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Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a well-established venue for presenting research papers in theoretical
computer science. The broad scope of the conference encourages interactions between
researchers who might not meet at more specialized venues. The first MFCS conference
was organized in 1972 in Jablonna (near Warsaw, Poland). Since then, the conference
traditionally moved between the Czech Republic, Slovakia, and Poland. A few years ago,
the conference started traveling around Europe: in 2018 it was held in Liverpool, United
Kingdom. MFCS 2019, the 44th edition of MFCS, is the first MFCS being held in Germany.

Out of 198 submitted papers, 78 have been finally accepted. The authors of the submitted
papers represent nearly 40 countries. Each paper was assigned to three PC members, who
reviewed and discussed them thoroughly over a period of nearly seven weeks. As the co-chairs
of the program committee, we would like to express our deep gratitude to all the committee
members for their hard, dedicated work. The quality of the submitted papers was very high
and many good papers had to be rejected.

MFCS 2019 features five invited talks, by Kurt Mehlhorn (Max-Plack Institute Saar-
briicken, Germany), Alexandra Silva (University College London, UK), Daniel Lokshtanov
(University of California at Santa Barbara, USA), Kavitha Telikepalli (Tata Institute of
Fundamental Research, India) and Jéréme Leroux (LaBRI, France). We are looking forward
to their excellent talks.

Since 2016, the MFCS 2019 proceedings are published in the Dagstuhl/LIPIcs series. We
would like to thank Michael Wagner and the LIPIcs team for all their kind help and support.
We also like to thank Birgit Willms for her dedicated support in the local organization of
MFCS 2019 in Aachen.

Peter Rossmanith
Pigar Heggernes
Joost-Pieter Katoen
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—— Abstract

The goal of the LEDA project was to build an easy-to-use and extendable library of correct and
efficient data structures, graph algorithms and geometric algorithms. We report on the use of formal
program verification to achieve an even higher level of trustworthiness. Specifically, we report on an
ongoing and largely finished verification of the blossom-shrinking algorithm for maximum cardinality
matching.
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1 Introduction

This talk is a follow-up on two previous invited MFCS-talks given by the second author:
LEDA: A Library of Efficient Data Types and Algorithms in MFCS 1989 [31], and
From Algorithms to Working Programs: On the Use of Program Checking in LEDA in
MFCS 1998 [33].

After a review of these papers, we discuss the further steps taken to reach even higher

trustworthiness of our implementations.

Formal correctness proofs of checker programs [5, 39], and
Formal verification of complex graph algorithms [1].

The second item is the technical core of the paper: it reports on the ongoing and largely

finished verification of the blossom-shrinking algorithm for maximum cardinality matching

in Isabelle/HOL by the first author.

Personal Note by the Second Author. As this paper spans 30 years of work, the reader
might get the impression that I followed a plan. This is not the case. As a science, in this
case computer science, progresses, there are logical next steps. I took these steps. I did not
know 30 years ago, where the journey would lead me.

2 Level One of Trustworthiness: The LEDA Library of Efficient Data
Types and Algorithms

In 1989, Stefan Nédher and the second author set out to build an easy-to-use and extendable
library of correct and efficient data structures, graph algorithms and geometric algorithms.
The project was announced in an invited talk at MFCS 1989 [31] and the library is available
from Algorithmic Solutions GmbH [27]. LEDA, the library of efficient data types and
? Mohammad Abdul.aziz, Kurt Mehl.horn, and Tobias Nipkow;
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template <class NT>
void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& cost,
node_array<NT>& dist, node_array<edge>& pred)

{
node_pg<NT> PQ(G); // a priority queue for the nodes of G
node v; edge e;
dist[s] = 0; // distance from s to s is zero
PQ.insert(s,0); // insert s with value O into PQ
forall_nodes(v,G) pred[v] = nil; // no incoming tree edge yet
while (!PQ.empty()) // as long as PQ is non-empty

{ node u = PQ.del_min(); // let u be the node with minimum dist in PQ
NT du = dist[ul; // and du its distance
forall_adj_edges(e,u) // iterate over all edges e out of u
{ v = G.opposite(u,e); // makes it work for ugraphs
NT ¢ = du + costl[e]; // distance to v via u
if (pred[v] == nil && v != s ) // v already reached?
PQ.insert(v,c); // first path to v

else if (c < dist[v]) PQ.decrease_p(v,c); // better path
else continue;

dist[v] = c; // store distance value

pred[v] = e; // and incoming tree edge

Figure 1 The LEDA implementation of Dijkstra’s algorithm: Note that the executable code
above is similar to a typical pseudo-code presentation of the algorithm.

algorithms, offers a flexible data type graph with loops for iterating over edges and nodes
and arrays indexed by nodes and edges. It also offers the data types required for graph
algorithms such as queues, stacks, and priority queues. It thus created a framework in which
graph algorithms can be formulated easily and naturally, see Figure 1 for an example. The
design goal was to create a system in which the difference between the pseudo-code used to
explain an algorithm and what constitutes an executable program is as small as possible.
The expectation was that this would ease the burden of the implementer and make it easier
to get implementations correct.

3 Level Two of Trustworthiness: Certifying Algorithms

Nevertheless, some implementations in the initial releases were incorrect, in particular, the
planarity test!; it declared some planar graphs non-planar. At around 1995, we adopted the
concept of certifying algorithms [33, 30] for the library and reimplemented all algorithms [34].
A certifying algorithm computes for each input a easy-to-check certificate (witness) that
demonstrates to the user that the output of the program for this particular input is correct;
see Figure 2. For example, the certifying planarity test returns a Kuratowski subgraph if it

1 Most of the implementations of the geometric algorithms were also incorrect in their first release as
we had naively used floating point arithmetic to implement real arithmetic and the rounding errors
invalidated the implementations of the geometric primitives. This lead to the development of the exact
computation paradigm for geometric computing by us and others [20, 45, 14, 44, 32]. In this paper, we
restrict to graph algorithms.
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Program for 10-
x behavior (g, 1)) Yy

accept y
Certifying - "
——| program for 10- TR Checker C'
behavior (@, ) N
w reject

Figure 2 The top figure shows the I/O behavior of a conventional program for IO-behavior (¢, 1);
here ¢ is the precondition and 1) is the postcondition. The user feeds an input = satisfying ¢ (z)
to the program and the program returns an output y satisfying ¢ (z,y). A certifying algorithm for
I0-behavior (p,1) computes y and a witness w. The checker C' accepts the triple (z,y,w) if and
only if w is a valid witness for the postcondition ¢ (z,y), i.e., it proves ¥ (z,y). (reprinted from [5])

declares the input graph non-planar and a (combinatorial) planar embedding if it declares the
input graph planar, and the maximum cardinality matching algorithm computes a matching
and an odd-set-cover that proves its optimality; see Figures 3 and 4. The state of the art of
certifying algorithms is described in [30]. We also implemented checker programs that check
the witness for correctness and argued that the checker programs are so simple that their
correctness is evident. From a pragmatic point of view, the goals of the project were reached
by 2010. The library was easy-to-use and extendable, the implementations were efficient,
and no error was discovered in any of the graph algorithms for several years despite intensive
use by a commercial and academic user community.

Note that, most likely, errors would not have gone undiscovered because of the use of
certifying algorithms and checker programs. Only if a module produced an incorrect output
and hence an invalid certificate and the checker program missed to uncover the invalidity of
the certificate would an error go unnoticed. Of course, the possibility is there and the phrase
“most likely” in the preceding sentence has no mathematical meaning.

Alternative libraries such as Boost and LEMON [43, 28] are available now and some
of their implementations are slightly more efficient than ours. However, none of the new
libraries pays the same attention to correctness. For example, all libraries allow floating
point numbers as weights and capacities in network algorithms, but only LEDA ensures that
the intricacies of floating point arithmetic do not invalidate the implementations; see [6]
and [34, Section 7.2].

4 Level Three of Trustworthiness: Formal Verification of Checkers

We stated above that the checker programs are so simple that their correctness is evident.
Shouldn’t they then be amenable to formal verification? Harald Ganzinger and the second
author attempted to do so at around 2000 and failed. About 10 years later (2011 — 2014)
Eyad Alkassar from the Verisoft Project [42], Sascha Bohme and Lars Noschinski from
Tobias Nipkow’s group at TU Minchen, and Christine Rizkallah and the second author
succeeded in formally verifying some of the checker programs [5, 39]. In order to be able to
talk about formal verification of checker programs, we need to take a more formal look at
certifying algorithms.

1:3
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A matching in a graph G is a subset M of the edges of GG such that no two share an endpoint.

An odd-set cover OSC of G is a labeling of the nodes of G with non-negative integers such that
every edge of G (which is not a self-loop) is either incident to a node labeled 1 or connects two
nodes labeled with the same i, ¢ > 2.

Let n; be the number of nodes labeled i and consider any matching N. For i, i > 2, let N; be
the edges in N that connect two nodes labeled i. Let N; be the remaining edges in N. Then
|N;i| < |[ni/2| and |Ni| < ni and hence

IN| < i+ [ni/2

for any matching N and any odd-set cover OSC. It can be shown that for a maximum cardinality
matching M there is always an odd-set cover OSC with

M| =n1+ Y [ni/2],
i>2
thus proving the optimality of M. In such a cover all n; with ¢ > 2 are odd, hence the name.

list<edge> MAX_CARD_MATCHING((graph G, node_array<int>& OSC)

computes a maximum cardinality matching M in G and returns it as a list of edges.
The algorithm ([12], [15]) has running time O(nm - a(n,m)).
An odd-set cover that proves the maximality of M is returned in OSC.

bool CHECK_MAX CARD_ MATCHING (graph G, list<edge> M, node_array<int> OSC)

checks whether M is a maximum cardinality matching in G and OSC is a proof of
optimality. Aborts if this is not the case.

Figure 3 The LEDA manual page for maximum cardinality matchings (reprinted from [33]).

We consider algorithms which take an input from a set X and produce an output in a set
Y and a witness in a set W. The input « € X is supposed to satisfy a precondition p(z),
and the input together with the output y € Y is supposed to satisfy a postcondition 9 (x,y).
A witness predicate for a specification with precondition ¢ and postcondition v is a predicate
W C X xY x W, where W is a set of witnesses with the following witness property:

() ANW(2,y,w) — (w0, y). (1)

The checker program C' receives a triple? (z,y,w) and is supposed to check whether it fulfills
the witness property. If -p(z), C' may do anything (run forever or halt with an arbitrary
output). If p(z), C must halt and either accept or reject. It is required to accept if W(z,y, w)
holds and is required to reject otherwise. This results in the following proof obligations.

Checker Correctness: We need to prove that C' checks the witness predicate assuming that
the precondition holds, i.e., on input (z,y, w):
(i) If p(z), C halts.
(ii) If o(x) and W(z,y,w), C accepts (z,y,w), and if ¢(x) and “W(x,y,w), C rejects
the triple.
Witness Property: We need to prove implication (1).

2 We ignore the minor complication that X, Y, and W are abstract sets and programs handle concrete
representations.
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static bool return_false(string s)
{ cerr << "CHECK_MAX_CARD_MATCHING: " << s << "\n"; return false; }

bool CHECK_MAX_CARD_MATCHING(const graph& G, const list<edge>& M,
const node_array<int>& 0SC)
{ int n = Max(2,G.number_of_nodes());
int K = 1;
array<int> count(n);
for (int i = 0; i < n; i++) count[i] = O;
node v; edge e;

forall_nodes(v,G)

{if C0sC[v]l] <0 || OSC[v] >=n )
return_false("negative label or label larger than n - 1");
count [0SC[v]]++;
if (0SCLvl > K) K = 0SC[v];

}

int S = count[1];
for (dnt i = 2; i <= K; i++) S += count[i]/2;
if ( 8 != M.length() )
return_false("0SC does not prove optimality");

forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);
if (v ==w || 0SC[v]l == 1 || 0SC[w] == 1 ||
( 0SC[v] == 0SC[w] && 0SC[v] >= 2) ) continue;
return_false("0SC is not a cover");
}

return true;

Figure 4 The checker for maximum cardinality matchings (reprinted from [33]).

In case of the maximum cardinality matching problem, the witness property states that
an odd-set cover OSC as defined in Figure 3 with |M| =ny + >,.,(n:/2] proves that the
matching M has maximum cardinality. Checker correctness amounts to the statement that
the program shown in Figure 4 is correct.

We proved the witness property using Isabelle/HOL [37]; see Section 5.1 for more
information on Isabelle/HOL. For the checker correctness, we used VCC [9] and later
Simpl [41] and AutoCorres [16]. The latter approach has the advantage that the entire
verification can be performed within Isabelle. Simpl is a generic imperative programming
language embedded into Isabelle/HOL, which was designed as an intermediate language
for program verification. We implemented checkers both in Simpl and C. Checkers written
in Simpl were verified directly within Isabelle. For the checkers written in C, we first
translated from C to Isabelle using the C-to-Isabelle parser that was developed as part of
the seL4 project [21], and then used the AutoCorres tool developed at NICTA that simplifies
reasoning about C in Isabelle/HOL. Christine spent several months at NICTA to learn how
to use the tool. We verified the checkers for connectivity, maximum cardinality matching,
and non-planarity. In particular, for the non-planarity checker it was essential that Lars
Noschinski in parallel formalized basic graph theory in Isabelle [38].

1:5
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A disclaimer is in order here. We did not verify the C++ program shown in Figure 4.
Rather we verified a manual translation of this program into Simple or C, respectively. For
this translation, we assumed a very basic representation of graphs. The nodes are numbered
from 0 to n— 1, the edges are numbered from 0 to m — 1 with the edges incident to any vertex
numbered consecutively and arrays of the appropriate dimension are used for cross-referencing
and for encoding adjacency lists.

The verification attempt for the maximum cardinality checker shown in Figure 4 discovered
a flaw. Note that the program does not check whether the edges in M actually belong to G.
When we wrote the checker, we apparently took this for granted. The verification attempt
revealed the flaw.

We also considered going further and briefly tried to verify the LEDA maximum cardinality
matching algorithm [34, Section 7.7]. The program has 330 lines of code and the description
of the algorithm, its implementation and its correctness proof spans over 20 pages. We found
the task too daunting and, extrapolating from the effort required for the verification of the
checkers, estimated the effort as several man-years.

5 Level Four of Trustworthiness: Formal Verification of Complex
Algorithms

A decade later, we perform the formal verification of the blossom-shrinking algorithm for
maximum cardinality. We give a short account of the verification which will be described
in detail in our forthcoming publication [1]. On a high-level Edmond’s blossom-shrinking
algorithm [12] works as follows. The algorithm repeatedly searches for an augmenting path
with respect to the current matching. Initially, the current matching is empty. Whenever an
augmenting path is found, augmentation of the path increases the size of the matching by
one. If no augmenting path exists with respect to the current matching, the current matching
has maximum cardinality.

The search for an augmenting path is via growing alternating trees rooted at free vertices,
i.e. vertices not incident to an edge of the matching. The search is initialised by making
each free vertex a root of an alternating tree; the matched nodes are in no tree initially. In
an alternating tree, vertices at even depth are entered by a matching edge, vertices at odd
depth are entered by a non-matching edge, and all leaves have even depth. In each step of
the growth process, one considers a vertex, say ui, of even depth that is incident to an edge
{u1,us} not considered before. If uy is not in a tree yet, then one adds uy (at odd level) and
its mate (at even level) under the current matching to the tree. If uy is already in a tree and
has odd level then one does nothing as one simply has discovered another odd length path to
ug. If us is already in a tree and has even level then one has either discovered an augmenting
path (if ug is in a different tree than w;) or a blossom (if us and u; are in the same tree). In
the latter case, consider the tree paths from us and uq back to their common root and let ug
be the lowest common ancestor of us and u;. The edge {uy,us} plus the tree paths from u,
and us to ug form an odd length cycle. One collapses all nodes on the cycle into a single node
and repeats the search for an augmenting path in the quotient (= shrunken) graph. If an
augmenting path is found in the quotient graph, it is lifted (refined) to an augmenting path
in the original graph. If no augmenting path exists in the quotient graph, no augmenting
path exists in the original graph. In this section, we describe in detail the algorithm outlined
above, and the process of formalising and verifying it in Isabelle/HOL.
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5.1 Isabelle/HOL

Isabelle/HOL [40] is a theorem prover for classical Higher-Order Logic. Roughly speaking,
Higher-Order Logic can be seen as a combination of functional programming with logic.
Isabelle’s syntax is a variation of Standard ML combined with (almost) standard mathematical

notation. Application of function f to arguments xy ... x, is written as f x; ... x, instead
of the standard notation f(x1, ... ,x,). We explain non-standard syntax in the paper where
it occurs.

Isabelle is designed for trustworthiness: following the LCF approach [35], a small kernel
implements the inference rules of the logic, and, using encapsulation features of ML, it
guarantees that all theorems are actually proved by this small kernel. Around the kernel,
there is a large set of tools that implement proof tactics and high-level concepts like algebraic
data types and recursive functions. Bugs in these tools cannot lead to inconsistent theorems
being proved since they all rely on the kernel only, but only to error messages when the
kernel refuses a proof. Isabelle/HOL comes with a rich set of already formalized theories,
among which are natural numbers and integers as well as sets and finite sets.

5.2 Preliminaries

An edge is a set of vertices with size 2. A graph G is a set of edges. A set of edges M is a
matching iff Ve, e’ € M. ene’ = . In Isabelle/HOL that is represented as follows:

matching M <— (Vel € M. Ve2 € M. el # e2 — el N e2 = {})

In may cases, a matching is a subset of a graph, in which case we call it a matching w.r.t.
the graph. For a graph G, M is a maximum matching w.r.t. G iff for any matching M’ w.r.t.

G, we have that |M'| < |M].

5.3 Formalising Berge’s Lemma

A list of vertices ujus...u, is a path w.r.t. a graph G iff every {u;,u;11} € G. A path
UiUg . .. Uy is a simple path iff for every 1 <i # j < n, u; # u;. A list of vertices ujusg ... uy
is an alternating path w.r.t. a set of edges F iff for some FE’ (i) E' = For E' = {e|e & E},
(ii) {us,uir1} € E' holds for all even numbers 4, where 1 < ¢ < n, and (iii) {w;,ui41} € F’
holds for all odd numbers i, where 1 < ¢ < n. We call a list of vertices ujus...u, an
augmenting path w.r.t. a matching M iff uyus...u, is an alternating path w.r.t. M and
uy, u, € |JM. Tt is often the case that an augmenting path v w.r.t. to a matching M is

also a simple path w.r.t. a graph G, in which case we call the path an augmenting path w.r.t.

to the pair (G, M). Also, for two sets s and ¢, s ® t denotes the symmetric difference of the
two sets. We overload & to arguments which are lists in the obvious fashion.

» Theorem 1 (Berge's Lemma). For a graph G, a matching M is mazimum w.r.t. G iff there
is not an augmenting path v w.r.t. (G, M).

Our proof of Berge’s lemma is shorter than the standard proof. The standard proof consists
of three steps. First, for any two matchings M and M’, every connected component of the
graph M @ M’ is either (i) a singleton vertex, (ii) a path, or (iii) a cycle. Second, for a set
of edges C C M @M’ s.t. |[CNM| < |CNM|, the edges from C form a path. Third, such
a set C of edges exists, if M| < |M'|. We observe that it is easier to directly show that
such a C' exists and that all its edges can be arranged in a path, without having to prove
the first step about all connected components. We found this different proof during the
process of formalising the theorem, and finding this shorter proof was primarily motivated

1:7
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by making the formalisation shorter and more feasible. The discovery of simpler proofs or
more general theorem statements is one potential positive outcome of verifying algorithms,
and mathematics in general, in interactive theorem provers [3, 2, 10].

Algorithm 1 FIND_ MAX_ MATCHING(G, M).

v := AuG__PATH__ SEARCH(G, M)
if v is some augmenting path

return FIND_ MAX_ MATCHING(G, M & 7)
else

return M

Now consider Algorithm 1. Berge’s lemma implies the validity of that algorithm as a
method to compute maximum matchings in graphs. The validity of Algorithm 1 is stated in
the following corollary.

» Corollary 1. Assume that Auc_PATH _SEARCH(G, M) is an augmenting path w.r.t.
(G, M), for any graph G and matching M, iff G has an augmenting path w.r.t. (G, M).
Then, for any graph G, FIND_ MAX_ MATCHING(G,0) is a mazimum matching w.r.t. G.

As shown in Corollary 1, Algorithm 1 depends on the function AUG_ PATH__ SEARCH which
is a sound and a complete procedure to compute augmenting paths in graphs.

In Isabelle/HOL, the first step is to formalise the path concepts from above. Paths and
alternating paths are defined recursively in a straightforward fashion. An augmenting path
is defined as follows:

augmenting_path M p = (length p > 2) A alt_path M p
ANhdp ¢ Vs M A\ last p ¢ Vs M

The formalised statement of Berge’s lemma is as follows:

theorem Berge:
assumes
finite M and matching M and M C E
and
(Ve€E. Ju v. e = {u,v} AN u # v) and finite (Vs E)
shows (dp. augmenting path M p A path E p A distinct p) +—
(3M’> C E. matching M’ A card M < card M’)

Note that in the formalisation when the paths need to be simple, such as in Berge’s lemma
above, we have the additional assumption that all vertices are pairwise distinct, denoted by
the Isabelle/HOL predicate distinct. Just to clarify Isabelle’s syntax: the lemma above has
two sets of assumptions, one on the matching and the other on the graph. The matching has
to be a finite set, which is a matching w.r.t. the given graph. The graph has to have edges
which only have two vertices, and its set of vertices has to be finite.

In Isabelle/HOL Algorithm 1 is formalised within the following locale.

locale find_max_match =
fixes aug_path_search::’a set set = ’a set set = (’a list) option and
E
assumes
aug_path_search_complete:
matching M N M C E A finite M A
(3dp. path E p A distinct p A augmenting_path M p)
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— (dp. aug_path_search E M = Some p)
and
aug_path_search_sound:
matching M AN M C E A finite M A aug_path_search E M = Some p —
path E p A distinct p A augmenting path M p
and
graph: VecE. Ju v. e = {u, v} AN u # v finite (Vs E)

A locale is a named context: definitions and theorems proved within locale find_max_match
can refer to the parameters and assumptions declared there. In this case, we need the
locale to identify the parameter aug_path_search of the locale, corresponding to the function
AucG__ PATH__ SEARCH, which is used in Algorithm 1. The function aug_path_search should

take as input a graph and a matching. It should return an (’a 1ist) option typed value.

Generally speaking, the value of an ’a option valued term could be in one of two forms:
either Some x, or None, where x is of type ’a. In the case of aug_path_search, it should return

either Some p, where p is a path in case an augmenting path is found, or None, otherwise.

There is also the function the, which given a term of type ’a option, returns x, if the given
term is Some x, and which is undefined otherwise. Within that locale, the definition of
Algorithm 1 and its verification theorem are as follows. Note that the verification theorem
has four conclusions: the algorithm returns a subset of the graph, that subset is a matching,
that matching is finite and the cardinality of any other matching is bounded by the size of
the returned matching.
find_max_matching M =
(if (dp. aug_path_search E M = Some p) then

(find_max_matching (M & (set (edges_of_path (the (aug_path_search E M))))))
else M)

lemma find_max_matching_works:
shows (find_max_matching {}) C E
matching (find_max_matching {})
finite (find_max_matching {})
VM. matching M AN M C E A finite M — card M < card (find_max_matching {})

Functions defined within a locale are parameterised on the constants which are declared
in the locale’s definition. When a function is used outside a locale, these parameters
must be specified. So, if find_max_matching is used outside the locale above, it should
take a function which computes augmenting paths as a parameter. Similarly, theorems
proven within a locale implicitly have the assumptions of the locale. So if we use the
lemma find_max_matching works, we would have to prove that the functional argument to
find_max_matching satisfies the assumptions of the locale, i.e. that argument is a sound and
complete procedure for computing augmenting paths. The way theorems from locales are
used will be clearer in the next section when we refer to the function find_max_matching and
use the lemma find_max_matching works outside of the locale find_max_match. The use of
locales for performing gradual refinement of algorithms allows to focus on the specific aspects
of the algorithm relevant to a refinement stage, with the rest of the algorithm abstracted away.

5.4 \Verifying that Blossom Contraction Works

In Corollary 1, which specifies the soundness of FIND__ MAX_MATCHING, we have not
explicitly specified the function AUG__PATH__ SEARCH. Indeed, we have only specified what its
output has to conform to. We now refine that specification and describe AUG__PATH SEARCH
algorithmically.

1:9
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Firstly, for a function f and a set s, let f(s) denote the image of f on s. Also, for a set
of edges E, and a function f, the quotient E/f is the set {f(e]) | e € E}. We now introduce
the concepts of a blossom. A list of vertices ujus ... u, is called a cycle if 3 < n and u,, = uq,
and we call it an odd cycle if n is even. A pair (ujug...u;—1, Uiliq1 ... Uy) is a blossom
w.r.t. a matching M iff (i) w;u;q1...u, is an odd cycle, (ii) ujusg ... u, is an alternating
path w.r.t. M, and (iii) u1 & |J M. We also refer to ujus ... u; as the stem of the blossom.
In many situations we have a pair (ujus ... u;—1,U;Uiq1 - .. Uy,) which is a blossom w.r.t. a
matching M where ujus ... u;—1u;ujy1 ... u,—1 is also a simple path w.r.t. a graph G and
{tn—1,un} € G. In this case we call it a blossom w.r.t. (G, M).

Based on the above definitions, we prove that contracting (i.e. shrinking) the odd cycle
of a blossom preserves the existence of an augmenting path, which is the second main result
needed to prove the validity of the blossom-shrinking algorithm, after Berge’s lemma.

» Theorem 2. Consider a graph G and a vertex uw & |JG. Let for a set s, the function P
be defined as Ps(x) = if € s then u else x. Then, for a blossom (v,C) w.r.t. (G,M), if s
is the set of vertices in C, then we have an augmenting path w.r.t. (G, M) iff there is an
augmenting path w.r.t. (G/Ps, M/Py).

Theorem 2 is used in most expositions of the blossom-shrinking algorithm. In our proof
for the forward direction (if an augmenting path exists w.r.t. (G, M), then there is an
augmenting path w.r.t. (G/Ps, M/Ps), i.e. w.r.t. the quotients), we follow a standard
textbook approach [22]. In our proof for the backward direction (an augmenting path w.r.t.
the quotients can be lifted to an augmenting path w.r.t. the original graph) we define an
(almost) executable function refine that does the lifting.> We took the choice of explicitly
defining that function with using it in the final algorithm in mind. This is similar to the
approach used in the informal proof of soundness of the variant of the blossom-shrinking
algorithm used in LEDA [34].

Now, using Theorem 2, one can show that Algorithm 2 is a sound and complete procedure
for computing augmenting paths.

Algorithm 2 AuG__PATH__SEARCH(G, M).

if ComPUTE_BLOSsoM(G, M) is a blossom (v, C) w.r.t. (G, M)
return refine(AUG__PATH__ SEARCH(G/Pc, M/ Pc))

else if CoMPUTE_ BLOSSOM(G, M) is an augmenting path w.r.t. (G, M)
return CoMPUTE_ BrLossoM(G, M)

else

return no augmenting path found

The soundness and completeness of this algorithm assumes that COMPUTE__BLOSSOM
can successfully compute a blossom or an augmenting path in a graph iff either one exists.
This is formally stated as follows.

» Corollary 2. Assume that, for a graph G and a matching M w.r.t. G, there is a blossom or an
augmenting path w.r.t. (G, M) iff COMPUTE_ BLOSSOM(G, M) is a blossom or an augmenting
path w.r.t. (G, M). Then for any graph G and matching M, AuG_ PATH__SEARCH(G, M)
is an augmenting path w.r.t. (G, M) iff there is an augmenting path w.r.t. (G, M).

3 The function refine, as defined later, is executable except for a choice operation.



M. Abdulaziz, K. Mehlhorn, and T. Nipkow 1:11

To formalise that in Isabelle/HOL, an odd cycle and a blossom are defined as follows:

odd_cycle p = (length p > 3) A odd (length (edges_of_path p)) A hd p = last p

blossom M stem C = alt_path M (stem @ C) A
distinct (stem @ (butlast C)) A odd_cycle C A hd (stem @ C) ¢ Vs M A
even (length (edges_of_path (stem @ [hd C])))

In the above definition @ stands for list concatenation and edges_of_path is a function which,
given a path, returns the list of edges constituting the path.

To define the function refine that refines a quotient augmenting path to a concrete one or
to formalise the theorems showing that contracting blossoms preserves augmenting paths we
first declare the following locale:

locale quot =
fixes P s u
assumes VveEs. P v = v and u¢s and (Vv. v¢ds — P v = u)

That locale fixes a function P, a set of vertices s and a vertex u. The function P maps all
vertices from s to the given vertex u.

Now, we formalise the function refine which lifts an augmenting path in a quotient graph
to an augmenting path in the concrete graph. The function refine takes an augmenting path
p in the quotient graph and returns it unchanged if it does not contain the vertex u and
deletes u and splits p into two paths p; and ps otherwise. In the latter case, p; and ps
are passed to replace_cycle. This function first defines two auxiliary paths stem2p2 and
pl2stem using the function stem2vert_path. Let us have a closer look at the path stem2p2.
stem2vert_path with last argument hd p2 uses choose_con_vert to find a neighbor of hd p2
on the cycle C. It splits the cycle at this neighbor and then returns the path leading to the
base of the blossom starting with a matching edge. Finally, replace_cycle glues together pq,
p2 and either stem2p2 and pi2stem to obtain an augmenting path in the concrete graph.

choose_con_vert vs E v = (SOME v’. v’ € vs AN {v, v’} € E)

stem2vert_path C E M v =
let find_pfx’ = (AC. find_pfx ((=) (choose_con_vert (set C) E v)) C) in
if (last (edges_of_path (find_pfx’ C)) € M) then
(find_pfx’ C)
else
(find_pfx’ (rev C))

replace_cycle C E M pl1 p2 =
let stem2p2 = stem2vert_path C E M (hd p2);
pl2stem = stem2vert_path C E M (last pl) in
if p1 = [] then
stem2p2 @ p2
else
(if p2 = [] then
pl2stem @ (rev p1)
else
(if {u, hd p2} ¢ quotG M then
pl @ stem2p2 @ p2
else
(rev p2) @ pl2stem @ (rev pl)))

MFCS 2019
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refine CEMp =
if (u € set p) then

(replace_cycle C E M (fst (pref_suf [] u p)) (snd (pref_suf [] u p)))
else p

In Isabelle/HOL the two directions of the equivalence in Theorem 2 are formalised as
follows:

theorem quot_apath_to_apath:

assumes
odd_cycle C and alt_path M C and distinct (tl1 C) and path E C
and
augmenting path (quotG M) p’ and distinct p’ and path (quotG E) p’
and
matching M and M C E
and
s = (Vs E) - set C
and
Ve€E. Juv. e ={u, v} ANu # v

shows augmenting_path M (refine C E M p’) A path E (refine C E M p’) A

distinct (refine C E M p’)

theorem aug_path_works_in_contraction:
assumes
path E (stem @ C) and blossom M stem C
and
augmenting_path M p and path E p and distinct p
and
matching M and M C E and finite M
and
s = (Vs E) -set Cand u ¢ Vs E
and
Ve€E. Juv. e = {u, v} A u # v and finite (Vs E)
shows dp’. augmenting path (quotG M) p’ A path (quotG E) p’ A distinct p’

A main challenge with formalising Theorem 2 in Isabelle/HOL is the lack of automation
for handling symmetries in its proof.

To formalise Algorithm 2 we use a locale to assume the existence of the function which
computes augmenting paths or blossoms, iff either one exist. That function is called
blos_search in the locale declaration. Its return type and the assumptions on it are as
follows:

datatype ’a blossom_res =
Path (aug_path: "’a list") | Blossom (stem_vs: "’a list") (cycle_vs: "’a list")

bloss_algo_complete:
(((3p. path E p A distinct p A augmenting path M p)
V (matching M A (dstem C. path E (stem @ C) A blossom M stem C))))
—> (dblos_comp. blos_search E M = Some blos_comp)

bloss_algo_sound:
(Ve€E. Juv. e = {u, v} A u # v) A blos_search E M = Some (Path p)
— (path E p A distinct p A augmenting_path M p)
blos_search E M = Some (Blossom stem C)
—> (path E (stem @ C) A (matching M — blossom M stem C))
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The locale also fixes a function create_vert which creates new vertex names to which vertices
from the odd cycle are mapped during contraction. Within that locale, we define Algorithm 2
and prove its soundness and completeness theorems, which are as follows:

quotG E = (quot_graph P E) - {{u}}

find_aug_path E M =
(case blos_search E M of Some blossom_res =
case blossom_res of Path p = Some p
| Blossom stem cyc =
let u = create_vert (Vs E);

s = Vs E - (set cyc);
quotG = quot.quotG (quot_fun s u) u;
refine = quot.refine (quot_fun s u) u cyc E M

in (case find_aug_path (quotG E) (quotG M) of Some p’ = Some (refine p’)
| _ = None)

| _ = None)

lemma find_aug_path_sound:

assumes
matching M and M C E and finite M
and
VecE. Juv. e = {u, v} A u # v and finite (Vs E)
and

find_aug_path E M = Some p
shows augmenting path M p A path E p A distinct p

lemma find_aug_path_complete:
assumes
augmenting path M p and path E p and distinct p
and
matching M and M C E and finite M
and
Ve€E. Juv. e = {u, v} AN u # v and finite (Vs E)"
shows Jp’. find_aug _path E M = Some p’

Note that in find_aug_path, we instantiate both arguments P an s of the locale quot to
obtain the quotienting function quotG and the function for refining augmenting path refine.

Lastly, what follows shows the validity of instantiating the functional argument of
find_max_matching with find_aug_path, which gives us the following soundness theorem of
the resulting algorithm.

lemma find_max_matching_works:
assumes
finite (Vs E) and Ve€E. Juv. e = {u, v} AN u # v
shows
find_max_match.find_max_matching find_aug path E {} C E
matching (find_max_match.find_max_matching find_aug path E {})
finite (find_max_match.find_max_matching find_aug_path E {})
VM. matching M AN M C E A finite M
— card M < card (find_max_match.find_max_matching find_aug_path E {})

1:13
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5.5 Computing Blossoms and Augmenting Paths

Until now, we have only assumed the existence of the function COMPUTE__ BLOSSOM, which
can compute augmenting paths or blossoms, if any exist in the graph. We now refine that
to an algorithm which, given two alternating paths resulting from the ascent of alternating
trees, returns either an augmenting path or a blossom.

We first introduce some notions and notation. For a list I, let || be the length of . For a
list [ and a natural number n, let drop n [ denote the list I, but with the first n elements
dropped. For a list I, let h :: [ denote adding an element h to the front of a list [. For a
non-empty list [, let first [ and last [ denote the first and last elements of I, respectively.
Also, for a list [, let rev [ denote its reverse. For two lists [; and o, let [; ~I5 denote their
concatenation. Also, let longest_disj_pref I; o denote the pair of lists (I}, 15), where I} and
l5 are the longest disjoint prefixes of 1 and Iy, respectively, s.t. last I§ = last l5. Note:
longest_disj_pref [ l5 is only well-defined if there is are [1,1}, and [ s.t. Iy = I{~I and
lo = 15~ and if both [] and [} are disjoint except at their endpoints.

We now are able to state the following two lemmas concerning the construction of a
blossom or an augmenting path given paths resulting from alternating trees search.

» Lemma 1. If v and 2 are both (i) simple paths w.r.t. G, (ii) alternating paths w.r.t.
M, and (iii) of odd length, and if we have that (iv) last 41 = last yo, (v) last 1 € UM,
(vi) {first y1,first 2} € G, (vii) {first vy, first 2} € M, and (viii) longest_disj_pref 1 o is
well-defined and (~yy,~5) = longest_disj_pref 1 2, then (rev(drop (1] —1) 71), (rev v1)—~74%)
is a blossom w.r.t. (G, M).

» Lemma 2. If vy, and 2 are both (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M,
(iii) of odd length, and (iv) disjoint, and if we have that (v) last 1 & UM, (vi) last v2 € (JM,
(vii) last v # last va, (viii) {first y1,first 2} € G, and (iz) {first vy, first 2} & M, then
(rev v1)—~72 is an augmenting path w.r.t. (G, M).

Based on the above lemmas we refine the algorithm CoMPUTE_BLOSSOM as shown in
Algorithm 3.

Algorithm 3 CoMpPUTE_BLossoM(G, M).

if deecGen UM =10
return Augmenting path choose {¢ |e € GAeNn|JM = 0}
else if compute_alt_path(G, M) = (y1,72)
if last 1 # last o
return Augmenting path (rev v1)—~72
else
(71,73) = longest_disj_pref 71 2
return Blossom (rev(drop (|74 — 1) 1), (rev 1) —~5)
else

return No blossom or augmenting path found

The following corollary shows the conditions under which COMPUTE__ BLOSSOM works.

» Corollary 3. Assume the function compute_alt_path(G, M) returns two lists of vertices
(v1,72) s.t. both lists are (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M, and (i) of
odd length, and also (iv) last v1 ¢ UM, (v) last vo & | UM, (vi) {first v1,first 2} € G, and
(vii) {first 1, first 2} & M, iff two lists of vertices with those properties exist. Then there is
a blossom or an augmenting path w.r.t. (G, M) iff COMPUTE_ BLOSSOM(G, M) is a blossom
or an augmenting path w.r.t. (G, M).
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In Isabelle/HOL, to formalise the function COMPUTE__BLOSSOM, we firstly defined a function,
longest_disj_pfx, which finds the longest common prefix in a straightforward fashion with a
quadratic wort-case runtime. The formalised versions of Lemma 1 and 2, which show that
the output of longest_disj_pfx can be used to construct a blossom or an augmenting path
are as follows:

lemma common_pfxs_form_blossom:

assumes
(Some pfx1, Some pfx2) = longest_disj_pfx pl p2"
and
pl = pfx1 @ p and p2 = pfx2 @ p"
and
alt_path M pl and alt_path M p2 and last pl1 ¢ Vs M and {hd pl, hd p2} € M"
and
hd pl # hd p2"
and
even (length p1) and even (length p2)
and
distinct pl and distinct p2
and
matching M

shows blossom M (rev (drop (length pfx1) p1)) (rev pfxl @ pfx2)

lemma construct_aug_path:
assumes
set pl N set p2 = {}
and
pl # [] and p2 # []
and
alt_path M pl and alt_path M p2 and last pl ¢ Vs M and last p2 ¢ Vs M
and
{hd p1, hd p2} € M and
and
even (length p1) and even (length p2)
shows augmenting path M ((rev pl) @ p2)

The function COMPUTE__BLOSSOM is formalised as follows:

"compute_blossom G M =
(if (Jde. e € unmatched_edges G M) then
let
singleton_path =
(SOME p. 3vi v2. p = [vl ,v2] A {vl, v2} € unmatched_edges G M)
in
Some (Path singleton_path)
else
case compute_alt_path G M
of Some (p1,p2) =
(if (set pl N set p2 = {}) then
Some (Path ((rev p1l) @ p2))
else
(let
(pfx1, pfx2) = longest_disj_pfx pl p2;
stem = (rev (drop (length (the pfx1)) pl));
cycle = (rev (the pfx1l) @ (the pfx2))

1:15
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in
(Some (Blossom stem cycle))))
| _ = Nomne)"

We use a locale again to formalise that function. That locale parameterises it on a function
that searches for alternating paths and poses the soundness and completeness assumptions for
that alternating path search function. This function is equivalent to the unspecified function
compute_alt_path in Corollary 3 and locale’s assumptions on it are formalised statements of
the seven assumptions on compute_alt_path in Corollary 3.

5.6 Computing Alternating Paths

Lastly, we refine the function compute_alt_path to an algorithmic specification. The algorith-
mic specification of that function performs the alternating tree search, see Algorithm 4. If the
function positively terminates, i.e. finding two vertices with even labels, returns two alternat-
ing paths by ascending the two alternating trees to which the two vertices belong. This tree
ascent is performed by the function follow . That function takes a functional argument f and
a vertex, and returns the singleton list [u] if f(u) = None, and u :: (follow f (f(u))) otherwise.

Algorithm 4 compute_alt_path(G, M).

ex =0 // Set of examined edges
foreach u € J§G
label u = None
parent © = None
U= U g \ U M // Set of unmatched vertices
foreach v € U
label u = (u, even)
while (G \ ex) N {e | Ju € e,r € [JG.label u = (r,even)} # ()
// Choose a new edge and labelled it examined
{u1,u2} = choose (G \ ex) N {{u,uz} | Ir.label uy = (r,even)}
ex = ex U {{u1,u2}}
if label us = None
// Grow the discovered set of edges from r by two
ug = choose {uz | {uz,usz} € M}
ex = ex U {{ug,us}}
label uy = (r,odd); label us = (r,even); parent us = wuy; parent uz = us
else if 3s € |JG.label uy = (s, even)
// Return two paths from current edge’s tips to unmatched vertex(es)
return (follow parent uq, follow parent us)
return No paths found

The soundness and completeness of Algorithm 4 is stated as follows.

» Theorem 3. The function compute_alt_path(G, M) returns two lists of vertices {y1,72)
s.t. both lists are (i) simple paths w.r.t. G, (ii) alternating paths w.r.t. M, and (i) of
odd length, and also (iv) last v1 &€ UM, (v) last vo & |JM, (vi) {first v1,first 2} € G, and
(vii) {first y1,first v2} & M, iff two lists of vertices with those properties exist.

The primary difficulty with proving this theorem is identifying the loop invariants, which
are as follows:
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(i) For any vertex wu, if for some r, label u = (r,even), then the vertices in the list
follow parent u have labels that alternate between (r,even) and (r, odd).

(ii) For any vertex uq, if for some r and some [, we have label u; = (r, 1), then the vertex list
U U . . . Uy returned by follow parent u; has the following property: if label u; = (r, even)

and label u; 1 = (r,odd), for some r, then {u;, u;+1} € M, otherwise, {u;, u;41} & M.

(iii) The relation induced by the function parent is well-founded.

(iv) For any {ui,us} € M, label u; = None iff label uz = None.

(v) For any wuy, if label u; = None then parent us # uq, for all us.

(vi) For any wu, if label u # None, then last (follow parent u) & [J M.

(vii) For any w, if label u # None, then label (last (follow parent u)) = (r, even), for some r.
(viii) For any {u1,us} € M, if label u; # None, then {uy,us} € ex.

(ix) For any u, follow parent u is a simple path w.r.t. G.

(x) Suppose we have two vertex lists 4, and s, s.t. both lists are (i) simple paths w.r.t. G,
(ii) alternating paths w.r.t. M, and (iii) of odd length, and also (iv) last v1 & UM, (v)
last y2 & M, (vi) {first v1,first 2} € G, and (vii) {first vy, first 72} & M. Then there
is at least an edge from the path rev 7, ~v, which is a member of neither M nor ex.*

To formalise Algorithm 4 in Isabelle/HOL, we first define the function which follows a
vertex’s parent as follows:

follow v = (case (parent v) of Some v’ = v # (follow v’) | _ = [v])

Again, we use a locale to formalise that function, and that locale fixes the function parent.

Note that the above function is not well-defined for all possible arguments. In particular, it

is only well-defined if the relation between pairs of vertices induced by the function parent is

a well-founded relation. This assumption on parent is a part of the locale’s definition.
Then, we then formalise compute_alt_path as follows:

compute_alt_path ex par flabel =
(if (dv1l v2. {vl, v2} € G - ex A (dr. flabel vl = Some (r, Even))) then
let
(vi,v2) = (SOME (vi,v2). {vl, v2} € G - ex A
(dr. flabel v1 = Some (r, Even)));
ex’ = insert {v1l, v2} ex;
r = (SOME r. flabel vl = Some (r, Even))

in
(if flabel v2 = None A (3v3. {v2, v3} € M) then
let
v3 = (SOME v3. {v2, v3} € M);
par’ = par(v2 := Some v1, v3 := Some v2);
flabel’ = flabel(v2 := Some (r, 0dd), v3 := Some (r, Even));
ex’’ = insert {v2, v3} ex’;
return = compute_alt_path ex’’ par’ flabel’
in
return
else if dr. flabel v2 = Some (r, Even) then
let

r’ = (SOME r’. flabel v2 = Some (r’, Even));
return = Some (parent.follow par v1, parent.follow par v2)

4 The hypothesis of this invariant is equivalent to the existence of an augmenting path or a blossom w.r.t.

(G, M).
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in
return
else
let
return = None
in
return)
else
let
return = None
in
return)

Note that we do not use a while combinator to represent the while loop: instead we
formalise it recursively, passing the context along recursive calls. In particular, we define it
as a recursive function which takes as arguments the variables representing the state of the
while loop, namely, the set of examined edges ex, the parent function par, and the labelling
function flabel.

5.7 Discussion

The algorithm in LEDA differs from the description above in one aspect. If no augmenting
path is found, an odd-set cover is constructed proving optimality. Also the correctness proof
uses the odd-set cover instead of the fact that an augmenting path exists in the original
graph if and only if one exists in the quotient graph.

For an efficient implementation, the shrinking process and the lifting of augmenting paths
are essential. The shrinking process is implemented using a union-find data structure and
the lifting is supported by having each node in a contracted cycle point to the edge that
closes the cycle in a blossom [34].

6 Level Five of Trustworthiness: Extraction of Efficient Executable
Code

In this section we examine the process of obtaining trustworthy executable and efficient code
from algorithms verified in theorem provers. First we discuss the problem in general and
then we examine our formalization of the blossom-shrinking algorithm.

Most theorem provers are connected to a programming language of some sort. Frequently,
as in the case of Isabelle/HOL, that programming language is a subset of the logic and
close to a functional programming language. The theorem prover will usually support the
extraction of actual code in some programming language. Isabelle/HOL supports Standard
ML, Haskell, OCaml and Scala.

To show that code extraction “works”, here are some random non-trivial examples of
verifications that have resulted in reasonably efficient code: Compilers for C [29] and for
ML [23], a SPIN-like model checker [13], network flow algorithms [26] and the Berlekamp-
Zassenhaus factorization algorithm [11].

We will now discuss some approaches to obtaining code from function definitions in a
theorem prover. In the ACL2 theorem prover all functions are defined in a purely functional
subset of Lisp and are thus directly executable. In other systems, code generation involves
an explicit translation step. The trustworthiness of this step varies. Probably the most
trustworthy code generator is that of HOL4, because its backend is a verified compiler for
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CakeML [23], a dialect of ML. The step from HOL to CakeML is not verified once and for
all, but every time it is run it produces a theorem that can be examined and that states
the correctness of this run [36]. The standard code generator in Isabelle/HOL is unverified
(although its underlying theory has been proved correct on paper [18]). There is ongoing
work to replace it with a verified code generator that produces CakeML [19].

So far we have only considered purely functional code but efficient algorithms often
make use of imperative features. Some theorem provers support imperative languages
directly, e.g. Java [4]. We will now discuss how to generate imperative code from purely
functional one. Clearly the code generator must turn the purely functional definitions
into more imperative ones. The standard approach [7, 36] is to let the code generator
recognize monadic definitions (a purely functional way to express imperative computations)
and implement those imperatively. This is possible because many functional programming
languages do in fact offer imperative features as well.

Just as important as the support for code extraction is the support for verified stepwise
refinement of data types and algorithms by the user. Data refinement means the replacement
of abstract data types by concrete efficient ones, e.g. sets by search trees. Algorithm
refinement means the stepwise replacement of abstract high-level definitions that may not
even be executable by efficient implementations. Both forms of refinement are supported
well in Isabelle/HOL [17, 24, 25].

We conclude this section with a look at code generation from our formalization of the

blossom-shrinking algorithm. It turns out that our formalization is almost executable as is.

The only non-executable construct we used is SOME x. P that denotes some arbitrary x that
satisfies the predicate P. Of course one can hide arbitrarily complicated computations in such
a contruct but we have used it only for simple nondeterministic choices and it will be easy
to replace. For example, one can obtain an executable version of function choose_con_vert
(see Section 5.4) by defining a function that searches the vertex list vs for the first v’ such
that {v, v’} € E. This is an example of algorithm refinement. To arrive at efficient code for
the blossom-shrinking algorithm as a whole we will need to apply both data and algorithm
refinement down to the imperative level. At least the efficient implementations referred to
above, just before Section 5.1, are intrinsically imperative.

Finally let us note that instead of code generation it is also possible to verify existing
code in a theorem prover. This was briefly mentioned in Section 4 and Charguéraud [8] has
followed this approach quite successfully.

7 The Future

The state of the art in the verification of complex algorithms has improved enormously over

the last decade. Yet there is still a lot to do on the path to a verified library such as LEDA.

Apart from the shere amount of material that would have to be verified there is the challenge
of obtaining trustworthy code that is of comparable efficiency. This requires trustworthy
code generation for a language such C or C++, including the memory management. This
is a non-trivial task, but some of the pieces of the puzzle, like a verified compiler, are
in place already.
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Guarded Kleene Algebra with Tests: Verification
of Uninterpreted Programs in Nearly Linear Time

Alexandra Silva
University College London, UK
alexandra.silva@ucl.ac.uk

—— Abstract

Guarded Kleene Algebra with Tests (GKAT) is a variation on Kleene Algebra with Tests (KKAT)
that arises by restricting the union (+) and iteration (*) operations from KAT to predicate-guarded
versions. We develop the (co)algebraic theory of GKAT and show how it can be efficiently used
to reason about imperative programs. In contrast to KAT, whose equational theory is PSPACE-
complete, we show that the equational theory of GKAT is (almost) linear time. We also provide a
full Kleene theorem and prove completeness for an analogue of Salomaa’s axiomatization of Kleene
Algebra. We will also discuss how this result has practical implications in the verification of programs,
with examples from network and probabilistic programming. This is joint work with Nate Foster,
Justin Hsu, Tobias Kappe, Dexter Kozen, and Steffen Smolka.
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Picking Random Vertices

Daniel Lokshtanov
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—— Abstract

We survey some recent graph algorithms that are based on picking a vertex at random and declaring

it to be a part of the solution. This simple idea has been deployed to obtain state-of-the-art
parameterized, exact exponential time, and approximation algorithms for a number of problems,
such as Feedback Vertex Set and 3-Hitting Set. We will also discuss a recent 2-approximation
algorithm for Feedback Vertex Set in Tournaments that is based on picking a vertex at random and
declaring it to not be part of the solution.
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Popular Matchings: Good, Bad, and Mixed

Telikepalli Kavitha

Tata Institute of Fundamental Research, Mumbai, India
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—— Abstract

We consider the landscape of popular matchings in a bipartite graph G where every vertex has strict
preferences over its neighbors. This is a very well-studied model in two-sided matching markets.
A matching M is popular if it does not lose a head-to-head election against any matching, where
each vertex casts a vote for the matching where it gets a better assignment. Roughly speaking, a
popular matching is one such that there is no matching where more vertices are happier. The notion
of popularity is more relaxed than stability: a classical notion studied for the last several decades.
Popular matchings always exist in G since stable matchings always exist in a bipartite graph and
every stable matching is popular.

Algorithmically speaking, the landscape of popular matching seems to have only a few bright
spots. Every stable matching is a min-size popular matching and there are also simple linear time
algorithms for computing a maz-size popular matching and for the popular edge problem. All these
algorithms reduce the popular matching problem to an appropriate question in stable matchings
and solve the corresponding stable matching problem.

We now know NP-hardness results for many popular matching problems. These include the
min-cost/max-weight popular matching problem and the problem of deciding if G admits a popular
matching that is neither a min-size nor a max-size popular matching. For non-bipartite graphs, it is
NP-hard to even decide if a popular matching exists or not.

A mized matching is a probability distribution or a lottery over matchings. A popular mixed
matching is one that never loses a head-to-head election against any mixed matching. As an allocation
mechanism, a popular mixed matching has several nice properties. Moreover, finding a max-weight
or min-cost popular mixed matching in G is easy (by solving a linear program). Interestingly, there
is always an optimal popular mixed matching IT with a simple structure: II = {(Mo, 1), (M1, 3)}
where My and M; are matchings in G. Popular mixed matchings always exist in non-bipartite
graphs as well and can be computed in polynomial time.
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Petri Net Reachability Problem

Jérome Leroux
Univ.Bordeaux, CNRS, Bordeaux-INP, France
leroux@labri.fr

—— Abstract

Petri nets, also known as vector addition systems, are a long established model of concurrency
with extensive applications in modelling and analysis of hardware, software and database systems,
as well as chemical, biological and business processes. The central algorithmic problem for Petri
nets is reachability: whether from the given initial configuration there exists a sequence of valid
execution steps that reaches the given final configuration. The complexity of the problem has
remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory
of verification. In this presentation, we overview decidability and complexity results over the last
fifty years about the Petri net reachability problem.
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1  Outline

The presentation focuses on the reachability problem for vector addition systems with states
given as multi-dimensional weighted automata. Main results about 1) reachability in small
dimensions, 2) boundedness problems, and 3) decidability and complexity results for the
reachability problem in any dimension will be overviewed.

For small dimensions, the complexity of the reachability problem depends on the dimension
and on the way weights are encoded (in unary or in binary). In dimension one, the
reachability problem can be easily shown to be NL-complete when weights are written in
unary thanks to a hill-cutting argument (the same argument that applies on pushdown
automata). When updates are given in binary, this argument can only provide a complexity
in between NP and PSPACE. Nevertheless, by using some additional arguments, the
problem was proved to be NP-complete in [5]. The complexity of the reachability problem
is also known in dimension two. Thanks to a precise analysis of the algorithm introduced
n [12], the problem was proved to be PSPACE-complete in [1] for binary updates. This
last result was extended later in [4] to show that the problem is NL-complete for unary
updates. In dimension three the complexity of the reachability problem is nowadays open
whatever the encoding of the weights.

The Karp and Miller algorithm introduced in [6] is central for deciding the reachability
problem in general dimension. It provides a way for computing the maximal value of
a bounded counter. Notice that even if this value can be Ackermannian [16], deciding
the boundedness of a counter is known to be EXPSPACE-complete [3] by extending the
Rackoff’s proof [17].
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—— Abstract

In the online variant of the traveling repairperson problem (TRP), requests arrive in time at points
of a metric space X and must be eventually visited by a server. The server starts at a designated
point of X' and travels at most at unit speed. Each request has a given weight and once the server
visits its position, the request is considered serviced; we call such time completion time of the request.
The goal is to minimize the weighted sum of completion times of all requests.

In this paper, we give a 5.429-competitive deterministic algorithm for line metrics improving
over 5.829-competitive solution by Krumke et al. (TCS 2003). Our result is obtained by modifying
the schedule by serving requests that are close to the origin first. To compute the competitive ratio
of our approach, we use a charging scheme, and later evaluate its properties using a factor-revealing
linear program which upper-bounds the competitive ratio.
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1 Introduction

The traveling repairperson problem (TRP) is a variant of the traveling salesperson prob-
lem (TSP), where the goal is to minimize the total latency instead of a more standard
objective of minimizing the total length of a route. In the TRP, there are m requested points
of a given metric space X and they must be eventually visited by a server. Request r; is
a triple (pj, a;, w;), where p; € X denotes request position, a; > 0 its release time and w;
its weight.

The server starts at a designated point of X called origin and travels at most at unit
speed. That is, for any two times ¢ < ¢’ the distance between positions of the server at
times ¢ and ¢’ is at most ¢’ — t. Each request r; must be eventually serviced by moving the
server to point p;. The request cannot be serviced before its release time a;; we call the time
when it is eventually serviced its completion time and we denote it C;. The goal is to find
a route for the server (a schedule) that minimizes the cost, defined as the weighted sum of
completion times, i.e., 37", w; - Cj.

The TRP has a natural online variant. There, an online algorithm ALG, at time ¢, knows
only requests that arrived before or at time ¢. The number of requests m is also not known by
an algorithm a priori. In the online setting, the goal is to minimize the competitive ratio [11],
defined as the maximum over all inputs of the ALG-to-OPT cost ratio, where OPT denotes
the optimal offline algorithm.
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1.1 Previous work

The online variant has been first investigated by Feuerstein and Stougie [13]. They considered
the case where X is a real line and, adapting an algorithm for the so-called cow-path
problem [7], presented a 9-competitive solution. They also gave a lower bound (that holds
also already for a line) of 14 /2. The result has been subsequently improved by Krumke
et al. [18], who gave a deterministic algorithm INTERVAL attaining competitive ratio of
(1++/2)? < 5.829 and a randomized 3.874-competitive solution. Their algorithm works for
an arbitrary metric space.

A natural extension to the TRP is a so-called dial-a-ride problem, where each request is
an object with a source and a destination and the goal is to transport the object [9, 13, 18].
There, the server may have a fixed capacity allowing it to store at most k£ objects, or this
capacity may be infinite. The 5.829-competitive deterministic algorithm by Krumke et al. [18]
extends also to this variant and no better algorithms are known even for specific metric
spaces.

Some papers considered an extension of the TRP to k > 1 servers. Bonifaci and Stougie
showed how to adapt the algorithm INTERVAL by Krumke et al. [18] to this setting without
an increase of the competitive ratio [10]. However, the best known lower bound for multiple
servers is 2 (i.e., smaller than the lower bound for the one-server case) [10]. Furthermore, for
the particular case of line metrics, the ratio converges to 1 with growing k, and is between
1+1/(2k—1) [14] and 1 + O((logk)/k) [10].

Another strand of papers considered different objectives, such as minimizing the total
makespan [3, 4, 5, 6, 8, 9] or maximum flow time [16, 17, 19], with a special focus on line
metrics. Finally, the offline variant (also known as minimum latency problem) has been
extensively studied both from the computational hardness and approximation algorithms
perspectives, see, e.g., [1, 2, 12, 15, 20, 21].

1.2 Qur contribution

In this paper, we focus on the TRP on line metrics and give a 5.429-competitive algorithm
REROUTE. This improves the long standing record of 5.829 achieved by the algorithm
INTERVAL by Krumke et al. [18].

Similarly to the algorithm INTERVAL, REROUTE partitions an input into phases of
geometrically increasing lengths, and in each phase greedily tries to service the set of pending
requests of maximum weight. However, our algorithm REROUTE tries to modify the route,
so to ensure that (i) either it services requests only in the initial part of the phase, (ii) or in
the later part of the phase, it services only requests that are far away from the origin. As
such requests cannot be serviced early by any algorithm (also by OPT), this allows us to
charge the cost of REROUTE against the cost of OPT in a more efficient way.

For the analysis, we construct a charging scheme that maps the total weight serviced by
REROUTE in particular time intervals to the total weight serviced in appropriate intervals by
Opt. This yields a set of linear inequalities that need to hold for any input instance. On
this basis, we create a maximization LP (linear program), whose objective value is an upper
bound on the competitive ratio. Finally, to bound the value of such factor-revealing LP, we
explicitly construct a solution to its dual.
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2  Algorithms Interval and ReturnFirst

As our algorithm is built on the phase-based approach of the algorithm INTERVAL proposed
by Krumke et al. [18], we start with a description of the latter.

Let f = min;j{max{p;,a;}} be the earliest time at which OPT may service a request.
(Note that an online algorithm can learn f before or at time f.) Without loss of generality, we
may assume that there are no requests that arrive at time 0 at the origin, and hence f > 0.

We partition time into phases. Phase 0 starts at time 0 and ends at time f. Phase ¢ > 1
starts at time f-a'~! and ends at time f - o, where @ = 1 + /2. At the beginning of any
phase ¢ > 1, INTERVAL computes and executes a schedule that

starts at the final server position from the last phase;

stops at distance at most f - a*~! from the origin;

has length at most f - (a® — o'~ 1);

among schedules satisfying the previous three conditions maximizes the total weight of

serviced requests (which are pending when the phase starts).

To simplify the notation, in the rest of the paper, we assume that f = 1.1 We start
with a slight modification of the algorithm INTERVAL, called RETURNFIRST (RETF). At the
beginning of any phase ¢ > 1, RETF computes and executes a schedule that

starts at the final server position from the last phase;

in the first part of the schedule (called return part), the server returns to the origin;

the second part of the schedule (called serving part) starts at the origin, is of length at

most o'~!, and among such schedules maximizes the total weight of serviced requests

(which are pending when the phase starts).

» Observation 1. At the beginning of each phase i > 1, RETF has its server at a distance
at most a2 from the origin. Furthermore, the total length of both parts of the schedule is at
most the phase length.

Proof. The first property is clearly satisfied at the beginning of phase 1, which is started
with the server at the the origin. In the subsequent phases, this property follows inductively:
as in phase ¢ — 1 the serving part of the schedule starts at the origin and has length at
most a’~2, at be beginning of phase i the server distance to the origin is at most a?~2.
The second property follows as the total length of the planned schedule in phase i is at
most a2 + o'~ = o — o', which is the length of the phase. Note that this property
holds as long as oo > 1 + V2. <

While RETF may produce schedules that are worse than those of INTERVAL, using similar
arguments to those of [18], one can show that RETF is a?-competitive. In particular, the
following bound holds both for INTERVAL and RETF'; we present its proof for completeness.

In our arguments, we use ALG; and OPT; to denote the total weight of requests serviced
by an online algorithm and OPT, respectively, in a phase ¢. Observe that for RETF and
INTERVAL, ALGg = 0.

» Lemma 2 ([18]). Let L be the index of the last phase in which OPT services any request.
Then, RETFE services all requests within the first L + 1 phases, and for any phase j €
{1,...,L+1}, it holds that """ AL, < L . Op;.

i=j i=j—1

1 All terms occurring in the proof, both related to distances and to time, have a multiplicative factor f,
which cancels out when the competitive ratio is computed.
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Proof. Consider the schedule Si of OPT in phases 0,1,...,k, where k € {0,..., L}. Sched-
ule S, starts at the origin, its length is equal to o and the total weight serviced by Sy, is
w(Sk) = Zf;ol OpT;. In phase k+1, when RETF chooses the route for the serving part, Sy, is
among feasible options. If RETF chose such route, then each request serviced by schedule S
in OPT’s solution is serviced by RETF (in phase k + 1 or already in earlier phases). Thus,
the total weight serviced by RETF in phases 1,...,k + 1 would be at least w(S;). As RETF
chooses the schedule for the serving part which is at least as good as Sk, it holds that

Zfill ALg; > w(S) = Zf:o OrT; . (1)

If we set k = L, then the above inequality implies that RETF services all requests already
in the first L + 1 phases, i.e.,

S Ave = Y8, OPTy. @

The lemma for j = 1 follows by (2), and the lemma for j > 2 follows by subtracting (1)
from (2) and setting k = j — 2. <

3 Modifying the schedule

We now take a closer look at the structure of schedules produced by RETF in particular
phases. We show that the schedule produced in a given phase can be modified, so that it
services the same set of requests as RETF, but either it ends substantially earlier than the
phase end or from some time it services only far requests.

» Lemma 3. Fiz any c € [0,1] and let £ = o'~ + ¢~ a'~2. Fiz a schedule S for phase i

produced by the algorithm RETF. On the basis of S and ¢, it is possible to construct schedule S
that services the same set of requests as S and
Either the length of S is at most ,
or after executing the prefiz of S of length £, the server distance from the origin is at
least (1/3) - (a — 1+ 5¢) - a2, and afterwards the server travels away from the origin
(with unit speed).

Proof. In the following proof, server positions are real numbers, with zero denoting the
origin. Let p denote the server position at the beginning of phase i. Note that we may
assume that p > 0 without loss of generality. As in the proof of Observation 1, it can be
inductively shown that in the produced schedule S, the server ends phase i — 1 at most at
distance a~2 from the origin. Thus, p < o’ 2.

Let [b, u] be the interval containing all points visited by the serving part of S. As this
part starts at zero, b < 0 < u. Let « € {b,u} be the interval endpoint closer to the origin
and y be the further one (with ties broken arbitrarily). Observe that the shortest possible
schedule that starts at zero and services all requests from interval [b, u] has length 2 - |x| + |y|.
As the serving part of S services this interval and its length is at most a’~!, it holds that

2-|z|+ |y| < a'~! and thus |z| < a'1/3. (3)

We use (3) extensively in our bounds below.
We define two possible schedules S;, and S, for phase i; we show that at least one of
them satisfies the requirements of the lemma.
Sgy starts at p, goes to x (possibly going through zero if p and z are on the opposite
sides of the origin), and then proceeds through 0 to y. Its length is |p — x| + || + |y
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Sy starts at p, goes to y (possibly going through zero if p and y are on the opposite
sides of the origin), and then proceeds through 0 to x. Its length is |p — y| + |y| + |=|.

We consider four cases depending on values of z, y, p and c¢. Note that all these values
are known by RETF at the beginning of phase 7.

Case 1. Ifx <Oand p+3-|z| > (a—¢)- a2 weset S = S,,.
We show that the length of S is at most £. As x < 0, it holds that y > 0. If y < p, the
length of S'is (p —y) +y+|z| =p+ |z| < a2 + a1 /3 < a'~! < {. Otherwise y > p,
and then the length of S is

—p)ty+lel=2-y—ptlz[ <2 (' =2-[a]) —p+|z]
=20 ' —(p+3-jz)<2- " —(a—c)- a2 =1

Case 2. Ifz <Oand p+3-|z| < (a—c)-ai"? weset S = S,,.
If the length of S is at most ¢, then the lemma follows. Otherwise, we analyze the prefix
of S of length ¢. Tt contains the server movement from p to  and then to 0: this holds
because the total length of this movement is p+ 2 |z| < (a —¢) - @'=2 < a~! < ¢. Thus,
after having executed the prefix of S of length ¢, the server is traveling away from the
origin towards y and its position is equal to

C—(p+2-Jz))=a" T +c-a™?=(2/3)-(p+3-|z]) —p/3
>a Tl e a2 —(2/3) (a—c¢)- a2 —ai72)/3
=(1/3) (. —145c)- a2,

Case 3. If £ > p >0, we set S = Szy-
The length of S is then (z —p) + 2+ |yl =2 -+ |y —p < ai™' —p < L.

Case 4. If p >z > 0, we set S = Say-
The reasoning here is similar to the one from Case 2. If the length of S is at most ¢, then
the lemma follows. Otherwise, we analyze the prefix of S of length £. It contains the
server movement from p to 0 through z: this holds because the length of this movement is
equal to p < a’~2 < £. Thus, after having executed the prefix of S of length ¢, the server
is traveling away from the origin towards y and its distance from the origin is equal to

l—p>a e a?—a"?=(atec—1)-a"%>(1/3) - (a—1+5c)-a' 2.

The last inequality follows as a > 1 + ¢. <

4 Algorithm Reroute

Our algorithm REROUTE(f) is parameterized with a constant 8 € [2/«, 1] and follows the
phase framework of RETF. At the beginning of any phase j > 1, REROUTE(3) computes
the schedule S in the same way RETF would do, modifies it according to Lemma 3 using
c=pB-a?—2-ac|0,1] obtaining schedule S, and then executes S within phase 7.

For any real £ > [§, 1], we define

5.8-a?—9a—1
3o

3(§) = +(€=8)a. (4)

The following lemma shows that requests that are serviced late by REROUTE(f) in a given
phase are far away from the origin, and hence cannot be serviced too early by OPT.

6:5

MFCS 2019



6:6

An Improved Online Algorithm for the Traveling Repairperson Problem on a Line

» Lemma 4. Fiz 3 € [2/a,1]. For any phase i and any value £ > B3, in time interval (£-af, o],
REROUTE() services only requests whose distance to the origin is at least 75(€) - ™.

Proof. By the definition of REROUTE(f), its schedule S for phase 7 is constructed as described
in Lemma 3 with c = 3-a? —2a € [0,1]. Let f = a1 +c-a72 = 3-a’ — a'~L. Recall that
phase i starts at time o/~!. By Lemma 3, two cases are possible.
If the length of S is at most ¢, then the execution of S ends at or before time o'~ ' +¢ = §-a/.
Then, the lemma follows trivially as REROUTE(S) does not service anything in the
remaining part of phase i, i.e., in the time interval (3 - of, of].
Otherwise, the length of S is larger than £. Then, at time a~! + ¢ = (- o, the server
still executes S, is at distance at least (1/3) - (a — 1 4 5¢) - &2 from the origin and it
travels away from the origin with unit speed. Within time interval [3 - o, ¢ - o], the
server either finishes executing S or it increases its distance to the origin by & - o/ — § - o.
In the former case, the lemma follows trivially, and in the latter case, the server distance
to the origin at time £ - o’ is at least

a—1+5c ,_ ; hpfat—9a—-1 :
AT (=) = . A2 (E-B)
=75(6) - a7t
From time £ - o, the server continues to travel away from the origin, and thus the lemma
follows. |

4.1 Relating Reroute to Opt

We analyze the performance of algorithm REROUTE(f) f
2/a < B < 1. Moreover, we choose (3, so that 75(53)
parameter &, such that § <& <1 and 73(8) < 75(§) < 1.
fixed later.

Let L be the index of the last phase in which OPT services a request. On the basis of 3
and &, we partition both ALG; (the total weight of requests serviced in phase i € {1,..., L+1}
by REROUTE) and OPT; (the total weight of requests serviced in phase i € {0,...,L} by
OPT) into three parts:

A¢: the weight serviced by REROUTE(f) in time interval (o~ ,ﬂ al),

A?Y: the weight serviced by REROUTE(f) in time interval (3 - a’ ,§ o'l

A$: the weight serviced by REROUTE() in time interval (¢ - o, o],

Of: the weight serviced by OPT in time interval [a’~!, 75(,8) 2'),

O?: the weight serviced by OPT in time interval [75(8) - &/, 75() - &),

Of: the weight serviced by OPT in time interval [75(£) - o', o).

or a fixed parameter 3, such that
> 1/a. In our analysis we use a
Concrete values of # and £ will be

Note that the validity of this partitioning requires that 1/a < f < ¢ <1 and 1/a <
T8(8) < 18(§) < 1. We slightly modify the definition of Ag and O to include also the initial
and final time points, i.e., to be the weight serviced by REROUTE() in [, 8 - a!] and the
weight serviced by OPT in [75(€) - a*, a’], respectively. Clearly, ALG; = A} + A? + A¢ and
OpT; = O¢ + 0! + OF.

As REROUTE services the same set of requests as RETF, the guarantee of Lemma 2
applies to the schedule produced by REROUTE(S) as well. In particular, REROUTE(f)
finishes servicing all requests till the end of phase L + 1 (it does not service anything in

phase 0) and for any phase j € {1,..., L + 1}, it holds that
L+1

Z(A?+A?+A5>S'i (O?+O§’+Of). (5)

=7 i=7—1
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Fix any phase j € {1,...,L + 1} and consider all requests contributing to the sum
Z{ff (A + AS). By Lemma 4, each such request has to be serviced by OPT at time
75(8) - @/~ or later (because its distance to the origin is at least 75(3) - a/~1). Thus,

L+1 L
S (Al+ A7) <0b, + 05+ (08 + 00+ 05) (6)
i=j i=j

Similarly, consider all requests contributing to the sum Aj + ij]ﬂ_l(Af + AY). Again, by

Lemma 4, each such request has to be serviced by OPT at time 75(¢) - =1 or later (because
its distance to the origin is at least 75(¢) - @/~1). Hence,

L+1 L
As+ Y (Al as) <05+ (0F + 00+ 05) (7)
i=j+1 i=j

Finally, observe that the total cost of REROUTE(S) can be upper-bounded by Zf:ll CE

ol AL+ €-at - A+ o - AS) and the cost of OPT can be lower-bounded by ZiL:O (af~t.
O +75(6) - o' - OF + 75(£) - o - OF).

4.2 Factor-revealing LP

Let us now consider what happens when an adversary constructs an instance Z for the
algorithm REROUTE. When OPT is run on Z, this defines L as the index of the last
phase when OPT services a request and this also defines non-negative values of variables
0¢,0%,0¢ for i € {0,...,L}. When REROUTE(S) is run on Z, this defines non-negative
values of variables AY, AY A¢ for i € {1,..., L +1}. As shown above, these variables satisfy
inequalities (5), (6) and (7). Moreover, the goal of the adversary is to maximize the ratio
between the cost of REROUTE(f) and the cost of OPT.

This maximization problem may become only easier for the adversary if instead of creating
an actual input sequence, the adversary simply chooses L and the non-negative values of
variables A%, A%, AS, OF, 0% O for i € {0,..., L}, satisfying inequalities (5), (6) and (7),
S0 to maximize the objective value of REROUTE-to-OPT cost ratio.

The values of all variables can be multiplied by a fixed value without changing the
objective value. Thus, instead of maximizing the cost ratio, the adversary may maximize
total cost of REROUTE(S) with an additional constraint ensuring that the total cost of OpPT
is at most 1.

This leads to the following factor-revealing linear program P (L, 3, ), whose optimal value
P*(L,B,€) is an upper bound on the competitive ratio of REROUTE(3) for a given L. This
relation holds for any choice of parameter £ € [3,1]. The goal of P(L, §,£) is to maximize

L+1
Z(ﬁ.ai-AHg.ai.AHai-Ag)

i=1
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subject to the following constraints

L+1 L

Z(A?+A?+Af)§ Z (O?—&-O?#—Of) forallj € {1,...,L+1}
i=j i=j—1

L+j1 ’ L

> (A?+A§) §O§_1+O§_1+Z(og+o$+og) forallje {1,...,L+1}
B L
At S (AM4AS) <05 +30 (08400 08)  forallje (L., Lt 1)

i=j+1 i=j
L
(0" 0F +75(8) - 0" - OF +75(8) - - OF ) <1
=0

and non-negativity of the variables. Note that the left hand side of the last inequality is
a lower bound on the cost of OPT

It remains to upper-bound the value of P*(L,3,&). Such upper bound is given by the
value of any feasible solution to the dual program D(L, 3,£). The goal of D(L, 3,€) is to
minimize R subject to the following constraints

M)~

@ >p-ad forallje{1,...,L+1} (8)
=1
j—1
(@ +ad+a)+¢¢+q) > ¢ o forallje{1,...,L+1} ()
=1
j .
S @+ +a) = forallje{l,...,L+1} (10)
=1
' i
a]_l-RZZ(qZ@—i—qf—i—qf)—i—q?H forall j €{0,...,L} (11)
i=1
4 i
T8(8) o/ - R > (qf—f—qf—i—qf)-i—qfﬂ—&—qé?ﬂ forall j € {0,...,L} (12)
i=1
. j+1
() 0d R=) (g + ¢ +qf) for all j € {0,..., L} (13)
=1

and non-negativity of the variables. Note that sets of inequalities (8), (9), (10), (11), (12)
and (13) correspond to sets of variables AY, Ai-’, A, OF, Oi-’ and Of, respectively, in the
primal program P(L, j3,&).

» Lemma 5. There exist values B and &, such that for any L, there exists a feasible solution
to D(L, 3,€) whose value is at most 2v/2 + 13/5 < 5.429.

Proof. We choose
B=(9a+4)/(52) = (3+V2)/5 ~ 0.883 and
E=6+01—-p8)/a=(4vV2—-1)/5~0931.
For these values of 8 and &, it holds that
73(8) = 1/a = V2 -1~ 0.414 and
8§ =15(B) + (= B) - a=1/a+ (2—V2)/5 = (5+ V2)/(5 + 5v2) ~ 0.531.
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We set the dual variables as follows:

@ =5 a,

9 =(E~-5)a,

¢i=01-¢- a,

@ =B (a—1)-a" forje{2,...,L+1},
q?:O forje{2,...,L+1},

for je{2,...,L+1}.

Our choice of 8, & and dual variables satisfy (8), (9) and (10) conditions of D(L, 3,€)
with equality. Actually, (8), (10) and (9) for j = 1 hold with equality for any choice of 3
and ¢. For j € {2,..., L+ 1}, the left hand side of (9) is equal to o/t + 8- (a—1)-a?~! =
(B-a+1—p)-a’~1 and the right hand side is equal to £ - a/; these values coincide for
£=6+(1-p)a

Given the fixed values of the dual variables, we choose R as the minimum value satisfying
inequalities (11), (12) and (13). Substituting the chosen values of the dual variables in these
inequalities and using 73(8) = 1/« yields

R>(B-a))at=5-a2 by (11) for j =0,
R>(+B-(a-1)-ad)/a? ' =p-a*+a-B-a by (11) for j > 1,
R>(B-at(E-p)-a)/ms(8) =€ -a® by (12) for j =0,
R> 1+ (a=1)-o/(75(8) o)) =p-a’+a—F-a by (12)forj>1,
R >’ /(15(6) - o) = a/75(€) by (13) for j > 0.
Thus, using 8 < ¢ and £ = 8+ (1 — 3)/«, we obtain
R = max{ﬁ-aQ, G-’ +a—p-a, £ o2 a }
8(£)
- Lot
R o
= max{zx/iJr 13/5, (15 +10v/2) /(5 + x/i)}
=2v2+13/5 < 5.429,
which concludes the proof. |

» Theorem 6. For 3 = (3 ++/2)/5 ~ 0.883, the competitive ratio of REROUTE(J3) for the
traveling repairperson problem is at most 2v/2 + 13/5 < 5.429.

Proof. Fix any input sequence Z, run OPT on Z, and partition its execution into phases.
Let L be the index of the last phase in which OPT services a request.

Let £ = 84 (1— )/« As discussed above, the competitive ratio of REROUTE(S) is upper-
bounded by the optimal value P*(L,3,€) of the maximization program P(L, 3,£). By weak
duality, the feasible solution to the dual minimization program D(L, 3, ) of value 2¢/2+13/5
proposed in Lemma 5 is an upper bound on the optimal primal solution P*(L, 3,&). Hence,
2v/2 4+ 13/5 is an upper bound on the competitive ratio of REROUTE(f). <
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5 Final remarks

Our computer-based experiments show that further partitioning of phases into more than
three intervals does not lead to an improvement of the competitive ratio.

Furthermore, it is possible to show that our solution to the dual program is asymptotically
best possible and the ratio cannot be improved by simply choosing better parameters 3
and £. That is, with growing L, the optimal value of the dual D(L, 3,&) converges to the
value 21/2 + 13/5 given by Lemma 5, as demonstrated in the lemma below.

» Lemma 7. Fiz any L. For any values of 8 and &, salisfying 1/a < 8 < £ <1 and
1/a < 73(8) < 75(€) <1, the value of any feasible solution to the dual program D(L,,§) is
at least (2v/2 +13/5)/(1 +a~L).

Proof. Fix any j € {1,..., L}. By combining requirement (11) with (10), we obtain

(R—a)- o '=R- a7t - o

J J

>3 (¢ + ¢+ @) +af — Y (6 + )+ )
=1 =1

= Q?+1 .

Summing this relation over all j € {1,..., L} and using (8) yields

b1 L L41
(R—0) — 2> a1 =—af +D_qf > - —gf.
j=1 j=1

Now we observe that (11) for j = 1 implies ¢f < R/a < R/(a —1). By substituting this in
the inequality above and multiplying both sides by o — 1, we get

(R-—a)-(a*=1)>p-(a—1) o - R.
Finally, we divide both sides by a’, obtaining
R—a>(R—-a) (aF—1)/a*>p-(a—1)-a—R/a,
and therefore,
R-(1+a ) >p-a>+a-3-a.

As in our construction we require 75(/3) > 1/a, it holds that 8 > (9a+4)/(5a2) = (3++/2)/5.
Combining this bound with the value of o = 1 + v/2 yields

R>(B-a*+a—B-a)/(1+a b)) > (2vV2+13/5)/1+ab). <
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—— Abstract

We study the problem of sorting under incomplete information, when queries are used to resolve

uncertainties. Each of n data items has an unknown value, which is known to lie in a given interval.
We can pay a query cost to learn the actual value, and we may allow an error threshold in the sorting.
The goal is to find a nearly-sorted permutation by performing a minimum-cost set of queries.

We show that an offline optimum query set can be found in polynomial time, and that both obliv-
ious and adaptive problems have simple query-competitive algorithms. The query-competitiveness
for the oblivious problem is n for uniform query costs, and unbounded for arbitrary costs; for the
adaptive problem, the ratio is 2.

We then present a unified adaptive strategy for uniform query costs that yields: (i) a 3/2-
query-competitive randomized algorithm; (ii) a 5/3-query-competitive deterministic algorithm if the
dependency graph has no 2-components after some preprocessing, which has query-competitive ratio
3/2+4 O(1/k) if the components obtained have size at least k; (iii) an exact algorithm if the intervals
constitute a laminar family. The first two results have matching lower bounds, and we have a lower
bound of 7/5 for large components.

We also show that the advice complexity of the adaptive problem is [n/2] if no error threshold
is allowed, and [n/3 -1g 3] for the general case.
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1 Introduction

Sorting is one of the most fundamental problems in computer science and an essential part
of any system dealing with large amounts of data. High-performance algorithms such as
QuickSort [19] have been known for decades, but the demand for fast sorting of huge amounts
of data is such that improvements in sorting algorithms are still an active area of research;
see, e.g., [26].

In a distributed application with dynamic data, it may not be feasible to maintain a
precise copy of the information in each replica. In particular, to access a local cached
information may be much cheaper, even though not as precise, than to query a master
database or to run a distributed consensus algorithm. One approach is to maintain in the
replicas, for each data item, an interval that bounds the actual value. These intervals can
be updated much faster than to guarantee a strict consistency of the data. When higher
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precision is required, the system can query the master database for a more fine-grained
interval or for the actual data value. Therefore a trade-off between data precision and system
performance can be established. The TRAPP system, proposed by Olston and Widom [24],
relies on this concept.

This idea has led to theoretical investigation on uncertainty problems with queries [7,
11, 12, 13, 14, 17, 22]. Such problems also appear in optimization scenarios in which an
extra effort can be incurred in order to obtain more precise values of the input data, such as
by investing in market research, which is expensive so its cost should be minimized. These
works build upon more established frameworks of optimization with uncertainty, such as
online [5], robust [3] and stochastic [4] optimization. In particular, the analysis of algorithms
in terms of competitiveness against an adversary is inherited from the online optimization
literature.

In this paper, we investigate the problem of sorting data items whose actual values are
unknown, but for which we are given intervals on which the actual values lie. We can query
an interval and then learn the actual value of the corresponding data item, but this incurs
some cost. The goal, then, is to sort the items by performing a set of queries of minimum
cost. Furthermore, the precision in the sorting may be relaxed, so that inversions may occur
if the actual values are not too far apart.

We distinguish between two types of algorithms for uncertainty problems with queries.
An adaptive algorithm may decide which queries to perform based on results from previous
queries. An oblivious algorithm, however, must choose the whole set of queries to perform
in advance; i.e., it must choose a set of queries that certainly allow the problem to be solved
without any knowledge of the actual values. In this paper, both algorithms are compared with
an offline optimum query set, i.e., a minimum-cost set of queries that proves the obtained
solution to be correct.? An algorithm (either adaptive or oblivious) is a-query-competitive
if it performs a total query cost of at most a times the cost of an offline optimum query set.

Another related problem is that of finding an optimum query set. Here we are given
the actual data values, and want to identify a minimum-cost set of queries that would be
sufficient to prove that the solution is correct. Solving this problem is useful, for example,
to perform experimental evaluation of online algorithms, since we are actually finding the
offline optimum solution for the uncertainty problem. This is also called the verification
version of the corresponding uncertainty problem with queries [8, 11].

We are also interested in the advice complexity of the problems we study. In this
setting, an online algorithm has access to an oracle that can give helpful information when
making decisions. The advice complexity is the number of bits of advice that are sufficient
and necessary for an online algorithm to solve the problem exactly. This is a research topic
that has gained substantial attention; see [6] for a survey.

Our contribution. We begin by showing how to compute an optimum query set in poly-
nomial time, and that both oblivious and adaptive problems have simple algorithms with
matching deterministic lower bounds. The query-competitive ratio of the oblivious problem
is n if we have uniform query costs, and unbounded for arbitrary costs; for the adaptive
problem, the query-competitive ratio is 2. The optimal oblivious algorithm is trivial; for the

2 This nomenclature differs to that used by Feder et al. [14]. They call an adaptive algorithm an online
algorithm, and an oblivious algorithm an offline algorithm. We disagree with this nomenclature, since
both types of algorithms are online in the standard sense of not knowing the data. Also, they compare
an oblivious algorithm to an optimal oblivious strategy, and not to an offline optimum query set.



M. M. Halldérsson and M. S. de Lima

adaptive case, we have a simpler algorithm for uniform query costs, and a more sophisticated
one for arbitrary query costs. If query costs are uniform and the error threshold is zero, then
the simpler algorithm can be implemented as an oracle for any comparison-based sorting
algorithm, preserving time complexity and stability.

Those results are rather simple and it seems like the query-competitiveness of the
problem is settled. However, we present a unified adaptive strategy that attains different
improvements for uniform query costs. First, we obtain a 3/2-query-competitive algorithm
by using randomization. Second, if the error threshold is zero, and after some preprocessing
the dependency graph has no 2-components, the strategy yields a deterministic 5/3-query-
competitive algorithm; if the obtained graph has components of size at least k, then the same
algorithm has query-competitive ratio 3/2 + O(1/k). The first two results have a matching
lower bound, and for large components we have a lower bound of 7/5. The problem can also
be solved exactly if the intervals constitute a laminar family.

Finally, we show that the advice complexity for adaptive algorithms is exactly |n/2] bits
if there is no error threshold, and exactly [n/3 - 1g 3] bits for the general case.

Related work. The first work to investigate the minimum number of queries to solve a
problem is by Kahan [20], who showed optimal oblivious strategies to find the minimum,
maximum and median of n values in uncertainty intervals.

Olston and Widom [24] proposed the TRAPP system, a distributed database based on
uncertainty intervals. The authors: (1) gave an optimal oblivious strategy for finding the
minimum (and equivalently, the maximum) of a sequence of values within an error bound;
(2) showed that it is NP-hard to find an optimum oblivious query set to compute the sum of
a sequence of values within an error bound, with a reduction from the knapsack problem.
The paper also discusses strategies for counting and finding the average of a sequence of
values. Khanna and Tan [21] generalized these results for arbitrary query costs and different
levels of precision.

Feder et al. [14] considered the uncertainty version of the problem of finding the k-th
largest value on a sequence (i.e., the generalized median problem). The authors presented
optimal oblivious and adaptive strategies for the problem, both running in polynomial time.
Both strategies are optimal, and the ratio between the oblivious and the adaptive strategy
(also called the price of obliviousness) is L,;l < 2 for uniform query costs, and k for
arbitrary query costs.?

Bruce et al. [7] studied geometric problems where the points are given in uncertainty
areas. The authors gave 3-query-competitive algorithms for finding the maximal points and
the convex hull in a two-dimensional space. They also proposed the concept of witness sets,
which has been used subsequently in various works on uncertainty problems with queries.
Charalambous and Hoffman [8] showed that it is NP-hard to find an optimum query set for
the maximal points problem.

Feder et al. [13] studied the uncertainty variant of the shortest path problem. They
showed that to solve optimally the oblivious version of the problem is neither NP nor co-NP,
unless NP = co-NP. Their paper also discusses the complexity of the problem for various
particular cases.

Erlebach et al. [12] proved that the minimum spanning tree problem with uncertainty
admits an adaptive 2-query-competitive algorithm, which is the best possible for a determin-
istic algorithm. Erlebach, Hoffmann and Kammer [11] studied a generalization called the

3 The works cited up to this point do not evaluate the algorithms using the competitiveness framework.
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cheapest set problem, for which there is an adaptive algorithm with at most d - opt 4+ d
queries, where d is the maximum cardinality of a set. They also generalized the result in
the previous work to obtain an adaptive 2-query-competitive algorithm for the problem of
finding a minimum-weight base on a matroid.

Gupta, Sabharwal and Sen [18] studied various of the previous problems in the setting
where a query may return a refined interval, instead of the exact value of the data item.

Megow, Meifiner and Skutella [22] improved the result for the minimum spanning tree
problem with a randomized adaptive algorithm, obtaining query-competitive ratio 1.7. (The
problem has lower bound 1.5 for randomized algorithms.) They also considered non-uniform
query costs and proved that their results can be extended to find a minimum-weight base on
a matroid. Furthermore, they showed that an optimum query set and the actual value of the
minimum spanning tree can be computed in polynomial time. Some experimental evaluation
of those algorithms were presented in [15].

Ryzhov and Powell [25] investigated how to solve a linear program while minimizing the
query cost when the coefficients of the objective function are uncertain. They presented a
policy which is asymptotically optimal. Yamaguchi and Maehara [28] studied the variant
with packing constraints and coefficients following a probability distribution, and showed
how to apply this to stochastic problems such as matching, matroid and stable set problems.

Note that all the work cited so far deals with problems whose classical (offline) versions
can be solved in polynomial time. Uncertainty versions with queries have been proposed
for the knapsack problem [17] and the scheduling problem [2, 9]. Since those problems are
NP-hard, we might include the query cost into the solution cost and look for a competitive
algorithm if we are looking for a polynomial-time algorithm. Another option is to limit the
maximum number of queries performed, and then to try to optimize the solution cost.

For a survey on the topic, see [10]. Other references for related problems are also cited
in [11].

Another sorting problem with uncertainty was studied by Ajtain et al. [1]. In that
problem, the values to be sorted are unknown, but their relative order can be tested by
a comparison procedure. However, comparing values that are too close returns imprecise
answers, so in principle we should compare all (Z) pairs to obtain a sorting with some error
guarantee. The authors show how to solve the problem using only O(n?’/ 2) comparisons.

Organization of the paper. In Section 2, we present the sorting problem with uncertainty
and some basic facts, and in Section 3 we give algorithms to find an offline optimum query
set and for the oblivious setting. We treat deterministic adaptive algorithms in Section 4.
In Section 5, we show how to improve the adaptive result for uniform query costs by
using a randomized algorithm, or by assuming some structure in the dependency graph.
We investigate the advice complexity for adaptive algorithms in Section 6, and finally, in
Section 7, we discuss possible future research directions.

2 Sorting with Uncertainty

In the sorting problem with uncertainty, there are n numbers v1,...,v, € R whose exact
value is unknown. We are given n uncertainty intervals Iy, ..., I, with v; € I, = [¢;, 1], a
cost w; € Ry for querying interval I;, and an error threshold § > 0. After querying I;, we
obtain the exact value of v;; we can also say that we replace I; with interval I/ = [v;, v;].
The goal is to obtain a permutation 7 : [n] — [n] such that v; < v; + 6 if 7(¢) < 7(j) by
performing a minimum-cost set of queries.
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We begin by defining the following dependency relation between intervals, which is
essential to solve the problem.

» Definition 2.1. Two intervals I; and I such thatr;—£; > & andr;—{; > 6 are dependent.
Two intervals that are not dependent are independent.

» Lemma 2.2. The relative order between two intervals can be decided without querying
either of them if and only if they are independent.

Proof. Let I; and I; be such that r; — ¢; < 4. Since v; < r; and v; > £;, we have that
v; < v; +§ and we can set 7(i) < m(j) without querying both I; and I;.

Conversely, let I; and I; be two dependent intervals. We cannot set 7(¢) < m(j), because
it may be the case that v; = r; and v; = ¢;, thus r; — ¢; > 0 implies that v; > v; + 4. By
a symmetric argument, we cannot set 7(j) < (i), so we cannot decide the relative order
between the intervals. <

The graphs defined by this dependency relation are exactly the co-threshold tolerance
(co-TT) graphs [23]. G = (V,E) is a threshold tolerance graph if there are functions
w:V — Rand¢:V — R such that wv € F if and only if w(u) + w(v) > min(¢t(u), t(v)). A
co-TT graph is the complement of any threshold tolerance graph, or equivalently, G = (V, E)
is a co-TT graph if and only if there are functions a : V.— R and b : V — R such that
wv € E if and only if a(u) < b(v) and a(v) < b(u) [23]. The proof of Theorem 2.3 is omitted.

» Theorem 2.3. The graphs defined by the dependency relation in Definition 2.1 are exactly
the co-TT graphs.

The following result will be useful.
» Lemma 2.4 ([23]). Every co-TT graph is chordal.

When § > 0, it is useful to distinguish intervals of width smaller than §, which we call
trivial intervals. It is easy to check that two trivial intervals cannot be dependent, so when a
trivial and a non-trivial interval are dependent, it is enough to query the non-trivial interval
in order to decide their relative order. This does not mean, however, that trivial intervals
should never be queried, and in particular adaptive algorithms may decide to do that.

It is also clear that the dependency graph is an interval graph when § = 0. This is also
true when 0 > 0 and there are no trivial intervals, in which case we can simply replace each
interval I; = [¢;,r;] with Ii(é) = [El(-a),rgé)} = [0; +8/2,7; — /2] # 0, and it is easy to check
that I; and I; are dependent with error threshold ¢ if and only if IZ@ and [ J(-E) are dependent
with error threshold 0. Note however that we cannot use this reduction to solve the sorting
problem, since the precise values could fall outside of the given interval.

3 Warm-Up: Offline and Oblivious Algorithms

The first result we present concerns finding the optimum query set for a given set of intervals,
assuming we know the actual values in each interval. L.e., given the intervals Iy, ..., I, and
the actual values vy, ..., v,, find a minimum-cost set @ of intervals to query, such that @ is
sufficient to prove an ordering for Iy, ..., I,, without the knowledge of vy, ..., v,. Solving this
problem is useful, for example, to perform experimental evaluation of algorithms, since we
are actually finding the offline optimum solution for the online (either oblivious or adaptive)
problem. The ideas we present here will also be useful when solving the online problem.
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We show that the problem can be solved optimally in polynomial time. The key observa-
tions behind the algorithm are the following. In order to simplify notation, we write I; D I;
for intervals I; and I; if £; < ¢; and r; < r;.

» Proposition 3.1. Let I; and I; be intervals with actual values v; and vj. If I} O [v;—0, v;+0],
then I; is queried by every optimum solution.

Proof. Even if we have queried I;, we have to query I; because we may have v; € [{;,v; — 0)
or vj € (v; +6,75]. <

» Proposition 3.2. Let I; and I; be two dependent intervals, v; the actual value in I; and v;
the actual value in I;. If I; 7 [v; — 6,v; + 6] and I; 7 [v; — 6,v; + d], then it is enough to
query either I; or I; to decide their relative order.

Proof. If we query I;, then v; ¢ [¢; + 9,7, — d], so we can pick a reasonable order between I;
and I;. The argument is symmetrical if we query I;. |

The algorithm begins with a query set @ containing all intervals that satisfy the condition
in Proposition 3.1. Due to Proposition 3.2, it is enough to complement @ with a minimum-
cost vertex cover in the dependency graph defined by the remaining intervals, which can be
found in polynomial time for chordal graphs [16].

» Theorem 3.3. The problem of finding an optimum query set for the sorting problem with
uncertainty can be solved optimally in polynomial time.

Now we consider oblivious algorithms. In this case, all non-trivial intervals with some
dependence must be queried, and clearly this is the best possible strategy. In the following
theorem, we show that this implies a tight bound of n on the query-competitive ratio for
the case with uniform costs, and that in the general case the query-competitive ratio is
unbounded.

» Theorem 3.4. If query costs are uniform, any oblivious algorithm for sorting with uncer-
tainty has query-competitive ratio exactly n. For arbitrary costs, the query-competitive ratio
is unbounded.

Proof. For the upper bound with uniform costs, a naive algorithm that queries all intervals
and then sorts the numbers suffices.

For both lower bounds, we have n — 1 independent intervals with length greater than 24,
plus an interval I,, which contains all the other ones. Both an algorithm and the optimum
solution must query I,, in order to decide where v, fits in the order. If the algorithm does not
query some I; with ¢ < n, then the adversary can set v, € (¢;+0,7;—0) # () and the algorithm
cannot decide the order. Thus, without the knowledge of v,,, the algorithm must query all I;
with i < n. However, it may be the case that v, ¢ I; for all i < n, and querying I,, suffices
to decide the order. This gives a lower bound of n on the query-competitive ratio for uniform
query costs. For the general case, w, can be arbitrarily small and the query-competitive
ratio is unbounded. |

4 Deterministic Adaptive Algorithms

Now let us consider deterministic adaptive algorithms. We begin with a lower bound.

» Lemma 4.1. Any deterministic adaptive algorithm for the sorting problem with uncertainty
has query-competitive ratio at least 2, even if query costs are uniform and the dependency
graph has large components.
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Proof. Consider intervals I; and I, with uniform query cost, {1 < {5 < 71 < ro and
r1 — £ > 26. If the algorithm queries I, then the adversary chooses vy € (€3 + 6,71 — 9).
The algorithm must also query I to decide the order, but then the adversary can choose
vy € [r1 — 0,72] and one query would be sufficient. The argument is symmetrical if the
algorithm queries I first, with vy € (b3 + 8,71 — §) and vy € [¢1, €2 + §]. To obtain a large
component, make several independent copies of this structure and connected them by a large
interval containing all the others. |

First we give a simple deterministic 2-query-competitive adaptive algorithm for the case
with uniform query costs. It is inspired by the algorithm of Erlebach et al. [12] for the
minimum spanning tree problem with uncertainty, and it relies on the following concepts,
which were introduced in [7]. Let Z = {I1, ..., I,} be a set of intervals for the sorting problem
with uncertainty. We say that a set W C T of intervals is a witness set if at least one
of the intervals in W must be queried to decide the order of Z, even if all intervals except
those in W are queried. Due to Lemma 2.2, any pair of dependent intervals constitute a
witness set. A set of intervals 7' = {I{,..., I/} is a refinement of Z if 7’ is obtained from Z
by performing a sequence of queries. Proposition 4.2 follows simply from Z’ having more
information than 7.

» Proposition 4.2. Let 7' be a refinement of Z. If some set of intervals W CZ'NT is a
witness set for I', then it is a witness set for I.

The algorithm, then, consists in the following. While there is some pair of dependent
intervals, we query all intervals in this pair that have not been queried yet. When an
interval I; is queried, it is replaced by [v;,v;]. (Note that, even after querying I;, it may
still be dependent to a non-trivial interval.) Finally, intervals are sorted by breaking ties
arbitrarily.

For a better understanding of the algorithm, consider the examples in Figure 1, assuming
0 = 0. In Figure la, the optimum solution must query I; and I3, since v; € I3 and v € Iy,
and this is enough because I> will be independent after querying I;. If the algorithm first
queries I; and I, it must also query I3. In Figure 1b it is enough to query I;, but the
algorithm will query a dependent pair, say, I; and Is. Either way, the algorithm does not
spend more than twice the optimum number of queries.

[ —e— [ —e——
Lh——e— —eo— I3 I ® o— I3

(a) (b)

Figure 1 Example instances of the problem.

» Theorem 4.3. The simple adaptive algorithm for sorting with uncertainty is 2-query-
competitive for uniform query costs.

Proof. Note that the optimum solution must query at least one interval in each witness
set. For every pair {I;,I;} of dependent intervals selected by the algorithm, we have that:

4 If § = 0, then the algorithm can be implemented with stable sorting and in O(nlgn) time by running a
standard stable sorting algorithm (e.g., MergeSort) and querying two intervals when MergeSort needs to
know the relative order between them. It does not work, however, if § > 0, since the relation v; < v; +§
is not transitive.

17
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(1) if both I; and I, have not been queried yet, the algorithm queries the witness set {I;, I;};
(2) if I; has already been queried then, by Proposition 3.1, {I;} is a witness set, which is
queried by the algorithm. We can conclude that the algorithm only queries disjoint witness
sets of size at most 2, and thus it queries at most twice the minimum number of intervals. <

For arbitrary query costs, the problem also admits a 2-query-competitive deterministic
adaptive algorithm, although not as simple. The algorithm first queries a minimum-cost
vertex cover S7 on the dependency graph. Then, it queries all non-trivial intervals that are
still dependent after querying .S7, which we denote by the set Ss.

» Theorem 4.4. The adaptive algorithm for sorting with uncertainty with arbitrary query
costs is 2-query-competitive.

Proof. Let Q be an optimum query set. The set of intervals not contained in @ must be
independent. By the duality between independent sets and vertex covers, () must be a
vertex cover. Thus w(S1) < w(Q), since S; has minimum cost. Furthermore, note that every
interval in S5 is a singleton witness set, since S5 is a set of independent intervals. Thus
w(S2) < w(Q) as well, and w(S; U S2) <2 w(Q). <

5 Improved Adaptive Algorithms for Uniform Query Costs

We now explore refined analysis of query-competitive sorting. We present a unified strategy
that yields different improvements to Theorem 4.3, depending on what assumptions we make.

The core observation is that the bad 2-interval instance in the proof of Lemma 4.1 is the
only structure that prevents an algorithm from performing better than twice the optimum.
The first strategy that comes to mind, then, is to use randomization: a simple randomized
strategy attains query-competitive factor 3/2 on the instance of Lemma 4.1. Before extending
the algorithm to arbitrary instances, we give a lower bound for any randomized algorithm.

» Lemma 5.1. Any randomized adaptive algorithm has query-competitive ratio at least 3/2
against an adversary that is oblivious to the randomized tosses, even for uniform query costs.

Proof. Use the same bad instance as Lemma 4.1, set probability 1/2 for each of the two
possible inputs and apply Yao’s minimax principle. <

The algorithm is based on the following property of the dependency graph, whose proof
we omit.

» Lemma 5.2. If I, is an interval with minimum r,, then the vertex x is simplicial, i.e., its
neighborhood is a clique.

The algorithm begins by querying intervals that are singleton witness sets according to a
generalization of the condition in Proposition 3.1. Then, if a component of the remaining
dependency graph is an edge, the randomized strategy is applied. Else, the algorithm
considers a non-queried vertex x with minimum 7, a neighbor y of £ with minimum r,,
and another neighbor z of x (or of y if y is the only neighbor of ) with minimum r,. The
algorithm first queries I,,. If x and y are still adjacent, or if x and z are adjacent, then we
query both I, and I,. We repeat this strategy until the dependency graph has no edges.

A pseudocode is presented in Algorithm 1; we parameterize the probability p in the
randomized strategy since the algorithm will be reused afterwards. We also maintain a set V
of the values resulting of queried intervals.
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Algorithm 1 Improved adaptive algorithm for the sorting problem with queries.

Input: (I1,...,1,,p)
1V« 0
2 while there are i,j with I; O [{; — 6,7; + 6] or I; D [v; — 0,v; + 0] with v; € V do
‘ query I;, add v; to V;
while there is some dependency do

3
4
5 if some component is an edge ij then
6 pick ¢ with probability p (and j with probability 1 — p); assume ¢ is picked;
7 query I;, add v; to V;
8 if I; O [v; — d,v; + 6] then
9 ‘ query I;, add v; to V;
10 else
11 let I, non-queried with minr,, and y be a neighbor of x with minr,;
12 let z be another neighbor of x (or of y if x is a leaf), with minr,;
13 query I, add v, to V;
14 if I, O [vy — 6,vy + 0] or I, I, are dependent then
15 query I, add v, to V;
16 query I,, add v, to V;
17 while there is I; D [v; — 0,v; + 9] for some v; € V do
18 ‘ query I;, add v; to V;

» Theorem 5.3. Algorithm 1 has expected query-competitive ratio 3/2 if p =1/2.

Proof. We form a partition Vi,...,V,, of the set of input intervals with the following
property. Let a(V;) be the number of intervals in V; that are queried by the algorithm, and
let ¢(V;) := |Q N'V;|, where @ is an optimum query set. We show that E[a(V;)/q(V;)] < 3/2
for every i, from which the theorem follows.

If the algorithm queries an interval I; in Line 3 or Line 18, then {I;} is the next set in

the partition. Due to Proposition 3.1, it is a singleton witness set, so a({I;})/q({;}) = 1.
If the algorithm runs Lines 6-9 for edge ij, then W = {I;,I;} is the next set in the

partition. We consider the following cases.

1. If I, D [v; — d,v; + 0] and I; D [v; — §,v; + 6], then ¢(W) = 2 and a(W) = 2.

2. Otherwise, ¢(WW) > 1 because this is a witness pair.

a. If I; D [vj —6,v; + 6] but I; % [v; — 6, v; + 6], then with probability 1/2 the algorithm
queries I; and this is enough, and with probability 1/2 it queries both, so E[a(WV)] = 3/2;
the same holds for the symmetrical case.

b. If I, 7 [v; —0,v;+6] and I;  [v; — 9, v; +6], then Line 9 is not executed and a(W) = 1.

If the algorithm runs Lines 11-16 for x, y and z, then we have two cases.

1. If z and z are not neighbors, and x and y are not neighbors after Line 13, then W = {I,, I,,}
is the next set in the partition. Since it is a witness set, (W) > 1. But the algorithm
will not query I, because y is the only neighbor of z, so a(W) = 1.

2. Otherwise, W = {I,I,,I.} is the next set in the partition. We have two subcases.

a. If z and z are neighbors, then zyz is a clique by Lemma 5.2. So ¢(W) > 2, since
otherwise a pair is unsolved.

b. Otherwise, I, D [v, — d,v, + d] and {I,} is a singleton witness set. Since x and z are
not neighbors, then y and z are neighbors and, by Lemma 2.2, {I,,, I} is a witness set.

Either way, ¢(W) > 2 and a(W) = 3.

We conclude that the expected query-competitive ratio is 3/2. <
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Our second strategy to obtain an improvement on Theorem 4.3 is, instead of using
randomization, to assume that the graph does not have 2-components, i.e., components
consisting of a single edge. This is not enough, however, since in Lemma 4.1 we have shown
that we can have a large component. So our hypothesis is that § = 0 and, after executing
the loop of Lines 2-3, the remaining dependency graph, which becomes a proper interval
graph, has no 2-components. (Note that Theorem 5.3 is still true if we remove Lines 2-3 of
the algorithm.) Let us prove a lower bound for this case.

» Lemma 5.4. Any deterministic adaptive algorithm has query-competitive ratio at least 5/3,
even if 6 =0 and the dependency graph is a proper interval graph with no 2-components.

Proof. Consider five proper intervals I, Iy, I., 14,1, with £, < {, < £. < lq < f.. The
dependencies are defined by two triangles, abc and cde.

If the algorithm first queries I.., then we set v. € I.\ (I, UI, U4 UI,), and we can make
ab and de behave as the bad instance of Lemma 4.1.

If the algorithm first queries I, then we set v, € I, N I, so the algorithm will be forced
to query I and I.., and we set vy, v. € (I, UI.)\ (I, UI;UI), so the optimum can avoid I,.
Then we can make de behave as the bad instance of Lemma 4.1. The argument is symmetric
if the algorithm first queries I.

If the algorithm first queries I, then we set v, € I, N I, so the algorithm will be forced
to query I, and I.., and we set v,, v, € (I, UI.)\ (I U4 UI.), so the optimum can avoid Ip.
Then we can make de behave as the bad instance of Lemma 4.1. The argument is symmetric
if the algorithm first queries 1. <

» Theorem 5.5. Algorithm 1 (with p =0 or 1) is 5/3-query-competitive if 6 = 0 and the
dependency graph has no 2-components after finishing the loop of Lines 2-3.

Proof. The analysis is similar to that of Theorem 5.3. We will give a partition V7,...,V,, of
the set of intervals with the following property. Let a(V;) be the number of intervals in V;
that are queried by the algorithm, and let ¢(V;) := |Q N V;|, where @ is an optimum query
set. We will have that a(V;)/q(V;) < 5/3 for every i, and then the theorem follows. The
analysis for the cases of Lines 3, 11-16 and 18 are identical.

If the algorithm runs Lines 6-9 for edge ij, then let C be the component containing ij in
the dependency graph after finishing the loop of Lines 2-3. We claim that ¢ and j are the
only vertices of C' queried in Lines 6-9: Lines 11-16 force that intervals are queried from
left to right; thus, since the dependency graph at this point is a proper interval graph, if an
interval ¢’ is queried in Line 18, then after that no interval j* with r; < r; will have some
dependency. Pick an arbitrary set W’ of the partition consisting of vertices of C. We merge
{I;,I;} and W' into a single set W of the partition, and from the previous cases we have
that a(W)/q(W) < 5/3. <

This proof indicates that the analysis can be improved if we require the graph to have
large components after finishing the loop of Lines 2-3.

» Theorem 5.6. Algorithm 1 (with p =0 or 1) has query-competitive factor 3/2+ O(1/k) if
0 =0 and each component of the dependency graph has size at least k after finishing the loop
of Lines 2-3.

Proof. We only have to reconsider the case of Lines 6-9 in the proof of Theorem 5.5. If
the algorithm runs Lines 6-9 for edge ij, then let C' be the component containing ij in the
dependency graph after finishing the loop of Lines 2-3. We merge {I;, I;} and all partition
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sets containing vertices of C' into a single set W of the partition. Since ¢ and j are the only
vertices of C' queried in Lines 6-9 and C' has size at least k, from the other cases we have
that a(W)/q(W) < 3/2+ O(1/k). <

The analysis is tight since we can have a chain of k triangles plus 1 edge, such that we
can force the algorithm to query all intervals, while the optimum can avoid one interval in
each triangle and one interval in the extra edge. For large components, we still have a lower
bound of 7/5 for any deterministic algorithm.

» Lemma 5.7. Any deterministic adaptive algorithm has query-competitive ratio at least 7/5,
even if 6 =0 and the dependency graph is a proper interval graph with large components.

Proof. (Lemma 5.7.) Consider the graph of Figure 2, which has 7k + 2 vertices. For

i1=0,...,k—1, vertices 7i + 3,...,7i + 7 consist in a copy of the instance of Lemma 5.4.

For i = 0,...,k, vertices x; = 7i + 1 and y; = 7i + 2 are dependent, x; is dependent to
7(i—1)+7if i >0, and y; is dependent to 7i + 3 if i < k. We set v,,, vy, € I, N1, so
both the algorithm and the optimum must query I, and I,
information about the remaining vertices. From Lemma 5.4, we can force any deterministic

;, but querying them gives us no
algorithm to query all vertices in the graph, while the optimum solution can query only 3
vertices of 70 +3,...,7i + 7. |

Figure 2 Instance which attains the lower bound for proper interval graphs with large components.

It remains an open question to close the gap between the lower bound of 7/5 and the
upper bound of 3/2 + O(1/k). Finally, we note that the problem can be solved exactly for
laminar families of intervals, since all queries will happen at Line 3 of the algorithm.

» Theorem 5.8. Algorithm 1 obtains an optimum solution if 5 = 0 and the intervals constitute
a laminar family.

6 Advice Complexity for Adaptive Algorithms

In this section we investigate the advice complexity of solving the adaptive version of the
problem. We assume arbitrary query costs, and for consistency that the oracle answers
questions regarding a fixed optimum solution for the given instance.

First, we deal with the case when § = 0. Let n be the number of given intervals. We
claim that |n/2] bits of advice are sufficient to solve the problem exactly, and that there are
instances for which |n/2] bits are necessary.

» Lemma 6.1. The advice complexity of the adaptive sorting problem with uncertainty is at
least |n/2], where n is the number of intervals, even if 6 = 0.

Proof. Assume n even and consider n/2 independent copies of the bad instance of Lemma 4.1.

At least 1 bit of advice is necessary to decide the relative order between each pair. <

For an adaptive algorithm with a matching upper bound, we note that, if 6 = 0, then any
triangle ijk contains a vertex j such that I; C I; U I, (just take ¢ with minimum ¢; and k
with maximum 7). Thus, we can ask the oracle whether the optimum solution queries I;; if
not, then we must query all neighbors of j; otherwise, we query I;, and since I; C I; U I,
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we will know at least one of I; and I that also must be queried. If the dependency graph
contains no triangles, then it is a forest, because any cycle in a chordal graph must contain a
triangle. Therefore, we can pick a leaf i and ask the oracle whether the optimum solution
queries its neighbor j; if not, then we query all neighbors of j; otherwise, we query I; and
we will know if I; must or not be queried. Since we decide at least two intervals with one bit
of advice, then |n/2]| bits are sufficient. We present a pseudocode in Algorithm 2.

Algorithm 2 An adaptive algorithm that finds an optimum solution with |n/2] bits of

advice when § = 0.
Input: (I1,...,1,)
Y« 0;
while there is some dependency do
if there is a triangle K then

‘ let i € K with minimum ¢;, k € K with maximum ry, and j € K \ {i,k};
else let ¢ be a leaf, and j be the neighbor of ¢ ;
ask the oracle whether the optimum solution queries j;
if yes then query I, add v; to V;
else foreach neighbor z of j do

‘ query I, add v, to V;
while there is I; D [v; — 0,v; + 6] for some v; € V do

‘ query I;, add v; to V;

© ® N O 0N W N

fun
o

=
=

» Theorem 6.2. The advice complexity of the adaptive sorting problem with uncertainty is
[n/2| when 6 =0, where n is the number of intervals.

Now we consider the case when 6 > 0. Here, we can improve the lower bound to [n/3-1g 3]
and still have an algorithm with matching upper bound. Both are based on the fact that to
encode k distinct values amortized 1g k bits are sufficient and necessary [27].

» Lemma 6.3. The advice complexity of the adaptive sorting problem with uncertainty is at
least [n/3 -1g 3], where n is the number of intervals.

Proof. Assume n multiple of 3 and consider n/3 independent triangles; it suffices to bound
the number of bits of advice necessary to solve each triangle. Suppose by contradiction
that there is an algorithm that solves any triangle with one bit of advice, and consider the
following instances Z1,7Z,,7Z3. In each Z;, the k-th triangle has intervals Iy, I3, I's such that
{1 <ty <£375, 7’1+6<7’2 < 7’3762 §£1+5, T2 ngféandrlfﬂg > 20. Wehavevj =Tj
for all j in Zy; in Zo, vy = 41, vo € (€3 + 6,71 — ), v3 = r3; and v; = {; for all j in Z3. The
only optimum solution for 77,75, Z3 is not to query Iy, I, I3, respectively. (See Figure 3.)

Figure 3 Instances for the lower bound on advice complexity when § > 0.

By the pigeonhole principle, the algorithm must have the same advice for at least two of
those inputs. So, it suffices to prove that any deterministic algorithm fails in one instance of
any subset with at least two of those instances. Since the intervals are structurally identical,
any algorithm for a triangle performs no better than an algorithm in the following form, for
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fixed z,y € {1,2,3},  # y: query I, and if no helpful information is given, query I,,. The
instances are constructed in such a way that, for instance Z;, the algorithm does not get any
helpful information by querying I, with ¢ # =, so it fails on instances Z, and Z,. Since one
bit is not sufficient, at least three different values must be encoded in the advice for each
triangle, so [n/3 -1g 3] bits are necessary for the whole instance. <

The algorithm that attains the upper bound relies on Lemma 5.2. It considers the
clique K consisting of vertex x with minimum r, and its neighborhood. Then it asks the
oracle for the index of a vertex y in K that is not queried in the optimum solution or, if
there is no such vertex in K, then the oracle must return y = x. Either way, the algorithm
queries all intervals in K \ {y}, and if y = = then the algorithm will know if y must also be
queried after querying everyone else. So it uses lg|K| bits of advice to decide at least |K]|
intervals, and the bound follows since 1g k/k has its maximum at k£ = 3 when k is integer. A
pseudocode is presented in Algorithm 3.

Algorithm 3 An adaptive algorithm that finds an optimum solution with [n/3 - lg 3]
bits of advice.

Input: (I,...,1,)

1V« 0

2 while there is some dependency do

3 let  with minimum r,, and K be the clique consisting of z and its neighborhood;

4 ask the oracle for a vertex y € K not queried in the optimum solution, or y = x if
there is no such vertex;

5 foreach z € K \ {y} do

6 ‘ query I,, add v, to V;

7 | while there is I; D [v; — 0,v; + d] for some v; € V do

8 ‘ query I;, add v; to V;

» Theorem 6.4. The advice complexity of the adaptive sorting problem with uncertainty is
[n/3-1g 3], where n is the number of intervals.

7 Future Work Directions

One interesting question is how the sorting problem can take advantage of queries with
different levels of precision, as in [21]. A variety of other classical optimization problems
could also be studied in similar uncertainty variants with queries.
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—— Abstract

We study online competitive algorithms for the line chasing problem in Euclidean spaces R?, where
the input consists of an initial point Py and a sequence of lines X1, Xo, ..., X;n, revealed one at
a time. At each step t, when the line X; is revealed, the algorithm must determine a point P; € X;.
An online algorithm is called c-competitive if for any input sequence the path Py, P, ..., Py, it
computes has length at most ¢ times the optimum path. The line chasing problem is a variant of
a more general convex body chasing problem, where the sets X; are arbitrary convex sets.

To date, the best competitive ratio for the line chasing problem was 28.1, even in the plane.
We improve this bound by providing a simple 3-competitive algorithm for any dimension d. We
complement this bound by a matching lower bound for algorithms that are memoryless in the sense
of our algorithm, and a lower bound of 1.5358 for arbitrary algorithms. The latter bound also
improves upon the previous lower bound of v/2 & 1.412 for convex body chasing in 2 dimensions.
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1 Introduction

Convex body chasing is a fundamental problem in online computation. It asks for an
incrementally-computed path that traverses a given sequence of convex sets provided one
at a time in an online fashion and is as short as possible. Formally, the input consists of
an initial point Py € R? and a sequence X1, X, ..., X,,, € R? of convex sets. The objective
is to find a path P = (P, Py, ..., Py,) with P, € X; for each t = 1,2,...,m and minimum
total length ¢(P) = >"7" | ¢p, ,p,. (Throughout the paper, by ¢(P,Q) or {pg we denote the
Euclidean distance between points P and @ in R?.) This path P must be computed online,
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in the following sense: the sets X; are revealed over time, one per time step. At step ¢, when
set X; is revealed, we need to immediately and irrevocably identify its visit point P; € X;.
Thus the choice of P; does not depend on the future sets X;i1, ..., Xon.

As can be easily seen, in this online scenario computing an optimal solution is not possible,
and thus all we can hope for is to find a path whose length only approximates the optimum
value. A widely accepted measure for the quality of this approximation is the competitive
ratio. For a constant ¢ > 1, we will say that an online algorithm A is c-competitive if it
computes a path whose length is at most ¢ times the optimum solution (computed offline).
This constant c is called the competitive ratio of A. Our objective is then to design an online
algorithm whose competitive ratio is as close to 1 as possible.

The convex body chasing problem was originally introduced in 1993 by Friedman and
Linial [11], who gave a constant-competitive algorithm for chasing convex bodies in R?
(the plane) and conjectured that it is possible to achieve constant competitiveness in any
d-dimensional space R?. As shown in [11], this constant would have to depend on d; in fact
it needs to be at least v/d.

The Friedman-Linial conjecture has remained open for over two decades. In the last
several years this topic has experienced a sudden increase in research activity, partly moti-
vated by connections to machine learning (see [3, 7]), resulting in rapid progress. In 2016,
Antoniadis et al. [1] gave a 20(d)_competitive algorithm for chasing affine spaces of any dimen-
sion. In 2018, Bansal et al. [3] gave an algorithm with competitive ratio 20(dlogd) o1 pested
families of convex sets, where the input set sequence satisfies X; O Xs O ... O X,,,. Soon
later their bound was improved to O(dlogd) by Argue et al. [2], and then to O(y/dlogd)
by Bubeck et al. [6]. Finally, Bubeck et al. [7] just recently announced a proof of the
Friedman-Linial conjecture, providing an algorithm with competitive ratio 294 for arbitrary
convex sets.

One other natural variant of convex body chasing that also attracted attention in the
literature is line chasing, where all sets X; are lines. Friedman and Linial [11] gave an
online algorithm for line chasing in R? with ratio 28.53. Their algorithm was simplified by
Antoniadis et al. [1], who also slightly improved the ratio, to 28.1. Earlier, in 2014, Sitters [16]
showed that a generalized work function algorithm has constant competitive ratio for line
chasing, but he did not determine the value of the constant.

1.1 Our results

We study the line chasing problem discussed above. We give a 3-competitive algorithm for
line chasing in R?, for any dimension d > 2, significantly improving the competitive ratios
from [11, 1, 16]. Our algorithm is very simple and essentially memoryless, as it only needs to
keep track of the last line in the request sequence. We start by providing the algorithm for
line chasing in the plane, in Section 2, and later in Section 3 we extend it to an arbitrary
dimension. In Section 4, we provide a matching lower bound of 3 for algorithms that are
memoryless in the sense stated above and oblivious with respect to rotation, translation and
uniform scaling of the metric space. We also provide a lower bound for arbitrary algorithms
(see Section 5), showing that no online algorithm can achieve competitive ratio better than
1.5358. This improves the lower bound of /2 & 1.412 for line chasing established in [11],
which was previously also the best known lower bound for the more general problem of
convex body chasing in the plane.
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Figure 1 Algorithm DRIFT moves from P to P’.

1.2 Other related work

Set chasing problems are also known as Metrical Service Systems (see below) and belong
to a very general class of problems for online optimization and competitive analysis called
Metrical Task Systems (MTS) [5]. An instance of MTS specifies a metric space M, an initial
point Py € M, and a sequence of non-negative functions 71, 73, ..., 7, over M called tasks.
These tasks arrive online, one at a time. At each step ¢, the algorithm needs to choose a
point P, € M where it moves to “process” the current task 7;. The goal is to minimize the
total cost defined by > i", (u(Pi—1, P;) + 7¢(P;)), where () is the metric in M. Thus in
MTS, in addition to movement cost, at each step we also pay the cost of “processing” 7.
For any metric space M with n points, if we allow arbitrary non-negative task functions
then a competitive ratio of 2n — 1 can be achieved and is optimal. This general bound is not
particularly useful, because in many online optimization problems that can be modeled as
an MTS, the metric space M has additional structure and only tasks of some special form
are allowed, which makes it possible to design online algorithms with constant competitive
ratios, independent of the size of M.

An MTS where M = R? and all functions 7; are convex is referred to as convex function
chasing, and was studied in [1, 4, 13]. For the special case of convex functions on the real
line, a 2-competitive algorithm was given in [4].

An MTS where each task function 7; takes value 0 on a subset X; C M and oo elsewhere
is called a Metrical Service System (MSS) [9]. In other words, in an MSS, in each step t the
algorithm needs to move to a point in X;. To achieve a competitive ratio independent of the
size of M, it is generally required to restrict the sets X; to be in some subset X C P(M).
For instance, finite competitive ratios can be achieved when X is the set of sets of size
at most k [10, 8, 15]. If M = R? and X is the set of convex subsets, this is precisely the
convex body chasing problem, and if X is the set of lines, it is the line chasing problem. One
variant of MSS that has been particularly well studied is the famous k-server problem (see,
for example, [14, 12]), in which one needs to schedule movement of k servers in response to
requests arriving online in a metric space, where each request must be covered by one server.
(In the MSS representation of the k-server problem, each set X; consists of all k-tuples of
points that include the request point at step ¢.)

2 A 3-Competitive Algorithm in the Plane

In this section, we present our online algorithm for line chasing in R? with competitive
ratio 3. The intuition is this: suppose that the last requested line is L and that the algorithm
moved to point P € L. Let L’ be the new request line, S the intersection point of L and L/,
and 7 = fgp. A naive greedy algorithm would move to the point P on L’ nearest to P (see
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Figure 1) at cost h = {pp. If h is small, then r — £g5 = o(h), that is the distance between
the greedy algorithm’s point and S decreases only by a negligible amount. But the adversary
can move to S, paying cost 7, and then alternate requests on L and L’. On this sequence the
overall cost of this algorithm would be w(r), so it would not be constant-competitive. This
example shows that if the angle between L and L’ is small then the drift distance towards S
needs to be roughly proportional to h. Our algorithm is designed so that this distance is
roughly h/+/2 if h is small (with the coefficient chosen to optimize the competitive ratio),
and that it becomes 0 when L’ is perpendicular to L.

Algorithm 1 Algorithm DRIFT.

Suppose that the last request is line L and that the algorithm is on point P € L. Let the
new request be L’ and for any point X € L, let X be the orthogonal projection of X onto L.
If L' does not intersect L, move to P’ = P. Otherwise, let S = L N L’ be the intersection
point of L and L'. Let also r = fgp, h = {pp, and s = {gp (see Figure 1). Move to point

P’ € I such that {gpr = s — x, where z = %(th s—r).

» Theorem 1. Algorithm DRIFT is 3-competitive for the line chasing problem in R2.

Proof. We establish an upper bound on the competitive ratio via amortized analysis, based
on a potential function. The (always non-negative) value of this potential function, ®(P, A),
depends on locations P, A € L of the algorithm’s and the adversary’s point on the current
line L. If L' is the new request line, and P’, A’ € L’ are the new locations of the algorithm’s
and adversary’s points, we want this function to satisfy

Uppr + (P, A') — B(P,A) < 3lan. 1)

Since initially the potential is 0 and is always non-negative, adding inequality (1) for all
moves will establish 3-competitiveness of Algorithm DRIFT.

The potential function we use in our proof is ®(P, A) = v/3£4p. Substituting this formula,
inequality (1) reduces to

Cppr +V3(Larpr —Lap) < 3laar. (2)

It thus remains to prove inequality (2). Let g = £, 1, 2 = €4 5, and v = £ ;5.

We first discuss the trivial case of non-intersecting L and L’. Keeping with the general
notation, here we have = 0 and thus {pp, = h. Moreover, g = £, ;7 = h as well. For fixed
z, we have £44 = Vh? + 22, i.e., the right hand side of (2) is fixed, whereas the left hand
side is maximized if A’ is on the other side of A than P. The left hand side is thus at most

h+\/§z§ ﬂ\/h2+322 < \@\/3(h2+22) :\/EKAA/ < 3laar,

where the first inequality follows from the power mean inequality (for powers 1 and 2),
proving this easy case.

The situation when L’ and L do intersect is illustrated in Figure 2. (The figure shows
only the case when A is between S and P’.) Orient L’ from left to right (with P being to the
right of S), as shown in this figure. We want to express the distances in the above inequality
in terms of s, h, v, and z (keeping in mind that = and r are functions of h and s):

Lppr = \V/x2+ h?
lap = vr/s = (vVs2+h2)/s
laar = 22+ g2
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Figure 2 Notation for the analysis of Algorithm DRIFT.

The values of g and £/ p: depend on some cases, that we consider below.

Case 1. A is between S and P’, as in Figure 2. Then g = h(s — v)/s. Our goal is first to

find A’ for which the bound in (2) is tightest. For a given z, among the two locations
of A’ at distance z from A, the one on the left gives a larger value of the left-hand side
of (2), while the right-hand side is the same for both. Thus we can assume that A’ is to
the left of A, so L4/ pr = z +v — x. Then we can rewrite (2) as follows:

%KPP’*ZAPJF’U*f <V3y22+ g2z (3)

By elementary calculus, the right-hand side is minimized for z = % g, SO we can assume
that z has this value. Then inequality (3) reduces to

%fppl—f,qp+v—x <V2g. (4)
After substituting g = h(s — v)/s and £4p = vr/s, inequality (4) reduces further to
s(%ﬁpp/—x—\/ﬁh) <wv(r—s—+/2h). (5)

The expression in the parenthesis on the right-hand side of (5) is non-positive by triangle
inequality, so the right-hand side is minimized when v is maximized, that is v = s, and
then it reduces to

22+ h? <3(r—s+ax)2 (6)

Recall that z = %(h +5—7). Since r — h < s < r, we have

2?2+ h? = L(h+s—r)2+h?
2+h2

PR+ (V21— )] = 3(r—s+a)’,

A

> S

DIw M= o=

proving (6).

Case 2. A is before S. In this case we have g = h(v —s)/s. Just as in Case 1, we can assume

that A’ is to the left of A, so that £4/pr = z + v — z, and (2) reduces to
%gpp/ngP‘i"U*l’ <V2g. (7)
After substituting g = h(v — s)/s and £ap = vr/s, inequality (4) reduces further to

s(%ﬁpp/—x—i—\/ih) <o (r—s++v2h). (8)
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The expression in the parenthesis on the right-hand side of (8) is non-negative, so the
right-hand side is minimized when v = s (because in this case v > s), so (8) reduces to
the same inequality (6) as in Case 1, completing the argument for Case 2.

Case 3. A is after P. In this case we have g = h(v + s)/s. Symmetrically to Case 1, we can
now assume that A’ is to the right of A, so that {4 pr = z + v + z, and that z = % g.
Then, analogously to (4), we can rewrite (2) as follows:

%ZPP’_KAP‘FU"‘I' <V2g 9)
After substituting g = h(v + s)/s and €4p = vr/s, inequality (9) reduces further to
S(%fppl—f—l'—\/ih) <wv(r—s++v2h). (10)

The expression in the parenthesis on the right-hand side of (10) is non-negative, so the
right-hand side is minimized when v = 0, and then it reduces to

22 +h? < 3(V2h —2)% (11)
To prove this, we proceed similarly as in Case 1:
22+ h? < %hQ < %(h +7r—15)% = 3(vV2h —2)?,

proving (11).

Case 4. A is between P’ and P. Then g = h(s — v)/s (as in Case 1). Similar to Case 3, we
can assume that A’ is to the right of A, so that now 4/ pr = z — v+, and that z = % g.
Then, analogously to (4), we can rewrite (2) for this case as follows:

%KPP’—EAP_U“‘Z’ <2y (12)
After substituting g = h(s —v)/s and £ap = vr/s, inequality (12) reduces further to
S(%;&Dp/—f—x—\/ﬁh) S’U(T‘—FS—\/?}L) (13)

We now have two sub-cases. If the expression in the parenthesis on the right-hand
side of (13) is non-negative then the right-hand side is minimized when v = 0, so
inequality (13) reduces to inequality (11) from Case 3. If this expression is negative (that
is when r + s < v/2h), then it is sufficient to prove (13) with v on the right-hand side
replaced by s (because v < s). This reduces it to % Lppr+x < r+s. This last inequality
follows from ¢pp: <71 and x < s. |

3 An Algorithm for Arbitrary Dimension

In this section, we show how to extend Algorithm DRIFT to Euclidean spaces R? for arbitrary
dimension d > 2. This extension, that we call EXTDRIFT, is quite simple, and consists of
projecting the whole space onto an appropriately chosen plane that contains the new request
line. While such approach was suggested already by Friedman and Linial [11], their choice of
plane may lose a constant factor in the competitive ratio. We project onto a different plane,
which allows EXTDRIFT to also be 3-competitive.

Let P be the current EXTDRIFT position and L’ the new request line. If P € L/,
EXTDRIFT makes no move. Otherwise, let U be the uniquely determined plane which
contains both I’ and P. EXTDRIFT makes the move prescribed by DRIFT in the plane U for
P, L’ and the projection of L onto U.
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» Theorem 2. Algorithm EXTDRIFT is 3-competitive for the line chasing problem in R?,
for arbitrary dimension d > 2.

Proof. We prove that (1) holds in arbitrary dimension. If P € L’ then L and L’ are co-planar,
so the analysis from the previous section works directly.

So assume that P ¢ L. We first allow the adversary to perform a free move from its
current position A to point A defined as the orthogonal projection of A onto U, and then we
analyze the move within U (that is, in a two-dimensional setting), as if the adversary started
from point A.

We note that £ ;5 < £ax for any point X € U, as (€ax)? = ((sx)?+ ({4 4) by definition
of A. Tt follows that:

In the free adversary move from A to A the potential function decreases (by taking X = P

in the above inequality) and both costs are 0. Further, in the move within U, with the

adversary starting from A, Algorithm EXTDRIFT makes the same move as DRIFT, which
implies that (1) is satisfied. Thus the complete move (combining the free adversary move
and the move inside U) satisfies inequality (1) as well.

The free move is only beneficial for the adversary: taking X = A’ shows that the cost of

moving to A’ from A is no more costly for the adversary than moving to A’ from A. <«

4 Lower Bound for Memoryless Algorithms

We show that our algorithm achieves the optimal competitive ratio among a certain class of
“memoryless” algorithms. For a metric space M, let X C P(M) be the set of possible requests
(i.e., lines in our case). In general, we can view an algorithm as a function A: M x X* — X
with A(Py) = Py and A(Py, X1,...,X:) € X; for each initial point Py € M and requests
X1,...,X: € X. We call an algorithm memoryless if A(Py, X1,...,X}) is a function of only
the last position A(Py, X1, ..., X¢—1), the last request X;_; and the new request X.

However, memorylessness alone would not impose any limit on the power of line-chasing
algorithms: By perturbing its positions very slightly, an algorithm could always encode the
entire history in low significant bits of its current position. To get a meaningful notion of mem-
orylessness, we therefore require an additional property, namely that the algorithm is oblivious
with respect to rotation, translation or scaling of the metric space. More precisely, a direct sim-
ilarity of R is a bijection f: R? — R? that is a composition of rotation, translation and scaling
by some factor 7¢ > 0. In particular, for any P,Q € R, we have {(f(P), f(Q)) = r{(P,Q).
We call an algorithm A rts-oblivious if A(f(Py), f(X1),..., f(Xe)) = f(A(Po, X1,...,Xt))
for any Py € M, X; € X and any direct similarity f. In general (when algorithms are allowed
to use memory) there is no reason to behave differently when the input is transformed by
such f, since it is just a renaming of points and scaling of distances by a uniform constant.
For completeness, we provide a proof of this intuition via the following proposition:

» Proposition 3. If there is a c-competitive algorithm for line-chasing, then there is a
c-competitive rts-oblivious algorithm.

Proof. For an initial position Py and request sequence X1, ..., X;, we assume without loss
of generality that Py ¢ X;. For any such Py and X, there exists a unique direct similarity
g = gp,x, such that g(Py) = (0,1) and g(X;1) = R x {0}. Given a c-competitive algorithm
A, we claim that the algorithm A given by

APy, X1, Xe) = g7 (A(g(Ro), 9(X1), .., 9(X4)))

is rts-oblivious and c-competitive.
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To see that A is rts-oblivious, consider an arbitrary direct similarity f. Notice that
9r(ro) sy = 9o f 1 Thus,
A(f(Po), f(X1), -, f(X0) = (fo g~ N(A(g(Po), 9(X1), - ., 9(X4)))
f( (P07X17 . aXt))a
as required. To see that A is c-competitive, consider an initial position Py and request

sequence X1, ..., X,, along with an adversary’s solution Ay = Py, A1 € X1,..., Ay € X
The cost of A can be bounded via

Ze PoaXla"'7Xt71>7A(P07X1;-~-aXt)>

= %ZK(A(Q(Po),g(Xl), 5 9(Xim1)), Alg(FPo), 9(Xa), - -+, 9(Xe)))
9 t=1

< ;if (Ai—1),9(Ap))
szje A 1;At

where the inequality uses that A is c-competitive against the solution g(Ayp),...,g(A.,) for
the transformed input g(Fp), g(X1), ..., 9(Xm). <

Intuitively, an rts-oblivious algorithm does not know the absolute coordinates of its
positions and requests, but only relative to each other and up to scaling. If it is memoryless,
in the plane this boils down to only knowing the angle between the new and the old request
line. We show now that our algorithms DRIFT and EXTDRIFT achieve the optimal competitive
ratio among rts-oblivious memoryless algorithms.

» Theorem 4. Any rts-oblivious memoryless algorithm for line-chasing has competitive ratio
at least 3.

Proof. We will construct an initial point Py and lines Ly, ..., L,, in R? with the property
that Py € Ly and L; can be obtained by rotating L;_; around some point S; € L;_1 in
clockwise direction by less than 90 degrees.

Let Py,..., Py, be the sequence of points visited by a given algorithm. We use notation
similar to that in Figure 1: Write P,_; for the orthogonal projection of P,_; onto L; and
let hy = E(Pt,hpt,l) and s; = E(Pt,l, St). The movement from P;_; to P, can always
be viewed as first moving to P,_; and then moving some distance x; € R in the direction
towards intersection Sy, for a total cost y/h? + x?. Here, z; < 0 would constitute movement
away from S; and x; > s; would constitute movement beyond S;.

Observe that for rts-oblivious memoryless algorithms, % is a function of only ’SL—:, ie.
B (Z—tt) = 3t for some function j3: (0,00) — R. Any rts-oblivious memoryless algorithm for
line-chasing in the plane is uniquely determined by its associated function 8 as well as similar
functions for the cases of counter-clockwise rotations of at most 90 degrees and parallel
lines.! Let 8(0) := limsup,_,o 3(a) € RU{—00,00}. Let us first show that algorithms with
B(0) = oo or B(0) < 0 have unbounded competitive ratio.

L If we require algorithms to be oblivious also with respect to reflection (which would still satisfy
Proposition 3), they would be uniquely determined by /3 alone. DRIFT is the algorithm corresponding

to B(a) = “HYEIL
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If B(0) = oo, we choose Py = (1,h), Lo = {(x,y): y = ha}, L1 = R x {0} for some small
h > 0. The algorithm’s cost is hy/1 4 B(h)?, whereas the optimal cost is h. Choosing h
arbitrarily small shows that the Competitive ratio is unbounded.

If B(0) < 0, fix some € € (0,1] and choose a € (0,¢] with B(a) < e. Let Py = (1,0),
Lo =R x {0} and define L, as the clockwise rotation of L;_; around the origin O := (0, 0)
by angle arctan(a). Thus, we have Z—: = a for each ¢. Notice that s;v'1+ a? =£(0,P,_1) =
st—1(1 — ap(a)), and therefore

&_ﬂ—w@>1_¥HW®ZLJ%

si.1 1+aZ 1+ a2

where the first inequality uses v/1 4+ a2 < 1 4+ a? and the second inequality uses 0 < a < €
and f(a) < e. Hence,

sp > (1 —2ea)t™!

Since {(P;_1, P;) > hy = asq, the total cost of the algorithm is

m m—

1
Ze(Pt 1,Pt 2 Zl-?ﬁatrﬂ_)—oo)f.

2
t=1 t=0 €

Meanwhile, an optimal algorithm pays total cost 1 by moving to O immediately. Letting
€ — 0, we find again that the competitive ratio is unbounded.

It remains to consider the case 0 < $(0) < co. Then we can choose arbitrarily small
a > 0 such that 0 < af(a) < 1. We choose the initial point Py = (%, 1), and the request

sequence starts with Lo = {(z,y): y = az} and L1 = R x {0}. For ¢ > 2, we define L; as the
clockwise rotation of L;_1 around S; = Ss = (f — B(a) + V1 +a? ( (a) + 2,@1(a)> ,O) by
angle arctan(a). The idea is that in response to L, the algorithm drifts to the left (towards
intersection S; = (0,0)), but the subsequent requests are such that it would have been
cheaper to drift to the right (away from Sj) instead.

We have s; = % and sy = % = f(a) + #@) For t > 3, similarly to the previous
case we get

2
st o, @ +abla)

>1—a®—
Sg_1 1+a2 ~— @ —afla)

and therefore

8¢ > <ﬂ(a) + 251@> (1-a®— aﬁ(a))t_2 ift > 2.

As m — oo, the cost of the algorithm is

Zﬁpt 1,Pt th\/1+ﬁ 2_\/1+ﬁ aZst
t=1

1+ B(a)? (1 + (5(“) * 2ﬂ1(a)> a +1ﬁ(a))
1+B®V(2

1
3507
where the limit a — 0 is taken along a sequence where 5(a) — £(0). In contrast, an offline
algorithm can move immediately from Fy to Sy, paying cost /1 + W as a — 0 and
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Figure 3 Visual description of our lower bound for arbitrary algorithms. Lines L1, L2 and Ls are
presented to an online algorithm. Blue arrows describe possible movements of OpT, while gray thick
arrows describe a path of an algorithm that minimizes the competitive ratio for this adversarial
construction. Red thick half-line denotes the forbidden region.

B(a) — £(0). By dividing, we see that the competitive ratio is at least

\/(1 + 5(0)?) (4 + B(B)2> = \/46(0)2 + %0)2 + 5,

which is minimized for 3(0) = -, taking value 3. <

V2’

5 Lower Bound for Arbitrary Algorithms

Finally, in this section, we show how to improve an existing lower bound of v/2 ~ 1.41 for
arbitrary algorithms to 1.5358. Our bound holds even in two dimensions, and improves also
the lower bound for the more general convex body chasing in two dimensions.

» Theorem 5. The competitive ratio of any deterministic online algorithm A for the line
chasing problem is at least 1.5358.

Proof. We describe our adversarial strategy below. On the created input, we will compare
the cost of A to the cost of an offline optimum OPT. We assume that both A and OPT start
at origin point Py = Ay = (0, 0).

Our construction is parameterized with real positive numbers ¢; = 0.5535, co = 0.4965,
c3 = 0.8743, a; = 1.3012, ay = 0.6663, p2 = 0.5612, and p3 = 0.1696.

We fix points P; = (0,¢1), Ca = (0,¢1 + ¢2), C5 = (0,¢1 + c2 + ¢3) and As = (1,¢1), see
Figure 3 for illustration. For succinctness, we use notation A(x, y) = v/x2 + y2.
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Initial part: Line L

The first request line is the line Py A3, denoted L. Without loss of generality, we can
assume that A moves to point P;. This is because the adversary can either play the strategy
described below or its mirror image (flipped against the line PyP;), so any deviation from
Py, either to the left or right, can only increase the cost of A.

From now on, for any point @ we denote its projection on line L; by Q”.

Middle part: Line L

Next, the adversary issues the request line Cy A3, denoted Lo. Let Py € Ly and Ay € Ly be
the points to the left of Ag, such that Ep;As = po and EAfA3 =aj.

Let P, be the point on Lo chosen by A. If P, lies to the right of point P, then the
adversary forces 4 to move to A; (by giving sufficiently many different lines that go through
A; at different angles). OPT may then serve the whole sequence by going from Aj to A; at
cost

Caga, = Der+e2-ar, ap — 1) < 1.23679
while the cost of A is then at least

lpyp, +Lp P, +lpoa, =Lpp, +4pp, +laga, —Casp,
=c1+ A1 —p2, c2-p2) + A(ar, c2-a1) — Apa, c2-p2)
> 1.89948

Hence, the competitive ratio in this case is at least 1.5358.
We call the half-line of Lo to the right of point P, forbidden region. From now on, we
assume that the point chosen by A in Ly does not lie in this region.

Final part: Line L3

Finally, the adversary issues the request line C3As, denoted L3. Let Pj be the intersection
of line P, P, with line L3. Next, let A and P3 be the points on the line L3 to the left of As,
such that 4,4;,43 = ay and KP;A3 = p3. Note that P3 belongs to the interval PjAs3.

Let Ps be the point on Lg chosen by .A. We consider two cases.

Case 1. Pj lies at point P or to its left. In this case, the adversary forces A to move to As.

OPT may serve the whole sequence by going from Ay to As paying
Lagas = A1, ¢1) < 1.142963.

We may now argue that the cost of A is minimized if P is equal to Ps: If P is to the left
of point P, then the cost of A is at least {p,p, +{p p, +{p, 4,- Both the second and the
third summand decrease when we move Ps towards Py. Hence, now we may assume that
P3 belongs to the interval PyPs. As the path of A must avoid forbidden region, its cost
is at least £p,p, +€p,p, + {p,p, + £p, 4,- The sum of the last two summands decreases
when we move P3 towards P3. Therefore, we obtain that the cost of A is at least

€P0P1 +£P1 P, + EPQPS + €P3A3
=c1+ A1 =p2, ¢2-p2) + A((c2+¢3) - ps — 2+ P2, P2 — p3)
+ A(ps, (ca 4 c3) - p3) > 1.75537.

Thus, in this case the competitive ratio is at least 1.5358.
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Case 2. If Ps lies to the right of point Ps, then the adversary forces A to move to Ay. OPT
may serve the whole sequence by going from Ay to As at cost

lLaga, = A(Cl + (e2 4 ¢3) - az, 1 —ag) < 1.50435.

To go from P; to Ps and avoid the forbidden region, A has to pay at least £ PP, +p,p,-
Therefore, its cost is at least

€p0p1+£plp2 +£P2153 +€F_’3A2
> Llpyp, +4Lp,p, +€pyp;s + Py,
> Upyp, +Lppy, +Upypy +lasa, — Py a,
=c1+ A1 —pa, co-p2) + A((c2 +¢3) - p3 — 2 - P2, P2 — P3)
+ Alag, (2 +¢3) - az2) — A(ps, (c2 +c¢3) - p3) > 2.31039.

Thus, in this case the ratio is also at least 1.5358. |

6 Final Comments

Establishing the optimal competitive ratio for line chasing with memory remains an open
problem. We believe that with memory, a competitive ratio better than 3 is achievable.

The intuition is that in the first move, if L and P are the initial line and position and
L’ is the new request line, then the algorithm should move to the nearest point P on L.
More generally, if the requests on L and L’ alternate (and their angle is small), the algorithm
should initially drift slowly towards S = L N L’ and only gradually accelerate as it becomes
more credible that the adversary is located at S. To gauge this credibility for general request
sequences, an algorithm might store the current work function at each step.

It appears also that our lower bound of 1.5358 can be improved by introducing additional
steps, although this gives only very small improvements and leads to a very involved analysis.
It is possible that an approach fundamentally different from ours may give a better bound
with simpler analysis.
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—— Abstract

We study pure Nash equilibria in infinite-duration games on graphs, with partial visibility of actions
but communication (based on a graph) among the players. We show that a simple communication
mechanism consisting in reporting the deviator when seeing it and propagating this information
is sufficient for characterizing Nash equilibria. We propose an epistemic game construction, which
conveniently records important information about the knowledge of the players. With this abstraction,
we are able to characterize Nash equilibria which follow the simple communication pattern via
winning strategies. We finally discuss the size of the construction, which would allow efficient
algorithmic solutions to compute Nash equilibria in the original game.
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1 Introduction

Multiplayer concurrent games over graphs allow to model rich interactions between players.
Those games are played as follows. In a state, each player chooses privately and independently
an action, defining globally a move (one action per player); the next state of the game is
then defined as the successor (on the graph) of the current state using that move; players
continue playing from that new state, and form a(n infinite) play. Each player then gets
a reward given by a payoff function (one function per player). In particular, objectives of
the players may not be contradictory: those games are non-zero-sum games, contrary to
two-player games used for controllers or reactive synthesis [15, 12].

Using solution concepts borrowed from game theory, one can describe interactions among
the players, and in particular rational behaviours of selfish players. One of the most basic and
classically studied solution concepts is that of Nash equilibria [13]. A Nash equilibrium is a
strategy profile where no player can improve her payoff by unilaterally changing her strategy.
The outcome of a Nash equilibrium can therefore be seen as a rational behaviour of the
system. While very much studied by game theorists, e.g. over (repeated) matrix games, such
a concept (and variants thereof) has been only rather recently studied over infinite-duration
games on graphs. Probably the first works in that direction are [9, 8, 16, 17]. Several series
of works have followed. To roughly give an idea of the existing results, pure Nash equilibria
always exist in turn-based games for w-regular objectives [19] but not in concurrent games,
even with simple objectives; they can nevertheless be computed [19, 4, 7, 3] for large classes
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of objectives. The problem becomes harder with mixed (that is, stochastic) Nash equilibria,
for which we often cannot decide the existence [18, 5].

Computing Nash equilibria requires to (i) find a good behaviour of the system; (ii) detect
deviations from that behaviour, and identify deviating players; (iii) punish them. This simple
characterization of Nash equilibria is made explicit in [10]. Variants of Nash equilibria require
slightly different ingredients, but they are mostly of a similar vein.

Many of those results are proven using the construction of a two-player game, in which
winning strategies correspond (in some precise sense) to Nash equilibria in the original game.
This two-player game basically records the knowledge of the various players about everything
which can be uncertain: (a) the possible deviators in [4], and (b) the possible states the
game can be in [3]. Extensions of this construction can be used for other solution concepts
like robust equilibria [7] or rational synthesis [11].

In this work, we consider infinite-duration games on graphs, in which the game arena
is perfectly known by all the players, but players have only a partial information on the
actions played by the other players. The partial-information setting of this work is inspired
by [14]: it considers repeated games played on matrices, where players only see actions of
their neighbours. Neighbours are specified by a communication graph. To ensure a correct
detection of deviators, the solution is to propagate the identity of the deviator along the
communication graph. A fingerprint (finite sequence of actions) of every player is agreed at
the beginning, and the propagation can be made properly if and only if the communication
graph is 2-connected, ensuring large sets of Nash equilibria (formalized as a folk theorem).
Fingerprints are not adapted to the setting of graphs, since they may delay the time at which
a player will learn the identity of the deviator, which may be prohibitive if a bad component
of a graph is then reached.

We therefore propose to add real communication among players. Similarly to [14], a
player can communicate only with her neighbours (also specified by a communication graph),
but can send arbitrary messages (modelled as arbitrary words over alphabet {0,1}). We
assume that visited states are known by the players, hence only the deviator (if any) may be
unknown to the players. In this setting, we show the following results:

We show that a very simple epidemic-like communication mechanism is sufficient for

defining Nash equilibria. It consists in (a) reporting the deviator (for the neighbours

of the deviator) as soon as it is detected, and (b) propagating this information (for the
other players).

We build an epistemic game, which tracks those strategy profiles which follow the above

simple communication pattern. This is a two-player turn-based game, in which Eve (the

first player) suggest moves, and Adam (the second player) complies (to generate the main
outcome), or not (to mimic single-player deviations). The correctness of the construction
is formulated as follows: there is a Nash equilibrium in the original game of payoff p if

and only if there is a strategy for Eve in the epistemic game which is winning for p.

We analyze the complexity of this construction.

Note that we do not assume connectedness of the communication graph, hence the
particular case of a graph with no edges allows to recover the setting of [4] while a complete
graph allows to recover the settings of [19, 7].

In Section 2, we define our model and give an example to illustrate the role of the
communication graph. In Section 3, we prove the simple communication pattern. In
Section 4, we construct the epistemic game and discuss its correctness. In Section 5, we
discuss complexity issues. All proofs are available in the technical report [6].
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2 Definitions

We use the standard notations R (resp. Q, N) for the set of real (resp. rational, natural)
numbers. If S is a subset of R, we write S for S U {—o0, +00}.

Let S be a finite set and R C S. If m is an S-vector over some set X, we write m(R) (resp.
m(—R)) for the vector composed of the R-components of m (resp. all but the R-components).

We also use abusively the notations m(i) (resp. m(—i)) when i is a single element of S, and
may sometimes even use m; if this is clear in the context. Also, if s € S and a € ¥, then
m[s/a] is the vector where the value m(s) is replaced by a.

If S is a finite set, we write S* (resp. ST, S¢) for the set of words (resp. non-empty
word, infinite words) defined on alphabet S.

2.1 Concurrent games and communication graphs

We use the model of concurrent multi-player games [4], based on the two-player model of [1].

» Definition 1. A concurrent multiplayer game is a tuple G = (V, Vinit, Act, P, 2, Allow,
Tab, (payoff,)ace), where V is a finite set of vertices, vinr € V' is the initial verter, Act is
a finite set of actions, P is a finite set of players, ¥ is a finite alphabet, Allow: V x ? —
28N\ L0V is a mapping indicating the actions available to a given player in a given verter,'
Tab: V x Act” — V associates, with a given vertex and a given action tuple the target vertex,
for every a € P, payoff,: V¥ — D is a payoff function with values in a domain D C R.

An element of Act” is called a move. Standardly (see [1] for two-player games and [4]
for the multiplayer extension), concurrent games are played as follows: from a given vertex
v, each player selects independently an action (allowed by Allow), which altogether form a
move m; then, the game proceeds to the next vertex, given by Tab(v, m); the game continues
from that new vertex.

Our setting will refine this model, in that at each round, each player will also broadcast
a message, which will be received by some of the players. The players that can receive a
message will be specified using a communication graph that we will introduce later. The role
of the messages will remain unclear until we commit to the definition of a strategy.

Formally, a full history h in G is a finite sequence

vo - (mo, mesg) - vy - (my, mesy) - va ... (ms_1, mes,_q) -vs € V- ((Act” x ({0,1})") - V)*
such that for every 0 < r < s, for every a € 2, m,(a) € Allow(v,,a), and v, 41 = Tab(v,, m,).
For every 0 < r < s, for every a € P, the set mes,(a) is the message appended to action
m,(a) at step r + 1, which will be broadcast to some other players. For readability we will
also write h as

mo,mesg mi,mesy Ms—1,MeSs 1
() V1 Vg ... Vs

We write vertices(h) = vg-vy - - - vs, and last(h) for the last vertex of h (that is, vs). If r < s, we
also write h>, (resp. h<,) for the suffix v,.-(m,., mes,)-v,y1-(My11, Mes, 1) ... (Ms_1, Mess_1)-
vs (resp. prefix vg - (mg, mesg) - vy - (my, mesy) ... (Mp_1,mes,._1) - v,.). We write Histg(vo)
(or simply Hist(vg) if G is clear in the context) for the set of full histories in G that start at
vo. If h € Hist(vg) and h’ € Hist(last(h)), then we write h - A’ for the obvious concatenation
of histories (it then belongs to Hist(vg)).

! This condition ensures that the game is non-blocking.
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We add a communication (directed) graph G = (?, E) to the context. The set of vertices
of G is the set of players, and edges define a neighbourhood relation. An edge (a,b) € E
(with @ # b) means that player b can see which actions are played by player a together with
the messages broadcast by player a. Later we write a—b whenever (a,b) € E or a = b, and
n(b) = {a € P | a—b} for the so-called neighbourhood of b (that is, the set of players about
which player b has information). If a,b € P, we write distg(a, b) for the distance in G from a
to b (+oo if there is no path from a to b).

Let a € P be a player. The projection of h for a is denoted 7, (h) and is defined by

vo - (mo(n(a)), mesp(n(a))) - v1 - (Mm1(n(a)), mesi(n(a))) - va ...

. (ms_1(n(a)), mess_1 (n(a))) - vy € V - ((Actm(a) x ({0, 1}*)m(a)) -V)*

This will be the information available to player a. In particular, messages broadcast by
the players are part of this information. Note that we assume perfect recall, that is, while
playing, player a will remember all her past knowledge, that is, all of m,(h) if h has been
played so far. We define the undistinguishability relation ~, as the equivalence relation over
full histories induced by 7,: for two histories h and h', h ~, b’ iff 7,(h) = 7o(h'). While
playing, if h ~, I/, a will not be able to know whether i or h’ has been played. We write
Histg (vo) for the set of histories for player a (also called a-histories) from wvy.

We extend all the above notions to infinite sequences in a straightforward way and to the
notion of full play. We write Playsg(vo) (or simply Plays(vg) if G is clear in the context) for
the set of full plays in G that start at vg.

A strategy for a player a € P from vertex vy is a mapping o, : Histg(vg) — Act x {0,1}*
such that for every history h € Histg(vg), o4 (h)[1] € Allow(last(h),a), where the notation
04(h)[1] denotes the first component of the pair o(h). The value o,(h)[1] represents the
action that player a will do after h, while o,(h)[2] is the message that she will append to her
action and broadcast to all players b such that a—b. The strategy o, is said G-compatible
if furthermore, for all histories h,h’ € Hist(vg), h ~, B’ implies o4(h) = o4(R’). In that
case, 0, can equivalently be seen as a mapping Histg ,(vo) — Act x {0,1}*. An outcome
of o, is a(n infinite) play p = v - (g, mesg) - v1 - (M1, mesy) ... such that for every r > 0,
oa(p<r) = (my(a), mes,(a)). We write out(o,, vg) for the set of outcomes of o, from vy.

A strategy profile is a tuple op = (04)ace, Where, for every player a € P, g, is a strategy
for player a. The strategy profile is said G-compatible whenever each o, is G-compatible.
We write out(cyp, vg) for the unique full play from vg, which is an outcome of all strategies
part of op.

When o, is a strategy profile and o/; a player-d G-compatible strategy, we write op[d/c”]
for the profile where player d plays according to ¢/, and each other player a (# d) plays
according to o,. The strategy o/, is a deviation of player d, or a d-deviation w.r.t. op.

Such a d-deviation is said profitable w.r.t. o, whenever payoff, <vertices(out(o¢,v0))) <
payoff, (vertz’ces(out(og)[d/cf&], vo))> .

» Definition 2. A Nash equilibrium from vy is a G-compatible strategy profile op such that
for every d € P, there is no profitable d-deviation w.r.t. op.

In this definition, deviation ¢/, needs not really to be G-compatible, since the only meaningful
part of ¢/, is along out(c[d/c’], vo), where there are no ~g4-equivalent histories: any deviation
can be made G-compatible without affecting the profitability of the resulting outcome.
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0
7 ™
4 1 Gy
A
3 2
0
7“&
4 1
U1
3 2
/"O‘X\
4 1 Gs
3 2

Figure 1 A five-player game (left) and three communication graphs (right); self-loops a—a
omitted from the picture. The action alphabet is {a, }. The transition function is represented as
arrows from one vertex to another labeled with the action profile(s) allowing to go from the origin
vertex to the destination one. We write action profiles with length-5 words. Convention: no label
means complementary labels (e.g. one goes from vy to v using any action profile that is not in
o’ + (aff + BB + Ba)Act’ + o?(Ba® + afia + a®p)).

» Remark 3. Before pursuing our study, let us make clear what information players have: a
player knows the full arena of the game and the whole communication graph; when playing
the game, a player sees the states which are visited, and see actions of and messages from her
neighbours (in the communication graph). When playing the profile of a Nash equilibrium,
all players know all strategies, hence a player knows precisely what is expected to be the
main outcome; in particular, when the play leaves the main outcome, each player knows that

a deviation has occurred, even though she didn’t see the deviator or received any message.

Note that deviations which do not leave the main outcome may occur; in this case, only the
neighbours of the deviator will know that such a deviation occurred; we will see that it is
useless to take care of such deviations.

2.2  An example

We consider the five-player game described in Figure 1 in which we denote the players
P ={0,1,2,3,4}. The action alphabet is Act = {«, 8}, and the initial vertex is assumed to
be vg. We suppose the payoff function vector is defined as (to be read as the list of payoffs
of the players):

,1) if p visits vy infinitely often

,2) if p visits vy finitely often and v} infinitely often
00022) if p ends up in vy

,2) if p ends up in vg

,0) if p ends up in vy
00333) if p ends up in v}

(0,
(0,
payoff(p) = E
(0,
(
(

We consider a (partial) strategy profile ¢ whose main outcome is:
p= (vo - (a®,mes,) - v1 - (a°, mese))w

where mes.(a) = € for every a € ?. Note that players 0 and 1 cannot benefit from any
deviation since their payoffs is uniformly 0. Then notice that no one alone can deviate from
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p to vj. Now, the three players 2, 3 and 4 can alone deviate to v] and (try to) do so infinitely
often. We examine those deviations. If players 0 and 1 manage to learn who is the deviator,
then, together, they can punish the deviator: if they learn that player 2 (resp. 3, 4) is the
deviator, then they will enforce vertex vy (resp. vs, vy4). If they do not manage to learn who
is the deviator, then they will not know what to do, and therefore, in any completion of the
strategy profile, there will be some profitable deviation for at least one of the players (hence
there will not be any Nash equilibrium whose main outcome is p).

We examine now the three communication graphs G, G2 and G3 depicted in Figure 1.
Using communication based on graph G7, if player 4 deviates, then player 0 will see this
immediately and will be able to communicate this fact to player 1; if player 3 deviates, then
player 4 will see this immediately and will be able to communicate this fact to player 0,
which will transmit to player 1; if player 2 deviates, then no one will see anything, hence
they will deduce the identity of the deviator in all the cases.

Using communication based on graph G, if either player 3 or player 4 deviates, then
player 0 will see this immediately and will be able to communicate this fact to player 1 using
the richness of the communication scheme (words over {0,1}). Like before, the identity of
deviator 2 will be guessed after a while.

Using communication based on graph G, if player 4 deviates, then player 0 will see this
immediately and will be able to communicate this fact to player 1 (as before); now, no one
(except players 2 and 3) will be able to learn who is deviating, if player 2 or player 3 deviates.

We can conclude that there is a Nash equilibrium with graph G; or G3 whose main
outcome is p, but not with graph Gs.

2.3 Two-player turn-based game structures

Two-player turn-based game structures are specific cases of the previous model, where at
each vertex, at most one player has more than one action in her set of allowed actions. But
for convenience, we will give a simplified definition, with only objects that will be useful.

A two-player turn-based game structure is a tuple G = (S, Sgve, Sadan, Sinit, 4, Allow, Tab),
where S = Sgye LI Spaan is a finite set of states (states in Sgye belong to player Eve whereas
states in Sygan belong to player Adam), siw € S is the initial state, A is a finite alphabet,
Allow: S — 24\ {()} gives the set of available actions, and Tab: S x A — S is the next-state
function. If s € Sgye (resp. Sagam), Allow(s) is the set of actions allowed to Eve (resp. Adam)
in state s.

In this context, strategies will use sequences of states. That is, if a denotes Eve or Adam,
an a-strategy is a partial function o, : S* - S, — A such that for every H € S* - S, such
that o,(H) is defined, o,(H) € Allow(last(H)). Note that we do not include any winning
condition or payoff function in the tuple, hence the name structure.

2.4 The problems we are looking at

We are interested in the constrained existence of a Nash equilibrium. For simplicity, we
define rectangular threshold constraints, but could well impose more complex constraints,
like Boolean combinations of linear constraints.

» Problem 1 (Constrained existence problem). Given a concurrent game G =
(V, Vinit, P, Act, =, Allow, Tab, (payoff,)ace), a communication graph G for P, a predicate P
over RI?I
payoff(vertices(out(op, vinit))) € P? If so, compute one. If the predicate P is trivial, we

simply speak of the existence problem.

, can we decide whether there exists a Nash equilibrium op from vine such that
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The case where the communication graph has no edge was studied in depth in [4], with
a generic two-player construction called the suspect construction, allowing to decide the
constrained existence problem for many kinds of payoff functions. The case where the
communication graph is a clique was the subject of the work [7]. The general case of a
communication graph has not been investigated so far, but induces interesting developments.
In the next section, we show that we can restrict the search of Nash equilibria to the search
of so-called normed strategy profiles, where the communication via messages follows a very
simple pattern. We also argue that deviations which do not impact the visited vertices should
not be considered in the analysis. Given those reductions, we then propose the construction
of a two-player game, which will track those normed profiles. This construction is inspired
by the suspect-game construction of [4] and of the epistemic game of [3].

3 Reduction to profiles following a simple communication mechanism

We fix a concurrent game G = (V, vinit, Act, P, 2, Allow, Tab, (payoff, ) 4c») and a communica-
tion graph G. We assume that vj,i; = vg. We will reduce the search for Nash equilibria to
the search for strategy profiles with a very specific shape. In particular, we will show that
the richness of the communication offered by the setting is somehow useless, and that a very
simple communication pattern will be sufficient for characterizing Nash equilibria.

In the following, we write mes, for the vector assigning the empty word € to every player
a € P. Furthermore, for every d € P, we pick some word idg € {0, 1} which are all distinct
(and different from ¢).

We first define restrictions for deviations. Let o, be a strategy profile. A player-d
deviation o7 is said immediately visible whenever, writing h for the longest common prefix
of out(op, vg) and out(os[d/clj],vo), Tab(last(h), m) # Tab(last(h),m’), where m = o,(h)[1]
and m’ = (op[d/0}](h))[1] are the next moves according to o, and o[d/c})]. That is, at
the first position where player d changes her strategy, it becomes public information that a
deviation has occurred (even though some players know who deviated — all the players a
with d—a — , and some other don’t know). It is furthermore called honest whenever for every
B € out(op[d/olj],v0) such that h is a (non-strict) prefix of h’, o/ (h')[2] = idy. Somehow,
player d admits she deviated, and does so immediately and forever.

The simple communication mechanism that we will design consists in reporting the
deviator (role of the direct neighbours of the deviator), and propagating this information
along the communication graph (for all the other players). Formally, let o, be a strategy
profile, and let p be its main outcome. The profile o, will be said normed whenever the
following conditions hold:

1. for every h € out(os) U Uyep, o out(op[d/d))],vo), if vertices(h) is a prefix of vertices(p),
then for every a € 2, 0, (h)[2] = ¢

2. for every d € P, for every d-strategy o}, if h - (m, mes) - v € out(cp[d/0})], vo) is the first
step out of vertices(p), then for every d—a, o,(h - (m, mes) - v)[2] = idg;

3. for every d € P, for every d-strategy o7, if h - (m, mes) - v € out(op[d/0))], vo) has left the
main outcome for more than one step, then for every a € 2, o4(h - (m, mes) - v)[2] = ¢
if for all b—a, mes(b) = e and o,(h - (m, mes) - v)[2] = idg if there is b—a such that
mes(b) = id4; note that this is well defined since at most one id can be transmitted.

The first condition says that, as long as a deviation is not visible, then no message needs to

be sent; the second condition says that as soon as a deviation becomes visible, then messages

denouncing the deviator should be sent by “those who know”, that is, the (immediate)
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neighbours of the deviator; the third condition says that the name (actually, the id) of the
deviator should propagate according to the communication graph in an epidemic way.
Note that the profiles discussed in Section 2.2 were actually normed.

» Theorem 4. The existence of a Nash equilibrium o, with payoff p is equivalent to the
existence of a normed strategy profile o), with payoff p, which is resistant to immediately
visible and honest single-player deviations.

The proof of this theorem, which is rather technical, can be found in [6]. We only give
some intuition here. First, we explain why being resistant to immediately visible and honest
deviations is enough. Notice that as long as the sequence of vertices follows the main outcome,
then one can simply ignore the deviation and act only when the deviation becomes visible, in
a way as if the deviator had started deviating only at this moment. This will be enough to
punish the deviator. The “honest” part comes from the fact that one should simply ignore
the messages sent by the deviator as it can be only in her interest to not ignore them (if it
was not, then why would she send any message at all?).

Second, we show why no one should communicate as long as the sequence of vertices
follows the main outcome. The reason is that if no one has deviated then any message is
essentially useless, and if a deviation has happened, as explained earlier it can just be ignored
as long as it has not become visible.

Finally, we demonstrate why the richness of the communication mechanism is in a way
useless. Intuitively, one can understand that the only factors that should matter when playing
are the sequence of the vertices that have been visited (because payoff functions only take
into account the visited vertices) and the identity of the deviator. Thus the messages should
only be used so that players can know of the identity of the deviator in the fastest possible
way, and we show that nothing is faster than a sort of epidemic mechanism where one simply
broadcasts the identity of the deviator whenever one received the information.

4 The epistemic game abstraction

We fix a concurrent game G = (V| vinit, Act, P, 3, Allow, Tab, (payoff, )sce) for the rest of the
section, and G be a communication graph for 2. We will implement an epistemic abstraction,
which will track normed strategy profiles, and check that there is no profitable immediately
visible and honest single-player deviations.

4.1 Description of the epistemic game

A situation is a triple (d, I, K) in ? x 2% x <2?)P, which consists of a deviator d € P, a list
of players I having received the information that d is the deviator, and a knowledge function
K that associates to every player a a list of suspects K (a); in particular, it should be the
case that d € I and for every a € I, K(a) = {d}. We write Sit for the set of situations.

The epistemic game 5gG of G and G is defined as a two-player game structure (S, Sgye,
Shdam, Sinit; 2, Allow’, Tab’). We describe the states and the transitions leaving those states;
in particular, components ¥/, Allow’, Tab’ of the above tuple will only be implicitely defined.

Eve’s states Sgye consist of elements of V x 25 such that if (v, X) is a state then for all
a € P the set {(d,I,K) € X | d = a} is either a singleton or empty (there is at most one
situation associated with a given player a). We write dev(X) the set {d € 2| 3(d, I, K) € X}
of agents which are a deviator in one situation of X. If d € dev(X), we write (d, I, K;X) for
the unique triple belonging to X having deviator d. Hence, X = {(d, I, K) | d € dev(X)}.
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Intuitively, an Eve’s state (v, X') will correspond to a situation where the game has proceeded
to vertex v, but, if dev(X) # 0, several players may have deviated. Each player d € dev(X)
may be responsible for the deviation; some people will have received a message denouncing d
(those are in the set I;¥), and some will deduce things from what they observe (this is given
by K j( ). Note that the (un)distinguishability relation of a player a will be deduced from X:
if d deviated and a € I f , then a will know d deviated; if a is neither in I j( nor in [ jf , then
a will not be able to know whether d or d’ deviated (as we will prove later, in Lemma 5).

First let us consider the case where X = (), which is to be understood as the case where
no deviation has arisen yet. In state (v, (), Eve’s actions are moves in G enabled in v. When
she plays move m € Act”, the game progresses to Adam’s state ((v,0)),m) € Spgan Where
Adam’s actions are vertices v’ € V such that there exists a player d € ? and an action § € Act
such that Tab(v, (m[d/d])) = v'. When Adam plays v’, either v/ = Tab(v,m) and the game
progresses to Eve’s state (v/,0) or v’ # Tab(v,m) and the game progresses to Eve’s state
(v', X') where:

d € dev(X') if and only if there is § € Act such that Tab(v, (m[d/d])) = v’. It means that

given the next state v/, d is a possible deviator;

if d € dev(X”’), then:

IX' = {a e |d—a);

for every a € IX', KX'(a) = {d};

for every a ¢ IX', KX'(a) = {b € ® | 38 € Act s.t. Tab(v, (m[b/8])) = v’} \ {b e |
b—a}. Those are all the players that can be suspected by a, given the vertex v’, and
the absence of messages so far.

We write X’ = upd((v,0), m,v’). Note that X’ = () whenever (and only when) Tab(v,m) = v'.

In a state (v, X) € Sgye where X # (), Eve’s actions consist of functions from dev(X) to
Act” that are compatible with players’ knowledge, that is: f : dev(X) — Act” is an action
enabled in (v, X) if and only if (i) for all d € dev(X), for each a € 2, f(d)(a) € Allow(v, a),
(ii) for all d,d’ € dev(X), for all @ € 2, if a ¢ I UIX and K (a) = K (a) then
f(d)(a) = f(d")(a);? that is, if a player has not received any message so far but has the
same knowledge about the possible deviators in two situations, then Eve’s suggestion for
that player’s action must be the same in both situations. When Eve plays action f in (v, X),
the next state is ((v, X), f) € Sadan, where Adam’s actions correspond to states of the game
that are compatible with (v, X) and f, that is states v’ such that there exists d € dev(X)
and ¢ € Act such that Tab(v, f(d)[d/d]) = v'.

When Adam chooses the action v in ((v, X), f), the game progresses to Eve’s state (v, X'),
where:

d € dev(X') if and only if d € dev(X) and there exists & € Act such that Tab(v, f(d)[d/d]) =

v’. It corresponds to a case where d was already a possible deviator and can continue

deviating so that the game goes to v';

if d € dev(X’), then:

IX =1 u{ac®|3be I st b—»a}. New players receive a message with the
deviator id;

for every a € IX', KX (a) = {d};

2 Note in particular that “K3 (a) singleton” does not imply a € Iy, those are two distinguishable
situations: the message with the identity of the deviator may not have been received in the first case,
while it has been received in the second case.
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Eve

v
V1, @
rion o1, 0]
0 Eve

M (o]
Eve
o2 v
(2,{2}, {0~ {2,3}, 1 {2,3,4},3 > {2,4}, 4 {2}}),)
X ={(3,{3,4}, {0 {2,3},1 > {2,3,4},2 > {3,4}}),
(4,{0,4}, {1~ {2,3,4},2 — {3,4},3 — {2,4}})

Figure 2 Part of the epistemic game corresponding to the game described in Figure 1 (with
graph G1). This does not represent the whole epistemic game and a lot of actions accessible in the
states we show here are not written. In situations (d, I, K') we describe K by the list of its values
for players a ¢ I, as for all a in I we have K(a) = {d} by definition.

for every a ¢ IX', KX (a) = {b € K (a) | 38 € Act s.t. Tab(v, f(b)[b/B]) = v'} \ {c €
P | distg(c,a) < max{distg(c,c’) | ¢ € IX} + 1}. Those are the players that could
have deviated but for which player a would not have received the signal yet.

We write X’ = upd((v, X), f,v’). Note that X’ # () and that dev(X’) C dev(X).

We let R = (vg, Xo)- ((vo, X0), fo)- (v1, X1) ... be an infinite play from (vy, Xg) = (Vinit, 0).
We write visited(R) for vy - -+ € V¥ the sequence of vertices visited along R. We also define
dev(R) = 0 if X, = () for every r, and dev(R) = lim,_, ; o, dev(X,.) otherwise. This is the set
of possible deviators along R.

4.1.1 Winning condition of Eve

A zero-sum game will be played on the game structure SgG , and the winning condition of
Eve will be given on the branching structure of the set of outcomes of a strategy for Eve,
and not individually on each outcome, as standardly in two-player zero-sum games. We
write Sinit = (Vinit, @) for the initial state. Let p = (pg)ace € R?, and ¢ be a strategy for Eve
in EQG ; it is said winning for p from s, whenever payoff(visited(R)) = p, where R is the
unique outcome of ¢ from si,i;y where Adam complies to Eve’s suggestions, and for every other
outcome R’ of ¢, for every d € dev(R’), payoff,(visited(R')) < pg.

4.2 An example

In Figure 2 we present a part of the epistemic game corresponding to the game we described in
Figure 1 with graph G. In state (v, (), Eve can play the action profile o® and make the game
go to ((vg, ), a®) where Adam can either play v; = Tab(vg, a®) (we say that Adam complies with
Eve) or choose a different state accessible from vy and an action profile that consists in a single-
player deviation from «, for instance v} = Tab(vg, a?Ba?) = Tab(vg, a®Ba) = Tab(vg, a*f3).
If Adam chooses v}, then three players are possible deviators: 2, 3 and 4. We write X for the
corresponding set of situations, and we already know that dev(X) = {2,3,4} .
If player 2 is the deviator, then no one (except himself) directly receives this information.
Player 0 knows that player 4 did not deviate (since 4—0 in G), hence K5<(0) = {2,3};
Player 1 has no information hence K5%(1) = {2,3,4}; Player 3 knows that he is not the
deviator but cannot know more, hence K5 (3) = {2,4}; Finally, player 4 can deduce many
things: he knows he is not the deviator, and he saw that player 3 is not the deviator
(since 3—+4 in G1), hence K5< (4) = {2}.
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If player 3 is the deviator, then both players 3 and 4 get the information, hence I5X = {3, 4}.

Other players can guess some things, for instance player 0 sees that player 4 cannot be

the deviator, this is why K3 (0) = {2,3}. Etc.

The reasoning for player 4 is similar.
In the situation we have just described, when the game will proceed to v, then either player
0 knows that player 4 has deviated, or he knows that player 4 didn’t deviate but he suspects
both 2 and 3. On the other hand, player 4 will precisely know who deviated. And player 3
knows whether he deviated or not, but if he didn’t, then he cannot know whether it was
player 2 or player 4 who deviated. This knowledge is stored in situation X we have described,
and which is fully given in Figure 2.

Let us now illustrate how actions of Eve are defined in states with a non-empty set of
situations. Assume we are in Eve’s state (vg, X), with X as previously defined. From that
state, an action for Eve is a mapping f : {2,3,4} — Act” such that:

The intuition behind these constraints is the following: Player 0 knows whether Player
4 deviated or not, but in the case she did not cannot know whether Player 2 or Player 3
deviated; Player 1 does not know who deviated, hence should play the same action in the
three cases (that she cannot distinguish); Player 2 does only know whether she deviated
hence in the case she did not cannot know whether Player 3 or Player 4 deviated; the case for
Player 3 is similar; finally Player 4 knows for sure who deviated: she saw if Player 3 deviated
and knows whether she herself deviated, thus can distinguish between the three cases.

4.3 Correctness of the epistemic game construction

When constructing the epistemic game, we mentioned that Eve’s states will allow to properly
define the undistinguishability relation for all the players. Towards that goal, we show by an
immediate induction the following result:

» Lemma 5. If (v, X) is an Eve’s state reachable from some (vo,0) in £, then for all
d € dev(X):

for alla € IF, K (a) = {d};

foralla ¢ IF, K (a) = dev(X) \ {d’ € dev(X) | a € I} }.
In particular, for all d,d’ € dev(X), for alla ¢ I ULy, KX(a) = K3 (a).

So, either a player a will have received from a neighbour the identity of the deviator, or
she will not have received any deviator identity yet, and she will have a set of suspected
deviators that she will not be able to distinguish.

This allows to deduce the following correspondence between G and 5QG :

» Proposition 6. There is a winning strategy for Eve in Eg for payoff p if and only if there
is a mormed strategy profile in G, whose main outcome has payoff p and which is resistant to
single-player immediately visible and honest deviations.

The proof of correctness of the epistemic game then goes through the following steps,
which are detailed in [6]. First, given an Eve’s strategy ¢, we build a function E. associating
with a-histories (for every a € P) in the original game Eve’s histories in the epistemic game
such that Eve plays according to ¢ along F.

Then we use this function to create a strategy profile Q(¢) for the original game where
the action prescribed by this profile to player a after history h corresponds in some sense to
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C(E¢(h))(d)(a), where d is a suspected deviator according to player a. This works because,
thanks to Lemma 5, we know that either player a knows who the deviator is, or player a has
a subset of suspect deviators and Eve’s suggestion for a (by construction of EgG ) is the same
for all those possible deviators.

Finally we prove that if ¢ is a winning strategy for Eve then Q((¢) is both normed and
resistant to single-player immediately visible and honest deviations in G.

To prove the converse proposition we build a function A associating with Eve’s histories
in the epistemic game families of single-player histories in the original game. We then use
this correspondence to build a function T associating with normed strategy profiles Eve’s
strategies in a natural way.

Finally we prove that if ¢ is normed and resistant to single-player immediately visible
honest deviations, then Y(c) is a winning strategy for Eve.

Gathering results of Theorem 4 and of this proposition, we get the following theorem:

» Theorem 7. There is a Nash equilibrium with payoff p in G if and only if there is a
winning strateqy for Eve in EgG for payoff p.

» Remark 8. Note that all the results are constructive, hence if one can synthesize a winning
strategy for Eve in Eg , then one can synthesize a correponding Nash equilibrium in G.

5 Complexity analysis

We borrow all notations of previous sections. A rough analysis of the size of the epistemic
game SgG gives an exponential bound. We will give a more precise bound, pinpointing
the part with an exponential blowup. We write diam(G) for the diameter of G, that is
diam(G) = max{distg(a, b) | distg(a,b) < +o0}.

» Lemma 9. Assuming that Tab is given explicitely in G, the number of states in the reachable
part of 5gG from sinit = (Vinit, 0) is bounded by

|Seve| < V| + |V - |Tab|? - (diam(G) + 2) and  |Shaam| < |Sevel - |Act]?”

The number of edges is bounded by |Sngan| + |Sadan| * |SEve]-
If || is assumed to be a constant of the problem, then the size of Eg is polynomial in the

size of G.

We will not detail algorithmics issues, but the winning condition of Eve in €gG is very
similar to the winning condition of Eve in the suspect-game construction of [4] (for Boolean
or ordered objectives), or in the deviator-game construction of [7] (for mean-payoff), or
in a closer context to the epistemic-game construction of [3]. Hence, when the size of the
epistemic game is polynomial, rather efficient algorithms can be designed to compute Nash
equilibria. For instance, in a setting where the size of EgG is polynomial, using a bottom-up
labelling algorithm similar to that of [2, Sect. 4.3], one obtains a polynomial space algorithm
for deciding the (constrained) existence of a Nash equilibrium when payoffs are Boolean
payoffs corresponding to parity conditions.

6 Conclusion

In this paper, we have studied multiplayer infinite-duration games over graphs, and focused on
games where players can communicate with neighbours, given by a directed graph. We have
shown that a very simple communication mechanism was sufficient to describe Nash equilibria.
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This mechanism is sort of epidemic, in that if a player deviates, then his neighbours will see it
and transmit the information to their own neighbours; the information then propagates along
the communication graph. This framework encompasses two standard existing frameworks,
one where the actions are invisible (represented with a graph with no edges), and one where
all actions are visible (represented by the complete graph). We know from previous works that
in both frameworks, one can compute Nash equilibria for many kinds of payoff functions. In
this paper, we also show that we can compute Nash equilibria in this generalized framework,
by providing a reduction to a two-player game, the so-called epistemic game construction.
Winning condition in this two-player game is very similar to winning conditions encountered
in the past, yielding algorithmic solution to the computation of Nash equilibria. We have
also analyzed the size of the abstraction, which is polynomial when the number of players is
considered as a constant of the problem.

The current framework assumes messages can be appended to actions by players, allowing
a rich communication between players. The original framework of [14] did not allow additional
messages, but did encode identities of deviators by sequences of actions. This was possible
in [14] since games were repeated matrix games, but it is harder to see how we could extend
this approach and how we could encode identities of players with actions, taking into account
the graph structure. For instance, due to the graph, having too long identifiers might be
prohibitive to transmit in a short delay the identity of the deviator. Nevertheless, that could
be interesting to see if something can be done in this framework.
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—— Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm
solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms
were introduced; none of them is easy to understand. Moreover, it turns out that in practice
they operate very slowly. On the other side there is Zielonka’s recursive algorithm, which is very
simple, exponential in the worst case, and the fastest in practice. We combine these two approaches:
we propose a small modification of Zielonka’s algorithm, which ensures that the running time is
at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in
quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to
an algorithm that shares the good performance of Zielonka’s algorithm on typical inputs, while
reducing the worst-case complexity on difficult inputs.
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1 Introduction

The fundamental role of parity games in automata theory and logic, and their applications to
verification and synthesis is doubtless, hence it is pointless to elaborate on their importance.
Let us only mention that the algorithmic problem of finding the winner in parity games
is polynomial-time equivalent to the emptiness problem for nondeterministic automata on
infinite trees with parity acceptance conditions, and to the model-checking problem for
modal p-calculus [10]. It also lies at the heart of algorithmic solutions to Church’s synthesis
problem [29]. The impact of parity games reaches relatively far areas of computer science,
like Markov decision processes [11] and linear programming [15].

It is a long-standing open question whether parity games can be solved in polynomial
time. Several results show that they belong to some classes “slightly above” polynomial
time. Namely, deciding the winner of parity games was shown to be in NP N coNP [10],
and in UP N coUP [18], while computing winning strategies is in PLS, PPAD, and even in
their subclass CLS [9]. The same holds for other kinds of games: mean-payoff games [36],
discounted games, and simple stochastic games [7]; parity games, however, are the easiest
among them, in the sense that there are polynomial-time reductions from parity games to
the other kinds of games [18, 36], but no reductions in the opposite direction are known.

Describing the algorithmic side of solving parity games, one has to start with Zielonka’s
algorithm [35], being an adaptation of an approach proposed by McNaughton to solve Muller
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games [28]. This algorithm consists of a single recursive procedure, being simple and very
natural; one may say that it computes who wins the game “directly from the definition”.
Its running time is exponential in the worst case [14, 1, 16], but on many typical inputs it
works much faster. For over two decades researchers were trying to cutback the complexity
of solving parity games, which resulted in a series of algorithms, all of which were either
exponential [5, 31, 19, 34, 30, 2], or mildly subexponential [3, 21]. The next era came
unexpectedly in 2017 with a breakthrough result of Calude, Jain, Khoussainov, Li, and
Stephan [6] (see also [17, 23]), who designed an algorithm working in quasi-polynomial
time. This invoked a series of quasi-polynomial-time algorithms, which appeared soon
after [20, 13, 24]. These algorithms are quite involved (at least compared to the simple
recursive algorithm of Zielonka), and it is not so trivial to understand them.

The four quasi-polynomial-time algorithms [6, 20, 13, 24], at first glance being quite
different, actually proceed along a similar line (as observed by Bojanczyk and Czerwiriski [4]
and Czerwinski et al. [8]). Namely, out of all the four algorithms one can extract a construction
of a safety automaton (nondeterministic in the case of Lehtinen [24], and deterministic in
the other algorithms), which accepts all words encoding plays that are decisively won by
one of the players (more precisely: plays consistent with some positional winning strategy),
and rejects all words encoding plays in which the player loses (for plays that are won by the
player, but not decisively, the automaton can behave arbitrarily). This automaton does not
depend at all on the game graph; it depends only on its size. Having an automaton with
the above properties, it is not difficult to convert the original parity game into an equivalent
safety game (by taking a “product” of the parity game and the automaton), which can be
solved easily — and all the four algorithms actually proceed this way, even if it is not stated
explicitly that such an automaton is constructed. As shown in Czerwinski et al. [8], all
automata having the aforementioned properties have to look very similar: their states have to
be leaves of some so-called universal tree; particular papers propose different constructions of
these trees, and of the resulting automata (of quasi-polynomial size). Moreover, Czerwinski
et al. [8] show a quasi-polynomial lower bound for the size of such an automaton.

In this paper we propose a novel quasi-polynomial-time algorithm solving parity games.
It is obtained by applying a small modification to Zielonka’s recursive algorithm; this
modification guarantees that the worst-case running time of this algorithm, being originally
exponential, becomes quasi-polynomial. The simplicity of Zielonka’s algorithm remains in
place; we avoid complicated considerations accompanying all the previous quasi-polynomial-
time algorithms. Another point is that our algorithm exploits the structure of parity games
in a rather different way from the four previous quasi-polynomial-time algorithms. Indeed,
the other algorithms construct automata that are completely independent from a particular
game graph given on input — they work in exactly the same way for every game graph of a
considered size. The behaviour of our algorithm, in contrast, is highly driven by an analysis
of the game graph given on input. In particular, although our algorithm is not faster than
quasi-polynomial, it does not fit to the “separator approach” in which a quasi-polynomial
lower bound of Czerwiniski et al. [8] exists.

The running time of our algorithm is quasi-polynomial, and the space complexity is
quadratic (more precisely, O(n - h), where n is the number of nodes in the game graph, and
h is the maximal priority appearing there).

We remark that Lehtinen, Schewe, and Wojtczak in their recent follow up paper [25]
suggested a variation of our algorithm that improves the complexity to meet the state-of-
the-art complexity of broadly 20((egm)(ogh) "while providing polynomial bounds when the
number of priorities is logarithmic.
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Let us also mention the practical side of the world. It turns out that parity games
are one of the areas where theory does not need to meet practice: the quasi-polynomial-
time algorithms, although fastest in theory, are actually the slowest. The most exhaustive
comparison of existing algorithms was performed by Tom van Dijk [32]. In his Oink tool he
has implemented several algorithms, with different optimizations. Then, he has evaluated
them on a benchmark of Keiren [22], containing multiple parity games obtained from model
checking and equivalence checking tasks, as well as on different classes of random games.
It turns out that the classic recursive algorithm of Zielonka [35] performs the best, ex
aequo with the recent priority promotion algorithm [2]. After that, we have the strategy
improvement algorithm [34, 12], being a few times slower. Far later, we have the small
progress measure algorithm [19]. At the very end, with a lot of timeouts, we have the
quasi-polynomial-time algorithm of Fearnley, Jain, Schewe, Stephan, and Wojtczak [13]. The
other quasi-polynomial-time algorithms were not implemented due to excessive memory
usage.

While developing the current algorithm, we hoped that it will share the good performance
with Zielonka’s algorithm, on which it is based. Unfortunately, preliminary experiments have
shown that this is not necessarily the case. It turns out that

on random games our algorithm performs similarly to the slowest algorithms implemented

in Oink;

on crafted game families that are difficult for Zielonka’s algorithm, our algorithm is indeed

faster from it, but not dramatically faster;

the only think that is optimistic is that on games with a very low number of priorities

our algorithm performs similarly to the fastest algorithms.

Because the empirical results of a direct implementation of the algorithm are completely
unsatisfactory, we do not include a full description of our experiments. Instead, we leave an
efficient implementation for a future work. Beside of the discouraging outcomes, we believe
that our idea, via further optimizations, can lead to an algorithm that is both fast in practice
and has a good worst-case complexity (see the concluding section for more comments).

2 Preliminaries

A parity game is played on a game graph between two players, called Even or Odd (shortened
sometimes to E and O). A game graph consists of

a directed graph G, where we require that every node has at least one successor, and

where there are no self-loops (i.e., edges from a node to itself);

a labeling of every node v of G by a positive natural number 7 (v), called its priority;

a partition of nodes of G between nodes owned by Even and nodes owned by Odd.

An infinite path in G is called a play, while a finite path in G is called a partial play. The
game starts in a designated starting node. Then, the player to which the current node
belongs, selects a successor of this node, and the game continues there. In effect, after a
finite time a partial play is obtained, and at the end, after infinite time, this results in a
play. We say that a play v1,ve,... is winning for Even if lim sup,_, ., 7(v;) is even (i.e., if
the maximal priority seen infinitely often is even). Conversely, the play is winning for Odd if
lim sup,_, ., 7(v;) is odd.

A strategy of player P € {Even,Odd} is a function that maps every partial play that
ends in a node of P to some its successor. Such a function says how P will play in every
situation of the game (depending on the history of that game). When a (partial) play =
follows a strategy o in every step in which player P is deciding, we say that m agrees with o.

10:3
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A strategy o is winning for P from a node v if every play that starts in v and agrees with o
is winning for P. While saying “player P wins from a node v” we usually mean that P has a
winning strategy from v. Let Winp(G) be the set of nodes of G from which P wins; it is
called the winning region of P. By Martin’s theorem [27] we know that parity games are
determined: in every game graph G, and for every node v of G either Even wins from v, or
0Odd wins from v. In effect, Wing(G) and Winp(G) form a partition of the node set of G.

During the analysis, we also consider games with other winning conditions. A winning
condition is a set of plays. The winning conditions of Even and Odd considered in parity
games are denoted LimsupEven and LimsupOdd, respectively. Beside of that, for every set
S of nodes, let Safety(S) be the set of plays that use only nodes from S.

A dominion for Even is a set S of nodes such that from every v € S Even wins the game
with the condition LimsupEven N Safety(S); in other words, from every node of S he can
win the parity game without leaving S. Likewise, a dominion for Odd is a set S of nodes
such that from every v € S Odd wins the game with the condition LimsupOdd N Safety(S).
Notice that the whole Winp(G) is a dominion for P (where P € {Even, Odd}). Indeed, if
Even is going to win from some v € Wing(G), the play cannot leave Wing(G) and enter a
node v’ € Wing(G), as then Odd could use his winning strategy from v" and win the whole
game; here we use the fact that all suffixes of a play in LimsupEven are also in LimsupEven.
For P = Odd the situation is symmetric.

3 Standard Zielonka’s Algorithm

Before presenting our algorithm, we recall the standard Zielonka’s algorithm, as a reference.
For a set of nodes N in a game graph G, and for a player P € {Even, Odd}, we define
the attractor of N, denoted ATRp(G, N), to be the set of nodes of G from which P can force
to reach a node from N. In other words, ATRp(G, N) is the smallest set such that
N C ATRP(G, N),
if v is a node of P and some its successor is in ATRp(G, N), then v € ATRp(G, N), and
if v is a node of the opponent of P and all its successors are in ATRp(G, N), then
v € ATRp(G, N).
Clearly ATRp(G, N) can be computed in time proportional to the size of G.

Algorithm 1 Standard Zielonka’s Algorithm.

1. procedure SOLVEE(G, h) > h is an even upper bound for priorities in G
2: begin

3 do begin

4 Ny, = {v € nodes(G) | m(v) = h}; > nodes with the highest priority
5: H =G\ ATrRg(G, Np); > new game: reaching priority h — win
6 Wo = SOLVEo(H, h — 1); > in Wo we lose before reaching priority h
7 G =G\ ATRo (G, Wp); > possibly N, N ATRo (G, Wp) # 0
8 end while Wy # 0;

9 return nodes(G);

10: end

Algorithm 1 is the standard Zielonka’s algorithm. The procedure SOLVEE(G, h) returns
Wing(G), the winning region of Even, if h is an even number that is greater or equal than
all priorities appearing in G. A procedure SOLVEp (G, h) is also needed; it is identical to
SOLVEE (G, h) except that the roles of F and O are swapped; it returns Winp(G), the
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Figure 1 The structure of winning regions in a parity game.

winning region of Odd. While writing G \ S, we mean the game obtained by removing from
G all nodes in S, and all edges leading to nodes in S or starting from nodes in S. We use
this construct only when S is an attractor; in such a case, if all successors of a node v are
removed, then v is also removed (i.e., if all successors of v belong to an attractor, then v
belongs to the attractor as well). In effect G\ S is a valid game graph (every its node has at
least one successor).

We remark that the algorithm is presented in a slightly different way than usually.
Namely, we use here a loop, while the usual presentation does not use a loop but rather
calls recursively SOLVEgR (G \ ATRo (G, Wo), h) at the end of the procedure. This is only a
superficial difference in the presentation, but is useful while modifying the algorithm in the
next section.

The algorithm can be understood while looking at Figure 1. Let h be the highest priority
used in G assume that it is even. The game graph G can be divided into two parts: Wing(G)
and Wino(G). In Wing(G) we can distinguish the attractor of nodes with priority h (denoted
Ag). Odd either loses inside Wing(G) \ Ag, or enters Ag, which causes that a node with
priority h is seen, and then the game continues in some node of Wing(G). The winning
region of Odd, Wino(G), can be divided into multiple parts. We have a part W2, where
0Odd can win without seeing a node of priority h. Then, we have nodes of priority i from
which Even is forced to enter Wg, and their attractor, denoted A;. Then, we have a part
W, where Odd can ensure that the play is either winning for him inside W, or enters Ajs;
in other words, from nodes of W(l) 0Odd can win while seeing h at most once. We also have
parts Wé for larger i, and corresponding attractors A;.

While running the algorithm, this partition of G is not known, and has to be discovered.
To this end, the algorithm assumes first (in the game H) that all nodes of priority h are
winning for Even. The first call to SOLVEQ(H, h — 1) returns the set W3 of nodes where
0Odd wins without seeing a node of priority h. We then remove them from the game, together

with the attractor A;. In the next step, SOLVEQ(H, h — 1) returns the set W}, and so on.

At the end the whole Wing(G) becomes removed, and the procedure returns Wing(G).

4  Quasi-Polynomial-Time Algorithm

We now present a modification to Algorithm 1 that results in obtaining quasi-polynomial
running time, in the worst case.

The modification can be understood while looking again at Figure 1. The key observation
is that, while Wino(G) is of size at most n (where n is the number of nodes in G), then
most of its parts W¢, are smaller. Namely, most of them have to be of size at most 5, and

5. We use this observation, and while looking for W§,
we search for a winning region (for a dominion) of size at most . Usually this is enough;

only one of them can be larger than
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only once it is not enough: one W(i) can be larger than % and it will not be found if we only
look for a set of size at most 7. But when the algorithm finds no set of size at most 3, we
can once search for W§, of an arbitrary size. After that, we know that all following sets W,
are again of size at most 5. While going recursively, we notice that every W}, can be further
subdivided in a similar way, while splitting on the priority h — 2. If [W}| < 3, we again have
the property that most of the parts of W¢, are of size at most 7, and only one of them can
be larger than

n
1

To exploit this observation, in the recursive calls we pass two precision parameters, pg
and po (one for every of the players), saying that we search for winning sets of size at most
pg for Even, and at most po for Odd. The modified procedure is presented as Algorithm 2.
Again, one also needs a procedure SOLVEp, which is obtained from SOLVEg by literally
changing every F to O and vice versa.

Algorithm 2 Quasi-Polynomial-Time Algorithm.

1: procedure SOLVEg (G, h,pg,po) > pp,po are new “precision” parameters
2: begin

3: if G=0Vpr <1then

4: return (J; > we assume that there are no self-loops in G
5: do begin

6: Nj, = {v € nodes(G) | m(v) = h};

7: H = G\ ATrRg(G, Ny);

8: Wo = SOLVEo(H,h — 1, |po /2], pE); > precision decreased
9: GZG\ATR0<G,W0>;

10: end while Wy # 0;

11: Np = {v € nodes(G) | m(v) = h};

12: HZG\ATRE(G,Nh);

13: Wo = SOLvEe(H, h — 1,po, pE); > we try once with the full precision
14: GZG\ATRo(G,Wo);

15: while Wy # () do begin

16: Ny, = {v € nodes(G) | w(v) = h};

17: H =G\ ATrRg(G, Np);

18: Wo = SOLVEe(H,h — 1, |po/2],pE); > again, precision decreased
19: G =G\ ATRo (G, Wp);

20: end;

21: return nodes(G);

22: end

We start the algorithm with pg = po = n, where n is the number of nodes in G. In the
procedure we have now, in a sense, three copies of the previous procedure, corresponding to
three stages. In the first stage, in lines 5-10, we look for sets W, of size at most |52 |. If the
returned set is empty, this may mean that the next W, either is empty, or is of size greater
than |22 |. Then, in lines 11-14, we once search for a set W, of size at most po (knowing
that if it is nonempty, then its size is greater than |22 |). Finally, in the loop in lines 15-20,
we again look for sets W, of size at most [ &> ] (because we have already found a set of size

greater than |22 |, all the remaining sets have size at most [Z2]).
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5 Complexity Analysis

Let us analyze the complexity of our algorithm.

First, we observe that the space complexity is O(n - h), where n is the number of nodes,
and h is the maximal priority. Indeed, the depth of the recursion is at most h, and on every
step we only need to remember some sets of nodes.

We now come to the running time. As it is anyway worse than the running time of the
other quasi-polynomial-time algorithms, we do not aim in proving a very tight upper bound;
we only prove that the running time is quasi-polynomial.

Let R(h, 1) be the number of (nontrivial) executions of the SOLVE g and SOLVE@ procedures
performed during one call to SOLVEE (G, h, pg,po) with |logpg| + |logpo| =1, and with G
having at most n nodes (where n is fixed). We only count here nontrivial executions, that is,
such that do not leave the procedure in line 4. Clearly R(0,1) = R(h,0) = 0. For h,l > 1 it
holds that

R(h,))<1+4n-R(h—1,1—1)+ R(h—1,1). (1)

Indeed, in SOLVER after every call to SOLVEp we remove at least one node from G, with the
exception of two such calls: the last call in line 8, and the last call ever. In effect, in lines 8
and 18 we have at most n calls to SOLVEp with decreased precision (plus, potentially, the
(n + 1)-th call with empty G, which is not included in R(h,!)), and in line 13 we have one
call to SOLVEp with full precision. Notice that |logpo| (hence also [) decreases by 1 in the
decreased-precision call.

Using Inequality (1) we now prove by induction that R(h,l) < n'- (h;rl) —1. For h=0
and for [ = 0 the inequality holds. For h,l > 1 we have that

R(h,l) <14n-R(h—1,1—1)+ R(h—1,1)
1in (mr. h=1+1-1\ +M'h—1+l_4
-1 !
h—1+1 h—1+1
l. —
) C)
:nl-(h?—l>—1.

In effect, R(h,1) < n'- (h +1)!. Recalling that we start with [ = 2 - [logn|, we see that this
number is quasi-polynomial in n and h. This concludes the proof, since obviously a single
execution of the SOLVEE procedure (not counting the running time of recursive calls) costs
polynomial time.

IN

6 Correctness

We now justify correctness of the algorithm. This amounts to proving the following lemma.

» Lemma 6.1. Procedure SOWEE(G, h,pE,po) returns a set Wg such that for every S C
nodes(G),

if S is a dominion for Even, and |S| < pg, then S C Wg, and

if S is a dominion for Odd, and |S| < po, then SN Wg = (.

Notice that in G there may be nodes that do not belong to any dominion smaller than
pE or po; for such nodes we do not specify whether or not they are contained in Wg.

10:7
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Recall that Wing(G) is a dominion for Even, and Wino(G) is a dominion for Odd. Thus,
using Lemma 6.1 we can conclude that for pgr = po = n the procedure returns Wing(G),
the winning region of Even.

One may wonder why we use dominions in the statement of the lemma, instead of simply
saying that if | Wing(G)| < pg, then Wing(G) C Wg. Such a simplified statement, however,
is not suitable for induction. Indeed, while switching from the game G to the game H
(created in lines 7, 12, 17) the winning regions of Even may increase dramatically, because in
H 0Odd is not allowed to visit any node with priority h. Nevertheless, the winning region of
Even in G, and any dominion of Even in G, remains a dominion in H (when restricted to
nodes of H).

Before proving Lemma 6.1, let us observe two facts about dominions. In their statements
P € {Even, Odd} is one of the players, and P is his opponent.

» Fact 6.2. If S is a dominion for P in a game G, and X is a set of nodes of G, then
S\ ATRp (G, X) is a dominion for P in G\ ATRp(G, X).

Proof. Denote S’ = S\ ATRp(G,X) and G’ = G\ ATRp(G, X). By definition, from
every node v € S player P wins with the condition LimsupP N Safety(S) in G, using
some winning strategy. Observe that using the same strategy he wins with the condition
LimsupP N Safety(S’) in G’ (assuming that the starting node v is in S’). The strategy
remains valid in G’, because every node u of player P that remains in G’ has the same
successors in G’ as in G (conversely: if some of successors of u belongs to ATRp(G, X), then
u also belongs to ATRp(G, X)). <

» Fact 6.3. If S is a dominion for P in a game G, and X is a set of nodes of G such
that SN X = 0, then S is a dominion for P in G \ ATRy(G,X) (in particular S C
nodes(G \ ATR5(G, X))).

Proof. Denote G’ = G\ ATR5(G, X). Suppose that there is some v € S N ATR5(G, X).
On the one hand, P can guarantee that, while starting from v, the play stays in S (by the
definition of a dominion); on the other hand, P can force to reach the set X (by the definition
of an attractor), which is disjoint from S. Thus such a node v could not exist, we have
S C nodes(G’).

It remains to observe that from every node v € S player P wins with the condition
LimsupP N Safety(S) also in the restricted game G’, using the same strategy as in G. Indeed,
a play in G following this strategy never leaves S, and the whole S remains unchanged in
G'. <

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. We prove the lemma by induction on h. Consider some execution
of the procedure. By G*, N}, H', W/, we denote values of the variables G, Ny, H, W just
after the i-th call to SOLVE( in one of the lines 8, 13, 18; in lines 9, 14, 19 we create G**!
out of G* and W},. In particular G' equals the original game G, and at the end we return
nodes(G™*1), where m is the number of calls to SOLVE,.

Concentrate on the first item of the lemma: fix an Even’s dominion S in G (i.e., in G')
such that |S| < pg. Assume that S # @) (for S = ) there is nothing to prove). Notice first
that a nonempty dominion has at least two nodes (by assumption there are no self-loops
in G, hence every play has to visit at least two nodes), thus, because S C nodes(G) and
|S| < pE, we have that G # () and pg > 1. It means that the procedure does not return in
line 4. We thus need to prove that S C nodes(G™*1).
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We actually prove that S is a dominion for Even in G* for every i € {1,...,m + 1},
meaning in particular that S C nodes(G?). This is shown by an internal induction on 4. The

base case (¢ = 1) holds by assumption. For the induction step, consider some i € {1,...,m}.

By the induction assumption S is a dominion for Even in G, and we need to prove that it is
a dominion for Even in G+,

Consider S* = S N nodes(H?). Because S* = S\ ATRg(G?, N}), by Fact 6.2 the set S°
is a dominion for Even in H* = G* \ ATRg(G?, N} ), and obviously |S?| < |S| < pg. By the
assumption of the external induction (which can be applied to SOLVEp, by symmetry) it
follows that S*NW} =0, so also SN W, = 0 (because W¢, contains only nodes of G*, while
S\ S? contains no nodes of G*). Thus, by Fact 6.3 the set S is a dominion for Even in
G = G\ ATRo (G, W}). This finishes the proof of the first item.

Now we prove the second item of the lemma. To this end, fix some Odd’s dominion S

in G such that |S| < po. If pg < 1, we return Wg = 0 (line 4), so clearly S N Wg = 0.

The interesting case is when pg > 2. Denote S = S N nodes(G?) for all i € {1,...,m + 1};
we first prove that S? is a dominion for Odd in G*. This is shown by induction on i. The
base case of i = 1 holds by assumption, because G! = G and S' = S. For the induction
step, assume that S? is a dominion for Odd in G?, for some i € {1,...,m}. By definition
G = G\ ATRo(GY, W},) and ST = §%\ ATRo (G, W), so S™! is a dominion for Odd
in G**! by Fact 6.2, which finishes the inductive proof.

For i € {1,...,m}, let Z" be the set of nodes (in S*\ N}) from which Odd wins with the
condition LimsupOdd N Safety(S* \ Ni) in G* (that is, where Odd can win without seeing
priority h — the highest even priority). Let us observe that if S # () then Z* # () (&). Indeed,
suppose to the contrary that Z* = (), and consider an Odd’s strategy that allows him to
win with the condition LimsupOdd N Safety(S?) in G*, from some node vy € S*. Because
vo & Z*, this strategy in not winning for the condition LimsupOdd N Safety(S? \ N}), so
Even, while playing against this strategy, can reach a node vy in IV, fl (as he cannot violate
the parity condition nor leave S*). For the same reason, because v; € Z%, Even can continue
and reach a node vy in IV, fL Repeating this forever, Even gets priority h (which is even and
is the highest priority) infinitely many times, contradicting the fact that the strategy was
winning for Odd.

Observe also that from nodes of Z? Odd can actually win with the condition LimsupOddn
Safety(Z?) in G*, using the strategy that allows him to win with the condition LimsupOdd N
Safety(S®\ N}). Indeed, if a play following this strategy enters some node v, then from this
node v Odd can still win with the condition LimsupOdd N Safety(S*\ N} ), which means that
these nodes belongs to Z*. It follows that Z? is a dominion for Odd in G*. Moreover, because

Z'NN} = (), from Fact 6.3 we have that Z? is a dominion for Odd in H® = G*\ ATRg(G*, N})).

Let k be the number of the call to SOLVEp that is performed in line 13 (calls number
1,...,k — 1 are performed in line 8, and calls number k + 1,...,m are performed in line 18).
Recall that W¢, is the set returned by a call to SOLVEQ (H®, h — 1,pl,, pr), where p§, = po,
and p}, = [ B2 | if i # k. From the assumption of the external induction, if |Z?| < [ 22| or if
i =k (since Z* C S* C S and |S| < po, clearly |Z*| < po), we obtain that Z* C W}, (#).

We now prove that [S*T!| < |B2|. This clearly holds if S*~* = §, because S¥*1 C
Sk C Skl Suppose thus that S*~! # (). Then Z*~! # (), by (&%). On the other
hand, Wg_l = (), because we are just about to leave the loop in lines 5-10 (the k-th
call to SOLVEp is in line 13). By (#), if |[ZF71] < |52 ], then Zk=1 C Wg_l, which
does not hold in our case. Thus |Z¥7!| > [E2]. Because WE™ = 0, we simply have
GF = GF1, and S¥ = Sk=1 and Z*¥ = ZF~!. Using (M) for i = k, we obtain that
ZF C Wk, and because ST = S*\ ATRo(GF, W) C S\ Wk C S*\ Z* we obtain that

|SFF < |S*| — |Z%] < po — ([ B2] + 1) < |B2], as initially claimed.
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If k =m, we have Z™ C W[5 by (#). If k+1 < m, we have S™ C Shktl (our procedure
only removes nodes from the game) and Z™ C S™, so |Z™| < | B2 | by the above paragraph,
and also Z™ C W75 by (#). Because after the m-th call to SOLVEp the procedure ends,
we have W5 = (), so also Z™ = (), and thus S™ = @ by (&). We have S™*1 C S™ so
S™m+l = SN nodes(G™*t1) = (. This is exactly the conclusion of the lemma, since the set
returned by the procedure is nodes(G™*1). <

7 Conclusions

To the list of the four existing quasi-polynomial-time algorithms solving parity games, we
have added a new one. It uses a rather different approach: it analyses recursively the game
graph, like Zielonka’s algorithm.

Notice that the number of recursive calls in our algorithm may be smaller than in the
original Zielonka’s algorithm, because of the precision parameters, but it may also be larger.
Indeed, while SOLVEE in the original Zielonka’s algorithm stops after the first time when a
recursive call returns (), in our algorithm the procedure stops after the second time when a
recursive call returns (.

The algorithm, as is, turns out not to be very efficient in practice. Beside of that, we
believe that it can serve as a good starting point for a more optimized algorithm. Over the
years, some optimizations to Zielonka’s algorithm were proposed. For example, Liu, Duan,
and Tian [26] replace the loop guard Wo = () by Wo = ATRo (G, Wo) (which ensures that
Wo will be empty in the next iteration of the loop). Verver [33] proposes to check whether
ATRE(G, N}) contains all nodes of priority h — 1, and if so, to extend N, by nodes of the
next highest Even priority (i.e., h — 2). It seems that these optimizations can be applied to
our algorithm as well.

A straightforward optimization is to decrease po and pg to |G| at the beginning of every
recursive call.

Another idea is to extend the recursive procedure so that it will return also a Boolean
value saying whether the returned set surely equals the whole winning region (i.e., whether
the precision parameters have not restricted anything). If while making the recursive call
with smaller precision (line 8) the answer is positive, but the returned set Wy is empty, we
can immediately stop the procedure, without making the recursive call with the full precision
(line 13).

One can also observe that the call to SOLVEp in line 13 (with the full precision) gets the
same subgame H as the last call to SOLVE( in line 8 (with decreased precision). A very
rough idea is to make some use of the computations performed by the decreased-precision
call during the full-precision call.

We leave implementation and evaluation of the above (and potentially some other)
optimizations for a future work.
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—— Abstract

In two-player games on graphs, the players move a token through a graph to produce a finite or
infinite path, which determines the qualitative winner or quantitative payoff of the game. We study
bidding games in which the players bid for the right to move the token. Several bidding rules were
studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and
the higher bidder moves the token and pays the other player. Poorman bidding is similar except
that the winner of the bidding pays the “bank” rather than the other player. Taxman bidding
spans the spectrum between Richman and poorman bidding. They are parameterized by a constant
7 € [0,1]: portion 7 of the winning bid is paid to the other player, and portion 1 — 7 to the bank.
While finite-duration (reachability) taxman games have been studied before, we present, for the
first time, results on infinite-duration taxman games. It was previously shown that both Richman
and poorman infinite-duration games with qualitative objectives reduce to reachability games, and
we show a similar result here. Our most interesting results concern quantitative taxman games,
namely mean-payoff games, where poorman and Richman bidding differ significantly. A central
quantity in these games is the ratio between the two players’ initial budgets. While in poorman
mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding,
the payoff depends only on the structure of the game. In both games the optimal payoffs can be
found using (different) probabilistic connections with random-turn games in which in each turn,
instead of bidding, a coin is tossed to determine which player moves. While the value with Richman
bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the
bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff
taxman games that is based on a probabilistic connection: the value of a taxman bidding game with
parameter 7 and initial ratio r, equals the value of a random-turn game that uses a coin with bias
F(r,r)= W Thus, we show that Richman bidding is the exception; namely, for every 7 < 1,
the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the
previous proof techniques for both Richman and poorman bidding.
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Bidding Mechanisms in Graph Games

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in formal veri-
fication [2], where they are used, for example, to solve synthesis [19], and they have deep
connections to foundations of logic [21]. A graph game proceeds by placing a token on a
vertex in the graph, which the players move throughout the graph to produce an infinite
path (“play”) w. The game is zero-sum and 7 determines the winner or payoff. Graph games
can be classified according to the players’ objectives. For example, the simplest objective is
reachability, where Player 1 wins iff an infinite path visits a designated target vertex. Another
classification of graph games is the mode of moving the token. The most studied mode of
moving is turn based, where the players alternate turns in moving the token.

In bidding games, in each turn, an “auction” is held between the two players in order
to determine which player moves the token. The bidding mode of moving was introduced
in [13, 14] for reachability games, where the following bidding rules where defined. In Richman
bidding (named after David Richman), each player has a budget, and before each turn, the
players submit bids simultaneously, where a bid is legal if it does not exceed the available
budget. The player who bids higher wins the bidding, pays the bid to the other player, and
moves the token. A second bidding rule called poorman bidding in [13], is similar except that
the winner of the bidding pays the “bank” rather than the other player. Thus, the bid is
deducted from his budget and the money is lost. A third bidding rule on which we focus in
this paper, called tazman in [13] spans the spectrum between poorman and Richman bidding.
Taxman bidding is parameterized by 7 € [0,1]: the winner of a bidding pays portion 7 of his
bid to the other player and portion 1 — 7 to the bank. Taxman bidding with 7 = 1 coincides
with Richman bidding and taxman bidding with 7 = 0 coincides with poorman bidding.

Bidding games are relevant for several communities in Computer Science. In formal
methods, graph games are used to reason about systems. Poorman bidding games naturally
model concurrent systems where processes pay the scheduler for moving. Block-chain
technology like Etherium is an example of such a system, which is a challenging to formally
verify [9, 3]. In Algorithmic Game Theory [17], auction design is a central research topic that
is motivated by the abundance of auctions for online advertisements [16]. Infinite-duration
bidding games can model ongoing auctions and can be used to devise bidding strategies for
objectives like: “In the long run, an advertiser’s ad should show at least half of the time”.
In Artificial Intelligence, bidding games with Richman bidding have been used to reason
about combinatorial negotiations [15]. Finally, discrete-bidding games [11], in which the
granularity of the bids is restricted by assuming that the budgets are given using coins, have
been studied mostly for recreational games, like bidding chess [6].

Both Richman and poorman infinite-duration games have a surprising, elegant, though
different, mathematical structure as we elaborate below. Our study of taxman bidding aims
at a better understanding of this structure and at shedding light on the differences between
the seemingly similar bidding rules.

A central quantity in bidding games is the initial ratio of the players budgets. Formally,
assuming that, for ¢ € {1,2}, Player i’s initial budget is B;, we say that Player 1’s initial
ratio is By /(B + Bz). The central question that was studied in [13] regards the existence of
a necessary and sufficient initial ratio to guarantee winning the game. Formally, the threshold
ratio in a vertex v, denoted Th(v), is such that if Player 1’s initial ratio exceeds Th(v), he can
guarantee winning the game, and if his initial ratio is less than Th(v), Player 2 can guarantee



G. Avni, T.A. Henzinger, and D. Zikeli¢

winning the game'. Existence of threshold ratios in reachability games for all three bidding
mechanisms was shown in [13].

Reachability Richman-bidding games have an interesting probabilistic connection [14].
To state the connection, we first need to introduce random-turn games. Let p € [0,1]. In
a random-turn game that is parameterized by p, in each turn, rather than bidding, the
player who moves is chosen by throwing a (possibly) biased coin: with probability p, Player 1
chooses how to move the token, and Player 2 chooses with probability 1 — p. Formally,
a random-turn game is a special case of a stochastic game [10]. Consider a reachability
Richman-bidding game G. We construct a “uniform” random-turn game on top of G, denoted
RT®(G), in which we throw an unbiased coin in each turn. The objective of Player 1 remains
reaching his target vertex. It is well known that each vertex in RT%-?(G) has a value, which is,
informally, the probability of reaching the target when both players play optimally, and which
we denote by val(RT%3(G),v). We are ready to state the probabilistic connection: For every
vertex v in the Richman game G, the threshold ratio in v equals 1 — val(RT%5(G),v). We
note that such a connection is not known and is unlikely to exist in reachability games with
neither poorman nor taxman bidding. Random-turn games have been extensively studied in
their own right, mostly with unbiased coin tosses, since the seminal paper [18].

Infinite-duration bidding games have been recently studied with Richman [4] and poorman
[5] bidding. For qualitative objectives, namely games in which one player wins and the other
player loses, both bidding rules have similar properties. By reducing general qualitative
games to reachability games, it is shown that threshold ratios exist for both types of bidding
rules. We show a similar result for qualitative games with taxman bidding.

Things get interesting in mean-payoff games, which are quantitative games: an infinite
play has a payoff, which is Player 1’s reward and Player 2’s cost (see an example of a
mean-payoff game in Figure 1). We thus call the players in a mean-payoff game Max and
Min, respectively. We focus on games that are played on strongly-connected graphs. With
Richman bidding [4], the initial budget of the players does not matter: A mean-payoff
Richman-bidding game G has a value ¢ € IR that depends only on the structure of the game
such that Min can guarantee a cost of at most ¢ with any positive budget, and with any
positive budget, Max can guarantee a payoff of at least ¢ — €, for every ¢ > 0. Moreover,
the value ¢ of G equals the value of a random-turn game RT%®(G) that is constructed on
top of G. Since G is a mean-payoff game, RT*®(G) is a mean-payoff stochastic game, and its
value, which again, is a well-known concept, is the expected payoff when both players play
optimally.

Mean-payoff poorman-bidding games have different properties. Unlike with Richman
bidding, the value of the game depends on the initial ratio. That is, with a higher initial
ratio, Max can guarantee a better payoff. While the probabilistic connection for mean-payoff
Richman games is not entirely unexpected given the probabilistic connection for reachability
Richman games, we find it surprising that mean-payoff poorman games exhibit a probabilistic
connection, which is in fact richer than for Richman bidding. The connection for poorman
games is the following: Suppose Max’s initial ratio is 7 € [0,1] in a game G. Then, the value
in G with respect to r is the value of the random-turn game RT"(G) in which in each turn,
we toss a biased coin that chooses Max with probability » and Min with probability 1 — 7.

! When the initial ratio is exactly Th(v), the winner depends on the mechanism with which ties are
broken. Our results do not depend on a specific tie-breaking mechanism.Tie-breaking mechanisms are
particularly important in discrete-bidding games [1].
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Figure 1 On the left, a mean-payoff game G. On the right, the mean-payoff value of G, where
the initial ratio is fixed to 0.75 and the taxman parameter 7 varies. The value of G with Richman
bidding is —0.5, with poorman bidding, it is 1, and, for example, with 7 = 0.2, it is 0.533.

Given this difference between the two bidding rules, one may wonder how do mean-payoff
taxman games behave, since these bidding rules span the spectrum between Richman and
poorman bidding. Our main contribution is a complete solution to this question: we identify
a probabilistic connection for a taxman game G that depends on the parameter 7 of the
bidding and the initial ratio . That is, we show that the value of the game equals the value
of the random-turn game RT("")(G), where F(7,r) = %71;” The construction gives rise
to optimal strategies w.r.t. 7 and the initial ratio. As a sanity check, note that for 7 = 1, we
have F(7,r) = 0.5, which agrees with the result on Richman bidding, and for 7 = 0, we have
F(7,7r) = r, which agrees with the result on poorman bidding. In Figure 1, we depict some
mean-payoff values for a fixed initial ratio and varying taxman parameter. Previous results
only give the two endpoints in the plot, and the mid points in the plot are obtained using
the results in this paper.

The main technical challenge is constructing an optimal strategy for Max, which, intuit-
ively, performs a de-randomization; with a deterministic bidding strategy, Max guarantees
that the ratio of the time that is spent in each vertex is the same as in a random behavior.
The construction of Max strategy involves two components. First, we assign an “importance”
to each vertex v, which we call strength and denote St(v). Intuitively, if St(v) > St(u), then
it is more important for Max to move in v than in u. Second, when the game reaches a
vertex v, Max’s bid is a careful normalization of St(v) so that changes in Max’s ratio are
matched with the accumulated weights in the game. Finding the right normalization is
intricate and it consists of the main technical contribution of this paper. Previous such
normalizations were constructed for Richman and poorman mean-payoff games [4, 5]. The
construction for Richman bidding is much more complicated than the one we present here.
The construction for poorman bidding is ad-hoc and does not generalize. Our construction
for taxman bidding thus unifies these constructions and simplifies them. It uses techniques
that can generalize beyond taxman bidding. Finally, we study, for the first time, complexity
problems for taxman games.

Due to lack of space, some proofs appear in the full version.

2 Preliminaries

A graph game is played on a directed graph G = (V, E), where V is a finite set of vertices
and FE CV x V is a set of edges. The neighbors of a vertex v € V, denoted N (v), is the
set of vertices {u € V : (v,u) € E}. A path in G is a finite or infinite sequence of vertices
v1, 3, ... such that for every i > 1, we have (v;,v;41) € E.
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Bidding games. FEach Player ¢ has a budget B; € IR=°. In each turn a bidding determines
which player moves the token. Both players simultaneously submit bids, where a bid b; for
Player ¢ is legal if b; < B;. The player who bids higher wins the bidding, where we assume
some mechanism to break ties, e.g., always giving Player 1 the advantage, and our results are
not affected by the specific tie-breaking mechanism at use. The winner moves the token and
pays his bid, where we consider three bidding mechanisms that differ in where the winning
bid is paid. Suppose Player 1 wins a bidding with his bid of b.

In Richman bidding, the winner pays to the loser, thus the new budgets are B; — b and
By + 0.

In poorman bidding, the winner pays to the bank, thus the new budgets are By — b and
BQ.

In taxman bidding with parameter 7 € [0, 1], the winner pays portion 7 to the other
player and (1 — 7) to the bank, thus the new budgets are By — b and By + (1 — 7) - b.

A central quantity in bidding games is the ratio of a player’s budget from the total
budget.

» Definition 1 (Ratio). Suppose the budget of Player i is B;, for i € {1,2}, at some point in
the game. Then, Player i’s ratio is B;/(B1 + Bs). The initial ratio refers to the ratio of the
initial budgets, namely the budgets before the game begins. We restrict attention to games in
which both players start with positive initial budgets, thus the initial ratio is in (0,1).

Strategies and plays. A strategy is a recipe for how to play a game. It is a function that,
given a finite history of the game, prescribes to a player which action to take, where we
define these two notions below. For example, in turn-based games, a strategy takes as
input, the sequence of vertices that were visited so far, and it outputs the next vertex to
move to. In bidding games, histories and strategies are more involved as they maintain the
information about the bids and winners of the bids. Formally, a history in a bidding game
is m=(v1,b1,01), -+, (Vg, by ik ), Vi1 € (V X IR x {1,2})* -V, where for 1 < j <k + 1, the
token is placed on vertex v; at round j, for 1 < j < k, the winning bid is b; and the winner
is Player ;. Consider a finite history 7. For i € {1,2}, let W;(m) C {1,...,k} denote the
indices in which Player 4 is the winner of the bidding in 7. Let B} be the initial budget of

Player i. Player i’s budget following 7, denoted B;(w), depends on the bidding mechanism.

For example, in Richman bidding, B;(7) = Bf — 2 jewn(n) bi 22 jews(x) bjs B2 is defined
dually, and the definition is similar for taxman and poorman bidding. Given a history 7 that
ends in v, a strategy for Player i prescribes an action (b, v), where b < B;(w) is a bid that
does not exceed the available budget and v is a vertex to move to upon winning, where we
require that v is a neighbor of vi41. An initial vertex, initial budgets, and two strategies for
the players determine a unique infinite play 7 for the game. The vertices that 7 visits form
an infinite path path(r).

Objectives. An objective O is a set of infinite paths. Player 1 wins an infinite play = iff

path(n) € O. We call a strategy f winning for Player 1 w.r.t. an objective O if for every

strategy g of Player 2 the play that f and g determine is winning for Player 1. Winning

strategies for Player 2 are defined dually. We consider the following qualitative objectives:

1. In reachability games, Player 1 has a target vertex ¢ and an infinite play is winning iff it
visits t.
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2. In parity games, each vertex is labeled with an index in {1,...,d}. An infinite path is
winning for Player 1 iff the parity of the maximal index that is visited infinitely often is
odd.

3. Mean-payoff games are played on weighted directed graphs, with weights given by a
function w : V' — Q. Consider an infinite path n = vy,vs,--- € V¥. For n € IN, the

n

prefix of length n of n is #”, and we define its energy to be E(n™) = >"" ; w(v;). The
payoff of n is MP(n) = liminf,, . E(n™)/n. Player 1 wins 7 iff MP(n) > 0.

Mean-payoff games are quantitative games. We think of the payoff as Player 1’s reward
and Player 2’s cost, thus in mean-payoff games, we refer to Player 1 as Max and to Player 2
as Min.

Threshold ratios. The first question that arises in the context of bidding games asks what
is the necessary and suflicient initial ratio to guarantee an objective.

» Definition 2 (Threshold ratios). Consider a bidding game G, a vertex v, an initial ratio
r, and an objective O for Player 1. The threshold ratio in v, denoted Th(v), is a ratio in
[0,1] such that if r > Th(v), then Player 1 has a winning strategy that guarantees that O is
satisfied, and if r < Th(v), then Player 2 has a winning strategy that violates O.

Random-turn games. A stochastic game [10] is a graph game in which the vertices are
partitioned between two players and a nature player. As in turn-based games, whenever the
game reaches a vertex that is controlled by Player 4, for ¢ = 1,2, he choses how the game
proceeds, and whenever the game reaches a vertex v that is controlled by nature, the next
vertex is chosen according to a probability distribution that depends only on v.

Consider a bidding game G that is played on a graph (V, E). The random-turn game
with ratio r € [0, 1] that is associated with G is a stochastic game that intuitively simulates
the following process. In each turn we throw a biased coin that turns heads with probability
r and tails with probability 1 — r. If the coin turns heads, then Player 1 moves the token,
and otherwise Player 2 moves the token. Formally, we define RT"(G) = (V4, Va2, Vi, E, Pr),
where each vertex in V' is split into three vertices, each controlled by a different player, thus
for a € {1,2, N}, we have V,, = {uv, : v € V'}, nature vertices simulate the fact that Player 1
chooses the next move with probability r, thus Prluy,vi] = r =1 — Pr[vy, v2], and reaching
a vertex that is controlled by one of the two players means that he chooses the next move,
thus E = {{v,un) : (v,u) € E and o € {1,2}}. When G is a mean-payoff game, the vertices
are weighted and we define the weights of v, v, and vy to be equal to the weight of v.

The following definitions are standard, and we refer the reader to [20] for more details. A
strategy in a stochastic game is similar to a turn-based game; namely, given the history of
vertices visited so far, the strategy chooses the next vertex. Fixing two such strategies f and
g for both players gives rise to a distribution D(f, g) on infinite paths. Intuitively, Player 1’s
goal is to maximize the probability that his objective is met. An optimal strategy for Player 1
guarantees that the objective is met with probability at least ¢ and, intuitively, he cannot
do better, thus Player 2 has a strategy that guarantees that the objective is violated with
probability at least (1 — ¢). It is well known that optimal positional strategies exist for the
objectives that we consider.

» Definition 3 (Values in stochastic games). Consider a bidding game G, let r € [0,1], and
consider two optimal strategies f and g for the two players in RT"(G). When G is a qualitative
game with objective O, the value of RT"(G), denoted val(RT"(G)), is Pry.p(t,q) Pr[n € O].
When G is a mean-payoff game, the mean-payoff value of RT"(G), denoted MP(RT"(G)), is

Epen(f,9)MP(n).
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3 Qualitative Taxman Games

In [14, 13], reachability bidding games were studied with a slightly different definition, which
we call double-reachability: both players have a target, where we denote by t; the target of
Player i, for i € {1,2}, all vertices have a path to both targets, and the game ends once one
of the targets is reached. They show the following results.

» Theorem 4. [14, 13] Consider a double-reachability bidding game G and a vertex v. The
threshold ratio exists in v with Richman, poorman, and taxman bidding. Moreover, threshold
ratios have the following properties. For the target vertex t; of Player 1, we have Th(t1) = 0,
and for the target to of Player 2, we have Th(v) = 1. Consider some other vertex v and denote
v, v~ € N(v) the vertices with the minimal and mazimal thresholds in the neighborhood of
v, thus for every u € N(v), we have Th(v™) < Th(u) < Th(v™).

In Richman bidding, we have Th(v) = 5 (Th(v") + Th(v™)).

In poorman bidding, we have Th(v) = Th(v")/(1 + Th(vt) — Th(v™)).

In tazman bidding with parameter T, we have Th(v) = (Th(v™)+ Th(vT)—7-Th(v™))/(2—

7 (14 Th(v™) — Th(v*)))
Moreover, only double-reachability Richman-bidding games exhibit the following probabilistic
connection: for every verter v, we have Th(v) = 1 — val(RT’5(G),v). Thus, for games played
on finite graphs, the threshold ratios are all rational numbers. However, threshold ratios with
poorman-bidding need not be rational in finite games.

The equivalence between double-reachability bidding games and reachability games with
Richman- and poorman-bidding is shown in [4] and [5]. The following proposition is the key
component in showing the equivalence as well as in the reduction from parity taxman games
to reachability taxman games.

» Lemma 5. Consider a reachability taxman game G. Suppose that every vertex in G has a
path to the target of Player 1. Then, for any taxman parameter, Player 1 wins from every
vertex with any positive initial budget. Thus, for every vertex v, we have Th(v) = 0.

Proof. Let G = (V, E,t), where n = |V| — 1. Suppose the game starts from a vertex v, and
let € > 0 be the initial budget of Player 1. Since there is a path from v to Player 1’s target,
there is a path of length at most n. Thus, if Player 1 wins n consecutive biddings, he wins the
game. Intuitively, Player 1 carefully chooses n increasing bids such that if Player 2 wins one
of these bids, Player 1’s ratio increases by a constant over his initial budget. By repeatedly
playing according to such a strategy, Player 1 guarantees that his ratio increases and will
eventually allow him to win n biddings in a row. Formally, if 7 = 0, then G is a Richman
game and the proof of the lemma can be found in [4]. Otherwise, pick a sufficiently large
r € IN such that 7 > 7%1 and r > 3. Fix 0 <m < ;5. Player 1 proceeds as follows: after
winning ¢ times, for 0 < ¢, he bids m - r* and, upon winning the bidding, he moves towards ¢
along any shortest path. Since m +mr + -+ mr" "1 < mr™ < ¢, Player 1 has sufficient
budget to win n consecutive biddings. If Player 2 does not win any of the first n biddings,
Player 1 wins the game. On the other hand, if Player 2 wins the k-th bidding with 1 < k < n,
we show in the full version that his ratio increases by a fixed amount b = % >0. <«

The following corollary shows the equivalence between reachability and double-reachability
taxman games.

» Corollary 6. Consider a reachability taxman game G = (V, E,t). Let S CV be the set of
vertices that have mo path to t. Let T C 'V be a set of vertices such that t € T and every
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w € T has a path to t and no path to a vertex in S. Then, for every v € T, we have Th(v) = 0,
for every v € S, we have Th(v) = 1. Let G' be a double-reachability taxman game that is
obtained from G by merging the vertices in S and T into two targets t1 and to for Players 1
and 2, respectively. Then, for every v € (V \ (SUT)), the threshold of v in G equals the
threshold of v in G'.

The following theorem, whose proof can be found in the full version, uses Lemma 5 to
classify the bottom-strongly-connected components of a parity taxman game as those that
are winning and losing for Player 1, thereby constructing a reachability taxman game.

» Theorem 7. Parity taxman games are linearly reducible to reachability taxman games.
Specifically, threshold ratios exist in parity taxman games.

4 Mean-Payoff Taxman Games

This section consists of our main technical contribution. We start by showing a complete
classification of the value in strongly-connected mean-payoff taxman games depending on
the taxman parameter 7 and the initial ratio. We then extend the solution to general games,
where the solution to strongly-connected games constitutes the main ingredient in the solution
of the general case.

4.1 Strongly-connected mean-payoff taxman games

We start by formally defining the value of a strongly-connected mean-payoff game. Lemma 5
implies that in a strongly-connected game, a player can draw the game from every vertex to
any other vertex with any positive initial budget. Since mean-payoff objectives are prefix
independent, it follows that the vertex from which the game starts does not matter. Indeed,
if the game starts at a vertex v with Max having initial ratio r + ¢, then Max can use €/2 of
his budget to draw the game to a vertex v and continue as if he starts the game with initial
ratio r + €/2.

» Definition 8 (Mean-payoff value). Consider a strongly-connected mean-payoff game G, a
ratio r € (0,1), and a taxman parameter T € [0,1]. The mean-payoff value of G w.r.t. r and
T, 15 a value ¢ € IR such that for every e > 0
if Min’s initial ratio is greater than (1 —r), then he has a strategy that guarantees that
the payoff is at most c+ €, and
if Max’s initial ratio is greater than r, then he has a strategy that guarantees that the
payoff is greater than c — €.

The following theorem, which we prove in the next two sections, summarizes the properties
of mean-payoff taxman games.

» Theorem 9. Consider a strongly-connected mean-payoff taxman game G with tazman
parameter T € [0,1] and an initial ratio r € (0,1). The value of G w.r.t. T and r equals the
value of the random-turn game RTF(T”")(Q) in which Mazx is chosen to move with probability

F(r,r) and Min with probability 1 — F(r,r), where F(r,r) = W

We show that in order to prove Theorem 9, it suffices to prove the following intermediate
lemma, whose proof can be found in the full version, and follows from the advantage of Min
in the definition of payoff.
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» Lemma 10. Consider a strongly-connected mean-payoff taxman game G, a tazman para-
meter T, and an initial ratio r € (0,1) such that MP(RTF (")) = 0 for F(r,r) = Hﬁril;”
Then, for every e > 0 Max has a strategy that guarantees that no matter how Min plays, the

payoff is greater than —e.

4.2 The importance of moving

The first part of the construction of an optimal strategy for Max as in Lemma 10 is to
assign, to each vertex v € V, a strength, denoted St(v), where St(v) € Q>¢. Intuitively, if
St(v) > St(u), for u,v € V, it is more important for Max to move in v than it is in u. We
follow the construction in [5], which uses the concept of potentials, which is a well-known
concept in stochastic games (see [20]) and was originally defined in the context of the strategy
iteration algorithm [12]. For completeness, we present the definitions below.

Consider a strongly-connected mean-payoff game G, and let p € [0,1]. Let f and g be two
optimal positional strategies in RT?(G), for Min and Max, respectively. For a vertex v € V,
let v=,v" € V be such that Max proceeds from v to v according to g and Min proceeds
from v to v~ according to f. It is not hard to see that the mean-payoff value in all vertices in
RTP(G) is the same and we denote it by MP(RTP(G)). We denote the potential of v by Pot?(v)
and the strength of v by St?(v), and we define them as follows.

Pot?(v) = p - Pot?(v") + (1 — p) - Pot?(v™) + w(v) — MP(RT?(G)) and
StP(v) =p- (1 —p) - (Pot?(v") — Pot?(v™))

There are optimal strategies for which Pot?(v™) < Pot?(v') < Pot?(v*), for every v' € N(v),
which can be found, for example, using the strategy iteration algorithm. Note that St(v) > 0,
for every v € V.

Consider a finite path @ = vq,...,v, in G. We intuitively think of 7 as a play, where for
every 1 <i < n, the bid of Max in v; is St(v;) and he moves to v;” upon winning. Thus, if
Vip1 = v;r, we say that Max won in v;, and if v;41 # viﬂ we say that Max lost in v;. Let
W (r) and L(7) respectively be the indices in which Max wins and loses in . We call Max
wins investments and Max loses gains, where intuitively he invests in increasing the energy
and gains a higher ratio of the budget whenever the energy decreases. Let G(m) and I(m)
be the sum of gains and investments in m, respectively, thus G(m) = 3, () St(v;) and
I(m) = 3 iew(x) St(vi). Recall that the energy of mis E(m) =3, .;,, w(v;). The following
lemma, whose proof can be found in the full version, which generalizes a similar lemma in
[5], connects the strength with the change in energy.

» Lemma 11. Consider a strongly-connected mean-payoff game G and p € [0,1]. For
every finite path ™ = vy,...,v, in G, we have Pot* (v1) — Pot* (v,) + (n — 1) - MP(RTP(G)) <
E(m) 4+ G(m)/(1 —p) — I(w)/p. In particular, when p =v/(p+ v) for v,u > 0, there is a
constant P = min, Pot’ (v)—max, Pot’(v) such that ;%‘Q(E(w)—P—(n—l)-MP(RT/? (G))) =
w-I(r)—v-G(n).

4.3 Normalizing the bids

Whenever the game reaches a vertex v, Max’s bid is obtained by carefully normalizing the
strength of v. More formally, assuming an initial ratio r, in v, Max bids r - (1 —r) - St(v) - 8,
where 3, is the normalization factor and = € IR>;. In this section we show how to choose
the normalization factor. We associate with every = > 1, two numbers: a ratio r, and (3,
both in (0,1]. We think of (r;),>1 as a sequence and a play gives rise to a walk on the

11:9

MFCS 2019



11:10

Bidding Mechanisms in Graph Games

sequence, which corresponds to the changes in energy in the bidding game. When the walk
is in z > 1, Max uses the normalization factor .. If Max wins a bidding, we take a step up
on the sequence, modeling the increase of energy, and when Min wins, we talk a step down.
The size of the step depends on the strength of v. We prove existence of sequences with
properties given in the following lemma and formally define Max’s strategy after it.

» Lemma 12. Consider a game G, a finite set of non-negative strengths S C IR>¢, a ratio
rr24r(1—r)

P G e g there exist

r € (0,1), and a tazman parameter T € [0,1]. For every K >

sequences (13)g>1 and (Bg)z>1 with the following properties.

1. Maz’s bid does not exceed his budget, thus, for each position x € IR>1 and strength s € S,
we have By -s-1-(r—1) <ry.

2. Min cannot force the game beyond position 1, thus for every s € S\{0} and 1 <z < 1+7s,
we have By -s-1-(r—1)>1—1,.

3. The ratios tend to r from above, thus for every x € IR>1, we havery > r, and limy_,o0 74 =
r.

4. No matter who wins a bidding, Mazx’s ratio can only improve. Thus, in case of winning

and in case of losing, we respectively have

Te —Pg-s-r-(r—1)
1—-(1=7)-By-s-r-(r—1)

We first show how Lemma 12 implies Theorem 9.

T$+T'Ba:'3'7"'(7"—1)
17(177)'5x‘8'?”'(?"71) > Te—sr

> Tet(1—7r)-K-s and

Proof that Lemma 12 implies Lemma 10. Fix ¢ > 0, we construct strategy for Max guar-
anteeing a payoff greater than —e, as wanted. Observe that

r _ r(r(l —r)+7) _rHr=n) p
Tr24r(l—r - _ 2 2 _ - - [
T+(177’)W_~(_T(1L) r(l—r)+r2+7m2+r(1-r) 147

Thus, since by assumption MP(RT"("")(G)) = 0 and MP(RT?(G)) is a continuous function in
p € [0,1] [8, 22], we can pick K > F(r,r) such that MP(RT™F0-7% (G)) > —e.

We now describe Max’s strategy. We think of the change in Max’s ratio as a walk on
IR>1. Each position z € IR>; is associated with a ratio r,. The walk starts in a position zg
such that Max’s initial ratio is at least r,. Let v =7 and g = K(1 —r). Suppose the token
is placed on a vertex v € V. Then, Max’s bid is - (1 —r) - 8, - St(v), where the ratios of Max
and Min are normalized to sum up to 1, and he proceeds to v+ upon winning. If Max wins,
the walk proceeds up - St(v) steps to x + uSt(v), and if he loses, the walk proceeds down to
x — vSt(v). Suppose Min fixes some strategy and let @ = v1,...,v, be a finite prefix of the

play that is generated by the two strategies. Suppose the walk following 7 reaches x € IR.
Then, using the terminology of the previous section, we have z = o — G(7) - v + I(7) - p1.
Lemma 12 shows that the walk always stays above 1, thus x > 1. Combining with Lemma 11,
we get ’;f—i(l —z0) + P+ (n—1) -MP(RT7## (G)) < E(r). Thus, dividing both sides by n
and letting n — oo, since xy and P are constants depending only on K we conclude that
this strategy guarantees payoff at least MP(RT77 (G)) > —e. <

We continue to prove Lemma 12.

Proof of Lemma 12. Note that % is well-defined for r € (0,1). Fix 7 € [0, 1]

and r € (0,1). Let K > % Observe that the two inequalities in Point 4 are
equivalent to:
Toers — o < Tr(L—=7)Brs + (1 = 7)r(1 — 1) BeSrau—rs,

Te = Te4+K(1-r)s > 7‘(1 - T)Bacs - (1 - T)T(l - T)Bxsra:jLK(lfr)y
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Point 3 combined with monotonicity in the above expressions, implies that we can replace
the last term in each of them by r in order to obtain stronger inequalities. Therefore, it
suffices for (ry),>1 and (B;)z>1 to satisfy

Toors —To S TT(L=1)Bss + (1 — 7)r(1 — 1)Bysr,
Te = Tapk(1—r)s = T(1 =7)Bzs — (1 = 7)r(1 — 1) Bysr,
which is equivalent to
Tops — T < 7(1—7)Bs[t + (1 —7)r],
Te = TotK(1—r)s = r(1—7r)Bys[1 — (1 —7)r]. (1)
We seek (r)z>1 and (B;)z>1 in the form r, = v*~1 4+ (1 —4*~Y)r and 8, = fy* ! for some
v, 8 € (0,1). Note that this choice ensures Points 1 and 3. Therefore, we just need to show

that we can find 7, 8 € [0, 1] for which the inequalities in (1) hold for any s € S. Substituting
ry and B, in terms of v and B, the inequalities in (1) reduce to

Toeps —Te =71y = 1)(1 —71) ; By Lr(1 = r)s[r + (1 — 7)r],

? n—
Te = Tot K(1—r)s = G - ny(1_7')s)(1 — 1) > By (1 —r)s[l — (1 —7)r].

First, when s = 0, both sides of both inequalities are equal to 0 so both inequalities clearly
hold. Recall that S is a finite set of non-negative strengths. Thus, when s > 0, it takes
values in 0 < s; < ... < s,, and the above inequalities are equivalent to
_1
v > (1 + prs[r+ (1 — T)r]) s
1
v < (1= Brs[l — (1 —7)r]) T, (2)

Since both of these expressions are in (0, 1), to conclude that v, 8 € (0,1) exist, it suffices to
show that there is some 8 € (0,1) such that
max (14 fBrs[t+ (1 — T)TD_% < min  (1-8rs[l —(1—7)r]) R (3)

s€{s1,...,8n T se{s1,..,8n}

Note that the LHS of (3) is monotonically increasing in s > 0 whereas the RHS is monoton-
ically decreasing in s > 0, therefore it suffices to find g € (0,1) for which

(1 + Brsg[t+ (1 — T)T])_ﬁ < (1 — Brsi[1—(1— T)T])K“%ﬂl (4)

By Taylor’s theorem (1 +3)® = 1 + ay + O(y?), so Taylor expanding both sides of (4) in
8 >0 we get
1
(1+Brsy[r+ (1 —7)r]) ™ =1-Br+(1—71)r] + O0(5?),
1
(1= Brsi[l = (1 —7)r]) K70 =1 — ﬁﬁ[l —(L=7)r]+0(8”).
Therefore, if we show that [7 + (1 — 7)r] > m[l — (1 = 7)r], the linear coefficient of 3
on the LHS of (4) will be strictly smaller than the linear coefficient of S on the RHS. Thus,

for sufficiently small 8 > 0, (4) will hold, which concludes the proof of the lemma. This
condition is equivalent to

K> r[1—(1—7)r] vl (=) B 2 +r(l—r)
A-nr+0-7)7r] QA-=n)[rd-=7)+r] 71-7)2+r(1-71)

which is true by assumption. Thus, Points 1, 3, and 4 hold. In the full version, we show that

Point 2 holds. <

11:11

MFCS 2019



11:12

Bidding Mechanisms in Graph Games

4.4 General mean-payoff taxman games

We extend the solution to general games. Recall that the threshold ratio in mean-payoff
games is a necessary and sufficient initial ratio with which Max can guarantee a payoff of at
least 0.

» Theorem 13. Threshold ratios exist in mean-payoff taxman games.

Proof. Consider a mean-payoff taxman game G = (V, E, w) with taxman parameter 7. If
G is strongly-connected, then by Theorem 9, the threshold ratio in all vertices in G is the
same and is r € (0,1) for r such that MP(RTY("")(G)) = 0. If no such r exists, then either
MP(RTY("1)(G)) < 0, in which case the threshold ratios are 1, or MP(RT¥(™0)(G)) > 0, in which
case the threshold ratios are 0. The proof for general games follows along the same lines as
the proof for reachability games. For each bottom strongly-connected component S; of G
we find the threshold ratio r; € (0,1) as in the above. We play a “generalized” reachability
game on G as follows. The game ends once the token reaches one of the BSCCs in G. Max
wins the game iff the first time the game enters a BSCC S;, Max’s ratio is greater than r;.
Showing existence of threshold ratios in the generalized game follows the same argument as
for reachability games [13]. <

5 Computational Complexity

We show, for the first time, computational complexity results for taxman games. We study the
following problem, which we call THRESH: given a taxman game G with taxman parameter
7 and a vertex vg in G, decide whether Th(vg) > 0.5. The correspondence in Theorem 9 gives
the second part of the following theorem, and for the first part, in the full version, we show a
reduction from THRESH to the existential theory of the reals [7].

» Theorem 14. For taxman reachability, parity, and mean-payoff games THRESH is in
PSPACE. For strongly-connected mean-payoff games, THRESH is in NP N coNP.

6 Discussion

We study, for the first time, infinite-duration taxman-bidding games, which span the spectrum
between Richman and poorman bidding. For qualitative objectives, we show that the
properties of taxman coincide with these of Richman and poorman bidding. For mean-payoff
games, where Richman and poorman bidding have an elegant though surprisingly different
mathematical structure, we show a complete understanding of taxman games. Our study of
mean-payoff taxman games sheds light on these differences and similarities between the two
bidding rules. Unlike previous proof techniques, which were ad-hoc, we expect our technique
to be easier to generalize beyond taxman games, where they can be used to introduce concepts
like multi-players or partial information into bidding games.
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—— Abstract

In the CLUSTER DELETION problem the goal is to remove the minimum number of edges of a given
graph, such that every connected component of the resulting graph constitutes a clique. It is known
that the decision version of CLUSTER DELETION is NP-complete on (Ps-free) chordal graphs, whereas
CLUSTER DELETION is solved in polynomial time on split graphs. However, the existence of a
polynomial-time algorithm of CLUSTER DELETION on interval graphs, a proper subclass of chordal
graphs, remained a well-known open problem. Our main contribution is that we settle this problem
in the affirmative, by providing a polynomial-time algorithm for CLUSTER DELETION on interval
graphs. Moreover, despite the simple formulation of the algorithm on split graphs, we show that
CLUSTER DELETION remains NP-complete on a natural and slight generalization of split graphs
that constitutes a proper subclass of Ps-free chordal graphs. Although the later result arises from
the already-known reduction for Ps-free chordal graphs, we give an alternative proof showing an
interesting connection between edge-weighted and vertex-weighted variations of the problem. To
complement our results, we provide faster and simpler polynomial-time algorithms for CLUSTER
DELETION on subclasses of such a generalization of split graphs.
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1 Introduction

In graph theoretic notions, clustering is the task of partitioning the vertices of the graph
into subsets, called clusters, in such a way that there should be many edges within each
cluster and relatively few edges between the clusters. In many applications, the clusters are
restricted to induced cliques, as the represented data of each edge corresponds to a similarity
value between two objects [18, 19]. Under the term cluster graph, which refers to a disjoint
union of cliques, one may find a variety of applications that have been extensively studied
[1, 5, 23]. Here we consider the CLUSTER DELETION problem which asks for a minimum
number of edge deletions from an input graph, so that the resulting graph is a disjoint union
of cliques. In the decision version of the problem, we are also given an integer k and we want
to decide whether at most k edge deletions are enough to produce a cluster graph.
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Although CLUSTER DELETION is NP-hard on general graphs [24], settling its complexity
status restricted on graph classes has attracted several researchers. Regarding the maximum
degree of a graph, Komusiewicz and Uhlmann [22] have shown an interesting dichotomy
result: CLUSTER DELETION remains NP-hard on Cy-free graphs with maximum degree four,
whereas it can be solved in polynomial time on graphs having maximum degree at most three.
Quite recently, Golovach et al. [14] have shown that it remains NP-hard on planar graphs.
For graph classes characterized by forbidden induced subgraphs, Gao et al. [11] showed that
CLUSTER DELETION is NP-hard on (Cj, Ps, bull, fork, co-gem, 4-pan, co-4-pan)-free graphs
and on (2K, 3K )-free graphs. Regarding H-free graphs, Griittemeier et al. [16], showed a
complexity dichotomy result for any graph H consisting of at most four vertices. In particular,
for any graph H on four vertices with H ¢ {P,,paw}, CLUSTER DELETION is NP-hard on
H-free graphs, whereas it can be solved in polynomial time on Py~ or paw-free graphs [16].
Interestingly, CLUSTER DELETION remains NP-hard on Ps-free chordal graphs [3].

On the positive side, CLUSTER DELETION has been shown to be solved in polynomial
time on cographs [11], proper interval graphs [3], split graphs [3], and P;-reducible graphs
[2]. More precisely, iteratively picking maximum cliques defines a clustering on the graph
which actually gives an optimal solution on cographs (i.e., Py-free graphs), as shown by
Gao et al. in [11]. In fact, the greedy approach of selecting a maximum clique provides a
2-approximation algorithm, though not necessarily in polynomial-time [7]. As the problem
is already NP-hard on chordal graphs [3], it is natural to consider subclasses of chordal
graphs such as interval graphs and split graphs. Although for split graphs there is a simple
polynomial-time algorithm, restricted to interval graphs only the complexity on proper
interval graphs was determined by giving a solution that runs in polynomial-time [3]. Settling
the complexity of CLUSTER DELETION on interval graphs, was left open [3, 2, 11].

For proper interval graphs, Bonomo et al. [3] characterized their optimal solution by
consecutiveness of each cluster with respect to their natural ordering of the vertices. Based
on this fact, a dynamic programming approach led to a polynomial-time algorithm. It is
not difficult to see that such a consecutiveness does not hold on interval graphs, as potential
clusters might require to break in the corresponding vertex ordering. Here we characterize an
optimal solution of interval graphs whenever a cluster is required to break. In particular, we
take advantage of their consecutive arrangement of maximal cliques and describe subproblems
of maximal cliques containing the last vertex. One of our key observations is that the candidate
clusters containing the last vertex can be enumerated in polynomial time given two vertex
orderings of the graph. We further show that each such candidate cluster separates the graph
in a recursive way with respect to optimal subsolutions, that enables to define our dynamic
programming table to keep track about partial solutions. Thus, our algorithm for interval
graphs suggests to consider a particular consecutiveness of a solution and apply a dynamic
programming approach defined by two vertex orderings. The overall running time of our
algorithm is O(n®) for an interval graph on n vertices.

Furthermore, we complement the previously-known NP-hardness of CLUSTER DELETION
on Ps-free chordal graphs, by providing a proper subclass of such graphs for which we prove
that the problem remains NP-hard. This result is inspired and motivated by the very simple
characterization of an optimal solution on split graphs: either a maximal clique constitutes
the only non-edgeless cluster, or there are exactly two non-edgeless clusters whenever there
is a vertex of the independent set that is adjacent to all the vertices of the clique except one
[3]. Due to the fact that true twins belong to the same cluster in an optimal solution, it is
natural to consider true twins at the independent set, as they are expected not to influence
the solution characterization. Surprisingly, we show that CLUSTER DELETION remains NP-
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complete even on such a slight generalization of split graphs. This is achieved by observing
that the constructed graphs given in the reduction for Ps-free graphs [3], constitute such
split-related graphs. However, here we give a different reduction that highlights an interesting
connection between edge-weighted and vertex-weighted split graphs. We then study two
different classes of such generalization of split graphs that can be viewed as the parallel of
split graphs that admit disjoint clique-neighborhood and nested clique-neighborhood. For
CLUSTER DELETION we provide polynomial-time algorithms on both classes of graphs. In
particular, for the former case, a polynomial-time algorithm is already known and is achieved
through computing a minimizer of submodular functions [3]. Here we provide a simpler and
faster (linear-time) algorithm for CLUSTER DELETION on such graphs that avoids the usage
of submodular functions minimization.

2 Preliminaries

All graphs considered here are simple and undirected. We refer to Diestel’s classical book
[8] for standard graph terminology that is undefined here. Two adjacent vertices u and v
are called true twins if N[u] = N[v], whereas two non-adjacent vertices = and y are called
false twins if N(u) = N(v). For a set of finite graphs H, we say that a graph G is H-free if
G does not contain an induced subgraph isomorphic to any of the graphs of H.

The problem of CLUSTER DELETION is formally defined as follows: given a graph
G = (V,E), the goal is to compute the minimum set F' C E(G) of edges such that every
connected component of G — F'is a clique. A cluster graph is a Ps-free graph, or equivalently,
any of its connected components is a clique. Thus, the task of CLUSTER DELETION is to
turn the input graph G into a cluster graph by deleting the minimum number of edges. Let
S =C,...,Ck be a solution of CLUSTER DELETION such that G[C;] is a clique. In such
terms, the problem can be viewed as a vertex partition problem into C1,...,Ck. Each C;
is simple called cluster. Edgeless clusters, i.e., clusters containing exactly one vertex, are
called trivial clusters. The edges of G are partitioned into internal and external edges: an
internal edge uv has both its endpoints u, v € C; in the same cluster C;, whereas an external
edge wv has its endpoints in different clusters v € C; and v € Cj, for ¢ # j. Then, the goal
of CLUSTER DELETION is to minimize the number of external edges which is equivalent to
maximize the number of internal edges. We write S(G) to denote an optimal solution for
CLUSTER DELETION of the graph G, that is, a cluster subgraph of G having the maximum
number of edges. Given a solution S(G), the number of edges incident only to the same
cluster, that is the number of internal edges, is denoted by |S(G)].

For a clique C, we say that a vertex x is C'-compatible if C'\ {x} C N(z). We start with
few preliminary observations regarding twin vertices. Notice that for true twins x and y, if =
belongs to any cluster C then y is C-compatible.

» Lemma 1 ([3]). Let x and y be true twins in G. Then, in any optimal solution x and y
belong to the same cluster.

The above lemma shows that we can contract true twins and look for a solution on a
vertex-weighted graph that does not contain true twins. Notice, however, that the weights
on the vertices imply weights on the edges of the graph, as they contribute to the total cost
of external and internal edges in a solution. Even though false twins cannot be grouped into
the same cluster as they are non-adjacent, we can actually disregard one of the false twins
whenever their neighborhood forms a clique.
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» Lemma 2. Let x and y be false twins in G such that N(z) = N(y) is a clique. Then, there
is an optimal solution such that y constitutes a trivial cluster.

Proof. Let C, and Cy be the clusters of x and y, respectively, in an optimal solution such
that |Cy| > 2 and |Cy| > 2. We construct another solution by replacing both clusters by
Cy UCy\{y} and {y}, respectively. To see that this indeed a solution, first observe that x
is adjacent to all the vertices of C, \ {y} because N(z) = N(y), and C, UCy \ {y} C N|z]
forms a clique by the assumption. Moreover, since |C;| > 2 and |Cy| > 2, we know that
|Cz|+|Cy| < |Cy||Cyl, implying that the number of internal edges in the constructed solution
is at least as large as the number of internal edges of the optimal solution. |

Moreover, we prove the following generalization of Lemma 1.

» Lemma 3. Let C and C’ be two clusters of an optimal solution and let x € C and y € C".
If y is C-compatible then x is not C'-compatible.

Proof. Let S be an optimal solution such that C,C’ € S. Assume for contradiction that x
is C’'-compatible. We show that S is not optimal. Since y is C-compatible, we can move y to
C and obtain a solution S, that contains the clusters C' U {y} and C’\ {y}. Similarly, we
construct a solution Sy, from S, by moving z to C’ so that C'\ {z}, C"U{x} € S,. Notice that
the S, forms a clustering, since x is C’-compatible. We distinguish between the following
cases, according to the values |C| and |C’|.

If |C| > |C’| then |S,| > |S], because (lc‘;l) + (‘0'2‘71) > (E') + (‘02/‘).

If |C| < |C’| then |Sg| > |S], because (|C\2—1) + ('C;I'H) > (lgl) + (‘g/‘).
In both cases we reach a contradiction to the optimality of S. Therefore, z is not C’-
compatible. |

» Corollary 4. Let C be a cluster of an optimal solution and let x € C. If there is a vertex
y that is C'-compatible and N|y] C Nlz|, then y belongs to C.

3 Polynomial-time algorithm on interval graphs

Here we present a polynomial-time algorithm for the CLUSTER DELETION problem on interval
graphs. A graph is an interval graph if there is a bijection between its vertices and a family
of closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals intersect. Such a bijection is called an interval representation of the
graph. We identify the intervals of the given representation with the vertices of the graph,
interchanging these notions appropriately. Whether a given graph is an interval graph can
be decided in linear time and if so, an interval representation can be generated in linear
time [10, 13]. Notice that every induced subgraph of an interval graph is an interval graph.

Let G be an interval graph. Instead of working with the interval representation of G,
we consider its sequence of maximal cliques. It is known that a graph G with p maximal
cliques is an interval graph if and only if there is an ordering K, ..., K, of the maximal
cliques of G, such that for each vertex v of G, the maximal cliques containing v appear
consecutively in the ordering (see e.g., [10, 13]). A path P = K - -- K, following such an
ordering is called a clique path of G. Notice that a clique path is not necessarily unique
for an interval graph. Also note that an interval graph with n vertices contains at most n
maximal cliques. By definition, for every vertex v of GG, the maximal cliques containing v
form a connected subpath in P.

Given a vertex v, we denote by K, (), - .., Ky, the maximal cliques containing v with
respect to P, where K,y and Ky, are the first (leftmost) and last (rightmost) maximal
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cliques containing v. Notice that a(v) < b(v) holds. Moreover, for every edge of G there is a
maximal clique K; of P that contains both endpoints of the edge. Thus, two vertices v and
v are adjacent if and only if a(v) < a(u) < b(v) or a(v) < b(u) < b(v).

For a set of vertices U C V, we write a- min U and a- max U to denote the minimum and
maximum value, respectively, among all a(u) with w € U. Similarly, b-min U and b- max U
correspond to the minimum and maximum value, respectively, with respect to b(u).

With respect to the CLUSTER DELETION problem, observe that for any cluster C of a
solution, we know that C C K, where K; € P, as C forms a clique. A vertex y is said to be
guarded by two vertices x and z if min{a(z),a(z)} < a(y) and b(y) < max{b(x),b(z)} hold.
For a clique C, observe that y is C-compatible if and only if there exists a maximal clique
K; such that C C K; with a(y) <@ < b(y). Observe that the following statement generalizes
Corollary 4, in the sense that the neighborhood of the guarded vertex y is not necessarily
contained in the neighborhood of x or z.

» Lemma 5. Let x,y, z be three vertices of G such that y is guarded by x and z. If  and z
belong to the same cluster C of an optimal solution and y is C'-compatible then y € C.

Let v1,...,v, be an ordering of the vertices such that b(v1) < --- < b(v,,). For every
v;, v; with b(v;) < b(v;), we define the following set of vertices:

Vi,j = {v € V(G) : min{a(v;), a(v;)} < a(v) and b(v) < b(v;)}.

That is, V; ; contains all vertices that are guarded by v; and v;. We write a(4, j) to denote
the value of min{a(v;),a(v;)} and we simple write K,;) and Kj ;) instead of K,(,;) and
Ky(v;)- Notice that for a neighbor u of v; with u € V, ;, we have either a(v;) < a(u) or
a(v;) < a(u) < a(vj). This means that all neighbors of v; that are totally included (i.e., all

vertices u such that a(v;) < a(u) < b(u) < b(v;)) belong to V; ; for any v; with b(v;) < b(v;).

To distinguish such neighbors of v;, we define the following sets (see also Figure 1):
U(j) contains the neighbors u € V;; of v; such that a(u) < a(v;) < b(u) < b(v,)
(neighbors of v; in V; ; that partially overlap v;).
M (j) contains the neighbors w € V;; of v; such that a(v;) < a(w) < blw) < b(vy)
(neighbors of v; that are totally included within v;).

In the forthcoming arguments, we restrict ourselves to the graph induced by V; ;. It is
clear that the first maximal clique that contains a vertex of V; ; is Ky(; ;), whereas the last
maximal clique is K ;). For two vertices v;, v; with b(v;) < b(v;), we define the following:

A; ; is the value of an optimal solution for CLUSTER DELETION of the graph G[V; ;].
To ease the notation, when we say a cluster of A; ; we mean a cluster of an optimal solution
of G[V; ;]. Notice that A, is the desired value for the whole graph G, since V1, = V(G).

Our task is to construct the values for A; ; by taking into account all possible clusters
that contain v;. To do so, we show that (i) the number of candidate clusters containing v,
in A; ; is polynomial and (ii) each such candidate cluster containing v; separates the graph
in a recursive way with respect to optimal subsolutions.

Observe that if v;v; € E(G) then v; € U(j) if and only if a(v;) < a(v;), whereas v; € M (j)

if and only if a(v;) < a(v;); in the latter case, it is not difficult to see that V; ; = M (5)U{v,}.

Thus, whenever v; € M(j) holds, we have V; ; = V; ;. The candidates of a cluster of A, ;
containing v; lie among U(j) and M(j). Let us show with the next two lemmas that we can
restrict ourselves into a polynomial number of such candidates. To avoid repeating ourselves,
in the forthcoming statements we let v;,v; be two vertices with b(v;) < b(v;).
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Figure 1 Illustrating the sets M (j) and U(j) for v;. The left part shows the case in which
v; € M(j) (or, equivalently, V; ; = Vj ;), whereas the right part corresponds to the case in which
a(vs) < a(vy).

» Lemma 6. Let C be a cluster of A; ; containing v;. If there is a vertex w € M(j) such that
w € C then there is a mazimal clique K; with a(v;) <t < b(v;) such that K, N M(j) C C
and CNM(j) C K.

Proof. Observe that w € M(j) implies a(v;) < a(w) < b(w) < b(v;). Since vj,w € C, we
know that there is a maximal clique K; for which C' C K; with a(v;) < a(w) <t < b(w) <
b(vj). We show that all other vertices of K; N M (j) are guarded by v; and w. Notice that
for every vertex y € M(j) we already know that a(v;) < a(y) and b(y) < b(v;). Thus,
for every vertex y € M(j) we have a(v;) = min{a(v;),a(w)} < a(y) and b(y) < b(v;) =
max{b(v;),b(w)}. This means that all vertices of Ky N M(j) \ {w} are guarded by v; and w.
Moreover, since C' C K, we know that all vertices of K; N M(j) are C-compatible. Therefore,
we apply Lemma 5 to every vertex of K; N M (j), showing that K; N M (j) C C. Furthermore,
there is no vertex of M(j) \ K; that belongs to C, because C C K;. <

By Lemma 6, we know that we have to pick the entire set K; N M (j) for constructing
candidates to form a cluster that contains v; and some vertices of M(j). As there are at
most n choices for Ky, we get a polynomial number of such candidate sets. We next show
that we can construct a polynomial number of candidate sets that contain v; and vertices of
U(j). For doing so, we consider the vertices of U(j) increasingly ordered with respect to their
first maximal clique. More precisely, let U(j)<q = (u1,...,uy(j)) be an increasingly order
of the vertices of U(j) such that a(u1) < --- < a(ujy()) (see the right part of Figure 1).

» Lemma 7. Let C be a cluster of A;j containing vj and let uy € U(j)<q.If ug € C then
every vertex of {Ugy1, ..., Uy} that is C-compatible belongs to C.

Proof. Let u be a vertex of {ugi1,...,uy¢y }. We show that u is guarded by u, and v;.
By the definition of U(j)<,, we know that a(uy) < a(u) < a(v;). Moreover, observe that
b(u) < b(v;) holds by the fact that v € V; ; and b(uq) < b(v;). Thus, we apply Lemma 5 to
u, because ug4,v; € C and u is C-compatible, showing that v € C' as desired. <

For a(v;) <t < b(vy), let M[t] = Ky N M(j). Observe that each M[t] may be an empty
set. On the part M(j), all vertices are grouped into the sets Ma(v;)], ..., M[b(v;)]. Similar
to the group Mt], let U[t] = U(j) N K;. Then, all vertices of U[t] are {v;, M[t]}-compatible
and all vertices of M |t] are {v;, U[t]}-compatible. Figure 1 depicts the corresponding sets.

» Lemma 8. Let C be a cluster of A; ; containing vj. Then, there is a(v;) <t < b(v;) such
that M[t] C C.
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All vertices of a cluster C' containing v; belong to U(j) U M(j). Thus, C'\ {v;} can be

partitioned into C NU(j) and C'NM(j). Also notice that C' C K for some a(v;) <t < b(v;).

Combined with the previous lemmas, we enumerate all such subsets C of U(j) U M(j) in
polynomial-time. In particular, we first build all candidates for C' N M(j), which are exactly
the sets Mt] by Lemmas 6 and 8. Then, for each of such candidate M|[t], we apply Lemma 7
to construct all subsets containing the last g vertices of U[t]<,. Thus, there are at most n?
candidate sets from the vertices of U(j) U M (j) that belong to the same cluster with v;.

3.1 Splitting into partial solutions

We further partition the vertices of M (j). Given a pivot group M][t], we consider the vertices
that lie on the right part of M{t]. More formally, for a(v;) <t < b(v;), we define the set
B;(t) = ((Ki41 U+ U Ky(jy) \ Ki) N M(j). The reason of breaking the vertices of the part
M(j) into sets Bj(t) is the following.

» Lemma 9. Let C be a cluster of A; ; such that {v;} UM][t] C C, for a(v;) <t < b(v;).
Then, for any two vertices x € V; ; \ B;j(t) and y € Bj(t), there is no cluster of A; ; that
contains both of them.

Proof. First observe that y € (M[t +1]U---UM]Ib(j)]) \ M[t]. We consider two cases for z,
depending on whether € M (j) or not. Assume that x € M(j). If z € M[t], then « € C by

Lemma 6, which implies that y ¢ C. If x € (M[a(v,)]U---UM|t — 1])\ M[t] then zy ¢ E(G).

Now assume that x € U(j). If z € C, then y does not belong to K;, so that y ¢ C. If
x ¢ C, then we show that = does not belong to a cluster with any vertex of B;(t). Assume
for contradiction that = belongs to a cluster C’ such that C’ N B;(t) # @. This means that
x € Ky with t <’ <b(v;) and ¢! C K. Then v; is C’'-compatible and x is C-compatible,
as both = and v; belong to K; N K. Therefore, by Lemma 3 we reach a contradiction to x
and v; belonging to different clusters. |

For a non-empty set S C V(G), we write A(S) to denote the following solutions:
A(S) = Ay jr, where vy is the vertex of S having the smallest a(v;/) and v/ is the vertex
of S having the largest b(v;/).
Having this notation, observe that A; ; = A(V; ;), for any v;, v; with b(v;) < b(v;). However,
it is important to notice that A(S) does not necessarily represent the optimal solution of
G]S], since the vertices of S may not be consecutive with respect to Vi j/, so that S is
only a subset of Vis ;s in the corresponding solution A; ;s for A(S). Under the following
assumptions, with the next result we show that for the chosen sets we have S = Vjs ;.

» Observation 10. Let V, = K, NV, ;, for every min{a(v;),a(v;)} <t < b(v;). If S =
(Va@ijy U+ UVie1) \ Vg then S = Vi ji, where i/ = a-min(St) and j' = b-max(SL).

Given the clique path P = K;--- K, a clique-index t is an integer 1 < ¢t < p. Let
£(j),r(j) be two clique-indices such that a(i, j) < £(j) < a(v;) and a(v;) < r(j) < b(v;). We
denote by £,(j) the minimum value of a(v) among all vertices of v € K,;) N'V;; having
£(j) < a(v). Clearly, £(j5) < £.(3) < r(j) holds. A pair of clique-indices (£(j),r(j)) is called
admissible pair for a vertex v;, if both a(i,j) < 4(j) < a(v;) and a(v;) < r(j) < b(v;) hold.
Given an admissible pair (£(j),7(j)), we define the following set of vertices:

CUG), (7)) = {2 € Vi G) < al2) and 7(7) < b(2)}.

Observe that all vertices of C(£(j),r(j)) induce a clique in G, because C(£(j),7(j)) C K-
We say that a vertex u crosses the pair (£(5),7(5)) if a(u) < £.(3) and r(j) < b(u). It is not
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difficult to see that for a vertex u that crosses (£(j),7(j)), we have u ¢ C(£(j),r(j)). We
prove the following properties of C(£(j),r(5)).

» Lemma 11. Let v, v be two vertices with b(vy) < b(vj/) and let (¢,7) be an admissible

pair for vj. Moreover, let v;,v; be the vertices of Vi j»\ C'(£,r) having the smallest a(v;) and

largest b(v;), respectively. If the vertices of C(¢,r) form a cluster in Ay j then the following

statements hold:

1. ViJ = ‘/i’,j’ \C(é,’f‘)

2. Ifa(x) <1 < b(x) holds for a vertex x € V; j, then x crosses ({,r).

3. Every vertex of B;(r) does not belong to the same cluster with any vertex of V; ; \ B;(r).

4. Every vertex that crosses (¢,1) does not belong to the same cluster with any vertexy € V; ;
having ¢, < a(y).

Notice that the number of admissible pairs (¢(j),7(j)) for v; is polynomial because there
are at most n choices for each clique-index. Moreover, if v; € M(j) then £(j) = a(v;). A pair
of clique-indices (¢,r) with ¢ < r is called bounding pair for v; if either b(v;) < r holds, or v;
crosses (¢,r). Given a bounding pair (¢,r) for v;, we write (¢(j),7(j)) < (¢,7) to denote the
set of admissible pairs (¢(j),7(j)) for v; with the following restriction on r(j):

r(j) < b(v;), whenever b(v;) < r holds, and r(j) < ¢, whenever b(v;) > r holds.
Observe that if b(v;) < r holds, then (¢(j),7(5)) < (¢,r) describes all admissible pairs for
v; with no restriction, regardless of ¢. On the other hand, if ¢ < a(v;) and r < b(v;) hold,
then (¢,7) is not a bounding pair for v;. In fact, we will show that the latter case will
not be considered in our partial subsolutions. Intuitively, an admissible pair (¢(j),r(j))
corresponds to the cluster containing v;, whereas a bounding pair (¢, ) forbids v; to select
certain vertices as they have already formed a cluster that does not contain v; (observe that
vj € C(UG),7(j)) and v ¢ C(L,7)).

Our task is to construct subsolutions over all admissible pairs for v; with the property
that the vertices of C'(€(j),r(j)) form a cluster. To do so, we consider a vertex v, with
b(v;) < b(v;) and a cluster containing v;. Let (¢,7) be an admissible pair for v;, such that
a(vj) <r < b(v;). The previous results suggest to consider solutions in which the vertices of
C(¢,r) form a cluster in an optimal solution. It is clear that if £ < a(v;) then v; € C(¢, 7).
Moreover, if b(v;) < 7, then no vertex of V; ; belongs to C(¢,7). Thus, we need to construct
solutions for A, ;, whenever (¢,r) is a bounding pair for v; and the vertices of C(¢,r) form a
cluster. Such an idea is formally described as follows: Let (¢,r) be a bounding pair for v;.

A, ;[¢, 7] is the value of an optimal solution for CLUSTER DELETION of the graph G[V; ;] —

(C(¢,7) U Bj(r)) such that the vertices of C(¢,r) form a cluster.

Hereafter, we assume that B;(t) with ¢ > b(v;) corresponds to an empty set. Figure 2
illustrates a partition of the vertices with respect to A; ;[¢,7]. Notice that an optimal solution
A; ; without any restriction is described in terms of A; ;[¢,7] by A; ;[1,b(v;) + 1], since no
vertex of V; ; belongs to C(1,b(v;) 4+ 1). Therefore, Ay ,[1,n + 1] corresponds to the optimal
solution of the whole graph G. As base cases, observe that if V; ; contains at most one vertex
then A; ;[¢,r] = 0 for all bounding pairs (¢,7). For a set C, we write |C|y to denote the
number (lgl). With the following result, we describe a recursive formulation for the optimal
solution A; ;[¢,r], which is our central tool for our dynamic programming algorithm.

» Lemma 12. Let (¢,r) be a bounding pair for v;. Then,
Aijler) = max  (A(V)[(G),r(5)] +|CUG), m()]2 + AVR)IE 7)),
(e(5)r(3))<(€r)

where Vi, = Vi ; \ (C(£(7),7(4)) U B;(r(4))) and Vr = Bj(r(j)) \ (C(£,7) U B;(r)).

» Theorem 13. CLUSTER DELETION is polynomial-time solvable on interval graphs.
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Figure 2 A partition of the set of vertices given in A; ;[¢,r], where Vi, = CL UL and Vg = CrRUR.

Observe that B;(r(j)) = RUCrRU (C (4,7) NV ;) U Bj(r).

4 Cluster Deletion on a generalization of split graphs

A graph G = (V,E) is a split graph if V' can be partitioned into a clique C' and an
independent set I, where (C,I) is called a split partition of G. Split graphs are characterized
as (2Ks, Cy, Cs)-free graphs [9]. They form a subclass of the larger and widely known graph
class of chordal graphs, which are the graphs that do not contain induced cycles of length 4 or
more as induced subgraphs. In general, a split graph can have more than one split partition
and computing such a partition can be done in linear time [17].

Hereafter, for a split graph G, we denote by (C,I) a split partition of G in which C' is a
maximal clique. It is known that CLUSTER DELETION is polynomial-time solvable on split
graphs [3]. In fact, the algorithm given in [3] is characterized by its simplicity due to the
following elegant characterization of an optimal solution: if there is a vertex v € I such that
N(v) = C\ {w} and w has a neighbor v’ in I then the non-trivial clusters of an optimal
solution are C'\ {w} U {v} and {w,v'}; otherwise, the only non-trivial cluster of an optimal
solution is C' [3]. Here we study whether such a simple characterization can be extended into
more general classes of split graphs. Due to Lemma 1, it is natural to consider true twins
at the independent set, as they are grouped together in an optimal solution and they are
expected not to influence the solution characterization. Surprisingly, we show that CLUSTER
DELETION remains NP-complete even on such a slight generalization of split graphs. Before
presenting our NP-completeness proof, let us first show that such graphs form a proper
subclass of Ps-free chordal graphs. We start by giving the formal definition of such graphs.

» Definition 14. A graph G = (V,E) is called split-twin graph if its vertex set can be
partitioned into C and I such that G[C] is a clique and the vertices of each connected
component of G[I] form true twins in G.

Tt is clear that in a split-twin graph G the following holds: (i) each connected component of
G|[I] is a clique and forms a true-twin set in G, and (ii) contracting the connected components
of G[I] results in a split graph, denoted by G*. Figure 3 illustrates the induced subgraphs
that are forbidden in a split-twin graph.

» Proposition 15. A graph G is split-twin if and only if it does not contain any of the graphs
Cy4,Cs, P5,2P3, A, X as induced subgraphs.
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Figure 3 The list of forbidden induced subgraph characterization for split-twin graphs.

Thus by Proposition 15, split-twin graphs form a proper subclass of Ps-free chordal
graphs, i.e., of (Cy, C5, P5)-free graphs. Now let us show that decision version of CLUSTER
DELETION is NP-complete on split-twin graphs. This is achieved by observing that the
constructed graphs given in the reduction for Ps-free graphs [3], constitute such split-related
graphs. In particular, the reduction shown in [3] comes from the X3C problem: given a
universe X of 3¢ elements and a collection C' = {C1,...,C|¢|} of 3-element subsets of X,
asks whether there is a subset C’ C C' such that every element of X occurs in exactly one
member of C’. The constructed graph G is obtained by identifying the elements of X as a
clique Kx and there are |C| disjoint cliques K7, ..., K|¢| each of size 3¢ corresponding to
the subsets of C' and a vertex = of Kx is adjacent to all the vertices of K; if and only if x
belongs to the corresponding subset C; of K;. Then, it is not difficult to see that the vertices
of each K; are true twins and the contracted graph G* is a split graph, showing that G is
indeed a split-twin graph. Therefore, by the NP-completeness given in [3], we have:

» Theorem 16. CLUSTER DELETION is NP-complete on split-twin graphs.

However, here we give a different reduction that highlights an interesting connection
between edge-weighted and vertex-weighted split graphs. In the EDGE WEIGHTED CLUSTER
DELETION problem, each edge of the input graph is associated with a weight and the objective
is to construct a clustered graph having the maximum total (cumulative) weight of edges. As
already explained, we can contract true twins and obtain a vertex-weighted graph as input
for the corresponding CLUSTER DELETION. Similarly, it is known that for edge-weighted
graphs the corresponding EDGE WEIGHTED CLUSTER DELETION remains NP-hard even
when restricted to particular variations on special families of graphs [3]. In fact, it is known
that EDGE WEIGHTED CLUSTER DELETION remains NP-hard on split graphs even when (i)
all edges inside the clique have weight one, (ii) all edges incident to a vertex w € I have the
same weight ¢, and (iii) ¢ = |C] [3]. We abbreviate the latter problem by EWCD and denote
by (C,1,k) an instance of the problem where (C,I) is a split partition of the vertices of G
and k is the total weight of the edges in a cluster solution for G. With the following result,
we show an interesting connection between the two variations of the problem when restricted
to split-twin graphs.

» Theorem 17. There exists a polynomial time algorithm that, given an instance (C, I, k)
for EWCD, produces an equivalent instance for CLUSTER DELETION on split-twin graphs.

Proof. From G, we build a split-twin graph G’ = (C" U I', E’) by keeping the same clique
C’ = C, and for every vertex w; € I we apply the following:
We replace w; by g = |C| true twin vertices I} (i.e., by a g-clique) such that for any
vertex w' € I we have Ng/(w') = Ng(w;) U (I \ {w’}). That is, their neighbors outside
I} are exactly Ng(w;). Moreover, the set of vertices I7, ... ,II’” form I'.
By the above construction, it is not difficult to see that G’ is a split-twin graph, since the
graph induced by I’ is a disjoint union of cliques and two adjacent vertices of I’ are true
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twins in G’. Also observe that the construction takes polynomial time because ¢ is at most

n = |V(G)|. We claim that there is an edge weighted cluster solution for G with total weight

at least k if and only if there is a cluster solution for G’ having at least k + |I] - () edges.
Assume that there is a cluster solution S for G with total weight at least k. From S, we

construct a solution S’ for G'. There are three types of clusters in S:

(a) Cluster formed only by vertices of the clique C, i.e., Y € S, where Y C C'. We keep such
clusters in S’. We denote by ¢, the total weight of clusters of type (a). Notice that since
the weight of edges having both endpoints in C are all equal to one, t, corresponds to
the number of edges in Y.

(b) Cluster formed only by one vertex w; € I, i.e., {w;} € S. In S" we replace such cluster
by the corresponding clique I ]’ having exactly (g) edges. It is clear that the total weight
of such clusters do not contribute to the value of S.

(c) Cluster formed by the vertices y1, ..., yp, w;, where y; € C' and w; € I. As the weights
of the edges between the vertices of y; is one, the total number of weights in such a
cluster is (§) 4+ p- . Let t. be the total weight of clusters of type (c). In S” we replace

w; by the vertices of I} and obtain a cluster S” having (5) +p- g+ (4) number of edges.

Now observe that in S we have t, + . total weight, which implies ¢, + t. > k. Thus, in S’
we have at least t, + t. + |I] - (1) edges, giving the desired bound.

For the opposite direction, assume that there is a solution S’ in G’ having at least
k+1I]- (g) edges. All vertices of I} are true twins and, by Lemma 1, they belong to the
same cluster in S’. Thus, any cluster of S’ has one of the following forms: (i) Y’, where
Y’ C (i) I, (iii) I; U{y1,...,y,}, where y; € C". This means that all internal edges
having both endpoints in I’ contribute to the value of S” by |I| - (g) Moreover, observe that
for any internal edge of S’ of the form y'w’ with y’ € C" and v’ € I}, we know that there
are exactly ¢ internal edges incident to y" and the g vertices of I}. Thus, internal edges y'w’
of S” correspond to exactly one internal edge yw; of S having weight ¢, where y =y’ (recall
that C' = C”) and wj is the vertex of I associated with I;. Hence, all internal edges outside
each I ]' in S’ correspond to either a weighted internal edge in S or to the same unweighted
edge of C' in S. Therefore, there is an edge weighted solution S having weight at least k. <«

4.1 Polynomial-time algorithms on subclasses of split-twin graphs

Due to the hardness result given in Theorems 16 and 17, it is natural to consider subclasses
of split-twin graphs related to their analogue subclasses of split graphs. We consider two such
subclasses. The first one corresponds to the split-twin graphs such that the vertices of I have
no common neighbor in the clique, unless they are true or false twins. The second subclass
corresponds to threshold graphs (i.e., split graphs in which the vertices of the independent
set have nested neighborhood) and form the split-twin graphs in which the vertices of I have
a nested neighborhood. We formally define such graphs and give polynomial-time algorithms
for CLUSTER DELETION. For a vertex « € I we write No(z) to denote the set N(z) N C.

» Definition 18. A split-twin graph G with partition (C,I) on its vertices is called 1-split-twin
graph if for any two vertices x,y € I, either No(z) N No(y) = @ or No(x) = Ne(y).

It is not difficult to see that in a 1-split-twin graph, any two vertices of I having a
common neighbor in C have the same neighborhood in C. Close related to 1-split-twin
graphs, are the I-split graphs which are the edge-weighted split graphs in which every vertex
of the independent set is adjacent to exactly one vertex of the clique. It is known that the
(edge-weighted) CLUSTER DELETION is solved in polynomial-time on 1-split graphs [3]. Let
us explain how to use the algorithm on a 1-split graph to obtain a polynomial-time algorithm
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on a 1-split-twin graph G = (C,I). Observe that the contracted graph G* is 1-split. Let xy
be an edge of G*. Denote by w(x) and w(y) the weights assigned to = and y that correspond
to the sizes of their true twins classes in G. From the vertex-weighted 1-split graph G*,
construct an edge-weighted 1-split graph H* by removing the vertex weights and for each
edge zy assign weight w(z) - w(y). Then, given a solution of the edge-weighted H* taken
from the algorithm of [3], we obtain a solution for CLUSTER DELETION on G by adding the
internal edges corresponding to each contracted vertex.

Notice, however, that the running time is bounded by the polynomial-time algorithm
of 1-split graphs. In particular the described algorithm of 1-split graphs is accomplished
through a minimizer of a general submodular function provided a given oracle for evaluating
the function value [3]. This means that through such an approach it is unlikely to achieve
a better running time for 1-split-twin graphs, unless there is a faster algorithm with less
number of oracle calls for finding a minimizer of a general submodular function. With our
next result we provide a simpler and faster (linear-time) algorithm for CLUSTER DELETION
on 1-split-twin graphs that avoids the usage of submodular functions minimization.

» Theorem 19. CLUSTER DELETION is linear-time solvable on 1-split-twin graphs.

Proof. Let G be a 1-split-twin graph with partition (C,I). First observe that if G is
disconnected then I contains isolated cliques, i.e., true twins having no neighbor in C. Thus
we can restrict ourselves to a connected graph G, since by Lemma 1 each isolated clique is
contained in exactly one cluster of an optimal solution. We now show that all vertices of C
that have a common neighbor in I are true twins. Let v and v be two vertices of C' such
that z € N(u) N N(v) N I. All vertices of C'\ {u,v} are adjacent to both v and v. Assume
that there is a vertex y € I that is adjacent to v and non-adjacent to v. If zy € E(G)
then by the definition of split-twin graphs = and y are true twins which contradicts the
assumption of zv € E(G) and yv ¢ E(G). Otherwise, z and y are non-adjacent and since
Ng(x) N Ne(y) # @ we reach a contradiction to the definition of 1-split-twin graphs. Thus,
all vertices of C' that have a common neighbor in I are true twins.

We partition the vertices of C' into true twin classes C1, . .., Cf, such that each C; contains
true twins of C. From the previous discussion, we know that any vertex of I is adjacent to
all the vertices of exactly one class C;; otherwise, there are vertices of different classes in C
that have common neighbor. For a class C;, we partition the vertices of N(C;) N I into true
twin classes I}, ..., I such that |I}| > - > |I]].

We claim that in an optimal solution S, the vertices of each class If with j > 2 constitute
a cluster. To see this, observe first that the vertices of Iij , 1 <7 < gq, are true twins, and by
Lemma 1 they all belong to the same cluster of S. Also, by Lemma 1 we know that all the
vertices of C; belong to the same cluster of S. Moreover, all vertices between different classes
Il-j ,Ig " are non-adjacent and are C;-compatible. Since every vertex of IZ is non-adjacent to
all the vertices of V(G) \ {I/ U C;}, we know that any cluster of S that contains I7 is of
the form either {I7 U C;} or I7. Assume that there is a cluster that contains {I7 U C;} with
j > 2. Then, we substitute the vertices of I j by the vertices of I} and obtain a solution of at
least the same size, because |I}| > |I7| implies (‘C""JQFIUI) > (ICiI;\I{\). Thus, all vertices of
each class If with j > 2 constitute a cluster in an optimal solution S.

This means that we can safely remove the vertices of If with 7 > 2, by constructing
a cluster that contains only If . Hence, we construct a graph G* from G, in which there
are only matched pair of k classes (C;, I;) such that (i) all sets C;, I; are non-empty except
possibly the set I, (ii) N(C;) N1 = I,, (iii) N(I;) = C;, (iv) G*[C; U ] is a clique, and (v)
G*[CLU---UCy] is a clique. Our task is to solve CLUSTER DELETION on G*, since for the
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rest of the vertices we have determined their cluster. By Lemma 1, if the vertices of C; U C}
belong to the same cluster then the vertices of each I; and I; constitute two clusters. Thus,

for each set of vertices I; we know that either one of C; U I; or I; constitutes a cluster in S.

This boils down to compute a set M of matched pairs (C;, I;), having the maximum value

(G (Tagrlol), s (15,

(Ci,I;)eEM I;¢M

Let (C;, I;) and (Cy, I;) be two pairs of classes such that |C;| + |I;| < |C;| + |I;|. We show
that if (C;,I;) ¢ M then (C;,I;) ¢ M. Assume for contradiction that (C;,I;) ¢ M and
(Ci,I;) € M. Observe that |I;]| < th@v[\cj |Cy], because I; is Cj-compatible. Similarly,
we know that thgM\Cj |Cy| + |C;| < |I;|. This however, shows that |C;| + |I;| < |L;],
contradicting the fact that |C;| + |I;| < |Cj| + |I;|. Thus (Cj,I;) ¢ M implies (C;, I;) ¢ M.

This means that we can consider the k pair of classes (C;,I;) in a decreasing order
according to their number of vertices |C;| + |I;|. With a simple dynamic programming
algorithm, starting from the largest ordered pair (Cy, I;) we know that either (Cq, I1) belongs
to M or not. In the former, we add ('Cllg‘h') to the optimal value of (Ca, Is), ..., (Ck, Ix)

and in the latter we know that no pair belongs to M giving a total value of (ZQ‘C‘) +> (‘12‘)
By choosing the maximum between the two values, we construct a table of size k needed
for the dynamic programming. Computing the twin classes and the partition (C,I) takes
linear time in the size of G and sorting the pair of classes can be done O(n) time, since
>(|C;i] + |I;]) is bounded by n. Thus, the total running time is O(n 4+ m), as the dynamic
programming for computing M requires O(n) time. Therefore, all steps can be carried out
in linear time for a 1-split-twin graph G. <

» Definition 20. A split-twin graph G with partition (C,T) on its vertices is called threshold-
twin graph if the vertices of I can be ordered wi, ..., w such that for any w;,w; € I with
i < j, we have N¢(w;) € Ne(wj).

For the next result, we prove that there is no Py in a threshold-twin graph (Py-free graphs
are closed under true twins addition). Thus, by the algorithm given in [11], we have:

» Theorem 21. CLUSTER DELETION is polynomial-time solvable on threshold-twin graphs.

5 Concluding remarks

It is notable that our algorithm for interval graphs, heavily relies on the linear structure
obtained from their clique paths. Such an observation, leads us to consider few open questions
regarding two main directions. On the one hand, it seems tempting to adjust our algorithm
for other vertex partitioning problems on interval graphs within a more general framework,
as already have been studied for particular graph properties [4, 12, 20, 21, 25]. On the other
hand, it is reasonable to ask whether our approach works for CLUSTER DELETION on graphs
admitting similar linear structure such as permutation graphs, or graphs having bounded
linear related parameter. Towards the latter direction, observe that CLUSTER DELETION as
a vertex partitioning problem can be solved in linear time on graphs of bounded treewidth
by using Courcelle’s machinery [6].

Although for other structural parameters it seems rather difficult to obtain similar result,
it is still interesting to settle the complexity of CLUSTER DELETION on distance hereditary
graphs that admit constant clique-width [15]. In fact, we would like to settle the case in
which from a given cograph we can append degree-one vertices. This comes in conjunction
with the 1-split-twin graphs, as they can be seen as a degree-one extension of a clique.
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—— Abstract

The square of a graph H, denoted H?, is obtained from H by adding new edges between two distinct
vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X,Y, EB)
are the subgraphs of B? induced by the color classes X and Y, B*[X] and B?[Y]. For a given graph
G = (V,Eg), if G = B?[V] for some bipartite graph B = (V,W, Eg), then B is a representation
of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph
and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM, 49 (2) (2002) 127-138].

While Chen, Grigni, Papadimitriou proved that any map graph G = (V, Eg) has a witness with
at most 3|V| — 6 points, we show that, given a map graph G and an integer k, deciding if G admits
a witness with at most k£ points is NP-complete. As a by-product, we obtain NP-completeness of
EDGE CLIQUE PARTITION on planar graphs; until this present paper, the complexity status of EDGE
CLIQUE PARTITION for planar graphs was previously unknown.

We also consider half-squares of tree-convex bipartite graphs and prove the following complexity
dichotomy: Given a graph G = (V, Eg) and an integer k, deciding if G = B?[V] for some tree-convex
bipartite graph B = (V, W, Eg) with |W| < k points is NP-complete if G is non-chordal dually
chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of
tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs.
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1 Introduction

Map graphs, introduced and investigated in [5, 6], are intersection graphs of simply-connected
and interior-disjoint regions of the Euclidean plane; each region is homeomorphic to a closed
disc. More precisely, a map of a graph G = (V, Eg) is a function M taking each vertex
v € V to a region M(v) in the plane, such that all M(v), v € V, are interior-disjoint,
and two distinct vertices v and v’ of G are adjacent if and only if the boundaries of M (v)
and M(v') intersect, even in a point. A map graph is one having a map. Map graphs are
interesting as they generalize planar graphs in a very natural way. Some applications of map
graphs have been addressed in [8]. Papers dealing with hard problems in map graphs include
4,9, 10, 11, 13, 14].

In [5, 6], the notion of half-squares of bipartite graphs has been also introduced in order
to give a combinatorial representation of map graphs. The square of a graph H, denoted H2,
is obtained from H by adding new edges between any two vertices at distance two in H.
For a bipartite graph B = (X,Y, Ep), the subgraphs of the square B? induced by the
color classes X and Y, B?[X] and B?[Y], are called the two half-squares of B. For a given
graph G = (V, Eg), if G = B?[V] for some bipartite graph B = (V,W, Ep), then B is a
representation or a half-root of G and W is the set of points in B. While every graph is a
? Hoang-Oanh Le an.d Van Bang Le;.
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half-square of some bipartite graph, it turns out that map graphs are exactly half-squares
of planar bipartite graphs [5, 6]. If G = (V, E¢) is a map graph and B = (V,W, Ep) is a
planar representation of GG, then B is called a witness of G. See Figure 1 for an example.

Figure 1 A map graph G, a map M, and a witness B of G.

It is perhaps important to note at this place that one of the difficulties in recognizing
map graphs is that we do not know the set of points of a witness we are looking for. It is
shown in [5, 6] that an n-vertex graph G = (V, E) is a map graph if and only if it has a
witness B = (V, W, Ep) with |W| < 3n — 6 points, implying that recognizing map graphs
is in NP. Subsequently, Thorup [28] announced that recognizing map graphs is in P by

120)_time algorithm for n-vertex input graphs.! Thorup’s algorithm is very

giving an Q(n
complex and highly non-combinatorial. Given the very high polynomial degree in Thorup’s
running time, the most discussed problem concerning map graphs is whether there is a faster
recognition algorithm with simpler arguments for map graphs.

One direction in attacking this problem is to consider map graphs with restricted witness.
Structural results and more efficient recognition algorithms for map graphs with restricted
witness will enhance our understanding on map graphs in whole. More generally, let B be a
class of (not necessarily planar) bipartite graphs, the following problem has been discussed

first by Le and Le [18].

B REPRESENTATION
Instance: A graph G = (V, Egq).
Question: Does there exist a bipartite graph B = (V, W, Eg) in B with G = B?[V]?

Recall that in case B is the class of all planar bipartite graphs, PLANAR REPRESENTATION
is the problem of recognizing map graphs, which admits an Q(n'2°)-time algorithm due to
Thorup. Recall also that every map graph has a witness B = (V, W, Eg) with |W| < 3|V|—6
due to Chen et al. [5, 6]. This motivates considering the following problem.

POINT MINIMAL 3 REPRESENTATION
Instance: A graph G = (V, E¢) and an integer k.
Question: Does there exist a bipartite graph B = (V,W, Eg) in B with G = B2[V]
and |W| < k?

In case B is the class of all bipartite graphs, we simply denote the problem by POINT MINIMAL
REPRESENTATION.

This paper considers the cases where B is one of the classes of (planar) bipartite graphs
of a given girth, of tree-convex bipartite graphs, and of tree-biconvex bipartite graphs. All
terms used are given in the next section.

! Thorup did not give the running time explicitly, but it is estimated to be roughly Q(n'?°) with n being
the vertex number of the input graph; cf. [6].



H.-O. Le and V.B. Le

Our contributions. We first consider map graphs with witness of large girth and, more
generally, half-squares of bipartite graphs of large girth, and prove the following complexity
dichotomy for MINIMAL POINT (PLANAR) GIRTH-g REPRESENTATION: Given a (map) graph
G = (V, Eg) and an integer k, deciding if G = B2[V] for some (planar) bipartite graph B =
(V,W, Ep) of girth at least g with |W| < k points is NP-complete for g < 6 and polynomially
solvable otherwise. The case g > 8 is based on our previous paper [19], and the case g < 6 is
based on a close connection to the well-known NP-complete problems EDGE CLIQUE COVER
and EDGE CLIQUE PARTITION. It is perhaps interesting to note that, while recognizing map
graphs is in P due to Thorup, our hardness result in case g = 4 says that the problem
becomes intractable if we ask for a witness with few points. In case g = 6, our result implies
that EDGE CLIQUE PARTITION is NP-complete for planar graphs. (The complexity status
of this problem for planar graphs was previously unknown.) We then consider half-squares
of tree-convex bipartite graphs, and prove the following complexity dichotomy for MINIMAL
POINT TREE-CONVEX REPRESENTATION: Given a graph G = (V, Eg) and an integer k,
deciding if G = B?[V] for some tree-convex bipartite graph B = (V, W, Ep) with [W| < k
points is NP-complete for non-chordal dually chordal graphs G and solvable in linear time
otherwise. We obtain this result by proving that half-squares of tree-convex bipartite graphs
are exactly the chordal and dually chordal graphs. We also show that MINIMAL POINT
TREE-BICONVEX REPRESENTATION can be solved in linear time by proving that half-squares
of tree-biconvex bipartite graphs are precisely the double chordal graphs. Our results on
half-squares of tree-(bi)convex bipartite graphs settle the question left open in [18].

Related work. The first restricted representations of map graphs have been considered
in [5, 6] which lead to the so-called k-map graphs; k-map graphs are map graphs having a
witness in which every point has at most k neighbors. It turns out that, for k£ < 3, k-map
graphs are precisely the planar graphs. 4-map graphs can be recognized in cubic time [1], and
are related to 1-planar graphs [1, 7], a relevant topic in graph drawing. Recognizing k-map
graphs, k > 5, in polynomial time still remains open. (We remark that Thorup’s algorithm
cannot be used to recognize map graphs having witness with additional properties.)

Mnich et al. [25] considered map graphs with outerplanar witness and tree witness, and
showed that such map graphs can be recognized in linear time. Map graphs with witness of
a given girth and, more generally, half-squares of bipartite graphs of a given girth have been
considered in the recent paper [19]. It is shown in that paper that half-squares of (planar)
bipartite graphs of girth at least 8 admit good characterizations, leading to cubic time
recognition algorithms. In [18], half-squares of classical bipartite graphs, such as biconvex,
convex, and chordal bipartite graphs, have been studied. It turns out that half-squares of
biconvex, convex, and chordal bipartite graphs (all are subclasses of tree-(bi)convex bipartite
graphs) are exactly the proper interval, interval, and strongly chordal graphs, respectively.

The paper is organized as follows. All definitions and notion needed are provided in
the next section. Section 3 first collects known results on half-squares of (planar) bipartite
graphs of large girth, and then provides a dichotomy theorem for POINT MINIMAL GIRTH-g
(PLANAR) REPRESENTATION. Section 4 deals with half-squares of tree-convex and tree-
biconvex bipartite graphs, and provides a dichotomy theorem for POINT MINIMAL TREE-
CONVEX REPRESENTATION. Section 5 concludes the paper with some open problems for
future work.
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2 Preliminaries

All graphs considered are simple and connected. Let G = (V, Eg) be a graph with vertex
set V(G) =V and edge set E(G) = Eg. A stable set (a clique) in G is a set of pairwise
non-adjacent (adjacent) vertices. The complete graph on n vertices and the cycle with n
vertices are denoted K, and C,, respectively. A K3 is also called a triangle. The diamond,
denoted K, — e, is the graph obtained from the K, by deleting an edge.

The neighborhood of a vertex v in G, denoted Ng(v), is the set of all vertices in G
adjacent to v; if the context is clear, we simply write N(v). A universal vertex v in G is one
with N(v) =V '\ {v}, i.e., v is adjacent to all other vertices in G.

Let F' be a graph. F'-free graphs are those having no induced subgraphs isomorphic to F'.
Chordal graphs are precisely the Cy-free graphs, k > 4. A dually chordal graph G is one in
which every connected component H of G admits a spanning tree 7" such that every maximal
clique of H induces a subtree in 7.2 Graphs that are both chordal and dually chordal are
called double chordal. While chordal graphs are closed under taking induced subgraphs,
dually chordal graphs and double chordal graphs are not. Strongly chordal graphs are those
graphs G such that every induced subgraph of G is double chordal. See [15, 24, 27] for more
information on these graph classes. Additional information on dually chordal graphs can
be found in [2]. We will use the well-known facts that chordal and dually chordal graphs,
hence double chordal graphs, can be recognized in linear time [15, 27, 2], and that any
n-vertex chordal graph has at most n maximal cliques and all of them can be listed in linear
time [15, 27].

For a subset W C V| G[W] is the subgraph of G induced by W, and G — W stands for
G[V \ W]. For a vertex v, G — v stands for G — {v}. We will consider map graphs with
large-girth witness and, more generally, half-squares of bipartite graphs of large girth. Here,
the girth of a graph is the minimum length of a cycle in that graph. (Thus, a graph has
girth at least ¢ if and only if it is Ck-free for all k < g.) We will also consider half-squares of
tree-convex bipartite graphs, a problem left open in [18]. A bipartite graph B = (X,Y, Ep)
is tree-convex on X if there exists a tree T = (X, Er) such that, for each y € Y, N(y)
induces a subtree in T'. Being tree-convezr on Y is defined similarly. B is tree-convex if it is
tree-convex on X or tree-convex on Y. B is tree-biconvez if it is both tree-convex on X and
tree-convex on Y. A well-known subclass of tree-biconvex bipartite graphs consists of the
chordal bipartite graphs, i.e., bipartite graphs containing no induced cycle of length at least
six. Liu [21] discusses relationships between tree-convex bipartite graphs and other classical
classes of bipartite graphs.

POINT MINIMAL 3 REPRESENTATION is related to two well-studied problems. An edge
clique cover of a graph G is a family of cliques C in G such that every edge of G is contained
in one or more cliques in C. An edge clique partition of G is an edge clique cover C of G such
that every edge of G is contained in exactly one clique in C. The two well-studied problems
are:

EDGE CLIQUE COVER
Instance: A graph G = (V, Eg) and an integer k.

Question: Does G have an edge clique cover of size k or less?

2 Dually chordal graphs haven been studied under different names and admit various characterizations.
The chosen definition is dependent on our purpose.
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EDGE CLIQUE PARTITION
Instance: A graph G = (V, Eg) and an integer k.

Question: Does G have an edge clique partition of size k or less?

EDGE CLIQUE COVER is NP-complete [26, 17], and remains NP-complete on planar graphs [3]
and on complements of bipartite graphs [20]. We will use the fact that EDGE CLIQUE COVER is
solvable in linear time on chordal graphs [23]. The monograph [24] provides more information
on edge clique covers.

EDGE CLIQUE PARTITION is NP-complete [26, 16], and remains NP-complete on K-free
graphs [22]. In contrast to EDGE CLIQUE COVER, EDGE CLIQUE PARTITION is NP-complete
on chordal graphs, even on split graphs [30]. EDGE CLIQUE PARTITION on planar graphs has
been considered in [12]; the complexity status of this problem on planar graphs was unknown
until our present work.

Let C be an edge clique cover of a graph G = (V, Eg). The vertez-C incidence bipartite
graph of G is B¢ = (V,C, Ep) with Eg = {vC |v e V,C € C,v € C}. If C = C(G), the set of
all maximal cliques in G, then Bg is called the vertex-clique incidence bipartite graph of G
and usually denoted by Bg.

» Fact 1.
(i) For any graph G = (V, E¢) and any edge clique cover C of G, G = B4[V]. IfC is in
addition an edge clique partition, then Be is Cy-free.
(ii) For any graph G = (V, Eg) and any bipartite graph B = (V,W, Eg) with G = B*[V],
C ={Np(w) | w e W} is an edge clique cover of G. If B is in addition Cy-free, then C
is an edge clique partition of G.

Proof. (i): For all vertices 2,y € V we have xy € Eg < z,y € C for some C € C < zC and
yC are edges of Bc for some C € C < zy € E(BZ[V]). If C is an edge clique partition, then,
for any two distinct cliques C,C’ € C, C and C' have at most one vertex in common. Hence,
Be is a Cy-free.

(ii): If G = B?[V] for some bipartite graph B = (V, W, Eg), then any edge of G is in a
clique Np(w) for some w € W, hence {Np(w) | w € W} is an edge clique cover of G. If, in

addition, B is Cy-free, then |[Np(w) N Np(w')| < 1 for any two distinct points w,w’ € W.

Hence {Np(w) | w € W} is an edge clique partition of G. <

Thus,

POINT MINIMAL REPRESENTATION and EDGE CLIQUE COVER, and

POINT MINIMAL C4-FREE REPRESENTATION and EDGE CLIQUE PARTITION
are computationally equivalent.

3 Girth-constrained representations

This section deals with half-squares of (planar) bipartite graphs of large girth. In [18], the
following useful fact has been observed, and used in [19] in discussing half-squares of bipartite
graphs with girth constraints.

» Lemma 1 ([18]). Let G = B2?[V] for some bipartite graph B = (V,W, Ep). If B has no
induced cycle of length six, then every maximal clique @ in G stems from a star in B, i.e.,
there is a point w € W such that Q = Np(w).

We will also use this fact when considering point minimal representations of half-squares
and map graphs.
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3.1 Half-squares of girth-constrained bipartite graphs

Recall that every graph is a half-square of a girth-six bipartite graph (take its subdivision).
Half-squares of bipartite graphs of large girth have been fully characterized as follows.

» Theorem 2 ([19]). Let t > 4 be an integer. The following statements are equivalent for
every graph G = (V, Eg).

(i) G is a half-square of a bipartite graph with girth at least 2t;

(ii) G is diamond-free and Cy-free for every 4 < ¢ <t —1;

(iii) The vertez-clique incidence bipartite graph Bg of G has girth at least 2t.

Theorem 2 implies that half-squares of bipartite graphs of large girth can be recognized
in cubic time (cf. [19]).

By definition, every map graph is a half-square of a planar bipartite graph. Though map
graphs can be recognized in polynomial time due to Thorup, no good characterization for
map graphs is known so far. Map graphs of planar bipartite graphs of large girth have been
fully characterized as follows.

» Theorem 3 ([19]). Lett > 4 be an integer. The following statements are equivalent for
every graph G = (V, Eg).
(i) G is a map graph having a witness of girth at least 2t;
(if) G is diamond-free and Cy-free for every 4 < £ <t —1, and the vertez-clique incidence
bipartite graph Bg of G is planar;
(iii) The vertex-clique incidence bipartite graph Bg of G is planar and has girth at least 2t.

Theorem 3 implies that map graphs with witness of large girth can be recognized in time
O(n?m) (cf. [19]). No good characterization of map graphs with girth-six witness is known
so far. It is also not known whether these map graphs can be recognized efficiently. Note
that every planar graph has a girth-six witness, e.g., its subdivision.

3.2 Point minimal girth-constrained representations

This subsection deals with half-squares of (planar) bipartite graphs with girth constraints.
We first consider the non-planar case.

Recall that, by Fact 1, POINT MINIMAL REPRESENTATION is equivalent to EDGE CLIQUE
COVER, and thus is NP-complete. Also by Fact 1, POINT MINIMAL C4-FREE REPRESENTATION
is equivalent to EDGE CLIQUE PARTITION, and thus is NP-complete. Notice that Cy-free
bipartite graphs and bipartite graphs of girth at least six coincide.

Now, let ¢ > 4 be an integer and assume G = B2?[V] for some bipartite graph B =
(V,W, Ep) of girth at least 2¢. By Lemma 1, any maximal clique in G is a neighborhood of
some w € W, implying |W| > |C(G)|. Thus, by Theorem 2, B¢ is a minimal point girth-2¢
representation for G. Note that, in this case, C(G) can be computed in polynomial time
(cf. [19]), hence we obtain:

» Theorem 4. POINT MINIMAL GIRTH-AT-LEAST-2t REPRESENTATION is NP-complete for
t < 3 and solvable in polynomial time otherwise.

In the remainder of this subsection, we deal with the planar case. We first consider the
girth-four witness case, i.e., no girth condition is made. Recall that any map graph with
n vertices has a witness with at most 3n — 6 points. We are going to show that finding a
witness with minimal number of points is hard. We will use the fact that EDGE CLIQUE
COVER remains NP-complete on maximal planar graphs without triangle-separators. More
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precisely, it was shown in [3], that EDGE CLIQUE COVER remains NP-complete for plane
triangulations in which every triangle is a face. Observe that such a triangulation does not
contain any 4-clique K4, unless the whole graph is a K4. Thus, we may further assume that
all plane triangulations considered are Ky-free.

» Theorem 5. POINT MINIMAL PLANAR REPRESENTATION is NP-complete, even when
restricted to planar graphs.

Proof. Let G = (V, Eg) be a plane triangulation in which every triangle is a face, and let k
be an integer. We will argue that G has an edge clique cover of size k or less if and only if G
has a witness B = (V,W, Ep) with |W| < k.

First, assume G has an edge clique cover C with |C| < k. Note that we can assume that
every clique in C is a triangle. Then, as any triangle in G is a face of the plane triangulation G,
the vertex-C incidence bipartite graph Be = (V,C, Eg) is planar. Indeed, B¢ is obtained
from G by

inserting a point wy in the face T, T' € C, and

connecting wr with the three vertices of the triangle T', and

deleting all edges of G.

See also Figure 2. By Fact 1, as C is an edge clique cover of G, G = BZ[V], and by
construction, B¢ has |C| < k points.

Next, assume that G = H?[V] for some (planar) bipartite graph H = (V, W, Ey) with
|W| < k. Then, by Fact 1, Ng(w), w € W, form an edge clique cover of G with [W| < k
cliques. (Notice that, in this direction, we do not use the fact that H is planar. Any half-root
of G with at most k points works.) <

Figure 2 A triangulation G with the edge clique cover C consisting of the eight triangles
126,278, 389, 349, 145, 567,579, and 123, and the planar bipartite graph B¢ obtained from G and C.

We next consider the girth-six witness case. Recall that every planar graph has a witness
of girth six. We are going to show that finding a witness of girth six with minimal number of
points is hard. In a graph, a set of pairwise edge-disjoint triangles is called an independent
triangle set. In [29], Uehara considered the following problem:

INDEPENDENT TRIANGLE SET
Instance: A graph G = (V, Eg) and an integer k.

Question: Does G have k or more pairwise edge-disjoint triangles?

Uehara [29] proved that the INDEPENDENT TRIANGLE SET, restricted to plane triangulations,
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is NP-complete. Chang and Miiller [3] observed that INDEPENDENT TRIANGLE SET is NP-
complete even on plane triangulations in which every triangle is a face. (We leave the details

to the full version.) Recall that we may further assume that all such plane triangulations are
Ky-free.

» Theorem 6. POINT MINIMAL PLANAR GIRTH-6 REPRESENTATION is NP-complete, even
when restricted to planar graphs.

Proof. Let G = (V, Eg) be a plane triangulation without K4 in which every triangle is a
face, and let k be an integer. We will argue that G has k edge-disjoint triangles if and only if
there is a Cy-free planar bipartite graph B = (V, W, Eg) with G = B2[V] and |W| < m — 2k.
(As usual, m denotes the edge number of G.)

First, assume G has k edge-disjoint triangles 17, ..., T. We construct a bipartite graph
B = (V,W, Ep) as follows; let F be the set of all edges of G not belonging to any triangle
T;, 1 <i<k. Foreach 1 <1i <k, w;is a point in W corresponding to T;, and for each
edge e € F', w, is a point in W corresponding to e. Then, B is the V-W incidence bipartite
graph. Thus, W = {wy,...,wp} U{w. | e € F}, and Ep = {vw; |v € Vv € T;,1 < i <
k}U{vw, | v € V,v € e € F}. Obviously, B is planar. Indeed, B is obtained from the plane
triangulation G by

inserting a point w; in the face T;, 1 < i < k, and connecting w; with the three vertices

of Tj,

subdividing each edge e € F' by a point w,, and

deleting all edges in T4 U ... U T.

Now, as each of the triangles T; is a face of the plane triangulation GG, B is clearly planar.

Since {T1,..., Ty} U F is an edge clique cover of G, G = B?[V]. Since the triangles T;
are edge-disjoint, |Np(w;) N Np(w;)| < 1for 1 <4,j <k, i # j, and by definition of F,
INg(we) N Np(w)| <1forallee F, we W\ {w}. Thatis, Bis Cy-free. Moreover, B has
|W| =k + |F| =m — 2k points.

Next, assume that G = H?[V] for some (planar) Cy-free bipartite graph H = (V, W, Eyy)
with |W| < m—2k. Among all such bipartite graphs, let H have minimal number of points |[W]|.
Since G is Ky-free, [Ng(w)| < 3 for all w € W. Since |W| is minimal, | Ny (w)| > 2, and every
two points have distinct neighborhoods. Let wy, ..., wy be the degree-3 points in W. Then,
as H is Cy-free, Ng(w;), 1 <i < k', are k' edges-disjoint triangles in G. Since G = H?[V],
G has m =3k + (|W| — k') = |W| + 2k <m — 2k + 2k’ edges. Therefore, k' > k. That is,
G has at least k edges-disjoint triangles. |

Since, by Fact 1, POINT MINIMAL GIRTH-6 REPRESENTATION and EDGE CLIQUE PARTITION
are equivalent, Theorem 6 implies:

» Corollary 7. EDGE CLIQUE PARTITION is NP-complete on planar graphs.

We remark that the complexity of EDGE CLIQUE PARTITION on planar graphs was
previously unknown until this work (cf. [12]). Actually, the proof of Theorem 6 implies that
EDGE CLIQUE PARTITION is NP-complete even for K4-free maximal plane graphs in which
every triangle is a face.

Now, let t > 4 be an integer, and assume that G = B2[V] for some planar bipartite
graph B = (V,W, Eg) of girth at least 2¢. By Lemma 1, any maximal clique in G is a
neighborhood of some point w € W, implying |W| > |C(G)|. Thus, by Theorem 3, Bg is a
minimal point planar girth-2¢ representation for G. Note that, in this case, C(G) can be
computed in polynomial time (cf. [19]), hence, by Theorems 5 and 6 we obtain:
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» Theorem 8. POINT MINIMAL PLANAR GIRTH-AT-LEAST-2¢ REPRESENTATION is NP-comp-
lete for t < 3 and solvable in polynomial time otherwise.

4 Tree-convex representations

Recall that a bipartite graph B = (X,Y, Ep) is tree-convex on X (resp. Y) if there is a
tree T on vertex set X (resp. Y) such that the neighborhood of any vertex y € Y (resp.
x € X) forms a subtree in T. B is tree-biconvex if it is both tree-convex on X and on Y. In
this section we first characterize and recognize half-squares of tree-convex bipartite graphs
and half-squares of tree-biconvex bipartite graphs. Characterizing and recognizing these
half-squares have been left open in [18]. We then discuss the problem of determining such a
representation with minimal number of points.

4.1 Half-squares of tree-convex bipartite graphs

In this section, we characterize half-squares of tree-convex bipartite graphs and of tree-
biconvex bipartite graphs. It turns out that these are precisely the chordal and dually chordal
graphs, and the double chordal graphs, respectively. We will use the following well known
characterizations of chordal graphs which are classical by now (cf. [15, 24]).

» Theorem 9. The following statements are equivalent for any graph G = (V, E):
(i) G is chordal;
(ii) G is the vertex-intersection graph of subtrees in a tree: There are subtrees T,, v € V,

of a tree T such that, for any pair of vertices u,v of G, uv € E if and only if T,, and
T, have a vertex in common;

(iii) G has a clique tree: There is a tree T on the maximal cliques of G with the property
that, for any vertex v of G, the cliques containing v form a subtree of T.

» Lemma 10. Let B = (X,Y, Eg) be a bipartite graph. If B is tree-conver on Y, then
B?[X] is chordal and B?[Y] is dually chordal.

Proof. Let B be tree-convex with an associated tree T' = (Y, E) such that, for each v € X,
Np(v) induces a subtree in T.

Then, by Theorem 9 (ii), B?[X] is chordal. We now show that G = B?[Y] is dually
chordal. Note that we may assume that G is connected. Then T is a spanning tree of G.
Indeed, consider an edge y1y2 of T, and let T7 and T» be the two subtrees of T — y1y2
containing y; and ys, respectively. Since G = B?[Y] is connected, some vertex r € X must
have neighbors, in B, in both T} and T. Since Np(z) is a subtree of T, both y; and yo
must be neighbors of such a vertex z. Therefore, y;y» is an edge of B2[V] = G, and hence T
is a spanning tree of G as claimed. Now, consider an arbitrary maximal clique C of G,
and suppose that T[C] is not connected. Let T1,...,T, be the connected components of
T|[C]. Let y ¢ T[C] such that there is a connected component of T'— y contains only one of
Ty,..., Ty, say T1. (As T is a tree, such vertex y exists.) Now, since C is a clique in G, for
each w € T} and w' € T;, 2 < i < ¢, there is some v € X adjacent in B to both w and w’.
Since T[N (v)] is a subtree, v therefore must be adjacent in B to y. Thus, y is adjacent in G
to every w € Ty and every w’' € T;, 2 < ¢ < q. This contradicts the fact that C' is a maximal
clique in G. Thus, for any maximal clique C of G, T[C] is a subtree in T, hence G is dually
chordal. <
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It follows from Lemma 10 that half-squares of tree-biconvex bipartite graphs are double
chordal. The following lemma characterizes chordal graphs, dually chordal graphs and double
chordal graphs in terms of their vertex-clique bipartite graphs.

» Lemma 11. Let G = (V,Eg) be a graph and let B = (V,C(G), Ep) the vertex-clique
incidence bipartite graph of G. Then:

(i) G is chordal if and only if Bg is tree-conver on C(G).

(ii) G is dually chordal if and only if Bg is tree-convex on V.

(iii) G is double chordal if and only if Bg is tree-biconvex.

Proof. (i): Let G be a chordal graph. By Theorem 9 (iii), G has a clique tree T. By definition
of Bg and of T, for each v € V, Np,(v) = {C € C(G) | v € C} induces a subtree in T'. That
is, Bg is tree-convex on C(G). The conserve follows from Lemma 10 with B = B¢, where
X =V and Y =C(G). (Recall that G = B%[V] = B?[X].)

(ii): Let G be a (connected) dually chordal graph, and let T'= (V, E7) be a spanning tree
of G such that, for each maximal clique C of G, T[C] is a subtree of T. Then, by definition
of Bg, for each w € W, Np, (w) is a maximal clique in G, hence Np, (w) induces a subtree
in T. The converse follows from Lemma 10 with B = Bg, where X =C(G) and Y = V.

(iii): This part immediately follows from (i) and (ii). <

By Lemmas 10 and 11 we obtain:

» Theorem 12.
(i) A graph is a half-square of a tree-convex bipartite graph if and only if it is chordal or
dually chordal.
(ii) Half-squares of tree-biconvex bipartite graphs are exactly the double chordal graphs.

Since chordal and dually chordal graphs, hence double chordal graphs, can be recognized
in linear time, we obtain from Theorem 12:

» Corollary 13. Deciding if a given graph is a half-square of a tree-(bi)convex bipartite graph
can be done in linear time.

4.2 Point minimal tree-convex representations

In the remainder of this section, we first show that POINT MINIMAL TREE-BICONVEX REP-
RESENTATION is solvable in linear time and then prove a complexity dichotomy theorem for
POINT MINIMAL TREE-CONVEX REPRESENTATION.

We will show that, in fact, (G, k) is a yes-instance for POINT MINIMAL TREE-BICONVEX
REPRESENTATION if and only if G is double chordal and k is at least the number of max-
imal cliques of G, k > |C(G)|. If we ask for a tree-convex (not necessarily tree-biconvex)
representation, k£ may be much smaller than |C(G)|. See Figure 3 for an example.

The following fact will be useful in later discussions:

» Lemma 14. Let B = (X,Y, Eg) be tree-convex on'Y. Then, for each mazimal clique C
of B?[X], there is some y € Y with C = Np(y).

Proof. Let T = (Y, Er) be a tree such that, for any € X, T[Np(z)] is a subtree of T.
Let C be a maximal clique in B?[X]. Let y € T be a vertex with maximum |Ng(y) N C]|.
Suppose there is some z € C'\ Np(y). Let w € T be a neighbor of z in B that is closest
to y in T, and let Ty, be the connected component of T — wy’ containing w, where wy’
is the w-edge on the w,y-path in T (possibly ¥y’ = y). Since B is tree-convex on Y with



H.-O. Le and V.B. Le

Figure 3 A double chordal graph G (top left), a point minimal tree-convex, not tree-biconvex,
half-square root B (top right) and a point minimal tree-biconvex half-square root Bg of G (bottom).

tree T, Np(x) C T,,. By the choice of y, there is some =’ € Ng(y) NC \ Np(w). As B is
tree-convex on Y with tree T', we have Np(z') C T, with T}, is the connected component
of T — yy” containing y, where yy” is the y-edge on the y, w-path in T (possibly y” = w).
Since Ty, N T}, = (0, we have Ng(z) N Np(a’) = 0. This contradicts the fact that z and 2’ are
adjacent in B2[V].

Thus, C C Np(y), and by the maximality of the clique C, C' = Ng(y). <

Notice that tree-convex bipartite graphs need not be Cg-free, and Cg-free bipartite graphs
need not be tree-convex. So, Lemma 14 and Lemma 1 are independent to each other.

» Theorem 15. POINT MINIMAL TREE-BICONVEX REPRESENTATION is solvable in linear
time.

Proof. Let (G, k) be an instance for POINT MINIMAL TREE-BICONVEX REPRESENTATION. By
Theorem 12 (ii) we may assume that G = (V, Eq) is double chordal. Let B = (V, W, E¢) be
an arbitrary tree-biconvex bipartite graph with G = B2?[V]. By Lemma 14, every maximal
clique C of G is the neighborhood Np(w) for some w € W, implying [W| > |C(G)|. Therefore,
the vertex-clique incidence bipartite graph Bg of G (which is tree-biconvex by Lemma 11
(iii)) is a point optimal tree-biconvex half-root of G. That is, (G, k) is a yes-instance if and
only if G is double chordal and k > |C(G)|.

Finally, recall that double chordal graphs can be recognized in linear time, and that all
maximal cliques of an n-vertex chordal graph (there are at most n) can be computed in
linear time (and so Bg can be constructed in linear time, too). <

We now are providing a dichotomy for POINT MINIMAL TREE-CONVEX REPRESENTATION.

We first begin with the hardness case.

» Lemma 16. POINT MINIMAL TREE-CONVEX REPRESENTATION is NP-complete, when
restricted to non-chordal dually chordal input graphs.

Proof. Given an instance (G = (V, Eg), k) of POINT MINIMAL REPRESENTATION, construct
an instance (G’, k') for POINT MINIMAL TREE-CONVEX REPRESENTATION as follows.
G’ is obtained from G by adding a new vertex u and all edges between u and all vertices
of G, i.e., u is a universal vertex of G’;
kK =k.
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Suppose that G = B?[V] for some bipartite graph B = (V, W, Eg) with |W| < k. Consider
B = (VW ,Eg/) with V! =V U{u}, W =W and Ep: = Eg U {uw | w € W}. Then it is
easy to see that G’ = B'2[V']. Notice, moreover, that G’ is dually chordal (as u is a universal
vertex of G’), and B’ is tree-convex (with a star T = (V, {uv | v € V'})).

Conversely, if G’ = H?[V’] for some bipartite graph H = (V/,W, Ex) with [W| < ¥/,
regardless tree-convex or not, then clearly G = B?[V], where B = H — u with at most k = &’
points.

Since POINT MINIMAL REPRESENTATION (viz., CLIQUE EDGE COVER) is NP-complete on
non-chordal graphs, POINT MINIMAL TREE-CONVEX REPRESENTATION is NP-complete, when
restricted to non-chordal dually chordal graphs. |

For the efficient solvable cases, we need the following characterization of dually chordal
graphs which is slightly more flexible than the one stated in Lemma 11 (ii), and can be
proved along the same line. (Notice that the characterization of chordal and double chordal
graphs stated in Lemma 11 (i) and (iii), respectively, does not admit this flexibility.)

» Lemma 17. Let G = (V, Eg) be a graph and let C be an edge clique cover of G in which
every member is a maximal clique. Let Be = (V,C, Ep) be the vertez-C incidence bipartite
graph of G. Then G is dually chordal if and only if Be is tree-convex on V.

Notice that any edge clique cover can be modified in an obvious way to another one of
the same size that consists of maximal cliques only.

» Theorem 18. POINT MINIMAL TREE-CONVEX REPRESENTATION is NP-complete for non-
chordal dually chordal inputs, and solvable in linear time otherwise.

Proof. Let (G, k) be an instance for POINT MINIMAL TREE-CONVEX REPRESENTATION. By
Theorem 12, we may assume that G = (V, E¢) is chordal or dually chordal (otherwise, the
output is ‘no’ as G does not have a tree-convex representation). Recall that chordal, as well
as dually chordal graphs can be recognized in linear time.

By Lemma 16, it remains to consider the case in which G is chordal. The following
procedure decides in linear time if G' has a tree-convex representation with at most k points
and, if so, outputs such one.

(1) if G is double chordal then

(2) compute an optimal edge clique cover C of G that consists of
(3) maximal cliques only

(4) if k < |C| then return ‘no’

(5) return the vertex-C incidence bipartite graph B¢

(6) else //G is chordal but not dually chordal

(7) if k£ <|C(G)| then return ‘no’

(8) return the vertex-clique incidence bipartite graph Bg

Since G is chordal, an optimal edge clique cover C can be computed in linear time [23]. In
fact, the optimal edge clique cover of a chordal graph computed in [23] consists of maximal
cliques only. Also, recall that for any chordal graph G = (V, Eg), C(G) consists of at most |V|
maximal cliques and all maximal cliques can be listed in linear time.

We now argue that the output of the procedure is a tree-convex representation with
at most k points (if exists). Assume first that G is dually chordal (and hence G is double
chordal). Then B¢ is tree-convex (on V) by Lemma 17. Thus, by Fact 1, Be is a point
optimal tree-convex representation of G. So, the outputs at lines (4) and (5) are correct.



H.-O. Le and V.B. Le

In the second case, let us assume that G is not dually chordal. Then, by Lemma 10, for
any tree-convex representation B = (V, W, Eg) of G, B must be tree-convex on W. Hence,
by Lemma 14, every maximal clique of G = B?[V] is the neighborhood Ng(w) for some
w € W, implying |W/| > |C(G)|. Therefore, the vertex-clique incidence bipartite graph Bg
of G (which is, by Lemma 11 (i), tree-convex on C(G); recall that G is chordal) is a point
optimal tree-convex half-root of G. Thus, the outputs at lines (7) and (8) are correct. <

5 Conclusion

Though the computational complexity of MINIMAL POINT PLANAR GIRTH-g REPRESENTATION
is completely determined (Theorem 8), the problem of characterizing and recognizing map
graphs with girth-6 witness is still open. Recall that, by definition, all map graphs have
a witness of girth at least 4, and that all map graphs with witness of girth ¢ > 8 admit
good characterizations which lead to simple cubic time recognition algorithms [19]. Since
any planar graph has a girth-six witness (e.g., its subdivision), it is natural to study map
graphs with girth-six witness. Thus, recognizing and characterizing map graphs with girth-six
witness are two interesting open problems.

In contrast to large-girth witnesses, maximal witnesses (i.e., maximal planar bipartite
graphs) have girth four. Recognizing and characterizing map graphs with maximal witness
are two other interesting open problems for further research.

Perhaps, another way to look for a simpler and more efficient algorithm than the one
of Thorup is to consider restricted input graphs (rather than restricted witnesses). So,
recognizing map graphs is trivial if the input graphs are planar. But it is not obvious for
other restricted graph classes; especially for graphs with arbitrary large cliques. In particular,
it seems that it is not easy to recognize chordal map graphs in polynomial time without
using Thorup’s algorithm.
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—— Abstract

The COLOURING problem is to decide if the vertices of a graph can be coloured with at most k

colours for an integer k, such that no two adjacent vertices are coloured alike. A graph G is H-free
if G does not contain H as an induced subgraph. It is known that COLOURING is NP-complete for
H-free graphs if H contains a cycle or claw, even for fixed £ > 3. We examine to what extent the
situation may change if in addition the input graph has bounded diameter.
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1 Introduction

Graph colouring is one of the best studied concepts in Computer Science and Mathematics.
This is mainly due to its many practical and theoretical applications and its many natural
variants and generalizations. Over the years, numerous surveys and books on graph colouring
were published (see, for example, [1, 4, 18, 21, 26, 28, 31]).

A (vertex) colouring of a graph G = (V, E) is a mapping ¢: V — {1,2,...} that assigns
each vertex u € V a colour c¢(u) in such a way that c(u) # ¢(v) whenever wv € E. If
1 < c(u) <k, then c is said to be a k-colouring of G and G is said to be k-colourable. The
COLOURING problem is to decide if a given graph G has a k-colouring for some given integer k.
If k is fized, that is, k is not part of the input, we denote the problem by k-COLOURING. It
is well known that even 3-COLOURING is NP-complete [23].

In this paper we aim to increase our understanding of the computational hardness of
COLOURING. One way to do this is to consider inputs from families of graphs to learn
more about the kind of graph structure that causes the hardness. This led to a highly
extensive study of COLOURING and k-COLOURING for many special graph classes. The
best-known result in this direction is due to Groétschel, Lovasz, and Schrijver, who proved
that COLOURING is polynomial-time solvable for perfect graphs [13].

Perfect graphs form an example of a graph class that is closed under vertex deletion.
Such graph classes are also called hereditary. Hereditary graph classes are ideally suited
for a systematic study in the computational complexity of graph problems. Not only do
they capture a very large collection of many well-studied graph classes, but they are also
exactly the graph classes that can be characterized by a unique set H of minimal forbidden
induced subgraphs. When solving an NP-hard problem under input restrictions, it is standard
practice to consider, for example, first the case where H has small size, or where each H € H
has small size.
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We note that the set H defined above may be infinite. If not, say H = {Hi,..., H,} for
some positive integer p, then the corresponding hereditary graph class G is said to be finitely
defined. Formally, a graph G is (Hy, ..., Hp)-free if for each i € {1,...,p}, G is H;-free,
where the latter means that G does not contain an induced subgraph isomorphic to H;.

We emphasize that the borderline between NP-hardness and tractability is often far
from clear beforehand and jumps in computational complexity can be extreme. In order to
illustrate this behaviour of graph problems, we present the following example of a (somewhat
artificial) graph problem related to vertex colouring.

COLOURING-OR-SUBGRAPH
Instance:  an n-vertex graph G
Question: is G [y/log n]-colourable or H-free for some graph H with |V(H)| < [y/logn]?

» Theorem 1. The COLOURING-OR-SUBGRAPH problem is NP-hard, but constant-time
solvable for every hereditary graph class not equal to the class of all graphs.

Proof. We reduce from 3-COLOURING, which we recall is NP-complete [23]. Let G be an
n-vertex graph. Set k = [v/logn]. Add k — 3 pairwise adjacent vertices to G. Make the
new vertices also adjacent to every vertex of G. Add each possible graph on k vertices as a
connected component to G. The resulting graph G’ has n+ (k—3)+ k-2 £ < 3n? vertices.
By construction, G’ contains every graph on at most k vertices as an induced subgraph.
Hence, G’ is a yes-instance of COLOURING-OR-SUBGRAPH if and only if G’ is k-colourable,
and the latter holds if and only if G is 3-colourable.

Now let G be a hereditary graph class for which there exist at least one graph H such
that every graph G € G is H-free. Let £ = |V(H)|. We claim that COLOURING-OR-
SUBGRAPH is constant-time solvable for G. Let G € G be an n-vertex graph. If n < 2‘“2,
then G has constant size and the problem is constant-time solvable. If n > 2'“27 then
¢=|V(H)| < logn < [y/Iogn]. Hence G is a yes-instance of COLOURING-OR-SUBGRAPH,
as G is H-free and H has less than [y/logn] vertices. <

In this paper, we consider the problems COLOURING and k-COLOURING. In order to describe
known results and our new results we first give some terminology and notation.

1.1 Terminology and Notation

The disjoint union of two vertex-disjoint graphs F' and G is the graph G+ F = (V(F) U
V(G), E(F)U E(QG)). The disjoint union of s copies of a graph G is denoted sG. A linear
forest is the disjoint union of paths. The length of a path or a cycle is the number of its edges.
The distance dist(u,v) between two vertices u,v in a graph G is the length of a shortest
induced path between them. The diameter of a graph G is the maximum distance over all
pairs of vertices in G. The girth of a graph G is the length of a shortest induced cycle of
G. The graphs C,., P, and K, denote the cycle, path and complete graph on r vertices,
respectively.

A polyad is a tree where exactly one vertex has degree at least 3. We will use several
special polyads in our paper. The graph K7, denotes the (r + 1)-vertex star, that is, the
graph with vertices x,y1,...,y, and edges zy; for i = 1,...,r. The graph K 3 is also called
the claw. The subdivision of an edge uw in a graph removes uw and replaces it with a new
vertex v and edges uv, vw. We let Kfr denote the ¢-subdivided star, which is the graph
obtained from a star K, by subdividing one edge of K , exactly £ times. The graph S} ; ;,
for 1 < h <4 < j, denotes the subdivided claw, which is the tree with one vertex = of degree 3
and exactly three leaves, which are of distance h, ¢ and j from z, respectively. Note that
S11,1 = K1,3. The graph Sy 1,2 = K] 3 is also known as the chair.
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1.2 Known Results

The computational complexity of COLOURING has been fully classified for H-free graphs:
if H is an induced subgraph of P; + Ps or of P, then COLOURING for H-free graphs is
polynomial-time solvable, and otherwise it is NP-complete [20]. In contrast, the complexity
classification for k-COLOURING restricted to H-free graphs is still incomplete. It is known that
for every k > 3, k-COLOURING for H-free graphs is NP-complete if H contains a cycle [10]
or an induced claw [16, 22]. However, the remaining case where H is a linear forest has not
been settled yet even if H consists of a single path. For P;-free graphs, the cases k < 2, ¢t > 1
(trivial), k > 3, t <5 [14], k=3,6 <t <7 [2] and k = 4, t = 6 [6] are polynomial-time
solvable and the cases k = 4,t > 7 [17] and k > 5, t > 6 [17] are NP-complete. The cases
where k = 3 and ¢t > 8 are still open. For further details, including for linear forests H of more
than one connected component, see the survey paper [11] or some recent papers [5, 12, 19].

1.3 Our Focus

We consider H-free graphs where H contains a cycle or claw. In this case, k-COLOURING
restricted to H-free graphs is NP-compete for every k > 3, as mentioned above. However,
we re-examine the situation after adding a diameter constraint to our input graphs. If the
diameter is 1, then G is a complete graph, and COLOURING becomes trivial. As such, our
research question is:

To what extent does bounding the diameter help making COLOURING and k-COLOURING
tractable on H-free graphs?

We remark that H-free graphs of diameter at most d for some integer d are no longer
hereditary, which requires some care in the proof of our results. We also note that by
a straightforward reduction from 3-COLOURING one can show that k-COLOURING is NP-
complete for graphs of diameter d for all pairs (k, d) with £ > 3 and d > 2 except for two
cases, namely (k,d) € {(3,2),(3,3)}. Mertzios and Spirakis [24] settled the case (k,d) = (3, 3)
by proving that 3-COLOURING is NP-complete even for Cs-free graphs of diameter 3. The
case (k,d) = (3,2) is still open.

1.4 Our Results

We complement the bounded diameter results of Mertzios and Spirakis [24] by presenting a
set of new results for COLOURING and k-COLOURING for H-free graphs of bounded diameter
when H contains a claw or a cycle. Results for the case where H has a cycle usually follow
from stronger results for graphs of girth at least g for some fixed integer g. In particular,
Emden-Weinert, Hougardy and Kreuter [10] proved that for all integers k > 3 and g > 3,
k-COLOURING is NP-complete for graphs with girth at least g and with maximum degree at
most 6k'3 (for more results on COLOURING for graphs of maximum degree, see [3, 7, 25]).
First, in Section 3 we research the effect on bounding the diameter of k-COLOURING
and COLOURING restricted to polyad-free graphs for various polyads. Our first result, which
formed together with the result of [24] the starting point of our investigation, is that k-
COLOURING is constant-time solvable for K ,-free graphs of diameter d for any fixed integers
d>1,k>1and r > 1. We also show that this does not hold for COLOURING (when k is
part of the input). We then extend these results for larger polyads; see also Figure 1.
Second, in Section 4 we perform a similar study for graphs of bounded diameter and girth.
We provide new polynomial-time and NP-hardness results for k-COLOURING, identifying and
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Colours | Diameter | H-free | Complexity | Theorem
fixed k d Kir P 9
input k d Kia NP-c 10
3 d Ki P 12(1)
3 2 Ki, P 12(2)
3 4 K}, NP-c 12(3)
4 2 K, NP-c 12(4)
3 2 S1,2,2 P 13

Figure 1 Our polynomial-time (P) and NP-complete (NP-c) results for polyad-free graphs.

narrowing the gap between tractability and intractability, in particular for the case where
k = 3 (see also Figure 2). Section 5 contains some open questions and directions for future
work.

Qo girth | gl Sy | 55| 26 | >7|>8|>9|>10|>11 ] >12
<1 P P P P Pl P | P P P B
<2 ? ? P P Pl P | P P P P
<3 NP-c | NP | 7 ? Pl P | P P P P
<4 NP-c | NP-c | NPc | NP | 7 | 7 | P P P P
<5 NP-¢c | NP-¢c | NP-c | NP-c ? ? ? ? ? P

Figure 2 The complexity of 3-COLOURING for graphs of diameter at most d and girth at least g.

2 Preliminaries

In this section we complement Section 1.1 by giving some additional terminology and notation.
We also recall some useful results from the literature.

Let G = (V, E) be a graph. A vertex u € V is dominating if u is adjacent to every other
vertex of G. For a set S C V, the graph G[S] denotes the subgraph of G induced by S. The
neighbourhood of a vertex u € V' is the set N(u) = {v | uv € E} and the degree of u is the size
of N(u). For a set U CV, we write N(U) = J,cy N(u) \ U. For aset U CV and a vertex
u € U, the private neighbourhood of u with respect to U is the set N(u) \ (N(U \ {u})UU)
of private neighbours of u with respect to U, which is the set of neighbours of u outside U
that are not a neighbour of any other vertex of U. If every vertex of G has degree p, then G
is (p)-regular.

We will use the aforementioned results of Kral’ et al.; Holyer; Leven and Galil; Emden-
Weinert, Hougardy and Kreuter; and Mertzios and Spirakis.

» Theorem 2 ([20]). Let H be a graph. If H C; Py or H C; P, + P3, then COLOURING
restricted to H-free graphs is polynomial-time solvable, otherwise it is NP-complete.

» Theorem 3 ([16, 22]). For every integer k > 3, k-COLOURING is NP-complete for claw-free
graphs.

» Theorem 4 ([10]). For all integers k > 3 and g > 3, k~-COLOURING is NP-complete for
graphs with girth at least g (and with mazimum degree at most 6k'3).
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» Theorem 5 ([24]). 3-COLOURING is NP-complete for Cs-free graphs of diameter 3.

A list assignment of a graph G = (V| E) is a function L that prescribes a list of admissible
colours L(u) C {1,2,...} to each u € V. A colouring ¢ respects L if c(u) € L(u) for every
u e V. If |[L(u)| <2 for each w € V, then L is also called a 2-list assignment. The 2-L1sT
COLOURING problem is to decide if a graph G with a 2-list assignment L has a colouring
that respects G. Our strategy for obtaining a polynomial-time algorithm for 3-COLOURING
is often to reduce the input to a polynomial number of instances of 2-L1IST COLOURING. The
reason is that we can then apply the following well-known result of Edwards.

» Theorem 6 ([9]). The 2-LisT COLOURING problem is linear-time solvable.

We will also use the following result, which includes the Hoffman-Singleton Theorem,
which provides a description of regular graphs of diameter 2 and girth 5.

» Theorem 7 ([8, 15, 30]). For every d > 1, every graph of diameter d and girth 2d + 1 is
p-reqular for some integer p. Moreover, if d = 2, then there are only four such graphs (with
p=2,3,7,57, respectively) and if d > 3, then such graphs are cycles (of length 2d + 1).

A clique in a graph is a set of pairwise adjacent vertices, and an independent set is a set
of pairwise non-adjacent vertices. By Ramsey’s Theorem [27], there exists a constant, which
we denote by R(k,r), such that any graph on at least R(k,r) vertices contains either a clique
of size k or an independent set of size r.

3 Polyad-Free Graphs of Bounded Diameter

In this section we prove, among other things, our results on COLOURING and k-COLOURING

for polyad-free graphs of bounded diameter; see also Figure 1. We first make an observation.

» Lemma 8. If G is a graph of diameter d that is not a tree, then G contains an induced
cycle of length at most 2d + 1.

Proof. As G is not a tree and G is connected, G must contain a cycle C. Suppose that C has
length at least 2d + 2. Since G has diameter d, there exists a path of length at most d in G
between any two vertices u and v at distance d 4+ 1 in C'. The vertices of this path, together
with the vertices of the path of length d 4+ 1 between v and v on C, induce a subgraph of G
that contains an induced cycle C” of length at most 2d + 1. <

We now state our first result, which forms the starting point of the research in this section.

» Theorem 9. For all integers d,k,v > 1, k-COLOURING is constant-time solvable for
K -free graphs of diameter d.

Proof. Let G = (V, E) be a K ,-free graph of diameter d. We prove that if G has size
larger than some constant 8(k,r), which we determine below, then G is not k-colourable. If
[V(G)| < B(k,r), we can solve k-COLOURING in constant time.

As G is K ,-free, Ramsey’s Theorem tells us that the neighbourhood of every vertex u € V/
with degree at least R(k,r) contains a clique of size k. In that case N(u) U {u} is a clique of
size k + 1. Hence, to be k-colourable, every vertex of G must have degree less than R(k,r),
so G must have at most 3(k,r) = 1+ R(k,r) + R(k,r)? + ... + R(k,r)¢ vertices. <

If k is not part of the input, Theorem 9 no longer holds. This is shown by the following more
general theorem. In this theorem we assume that H ¢; P + P3 and H ¢; Py, as in those
cases COLOURING is polynomial-time solvable for all H-free graphs due to Theorem 2. Note
that Theorem 10 covers all remaining cases except the case where H = K 3.

14:5
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» Theorem 10. Let H be a graph with H €; Py + Ps and H €; P, and d be an integer.

Then COLOURING for H-free graphs of diameter at most d is

1. NP-complete if H has no dominating vertex u such that H —u C; Po+ Py or H—u C; Py
and d > 2;

2. NP-complete if H # K, 3 and H has a dominating vertex u such that H —u C; Py + Ps
or H—uC; Py and d > 3.

Proof.

1. Let H have no dominating vertex w such that H —u C; Py + P3 or H —u C; P,. We define
H' as H — u if H has a dominating vertex u and as H itself otherwise. By construction,
H' ¢; Py + P3 and H' ¢; Py. Hence, COLOURING is NP-complete for H’-free graphs due
to Theorem 2. Let G be an H'-free graph. Add a dominating vertex to G. The new
graph G’ has diameter 2 and is H-free. Moreover, G is k-colourable if and only if G’ is
(k + 1)-colourable.

2. Let H # K; 3 have a dominating vertex u such that H —u C; Py + Py or H —u C; Ps.
Then H cannot be a forest, as in that case H would be in {P;, P, P5, K7 3}. Hence, H
has an induced cycle C,. for some r > 3. If r = 3, then 3-COLOURING is NP-complete for
H-free graphs of diameter 3, as it is so for C3-free graphs of diameter 3 due to Theorem 5.
If r > 4, then COLOURING is NP-complete even for H-free graphs of diameter 2, as it is
so for Cp-free graphs of diameter 2 due to 1. <

It is a natural question whether we can extend Theorem 9 to H-free graphs of diameter d,
where H is a slightly larger tree than a star. The first interesting case is where H is an
f-subdivided star K fﬂn for some integer ¢ > 1 and r > 3. We prove a number of results for
various values of d,k,f. For one of our proofs and also for the proof of our next result we
need the following theorem.

» Theorem 11. 3-COLOURING can be solved in polynomial time for Cx-free graphs of diameter
at most 2.

Proof. If GG is bipartite, then G is 3-colourable. If G contains a K4, then G is not 3-colourable.
We check these properties in polynomial time, and from now on we assume that G is K4-free
and non-bipartite. The latter implies that G must have an odd induced cycle C, for some
odd integer r. As G has diameter 2, we find that r < 5 due to Lemma 8. As G is Cx-free, it
follows that r = 3.

Let C be a triangle in G. We write Ny = V(C) = {z1, 22,23}, N1 = N(V(C)) and
Ny = V(G)\ (Nog U Ny). As G has diameter 2, for every i € {1,2,3}, it holds that every
vertex in Ny has a neighbour in N; that is adjacent to x;.

We let T consist of all vertices of Ny that have a neighbour in N7 that is adjacent to
exactly two vertices of Ny. We claim that No = T. In order to see this, let u € Ny. If
u has a neighbour y € N; adjacent to every x;, then G contains a K, a contradiction.
Hence, u must have three distinct neighbour yi, ¥, y3, such that for ¢ € {1,2,3}, it holds
that N(y;) N No = {a;}. If {y1,y2,y3} is a clique, then G has a K4 on vertices u, y1, Y2, Y3,
a contradiction. Hence, we may assume without loss of generality that y; and y» are non-
adjacent. However, then {u,y1,z1,22,y2} induces a C5 in G, another contradiction. We
conclude that T' = Ns.

If G has a 3-colouring ¢, then we may assume without loss of generality that c(z;) =i
for ¢ € {1,2,3}. Hence, our algorithm assigns colours 1, 2, 3 to x1, za, =3, respectively.
This reduces the list of admissible colours of the vertices of N7 by at least one colour. In
particular, vertices in INV; that have two neighbours in Ny can be coloured with only one
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colour. Our algorithm assigns this colour to such vertices. This means that any of their
neighbours in T'= Ny can be coloured with at most two colours. So, after propagation, we
have obtained either two adjacent vertices that are coloured alike, in which case G is not
3-colourable, or we have constructed an instance of 2-LisT COLOURING. We can solve such
an instance in linear time due to Theorem 6. <

We are now ready to state our results for K f,, where we exclude the cases that are
tractable in general, namely where d =1, or k < 2, or r < 2 (the latter case corresponds to
the case where H = K 1+ 5 = Py, so we can use Theorem 2). Note that for k > 4 all interesting
cases are NP-complete, whereas for k = 3 the situation is less clear.

Figure 3 An example of a decomposition of a chair-free graph of diameter 3 into sets No,..., N3
where p = 5 and y € N; has two “descendants” in N3. To prevent an induced chair, y must be
adjacent to exactly two (adjacent) vertices of No, and w1 and w2 must be adjacent to each other.

» Theorem 12. Let d,k,?,r be four integers with d > 2, k>3, £ > 1 and r > 3. Then
k-COLOURING for Kf,T—free graphs of diameter at most d is:

1. polynomial-time solvable if d > 2, k=3, =1 andr =3

2. polynomial-time solvable if d=2, k=3, (=2 andr >3

3. NP-complete if d >4, k=3,0>3 andr >4

4. NP-complete if d>2, k>4,¢>1 andr > 3.

Proof.
1. Recall that K1 ; is the chair Sy 1. Let G be a chair-free graph of diameter d. If G is a
tree, then G is even 2-colourable. We check in O(n?) time if G has a Kj. If so, then G is

not 3-colourable. From now on we assume that G is not a tree and that G is Ky-free.

As G is not a tree and G is connected, G contains an induced cycle of length at most
2d + 1 by Lemma 8. We can find a largest induced cycle C' of length at most 2d 4+ 1 in
O(n?¥*1) time. Let |V(C)| = p. We write No = V(C) = {1, 72,...,7,} and for i > 1,
N; = N(N;—1)\ N;—2. So the sets N; partition V(G), and the distance of a vertex u € N;
to Ny is 1.

Case 1. 4<p<2d+1.
This case is illustrated in Figure 3. We consider every possible 3-colouring of C'. Let ¢ be
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such a 3-colouring. Every vertex with two differently coloured neighbours can only be
coloured with one remaining colour. We assign this unique colour to such a vertex and
apply this rule as long as possible. This takes polynomial time. The remaining vertices
have a list of admissible colours that either consists of two or three colours, and vertices
in the latter case belong to V(G) \ (No U N7) (as N(Np) = Nq).

If Ny =0, then V(G) = Ny U Ny. Then, we obtained an instance of 2-LisT COLOURING,
which we can solve in linear time due to Theorem 6. Now assume that Ny # 0. Let
z € Ny. Then z has a neighbour y € Ny, which in turn has a neighbour « € Ny. If y is
adjacent to neither neighbour of x on Ny, then z, y, x and these two neighbours induce a
chair in G, a contradiction. Hence, y must be adjacent to at least one neighbour of = on
Ny, meaning that y must have received a colour by our algorithm. Consequently, z must
have a list of admissible colours of size at most 2.

From the above we deduce that every vertex in N has only two available colours in
its list. We now consider the vertices of N3. Let 2’ € N3. Then 2’ has a neighbour
z € Ny, which in turn has a neighbour y € N7, which in turn has a neighbour x € Ny,
say r = x1. If y has two non-adjacent neighbours in Ny, then 2/, 2,y and these two
non-adjacent neighbours of y induce a chair in G, a contradiction. Combined with the
fact deduced above, we conclude that y must have exactly two neighbours in Ny and
these two neighbours must be adjacent, say xo is the other neighbour of y in Nj.
Suppose x1 and x5 are both adjacent to a vertex ¢y’ € N1\ {y} that is adjacent to a vertex
in Ny that has a neighbour in N3. Then, just as in the case of vertex y, the two vertices
z1 and z9 are the only two neighbours of 3’ in Ny. If y and 3’ are not adjacent, this
means that x2,x3,24,,y induce a chair in G, a contradiction. Hence y and y’ must be
adjacent. However, then 1, z9,y,y’ form a K4, a contradiction. This means that every
pair of adjacent vertices of Ny can have at most one common neighbour in N; that is
adjacent to a vertex in Ny with a neighbour in N3. We already deduced that every vertex
of N7 with a “descendant” in N3 has exactly two neighbours in Ny, which are adjacent.
Hence, we conclude that the number of such vertices of Ny is at most p.

We now observe that for i > 2, every vertex in N; has at most two neighbours in N; ;.
This can be seen as follows. If v € N; has two non-adjacent neighbours wy,ws in N;i1,
then we pick a neighbour u of v in N;_1, which has a neighbour ¢ in N;_5. Then
v, u, t, w1, ws induce a chair in G, a contradiction. Hence , the neighbourhood of every
vertex in N; in N;y1 is a clique, which must have size at most 2 due to the Ky-freeness of
G. As the number of vertices in N7 with a “descendant” in N3 is at most p, this means
that there are at most 2~ 'p vertices in IN; with a neighbour in Niy1. Therefore the total
number of vertices not belonging to any of the sets Ny, N1 or Ny is at most 2?23 2i=1p,
This means the total number of vertices not belonging to N7 or Ny is at most 3(d) =
S L2 g4 p < 3 027 1(2d 4+ 1) + 2d + 1. Let T, be this set. We consider every
possible 3-colouring of G[T.]. As we already deduced that the vertices in N; U Ny have a
list of size at most 2, for each case we obtain an instance of 2-L1ST COLOURING, which
we can solve in linear time due to Theorem 6. As the total number of instances we need
to consider is at most 37 x 38(4) < 32441 x 38(d) our algorithm runs in polynomial time.

Case 2. p=3.

As p was the size of a largest induced cycle of length at most 2d + 1 and 2d + 1 > 5, we
find that G is Cy-free. As G is Ky-free, each vertex of Ny is adjacent to at most two
vertices of Ny. If a vertex = € Ny has two independent private neighbours v and v in Ny
with respect to Ny, then every neighbour w of w in Ny must also be a neighbour of v and
vice versa, since (G is chair-free. However, this is not possible, as x, u, w, v induce a Cjy.
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We conclude that v and v must be adjacent. Therefore, as G is Ky-free, every vertex of
Ny has at most two private neighbours in Ny, with respect to Ny, that have a neighbour
in NQ.

By the same arguments as above we deduce that every two vertices of Ny have at most
one common neighbour in N; that is adjacent to a vertex in Ny. Combined with the
above, we find that there at most 6 +3 = 9 vertices in N; that have a neighbour in Ny. If
a vertex in Nj has two independent neighbours in N, then G contains an induced chair,
which is not possible. Hence the neighbourhood of a vertex in N7 in Ns is a clique, which
has size at most 2 due to the Ky-freeness of G. We conclude that |[Na| < 9 x 2 = 18.
Similarly, every vertex in IV; for ¢ > 3 has at most two neighbours in N;;;. Therefore
the number of vertices in N; for ¢ > 3 is at most 18 x 2¢~2. This means that the total
number of vertices outside Ny U N7 U Ns is at most S(d) = 2?23 18 x 2072, Let T be this
set. We consider every possible 3-colouring of G[T] and every possible 3-colouring of C'.
For each case we obtain an instance of 2-LisST COLOURING, which we can solve in linear
time due to Theorem 6. As the total number of instances we need to consider is at most
3% x 35 our algorithm runs in polynomial time.

2. Let G be a K7 -free graph of diameter at most 2. We first check in O(n?) time if G is Ky-
free. If not, then G is not 3-colourable. We then check in O(n®) time if G has an induced
C5. If G is Cs-free, then we use Theorem 11. From now on, suppose that G is K4-free
and that G contains an induced cycle C of length 5, say on vertices x1,...,z5 in that
order. We write No = V(C) = {z1,...,z5}, Ny = N(V(C)) and N2 = V(G) \ (No U Ny).
Let N} be the set of vertices in Ny that are adjacent to some vertex in N; that is a
private neighbour of some vertex in Ny with respect to Ny. As G is Ky-free, the private
neighbourhood P(x;) of each vertex x; € Ny with respect to Ny does not contain a
clique of size 3. Moreover, if P(x;) contains an independent set I of size r — 1 for some
ie{l,...,5}, then T U{x;, 11,242,213} induces a K7, which is not possible. Now
let v € P(x;) for some i € {1,...5}, say i = 1. As G is Ky-free, the set N(v) N Ny
does not contain a clique of size 3. Moreover, if N(v) N Na contains an independent set
I’ of size r — 1, then I' U {v, x1, x2, x3, } induces a Kfr, which is not possible. Hence,
|N(v) N Ny| < R(3,7 — 1) by Ramsey’s Theorem. We conclude that |Nj| < 5R(3,7 — 1)2.
We now consider all possible 3-colourings of C. Let ¢ be such a 3-colouring. We assume
without loss of generality that c¢(z1) = ¢(x3) = 1, ¢(x2) = ¢(z4) = 2 and c(x5) = 3.
Moreover, every vertex that has two differently coloured neighbours can only be coloured
with one remaining colour. We assign this unique colour to such a vertex and apply this
rule as long as possible. This takes polynomial time. The remaining vertices have a list
of admissible colours that either consists of two or three colours, and vertices in the latter
case must belong to Ny (as N(Np) = Ny).

Let T, be the set of vertices in Ny that still have a list of size 3. We will prove that
T. C Nj. Let u € T.. As G has diameter 2, we find that v has a neighbour v adjacent
to x5. Then v cannot be adjacent to any of x1,..., x4, as otherwise v would have a
unique colour and u would not be in T,. Hence, v is a private neighbour of z5 with
respect to No. We conclude that all vertices in T, belong to NJ, which implies that
IT.| < |N5| <5R(3,7 —1)%

We now consider every possible 3-colouring of G[T]. Then all uncoloured vertices have
a list of size at most 2. In other words, we created an instance of 2-1.1IST COLOURING,
which we solve in linear time using Theorem 6. As the number of 3-colourings of C' is at
most 3° and for each 3-colouring ¢ of C' the number of 3-colourings of G[T,] is at most

35R(3””_1)2, the total running time of our algorithm is polynomial.

MFCS 2019



14:10

Colouring H-free Graphs of Bounded Diameter

3. We consider the standard reduction from the NP-complete problem NAE 3-SAT [29],
where each variable appears in at most three clauses and each literal appears in at most
two. Given a CNF formula ¢, we construct the graph G as follows:

Add a vertex v, for each literal ;.

Add an edge between each literal and its negation.

Add a vertex z adjacent to every literal vertex.

For each clause C; add a triangle T; with vertices ¢;,, ¢i,, Ciy-

Fix an arbitrary order of the literals of Cy, x;,, z4,, 2, and add an edge z;;¢;;.

Given a 3-colouring of G, assume z is assigned colour 1. Then each literal vertex is
assigned either colour 2 or colour 3. If, for some clause C};, the vertices z;,,x;, and z; 3
are all assigned the same colour, then T; cannot be coloured. Therefore, if we set literals
whose vertices are coloured with colour 2 to be true and those coloured with colour 3 to
be false, each clause must contain at least one true literal and at least one false literal.
If ¢ is satisfiable then we can colour vertex z with colour 1, each true literal with colour
2 and each false literal with colour 3. Then, since each clause has at least one true literal
and at least one false literal, each triangle has neighbours in two different colours. This
implies that each triangle is 3-colourable. Therefore G is 3-colourable if and only if ¢ is
satisfiable.
We next show that G has diameter at most 4. First note that any literal vertex is adjacent
to z and any clause vertex is adjacent to some literal vertex so any vertex is at distance
at most 2 from z. Therefore any two vertices are at distance at most 4.
Finally we show that G is K} j-free. Any literal vertex has degree at most 4 since it
appears in at most two clauses. However it has at most 3 independent neighbours since
its negation is adjacent to z. Each clause vertex has at most 3 neighbours so the only
vertex with four independent neighbours is d. The longest induced path including z has
length at most 4 since any such path contains at most one literal and at most two vertices
of any triangle. Therefore G is K i 4-free.

4. This follows from Theorem 3. Let k* > 3. We take a claw-free graph G and add a
dominating vertex to it. The new graph G’ has diameter at most 2 and is K 11,3—free. Let
k=k*+1>4. Then G is k*-colourable if and only if G’ is k-colourable. ]

Subdividing two edges of the claw yields another interesting case, namely where H = 51 2 5.
For k > 4, Theorem 12 tells us that k-COLOURING is NP-complete for S o »>-free graphs of
diameter 2. For k = 3, we could only prove polynomial-time solvability if d = 2.

» Theorem 13. 3-COLOURING can be solved in polynomial time for Si o o-free graphs of
diameter at most 2.

Proof. Let G be an S -free graph of diameter at most 2. We first check in O(n®)
time if G has an induced C5. If G is Cs-free, then we use Theorem 11. Suppose G
contains an induced cycle C of length 5, say on vertices z1,...,z5 in that order. We write
No=V(C)={x1,...,25}, Ny = N(V(C)) and No = V(G)\(NgUDN7). As G has diameter 2,
for every i € {1,2,3}, every vertex in N3 has a neighbour in N; that is adjacent to z;.

We let T consist of all vertices of Ny that have a neighbour in N; that is adjacent to two
adjacent vertices of Ny. So the colour of any vertex of T will be fixed in any 3-colouring after
colouring the five vertices of Ny. We claim that Ny = T'. In order to see this, let u € N5. As
G has diameter 2, we find that u must have a neighbour v € N; adjacent to a vertex of Ny,
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say x1. Then v is not adjacent to x5 or xo. If v is not adjacent to x3 either, then the vertices
21,5, %2, 23, v, u induce a Sy 22 with center z;, a contradiction. So v must be adjacent to
x3, meaning v is not adjacent to x4. However, now xs, z2, 24, T5,v, u induce a Sy 22 with
center xg, another contradiction.

We now “guess” the 3-colouring of C' by considering all 3° possibilities if necessary. We
then proceed as in the proof of Theorem 11. That is, we observe that every vertex of N; can
only be coloured with two possible colours and that after propagation, every uncoloured vertex
of Ny can only be coloured with two possible colours as well (as T = N). Then it remains
to solve an instance of 2-LiST COLOURING, which takes linear time by Theorem 6. As we
need to do this at most 3° times, the total running time of our algorithm is polynomial. <«

4 Graphs of Bounded Diameter and Girth

In this section we will examine the trade-offs for k-COLOURING between diameter and girth.
Recall that Mertzios and Sprirakis [24] proved that 3-COLOURING is NP-complete for graphs
of diameter 3 and girth 4 (Theorem 5). We extend their result in our next theorem, partially
displayed in Figure 2. This theorem shows that there is still a large gap for which we do not
know the computational complexity of 3-COLOURING for graphs of diameter d and girth g.

» Theorem 14. Let d, g, k be three integers withd > 2, g > 3 and k > 3. Then k-COLOURING
for graphs of diameter at most d and girth at least g is

1. polynomial-time solvable if g > 2d + 1

2. NP-complete if d=3 and g <4 and k =3

3. NP-complete if dp < d < 4p+ 3 and g < 4p + 2 for some integer p > 1 and k = 3.

Figure 4 An example of a graph G’, constructed in the proof of Theorem 14(3), for p = 1.

Proof.

1. This case follows from Theorem 7.

2. This case is Theorem 5 (proven in [24]).

3. We reduce 3-COLOURING for graphs of girth at least 8p — 3, which is NP-complete by
Theorem 4, to 3-COLOURING for graphs of diameter at most 4p and girth at least 4p + 2.
Construct the graph G’ as follows (see Figure 4 for an example):

label the vertices of G v1 to vy,;

for each vertex of GG, add a new neighbour v; 1;

for every two vertices v; and v; such that dist(v;,v;) > = 2p — 1 add new vertices to
form the path V,1V4,2,5+--Vi,p+1,jVj,p,i---Vj 1-

14:11
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First we show that G’ has diameter at most 4p. For any two vertices v; and v; of G
either dist(v;,v;) < | or we have the path v;1v;2 ...V pt1,jVjp,i---v;1 and dist(v,v;) <
2p + 2. Similarly, dist(v;,v;1) < 2p + 1 and dist(v;,1,v;1) < 2p+ 1. Now consider two
vertices Vg p and vegq for 2 < r < p+1,2 < g < p+ 1. If dist(ve,v.) < I then
dist (Vg by Vega) < T +qg+1 < (p+1)+(p+1)+2p—1) < 4p+ 1. Otherwise we
have the path vg . p..V4,1Va,2,c-Va,p+1,cVe,p,a---Ve,1Ve,2,d---Ve,q,d- Lhis gives dist (Vg r.p, Ve q,d) <
(r=1)+p+p+(¢—1) <d4dp. In fact, if dist(ve,rp, Ve,q,d) = 4p + 1, then we must have
r=gq=p+1 and dist(v,, v.) = dist(ve, vq) = dist(vp, v.) = dist(vp, vq) = 2p — 1. In this case
we have two paths of length at most 4p — 2 between v, and vy, one containing v, and the
other containing v4. These paths must be distinct since the existence of the vertex ve py1,4
implies that dist(v.,vq) > 2p — 1. Therefore we have a cycle in G of length at most 8p — 4
which contradicts the assumption that G has girth at least 8p — 3. This implies that the
diameter of G’ is at most 4p.

Since G has girth at least 8p — 3, every cycle in G’ of length less than 4p + 2 must contain
at least one vertex of V(G')\ V(G). Since all the vertices of V(G’) \ V(G) except the vertices
v;,1 have degree 2, any such cycle C must contain the path v; 1..v; py1,5...v; for some v;, v; at
distance greater than [. This path has length 2p+1. If C' contains v; 2 ,, for some m different
from j then it contains the path v; 2 ;m...Um,1 and has length at least 4p + 2. Similarly, this is
the case if C' contains vj 2., for m different from i. Otherwise C' contains v; and v; which
are at distance at least [ and has length at least 2p+1)+2+ (2p—1) =4p + 2.

Finally, we show that G is 3-colourable if and only if G’ is 3-colourable. The latter holds
if and only if the subgraph G” of G’ induced by V(G) U{v;1 | 1 <14 < n} is 3-colourable,
since every other vertex of G’ has degree 2. The graph G is 3-colourable if and only if G is
3-colourable, since G is an induced subgraph of G” and each vertex of V(G”) \ V(G) has
degree 1. Therefore, G is 3-colourable if and only if G’ is 3-colourable. |

5 Conclusions

We proved a number of new results for COLOURING and k-COLOURING for polyad-free
graphs of bounded diameter and for graphs of bounded diameter and girth. In particular
we identified and narrowed a number of complexity gaps. This leads us to some natural
open problems. Our first two open problems follow from Theorem 10. The third open
problem comes from Theorem 12; note that K 123 = 571,3. Our fourth open problem stems
from Theorem 13. Recall that determining the complexity of 3-COLOURING for graphs of
diameter 2 is still wide open. This question is covered by the fifth open problem.

» Open Problem 1. Does there exist an integer d such that COLOURING is NP-complete for
K 3-free graphs of diameter d?

» Open Problem 2. What is the complexity of COLOURING for Cs-free graphs of diameter 2,
or equivalently, graphs of diameter 2 and girth 47

» Open Problem 3. What are the complezities of 3-COLOURING for K1174—free graphs of
diameter 3 and for Klz,g—free graphs of diameter 37

» Open Problem 4. Do there exist integers d, h,i,j such that 3-COLOURING is NP-complete
for Sy i j-free graphs of diameter d?

» Open Problem 5. What is the complexity of the open cases in Figure 2 and in particular
of 3-COLOURING for graphs of diameter 2 and for graphs of diameter 2 and girth 47
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—— Abstract
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a
way that the distance between any two vertices v and v can be determined efficiently by merely
inspecting the labels of u and v, without using any other information. One of the important problems
is finding natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic
size. In this paper, we show that the class of cube-free median graphs on n nodes enjoys distance
labeling scheme with labels of O(log®n) bits.
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1 Introduction

Classical network representations are usually global in nature. In order to derive a useful piece
of information, one must access to a global data structure representing the entire network
even if the needed information only concerns few nodes. Nowadays, with networks getting
bigger and bigger, the need for locality is more important than ever. Indeed, in several cases,
global representations are impractical and network representation must be distributed. The
notion of (distributed) labeling scheme has been introduced [12, 32, 38, 39, 27] in order to
meet this need. A (distributed) labeling scheme is a scheme maintaining global information
on a network using local data structures (or labels) assigned to nodes of the network. Their
goal is to locally store some useful information about the network in order to answer a
specific query concerning a pair of nodes by only inspecting the labels of the two nodes.
Motivation for such localized data structure in distributed computing is surveyed and widely
discussed in [38]. The predefined queries can be of various types such as distance, adjacency,
or routing. The quality of a labeling scheme is measured by the size of the labels of nodes
and the time required to answer queries. Trees with n vertices admit adjacency and routing
labeling schemes with size of labels and query time O(logn)! and distance labeling schemes
with size of labels and query time O(log? n), and this is asymptotically optimal. Finding
natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic
size is an important and challenging problem.

1 All logarithms in this paper are in base 2.

© Victor Chepoi, Arnaud Labourel, and Sébastien Ratel;

37 licensed under Creative Commons License CC-BY
44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 15; pp. 15:1-15:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:victor.chepoi@lis-lab.fr
mailto:arnaud.labourel@lis-lab.fr
mailto:sebastien.ratel@lis-lab.fr
https://doi.org/10.4230/LIPIcs.MFCS.2019.15
https://arxiv.org/abs/1809.10508
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

Distance Labeling Schemes for Cube-Free Median Graphs

A connected graph G is median if any triplet of vertices x,y, z contains a unique vertex
simultaneously lying on shortest (x,y)-, (y, 2)-, and (z, z)-paths. Median graphs constitute
the most important class in metric graph theory [5]. This importance is explained by the
bijections between median graphs and discrete structures arising and playing important roles
in completely different areas of research in mathematics and theoretical computer science: in
fact, median graphs, 1-skeletons of CAT(0) cube complexes from geometric group theory
[30, 41], domains of event structures from concurrency [44], median algebras from universal
algebra [7], and solution sets of 2-SAT formulae from complexity theory [36, 42] are all the
same. In this paper, we design a distance labeling scheme for median graphs containing no
cubes. In our scheme, the labels have O(log®n) bits and O(1) query time. Our constant
query time assumes the standard word-RAM model with word size Q(logn).

We continue with the idea of the labeling scheme. Let G = (V, E) be a cube-free median
graph with n vertices. First, the algorithm computes a median (centroid) vertex m of G. and
the star St(m) of m (the union of all edges and squares of G incident to m). The star St(m)
is gated, i.e., each vertex of G has an unique projection (nearest vertex) in St(m). Therefore,
with respect to the projection function, the vertex-set of G is partitioned into fibers: the
fiber F(x) of x € St(m) consists of all vertices v € V having z as the projection in St(m).
Since m is a median of G, each fiber contains at most % vertices. The fibers are also gated
and are classified into panels and cones depending to the distance between their projections
and m (one for panels and two for cones). Each cone has at most two neighboring panels
however a panel may have an unbounded number of neighboring cones. Given two arbitrary
vertices u and v of G, we show that dg(u,v) = dg(u, m) + dg(m,v) for all locations of u
and v in the fibers of St(m) except the cases when u and v belong to neighboring cones and
panels, or u and v belong to two cones neighboring the same panel, or © and v belong to
the same fiber. If dg(u,v) = dg(u, m) + dg(m,v), then dg(u,v) can be retrieved by keeping
dc(u,m) in the label of u and dg(v,m) in the label of v. If u and v belong to the same
fiber F(z), the computation of dg(u,v) is done by recursively partitioning the cube-free
median graph F(z) at a later stage of the recursion. In the two other cases, we show that
dg(u,v) can be retrieved by keeping in the labels of vertices in all cones the distances to
their projections on the two neighboring panels. It turns out (and this is the main technical
contribution of the paper), that for each panel F(z), the union of all projections of vertices
from neighboring cones on F(z) is included in an isometric tree of G and that the vertices
of the panel F(z) contain one or two projections in this tree. All such outward and inward
projections are kept in the labels of respective vertices. Therefore, one can use distance
labeling schemes for trees to deal with vertices u and v lying in neighboring fibers or in cones
having a common neighboring panel. Consequently, the size of the label of a vertex u on
each recursion level is O(log® n). Since the recursion depth is O(logn), the vertices of G' have
labels of size O(log® n). The distance dg(u,v) can be retrieved by finding the first time in
the recursion when vertices v and v belong to different fibers of the partition. Consequently,
the main result of the paper is the following theorem:

» Theorem 1. There exists a distance labeling scheme that constructs in O(n?logn) time
labels of size O(log®n) of the vertices of a cube-free median graph G = (V,E). Given the
labels of uw and v of G, it computes in constant time the distance dg(u,v) between u and v.

The remaining part of this note is organized in the following way. Section 2 introduces
the notions used in this paper. In Section 3 we review the main results on distance labeling
schemes and on median graphs. In Section 4 we recall or establish some properties of general
median graphs used in our scheme. Section 5 presents the most important geometric and
structural properties of cube-free median graphs, which are the essence of our distance scheme
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and which do not hold for general median graphs. Section 6 describes our distance labeling
scheme for cube-free median graphs and proves Theorem 1. Due to page limits, the missing
proofs and the pseudocodes are provided in the full version [22]. In the full version, we also
describe a routing labeling scheme with similar performances.

2 Preliminaries

2.1 Basic notions

All graphs G = (V, E) in this note are finite, undirected, simple, and connected. We
will write u ~ v if two vertices u and v are adjacent. The distance dg(u,v) between two
vertices u and v is the length of a shortest (u,v)-path, and the interval I(u,v) := {z €
V idg(u,z) + dg(x,v) = dg(u,v)} consists of all the vertices on shortest (u,v)-paths. A
connected subgraph H of G is called isometric if dgy(u,v) = dg(u,v) for any two vertices u, v
of H. A subgraph H of G is gated if for every vertex v ¢ V (H), there exists a vertex v’ € V(H)

such that for all u € V(H), dg(v,u) = da(v,v") + dg(v',u) (V' is called the gate of v in H).

For a vertex x of a gated subgraph H of G, the set F(x) = {v € V : z is the gate of v in H}

is called the fiber of x with respect to H. The fibers {F(x) : x € H} define a partition of G.

The m-dimensional hypercube Q,, has all subsets of {1,...,m} as the vertex-set and A ~ B
iff |[AAB| = 1.

A graph G is called median if the intersection I(x,y) N I(y,z) N I(z,x) is a singleton
for each triplet x,y, z of vertices; this unique intersection vertex is called the median of
x,y, 2. Median graphs are bipartite. Basic examples of median graphs are trees, hypercubes,
rectangular grids, and Hasse diagrams of distributive lattices and of median semilattices
[5]. The star St(z) of a vertex z of a median graph G is the union of all hypercubes of G
containing z. The dimension dim(G) of a median graph G is the largest dimension of an
hypercube subgraph of G. A cube-free median graph is a median graph G of dimension 2, see
Figure 1 for illustrations. Even if cube-free median graphs are the skeletons of 2-dimensional
CAT(0) cube complexes, their combinatorial structure is rather intricate. As an example,

for n,m > 5, the Cartesian product K, X K, is a non-planar cube-free median graph.

Moreover, for any n, one can construct a cube-free median graph containing K, as a minor
by gluing together (g) grids of size n x n along a common horizontal side. Hence, this class

is not a subset of any minor-closed graph family.

=)

Figure 1 Cube-free median graphs.
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2.2 Distance labeling schemes

A labeling scheme for a graph family G consists of an encoding function and a decoding
function. These functions depend on the family G and on the type of queries: adjacency,
distance, or routing queries. More formally, a distance labeling scheme on a graph family G
consists of an encoding function Cg : V(G) — {0,1}* that gives to every vertex of a graph
G of G a label, and of a decoding function D¢ : {0,1}* x {0,1}* — N that, given the labels
of two vertices u and v of G, can compute efficiently the distance dg(u,v) between them.

3 Related work

3.1 Distance labeling schemes

Distance Labeling Schemes (DLS) have been introduced in a series of papers by Peleg et
al. [38, 39, 27]. Before these works, some closely related notions already existed such as
embeddings in a squashed cube [43] (equivalent to distance labeling schemes with labels of
size log n times the dimension of the cube) or labeling schemes for adjacency requests [32].
One of the main results for DLS is that general graphs support distance labeling schemes
with labels of size O(n) bits [43, 27, 2]. This scheme is asymptotically optimal since Q(n) bits
labels are needed for general graphs. Another important result is that there exists a distance
labeling scheme for the class of trees with O(log®n) bits labels [38, 3, 24]. Several classes of
graphs containing trees also enjoy a distance labeling scheme with O(log2 n) bit labels such
as bounded tree-width graphs [27], distance-hereditary graphs [25], bounded clique-width
graphs [23], and non-positively curved plane graphs [19]. A lower bound of Q(log?n) bits
on the label length is known for trees [27, 3], implying that all the results mentioned above
are optimal as well. Other families of graphs have been considered such as interval graphs,
permutation graphs, and their generalizations [9, 26] for which an optimal bound of ©(logn)
bits was given, and planar graphs for which there is a lower bound of Q(n3) bits [27] and an
upper bound of O(y/n) bits [28].

3.2 Median graphs

Median graphs and related structures have an extensive literature; several surveys exist
listing their numerous characterizations and properties [5, 33, 34]. These structures have
been investigated in different contexts by quite a number of authors for more than half a
century. In this subsection we briefly review the links between median graphs and CAT(0)
cube complexes. We also recall some results, related to the subject of this paper, about the
distance and shortest path problems in median graphs and CAT(0) cube complexes. For
a survey of results on median graphs and their bijections with median algebras, median
semilattices, CAT(0) cube complexes, and solution spaces of 2-SAT formulae, see [5]. For a
comprehensive presentation of median graphs and CAT(0) cube complexes as domains of
event structures, see the long version of [14].

It is not immediately clear from the definition, but median graphs are intimately related to
hypercubes: median graphs can be obtained from hypercubes by amalgams and median graphs
are themselves isometric subgraphs of hypercubes [8, 35]. Even more, median graphs are
exactly the retracts of hypercubes [4]. Due to the abundance of hypercubes, to each median
graph G one can associate a cube complex X (G) obtained by replacing every hypercube of G
by a solid unit cube. Then G can be recovered as the 1-skeleton of X (G). The cube complex
X (G) can be endowed with several intrinsic metrics, in particular with the ¢3-metric. An
important class of cube complexes studied in geometric group theory and combinatorics is the
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class of CAT(0) cube complexes. CAT(0) geodesic metric spaces are usually defined via the
nonpositive curvature comparison axiom of Cartan—Alexandrov—Toponogov [13]. For cube
complexes (and more generally for cell complexes) the CAT(0) property can be defined in a
very simple and intuitive way by the property that ¢5-geodesics between any two points are
unique. Gromov [30] gave a nice combinatorial characterization of CAT(0) cube complexes
as simply connected cube complexes with flag links. Tt was also shown in [18, 40] that median
graphs are exactly the 1-skeletons of CAT(0) cube complezes.

Previous characterizations can be used to show that several cube complexes arising in
applications are CAT(0). Billera et al. [10] proved that the space of trees (encoding all
tree topologies with a given set of leaves) is a CAT(0) cube complex. Abrams et al. [1, 29]
considered the space of all possible positions of a reconfigurable system and showed that
in many cases this state complex is CAT(0). Billera et al. [10] formulated the problem of
computing the geodesic between two points in the space of trees. In the robotics literature,
geodesics in state complexes correspond to the motion planning to get the robot from one
position to another one with minimal power consumption. A polynomial-time algorithm for
geodesic problem in the space of trees was provided in [37] and, very recently, [31] designed
such an algorithm for all CAT(0) cube complexes.

Returning to median graphs, the following is known about the labeling schemes for
them. First, the arboricity of any median graph G on n vertices is at most log n, leading
to adjacency schemes of O(log2 n) bits per vertex. As noted in [21], one logn factor can be
replaced by the dimension of G. Compact distance labeling schemes can be obtained for
some subclasses of cube-free median graphs. One particular class is that of squaregraphs,
i.e., plane graphs in which all inner vertices have degree > 4. For squaregraphs, distance
schemes with labels of size O(log®n) follow from a more general result of [19] for plane
graphs of nonpositive curvature. Another such class of graphs is that of partial double
trees [6]. Those are the median graphs which isometrically embed into a Cartesian product
of two trees. The isometric embedding of partial double trees into a product of two trees
immediately leads to distance schemes with labels of O(log2 n) bits. Finally, with a technically
involved proof, it was shown in [20] that there exists a constant M such that any cube-free
median graph G with maximum degree A can be isometrically embedded into a Cartesian
product of at most €(A) := MA?S trees. This immediately shows that cube-free median
graph admit distance labeling schemes with labels of length O(e(A)log®n). Compared
with the O(log3 n)-labeling scheme obtained in the current paper, the disadvantage of the
O(e(A) log? n)-labeling scheme is the dependence from the maximum degree A of G. The
situation is even worse for high dimensional median graphs: [20] presents an example of a
5-dimensional median graph/CAT(0) cube complex with constant degree which cannot be
embedded into a Cartesian product of a finite number of trees. Therefore, for general finite
median graphs the function e(A) does not exist. This in some sense explains the difficulty of
designing polylogarithmic distance labeling schemes for general median graphs. Nevertheless,
we do not have any indication to believe that such schemes do not exist.

4  Fibers in median graphs

In this section, we recall several useful properties of fibers of gated subgraphs of median
graphs. From the definition, one can deduce that median graphs satisfy the following
quadrangle condition: For any vertices u,v,w, z such that dg(u,z) =k+ 1, v,w ~ z, and
dg(u,v) = dg(u,w) =k, there is a unique vertexr x ~ v, w such that dg(u,z) =k — 1.
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» Lemma 1. [17]: A subgraph H of a median graph G is gated if and only if any vertex
v & V(H) is adjacent to at most one vertex of H.

Combinatorially, the stars of median graphs may have quite an arbitrary structure: by
a result of [8], there is a bijection (via the simplex graph operation) between the stars of
median graphs and arbitrary graphs. However, from the metric point of view, stars St(z)
have interesting properties:

» Proposition 2. The stars St(z) and their fibers F(x),x € St(2), are gated.

Both properties of Proposition 2 are known for more general graphs: for gatedness of
stars, see [15, Theorem 6.17]) and for gatedness of fibers of gated sets, see [16].

Let H be a gated subgraph of G and let F(H) = {F(x) : « € V(H)} be the partition of
V into fibers. We call two fibers F(x) and F(y) neighboring (notation F(x) ~ F(y)) if there
exists an edge z'y’ of G with 2/ in F(x) and 3 in F(y). If F(x) and F(y) are neighboring
fibers of H, then denote by 9, F(x) the set of all vertices #’ € F'(z) having a neighbor y’ in
F(y) and call 0, F(x) the boundary of F(x) relative to F(y). The following three results can
be easily proved.

» Lemma 2. Two fibers F(x) and F(y) of H are neighboring if and only if x ~y. Moreover,
if F(x) ~ F(y), then 9,F () induces a gated subgraph of G of dimension < dim(G) — 1.

For a vertex x of H and its fiber F'(z), the union of all boundaries dyF(x) over all
F(y) ~ F(x), y € V(H), is called the total boundary of the fiber F(z) and is denoted by
0*F(x). The boundaries J, F(z) constituting 0*F(z) are called branches of 0* F(z).

» Lemma 3. The total boundary of any fiber of H is an isometric subgraph of G not
containing dim(Q)-cubes.

We conclude this section with an additional property of fibers of stars of median vertices
of G, i.e., vertices minimizing the function M(z) = > .\ dg(z,v).

» Lemma 4. Let m be a median vertex of a median graph G with n vertices. Then any fiber
F(z) of the star St(m) of m has at most n/2 vertices.

Unfortunately, the total boundary of a fiber does not always induce a median subgraph.
Therefore, one cannot recursively apply the algorithm to the subgraphs induced by the
total boundaries 0* F(z). However, if G is cube-free, then the total boundaries of fibers are
isometric subtrees of G and one can use for them distance schemes for trees. Even in this
case, we still need an additional property of 0* F(x). We establish it in the next section.

5 Fibers in cube-free median graphs

In this section, we establish additional properties of fibers and of their total boundaries in
cube-free median graphs (for other properties of such graphs, see [11]). Using them we can
show that for any pair u,v of vertices of G, the following trichotomy holds: the distance
dg(u,v) either can be computed as dg(u,m) + dg(m,v), or as the sum of distances from
u,v to appropriate vertices u’, v’ of 9*F(z) plus the distance between u’,v’ in 0*F(z), or
via a recursive call to the fiber containing u and v.
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5.1 Classification of fibers

Let z be an arbitrary vertex of G and let F, = {F(x) : © € St(z)} denote the partition of V'
into the fibers of St(z). We distinguish two types of fibers: the fiber F(z) is called a panel if
x is adjacent to z and F(x) is called a cone if = has distance two to z. The interval I(x, z) is
the edge zz if F(x) is a panel and is a square Q; := (z,y’,2,y”) if F(x) is a cone. In the
second case, since iy’ and y” are the only neighbors of = in St(z), by Lemma 2 we deduce
that the cone F(x) is adjacent to the panels F(y') and F(y”) and that F(z) is not adjacent
to any other panel or cone. By the same lemma, a panel F(y) is not adjacent to any other

panel, but F(y) is adjacent to all cones F(z) such that the square @, contains the edge yz.

5.2 Total boundaries of fibers are quasigated

For a set A, an imprint of a vertex u ¢ A on A is a vertex a € A such that I(u,a) N A = {a}.

Denote by Y(u, A) the set of all imprints of v on A. The most important property of
imprints is that for any vertex z € A, there exists a shortest (u,z)-path passing via an
imprint. Therefore, if the set T(u, A) has constant size, one can store in the label of u the
distances to the vertices of Y (u, A). Using this, for any z € A, one can compute dg(u, 2)
as min{dg(u,a) + dg(a,z) : a € T(u, A)}. Note that A is gated iff any u ¢ A has a unique

imprint on A. We will say that a set A is quasigated if | Y (u, A)| < 2 for any vertex u ¢ A.
The main goal of this subsection is to show that the total boundaries of fibers are quasigated.

Let T be a tree with a distinguished vertex r in G, called the root of T'. We will say that
a rooted tree T has gated branches if for any vertex x of T' the unique path P(z,r) of T
connecting = to the root r is a gated subgraph of G. Lemma 3 implies:

» Lemma 5. The total boundary of any fiber is an isometric tree with gated branches.

By Lemma 5, 0* F(z) has gated branches, however 0* F'(x) is not necessarily gated itself.

Since a panel F(z) may be adjacent to an arbitrary number of cones, one can think that
the imprint-set Y (u, 0*F(x)) of a vertex u of F(x) may have an arbitrarily large size. The
following lemma shows that this is not the case, namely that |Y(u, 0*F(z))| < 2. This is one
of the key ingredients in the design of the distance labeling scheme presented in Section 6.
This property is no longer true for median graphs of dimension > 2.

» Lemma 6. Any rooted (at 1) tree T with gated branches of G is quasigated.

Proof. Pick any u € V' \ V(T') and suppose by way of contradiction that Y (u,T’) contains
three distinct imprints x1, z2, and x3. Since T has gated branches, none of the vertices
1, T2, x3 belong to the path of T' between r and another vertex from this triplet. In particular,
r is different from x1, x5, 3. Suppose additionally that among all rooted trees 7" with gated
branches of G and such that |Y(u,T")| > 3, the tree T has the minimal number of vertices.
This minimality choice (and the fact that any subtree of T' containing r is also a rooted
tree with gated branches) implies that T is exactly the union of the three gated paths
P(r,x1), P(r,x2), and P(r,z3). Therefore, 1,5 and x3 are the leaves of T.

Let y; be the neighbor of x; in the path P(r,x;), i = 1,2,3. Since G is bipartite, either
x; € I(y;,u) or y; € I(x;,u). Since x; € Y(u,T), necessarily z; € I(y;,u). Let T} be the
subtree of T' obtained by removing the leaf z;. From the minimality choice of T, we cannot
replace T by the subtree T;. This means that |Y(u,T})| < 2. Since z;,z, € Y(u,T}) for
{i,7,k} = {1,2, 3}, necessarily I(y;,u) N {x;,xr} # @ holds.

First, notice that x1,x9,x3 € I(u,r). Indeed, let z; denote the median of the triplet
i, u,r. I z; # x;, since z; € I(xy,r) = P(x;,r) C T and 2z; € I(u,x;), we obtain a
contradiction with the inclusion of x; in Y(u,T). Thus z; = x;, yielding x; € I(u, z;).

15:7
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Now, suppose without loss of generality that dg(r,z3) = max{dg(r,z;):i=1,2,3} := k.
Since I(ys,u) N {z1,22} # @ as shown above, we can suppose that zo € I(ys,u). Since
x3 € I(ys,u), from these inclusions we obtain that dg(zs,u) + 1 = dg(ys, x2) + da(z2, u).
Then dg(x3,u) > dg (22, u), and we conclude that dg(zs,u) = dg(z2,u) and dg(ys, 22) = 1.
Since xq, x3 € I(r,u), dg(xs3,r) = dg(x2, 7). We distinguish two cases:

Case 1. dg(z1,7) = k.

Since x1, 3, r3 have the same distance k to r, we can apply to z; the same analysis as to x3
and deduce that the neighbor y; of x1 in T coincides with one of the vertices y5 or y3. Since
Yo = y3 = y, we conclude that the vertices x1, x2, z3 have the same neighbor y in T'. Since
y is closer to r than each of the vertices 1, x2, x3 and since x1, xo, x5 € I(r,u), we conclude
that x1, 29, x3 € I(y,u). Applying the quadrangle condition three times, we can find three
vertices x; ;,1,j € {1,2,3},7 # j, such that x; ; ~ z;, z; and dg(z; ;,u) = k — 1. If two of
the vertices 1 2, 2 3, and x3; coincide, then we will get a forbidden K 3. Thus x1 2, 2 3,
and x3; are pairwise distinct. Since G is bipartite, this implies that dg(xi, ;%) = 3
for {i,7,k} ={1,2,3}. Since x1 2,223 € I(x2,u), by quadrangle condition there exists a
vertex w such that w ~ x1 2,2 3 and dg(w,u) = k — 2. Since G is bipartite, dg(w, x31)
equals to 3 or to 1. If dg(w,z31) = 3 = d(y,w), then the triplet y,w,zs; has two
medians 7 and x3, which is impossible, because G is median. Thus dg(w,z3,1) =1, i.e.,
w ~ x31. Then one can easily see that the vertices y, z1, z2, x3, 21,2, 2,3, 23,1, w define
an isometric 3-cube of G, contrary to the assumption that G is cube-free. This finishes
the analysis of Case 1.

Case 2. dg(z1,7) < k.
This implies that dg(r,z1) < k—1 = dg(r,y). Let r’ be the neighbor of r in the (r, y)-path
of T. Note that r’ ¢ I(r,x1) = P(r,x1). Otherwise, ' € P(r,x1) N P(r,x2) N P(r,x3)
and we can replace T by the subtree T rooted at r’ and consisting of the subpaths of
P(r,x;) between 7’ and x;, i = 1,2,3. Clearly 7" is a rooted tree with gated branches
and x1,xe,x3 € T(u,T’), contrary to the minimality choice of T.. Thus r’ ¢ P(r,x1).
Let also P(r,x1) = (r,v1,...,Vm—1,0m =: x1). Note that r may coincide with y;
and z; may coincide with vy. Since v1,7’" € I(r,u), by quadrangle condition we will
find v§ ~ vy,r" at distance dg(r,u) — 2 from w. Since ' ¢ I(r,z1), vy # ve. Since
va, V4 € I(v1,u), by quadrangle condition we will find v§ ~ vq, v} at distance dg(r,u) — 3
from u. Again, since 1’ ¢ I(r,x1), vi # vs. Continuing this way, we will find the vertices
Uy, VY, ooy Upy s Upy g =: @y forming an (1, 29)-path P(r’,27) and such that vj ; ~ v;,v;,
Uiy # Vig1, and vj . is one step closer to u than v; and v;. From its construction,
P(r',z}) is a shortest path. We assert that P(r’,z}) is gated. Otherwise, by Lemma
1, we can find two vertices v;_; and v;,; having a common neighbor 2’ different from
. Let z be the median of the triplet z’,v;_1,v;4+1. Then z is a common neighbor of
2',v;—1,v;41 and z is different from v; (otherwise, we obtain a forbidden K3 3). But then
the vertices v;_1, v, vip1,v;_1, v}, Vi 1, 2, 2" induce in G an isometric 3-cube, contrary to

v,

the assumption that G is cube-free. Consequently, P(r’,z}) is a gated path of G.

Let T" be the tree rooted at ' and consisting of the gated path P(r’,z}) and the gated
subpaths of P(r,z2) and P(r,z3) between r’ and xs, x3, respectively. Clearly, T is a
rooted tree with gated branches. Notice that },x2, 25 € Y(u,T”). Indeed, if x5 or x3
belonged to I(z},u), then z} € I(x1,u) and we would conclude that zo or z3 belongs to
I(z1,u), which is impossible because 21 € T(u,T). On the other hand, z} cannot belong
to I(xg,u) or to I(x3,u) because dg(z],u) = dg(x1,u) — 1 < dg(ze,u) = dg(zs3,u).
Consequently, |Y(u, T")] > 3. Since T” contains less vertices than T, we obtain a
contradiction with the minimality choice of T'. This concludes the analysis of Case 2,
thus T is quasigated. <
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Applying Lemmas 5 and 6 to the subgraph of G induced by the fiber F(z), we obtain:
» Corollary 3. The total boundary 0* F(z) of any fiber F(x) is quasigated.

5.3 Classification of pairs of vertices

In Subsection 5.1, we classified the fibers of St(z) into panels and cones. In this subsection,
we use it to provide a classification of pairs of vertices of G with respect to the partition into
fibers, which extends the one done in [19] for planar median graphs.

Let z be an arbitrary fixed vertex of G. Let F, = {F(z) : x € St(z)} be the partition of
V into the fibers of St(z). Let u, v be two arbitrary vertices of G and suppose that u belongs
to the fiber F(x) and v belongs to the fiber F(y) of F,. We say that u and v are roommates
if they belong to the same fiber, i.e., z = y. We say that u and v are 1-neighboring if F(x)
and F'(y) are two neighboring fibers (then one of them is a panel and another is a cone). We
say that u and v are 2-neighboring if F'(z) and F'(y) are distinct cones neighboring with a
common panel, i.e., there exists a panel F(w) ~ F(z), F(y). Finally, we say that v and v are
separated if the fibers F(z) and F'(y) are distinct, are not neighboring, and if both F'(x) and
F(y) are cones, then they are not 2-neighboring. From the definition it follows that any two
vertices u, v of G are either roommates, or separated, or 1-neighboring, or 2-neighboring.

separated vertices 1-neighboring vertices

z

Figure 2 To Lemmas 7, 8 and 9: in red, shortest paths between separated, 1-neighboring, and
2-neighboring vertices u and v. The total boundaries of the panels appear in blue.

We continue with distance formulae for separated, 2-neighboring, and 1-neighboring
vertices. The illustration of each of the formulae is provided in Figure 2.
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» Lemma 7. Two vertices u and v are separated if and only if dg(u,v) = dg(u, z) +dg(z,v).

» Lemma 8. Let u and v be two 1-neighboring vertices such that u belongs to the panel
F(x) and v belongs to the cone F(y). Let uy and us be the two imprints of u on the total
boundary 0*F(x) and let vt be the gate of v in F(x). Then, dg(u,v) = min{dg(u,u1) +
doe pzy (u1,v7), da(u, uz) + do pay (uz,v)} + da (v, v).

» Lemma 9. Let u and v be two 2-neighboring vertices belonging to the cones F(x) and
F(y), respectively, and let F(w) be the panel neighboring F(x) and F(y). Let u™ and vt be
the gates of u and v in F(w). Then dg(u,v) = dg(u,u™) 4+ do« pw) (u™, vT) + dg (v, v).

6 Distance labeling scheme for cube-free median graphs

Let G = (V, E) be a cube-free median graph with n vertices and let m be a median vertex of
G. Let u,v be any pair of vertices of G for which we have to compute the distance dg(u,v).
Applying Lemmas 7, 8, and 9 with m instead of z, the distance dg(u,v) can be computed
once u and v are separated, 1-neighboring, or 2-neighboring and once u and v keep in their
labels the distances to m, to the respective gates vt and v™, and to the imprints u; and
ug if u belongs to a panel. It also requires keeping in the labels of v and v the information
necessary to compute each of the distances dg« py)(u1,v"), dgs p(o) (U2, v7), dos pry) (ut, v™).
Since the total boundaries are isometric trees, this can be done by keeping in the label of
u the labels of u1,us, and v in a distance labeling scheme for trees, as well as keeping in
the label of v such a label of v™. This shows that dg(u,v) can be computed in all cases
except when u and v are roommates. Since F'(x) is median, we can apply the same recursive
procedure to each fiber F(z) instead of G. Therefore, dg(u,v) is computed in the first
recursive call when u and v will no longer belong to the same fiber of the current median
vertex (we will sometimes refer at this median vertex as the separator of u and v). Since at
each step the division into fibers is performed with respect to a median, |F(z)| < n/2 by
Lemma 4, thus the tree of recursive calls has logarithmic depth.

In this section, we present the distance labeling scheme. The encoding scheme is described
by the algorithm DIST__ENC presented in Subsection 6.1. Subsection 6.2 presents the
algorithm D1ST for answering distance queries. In Subsection 6.3, we briefly explain how a
constant query time can be achieved by adding O(log2 n) bits in head of each label.

6.1 Encoding

We describe now how Di1sT__ENC constructs for every vertex u of G a distance label LD(u).
This is done recursively and every depth of the recursion is called a step. Initially, we suppose
that every vertex u of G is given a unique identifier id(u). We define this naming step
as Step 0 and denote the corresponding part of LD(u) by LDg(u), i.e., LDg(u) := id(u).
At Step 1, DIST__ENC computes a median vertex m of G, the star St(m) of m, and the
partition F,,, := {F(z) : © € St(m)} of V into fibers. Every vertex u of G receives the
identifier id(m) of m and its distance dg(u, m) to m. After that, every vertex x of St(m)
receives a special identifier Lgg () (2) of size O(log|V]) given by a distance labeling for the
star St(m). Then, D1ST__ENC computes the gate u* in St(m) of every vertex u of G and
adds its identifier Lgy(;m)(u) to LD(u). The identifiers Lgg () () of the vertices of St(m)
can also be used to distinguish the fibers of St(m). This triplet (id(m), dg (u, m), Lsg(m) (u))
contains the necessary information relative to St(m) and is thus referred as the part “star”
of the information LD; (u) given to u at Step 1. We denote this part by LD (u). We also
set Lth[Med} (u) :=id(m), Lth[DiSt] (u) := dg(u,m) and Lth[gaw] (u) := Lgg(m) (ut) for the
three components of the label LD (u).
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Afterwards, at Step 1, the algorithm considers each fiber F(x) of F,,. If F(x) is a panel,
then the algorithm computes the total boundary 0*F(x) of F(z). The vertices v of the
quasigated tree 0* F'(z) are given special identifiers LD - p(,)(v) of size O(log” |V|) consisting
of a distance labeling scheme for trees (see [24]). For each vertex u of the panel F(z),
the algorithm computes the two imprints u; and us of u in *F(x) (it may happen that
uy = uz) and stores (LDg- g, (u1), de(u, u1)) and (LDg« pa (u2), de(u, us2)) in LD (u) and
LD (). If F(x) is a cone and F(w;) and F(ws) are the two panels neighboring F(z),
then for each vertex u of F(z), the algorithm computes the gates ] and u3 of u in F(w;)
and F(wy), respectively. Since u) € 0, F(w;) C 0*F(x),i = 1,2, the labels LDa*F(wl)(uf)

and LDy« p(w,)(ud ) in the distance labelings of trees 0* F(w1) and 9% F(w;) are well-defined.

Therefore, the algorithm stores (LDg« p(u,) (uf ), de(u, uf)) and (LDg« p(uy) (u3), de(u, ug’))
in LD{**(u) and LD?"!(u). This ends Step 1.
Since F,, partitions V into gated median subgraphs, the label LDz (u) added to LD(u)

at Step 2 is constructed as LD; (u) replacing G by the fiber F(ut) containing u, and so on.

Since each fiber contains no more than half of the vertices of the current graph, at Step
[log |V'|], the fiber containing any vertex consists solely of this vertex, and the algorithm
stops. Therefore, for each pair of vertices u and v of G, there exists a step of the recursion
after which u and v are no longer roommates.

6.2 Distance queries

Let u and v be two vertices of G and let LD(u) and LD(v) be their labels returned by
DisT__ENC. Here we describe how the algorithm DI1ST computes the information about the

relative positions of w and v with respect to each other and how, using it, computes dg(u,v).

First, the algorithm has to detect if v and v coincide or not. If u # v, then DIST finds the
largest integer i such that LDiSt[MEd] (u) = LDZ.St[MEd] (v). This corresponds to the first time
the vertices u and v belong to different fibers in a partition. Let m be the median vertex
of the current median graph that is the separator of uw and v. Then, the algorithm DisT
retrieves the distances d := dg(u*,vV), d, := dg(u*,m) and d, := dg(v*, m). This is done
by using the identifiers LD?t[gate] (u) and LDiSt[gate] (v) and the distance decoder for distance
labeling in stars. With this information at hand, one can easily decide for each of the vertices
u and v if it belongs to a cone or to a panel, and moreover decide if the vertices u and v are
1-neighboring, 2-neighboring, or separated. In each of these cases, a call to an appropriate
function is done.

First suppose that the vertices u and v are 1-neighboring (d = 1 and one of d,, d, is 1
and the other is 2), i.e., one of the vertices u, v belongs to a cone, the other one belongs to
a panel, and the cone and the panel are neighboring. The function Dist_1-Neighboring
returns the distance dg(u,v) in the assumption that u belongs to a panel and v belongs to a
cone (if v belongs to a panel and u to a cone, it suffices to swap the names of the vertices u
and v before using Dist_1-Neighboring). The function finds the gate v of v in the panel
of u by looking at LDl-St[gate] (v) (it also retrieves the distance dg(v,v")). It then retrieves
the imprint «* of u (and the distance dg(u,u*)) on the total boundary of the panel that
minimizes the distance of u to one of the two imprints plus the distance from this imprint to
the gate v+ using their tree distance labeling scheme. Finally, Dist_1-Neighboring returns
dg(u,u*) + dg(u*,v") + dg(vh,v) as dg(v,u).

Now suppose that the vertices u and v are 2-neighboring (i.e., d = d,, = d,, = 2). Then
both « and v belong to cones. By inspecting LDZ.St[gate] (u) and LDZ»St[gate] (v), the function
Dist_2-Neighboring determines the panel F(w) sharing a border with the cones F(u‘)
and F(v%). Then, the function retrieves the respective gates u* and vt of u and v in
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this panel F(w) and the distances dg(u,u™) and dg(v,v"). The distance between the
gates uT and vt is retrieved using the distance decoder for trees. The algorithm returns
dg(u,ut) +dg(u™,v") + dg(vt,v) as dg(u,v).

In the remaining cases, the vertices u and v are separated. By Lemma 7, dg(u,v) =
de(u,m) + dg(m,v). Both u and v have stored the median vertex m and their distances to
m. Therefore, Dist_Separated simply returns the sum of those two distances.

6.3 Complexity analysis and improved query time

The correctness of DIST results from the following properties of G: stars and fibers are gated
(Proposition 2); total boundaries of fibers are quasigated (Corollary 3) isometric trees with
gated branches (Lemma 5); the formulae for computing the distance between separated,
1-neighboring, and 2-neighboring vertices (Lemmas 7, 8, and 9). At each step of the encoding,
O(log® n) bits are added to the label of every vertex (due to the tree-distance labeling scheme
they contain). Since there are [logn] steps, the total length of each label is O(log® n). For
decoding the labels, it suffices to read them once to find when the vertices are no longer
roommates. This is done in time O(log2 n) assuming the word-RAM model. Then it might
be necessary to decode the distance labels for trees. This can be done in constant time [24].

To sum up, the most costly part of decoding the labels LD(u) and LD(v) is to read
them up to find the (median) separator of u and v. But with an appropriate O(log® n) bits
information concatenated to LD(u) and LD(v), one can find this median vertex in O(1) time
and then directly jump to the corresponding part of LD(u) and LD(v). For that, consider
the tree T' (of recursive calls) in which vertices at depth i are the median vertices chosen
at step 7 and in which the children of a vertex = are the medians chosen at step ¢ + 1 in
the fibers generated by x at step i. We can observe that every vertex of G appears in this
tree, that the separator m of any two vertices u and v of G is their nearest common ancestor
in the tree T, and that its depth j in this tree corresponds to its position in LD(u) and
LD(v), i.e., LDJS-t[Med} (u) = LDJS-t[Med} (v) =id(m). As noticed in [39], any distance labeling
for trees T can be modified to support nearest common ancestor’s depth (NCAD) queries
by adding the depth depth(u) of u in T to the label L(u) given to each vertex u € V(T') by
the distance labeling. Given two vertices u and v of T', the NCAD decoder then returns
1 (depth(u) 4 depth(v) — dr(u,v)). So, during the execution of DIST ENC, we can also
construct the tree T' of recursive calls and then give an NCAD label L'(u) in T to every
vertex of G. Now, the first step of DI1ST will consist in decoding L'(u) and L’(v). Then the
algorithm directly reads the parts of LD(u) and LD(v) corresponding to the last common
median they stored. This establishes Theorem 1.

7 Conclusion

In this paper we presented a distance labeling scheme for cube-free median graphs G with
labels of size O(log®n). For that, we considered the partitioning of G into fibers (of size
< n/2) of the star St(m) of a median vertex m. Each fiber is further recursively partitioned
using the same algorithm. We classified the fibers into panels and cones and the pairs of
vertices u, v of G into roommates, separated, 1-neighboring, and 2-neighboring pairs. If u
and v are roommates, then dg(u,v) is taken at a later step of the recursion. Otherwise, we
showed how to retrieve dg(u, v) by keeping in the labels of u and v some distances from those
vertices to some gates/imprints. Our main ingredient is the fact that the total boundaries of
fibers of cube-free median graphs are isometric quasigated trees.
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This last property of fibers is an obstacle in generalizing our approach to all median graphs,
or even to median graphs of dimension 3. The main problem is that the total boundary is
no longer a median graph. Therefore, one cannot apply to this total boundary the distance
scheme for cube-free median graphs. Nevertheless, a more brute-force approach works for
arbitrary median graphs G of constant maximum degree A. In this case, all hypercubes of G
have constant size. Thus, the star St(m) cannot have more than O(2%) vertices, i.e., St(m)
has a constant number of fibers. Since every fiber is gated, at every step of the encoding
algorithm, every vertex v can store in its label the distance from v to its gates in all fibers of
St(m). Consequently, this leads to distance labeling scheme with labels of (polylogarithmic)
length O(22 log® n) for all median graphs with constant maximum degree A. We would like
to finish this paper with the following question: Does there exist a polylogarithmic distance
labeling scheme for general median graphs or for median graphs of constant dimension?
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—— Abstract
We call a first-order formula one-dimensional if every maximal block of existential (or universal)
quantifiers in it leaves at most one variable free. We consider the one-dimensional restrictions of the
guarded fragment, GF, and the tri-guarded fragment, TGF, the latter being a recent extension of
GF in which quantification for subformulas with at most two free variables need not be guarded, and
which thus may be seen as a unification of GF and the two-variable fragment, FO?. We denote the
resulting formalisms, resp., GF1, and TGF;. We show that GF; has an exponential model property
and NEXPTIME-complete satisfiability problem (that is, it is easier than full GF). For TGF; we
show that it is decidable, has the finite model property, and its satisfiability problem is 2-ExpTIME-
complete (NEXPTIME-complete in the absence of equality). All the above-mentioned results are
obtained for signatures with no constants. We finally discuss the impact of their addition, observing
that constants do not spoil the decidability but increase the complexity of the satisfiability problem.
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1 Introduction

The guarded fragment of first-order logic, GF, is obtained by requiring all quantifiers to be
appropriately relativised by atoms. It was introduced by Andréka, van Benthem and Németi
[1] as a generalization of propositional modal logic and may be also seen as an extension of
some standard description logics. GF has good algorithmic and model-theoretic properties.
In particular, Gréadel proved that its satisfiability problem is decidable, it has a tree-like
model property and the finite model property [7]. The idea of GF turned out to be very
fruitful and found numerous applications. In this paper we consider some modifications of
the syntax of GF. Our aim is to check if in this way we can obtain interesting fragments
with better complexity and/or attractive expressiveness.

The satisfiability problem for GF is 2-ExpPTIME-complete. This relatively high complexity
can be lowered to EXPTIME either by bounding the number of variables, or the arity of
relation symbols [7]. We propose another way of decreasing the complexity without sacrificing
either the number of variables or the arity of relations. The idea is to restrict formulas to
be one-dimensional. We say that a formula is one-dimensional if every maximal block of
existential (or universal) quantifiers in it leaves at most one variable free. We remark that
the one-dimensional restriction of full first-order logic, F1, is undecidable, as observed by
Hella and Kuusisto [9]. We denote the intersection of F; and GF by GF; and call it the
one-dimensional guarded fragment. While this variation decreases the expressive power of the
logic, we believe that it is still quite interesting, as, in particular, it still embeds propositional
modal logic, and most standard description logics embeddable in full GF. Thus, as GF, it
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may serve as an extension of modal/description logics to contexts with relations of arbitrary
arity. We show that the satisfiability problem for GF; is NEXPTIME-complete and that it
has an exponential model property, that is, its every satisfiable formula has a model of size
bounded exponentially in its length. This is in contrast to full GF in which one can enforce
doubly exponentially large models. Moreover, proving the finite model property for GF;
is much easier than for full GF, in particular it does not need complicated combinatorial
constructions used in the case of GF (in [7], and in Bérdny, Gottlob and Otto [2]). We
obtain a corresponding NEXPTIME-lower bound even for a weaker logic, uniform GF1, that
is the intersection of GF; and uniform Fy, UFy, the latter being a decidable restriction of
F; introduced in [9] as a canonical generalization of the two-variable fragment FO? (with
equality) to scenarios involving relations of arity greater than two (see Kieroriski, Kuusisto
[13] where NEXPTIME-completeness of UF; is shown). This is slightly surprising, since in
many aspects UF; behaves similarly to the two-variable fragment, FO?, and the guarded
version of the latter is EXPTIME-complete [7].

We also consider an extension of GF called the tri-guarded fragment, TGF. In TGF
quantification for subformulas with at most two free variables may be used freely, without
guards. Hence, TGF unifies GF and the already-mentioned FO?. We borrowed the term
tri-guarded fragment from a recent work by Rudolph and Simkus [15], but, actually, the
idea behind TGF is not new and can be traced back already in Kazakov’s PhD thesis [11]
where the fragment GF|F02, essentially identical with TGF, was defined. A similar logic, GF
with binary cross product, GF*2, is also considered by Bourhis, Morak and Pieris [4]. Both
GF|FO? and GF*2 do not allow constant symbols. We remark that in our initial scenario
we also assume that constants are not present in signature; however, we will discuss their
addition later.

Similarly to GF, FO? is a seminal fragment of first-order logic, and its importance is
justified, inter alia, by its close relationships to modal and description logics. Mortimer
[14] demonstrated that it has the finite model property and Gradel, Kolaitis and Vardi
[8] proved that its satisfiability problem is NExpPTIME-complete. Each of the logics GF,
FO? has some advantages and drawbacks with respect to the other. We mention here the
fact that GF allows only to express properties of a local character, e.g., it cannot express
Vay(Px A Qy — Rxy), while FO? does not allow for a non-trivial use of relations of arity
greater than two. TGF offers a substantial improvement in these aspects. Moreover, in
TGF we can embed the Godel class, that is the class of all prenex formulas of the form
Vaxy3zy(x,y, z). Indeed, any such formula has an equisatisfiable TGF formula obtained
just by an addition of a dummy guard, as follows, Vzy3z(G(z,y, 2) A ¢¥(z,y, 2)), where G
is a fresh relation symbol of the appropriate arity. Such embedding implies, however, that
the satisfiability problem for TGF with equality is undecidable, since the Godel class with
equality is undecidable, as proved by Goldfarb [6]. The undecidability of TGF with equality
is also shown in [15] by a direct grid encoding. On the positive side, it turns out that the
satisfiability problem for TGF without equality is decidable and 2-EXPTIME-complete. It
was proved in [11] by a resolution method, and follows also from the decidability of GF,
shown in [4] by a use of the database-theoretic concept of chase.!

LA footnote in [4] suggests that the decidability of GF with binary cross-product is retained in the
presence of equality. This has however been later later refuted by the authors (private communication).
GF with binary cross product with equality is undecidable by the same arguments we gave for TGF.
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In this paper we consider a natural combination of GF; and TGF, the one-dimensional tri-
guarded fragment, TGF, which, on the one hand, allows us to use unguarded quantification
for subformulas with at most two free variables, but, on the other hand, requires to obey
the one-dimensionality restriction. We show that this variant is decidable even in the
presence of equality. The complexity, however, depends on the presence/absence of equality:
The satisfiability problem is 2-ExPTIME-complete with equality and NEXPTIME-complete
without it. The logic has the finite model property (we remark that whether full TGF has
the finite model property is an open question), and, again, a bound on the size of minimal
models is doubly- or singly exponential, depending on whether equality is allowed or not.
TGF; may be seen as a decidable generalization of FO? (with equality) to scenarios with
relations of arity greater than two, alternative and orthogonal in the expressive power to
the above-mentioned UF;. We also remark that TGF; can express the concept of nominals
from description logics, since the combination of equality and unguarded quantification for
subformulas with two free variables allows us to say that some unary predicates hold for
unique elements of a model. Thus we can embed in TGF, e.g., the description logic ALC
plus inverse roles (Z), nominals (O), role hierarchies (#), and any Boolean combination of
roles (including their negations).

We then briefly consider applications of the ideas of one-dimensionality and tri-guardedness
to two decidable extensions of GF, namely, the loosely guarded fragment, LGF, introduced by
van Benthem [17], and the guarded negation fragment, GNFO, proposed by Béardny, ten Cate
and Segoufin [3]. Regarding one-dimensionality, it helps in the case of LGF: one-dimensional
LGF has an exponential model property and NEXPTIME-complete satisfiability problem
(exactly as GF1), but does not help in the case of GNFO, where the one-dimensional variant
remains 2-EXPTIME-hard. Regarding the tri-guardedness, the results are negative: both LGF
and GNFO, even in their one-dimensional variants, become undecidable when unguarded
quantification for subformulas with two free variables is allowed.

As remarked, all the results discussed above are obtained under the assumption that
constants are not present in signatures. It turns out that all the decidability results are
preserved in the presence of constants. However, interestingly, the computational complexity
may change (we recall that for GF constants make no difference [7]). This is also the
case for TGF with constants, without equality, which is shown in [15] to be 2-NEXPTIME-
complete. Here we show that a 2-NEXPTIME-lower bound can be obtained even for TGF;
with constants, without equality. We also observe that the presence of constants lifts the
complexity of GF; to 2-EXPTIME.

In Table 1 we summarize the above-discussed complexity results for the variations of
GF. We point out an interesting status of TGF;: it is NEXPTIME-complete without
equality and constants, 2-EXPTIME-complete with equality and without constants, and
2-NExXPTIME-complete with constants (with or without equality).

We finally remark that further pushing the concepts of one-dimensionality and tri-
guardedness to, resp., two-dimensionality and tetra-guardedness does not lead to attractive
results. Indeed, a 2-EXPTIME lower bound for two-dimensional GF can be shown by a
slight adaptation of the bound for full GF from [7]; allowing for unguarded quantification
for subformulas with three free variables gives undecidability, as the resulting logic contains
the undecidable three-variable fragment of FO (see, e.g., Kahr, Moore and Wang [10]).
Undecidability of the three-variable fragment can be easily shown even using only one-
dimensional formulas.

16:3
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Table 1 Complexities of the guarded fragments. If the presence of constants makes a difference,
the complexity of the variant with constants is given in the brackets. All logics have the finite model
property. Results of this paper are distinguished in bold.

logic with = without =
GF 2-ExpTIME. 2-ExpTIME
TGF undecidable 2-EXPTIME (2-NEXPTIME)

GF1 NExpTime (2-ExpTime) NExpTime (2-ExpTime)
TGF: | 2-ExpTime (2-NExpTime) | NExpTime (2-NExpTime)

2 Preliminaries

We mostly work with purely relational signatures with no constants and function symbols
(only in Section 6 we consider signatures with constants). For convenience we also assume
that there are no relation symbols of arity 0. We refer to structures using Fraktur capital
letters, and to their domains using the corresponding Roman capitals. Given a structure 2
and some B C A we denote by 24[B or just by B the restriction of 2 to its subdomain B.
We usually use a, b, ... to denote elements from domains of structures, @, b, ... for tuples
of elements, x, ¥, ... for variables and z, ¥, ... for tuples of variables; all of these possibly
with some decorations. For a tuple of variables & we use ¥(Z) to denote a formula (or
subformula) v, whose all free variables are in .
An atomic [-type [ over a signature o is a maximal consistent set of atomic or negated
atomic formulas (including equalities/inequalities) over o in [ variables x4, ..., ;. We often
identify a type with the conjunction of its elements, §(x1,...,z;). For an I-type 8 we denote
by Blz; (¢ =1,...,1) the 1-type obtained by removing from £ all the literals that use some z;,
with j # i, and then replacing all occurrences of x; by ;. We will be particularly interested
in 1-types and 2-types over signatures o consisting of the relation symbols used in some given
formula. Observe that the number of 1-types is bounded by a function which is exponential
in |o|, and hence also in the length of the formula. This is because a 1-type just corresponds
to a subset of o. On the other hand, the number of 2-types may be doubly exponentially
large. Indeed, using an n-ary predicate and two fixed variables one can build 2™ atoms which
then can be used to form 22" different 2-types.
Let 2 be a structure, and let a,b € A be such that a # b. We denote by tp®(a) the
unique atomic 1-type realized in 2 by the element a, i.e., the 1-type a(x) such that 2 = a(a);
similarly by tp®(a,b) we denote the unique atomic 2-type realized in 2 by pair (a,b), i.e.,
the 2-type B(z,y) such that 2 = S(a,b). For B C A we denote by a[B] the set of all 1-types
realized in 2 by elements of B.
Below we define several fragments of first-order logic, FO, including two new fragments,
GF; and TGF;. Each of the fragments is defined as the least set of formulas (i) containing
all atomic formulas (including equalities), (ii) closed under Boolean connectives, and (iii)
satisfying appropriate (depending on the fragment) rules of using quantifiers, specified below
(z, y represent here any tuples of variables and x, y represent any variables):
Guarded fragment of first-order logic, GF:
if ¥(z,y) € GF then VZ(y(z,y) — ¥(z,y)) and 3z(v(z,y) A ¢¥(Z,y)) belong to GF,
where v(z, y) is an atomic formula containing all the free variables of v, called a guard
for 4.

One-dimensional fragment of first-order logic, F;:
if (Z,y) € Fy then 3z¢(Z,y) and VZy(Z,y) belong to Fy.
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One-dimensional guarded fragment, GF1:
if Y(z,y) € GFy then VZ(y(Z,y) — ¥(Z,y)) and 3Z(y(Z, y) A ¥(Z,y)) belong to GFq,
where v(Z,y) is a guard for .

Tri-guarded fragment, TGF:
if (z,y) € TGF then VZ(v(Z,y) — ¥(Z,y)) and 3z(~(Z, §) A(Z,y)) belong to TGF,
where v(Z,y) is a guard for v,
if ¥(x,y) is in TGF, then Jxv)(z,y) and Vap(z, y) belong to TGF.

One-dimensional tri-quarded fragment, TGF:
if ¢(Z,y) € TGF; then VZ(y(Z,y) — ¥(Z,y)) and 3Z(y(Z,y) A ¥(Z,y)) belong to
TGFq, where v(,y) is a guard for v,
if ¢ (x,y) is in TGF1, then dx¢(x,y) and Ve (x,y) belong to TGF;.

Note that GF is just the intersection of GF and Fi, TGF contains both GF and FO?,
and TGF is the intersection of TGF and Fy, containing full FO.

We recall that the satisfiability problem for F is undecidable [9]. To regain decidability
its uniform restriction, UF, was introduced in [9]. Roughly speaking, a boolean combination
of atoms is allowed in UF; if all of them use precisely the same set of variables; the exceptions
are atoms with one free variable and equalities, which may be used freely. See [9] or [13] for
a formal definition and more details on UF;.

We will also be interested in the loosely guarded fragment, LGF, the guarded negation
fragment, GNFO, and their one-dimensional and tri-guarded variations. They will be
introduced in Section 5.

3 Finite model property

In this section we prove the finite model property for TGF; and obtain (essentially optimal)
upper bounds on the size of minimal models of its satisfiable formulas, as well as of formulas
of its interesting subfragments.

We introduce a Scott-type normal form for TGF;. Given a TGF; formula ¢ we say that
it is in normal form if it has the following shape

N\ VE((E) = i (@) A\ Y3z, §) AVaeyd (, y) (1)

i€l iel’

where I, I’ are some sets of indices, the v;, ¥}, and 1" represent arbitrary quantifier-free

79
formulas, and for every i, ; is a proper guard for ;. We remark that we do not require
guards in formulas of the form V3, even if they contain more than two variables, as their
presence there is inessential (cf. Remark in [7], p. 1725). In a rather standard fashion one

can show the following lemma.

» Lemma 1. There is a polynomial nondeterministic procedure, taking as its input a TGF
formula ¢ and producing a normal form formula ¢’ (over an extended signature), such that
(i) if A | ¢ for some structure 2 then there is a run of the procedure producing a normal
form ¢ such that A' \= ¢’ for some expansion A’ of A,
(ii) 4f the procedure has a run producing ¢’ and A’ = ¢, for some A, then A’ |= .
Moreover, if ¢ is without equality then the procedure produces @' without equality; if ¢ is in
GF; then the last conjunct Yayy" (x,y) is not present in ¢'.

Lemma 1 allows us, when dealing with decidability or complexity issues and when
considering the size of minimal models of formulas in TGF1, to restrict attention to normal
form sentences. The part of this lemma starting with “moreover” will allow us to use it
effectively for TGF; without equality and for GF;.

16:5

MFCS 2019



16:6

One-Dimensional Guarded Fragments

Our normal form is similar to normal form for GF [7]. It adapts the latter to the one-
dimensional setting and extends it by the last type of conjuncts. The conversion to normal
form in [7] is deterministic, it however cannot be used directly in our case as it adds one free
variable to every subformula, which spoils one-dimensionality and may lead to unguarded
subformulas with three variables.

Let ¢ be a normal form formula and 2l its model. Take a € A and a conjunct ¢ =
Va3gyl(x, §) of p. Let b be a tuple of elements of A such that A = ¢/ (a,b). Then A[({a}Ub)
is called a witness structure for a and .

» Theorem 2. Every satisfiable formula @ in
(i) TGF; (with equality) has a finite model of size bounded doubly exponentially in |p|.
(i) TGF; without equality has a finite model of size bounded exponentially in |o|.

(iii) GFy (with or without equality) has a finite model of size bounded exponentially in |p|.

We concentrate on showing (i) and then obtain (ii) and (iii) as a corollary from the finite
model construction presented. Let ¢ be a normal form TGF; formula as in (1), and denote
n = |p|. Let us fix an arbitrary model 2 of ¢. We construct a bounded model B = .
We mimic the scheme of the classical construction from [8] showing an exponential model
property for FO?, in particular we adapt the notions of kings and court. The details, however,
are more complicated.

Court. We say that an element a € A is a king if tp®(a) is realized in 2 only by a; tp®(a)
is then called royal. As in the case of FO? kings are important as their duplication may
be forbidden by formulas like Vzy(Px A Py — © = y). Let K C A be the set of kings of
2. For each a € K and each i € I’ choose a witness structure 20, ; for a and ¢} in 2. Let
C=KU Ua,i Wi We call € the court of 2. The court will be retained in 8. Note that
the number of elements in C' is bounded exponentially in n, and it that the structure € can
be described using exponentially many bits (the latter is true since the arity of all relation
symbols is bounded by n). Note that K, and thus also C' may be empty.

Pattern witness structures. For each non-royal element a € A\ K we say that the iso-
morphism type of the structure 2A[(K U {a}) is the &-type of a. Note that from a &-type
of an element one can infer its 1-type, and that the number of the K-types realized in 2l is
bounded doubly exponentially in n. Denote by a® the set of R-types realized in 2 by the
elements of A\ K. Later, we will allow ourselves to use the notion of a &type in a natural
way also for other structures with a distinguished substructure &. For each 7 € a® choose
an element a having &-type 7 in 2 and for each ¢ € I’ choose a witness structure 20, ; for
a and ¢f. Let Q% ; = Wr ;[(Wx; \ (K U{a})). For each 7 € a®, i€ I" and j = 0,1,2 let
».i,; be a fresh isomorphic copy of 27 ;.
Universe. We define the universe of B as follows B := CUU,, ; Wx, .,
over a®, i over I' and j over {0, 1,2}. We emphasise that the sets x.i,; are disjoint from C'
and from each other. We retain in B the structure on C from 2 and for each 7,14, j we make
BI(K UWE, ) isomorphic to AJ(K U Wy ;). This, in particular, makes the f-type in B of
each element b belonging to some W ; . identical with the R-type in 2 of the counterpart of

b from the original substructure 20, ;.

where 7 ranges

Witness structures for the court. Let us consider an element ¢ € C'\ K, and denote by 7
its A-type in A. For every i € I’ make B[({c} U (W, ,NK)U W}, ) isomorphic to W, ;.

m,1,0
This provides a witness structure for ¢ and ¢} in B. Note that a single such step (for fixed ¢
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and i) consists in defining relations on tuples containing ¢, at least one element of Wiio
and possibly some elements of K, since relations on other relevant tuples were defined in
the desired way in step Universe. Note that no conflicts (attempts to set the same atom to
both true and false) can arise, when we perform this step for some ¢ and ¢ and then for the
same ¢ and some 7’ # 4, because in the first case we define truth-values of relations only on
tuples containing some element from Wy ; ;, and in the second — only on tuples containing
some element from W7, , and W, o is disjoint from W7 ,, . Finally, when we perform this
step for some ¢, and then for some ¢’ # ¢ no conflicts arise since in the first case we define
relations only on tuples containing ¢ but not ¢’ and in the second — only on tuples containing
¢ but not c.

Witness structures for the other elements. Consider now any element b € B\ C. Assume
it belongs to W, ;, ., and that 7 is the &type of b in B[(K U {b}). For each i € I" make
the structure on {b} U (Wr; NK)U W, 1 04 3) iSomorphic to Wr ;. This provides a
witness structure for b and 4} in %B. Again, to do it we need to define relations on some
tuples containing b and some element of W: i('+1 mod 3)° and, due to our strategy, this can
be done without conflicts.

Completing the structure. For any pair of distinct elements b,b’ € B whose 2-type has
not yet been defined in B choose a pair of distinct elements a,a’ with tp®(a) = tp™ (b) and
tp(a’) = tp® (1), and set tp® (b, V') := tp*(a,a’). An appropriate pair a,a’ exists even if
tpT (b) = tp™ (V') since at least one of b, b’ has a non-royal type. For any tuple b of elements
of B containing at least three distinct elements, and any relation symbol R of arity |b], if the

truth-value of R(b) in B has not yet been defined then set it to false.

This finishes the definition of B. Let us now estimate its size. We can bound the
number and the arity of relation symbols by n = |¢|. Then the size of K is bounded by
the number of possible 1-types, 2. The size of C' is bounded by 2" - n(n — 1), as each
element a of K may need at most n witness structures each of them containing (besides a)
at most n — 1 elements. The number of possible relations of arity at most n on a a set of
2" 4 1 elements is bounded by 22" +1)" < 22"2+n, thus the number of K-types is bounded by
(22"2+")” — g2t gt g2 (for n > 1). Finally, we can bound the size of B by
2"+ 2" .n(n—1)4+3n(n—1) - 222n2, doubly exponentially in n.

Presently, we explain that B |= . First note that for each b € B and each i € I’ there is
an appropriate witness structure: if b € K then this witness structure is provided in € which
is a substructure of B. If b € C'\ K or b € B\ C then a proper witness structure is provided
explicitly either in step Witness structure for the court or, resp., Witness structures for the
other elements. Thus B satisfies all conjuncts of ¢ of the form Vz3yy)(x, ).

Consider any conjunct Vz(vy;(Z) — 1;(#)) of ¢ and a tuple of elements b such that

B = yb). TbC CorbC KUW}

7.i,j for some i, j then the structure on b was made
an isomorphic copy of some substructure of 2 in step Universe. Otherwise b contains at
least two distinct elements. In this case the structure on b was made an isomorphic copy of
some substructure of 2 either in one of the steps Witness structures for the court, Witness
structures for the other elements or in step Completing the structure (in this last subcase b
contains precisely two distinct elements). Thus 9B = ;(b). Finally, consider the conjunct
Vayy” (z,y) and take any pair b,b" € B. Again, the structure on {b,b'} is an isomorphic
copy of a substructure of 2 defined (at the latests) in step Completing the structure.
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This finishes the proof of (i). To see (ii) and (iii) we first observe that in both cases
every satisfiable formula ¢ has a model without kings. Given a structure 2 we define two
new structures 220 and 22", each of them with universe A x {0,1} and the substructures on
Ax{0} and A x {1} isomorphic to 2. In 22 we make these two copies of A completely disjoint
by setting the truth-value of R(a) to false for any R and any tuple @ (of the appropriate
length) contained neither in A x {0} nor A x {1}. In 22", for any tuple @ contained neither
in A x {0} nor A x {1} and for any relation symbol R of arity |al, if this tuple contains
at least three distinct elements then we also define R(a) to be false. If @ contains just two
distinct elements, say (a,0) and (a’, 1), then for any relation symbol R or arity |a| set R(a)
true iff A = R(all) where a[l is the projection of the elements of @ on their first position.

Observations that if ¢ is without equality and 2 = ¢ then 22" |= ¢, and that if ¢ is in
GF; (even with equality) and 2 = ¢ then 22 |= ¢ are routine. Of course our new models
are without kings. Starting our small model construction from a model without kings we get
K = () and thus &-types trivialize to 1-types, which means that their number is bounded
singly exponentially. Also C = () and thus we construct 98 out of the Wi
over the set of 1-types, the number of possible i is linear in n and there are just three possible
values of j. The size of each 207 ; . is linear in n. The size of the constructed models can be
thus estimated by 3n(n — 1) - 2". Hence part (ii) and (iii) of Thm. 2 hold.

where 7 ranges

4 Complexity
In this section we establish the complexity of the considered logics.

» Theorem 3. The satisfiability problem (= finite satisfiability problem)
(i) for TGFy with equality is 2-EXPTIME-complete.

(ii) for TGF; without equality is NEXPTIME-complete.

(iii) for GF; is NEXPTIME-complete.

Upper bound in (i). We design an alternating satisfiability test for TGF; using only expo-
nential space. A 2-ExXPTIME-upper bound follows then from the fact that AEXPSPACE=2-
ExpTIME (Chandra, Kozen, Stockmeyer [5]). The procedure takes as its input a TGF;
formula ¢ and works as described below. For simplicity our description is slightly informal.
In particular, we do not precisely specify how structures constructed during its execution are
represented. We also allow ourselves to write “guess an object X such that Y instead of
more accurate “guess an object X; verify if X meets property Y if it does not then reject”.

1. Nondeterministically compute a normal form ¢’ as in Lemma 1. Let n := |¢/|.

2. Guess a set of 1-types @ = «, U v, over the signature of ¢’ (royal and non-royal
types), such that for any oy, as (possibly a3 = as) such that oy € @ and as € o, there
is a 2-type B such that Blx; = a1 and Blx2 = as, and [ does not violate the universal
conjuncts of ¢'.

3. Guess structures £, € of size at most 2" and 2" - n2, resp., with & being a substructure
of €, such that (i) a[K] = a,, (ii) a[C \ K] C -, (iii) each element of K has all the
required witness structures for V3 conjuncts of ¢’ in €, and (iv) universal conjuncts of ¢’
are not violated in €.

4. Universally choose an element ¢ € C'\ K and a conjunct ¢ of ¢’ of type V3. Set
§ =K U{c}).

5. Set Counter := 0.
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6. Guess an extension © of §, with universe D = K U {c} U {a1,...,a:}, such that
(i) tp®(a;) € @y, for all i, (ii) for some ki,..., ks € K the structure 20 = D |

{¢,k1,...,ks,a1,...,a:} is a witness structure for ¢ and ¢, (iii) universal conjuncts
of ¢’ are not violated in . If ¢ = 0 then accept.
7. Universally choose a new value for ¢ from {aq,...,a:} and a conjunct ¢ of ¢’ of the

form V3. Set § := FI(K U {c}).
8. Counter := Counger + 1
9. If Counter < 22" then goto 6 else accept.

Let us first note that exponential space is sufficient to perform the above algorithm.
By Lemma 1 we have that n is bounded polynomially in |¢|. The number of 1-types in o
is also bounded by 2", as a 1-type is determined by a subset of the signature. For some
pairs of 1-types we need to guess a 2-type whose description is exponential (there are at
most 2" tuples of length not greater than n consisting of a pair of elements, and at most n
relation symbols). The size of the structure € guessed in Step 4 is explicitly required to be
exponential in n. Also its description requires only exponentially many bits (recall that the
arity of all relations is bounded by n). Analogously we can bound the size of structures ©
guessed in Step 6. Finally, the value of Counter is bounded doubly exponentially, so it also
can be written using exponentially many bits.

Now we argue that the procedure accepts its input ¢ iff ¢ is satisfiable. Assume first that
the procedure accepts . We show that then ¢’ (and thus, by Lemma 1, also ¢) has a model.
Consider an accepting run of the procedure. We may assume w.l.o.g. that this run is uniform,
that is, when entering step 6, in configurations differing only in the values of Counter (but
with isomorphic §s) it makes the same (isomorphic) guesses of ©. Then the modification of
this procedure in which Step 9 is replaced just by 'Goto 6’ can run infinitely (if necessary)

without clashes. Indeed if the value Counter = 222"2 is reached we have a guarantee that the
R-type of the current ¢ appeared before in the computation (cf. our estimations on the size of
the small model constructed in the proof of Thm. 2, in particular on the number of &-types).
We can construct a model for ¢’ starting from the substructure € guessed in Step 4, and
then providing witness structures for all conjuncts of the form ¥3 of ¢’ and elements ¢ in
accordance with guesses of © is Step 6 (we add fresh copies of elements aq, ..., a; and make
the structure on the union of K, {¢} and the set of the newly added elements isomorphic to
D). We complete the (usually infinite) structure as in Step Completing the structure of the
small model construction from the proof of Thm. 2 using the 2-types guaranteed in Step 1.
As in that proof we can also show that the constructed structure is a model of ¢'.
Conversely, assume that ¢ has a model 2A*. Nondeterministically compute its normal
form ¢" and let 2 = ¢ be an expansion of 2[* guaranteed by Lemma 1. Let B be a model of
¢’ constructed as in the proof of Thm. 2, starting from 2[. W can now make all the guesses
of our procedure in accordance with B: denoting Ky and Csg the set of kings and a court
of B, resp., we set @, := a[Kn], o := @B\ Kgl, R := Ry, € := Cx. Then in the loop
6-9, when a structure © containing a witness structure for ¢ and v is going to be guessed we
choose an element ¢’ € B such that the f-types of ¢’ in B and ¢ in § are identical and find a
witness structure for ¢/ and ¥ in B. We set D to be isomorphic to the restriction of B to
the union of Ky and this witness structure. This strategy naturally leads to acceptance.

Lower bound in (i). We encode computations of an alternating Turing machine M working
in exponential space on its input a = a;, ... a;, ;.

The general idea of the proof is not far from the ideas used in the proofs of the 2-ExpTIME-
lower bound for GF [7] and 2-NEXPTIME-lower bound for TGF with constants [15]. We
must, however, be careful to avoid quantification leaving more than one variable free, which
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happens in both the above-mentioned proofs. E.g., in [7] configurations of a Turing machine
are encoded by pairs of elements a1, as; concretely, by the truth-values of some relations of
arity O(n) on tuples consisting of aj,as. To enforce existence of successor configurations
quantification leaving two free variables is needed there.

We assume that M has states sg, $1,..., Sk, where sg is the initial state, sy_1 is the only
accepting state, and si is the only rejecting state. The alphabet of M consists of letters
ag, - --,a; where ag represents blank. Without loss of generality we assume that M has
precisely two possible moves in every configuration, that on its every computation path it
enters the accepting or rejecting state no later than in 22"-th step, and then, after reaching
such final state, does not stop but works infinitely in a trivial way, without changing its
configuration.

For i = 0,...,k we use a predicate S;, for 1 = 0,...,] we use a predicate A; and to
describe the head position we use a predicate H. Each of the S;, A; and H is of arity 1+ n.

We enforce the existence of two kings, called zero and one, marked, resp., by unary
predicates Z and O. They will also be called bits, serve as binary digits and will be used to
encode the numbers of tape cells.

Fx(Z(x) A =O(z)) ANVey(Z(x) AN Z(y) = = =1y) (2)
F2(O0(z) A =Z(x)) AVzy(O(x) AO(y) = = =y) (3)

The idea is that every element of a model encodes a configuration of M in its relation to
tuples of bits of size n. Such a tuple of bits b can be naturally read as a number in the range
[0,...,2™ —1]. Let us think that A4;(c, 5) means that in the configuration encoded by ¢, tape
cell b contains a;, H (c, B) denotes that this tape cell is scanned by the head and, for a cell
observed by the head, S;(c,b) means that M is in state s;.

To be able to speak about properties of configurations of M in TGF; we introduce a
predicate C' of arity 1 4+ 2n, which will be made true at least for all tuples consisting of an
arbitrary element of a model followed by 2n bits. We first say that, for any 0 <+ < 2n, C holds
for some tuple consisting of ¢ ones and 2n —1 zeros, and then propagate C' to all relevant tuples,
using the fact that the pair of permutations (2,1,3,...,2n) and (2,3,...,2n,1) generates
the whole permutation group Ss,,. Below z = 25,1, 222, ..., 21, 20.

Va3tito(O(t1) A Z(to)AC(x, to, Lo, to, - - - » to)A
Clx,ty,to,to . .., to)A (4)
Oz, ty, b, to, . to) A A
Cla, ty, by, by, ... 1))

VIE(C(JE, 5) — C(l‘, 2on—25R2n—15R2n—3y -+ Zo) A C(l‘, 22m—25R2n—35 -+ - 5 R0, Zn—l)) (5)

We use a convention that u,v,w are tuples of variables of size n, u = uy,—_1,...,up and
analogously for v and w. We introduce abbreviations, \*(u,v) and A**(u,v) for quantifier-
free formulas of size polynomial in n. The former is intended to say that the numbers encoded
by @ and v differ, the latter — that the number encoded by v is greater by one than the
number encoded by 4. E.g., A™!(u,v) can be defined as

V' (Z(ui) A Owi) A N\(O(uy) A Z(vy)) A N\ (O(uy) & Z(v;))) (6)
0<i<n Jj<i Jj>i
Analogously, we use A\*(ii) and \2%(u) for formulas saying that the number encoded by 4 is,

resp., equal to ¢ and greater or equal i. Again, they can be defined in a standard way by
quantifier-free, polynomially bounded formulas.
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Now we ensure that every element properly encodes a configuration. The following
formulas say that, resp., there is a tape cell scanned by the head, there is at most one such
cell, this cell carries also information about the state, and every tape cell contains precisely a
single letter. Below \/1/}z is an easily definable shorthand for “exactly one of the v; holds”.

VaIu(H (z,u /\/\ (ui) V Z(uy)) (7
Vauv(C(z,u,v) = H(x,u) AN (a,0) = —H(z,0)) (8)
Veu(H (x,u) — \/iSi(x,ﬂ)) 9)
veu(Cle,u,u) — \/ Ai(z, ) (10)

We then say that every element has two successors, and, using the trick with permutations
prepare appropriate guards. Predicates Succ; are of arity 2 + 3n. For i = 1,2 we write:

VaIyti1to(O(t1) A Z(to)ANSuce;(x, y, to, to, Lo, - - -, o)A
Succei(x,y,t1,to,to - - ., to)A
Suce;(x,y,t1,t1,t0, ., to) Ao A (11)
Sucei(z,y,t1,t1,t1,...,t1))

Vayt(Suce;(z,y,t) —
Sucei(x,y, tan—2,t3n—1,t3n—3, - .. , to) A Succi(x,y, t3n—2,t3n-3, .., to, tan—1)) (12)

We next describe the computations of M on a. First we say that the letter at a tape cell
not scanned by the head does not change in the successor configurations. For ¢ = 1, 2:

Vayu((Suce;(z,y,u,u,u) = —H(x,u) = /\(Al(ac,ﬂ) — A;i(y,u))) (13)
i
Consider now existential moves. Assume that in an existential state s;, reading a letter
a; the machine has two possible transitions: (sy,a;,—) and (s;7, aj», ). Then we write:
Veyuvw(Sucer (x,y, 4, v, w) — H(z,u) A S;(x,u) A Aj(z, @) AT (4, 0) AT (w,u) —
(H(y, ) A Si (9, 8) A Ay (3, @) V (H(y, @) A S (3, ) A Ay (9, 0))) (14)
Similarly, assume that M has moves as above in a universal state s;. We write:
Vayuvv(Sucer (x,y, w,0,0) —
H(z,u) A Si(z,u) NAj(x,a) AN (w,0) = H(y,0) A S (y,0) A Ay (y, @) (15)

Vayuww(Suces(z,y, u, w, w) —
H(z,u) ASi(z,u) N Aj(x,u) NN (w,u) = H(y,w) A Sy (y,w) A Aj(y,u)) (16)

We finally say that a model does not contain a configuration with the rejecting state and
impose the existence of an element encoding the initial configuration.

—3xSy(z) A JxInit(x) (17)

Veu(C(z,u) = Init(x) = (A=°(u) — H(a: ) A So(x,u) A A (z,u))A
(A= (u) = Ai (@) AL A (18)
(AT @) = Ai, (2, @))A
(A= (1) = Ao(z,u)))

Showing that M accepts a iff the constructed formula has a model is routine.
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Upper bounds in (ii) and (iii). In both cases we have proved an exponential model property.
Thus, to test satisfiability it suffices to guess an exponentially bounded structure and verify
that it indeed is a model. More precisely, given a formula ¢ we nondeterministically convert
it into normal form ¢’. We guess an exponentially bounded model 9B of ¢’ (again we remark
that not only the universe of B is bounded exponentially, but also the description of 95, since
we are dealing only with at most |¢’| relations of arity at most |¢’|), and verify that it is
indeed a model. The last task can be carried out in an exhaustive way: for each b € B and
each conjunct of ¢’ of the form Va3gy.(x,§) guess which elements form a witness structure
for b and this conjunct and check that they indeed form a required witness structure; for
each conjunct Vz(v;(Z) — v;(Z)) enumerate all tuples b of elements of B such that |b] = |z|

and check that B = ~;(b) — ¢;(b). Proceed analogously with the conjunct Yayy" (x, y).

Lower bounds in (ii) and (iii). It suffices to show NEXPTIME-lower bound for GF; without
equality. As advertised in the Introduction, we even strengthen this result using only uniform
formulas, that is we show NEXPTIME-hardness of the uniform one-dimensional guarded
fragment being the intersection of GF and UF;. For our current purposes it is sufficient to
say that conjunctions of sentences 3z (z) and Vzy(z) with quantifier-free ¢ are uniform if
all atoms of ¢ use either all variables of & or just one of them. We use only formulas of such
kind. For a general definition of UF; see [9] or [13]. Our proof goes by an encoding of an
exponential tiling problem and is given in the full version of this paper.

5 \Variations on extensions of the guarded fragment

Let us see what happens when the ideas of one-dimensionality, tri-guardedness and their
combination are applied to two extensions of the guarded fragment: the loosely guarded
fragment, LGF, introduced by van Benthem [17], and the guarded negation fragment, GNFO,
introduced by Bardny, ten Cate and Segoufin [3]. LGF is defined similarly to GF, but the
notion of the guard is more liberal: in subformulas of the form 3y(v(Z,y) A ¢(Z,y)) and
Yy(v(Z,y) = ¢(Z,y)) we do not require that v is atomic but allow it to be a conjunction of
atoms such that for every variable from y and every variable from 3 U x there is an atom in
~ containing both of them. In GNFO (atomic) guards are required not for quantifiers but
for negated subformulas. For a more detailed definition of GNFO see [3].

One-dimensionality. First, let us see that the one-dimensionality decreases the complexity
of LGF, similarly as in the case of GF, but does not affect the complexity of GNFO.

» Theorem 4.
() The satisfiability (= finite satisfiability) problem for the one-dimensional LGF, LGFq,
is NExXPTIME-complete. LGF, has an exponential model property.
(i) The satisfiability (= finite satisfiability) problem for the one-dimensional GNFO is
2-ExXPTIME-complete.

To prove (i) we adjust the small model construction from the proof of Thm. 2, by
using more copies of witness structures and refining the strategy of providing witnesses.
The construction from the proof of Thm. 2 cannot be applied without any changes to the
current scenario, as it may accidentally form some cliques of cardinality greater than 2 in
the Gaifmann graph of the constructed model which then could work as loose guards and
lead to a violation of some universal conjuncts of the input formula.
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To see (ii) note that GNFO contains the unary negation fragment, UNFO, whose sat-
isfiability problem is already 2-EXPTiME-hard. UNFO is not one-dimensional but can be
polynomially translated to its equivalent UN-normal form (ten Cate, Segoufin [16]), which is
one-dimensional. The upper bound is inherited from the upper bound for full GNFO [3].

Tri-guardedness. Unfortunately, allowing for unguarded binary subformulas leads to unde-
cidability already in the case of one-dimensional variants of LGF and GNFO.

» Theorem 5. The (finite) satisfiability problems for the one-dimensional LGF or GNFO,
with unguarded subformulas with two variables, even without equality, are undecidable.

In the case of LGF1, unguarded binary subformulas give the power of full one-dimensional
fragment F;. Indeed by adding a conjunct VxyG*(z,y) we would be able to guard any
tuple of variables z1,...,z) by the conjunction A, ,; G*(zi,x;). (A similar observation
is present also in [15].) As the satisfiability problem for F; is undecidable [9] this gives
the undecidability of the considered variation of LGF. For the one-dimensional GNFO,
using unguarded negations of binary atoms one can express transitivity of binary relations:
—Jzyz(Rxy A Ryz A “Rxz). One-dimensional GNFO contains the two-variable guarded
fragment which becomes undecidable when extended by transitive relations (Kieronski [12],
Kazakov [11]). Thus the claim follows.

6 Adding constants

Finally, we study the satisfiability problem for GF; and TGF; with constants. It turns
out that in the presence of constants we lose neither the decidability nor the finite model
property, however, the complexity increases. The following theorem completes Table 1.

» Theorem 6.
(i) Every satisfiable formula in TGF; with constants has a finite model of size bounded
doubly exponentially in its length.
(i) The satisfiability (= finite satisfiability) problem for GFy with constants (with or without
equality) is 2-EXPTIME-complete.
(iii) The satisfiability (= finite satisfiability) problem for TGFy with constants (with or
without equality) is 2-NEXPTIME-complete.

It is not difficult to see that Lemma 1 holds for formulas with constants. Thus, to show
(i) we can use a minor adaptation of our small model construction from the proof of Thm. 2.
Indeed, interpretations of constants may be treated as kings. The number of &-types remains
doubly exponential. The construction works then essentially without changes, we only remark
that in step Completing the structure, when a 2-type for a pair of elements is chosen, we need
to define the truth-values of all relations on tuples built out of these elements and constants.
This way we get a doubly exponential bound on the size of models.

The upper bound in (ii) follows from the fact that full GF with constants is in 2-
ExpTIME [7].

The upper bound in (iii) follows from the fact that full TGF with constants is in 2-
NExpPTIME [15]. We remark, however, that this upper bound for TGF is obtained without
proving the finite model property, thus to justify the upper bound for finite satisfiability of
TGF; we must refer to part (i) of Thm. 6.

The corresponding lower bounds in (ii) and (iii) are proved in the full version of this paper.
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—— Abstract

We show that the finite satisfiability problem for the unary negation fragment with an arbitrary

number of transitive relations is decidable and 2-EXPTIME-complete. Our result actually holds
for a more general setting in which one can require that some binary symbols are interpreted as
arbitrary transitive relations, some as partial orders and some as equivalences. We also consider
finite satisfiability of various extensions of our primary logic, in particular capturing the concepts of
nominals and role hierarchies known from description logic. As the unary negation fragment can
express unions of conjunctive queries, our results have interesting implications for the problem of
finite query answering, both in the classical scenario and in the description logics setting.
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1 Introduction

Decidable fragments and unary negation. Searching for attractive fragments of first-order
logic is an important theme in theoretical computer science. Successful examples of such
fragments, with numerous applications, are modal and description logics. They have their
own syntax, but naturally translate to first-order logic, via the standard translation. Several
seminal decidable fragments of first-order logic were identified by preserving one particular
restriction obeyed by this translation and dropping all the others. Important examples of such
fragments are two-variable logic, FO?, [25], the guarded fragment, GF, [2], and the fluted
fragment, FF, [24, 22]. They restrict, respectively, the number of variables, the quantification
pattern and the order of variables in which they appear as arguments of predicates. A more
recent proposal [27] is the unary negation fragment, UNFO. This time we restrict the use
of negations, allowing them only in front of subformulas with at most one free variable.
UNFO turns out to retain many good algorithmic and model theoretic properties of modal
logic, including the finite model property, a tree-like model property and the decidability of
the satisfiability problem. We remark here that UNFO and GF have a common decidable
generalization, the guarded negation fragment, GNFO, [5].

To justify the attractiveness of UNFO let us look at one of the crucial problems in
database theory, open-world query answering. Given an (incomplete) set of facts D, a set of
constraints 7 and a query ¢, check if © AT entails g. Generally, this problem is undecidable,
and to make it decidable one needs to restrict the class of queries and constraints. Widely
investigated class of queries are (unions of) conjunctive queries — (disjunctions of) sentences
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of the form 37 (Z) where v is a conjunction of atoms. An important class of constraints
are tuple generating dependencies, TGDs, of the form Vzy(¢(Z,y) — 3z2¢’(y, z)), where ¢
and 1)’ are, again, conjunctions of atoms. Conjunctive query answering against arbitrary
TGDs is still undecidable (see, e.g., [6]), so TGDs need to be restricted further. Several
classes of TGDs making the problem decidable have been proposed. One interesting such
class are frontier-one TGDs, in which the frontier of each dependency, ¥, consists just of
a single variable [4]. Frontier-one TGDs are a special case of frontier-guarded TGDs [3].
Checking whether © and T entail ¢ boils down to verifying (un)satisfiability of the formula
D AT A—q. It turns out that if 7 is a conjunction of frontier-one TGDs and g is a disjunction
of conjunctive queries then the resulting formula belongs to UNFO.

Transitivity. A serious weakness of the expressive power of UNFO is that it cannot express
transitivity of a binary relation, nor related properties like being an equivalence, a partial
order or a linear order. This limitation becomes particularly important when database or
knowledge representation applications are considered, as transitivity is a natural property in
many real-life situations. Just consider relations like greater-than or part-of. This weakness
is shared by FO?, GF and FF. Thus, it is natural to think about their extensions, in
which some distinguished binary symbols may be explicitly required to be interpreted as
transitive relations. It turns out that FO?, GF and FF do not cope well with transitivity,
and the satisfiability problems for the obtained extensions are undecidable [15, 13, 23] (see
also [10, 18, 17]). Some positive results were obtained for FO?, GF and FF only when one
transitive relation is available [21, 18, 23] or when some further syntactic restrictions are
imposed [26].

UNFO is an exception here, since its satisfiability problem remains decidable in the
presence of arbitrarily many transitive relations. This has been explicitly stated in [16], as
a corollary from a stronger result that UNFO is decidable when extended by regular path
expressions. Independently, the decidability of UNFO with transitivity, UNFO+S, follows
from [1], which deals with the decidability of a richer logic, the guarded negation fragment
with transitive relations restricted to non-guard positions, which embeds UNFO+S. From
both papers the 2-EXPTIME-completeness of UNFO+S can be inferred.

Our main results. A problem related to satisfiability is finite satisfiability, in which we
ask about the existence of finite models. In computer science, the importance of decision
procedures for finite satisfiability arises from the fact that most objects about which we
may want to reason using logic, e.g., databases, are finite. Thus the ability of solving only
general satisfiability may not be fully satisfactory. Both the above-mentioned decidability
results implying the decidability of UNFO+S are obtained by employing tree-like model
properties of the logics and then using automata techniques. Since tree-like unravelings of
models are infinite, this approach works only for general satisfiability, and gives little insight
into the decidability /complexity of finite satisfiability. In this paper we consider the finite
satisfiability problem for UNFO+S. Actually, we made a step in this direction already in
our previous paper [7] (see [8] for its longer version) where we proved a related result that
UNFO with equivalence relations, UNFO+EQ), has the finite model property and thus that
its satisfiability and finite satisfiability problems coincide, both being 2- EXPTIME-complete.
Some ideas developed in [7] are extended and applied also here, even though UNFO+S does
not have the finite model property which becomes evident when looking at the following
formula with transitive T, Ve3dyTzy A Va—-Tzx, satisfiable only in infinite models.

Our main contribution is demonstrating the decidability of finite satisfiability for UNFO+S
and establishing its 2-EXPTIME-completeness. En route we obtain a triply exponential bound
on the size of minimal models of finitely satisfiable UNFO+S formulas. Actually, our results
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hold for a more general setting, in which some relations may be required to be interpreted as
equivalences, some as partial orders, and some just as arbitrary transitive relations. Returning
to database motivations, we get this way the decidability of the finite open-world query
answering for unions of conjunctive queries against frontier-one TGDs with equivalences,
partial orders and arbitrary transitive relations. By finite open-world query answering we
mean the question if for given ©, 7 and ¢, © and T entail ¢ over finite structures.

To the best of our knowledge, UNFO+S is the first logic which allows one to use arbitrarily
many transitive relations, and, at the same time, to speak non-trivially about relations of
arbitrary arities, whose finite satisfiability problem is shown decidable. In the case of related
logics of this kind, like the guarded fragment with transitive guards [26], and the guarded
negation fragment with transitive relations outside guards [1], the decidability was shown
only for general satisfiability, and its finite version is open. (Finite satisfiability was shown
decidable only for the two-variable guarded fragment with transitive guards [20]).

We believe that moving from UNFO+EQ from [7] to UNFO+S is an important im-
provement. Besides the fact that this requires strengthening our techniques and employing
some new ideas, general transitive relations have stronger motivations than equivalences. In
particular, it opens natural connections to the realm of description logics, DLs.

UNFO and expressive description logics. UNFO, via the above-mentioned standard trans-
lation, embeds the DL ALC, as well as its extension by inverse roles (Z) and role intersections
(M). Thus, having the ability of expressing conjunctive queries, we can use our results to solve
the so-called (finite) ontology mediated query answering problem, (F)OMQA, for some DLs.
This problem is a counterpart of (finite) open-world query answering: given a conjunctive
query (or a union of conjunctive queries) and a knowledge base specified in a DL, check
whether the query holds in every (finite) model of this knowledge base.

While there are quite a lot of results for OMQA, not much is known about FOMQA. In
particular, for DLs with transitive roles (S) the only positive results we are aware of are
the ones obtained recently in [12], where the decidability and 2-EXPTIME-completeness of
FOMQA for the logics SOZ, SZF and SOF is shown. This is orthogonal to our results
described above, since UNFO+S captures neither nominals (O) nor functional roles (F). On
the other hand, we are able to express any positive boolean combinations of roles, including
their intersection (M), which allows us to solve FOMQA, e.g., for the logic SZ''. Moreover
we can use non-trivially relations of arity greater than two.

It is an interesting question if our decidability result can be extended to capture some
more expressive DLs. Unfortunately, we cannot hope for number restrictions (Q or N) or
even functional roles (F), as satisfiability and finite satisfiability of UNFO (even without
transitive relations) and two binary functional relations are undecidable. This is implicit in
[27] (see the full version of this paper for an explicit proof). On the positive side, we show the
decidability and 2-EXPTIME-completeness of finite satisfiability of UNFO+SO#H, extending
UNFO+S by constants (corresponding to nominals (O)) and inclusions of binary relations
(capturing role hierarchies (H)). This is sufficient, in particular, to imply the decidability of
FOMQA for the description logic SHOZ"', which, up to our knowledge, is a new result.

Towards guarded negation fragment. We propose also another decidable extension of our
basic logic, the one-dimensional base-guarded negation fragment with transitive relations on
non-guard positions, BGNFO;+S. This is a non-trivial fragment of the already mentioned
logic from [1]. After some rather easy adjustments, our constructions cover this bigger logic,
however, it becomes undecidable when extended with inclusions of binary relations.

17:3

MFCS 2019



17:4

Finite Satisfiability of Unary Negation Fragment with Transitivity

Organization of the paper. The rest of this paper is organized as follows. Section 2
contains definitions, basic facts and a high-level description of our decidability proof. As our
constructions are rather complex, in the main body of the paper, Section 3, we explicitly
process the restricted, two-variable case of our logic, for which our ideas can be presented
more transparently. In Section 4 we just formulate the remaining results, leaving the details
for the full version of this paper, which also contains the missing proofs from Sections 2 and
3. In Section 5 we conclude the paper.

2 Preliminaries

2.1 Logics, structures, types and functions

We employ standard terminology and notation from model theory. We refer to structures
using Fraktur capital letters, and their domains using the corresponding Roman capitals.
For a structure 2 and A’ C A we use A]A’ or 2’ to denote the restriction of 2 to A’.

The unary negation fragment of first-order logic, UNFO is defined by the following
grammar 27]: ¢ = BT |z =y | pAp | Ve | Jze | 7p(z), where, in the first clause, B
represents any relational symbol, and, in the last clause, ¢ has no free variables besides (at
most) . An example formula not expressible in UNFO is x # y. We formally do not have
universal quantification. However we allow ourselves to use Vz—p as an abbreviation for
=3z, for an UNFO formula ¢. Note that frontier-one TGDs Vzy (v (z,y) — 32¢(y, Z)) are
in UNFO as they can be rewritten as =3zy (¥ (z,y) A =329’ (y, 2)).

We mostly work with purely relational signatures (admitting constants only in some
extensions of our main results) of the form o = o,,,. U 04ie, Where oy, is the base signature,
and oy, is the distinguished signature. We assume that o4, = {11, ..., Tox}, with all the Ty,
binary, and intension that Ts, is interpreted as the inverse of T5,_1. For every 1 < u < k we
sometimes write TQ_ul for Ty,_1, and TQ_ul_1 for Ts,,. We say that a subset & of oy, is closed
under inverses if, for every 1 < u < 2k, we have T, € & iff Tu_1 € £. Note that £ is closed
under inverses iff o4, \ € is closed under inverses. Given a formula ¢ we denote by o, the
signature induced by ¢, i.e., the minimal signature, with its distinguished part closed under
inverses, containing all symbols from .

The unary negation fragment with transitive relations, UNFO+S, is defined by the same
grammar as UNFO, however when satisfiability of its formulas is considered, we restrict the
class of admissible models to those that interpret all symbols from og;,, as transitive relations
and, additionally, for each w, interpret T5, as the inverse of T5, 1. The latter condition
is intended to simplify the presentation, and is imposed without loss of generality. In our
constructions we sometimes consider some auxiliary structures in which symbols from og;,,
are not necessarily interpreted as transitive relations (but the pairs To,—1, Ts, are always
interpreted as inverses of each other).

An (atomic) k-type over a signature o is a maximal satisfiable set of literals (atoms
and negated atoms) over o with variables x1,...,2z,. We often identify a k-type with the
conjunction of its elements. We are mostly interested in 1- and 2-types. Given a o-structure
2l and a,b € A we denote by atp®(a) the 1-type realized by a, that is the unique 1-type a(z;)
such that 2 = a(a), and by atp®(a,b) the unique 2-type 3(x1,z2) such that A = B(a,b).

We use various functions in our paper. Given a function f: A — B we denote by Rngf
its range, by Domf its domain, and by f[Ag the restriction of f to Ag C A.
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2.2 Normal form, witnesses and basic facts

We say that an UNFO+S formula is in Scott-normal form if it is of the shape

m
Vo, ..., xeop0(Z) A /\ Ve3yp(x, ) (1)
i=1
where each p; is a UNFO+S quantifier-free formula and ¢q is additionally in negation
normal form (NNF). A similar normal form for UNFO was introduced in the bachelor’s
thesis [9]. By a straightforward adaptation of Scott’s translation for FO? [25] one can
translate in polynomial time any UNFO+4S formula to a formula in normal form, in such
a way that both are satisfiable over the same domains. This allows us, when dealing with
decidability /complexity issues for UNFO+S, or when considering the size of minimal finite
models of formulas, to restrict attention to normal form formulas.

Given a structure 2, a normal form formula ¢ as in (1) and elements a, b of A such that
2 |= ;(a,b) we say that the elements of b are witnesses for a and ¢; and that A[{a, b} is a
witness structure for a and ¢;. Fix an element a. For every ¢; choose a witness structure
20;. Then the structure 20 = A[{W7 U...UW,,} is called a ¢-witness structure for a.

We are going to present a construction which given an arbitrary finite model of a normal
form UNFO+S formula ¢ builds a finite model of ¢ of a bounded size. The construction
goes via several intermediate steps in which some tree-like models are produced. To argue
that that they are still models of ¢ we use the following basic observation (we recall that ¢ is
the number of variables of the V-conjunct of ¢).

» Lemma 1. Let A be a model of a normal form UNFO+S formula o. Let A be a structure
in which all symbols from o, are interpreted as transitive relations, such that
(al) for every a’ € A’ there is a p-witness structure for a’ in 2,

(a2) for every tuple ay,...,a, € A’ there is a homomorphism b : A'M{a, ..., a}} — A which
preserves 1-types of elements.
Then A’ E .

2.3 Plan of the small model construction

Our main goal is to show that finite satisfiability of UNFO+S formulas can be checked in

2-ExpPTIME. To this end we will introduce a natural notion of tree-like structures and a

measure associating with transitive paths of such structures their so-called ranks. Intuitively,

for a transitive relation T; and a T;-path 7, the T;-rank of 7 is the number of one-directional

T;-edges in 7 (a precise definition is given in Section 3.1). Then we show that having the

following forms of models is equivalent for a normal form formula ¢:

(f1) finite;

(f2) tree-like, with bounded ranks of transitive paths;

(f3) tree-like, with ranks of transitive paths bounded doubly exponentially in |p|;

(f4) tree-like, with ranks of paths bounded doubly exponentially in |¢|, and regular (with
doubly exponentially many non-isomorphic subtrees);

(f5) finite of size triply exponential in |¢].

We will make the following steps: (f1) ~ (£2), (£2) ~ (£3), (£3) ~ (f4), (f4) ~~ (5). The step

closing the circle, (f5) ~ (fl1) is trivial. In the two-variable case, we will omit the form (f4)

and directly show (f3) ~ (f5). Our 2-ExpTIME-algorithm will look for models of the form

(£3). Showing transitions leading from (f3) to (f5) justifies that its answers coincide indeed

with the existence of finite models.
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This scheme is similar to the one we used to show the finite model property for UNFO+EQ
in [7]. In the main part of the construction from [7] we build bigger and bigger substructures
in which some equivalence relations are total. The induction goes, roughly speaking, by
the number of non-total equivalences in the substructure. Here we extend this approach
to handle one-way transitive connections. It may be useful to briefly compare the case of
UNFO+S and the case of UNFO+EQ.

First of all, if a given formula ¢ is from UNFO+EQ then we can start our constructions
leading to a small finite model of ¢ from its arbitrary model, while if ¢ is in UNFO+S we
start from a finite model of ¢. A very simple step (f1) ~ (f2) in both papers is, essentially,
identical. The counterpart of step (£3) ~~ (f4) in the case of equivalences is slightly simpler,
but the main differences lie in steps (f2) ~ (£3) and (f4) ~» (f5). The former, clearly, is not
present at all in [7]. While the general idea in this step is quite standard, as we just use a kind
of tree pruning, the details are rather delicate due to possible interactions among different
transitive relations, and this step is, by no means, trivial. We refine here, in particular, the
apparatus of declarations introduced in [7]. Regarding step (f4) ~» (£5), the main construction
there, in its single inductive step, has two phases: building the so-called components and
then arranging them into a bigger structure. It is this first phase which is more complicated
than in the corresponding step in [7]. Having components prepared we join them similarly as
in [7].

3 The two-variable case

As in the case of unbounded number of variables we can restrict attention to normal form

formulas, which in the two-variable case simplify to the standard Scott-normal form [25]:
m

Vay—eo(z,y) A [\ VaTyei(w, y), (2)

i=1

where all @; are quantifier-free UNFO2+S formulas (in this restricted case it is not important

whether ¢g is in NNF or not). As is typical for two-variable logics we assume that formulas

do not use relational symbols of arity greater than 2 (cf. [14]).

3.1 Tree pruning in the two-variable case

We use a standard notion of a (finite or infinite) rooted tree and related terminology.
Additionally, any set consisting of a node and all its children is called a family. Any node b,
except for the root and the leaves, belongs to two families: the one containing its parent,
and the one containing its children, the latter called the downward family of b.

We say that a structure 2l over a signature consisting of unary and binary symbols is a
light tree-like structure if its nodes can be arranged into a rooted tree in such a way that
if A = Baa' for some non-transitive relation symbol B then one of three conditions holds:
a = d/, a is the parent of a’ or a is a child of @/, and if A = T,aa’ for some T, then either
a = a' or there is a sequence of distinct nodes a = ag, a1, ...,ar = a’ such that a; and a;11
are joined by an edge of the tree and 2 = T\,a;a;41. In other words, distant nodes in a light
tree-like structure can be joined only by transitive connections, moreover, these transitive
connections are just the transitive closures of connections inside families. For a light tree-like
structure 2l and a € A we denote by A, the set of all nodes in the subtree rooted at a and
by 2, the corresponding substructure.

Let A be a light tree-like structure. A sequence of nodes ay,...,an € A is a downward
path in 2 if for each i a;41 is a child of a;. A downward-T,-path is a downward path such
that for each i we have 2 = T,a;a;11. The T,-rank of a downward-T,-path @, t2(@), is the
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cardinality of the set {i : 2l = ~Tya;11a;}. The T,-rank of an element a € A is defined as
t2(a) = sup{t®(@) : @ = a,as, ...,ay;d is a downward-T,-path}. For an integer M, we say
that 2 has downward-T),-paths bounded by M when for all a € A we have t2(a) < M, and
that 2 has transitive paths bounded by M if it has downward-T,,-paths bounded by M for
all u. Note that a downward-T,-path bounded by M may have more than M nodes, as the
symmetric T,-connections do not increase the rank.

Given an arbitrary model 2 of a normal form UNFO?+S formula ¢ we can simply
construct its light tree-like model of degree bounded by |¢|. We define a light-@-tree-like
unraveling A’ of 2 and an associated function f : A’ — A in the following way. 2’ is divided
into levels Lo, L1,.... Choose an arbitrary element a € A and add to level Ly of A" an
element a’ such that atp® (a’) = atp?(a); set h(a’) = a. The element a’ will be the only
element of Ly and will become the root of 2. Having defined L; repeat the following for
every a’ € L;. For every j, if h(a’) is not a witness for ¢; and itself then choose in A a
witness b for h(a') and ¢;. Add a fresh copy b of b to L;;1, make 2'[{a’, '} isomorphic to
A1{h(a’), b} and set h(b') = b. Complete the definition of A’ transitively closing all relations
from oy;.,.

» Lemma 2 ((f1) ~ (f2), light). Let 2 be a finite model of a normal form UNFO?+S formula
. Let A' be a light-p-tree-like unraveling of A. Then A’ = ¢ and A is a light tree-like
structure of degree bounded by ||, and transitive paths bounded by |A|.

Our next task is making the transition (f2) ~» (£3). For this purpose we introduce a
notion of light declarations. It is closely related to a notion of declarations which will be
used in the general case, but simpler than the latter. Fix a signature and let ¢ be the set of
1-types over this signature.

For T C {T1,...,Tor} we write A = Tab iff A = Tyab for al T, € T. A light
declaration is a function of type P({T1,...,Tar}) — P(a). Given a light tree-like structure
2 and its node a we say that a respects a light declaration 0 if for every 7, for every
o € o(T) there is no node b € A of 1-type « such that 2 = Tab. We denote by ldec?(a)
the maximal light declaration respected by a. Formally, for every T C {Ti,...,Tor},
ldec® (a)(T) = {a : for every node b of type a we have =2 = Tab}. Intuitively, ldec®(a)
says, for any combination of transitive relations, which 1-types have no realizations to which
a is connected by this combination in 2. Note that if a respects a light declaration 0 then for
any T we have 3(7) C ldec® (a)(7T). We remark that it would be equivalent to define the light
declarations without the negations, listing the 1-types that a given node is connected with,
however we choose a version with negations to make them uniform with the corresponding
(more complicated) notion in the general case, where negations are more convenient.

Now we define the local consistency conditions (LCCs) for a system of light declarations
(0a)aca assigned to all nodes of a tree-like structure 2. Let F' be the downward family of
some node a. We say that the system satisfies LCCs at a if for every a;,as € F and for
every T such that 2 = Tajas the following two conditions hold: (1d1) for every a € «, if
@ € 0,4, (T) then a € 0,,(T), (1d2) atp®(az) & 04,(T). Given a light tree-like structure 2
we say that a system of light declarations (94)qca is locally consistent if it satisfies LCCs
at each a € A and is globally consistent if 0,(T) C ldec™(a)(T) for each a € A and each T.
Note that the global consistency means that all nodes a respect their light declarations 0,.
It is not difficult to see that local and global consistency play along in the following sense.

» Lemma 3 (Local-global, light). Let 2 be a light tree-like structure. Then, (i) if a system
of light declarations (04)aca is locally consistent then it is globally consistent; and (ii) the
canonical system of light declarations, (1dec®(a))aca, is locally consistent.
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Given a light tree-like structure 2{, by the generalized type of a node a of 2 we will mean
a pair (Idec®(a), atp®(a)), and denote it as gtp®(a). We introduce a concept of top-down
tree pruning. Let 2 be a light tree-like structure. A top-down tree pruning process on 2 has
countably many steps 0,1,2, ..., each of them producing a new light tree-like structure by
removing some nodes from the previous one and naturally stitching together the surviving
nodes. We emphasise that the universes of all structures build in this process are subsets
of the universe of the original structure 2. More specifically, we take 2y := 2, and having
constructed 2;, ¢ > 0 construct ;11 as follows. For every node a of ; of depth i + 1 (we
assume that the root has depth 0) either leave the subtree rooted at a untouched or replace
it by a subtree rooted at some descendant b of a having in the original structure 2 the same
generalized type as a, and then transitively close all transitive relations. The result of the
process is a naturally defined limit structure 2, in which the pair of elements a, b, of depth
d, and dy, respectively, has its 2-type taken from 2l,,x(4,,4,)- Note that this 2-type is not
modified in the subsequent structures, so the definition is sound.

» Lemma 4 (Tree-pruning, light). Let A be a light tree-like structure. Let (04)qca be the
canonical system of light declarations on A, 9, := 1dec91(a). Let U be the result of a top-town
tree pruning process on . Then (i) the system of light declarations (0,)qcas (the canonical
declarations from A of the nodes surviving the pruning process) in 2" is locally consistent,
(i) for any pair of elements a,a’ € A’ there is a homomorphism A]{a,a’} — A preserving
the 1-types; it also follows that (iii) for a normal form o, if A is a model of ¢ such that any
node a has all its witnesses in its downward family then A’ = .

It is not difficult to devise a strategy of top-down tree pruning leading to a model with
short transitive paths in a simple scenario where only one transitive relation is present. With
several transitive relations, however, a quite intricate strategy seems to be required. The
main obstacle is that when decreasing the T,-rank of an element a, for some u, we may
accidentally increase the T),-rank of a for some v # u. Nevertheless, an appropriate strategy
exists (see the full version of this paper), which allows us to state:

» Lemma 5 ((f2) ~ (f3), light). Let ¢ be a normal form UNFO?+S formula. Let A = ¢ be
a light tree-like structure over signature o, with transitive paths bounded by some natural
number M, such that each element has all the required witnesses in its downward family.
Then @ has a light tree-like model with transitive paths bounded doubly exponentially in |o|.

3.2 Finite model construction in the two-variable case

In this section we show the following small model property. To this end, in particular, we
will make the transition (£3) ~~ (£5).

» Theorem 6. FEvery finitely satisfiable two-variable UNFO+S formula ¢ has a finite model
of size bounded triply exponentially in |o|.

Let us fix a finitely satisfiable normal form UNFO+-§ formula ¢ over a signature o, =
Opase U Ogiey TOT 041 = {T1,...,Tor}. Denote by a the set of 1-types over this signature.
Fix a light tree-like model 2 |= ¢, with linearly bounded degree and doubly exponentially
bounded transitive paths (in this section we denote this bound by ]\;Lp), as guaranteed by
Lemma 5. We show how to build a “small” finite model 2’ |= . For a set £ C 04, closed
under inverses, and a € A we denote by [a]g the set consisting of a and all elements b € A
such that 2 = Tyab for all T, € £. Note that [a]¢ is either a singleton or each of the T, € €
is total on [a]g, that is, for each by, by € [a]g we have A = T,b1bs for all T, € £. We note
that [a]@ = A.
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In our construction we inductively produce finite fragments of 21’ corresponding to some
(potentially infinite) classes [a]e of 2. Essentially, the induction goes downward on the size of
E. Intuitively, if a relation is total then it plays no important role, so we may forget about it
during the construction. Every such fragment will be obtained by an appropriate arrangement
of some number of basic building blocks, called components. Each of the components is
obtained by some number of applications of the inductive assumption to situations in which
a new pair of relations 15, _1, T5, is added to &.

Let us formally state our inductive lemma. In this statement we do not explicitly include
any bound on the size of promised finite models, but such a bound will be implicit in the
proof and will be presented later. Recall that 2 is the model fixed at the beginning of this
subsection.

» Lemma 7 (Main construction, light). Let ag € A and let & C o0, be closed under inverses,

let Eror = 0y \ 0. Let Ao = Ay, llaole,,,. Then there exist a finite structure 2Aj, a function

p: Al — Ao and an element af, € Aj), called the origin of [, such that

(bl) Aj is a singleton or every symbol from Eior is interpreted as the total relation on 2Aj.

(b2) p(ap) = ao.

(b3) For each o' € Af and each i, if p(a’) has a child being its witness for p; in Ay then a’
has a witness for o; in Aly. Moreover, atp¥(a’) = atp®® (p(a’)).

(b4) For every pair o', b’ € A, there exists a homomorphism b : Ay[{a’, '} — A preserving
1-types such that h(a") = p(a’), and for any 1-type o and T C {1,...,2k}, if A = Ta'b
and o & 1dec™ (p(0'))(T) then o & 1dec® (p(a’))(T).

Observe first that Lemma 7 indeed allows us to build a particular finite model of .
Apply it to £y = 04 (which means that Er = 0 and [agle,,, = A) and ag being the root of
2 (which means that 2y = 2) and use Lemma 1 to see that the obtained structure 21 is a
model of . Indeed, Condition (al) of Lemma 1 follows directly from Condition (b3), as in
this case p(a’) has all witnesses in 2y. Condition (a2) is directly implied by Condition (b4).

The proof of Lemma 7 goes by induction on I, where | = |&|/2. In the base of induction,
1 =0, we have &1 = 045, Without loss of generality we may assume that the classes [ale,,,
are singletons for all a € A. (If this is not the case, we just add artificial transitive relations
Top4+1 and Thgyo both interpreted as the identity in 2.) We simply take j := Ao = A[{ao}
and set p(ag) = ag. It is readily verified that the conditions (b1)—(b4) are then satisfied.

For the inductive step assume that Lemma 7 holds for arbitrary & closed under inverses,
of size 2(I — 1) < 2k. We show that then it holds for & of size 2{. Take such &, and assume,
w.lo.g., that & = {T1,...,T%}. In the next two subsections we present a construction of
2A;. We argue that it is correct in the full version of this paper. Finally we estimate the size
of the produced models and establish the complexity of the finite satisfiability problem.

3.2.1 Pattern components

We plan to construct [ out of basic building blocks called components. Each component
will be an isomorphic copy of some pattern component.

Let «v[Ao] be the set of the generalized types realized in 2. For every v € ~[Ag] we
construct two pattern structures, a pattern component € and an extended pattern component
B7. &7 is a finite structure whose universe is divided into 2l layers L1, ..., Lo;. 87 extends
&7 by an additional, interface layer, denoted Loji1. See the left part of Fig. 1. We now
define &7, obtaining then €7 just by the restriction of &7 to non-interface layers.

Each non-interface layer L; is further divided into sublayers L}, L?,. .. ,LZM“"H. Addition-
ally, in each sublayer L7 its initial part L?*"" is distinguished. In particular, L;""*" consists
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Figure 1 A schematic view of a component in the two-variable case.

of a single element called the root. The interface layer Lo;y; has no internal division but, for
convenience, is sometimes referred to as L%iflit. The elements of Lg; are called leaves and
the elements of Lyj41 are called interface elements. See Fig. 1.

®7Y will have a shape resembling a tree, with structures obtained by the inductive
assumption as nodes, though it will not be tree-like in the sense of Section 3.1 (in particular,
the internal structure of nodes may be complicated). All elements of &7, except for the
interface elements, will have appropriate witnesses (those required by (b3)) provided. The
crucial property we want to enforce is that the root of &7 will not be joined to its interface
elements by any transitive path.

We remark that during the process of building a pattern c