

I Lemma 11. The following holds.
1. If A and A′ are aperiodic, then A]A′ and A×A′ are also aperiodic.
2. If A and A′ are SCC-unambiguous, then A]A′ and A×A′ are also SCC-unambiguous.

Now let ϕ be an FO-formula with free variables contained in the finite set V, and let
Aϕ,V = (Q,ΣV ,∆, ι, F,G) be the deterministic, complete, trim and aperiodic automaton
given by Theorem 3. For i = 1, 2, let Ai = (Qi,ΣV ,∆i,wti, Ii, Fi) be two weighted automata
over ΣV with Q1 ∩Q2 = ∅. Define the weighted automaton A′ = (Q′,ΣV ,∆′,wt′, I ′, F ′) by

MFCS 2019

76:10 Aperiodic Weighted Automata and Weighted First-Order Logic

Q′ = Q×Q1]Q×Q2, I ′ = {ι} × I1] {ι} × I2, F ′ = F × F1]G× F2,
∆′ = {

(
(p, p′), a, (q, q′)

)
| (p, a, q) ∈ ∆ and (p′, a, q′) ∈ ∆1 ∪∆2}, and

wt′
(
(p, p′), a, (q, q′)

)
= wti(p′, a, q′) if (p′, a, q′) ∈ ∆i for i = 1, 2.

I Lemma 12. For each u ∈ Σ+
V , we have

{|A′|}(u) =


{|A1|}(u), if u is valid and u |= ϕ,

{|A2|}(u), if u is valid and u 6|= ϕ,

∅, if u is not valid.

Moreover, if A1 and A2 are aperiodic (resp. unambiguous, SCC-unambiguous) then so is A′.

Let V be a finite set of first-order variables and let V ′ = V ∪ {y} where y /∈ V. Given a
word w ∈ Σ+

V and a position i ∈ pos(w), we denote by (w, y 7→ i) the word over ΣV′ whose
projection on ΣV is w and projection on the y-component is 0i−110|w|−i, i.e., has a unique 1
on position i. Given a function A : Σ+

V′ → N〈X〉, we define the function
∑
yA : Σ+

V → N〈X〉
for w ∈ Σ+

V by (
∑
yA)(w) =

⊎
i∈pos(w)A(w, y 7→ i).

I Lemma 13. Let A be a weighted automaton over ΣV′ . We can construct a weighted
automaton A′ over ΣV such that {|A′|} =

∑
y{|A|}. Moreover, if A is aperiodic then A′ is

also aperiodic, and if A is SCC-unambiguous then A′ is also SCC-unambiguous.

We turn now to one of our main results: given a step-wFO formula Ψ, we can construct a
weighted automaton for

∏
xΨ which is both aperiodic and unambiguous.

When weights are uninterpreted, a weighted automaton A = (Q,Σ,∆,wt, I, F) is a
letter-to-letter transducer from its input alphabet Σ to the output alphabet R. If in addition
the input automaton is unambiguous, then we have a functional transducer. In the following,
we will construct such functional transducers using the boolean output alphabet B = {0, 1}.

I Lemma 14. Let V = {y1, . . . , ym}. Given an FO formula ϕ with free variables contained
in V ′ = V ∪ {x}, we can construct a transducer Bϕ,V from ΣV to B which is aperiodic and
unambiguous and such that for all words w ∈ Σ+

V
1. there is a (unique) accepting run of Bϕ,V on the input word w iff it is a valid encoding of

a pair (w, σ) where w ∈ Σ+ and σ : V → pos(w) is a valuation,
2. and in this case, for all 1 ≤ i ≤ |w|, the ith bit of the output is 1 iff w, σ[x 7→ i] |= ϕ.

Proof (sketch). Notice that ΣV′ = ΣV × B so letters in ΣV′ are of the form (a, 0) or (a, 1)
where a ∈ ΣV . Abusing the notations, when v ∈ Σ∗V , we write (v, 0) to denote the word over
ΣV′ whose projection on ΣV is v and projection on the x-component consists of 0’s only.

Consider the deterministic, complete and aperiodic automaton Aϕ,V′ = (Q,ΣV′ ,∆, ι, F,G)
associated with ϕ by Theorem 3. We also denote by ∆ the extension of the transition function
to subsets of Q. So we see the deterministic and complete transition relation both as a total
function ∆: Q× ΣV′ → Q and ∆: 2Q × ΣV′ → 2Q.

We construct now the transducer Bϕ,V = (Q′,ΣV ,∆′,wt, I ′, F ′). The set of states is
Q′ = Q× 2Q × 2Q × B. The unique initial state is ι′ = (ι, ∅, ∅, 0). The set of final states is
F ′ = (Q× 2F × 2G × B) \ {ι′}. Then, we define the following transitions:

δ = ((p,X, Y, b), a, (p′, X ′, Y ′, 1)) ∈ ∆′ is a transition with weight wt(δ) = 1 if
p′ = ∆(p, (a, 0)), X ′ = ∆(X, (a, 0)) ∪ {∆(p, (a, 1))} and Y ′ = ∆(Y, (a, 0)),
δ = ((p,X, Y, b), a, (p′, X ′, Y ′, 0)) ∈ ∆′ is a transition with weight wt(δ) = 0 if
p′ = ∆(p, (a, 0)), X ′ = ∆(X, (a, 0)) and Y ′ = ∆(Y, (a, 0)) ∪ {∆(p, (a, 1))}.

M. Droste and P. Gastin 76:11

Notice that, whenever we read a new input letter a ∈ ΣV , there is a non-deterministic
choice. In the first case above, we guess that formula ϕ will hold on the input word when the
valuation is extended by assigning x to the current position, whereas in the second case we
guess that ϕ will not hold. The guess corresponds to the output of the transition, as required
by the second condition of Lemma 14. Now, we have to check that the guess is correct.
For this, the first component of Bϕ,V computes the state p = ∆(ι, (u, 0)) reached by Aϕ,V′

after reading (u, 0) where u ∈ Σ∗V is the current prefix of the input word. When reading the
current letter a ∈ ΣV , the transducer adds the state ∆(p, (a, 1)) = ∆(ι, (u, 0)(a, 1)) either
to the “positive” X-component or to the “negative” Y -component of its state, depending
on its guess as explained above. Then, the transducer continues reading the suffix v ∈ Σ∗V
of the input word. It updates the X (resp. Y)-component so that it contains the state
q = ∆(ι, (u, 0)(a, 1)(v, 0)) at the end of the run. Now, the acceptance condition allows us to
check that the guess was correct.
1. If w = uav is not a valid encoding of a pair (w, σ) with w ∈ Σ+ and σ : V → pos(w) then

q /∈ F ∪G and the run of the transducer is not accepting. Otherwise, let i ∈ pos(w) be
the position where the guess was made.

2. If the guess was positive then q belongs to the X-component and the accepting condition
implies q ∈ F , which means by definition of Aϕ,V′ that w, σ[x 7→ i] |= ϕ.

3. If the guess was negative then q belongs to the Y -component and the accepting condition
implies q ∈ G, which means by definition of Aϕ,V′ that w, σ[x 7→ i] 6|= ϕ. J

I Theorem 15. Let V = {y1, . . . , ym}. Given a step-wFO formula Ψ with free variables
contained in V ′ = V ∪ {x}, we can construct a weighted automaton AΨ,V over ΣV which
is aperiodic, unambiguous and equivalent to

∏
xΨ, i.e., {|AΨ,V |}(w) = {|

∏
xΨ|}V(w) for all

words w ∈ Σ+
V .

Proof. In case Ψ = r is an atomic step-wFO formula, we replace it with the equivalent
> ? r : r step-wFO formula. Let ϕ1, . . . , ϕk be the FO formulas occurring in Ψ. By the above
remark, we have k ≥ 1. Consider the aperiodic and unambiguous transducers B1, . . . ,Bk
given by Lemma 14. For 1 ≤ i ≤ k, we let Bi = (Qi,ΣV ,∆i,wti, Ii, Fi). The weighted
automaton AΨ,V = (Q,ΣV ,∆,wt, I, F) is essentially a cartesian product of the transducers
Bi. More precisely, we let Q =

∏k
i=1Qi, I =

∏k
i=1 Ii, F =

∏k
i=1 Fi, and

∆ = {((p1, . . . , pk), a, (q1, . . . , qk)) | (pi, a, qi) ∈ ∆i for all 1 ≤ i ≤ k} .

Since the transducers Bi are all aperiodic and unambiguous, we deduce by Lemma 11 that
AΨ,V is also aperiodic and unambiguous. It remains to define the weight function wt.

Given a bit vector b = (b1, . . . , bk) ∈ Bk of size k, we define Ψ(b) as the weight from
R resulting from the step-wFO formula Ψ when the FO conditions ϕ1, . . . , ϕk evaluate to b.
Formally, the definition is by structural induction on the step-wFO formula:

r(b) = r (ϕi ? Ψ1 : Ψ2)(b) =
{

Ψ1(b) if bi = 1
Ψ2(b) if bi = 0 .

Consider a transition δ = ((p1, . . . , pk), a, (q1, . . . , qk)) ∈ ∆ and let δi = (pi, a, qi) for 1 ≤ i ≤ k.
Let b = (b1, . . . , bk) ∈ Bk where bi = wt(δi) ∈ B for all 1 ≤ i ≤ k. We define wt(δ) = Ψ(b).

Let w ∈ Σ+
V . If w is not a valid encoding of a pair (w, σ) then {|

∏
xΨ|}V(w) = ∅ by

definition. Moreover, {|AΨ,V |}(w) = ∅ since by Lemma 14, w is not in the support of B1. We
assume below that w is a valid encoding of a pair (w, σ) where w ∈ Σ+ and σ : V → pos(w)
is a valuation. Then, each transducer Bi admits a unique accepting run ρi reading the input

MFCS 2019

76:12 Aperiodic Weighted Automata and Weighted First-Order Logic

word w. These result in the unique accepting run ρ of AΨ,V reading w. The projections of ρ
on B1, . . . ,Bk are ρ1, . . . , ρk. Let j ∈ pos(w) = {1, . . . , |w|} be a position in w and let δj be
the j-th transition of ρ. For 1 ≤ i ≤ k, we denote by δji the projection of δj on Bi and we let
bji = wt(δji). By Lemma 14, we get bji = 1 iff w, σ[x 7→ j] |= ϕi. Finally, let b

j = (bj1, . . . , b
j
k).

From the above, we deduce that [[Ψ]]V∪{x}(w, σ[x 7→ j]) = Ψ(bj) = wt(δj). Putting things
together, we have {|AΨ,V |}(w, σ) = {{wt(ρ)}} = {{wt(δ1) · · ·wt(δ|w|}} = {|

∏
xΨ|}V(w, σ). J

I Theorem 16. Let Φ be a wFO sentence. We can construct an aperiodic SCC-unambiguous
weighted automaton A such that {|A|} = {|Φ|}. Moreover, if Φ does not contain the sum
operations + and

∑
x, then A can be chosen to be unambiguous. If Φ does not contain the

sum operation
∑
x, we can construct A as a finite union of unambiguous weighted automata.

Proof. We proceed by structural induction on Φ. For Φ = 0 this is trivial. For Φ =
∏
xΨ

with a step-wFO formula Ψ, we obtain an aperiodic unambiguous weighted automaton A by
Theorem 15. For formulas ϕ ? Φ1 : Φ2, Φ1 + Φ2 and

∑
xΦ, we apply Lemmas 12, 11, 13. J

In the proof of Theorem 16, we may obtain the final statement also as a consequence of
the preceding one by the following observations which could be of independent interest. Let
ϕ be an FO-formula and Φ1, Φ2 two wFO formulas, with free variables contained in V . Then,

{|ϕ ? Φ1 : Φ2|}V = {|ϕ ? Φ1 : 0 + ¬ϕ ? Φ2 : 0|}V ,
{|ϕ ? Φ1 + Φ2 : 0|}V = {|ϕ ? Φ1 : 0 + ϕ ? Φ2 : 0|}V .

Hence, given a wFO sentence Φ not containing the sum operation
∑
x, we can rewrite Φ as a

sum of 0,
∏
xΨ and if-then-else sentences of the form ϕ ? Φ′ : 0 where Φ′ does not contain

the sum operations + or
∑
x.

Proof of Thm 1. Immediate by Theorem 10, Theorem 4, Corollary 8 and Theorem 16. J

7 Concluding remarks

We introduced a model of aperiodic weighted automata and showed that a suitable concept
of weighted first order logic and two natural sublogics have the same expressive power as
polynomially ambiguous, finitely ambiguous, resp. unambigous aperiodic weighted automata.
For the three semirings N+,×, Nmax,+ and Nmin,+ the hierarchies of these automata classes
and thereby of the corresponding logics are strict. Some separating examples are given below.
Proofs and other separating examples can be found in [14].

I Example 17. Let Σ = {a} and consider the automaton A below over the semiring N+,×
of natural numbers. Note that the weighted automaton computes the sequence (Fn)n≥0 of
Fibonacci numbers 0, 1, 1, 2, 3, 5, · · · . More precisely, for any n ∈ N, we have [[A]](an) = Fn.

a | 1

a | 1

a | 1

Clearly, A is exponentially ambiguous and aperiodic with index 2. But [[A]] cannot be
realized by an aperiodic polynomially ambiguous weighted automaton. In [31], it was shown
that the Fibonacci numbers cannot be computed by copyless cost-register automata. y

M. Droste and P. Gastin 76:13

I Example 18. Consider the automaton A below over Σ = {a} and the semiring N+,×.
Clearly, [[A]](an) = n for each n > 0, and A is aperiodic and polynomially (even linearly)
ambiguous. But A is not equivalent to any finitely ambiguous weighted automaton.

a | 1 a | 1

a | 1

y

I Example 19. Let Σ = {a} and consider the function f : Σ∗ → N defined by f(an) = 2n+1.
We have f = [[A]] for some aperiodic and 2-ambiguous weighted automaton: one self-loop
computes 2n and another self-loop computes 1. But f cannot be realized by an unambiguous
weighted automaton over N+,×.

Our main theorem generalizes to the weighted setting a classical result of automata
theory. A challenging open problem is to obtain similar results for suitable weighted linear
temporal logics. Another interesting problem is to characterize wFO with unrestricted
weighted products, possibly using aperiodic restrictions of the pebble weighted automata
studied in [4, 27, 5].

Decidability problems for wFO or equivalently for weighted aperiodic automata are also
open and very interesting. For instance, given a wMSO sentence, is there an equivalent wFO
sentence? Decidability may indeed depend on the specific semiring.

References
1 Parvaneh Babari, Manfred Droste, and Vitaly Perevoshchikov. Weighted register automata

and weighted logic on data words. Theor. Comput. Sci., 744:3–21, 2018.
2 Jean Berstel and Christophe Reutenauer. Rational Series and their Languages. Springer, 1988.
3 Benedikt Bollig and Paul Gastin. Weighted versus Probabilistic Logics. In Volker Diekert

and Dirk Nowotka, editors, International Conference on Developments in Language Theory
(DLT’09), volume 5583 of Lecture Notes in Computer Science, pages 18–38. Springer, 2009.

4 Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble Weighted
Automata and Transitive Closure Logics. In Samson Abramsky, Cyril Gavoille, Claude
Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages
and Programming, pages 587–598, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

5 Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble Weighted
Automata and Weighted Logics. ACM Transactions on Computational Logic, 15(2):1–35, 2014.

6 J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

7 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and Closure
Properties for Quantitative Languages. Logical Methods in Computer Science, 6(3), 2010.

8 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010.

9 Volker Diekert and Paul Gastin. First-order definable languages. In Jörg Flum, Erich Grädel,
and Thomas Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of Texts
in Logic and Games, pages 261–306. Amsterdam University Press, 2008.

10 Manfred Droste and Stefan Dück. Weighted Automata and Logics on Graphs. In Mathematical
Foundations of Computer Science (MFCS’15), volume 9234 of Lecture Notes in Computer
Science, pages 192–204. Springer, 2015.

11 Manfred Droste and Stefan Dück. Weighted automata and logics for infinite nested words.
Inf. Comput., 253:448–466, 2017.

MFCS 2019

76:14 Aperiodic Weighted Automata and Weighted First-Order Logic

12 Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics. In International
Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580 of Lecture
Notes in Computer Science, pages 513–525. Springer, 2005.

13 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

14 Manfred Droste and Paul Gastin. Aperiodic Weighted Automata and Weighted First-Order
Logic. CoRR, abs/1902.08149, 2019.

15 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Springer Berlin Heidelberg, 2009.

16 Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for
average and long-time behaviors. Inf. Comput., 220:44–59, 2012.

17 Manfred Droste and Vitaly Perevoshchikov. Multi-weighted Automata and MSO Logic. Theory
Comput. Syst., 59(2):231–261, 2016.

18 Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite
words. Izvestiya VUZ. Matematika, 54:26–45, 2010.

19 Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. Theor.
Comput. Sci., 366(3):228–247, 2006.

20 Manfred Droste and Heiko Vogler. Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theor. Comput. Sci., 418:14–36, 2012.

21 Calvin C. Elgot. Decision Problems of Finite Automata Design and Related Arithmetics.
Transactions of the American Mathematical Society, 98:21–52, 1961.

22 Ina Fichtner. Weighted Picture Automata and Weighted Logics. Theory Comput. Syst.,
48(1):48–78, 2011.

23 Paul Gastin and Benjamin Monmege. A unifying survey on weighted logics and weighted
automata. Soft Computing, 22(4):1047–1065, December 2018.

24 Oscar H Ibarra and Bala Ravikumar. On sparseness, ambiguity and other decision problems
for acceptors and transducers. In Symposium on Theoretical Aspects of Computer Science
(STACS’86), volume 210 of Lecture Notes in Computer Science, pages 171–179. Springer, 1986.

25 Daniel Kirsten. A Burnside Approach to the Termination of Mohri’s Algorithm for Polynomially
Ambiguous Min-Plus-Automata. RAIRO - Theoretical Informatics and Applications, 42(3):553–
581, June 2008.

26 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, November 2004.

27 Stephan Kreutzer and Cristian Riveros. Quantitative Monadic Second-Order Logic. In
Symposium on Logic in Computer Science (LICS’13). IEEE, June 2013.

28 Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer Berlin Heidelberg,
1986.

29 Eleni Mandrali and George Rahonis. On weighted first-order logics with discounting. Acta
Informatica, 51(2):61–106, January 2014.

30 Filip Mazowiecki and Cristian Riveros. Pumping Lemmas for Weighted Automata. In
Symposium on Theoretical Aspects of Computer Science (STACS’18), volume 96 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 50:1–50:14. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018.

31 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. Journal of Computer and System Sciences, 100:1–29, March
2019.

32 Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press, Cambridge,
Mass., 1971.

33 Erik Paul. On Finite and Polynomial Ambiguity of Weighted Tree Automata. In International
Conference on Developments in Language Theory (DLT’16), volume 9840 of Lecture Notes in
Computer Science, pages 368–379. Springer, 2016.

M. Droste and P. Gastin 76:15

34 Karin Quaas. MSO logics for weighted timed automata. Formal Methods in System Design,
38(3):193–222, 2011.

35 Christophe Reutenauer. Propriétés arithmétiques et topologiques de séries rationnelles en
variables non commutatives. PhD thesis, Université Paris VI, 1977.

36 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
37 Jacques Sakarovitch and Rodrigo de Souza. Lexicographic Decomposition of k-Valued Trans-

ducers. Theory of Computing Systems, 47(3):758–785, April 2009.
38 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.

Springer, 1978.
39 Marcel Paul Schützenberger. On the definition of a family of automata. Information and

Control, 4(2-3):245–270, September 1961.
40 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information

and Control, 8(2):190–194, 1965.
41 Boris A. Trakhtenbrot. Finite Automata and Logic of Monadic Predicates. Doklady Akademii

Nauk SSSR, 149:326–329, 1961.
42 Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical

Computer Science, 88(2):325–349, October 1991.

MFCS 2019

A Congruence-based Perspective on Automata
Minimization Algorithms
Pierre Ganty
IMDEA Software Institute, Madrid, Spain
pierre.ganty@imdea.org

Elena Gutiérrez
IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain
elena.gutierrez@imdea.org

Pedro Valero
IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain
pedro.valero@imdea.org

Abstract
In this work we use a framework of finite-state automata constructions based on equivalences over
words to provide new insights on the relation between well-known methods for computing the
minimal deterministic automaton of a language.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Regular languages

Keywords and phrases Double-Reversal Method, Minimization, Automata, Congruences, Regular
Languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.77

Related Version An extended version is available at https://arxiv.org/abs/1906.06194

Funding Pierre Ganty: Supported by the Spanish Ministry of Economy and Competitiveness project
No. PGC2018-102210-B-I00, BOSCO - Foundations for the development, analysis and understanding
of BlOck chains and Smart COntracts, by the Madrid Regional Government project No. S2018/TCS-
4339, BLOQUES - Contratos inteligentes y Blockchains Escalables y Seguros mediante Verificación
y Análisis, and by a Ramón y Cajal fellowship RYC-2016-20281.
Elena Gutiérrez: Supported by BES-2016-077136 grant from the Spanish Ministry of Economy,
Industry and Competitiveness.

1 Introduction

In this paper we consider the problem of building the minimal deterministic finite-state
automaton generating a given regular language. This is a classical issue that arises in many
different areas of computer science such as verification, regular expression searching and
natural language processing, to name a few.

There exists a number of methods, such as Hopcroft’s [10] and Moore’s algorithms [14],
that receive as input a deterministic finite-state automaton (DFA for short) generating a
language and build the minimal DFA for that language. In general, these methods rely on
computing a partition of the set of states of the input DFA which is then used as the set of
states of the minimal DFA.

On the other hand, Brzozowski [4] proposed the double-reversal method for building the
minimal DFA for the language generated by an input non-deterministic automaton (NFA for
short). This algorithm alternates a reverse operation and a determinization operation twice,

© Pierre Ganty, Elena Gutiérrez, and Pedro Valero;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 77; pp. 77:1–77:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3625-6003
mailto:pierre.ganty@imdea.org
https://orcid.org/0000-0001-5999-7608
mailto:elena.gutierrez@imdea.org
https://orcid.org/0000-0001-7531-6374
mailto:pedro.valero@imdea.org
https://doi.org/10.4230/LIPIcs.MFCS.2019.77
https://arxiv.org/abs/1906.06194
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

77:2 A Congruence-based Perspective on Automata Minimization Algorithms

relying on the fact that, for any given NFA N , if the reverse automaton of N is determ-
inistic then the determinization operation yields the minimal DFA for the language of N .
This method has been recently generalized by Brzozowski and Tamm [5]. They showed
the following necessary and sufficient condition: the determinization operation yields the
minimal DFA for the language of N if and only if the reverse automaton of N is atomic.

It is well-known that all these approaches to the DFA minimization problem aim to
compute Nerode’s equivalence relation for the considered language. However, the double-
reversal method and its later generalization appear to be quite isolated from other methods
such as Hopcroft’s and Moore’s algorithms. This has led to different attempts to better explain
Brzozowski’s method [3] and its connection with other minimization algorithms [1, 7, 16].
We use a framework of automata constructions based on equivalence classes over words to
give new insights on the relation between these algorithms.

In this paper we consider equivalence relations over words on an alphabet Σ that induce
finite partitions over Σ∗. Furthermore, we require that these partitions are well-behaved
with respect to concatenation, namely, congruences. Given a regular language L and an
equivalence relation satisfying these conditions, we use well-known automata constructions
that yield automata generating the language L [6, 13]. In this work, we consider two types
of equivalence relations over words verifying the required conditions.

First, we define a language-based equivalence, relative to a regular language, that behaves
well with respect to right concatenation, also known as the right Nerode’s equivalence
relation for the language. When applying the automata construction to the right Nerode’s
equivalence, we obtain the minimal DFA for the given language [6, 13]. In addition, we
define an automata-based equivalence, relative to an NFA. When applying the automata
construction to the automata-based equivalence we obtain a determinized version of the
input NFA.

On the other hand, we also obtain counterpart automata constructions for relations
that are well-behaved with respect to left concatenation. In this case, language-based and
automata-based equivalences yield, respectively, the minimal co-deterministic automaton
and a co-deterministic NFA for the language.

The relation between the automata constructions resulting from the language-based
and the automata-based congruences, together with the the duality between right and left
congruences, allows us to relate determinization and minimization operations. As a result,
we formulate a sufficient and necessary condition that guarantees that determinizing an
automaton yields the minimal DFA. This formulation evidences the relation between the
double-reversal and the state partition refinement minimization methods.

We start by giving a simple proof of Brzozowski’s double-reversal method [4], to later
address the generalization of Brzozowski and Tamm [5]. Furthermore, we relate the iterations
of Moore’s partition refinement algorithm, which works on the states of the input DFA, to
the iterations of the greatest fixpoint algorithm that builds the right Nerode’s partition on
words. We conclude by relating the automata constructions introduced by Brzozowski and
Tamm [5], named the átomaton and the partial átomaton, to the automata constructions
described in this work.

Structure of the paper. After preliminaries in Section 2, we introduce in Section 3 the
automata constructions based on congruences on words and establish the duality between these
constructions when using right and left congruences. Then, in Section 4, we define language-
based and automata-based congruences and analyze the relations between the resulting
automata constructions. In Section 5, we study a collection of well-known constructions for
the minimal DFA. Finally, we give further details on related work in Section 6. For space
reasons, missing proofs are deferred to the extended version of this paper [9].

P. Ganty, E. Gutiérrez, and P. Valero 77:3

2 Preliminaries

Languages. Let Σ be a finite nonempty alphabet of symbols. Given a word w ∈ Σ∗, wR

denotes the reverse of w. Given a language L ⊆ Σ∗, LR def= {wR | w ∈ L} denotes the reverse
language of L. We denote by Lc the complement of the language L. The left (resp. right)
quotient of L by a word u is defined as the language u−1L

def= {x ∈ Σ∗ | ux ∈ L} (resp.
Lu−1 def= {x ∈ Σ∗ | xu ∈ L}).

Automata. A (nondeterministic) finite-state automaton (NFA for short), or simply auto-
maton, is a 5-tuple N = (Q,Σ, δ, I, F), where Q is a finite set of states, Σ is an alphabet,
I ⊆ Q are the initial states, F ⊆ Q are the final states, and δ : Q × Σ → ℘(Q) is the
transition function. We denote the extended transition function from Σ to Σ∗ by δ̂. Given
S, T ⊆ Q, WNS,T

def= {w ∈ Σ∗ | ∃q ∈ S, q′ ∈ T : q′ ∈ δ̂(q, w)}. In particular, when S = {q} and
T = F , we define the right language of state q as WNq,F . Likewise, when S = I and T = {q},
we define the left language of state q as WNI,q. We define postNw (S) def= {q ∈ Q | w ∈WNS,q} and
preNw (S) def= {q ∈ Q | w ∈WNq,S}. In general, we omit the automaton N from the superscript
when it is clear from the context. We say that a state q is unreachable iff WNI,q = ∅ and we say
that q is empty iff WNq,F = ∅. Finally, note that L(N) =

⋃
q∈I W

N
q,F =

⋃
q∈F W

N
I,q = WNI,F .

Given an NFA N = (Q,Σ, δ, I, F), the reverse NFA for N , denoted by NR, is defined as
NR = (Q,Σ, δr, F, I) where q ∈ δr(q′, a) iff q′ ∈ δ(q, a). Clearly, L(N)R = L(NR).

A deterministic finite-state automaton (DFA for short) is an NFA such that, I = {q0},
and, for every state q ∈ Q and every symbol a ∈ Σ, there exists exactly one q′ ∈ Q such
that δ(q, a) = q′. According to this definition, DFAs are always complete, i.e., they define a
transition for each state and input symbol. In general, we denote NFAs by N , using D for
DFAs when the distinction is important. A co-deterministic finite-state automata (co-DFA
for short) is an NFA N such that NR is deterministic. In this case, co-DFAs are always
co-complete, i.e., for each target state q′ and each input symbol, there exists a source state q
such that δ(q, a) = q′. Recall that, given an NFA N = (Q,Σ, δ, I, F), the well-known subset
construction builds a DFA D = (℘(Q),Σ, δd, {I}, Fd) where Fd = {S ∈ ℘(Q) | S ∩ F 6= ∅}
and δd(S, a) = {q′ | ∃q ∈ S, q′ ∈ δ(q, a)} for every a ∈ Σ, that accepts the same language as
N [11]. Given an NFA N = (Q,Σ, δ, I, F), we denote by ND the DFA that results from
applying the subset construction to N where only subsets (including the empty subset) that
are reachable from the initial subset of ND are used. Then, ND possibly contains empty
states but no state is unreachable. A DFA for the language L(N) is minimal, denoted by
NDM , if it has no unreachable states and no two states have the same right language. The
minimal DFA for a regular language is unique modulo isomorphism.

Equivalence Relations and Partitions. Recall that an equivalence relation on a set X is a
binary relation ∼ that is reflexive, symmetric and transitive. Every equivalence relation ∼
on X induces a partition P∼ of X, i.e., a family P∼ = {Bi}i∈I ⊆ ℘(X) of subsets of X, with
I ⊆ N, such that:
(i) Bi 6= ∅ for all i ∈ I;
(ii) Bi ∩Bj = ∅, for all i, j ∈ I with i 6= j; and
(iii) X =

⋃
i∈I Bi.

We say that a partition is finite when I is finite. Each Bi is called a block of the partition.
Given u ∈ X, then P∼(u) denotes the unique block that contains u and corresponds to the
equivalence class u w.r.t. ∼, P∼(u) def= {v ∈ X | u ∼ v}. This definition can be extended
in a natural way to a set S ⊆ X as P∼(S) def=

⋃
u∈S P∼(u). We say that the partition P∼

MFCS 2019

77:4 A Congruence-based Perspective on Automata Minimization Algorithms

represents precisely S iff P∼(S) = S. An equivalence relation ∼ is of finite index iff ∼
defines a finite number of equivalence classes, i.e., the induced partition P∼ is finite. In the
following, we will always consider equivalence relations of finite index, i.e., finite partitions.

Finally, denote Part(X) the set of partitions of X. We use the standard refinement
ordering � between partitions: let P1, P2 ∈ Part(X), then P1 � P2 iff for every B ∈ P1 there
exists B′ ∈ P2 such that B ⊆ B′. Then, we say that P1 is finer than P2 (or equivalently,
P2 is coarser than P1). Given P1, P2 ∈ Part(X), define the coarsest common refinement,
denoted by P1 fP2, as the coarsest partition P ∈ Part(X) that is finer than both P1 and P2.
Likewise, define the finest common coarsening, denoted by P1 g P2, as the finest partition P
that is coarser than both P1 and P2. Recall that (Part(X),�,g,f) is a complete lattice
where the top (coarsest) element is {X} and the bottom (finest) element is {{x} | x ∈ X}.

3 Automata Constructions from Congruences

We will consider equivalence relations on Σ∗ (and their corresponding partitions) with good
properties w.r.t. concatenation. An equivalence relation ∼ is a right (resp. left) congruence
iff for all u, v ∈ Σ∗, we have that u ∼ v ⇒ ua ∼ va, for all a ∈ Σ (resp. u ∼ v ⇒ au ∼ av).
We will denote right congruences (resp. left congruences) by ∼r (resp. ∼`). The following
lemma gives a characterization of right and left congruences.

I Lemma 1. The following properties hold:
1. ∼r is a right congruence iff P∼r (v)u ⊆ P∼r (vu), for all u, v ∈ Σ∗.
2. ∼` is a left congruence iff uP∼`(v) ⊆ P∼`(uv), for all u, v ∈ Σ∗.

Given a right congruence ∼r and a regular language L ⊆ Σ∗ such that P∼r represents
precisely L, i.e., P∼r (L) = L, the following automata construction recognizes exactly the
language L [13].

I Definition 2 (Automata construction Hr(∼r, L)). Let ∼r be a right congruence and let P∼r

be the partition induced by ∼r. Let L ⊆ Σ∗ be a language. Define the automaton Hr(∼r, L) =
(Q,Σ, δ, I, F) where Q = {P∼r (u) | u ∈ Σ∗}, I = {P∼r (ε)}, F = {P∼r (u) | u ∈ L}, and
δ(P∼r (u), a) = P∼r (v) iff P∼r (u)a ⊆ P∼r (v), for all u, v ∈ Σ∗ and a ∈ Σ.

I Remark 3. Note that Hr(∼r, L) is finite since we assume ∼r is of finite index. Note also
that Hr(∼r, L) is a complete deterministic finite-state automaton since, for each u ∈ Σ∗ and
a ∈ Σ, there exists exactly one block P∼r (v) such that P∼r (u)a ⊆ P∼r (v), which is P∼r (ua).
Finally, observe that Hr(∼r, L) possibly contains empty states but no state is unreachable.

I Lemma 4. Let ∼r be a right congruence and let L ⊆ Σ∗ be a language such that P∼r (L) = L.
Then L(Hr(∼r, L)) = L.

Due to the left-right duality between ∼` and ∼r, we can give a similar automata con-
struction such that, given a left congruence ∼` and a language L ⊆ Σ∗ with P∼`(L) = L,
recognizes exactly the language L.

I Definition 5 (Automata construction H`(∼`, L)). Let ∼` be a left congruence and let P∼`

be the partition induced by ∼`. Let L ⊆ Σ∗ be a language. Define the automaton H`(∼`, L) =
(Q,Σ, δ, I, F) where Q = {P∼`(u) | u ∈ Σ∗}, I = {P∼`(u) | u ∈ L}, F = {P∼`(ε)}, and
P∼`(v) ∈ δ(P∼`(u), a) iff aP∼`(v) ⊆ P∼`(u), for all u, v ∈ Σ∗ and a ∈ Σ.

I Remark 6. In this case, H`(∼`, L) is a co-complete co-deterministic finite-state auto-
maton since, for each v ∈ Σ∗ and a ∈ Σ, there exists exactly one block P∼`(u) such that
aP∼`(v) ⊆ P∼`(u), which is P∼`(av). Finally, observe that H`(∼`, L) possibly contains
unreachable states but no state is empty.

P. Ganty, E. Gutiérrez, and P. Valero 77:5

I Lemma 7. Let ∼` be a left congruence and let L ⊆ Σ∗ be a language such that P∼`(L) = L.
Then L(H`(∼`, L)) = L.

Lemma 8 shows that H` and Hr inherit the left-right duality between ∼` and ∼r.

I Lemma 8. Let ∼r and ∼` be a right and left congruence respectively, and let L ⊆ Σ∗ be a
language. If the following property holds

u ∼r v ⇔ uR ∼` vR (1)

then Hr(∼r, L) is isomorphic to
(
H`(∼`, LR)

)R.

4 Language-based Congruences and their Approximation using NFAs

Given a language L ⊆ Σ∗, we recall the following equivalence relations on Σ∗, which are
often denoted as Nerode’s equivalence relations (e.g., see [13]).

I Definition 9 (Language-based Equivalences). Let u, v ∈ Σ∗ and let L ⊆ Σ∗ be a language.
Define:

u ∼r
L v ⇔ u−1L = v−1L Right-language-based Equivalence (2)

u ∼`
L v ⇔ Lu−1 = Lv−1 Left-language-based Equivalence (3)

Note that the right and left language-based equivalences defined above are, respectively,
right and left congruences. Furthermore, when L is a regular language, ∼r

L and ∼`
L are of

finite index [6, 13]. Since we are interested in congruences of finite index (or equivalently,
finite partitions), we will always assume that L is a regular language over Σ.

The following result states that, given a language L, the right Nerode’s equivalence
induces the coarsest partition of Σ∗ which is a right congruence and precisely represents L.

I Lemma 10 (de Luca and Varricchio [8]). Let L ⊆ Σ∗ be a regular language. Then,

P∼r
L

=
j
{P∼r | ∼r is a right congruence and P∼r (L) = L} .

In a similar way, one can prove that the same property holds for the left Nerode’s
equivalence. Therefore, as we shall see, applying the construction H to these equivalences
yields minimal automata. However, computing them becomes unpractical since languages
are possibly infinite, even if they are regular. Thus, we will consider congruences based on
the states of the NFA-representation of the language which induce finer partitions of Σ∗
than Nerode’s equivalences. In this sense, we say that the automata-based equivalences
approximate Nerode’s equivalences.

I Definition 11 (Automata-based Equivalences). Let u, v ∈ Σ∗ and let N = (Q,Σ, δ, I, F) be
an NFA. Define:

u ∼r
N v ⇔ postNu (I) = postNv (I) Right-automata-based Equivalence (4)

u ∼`
N v ⇔ preNu (F) = preNv (F) Left-automata-based Equivalence (5)

Note that the right and left automata-based equivalences defined above are, respectively,
right and left congruences. Furthermore, they are of finite index since each equivalence class
is represented by a subset of states of N .

The following result gives a sufficient and necessary condition for the language-based
(Definition 9) and the automata-based equivalences (Definition 11) to coincide.

I Lemma 12. Let N = (Q,Σ, δ, I, F) be an automaton with L = L(N). Then,

∼r
L = ∼r

N iff ∀u, v ∈ Σ∗, WNpostNu (I),F = WNpostNv (I),F ⇔ postNu (I) = postNv (I) . (6)

MFCS 2019

77:6 A Congruence-based Perspective on Automata Minimization Algorithms

4.1 Automata Constructions

In what follows, we will use Min and Det to denote the construction H when applied,
respectively, to the language-based congruences induced by a regular language and the
automata-based congruences induced by an NFA.

I Definition 13. Let N be an NFA generating the language L = L(N). Define:

Minr(L) def= Hr(∼r
L, L) Detr(N) def= Hr(∼r

N , L)

Min`(L) def= H`(∼`
L, L) Det`(N) def= H`(∼`

N , L) .

Given an NFA N generating the language L = L(N), all constructions in the above
definition yield automata generating L. However, while the constructions using the right
congruences result in DFAs, the constructions relying on left congruences result in co-
DFAs. Furthermore, since the pairs of relations (2)-(3) and (4)-(5), from Definition 9 and 11
respectively, are dual, i.e., they satisfy the hypothesis of Lemma 8, it follows that Min`(L) is
isomorphic to (Minr(LR))R and Det`(N) is isomorphic to (Detr(NR))R.

On the other hand, since Minr relies on the language-based congruences, the resulting
DFA is minimal, which is not guaranteed to occur with Detr. This easily follows from the
fact that the states of the automata constructions are the equivalence classes of the given
congruences and there is no right congruence (representing L precisely) that is coarser than
the right Nerode’s equivalence (see Lemma 10).

Finally, since every co-deterministic automaton satisfies the right-hand side of Equa-
tion (6), it follows that determinizing (Detr) a co-deterministic automaton (Det`(N)) results
in the minimal DFA (Minr(L(N))), as already proved by Sakarovitch [15, Proposition 3.13].

We formalize all these notions in Theorem 14. Finally, Figure 1 summarizes all these
well-known connections between the automata constructions given in Definition 13.

I Theorem 14. Let N be an NFA generating language L = L(N). Then the following
properties hold:
(a) L(Minr(L)) = L(Min`(L)) = L = L(Detr(N)) = L(Det`(N)).
(b) Minr(L) is isomorphic to the minimal deterministic automaton for L.
(c) Detr(N) is isomorphic to ND.
(d) Min`(L) is isomorphic to (Minr(LR))R.
(e) Det`(N) is isomorphic to (Detr(NR))R.
(f) Detr(Det`(N)) is isomorphic to Minr(L).

5 A Congruence-based Perspective on Known Algorithms

We can find in the literature several well-known independent techniques for the construction
of minimal DFAs. Some of these techniques are based on refining a state partition of an input
DFA, such as Moore’s algorithm [14], while others directly manipulate an input NFA, such
as the double-reversal method [4]. Now, we establish a connection between these algorithms
through Theorem 16, which gives a necessary and sufficient condition on an NFA so that
determinizing it yields the minimal DFA.

I Lemma 15. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N) and ∼r
L=∼r

N . Then
∀q ∈ Q, P∼r

L
(WNI,q) = WNI,q.

P. Ganty, E. Gutiérrez, and P. Valero 77:7

N Det`(N) Detr(Det`(N))

NR Detr(NR) Det`(Detr(NR))

R

Det`

Minr

R

Detr

R

Detr

Min`

Det`

The upper part of the diagram follows
from Theorem 14 (f). Both squares of
the diagram follow from Theorem 14 (e),
which states that Det`(N) is isomorphic
to (Detr(NR))R. Finally, the bottom
curved arc follows from Theorem 14 (d).
Incidentally, the diagram shows a new
relation which follows from the left-right
dualities between ∼`

L and ∼r
L, and ∼`

N
and ∼r

N : Min`(L(NR)) is isomorphic to
Det`(Detr(NR)).

Figure 1 Relations between the constructions Det`, Detr, Min` and Minr. Note that constructions
Minr and Min` are applied to the language generated by the automaton in the origin of the labeled
arrow, while constructions Detr and Det` are applied directly to the automaton.

Proof.

P∼r
L

(WNI,q) = [By definition of P∼r
L
]

{w ∈ Σ∗ | ∃u ∈WNI,q, w
−1L = u−1L} = [Since ∼r

L=∼r
N]

{w ∈ Σ∗ | ∃u ∈WNI,q, postNw (I) = postNu (I)} ⊆ [u ∈WNI,q ⇐⇒ q ∈ postNu (I)]
{w ∈ Σ∗ | q ∈ postNw (I)} = [By definition of WNI,q]

WNI,q .

By reflexivity of ∼r
L, we conclude that P∼r

L
(WNI,q) = WNI,q. J

I Theorem 16. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). Then Detr(N) is the
minimal DFA for L iff ∀q ∈ Q, P∼r

L
(WNI,q) = WNI,q.

Proof. Assume Detr(N) is minimal. Then P∼r
N

(u) = P∼r
L

(u) for all u ∈ Σ∗, i.e. ∼r
L = ∼r

N .
It follows from Lemma 15 that P∼r

L
(WNI,q) = WNI,q.

Now, assume that P∼r
L

(WNI,q) = WNI,q, for each q ∈ Q. Then, for every u ∈ Σ∗,

P∼r
N

(u) =
⋂

q∈postNu (I)

WNI,q ∩
⋂

q /∈postNu (I)

(WNI,q)c =
⋂

q∈postNu (I)

P∼r
L

(WNI,q) ∩
⋂

q /∈postNu (I)

(P∼r
L

(WNI,q))c

where the first equality follows by rewriting P∼r
N

(u) = {v ∈ Σ∗ | postNu (I) = postNv (I)}
with universal quantifiers, hence intersections, and the last equality follows from the initial
assumption P∼r

L
(WNI,q) = WNI,q.

It follows that P∼r
N

(u) is a union of blocks of P∼r
L
. Recall that ∼r

L induces the coarsest
right congruence such that P∼r

L
(L) = L (Lemma 10). Since ∼r

N is a right congruence
satisfying P∼r

N
(L) = L then P∼r

N
4 P∼r

L
. Therefore, P∼r

N
(u) necessarily corresponds to one

single block of P∼r
L
, namely, P∼r

L
(u). Since P∼r

N
(u) = P∼r

L
(u) for each u ∈ Σ∗, we conclude

that Detr(N) = Minr(L). J

5.1 Double-reversal Method
In this section we give a simple proof of the well-known double-reversal minimization algorithm
of Brzozowski [4] using Theorem 16. Note that, since Detr(N) is isomorphic to ND by
Theorem 14 (c), the following result coincides with that of Brzozowski.

MFCS 2019

77:8 A Congruence-based Perspective on Automata Minimization Algorithms

I Theorem 17 ([4]). Let N be an NFA. Then Detr((Detr(NR))R) is isomorphic to the
minimal DFA for L(N).

Proof. Let L = L(N). By definition, N ′ = (Detr(NR))R is a co-DFA and, therefore, satisfies
the condition on the right-hand side of Equation (6). It follows from Lemma 12 that ∼r

L=∼r
N ′

which, by Lemma 15 and Theorem 16, implies that Detr(N ′) is minimal. J

Note that Theorem 17 can be inferred from Figure 1 by following the path starting at N ,
labeled with R− Detr −R− Detr and ending in Minr(L(N)).

5.2 Generalization of the Double-reversal Method
Brzozowski and Tamm [5] generalized the double-reversal algorithm by defining a necessary
and sufficient condition on an NFA which guarantees that the determinized automaton is
minimal. They introduced the notion of atomic NFA and showed that ND is minimal iff NR

is atomic. We shall show that this result is equivalent to Theorem 16 due to the left-right
duality between the language-based equivalences (Lemma 8).

I Definition 18 (Atom [5]). Let L be a regular language L. Let {Ki | 0 ≤ i ≤ n−1} be the set
of left quotients of L. An atom is any non-empty intersection of the form K̃0∩K̃1∩. . .∩K̃n−1,
where each K̃i is either Ki or Kc

i .

This notion of atom coincides with that of equivalence class for the left language-based
congruence ∼`

L. This was first noticed by Iván [12].

I Lemma 19. Let L be a regular language. Then for every u ∈ Σ∗,

P∼`
L

(u) =
⋂

u∈w−1L
w∈Σ∗

w−1L ∩
⋂

u/∈w−1L
w∈Σ∗

(w−1L)c .

I Definition 20 (Atomic NFA [5]). An NFA N = (Q,Σ, δ, I, F) is atomic iff for every state
q ∈ Q, the right language WNq,F is a union of atoms of L(N).

It follows from Lemma 19 that the set of atoms of a language L corresponds to the partition
P∼`

L
. Therefore, a set S ⊆ Σ∗ is a union of atoms iff P∼`

L
(S) = S. This property, together

with Definition 20, shows that an NFA N = (Q,Σ, δ, I, F) with L = L(N) is atomic iff

∀q ∈ Q, P∼`
L

(WNq,F) = WNq,F . (7)

We are now in condition to give an alternative proof of the generalization of Brzozowski
and Tamm [5] relying on Theorem 16.

I Lemma 21. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). Then NR is atomic iff
Detr(N) is the minimal DFA for L.

Proof. Let NR = (Q,Σ, δr, F, I) and LR = L(NR). Then,

∀q ∈ Q, P∼`

LR
(WN

R

q,I) = WN
R

q,I ⇐⇒ [By A = B ⇔ AR = BR]

∀q ∈ Q,
(
P∼`

LR
(WN

R

q,I)
)R

=
(
WN

R

q,I

)R

⇐⇒ [By u ∼`
L v ⇔ uR ∼r

LR vR]

∀q ∈ Q, P∼r
L

((
WN

R

q,I

)R
)

=
(
WN

R

q,I

)R

⇐⇒ [By
(
WN

R

q,I

)R

= WNI,q]

∀q ∈ Q, P∼r
L

(WNI,q) = WNI,q .

It follows from Theorem 16 that Detr(N) is minimal. J

P. Ganty, E. Gutiérrez, and P. Valero 77:9

We conclude this section by collecting all the conditions described so far that guarantee
that determinizing an automaton yields the minimal DFA.

I Corollary 22. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). The following are
equivalent:
(a) Detr(N) is minimal.
(b) ∼r

N = ∼r
L.

(c) ∀u, v ∈ Σ∗, WNpostNu (I),F = WNpostNv (I),F ⇔ postNu (I) = postNv (I).
(d) ∀q ∈ Q, P∼r

L
(WNI,q) = WNI,q.

(e) NR is atomic.

5.3 Moore’s Algorithm
Given a DFA D, Moore [14] builds the minimal DFA for the language L = L(D) by removing
unreachable states from D and then performing a stepwise refinement of an initial partition
of the set of reachable states of D. Since we are interested in the refinement step, in what
follows we assume that all DFAs have no unreachable states. In this section, we will describe
Moore’s state-partition QD and the right-language-based partition P∼r

L
as greatest fixpoint

computations and show that there exists an isomorphism between the two at each step of
the fixpoint computation. In fact, this isomorphism shows that Moore’s DFA M satisfies
P∼r

L
(WM

I,q) = WM
I,q for every state q. Thus, by Theorem 16, M is isomorphic to Minr(L(D)).

First, we give Moore’s algorithm which computes the state-partition that is later used to
define Moore’s DFA.

Moore’s Algorithm Algorithm for constructing Moore’s partition.

Data: DFA D = 〈Q,Σ, δ, I, F 〉 with L = L(D).
Result: QD ∈ Part(Q).

1 QD := {F, F c}, Q′ := ∅;
2 while QD 6= Q′ do
3 Q′ := QD;
4 forall a ∈ Σ do
5 Qa :=

c
p∈QD{preDa (p), (preDa (p))c};

6 QD := QD f
c

a∈ΣQa;
7 return QD;

I Definition 23 (Moore’s DFA). Let D = (Q,Σ, δ, I, F) be a DFA, and let QD be the partition
of Q built by using Moore’s algorithm. Moore’s DFA for L(D) is M = (QM ,Σ, δM , IM , FM)
where QM = QD, IM = {QD(q) | q ∈ I}, FM = {QD(q) | q ∈ F} and, for each S, S′ ∈ QM

and a ∈ Σ, we have that δM (S, a) = S′ iff ∃q ∈ S, q′ ∈ S′ with δ(q, a) = q′.

Next, we describe Moore’s state-partition QD and the right-language-based partition
P∼r

L
as greatest fixpoint computations and show that there exists an isomorphism between

the two at each step of the fixpoint computation.

I Definition 24 (Moore’s state-partition). Let D = (Q,Σ, δ, I, F) be a DFA. Define Moore’s
state-partition w.r.t. D, denoted by QD, as follows.

QD def= gfp(λX.
k

a∈Σ,S∈X

{prea(S), (prea(S))c}f {F, F c}) .

MFCS 2019

77:10 A Congruence-based Perspective on Automata Minimization Algorithms

On the other hand, by Theorem 14 (b), each state of the minimal DFA for L corresponds
to an equivalence class of ∼r

L. These equivalence classes can be defined in terms of non-empty
intersections of complemented or uncomplemented right quotients of L.

I Lemma 25. Let L be a regular language. Then, for every u ∈ Σ∗,

P∼r
L

(u) =
⋂

u∈Lw−1

w∈Σ∗

Lw−1 ∩
⋂

u/∈Lw−1

w∈Σ∗

(Lw−1)c .

It follows from Lemma 25 that P∼r
L

=
c

w∈Σ∗{Lw−1, (Lw−1)c}, for every regular language
L . Thus, P∼r

L
can also be obtained as a greatest fixpoint computation as follows.

I Lemma 26. Let L be a regular language. Then

P∼r
L

= gfp(λX.
k

a∈Σ,B∈X

{Ba−1, (Ba−1)c}f {L,Lc}) . (8)

The following result shows that, given a DFA D with L = L(D), there exists a partition
isomorphism between QD and P∼r

L
at each step of the fixpoint computations given in

Definition 24 and Lemma 26 respectively.

I Theorem 27. Let D = (Q,Σ, δ, I, F) be a DFA with L = L(D) and let ϕ : ℘(Q)→ ℘(Σ∗)
be a function defined by ϕ(S) def= WDI,S. Let QD(n) and P (n)

∼r
L

be the n-th step of the fixpoint
computation of QD (Definition 24) and P∼r

L
(Lemma 26), respectively. Then, ϕ is an

isomorphism between QD(n) and P (n)
∼r

L
for each n ≥ 0.

Proof. In order to show that ϕ is a partition isomorphism, it suffices to prove that ϕ is a
bijective mapping between the partitions. We first show that ϕ(QD(n)) = P

(n)
∼r

L
, for every

n ≥ 0. Thus, the mapping ϕ is surjective. Secondly, we show that ϕ is an injective mapping
from QD(n) to P (n)

∼r
L
. Therefore, we conclude that ϕ is a bijection.

To show that ϕ(QD(n)) = P
(n)
∼r

L
, for each n ≥ 0, we proceed by induction.

Base case: By definition, QD(0) = {F, F c} and P (0)
∼r

L
= {L,Lc}. Since D is deterministic

(and complete), it follows that ϕ(F) = WDI,F = L and ϕ(F c) = WDI,F c = Lc.
Inductive step: Before proceeding with the inductive step, we show that the following
equations hold for each a, b ∈ Σ and S, Si, Sj ∈ QD(n) with n ≥ 0:

ϕ(prea(S)c) = ((WDI,S)a−1)c (9)
ϕ(prea(Si) ∩ preb(Sj)) = (WDI,Si

)a−1 ∩ (WDI,Sj
)b−1 . (10)

For each S ∈ QD(n) and a ∈ Σ we have that:

ϕ(prea(S)c) = [By definition of ϕ]
WDI,prea(S)c = [I = {q0} and def. of WDI,prea(S)c]

{w ∈ Σ∗ | ∃q ∈ prea(S)c, q = δ̂(q0, w)} = [D is deterministic and complete]

{w ∈ Σ∗ | ∃q ∈ prea(S), q = δ̂(q0, w)}c = [By definition of prea(S)]

{w ∈ Σ∗ | ∃q ∈ S, q = δ̂(q0, wa)}c = [By definition of (WDI,S)a−1]
((WDI,S)a−1)c .

P. Ganty, E. Gutiérrez, and P. Valero 77:11

Therefore Equation (9) holds at each step of the fixpoint computation. Consider now
Equation (10). Let Si, Sj ∈ QD(n). Then,

ϕ(prea(Si) ∩ preb(Sj)) = [By Def. ϕ]
WDI,(prea(Si)∩preb(Sj)) = [I = {q0} and def. WI,S]

{w ∈ Σ∗ | ∃q ∈ prea(Si) ∩ preb(Sj), q = δ̂(q0, w)} = [By Def. of ∩]

{w ∈ Σ∗ | ∃q ∈ prea(Si), q ∈ preb(Sj), q = δ̂(q0, w)} = [D is deterministic]
WDI,prea(Si) ∩W

D
I,preb(Sj) = [By Def. of (WDI,S)a−1]

(WDI,Si
)a−1 ∩ (WI,Sj

)b−1 .

Therefore Equation (10) holds at each step of the fixpoint computation.
Let us assume that ϕ

(
QD(n)) = P

(n)
∼r

L
for every n ≤ k with k > 0. Then,

ϕ
(
QD(k+1)) = [By Def. 24 with X = QD(k)]

ϕ
(k

a∈Σ,S∈X

{prea(S),prea(S)c}f {F, F c}
)

= [By Eqs. (9), (10) and def. of
k

]

k

a∈Σ
ϕ(S)∈ϕ(X)

{(WDI,S)a−1, ((WDI,S)a−1)c}f {L,Lc} = [By induction hypothesis, ϕ(X) = P
(k)
∼r

L
]

k

a∈Σ,B∈X′

{Ba−1, (Ba−1)c}f {L,Lc} = [By Lemma 26 with X ′ = P
(k)
∼r

L
]

P
(k+1)
∼r

L
.

Finally, since D is a DFA then, for each Si, Sj ∈ QD(n)(n ≥ 0) with Si 6= Sj we have that
WDI,Si

6= WDI,Sj
, i.e., ϕ(Si) 6= ϕ(Sj). Therefore, ϕ is an injective mapping. J

I Corollary 28. Let D be a DFA with L = L(D). Let QD(n) and P (n)
∼r

L
be the n-th step of

the fixpoint computation of QD and P∼r
L
respectively. Then, for each n ≥ 0,

P
(n)
∼r

L
(WDI,S) = WDI,S , for each S ∈ QD(n) .

It follows that Moore’s DFA M , whose set of states corresponds to the state-partition at the
end of the execution of Moore’s algorithm, satisfies that ∀q ∈ QM , P∼r

L
(WM

I,q) = WM
I,q with

L = L(M). By Theorem 16, we have that Detr(M)(= M , since M is a DFA) is minimal.

I Theorem 29. Let D be a DFA and M be Moore’s DFA for L(D) as in Definition 23.
Then, M is isomorphic to Minr(L(D)).

Finally, recall that Hopcroft [10] defined a DFA minimization algorithm which offers better
performance than Moore’s. The ideas used by Hopcroft can be adapted to our framework to
devise a new algorithm for computing P∼r

L
. However, by doing so, we could not derive a

better explanation than the one provided by Berstel et al. [2].

MFCS 2019

77:12 A Congruence-based Perspective on Automata Minimization Algorithms

6 Related Work and Conclusions

Brzozowski and Tamm [5] showed that every regular language defines a unique NFA, which
they call átomaton. The átomaton is built upon the minimal DFA NDM for the language,
defining its states as non-empty intersections of complemented or uncomplemented right
languages of NDM , i.e., the atoms of the language. They also observed that the atoms
correspond to intersections of complemented or uncomplemented left quotients of the language.
Then they proved that the átomaton is isomorphic to the reverse automaton of the minimal
deterministic DFA for the reverse language.

Intuitively, the construction of the átomaton based on the right languages of the minimal
DFA corresponds to Det`(NDM), while its construction based on left quotients of the language
corresponds to Min`(L(N)).

I Corollary 30. Let NDM be the minimal DFA for a regular language L. Then,
(a) Det`(NDM) is isomorphic to the átomaton of L.
(b) Min`(L) is isomorphic to the átomaton of L.

In the same paper, they also defined the notion of partial átomaton which is built upon
an NFA N . Each state of the partial atomaton is a non-empty intersection of complemented
or uncomplemented right languages of N , i.e., union of atoms of the language. Intuitively,
the construction of the partial átomaton corresponds to Det`(N).

I Corollary 31. Let N be an NFA. Then, Det`(N) is isomorphic to the partial átomaton
of N .

Finally, they also presented a number of results [5, Theorem 3] related to the átomaton
A of a minimal DFA D with L = L(D):
1. A is isomorphic to DRDR.
2. AR is the minimal DFA for LR

3. AD is the minimal DFA for L.
4. A is isomorphic to NRDMR for every NFA N accepting L.

All these relations can be inferred from Figure 2 which connects all the automata con-
structions described in this paper together with the constructions introduced by Brzozowski
and Tamm. For instance, property 1 corresponds to the path starting at NDM (the minimal
DFA for L(N)), labeled with R− Detr −R, and ending in the átomaton of L(N). On the
other hand, property 4 corresponds to the path starting at N , labeled with R−Minr−R and
ending in the átomaton of L(N). Finally, the path starting at N , labeled with R−Detr −R
and ending in the partial átomaton of N shows that the later is isomorphic to NRDR.

In conclusion, we establish a connection between well-known independent minimization
methods through Theorem 16. Given a DFA, the left languages of its states form a partition
on words, P , and thus, each left language is identified by a state. Intuitively, Moore’s
algorithm merges states to enforce the condition of Theorem 16, which results in merging
blocks of P that belong to the same Nerode’s equivalence class. Note that Hopcroft’s partition
refinement method [10] achieves the same goal at the end of its execution though, stepwise,
the partition computed may differ from Moore’s. On the other hand, any co-deterministic
NFA satisfies the right-hand side of Equation (6) hence, by Lemma 15, satisfies the condition
of Theorem 16. Therefore, the double-reversal method, which essentially determinizes a
co-determinized NFA, yields the minimal DFA. Finally, the left-right duality (Lemma 8) of
the language-based equivalences shows that the condition of Theorem 16 is equivalent to
that of Brzozowski and Tamm [5].

P. Ganty, E. Gutiérrez, and P. Valero 77:13

N Partial átomaton
of N

NDM Átomaton
of L(N)

NR NRD Átomaton
of L(N R)

NRDM

Det`; C.31

R

Minr; T.14(b)

Min`; T.14(d)

Detr; T.14(c)

R

R

Det`; C.30(a)

R

Detr; T.14(f)

Detr; T.14(c)

Minr; T.14(b)

Min`; C.30(b)

Det`; T.14(e) Detr; T.14(c)

Det`; C.30(a)

Figure 2 Extension of the diagram of Figure 1 including the átomaton and the partial átomaton.
Recall that N DM is the minimal DFA for L(N). The results referenced in the labels are those
justifying the output of the operation.

Some of these connections have already been studied in order to offer a better under-
standing of Brzozowski’s double-reversal method [1, 3, 7, 16]. In particular, Adámek et al. [1]
and Bonchi et al. [3] offer an alternative view of minimization and determinization methods
in a uniform way from a category-theoretical perspective. In contrast, our work revisits these
well-known minimization techniques relying on simple language-theoretical notions.

References
1 Jirí Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and Alexandra

Silva. A Coalgebraic Perspective on Minimization and Determinization. In FoSSaCS, volume
7213 of Lecture Notes in Computer Science, pages 58–73. Springer, 2012.

2 Jean Berstel, Luc Boasson, Olivier Carton, and Isabelle Fagnot. Minimization of automata,
2010. arXiv:1010.5318.

3 Filippo Bonchi, Marcello M. Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan J.
M. M. Rutten, and Alexandra Silva. Algebra-coalgebra duality in Brzozowski’s minimization
algorithm. ACM Trans. Comput. Log., 15(1):3:1–3:29, 2014.

4 Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. Mathematical Theory of Automata, 12(6):529–561, 1962.

5 Janusz A. Brzozowski and Hellis Tamm. Theory of átomata. Theor. Comput. Sci., 539:13–27,
2014.

6 Julius R. Büchi. Finite Automata, their Algebras and Grammars - Towards a Theory of
Formal Expressions. Springer, 1989.

7 Jean-Marc Champarnaud, Ahmed Khorsi, and Thomas Paranthoën. Split and join for
minimizing: Brzozowski’s algorithm. In Stringology, pages 96–104. Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical University, 2002.

8 Aldo de Luca and Stefano Varricchio. Finiteness and Regularity in Semigroups and Formal
Languages. Springer Publishing Company, Incorporated, 1st edition, 2011.

9 Pierre Ganty, Elena Gutiérrez, and Pedro Valero. A Congruence-based Perspective on
Automata Minimization Algorithms (extended version), 2019. arXiv:1906.06194.

10 John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Theory
of machines and computations, pages 189–196. Elsevier, 1971.

11 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation - (2. ed.). Addison-Wesley-Longman, 2001.

MFCS 2019

http://arxiv.org/abs/1010.5318
http://arxiv.org/abs/1906.06194

77:14 A Congruence-based Perspective on Automata Minimization Algorithms

12 Szabolcs Iván. Complexity of atoms, combinatorially. Inf. Process. Lett., 116(5):356–360,
2016.

13 Bakhadyr Khoussainov and Anil Nerode. Automata Theory and Its Applications. Birkhauser
Boston, Inc., Secaucus, NJ, USA, 2001.

14 Edward F. Moore. Gedanken-experiments on sequential machines. Automata studies,
23(1):60–60, 1956.

15 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
16 Manuel Vázquez de Parga, Pedro García, and Damián López. A polynomial double reversal

minimization algorithm for deterministic finite automata. Theor. Comput. Sci., 487:17–22,
2013.

Finding Optimal Solutions With Neighborly Help
Elisabet Burjons
Department of Computer Science, ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland
eburjons@inf.ethz.ch

Fabian Frei
Department of Computer Science, ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland
fabian.frei@inf.ethz.ch

Edith Hemaspaandra
Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623, USA
eh@cs.rit.edu

Dennis Komm
Department of Computer Science, ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland
dennis.komm@inf.ethz.ch

David Wehner
Department of Computer Science, ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland
david.wehner@inf.ethz.ch

Abstract
Can we efficiently compute optimal solutions to instances of a hard problem from optimal solutions
to neighboring (i.e., locally modified) instances? For example, can we efficiently compute an optimal
coloring for a graph from optimal colorings for all one-edge-deleted subgraphs? Studying such
questions not only gives detailed insight into the structure of the problem itself, but also into the
complexity of related problems; most notably graph theory’s core notion of critical graphs (e.g.,
graphs whose chromatic number decreases under deletion of an arbitrary edge) and the complexity-
theoretic notion of minimality problems (also called criticality problems, e.g., recognizing graphs
that become 3-colorable when an arbitrary edge is deleted).

We focus on two prototypical graph problems, Colorability and Vertex Cover. For example, we
show that it is NP-hard to compute an optimal coloring for a graph from optimal colorings for all
its one-vertex-deleted subgraphs, and that this remains true even when optimal solutions for all
one-edge-deleted subgraphs are given. In contrast, computing an optimal coloring from all (or even
just two) one-edge-added supergraphs is in P. We observe that Vertex Cover exhibits a remarkably
different behavior, demonstrating the power of our model to delineate problems from each other
more precisely on a structural level.

Moreover, we provide a number of new complexity results for minimality and criticality problems.
For example, we prove that Minimal-3-UnColorability is complete for DP (differences of NP
sets), which was previously known only for the more amenable case of deleting vertices rather than
edges. For Vertex Cover, we show that recognizing β-vertex-critical graphs is complete for Θp

2
(parallel access to NP), obtaining the first completeness result for a criticality problem for this class.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Complexity classes

Keywords and phrases Critical Graphs, Computational Complexity, Structural Self-Reducibility,
Minimality Problems, Colorability, Vertex Cover, Satisfiability, Reoptimization, Advice

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.78

Related Version A full version of this paper, which includes the appendices, is published on arXiv [3]
and available at https://arxiv.org/abs/1906.10078.

Funding Edith Hemaspaandra: Research done in part while on sabbatical at ETH Zürich.

Acknowledgements We thank the anonymous referees and Hans-Joachim Böckenhauer, Rodrigo R.
Gumucio Escobar, Lane Hemaspaandra, Juraj Hromkovič, Rastislav Královič, Richard Královič,
Xavier Muñoz, Martin Raszyk, Peter Rossmanith, Walter Unger, and Koichi Wada for helpful
comments and discussions.

© Elisabet Burjons, Fabian Frei, Edith Hemaspaandra, Dennis Komm, and David Wehner;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 78; pp. 78:1–78:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eburjons@inf.ethz.ch
mailto:fabian.frei@inf.ethz.ch
mailto:eh@cs.rit.edu
mailto:dennis.komm@inf.ethz.ch
mailto:david.wehner@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.MFCS.2019.78
https://arxiv.org/abs/1906.10078
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

78:2 Finding Optimal Solutions With Neighborly Help

1 Introduction and Related Work

In Subsection 1.1, we introduce and motivate our new model, which we then compare and
contrast to related notions in Subsection 1.2. Finally, we present in Subsection 1.3 an overview
of our most interesting results and place them into the context of the wider literature.

1.1 Our Model

In view of the almost complete absence of progress in the question of P versus NP, it is
natural to wonder just how far and in what way these sets may differ. For example, how
much additional information enables us to design an algorithm that solves an otherwise
NP-hard problem in polynomial time? We are specifically interested in the case where
this additional information takes the form of optimal solutions to neighboring (i.e., locally
modified) instances. This models situations such as that of a newcomer who may ask
experienced peers for advice on how to solve a difficult problem, for instance finding an
optimal work route. Similar circumstances arise when new servers join a computer network.
Formally, we consider the following oracle model: An algorithm may, on any given input,
repeatedly select an arbitrary instance neighboring the given one and query the oracle for an
optimal solution to it. Occasionally, it will be interesting to limit the number of queries that
we grant the algorithm. In general, we do not impose such a restriction, however.

What precisely constitutes a local modification and thus a neighbor depends on the specific
problem, of course. We examine the prototypical graph problems Colorability and Vertex
Cover, considering the following four local modifications, which are arguably the most natural
choices: deleting an edge, adding an edge, deleting a vertex (including adjacent edges), and
adding a vertex (including an arbitrary, possibly empty, set of edges from the added vertex
to the existing ones). For example, we ask whether there is a polynomial-time algorithm that
computes a minimum vertex cover for an input graph G if it has access to minimum vertex
covers for all one-edge-deleted subgraphs of G. We will show that questions of this sort are
closely connected to and yet clearly distinct from research in other areas, in particular the
study of critical graphs, minimality problems, self-reducibility, and reoptimization.

1.2 Related Concepts

Criticality. The notion of criticality was introduced into the field of graph theory by Dirac [7]
in 1952 in the context of Colorability with respect to vertex deletion. Thirty years later,
Wessel [19] generalized the concept to arbitrary graph properties and modification operations.
Nevertheless, Colorability has remained a central focus of the extensive research on critical
graphs. Indeed, a graph G is called critical without any further specification if it is χ-critical
under edge deletion, that is, if its chromatic number χ(G) (the number of colors used in an
optimal coloring of G) changes when an arbitrary edge is deleted. Besides Colorability, one
other problem has received a comparable amount of attention and thorough analysis in three
different manifestations: Independent Set, Vertex Cover, and Clique. The corresponding
notions are α-criticality, β-criticality, and ω-criticality, where α is the independence number
(size of a maximum independent set), β is the vertex cover number (size of a minimum
vertex cover), and ω is the clique number (size of a maximum clique). Note that these graph
numbers are all monotone – either nondecreasing or nonincreasing – with respect to each of
the local modifications examined in this paper.

E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:3

Minimality. Another strongly related notion is that of minimality problems. An instance
is called minimal with respect to a property if only the instance itself but none of its
neighbors has this property; that is, it inevitably loses the property under the considered
local modification. The corresponding minimality problem is to decide whether an instance
is minimal in the described sense. For example, a graph G is minimally 3-uncolorable (with
respect to edge deletion) if it is not 3-colorable, yet all its one-edge-deleted neighbors are. The
minimality problem Minimal-3-UnColorability is the set of all minimally 3-uncolorable
graphs. Note that a graph is critical exactly if it is minimally k-uncolorable for some k.

While minimality problems tend to be in DP (i.e., differences of two NP sets, the second
level of the Boolean hierarchy), DP-hardness is so difficult to prove for them that only a few
have been shown to be DP-complete so far; see for instance Papadimitriou and Wolfe [14].
Note that the notion of minimality is not restricted to graph problems. Indeed, minimally
unsatisfiable formulas figure prominently in many of our proofs.

Auto-Reducibility. Our model provides a refinement of the notion of functional auto-
reducibility; see Faliszewski and Ogihara [8]. An algorithm solves a function problem
R ⊆ Σ∗1 × Σ∗2 if on input x ∈ Σ∗1 it outputs some y ∈ Σ∗2 with (x, y) ∈ R. The problem
R is auto-reducible if there is a polynomial-time algorithm with unrestricted access to an
oracle that provides solutions to all instances except x itself. The task of finding an optimal
solution to a given instance is a special kind of function problem. Defining all instances to
be neighbors (local modifications) of each other lets the two concepts coincide.

Self-Reducibility. Self-reducibility is auto-reducibility with the additional restriction that
the algorithm may query the oracle only on instances that are smaller in a certain way. There
are a multitude of definitions of self-reducibility that differ in what exactly is considered
to be “smaller,” the two seminal ones stemming from Schnorr [15] and from Meyer and
Paterson [13]. For Schnorr, an instance is smaller than another one if its encoding input
string is strictly shorter. While his definition does allow for functional problems (i.e., more
than mere decision problems, in particular the problem of finding an optimal solution), it is
too restrictive for self-reducibility to encompass our model since not all neighboring graphs
have shorter strings under natural encodings.

Meyer and Paterson are less rigid and allow instead any partial order having short
downward chains to determine which instances are considered smaller than the given one.1
The partial orders induced by deleting vertices, by deleting edges, and by adding edges all
have short downward chains. The definition by Meyer and Paterson is thus sufficient for our
model to become part of functional self-reducibility for all local modifications considered in
this paper but one, namely, the case of adding a vertex, which is too generous a modification
to display any particularly interesting behavior.

As an example, consider the graph decision problem Colorability = {(G, k) | χ(G) ≤
k}, which is self-reducible by the following observation. Any graph G with at least two
vertices that is not a clique is k-colorable exactly if at least one of the polynomially many
graphs that result from merging two non-adjacent vertices in G is k-colorable. This works
for the optimization variant of the problem as well. Any optimal coloring of G assigns at

1 Formally, a partial order is said to have short downward chains if the following condition is satisfied:
There is a polynomial p such that every chain decreasing with respect to the considered partial order
and starting with some string x is shorter than p(|x|) and such that all strings preceding x in that order
are bounded in length by p(|x|).

MFCS 2019

78:4 Finding Optimal Solutions With Neighborly Help

least two vertices the same color, except in the trivial case of G being a clique. An optimal
coloring for the graph that has two such vertices merged then yields an optimal coloring for
G. This contrasts well with the findings for Colorability’s behavior under our new model
discussed below.

Reoptimization. Reoptimization examines optimization problems under a model that is
tightly connected to ours. The notion of reoptimization was coined by Schäffter [16] and
first applied by Archetti et al. [1]. The reoptimization model sets the following task for an
optimization problem:

Given an instance, an optimal solution to it, and a local modification of this instance,
compute an optimal solution to the modified instance.

The proximity to our model becomes clearer after a change of perspective. We reformulate
the reoptimization task by reversing the roles of the given and the modified instance.

Given an instance, a local modification of it, and an optimal solution to the modified
instance, compute an optimal solution to the original instance.

Note that this perspective switch flips the definition of local modification; for example, edge
deletion turns into edge addition. Aside from this, the task now reads almost identical to
that demanded in our model. The sole but crucial difference is that in reoptimization, the
neighboring instance and the optimal solution to it are given as part of the input, whereas
in our model, the algorithm may select any number of neighboring instances and query the
oracle for optimal solutions to them. Even if we limit the number of queries to just one,
our model is still more generous since the algorithm is choosing (instead of being given) the
neighboring instance to which the oracle will supply an optimal solution. Thus, hardness in
our model always implies hardness for reoptimization, but not vice versa. In fact, all problems
examined under the reoptimization model so far remain NP-hard. Only for some of them
could an improvement of the approximation ratio be achieved after extensive studies, the
first discovered examples being tsp under edge-weight changes [4] and addition or deletion
of vertices [2]. This stands in stark contrast to the results for our model, as outlined in the
next section.

1.3 Results
We shed a new light on two of the most prominent and well-examined graph problems,
Colorability and Vertex Cover. Our results come in two different types.

The first type concerns the hardness of the two problems in our model for the most
common local modifications; Table 1 summarizes the main results of this type. In addition,
Corollaries 2 and 14 show that Satisfiability and Vertex Cover remain NP-hard for any number
of queries if the local modification is the deletion of a clause or a triangle, respectively. The
results for the vertex-addition columns are trivial since we can just query an optimal solution
for the graph with an added isolated vertex; see Theorem 16 in Appendix A [3]. The hardness
results for the one-query case all follow from the same simple Theorem 17, variations of
which appear in the study of self-reducibility and many other fields; see Appendix B [3].
The findings of Theorems 10, 12, and 19 in Appendix F [3] clearly delineate our model
from that in reoptimization, where the NP-hard problems examined in the literature remain
NP-hard despite the significant amount of advice in form of the provided optimal solution;
see Böckenhauer et al. [5].

E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:5

Table 1 An overview of our results regarding the hardness of Colorability and Vertex Cover in
our model for the most common definitions of a local modification. The v stands for a vertex and the
e stands for an edge. The question mark indicates an interesting open problem. The results in the
vertex-addition columns are trivial; see Theorem 16 in Appendix A [3]. The NP-hardness results for
the 1-query case all follow from rather simple Turing reductions; see Theorem 17 in Appendix B [3].

No. of
Queries

Colorability Vertex Cover

Add v Delete v Add e Delete e Add v Delete v Add e Delete e

1 P NP-hard NP-hard NP-hard P NP-hard NP-hard NP-hard

2 or
more

P NP-hard P NP-hard P P P ?
[Thm. 16] [Thm. 4] [Thm. 10] [Thm. 6] [Thm. 16] [Thm. 12] [Thm. 19]

The results of the second type locate criticality problems in relation to the complexity
classes DP and Θp

2 . The class Θp
2 was introduced by Wagner [17] and represents the languages

that can be decided in polynomial time by an algorithm that has access to an NP oracle
under the restriction that all queries are submitted at the same time. The definitions of the
classes immediately yield the inclusions NP ∪ coNP ⊆ DP ⊆ Θp

2 .
Papadimitriou and Wolfe [14] have shown that Minimal-UnSat (the set of unsatisfiable

formulas that become satisfiable when an arbitrary clause is deleted) is DP-complete. Cai
and Meyer [6] built upon this to prove DP-completeness of VertexMinimal-k-UnColor-
ability (the set of graphs that are not k-colorable but become k-colorable when an arbitrary
vertex is deleted), for all k ≥ 3. With Theorems 7 and 8, we were able to extend this result to
classes that are analogously defined for the much smaller local modification of edge deletion,
which is considered the default setting; namely, we prove DP-completeness of Minimal-
k-UnColorability, for all k ≥ 3.

In Theorem 9, we show that recognizing criticality and vertex-criticality are in Θp
2 and

DP-hard. As Joret [12] points out, a construction by Papadimitriou and Wolfe [14] proves
the DP-hardness of recognizing β-critical graphs. This problem also lies in Θp

2 , but no finer
classification has been achieved so far. In Theorem 15, we show that this problem is in fact
Θp

2-hard, yielding the first known Θp
2-completeness result for a criticality problem.

2 Preprocessing 3-SAT

Our main technique for proving the nontrivial hardness results in our model is the following:
We build in polynomial-time computable solutions for each locally modified problem instance.
That way, the solutions to the locally modified problem instances do not give away any
information about the instance to be solved. A similar approach is taken in some proofs of
DP-completeness for minimality problems. Indeed, we can occasionally combine the proof of
DP-hardness with that of the NP-hardness of computing an optimal solution from optimal
solutions to locally modified instances. Denote by 3-CNF the set of nonempty CNF-formulas
with exactly three distinct literals per clause.2 We begin by showing in Theorem 1 that there
is a reduction from 3-Sat (the set of satisfiable 3-CNF-formulas) to 3-Sat that builds in
polynomial-time computable solutions for all one-clause-deleted subformulas of the resulting
3-CNF-formula. At first glance, this very surprising result may seem dangerously close to

2 This set is often denoted E3-CNF in the literature.

MFCS 2019

78:6 Finding Optimal Solutions With Neighborly Help

proving P = NP; Corollary 2 will make explicit where the hardness remains. We will then
use the reduction of Theorem 1 as a preprocessing step in reductions from 3-Sat to other
problems.

I Theorem 1. There is a polynomial-time many-one reduction f from 3-Sat to 3-Sat and
a polynomial-time computable function s such that, for every 3-CNF-formula Φ and for
every clause C in f(Φ), s(f(Φ)− C) is a satisfying assignment for f(Φ)− C.

Proof. Papadimitriou and Wolfe [14, Lemma 1] give a reduction from 3-UnSat to Minimal-
UnSat (the set of CNF-formulas that are unsatisfiable but that become satisfiable with the
removal of an arbitrary clause). In Appendix C [3], we show how to enhance this reduction
such that it has all properties of our theorem. First, we carefully prove that there is a
function s that together with the original reduction satisfies all properties of our theorem,
except that we may output a formula that is not in 3-CNF. In order to rectify this, we
show that the standard reduction from Sat to Sat that decreases the number of literals per
clause to at most three maintains all the required properties. The same is then shown for
the standard reduction that transforms CNF-formulas with at most three literals per clause
into 3-CNF-formulas that have exactly three distinct literals per clause. Combining these
three reductions, we can therefore satisfy all requirements of our theorem. J

I Corollary 2. Computing a satisfying assignment for a 3-CNF-formula whose one-clause-
deleted subformulas all have a satisfying assignment from these assignments is NP-hard.

Proof. Given a 3-CNF-formula Φ, compute f(Φ), where f is the reduction from Theorem 1.
Now compute s(f(Φ)− C) for every clause C in f(Φ) and compute a satisfying assignment
for f(Φ) from these solutions. Use this assignment to determine whether Φ is satisfiable. J

3 Colorability

As mentioned in the previous section, the constructions of some DP-completeness results
for minimality problems can be adapted to obtain NP-hardness for computing optimal
solutions from optimal solutions to locally modified instances. There are remarkably few
complexity results for minimality problems; fortunately, however, VertexMinimal-3-Un-
Colorability (the graphs that are not 3-colorable but that are 3-colorable after deleting
any vertex)3 is DP-complete by reduction from Minimal-3-UnSat [6]. We will show how
to extract from said reduction a proof of the fact that computing an optimal coloring for a
graph from optimal colorings for its one-vertex-deleted subgraphs is NP-hard (Theorem 4).
However, the standard notion of criticality is χ-criticality under edge deletion, and the
construction by Cai and Meyer [6] does unfortunately not yield the analogous result for
deleting edges. This was to be expected, since working with edge deletion is much harder.
Surprisingly, however, a targeted modification of the constructed graph allows us to establish,
through a far more elaborate case distinction, that computing an optimal coloring for a
graph from optimal colorings for its one-edge-deleted subgraphs is NP-hard (Theorem 6) as
well as that the related minimality problem Minimal-3-UnColorability is DP-complete
(Theorem 7).

3 It should be noted that VertexMinimal-3-UnColorability is denoted by Minimal-3-UnColor-
ability by Cai and Meyer [6] despite the fact that minimality problems usually refer to the case of
edge deletion.

E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:7

I Lemma 3. There is a polynomial-time many-one reduction g from 3-Sat to 3-Color-
ability and a polynomial-time computable function opt such that, for every 3-CNF-formula
Φ and for every vertex v in g(Φ), opt(g(Φ)− v) is an optimal coloring for g(Φ)− v.

Proof. Given a 3-CNF-formula Φ, let g(Φ) = h(f(Φ)), where f is the reduction from
Theorem 1 and h is the reduction from Minimal-3-UnSat to VertexMinimal-3-Un-
Colorability by Cai and Meyer [6]. Since h also reduces 3-Sat to 3-Colorability [6,
Lemma 2.2], so does g. A careful inspection of the reduction g reveals that there is a
polynomial-time computable function opt such that, for every vertex v in g(Φ), opt(g(Φ)− v)
is a 3-coloring of g(Φ) − v. We can also verify that g(Φ) − v does not have a 2-coloring,
hence opt(g(Φ)− v) is an optimal coloring. We do not dive into the details as this lemma
immediately follows from the proof of the analogous result for edge deletion (Lemma 5), as
explained in Appendix D [3]. J

I Theorem 4. Computing an optimal coloring for a graph from optimal colorings for its
one-vertex-deleted subgraphs is NP-hard.

Proof. Given a 3-CNF-formula Φ, compute g(Φ), where g is the reduction from Lemma 3,
compute opt(g(Φ)− v) for every vertex v in g(Φ), and from these optimal solutions compute
one for g(Φ). This determines whether g(Φ) is 3-colorable and thus whether Φ is satisfiable.

J

I Lemma 5. There is a polynomial-time many-one reduction g from 3-Sat to 3-Color-
ability and a polynomial-time computable function opt such that, for every 3-CNF-formula
Φ and for every edge e in g(Φ), opt(g(Φ)− e) is an optimal coloring of g(Φ)− e.

Proof. Given a 3-CNF-formula Φ, let g(Φ) = h(f(Φ))− e, where f is the reduction from
Theorem 1, h is the reduction to VertexMinimal-3-UnColorability by Cai and Meyer [6],
and e is the edge {vc, vs}, with vc being the unique vertex adjacent to all variable-setting
vertices and vs being the only remaining neighbor vertex of vc. We prove in detail that g has
all the desired properties in Appendix D [3]. See Figure 1 in Appendix D [3] for an example
of the construction. J

I Theorem 6. Computing an optimal coloring for a graph from optimal colorings for its
one-edge-deleted subgraphs is NP-hard.

Proof. The same argument as for Theorem 4 can be applied here. J

I Theorem 7. Minimal-3-UnColorability is DP-complete.

Proof. Membership in DP is immediate, since given a graph G = (V,E), determining
whether G − e is 3-colorable for every e ∈ E is in NP and so is determining whether G
is 3-colorable. As for DP-hardness, the argument from the proof of Lemma 5 shows that
mapping Φ to h(Φ)−{vc, vs}, where h is the reduction from Minimal-3-UnSat to Vertex-
Minimal-3-UnColorability by Cai and Meyer [6], gives a reduction from Minimal-
3-UnSat to Minimal-3-UnColorability (and to VertexMinimal-3-UnColorability
as well). Recall that Minimal-3-UnSat is DP-hard [14]. J

Cai and Meyer [6] show DP-completeness for VertexMinimal-k-UnColorability, for
all k ≥ 3. We now prove that the analogous result for deletion of edges holds as well.

I Theorem 8. Minimal-k-UnColorability is DP-complete, for every k ≥ 3.

MFCS 2019

78:8 Finding Optimal Solutions With Neighborly Help

Proof. Membership in DP is again immediate. To show hardness for k ≥ 4, we reduce
Minimal-3-UnColorability to Minimal-k-UnColorability. We use the construction
for deleting vertices [6, Theorem 3.1] and map graph G to G+Kk−3.4 Note that χ(Kk−3) =
k− 3 and χ(H +H ′) = χ(H) +χ(H ′) for any two graphs H and H ′. First suppose G+Kk−3
is in Minimal-k-UnColorability. Then G + Kk−3 is not k-colorable, and so G is not
3-colorable. Let e be an edge in G. Then (G− e) +Kk−3 = (G+Kk−3)− e is k-colorable,
and thus G− e is 3-colorable. It follows that G is in Minimal-3-UnColorability.

Now suppose G is in Minimal-3-UnColorability. Then G+Kk−3 is not k-colorable.
Let e be an edge in G + Kk−3. If e is an edge in G, then G − e is 3-colorable and so
(G + Kk−3) − e = (G − e) + Kk−3 is k-colorable. If e is an edge in Kk−3, then Kk−3 − e
is (k − 4)-colorable and G is 4-colorable (let ê be any edge in G, take a 3-coloring of
G− ê, and change the color of one of the vertices incident to ê to the remaining color), so
(G+Kk−3)− e = G+ (Kk−3 − e) is k-colorable. Finally, if e = {v, w} for a vertex v in G
and a vertex w in Kk−3, let ê be an edge in G incident to v, take a 3-coloring of G− ê, take
a disjoint (k − 3)-coloring of Kk−3, and change the color of v to the color of w. As a result,
for all edges e in G+Kk−3, (G+Kk−3)− e is k-colorable. It follows that G+Kk−3 is in
Minimal-k-UnColorability. J

The construction above does not prove the analogues of Lemmas 3 and 5: Note that G
is 3-colorable if and only if (G+Kk−3)− v and (G+Kk−3)− e are both (k − 1)-colorable
for every vertex v in Kk−3 and for every edge e in Kk−3, and so we can certainly determine
whether a graph is 3-colorable from the optimal solutions to the one-vertex-deleted subgraphs
and one-edge-deleted subgraphs of G+Kk−3 in polynomial time. Turning to criticality and
vertex-criticality, we can bound their complexity as follows.

I Theorem 9. The two problems of determining whether a graph is critical and whether it
is vertex-critical are both in Θp

2 and DP-hard.

Proof. For the Θp
2-membership of the two problems, we observe that the relevant chromatic

numbers of a graph G = (V,E) and its neighbors can be computed by querying the NP
oracle Colorability = {(G, k) | χ(G) ≤ k} for every (G, k), (G− e, k), and (G− v, k) for
every e ∈ E, v ∈ V , and k ≤ ‖V (G)‖ in parallel.

For the DP-hardness of the two problems, we prove that h(Φ)− {vc, vs} is a reduction
from Minimal-3-UnSat to both of them. We have already seen that it reduces Minimal-
3-UnSat to Minimal-3-UnColorability. Hence, for every Φ ∈Minimal-3-UnSat, the
graph h(Φ)−{vc, vs} is in Minimal-3-UnColorability ⊆ VertexMinimal-3-UnColor-
ability and thus both critical and vertex-critical. For the converse it suffices to note that,
for every Φ ∈ CNF with clauses of size at most 3, h(Φ) − {vc, vs} is 4-colorable and thus
in Minimal-3-UnColorability (in VertexMinimal-3-UnColorability, respectively)
if and only if it is critical (vertex-critical, respectively). J

The exact complexity of these problems remains open, however. In particular, it is
unknown whether they are Θp

2-hard. This contrasts with the case of Vertex Cover, for which
we prove in Theorem 15 that recognizing β-vertex-criticality is indeed Θp

2-complete.
Before that, however, we return to our model and consider Colorability under the local

modification of adding an edge. If we allow only one query, the problem stays NP-hard via a
simple Turing reduction: Iteratively adding edges to the given instance eventually leads to

4 For two graphs G1 and G2, the graph join G1 +G2 is the disjoint union G1 ∪G2 plus a join edge added
from every vertex of G1 to every vertex of G2; see, e.g., Harary’s textbook on graph theory [10, p. 21].

E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:9

a clique as a trivial instance, see Theorem 17 in Appendix B [3]. Note that the restriction
to one query is crucial for this reduction to work; without it, the branching may lead to an
exponential blowup in the number of instances that need to be considered. The following
theorem shows that this breakdown of the hardness proof is inevitable unless P = NP since
the problem becomes in fact polynomial-time solvable if just one more oracle call is granted.

I Theorem 10. There is a polynomial-time algorithm that computes an optimal coloring for
a graph from optimal colorings of all its one-edge-added supergraphs; in fact, two optimal
colorings, one for each of two specific one-edge-added supergraphs, suffice.

For the proof of this theorem, we naturally extend the notion of universal vertices as follows.

I Definition 11. An edge {u, v} ∈ E of a graph G = (V,E) is called universal if, for every
vertex x ∈ V − {u, v}, we have {x, u} ∈ E or {x, v} ∈ E. A graph is called universal-edged
if all its edges are universal.

Additionally, we denote, for any given graph G = (V,E) and any vertex x ∈ V , the open
neighborhood of x in G by N(x) := {y | {x, y} ∈ E} and the closed neighborhood of x in G
by N [x] := N(x) ∪ {x}. We are now ready to give the proof of Theorem 10.

Proof of Theorem 10. We show that Colorer (Algorithm 1), which uses the oracle of our
model and Subcol (Algorithm 2) as subroutines, has the desired properties.

Algorithm 1 Colorer.
Input: An undirected graph G = (V,E).
Output: An optimal coloring for G.
Description: Optimizes universal-edged graphs with two queries to Oracle, which provides
optimal solutions to one-edge-added supergraphs; other graphs are optimized via Subcol.
1: for every edge {u, v} ∈ E do
2: for every vertex x ∈ V − {u, v} do
3: if {u, x} /∈ E ∧ {v, x} /∈ E then
4: f1 ← Oracle(G ∪ {u, x})
5: f2 ← Oracle(G ∪ {v, x})
6: if f1 uses fewer colors on G than f2 then
7: return f1
8: else
9: return f2

10: k ← 1
11: while Subcol(G, k) = NO do
12: k ← k + 1
13: return Subcol(G, k)

We begin by proving that Colorer is correct. Assume first that the input graph
G = (V,E) is not universal-edged. Then Colorer can find an edge {u, v} ∈ E with a
non-neighboring vertex x ∈ V and query the oracle on G ∪ {u, x} and G ∪ {v, x} for optimal
colorings f1 and f2. We argue that at least one of them is also optimal for G. Let f be
any optimal coloring of G. Since u and v are connected by an edge, we have f(u) 6= f(v)
and hence f(x) 6= f(u) or f(x) 6= f(v); see Figure 2in Appendix E [3]. Thus, f is also
an optimal coloring of G ∪ {x, u} or G ∪ {x, v}, and so we have χ(G) = χ(G ∪ {x, u}) or
χ(G) = χ(G ∪ {x, v}). Therefore, f1 or f2 is an optimal coloring for G as well and returned
on line 7 or 9, respectively.

MFCS 2019

78:10 Finding Optimal Solutions With Neighborly Help

Algorithm 2 Subcol.
Input: An undirected, universal-edged graph G = (V,E) and a positive integer k.
Output: A k-coloring f for G if there is one; NO if there is none.
Description: Works by recursion on k, with k = 1 and k = 2 serving as the base cases.
1: if G has no edge then
2: return the constant 1-coloring with f(x) = 1 for all x ∈ V .
3: else if k = 1 then
4: return NO.
5: if G has bipartition {A,B} then
6: return the 2-coloring f(x) =

{
1 for x ∈ A and
2 for x ∈ B.7: else if k=2 then

8: return NO.
9: Choose an arbitrary edge {`, r} ∈ E.

10: L← N(`)−N [r]; R← N(r)−N [`]; M ← N(`) ∩N(r)
11: g ← Subcol(G[M], k − 2)
12: if g = NO then
13: return NO
14: return the k-coloring f(x) =


g(x) for x ∈M ,
k − 1 for x ∈ L ∪ {r}, and
k for x ∈ R ∪ {`}.

The while loop can be entered only if the graph G is universal-edged. This allows us to
compute an optimal solution to G with no queries at all by using Subcol (Algorithm 2).
We will show that Subcol is a polynomial-time algorithm that computes, for any universal-
edged graph G and any positive integer k, a k-coloring of G if there is one, and outputs NO
otherwise. The while loop of Colorer thus searches the smallest integer k such that G has
a k-coloring, that is, k = χ(G). Hence, an optimal coloring of G is returned on line 13. Due
to k = χ(G) ≤ ‖V ‖, Colorer has polynomial time complexity.

It remains to prove the correctness and polynomial time complexity of Subcol. This
can be done by bounding its recursion depth and verifying the correctness for each of the
six return statements; this is hardest for the last two. The proof relies on the properties
of the partition M ∪ L ∪ R ∪ {`} ∪ {r} as illustrated in Figure 3 in Appendix E [3]; see
Appendix E [3] for all details. J

In this section, we have proven that Minimal-k-UnColorability is complete for DP
for every k ≥ 3 and demonstrated that Colorability remains NP-hard in our model for
deletion of vertices or edges, whereas it becomes polynomial-time solvable when the local
modification is the addition of an edge. In the next section, we turn our attention to Vertex
Cover.

4 Vertex Cover

This section will show that the behavior of Vertex Cover in our model is distinctly different
from the one that we demonstrated for Colorability in the previous section. In particular,
Theorem 12 proves that computing an optimal vertex cover from optimal solutions of one-
vertex-deleted subgraphs can be done in polynomial time, which is impossible for optimal
colorings according to Theorem 4 unless P = NP.

E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:11

First, we note that the NP-hardness proof for our most restricted case with only one
query still works (i.e., Theorem 17 in Appendix B [3] is applicable): Deleting vertices, adding
edges, or deleting edges repeatedly will always lead to the null graph, an edgeless graph, or a
clique through polynomially many instances. As we have seen for Colorability in the previous
section, hardness proofs of this type may fail due to exponential branching as soon as multiple
queries are allowed. We can show that, unless P = NP, this is necessarily the case for edge
addition and vertex deletion since two granted queries suffice to obtain a polynomial-time
algorithm.

I Theorem 12. There is a polynomial-time algorithm that computes an optimal vertex cover
for a graph from two optimal vertex covers for some one-vertex-deleted subgraphs.

Proof. Observe what can happen when a vertex v is removed from a graph G with an
optimal vertex cover of size k. If v is part of any optimal vertex cover of G, then the size of
an optimal vertex cover for G− v is k− 1. Given any graph G, pick any two adjacent vertices
v1 and v2. Since there is an edge between them, one of them is always part of an optimal
vertex cover, thus either G− v1 or G− v2 or both will have an optimal vertex cover of size
k − 1. Two queries to the oracle return optimal vertex covers for G− v1 and G− v2. The
algorithm chooses the smaller of these two covers (or any, if they are the same size) and adds
the corresponding vi. The resulting vertex cover has size k and is thus optimal for G. J

Theorem 19 in Appendix F [3] proves that the analogous result for adding an edge holds as
well.

At this point, we would like to prove either an analogue to Theorem 6, showing that
computing an optimal vertex cover is NP-hard even if we get access to a solution for every
one-edge-deleted subgraph, or an analogue to Theorem 19 in Appendix F [3], showing that the
problem is in P if we have access to a solution for more than one one-edge-deleted subgraph.
We were unable to prove either, however. The latter is easy to do for many restricted graph
classes (e.g., graphs with bridges), yet we suspect that the problem is NP-hard in general.
We will detail a few reasons for the apparent difficulty of proving this statement after the
following theorem and corollary, which look at deleting a triangle as the local modification.

I Theorem 13. There is a reduction g from 3-Sat to VertexCover such that, for every
3-CNF-formula Φ and for every triangle T in g(Φ), there is a polynomial-time computable
optimal vertex cover of g(Φ)− T .

The proof of Theorem 13 relies on the standard reduction from 3-Sat to VertexCover;
see [9], where clauses correspond to triangles; see Appendix G [3] for the details. Applying
the same argument as in the proof of Theorem 4 yields the following corollary.

I Corollary 14. Computing an optimal vertex cover for a graph from optimal vertex covers
for the one-triangle-deleted subgraphs is NP-hard.

What can we say about optimal vertex covers for one-edge-deleted graphs? Papadimitriou
and Wolfe show [14, Theorem 4] that there is a reduction g from Minimal-3-UnSat to
Minimal-k-NoVertexCover (called Critical-VertexCover in [14]; asking, given a
graph G and an integer k, whether G does not have a vertex cover of size k but all one-
edge-deleted subgraphs do). The reduction builds in a polynomial-time computable vertex
cover of size k for every one-edge-deleted subgraph. And so g is a reduction from 3-Sat
to VertexCover such that there exists a polynomial-time computable function opt such
that for every 3-CNF-formula Φ and g(Φ) = (G, k), it holds, for every edge e in G, that

MFCS 2019

78:12 Finding Optimal Solutions With Neighborly Help

opt(G− e) is a vertex cover of size k. Unfortunately, it may happen that an optimal vertex
cover of G−e has size k−1; namely, if e is an edge connecting two triangles, an edge between
two variable-setting vertices, or any edge of the clause triangles. The function opt does thus
not give us an optimal vertex cover, thwarting the proof attempt. This shows that we cannot
always get results for our model from the constructions for criticality problems.

The following would be one approach to design a polynomial-time algorithm that computes
an optimal vertex cover from optimal vertex covers for all one-edge-deleted subgraphs: It is
clear that deleting an edge does not increase the size of an optimal vertex cover and decreases
it by at most one. If, for any two neighbor graphs, the provided vertex covers differ in size,
then we can take the smaller one, restore the deleted edge, and add any one of the two
incident vertices to the vertex cover; this gives us the desired optimal vertex cover. If the
optimal vertex cover size decreases for all deletions of a single edge, we can do the same with
any of them. Thus, it is sufficient to design a polynomial-time algorithm that solves the
problem on graphs whose one-edge-deleted subgraphs all have optimal vertex covers of the
same size as an optimal vertex cover of the original graph. One might suspect that only very
few and simple graphs can be of this kind. However, we obtain infinitely many such graphs
by the removal of any edge from different cliques, as already mentioned in the introduction.
In fact, there is a far larger class of graphs with this property and no apparent communality
to be exploited for the efficient construction of an optimal vertex cover.

We now turn to our complexity results of β-(vertex-)criticality. The reduction from
Minimal-3-UnSat to Minimal-k-NoVertexCover by Papadimitriou and Wolfe [14] es-
tablishes the DP-hardness of deciding whether a graph is β-critical. However, it seems
unlikely that β-criticality is in DP. The obvious upper bound is Θp

2 , since a polynomial
number of queries to a VertexCover oracle, namely (G, k) and (G− e, k) for all edges e
in G and all k ≤ ‖V (G)‖, in parallel allows us to determine β(G) and β(G− e) for all edges
e in polynomial time, and thus allows us to determine whether G is β-critical. While we
have not succeeded in proving a matching lower bound, or even any lower bound beyond
DP-hardness, we do get this lower bound for β-vertex-criticality, thereby obtaining the first
Θp

2-completeness result for a criticality problem.

I Theorem 15. Determining whether a graph is β-vertex-critical is Θp
2-complete.

Proof. Membership follows with the same argument as above, this time querying the oracle
VertexCover in parallel for all (G, k) and (G − v, k) for all vertices v in G and all
k ≤ ‖V (G)‖. To show that this problem is Θp

2-hard, we use a similar reduction as the
one by Hemaspaandra et al. [11, Lemma 4.12] to prove that it is Θp

2-hard to determine
whether a given vertex is a member of a minimum vertex cover. We reduce from the Θp

2-
complete problem VC= = {(G,H) | β(G) = β(H)} [18]. Let n = max(‖V (G)‖, ‖V (H)‖),
let G′ consist of n+ 1− ‖V (G)‖ isolated vertices, let H ′ consist of n+ 1− ‖V (H)‖ isolated
vertices, and let F = (G ∪ G′) + (H ∪H ′). Note that β(F) = (n + 1) + min(β(G), β(H)).
If β(G) = β(H), then β(F) = (n + 1) + β(G) = (n + 1) + β(H) and for every vertex v

in F , β(F − v) = n + β(G). Thus, F is critical. If β(G) 6= β(H), assume without loss of
generality that β(G) < β(H). Then β(F) = n+ 1 + β(G). Let v be a vertex in G′. Then
β(F − v) = min(n+ 1 + β(G), n+ β(H)) = n+ 1 + β(G), and therefore F is not critical. J

5 Conclusion and Future Research

We defined a natural model that provides new insights into the structural properties of NP-
hard problems. Specifically, we revealed interesting differences in the behavior of Colorability
and Vertex Cover under different types of local modifications. While Colorability remains

E. Burjons, F. Frei, E. Hemaspaandra, D. Komm, and D.Wehner 78:13

NP-hard when the local modification is the deletion of either a vertex or an edge, there is an
algorithm that finds an optimal coloring by querying the oracle on at most two edge-added
supergraphs. Vertex Cover, in contrast, becomes easy in our model for both deleting vertices
and adding edges, as soon as two queries are granted. The question of what happens for the
local modification of deleting an edge remains as an intriguing open problem that defies any
simple approach, as briefly outlined above. Moreover, examples of problems where one can
prove a jump from membership in P to NP-hardness at a given number of queries greater
than 2 might be especially instructive.

With its close connections to many distinct research areas, most notably the study of
self-reducibility and critical graphs, our model can serve as a tool for new discoveries. In
particular, we were able to exploit the tight relations to criticality in the proof that recognizing
β-vertex-critical graphs is Θp

2-hard, yielding the first completeness result for Θp
2 in the field.

References
1 Claudia Archetti, Luca Bertazzi, and Maria Grazia Speranza. Reoptimizing the Traveling

Salesman Problem. Networks, 42(3):154–159, 2003.
2 Giorgio Ausiello, Bruno Escoffier, Jérôme Monnot, and Vangelis Paschos. Reoptimization of

Minimum and Maximum Traveling Salesman’s Tours. In Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT 2006), volume 4059 of Lecture Notes in Computer
Science, pages 196–207. Springer-Verlag, 2006.

3 Elisabet Burjons, Fabian Frei, Edith Hemaspaandra, Dennis Komm, and David Wehner.
Finding Optimal Solutions With Neighborly Help. Technical Report arXiv:1906.10078 [cs.CC],
arXiv.org, June 2019. URL: https://arxiv.org/abs/1906.10078.

4 Hans-Joachim Böckenhauer, Luca Forlizzi, Juraj Hromkovič, Joachim Kneis, Joachim Kupke,
Guido Proietti, and Peter Widmayer. Reusing Optimal TSP Solutions for Locally Modified
Input Instances. In Proceedings of the 4th IFIP International Conference on Theoretical
Computer Science (IFIP TCS 2006), pages 251–270. Springer-Verlag, 2006.

5 Hans-Joachim Böckenhauer, Juraj Hromkovič, and Dennis Komm. Reoptimization of Hard
Optimization Problems. In Teofilo F. Gonzalez, editor, AAM Handbook of Approximation
Algorithms and Metaheuristics, volume 1, chapter 25, pages 427–454. CRC Press 2018, 2nd
edition, 2018.

6 Jin-Yi Cai and Gabriele E. Meyer. Graph Minimal Uncolorability is DP-Complete. SIAM
Journal on Computing, 16(2):259–277, 1987.

7 Gabriel A. Dirac. Some Theorems on Abstract Graphs. Proceedings of the London Mathematical
Society, s3-2(1):69–81, 1952.

8 Piotr Faliszewski and Mitsunori Ogihara. On the Autoreducibility of Functions. Theory of
Computing Systems, 46(2):222–245, 2010.

9 Michael Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

10 Frank Harary. Graph Theory. Addison-Wesley, 1991.
11 Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The complexity of Kemeny elections.

Theoretical Computer Science, 349(3):382–391, 2005.
12 Gwenaël Joret. Entropy and Stability in Graphs. PhD thesis, Université Libre de Bruxelles,

Faculté des Sciences, 2008.
13 Albert R. Meyer and Mike Paterson. With What Frequency Are Apparently Intractable

Problems Difficult? Technical Report MIT/LCS/TM-126, Laboratory for Computer Science,
MIT, Cambridge, MA, 1979.

14 Christos H. Papadimitriou and David Wolfe. The Complexity of Facets Resolved. Journal of
Computer and System Sciences, 37(1):2–13, 1988.

MFCS 2019

https://arxiv.org/abs/1906.10078

78:14 Finding Optimal Solutions With Neighborly Help

15 Claus-Peter Schnorr. Optimal Algorithms for Self-Reducible Problems. In Proceedings of
the 3rd International Colloquium on Automata, Languages, and Programming, pages 322–337.
Edinburgh University Press, 1976.

16 Markus W. Schäffter. Scheduling with forbidden sets. Discrete Applied Mathematics, 72(1–
2):155–166, 1997.

17 Karl Wagner. Bounded Query Classes. SIAM Journal on Computing, 19(5):833–846, 1990.
18 Klaus W. Wagner. More Complicated Questions About Maxima and Minima, and some

Closures of NP. Theoretical Computer Science, 51(1–2):53–80, 1987.
19 Walter Wessel. Criticity with respect to properties and operations in graph theory. In

László Lovász András Hajnal and Vera T. Sós, editors, Finite and Infinite Sets. (6th Hungarian
Combinatorial Colloquium, Eger, 1981), volume 2 of Colloquia Mathematica Societatis Janos
Bolyai, pages 829–837. North-Holland, 1984.

Reconfiguration of Minimum Steiner Trees via
Vertex Exchanges
Haruka Mizuta
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
haruka.mizuta.s4@dc.tohoku.ac.jp

Tatsuhiko Hatanaka
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
hatanaka@ecei.tohoku.ac.jp

Takehiro Ito
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
takehiro@ecei.tohoku.ac.jp

Xiao Zhou
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
zhou@ecei.tohoku.ac.jp

Abstract
In this paper, we study the problem of deciding if there is a transformation between two given
minimum Steiner trees of an unweighted graph such that each transformation step respects a
prescribed reconfiguration rule and results in another minimum Steiner tree of the graph. We
consider two reconfiguration rules, both of which exchange a single vertex at a time, and generalize
the known reconfiguration problem for shortest paths in an unweighted graph. This generalization
implies that our problems under both reconfiguration rules are PSPACE-complete for bipartite
graphs. We thus study the problems with respect to graph classes, and give some boundaries between
the polynomial-time solvable and PSPACE-complete cases.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Combinatorial reconfiguration, Graph algorithms, Steiner tree

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.79

Funding Haruka Mizuta: Partially supported by JSPS KAKENHI Grant Number JP19J10042,
Japan.
Takehiro Ito: Partially supported by JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI
Grant Numbers JP18H04091 and JP19K11814, Japan.
Xiao Zhou: Partially supported by JSPS KAKENHI Grant Number JP19K11813, Japan.

1 Introduction

Recently, combinatorial reconfiguration [7] has been extensively studied in the field of
theoretical computer science. In combinatorial reconfiguration, we are given two feasible
solutions of a combinatorial search problem, and are asked to determine whether we can
transform one into the other by repeatedly applying a specified reconfiguration rule so that
all intermediate results are also feasible. Such problems are called reconfiguration problems
and have been studied intensively for several combinatorial search problems. (See, e.g.,
surveys [6, 11].) For example, the Shortest Path Reconfiguration problem (SPR, for
short) is defined as follows [1, 2, 8, 13]: We are given two shortest paths between two vertices
s and t in an unweighted graph, and are asked to determine whether or not we can transform
one into the other by exchanging a single vertex in a shortest path at a time so that all
intermediate results remain shortest paths between s and t. The problem is known to be

© Haruka Mizuta, Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 79; pp. 79:1–79:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haruka.mizuta.s4@dc.tohoku.ac.jp
mailto:hatanaka@ecei.tohoku.ac.jp
https://orcid.org/0000-0002-9912-6898
mailto:takehiro@ecei.tohoku.ac.jp
mailto:zhou@ecei.tohoku.ac.jp
https://doi.org/10.4230/LIPIcs.MFCS.2019.79
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Reconfiguration of Minimum Steiner Trees via Vertex Exchanges

T
0

T
1

v
1

v
1

v
2

v
3
 = v

3

T
2

T
3

′

v
2

′

′v
3

VE VE

VE

VE-N

Figure 1 A sequence of minimum Steiner trees, where the terminals are depicted by gray squares,
non-terminals by white circles, the edges in Steiner trees by thick lines.

PSPACE-complete [1, 13], and solvable in polynomial time for several graph classes [1, 2, 13].
Interestingly, the polynomial-time solvable cases include planar graphs [2], although many
reconfiguration problems remain PSPACE-complete for planar graphs.

In this paper, we introduce and study reconfiguration problems for minimum Steiner
trees in a graph, as generalizations of SPR.

1.1 Our problems
For an unweighted graph G and a vertex subset S ⊆ V (G), called a terminal set, a Steiner
tree of G for S is a subtree of G which contains all vertices in S. A Steiner tree of G for S is
minimum if it has the minimum number of edges among all Steiner trees of G for S. For
example, Figure 1 illustrates four minimum Steiner trees of the same graph G for the same
terminal set S. Note that minimum Steiner trees can be seen as a generalization of shortest
paths, because any shortest path in G between two vertices s and t forms a minimum Steiner
tree of G for S = {s, t}. We use the terms node for Steiner trees and vertex for input graphs.

In this paper, we introduce following two reconfiguration rules, which define slightly
different adjacency relations on minimum Steiner trees of a graph G for a terminal set S.
Both rules exchange a single node v in a minimum Steiner tree T for a single vertex in G
(possibly v itself) so that it results in another minimum Steiner tree T ′ of G for S. (Formal
definitions will be given in Section 2.)

Vertex Exchange (VE, for short):
We say that two minimum Steiner trees T and T ′ of G for S are adjacent under VE if
there exist two vertices v ∈ V (T) and v′ ∈ V (T ′) such that their removal results in the
common subgraph of T and T ′. For example, any two consecutive minimum Steiner trees
in Figure 1 are adjacent under VE. It should be noted that v and v′ can be the same
vertex; in such a case, only edges incident to v = v′ may be changed between T and T ′.
(See T2 and T3 in Figure 1 as an example.)

Vertex Exchange without changing Neighbors (VE-N, for short):
We say that two minimum Steiner trees T and T ′ of G for S are adjacent under VE-N if
there exist two vertices v ∈ V (T) and v′ ∈ V (T ′) such that (a) their removal results in
the common subgraph of T and T ′, and (b) the neighborhood of v in T is equal to that
of v′ in T ′. In Figure 1, only two Steiner trees T0 and T1 are adjacent under VE-N. It can
hold also under this rule that v = v′, but then T = T ′ holds.

We now define our problems. Given two minimum Steiner trees T0 and Tr of a graph G
for a terminal set S, the Minimum Steiner Tree Reconfiguration problem (MSTR, for
short) under VE (resp., VE-N) asks to determine whether or not we can transform one into
the other via adjacent minimum Steiner trees under VE (resp., VE-N). For example, when we

H. Mizuta, T. Hatanaka, T. Ito, and X. Zhou 79:3

(a) MSTR under VE

general

bipartite
[1]

[Thm 3] [Thm 2]

[Thm 4]
chordal planar

poly. time poly. time poly. timeintervalsplit

(b) MSTR under VE-N

general

bipartite
[1] [Thm 8][Thm 7]

chordal planar

PSPACE-c.PSPACE-c.

intervalsplit

(c) SPR (MSTR with |S| = 2)

general

bipartite
[1] [2][1]

chordal planar

PSPACE-c.

intervalsplit

Figure 2 Our results for MSTR and some known results for SPR, where each arrow between
graph classes represents their inclusion relationship: A → B represents that the graph class B is
properly included in the graph class A.

are given two minimum Steiner trees T0 and T3 in Figure 1, the answer is yes under VE as
illustrated in the figure; while it is a no-instance under VE-N. We note that if |S| = 2, then
any minimum Steiner tree for S forms a shortest path between the two terminals, and both
the rules VE and VE-N are equivalent to the reconfiguration rule of SPR. Therefore, MSTR
under both rules VE and VE-N are generalizations of SPR.

1.2 Known and related work
There are several reconfiguration problems for subtrees in an unweighted graph [1, 2, 4, 8, 10,
12, 13]. However, to the best of our knowledge, there is no direct relationship between our
problems and these known problems, except for the following two reconfiguration problems.

It is known that SPR is PSPACE-complete even for bipartite graphs [1], and for bounded
bandwidth (and hence bounded pathwidth) graphs [13]. Since MSTR under VE and VE-N are
generalizations of SPR, they are also PSPACE-complete for bipartite graphs and for bounded
bandwidth graphs. As positive results, there are polynomial-time algorithms to solve SPR
for planar graphs [2], for chordal graphs [1], and for claw-free graphs [1]. (Figure 2(c) shows
a part of these results.)

There is another reconfiguration problem for Steiner trees [10], but it is not a generalization
of SPR; its reconfiguration rule is exchanging edges (not vertices). As we have seen in the
example of Figure 1, the existence of a transformation often changes according to the choice
of reconfiguration rules. However, we will show in Section 3 that some known results for this
edge-variant [10] can be converted to our MSTR under VE.

1.3 Our contribution
In this paper, we study the computational complexity of MSTR under VE and VE-N with
respect to graph classes. (Figure 2 shows all our results for MSTR.)

We first show that MSTR under VE is solvable in polynomial time for interval graphs,
while is PSPACE-complete even for split graphs and for planar graphs. Recall that SPR
is solvable in polynomial time for planar graphs and for chordal graphs (and hence split
graphs). We next show that MSTR under VE-N is solvable in polynomial time for chordal
graphs and for planar graphs; these results generalize the known results for SPR [1, 2].

Notice that there are interesting contrasts between the reconfiguration rules VE and VE-N
when we focus on planar graphs, chordal graphs, and split graphs: MSTR is PSPACE-
complete under VE, while is solvable in polynomial time under VE-N.

We omit proofs for the claims marked with (∗) from this extended abstract.

MFCS 2019

79:4 Reconfiguration of Minimum Steiner Trees via Vertex Exchanges

2 Preliminaries

In this paper, we consider only simple and unweighted graphs. For a graph G, we denote by
V (G) and E(G) the vertex set and the edge set of G, respectively. For a graph G and its vertex
subset S ⊆ V (G), we denote by G[S] the subgraph of G induced by S. For a vertex v ∈ V (G),
let NG(v) be the set of all neighbors of v in G, that is, NG(v) = {w ∈ V (G) | vw ∈ E(G)}.

We now formally define our reconfiguration rules. Let T and T ′ be two minimum Steiner
trees of a graph G for a terminal set S. Then, T and T ′ are adjacent under VE if there exist
two vertices v ∈ V (T) and v′ ∈ V (T ′) such that

T [V (T) \ {v}] = T ′[V (T ′) \ {v′}].
Recall that v and v′ can be the same vertex; in such a case, only edges incident to v = v′

may be changed between T and T ′. On the other hand, T and T ′ are adjacent under VE-N
if there exist two vertices v ∈ V (T) and v′ ∈ V (T ′) such that

T [V (T) \ {v}] = T ′[V (T ′) \ {v′}]; and
NT (v) = NT ′(v′).

Note that the first condition for VE-N is the same as the condition for VE. It can hold also
under VE-N that v = v′, but then T = T ′ holds.

For two minimum Steiner trees T and T ′, a reconfiguration sequence between T and T ′

under VE (resp., VE-N) is a sequence 〈T = T0, T1, . . . , T` = T ′〉 of minimum Steiner trees
such that Ti and Ti+1 are adjacent under VE (resp., VE-N) for each i ∈ {0, 1, . . . , ` − 1}.
We write T VE

! T ′ (resp., T VE-N
! T ′) if there exists a reconfiguration sequence between T

and T ′ under VE (resp., VE-N). Then, we formally define the Minimum Steiner Tree
Reconfiguration problem (MSTR, for short) under VE (resp., VE-N) as follows:

MSTR under VE (resp., VE-N)
Input: A graph G, a terminal set S ⊆ V (G), and two minimum Steiner trees

T0 and Tr of G for S.
Task: Determine whether T0

VE
! Tr (resp., T0

VE-N
! Tr) or not.

We denote by a 4-tuple (G,S, T0, Tr) an instance of the problems. Throughout the paper,
we assume without loss of generality that |V (T0)| = |V (Tr)| holds; otherwise it is clearly a
no-instance.

3 Minimum Steiner Tree Reconfiguration under VE

In this section, we show that MSTR under VE is solvable in polynomial time for interval
graphs, while it is PSPACE-complete for split graphs and for planar graphs. To this end, we
use the concept of “Steiner sets” and their reconfiguration, which was introduced by [10].

3.1 Steiner sets and their reconfiguration
For a graph G and a terminal set S, a Steiner set of G for S is a vertex subset F ⊆ V (G)
such that S ⊆ F and G[F] is connected. Notice that if a subtree T of G is a Steiner tree for
S, then V (T) is a Steiner set of G for S. Conversely, if F is a Steiner set of G for S, then
any spanning tree of G[F] is a Steiner tree for S. A Steiner set F of G for S is minimum if
the cardinality of F is minimum among all Steiner sets of G for S.

For two Steiner sets F and F ′ of G for S, a sequence 〈F = F0, F1, . . . , F` = F ′〉 of Steiner
sets of G for S is called a Steiner set sequence between F and F ′ if |Fi \Fi+1| = |Fi+1 \Fi| = 1
holds for each i ∈ {0, 1, . . . , `− 1}. Note that all Steiner sets in the sequence have the same
cardinality. The following lemma shows that, in some sense, we do not need to care the
tree structure property (but need to care only a connectivity) when we want to check the
existence of a reconfiguration sequence under VE.

H. Mizuta, T. Hatanaka, T. Ito, and X. Zhou 79:5

I Lemma 1 (∗). Let T and T ′ be Steiner trees of a graph G for a terminal set S. Then,
T

VE
! T ′ holds if and only if there exists a Steiner set sequence between two Steiner sets

V (T) and V (T ′) of G for S.

The concept of Steiner sets was introduced for the reconfiguration of Steiner trees via
edge exchanges [10]. Lemma 1 allows us to convert two known results for this edge-exchange
variant [10] to our MSTR under VE.

We first consider interval graphs. A graph G with V (G) = {v1, v2, . . . , vn} is an interval
graph if there exists a set I of (closed) intervals I1, I2, . . . , In such that vivj ∈ E(G) if and
only if Ii ∩ Ij 6= ∅ for each i, j ∈ {1, 2, . . . , n}. For a given graph G, it can be determined in
linear time whether G is an interval graph or not [9].

I Theorem 2. Let (G,S, T0, Tr) be a given instance of MSTR under VE such that G is an
interval graph. Then, T0

VE
! Tr holds.

Proof. It is known that if a given graph is an interval graph, then there always exists a
Steiner set sequence between any pair of Steiner sets of the same cardinality [10]. Thus, the
theorem follows from Lemma 1. J

We then consider split graphs. A graph is a split graph if its vertex set can be partitioned
into a clique and an independent set. The following theorem can be obtained by a polynomial-
time reduction which is similar to that for Theorem 3 of [10].

I Theorem 3 (∗). MSTR under VE is PSPACE-complete for split graphs.

3.2 PSPACE-completeness for planar graphs

In this subsection, we consider planar graphs, and give the following theorem.

I Theorem 4. MSTR under VE is PSPACE-complete for planar graphs.

We note that MSTR under VE is in PSPACE. Therefore, in the remainder of this
subsection, we will prove that the problem is PSPACE-hard for planar graphs. To this end,
we construct a polynomial-time reduction from the Minimum Vertex Cover Reconfigu-
ration problem.

Recall that a vertex cover C of a graph G is a vertex subset of G which contains at
least one of the two endpoints of every edge in G. A vertex cover C of G is minimum if
the cardinality of C is minimum among all vertex covers of G. Given a graph G and two
minimum vertex covers C0 and Cr of G, the Minimum Vertex Cover Reconfiguration
problem (MVCR, for short) asks to determine whether or not there exists a sequence
〈C0, C1, . . . , C` = Cr〉 of minimum vertex covers of G such that |Ci \ Ci+1| = |Ci+1 \ Ci| = 1
holds for any i ∈ {0, 1, . . . , `− 1}; we call such a sequence a vertex cover sequence between
C0 and Cr. We denote by a triple (G,C0, Cr) an instance of MVCR. This problem is known
to be PSPACE-complete for planar graphs [5].1

1 Precisely, Hearn and Demaine [5] showed the PSPACE-completeness for the reconfiguration of maximum
independent sets. However, it immediately yields the PSPACE-completeness of MVCR.

MFCS 2019

79:6 Reconfiguration of Minimum Steiner Trees via Vertex Exchanges

(a) G′ (b) G

Figure 3 (a) An input graph G′ of MVCR with a minimum vertex cover C′, where the vertices
in C′ are depicted by gray vertices, and (b) its corresponding planar graph G of MSTR together
with the minimum Steiner tree corresponding to C′, where face-terminals are depicted by triangles,
edge-terminals by squares, and the minimum Steiner tree by thick lines.

Reduction

Let (G′, C ′
0, C

′
r) be a given instance of MVCR such that G′ is a planar graph. We fix a

planar embedding of G′ arbitrarily, and denote by F (G′) the set of all faces (including the
outer face) of G′. We construct the corresponding instance (G,S, T0, Tr) of MSTR under
VE, as follows. (See Figure 3 as an example.)

We first construct the corresponding graph G from G′. For each face f ∈ F (G′), we add
a new vertex wf , and join wf and all vertices on the boundary of f by adding new edges.
Then, we subdivide each original edge e = uv ∈ E(G′) by adding a new vertex we. Let G be
the resulting graph. Then, G is a planar graph.

We then define the corresponding terminal set S as the set of all newly added vertices,
that is, S = {wf | f ∈ F (G′)} ∪ {we | e ∈ E(G′)}; each wf is called a face-terminal, while
each we is called an edge-terminal.

We finally define the corresponding minimum Steiner trees T0 and Tr. We will prove later
in Lemma 5 that both C ′

0 ∪ S and C ′
r ∪ S form minimum Steiner sets of G for S. Then, we

choose arbitrary spanning trees of G[C ′
0 ∪ S] and G[C ′

r ∪ S] as T0 and Tr, respectively.
This completes the construction of (G,S, T0, Tr). The construction can be done in

polynomial time.

Correctness

We start with showing that both C ′
0 ∪ S and C ′

r ∪ S form minimum Steiner sets of G for S,
and hence T0 and Tr are indeed minimum Steiner trees of G for S.

I Lemma 5 (∗). Let C ′ be a vertex subset of V (G′). Then, C ′ is a minimum vertex cover
of G′ if and only if C ′ ∪ S is a minimum Steiner set of G for S.

The following lemma completes the proof of Theorem 4.

I Lemma 6. (G′, C ′
0, C

′
r) is a yes-instance of MVCR if and only if (G,S, T0, Tr) is a

yes-instance of MSTR.

Proof. By Lemma 1, it suffices to show that there exists a vertex cover sequence on G′

between C ′
0 and C ′

r if and only if there exists a Steiner set sequence on G between V (T0)
and V (Tr).

First, suppose that there exists a Steiner set sequence 〈V (T0) = F0, F1, . . . , F` = V (Tr)〉
between V (T0) and V (Tr). Then, Lemma 5 implies that the sequence 〈C ′

0 = F0 \ S, F1 \
S, . . . , F` \ S = C ′

r〉 is a vertex cover sequence on G′ between C ′
0 and C ′

r.

H. Mizuta, T. Hatanaka, T. Ito, and X. Zhou 79:7

Second, suppose that there exists a vertex cover sequence 〈C ′
0, C

′
1, . . . , C

′
`′ = C ′

r〉 between
C ′
0 and C ′

r. Then, Lemma 5 implies that the sequence 〈V (T0) = C ′
0 ∪S,C ′

1 ∪S, . . . , C ′
`′ ∪S =

V (Tr)〉 is a Steiner set sequence on G between V (T0) and V (Tr). J

4 Minimum Steiner Tree Reconfiguration under VE-N

In this section, we show that MSTR under VE-N is solvable in polynomial time for chordal
graphs and for planar graphs.

We first consider chordal graphs. A graph is chordal if G has no induced cycle of length
at least four [3]. We use a well-known characterization of chordal graphs, called perfect
elimination orderings [3], and give the following theorem.

I Theorem 7 (∗). MSTR under VE-N is solvable in polynomial time for chordal graphs.

We then consider planar graphs. Recall that MSTR under VE is PSPACE-complete for
planar graphs (as shown in Theorem 4). In contrast, we give the following theorem.

I Theorem 8. MSTR under VE-N is solvable in polynomial time for planar graphs.

As a proof of the Theorem 8, we construct a polynomial-time algorithm to solve MSTR
under VE-N for planar graphs. Roughly speaking, our idea is to decompose a given instance
of MSTR under VE-N into several SPR instances for planar graphs. Then, we can solve each
SPR instance by using the polynomial-time algorithm for SPR on planar graphs [2]. Finally,
we combine the answers to SPR instances, and output the answer to the original MSTR
instance under VE-N. To this ends, we introduce the concept of Steiner tree embeddings and
their reconfiguration, which gives a necessary condition for the existence of a reconfiguration
sequence under VE-N.

4.1 Steiner tree embeddings and their reconfiguration
We first introduce the concept of Steiner tree embeddings. Let T be a Steiner tree of a graph
G for a terminal set S. An injection ϕ : V (T)→ V (G) is called a T -embedding into G if the
following two conditions hold:

ϕ(x)ϕ(y) ∈ E(G) if xy ∈ E(T); and
ϕ(s) = s holds for each s ∈ S ⊆ V (T).

Thus, a T -embedding ϕ defines a Steiner tree Tϕ of G for S. Observe that no two distinct
T -embeddings define the same Steiner tree. A Steiner tree T ′ is said to be T -embeddable if
there exists a T -embedding ϕ which defines T ′. Note that T itself is T -embeddable. We now
give the following lemma.

I Lemma 9 (∗). Let Ta and Tb be any two minimum Steiner trees of a graph G for a
terminal set S. If Ta

VE-N
! Tb, then Tb is Ta-embeddable.

By taking a contrapositive of Lemma 9, we can conclude that a given instance (G,S, T0, Tr)
is a no-instance if Tr is not T0-embeddable; this can be checked in polynomial time. Thus, in
the remainder of this section, we assume without loss of generality that Tr is T0-embeddable.

We then introduce the reconfiguration of Steiner tree embeddings. Let T be a Steiner
tree of a graph G for a terminal set S. We say that two T -embeddings ϕ and ϕ′ are
adjacent if exactly one node in T is mapped into different vertices between ϕ and ϕ′, that
is, |{x ∈ V (T) | ϕ(x) 6= ϕ′(x)}| = 1 holds. For two T -embeddings ϕ and ϕ′, an embedding
sequence between ϕ and ϕ′ is a sequence 〈ϕ = ϕ0, ϕ1, . . . , ϕ` = ϕ′〉 of T -embeddings such
that ϕi and ϕi+1 are adjacent for each i ∈ {0, 1, . . . , `− 1}. We write ϕ emb

! ϕ′ if there exists
an embedding sequence between ϕ and ϕ′. Then, we have the following lemma.

MFCS 2019

79:8 Reconfiguration of Minimum Steiner Trees via Vertex Exchanges

s

x

Figure 4 The subtree T depicted by thick lines is a minimum Steiner tree. However, the subpath
on T between s and x is not a shortest path in the underlying graph.

I Lemma 10 (∗). Suppose that Ta and Tb are any two minimum Steiner trees of a graph G
for a terminal set S such that Tb is Ta-embeddable. Let ϕa and ϕb be Ta-embeddings which
define Ta and Tb, respectively. Then, Ta

VE-N
! Tb if and only if ϕa

emb
! ϕb.

By Lemmas 9 and 10, MSTR under VE-N can be rephrased to the following problem:
Given a graph G, a terminal set S, a minimum Steiner tree T (actually T0), and two T -
embeddings ϕ0 and ϕr into G, we are asked to determine whether or not there exists an
embedding sequence between ϕ0 and ϕr. Therefore, we also denote by (G,S, T, ϕ0, ϕr) an
instance of MSTR under VE-N.

4.2 Layers for Steiner trees
We here introduce one more important concept, called layers, which was originally introduced
by Bonsma [1] for SPR. We generalize the concept to Steiner trees.

Let T be a minimum Steiner tree of a graph G for a terminal set S. For each x ∈ V (T), let
LT (x) = {ϕ(x) ∈ V (G) | ϕ is a T -embedding into G}; we call LT (x) the layer of x. Notice
that LT (s) = {s} holds for each s ∈ S. We write LT (V ′) =

⋃
x∈V ′ LT (x) for any node subset

V ′ ⊆ V (T). Then, we have the following property, which says that the layers are disjoint.

I Lemma 11 (∗). Let T be any minimum Steiner tree of a graph G for a terminal set S.
Then, LT (x) ∩ LT (y) = ∅ holds for any two distinct nodes x, y ∈ V (T).

We call a node x ∈ V (T) a branching node of T if |NT (x)| ≥ 3. Let B(T) be the set of
all branching nodes of T . Then, we show that a layer of each node in B(T) contains at most
two vertices if a given graph is planar.

I Lemma 12 (∗). Let T be any minimum Steiner tree of a graph G for a terminal set S. If
G is planar, then |LT (x)| ≤ 2 holds for every branching node x ∈ B(T).

We now explain how to compute the layers for a Steiner tree. In SPR [1], we can easily
find the layers for a shortest path by computing the distances from the two terminals to
each vertex in the underlying graph. This is because the subpath between each node and
each terminal is always a shortest path in the underlying graph. On the other hand, this
property does not always hold if |S| ≥ 3, and hence it is difficult to find the layers simply by
computing the distances. (For example, see Figure 4.)

Our idea is to compute the “refined” layers for a Steiner tree, instead of computing the
layers completely. Let (G,S, T, ϕ0, ϕr) be a given instance of MSTR under VE-N. Then, for
all nodes x ∈ V (T), it suffices to find vertex subsets L′

T (x) such that
(a) L′

T (x) ⊆ LT (x); and
(b) ϕ(x) ∈ L′

T (x) holds for any T -embedding ϕ satisfying ϕ0
emb
! ϕ or ϕr

emb
! ϕ.

To avoid a confusion, we call such a vertex subset L′
T (x) the refined-layer of x, while call the

(original) layer LT (x) the complete-layer of x. We know that the vertices in LT (x) \ L′
T (x)

H. Mizuta, T. Hatanaka, T. Ito, and X. Zhou 79:9

are useless when we want to check if ϕ0
emb
! ϕr or not. The following lemma says that the

refined-layers can be found in polynomial time.

I Lemma 13 (∗). Let (G,S, T, ϕ0, ϕr) be a given instance of MSTR under VE-N such
that G is a planar graph. Then, there exists a polynomial-time algorithm to compute the
refined-layers for all nodes in T .

Given an instance (G,S, T, ϕ0, ϕr) of MSTR under VE-N, we can compute refined-layers
in polynomial time by Lemma 13. Since the vertices in LT (x) \L′

T (x), x ∈ V (T), are useless,
we can remove such useless vertices from G. In this way, we can assume without loss of
generality that each vertex in G belongs to exactly one (complete-)layer, and we indeed know
the layer LT (x) for each node x ∈ V (T).

4.3 Decomposition of an MSTR instance into SPR instances
Suppose that (G,S, T, ϕ0, ϕr) is an instance of MSTR under VE-N, and that we have the
layer LT (x) for each node x ∈ V (T). We say that two nodes x, y ∈ B(T) ∪ S are close if
the unique path on T between x and y contains no vertex in (B(T) ∪ S) \ {x, y}. To avoid
the duplication of {x, y} and {y, x}, we choose one of the ordered pairs (x, y) and (y, x)
arbitrarily for each pair of close nodes, and define the set C(T) of all ordered pairs (x, y) of
close nodes x, y in B(T) ∪ S; we call each pair in C(T) a close pair.

For each close pair (x, y) in C(T), we now construct the corresponding instance SPR(x, y)
= (G′, S′, T ′, ϕ′

0, ϕ
′
r) such that |S′| = 2, as follows. Let P be the unique path on T between

x and y. Note that by the definition of close pairs, P is a shortest path on G between
x and y. Consider the subgraph of G induced by the vertices in LT (V (P)). We add two
new vertices sx and ty to the subgraph so that sx is joined to all vertices in LT (x) and ty
is joined to all vertices in LT (y); note that each of sx and ty is indeed adjacent to one or
two vertices. Let G′ be the resulting graph, and let S′ = {sx, ty}. We then define T ′ as
the path on G′ between sx and ty obtained by adding sx and ty to P . Note that T ′ is a
shortest path on G′ between sx and ty. We finally define ϕ′

0 as a T ′-embedding into G′ such
that ϕ′

0(sx) = sx, ϕ′
0(ty) = ty, and ϕ′

0(x) = ϕ0(x) for each x ∈ V (P). Similarly, we define
ϕ′
r as a T ′-embedding into G′ such that ϕ′

r(sx) = sx, ϕ′
r(ty) = ty, and ϕ′

r(x) = ϕr(x) for
each x ∈ V (P). This completes the construction of SPR(x, y). The corresponding instance
SPR(x, y) can be obtained in polynomial time, and satisfies the following property.

I Lemma 14 (∗). If G is planar, then G′ is also planar.

By Lemma 14 we can solve the instance SPR(x, y) for each close pair (x, y) ∈ C(T) by
the polynomial-time algorithm for SPR on planar graphs [2]. We can immediately conclude
that the given instance (G,S, T, ϕ0, ϕr) of MSTR under VE-N is a no-instance if there
exists at least one instance SPR(x, y) whose answer is no. However, even if the answers
are yes to all instances SPR(x, y), (x, y) ∈ C(T), it is not always possible to extend their
embedding sequences to a whole embedding sequence between ϕ0 and ϕr for the original
instance (G,S, T, ϕ0, ϕr). To check this, we introduce further notion.

Consider an embedding sequence R = 〈ϕ = ϕ0, ϕ1, . . . , ϕ` = ϕ′〉 between two
T -embeddings ϕ and ϕ′. For each node x ∈ V (T), we say that R is x-touching if the
assignment of x is changed by R at least once; otherwise it is x-untouching. Note that if
ϕ(x) 6= ϕ′(x) for a node x ∈ V (T), then any embedding sequence between ϕ and ϕ′ must
be x-touching. On the other hand, if |LT (x)| = 1, then any embedding sequence must be
x-untouching. For each close pair (x, y) ∈ C(T) and its corresponding instance SPR(x, y) =
(G′, S′, T ′, ϕ′

0, ϕ
′
r), we define the set Touch(x, y) ⊆ {(u, u), (u, t), (t, u), (t, t)}, as follows:

MFCS 2019

79:10 Reconfiguration of Minimum Steiner Trees via Vertex Exchanges

(u, u) ∈ Touch(x, y) if and only if there exists an embedding sequence between ϕ′
0 and ϕ′

r
which is x-untouching and y-untouching;
(u, t) ∈ Touch(x, y) if and only if there exists an embedding sequence between ϕ′

0 and ϕ′
r

which is x-untouching and y-touching;
(t, u) ∈ Touch(x, y) if and only if there exists an embedding sequence between ϕ′

0 and ϕ′
r

which is x-touching and y-untouching; and
(t, t) ∈ Touch(x, y) if and only if there exists an embedding sequence between ϕ′

0 and ϕ′
r

which is x-touching and y-touching.
Note that Touch(x, y) = ∅ if there is no embedding sequence between ϕ′

0 and ϕ′
r. Then, we

have the following lemma.

I Lemma 15 (∗). For each close pair (x, y) ∈ C(T), Touch(x, y) can be computed in
polynomial time.

We finally solve the given instance (G,S, T, ϕ0, ϕr) of MSTR under VE-N. Assume that
SPR(x, y) are yes-instances for all close pairs (x, y) ∈ C(T), and hence Touch(x, y) 6= ∅;
otherwise (G,S, T, ϕ0, ϕr) is a no-instance. Consider an assignment α : B(T) ∪ S → {u, t}.
Then, we say that α is synchronizing if (α(x), α(y)) ∈ Touch(x, y) holds for every close pair
(x, y) ∈ C(T). The following lemma completes the proof of Theorem 8.

I Lemma 16 (∗). Suppose that (G,S, T, ϕ0, ϕr) is an instance of MSTR under VE-N such
that G is a planar graph. Then, it is a yes-instance if and only if there exists a synchronizing
assignment α. Furthermore, the existence of a synchronizing assignment can be checked in
polynomial time.

5 Conclusion

In this paper, we have introduced the Minimum Steiner Tree Reconfiguration (MSTR)
problems under two reconfiguration rules VE and VE-N. As summarized in Figure 2, we
have studied the polynomial-time solvability of the problems with respect to graph classes,
and shown several interesting contrasts. In particular, when we focus on planar graphs,
chordal graphs, and split graphs, MSTR is PSPACE-complete under VE, while is solvable
in polynomial time under VE-N. It would give us a deeper understanding of the problems
if there is a graph class such that MSTR is solvable in polynomial time under VE but is
intractable under VE-N.

References
1 P. Bonsma. The complexity of rerouting shortest paths. Theoretical Computer Science,

510:1–12, 2013.
2 P. Bonsma. Rerouting shortest paths in planar graphs. Discrete Applied Mathematics,

231:95–112, 2017.
3 A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, Philadelphia, PA,

1999.
4 T. Hanaka, T. Ito, H. Mizuta, B. Moore, N. Nishimura, V. Subramanya, A. Suzuki, and

K. Vaidyanathan. Reconfiguring spanning and induced subgraphs. In Proceedings of the 24th
International Computing and Combinatorics Conference (COCOON 2018), volume 10976 of
Lecture Notes in Computer Science, pages 428–440, 2018.

5 R.A. Hearn and E.D. Demaine. PSPACE-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343(1–2):72–96, 2005.

H. Mizuta, T. Hatanaka, T. Ito, and X. Zhou 79:11

6 J. van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, volume 409
of London Mathematical Society Lecture Note Series, pages 127–160. Cambridge University
Press, 2013.

7 T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno.
On the complexity of reconfiguration problems. Theoretical Computer Science, 412(12–14):1054–
1065, 2011.

8 M. Kamiński, P. Medvedev, and M. Milanič. Shortest paths between shortest paths. Theoretical
Computer Science, 412(39):5205–5210, 2011.

9 N. Korte and R.H. Möhring. An Incremental Linear-time Algorithm for Recognizing Interval
Graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

10 H. Mizuta, T. Ito, and X. Zhou. Reconfiguration of Steiner trees in an unweighted graph.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E100-A(7):1532–1540, 2017.

11 N. Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.
12 K. Wasa, K. Yamanaka, and H. Arimura. The Complexity of Induced Tree Reconfiguration

Problems. IEICE Transactions on Information and Systems, 102-D(3):464–469, 2019.
13 M. Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal of Computer

and System Sciences, 93:1–10, 2018.

MFCS 2019

The Perfect Matching Reconfiguration Problem
Marthe Bonamy
CNRS, LaBRI, Université de Bordeaux,
Talence, France
marthe.bonamy@u-bordeaux.fr

Nicolas Bousquet
CNRS, Laboratoire G-SCOP, Grenoble-INP,
Univ. Grenoble-Alpes, Grenoble, France
nicolas.bousquet@grenoble-inp.fr

Marc Heinrich
LIRIS, Université Claude Bernard Lyon 1,
Lyon, France
marc.heinrich@univ-lyon1.fr

Takehiro Ito
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan
takehiro@ecei.tohoku.ac.jp

Yusuke Kobayashi
Research Institute for Mathematical Sciences,
Kyoto University, Kyoto, Japan
yusuke@kurims.kyoto-u.ac.jp

Arnaud Mary
LBBE, Université Claude Bernard Lyon 1,
Lyon, France
arnaud.mary@univ-lyon1.fr

Moritz Mühlenthaler
Fakultät für Mathematik,
TU Dortmund University, Dortmund, Germany
moritz.muehlenthaler@math.tu-dortmund.de

Kunihiro Wasa
Principles of Informatics Research Division,
National Institute of Informatics, Tokyo, Japan
wasa@nii.ac.jp

Abstract
We study the perfect matching reconfiguration problem: Given two perfect matchings of
a graph, is there a sequence of flip operations that transforms one into the other? Here, a flip
operation exchanges the edges in an alternating cycle of length four. We are interested in the
complexity of this decision problem from the viewpoint of graph classes. We first prove that the
problem is PSPACE-complete even for split graphs and for bipartite graphs of bounded bandwidth
with maximum degree five. We then investigate polynomial-time solvable cases. Specifically, we
prove that the problem is solvable in polynomial time for strongly orderable graphs (that include
interval graphs and strongly chordal graphs), for outerplanar graphs, and for cographs (also known
as P4-free graphs). Furthermore, for each yes-instance from these graph classes, we show that a
linear number of flip operations is sufficient and we can exhibit a corresponding sequence of flip
operations in polynomial time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Combinatorial Reconfiguration, Graph Algorithms, Perfect Matching

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.80

Funding Marthe Bonamy: Partially supported by ANR project GrR (ANR-18-CE40-0032).
Nicolas Bousquet: Partially supported by ANR project GrR (ANR-18-CE40-0032).
Marc Heinrich: Partially supported by ANR project GrR (ANR-18-CE40-0032).
Takehiro Ito: Partially supported by JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI
Grant Numbers JP18H04091 and JP19K11814, Japan.
Yusuke Kobayashi: Supported by JST ACT-I Grant Number JPMJPR17UB, and JSPS KAKENHI
Grant Numbers JP16K16010, JP16H03118, JP17K19960 and JP18H05291, Japan.
Arnaud Mary: Partially supported by ANR project GrR (ANR-18-CE40-0032).
Kunihiro Wasa: Partially supported by JST CREST Grant Number JPMJCR1401 and JPMJCR18K3,
and JSPS KAKENHI Grant Number JP19K20350, Japan.

Acknowledgements This work is partially supported by JSPS and MAEDI under the Japan-France
Integrated Action Program (SAKURA).

© Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud Mary,
Moritz Mühlenthaler, and Kunihiro Wasa;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 80; pp. 80:1–80:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marthe.bonamy@u-bordeaux.fr
mailto:nicolas.bousquet@grenoble-inp.fr
mailto:marc.heinrich@univ-lyon1.fr
https://orcid.org/0000-0002-9912-6898
mailto:takehiro@ecei.tohoku.ac.jp
mailto:yusuke@kurims.kyoto-u.ac.jp
mailto:arnaud.mary@univ-lyon1.fr
mailto:moritz.muehlenthaler@math.tu-dortmund.de
https://orcid.org/0000-0001-9822-6283
mailto:wasa@nii.ac.jp
https://doi.org/10.4230/LIPIcs.MFCS.2019.80
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 The Perfect Matching Reconfiguration Problem

1 Introduction

Given an instance of some combinatorial search problem and two of its feasible solutions, a
reconfiguration problem asks whether one solution can be transformed into the other in a
step-by-step fashion, such that each intermediate solution is also feasible. Reconfiguration
problems capture dynamic situations, where some solution is in place and we would like to
move to a desired alternative solution without becoming infeasible. A systematic study of the
complexity of reconfiguration problems was initiated in [21]. Recently the topic has gained a
lot of attention in the context of constraint satisfaction problems and graph problems, such
as the independent set problem, the matching problem, and the dominating set problem.
Reconfiguration problems naturally arise for operational research problems but also are
closely related to uniform sampling (using Markov chains) or enumeration of solutions of a
problem. For an overview of recent results on reconfiguration problems, the reader is referred
to the surveys of van den Heuvel [17] and Nishimura [27].

In order to define valid step-by-step transformations, an adjacency relation on the set
of feasible solutions is needed. Depending on the problem, there may be different natural
choices of adjacency relations. For instance, we may assume that two matchings of a graph
are adjacent if one can be obtained from the other by exchanging precisely one edge, i.e.,
there exist e ∈M and f ∈M ′ such that M \{e} = M ′ \{f}. The corresponding modification
of a matching is usually referred to as token jumping (TJ). Here, the tokens are placed on the
edges of a matching and a token may be “moved” from an edge of the matching to another
edge so that we obtain another matching. There is another similar adjacency relation, where
two matchings are adjacent if one can be obtained from the other by moving a token to
some incident edge. This adjacency relation is called token sliding (TS). Ito et al. [21] gave
a polynomial-time algorithm that decides if there is a transformation between two given
matchings under the TJ and TS operations.

1.1 The perfect matching reconfiguration problem
Recall that a matching of a graph is perfect if it covers each vertex. We study the complexity
of deciding if there is a step-by-step transformation between two given perfect matchings of
a graph. However, according to the adjacency relations given by the TS and TJ operations,
there is no transformation between any two distinct perfect matchings of a graph. Since the
symmetric difference of any two perfect matchings of a graph consists of even-length disjoint
cycles, it is natural to consider a different adjacency relation for perfect matchings. We say
that two perfect matchings of a graph differ by a flip (or swap) if their symmetric difference
induces a cycle of length four. We consider two perfect matchings to be adjacent if they
differ by a flip. Intuitively, for two adjacent perfect matchings M and M ′, we think of a flip
as an operation that exchanges edges in M \M ′ for edges in M ′ \M .

An example of a transformation between two perfect matchings of a graph is given in
Figure 1. We formalize the task of deciding the existence of a transformation between two
given perfect matchings as follows.

Perfect Matching Reconfiguration
Input: Graph G, perfect matchings Ms and Mt of G.
Question: Is there a sequence of flips that transforms Ms into Mt?

We take the flip operation on a cycle of length four as the adjacency relation in this paper,
because a flip is in some sense a minimal modification of a perfect matching. Note that if
we do not restrict the length of a cycle in the definition of a flip, then for any two perfect

M. Bonamy et al. 80:3

M
0

M
1

M
2

M
3

M
4

Figure 1 A transformation between perfect matchings M0 and M4 under the flip operation. For
each i, 1 ≤ i ≤ 4, the matching Mi can be obtained from Mi−1 by applying the flip operation to the
cycle induced by the four painted (red) vertices in Mi.

matchings Ms and Mt of a graph, there always exists a sequence of flip operations that
transforms Ms into Mt, since we can perform a flip on each (disjoint) cycle in the symmetric
difference of Ms and Mt. As a compromise, we may extend our problem definition to flips on
cycles of fixed constant length `, where ` ≥ 4 and ` is even. We refer to the corresponding flip
operation as the `-flip operation, and the corresponding reconfiguration problem as Perfect
Matching `-Flip Reconfiguration. It should be noted that the `-flip operation must be
applied to a cycle of length exactly `, and hence there is no guarantee of the existence of a
transformation.

1.2 Related work
Transformation of matchings has been considered under several types of flip operations
for generating random matchings. Under the TS and TJ operations, numerous algorithms
and hardness results are available for finding transformations between matchings, more
generally, between independent sets. Furthermore, similar types of flip operations are
well known for stable matchings and some geometric matching problems related to finding
transformations between triangulations. More directly, a restriction of Perfect Matching
(4-Flip) Reconfiguration to grid graphs has been considered before in the setting of
domino tilings. In this restricted setting, Saldanha et al. [28] gave a criterion for the existence
of a transformation between two tilings (which correspond to perfect matchings of a grid
graph) and a formula for their distance of a transformation.

Sampling random perfect matchings

The problem of sampling or enumerating perfect matchings in a graph received considerable
attention (see, e.g., [31]). Determining the connectivity and the diameter of the solution
space formed by perfect matchings under the flip operation provide some information on the
ergodicity or the mixing time of the underlying Markov chain. Indeed, the connectivity of
the chain ensures the irreducibility (and usually the ergodicity) of the underlying Markov
chain. Additionally, the diameter of the solution space provides a lower bound on the mixing
time of the chain.

The use of flips for sampling random perfect matchings was first started in [8] where it is
seen as a generalization of transpositions for permutations. Their work was later improved
and generalized in [13] and [12]. The focus of these last two articles is to investigate the
problem of sampling random perfect matchings using a Markov Chain called the switch
chain. Starting from an arbitrary perfect matching, the chain proceeds by applying at each
step a random 4-flip operation (called switch in these papers). The aim of these papers is to
characterize classes of graphs for which simulating this chain for a polynomial number of steps
is enough to generate a perfect matching close to uniformly distributed. Some of their results
can be reformulated in the reconfiguration terminology. In [13], it is proved that the largest

MFCS 2019

80:4 The Perfect Matching Reconfiguration Problem

hereditary class of bipartite graphs for which the solution space formed by perfect matchings
under the 4-flip operation is connected is the class of chordal bipartite graphs. This result
is generalized in [12] where they characterize the hereditary class of general (non-bipartite)
graphs for which the solution space is connected. They call this class Switchable. Note
that it is not clear whether graphs in this class can be recognized in polynomial time. The
question of the complexity of Perfect Matching (4-Flip) Reconfiguration is also
mentioned in [12].

Reconfiguration of matchings and independent sets

Recall that matchings of a graph correspond to independent sets of its line graph. Although
reconfiguration of independent sets received a considerable attention in the last decade
(e.g., [5, 6, 7, 16, 22, 23, 33]), all the known results for reconfiguration of independent sets
are based on the TJ or TS operations as adjacency relations. Thus, none of these results
carry over to the Perfect Matching Reconfiguration problem.

A related problem can be found in a more general setting: The problem of determining,
enumerating, or randomly generating graphs with a fixed degree sequence has received a
considerable attention since the fifties (see, e.g., [30, 15, 32]). Given two graphs with a fixed
degree sequence, one might want to know if it is possible to transform the one into the
other via a sequence of 4-flip operations and if yes, how many steps are needed for such a
transformation; note that the host graph (i.e., the graph G in our problem) is a clique in
this setting. Hakimi [15] proved that such a transformation always exists. Will [32] proved
that the problem of finding a shortest transformation is NP-complete, and Bereg and Ito [2]
provide a 3

2 -approximation algorithm for this problem.

Stable matchings

Suppose we are given a bipartite graph and for each vertex a linear preference order of its
neighbors. A matching M is not stable if there is an edge vw not in M such that v prefers
w and w prefers v to their respective partners in M . The well-known algorithm by Gale
and Shapley yields a stable matching in polynomial time [14]. It is known that any two
stable matchings cover the same vertices, so the stable matchings are perfect matchings of
some subgraph. Furthermore, they form a distributive lattice under rotations on preference-
oriented cycles, see for example [14]. Essentially, the symmetric difference of two stable
matchings consists of disjoint cycles (of several lengths) and we may exchange edges on these
cycles to obtain another stable matching. If we drop the preferences, then the question is
simply if we can find a transformation between two perfect matchings by exchanging edges
on cycles in the symmetric difference. Clearly the answer is always yes, for example by
processing the cycles in the symmetric difference one by one. We consider a similar setting,
but restrict the length of the cycles.

Diagonal-flips of triangulations

A diagonal-flip of a triangulation in geometry is similar to our 4-flip operation in the sense
that we switch between two states of a quadrilateral. In the context of triangulations, a
diagonal-flip operation switches the diagonal of a quadrilateral. Transformations between
triangulations of point sets and polygons have been studied mostly in the plane. It is known
that the solution space formed by triangulations of point sets and polygons in the plane
is connected and has diameter O(n2), where n is the number of points [20, 24]. Recently,
NP-completeness has been proved for deciding the distance in the solution space between
triangulations of a point set in the plane [25] and triangulations of a simple polygon [1].

M. Bonamy et al. 80:5

even-hole free

bipartite

cograph

 tree interval

strongly orderable outerplanar

split

perfect bounded treewidth

bounded bandwidth[Thm 1]

[Thm 8]

[Thm 6]

[Cor. 7]

[Cor. 13]
[Cor. 3]

[Thm 1]
chordal PSPACE-c.

Poly.-time

Figure 2 Our results, where each arrow represents the inclusion relationship between graph
classes: A→ B represents that the graph class B is properly included in the graph class A.

Houle et al. [18] have considered triangulations of point sets in the plane that admit a
perfect matching. They show that any two such triangulations are connected under the
diagonal-flip operation. For this purpose they consider the graph of non-crossing perfect
matchings, where two matchings are adjacent if they differ by a single non-crossing cycle (of
arbitrary length). They show that the graph of non-crossing perfect matchings is connected
and conclude from this that any two triangulations that admit a perfect matching must be
connected. In contrast to their setting, we remove all geometric requirements, but restrict
the length of the cycles allowed for our flip operation.

1.3 Our results
In this paper, we study the complexity of Perfect Matching Reconfiguration from
the viewpoint of graph classes. Figure 2 summarizes our results.

Recall that reconfiguration of matchings under the TS and TJ operations can be solved
in polynomial time for any graph [21]. In contrast, we prove that Perfect Matching
Reconfiguration is PSPACE-complete, even for split graphs, and for bipartite graphs of
bounded bandwidth and of maximum degree five. We note that our hardness result for
bipartite graphs gives contrast to chordal bipartite graphs for which there always exists a
transformation between any two perfect matchings [13]. In addition, we extend our hardness
result to a more general setting, namely the reconfiguration of k-factor subgraphs under the
`-flip operation for any fixed k ≥ 1 and any fixed even integer ` ≥ 4.

We then investigate polynomial-time solvable cases. We prove that Perfect Matching
Reconfiguration admits a polynomial-time algorithm on strongly orderable graphs (these
include interval graphs and strongly chordal graphs), outerplanar graphs, and cographs (also
known as P4-free graphs). More specifically, we give the following results:

For strongly orderable graphs, a transformation between two perfect matchings always
exists; hence the answer is always yes. Furthermore, there is a transformation of linear
length (i.e., a linear number of flip operations) between any two perfect matchings and
such a transformation can be found in polynomial time.
Perfect Matching Reconfiguration on outerplanar graphs can be solved in linear
time, and we can find a transformation of linear length for a yes-instance in linear time.
(Note that there are no-instances, e.g., long cycles).
Perfect Matching Reconfiguration on cographs can be solved in polynomial time,
and we can find a transformation of linear length for a yes-instance in polynomial time.
(Again, there are no-instances).

Due to the page limitation, we omit proofs of the claims marked with (∗).

MFCS 2019

80:6 The Perfect Matching Reconfiguration Problem

1.4 Notation
For standard definitions and notations on graphs, we refer the reader to [9]. Let G = (V, E)
be a simple graph. We sometimes denote by V (G) and E(G) the vertex set and edge set
of G, respectively. A matching M ⊆ E of G is a set of edges that share no endpoint. A
vertex v is covered by a matching M if v is incident to an edge in M . For a vertex set
V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. For a vertex set W ⊆ V , let
G−W := G[V \W]. For a vertex v ∈ V , we denote by N(v) the neighborhood of v, that is,
N(v) := {w ∈ V | vw ∈ E}.

Two perfect matchings M and M ′ of G are adjacent if their symmetric difference M4M ′

induces a cycle of length four. A sequence M0, M1, . . . , Mq of perfect matchings in G is
called a reconfiguration sequence between M and M ′ if M0 = M , Mq = M ′, and Mi−1
and Mi are adjacent for each i, 1 ≤ i ≤ q. Given two perfect matchings Ms and Mt of a
graph G, Perfect Matching Reconfiguration is to determine whether there exists a
reconfiguration sequence between Ms and Mt. We denote by a triple (G, Ms, Mt) an instance
of the problem.

2 PSPACE-completeness

In this section, we prove that perfect matching reconfiguration is PSPACE-complete.
Interestingly, the problem remains intractable even for bipartite graphs, even though match-
ings in bipartite graphs satisfy several nice properties.

I Theorem 1. Perfect matching reconfiguration is PSPACE-complete for bipartite
graphs whose maximum degree is five and whose bandwidth is bounded by a fixed constant.

Proof. Observe that the problem can be solved in (most conveniently, nondeterministic [29])
polynomial space, and hence it is in PSPACE. As a proof of Theorem 1, we thus prove that
the problem is PSPACE-hard for such graphs, by giving a polynomial-time reduction from
the Nondeterministic Constraint Logic problem (NCL for short) [16].

Definition of nondeterministic constraint logic

An NCL “machine” is an undirected graph together with an assignment of weights from
{1, 2} to each edge of the graph. An (NCL) configuration of this machine is an orientation
(direction) of the edges such that the sum of weights of in-coming arcs at each vertex is at
least two. Figure 3(a) illustrates a configuration of an NCL machine, where each weight-2
edge is depicted by a (blue) thick line and each weight-1 edge by a (red) thin line. Then,
two NCL configurations are adjacent if they differ in a single edge direction. Given an
NCL machine and its two configurations, it is known to be PSPACE-complete to determine
whether there exists a sequence of adjacent NCL configurations which transforms one into
the other [16].

An NCL machine is called an and/or constraint graph if it consists of only two types of
vertices, called “NCL and vertices” and “NCL or vertices” defined as follows: A vertex of
degree three is called an NCL and vertex if its three incident edges have weights 1, 1, and 2.
(See Figure 3(b).) An NCL and vertex u behaves as a logical and, in the following sense:
the weight-2 edge can be directed outward for u only if both two weight-1 edges are directed
inward for u. Note that, however, the weight-2 edge is not necessarily directed outward even
when both weight-1 edges are directed inward. A vertex of degree three is called an NCL
or vertex if its three incident edges have weights 2, 2, and 2. (See Figure 3(c).) An NCL

M. Bonamy et al. 80:7

(a) (b) (c)

2

22

2

11

2

2

2

1

1
2

1

2

2

u v

Figure 3 (a) A configuration of an NCL machine, (b) an NCL and vertex u, and (c) an NCL or
vertex v.

or vertex v behaves as a logical or: one of the three edges can be directed outward for
v if and only if at least one of the other two edges is directed inward for v. It should be
noted that, although it is natural to think of NCL and/or vertices as having inputs and
outputs, there is nothing enforcing this interpretation; especially for NCL or vertices, the
choice of input and output is entirely arbitrary because an NCL or vertex is symmetric. For
example, the NCL machine in Figure 3(a) is an and/or constraint graph. From now on,
we call an and/or constraint graph simply an NCL machine, and call an edge in an NCL
machine an NCL edge. NCL remains PSPACE-complete even if an input NCL machine is
planar, bounded bandwidth, and of maximum degree three [34].

Gadgets and reduction

Suppose that we are given an instance of NCL, that is, an NCL machine and two configura-
tions of the machine. We will replace each of the NCL edges and NCL and/or vertices with
its corresponding gadget; if an NCL edge e is incident to an NCL vertex v, then we connect
the corresponding gadgets for e and v by a pair of vertices, called connectors (between v and
e) or (v, e)-connectors, as illustrated in Figure 4(a) and (b). Thus, each edge gadget has two
pairs of connectors, and each and/or gadget has three pairs of connectors. Our gadgets are
all edge-disjoint, and share only connectors.

Figure 5 shows our three types of gadgets which correspond to NCL edges and NCL
and/or vertices. As illustrated in Figure 4, we replace each of the NCL edges and NCL
and/or vertices with its corresponding gadget; let G be the resulting graph. Notice that
each of our three gadgets is of maximum degree three, and connectors in the edge gadget are
of degree two; thus, G is of maximum degree five. In addition, each of our three gadgets is a
bipartite graph such that two connectors in the same pair belong to different sides of the
bipartition; therefore, G is bipartite. Furthermore, since NCL remains PSPACE-complete
even if an input NCL machine is bounded bandwidth [34], the resulting graph G is also
bounded bandwidth and of maximum degree five; notice that, since each gadget consists of
only a constant number of edges, the bandwidth of G is also bounded.

We next construct two perfect matchings of G which correspond to two given NCL config-
urations Cs and Ct of the NCL machine. In our reduction, we construct the correspondence
between orientations of an NCL machine and perfect matchings of the corresponding graph,
as follows: We regard that the orientation of an NCL edge e = vw is inward direction for v if
the two (v, e)-connectors are both covered by (edges in) the and/or gadget for v. On the
other hand, we regard that the orientation of e = vw is outward direction for w if the two
(w, e)-connectors are both covered by the edge gadget for e. To achieve this correspondence,
our gadgets are constructed so that both two (v, e)-connectors are always covered by exactly
one of the gadgets for v and e. Note that there are (in general, exponentially) many perfect
matchings which correspond to the same NCL configuration. However, by the construction of

MFCS 2019

80:8 The Perfect Matching Reconfiguration Problem

(a) (b)

v w Gadget
for v

Gadget
for w

Gadget for vw

Figure 4 (a) An NCL edge vw, and (b) its corresponding gadgets, where the connectors are
depicted by (red) circles.

e1

ea

e2

eb

ea

ec

(a) (b) (c)

(v, e)-connectors

(w, e)-connectors

Figure 5 Illustrations of (a) an edge gadget for an NCL edge e = vw, (b) an and gadget, and
(c) an or gadget. In the and/or gadget, the three light green parts represent the edge gadgets
corresponding to the edges incident to the NCL vertex; e1 and e2 in the and gadget correspond to
weight-1 edges.

the three gadgets, no two distinct NCL configurations correspond to the same perfect match-
ing of G. We arbitrarily choose two perfect matchings Ms and Mt of G which correspond to
Cs and Ct, respectively.

This completes the construction of our corresponding instance of perfect matching
reconfiguration. The construction can be done in polynomial time. Furthermore, the
following lemma gives the correctness of our reduction.

I Lemma 2 (∗). There exists a desired sequence of NCL configurations between Cs and Ct
if and only if there exists a reconfiguration sequence between Ms and Mt.

This completes the proof of Theorem 1. J

Remarks
We conclude this section by giving some remarks that can be obtained from Theorem 1. We
first prove that the problem remains intractable even for split graphs. A graph is split if its
vertex set can be partitioned into a clique and an independent set.

I Corollary 3. Perfect matching reconfiguration is PSPACE-complete for split graphs.

Proof. By Theorem 1 the problem remains PSPACE-complete for bipartite graphs. Consider
the graph obtained by adding new edges so that one side of the bipartition forms a clique.
The resulting graph is a split graph. We claim that these new edges can never be part of any
perfect matching of the graph. Indeed, since the original graph was bipartite, there must be
the same number of vertices on each side of the bipartition. In a perfect matching of the
split graph, all the vertices from the independent set must be matched with vertices from
the clique, and no vertex from the clique remains to be matched together. Thus, the claim
holds, and hence the corollary follows. J

M. Bonamy et al. 80:9

We finally extend Theorem 1 into two directions: regular spanning subgraphs and flip
operations on alternating cycles of a fixed length. Let k be a positive integer. A spanning
subgraph H of a graph G is a k-factor if all the vertices in H have degree exactly k. Thus, a
1-factor of G is a perfect matching of G. Based on the proof of Theorem 1, we can obtain
the following theorem.

I Theorem 4 (∗). Let k ≥ 1 be a fixed integer, and let ` ≥ 4 be a fixed even integer. Given
two k-factors Hs and Ht of a graph G, it is PSPACE-complete to decide if there is a sequence
of `-flip operations transforming Hs into Ht.

3 Polynomial-time algorithms

In this section, we investigate the polynomial-time solvability of perfect matching re-
configuration from the viewpoint of graph classes. We first give the following lemma,
which holds for any graph.

I Lemma 5. It suffices to solve Perfect Matching Reconfiguration for 2-connected
graphs having at least four vertices.

Proof. Let (G, Ms, Mt) be a given instance of Perfect Matching Reconfiguration. If
G is not connected, then we can simply consider each connected component separately.

Since the input graph G = (V, E) has a perfect matching, it has an even number of
vertices. If |V | = 2, then it must hold that Ms = Mt = E, and hence the instance is trivially
a yes-instance. Therefore, it suffices to solve the problem for |V | ≥ 4.

Suppose that G is not 2-connected and has a cut vertex v ∈ V , that is, G− {v} consists
of more than one connected component. Since |V | is even, there exists a vertex subset
X ⊆ V \ {v} such that |X| is odd and G[X] forms a connected component of G−{v}. Then,
any perfect matching in G contains an edge connecting v and X. This shows that we can
consider two subgraphs G1 := G[X ∪ {v}] and G2 := G− (X ∪ {v}), separately. That is, we
output “yes” if (Gi, Ms ∩ Ei, Mt ∩ Ei) is a yes-instance for every i ∈ {1, 2}, where Ei is the
edge set of Gi, and output “no” otherwise. Thus, the lemma follows. J

3.1 Strongly orderable graphs
Interval graphs form easy instances for many NP-hard problems, and the situation is no
different here. In fact, we prove that any instance on an interval graph is a yes-instance.
Our argument also yields a linear-time algorithm to compute a reconfiguration sequence of a
linear number of flip operations between any two perfect matchings.

For the sake of generality, we consider a wider class of graphs, called strongly orderable
graphs. A graph G = (V, E) is strongly orderable if there is a strong ordering on its vertices,
defined as follows: an order (v1, v2, . . . , vn) of V such that for every i, j, k, ` with i < j and
k < `, if all of vivk, viv` and vjvk are edges, then vjv` is an edge. Note that the class of
strongly orderable graphs is hereditary: every induced subgraph of a strongly orderable
graph is strongly orderable.

Our proof strategy for the following theorem is to show that every perfect matching N of
a strongly orderable graph G can be transformed into some particular perfect matching M

of G, called the canonical perfect matching; then, any two perfect matchings N and N ′ of
G admit a reconfiguration sequence between them via M . The canonical perfect matching
of a graph G with respect to an order O = (v1, v2, . . . , vn) is a perfect matching of G (if
any) greedily obtained by selecting, among the available edges, the one with endpoints of

MFCS 2019

80:10 The Perfect Matching Reconfiguration Problem

smallest indices. Note that any strongly orderable graph that admits a perfect matching, also
admits a canonical perfect matching with respect to a corresponding order on the vertices
(see, e.g., [10]). We give the following theorem in this subsection.

I Theorem 6 (∗). Let G be a strongly orderable graph. Then, there is a reconfiguration
sequence of linear length between any two perfect matchings of G. Furthermore, such a
reconfiguration sequence can be found in linear time if we are given a strong ordering on the
vertices of G as a part of the input.

The natural question regarding Theorem 6 is whether a strong ordering can be computed
efficiently. In general, Dragan [11] proved that strongly orderable graphs G = (V, E) can be
recognized in O(|V | · (|V | + |E|)) time, and if so we can obtain its strong ordering in the
same running time. However, when restricted to interval graphs, we can obtain a strong
ordering in linear time [19]. We thus have the following corollary.

I Corollary 7. Let G be an interval graph. Then, there is a reconfiguration sequence of linear
length between any two perfect matchings of G. Furthermore, such a reconfiguration sequence
can be found in linear time.

3.2 Outerplanar graphs
In this subsection, we consider outerplanar graphs. Note that there are no-instances for
outerplanar graphs, e.g., induced cycles of even length more than four. Nonetheless, we give
the following theorem.

I Theorem 8. Perfect Matching Reconfiguration can be solved in linear time for
outerplanar graphs. Moreover, for a yes-instance, a reconfiguration sequence of linear length
can be output in linear time.

We give such an algorithm as a proof of Theorem 8. Suppose we are given a simple
outerplanar graph G = (V, E), and two perfect matchings Ms and Mt in G. By Lemma 5 we
assume without loss of generality that G is 2-connected and |V | ≥ 4. Then, G has a planar
embedding such that the outer face boundary is a simple cycle and all the vertices of G are
on the outer face boundary. Suppose that the vertices v1, v2, . . . , vn appear in this order
along the cycle. For notational convenience, we denote vn+1 = v1, vn+2 = v2, and v0 = vn.
We first give the following assumption without loss of generality.

I Lemma 9. Perfect Matching Reconfiguration for outerplanar graphs can be reduced
to the case when vivj 6∈ E holds for any pair of indices i, j ∈ {1, 2, . . . , n} such that |i− j| is
even. In particular, vivi+2 6∈ E holds for any i ∈ {1, 2, . . . , n}.

Proof. Suppose that there exists a pair of indices i, j ∈ {1, 2, . . . , n} such that |i − j| is
even and vivj ∈ E. Then, the edge vivj cannot be contained in any perfect matching of G,
because G[{vi+1, vi+2, . . . , vj−1}] forms a connected component in G− {vi, vj} even though
it contains an odd number of vertices. Therefore, we can remove vivj from G. J

We now show the following lemma for an outerplanar graph G = (V, E).

I Lemma 10 (∗). If vivi+2 6∈ E for any i ∈ {1, 2, . . . , n}, then there exists an index
k ∈ {1, 2, . . . , n} such that both vk and vk+1 are of degree two.

Let k ∈ {1, 2, . . . , n} be an index such that both vk and vk+1 are of degree two, and let
ei := vivi+1 for each i ∈ {k − 1, k, k + 1}. Note that if a perfect matching of G does not
contain ek = vkvk+1, then it has to contain both ek−1 = vk−1vk and ek+1 = vk+1vk+2. We
consider the following two cases separately.

M. Bonamy et al. 80:11

Case 1: We first consider the case with vk−1vk+2 6∈ E. In this case, we can see that ek is
not contained in any cycles of length four, and hence ek is never touched by any flip
operation. Thus, we consider one of the following three sub-cases.

If ek ∈Ms4Mt, then we can immediately conclude that (G, Ms, Mt) is a no-instance.
If ek ∈Ms∩Mt, then we solve the smaller instance (G−{vk, vk+1}, Ms\{ek}, Mt\{ek}).
If ek 6∈Ms ∪Mt, then we solve the smaller instance (G− {vk−1, vk, vk+1, vk+2}, Ms \
{ek−1, ek+1}, Mt \ {ek−1, ek+1}).

Case 2: We next consider the case with vk−1vk+2 ∈ E. Then, G[{vk−1, vk, vk+1, vk+2}]
forms a cycle of length four. For each i ∈ {s, t}, we define

M ′
i :=

{
Mi \ {ek} if ek ∈Mi,
(Mi \ {ek−1, ek+1}) ∪ {vk−1vk+2} otherwise.

Let G′ = G− {vk, vk+1}, and we solve the smaller instance (G′, M ′
s, M ′

t).

In either case, we can reduce the original instance (G, Ms, Mt) to a smaller instance, which
implies that our algorithm runs in polynomial time. Indeed, we can implement the above
arguments so that the algorithm runs in linear time. (The details are omitted.) The
correctness of Case 1 is obvious, while the correctness of Case 2 is guaranteed as follows.

I Lemma 11 (∗). (G, Ms, Mt) is a yes-instance if and only if (G′, M ′
s, M ′

t) is a yes-instance.

This completes the proof of Theorem 8. J

3.3 Cographs
We consider cographs in this subsection. Cographs, also known as P4-free graphs, are
graphs without a path on four vertices as an induced subgraph. As examples concerning
reconfiguration on this class of graphs, it is known that the problems independent set
reconfiguration and Steiner tree reconfiguration can be solved in polynomial time
for cographs [3, 4, 26], while they are PSPACE-complete for general graphs [21, 26]. We will
show that the situation is similar for Perfect Matching Reconfiguration.

To describe our algorithm for cographs, we generalize our problem to non-perfect match-
ings. In the generalized problem, we regard that two matchings are adjacent if their symmetric
difference is either a cycle of length four, or a path on three vertices. Note that any two
adjacent matchings have the same size. Then, the generalized problem is defined as follows:

General Matching Reconfiguration
Input: Graph G, two matchings Ms and Mt of G.
Question: Is there a sequence of adjacent matchings that transforms Ms into Mt?

An instance of the generalized problem is also denoted by a triple (G, Ms, Mt), and a
sequence of adjacent matchings is also called a reconfiguration sequence. (G, Ms, Mt) is
clearly a no-instance if |Ms| 6= |Mt|, and hence we assume that |Ms| = |Mt| holds.

Our main result of this subsection is the following theorem.

I Theorem 12 (∗). General Matching Reconfiguration can be solved in polynomial
time for cographs. Moreover, for a yes-instance, a reconfiguration sequence of linear length
can be output in polynomial time.

We note that when two input matchings are perfect, every connected component in their
symmetric difference is a cycle. Therefore, even in the generalized problem, two adjacent
perfect matchings differ by a flip operation on a cycle of length four. We thus obtain the
following result as a corollary of Theorem 12.

MFCS 2019

80:12 The Perfect Matching Reconfiguration Problem

I Corollary 13. Perfect Matching Reconfiguration can be solved in polynomial time
for cographs. Moreover, for a yes-instance, a reconfiguration sequence of linear length can be
output in polynomial time.

As a proof of Theorem 12, we give such an algorithm in this subsection. We will use the
recursive characterization of cographs. For two graphs G1 = (V1, E1) and G2 = (V2, E2), their
disjoint union G1∪G2 is the graph such that V (G1∪G2) = V1∪V2 and E(G1∪G2) = E1∪E2,
while their complete join G1 ∨ G2 is the graph such that V (G1 ∨ G2) = V1 ∪ V2 and
E(G1 ∨G2) = E1 ∪ E2 ∪ {vw | v ∈ V1, w ∈ V2}. Then, a cograph can be recursively defined,
as follows:

a graph consisting of a single vertex is a cograph;
if G1 and G2 are cographs, then their disjoint union G1 ∪G2 is a cograph; and
if G1 and G2 are cographs, then their complete join G1 ∨G2 is a cograph.

Let (G, Ms, Mt) be a given instance of General Matching Reconfiguration such
that G = (V, E) is a cograph. By Lemma 5 we assume without loss of generality that G

is connected and |V | ≥ 4, and hence G = G1 ∨ G2 for two cographs G1 = (V1, E1) and
G2 = (V2, E2). Assume that |V1| ≥ |V2|, and let k := |Ms| = |Mt|. We first give a sufficient
condition for which there exists a reconfiguration sequence between Ms and Mt.

I Lemma 14 (∗). There is a reconfiguration sequence between Ms and Mt if G has a matching
M of size k such that at least one of the following two conditions holds:
(C1) M ∩ E2 6= ∅; and
(C2) at least one vertex of G2 is not covered by M .
Furthermore, a reconfiguration sequence of linear length can be output in polynomial time.

We claim that this sufficient condition can be checked in polynomial time. The existence
of a matching satisfying the condition (C1) can be checked as follows: For each edge vw ∈ E2,
we check if the graph G− {v, w} has a matching of size k − 1, or not. This can be done in
polynomial time since a maximum matching in a graph can be computed in polynomial time.
Similarly, the condition (C2) can be checked in polynomial time, as follows: For each vertex
v ∈ V2, we check if the graph G− {v} has a matching of size k, or not.

We then consider the case where the sufficient condition of Lemma 14 does not hold.
Recall that G = G1 ∨G2 and |V1| ≥ |V2|.

I Lemma 15 (∗). Suppose that G does not have a matching of size k satisfying the conditions
(C1) or (C2) of Lemma 14. Then, the following two claims hold.

(G, Ms, Mt) is a yes-instance if and only if (G1, Ms ∩ E1, Mt ∩ E1) is a yes-instance.
For a yes-instance (G, Ms, Mt), a reconfiguration sequence between Ms and Mt of linear
length can be output in polynomial time.

The above arguments can be implemented so that the algorithm runs in polynomial time,
since we reduce the original instance (G, Ms, Mt) to a smaller instance (G1, Ms∩E1, Mt∩E1).

This completes the proof of Theorem 12. J

4 Conclusion

We introduced the Perfect Matching Reconfiguration problem and analyzed its
complexity from the viewpoint of graph classes. We showed that this problem is PSPACE-
complete on split graphs and bipartite graphs of bounded bandwidth and maximum degree five.

M. Bonamy et al. 80:13

Furthermore, we gave polynomial-time algorithms for strongly orderable graphs, outerplanar
graphs, and cographs. Each of the algorithms outputs a reconfiguration sequence of linear
length in polynomial time.

A natural open question is on which graph classes a shortest reconfiguration sequence
can be found in polynomial time. Furthermore, it would be interesting to investigate if the
flip operation can be used in order to sample perfect matchings uniformly.

References
1 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangulations

of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368–389,
2015.

2 Sergey Bereg and Hiro Ito. Transforming Graphs with the Same Graphic Sequence. Journal
of Information Processing, 25:627–633, 2017.

3 Marthe Bonamy and Nicolas Bousquet. Reconfiguring independent sets in cographs. arXiv
preprint arXiv:1406.1433, 2014.

4 Paul Bonsma. Independent set reconfiguration in cographs and their generalizations. Journal
of Graph Theory, 83(2):164–195, 2016.

5 Paul Bonsma, Marcin Kamiński, and Marcin Wrochna. Reconfiguring Independent Sets in
Claw-Free Graphs. In Proceedings of the 14th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2014), volume 8503 of Lecture Notes in Computer Science, pages
86–97, 2014.

6 Nicolas Bousquet, Arnaud Mary, and Aline Parreau. Token Jumping in Minor-Closed Classes.
In Proceedings of the 21st International Symposium on Fundamentals of Computation Theory
(FCT 2017), volume 10472 of Lecture Notes in Computer Science, pages 136–149, 2017.

7 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka
Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Linear-time algorithm for sliding
tokens on trees. Theoretical Computer Science, 600:132–142, 2015.

8 Persi Diaconis, Ronald Graham, and Susan P. Holmes. Statistical problems involving permuta-
tions with restricted positions, volume 36 of Lecture Notes–Monograph Series, pages 195–222.
Institute of Mathematical Statistics, Beachwood, OH, 2001.

9 Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg, third edition, 2005.

10 Feodor F. Dragan. On Greedy Matching Ordering and Greedy Matchable Graphs (Extended
Abstract). In Proceedings of the 23rd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 1997), volume 1335 of Lecture Notes in Computer Science, pages
184–198, 1997.

11 Feodor F. Dragan. Strongly orderable graphs A common generalization of strongly chordal
and chordal bipartite graphs. Discrete Applied Mathematics, 99(1–3):427–442, 2000.

12 Martin Dyer and Haiko Müller. Counting perfect matchings and the switch chain. arXiv
preprint arXiv:1705.05790, 2017.

13 Martin E. Dyer, Mark Jerrum, and Haiko Müller. On the Switch Markov Chain for Perfect
Matchings. Journal of the ACM, 64(2):12:1–12:33, 2017.

14 Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT press, 1989.

15 S. L. Hakimi. On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph
II. Uniqueness. Journal of the Society for Industrial and Applied Mathematics, 11(1):135–147,
1963.

16 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343(1–2):72–96, 2005.

MFCS 2019

80:14 The Perfect Matching Reconfiguration Problem

17 Jan van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, pages
127–160. Cambridge University Press, 2013.

18 Michael E. Houle, Ferran Hurtado, Marc Noy, and Eduardo Rivera-Campo. Graphs of
triangulations and perfect matchings. Graphs and Combinatorics, 21(3):325–331, 2005.

19 Wen-Lian Hsu. A Simple Test for Interval Graphs. In Proceedings of the 18th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG 1992), volume 657 of
Lecture Notes in Computer Science, pages 11–16, 1992.

20 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete &
Computational Geometry, 22(3):333–346, 1999.

21 Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12–14):1054–1065, 2011.

22 Takehiro Ito, Marcin Kamiński, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa
Yamanaka. On the Parameterized Complexity for Token Jumping on Graphs. In Proceedings
of the 11th Annual Conference on Theory and Applications of Models of Computation (TAMC
2014), volume 8402 of Lecture Notes in Computer Science, pages 341–351, 2014.

23 Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent set
reconfigurability problems. Theoretical Computer Science, 439:9–15, 2012.

24 Charles L. Lawson. Software for C1 surface interpolation. In Mathematical software, pages
161–194. Elsevier, 1977.

25 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is
NP-complete. Computational Geometry, 49:17–23, 2015.

26 Haruka Mizuta, Takehiro Ito, and Xiao Zhou. Reconfiguration of Steiner Trees in an Unweighted
Graph. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 100-A(7):1532–1540, 2017.

27 Naomi Nishimura. Introduction to Reconfiguration. Algorithms, 11(4):52, 2018.
28 Nicolau C. Saldanha, Carlos Tomei, Mario A. Casarin, and Domingos Romualdo. Spaces of

domino tilings. Discrete & Computational Geometry, 14(2):207–233, 1995.
29 Walter J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Complex-

ities. Journal of Computer and System Sciences, 4:177–192, 1970.
30 James K. Senior. Partitions and Their Representative Graphs. American Journal of Mathem-

atics, 73(3):663–689, 1951.
31 Daniel Stefankovic, Eric Vigoda, and John Wilmes. On Counting Perfect Matchings in General

Graphs. In Proceedings of the 13th Latin American Theoretical Informatics Symposium (LATIN
2018), volume 10807 of Lecture Notes in Computer Science, pages 873–885, 2018.

32 Todd G. Will. Switching Distance Between Graphs with the Same Degrees. SIAM Journal on
Discrete Mathematics, 12(3):298–306, 1999.

33 Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal of Computer
and System Sciences, 93:1–10, 2018.

34 Tom C. van der Zanden. Parameterized Complexity of Graph Constraint Logic. In Proceedings
of the 10th International Symposium on Parameterized and Exact Computation (IPEC 2015),
volume 43 of Leibniz International Proceedings in Informatics, pages 282–293, 2015.

Spectral Aspects of Symmetric Matrix Signings
Charles Carlson
University of Colorado Boulder, Boulder, USA
charles.carlson@colorado.edu

Karthekeyan Chandrasekaran
University of Illinois, Urbana-Champaign, USA
karthe@illinois.edu

Hsien-Chih Chang
Duke University, Durham, USA
hsienchih.chang@duke.edu

Naonori Kakimura
Keio University, Yokohama, Japan
kakimura@math.keio.ac.jp

Alexandra Kolla
University of Colorado Boulder, Boulder, USA
alexandra.kolla@colorado.edu

Abstract
The spectra of signed matrices have played a fundamental role in social sciences, graph theory,
and control theory. In this work, we investigate the computational problems of finding symmetric
signings of matrices with natural spectral properties. Our results are the following:
1. We characterize matrices that have an invertible signing: a symmetric matrix has an invertible

symmetric signing if and only if the support graph of the matrix contains a perfect 2-matching.
Further, we present an efficient algorithm to search for an invertible symmetric signing.

2. We use the above-mentioned characterization to give an algorithm to find a minimum increase
in the support of a given symmetric matrix so that it has an invertible symmetric signing.

3. We show NP-completeness of the following problems: verifying whether a given matrix has
a symmetric signing that is singular or has bounded eigenvalues. However, we also illustrate
that the complexity could differ substantially for input matrices that are adjacency matrices of
graphs.

We use combinatorial techniques in addition to classic results from matching theory.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Spectral Graph Theory, Matrix Signing, Matchings

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.81

Related Version An earlier version of this work using alternative non-constructive proof techniques
is available at https://arxiv.org/abs/1611.03624.

Funding Karthekeyan Chandrasekaran: Supported by NSF CCF 18-14613.
Naonori Kakimura: Partly supported by JSPS KAKENHI Grant Numbers JP17K00028 and
JP18H05291.
Alexandra Kolla: Supported by NSF CCF 1855919

1 Introduction

The spectra of several graph-related matrices such as the adjacency and the Laplacian
matrices have become fundamental objects of study in computer science. In this work, we
undertake a systematic and comprehensive investigation of the spectrum and the invertibility
of symmetric signings of matrices. We study natural spectral properties of symmetric signed

© Charles Carlson, Karthekeyan Chandrasekaran, Hsien-Chih Chang, Naonori Kakimura, and
Alexandra Kolla;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 81; pp. 81:1–81:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:charles.carlson@colorado.edu
mailto:karthe@illinois.edu
mailto:hsienchih.chang@duke.edu
mailto:kakimura@math.keio.ac.jp
mailto:alexandra.kolla@colorado.edu
https://doi.org/10.4230/LIPIcs.MFCS.2019.81
https://arxiv.org/abs/1611.03624
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Spectral Aspects of Symmetric Matrix Signings

matrices and address the computational problems of finding and verifying the existence of
symmetric signings with these spectral properties.

For a real-valued symmetric n× n matrix M and a {±1}-valued n× n matrix s – which
we refer to as a signing – we define the signed matrix M(s) to be the matrix obtained by
taking entry-wise products of M and s. Signed adjacency matrices (respectively, Laplacians)
correspond to signed matricesM(s) whereM is the adjacency matrix (respectively, Laplacian)
of a graph. We say that s is a symmetric signing if s is a symmetric matrix and an off-
diagonal signing if all the diagonal entries of s are +1. In this work we consider the following
computational problems:

BOUNDEDEVALUESIGNING: Given a real symmetric matrix M and a real number λ, verify
if there exists an off-diagonal symmetric signing s such that the largest eigenvalue
λmax(M(s)) is at most λ.

INCLUDESIGNING: Given a real symmetric matrix M and a real number λ, verify if there
exists an off-diagonal symmetric signing s such that M(s) has λ as an eigenvalue.

AVOIDSIGNING: Given a real symmetric matrix M and a real number λ, verify if there exists
a symmetric signing s such that M(s) does not have λ as an eigenvalue.

It suffices to focus on instances where λ is 0. Indeed, solving an instance of one of the
above problems on input (M,λ) corresponds exactly to solving the same problem on input
(M − λI, 0). Hence, we focus our attention on the corresponding specialized problems:

NSDSIGNING: Given a real symmetric matrix M , verify if there exists a symmetric signing
s such that M(s) is negative semi-definite.

SINGULARSIGNING: Given a real symmetric matrix M , verify if there exists an off-diagonal
symmetric signing s such that M(s) is singular.

INVERTIBLESIGNING: Given a real symmetric matrix M , verify if there exists a symmetric
signing s such that M(s) is invertible (that is, non-singular).

1.1 Motivations
Spectra of Signed Matrices and Expanders. Let G be a connected d-regular graph on n
vertices and let d = λ0 > λ1 ≥ · · · ≥ λn−1 be the eigenvalues of its adjacency matrix. Then
G is a Ramanujan expander if max|λi|<d |λi| ≤ 2

√
d− 1. Efficient construction of Ramanujan

expanders of arbitrary degrees remains an important open problem.1 A combinatorial
approach to this problem, initiated by Friedman [9], is to obtain larger Ramanujan graphs
from smaller ones while preserving the degree. A 2-lift H of G is obtained as follows:
Introduce two copies of each vertex u of G, say u1 and u2, as the vertices of H and for each
edge {u, v} in G, introduce either {u1, v2}, {u2, v1} or {u1, v1}, {u2, v2} as edges of H. There
is a bijection between 2-lifts and symmetric signed adjacency matrices of G. Furthermore,
the eigenvalues of the adjacency matrix of a 2-lift H are given by the union of the eigenvalues
of the adjacency matrix of the base graph G (also called the “old” eigenvalues) and the
signed adjacency matrix of G that corresponds to the 2-lift. (the “new” eigenvalues).

Marcus, Spielman, and Srivastava [16] showed that every d-regular bipartite graph has a
2-lift whose new eigenvalues are bounded in absolute value by 2

√
d− 1. However, this result

[16] is not constructive and their work raises the question of whether there is an efficient

1 While efficient construction of bipartite Ramanujan multi-graphs of all degrees is known [5], it still
remains open to efficiently construct bipartite Ramanujan simple graphs of all degrees.

C. Carlson, K. Chandrasekaran, H.-C. Chang, N. Kakimura, and A. Kolla 81:3

algorithm to find a symmetric signing that minimizes the largest eigenvalue. This motivates
investigating BoundedEvalueSigning which is the decision variant of the computational
problem. More precisely, it motivates investigating BoundedEvalueSigning when the
input matrix is an adjacency matrix.

It is also natural to investigate the complexity of several related problems. As we will
see in the next section, BoundedEvalueSigning is NP-hard for arbitrary symmetric
matrices. The reduction which shows BoundedEvalueSigning is NP-hard suggests a
close relationship with AvoidSigning which is also NP-hard. Hoping to make progress
on BoundedEvalueSigning for adjacency matrices, we investigate AvoidSigning for
adjacency matrices. IncludeSigning arises naturally as the complement of AvoidSigning.

Solvability Index of a Signed Matrix. The notion of balance of a symmetric signed matrix
has been studied extensively in social sciences [14, 11, 13, 17]. A signed adjacency matrix
is balanced if there is a partition of the vertex set such that all edges within each part are
positive, and all edges in between two parts are negative (one of the parts could be empty).
A number of works [3, 10, 18, 17, 19, 20] have explored the problem of minimally modifying
signed graphs (or signed adjacency matrices) to convert it into a balanced graph.

In this work, we introduce a related problem regarding symmetric signed matrices: Given
a symmetric matrix M , what is the smallest number of non-diagonal zero entries of M whose
replacement by non-zeroes gives a symmetric matrix M ′ that has an invertible symmetric
signing? We define this quantity to be the solvability index2. Knowing this number might be
helpful in studying systems of linear equations in signed matrices that might be ill-defined,
and thus do not have a (unique) solution and in minimally modifying such matrices so
that the resulting linear system becomes (uniquely) solvable. We use classic graph-theoretic
techniques to show that solvability index is indeed computable efficiently.

1.2 Our Results
Intriguingly, the complexity of BoundedEvalueSigning has not been studied in the
literature even though it is widely believed to be a difficult problem in the graph sparsification
community. We shed light on this problem by showing that it is NP-complete.

I Theorem 1. NsdSigning and SingularSigning are NP-complete.

Theorem 1 also implies that BoundedEvalueSigning and AvoidSigning are NP-
complete. In contrast to SingularSigning, we show that InvertibleSigning admits an
efficient algorithm. In fact, we show a stronger result: there exists an algorithm to efficiently
solve the search variant of InvertibleSigning, which we denote by SearchInvertible-
Signing (here the goal is to find an invertible signing if it exists).

I Theorem 2. There exists a polynomial-time algorithm to solve SearchInvertibleSig-
ning.

Theorem 2 also implies that the search variant of IncludeSigning is solvable efficiently.
Our proof of Theorem 2 leads to a structural characterization for the existence of invertible
signings through the existence of perfect 2-matchings in the support graph of the matrix.

2 Our definition of solvability index is similar to the notion of frustration index [12, 1]. The frustration
index of a matrix M is the minimum number of non-zero off-diagonal entries of M whose deletion results
in a balanced signed graph. Computing the frustration index of a signed graph is NP-hard [15].

MFCS 2019

81:4 Spectral Aspects of Symmetric Matrix Signings

We believe that this structural characterization could be of independent interest and hence,
discuss it in detail in Section 1.2.1.

The hard instances generated by our proof of Theorem 1 are real symmetric matrices
with non-zero diagonal entries and hence, it does not resolve the computational complexity of
the problem of finding a signing of a given graph-related matrix (for example, the adjacency
matrix) that minimizes its largest eigenvalue. Our next result provides some evidence that
one might be able to design efficient algorithms to solve the NP-complete problems appearing
in Theorem 1 for graph-related matrices. In particular, we show that SingularSigning
and its search variant admit efficient algorithms when the input matrix corresponds to the
adjacency matrix of a bipartite graph.

I Theorem 3. There exists a polynomial-time algorithm to verify if the adjacency matrix
AG of a given bipartite graph G has a symmetric signing s such that AG(s) is singular; and
if so, find such a signing.

Finally, we define the solvability index of a real symmetric matrix M to be the smallest
number of non-diagonal zero entries that need to be converted to non-zeroes so that the
resulting symmetric matrix has an invertible symmetric signing. We emphasize that the
support-increase operation that we consider preserves symmetry, that is, if we replace the
zero entry A[i, j] by α, then the zero entry A[j, i] is also replaced by α. We give an efficient
algorithm to find the solvability index of a given symmetric matrix M .

I Theorem 4. There exists a polynomial-time algorithm to find the solvability index of a
given real symmetric matrix.

1.2.1 Structural Characterization for Invertible Signings
Theorem 2, in particular, implies that InvertibleSigning is solvable efficiently. In fact, our
proof-technique gives an efficient characterization for the existence of an invertible signing.
This characterization also leads to an alternative algorithm to solve InvertibleSigning.
We believe that this characterization might be of independent interest and hence describe it
here.

The support graph of a real symmetric n×n matrixM is an undirected graph G where the
vertex set of G is [n] := {1, . . . , n}, and the edge set of G is

{
{u, v} |M [u, v] 6= 0

}
. We note

that G could have self-loops depending on the diagonal entries of M . A perfect 2-matching in
a graph G with edge set E is an assignment x : E → {0, 1, 2} of values to the edges such that∑
e∈δ(v) xe = 2 holds for every vertex v in G (where δ(v) denotes the set of edges incident to

v). Equivalently, a perfect 2-matching in a graph G is a vertex-disjoint union of edges and
cycles (cycles could be loop edges) in G such that each vertex is incident to at least one edge.
We show the following characterization:

I Theorem 5. Let M be a symmetric n × n matrix and let G be the support graph of M .
The following are equivalent:

(i) There exists a symmetric signing s such that the signed matrix M(s) is invertible.
(ii) The support graph G contains a perfect 2-matching.

I Remark 1. The structural characterization of Theorem 5 leads to a polynomial-time
algorithm to solve InvertibleSigning – it suffices to verify if the support graph of the
input matrix contains a perfect 2-matching which can be done in polynomial-time.
I Remark 2. We present a constructive proof of Theorem 5 via a generalization (see Theorem
8 in Section 2). Our proof of Theorem 5 is constructive but we are aware of a non-constructive

C. Carlson, K. Chandrasekaran, H.-C. Chang, N. Kakimura, and A. Kolla 81:5

proof using Combinatorial Nullstellensatz. This alternative non-constructive proof is available
online in an earlier arXiv version of this [4].

1.3 Related Work
Skew Symmetric Matrix of Indeterminates. A square skew-symmetric matrix of indeter-
minates with zeroes on the diagonal is known as the Tutte matrix of its support graph. A
well-known result by Tutte shows that the determinant polynomial of the Tutte matrix is
non-zero if and only if the corresponding support graph has a perfect matching. Our result
in Theorem 5 can be interpreted as a variant of Tutte’s result to square symmetric matrices
of indeterminates with zeros on the diagonal.

Cunningham and Geelen [6] extended Tutte’s work along a different direction by giving a
characterization of invertible submatrices of the Tutte matrix using path-matchings. Given
a graph G with vertex set V and vertex subsets R,L ⊆ V , a (R,L)-path-matching in G is
a collection of vertex-disjoint paths from R to L and edges in G[V \ (R ∪ L)]. A perfect
(R,L)-path-matching is a (R,L)-path-matching in which every vertex in G is incident to
some edges of the vertex-disjoint paths. They showed that the determinant polynomial of
a square submatrix of the Tutte matrix of G with column set R and row set L is non-zero
if and only if there exists a perfect (R,L)-path-matching in G. The notion of cycle-covers
that we introduce in Section 2 and our result in Theorem 8 can be interpreted as variants of
Cunningham and Geelen’s result to square symmetric matrices of indeterminates with zeros
on the diagonal.

Our results in Theorems 5 and 8 go further than Cunningham and Geelen’s result by not
only giving similar characterizations for the determinant to be a non-zero polynomial but
also by giving polynomial-time algorithms to find a point in {±1}E at which the polynomial
is non-zero.

Minimum Rank Problems. A line of work seemingly related to ours is the minimum rank
problem (e.g., see [8, 7]): given a graph G, the goal is to compute the minimum rank of the
weighted adjacency matrix of a graph obtained by giving non-zero real-valued weights to
the edges of G. We emphasize that the allowed weights in the minimum rank problem are
arbitrary and are not simply signs of the given adjacency matrix as in the case of our work.
A signed variant of the minimum rank problem has also been addressed in the literature:
given a sign pattern matrix S, the goal is to compute the minimum rank of a matrix with
real-valued entries whose sign pattern is identical to S. Once again, we emphasize the
distinction between the signed variant of the minimum rank problem and the problems
studied in our work: in the signed variant of the minimum rank problem, the sign pattern is
the input and the goal is to find a matrix with real-valued entries matching the input sign
pattern and achieving minimum rank. In contrast, the problems studied in our work have
real-valued entries as inputs and the goal is to find a symmetric sign pattern of the entries to
achieve the specified spectral properties.

A year after posting our work on arXiv [4], Akbari, Ghafari, Kazemian, and Nahvi [2] also
posted an article addressing InvertibleSigning3. They show the same characterization
as Theorem 5 with a proof identical to the non-constructive proof appearing in the early
arXiv version of our work [4]. We emphasize that in addition to showing the structural
characterization in Theorem 5, this work resolves the search problem in Theorem 2, and

3 Our arXiv post dated Nov, 2016: https://arxiv.org/abs/1611.03624; the post by Akbari, Ghafari,
Kazemian, and Nahvi dated Aug, 2017: https://arxiv.org/abs/1708.07118.

MFCS 2019

https://arxiv.org/abs/1611.03624
https://arxiv.org/abs/1708.07118

81:6 Spectral Aspects of Symmetric Matrix Signings

moreover shows a much more general structural characterization in Theorem 8 with a
constructive proof.

1.4 Organization
In Section 1.5, we review definitions and notations. In Section 2, we describe an efficient
algorithm to find an invertible signing (Theorem 2). Due to space constraints, we refer the
reader to the full version of the paper for all missing proofs [4].

1.5 Preliminaries
Unless otherwise specified, all matrices are symmetric and take values over the reals. Since
all of our results are for symmetric signings, we will just use the term signing to refer to a
symmetric signing in the rest of this work. We denote the entry-wise product of two n× n
matrices M and s as M(s) (even when s is not necessarily a signing).

Let Sn be the set of permutations of n elements, M be a real symmetric n× n matrix,
and s be a symmetric n× n signing. Then, the permutation expansion of the determinant of
a signed matrix M(s) is given by

detM(s) =
∑
σ∈Sn

sgn(σ) ·
n∏
i=1

M(s)[i, σ(i)].

A permutation σ in Sn has a unique cycle decomposition and hence corresponds to a vertex-
disjoint union of directed cycles on n vertices. Removing the orientation gives an undirected
graph which is a vertex disjoint union of cycles, self-loops, and matching edges.

2 Finding Invertible Signings

In this section, we focus on invertible signings and the proof of Theorem 2. We prove a much
more general statement in comparison to the one given in Theorem 5, which we believe could
be of independent interest. We start by introducing the background needed to state the
general version.

Symmetric signings of asymmetric sub-matrices. Let M be a symmetric n × n matrix.
For X,Y ⊆ [n] being a subset of row and column indices of the same cardinality, let M [X,Y]
denote the submatrix of M obtained by picking the rows in X and the columns in Y . We
note that M [X,Y] is a square matrix, but it may not be symmetric even though M is
symmetric. We are interested in finding a symmetric n × n signing s so that the square
submatrix M(s)[X,Y] is invertible. We emphasize that for a symmetric signing s, the
(possibly asymmetric) matrix M(s)[X,Y] is symmetric on X ∩ Y , that is, the [i, j]’th and
the [j, i]’th entries of the matrix M(s)[X,Y] are the same for every i, j ∈ X ∩ Y .

Perfect 2-matchings in subgraphs. Let G be a simple undirected graph, possibly containing
self-loops. Let X,Y be vertex subsets of G. We consider the subgraph G[X ∪ Y] induced by
X ∪ Y . An (X,Y)-cycle-cover is a collection of edges of the subgraph G[X ∪ Y] that induce
a vertex-disjoint union of paths and cycles (cycles could be loop edges) in G[X ∪Y] such that
(1) every cycle is a subgraph of G[X ∩Y], (2) every vertex of X ∪Y is incident to at least one
edge, and (3) every path either has one end-vertex in X \ Y , the other end-vertex in Y \X,
and all intermediate vertices in X ∩ Y , or has both end-vertices in X ∩ Y with only one

C. Carlson, K. Chandrasekaran, H.-C. Chang, N. Kakimura, and A. Kolla 81:7

edge (see Figure 1 for an example). We note that (X,X)-cycle-covers correspond to perfect
2-matchings in G[X] and hence, (V, V)-cycle-covers correspond to perfect 2-matchings in G.
It follows that in (X,X)-cycle-covers all paths are only a single edge in G. Furthermore, the
existence of an (X,Y)-cycle-cover is possible only if |X| = |Y |. The following lemma states
that the existence of an (X,Y)-cycle-cover in a given graph can be verified efficiently.

Figure 1 An (X, Y)-cycle-cover F . Furthermore, by our definitions below, the edge {a, b} is in
Paths(F) while the edge {u, v} is in Matchings(F).

I Lemma 6. There exists a polynomial-time algorithm that decides if there is an (X,Y)-
cycle-cover in a given graph G for given vertex subsets X,Y of G.

The key observation to prove Lemma 6 is that finding an (X,Y)-cycle-cover can be
reduced to finding a perfect matching in an auxiliary bipartite graph.

Let M ∈ Rn×n be a symmetric matrix, X,Y ⊆ [n] with |X| = |Y | and s be a symmetric
n × n matrix. Recall that we are interested in finding a symmetric n × n signing s so
that the square submatrix M(s)[X,Y] is invertible. We derive a convenient expression
for det(M(s)[X,Y]) that is based on (X,Y)-cycle-covers. For an (X,Y)-cycle-cover F , let
Cycles(F), Paths(F), and Matchings(F) denote the set of cycles in F , paths in F with
end-vertices in X \Y and Y \X, and paths in F that are contained in G[X ∩Y], respectively.
Moreover, let Loops(F) and NTCs(F) denote the set of self-loops and non-trivial-cycles in
F . We emphasize that Cycles(F) = Loops(F) ∪ NTCs(F). We also note that Cycles(F),
Paths(F), and Matchings(F) are all vertex-disjoint from one another and if X = Y then
Paths(F) = ∅. We define

M(s)Cycles(F) :=
∏

C∈Cycles(F)

∏
{u,v}∈C

M(s)[u, v],

M(s)Paths(F) :=
∏

P∈Paths(F)

∏
{u,v}∈P

M(s)[u, v], and

M(s)Matchings(F) :=
∏

{u,v}∈Matchings(F)

M(s)[u, v]2.

With this notation, we have the following claim that the determinant of M(s)[X,Y] is a
{±1}-linear combination of terms corresponding to (X,Y)-cycle-covers in G.

MFCS 2019

81:8 Spectral Aspects of Symmetric Matrix Signings

I Lemma 7 ((X, Y)-cycle-cover expansion). Let M ∈ Rn×n be a symmetric n× n matrix,
X,Y ⊆ [n] with |X| = |Y |, and s be a symmetric n× n matrix. Let G be the support graph
of M and F be the set of all (X,Y)-cycle-covers in G. Then, there exists λF ∈ {±1} for all
F ∈ F such that

det(M(s)[X,Y]) =
∑
F∈F

λF · 2|NTCs(F)| ·M(s)Cycles(F) ·M(s)Paths(F) ·M(s)Matchings(F).

Moreover, if there are F1, F2 ∈ F such that Cycles(F1) = Cycles(F2) and Paths(F1) =
Paths(F2) then λF1 = λF2 .

Proof. For simplicity, we denote M ′ = M [X,Y]. Let k := |X| and let Sk denote the set of
permutations on k elements. Then, by the permutation expansion of the determinant, we
have

det(M ′(s)) =
∑
σ∈Sk

sgn(σ) ·
k∏
i=1

s[i, σ(i)] ·M ′[i, σ(i)].

We recall that sgn(σ) ∈ {±1}. Moreover, if σ1, σ2 ∈ Sk such that σ1 and σ2 have the
same cycle structure then sgn(σ1) = sgn(σ2). Now, we note that there is a one-to-one
correspondence between Sk and bijections from X to Y . So, we may view σ ∈ Sk as a
bijection σ′ : X → Y . Now, consider the graph Hσ′ on vertex set X ∪ Y and edge set
Fσ′ := {{u, v} | σ′(u) = v}. Since σ′ is a bijection, it follows that Fσ′ is an (X,Y)-cycle-cover
in the complete graph on vertex set X ∪ Y . Moreover, since each non-trivial-cycle in an
(X,Y)-cycle-cover can take one of two orientations in any corresponding permutation, there
are 2|NTCs(F)| distinct permutations which map to each (X,Y)-cycle-cover F . Hence,

n∏
i=1

s[i, σ(i)] ·M ′[i, σ(i)] =
∏
u∈X

s[u, σ(u)] ·M [u, σ′(u)]

= M(s)Cycles(Fσ′) ·M(s)Paths(Fσ′) ·M(s)Matchings(Fσ′).

The above-term is non-zero only if Fσ′ is an (X,Y)-cycle-cover in the support graph of G.
Furthermore, if F1, F2 ∈ F such that Cycles(F1) = Cycles(F2) and Paths(F1) = Paths(F2)
then λF1 = λF2 since the corresponding permutations would have the same cycle structure. J

To prove Theorems 5 and 2, we show the following theorem which gives a generalized
structural characterization: it characterizes the existence of invertible symmetric signings for
(potentially asymmetric) submatrices of symmetric matrices.

I Theorem 8. Let M be a real symmetric n×n matrix with support graph G and X,Y ⊆ [n]
with |X| = |Y |. The following are equivalent:
(i) There exists an (X,Y)-cycle-cover in G.
(ii) There exists a symmetric signing s such that M(s)[X,Y] is invertible.

Moreover, there exists a polynomial-time algorithm that takes a real symmetric n× n matrix
M and X,Y ⊆ [n] as input and verifies if there exists a symmetric signing s such that
M(s)[X,Y] is invertible and if so, find such a signing.

Notation. Let M be a real symmetric n × n matrix with support graph G. Let A and
B be vertex subsets of G. We define E[A,B] to be the set of edges with one end-vertex
in A and the other end-vertex in B. We use E[A] to denote E[A,A]. Let e be an edge in
G corresponding to the non-zero entry M [u, v] (= M [v, u]). We define Me as the matrix

C. Carlson, K. Chandrasekaran, H.-C. Chang, N. Kakimura, and A. Kolla 81:9

obtained by setting M [u, v] and M [v, u] to 0. For a signing s and row and column indices
u, v ∈ [n], we can obtain another signing s′ such that s′[u, v] := −s[u, v], s′[v, u] := −s[v, u]
and s′[i, j] := s[i, j] for every entry (i, j) ∈ [n]× [n] \ {(u, v), (v, u)}. We call this operation
as s′ obtained from s by flipping on {u, v}.

Proof of Theorem 8. We first present a constructive proof of the characterization. We will
then use the proof to design the algorithm.

Lemma 7 immediately shows that (ii) implies (i): If we have a symmetric signing s
such that M(s)[X,Y] is invertible, then at least one of the terms in the (X,Y)-cycle-cover
expansion of det(M(s)[X,Y]) is non-zero. Hence, there exists an (X,Y)-cycle-cover in G.

We show that (i) implies (ii). Suppose not. Among the counterexamples, consider
the ones with |X| minimum and among these, pick a matrix M with minimum number of
non-zero entries. Without loss of generality, let M be an n× n matrix with support graph G
and let X,Y ⊆ [n] with |X| = |Y |. Since we chose a counterexample, we have that
(A) there exists an (X,Y)-cycle-cover in G, but
(B) there is no symmetric signing s such that M(s)[X,Y] is invertible.
We will arrive at a contradiction by showing that a signing s satisfying (ii) exists. We begin
with the following claim about the counterexample.

B Claim 9. E[X \ Y, Y] = ∅ and E[Y \X,X] = ∅.

Proof. Suppose there exists an edge e ∈ E[X \ Y, Y]. Let e := {u, v} with u ∈ X \ Y and
v ∈ Y . Then there exists α ∈ {±1} such that the determinant ofM(s)[X,Y] can be expressed
as a linear function of s[u, v]:

det(M(s)[X,Y]) = α · s[u, v] ·M [u, v] · det(M(s)[X − u, Y − v]) + det(Me(s)[X,Y]). (1)

Case 1: Suppose there exists an (X,Y)-cycle-cover F containing e. We observe that F − e
is an (X − u, Y − v)-cycle-cover in G. Since we have a smallest counterexample, it follows
that there exists a symmetric signing s such that det(M(s)[X − u, Y − v]) 6= 0. Since
det(M(s)[X,Y]) is a linear function of s[u, v], it follows that det(M(s)[X,Y]) 6= 0 or
det(M(s′)[X,Y]) 6= 0 where s′ is a signing obtained from s by flipping on {u, v}. Hence,
we have a contradiction to assumption B about the counterexample.

Case 2: Suppose that every (X,Y)-cycle-cover in G does not contain e. Then there is no (X−
u, Y −v)-cycle-cover in G. Since (ii) implies (i), it follows that det(M(s)[X−u, Y −v]) = 0
for every symmetric signing s. Let F be an (X,Y)-cycle-cover in G (as promised to exist
by A). Then F is an (X,Y)-cycle-cover in G−e. Since we have a smallest counterexample,
it follows that there exists a symmetric signing s such that det(Me(s)[X,Y]) 6= 0. By (1),
we observe that det(M(s)[X,Y]) 6= 0. Thus, the symmetric signing s is a contradiction
to assumption B about the counterexample.

Hence, E[X \ Y, Y] = ∅. Similarly E[Y \X,X] = ∅. C

Now, if X \ Y 6= ∅ and there is no edge e ∈ E[X \ Y, Y], then there is no (X,Y)-cycle-
cover in G, a contradiction to assumption A about the counterexample. Hence, X \ Y = ∅.
Similarly, Y \X = ∅. Thus, we have X = Y in the counterexample. We next show that the
counterexample cannot have any self-loop edges.

B Claim 10. There are no self-loop edges in E[X].

MFCS 2019

81:10 Spectral Aspects of Symmetric Matrix Signings

Proof. Suppose there exists a self-loop edge in E[X]. Let e = {u, u} for some u ∈ X. Then,
we again have that det(M(s)[X,Y]) is a linear function of s[u, u]:

det(M(s)[X,X]) = s[u, u] ·M [u, u] · det(M(s)[X − u,X − u]) + det(Me(s)[X,X]). (2)

We arrive at a contradiction by proceeding similar to the proof of the previous claim. We
avoid restating the proof in the interests of brevity. C

By Claim 10, the counterexample has no self-loop edges in E[X]. Our next claim
strengthens this further by showing that the counterexample has no (X,Y)-cycle-cover with
cycle edges.

B Claim 11. Every (X,X)-cycle-cover in G has no cycles.

Proof. Suppose there exists an (X,X)-cycle-cover F in G with a cycle C induced by F . Let
e = {u, v} be an edge in the cycle. By Claim 10, we know that u 6= v. We observe that
det(M(s)[X,X]) is a quadratic function of s[u, v], i.e., there exists α ∈ {±1} such that the
determinant of M(s)[X,X] can be expressed as

det(M(s)[X,X]) = −s[u, v]2 ·M [u, v]2 · det(M(s)[X − {u, v}, X − {u, v}])
+ 2α · s[u, v] ·M [u, v] · det(Me(s)[X − u,X − v]) (3)
+ det(Me(s)[X,X]).

Furthermore, F − e is an (X − u,X − v)-cycle-cover in G. Since we have a smallest
counterexample, it follows that there exists a symmetric signing s such that det(Me(s)[X −
u,X − v]) 6= 0. We now define the quadratic function

f(x) := −x2 ·M [u, v]2 · det(M(s)[X − {u, v}, X − {u, v}])
+ 2αx ·M [u, v] · det(Me(s)[X − u,X − v]) + det(Me(s)[X,X]),

and consider the roots of the quadratic equation f(x) = 0. Since det(Me(s)[X−u,X−v]) 6= 0,
the sum of the roots of this quadratic equation is non-zero. Since the real roots of a quadratic
function are symmetric about the extreme point of the parabola defined by the function
(i.e., symmetric about arg min f(x)), there exists x ∈ {±1} that is not a root of f(x). Hence,
either det(M(s)[X,Y]) 6= 0 or det(M(s′)[X,Y]) 6= 0 where s′ is a signing obtained from s by
flipping on {u, v}. Thus, either s or s′ contradict assumption B about the counterexample.

C

By Claims 9 and 10, the counterexample has X = Y with no loop edges in E[X].
Furthermore, by Claim 11, every (X,X)-cycle-cover in G has no cycles. By definition of
(X,X)-cycle-covers, it follows that each (X,X)-cycle-cover in G corresponds to a perfect
matching in G[X]. Let N be an (X,X)-cycle-cover in G.

B Claim 12. N is the unique (X,X)-cycle-cover in G.

Proof. Let e be an arbitrary edge in N . Suppose there exists an (X,X)-cycle-cover N ′ in
G − e. Then, Claims 10 and 11 imply that N ′ is also a perfect matching in G[X]. We
consider N ′′ := N ∪N ′. Since N and N ′ are perfect matchings in G[X], the set of edges
N ′′ induces a vertex-disjoint union of edges and cycles of even length in G[X]. Hence, N ′′
is an (X,X)-cycle-cover in G. Furthermore, since e ∈ N \N ′, it follows that N ′′ contains
at least one cycle. This contradicts Claim 11. Thus, every edge e ∈ N belongs to every
(X,X)-cycle-cover in G. Consequently, N is the unique (X,X)-cycle-cover in G. C

C. Carlson, K. Chandrasekaran, H.-C. Chang, N. Kakimura, and A. Kolla 81:11

Since N is the unique (X,X)-cycle-cover in G, by Lemma 7, we have that

det(M(s)[X,X]) = (−1)|N |
∏

{u,v}∈N

M(s)[u, v]2

which is non-zero for every signing s. Thus, there exists a symmetric signing s such that
det(M(s)[X,X]) 6= 0, a contradiction to assumption B about the counterexample. This
completes the proof of the characterization. We note that the above proof of the character-
ization is constructive and immediately leads to the algorithm FindSigning(M,X, Y) in
Algorithm 1.

Algorithm 1 The algorithm FindSigning(M, X, Y).

FindSigning(M, X, Y):
Input: M ∈ Rn×n with support graph G, and X, Y ⊆ [n] satisfying |X| = |Y |.
Output: A symmetric signing s ∈ {±1}n×n such that M(s)[X, Y] is invertible if

such a signing exists.
1. If |X| = |Y | ≤ 1, then brute-force search for a symmetric signing s for

which det(M(s))[X, Y] 6= 0:
1.1. If such a signing exists, return s.
1.2. Else return “No Invertible Signing”.

2. If there exists no (X, Y)-cycle-cover then return “No Invertible Signing”.
3. If E[X \ Y, Y] ∪ E[Y \X, X] 6= ∅:

3.1. Pick e := {u, v} ∈ E[X \ Y, Y] such that u ∈ X \ Y and v ∈ Y .
3.2. If there is no (X − u, Y − v)-cycle-cover in G:

3.2.1 s← FindSigning(Me, X, Y).
3.3. Else: (when there is an (X − u, Y − v)-cycle-cover in G)

3.3.1 s← FindSigning(M, X − u, Y − v).
3.4. If M(s)[X, Y] is invertible then return s.
3.5. Else return s′ obtained from s by flipping on {u, v}.

4. Else: (when sets X and Y are identical)
4.1. If there exists an (X, Y)-cycle-cover in G with a cycle edge {u, v}:

4.1.1. s← FindSigning(M, X − u, Y − v).
4.1.2. If M(s)[X, Y] is invertible then return s.
4.1.3. Else return s′ obtained from s by flipping on {u, v}.

4.2. Else: (when all (X, Y)-cycle-covers are perfect matchings in G[X])
4.2.1 Return 1 (the all-positive signing).

We now describe an efficient implementation of the non-trivial steps in FindSigning.
In Step 1, the algorithm performs a brute-force search. We note that the search needs
to be conducted only for the entries s[u, v] where u, v ∈ X ∪ Y since det(M(s)[X,Y]) is
independent of the remaining entries of the signing s. Since |X ∪ Y | ≤ 2, the search can be
conducted in constant time by picking an arbitrary sign for the remaining entries.

Lemma 6 implies that Steps 2 and 3.2 can be implemented to run in polynomial time.
We recall that any cycle edge in an (X,X)-cycle-cover must be a cycle edge in some perfect
2-matching in G[X]. Claim 13 shows that Step 4.1 can be implemented to run in polynomial
time. Finally, the recursive algorithm terminates in polynomial time since each recursive call
reduces either |X ∪ Y | or the number of non-zero entries in M . J

B Claim 13. There is a polynomial-time algorithm that given a graph, finds an edge that
belongs to a cycle in some perfect 2-matching of the graph or decides that no such edge
exists.

MFCS 2019

81:12 Spectral Aspects of Symmetric Matrix Signings

Algorithm 2 The algorithm FindCycleEdge(G).

FindCycleEdge(G):
Input: A graph G with vertex set V .
Output: An edge e that is a cycle edge in some perfect 2-matching in G if one exists.
1. If there exists no perfect 2-matching in G then return “No edge”.
2. Let F be a perfect 2-matching in G.
3. If F contains a cycle C then return any edge in C.
4. For e ∈ F :

4.1. Let Ne be a perfect 2-matching in G− e if one exists.
4.2. If Ne exists and has a cycle C then return any edge in C.

5. If Step 4 finds Ne for some e ∈ F , then return e.
6. Else return “No edge”.

Proof. To prove the claim we consider the algorithm FindCycleEdge(G) in Algorithm 2. If
at any point we find a perfect 2-matching with a cycle then we return an edge from it. Hence,
it only remains to show the correctness of Steps 5 and 6. Let F be a perfect 2-matching
with no cycle edge. Suppose there exists a perfect 2-matching Ne for some edge e with no
cycle edge. Then Ne and F are both perfect matchings in G. It follows that Ne ∪ F will
be a perfect 2-matching where e is in a cycle and hence Step 5 is correct to return e. Now
suppose that for all e there is no perfect 2-matching Ne. It follows that G has one unique
perfect 2-matching F that is a perfect matching and hence Step 6 correctly returns that no
cycle edge exists.

Using the algorithm from Lemma 6 we can perform Steps 1, 2, and 4.1 in polynomial
time. Thus, FindCycleEdge(G) runs in polynomial time. C

References
1 R. Abelson and M. Rosenberg. Symbolic psycho-logic: A model of attitudinal cognition.

Behavioral Science, 3:1–13, 1958.
2 S. Akbari, A. Ghafari, K. Kazemian, and M. Nahvi. Some Criteria for a Signed Graph to

Have Full Rank. ArXiv. arXiv:1708.07118.
3 J. Akiyama, D. Avis, V. Chvátal, and H. Era. Balancing signed graphs. Discrete Appl. Math.,

3:227–233, 1981.
4 C. Carlson, K. Chandrasekaran, H. Chang, and A. Kolla. Invertibility and Largest Eigenvalue

of Symmetric Matrix Signings. arXiv e-prints, November 2016. arXiv:1611.03624.
5 M. Cohen. Ramanujan Graphs in Polynomial Time. In Proceedings of the 57th Annual IEEE

Symposium on Foundations of Computer Science, pages 276–281, 2016.
6 W. Cunningham and J. Geelen. The Optimal Path-Matching Problem. Combinatorica,

17(3):315–337, 1997. doi:10.1007/BF01215915.
7 S. Fallat and L. Hogben. Variants on the minimum rank problem: A survey II. ArXiv.

arXiv:1102.5142.
8 S. Fallat and L. Hogben. The minimum rank of symmetric matrices described by a graph: A

survey. Linear Algebra and its Applications, 426(2):558–582, 2007.
9 J. Friedman. Relative expanders or weakly relatively Ramanujan graphs. Duke Math. J.,

118(1):19–35, 2003.
10 P. Hansen. Labelling algorithms for balance in signed graphs. Problémes Combinatoires et

Théorie des Graphes, pages 215–217, 1978.
11 F. Harary. On the notion of balance of a signed graph. Michigan Math. J., 2(2):143–146, 1953.
12 F. Harary. On the measurement of structural balance. Behavioral Science, 4(4):316–323, 1959.
13 F. Harary and J. Kabell. A simple algorithm to detect balance in signed graphs. Mathematical

Social Sciences, 1(1):131–136, 1980.

http://arxiv.org/abs/1708.07118
http://arxiv.org/abs/1611.03624
https://doi.org/10.1007/BF01215915
http://arxiv.org/abs/1102.5142

C. Carlson, K. Chandrasekaran, H.-C. Chang, N. Kakimura, and A. Kolla 81:13

14 F. Heider. Attitudes and Cognitive Organization. J. Psych., 21:107–112, 1946.
15 F. Hüffner, N. Betzler, and R. Niedermeier. Optimal edge deletions for signed graph balancing.

In Proceedings of the 6th international conference on Experimental algorithms, pages 297–310,
2007.

16 A. Marcus, D. Spielman, and N. Srivastava. Interlacing Families I: Ramanujan Graphs of All
Degrees. Annals of Mathematics, 182(1):307–325, 2015.

17 K. Osamu and S. Iwai. Studies on the balancing, the minimal balancing, and the minimum
balancing processes for social groups with planar and nonplanar graph structures. J. Math.
Psychology, 18(2):140–176, 1978.

18 V. Sivaraman. Some topics concerning graphs, signed graphs and matroids. Ph.D. dissertation,
Ohio State University, 2012.

19 T. Zaslavsky. The geometry of root systems and signed graphs. Amer. Math. Monthly, 2:88–105,
1981.

20 T. Zaslavsky. Signed graphs. Discrete Appl. Math., 1:47–74, 1982.

MFCS 2019

Efficient Analysis of Unambiguous Automata
Using Matrix Semigroup Techniques
Stefan Kiefer
University of Oxford, UK

Cas Widdershoven
University of Oxford, UK

Abstract
We introduce a novel technique to analyse unambiguous Büchi automata quantitatively, and apply
this to the model checking problem. It is based on linear-algebra arguments that originate from the
analysis of matrix semigroups with constant spectral radius. This method can replace a combinatorial
procedure that dominates the computational complexity of the existing procedure by Baier et al. We
analyse the complexity in detail, showing that, in terms of the set Q of states of the automaton, the
new algorithm runs in time O(|Q|4), improving on an efficient implementation of the combinatorial
algorithm by a factor of |Q|.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Design and analysis of algorithms

Keywords and phrases Algorithms, Automata, Markov Chains, Matrix Semigroups

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.82

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.10093.

Funding Stefan Kiefer : Work supported by a Royal Society University Research Fellowship.

1 Introduction

Given a finite automaton A, what is the proportion of words accepted by it? This question
is natural but imprecise: there are infinitely many words and the proportion of accepted
words may depend on the word length. One may consider the sequence d0, d1, . . . where di is
the proportion of length-i words accepted by A, i.e., di = |L(A)∩Σi|

|Σ|i . The sequence does not
necessarily converge, but one may study, e.g., possible limits and accumulation points [5].

Alternatively, one can specify a probability distribution on words, e.g., with a Markov
chain, and ask for the probability that a word is accepted by A. For instance, if Σ = {a, b},
one may generate a random word, letter by letter, by outputting a, b with probability 1/3
each, and ending the word with probability 1/3. For an NFA A, determining whether the
probability of generating an accepted word is 1 is equivalent to universality (is L(A) = Σ∗?),
a PSPACE-complete problem. However, if A is unambiguous, i.e., every accepted word has
exactly one accepting path, then one can compute the probability of generating an accepted
word in polynomial time by solving a linear system of equations. Unambiguousness allows us
to express the probability of a union as the sum of probabilities:

I Example 1. Consider the unambiguous automaton A in Figure 1 (left). If we generate a
random word over {a, b} according to the process described above, we have the following
linear system for the vector ~z where ~zq is, for each q ∈ {q0, q1, q2, q3}, the probability that
the word is accepted when q is taken as initial state:

~zq0 = 1
3~zq1 + 1

3 ~zq1 = 1
3~zq0 + 1

3 (~zq1 + ~zq3)
~zq2 = 1

3~zq3 + 1
3 (~zq0 + ~zq2) ~zq3 = 1

3~zq2

© Stefan Kiefer and Cas Widdershoven;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 82; pp. 82:1–82:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.82
https://arxiv.org/abs/1906.10093
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

82:2 Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

q0 q1

q2 q3

a

b

b

a

b

b

a

a

F

Figure 1 Left: unambiguous automaton A. Right: visualisation of the affine space F (blue) and
the vector space spanned by (pseudo-)cuts (red); these spaces are orthogonal.

The constant term in the equation for ~zq0 reflects the fact that q0 is accepting. The (other)
coefficients 1

3 correspond to the production of either a or b. The linear system has a unique
solution.

One may view an NFA A as a Büchi automaton, so that its language L(A) ⊆ Σω is the
set of those infinite words that have an accepting run in A, i.e., a run that visits accepting
states infinitely often. There is a natural notion of an infinite random word over Σ: in
each step sample a letter from Σ uniformly at random, e.g., if Σ = {a, b} then choose a
and b with probability 1/2 each. Perhaps more significantly, model checking Markov chains
against Büchi automata, i.e., computing the probability that the random word generated
by the Markov chain is accepted by the automaton, is a key problem in the verification of
probabilistic systems. Unfortunately, like the aforementioned problem on finite words, it is
also PSPACE-complete [8]. However, if the Büchi automaton is unambiguous, i.e., every
accepted (infinite) word has exactly one accepting path, then one can compute the probability
of generating an accepted word in polynomial time [2], both in the given Büchi automaton
and in a given (discrete-time, finite-state) Markov chain. Since LTL specifications can be
converted to unambiguous Büchi automata with a single-exponential blow-up, this leads to
an LTL model-checking algorithm with single-exponential runtime, which is optimal. The
polynomial-time algorithm from [2] for unambiguous Büchi automata is more involved than
in the finite-word case.

I Example 2. In the following we view the automaton A from Figure 1 as an (unambiguous)
Büchi automaton. If we generate a random word over {a, b} according to the process described
above, then the vector ~z where for each q ∈ {q0, q1, q2, q3}, ~zq is the probability that the
word is accepted when q is taken as initial state, is a solution to the following linear system:

~zq0 = 1
2~zq1 ~zq1 = 1

2~zq0 + 1
2 (~zq1 + ~zq3)

~zq2 = 1
2~zq3 + 1

2 (~zq0 + ~zq2) ~zq3 = 1
2~zq2

However, this linear system has multiple solutions: indeed, any scalar multiple (1, 2, 2, 1)> is
a solution.

In order to make such a linear system uniquely solvable, one needs to add further equations,
and finding these further equations is where the real challenge lies. Assuming that the state
space Q of A is strongly connected and the Markov chain generates letters uniformly at
random as described above, a single additional equation ~µ>~z = 1 suffices (this can be shown
with Perron-Frobenius theory: the eigenspace for the dominant eigenvalue of a nonnegative

S. Kiefer and C. Widdershoven 82:3

irreducible matrix is one-dimensional). We call such a vector ~µ ∈ RQ a normaliser. The aim
of this paper is to use a novel, linear-algebra based technique to compute normalisers more
efficiently.

The suggestion in [2] was to take as normaliser the characteristic vector [[[c]]] ∈ {0, 1}Q of
a so-called cut c ⊆ Q. To define this, let us write δ(q, w) for the set of states reachable from
a state q ∈ Q via the word w ∈ Σ∗. A cut is a set of states of the form c = δ(q, w) such that
δ(q, wx) 6= ∅ holds for all x ∈ Σ∗. If a cut does not exist or if A does not have accepting
states, then we have ~z = ~0.

I Example 3. In the automaton A from Figure 1, we have a cut c = δ(q0, aba) = {q0, q2}.
Hence its characteristic vector ~µ = (1, 0, 1, 0)> is a normaliser, allowing us to add the equation
~µ>~z = ~zq0 + ~zq2 = 1. Now the system is uniquely solvable: ~z = 1

3 (1, 2, 2, 1)>. The equation
~zq0 + ~zq2 = 1 is valid by an ergodicity argument: intuitively, given a finite word that leads
to q0 and q2, a random infinite continuation will almost surely enable an accepting run.
For instance, ~zq0 = 1

3 is the probability that a random infinite word over {a, b} has an odd
number of as before the first b. (This holds despite the fact that the word abbb . . . is not
accepted from q0.)

In Proposition 14 we show that an efficient implementation of the algorithm from [2] for
computing a cut runs in time O(|Q|5). Our goal is to find a normaliser ~µ more efficiently.

The general idea is to move from a combinatorial problem, namely computing a set c ⊆ Q,
to a continuous problem, namely computing a vector ~µ ∈ RQ. To illustrate this, note that
since we can choose as ~µ the characteristic vector of an arbitrary cut, we may also choose a
convex combination of such vectors, leading to a normaliser ~µ with entries other than 0 or 1.

The technical key ideas of this paper draw on the observation that for unambiguous
automata with cuts, the transition matrices generate a semigroup of matrices whose spectral
radii are all 1. (The spectral radius of a matrix is the largest absolute value of its eigenvalues.)
This observation enables us to adopt techniques that have recently been devised by Protasov
and Voynov [16] for the analysis of matrix semigroups with constant spectral radius. To
the best of the authors’ knowledge, such semigroups have not previously been connected to
unambiguous automata. This transfer is the main contribution of this paper.

To sketch the gist of this technique, for any a ∈ Σ write M(a) ∈ {0, 1}Q×Q for the
transition matrix of the unambiguous automaton A, define the average matrix M =
1
|Σ|
∑
a∈ΣM(a), and let ~y = M~y ∈ RQ be an eigenvector with eigenvalue 1 (the mat-

rix M has such an eigenvector if A has a cut). Since the matrix semigroup, S ⊆ {0, 1}Q×Q,
generated by the transition matrices M(a) has constant spectral radius, it follows from [16]
that one can efficiently compute an affine space F ⊆ RQ with ~y ∈ F and ~0 6∈ F such that for
any ~v ∈ F and any M ∈ S we have M~v ∈ F . Using the fact that δ(q, wx) is a cut (for all
x ∈ Σ∗) whenever δ(q, w) is a cut, one can show that all characteristic vectors of cuts have
the same scalar product with all ~v ∈ F , i.e., all characteristic vectors of cuts are in the vector
space orthogonal to F . Indeed, we choose as normaliser ~µ a vector that is orthogonal to F .
This linear-algebra computation can be carried out in time O(|Q|3). In the visualisation on
the right of Figure 1, the characteristic vectors of cuts lie in the plane shaded in red, which
is orthogonal to straight line F (blue).

I Example 4. In the automaton A from Figure 1, the vector ~y = (1, 2, 2, 1)> satisfiesM~y = ~y

where M = 1
2 (M(a) +M(b)). The affine space F := {~y + s(1,−1,−1, 1)> | s ∈ R} has the

mentioned closure properties, i.e., M(a)F ⊆ F and M(b)F ⊆ F . Note that the vector ~µ
from Example 3 is indeed orthogonal to F , i.e., ~µ>(1,−1,−1, 1)> = 0.

MFCS 2019

82:4 Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

However, to ensure that ~µ is a valid normaliser, we need to restrict it further. To this end,
we compute, for some state q ∈ Q, the set Co(q) ⊆ Q of co-reachable states, i.e., states r ∈ Q
such that δ(q, w) ⊇ {q, r} holds for some w ∈ Σ∗. This requires a combinatorial algorithm,
which is similar to a straightforward algorithm that would verify the unambiguousness of A.
Its runtime is quadratic in the number of transitions of A, i.e., O(|Q|4) in the worst case.
Then we restrict ~µ such that ~µq = 1 and µ is non-zero only in entries that correspond
to Co(q). In the visualisation on the right of Figure 1, restricting some components of ~µ to
be 0 corresponds to the vectors in the shaded (red) plane that lie on the plane described by
q′ = 0 for all q′ ∈ Q \ Co(q).

I Example 5. We have Co(q0) = {q0, q2}. So we restrict ~µ to be of the form (1, 0, x, 0)>.
Together with the equation ~µ>(1,−1,−1, 1)> = 0 this implies ~µ = (1, 0, 1, 0)>. The point is
that, although this is the same vector computed via a cut in Example 3, the linear-algebra
based computation of ~µ is more efficient.

In the rest of the paper we analyse the general case of model checking a given Markov chain
against a given unambiguous Büchi automaton. The efficiency gain we aim for with our
technique can only be with respect to the automaton, not the Markov chain; nevertheless,
we analyse in detail the runtime in terms of the numbers of states and transitions in both
the automaton and the Markov chain. The main results are developed in Section 3. In
Section 3.1 we describe the general approach from [2, 3]. In Section 3.2 we analyse the
runtime of an efficient implementation of the algorithm from [2, 3] for computing a cut.
Our main contribution lies in Section 3.3, where we develop a new approach for computing
a normaliser, based on the mentioned spectral properties of the transition matrices in
unambiguous automata. We close in Section 4 with a discussion. The full version of this
paper [12] contains an appendix with proofs.

2 Preliminaries

We assume the reader to be familiar with basic notions of finite automata over infinite words
and Markov chains, see, e.g., [9, 13]. In the following we provide a brief summary of our
notation and a few facts related to linear algebra.

Finite automata. A Büchi automaton is a tuple A = (Q,Σ, δ, Q0, F) where Q is the finite
set of states, Q0 ⊆ Q is the set of initial states, Σ is the finite alphabet, δ : Q× Σ→ 2Q is
the transition function, and F ⊆ Q is the set of accepting states. We extend the transition
function to δ : Q× Σ∗ → 2Q and to δ : 2Q × Σ∗ → 2Q in the standard way. For q ∈ Q we
write Aq for the automaton obtained from A by making q the only initial state.

Given states q, r ∈ Q and a finite word w = a0a1 · · · an−1 ∈ Σ∗, a run for w from q to r is
a sequence q0q1 · · · qn ∈ Qn+1 with q0 = q, qn = r and qi+1 ∈ δ(qi, ai) for i ∈ {0, . . . , n− 1}.
A run in A for an infinite word w = a0a1a2 · · · ∈ Σω is an infinite sequence ρ = q0q1 · · · ∈ Qω
such that q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for all i ∈ N. Run ρ is called accepting if inf(ρ)∩F 6= ∅
where inf(ρ) ⊆ Q is the set of states that occur infinitely often in ρ. The language L(A) of
accepted words consists of all infinite words w ∈ Σω that have at least one accepting run.
A is called unambiguous if each word w ∈ Σω has at most one accepting run. We use the
acronym UBA for unambiguous Büchi automaton.

We define |δ| := |{(q, r) | ∃ a ∈ Σ : r ∈ δ(q, a)}|, i.e., |δ| ≤ |Q|2 is the number of transitions
in A when allowing for multiple labels per transition. In [12, Appendix A] we give an example
that shows that the number of transitions can be quadratic in |Q|, even for UBAs with a

S. Kiefer and C. Widdershoven 82:5

strongly connected state space. We assume |Q| ≤ |δ|, as states without outgoing transitions
can be removed. In this paper, Σ may be a large set (of states in a Markov chain), so it is
imperative to allow for multiple labels per transition. We use a lookup table to check in
constant time whether r ∈ δ(q, a) holds for given r, q, a.

A diamond is given by two states q, r ∈ Q and a finite word w such that there exist at
least two distinct runs for w from q to r. One can remove diamonds (see [12, Appendix B.1]):

I Lemma 6. Given a UBA, one can compute in time O(|δ|2|Σ|) a UBA of at most the same
size, with the same language and without diamonds.

For the rest of the paper, we assume that UBAs do not have diamonds.

Vectors and matrices. We consider vectors and square matrices indexed by a finite set S.
We write (column) vectors ~v ∈ RS with arrows on top, and ~v> for the transpose (a row
vector) of ~v. The zero vector and the all-ones vector are denoted by ~0 and ~1, respectively.
For a set T ⊆ S we write [[[T]]] ∈ {0, 1}S for the characteristic vector of T , i.e., [[[T]]]s = 1 if
s ∈ T and [[[T]]]s = 0 otherwise. A matrix M ∈ [0, 1]S×S is called stochastic if M~1 = ~1, i.e.,
if every row of M sums to one. For a set U ⊆ S we write ~vU ∈ RU for the restriction of ~v
to U . Similarly, for T,U ⊆ S we write MT,U for the submatrix of M obtained by deleting
the rows not indexed by T and the columns not indexed by U . The (directed) graph of a
nonnegative matrix M ∈ RS×S has vertices s ∈ S and edges (s, t) if Ms,t > 0. We may
implicitly associate M with its graph and speak about graph-theoretic concepts such as
reachability and strongly connected components (SCCs) in M .

Markov chains. A (finite-state discrete-time) Markov chain is a pairM = (S,M) where S
is the finite set of states, and M ∈ [0, 1]S×S is a stochastic matrix that specifies transition
probabilities. An initial distribution is a function ι : S → [0, 1] satisfying

∑
s∈S ι(s) = 1.

Such a distribution induces a probability measure PrMι on the measurable subsets of Sω in
the standard way, see for instance [1, chapter 10.1, page 758]. If ι is concentrated on a single
state s, we may write PrMs for PrMι . We write E for the set of edges in the graph of M .
Note that |S| ≤ |E| ≤ |S|2, as M is stochastic.

Solving linear systems. Let κ ∈ [2, 3] be such that one can multiply two n × n-matrices
in time O(nκ) (in other literature, κ is often denoted by ω). We assume that arithmetic
operations cost constant time. One can choose κ = 2.4, see [14] for a recent result. One can
check whether an n× n matrix is invertible in time O(nκ) [6]. Finally, one can solve a linear
system with n equations using the Moore-Penrose pseudo-inverse [11] in time O(nκ) [15].

Spectral theory. The spectral radius of a matrix M ∈ RS×S , denoted ρ(M), is the largest
absolute value of the eigenvalues of M . By the Perron-Frobenius theorem [4, Theorems 2.1.1,
2.1.4], if M is nonnegative then the spectral radius ρ(M) is an eigenvalue of M and there is
a nonnegative eigenvector ~x with M~x = ρ(M)~x. Such a vector ~x is called dominant. Further,
if M is nonnegative and strongly connected then ~x is strictly positive in all components and
the eigenspace associated with ρ(M) is one-dimensional.

3 Algorithms

Given a Markov chainM, an initial distribution ι, and a Büchi automaton A whose alphabet
is the state space ofM, the probabilistic model-checking problem is to compute PrMι (L(A)).

MFCS 2019

82:6 Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

q0 q1

q2 q3

a

b

b

a

b

b

a

a

a b

1
2

1
2

1
2

1
2

〈q3, b〉 〈q1, b〉 〈q0, a〉

〈q1, a〉

〈q3, a〉 〈q2, b〉 〈q0, b〉

〈q2, a〉

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2 The UBA from Figure 1 and the Markov chain M on the left, and their product, B, on
the right. The (single) accepting recurrent SCC is shaded green, and the two other SCCs are shaded
red.

This problem is PSPACE-complete [8, 7], but solvable in polynomial time if A is deterministic.
For UBAs a polynomial-time algorithm was described in [2, 3]. In this paper we obtain a
faster algorithm (recall that E is the set of transitions in the Markov chain):

I Theorem 7. Given a Markov chainM = (S,M), an initial distribution ι, and a UBA A =
(Q,S, δ,Q0, F), one can compute PrMι (L(A)) in time O(|Q|κ|S|κ + |Q|3|E|+ |δ|2|E|).

Before we prove this theorem in Section 3.3, we describe the algorithm from [2, 3] and analyse
the runtime of an efficient implementation.

3.1 The Basic Linear System
LetM = (S,M) be a Markov chain, ι an initial distribution. Let B ∈ R(Q×S)×(Q×S) be the
following matrix:

B〈q,s〉,〈q′,s′〉 =
{
Ms,s′ if q′ ∈ δ(q, s)
0 otherwise (1)

Define ~z ∈ RQ×S by ~z〈q,s〉 = PrMs (L(Aq)). Then PrMι (L(A)) =
∑
q∈Q0

∑
s∈S ι(s)~z〈q,s〉.

Lemma 4 in [3] implies that ~z = B~z.

I Example 8. Consider the UBA A from Figure 1 and the two-state Markov chain M
shown on the left of Figure 2. The weighted graph on the right of Figure 2 represents the
matrix B, obtained from A andM according to Equation (1). It is natural to think of B as
a product of A andM. Notice that B is not stochastic: the sum of the entries in each row
(equivalently, the total outgoing transition weight of a graph node) is not always one.

Although ~z is a solution the system of equations ~ζ = B~ζ, this system does not uniquely
identify ~z. Indeed, any scalar multiple of ~z is a solution for these equations. To uniquely
identify ~z by a system of linear equations, we need to analyse the SCCs of B.

S. Kiefer and C. Widdershoven 82:7

All SCCs D satisfy ρ(D) ≤ 1, see [3, Proposition 7]. An SCC D of B is called recurrent
if ρ(BD,D) = 1. It is called accepting if there is 〈q, s〉 ∈ D with q ∈ F .

I Example 9. The matrix B from Figure 2 has three SCCs, namely the two singleton
sets {〈q0, b〉} and {〈q3, b〉}, and D = {〈q0, a〉, 〈q1, a〉, 〈q1, b〉, 〈q2, a〉, 〈q2, b〉, 〈q3, a〉}. Only D is
recurrent; indeed, ~y = (~y〈q0,a〉, ~y〈q1,a〉, ~y〈q1,b〉, ~y〈q2,a〉, ~y〈q2,b〉, ~y〈q3,a〉)> = (2, 1, 3, 1, 3, 2)> is a
dominant eigenvector with BD,D~y = ~y. Since q0 is accepting, D is accepting recurrent.

Denote the set of accepting recurrent SCCs by D+ and the set of non-accepting recurrent
SCCs by D0. By [3, Lemma 8], for D ∈ D+ we have ~zd > 0 for all d ∈ D, and for D ∈ D0
we have ~zD = ~0. Hence, for D ∈ D+, there exists a D-normaliser, i.e., a vector ~µ ∈ RD such
that ~µ>~zD = 1. This gives us a system of linear equations that identifies ~z uniquely [3]:

I Lemma 10 (Lemma 12 in [3]). Let D+ be the set of accepting recurrent SCCs, and D0 the
set of non-accepting recurrent SCCs. For each D ∈ D+ let ~µ(D) be a D-normaliser. Then
~z is the unique solution of the following linear system:

~ζ = B~ζ

for all D ∈ D+ : ~µ(D)>~ζD = 1

for all D ∈ D0 : ~ζD = ~0

(2)

Uniqueness follows from the fact that the system ~ζ = B~ζ describes the eigenspace of the
dominant eigenvalue (here, 1) of a nonnegative strongly connected matrix (here, B), and
such eigenspaces are one-dimensional. This leads to the following result:

I Proposition 11. Suppose N is the runtime of an algorithm to calculate a normaliser for
each accepting recurrent SCC. Then one can compute PrMι (L(A)) in time O(|Q|κ|S|κ) +N .

Proof. Lemma 10 implies correctness of the following procedure to calculate PrMι (L(A)):
1. Set up the matrix B from Equation (1).
2. Compute the SCCs of B.
3. For each SCC C, check whether C is recurrent.
4. For each accepting recurrent SCC D, compute its D-normaliser ~µ(D).
5. Compute ~z by solving the linear system (2) in Lemma 10.
6. Compute PrMι (L(A)) =

∑
s∈S

∑
q∈Q0

ι(s)~zq,s.
One can set up B in time O(|Q|2|S|2). Using Tarjan’s algorithm one can compute the SCCs
of B in time linear in the vertices and edges of B, hence in O(|Q|2|S|2) [17]. One can find
those SCCs D which are recurrent in time O(|Q|κ|S|κ) by checking if I −BD,D is invertible.
The linear system (2) has O(|Q||S|) equations, and thus can be solved in time O(|Q|κ|S|κ).
Hence the total runtime is O(|Q|κ|S|κ) +N . J

In Section 3.2 we describe the combinatorial, cut based, approach from [2, 3] to calculating
D-normalisers and analyse its complexity. In Section 3.3 we describe a novel linear-algebra
based approach, which is faster in terms of the automaton.

3.2 Calculating D-Normalisers Using Cuts
For the remainder of the paper, let D be an accepting recurrent SCC. A fibre over s ∈ S is
a subset of D of the form α× {s} for some α ⊆ Q. Given a fibre f = α× {s} and a state
s′ ∈ S, if Ms,s′ > 0 we define the fibre f . s′ as follows:

f . s′ := {〈q, s′〉 | q ∈ δ(α, s)} ∩D.

MFCS 2019

82:8 Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

If Ms,s′ = 0, then f . s′ is undefined, and for w ∈ S∗ we define f .w = f if w = ε and
f .ws′ = (f .w) . s′. If f = {d} for some d ∈ D we may write d . s′ for f . s′.

We call a fibre c a cut if c = d . v for some v ∈ S∗ and d ∈ D, and c .w 6= ∅ for all w ∈ S∗
whenever c .w is defined. Note that if c is a cut then so is c .w whenever it is defined. Given
a cut c ⊆ D we call its characteristic vector [[[c]]] ∈ {0, 1}D a cut vector. In the example in
Figure 2, it is easy to see that {〈q1, b〉} = 〈q0, a〉 . b is a cut.

I Lemma 12 (Lemma 10 in [3]). There exists a cut. Any cut vector ~µ is a normaliser, i.e.,
~µ>~zD = 1.

Loosely speaking, ~µ>~zD ≤ 1 follows from unambiguousness, and ~µ>~zD 6< 1 follows from
an ergodicity argument (intuitively, all states in the cut are almost surely visited infinitely
often). The following lemma is the basis for the cut computation algorithm in [2, 3]:

I Lemma 13 (Lemma 17 in [3]). Let D ⊆ Q× S be a recurrent SCC. Let d ∈ D. Suppose
w ∈ S∗ is such that d .w 3 d is not a cut. Then there are v ∈ S∗ and e 6= d with d . v ⊇ {d, e}
and e .w 6= ∅. For any such e, d .w ∩ e .w = ∅. Hence d . vw ⊇ {d, e} .w) d .w.

This suggests a way of generating an increasing sequence of fibres, culminating in a cut. We
prove the following proposition:

I Proposition 14. Let D ⊆ Q×S be a recurrent SCC. Denote by T the set of edges in BD,D.
One can compute a cut in time O(|Q|2|δ||D|+ |δ||T |).

Define, for some d = 〈q, s〉 ∈ D, its co-reachability set Co(d) ⊆ D: it consists of those
e ∈ D such that there exists a word w with {d, e} ⊆ d .w. Note that Co(d) is a fibre
over s. In the example of Figure 2 we have that Co(〈q0, a〉) = {〈q0, a〉, 〈q2, a〉}, with
{〈q0, a〉, 〈q2, a〉} ∈ 〈q0, a〉 . ba. The following lemma (proof in [12, Appendix B.2]) gives a
bound on the time to compute Co(d):

I Lemma 15. One can compute Co(d) in time O(|Q||D|+|δ||T |). Moreover, one can compute
in time O(|Q|2|D| + |δ||T |) a list (CoPath(d)(e))e∈Co(d) such that CoPath(d)(e) ∈ S∗ and
{d, e} ⊆ d .CoPath(d)(e) and |CoPath(d)(e)| ≤ |Q||D|.

The lemma is used in the proof of Proposition 14:

Proof sketch of Proposition 14. Starting from a singleton fibre {d}, where d = 〈q, s〉 ∈ D
is chosen arbitrarily, we keep looking for words v ∈ S∗ that have the properties described in
Lemma 13 to generate larger fibres d .w:
1. w := ε (the empty word)
2. while ∃ v ∈ S∗ and ∃ e 6= d such that d . v ⊇ {d, e} and e .w 6= ∅ :

w := vw

3. return d .w.
By [2, Lemma 18] the algorithm returns a cut. In every loop iteration the fibre d .w
increases, so the loop terminates after at most |Q| iterations. For efficiency we calculate
Co(d) and CoPath(d) using Lemma 15, and we use dynamic programming to maintain the
set, Survives, of those e ∈ D for which e .w 6= ∅ holds. Whenever a prefix v is added to w,
we update Survives by processing v backwards. This leads to the following algorithm:
1. Calculate Co(d) and CoPath(d) using Lemma 15
2. w := ε; Survives := (Q× {s}) ∩D

S. Kiefer and C. Widdershoven 82:9

3. while ∃ e ∈ Co(d) \ {d} such that e ∈ Survives:
v0 = s; v1 . . . vn := CoPath(d)(e)
for i = n, n− 1, . . . , 1:

Survives := {〈p, vi−1〉 ∈ D | (δ(p, vi−1)× {vi}) ∩ Survives 6= ∅}
w := v1 . . . vnw

4. return d .w
The runtime analysis is in [12, Appendix B.2]. J

I Example 16. Letting d = 〈q0, a〉 and e = 〈q2, a〉 we have Co(d) = {d, e} with
CoPath(d)(d) = ε and CoPath(d)(e) = baa. Initially we have Survives = Q × {a}. In
the first iteration the algorithm can only pick e. The inner loop updates Survives first to
{q0, q1, q2, q3} × {a} (i.e., to itself), then to {q1, q2} × {b}, and finally to {q0, q3} × {a}. Now
(Co(d) \ d) ∩ Survives is empty and the loop terminates. The algorithm returns the cut
d . baa = {d, e}.

Applying Proposition 14 to the general procedure (Proposition 11) leads to the following
result on the combinatorial approach:

I Theorem 17. Given a Markov chainM = (S,M), an initial distribution ι, and a UBA A =
(Q,S, δ,Q0, F), one can compute PrMι (L(A)) in time O(|Q|κ|S|κ + |Q|3|δ||S|+ |δ|2|E|).

3.3 Calculating D-Normalisers Using Linear Algebra
Recall that D is an accepting recurrent SCC. For t ∈ S define the matrix ∆(t) ∈ {0, 1}D×D
as follows:

∆(t)〈q,s〉,〈q′,s′〉 :=
{

1 if s′ = t, Ms,t > 0, and q′ ∈ δ(q, s)
0 otherwise

Note that the graph of ∆(t) contains exactly the edges of the graph of BD,D that end in
vertices in Q×{t}. If Ms,t > 0 holds for all pairs (s, t), then the matrices (∆(t))t∈S generate
a semigroup of matrices, all of which have spectral radius 1. Such semigroups were recently
studied by Protasov and Voynov [16]. Specifically, Theorem 5 in [16] shows that there exists
an affine subspace F of RD which excludes ~0 and is invariant under multiplication by matrices
from the semigroup. Moreover, they provide a way to compute this affine subspace efficiently.
One can show that cut vectors are orthogonal to F . The key idea of our contribution is to
generalise cut vectors to pseudo-cuts, which are vectors ~µ ∈ RD that are orthogonal to F .
We will show (in Lemma 20 below) how to derive a D-normaliser based on a pseudo-cut that
is non-zero only in components that are in a co-reachability set Co(d) (from Lemma 15).

If Ms,t = 0 holds for some s, t (which will often be the case in model checking), then
∆(s)∆(t) is the zero matrix, which has spectral radius 0, not 1. Therefore, the results
of [16] are not directly applicable and we have to move away from matrix semigroups. In
the following we re-develop and generalise parts of the theory of [16] so that the paper is
self-contained and products of ∆(s)∆(t) with Ms,t = 0 are not considered.

Let w = s1s2 . . . sn ∈ S∗. Define ∆(w) = ∆(s1)∆(s2) · · ·∆(sn). We say w is enabled
if Msi,si+1 > 0 holds for all i ∈ {1, . . . , n − 1}. If f ⊆ D is a fibre over s such that sw is
enabled, we have [[[f .w]]]> = [[[f]]]>∆(w). We overload the term fibre over s to describe any
vector ~µ ∈ RD such that ~µ〈q,s′〉 = 0 whenever s′ 6= s. We define pseudo-cuts over s to be
fibres ~µ over s such that ~µ>∆(w)~z = ~µ>~z holds for all w ∈ S∗ such that sw is enabled. Let
c ⊆ Q × {s} be a cut with sw enabled. Then c .w is a cut, and [[[c]]]>∆(w)~z = 1 = [[[c]]]>~z
holds by Lemma 12. It follows that cut vectors are pseudo-cuts.

MFCS 2019

82:10 Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

I Example 18. Since c = {〈q0, a〉, 〈q2, a〉} from Example 16 is a cut, [[[c]]] is a pseudo-cut
over a. Pseudo-cuts do not need to be combinations of cut vectors: although the fibre
f = {〈q0, a〉, 〈q1, a〉} is not a cut, [[[f]]] is a pseudo-cut over a.

Fix some d = 〈q, s〉 ∈ D. Recall that Co(d) consists of those e ∈ D such that there exists
a word w with {d, e} ⊆ d .w. We define Co(d)-pseudo-cuts to be pseudo-cuts ~µ over s such
that ~µd 6= 0 and ~µe = 0 holds for all e 6∈ Co(d).

I Example 19. Any cut vector is a Co(d)-pseudo-cut for some d ∈ D, by definition, and
so are scalar multiples of cut vectors. The vector [[[f]]] in Example 18, however, is not a
Co(d)-pseudo-cut, since 〈q1, a〉 6∈ Co(〈q0, a〉) and 〈q0, a〉 6∈ Co(〈q1, a〉).

From a Co(d)-pseudo-cut we can easily derive a D-normaliser:

I Lemma 20. Let ~µ ∈ RD be a Co(d)-pseudo-cut. Then 1
~µd
~µ is a D-normaliser.

Proof. Let w be an enabled word in M such that d .w is a cut containing d. Such a word
exists (see the proof sketch of Proposition 14). Since ([[[d]]]>∆(w))> = [[[d .w]]] is a D-normaliser
(by Lemma 12), it suffices to prove that 1

~µd
~µ>~z = [[[d]]]>∆(w)~z.

We can write ~µ as
∑
d′∈Co(d) ~µd′[[[d′]]], so ~µ>∆(w) =

∑
d′∈Co(d) ~µd′[[[d′]]]>∆(w). For any

d′ ∈ Co(d) \ {d}, let w′ be such that {d, d′} ⊆ d .w′. Now we see that d′ ∈ d .ww′, and
since d .w is a cut so are d .ww′ and d .ww′w. Thus,

[[[d]]]>∆(w)~z = [[[d]]]>∆(ww′w)~z ≥ [[[d]]]>∆(w)~z + [[[d′]]]>∆(w)~z,

which implies [[[d′]]]>∆(w)~z = 0 for every d′ ∈ Co(d) \ {d}. This means that

~µ>∆(w)~z =
∑

d′∈Co(d)

~µd′[[[d′]]]>∆(w)~z = ~µd[[[d]]]>∆(w)~z.

Since ~µ is a pseudo-cut, this implies that 1
~µd
~µ>~z = 1

~µd
~µ>∆(w)~z = [[[d]]]>∆(w)~z. J

By Lemma 20, to find a D-normaliser it suffices to find a Co(d)-pseudo-cut. Fix a dominant
eigenvector ~y of BD,D so that ~y is strictly positive in all components. One can compute
such ~y in time O(|D|κ). By [2, Lemma 8] the vector ~zD is also a dominant eigenvector
of BD,D, hence ~y and ~zD (the latter of which is yet unknown) are scalar multiples. In order
to compute a Co(d)-pseudo-cut, we compute a basis for the space spanned by ∆(w)~y for
all enabled words w. We use a technique similar to the one employed by Tzeng in [18] for
checking equivalence of probabilistic automata. To make this more efficient, we compute
separate basis vectors for each s ∈ S. Define ∆′(t) ∈ {0, 1}D×D as ∆′(t)〈q1,s1〉,〈q2,s2〉 = 1 if
q1 = q2 and s1 = s2 = t and 0 otherwise. Note that ∆(s)∆′(s) = ∆(s) holds for all s ∈ S.

I Lemma 21. Suppose ~y = BD,D~y is given. Denote by V (s) ⊆ RD the vector space spanned
by the vectors ∆′(s)∆(w)~y for w ∈ S∗ and s ∈ S. Let QD,t = (Q × {t}) ∩ D and let
E(t) = {(s, t) |Ms,t > 0} be the set of edges in M that end in t. One can compute a basis
R(s) of V (s) for all s ∈ S in time O(|Q|2

∑
t∈S |QD,t||E(t)|), where for each ~r ∈ R(s) we

have ~r = ∆′(s)∆(w)~y for some enabled word sw.

Proof sketch. Fix an arbitrary total order <S on S. We define a total order �S on S∗ as
the “shortlex” order but with words read from right to left. That is, the empty word ε is the
smallest element, and for v, w ∈ S∗ and s, t ∈ S, we have vs�S wt if (1) |vs| < |wt| or (2)
|vs| = |wt| and s <S t or (3) |vs| = |wt| and s = t and v �S w.

We use a technique similar to the one by Tzeng in [18]. At every step in the algorithm,
worklist is a set of pairs (sw,∆′(s)∆(w)~y). We write min�S

(worklist) to denote the pair in
worklist where sw is minimal with respect to �S .

S. Kiefer and C. Widdershoven 82:11

1. for each s ∈ S, let R(s) := {∆′(s)~y} and R(s)⊥ := {∆′(s)~y}
2. worklist := {(st,∆′(s)∆(t)~y) |Ms,t > 0}
3. while worklist 6= ∅:

(tw, ~u) := min�S
(worklist); worklist := worklist \ {(tw, ~u)}

Using the Gram-Schmidt process1, let ~u⊥ be the orthogonalisation of ~u against R⊥(t)
if ~u⊥ 6= ~0, i.e., if ~u is linearly independent of R⊥(t):

R(t) := R(t) ∪ {~u} and R⊥(t) := R⊥(t) ∪ {~u⊥}
worklist := worklist ∪ {(stw,∆′(s)∆(t)~u) |Ms,t > 0}

4. return R(s) for all s ∈ S
At any point and for all s ∈ S, the sets R(s) and R(s)⊥ span the same vector space, and
this space is a subspace of V (s). The sets R(s) and R(s)⊥ consist of linearly independent
fibres over s, and these fibres are possibly nonzero only in the QD,s-components. Hence
|
⋃
s∈S R(s)| ≤ |D| and thus there are at most |D| iterations of the while loop that increase

worklist. At every iteration where ~u is dependent on R(t)⊥ the set worklist decreases by one,
and therefore the algorithm terminates. In [12, Appendix B.3] we prove that in the end we
have that R(s) spans V (s), and we analyse the runtime. J

I Example 22. Let us return to our running example. We see that the vector ~y =
(~y〈q0,a〉, ~y〈q1,a〉, ~y〈q1,b〉, ~y〈q2,a〉, ~y〈q2,b〉, ~y〈q3,a〉)> = (2, 1, 3, 1, 3, 2)> is a dominant eigenvector of
BD,D. Fix the order a <S b. Step 1 initialises R(a) to {∆′(a)~y} and R(b) to {∆′(b)~y}, where
∆′(a)~y = (2, 1, 0, 1, 0, 2)> and ∆′(b)~y = (0, 0, 3, 0, 3, 0)>. Step 2 computes ∆′(a)∆(a)~y =
(1, 2, 0, 2, 0, 1)>, which is linearly independent of ∆′(a)~y. However, ∆′(b)∆(a)~y = (0, 0, 3,
0, 3, 0)> = ∆′(b)~y. Also, ∆′(a)∆(b)~y = (3, 0, 0, 0, 0, 3)> = 2∆′(a)~y − ∆′(a)∆(a)~y and
∆′(b)∆(b)~y = (0, 0, 3, 0, 3, 0)> = ∆′(b)~y. One can check that ∆′(a)∆(aa)~y = ∆′(a)~y and
∆′(b)∆(aa)~y = ∆′(b)~y. Hence the algorithm returns R(a) = {(2, 1, 0, 1, 0, 2)>, (1, 2, 0, 2, 0, 1)>}
and R(b) = {(0, 0, 3, 0, 3, 0)>}.

Fix d = 〈q, s〉 ∈ D for the rest of the paper. The following lemma characterises Co(d)-
pseudo-cuts in a way that is efficiently computable:

I Lemma 23. A vector ~µ ∈ RD with ~µd = 1 and ~µe = 0 for all e 6∈ Co(d) is a Co(d)-pseudo-
cut if and only if ~µ>~r = ~µ>~y holds for all ~r ∈ R(s).

For an intuition of the proof, consider the affine space, F ⊆ RD, affinely spanned by those
∆′(s)∆(w)~y for which sw is enabled. This affine space was alluded to in the beginning of
this subsection and is visualised as a blue straight line on the right of Figure 1. The shaded
plane in this figure is the vector space of pseudo-cuts over s. This space is orthogonal to F .
The following lemma says that F is affinely spanned by the points in R(s). This strengthens
the property of R(s) in Lemma 21 where R(s) was defined to span a vector space.

I Lemma 24. Let w ∈ S∗ be such that sw is enabled. By the definition of R(s) there are
γ~r ∈ RD for each ~r ∈ R(s) such that ∆′(s)∆(w)~y =

∑
~r∈R(s) γ~r~r. We have

∑
~r∈R(s) γ~r = 1.

Proof. Let c be a cut containing d. Since R(s) is a basis, for any ~r = ∆′(s)∆(w~r)~y ∈ R(s) the
word sw~r is enabled. Therefore, c .w~r is a cut and by Lemma 12 we have [[[c .w~r]]]>~y = [[[c]]]>~y.

1 For good numerical stability, one should use the so-called Modified Gram-Schmidt process [10,
Chapter 19].

MFCS 2019

82:12 Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

Hence [[[c]]]>~r = [[[c]]]>∆′(s)∆(w~r)~y = [[[c]]]>∆(w~r)~y = [[[c .w~r]]]>~y = [[[c]]]>~y. Moreover, we have:

[[[c]]]>~y = [[[c]]]>∆(w)~y since sw is enabled and by Lemma 12
= [[[c]]]>∆′(s)∆(w)~y since [[[c]]] is a fibre over s

= [[[c]]]>
∑

~r∈R(s)

γ~r~r by the definition of γ~r

= [[[c]]]>~y
∑

~r∈R(s)

γ~r as argued above.

Therefore,
∑
~r∈R(s) γ~r = 1. J

Now we can prove Lemma 23:

Proof of Lemma 23. For the “if” direction, let w be such that sw is enabled, and it suffices to
show that ~µ>∆(w)~y = ~µ>~y. By Lemma 24 there are γ~r such that ∆′(s)∆(w)~y =

∑
~r∈R(s) γ~r~r

and
∑
~r∈R(s) γ~r = 1. We have:

~µ>∆(w)~y = ~µ>∆′(s)∆(w)~y =
∑

~r∈R(s)

γ~r~µ
>~r =

∑
~r∈R(s)

γ~r~µ
>~y = ~µ>~y ,

where the last equality is from Lemma 24.
For the “only if” direction, suppose ~µ is a Co(d)-pseudo-cut. Let ~r = ∆′(s)∆(w~r)~y ∈ R(s).

Then sw~r is enabled and ~µ>~r = ~µ>∆′(s)∆(w~r)~y = ~µ>∆(w~r)~y = ~µ>~y. J

I Example 25. In Example 16 we derived that ~y = (2, 1, 3, 1, 3, 2)> and R(a) = {(2, 1, 0,
1, 0, 2)>, (1, 2, 0, 2, 0, 1)>}. The cut vector ~µ = (1, 0, 0, 1, 0, 0)> from Example 18 satisfies
~µ>~r = 3 = ~µ>~y for both ~r ∈ R(a).

Using Lemmas 15, 21 and 23 we obtain:

I Proposition 26. Let D ⊆ Q×S be a recurrent SCC. Denote by TD the set of edges of BD,D.
For t ∈ S, let E(t) denote the set of edges of M that end in t, and let QD,t = (Q× {t}) ∩D.
Let d = 〈q, s〉 ∈ D. One can compute a Co(d)-pseudo-cut in time O(|D|κ + |Q||D|+ |δ||TD|+
|Q|2

∑
t∈S |QD,t||E(t)|).

Now our main result follows, which we restate here:

I Theorem 7. Given a Markov chainM = (S,M), an initial distribution ι, and a UBA A =
(Q,S, δ,Q0, F), one can compute PrMι (L(A)) in time O(|Q|κ|S|κ + |Q|3|E|+ |δ|2|E|).

4 Discussion

We have analysed two algorithms for computing normalisers: the cut-based one by Baier
et al. [2, 3], and a new one, which draws from techniques by Protasov and Voynov [16] for
the analysis of matrix semigroups. The first approach is purely combinatorial, and in terms
of the automaton, an efficient implementation runs in time O(|Q|3|δ| + |δ|2) = O(|Q|3|δ|)
(Proposition 14).

The second approach combines a linear-algebra component to compute R(s) with a
combinatorial algorithm to compute the co-reachability set Co(d). In terms of the automaton,
the linear-algebra component runs in time O(|Q|3) (Lemma 21), while the combinatorial
part runs in time O(|δ|2), leading to an overall runtime of O(|Q|3 + |δ|2). Note that for all
r ∈ [1, 2], if |δ| = Θ(|Q|r) then the second approach is faster by at least a factor of |Q|.

S. Kiefer and C. Widdershoven 82:13

Although it is not the main focus of this paper, we have analysed also the model-checking
problem, where a non-trivial Markov chain is part of the input. The purely combinatorial
algorithm runs in time O(|Q|κ|S|κ + |Q|3|δ||S| + |δ|2|E|), and the linear-algebra based
algorithm in time O(|Q|κ|S|κ + |Q|3|E| + |δ|2|E|). There are cases in which the latter is
asymptotically worse, but not if κ = 3 (i.e., solving linear systems in a normal way such as
Gaussian elimination) or if |E| is O(|S|).

It is perhaps unsurprising that a factor of |δ|2 from the computation of Co(d) occurs in
the runtime, as it also occurs when one merely verifies the unambiguousness of the automaton,
by searching the product of the automaton with itself. Can the factor |δ|2 (which may be
quartic in |Q|) be avoided?

References
1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
2 Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David Müller, and James

Worrell. Markov chains and unambiguous Büchi automata. In Proceedings of Computer Aided
Verification (CAV), volume 9779 of LNCS, pages 23–42, 2016.

3 Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David Müller, and James
Worrell. Markov chains and unambiguous automata. Draft journal submission. Available at
https://arxiv.org/abs/1605.00950, 2019.

4 Abraham Berman and Robert J. Plemmons. Nonnegative matrices in the mathematical sciences.
SIAM, 1994.

5 Manuel Bodirsky, Tobias Gärtner, Timo von Oertzen, and Jan Schwinghammer. Efficiently
Computing the Density of Regular Languages. In LATIN 2004: Theoretical Informatics, pages
262–270. Springer, 2004.

6 James R. Bunch and John E. Hopcroft. Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation, 28:231–236, 1974.

7 Doron Bustan, Sasha Rubin, and Moshe Y. Vardi. Verifying ω-Regular Properties of Markov
Chains. In 16th International Conference on Computer Aided Verification (CAV), volume
3114 of Lecture Notes in Computer Science, pages 189–201. Springer, 2004.

8 Costas Courcoubetis and Mihalis Yannakakis. The Complexity of Probabilistic Verification.
Journal of the ACM, 42(4):857–907, 1995.

9 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

10 Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, second edition,
2002.

11 M. James. The generalised inverse. The Mathematical Gazette, 62:109–114, 1978.
12 Stefan Kiefer and Cas Widdershoven. Efficient Analysis of Unambiguous Automata Using

Matrix Semigroup Techniques (full version). arXiv:1906.10093, 2016. URL: http://arxiv.
org/abs/1906.10093.

13 Vidyadhar G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
14 François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Proceedings of the 39th

International Symposium on Symbolic and Algebraic Computation, ISSAC’14, pages 296–303.
ACM, 2014.

15 Marko D. Petković and Predrag S. Stanimirović. Generalised matrix inversion is not harder
than matrix multiplication. Journal of Computational and Applied Mathematics, 230:270–282,
2009.

16 V.Yu. Protasov and A.S. Voynov. Matrix semigroups with constant spectral radius. Linear
Algebra and its Applications, 513:376–408, 2017.

17 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

18 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM Journal on Computing, 21(2):216–227, 1992.

MFCS 2019

http://arxiv.org/abs/1906.10093
http://arxiv.org/abs/1906.10093

On the Mortality Problem:
From Multiplicative Matrix Equations to Linear
Recurrence Sequences and Beyond
Paul C. Bell
Department of Computer Science, Byrom Street, Liverpool John Moores University,
Liverpool, L3-3AF, UK
p.c.bell@ljmu.ac.uk

Igor Potapov
Department of Computer Science, Ashton Building, Ashton Street,
University of Liverpool, Liverpool, L69-3BX, UK
potapov@liverpool.ac.uk

Pavel Semukhin
Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford, OX1 3QD, UK
pavel.semukhin@cs.ox.ac.uk

Abstract
We consider the following variant of the Mortality Problem: given k × k matrices A1, A2, . . . , At,
does there exist nonnegative integers m1, m2, . . . , mt such that the product Am1

1 Am2
2 · · ·Amt

t is equal
to the zero matrix? It is known that this problem is decidable when t ≤ 2 for matrices over algebraic
numbers but becomes undecidable for sufficiently large t and k even for integral matrices.

In this paper, we prove the first decidability results for t > 2. We show as one of our central
results that for t = 3 this problem in any dimension is Turing equivalent to the well-known Skolem
problem for linear recurrence sequences. Our proof relies on the Primary Decomposition Theorem for
matrices that was not used to show decidability results in matrix semigroups before. As a corollary
we obtain that the above problem is decidable for t = 3 and k ≤ 3 for matrices over algebraic
numbers and for t = 3 and k = 4 for matrices over real algebraic numbers. Another consequence is
that the set of triples (m1, m2, m3) for which the equation Am1

1 Am2
2 Am3

3 equals the zero matrix is
equal to a finite union of direct products of semilinear sets.

For t = 4 we show that the solution set can be non-semilinear, and thus it seems unlikely that
there is a direct connection to the Skolem problem. However we prove that the problem is still
decidable for upper-triangular 2×2 rational matrices by employing powerful tools from transcendence
theory such as Baker’s theorem and S-unit equations.

2012 ACM Subject Classification Theory of computation → Computability; Mathematics of com-
puting → Computations on matrices

Keywords and phrases Linear recurrence sequences, Skolem’s problem, mortality problem, matrix
equations, primary decomposition theorem, Baker’s theorem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.83

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.10188.

Funding Igor Potapov: Partially supported by EPSRC grants EP/R018472/1 and EP/M00077X/1.
Pavel Semukhin: Supported by ERC grant AVS-ISS (648701).

Acknowledgements We thank Prof. James Worrell for useful discussions, particularly related to
S-unit equations.

© Paul C. Bell, Igor Potapov, and Pavel Semukhin;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 83; pp. 83:1–83:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

 https://orcid.org/0000-0003-2620-635X
mailto:p.c.bell@ljmu.ac.uk
https://orcid.org/0000-0002-7192-7853
mailto:potapov@liverpool.ac.uk
https://orcid.org/0000-0002-7547-6391
mailto:pavel.semukhin@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.83
https://arxiv.org/abs/1902.10188
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 On the Mortality Problem

1 Introduction

A large number of naturally defined matrix problems are still unanswered, despite the long
history of matrix theory. Some of these questions have recently drawn renewed interest in
the context of the analysis of digital processes, verification problems, and links with several
fundamental questions in mathematics [11, 7, 37, 39, 38, 35, 17, 14, 15, 36, 5, 41, 27].

One of these challenging problems is the Mortality Problem of whether the zero matrix
belongs to a finitely generated matrix semigroup. It plays a central role in many questions
from control theory and software verification [44, 10, 8, 36, 2]. The mortality problem has been
known to be undecidable for matrices in Z3×3 since 1970 [40] and the current undecidability
bounds for the M(d, k × k) problem (i.e. the mortality problem for semigroups generated
by d matrices of size k × k) are M(6, 3 × 3), M(4, 5 × 5), M(3, 9 × 9) and M(2, 15 × 15),
see [13]. It is also known that the problem is NP-hard for 2× 2 integer matrices [4] and is
decidable for 2× 2 integer matrices with determinant 0,±1 [34]. In the case of finite matrix
semigroups of any dimension the mortality problem is known to be PSPACE-complete [26].

In this paper, we study a very natural variant of the mortality problem when matrices
must appear in a fixed order (i.e. under bounded language constraint): Given k× k matrices
A1, A2, . . . , At over a ring F , do there exist m1,m2, . . . ,mt ∈ N such that Am1

1 Am2
2 . . . Amt

t =
Ok,k, where Ok,k is k × k zero matrix?

In general (i.e. replacing Ok,k by other matrices) this problem is known as the solvability
of multiplicative matrix equations and has been studied for many decades. In its simplest
form, when k = 1, the problem was studied by Harrison in 1969 [21] as a reformulation of
the “accessibility problem” for linear sequential machines. The case t = 1 was solved in
polynomial time in a celebrated paper by Kannan and Lipton in 1980 [25]. The case t = 2,
i.e. AxBy = C where A, B and C are commuting matrices was solved by Cai, Lipton and
Zalcstein in 1994 [12]. Later, in 1996, the solvability of matrix equations over commuting
matrices was solved in polynomial time in [1] and in 2010 it was shown in [3] that AxBy = C

is decidable for non-commuting matrices of any dimension with algebraic coefficients by
a reduction to the commutative case from [1]. However, it was also shown in [3] that the
solvability of multiplicative matrix equations for sufficiently large natural numbers t and k is
in general undecidable by an encoding of Hilbert’s tenth problem and in particular for the
mortality problem with bounded language constraint. In 2015 it was also shown that the
undecidability result holds for such equations with unitriangluar matrices [31] and also in
the case of specific equations with nonnegative matrices [23].

The decidability of matrix equations for non-commuting matrices is only known as
corollaries of either recent decidability results for solving membership problem in 2×2 matrix
semigroups [41, 42] or in the case of quite restricted classes of matrices, e.g. matrices from
the Heisenberg group [27, 28] or row-monomial matrices over commutative semigroups [30].
In the other direction, progress has been made for matrix-exponential equations, but again
in the case of commuting matrices [36].

In this paper, we prove the first decidability results for the above problem when t = 3
and t = 4. We will call these problems the ABC-Z and ABCD-Z problems, respectively.
More precisely, we will show that the ABC-Z problem in any dimension is Turing equivalent
to the Skolem problem (also known as Skolem-Pisot problem) which asks whether a given
linear recurrence sequence ever reaches zero. Our proof relies on the Primary Decomposition
Theorem for matrices (Theorem 2) that was not used to show decidability results in matrix
semigroups before. As a corollary, we obtain that the ABC-Z problem is decidable for 2× 2
and 3× 3 matrices over algebraic numbers and also for 4× 4 matrices over real algebraic

P. C. Bell, I. Potapov, and P. Semukhin 83:3

numbers. Another consequence of the above equivalence is that the set of triples (m,n, `)
that satisfy the equation AmBnC` = Ok×k can be expressed as a finite union of direct
products of semilinear sets.

In contrast to the ABC-Z problem, we show that the solution set of the ABCD-Z problem
can be non-semilinear. This indicates that the ABCD-Z problem is unlikely to be related
to the Skolem problem. However we will show that the ABCD-Z problem is decidable for
upper-triangular 2×2 rational matrices. The proof of this result relies on powerful tools from
transcendence theory such as Baker’s theorem for linear forms in logarithms, S-unit equations
from algebraic number theory and the Frobenius rank inequality from matrix analysis. More
precisely, we will reduce the ABCD-Z equation for upper-triangular 2× 2 rational matrices
to an equation of the form ax+ by + cz = 0, where x, y, z are S-units, and then use an upper
bound on the solutions of this equation (as in Theorem 5). On the other hand, if we try to
generalize this result to arbitrary 2 × 2 rational matrices or to upper-triangular matrices
of higher dimension, then we end up with an equation that contain a sum of four or more
S-units, and for such equations no effective upper bounds on their solutions are known. So,
these generalizations seems to lie beyond the reach of current mathematical knowledge.

2 Preliminaries

We denote by N, Z, Q and C the sets of natural, integer, rational and complex numbers,
respectively. Further, we denote by A the set of algebraic numbers and by AR the set of real
algebraic numbers.

For a prime number p we define a valuation vp(x) for nonzero x ∈ Q as follows: if
x = pk m

n , where m,n ∈ Z and p does not divide m or n, then vp(x) = vp(pk m
n) = k.

Throughout this paper F will denote either the ring of integers Z or one of the fields Q,
A, AR or C. We will use the notation Fn×m for the set of n×m matrices over F .

We denote by ei the i’th standard basis vector of some dimension (which will be clear
from the context). Let On,m be the zero matrix of size n ×m, In be the identity matrix
of size n× n, and 0n be the zero column vector of length n. Given a finite set of matrices
G ⊆ Fn×n, we denote by 〈G〉 the multiplicative semigroup generated by G.

If A ∈ Fm×m and B ∈ Fn×n, then we define their direct sum as A⊕B =
[

A Om,n

On,m B

]
.

Let C ∈ Fk×k be a square matrix. We write det(C) for the determinant of C. We call C
singular if det(C) = 0, otherwise it is said to be invertible (or non-singular). Matrices A and
B from Fk×k are called similar if there exists an invertible k × k matrix S (perhaps over a
larger field containing F) such that A = SBS−1. In this case, S is said to be a similarity
matrix transforming A to B.

We will also require the following inequality regarding ranks of matrices, known as the
Frobenius rank inequality, see [24] for further details.

I Theorem 1 (Frobenius Rank Inequality). Let A,B,C ∈ Fk×k. Then

Rk(AB) + Rk(BC) ≤ Rk(ABC) + Rk(B)

In the proof of our first main result about the ABC-Z problem we will make use of the
primary decomposition theorem for matrices.

I Theorem 2 (Primary Decomposition Theorem [22]). Let A be a matrix from Fn×n, where
F is a field. Let mA(x) be the minimal polynomial for A such that

mA(x) = p1(x)r1 · · · pk(x)rk ,

MFCS 2019

83:4 On the Mortality Problem

where the pi(x) are distinct irreducible monic polynomials over F and the ri are positive
integers. Let Wi be the null space of pi(A)ri and let Si be a basis for Wi. Then
(1) S1 ∪ · · · ∪ Sk is a basis for Fn and Fn = W1 ⊕ · · · ⊕Wk,
(2) each Wi is invariant under A, that is, Ax ∈Wi for any x ∈Wi,
(3) let S be a matrix whose columns are equal to the basis vectors from S1 ∪ · · · ∪ Sk; then

S−1AS = A1 ⊕ · · · ⊕Ak,

where each Ai is a matrix over F of the size |Si| × |Si|, and the minimal polynomial of
Ai is equal to pi(x)ri .

The next two propositions are well-known facts.

I Proposition 3. If p(x) is a polynomial over a field F , where F is either Q, A or AR, then
the primary decomposition of p(x) can be algorithmically computed.

I Proposition 4. Let A ∈ Fn×n and mA(x) be the minimal polynomial of A. Then A is
invertible if and only if mA(x) has nonzero free coefficient, i.e., mA(x) is not divisible by x.

Our proof of the decidability of ABCD-Z problem for 2 × 2 upper-triangular rational
matrices relies on the following result which is proved using Baker’s theorem on linear forms
in logarithms (see Corollary 4 in [16] and also [18]).

I Theorem 5. Let S = {p1, . . . , ps} be a finite collection of prime numbers and let a, b, c be
relatively prime nonzero integers, that is, gcd(a, b, c) = 1.

If x, y, z are relatively prime nonzero integers composed of primes from S that satisfy the
equation ax+ by + cz = 0, then

max{|x|, |y|, |z|} < exp(sCsP 4/3 logA)

for some constant C, where P = max{p1, . . . , ps} and A = max{|a|, |b|, |c|, 3}.

I Remark. Rational numbers whose numerator and denominator are divisible only by the
primes from S are called S-units.

3 Linear recurrence sequences and semilinear sets

There is a long history in computer science and mathematics of studying sequences of numbers
defined by some recurrence relation, where the next value in the sequence depends upon some
“finite memory” of previous values in the sequence. Possibly the simplest, and certainly the
most well known of these, is the Fibonacci sequence, which may be defined by the recurrence
F (n) = F (n − 1) + F (n − 2) with F (0) = F (1) = 1 being given as the initial conditions
of the sequence. We may generalise the Fibonacci sequence to define a linear recurrence
sequence, which find application in many areas of mathematics and other sciences and for
which many questions remain open. Let F be a ring; a sequence (un)∞n=0 is called a linear
recurrence sequence (1-LRS) if it satisfies a relation of the form:

un = ak−1un−1 + · · ·+ a1un−k+1 + a0un−k,

for any n ≥ k, where each a0, a1, . . . , ak−1 ∈ F are fixed coefficients1. Such a sequence
(un)∞n=0 is said to be of depth k if it satisfies no shorter linear recurrence relation (for any

1 In the literature, such a sequence is ordinarily called an LRS; we use the nomenclature 1-LRS since we
will study a multidimensional variant of this concept. Also, 1-LRS are usually considered over integers,
but in the present paper we will consider such sequences over algebraic numbers.

P. C. Bell, I. Potapov, and P. Semukhin 83:5

k′ < k). We call the initial k values of the sequence u0, u1, . . . , uk−1 the initial conditions of
the 1-LRS. Given the initial conditions and coefficients of a 1-LRS, every element is uniquely
determined.

The zero set of a 1-LRS is defined as follows: Z(un) = {j ∈ N | uj = 0}.
There are various questions that one may ask regarding Z(un). One notable example

relates to the famous “Skolem’s problem” which is stated in the following way:

I Problem 6 (Skolem’s Problem). Given the coefficients and initial conditions of a depth k
1-LRS (un)∞n=0, determine if Z(un) is the empty set.

Skolem’s problem has a long and rich history, see [19] for a good survey. We note here
that the problem remains open despite properties of zero sets having been studied even since
1934 [43]. It is known that the Skolem problem is at least NP-hard [9] and that it is decidable
for depth 3 over A and for depth 4 over AR, see [44] and [33]2. Other interesting questions
are related to the structure of Z(un). We remind the reader the definition of semilinear sets.

I Definition 7 (Semilinear set). A set S ⊆ N is called semilinear if it is the union of a finite
set and finitely many arithmetic progressions.

A seminal result regarding 1-LRSs is that there zero sets are semilinear.

I Theorem 8 (Skolem, Mahler, Lech [32, 43, 29] and [19, 20]). The zero set of a 1-LRS over
C (or more generally over any field of characteristic 0) is semilinear.

In particular, if (un)∞n=0 is a 1-LRS whose coefficients and initial conditions are algebraic
numbers, then one can algorithmically find a number L ∈ N such that for every i = 0, . . . , L−1,
if we let ui

m = ui+mL, then
(1) the sequence (ui

m)∞m=0 is a 1-LRS of the same depth as (un)∞n=0, and
(2) either Z(ui

m) = N or Z(ui
m) is finite.

Note that in the above theorem we can decide whether Z(ui
m) is finite or Z(ui

m) = N
because Z(ui

m) = N if and only if ui
0 = · · · = ui

k−1 = 0, where k is the depth of (ui
m)∞m=0.

We will also consider a stronger version of the Skolem problem.

I Problem 9 (Strong Skolem’s Problem). Given the coefficients and initial conditions of a
1-LRS (un)∞n=0 over A, find a description of the set Z(un). That is, find a finite set F such
that Z(un) = F if Z(un) is finite or, if Z(un) is infinite, find a finite set F , a constant
L ∈ N and numbers i1, . . . , it ∈ {0, . . . , L− 1} such that

Z(un) = F ∪ {i1 +mL : m ∈ N} ∪ · · · ∪ {it +mL : m ∈ N}.

Using the Skolem-Mahler-Lech theorem we can prove an equivalence between the strong
version of the Skolem problem and the standard version3.

I Theorem 10. Skolem’s problem of depth k over A is Turing equivalent to the strong
Skolem’s problem of the same depth.

Proof. Obviously, Skolem’s problem is reducible to the strong Skolem’s problem. We now
show a reduction in the other direction.

Let (un)∞n=0 be a depth-k 1-LRS over A. By Theorem 8, we can algorithmically find a
number L such that, for every i = 0, . . . , L − 1, the sequence ui

m = ui+mL is a 1-LRS of

2 A proof of decidability for depth 5 was claimed in [19], although there is possibly a gap in the proof [37].
3 This result was announced in [44] without a proof, probably with a similar construction in mind.

MFCS 2019

83:6 On the Mortality Problem

depth k which is either everywhere zero, that is, Z(ui
m) = N or Z(ui

m) is finite. Recall that
we can decide whether Z(ui

m) is equal to N by considering the first k terms of (ui
m)∞m=0.

By definition, we have Z(un) =
L−1⋃
i=0
{i+L·Z(ui

m)}. So, if Z(ui
m) = N, then {i+L·Z(ui

m)} =

{i+mL : m ∈ N}, and if Z(ui
m) is finite, then so is {i+ L·Z(ui

m)}.
To finish the proof we need to show how to compute Z(ui

m), and hence {i+ L·Z(ui
m)},

when it is finite. For this we will use an oracle for the Skolem problem. Let m′ be the smallest
number such that Z(ui

m+m′) is empty. Such m′ exists because Z(ui
m) is finite. Furthermore,

(um+m′)∞m=0 is a 1-LRS of depth k for any m′. So, we ask the oracle for the Skolem problem
to decide whether Z(ui

m+m′) = ∅ for each m′ ∈ N starting from 0 until we find one for which
Z(ui

m+m′) is empty. Note that we do not have any bound on m′ because we do not even
know the size of Z(ui

m). All we know is that Z(ui
m) is finite, and hence the above algorithm

will eventually terminate. Since Z(ui
m) is a subset of {0, . . . ,m′}, then we can compute it by

checking whether ui
m = 0 for m = 0, . . . ,m′. J

Linear recurrence sequences can also be represented using matrices [19]:

I Lemma 11. Let F be a ring; for a sequence (un)∞n=0 over F the following are equivalent:
(1) (un)∞n=0 is a 1-LRS of depth k.
(2) There are vectors u,v ∈ Fk and a matrix M ∈ Fk×k such that un = uTMnv for n ∈ N.

Moreover, for any matrix M ∈ Fk×k, the sequence un = (Mn)[1,k] is a 1-LRS of depth
at most k. On the other hand, if (un)∞n=0 is a 1-LRS of depth k, then there is a matrix
M ∈ F (k+1)×(k+1) such that un = (Mn)[1,k+1] for all n ∈ N.

Lemma 11 motivates the following definition of n-dimensional Linear Recurrence Sequences
(n-LRSs) which as we show later are related to the mortality problem for bounded languages.

I Definition 12 (n-LRS). A multidimensional sequence um1,m2,...,mn
is called an n-LRS of

depth k over F if there exist two vectors u,v ∈ Fk and matrices M1,M2, . . . ,Mn ∈ Fk×k

such that

um1,m2,...,mn
= uTMm1

1 Mm2
2 · · ·Mmn

n v.

4 The mortality problem for bounded languages

We remind the reader the definition of the mortality problem for bounded languages.

I Problem 13 (Mortality for bounded languages). Given k × k matrices A1, . . . , At over a
ring F , do there exist m1,m2, . . . ,mt ∈ N such that

Am1
1 Am2

2 . . . Amt
t = Ok,k.

Recall that for t = 3 and t = 4 this problem is called the ABC-Z and ABCD-Z problem,
respectively. Our first main result is that the ABC-Z problem is computationally equivalent
to the Skolem problem for 1-LRS. Our reduction holds in any dimension and over the same
number field which means that any new decidability results for the Skolem problem will
automatically extend the decidability of ABC-Z equations and can immediately lead to new
decidability results for equations in dimensions 2, 3 and 4. For the proof we will need the
following technical lemma.

P. C. Bell, I. Potapov, and P. Semukhin 83:7

I Lemma 14. Let F be a field, and suppose A,B,C ∈ Fk×k are matrices of the form

A =
[
As,s Os,k−s

Ok−s,s Ok−s,k−s

]
, B =

[
Bs,t Xs,k−t

Yk−s,t Zk−s,k−t

]
, C =

[
Ct,t Ot,k−t

Ok−t,t Ok−t,k−t

]
for some s, t ≤ k, where As,s, Bs,t, Xs,k−t, Yk−s,t, Zk−s,k−t and Ct,t are matrices over F
whose dimensions are indicated by their subscripts (in particular, A = As,s ⊕Ok−s,k−s and
C = Ct,t⊕Ok−t,k−t). If As,s and Ct,t are invertible matrices, then the equation ABC = Ok,k

is equivalent to Bs,t = Os,t.

Proof. It is not hard to check that

AB =
[
As,s Os,k−s

Ok−s,s Ok−s,k−s

]
·
[
Bs,t Xs,k−t

Yk−s,t Zk−s,k−t

]
=
[
As,sBs,t As,sXs,k−t

Ok−s,t Ok−s,k−t

]
,

and hence

(AB)C =
[
As,sBs,t As,sXs,k−t

Ok−s,t Ok−s,k−t

]
·
[
Ct,t Ot,k−t

Ok−t,t Ok−t,k−t

]
=
[
As,sBs,tCt,t Os,k−t

Ok−s,t Ok−s,k−t

]
.

So, if Bs,t = Os,t, then ABC = Ok,k. Conversely, if ABC = Ok,k, then As,sBs,tCt,t = Os,t.
Using the fact that As,s and Ct,t are invertible matrices, we can multiply the equation
As,sBs,tCt,t = Os,t by A−1

s,s on the left and by C−1
t,t on the right to obtain that Bs,t = Os,t. J

I Theorem 15. Let F be the ring of integers Z or one of the fields Q, A or AR. Then the
ABC-Z problem for matrices from Fk×k is Turing equivalent to the Skolem problem of depth
k over F .

Proof. First, we show reduction from the ABC-Z problem to the Skolem problem.
Clearly, the ABC-Z problem over Z is equivalent to the ABC-Z problem over Q (by

multiplying the matrices A,B,C by a suitable integer number). It is also not hard to see
that the Skolem problem for 1-LRS over Q is equivalent to the Skolem problem over Z for
1-LRS of the same depth. Indeed, by Lemma 11 we can express any 1-LRS (un)∞n=0 over Q
as un = uTMnv for some rational vectors u and v and a rational matrix M . If we multiply
u, v and M by a suitable natural number t, then (tn+2un)∞n=0 will be an integer 1-LRS,
which has the same zero set as (un)∞n=0. Hence, without loss of generality, we will assume
that F is one of the fields Q, A or AR.

Consider an instance of the ABC-Z problem: AmBnC` = Ok,k, where A,B,C ∈ Fk,k.
Let χA(x) be the characteristic polynomial of A. By Proposition 3, we can find a primary
decomposition χA(x) = p1(x)m1 · · · pt(x)mt , where p1(x), . . . , pt(x) are distinct irreducible
monic polynomials. From this decomposition we can find the minimal polynomial mA(x) of
A because mA(x) is a factor of χA(x), and we can check all divisors of χA(x) to find mA(x).

Let mA(x) = p1(x)r1 · · · pu(x)ru , where p1(x), . . . , pu(x) are distinct irreducible monic
polynomials. Now we apply the Primary Decomposition Theorem (Theorem 2) to A. Let Si

be a basis for the null space of pi(A)ri , which can be found, e.g., using Gaussian elimination.
Let S be a matrix whose columns are the vectors of the basis S1 ∪ · · · ∪ Su. Then

S−1AS = A1 ⊕ · · · ⊕Au,

where the minimal polynomial of Ai is pi(A)ri for i = 1, . . . , u. Similarly, we can compute a
primary decomposition mC(x) = q1(x)s1 · · · qv(x)sv of the minimal polynomial for C, where
q1(x), . . . , qv(x) are distinct irreducible monic polynomials, and a matrix T such that

T−1CT = C1 ⊕ · · · ⊕ Cv,

where the minimal polynomial of Ci is qi(C)si for i = 1, . . . , v.

MFCS 2019

83:8 On the Mortality Problem

Note that if p(x) is an irreducible monic polynomial, then either p(x) = x or x does not
divide p(x). So, among the polynomials p1(x), . . . , pu(x) in the primary decomposition of
mA(x) at most one is equal to x, and the same holds for the polynomials q1(x), . . . , qv(x) in
the primary decomposition of mC(x).

Suppose, for example, that pu(x) = x. In this case mA(x) = p1(x)r1 · · · pu−1(x)ru−1xru ,
and S−1AS = A1 ⊕ · · · ⊕Au−1 ⊕Au, where the minimal polynomial of Au is xru , and hence
Au is a nilpotent matrix of index ru. Recall that, for i = 1, . . . , u− 1, the polynomial pi(x)
is not divisible by x, and so is pi(x)ri , which is the minimal polynomial for Ai. Hence, by
Proposition 4, Ai is invertible. Let Ainv = A1 ⊕ · · · ⊕Au−1 and Anil = Au. Then we obtain

S−1AS = Ainv ⊕Anil, (1)

where Ainv is invertible, and Anil is nilpotent. If pi(x) = x for some i < u, then we need
in addition to permute some rows and columns of matrix S to obtain one that gives us
Equation (1) above. If none of the pi(x) is equal to x, then we assume that Anil is the empty
matrix of size 0× 0.

The same reasoning can be applied to matrix C, that is, we can compute an invertible
matrix Cinv, a nilpotent (or empty) matrix Cnil, and an invertible matrix T such that

T−1CT = Cinv ⊕ Cnil.

Note that the indices of the nilpotent matrices Anil and Cnil are at most k, and hence Ak
nil

and Ck
nil are zero (or empty) matrices.

Our goal is to find all triples (m,n, `) ∈ N3 for which AmBnC` = Ok,k. In order to do
this we will consider four cases: (1) m ≥ k and ` ≥ k, (2) m < k and ` < k, (3) m ≥ k and
` < k, and (4) m < k and ` ≥ k.

Before dealing with each of these cases, we note that the equation AmBnC` = Ok,k is
equivalent to

S(Am
inv ⊕Am

nil)S−1BnT (C`
inv ⊕ C`

nil)T−1 = Ok,k or to
(Am

inv ⊕Am
nil)S−1BnT (C`

inv ⊕ C`
nil) = Ok,k

because S and T are invertible matrices.
Now suppose Ainv has size s× s, and Cinv has size t× t for some s, t ≤ k.

Case 1: m ≥ k and ` ≥ k. Since m, ` ≥ k, we have Am
nil = Ok−s,k−s and C`

nil =
Ok−t,k−t, and hence the equation AmBnC` = Ok,k is equivalent to

(Am
inv ⊕Ok−s,k−s)S−1BnT (C`

inv ⊕Ok−t,k−t) = Ok,k. (2)

Suppose the matrix S−1BnT has a form S−1BnT =
[
Bs,t Xs,k−t

Yk−s,t Zk−s,k−t

]
. Since Am

inv and

C`
inv are invertible matrices, Lemma 14 implies that Equation (2) is equivalent to Bs,t = Os,t.

Therefore, we obtain the following equivalence: AmBnC` = Ok,k if and only if

si,j
n = (e>i S−1)Bn(Tej) = 0 for all i = 1, . . . , s and j = 1, . . . , t. (3)

By Lemma 11, the sequence (si,j
n)∞n=0 is a 1-LRS of order k over F . As in the proof of

Theorem 10, we can use an oracle for the Skolem problem for 1-LRS of depth k over F to
compute the descriptions of the semilinear sets Z(si,j

n). Hence we can compute a description of
the intersection Z1 =

⋂
i=1,...,s
j=1,...,t

Z(si,j
n), which is also a semilinear set. An important observation

is that the set Z1 does not depend on m and `.

P. C. Bell, I. Potapov, and P. Semukhin 83:9

Below is a brief description of the remaining cases. The detailed proof of Cases 2, 3 and
4 can be found in the full version [6].

Case 2: m < k and ` < k. Fix some m < k and ` < k. For this particular choice of
m and `, we can compute a description of the semilinear set Z2(m, `) which is equal to all
values of n for which AmBnC` = Ok,k holds for fixed m, ` < k.

Case 3: m ≥ k and ` < k and Case 4: m < k and ` ≥ k. To solve these cases we
will combine ideas from Cases 1 and 2. Namely, we can compute the descriptions of the
semilinear sets Z3(`) and Z4(m) such that

Z3(`) = {n : AmBnC` = Ok,k for all m ≥ k }.
Z4(m) = {n : AmBnC` = Ok,k for all ` ≥ k }.

Combining all the above cases together, we conclude that the set of all triples (m,n, `) ∈ N3

that satisfy the equation AmBnC` = Ok,k is equal to the following union

{(m,n, `) : n ∈ Z1 and m, ` ≥ k}
⋃ ⋃

m,`<k

{(m,n, `) : n ∈ Z2(m, `)}
⋃

⋃
`<k

{(m,n, `) : n ∈ Z3(`) and m ≥ k}
⋃ ⋃

m<k

{(m,n, `) : n ∈ Z4(m) and ` ≥ k}.
(4)

Having a description for the above set, we can decide whether is it empty or not, that is,
whether there exist m,n, ` ∈ N such that AmBnC` = Ok,k.

We now show the reduction in the other direction. Let (un)∞n=0 be a 1-LRS that satisfies
a relation

un = ak−1un−1 + · · ·+ a1un−k+1 + a0un−k,

where a0 6= 0. Let A, B and C be the following matrices of size k × k:

A =


uk−1 · · · u1 u0

0 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

, B =


ak−1 1 · · · 0 0
...

...
. . .

...
...

a2 0 · · · 1 0
a1 0 · · · 0 1
a0 0 · · · 0 0

, C =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1

.

A straightforward computation shows that the product AmBnC` is equal to a matrix where all
entries equal zero except for the entry in the upper-right corner which is equal to um−1

k−1 un. So,
if we assume that uk−1 6= 0, then we have the following implications: (1) if AmBnC` = Ok,k

for some m,n, ` ∈ N with m, ` ≥ 1, then un = 0; and (2) if un = 0, then the equation
AmBnC` = Ok,k holds for any m, ` ≥ 1.

The assumption that uk−1 6= 0 is not a serious restriction because we can shift the original
sequence by at most k positions to ensure that uk−1 6= 0. In other words, instead of (un)∞n=0
we can consider a sequence (un+t)∞n=0 for some t > 0. It is easy to check that a 1-LRS of
depth k is identically zero if and only if it contains k consecutive zeros. Hence if (un)∞n=0 is
not identically zero, then we can find t < k such that the sequence (un+t)∞n=0 satisfies the
condition that uk−1+t 6= 0. J

I Corollary 16. The set of triples (m,n, `) that satisfy an equation AmBnC` = Ok,k is equal
to a finite union of direct products of semilinear sets.

Proof. The corollary follows from Equation (4) above that describes all triples (m,n, `) that
satisfy the equation AmBnC` = Ok,k. By construction and the Skolem-Mahler-Lech theorem,
the sets Z1, Z2(m, `), Z3(`) and Z4(m) are semilinear. In Equation (4) we take direct product

MFCS 2019

83:10 On the Mortality Problem

of these sets either with singleton sets or with sets of the form Nk = {n ∈ N : n ≥ k},
which are also semilinear sets, and then take a finite union of such products. In other words,
Equation (4) can be rewritten as follows

Nk×Z1×Nk

⋃ ⋃
m,`<k

{m}×Z2(m, `)×{`}
⋃⋃

`<k

Nk×Z3(`)×{`}
⋃ ⋃

m<k

{m}×Z4(m)×Nk.

The main corollary of Theorem 15 is the following result. J

I Corollary 17. The ABC-Z problem is decidable for 3× 3 matrices over algebraic numbers
and for 4× 4 matrices over real algebraic numbers.

Proof. By Theorem 15, the ABC-Z problem for 3× 3 matrices over A is equivalent to the
Skolem problem of depth 3 over A, and the ABC-Z problem 4 × 4 matrices over AR is
equivalent to the Skolem problem of depth 4 over AR. Now the corollary follows from the
fact that the Skolem problem is decidable for linear recurrence sequences of depth 3 over A
and of depth 4 over AR [44, 33]. J

5 The ABCD-Z problem in dimension two

Recall that the ABCD-Z problem in dimension two asks whether there exist natural numbers
k,m, n, ` ∈ N such that

AkBmCnD` = O2,2. (5)

In this section we will show that this problem is decidable for 2× 2 upper-triangular matrices
with rational coefficients. In the proof we will use the following simple lemmas which show
how to diagonalise and compute powers of an upper-triangular 2× 2 matrix.

I Lemma 18. Given an upper triangular matrix
(
a b

0 c

)
such that a 6= c then:(

a b

0 c

)
=
(

1 − b
a−c

0 1

)(
a 0
0 c

)(
1 b

a−c

0 1

)

I Lemma 19. For any matrices of the form
(
a b

0 c

)
and

(
a b

0 a

)
, such that a 6= c, and any

k ∈ N we have
(
a b

0 c

)k

=

ak b
ak − ck

a− c
0 ck

 and
(
a b

0 a

)k

=
(
ak kbak−1

0 ak

)
.

I Theorem 20. The ABCD-Z problem is decidable for 2× 2 upper-triangular matrices over
rational numbers.

Proof. First, note that if one of the matrices A, B, C or D is nilpotent, then Equation (5)
obviously has a solution. So from now on we assume that none of A, B, C or D is nilpotent.
Furthermore, if A or D is invertible, then the ABCD-Z problem reduces to the ABC-Z
problem for rational matrices of dimension two that is decidable by Theorem 15. So, without
loss of generality, we will assume that both A and D are singular matrices.

Now suppose we are given an instance of the ABCD-Z problem which satisfies the above-
mentioned requirements. We will show that if Equation (5) has a solution, then it has a
solution with k = ` = 1. Indeed, assume Equation (5) has a solution, and let (k,m, n, `) be a
solution of minimal length, where the length of a solution is the sum k +m+ n+ `. Using

P. C. Bell, I. Potapov, and P. Semukhin 83:11

Theorem 15 we can exclude the case when k = 0 or ` = 0 since in this case our problem
is just an instance of the ABC-Z for 2 × 2 matrices. So we will assume that in the above
solution k, ` ≥ 1.

By the Frobenius rank inequality (Theorem 1), we have that:

Rk(AkBmCnD`−1) + Rk(Ak−1BmCnD`) ≤ Rk(Ak−1BmCnD`−1).

This follows since Rk(AkBmCnD`) = Rk(O2,2) = 0. In the above inequality, notice that
neither AkBmCnD`−1 nor Ak−1BmCnD` is the zero matrix by the assumption that the
solution has minimal length. Hence the ranks of the matrices on the left hand side are at
least 1. Therefore, Rk(Ak−1BmCnD`−1) = 2. Since we assumed that A and D are singular,
it is necessary that k = ` = 1. Also notice that if Rk(B) = 1 or Rk(C) = 1, then we must
have m = 0 or n = 0, respectively. Again these cases can be excluded by Theorem 15.

Thus, using the Frobenius rank inequality and the assumption that the solution is of
minimal length, we reduced the ABCD-Z problem to an equation of the form:

ABmCnD = O2,2,

where Rk(A) = Rk(D) = 1 and Rk(B) = Rk(C) = 2.
We assumed that A and D have rank one but are not nilpotent. This means that they

have one zero and one nonzero element on the diagonal, in particular, they satisfy the
condition of Lemma 18. Hence we can find invertible rational matrices SA and SD such that

A = S−1
A

(
a 0
0 0

)
SA and D = S−1

D

(
d 0
0 0

)
SD,

where a, d are nonzero rational numbers. Applying Lemma 14 with matrix SAB
mCnS−1

D

in place of B, we conclude that ABmCnD = O2,2 holds if and only if the (1, 1)-entry of
SAB

mCnS−1
D equals zero. In other words, the equation ABmCnD = O2,2 is equivalent

to sm,n = u>BmCnv = 0, where u> = e>1 SA and v = S−1
D e1 are vectors with rational

coefficients.
We will consider three cases: (1) both B and C have distinct eigenvalues, (2) both B and

C have a single eigenvalue of multiplicity 2 and (3) one matrix has distinct eigenvalues and
the other has a single eigenvalue of multiplicity 2.

Case (1): B and C have distinct eigenvalues, that is, B =
(
b1 b3
0 b2

)
and C =

(
c1 c3
0 c2

)
,

where b1 6= b2 and c1 6= c2. By Lemma 19 we have

Bm =

(
bm

1 b3
bm

1 − bm
2

b1 − b2
0 bm

2

)
and Cn =

(
cn

1 c3
cn

1 − cn
2

c1 − c2
0 cn

2

)

Multiplying these matrices we obtain: BmCn =

=

(
bm

1 b3
bm

1 − bm
2

b1 − b2
0 bm

2

)(
cn

1 c3
cn

1 − cn
2

c1 − c2
0 cn

2

)
=

(
bm

1 cn
1 b3

bm
1 cn

2 − bm
2 cn

2
b1 − b2

+ c3
bm

1 cn
1 − bm

1 cn
2

c1 − c2
0 bm

2 cn
2

)

From this formula one can see that the entries of BmCn are linear combinations of bm
1 c

n
1 ,

bm
1 c

n
2 and bm

2 c
n
2 with rational coefficients. Notice that the term bm

2 c
n
1 does not appear in the

entries of BmCn. Since u and v are rational vectors we conclude that

sm,n = u>BmCnv = αbm
1 c

n
1 + βbm

1 c
n
2 + γbm

2 c
n
2 ,

MFCS 2019

83:12 On the Mortality Problem

where α, β, γ ∈ Q. Multiplying the equation sm,n = αbm
1 c

n
1 + βbm

1 c
n
2 + γbm

2 c
n
2 = 0 by the

product of denominators of α, β, γ and b1, b2, c1, c2 we can rewrite it in the following form

asmrn + bsmtn + cqmtn = 0

where a, b, c, q, r, s, t are integers and a, b, c are relatively prime. Recall that we want to
find out if there exist m,n ∈ N that satisfy the above exponential Diophantine equation.
If one of the coefficients a, b, c is zero, then this problem is easy to solve. For instance, if
b = 0 then the above equation is equivalent to asmrn = −cqmtn. This equality holds if
and only if asmrn and −cqmtn have the same sign and vp(asmrn) = vp(−cqmtn) for every
prime divisor p of a, c, s, r, q or t. Each of these conditions can be expressed as a linear
Diophantine equation. For instance, the sign of asmrn or −cqmtn depends on the parity of
m and n. So, the requirement that asmrn and −cqmtn have the same sign can be written as
a linear congruence equation in m and n modulo 2, which in turn can be expressed as a linear
Diophantine equation. Since a system of linear Diophantine equations can be effectively
solved, we can find out whether there exist m and n that satisfy asmrn = −cqmtn.

Now suppose that a, b, c are relatively prime nonzero integers. Let T be all primes that
appear in s, r, q or t. Theorem 5 gives an upper bound on nonzero relatively prime integers
x, y, z that are composed of the primes from T and satisfy the equation ax+ by + cz = 0.
Therefore, we can algorithmically compute the following set

U = {(x, y, z) : ax+ by + cz = 0, x, y, z 6= 0 and gcd(x, y, z) = 1}.

Next for each triple (x, y, z) ∈ U we want to find out if there exist m,n ∈ N such that

(smrn, smtn, qmtn) = (xg, yg, zg) (6)

for some g ∈ N that is composed of the primes from T . It is not hard to see that Equation (6)
holds if and only if for every p ∈ T

vp(smrn)− vp(x) = vp(smtn)− vp(y) = vp(qmtn)− vp(z)

and smrn, smtn, qmtn have the same signs as x, y, z, respectively. Since these conditions can
be expressed as a system of linear Diophantine equations, we can algorithmically find if
there are m,n ∈ N that satisfy Equation (6). If such m and n exist for at least one triple
(x, y, z) ∈ U , then the original equation sm,n = 0 has a solution. Otherwise, the equation
sm,n = 0 does not have a solution.

To finish the proof we also need to consider the following cases:
Case (2): both B and C have a single eigenvalue of multiplicity 2.
Case (3): one matrix has distinct eigenvalues and the other has a single eigenvalue of

multiplicity 2.
Case (2) is the easiest one in the sense that in this case we can reduce the ABCD-Z

problem to a single linear Diophantine equation without using Baker’s theorem. In Case (3)
we will reduce the ABCD-Z problem to a linear-exponential Diophantine equation of the
form c

sm

tm
= a+ bn, where a, b, c, s, t ∈ Z, t > 0 and gcd(s, t) = 1, which is not hard solve.

Again, this case does not require the use of Baker’s theorem. All the necessary details for
the proof of Cases (2) and (3) are given in the full version [6]. J

I Remark. It is interesting to note that in Cases (1) and (2) the solutions (m,n) of the
equation sm,n = 0 are described by linear Diophantine equations, and only in Case (3)
we have a linear-exponential equation. This agrees with an example from Proposition 23,
in which matrix A has a single eigenvalue 1 of multiplicity 2 and matrix B has distinct
eigenvalues 1 and 2.

P. C. Bell, I. Potapov, and P. Semukhin 83:13

I Remark. In the above argument we used Theorem 5 to obtain a bound on the solutions
of the equation asmrn + bsmtn + cqmtn = 0, which is a special type of an S-unit equation.
This leaves open an interesting question of whether any S-unit equation can be encoded into
the ABCD-Z problem.

The obvious question is how hard would it be to solve n-LRSs, or in general multiplicative
matrix equations, in low dimensions. In fact we can show that the Skolem problem for
n-LRSs of depth 2 is NP-hard. It is not direct but an easy corollary following the hardness
proof of the mortality problem for 2× 2 matrices [4].

I Theorem 21 ([4]). The mortality problem for integer matrices of dimension two is NP-hard.

I Corollary 22. Determining if the zero set of an n-LRS of depth 2 is empty is NP-hard.

Proof. The main idea of the proof is to reuse the NP-hardness result for the mortality
problem in 2 × 2 integral matrices from [4] by replacing the simulation of alternatives in
subset sum problem defined by a state structure (which is guaranteed by specific order of
unique cancellations) by the equation structure in which avoiding alternatives corresponds
to the elements in the equation with zero power. See the formal construction in the full
version [6]. J

Another interesting observation is that the zero set of a 2-LRS is not necessarily semilinear,
in contrast to the situation for 1-LRSs, which indicates that the Skolem problem for 2-LRSs
is likely to be significantly harder than the Skolem problem for 1-LRSs even for sequences of
small depth.

I Proposition 23. There exists a 2-LRS of depth 2 for which the zero set is not semilinear.

Proof. Let u = (0, 1)T , v = (1,−1)T , A =
(

1 0
1 1

)
and B =

(
1 0
0 2

)
. Define

sn,m = uTAnBmv = (0, 1)
(

1 0
1 1

)n(1 0
0 2

)m(1
−1

)
= n− 2m.

Then sn,m = 0 if and only if n = 2m. Clearly, the zero set is not semilinear. J

References
1 L. Babai, R. Beals, J-Y. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over

commuting matrices. In Proc. of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 96, 1996.

2 C. Baier, S. Kiefer, J. Klein, S. Klüppelholz, D. Müller, and J. Worrell. Markov Chains
and Unambiguous Büchi Automata. In Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, pages
23–42, 2016.

3 P. C. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix equations and Hilbert’s
tenth problem. International Journal of Algebra and Computation, 18:1231–1241, 2008.

4 P. C. Bell, M. Hirvensalo, and I. Potapov. Mortality for 2 × 2 matrices is NP-hard. In
Mathematical Foundations of Computer Science (MFCS 2012), volume LNCS 7464, pages
148–159, 2012.

5 P. C. Bell, M. Hirvensalo, and I. Potapov. The identity problem for matrix semigroups in
SL2(Z) is NP-complete. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’17), pages 187–206, 2017.

MFCS 2019

83:14 On the Mortality Problem

6 Paul C. Bell, Igor Potapov, and Pavel Semukhin. On the Mortality Problem: from multiplicative
matrix equations to linear recurrence sequences and beyond. CoRR, abs/1902.10188, 2019.
arXiv:1902.10188.

7 V. Blondel, E. Jeandel, P. Koiran, and N. Portier. Decidable and undecidable problems about
quantum automata. SIAM Journal on Computing, 34:6:1464–1473, 2005.

8 V. D. Blondel, O. Bournez, P. Koiran, C. Papadimitriou, and J. N. Tsitsiklis. Deciding
stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science,
255(1-2):687–696, 2001.

9 V. D. Blondel and N. Portier. The presence of a zero in an integer linear recurrent sequence is
NP-hard to decide. Linear Algebra and its Applications, pages 91–98, 2002.

10 V. D. Blondel and J. N. Tsitsiklis. Complexity of stability and controllability of elementary
hybrid systems. Automatica, 35:479–489, 1999.

11 Jin-yi Cai, Wolfgang H. J. Fuchs, Dexter Kozen, and Zicheng Liu. Efficient Average-Case
Algorithms for the Modular Group. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 143–152, 1994.

12 Jin-yi Cai, Richard J. Lipton, and Yechezkel Zalcstein. The Complexity of the Membership
Problem for 2-generated Commutative Semigroups of Rational Matrices. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 135–142, 1994.

13 J. Cassaigne, V. Halava, T. Harju, and F. Nicolas. Tighter Undecidability Bounds for Matrix
Mortality, Zero-in-the-Corner Problems, and More. CoRR, abs/1404.0644, 2014.

14 V. Chonev, J. Ouaknine, and J. Worrell. On the Complexity of the Orbit Problem. Journal
of the ACM, 63(3):1–18, 2016.

15 Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the Skolem Problem for Continuous
Linear Dynamical Systems. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 100:1–100:13, 2016.

16 J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman. S-unit equations and their
applications. In New advances in transcendence theory (Durham, 1986), pages 110–174.
Cambridge Univ. Press, Cambridge, 1988.

17 E. Galby, J. Ouaknine, and J. Worrell. On matrix powering in low dimensions. In 32nd
International Symposium on Theoretical Aspects of Computer Science (STACS’15), pages
329–340, 2015.

18 K. Győry. On the abc conjecture in algebraic number fields. Acta Arith., 133(3):281–295, 2008.
19 V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s problem - on the border

between decidability and undecidability. In TUCS Technical Report Number 683, 2005.
20 G. Hansel. Une démonstration simple du théorème de Skolem-Mahler-Lech. Theoret. Comput.

Sci., 43(1):91–98, 1986.
21 Michael A. Harrison. Lectures on Linear Sequential Machines. Academic Press, Inc., Orlando,

FL, USA, 1969.
22 K. Hoffman and R. Kunze. Linear algebra. Second edition. Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1971.
23 Juha Honkala. Products of matrices and recursively enumerable sets. Journal of Computer

and System Sciences, 81(2):468–472, 2015.
24 R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1990.
25 Ravindran Kannan and Richard J. Lipton. The Orbit Problem is Decidable. In Proceedings

of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80, pages 252–261,
New York, NY, USA, 1980. ACM.

26 J.-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or both.
Theor. Comput. Sci., 410(47-49):5010–5021, 2009.

27 S.-K. Ko, R. Niskanen, and I. Potapov. On the Identity Problem for the Special Linear Group
and the Heisenberg Group. In 45th International Colloquium on Automata, Languages, and

http://arxiv.org/abs/1902.10188

P. C. Bell, I. Potapov, and P. Semukhin 83:15

Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 132:1–132:15,
2018.

28 Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems
in nilpotent, polycyclic, and co-context-free groups. CoRR, abs/1507.05145, 2015. arXiv:
1507.05145.

29 C. Lech. A note on recurring series. Ark. Mat. 2, 1953.
30 Alexei Lisitsa and Igor Potapov. Membership and Reachability Problems for Row-Monomial

Transformations. In Jiří Fiala, Václav Koubek, and Jan Kratochvíl, editors, Mathematical
Foundations of Computer Science 2004, pages 623–634, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

31 Markus Lohrey. Rational subsets of unitriangular groups. IJAC, 25(1-2):113–122, 2015.
32 K. Mahler. Eine arithmetische Eigenschaft der Taylor-Koeffizienten rationaler Funktionen. In

Akad. Wet. Amsterdam 38, pages 50–60, 1935.
33 M. Mignotte, T. N. Shorey, and R. Tijdeman. The distance between terms of an algebraic

recurrence sequence. J. Reine Angew. Math., 349:63–76, 1984.
34 C. Nuccio and E. Rodaro. Mortality Problem for 2× 2 Integer Matrices. In SOFSEM 2008:

Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and
Practice of Computer Science, Nový Smokovec, Slovakia, January 19-25, 2008, Proceedings,
pages 400–405, 2008. doi:10.1007/978-3-540-77566-9_34.

35 J. Ouaknine, J. Sousa Pinto, and J. Worrell. On termination of integer linear loops. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pages 957–969, 2015.

36 J. Ouaknine, A. Pouly, J. Sousa-Pinto, and J. Worrell. Solvability of Matrix-Exponential
Equations. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS’16), pages 798–806, 2016.

37 Joël Ouaknine and James Worrell. Decision Problems for Linear Recurrence Sequences. In
Reachability Problems - 6th International Workshop, RP 2012, Bordeaux, France, September
17-19, 2012. Proceedings, pages 21–28, 2012.

38 Joël Ouaknine and James Worrell. On the Positivity Problem for Simple Linear Recurrence
Sequences,. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages 318–329,
2014.

39 Joël Ouaknine and James Worrell. Positivity Problems for Low-Order Linear Recurrence
Sequences. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 366–379, 2014.

40 M. S. Paterson. Unsolvability in 3×3 matrices. Studies in Applied Mathematics, 49(1):105–107,
1970.

41 Igor Potapov and Pavel Semukhin. Decidability of the Membership Problem for 2× 2 integer
matrices. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 170–186,
2017.

42 Igor Potapov and Pavel Semukhin. Membership Problem in GL(2, Z) Extended by Singular
Matrices. In 42nd International Symposium on Mathematical Foundations of Computer Science,
MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 44:1–44:13, 2017.

43 T. Skolem. Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophant-
ischer Gleichungen. Skand. Mat. Kongr., 8:163–188, 1934.

44 N. K. Vereshchagin. The problem of the appearance of a zero in a linear recursive sequence.
Mat. Zametki 38, 347(2):609–615, 1985.

MFCS 2019

http://arxiv.org/abs/1507.05145
http://arxiv.org/abs/1507.05145
https://doi.org/10.1007/978-3-540-77566-9_34

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Abdulaziz
	Introduction
	Level One of Trustworthiness: The LEDA Library of Efficient Data Types and Algorithms
	Level Two of Trustworthiness: Certifying Algorithms
	Level Three of Trustworthiness: Formal Verification of Checkers
	Level Four of Trustworthiness: Formal Verification of Complex Algorithms
	Isabelle/HOL
	Preliminaries
	Formalising Berge's Lemma
	Verifying that Blossom Contraction Works
	Computing Blossoms and Augmenting Paths
	Computing Alternating Paths
	Discussion

	Level Five of Trustworthiness: Extraction of Efficient Executable Code
	The Future

	p002-Silva
	p003-Lokshtanov
	p004-Kavitha
	p005-Leroux
	Outline

	p006-Bienkowski
	Introduction
	Previous work
	Our contribution

	Algorithms Interval and ReturnFirst
	Modifying the schedule
	Algorithm Reroute
	Relating Reroute to Opt
	Factor-revealing LP

	Final remarks

	p007-Halldorsson
	Introduction
	Sorting with Uncertainty
	Warm-Up: Offline and Oblivious Algorithms
	Deterministic Adaptive Algorithms
	Improved Adaptive Algorithms for Uniform Query Costs
	Advice Complexity for Adaptive Algorithms
	Future Work Directions

	p008-Bienkowski
	Introduction
	Our results
	Other related work

	A 3-Competitive Algorithm in the Plane
	An Algorithm for Arbitrary Dimension
	Lower Bound for Memoryless Algorithms
	Lower Bound for Arbitrary Algorithms
	Final Comments

	p009-Bouyer
	Introduction
	Definitions
	Concurrent games and communication graphs
	An example
	Two-player turn-based game structures
	The problems we are looking at

	Reduction to profiles following a simple communication mechanism
	The epistemic game abstraction
	Description of the epistemic game
	Winning condition of Eve

	An example
	Correctness of the epistemic game construction

	Complexity analysis
	Conclusion

	p010-Parys
	Introduction
	Preliminaries
	Standard Zielonka's Algorithm
	Quasi-Polynomial-Time Algorithm
	Complexity Analysis
	Correctness
	Conclusions

	p011-Avni
	Introduction
	Preliminaries
	Qualitative Taxman Games
	Mean-Payoff Taxman Games
	Strongly-connected mean-payoff taxman games
	The importance of moving
	Normalizing the bids
	General mean-payoff taxman games

	Computational Complexity
	Discussion

	p012-Konstantinidis
	Introduction
	Preliminaries
	Polynomial-time algorithm on interval graphs
	Splitting into partial solutions

	Cluster Deletion on a generalization of split graphs
	Polynomial-time algorithms on subclasses of split-twin graphs

	Concluding remarks

	p013-Le
	Introduction
	Preliminaries
	Girth-constrained representations
	Half-squares of girth-constrained bipartite graphs
	Point minimal girth-constrained representations

	Tree-convex representations
	Half-squares of tree-convex bipartite graphs
	Point minimal tree-convex representations

	Conclusion

	p014-Martin
	Introduction
	Terminology and Notation
	Known Results
	Our Focus
	Our Results

	Preliminaries
	Polyad-Free Graphs of Bounded Diameter
	Graphs of Bounded Diameter and Girth
	Conclusions

	p015-Chepoi
	Introduction
	Preliminaries
	Basic notions
	Distance labeling schemes

	Related work
	Distance labeling schemes
	Median graphs

	Fibers in median graphs
	Fibers in cube-free median graphs
	Classification of fibers
	Total boundaries of fibers are quasigated
	Classification of pairs of vertices

	Distance labeling scheme for cube-free median graphs
	Encoding
	Distance queries
	Complexity analysis and improved query time

	Conclusion

	p016-Kieronski
	Introduction
	Preliminaries
	Finite model property
	Complexity
	Variations on extensions of the guarded fragment
	Adding constants

	p017-Danielski
	Introduction
	Preliminaries
	Logics, structures, types and functions
	Normal form, witnesses and basic facts
	Plan of the small model construction

	The two-variable case
	Tree pruning in the two-variable case
	Finite model construction in the two-variable case
	Pattern components
	Joining the components
	Size of models and complexity

	The general case and its further extensions
	Conclusions

	p018-Pratt-Hartmann
	Introduction
	Preliminaries
	The decidability of fluted logic with one transitive relation
	The logic {FL^{2}1T^{u}}
	The logics {FL^{m}1T} for m >= 2

	Fluted Logic with more Transitive Relations
	Conclusions

	p019-Haak
	Introduction
	Definitions and Preliminaries
	A Characterization of the Class #* {NP}
	Counting Teams in Dependence and Inclusion Logic
	Complete Problems for #* {NP}
	Conclusion

	p020-Nutov
	Introduction
	The Generalized Min-Covering problem
	Algorithm for general thresholds (Theorem 1)
	Locally uniform thresholds (Theorem 3)
	Unit thresholds (Theorem 4)

	p021-Konrad
	Introduction
	Preliminaries
	Computing Local Views of the Clique Forest
	Minimum Vertex Coloring: Centralized Algorithm
	Algorithm
	Analysis

	Minimum Vertex Coloring: Distributed Algorithm
	Algorithm
	Analysis

	Maximum Independent Set
	Conclusion

	p022-Bampis
	Introduction
	Problem definition
	Related works
	Our contribution

	ILP formulation
	A polynomial time approximation scheme
	Bounding the number of fractional objects in (LP-MK)
	Warm-up: the case of two time-steps
	General case

	A PTAS for a constant number of time steps
	Generalization to an arbitrary number of time steps

	Pseudo-polynomiality and hardness results

	p023-Bournez
	Introduction
	Discrete differentiability and ODEs
	Programming with discrete ODE
	Computability and Discrete ODEs
	Restricted recursion and integration schemes
	General theory
	Linear length-ODEs

	A characterization of polynomial time
	A characterization of FNP
	Discussions and further works

	p024-Boreale
	Introduction
	Commutative coalgebras
	Coherent systems of PDEs
	Coalgebraic semantics of initial value problems
	Equivalence checking
	Conclusion, further and related work

	p025-Gao
	Introduction
	Preliminaries
	Randomly Generated Subgroups of Rationals
	Learning Finitely Generated Subgroups of a Random Subgroup of Rationals
	Conclusion and Possible Future Research

	p026-Dorfler
	Introduction
	Preliminaries
	Graph theory
	Parameterized counting complexity

	Alternating enumerators and p-edge-transitive graphs
	The main reduction: From homomorphisms to induced subgraphs
	Non-trivial monotone properties on bipartite graphs

	p027-Bessy
	Introduction
	Preliminaries
	NP-hardness of MaxACT and MaxATT
	Parameterized Complexity of ACT
	Parameterized Complexity of ATT
	Concluding Remarks

	p028-Madathil
	Introduction
	Preliminaries
	Some Observations and Simple Lemmas
	NP-hardness of Minimum Directed Bisection on Semicomplete Digraphs
	FPT Algorithm for Minimum Directed Bisection on Semicomplete Digraphs
	Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs
	Conclusion

	p029-Figueira
	Introduction
	Preliminaries
	Summary of results
	Collapse of the alternation hierarchy
	Sigma_{#1}[sigma] 1 and its boolean closure
	Characterization of Sigma_{#1}[sigma] 1
	Characterization of B Sigma_{#1}[sigma] 1
	Deciding membership in |Sigma_{#1}[sigma] 1 |
	Deciding membership in |B Sigma_{#1}[sigma] 1 |

	Sigma_{#1}[sigma] 2 and its boolean closure

	p030-Padmanabha
	Introduction
	{TML} syntax and semantics
	Two variable fragment
	Normal form
	Bounded agent property
	Example

	Discussion

	p031-Gradel
	Introduction
	Choiceless Logarithmic Space and Choiceless Polynomial Time
	Inclusion in Logspace and CPT
	The expressive power of CLogspace
	Discussion

	p032-Cerveny
	Introduction
	Preliminaries
	5-PVC with P_5-free bipartition
	Algorithm
	Preprocessing
	Dealing with isolated vertices in G[V_2]
	Dealing with isolated edges in G[V_2]
	Dealing with isolated P_3 paths in G[V_2]
	Dealing with isolated triangles in G[V_2]
	Dealing with 4-cycles in G[V_2]
	Dealing with stars in G[V_2]
	Dealing with stars with a triangle in G[V_2]
	Dealing with di-stars in G[V_2]
	Final remarks

	Conclusion

	p033-Knop
	Introduction
	Our Results
	Preliminaries

	Metatheorems for Fair Evaluation
	Model checking
	Finding a Fair Solution

	The Fair VC problem
	Hardness for Treedepth and Feedback Vertex Set
	FPT algorithm for Modular Width

	Conclusions

	p034-Jaffke
	Introduction
	Preliminaries
	Hardness Results
	Dichotomy Algorithms
	b-Precolorings
	Algorithm for k = m(G)
	Algorithm for k = Delta(G)
	Algorithm for k = m(G) - 1

	Maximum Degree Parameterizations
	FPT Algorithm for k = m(G) parameterized by Delta(G)
	FPT Algorithm Parameterized by Delta(G) + l_k(G)

	Conclusion

	p035-Agrawal
	Introduction
	Preliminaries
	W[1]-hardness Results
	FPT Algorithm for CF-MM with Chordal Conflict
	FPT algorithm for CCBM
	FPT algorithm for Chordal Conflict Matching

	FPT algorithms for CF-MM and CF-SP with matroid constraints
	FPT algorithm for Matroid CF-MM
	FPT algorithm for Rat Mat CF-BM
	FPT algorithm for Rat Mat CF-MM

	FPT algorithm for Matroid CF-SP

	FPT Algorithm for d-degenerate Conflict Graphs
	Algorithms for Annotated CF-MM and Annotated CF-SP

	Conclusion

	p036-Lagerkvist
	Introduction
	Preliminaries
	Operations and Relations
	Primitive Positive Definitions and Determined Variables
	Weak and Plain Bases of Co-Clones
	Duality

	The Expressive Power of Unique Existential Quantification
	General Constructions
	Boolean Constraint Languages

	Applications in Complexity
	Concluding Remarks and Future Research

	p037-Garlik
	Introduction
	Results in This Paper
	Outline of This Paper

	Preliminaries
	Resolution Refutations of s Levels of t Clauses
	A Lower Bound on Lengths of Resolution Refutations of REF^{F}_{s,t}
	Reflection Principle for Resolution

	p038-Fluck
	Introduction
	Results

	Preliminaries and Definitions
	The Minimum Distance Function
	Duality for Submodular Bounded Functions
	Minimum Distance Function and Hierarchical Clustering
	Conclusion

	p039-Haviv
	Introduction
	Graph and Hypergraph Coloring
	Our Contribution
	Overview of Proofs
	Outline

	Preliminaries
	Orthogonality Dimension
	Kneser and Schrijver Graphs

	The Orthogonality Dimension of Graphs
	Orthogonal Subspace Representations
	Hardness
	Algorithm
	Vector Chromatic Number
	The Algorithm

	p040-Einarson
	Preliminaries
	Above 2-independence: hard as nails
	Above 3-independence: sparseness matters
	W[2]-hardness in general graphs
	Tractability in sparse graphs
	Kernelization in sparse graphs

	Above 4-independence: simple domination
	Conclusion

	p041-Galby
	Introduction
	Preliminaries
	Hardness results
	Algorithms
	Conclusion

	p042-Eiben
	Introduction
	Preliminaries
	H-Treewidth
	Nice H-Tree-Decompositions

	R_C-Treewidth
	Algorithms Exploiting Modulators to R_{c}
	Algorithmic Applications of R_{c}-Treewidth
	Concluding Remarks

	p043-Lohrey
	Introduction
	Preliminaries
	Results
	Proof of Theorem 2
	The power word problem in wreath products
	Further Research

	p044-Day
	Introduction
	Preliminaries
	A Method for Upper Bounds
	Variable-Sparse and k-Ordered Quadratic Equations
	Regular-Reversed Quadratic Equations
	Avoiding Squares and other Patterns

	p045-Kiefer
	Introduction
	Preliminaries
	Graphs
	The Weisfeiler-Leman Algorithm

	One Color
	Two Colors
	Detecting Decompositions with Weisfeiler and Leman
	New Bounds for Graphs of Treewidth k
	Upper Bound
	Lower Bound

	Conclusion

	p046-Aubrun
	Introduction
	Subshifts on graphs and the domino problem
	Substitutions, orbits and tilings
	Substitution systems
	Orbits as tilings of R2

	Undecidability of the domino problem on orbit graphs
	Superposition of orbits
	Simulation of SFTs over of 0 -> 00 on orbit graphs of ({A},R)

	The domino problem for surface groups
	Surface groups
	Finding a substitution in the surface group of genus 2
	A bijection between Z2 and the surface group

	The reduction

	Remarks about word-hyperbolic groups

	p047-Dose
	Introduction
	Preliminaries
	Oracle Construction

	p048-Hoyrup
	Introduction
	Background
	Computability in Euclidean spaces
	Solovay derivatives
	Background on convex cones
	Computability of convex sets and cones

	Semicomputable point
	Converging sequences
	Taking unions of convex cones
	Semicomputability range of a point
	Solovay complete coordinates

	Realizing convex cones
	Genericity
	Realizing convex cones
	Beyond linear maps

	Application to the Solovay derivatives
	Left-c.e. quadratic polynomials

	p049-Galesi
	Introduction
	Preliminaries
	 Formulas and restrictions
	 Pudlak-Buss games
	Grids, Walls, Minors, Topological Minors and Treewidth

	The Lower Bound
	Topological Minors and Tseitin Formulas
	 From Walls To Grids
	 Putting it all together

	The Upper Bound
	 A compact representation of parity
	 Summation of linear equations
	 Tree-partition width

	p050-Clairambault
	Introduction
	Linear Recursion Schemes
	Finite Memory Game Semantics and Geometry of Interaction
	Games and strategies
	History-free and finite memory strategies

	Game Semantics to TSA
	Unfolding recursive calls
	Tree Stack Automata

	TSA to MAHORS
	Expressivity of MAHORS
	Multiplicative HORS (MHORS)

	p051-Koechlin
	Introduction
	Definitions and settings
	Combinatorial constructions and analytic combinatorics
	Combinatorial expressions: simple varieties of trees

	Main results
	Simplification using an absorbing pattern: main result
	Completely reducible expression trees
	Estimating the expectation and the moments

	Conclusion

	p052-Ramya
	Introduction
	Preliminaries
	A variable-balanced decomposition for syntactic multilinear ABPs
	Lower Bounds for special classes of smABPs
	Lower Bounds for strict circular-interval ABPs
	Lower bound for sum of L-ordered ABPs

	Comparison with other multilinear circuit models
	L-ordered to L-pass
	Circular-Interval ABP vs. Sum of ROABPs

	p053-Gupta
	Introduction
	Our results

	Preliminaries
	Algebraic preliminaries

	 Characterization of NW by symmetries and circuit identities
	Symmetry characterization: Theorem 1
	Characterization by circuit identities

	Lie algebra and symmetries of NW
	Lie algebra of NW
	Structure of G_{NW}: Theorem 5
	NW is not characterized by its symmetries over R

	Circuit testability and the flip theorem for NW
	Equivalence test for NW
	BD-PS equivalence test for NW: Theorem 4
	Reduction of BD-PS equivalence test to scaling equivalence test
	Scaling equivalence test for NW

	Few problems

	p054-Boker
	Introduction
	Preliminaries
	Combinatorial Constructions
	Undecidability Results
	Proof of Theorem 1

	Hardness for Cliques
	Tractable Cases
	Related Problems
	Conclusion

	p055-Carette
	Introduction
	Background: the ZX-calculus
	The scalable ZX-calculus
	Divide and gather, a calculus for big wires
	The SZX-diagrams
	The calculus
	Compact axiomatisation

	Axiomatising binary matrices for compressing diagrams
	Applications
	Application to graph states
	Application to error correcting codes

	Conclusion and further work

	p056-Chen
	Introduction
	Upper Bounds
	Lower Bounds
	Algorithm for Recognizing c-Chains
	Concluding Remarks

	p057-Enright
	Introduction and motivation
	Preliminaries
	Computational hardness
	Approximability
	An exact FPT algorithm
	Preliminaries for the algorithm
	The FPT algorithm

	Conclusions and open problems

	p058-Berkholz
	Introduction
	Preliminaries
	Main Result
	Constant delay enumeration using tree decompositions
	Submodular width and statement of the main result

	Proof of the Main Result
	Final Remarks

	p059-Kazeminia
	Introduction
	Preliminaries
	Outline of the proof
	Hardness gadgets
	Hardness gadgets and nc-walks
	Edge gadget
	Vertex gadgets

	The hardness of #_{#1}PartHom(#2) pH

	p060-Bulatov
	Introduction
	Preliminaries
	Relational Structures and Homomorphisms
	Treewidth and Minors

	Counting CSP
	Exact Counting CSP
	Approximate Counting CSP
	Main Result

	Proof of Theorem 3
	Construction
	Weights of Homomorphisms
	Putting the Pieces Together

	Conclusions

	p061-Lhote
	Introduction
	Technical background
	Proof of the theorem
	Testing letters
	Changing alphabets
	Counting letters
	Order on letters
	Subsequences
	Polynomials
	Semigroups

	Conclusions

	p062-Czerwinski
	Introduction
	Preliminaries
	Thin-Thick Dichotomy
	Dichotomy in Action

	p063-Fernau
	Introduction
	Preliminaries and Definitions
	Placing Constrained Problems Within Complexity Classes
	Constraint Automata with Two States and Two or Three Letters
	Generalizations to Lift Results
	Conclusions and Prospects

	p064-Hagerup
	Introduction
	Preliminaries
	Informal Overview
	The Data Representation
	Conversion Between Weak and Strong Colors
	The Operations
	Analysis of Correctness and Execution Times

	p065-Baswana
	Introduction
	Previous Results on Fault Tolerant and Dynamic DFS
	Familiarizing with the Fault Tolerant DFS Problem
	Overview of the Previous Results
	Our Contribution
	Organisation of the Paper

	Preliminaries
	Notations
	Heavy-Light Decomposition
	Fractional Cascading

	Shallow Tree Representation
	Rerooting DFS Tree T
	Reroot Procedure
	Populating Reduced Adjacency Lists

	Time Complexity Analysis
	Getting rid of a log factor

	Correctness of Reroot Procedure

	Extension to Fault Tolerant DFS Tree
	Fully Dynamic DFS

	p066-Clifford
	Introduction
	Previous Work and Preliminaries
	Efficient Manipulation of Piecewise-Linear Functions
	Basic Operations
	Shifts
	Gradient Changes
	Sliding Window Minima
	Complexity Analysis

	An O(mn log(mn)) time RLE Edit Distance Algorithm

	p067-Chakraborty
	Introduction
	Representation of the Input Graph
	Our Main Results and Organization of the Paper
	Related Works

	Preliminaries
	Algorithms in the Indexing Model
	Preprocessing Step

	Algorithms in the Encoding Model
	Space lower-bound
	Upper-bound

	Conclusion

	p068-Dennunzio
	Introduction
	Background
	Topological and measure theoretic properties

	Statement of the main results
	Proofs of the main results
	Useful known results
	Proofs of our results

	Conclusions and perspectives

	p069-Bose
	Introduction
	Preliminaries
	Resynchronizations
	Synthesis of Resynchronizers
	Resynchronizing functional, one-way transducers
	Resynchronizing arbitrary one-way transducers
	Resynchronizing unambiguous, two-way transducers

	Conclusions

	p070-Bell
	Introduction
	Notation
	Quantum Finite Automata and Undecidability
	Ambiguity and Freeness for QFA

	A mapping from arbitrary words to rational unitary matrices
	Freeness and ambiguity for QFA with radicals
	Conclusion

	p071-Bille
	Introduction
	Results
	Techniques

	Preliminaries
	String Decompositions
	Computing String Decompositions

	Computing Accepting Paths
	Analysis
	Squeezing into Linear Space

	Speeding up the Algorithm
	Fast Matching
	Fast Parsing

	p072-Aichinger
	Introduction
	A theorem of Károlyi and Szabó
	Absorbing components
	Polynomial mappings
	Systems of equations
	Circuit satisfiability

	p073-Conte
	Introduction
	Properties of Steiner Subgraphs and Listing Minimum Steiner Subgraphs
	Relationship with minimum Steiner trees
	Listing minimum Steiner subgraphs

	Negative Results on Minimal Steiner Subgraphs
	Listing reduction from Hypergraph Transversal Enumeration
	Hardness of the extension problem for miss's

	Listing Minimal Steiner Subgraphs with Three Terminals
	Conclusions

	p074-Gaspers
	Introduction
	Background on Analysis of Branching Algorithms
	Parameterized Enumeration Problems
	An O*(2^{mu(I)} algorithm for Maximal Admissible Subset Enumeration
	Running Time Analysis

	Monotone Local Search
	Basic Overview of Monotone Local Search
	Improving our Monotone Local Search

	Improved Enumeration Algorithm for Oriented Graphs
	Overview
	Extra Notation
	Simplification Rules
	Branching Rules
	Summary of results

	Bounds on number of preferred extensions
	Bounds on general directed graphs
	Parameterizing by Resolution Order
	Lower Bound
	Upper Bound

	Conclusion

	p075-Lopez
	Introduction
	Cost register automata
	From finitely-ambiguous CRAs to diamondless CRAs
	From diamondless CRAs to bounded-copy CRAs
	From bounded-copy CRAs to copyless CRAs
	Conclusion

	p076-Droste
	Introduction
	Preliminaries
	Weighted Automata
	Weighted First-Order Logic
	From Weighted Automata to Weighted FO
	From Weighted FO to Weighted Automata
	Concluding remarks

	p077-Ganty
	Introduction
	Preliminaries
	Automata Constructions from Congruences
	Language-based Congruences and their Approximation using NFAs
	Automata Constructions

	A Congruence-based Perspective on Known Algorithms
	Double-reversal Method
	Generalization of the Double-reversal Method
	Moore's Algorithm

	Related Work and Conclusions

	p078-Burjons
	Introduction and Related Work
	Our Model
	Related Concepts
	Results

	Preprocessing 3-Sat
	Colorability
	Vertex Cover
	Conclusion and Future Research

	p079-Mizuta
	Introduction
	Our problems
	Known and related work
	Our contribution

	Preliminaries
	Minimum Steiner Tree Reconfiguration under VE
	Steiner sets and their reconfiguration
	PSPACE-completeness for planar graphs

	Minimum Steiner Tree Reconfiguration under VE-N
	Steiner tree embeddings and their reconfiguration
	Layers for Steiner trees
	Decomposition of an MSTR instance into SPR instances

	Conclusion

	p080-Bonamy
	Introduction
	The perfect matching reconfiguration problem
	Related work
	Our results
	Notation

	PSPACE-completeness
	Polynomial-time algorithms
	Strongly orderable graphs
	Outerplanar graphs
	Cographs

	Conclusion

	p081-Carlson
	Introduction
	Motivations
	Our Results
	Structural Characterization for Invertible Signings

	Related Work
	Organization
	Preliminaries

	Finding Invertible Signings

	p082-Kiefer
	Introduction
	Preliminaries
	Algorithms
	The Basic Linear System
	Calculating D-Normalisers Using Cuts
	Calculating D-Normalisers Using Linear Algebra

	Discussion

	p083-Bell
	Introduction
	Preliminaries
	Linear recurrence sequences and semilinear sets
	The mortality problem for bounded languages
	The ABCD-Z problem in dimension two

