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Abstract
A number of important set functors have countable initial algebras, but terminal coalgebras are
uncountable or even non-existent. We prove that the countable cardinality is an anomaly: every set
functor with an initial algebra of a finite or uncountable regular cardinality has a terminal coalgebra
of the same cardinality.

We also present a number of categories that are algebraically complete and cocomplete, i.e.,
every endofunctor has an initial algebra and a terminal coalgebra.

Finally, for finitary set functors we prove that the initial algebra µF and terminal coalgebra νF
carry a canonical ultrametric with the joint Cauchy completion. And the algebra structure of µF
determines, by extending its inverse continuously, the coalgebra structure of νF .
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1 Introduction

Initial algebras for endofunctors are important in formal semantics and the theory of recursive
domain equations. Further, for state based systems represented as coalgebras, Rutten [11]
demonstrated that the terminal coalgebra formalizes behavior of states. If we work in the
category of cpo’s as our base category, and if the given endofunctor is locally continuous,
then Smyth and Plotkin proved in [12] that the initial algebra coincides with the terminal
coalgebra. That is, the underlying objects are equal, and the structure maps are inverse to
each other.

Is there a connection between initial algebras µF and terminal coalgebras νF for set
functors F , too? In the case where F preserves limits of ωop-chains, νF carries a canonical
structure of a metric space and, whenever F∅ 6= ∅, this is the Cauchy completion of µF as its
subspace, as proved by Barr [8]. But what can we say about general set functors? There are
cases where µF is countable and νF is uncountable (e.g. FX = A×X + 1, with µF = A∗

and νF = A∞) or νF does not exist:

I Example 1 (see [4]). The following set functor F has a countable initial algebra but no
terminal coalgebra:

FX = {M ⊆ X ; card M 6= ℵ0}.
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12:2 On Terminal Coalgebras Derived from Initial Algebras

To a function f : X → Y it assigns the function Ff turning M ⊆ X to f [M ] if f restricted
to M is monic or M is finite, else to ∅. Its initial algebra is that of the finite power-set
functor (consisting of all hereditarily finite sets).

We are going to prove that the cardinal ℵ0 is the only exception: whenever a set functor
has a nonempty initial algebra of a finite or uncountable regular cardinality, then it has
a terminal coalgebra of the same cardinality. See the Terminal-Coalgebra Theorem in
Section 4. We also prove that the existence of a fixed point FX ' X of an uncountable
regular cardinality implies that the set functor F has a terminal coalgebra. This corresponds
well with the result of [15] that every set functor with a fixed point has an initial algebra.

On the way to proving these results we present a number of categories that are algebraically
complete and cocomplete. The concept of algebraic completeness, due to Freyd [9], means
that every endofunctor has an initial algebra. But Freyd did not present any examples. It may
seem that there are no “natural” examples since, as proved in [4], an algebraically complete
category cannot be complete, unless it is equivalent to a preordered class. However, we prove
that for every uncountable, regular cardinal λ the category Set≤λ of sets of cardinality at
most λ is algebraically complete and cocomplete. That is, every endofunctor F has both
µF and νF . For λ > ℵ1 (the first uncountable cardinal) the category Nom≤λ of nominal
sets of cardinality at most λ is also algebraically complete and cocomplete. Analogously, the
category K-Vec≤λ of vector spaces of dimension at most λ, for any field K with |K| < λ,
is algebraically complete and cocomplete. Finally, if G is a group, consider the category
G-Set of sets with an action of G. For every group with 2|G| < λ the category G-Set≤λ
of G-sets of cardinality at most λ is algebraically complete and cocomplete. These results
require assuming the Generalized Continuum Hypothesis.

Returning to metric structures on terminal coalgebras, we prove that for finitary set
functors F with F∅ 6= ∅ the initial algebra and terminal coalgebra carry a canonical ultrametric
such that the Cauchy completions of µF and νF coincide. And the coalgebra structure of
νF is determined by the algebra structure ι of µF : it is the unique continuous extension of
ι−1 to νF . This complements the above result of Barr [8].

2 Algebraically Cocomplete Categories

For a number of categories K we prove that the full subcategory K≤λ on objects of power at
most λ is algebraically cocomplete. Power is a cardinal we introduce as follows:

I Definition 2. An object is called connected if it is non-initial and is not a coproduct of
two non-initial objects. An object is said to have power λ if it is a coproduct of λ connected
objects, but not of less than λ ones.

I Example 3. In Set, connected objects are the singleton sets, and power of a set X is
its cardinality |X|. In the category K-Vec of vector spaces over a field K the connected
spaces are those of dimension one, and power means dimension. In the category SetS of
many-sorted sets the connected objects are those with precisely one element (in all sorts
together), and the power of X = (Xs)s∈S is simply |

∐
s∈S

Xs|. A nominal set is connected in

the category Nom of nominal sets and equivariant maps iff it consists of a single orbit.

I Definition 4. A category K is said to have width w(K) if it has coproducts, every object
is a coproduct of connected objects, and w(K) is the smallest cardinal such that
(a) K has at most w(K) connected objects up to isomorphism, and
(b) given an object K of power α ≥ w(K), all quotients of K have power at most α, and

there exist at most α morphisms from a connected object to K.
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I Example 5.
(1) Set has width 1. More generally, SetS has width |S|. Indeed, in Example 3 we have seen

that the number of connected objects up to isomorphism is |S|, and (b) clearly holds.
(2) K-Vec has width |K|+ ℵ0. Indeed, the only connected object, up to isomorphism, is

K. For a space X of dimension α the number of morphisms from K to X is |X|. If K
is infinite, then α ≥ |K| implies |X| = α (and |K| = |K|+ ℵ0). For K finite, the least
cardinal λ such that |X| ≤ α holds for every α-dimensional spaces X with α ≥ λ is ℵ0
(= |K|+ ℵ0).

(3) The category Nom of nominal sets has width ℵ0.
(4) For every nontrivial finite group G the category G-Set of sets with an action of the

group has width ℵ0. For infinite groups the width of G-Set is at most λ if 2|G| ≤ λ.
For the proof of (3) and (4) see the Appendix.

We now present some technical results serving for the proof of Theorem 13 below. The
following lemma is based on ideas of Trnková [14].

I Lemma 6. Let a commutative square

A
a1

~~}}}}}}}}
a2

  AAAAAAAA

B1

b1   AAAAAAAA B2

b2~~}}}}}}}}

B

be given in a category A. This is an absolute pullback, i.e., a pullback preserved by all
functors with domain A, provided that (1) b1 and b2 are split monomorphisms, and (2) there
exist morphisms b̄1 : B → B1 and ā2 : B2 → A satisfying

b̄1b1 = id , ā2a2 = id, and a1ā2 = b̄1b2. (2.1)

Proof. The given square is a pullback since given a commutative square

b1c1 = b2c2 for ci : C → Bi

there exists a unique c with ci = ai · c (i = 1, 2). Uniqueness is clear since a2 is split monic.
Put c = ā2 · c2. Then c1 = a1c follows from b1 being monic:

b1c1 = b1b̄1b1c1 b̄1b1 = id
= b1b̄1b2c2 b1c1 = b2c2

= b1a1ā2c2 b̄1b2 = a1ā2

= b1a1c c = ā2c2

And c2 = a2c follows from b2 being monic:

b2c2 = b1c1

= b1a1c c1 = a1c

= b2a2c b1a1 = b2a2

For every functor F with domain A the image of the given square satisfies the analogous
conditions: Fb1 and Fb2 are split monomorphisms and F b̄1, F ā2 verify (2.1). Thus, the
image is an (absolute) pullback, too. J
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12:4 On Terminal Coalgebras Derived from Initial Algebras

I Corollary 7 (See [14]). Every set functor preserves nonempty finite intersections.

Indeed if A in Lemma 6 is nonempty, choose an element t ∈ A and define b̄1 and ā2 by

b̄1(x) =
{
y if b1(y) = x

a1(t) if x /∈ b1[B1]

and

ā2(x) =
{
y if a2(y) = x

t if x /∈ a2[A]

It is easy to see that (2.1) holds.

I Remark 8.
(a) We recall that for an infinite cardinal λ the cofinality is the smallest cardinal µ such

that λ is a join of a µ-chain of smaller cardinals. And λ is regular if it is equal to its
cofinality. The first non-regular cardinal is ℵω =

∨
n<ω ℵn .

(b) For a set X of infinite cardinality λ a collection of subsets of cardinality λ is called almost
disjoint if the intersection of arbitrary two distinct members has cardinality smaller than
λ.
Tarski [13] proved that for every set X of infinite regular cardinality λ there exists an
almost disjoint collection Yi ⊆ X (i ∈ I) with |I| > λ. The argument is quite simple.
Using the Maximality Principle (also known as Zorn’s Lemma), we see that a maximum
almost disjoint collection exists on X. Assuming that it has at most λ members, we
derive a contradiction. We can index that collection by ordinals i < λ. Given an almost
disjoint collection (Yi)i<λ, the following sets Zi = Yi −

⋃
j<i Yj for i < λ are clearly

pairwise disjoint and, since λ is reguar, they have cardinality λ. We can find a choice set
Z∗ ⊆ X. From |Z∗ ∩ Zi| = 1 it follows that |Z∗ ∩ Yi| < λ for every i < λ, thus, we can
add Z∗ to the given collection. This contradicts the maximality.

(c) Given an element t ∈ X there exists a maximum almost disjoint collection Yi, i ∈ I,
with t ∈ Yi for all i ∈ I. Indeed, take any maximum collection (Yi)i∈I and use Yi ∪ {t}
instead of Yi (for i ∈ I).

I Notation 9. Let K be a category of width w(K). For every infinite cardinal λ > w(K) we
denote by K≤λ the full subcategory of K on objects of power at most λ.

Our main technical tool is the following

I Proposition 10. Let F be an endofunctor of K≤λ and X =
∐
i∈I

Xi an object of K with

all Xi connected and |I| = λ. Every morphism b : B → FX, with B of power less than λ,
factorizes through Fc for a coproduct injection c : C → X where C =

∐
j∈J

Xj and |J | < λ.

The proof can be found in the Appendix.

I Proposition 11. Let λ be an uncountable regular cardinal. Every coalgebra for an endo-
functor of K≤λ is a colimit of a λ-filtered diagram of coalgebras on objects of powers smaller
than λ.
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Proof. Let β : B → FB be a coalgebra. Express B =
∐
i∈I

Bi where Bi are connected and

|I| = λ (the case |I| < λ is trival). For every set J ⊆ I with |J | < λ we are going to prove
that there exists a set J ⊆ J ′ ⊆ I with |J ′| < λ such that the summand

uJ′ : BJ′ =
∐
i∈J′

Bi → B

carries a subcoalgebra. That is, there exists βJ′ : BJ′ → FBJ′ for which uJ′ is a homomorph-
ism. This proves the proposition: the diagram of all subcoalgebras of (B, β) on summands of
less than λ components is clearly λ-filtered. And its canonical colimit is (B, β). This follows
from the fact that colimits of coalgebras are formed on the level of the underlying category.

For every set J ⊆ I with |J | < λ we are to present a set J ⊆ J ′ ⊆ I with |J ′| < λ such that
βj′ exists. Put J ′ =

⋃
n<ω Jn for the following ω-chain of sets Jn ⊆ I with |Jn| < λ. First,

J0 = J . Given Jn, define Jn+1 as follows. For every subset L ⊆ J denote by uL :
∐
i∈L

Bi → B

the coproduct injection. Given j ∈ Jn, apply Proposition 10 to X = B and

b = Bj
u{j}−−−−→ B

β−−→ FB.

There exists a set L(j) ⊆ J with |L(j)| < λ such that the morphism β ·u{j} factorizes through
FuL(j). Consequently, for the set Ln =

⋃
j∈Jn L(j) we see that β · uJn factorizes through

FuLn . That is, there exists a morphism βn :
∐
i∈Jn

Bi →
∐
i∈Ln

Bi with FuLn · βn = β · uJn .

Define Jn+1 = Jn ∪ Ln , then |Jn+1| < λ+
∐
j∈J

λ ≤ λ+ λ2 = λ.

Thus, for the union J ′ =
⋃
Jn we get |J ′| < λ because λ is uncountable and regular, there-

fore |
∐
n<ω

Jn| < λ. And uJ′ carries the following subcoalgebra βJ′ :
∐
j∈J′

Bj → F
( ∐
j∈J′

Bj
)
:

Given j ∈ J ′ let n be the least number with j ∈ Jn. Denote by w : Bj →
∐
i∈Jn

Bi and

v :
∐
i∈Ln

Bi →
∐
j∈J′

Bj the coproduct injections. Then the j-th component of β′ is the following

composite

Bj
w−→
∐
i∈Jn

Bi
βn−−→ F

( ∐
i∈Ln

Bi
) Fv−−→ F

( ∐
i∈J′

B
)

To prove that the following square

∐
j∈J′

Bj
βJ′ //

uJ′

��

F
( ∐
j∈J′

Bj
)

FuJ′

��∐
i∈I

Bi
β

// F
(∐
i∈I
Bi
)

commutes, consider the components for j ∈ J ′ separately. The upper passage yields, since
uJ′ · v = uLn :

∐
i∈Ln

Bi →
∐
i∈I
Bi, the result

FuJ′ · (Fv · βn · w) = FuLn · βn · w = β · uJn · w .

The lower passage yields the same result. J

CALCO 2019



12:6 On Terminal Coalgebras Derived from Initial Algebras

I Remark 12.
(a) Every ordinal α is considered as the set of all smaller ordinals. In particular ℵ0 is the

set of all natural numbers, and ℵ1 the set of all countable ordinals.
(b) For cardinals λ and µ the power λµ is cardinality of the set of all functions from µ to λ.
(c) If an infinite cardinal λ has cofinality µ, then λµ > λ, see [10], Corollary 1.6.4.
(d) Recall the General Continuum Hypothesis (GCH) which states that for every infinite

cardinal λ the successor cardinal is 2λ.

Under GCH every infinite regular cardinal λ fulfils λµ = λ for all cardinals 1 ≤ µ < λ .

See Theorem 1.6.17 in [10].

I Theorem 13. Assume GCH. If K is a cocomplete and cowellpowered category of width
w(K), then K≤λ is algebraically cocomplete for all uncountable regular cardinals λ > w(K).

Proof. Let F be an endofunctor of K≤λ. Form a collection ai : Ai → FAi (i ∈ I) representing
all coalgebras of F on objects of power less than λ (up to isomorphism of coalgebras). We
have |I| ≤ λ . Indeed, for every cardinal n < λ let In ⊆ I be the subset of all i with Ai having
power n. Given i ∈ In, for every component b : B → Ai of Ai we know, since λ > w(K), that
there are at most λ morphisms from B to FAi (recalling that FAi has power at most λ), see
(b) in Definition 4. Thus there are at most n · λ = λ morphisms from Ai to FAi. And the
number of objects Ai with n components is at most w(K)n < λn = λ (see Remark 12(d)).
Thus, there are at most λ indexes in In. Since I =

⋃
n<λ

In, this proves |I| ≤ λ2 = λ.

Consequently A =
∐
i∈I

Ai is an object of K≤λ. We have the coalgebra structure α : A→

FA of a coproduct of (Ai, αi) in CoalgF . Let e : A → T be the wide pushout of all
homomorphisms in CoalgF with domain (A,α) carried by epimorphisms of K. Since K is
cocomplete and cowellpowered, and since the forgetful functor from CoalgF to K creates
colimits, this means that we form the corresponding pushout in K and get a unique coalgebra
structure τ : T → FT making e a homomorphism:∐

Ai
α //

e

��

F (
∐
Ai)

Fe

��
T

τ
// FT

The power of T is at most λ since T is a quotient of A, see (b) in Definition 4. We are going
to prove that (T, τ) is a terminal coalgebra.

For every coalgebra β : B → FB with B having power less than λ there exists a unique
homomorphism into (T, τ). Indeed, the existence is clear: compose the isomorphism that
exists from (B, β) to some (Ai, αi) , the i-th coproduct injection of (A,α) and the above
homomorphism e. To prove uniqueness, observe that by definition of (T, τ), this coalgebra has
no nontrivial quotient: every homomorphism with domain (T, τ) whose underlying morphism
is epic in K is invertible. Given homommorphisms u, v : (B, β)→ (T, τ)

B
β //

v

��
u

��

FB

Fu
��
Fv
��

T
τ //

q

��

FT

Fq

��
Q //___ FQ
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form their coequalizer q : T → Q in K. Then Q carries the structure of a coalgebra making q
a homomorphism. Thus, q is invertible, proving u = v.

From Proposition 11 we deduce that the same holds for all coalgebras, thus (T, τ) is
terminal. J

3 Algebraically Complete Categories

All the concrete categories proved to be algebraically cocomplete above turn out to be
algebraically complete, too. Moreover, General Continuum Hypothesis need not be assumed
for this result.
I Remark 14. In this remark we assume that, for a given ordinal λ, all (co)limits mentioned
below exist. We denote by 0 the intial object and by 1 the terminal one.
(a) Recall from [1] the initial-algebra λ-chain of an endofunctor F : its objects F i0 for all

ordinals i ≤ λ+ 1 and its connecting morphisms wij : F i0→ F j0 for all i ≤ j ≤ λ+ 1
are defined by transfinite recursion as follows: F 00 = 0, F i+10 = F (F i0), and F j0 =
colim
i<j

F i0 for limit ordinals j ≤ λ. Analogously: w01 : 0→ F0 is unique, wi+1,j+1 = Fwij ,
and wij (i < j) is a colimit cocone for every limit ordinal j ≤ λ.

(b) The initial-algebra chain converges at λ if the connecting map wλ,λ+1 is invertible. In
that case we get the initial-algebra

µF = Fλ0

with the algebra structure ι = w−1
λ,λ+1

(c) In particular, if F preserves colimits of λ-chains for a limit ordinal λ, then µF = Fλ0.
(d) Dually, the terminal-coalgebra λ-chain has objects F i1 (for i ≤ λ + 1) with F 01 = 1,

F i+11 = F (F i1) and F j1 = lim
i<j

F i0 for limit ordinals j ≤ λ. Its connecting morphisms

are denoted by vij (i ≥ j). If F preserves limits of λop-chains, then νF = Fλ1. This was
explicitly formulated by Barr [8].

(e) We say that a set functor F preserves inclusion if given a subset Y of X, then FY is a
subset of FX, and for the inclusion map i : Y → X also Fi is the inclusion map . It
follows that F preserves monomorphisms.

For every set functor F there exists a set functor G preserving inclusion and having the
same initial-algebra chain as F for all infinite ordinals. Moreover, F and G coincide on all
nonempty sets and functions and if F∅ 6= ∅, then G∅ 6= ∅. See [7, Theorem III.4.5] and[4,
Remark 3]. We call G the Trnková hull of F .
I Remark 15. Let λ be an infinite regular cardinal. We recall from [6] that an object A of a
category K is called λ-presentable if its hom-functor K(A,−) preserves λ-filtered colimits.
This means that if a λ-filtered diagram D has a colimit cocone bi : Bi → X(i ∈ I), then
for every morphism a : A→ X (i) a factorization through bi exists for some i ∈ I and (ii)
given two factorizations u, v : A → Bi with a = bi · u = bi · v, some connecting morphism
d : Bi → Bj of D fulfils d · u = d · v.

A category K is called locally λ-presentable if it is cocomplete and has a small full
subcategory D consisting of λ-presentable objects whose closure under λ-filtered colimits
is all of K. This implies that every object X is a canonical colimit of the diagram of all
morphisms a : A→ X with A ∈ D. More precisely, of the λ-filtered diagram

DX : D
/
X → D , DX(A, a) = A .

In the case λ = ℵ0 we speak about locally finitely presentable categories.

CALCO 2019
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I Definition 16 (See [5]). A strictly locally λ-presentable category is a locally λ-presentable
category in which every morphism b : B → A with B λ-presentable has a factorization
b = b′ · f · b for some morphisms b′ : B′ → A and f : A→ B′ with B′ also λ-presentable.

I Examples 17 (See [5]).
(a) The categories Set, K-Vec and G-Set, where G is a finite group, are strictly locally

finitely presentable.
(b) Nom is strictly locally ℵ1-presentable.
(c) SetS is strictly locally λ-presentable for infinite λ > |S|.
(d) Given an infinite group G, the category G-Set is strictly locally λ-presentable if λ > 2|G|.

I Definition 18. A category K has strict width w(K) if it has width w(K), coproduct
injections are monic, and every connected object is λ-presentable for λ = w(K) + ℵ0.

I Example 19.
(1) The category SetS has strict width |S|+ ℵ0, since connected objects (see Example 3)

are finitely presentable.
(2) K-Vec has strict width |K|+ ℵ0: the only connected object K is finitely presentable.
(3) G-Set has strict width at most 2|G| + ℵ0.
(4) Nom has strict width ℵ0.

I Lemma 20. If a category has strict width w(K), then for every infinite regular cardinal
λ ≥ w(K) its λ-presentable objects are precisely those of power less than λ.

Proof. If X is λ-presentable and X =
∐
i∈I

Xi with connected objects Xi, then in case

card I < λ we have nothing to prove. And if card I ≥ λ, form the λ-filtered diagram of
all coproducts

∐
j∈J

Xj where J ranges over subsets of I with card J < λ. Since K(X,−)

preserves this colimit, there exists a factorization of idX through one of the colimit injections
v :

∐
j∈J

Xj →
∐
i∈I

Xi. Now v is monic (by the definition of strict width) and split epic, hence

it is an isomorphism. Thus, X '
∐
j∈J

Xj has power at most card J < λ.

Conversely, if X has power less than λ, then it is λ-presentable because every coproduct
of less than λ objects which are λ-presentable is λ-presentable. J

I Remark 21. In every locally λ-presentable category K all hom-functors of λ-presentable
objects collectively reflect λ-filtered colimits. That is, given a λ-filtered diagram D with
objects Di (i ∈ I), then a cocone ci : Di → C of D is a colimit iff for every λ-presentable
object Y the following holds: (i) every morphism f : Y → C factorizes through some ci
and (ii) given two such factorizations u, v : Y → C, ci · u = ci · v, there exists a connecting
morphism d : Di → Dj of D with d · u = d · v. This is proved for λ = ℵ0 in [5, Lemma 2.7],
the general case is completely analogous.

I Theorem 22. Let K be a strictly locally α-presentable category with a strict width. Then
K≤λ is algebraically complete for every cardinal λ ≥ max(α,w(K)).

Proof. Following Remark 14, it is sufficient to prove that K≤λ has colimits of i-chains for all
limit ordinals i ≤ λ, and every endofunctor of K≤λ preserves colimits of λ-chains.

(1) K≤λ has for every limit ordinal i ≤ λ colimits of i-chains (Bj)j<i. In fact, let X be the
colimit of that chain in K, then we verify that X has power at most λ. Indeed, each Bj
is a coproduct of at most λ connected objects, thus,

∐
j<i

Bj is a coproduct of at most

i · λ = λ connected objects. The same holds for X, since it is a quotient of
∐
j<i

Bj .
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(2) For every endofunctor F of K≤λ and every λ-chain Bi (i < λ) in K≤ we prove that F
preserves the colimit

X = colim
i∈I

Bi (with cocone bi : Bi → X, i < λ).

Let us choose a small subcategory D of K as in Remark 15. We verify that the functor
B : λ → D

/
X given by i 7→ (Bi, bi) is cofinal, i.e., for every object (A, a) of D

/
X (a)

there exists a morphism of D
/
X into some (Bi, bi) and (b) given a pair of morphisms u,

v : (A, a) → (Bi, bi), there exists j ≥ i with u and v merged by the connecting morphism
bij : Bi → Bj of our chain. Indeed, since A is λ-presentable, the morphism a : A→ colim

i<λ
Bi

factorizes through bi for some i < λ. And since u, v above fulfil bi · u = bi · v (= a), some
connecting morphism bij also merges u and v, see Remark 15.

Consequently, in order to prove that F preserves the colimit X = colimBi, it is sufficient
to verify that it preserves the colimit of the codomain restriction D′X : D

/
X → K≤ of DX

(see Remark 15). Indeed, since B : λ→ D
/
X is cofinal, the colimits of the diagrams F ·D′X

and (FBi)i<λ coincide. We apply Remark 21 and verify the conditions (i) and (ii) for the
cocone Fa : FA → FX of F · DX (in K). Thus FX = colimF · DX in K which implies
FX = colimFD′X in K≤λ.

Ad (i) Given a morphism f : Y → FX with Y λ-presentable, then Y has power less than
λ, thus, by Proposition 10 there exists a coproduct injection c : C → X with C λ-presentable
such that f factorizes through Fc (which is a member of our cocone).

Ad (ii) Let u, v : Y → FA, with A λ-presentable, fulfil Fa · u = Fa · v. We are to find a
connecting morphism

h : (A, a)→ (B, b) in D
/
X with Fh · u = Fh · v.

By the strictness of K, since A is λ-presentable, for a : A → X there exist morphisms
b : B → X and f : X → B with B λ-presentable and a = b · f · a. It is sufficient to put
h = f · a : A→ B . Then h is a morphism of D/X since b · h = a, and Fa · u = Fb · v implies
Fh · u = Fh · v, as desired. J

I Example 23.
(1) For every uncountable regular cardinal λ the category Set≤λ is algebraically complete

(by Theorem 22) and, assuming GCH, algebraically cocomplete (by Theorem 13). The
former was already proved in [3], Example 14, using an entirely different method.

(2) The category Set≤ℵ0 of countable sets is algebraically complete, but not algebraically
cocomplete. Indeed, the restriction Pf of the finite power-set functor to it does not have
a terminal coalgebra. Assuming that a (countable) terminal coalgebra T is given, we find
a contradiction as follows. For every subset A of N denote by CA the tree with root rA
obtained from an infinite path by adding, for every number n ∈ A, a leaf of height n+ 1.
These trees are, as coalgebras for Pf , clearly pairwise non-bisimilar. Consequently, the
unique homomorphisms hA : CA → T have the property that the elements hA(rA) are
pairwise distinct. This is the desired contradiction: T is countable, but the number of
all A’s is uncountable.

I Example 24. Let λ be an uncountable regular cardinal. The following categories are
algebraically complete and, assuming GCH, algebraically cocomplete:
(a) SetS≤λ whenever λ > |S|,
(b) K-Vec≤λ whenever λ > |K|,
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12:10 On Terminal Coalgebras Derived from Initial Algebras

(c) Nom≤λ whenever λ > ℵ1, and
(d) G-Set≤λ for groups G with λ > 2|G|.

This follows from Theorems 13 and 22.

4 Terminal Coalgebras Derived from Initial Algebras

In this section we prove that a set functor F with a non-empty initial algebra of regular
cardinality λ (see Remark 12) has a terminal coalgebra of the same cardinality λ – with one
exception: λ = ℵ0. We first formulate a fixed-point theorem.

A fixed point of an endofunctor F is an object X isomorphic to FX.

I Theorem 25 (The Fixed-Point Theorem). Assume GCH. A set functor with a nonempty fixed
point of a finite or regular uncountable cardinality λ has a terminal coalgebra of cardinality
at most λ.

Proof.
(1) Without loss of generality we can assume F∅ = ∅. Indeed, otherwise we prove the

theorem for the Trnková hull G, see Remark 14. The terminal coalgebras for F and G
are the same.
F restricts to an endofunctor F0 of Set≤λ. Indeed, if A is a fixed point with |A| = λ

, then every object Y 6= ∅ of Set≤λ is a split subobject of A, hence, FY is a split
subobject of FA, proving that |FY | ≤ |FA| = λ . We know from Theorem 13 that F0 has
a terminal coalgebra. We prove that this is also terminal for F . For that, it is sufficient
to prove every coalgebra for F is a colimit of coalgebras for F0 in CoalgF .

(2) Suppose that λ is finite. Then we verify that the terminal coalgebra is obtained as the
limit of the following ωop-chain

1 !←− F1 F !←−−− F 21 F 21←−−−− · · ·

Indeed, since by (1) we have |Fn1| ≤ λ for all n, there exists k ≤ λ such that some
infinite set A ⊆ N fulfils |Fn1| = k for every n ∈ A . Observe that the connecting
maps of our chain are all epic. Hence, given n ≥ m in A, the connecting map from Fn1
to Fm1 is invertible: it is monic due to |Fn1| = |Fm1|. Thus, the limit of the cofinal
subchain Fn1 (n ∈ A) is absolute, since this subchain consists of isomorphisms. Hence,
the original chain also has an absolute limit. This implies by Remark 14(d), that lim

n<ω
Fn1

is a terminal coalgebra of F . It has k ≤ λ elements.
(3) From now on we assume that λ is uncountable. For every coalgebra α : A → FA and

every subset b : B ↪→ A with |B| < λ a subset b′ : B′ ↪→ A exists which contains b, fulfils
|B′| < λ, and carries the structure β′ : B′ → FB′ of a subcoalgebra (i.e., b′ : (B′, β′)→
(A,α) is a coalgebra homomorphism). This is proved precisely as Proposition 11. It then
follows that the diagram of all subcoalgebras of (A,α) on less then λ elements (and all
coalgebra homomorphisms carried by inclusion maps) has the canonical λ-filtered colimit
(A,α) in CoalgF . Indeed, the forgetful functor U from CoalgF to Set creates colimits,
and A is (in Set) a canonical λ-filtered colimit of all subsets of less than λ elements. The
subdiagram of all subalgebras of less than λ elements is cofinal in the above diagram,
hence, it also has the canonical colimit A. And U creates that colimit. J
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I Example 26. None of the assumptions of the Fixed-Point Theorem can be left out, as we
now demonstrate.

(1) Assuming the negation of the Continuum Hypothesis, i.e. ℵ1 < 2ℵ0 , we present a set
functor F with the fixed point ℵ1 (the set of all countable ordinals) which has no terminal
coalgebra. Define F on objects by

FX = X × ℵ1 + {Y ⊆ X; |Y | > ℵ1 or Y = ∅} .

For every morphism f : X → X ′ the left-hand summand of Ff is f × idℵ1 , and the
right-hand one is given by Ff(∅) = ∅ andFf(Y ) = f [Y ] if f restricted to Y is monic,
else ∅.
Then ℵ1 is a fixed point of F : Fℵ1 = ℵ1 ×ℵ1 + {∅} ∼= ℵ1. But assuming that a terminal
coalgebra τ : νF → F (νF ) exists, we derive a contradiction. It is clear that every fixed
point of F has power ℵ1, thus |νF | = ℵ1.
For every function ϕ : N → ℵ1 define a coalgebra Aϕ = (N, αϕ) for F as follows: αϕ
maps n to the element (n+ 1, ϕ(n)) of the left-hand summand of FX. We have a unique
coalgebra homomorphism hϕ : Aϕ → νF . Since τ · hϕ = Fhϕ · αϕ, for every n ∈ N we
get

τ
(
hϕ(n)

)
= Fhϕ

(
n+ 1, ϕ(n)

)
=
(
hϕ(n+ 1), ϕ(n)

)
. (4.1)

We conclude that the elements hϕ(0) ∈ νF for all ϕ : N→ ℵ1 are pairwise distinct:
assuming hϕ(0) = hϕ′(0), we prove ϕ = ϕ′ . Indeed, it is sufficient to verify that
hϕ(n) = hϕ′(n) by induction on n. This is trivial, the induction hypothesis yields, due
to (4.1),

(
hϕ(n+ 1), ϕ(n)

)
=
(
hϕ′(n+ 1), ϕ′(n)

)
, and the left-hand components prove

hϕ(n+ 1) = hϕ′(n+ 1).
This is a desired contradiction: all elements hϕ(0) ∈ T form a set of power at most
|T | = ℵ1, but all ϕ : N→ ℵ1 form a set of power |ℵN1 | ≥ 2ℵ0 > ℵ1.

(2) For the non-regular uncountable cardinal ℵω =
∨
n<ω ℵn we present a set functor F

with the fixed point ℵω not having a terminal coalgebra. Since by Remark 12(b) we
have |ℵNω| > ℵω, this is completely analogous to the preceding example: put FX =
X × ℵω + {Y ⊆ X; |Y | > ℵω or Y = ∅} .

(3) The Fixed-Point Theorem does not hold for ℵ0, see Example 1.

I Theorem 27 (The Terminal-Coalgebra Therorem). Assume GCH. If a set functor F has
a nonempty initial algebra of a finite or regular uncountable cardinality, then it also has a
terminal coalgebra of the same cardinality. Shortly:

µF ' νF .

Proof. In [7], Theorem 3.10, it is proved that the existence of µF implies that the initial-
algebra chain F i0 (i ∈ Ord), see Remark 14, converges, thus µF = F ρ0 for some ordinal ρ.
Without loss of generality we assume ρ ≥ ω. Put λ = |µF |.

By the Fixed-Point Theorem we have a terminal coalgebra τ : T → FT with |T | ≤ λ. The
algebra (T, τ−1) yields, as proved in [1], a unique cocone αi : F i0→ T of the initial-algebra
chain satisfying αi+1 = τ−1 · Fαi for every ordinal i. To prove |T | ≥ λ, we verify that αi is
monic for all ordinals i ≥ ω. Thus |T | ≥ |F i0| for all i, proving |T | ≥ |F ρ0| = λ.

Let F preserve monomorphisms. Then all αi (i ∈ Ord) are monic. This is easily seen by
transfinite induction, since α0 : ∅ → A is monic, and αi+1 = τ−1 · Fαi is monic whenever
αi is.
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12:12 On Terminal Coalgebras Derived from Initial Algebras

For a functor F not preserving monomorphisms we have F∅ 6= ∅, since all nonempty
monomorphisms split. We apply the result of Remark 14(e) that the Trnková hull is a
monic-preserving set functor G which coincides with F on all nonempty sets (and functions)
and whose initial-algebra chain is, from the ordinal ω onwards, the same as that for F . Thus,
µG ' µF . We also have νG ' νF since, due to F∅ 6= ∅ 6= G∅, F and G have the same
coalgebras. J

I Example 28.
(a) For set functors with countable initial algebras nothing can be deduced about the

terminal coalgebras. As we have seen in Example 1, νF need not exist. And for
every infinite cardinal λ there exists a set functor with a terminal coalgebra such that
|µF | = ℵ0 and |νF | > λ . Define F as the following subfunctor of the functor of
Example 1:

FX = PfX + {M ⊆ X;ℵ0 < |M | ≤ λ} .

This functor has a terminal coalgebra because it preserves colimits of λ+-chains (see
Remark 14). And νF is uncountable. Indeed, Pf has an uncountable terminal coalgebra:
the argument is as in Example 23(2). Since Pf is a subfunctor of F , the terminal-
coalgebra chain of Pf is also a subfunctor of the terminal-coalgebra chain of F , from
which we conlcude |νPf | ≤ |νF |.
Furthermore, µF ∼= µPf is countable. And for every uncountable fixed point X ' FX
we clearly have X ' {M ⊆ X; |M | = λ}, therefore |X| = |X|λ from which it follows, by
Remark 12, that |X| > λ. Hence, |νF | > λ.

(b) For many-sorted sets the Terminal-Coalgebra Theorem does not hold. Indeed, given
any cardinal λ there is an endofunctor F of Set×Set that fulfils: µF exists and has λ
elements, but νF does not exist. Put

F (X,Y ) =
{

(∅, λ) if X = ∅,
(X,λ+ PY ) else.

Given a morphism (f, g) : (X,Y )→ (X ′, Y ′) withX nonempty, put F (f, g) = (f, id+Pg).
It is easy to see that the initial algebra of F is (∅, λ). If F would have a terminal coalgebra
νF = (A,B), then A = ∅ (since otherwise (A,B) is not a fixed point of F ). But for
any coalgebra α : (X,Y )→ (X,λ+ PY ), with X 6= ∅, no morphism into (∅, B) exists, a
contradiction.

(c) Moreover, for every pair λµ ≤ λν of infinite cardinals there exists an endofunctor F of
Set×Set with µF of λµ elements and νF of λν elements. On objects put F (X,Y ) =
(∅, λµ) if X = ∅, else (1, λµ) To every morphism F assigns the (obvious) inclusion map.

Both the initial-algebra chain and the terminal-coalgebra chain converge in one step and
yield µF = (∅, λµ) and νF = (1, λν) .

5 Finitary Set Functors

In the preceding section we have established, for some set functors F , an isomorphism
µF ' νF. But that concerned only the underlying sets! In the generality of that section,
nothing can be derived about the relationship of the algebra structure ι : F (µF )→ µF and
the coalgebra structure τ : νF → F (νF ). For finitary set functors F (i.e., those preserving
filtered colimits) with F∅ 6= ∅ we can say more. Firstly, µF and νF exist, and µF (considered
as a coalgebra via ι−1) is a subcoalgebra of νF . Second, there is a canonical ultrametric on
νF , such that for the metric subspace µF we prove that
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(a) µF and νF share the same Cauchy completion,
and

(b) ι determines τ as the unique continuous extension of ι−1.

This generalizes the result of Barr [8] that, in case F moreover preserves limits of
ωop-chains, νF is the Cauchy completion of µF .

I Proposition 29 (µF as a subcoalgebra of νF ). If a set functor F has a terminal coalgebra,
then it also has an initial algebra carried by a subset µF ⊆ νF such that the inclusion map
m : µF ↪→ νF is the unique coalgebra homomorphism, i.e., τ ·m = Fm · ι−1.

Proof.
(1) Assume first that F preserves monomorphisms. There exists a unique cocone of the

initial-algebra chain with codomain νF , mi : F i0→ νF (i ∈ Ord) determined by the
condition below:

mi+1 ≡ F (F i0) Fmi−−−−→ F (νF ) τ−1

−−−−→ νF (i ∈ Ord) .

Easy transfinite induction verifies that mi is monic for every i. Since νF has only a set
of subobjects, there exists an ordinal λ such that all mi with i ≥ λ represent the same
subobject. Thus the commutative triangle below

Wλ

wλ,λ+1 //

mλ !!DDDDDDDD FWλ

mλ+1||xxxxxxxx

νF

implies that wλ,λ+1 is invertible. Consequently, the following algebra

F (Fλ0)
w−1
λ,λ+1−−−−−−→ Fλ0

is initial, see Remark 14.
For the monomorphism mλ : Fλ0→ νF put

µF = mλ[Fλ0] ⊆ νF .

Choose an isomorphism r : µF → Fλ0 such that m = mλ · r : µF → νF is the inclusion
map. Then there exists a unique algebra structure ι : F (µF ) → µF for which r is an
isomorphism of algebras:

r : (µF, ι) ∼−−→ (Fλ0, w−1
λ,λ+1) .

The following commutative diagram

µF
ι−1

//

r

��

F (µF )

Fr

��
Fλ0

wλ,λ+1 //

mλ

��

F (Fλ0)

mλ+1

xxqqqqqqqqqqqqqqqq

Fmλ

��
νF

τ
// F (νF )

proves that m = mλ · r is the unique coalgebra homomorphism, as required.
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12:14 On Terminal Coalgebras Derived from Initial Algebras

(2) Let F not preserve monomorphisms. Therefore F∅ 6= ∅. Our proposition holds for
the Trnková hull G of Remark 14(e). Since F and G agree an all nonempty sets and
F∅ 6= ∅ 6= G∅, they have the same terminal coalgebras. Since the initial algebra of
G is, as we have just seen, obtained via the initial-algebra chain, and F has from ω

onwards the same initial-algebra chain, F and G have the same initial algebras. Thus,
our proposition holds for F too. J

The fact that every set functor with a terminal coalgebra has an initial algebra was proved
in [15]. Our proof above uses ideas of that paper.

Next we recall the behaviour of the terminal-coalgebra chain, see Remark 14, for finitary
set functors:

I Theorem 30 (Worrell [16]). For every finitary set functor F the terminal-coalgebra chain
converges at ω + ω: νF = Fω+ω1. Moreover, every connecting morphism vi,ω (i ≥ ω) is
monic.

I Remark 31.
(a) Consequently, νF is a canonical subset of Fω1 = lim

n<ω
Fn1. And this endows νF with

a canonical ultrametric, as our next lemma explains. Recall that a metric d is called
an ultrametric if for all elements x, y, z the triangle inequality can be strengthened to
d(x, z) ≤ max(d(x, y), d(y, z)).

(b) For every set functor F there exists a unique morphism ū : Fω0→ Fω1 with ū · wn,ω =
vω,n · Fn1 (where ! : 0→ 1 is unique). See [2], Lemma 2.4.

(c) The homomorphism m of Proposition 29 fulfils ū = vω+ω,ω ·m.
Indeed, since F is finitary, we have µF = Fω0 and ι = w−1

ω,ω+1. Thus m being a coalgebra
homomorphism states precisely that

v−1
ω+ω+1,ω+1 ·m = Fm · wω,ω+1

or, m = vω+ω+1,ω+ω ·Fm·wω,ω+1. The squares defining ū in Remark 31(b) thus commute
when ū is substituted by vω+ω,ω ·m (= vω+ω+1,ω · Fm · wω,ω+1). That is, we claim that

vω,n
[
vω+ω+1,ω · Fm · wω,ω+1

)
· wn,ω = Fn!

This is clear for n = 0. If this holds for n, i.e., if

vω+ω+1,n · Fm · wn,ω+1 = Fn! ,

then it also holds for n+ 1: just apply F to that equation. Thus, ū = vω+ω ·m.

I Lemma 32. Every limit L of an ωop-chain in Set carries a complete ultrametric: assign
to t 6= s in L the distance 2−n where n is the least natural number with pn(t) 6= pn(s) for the
limit projections pn.

Proof. Let ln : L→ An (n ∈ N) be a limit cone. For the above function

d(x, y) = 2−n

where ln(x) 6= ln(y) and n is the least such number we see that d is symmetric. It satisfies
the ultrametric inequality

d(x, z) ≤ max
(
d(x, y), d(y, z)

)
for all x, y, z ∈ L .
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This is obvious if the three elements are not pairwise distinct. If they are, the inequality
follows from the fact that if ln separates two elements, then so do all lm with m ≥ n.

It remains to prove that the space Fω1 is complete. Given a Cauchy sequence xr ∈ L
(r ∈ N), for every k ∈ N there exists r(k) ∈ N with

d(xr(k), xn) < 2−k for every n ≥ r(k) .

Choose r(k)’s to form an increasing sequence. Then d(xr(k), xr(k+1)) < 2−k, i.e., lk(xr(k)) =
lk(xr(k+1)). Therefore, the elements yk = lk(xr(k)) are compatible: we have ak+1(yk+1) = yk
for all k ∈ N. Consequently, there exists a unique y ∈ L with lk(y) = yk for all k ∈ N. That
is, d(y, xr(k)) < 2−k. Thus, y is the desired limit:

y = lim
k→∞

xr(k) implies y = lim
n→∞

xn . J

We conclude that for a finitary set functor both νF and µF carry a canonical ultrametric:
νF as a subspace of Fω1 via vω+ω,ω : νF → Fω1, and µF as a subspace of νF via m.
Or, equivalently, a subspace of Fω1 via ū, see Remark 31. Given t 6= s in νF we have
d(t, s) = 2−n for the least n ∈ N with vω+ω,n(t) 6= vω+ω,n(s).

I Notation 33. Given a finitary set functor F with F∅ 6= ∅, choose an element p : 1→ F∅.
This defines the following morphisms for every n ∈ N:

en = ū · wn+1,ω · Fnp : Fn1→ Fω1.

We also put rn = en · vω,n : Fω1→ Fω1.

I Observation 34. Denote by! : ∅ → 1 the unique map. For every n ∈ N we have
(a) vn,n+1 · Fn+1! · Fnp = idFn1.

This is obvious for n = 0. The induction step just applies F to the given square.
(b) vω,n · en = idFn1 . Indeed, in the following diagram

Fn1 Fnp // Fn+10
wn+1,ω //

Fn+1!

((PPPPPPPPPPPP Fω0 ū // Fω1

vω,n

��

vω,n+1wwooooooooooo

Fn+11
vn+1,n

''PPPPPPPPPPPP

Fn1 Fn1

the upper right-hand part commutes by the definition of ū, see Remark 31(b), the
left-hand one does by (a), and the lower right-hand triangle is clear.

(c) vω,n · rn = vω,n . This follows from (b): precompose it with vω,n.

I Theorem 35. For a finitary set functor F with F∅ 6= ∅ the Cauchy completions of the
ultrametric spaces µF and νF coincide. And the algebra structure ι determines the coalgebra
structure τ as the unique continuous extension of ι−1.

Proof.
(1) Assume first that F preserves inclusion, see Remark 14(e).

(a) We prove that the subset ū = vω+ω,ω · m : µF → Fω1 of Remark 31(b) is dense
in Fω1, thus, the complete space Fω1 is a Cauchy completion of both ū[µF ] and
vω+ω,ω[νF ].
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For every x ∈ Fω1 the sequence rn(x) lies in the image of en · vω,n which, in view of
the definition of en, is a subset of the image of ū. And we have x = limn→∞ rn(x)
because Observation 34 (c) yields vω,n(x) = vω,n(rn(x)). Thus d

(
x, rn(x)

)
<

2−n for all n ∈ N.
(b) We have ultrametric subspaces µF and νF of Fω1, hence, the bijections

F (µF ) ι−−→ µF and νF
τ−−→ F (νF )

make also F (µF ) and F (νF ) ultrametric spaces. The continuous map ι−1 has at
most one continuous extension to νF , since µF is dense in νF (even in Fω1). And
τ is such an extension: it is not only continuous, it is an isometry. And it extends
ι−1 by Proposition 29: choose an inclusion map m with τ ·m = Fm · ι−1. Since Fm
is an inclusion map, τ is an extension of ι−1.

(2) Once we have established (a) and (b) for inclusion-preserving finitary functors, it holds
for all finitary functors F . Indeed, use the Trnková hull G that agrees with F on all
nonempty set and functions with G∅ 6= ∅ provided that F∅ 6= ∅ , see Remark 14(e).
Consequently, the coalgebras for F and G coincide. And the initial-algebra chains
coincide for infinite ordinals, in particular Fω0 = Gω0, that is, F and G have the same
initial algebra. J

I Example 36.
(1) For the set functor FX = X × Σ + 1 (of dynamic systems with inputs from Σ and

deadlock states) the terminal coalgebra is obtained in ω steps, since F preserves limits
of ωop-sequences. It can be described as the coalgebra νF = Σ∞ of all finite and infinite
words over Σ. The distance of distinct words u and v is 2−n for the largest n such that
u and v have the same prefix of length n.
The initial algebra Σ∗ is dense in Σ∞: every infinite word is the limit of the sequence of
its finite prefixes. The algebra structure ι : Σ∗ × Σ + 1→ Σ∗ is given by concatenation
on the left-hand summand, and the empty word on the right-hand one. Its inverse
has a unique continuous extension to Σ∞ assigning to every nonempty word u the pair
(head(u), tail(u)). This is indeed the coalgebra structure of νF .

(2) For the finite power-set functor Pf the initial algebra can be described as µPf =
all finite extensional trees (where trees are considered up to isomorphism), see [16].
Recall that a tree is called extensional if for every node x the maximum subtrees of x are
pairwise non-isomorphic. And it is called strongly extensional if it has no nontrivial tree
bisimulation; for finite trees these two concepts are equivalent. Worrell proved in [16]
that the terminal coalgebra νPf consists of all finitely branching strongly extensional
trees, whereas Pωf consists of all strongly extensional trees. The metric on Pωf 1 assigns
to trees t 6= s the distance d(t, s) = 2−n, where n is the least number with ∂nt 6= ∂ns.
Here ∂nt is the extensional tree obtained from t by cutting it at level n and forming the
extensional quotient of the resulting tree.

The algebraic structure ι : Pf (µPf )→ Pf assigns to a set {t1, . . . , tn} of finite trees the
tree-tupling (consisting of a new root and n maximum subtrees t1, . . . , tn). The coalgebraic
structure τ : νPf → Pf (νPf ) assigns to a tree t ∈ νPf the finite set of its maximum subtrees.
This is indeed a continuous extension of ι−1.

6 Conclusions and Open problems

Whereas a set functor is known to have an initial algebra iff it has a fixed point, for terminal
coalgebras fixed points are not sufficient in general. However, we have proved that a non-
empty fixed point of a finite or regular cardinality λ implies that a terminal coalgebra exists
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and has at most λ elements – with a single exception, λ = ℵ0. From this fixed-point result we
have derived that every set functor F with a nonempty initial algebra µF whose cardinality
is finite or regular uncountable has a terminal coalgebra νF ∼= µF .

We have also presented a number of categories that are algebraically complete and
cocomplete, i.e., every endofunctor has a terminal coalgebra and an initial algebra. Examples
include (for sufficiently large regular cardinals λ) the category Set≤λ of sets of power at
most λ, Nom≤λ of nominal sets of power at most λ, K-Vec≤λ of vector spaces of dimension
at most λ, and G-Set≤λ of G-sets (where G is a group) of power at most λ.

All these results assumed the General Continuum Hypothesis. It is an open question
what could be proved without this assumption. Another question is whether the above
relationship νF ∼= µF can, under suitable side conditions, be proved for more general base
categories than Set.

For finitary set functors F with F∅ 6= ∅ we have presented a sharper result: both µF and
νF carry a canonical ultrametric and these two spaces have the same Cauchy completion.
Moreover, by inverting the algebra structure of µF we obtain the coalgebra structure of νF
as the unique continuous extension.
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A Full proofs

PROOF OF EXAMPLES 5 (3) and (4).
(1) For 5(4) recall that objects of G-Set are pairs (X, ·) where X is a set and · is a function

from G×X to X such that

h(gx) = (hg)x for h, g ∈ G and x ∈ X ,

and

ex = x for x ∈ X (e neutral in G) .

An important example is given by any equivalence relation ∼ on G which is equivariant,
i.e., fulfils

g ∼ g′ ⇒ hg ∼ hg′ for all g, g′, h ∈ G .

Then the quotient set G/ ∼ is a G-set (of equivalence classes [g]) w.r.t. the action
g[h] = [gh]. This G-set is clearly connected.

(2) Let (X, ·) be a G-set. For every element x ∈ X we obtain a subobject of (X, ·) on the set

Gx = {gx; g ∈ G} (the orbit of x) .

The equivalence on G given by

g ∼ g′ iff gx = g′x

is equivariant, and the G-sets Gx and G/∼ are isomorphic. Moreover, two orbits are
disjoint or equal: given gx = hy, then x = (g−1h)y, thus, Gx = Gy.

(3) Every object (X, ·) is a coproduct of at most |X| connected objects: if X0 is a choice
class of the equivalence x ≡ y iff Gx = Gy, then

X =
∐
x∈X0

Gx .

(4) The number of connected objects, up to isomorphism, is at most 2|G| + ℵ0. Indeed, it
follows from the above that the connected objects are represented by precisely all G/∼
where ∼ is an equivariant equivalence relation. If |G| = β then we have at most ββ
equivalence relations. For β infinite, this is equal to 2|G|, for β finite, this is smaller than
2|G| + ℵ0.

(5) The number of morphisms from G/∼ to an object (X, ·) is at most |X| ≤ max(α, 2|G|+ℵ0)
where α = |X0| in (3) above. Indeed, every morphism p is determined by the value
x0 = p([e]) since p([g]) = p(g[e]) = g · x0 holds for all [g] ∈ G/∼.

(6) Finally, for 5(3 )the proof is completely analogous: in (2) each orbit Sf (A)
/
∼ ' Sf (A)x is

a nominal set. And the number of all such orbits up to isomorphism is ℵ0, see Lemma A1
in [5]. In (5) we have |X| ≤ α · ℵ0 = α for all α ≥ ℵ0. J

PROOF OF PROPOSITION 10. It is sufficient to prove this in case X has power precisely
λ (otherwise put c = idX). And we can assume that B is connected. In the general case we
have B =

∐
k∈K

Bk with |K| < λ, and find for each k a summand ck : Ck → X corresponding

to the k-th component of b. Then we let c : C → X be the least summand containing each
ck. (C has power less than λ since each Ck does and |K| < λ.)
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Since λ > w(K), in the coproduct of λ connected objects representing X at least one,
say R, must appear λ times. Thus X has the form

X =
∐
λ

R+X0

for objects R and X0, with R connected. Let X̄0 be the coproduct of the same components
as in X0, but each taken precisely once. Thus

(a) X̄0 has power at most w(K), and
(b) we have a coproduct injection

m : X̄0 → X0

which has an (obvious) splitting

m̂ : X0 → X̄0 , m̂ ·m = id .

Put

Y =
∐
λ

R+ X̄0

and for every set M ⊆ λ put

YM =
∐
M

R+ X̄0 .

(c) By Remark 8(b) we can choose t ∈ λ and an almost disjoint collection of sets Mk ⊆ λ,
k ∈ K, with

t ∈Mk , |Mk| = λ and |K| > λ .

Consider the following square of coproduct injections for any pair k, l ∈ K:

YMl∩Mk

ak

zzuuuuuuuuu
al

$$HHHHHHHHH

YMk

bk $$IIIIIIIIII
YMl

blzzuuuuuuuuuu

Y

This is an absolute pullback. Indeed, it obviously commutes. And bk and bl are split
monomorphisms: define

b̄k : Y → YMk

as identity on the summand X̄0, whereas the i-th copy of R is sent to copy i, if i ∈Mk, and
to copy t else. Then

b̄kbk = id .

Analogously for bl. Next define

āl : YMl
→ YMk∩Ml
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as identity on the summand X̄0, whereas the i-th copy of R is sent to copy i, if i ∈Mk, and
to copy t else. Then clearly

ākal = id and akāl = b̄kbl .

Thus, the above square is an absolute pullback by Lemma 6.

(d) We are ready to prove that for a connected object B every morphism

b : B → FX

has the required factorization. For every k ∈ K since |Mk| = λ we have an isomorphism

yk : Y =
∐
λ

R+ X̄0 −→
∐
Mk

R+ X̄0 = YMk

which composed with bk : YMk
→ Yλ yields an endomorphism

zk = bk · yk : Y → Y .

We use (b) above and precompose zk with m̃ = id +m̂ : X → Y to get the following morphisms

B
b−−→ FX

Fm̃−−−→ FY
Fzk−−−−→ FY (k ∈ K) .

They are not pairwise distinct because |K| > λ, whereas FY has at most λ components
(since F is an endofunctor of K≤λ) so that (b) in Definition 4 implies that K(B,FY ) has
cardinality at most λ. Choose k 6= l in K with

Fzk · Fm̃ · b = Fzl · Fm̃ · b . (A.1)

Compare the pullbacks Z of zk and zl and YMk∩Ml
of bk and bl:

Z

p

���
�
�
�

pk

}}||||||||||||
pl

!!BBBBBBBBBBBB

Y

yk

��

YMk∩Ml

ak

~~|||||||||||
al

  AAAAAAAAAAA
Y

yl

��
YMk

bk

!!BBBBBBBBBBB
YMl

bl

~~|||||||||||

Yλ

Since yk and yl are isomorphisms, the connecting morphism p between the above pullbacks is
an isomorphism, too. We know that |Mk ∩Ml| < λ since Mk, Ml are of our almost disjoint
family, thus the object

C = YMk∩Ml
=

∐
Mk∩Ml

R+ X̄0

has less than λ summands, as required. And, due to (c), the pullback of zk and zl is absolute.
The equality (A.1) thus implies that Fm̃ · b factorizes through Fpk:
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B

h

���
�

�
�

�
�

�
�

�
�

b

��
FX

Fm̃

��
FZ

Fpk

// FY

F [id +m]

OO

Fzk //
Fzl

// FY

Consequently, from m̂m = id we obtain

b = Fm̃ · Fpk · h = Fm̃ · Fpk · Fp−1 · Fp · h .

Thus, for the coproduct injection

c ≡ m̃ · pk · p−1 : C → X ,

we get the desired factorization b = Fc · (Fp · h). J
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