
Coinductive Resumption Monads: Guarded
Iterative and Guarded Elgot
Paul Blain Levy
University of Birmingham, UK
P.B.Levy@cs.bham.ac.uk

Sergey Goncharov
FAU Erlangen-Nürnberg, Germany
Sergey.Goncharov@fau.de

Abstract
We introduce a new notion of “guarded Elgot monad”, that is a monad equipped with a form of
iteration. It requires every guarded morphism to have a specified fixpoint, and classical equational
laws of iteration to be satisfied. This notion includes Elgot monads, but also further examples of
partial non-unique iteration, emerging in the semantics of processes under infinite trace equivalence.

We recall the construction of the “coinductive resumption monad” from a monad and endofunctor,
that is used for modelling programs up to bisimilarity. We characterize this construction via a
universal property: if the given monad is guarded Elgot, then the coinductive resumption monad is
the guarded Elgot monad that freely extends it by the given endofunctor.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Axiomatic semantics

Keywords and phrases Guarded iteration, guarded monads, coalgebraic resumptions

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.13

Funding Sergey Goncharov: Support by Deutsche Forschungsgemeinschaft (DFG) under project
GO 2161/1-2 is gratefully acknowledged.

1 Introduction

The study of monads for effects has developed in numerous directions since it was initiated
in [18]. We make two contributions to this research area. Firstly we give a new notion of
“guarded Elgot monad” – a monad equipped with a form of iteration – that includes a variety
of examples. Secondly, we give a universal property for one of these examples, the so-called
“coinductive resumption monad”. We shall explain these contributions separately.

1.1 Monads and Iteration
Monads. Let us recall the basic ideas of monads for effects, where the base category is Set.
A monad T on Set, presented in “Kleisli triple” form, consists of three things.

For each set X, a set TX, of which an element represents a “computation” that may
perform various computational effects and may return an element of X.
For each set X, a map ηX : X → TX. For x ∈ X, the image ηX(x) represents a “pure
computation” that just returns x.
For any map f : X → TY , we have a map f? : TX → TY . For p ∈ TX, the image
f?(p) represents a “sequenced computation” that first executes p and then, if this returns
x ∈ X, proceeds to execute f(x) ∈ TY .

These must satisfy three equations, as described in [18]. A map X → TY is called a Kleisli
map, and these form the Kleisli category, denoted Kl(T). It inherits coproducts from Set.

© Paul Blain Levy and Sergey Goncharov;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0864-1876
mailto:P.B.Levy@cs.bham.ac.uk
https://orcid.org/0000-0001-6924-8766
mailto:Sergey.Goncharov@fau.de
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

Monads for printing. We give (in outline) some example monads for computations that
print characters. Let A be an alphabet, i.e. a set of characters. We write A? (resp. Aω, A6ω)
for the set of finite sequences (resp. infinite sequences, finite and infinite sequences). Here
are our examples.

The monad X 7→ A? ×X represents computations that print several characters and then
return a value.
The monad X 7→ A? ×X +A6ω represents such computations, but also computations
that continue forever and never return. The latter includes computations that print
finitely many characters and then diverge (i.e. hang), and also computations that print
infinitely many characters.
The monad X 7→ A? ×X + Aω represents computations that may return or continue
forever, but in the latter case are required to be “productive”, i.e. keep printing.

For our next series of examples, write P+X for the set of nonempty subsets of X. The
following are monads for nondeterministic printing computations.

X 7→ P+(A? ×X)
X 7→ P+(A? ×X +A6ω)
X 7→ P+(A? ×X +Aω)

A nondeterministic printing computation has terminating traces in A?×X, divergences in A?
and infinite traces in Aω. (A similar arrangement has been used in CSP semantics [21].)
The above monads identify computations that are infinite trace equivalent, i.e. that have the
same terminating traces, divergences and infinite traces.

Iterative computations. Given a Kleisli map f : X → Y + X, we would like to form a
Kleisli map f† : X → Y where, for x ∈ X, the image f†(x) represents the following “iterative
computation”. First it executes f(x) ∈ T (Y + X). That may return inl y, in which case
the iterative computation returns y, or it may return inr x′, in which case the computation
represented by f(x′) ∈ T (Y +X) is executed, and so forth. Can we form f† for our example
monads?

For the monad X 7→ A?×X +A6ω, we can form f†, since the monad is able to represent
infinite computations.
For the monad X 7→ P+(A? ×X +A6ω), f† is formed analogously.
For the monad X 7→ A? ×X +Aω, we can form f†, provided f is guarded. That means
that for all x ∈ X, the image f(x) ∈ A? × (X + Y) + Aω is not of the form inl(ε, inlx′)
for some x′ ∈ X. This condition ensures that f†(x) represents a productive computation,
because an iterative call is possible only after at least one character has been printed.
For the monad P+(A? × X + Aω), f† is formed analogously. Here the guardedness
requirement is that, for all x ∈ X, the image f(x) ∈ P+(A? × (X + Y) +Aω) does not
contain inl(ε, inr x′) for any x′ ∈ X.

These four examples motivate the first contribution of the paper, viz. the notion of a guarded
Elgot monad. This consists of a monad on a co-Cartesian category C (i.e. category with
finite coproducts), equipped with two additional structures. Firstly a guardedness predicate,
that tells us when a Kleisli map f : X → Y + Z is guarded in the right summand. When
this condition holds, we write f : X → Y 〉〉Z. Secondly, a guarded Conway operator that
associates to each map f : X → Y 〉〉X a Kleisli map f† : X → Y . Each of these structures

P.B. Levy and S. Goncharov 13:3

guarded Elgot

Elgot guarded iterative

ω-continuous completely iterative

Figure 1 Connections between classes of monads with iteration.

must satisfy some conditions that we shall stipulate. In particular, for f : X → Y 〉〉X, we
require f† to be a fixpoint of f , i.e. a Kleisli map g : X → Y such that

X Y +X

Y

g

f

[id,g]

commutes in the Kleisli category.
Although the above four examples are all guarded Elgot monads, they are significantly

different.
The guarded Elgot monads X 7→ A?×X +A6ω and X 7→ P+(A?×X +A6ω) are special
because every Kleisli map f : X → Y +Z is deemed to be guarded in the right summand.
So, for every Kleisli map f : X → Y + X, we can form f†. We call these simply Elgot
monads. (They are called “complete Elgot monads” in [7].)
The guarded Elgot monad X 7→ A? ×X +Aω is special because, for each map f : X →
Y 〉〉X, the map f† is the unique fixpoint of f . We call this a guarded iterative monad [10].
For A 6=, the guarded Elgot monad X 7→ P+(A? ×X +Aω) is neither Elgot nor guarded
iterative. (This is proved in Example 20(5) below). So it illustrates the need for the new,
more general notion of guarded Elgot monad.

As noted in [10], every monad can be regarded as guarded iterative, by saying that a
Kleisli map f : X → Y + Z is “vacuously” guarded in the right summand when it factorizes
via inr : Z → Y + Z.

1.2 Resumption Monads
Let us write µγ.Fγ for an initial algebra of F , and νγ.Fγ for a final coalgebra. We note the
following.

The set A? ×X can be written µγ.(X +Hγ), where H is the endofunctor Y 7→ A× Y .
The set A? ×X +Aω can be written νγ.(X +Hγ).
The set A? ×X +A6ω can be written νγ.Maybe(X +Hγ), where Maybe Y def= Y + 1.

More generally, given a monad T and endofunctor H on a co-Cartesian category C, we form
two monads:

the inductive resumption monad Tµ
H sending X 7→ µγ. T (X +Hγ), provided these initial

algebras exist [6]
the coinductive resumption monad Tν

H sending X 7→ νγ. T (X +Hγ), provided these final
coalgebras exist [20].

CALCO 2019

13:4 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

For example, with C = Set, let T be the countable nonempty powerset monad and let
H : Y 7→ A × Y . Then these monads represent countably nondeterministic printing com-
putations modulo bisimilarity. Here, the difference between Tµ

H and Tν
H is that the former

represents only computations that eventually return a value, whereas the latter represents
also computations that continue forever (but are productive).

For another class of examples, let (B(a))a∈A be a “signature”, i.e. family of sets, and
let H be the endofunctor Y 7→

∑
a∈A Y

B(a). Again let T be the countable nonempty
powerset monad. In this case the monads Tµ

H and Tν
H represent countably nondeterministic

computations that perform I/O. Such a computation can print an element a ∈ A and then
pause; if the user then enters an element of B(a), the computation resumes. This is the
reason for the name “resumption monad”. The printing example is the special case where
B(a) is singleton for all a ∈ A.

As the above examples illustrate, these monads provide a natural way of combining an
endofunctor (representing I/O) with a monad (representing other effects, e.g. nondeterminism).
So one may ask of each monad: can it be characterized via a universal property?

This has been done for Tµ
H in [15]. We recall this result, but present it a little differently,

using the notion of free extension (defined in full generality in Definition 2 below).

1.3 Free Extensions
To explain the notion of free extension, we give a well-known example: the polynomial ring
R[X0, X1]. This is the free extension of the ring R by the set {0, 1}. That means that we
have a function and ring homomorphism

{0, 1} R[X0, X1] R
X−

(here X− reads as a map sending i ∈ {0, 1} to Xi) that are universal: for any function and
ring homomorphism

{0, 1} S R
g h

there is a unique mediating homomorphism

{0, 1} R[X0, X1] R

S

X−

g h

We can now describe the result of [14] as follows: the monad Tµ
H is a free extension of T

by H. This means that we have a natural transformation and monad morphism

H Tµ
H Tβ ρ

that are universal.
The second contribution of this paper is the following analogous result. If T is a guarded

Elgot monad, then Tν
H is also guarded Elgot, and moreover it is the free extension, among

guarded Elgot monads, of T by H. This means that – in a suitable sense we shall define –
we have a guarded natural transformation and guarded Elgot monad morphism

H Tν
H Tβ ρ

that are universal. This in turn gives a universal property for the two special cases simply
by varying the notion of guardedness in which our result is parametric.

P.B. Levy and S. Goncharov 13:5

If T is Elgot, then Tν
H is Elgot, and therefore it is the free extension, among Elgot monads,

of T by H. This result appeared (with a considerably more complex proof) in [9].
If T is guarded iterative (as noted above, any monad can be so regarded), then Tν

H is
guarded iterative [10], and therefore it is the free extension, among guarded iterative
monads, of T by H. A similar result – using “two-sided ideals” rather than guardedness
predicates – was given in [19, Corollary 4.6], generalizing [16].

In general, a free extension of an initial object is a free object. (This is Proposition 4 below.)
For example, the ring Z of integers is initial among all rings, so Z[X0, X1] is a free ring on
the set {0, 1}. This gives some more special cases.

The identity monad is initial among all monads. So IdµH is a free monad on H.
The identity monad is initial among all guarded iterative monads, and among all guarded
Elgot monads. So IdνH is a free guarded iterative monad, and a free guarded Elgot monad,
on H. With H = Id this yields Capretta’s delay monad νγ. -- +γ used for modeling
partiality in intensional type theory [5].
On Set, the Maybe monad is initial among all Elgot monads. This is true, more generally,
on any hyperextensive category [1]. So MaybeνH is a free completely Elgot monad on H.
This was previously shown in [9].

It is also worth noting that free extensions can also be described as coproducts with free
objects. (This is Proposition 5 below). For example, the free extension of a ring R by the set
{0, 1} can be described as the coproduct of R and the free ring on {0, 1}. This formulation
is used in [14, 13, 19, 9] and indeed we provide a coproduct characterization in this style
in Corollary 29 below. We take the view, however, the characterization in terms of free
extensions is more primitive, since it does not require the free object to exist.

2 Preliminaries

In this paper we work in co-Cartesian categories, which are categories with finite coproducts.
We fix selected coproduct co-spans X inl−→ X+Y inr←−− Y and initial objects 0 with [] : 0→ X

denoting the initial morphisms. We do not generally assume extensiveness, in particular, the
injections inl and inr need not be monic.

In a category C, we denote by |C| the associated class of objects and by C(X,Y) the set of
morphisms from X to Y . We occasionally omit indexes at natural transformation components
to improve readability. For a functor F : C → C, we denote by (νF, out : νF → FνF)
the final F -coalgebra. Whenever possible, we use bold letters, e.g. T, for monads, to
emphasize the distinction with the underlying functor T . A monad T over C induces
a Kleisli category Kl(T) with |Kl(T)| = |C| and Kl(T)(X,Y) = C(X,TY). We make
free use of the well-known fact that for a co-Cartesian C and a monad T on C, the Kleisli
category Kl(T) is again co-Cartesian with the coproduct co-spans X η inl−−→ T (X+Y) η inr←−−− Y

and [(T inl)f, (T inr)g] : X+Y → T (X ′+Y ′) being the coproduct of morphisms f : X → TX ′

and g : Y → TY ′.
Unless stated otherwise, all diagrams we present are supposed to commute.

3 Free Extensions

We recall the following standard notion, see e.g. [3, Section 7.7].

I Definition 1 (Bimodules). For categories C and D, a bimodule O : C |→D consists of the
following data:

a family of sets (O(X,Y))X∈|C|,Y ∈|D|, where g ∈ O(X,Y) is called an O-morphism
g : X → Y ;

CALCO 2019

13:6 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

each g : X → Y can be composed with a C-map f : X ′ → X or D-map h : Y → Y ′.
For g : X → Y , f ′ : X ′′ → X ′, f : X ′ → X, h′ : Y ′ → Y ′′, h : Y → Y ′ we must have the
following:

g idX = g (h′ h)g = h′ (h g) h (g f) = (h g) f
idY g = g g (f f ′) = (g f) f ′

For example: the bimodule Set → Ring in which O(X,Y) is the set of functions from
the set X to the ring Y . This bimodule can be seen as arising from the forgetful functor
Ring→ Set.

Bimodules C |→D correspond to functors Cop×D → Set. They are also called distributors
or profunctors (but some authors reverse the direction). For the rest of the section, let
O : C |→D be a bimodule.

I Definition 2 (Free Extensions). Let A ∈ |C| and B ∈ |D|. A free extension of B by A
consists of V ∈ |D| and e : A→ V and f : B → V , such that, for all X ∈ |D| and g : A→ X

and h : B → X, there is a unique k : V → X such that

A V B

X

e

g k

f

h

I Definition 3 (Free Objects). Let A ∈ |C|. A free object on A consists of V ∈ |D| and
e : A→ V , such that, for all X ∈ |D| and g : A→ X, there is a unique k : V → X such that

A V

X

e

g k

I Proposition 4. Let 0D be an initial object in D. For any A ∈ |C|, a free object on A

corresponds to a free extension of 0D by A. The bijection sends (V , e) to

A V 0D.e []

I Proposition 5. Let A ∈ |C| and B ∈ |D|. Let (W,d) be a free object on A. Then a
coproduct of W and B corresponds to a free extension of B by A. The bijection sends (V , e, f)
to

A W V B.d e f

4 Guardedness on Monads

In this section, let K be a co-Cartesian category. The typical example is K = Kl(T), where T
is a monad on a co-Cartesian category C.

4.1 Guardedness Predicates
The following notion is slightly adapted from [10].

P.B. Levy and S. Goncharov 13:7

I Definition 6 (Guardedness, Guarded Monads). A guardedness predicate on K provides
for all objects X,Y, Z a subset K•(X,Y, Z) ⊆ K(X,Y + Z). We write f : X → Y 〉〉Z for
f ∈ K•(X,Y, Z) and say that f is guarded (in the right summand). The following conditions
are required:

(trv) f : X → Y

inlf : X → Y 〉〉Z
(par) f : X → V 〉〉W g : Y → V 〉〉W

[f, g] : X + Y → V 〉〉W

(cmp) f : X → Y 〉〉Z g : Y → V 〉〉W h : Z → V +W

[g, h]f : X → V 〉〉W

A category equipped with a guardedness predicate is called guarded category. A monad T
on C is a guarded monad if K = Kl(T) is a guarded category under the coproducts inherited
from C.

We write “let f : X → Y 〉〉Z” as an abbreviation for “let f be a map X → Y + Z be a map
such that f : X → Y 〉〉Z”.

Intuitively, a morphism f : X → Y 〉〉Z represents a program flow with inputs in X and
outputs in Y and in Z, where the latter part of the output is guarded in the sense that every
portion of the program flow from X to Z runs through a guard. The notion of guard here is
implicit and depends on the specific model. The axioms of guardedness abstractly capture
properties of guards: (trv) states that if all the output goes to Y then f : X → Y + Z is
(vacuously) guarded in Z; (par) states that guardedness jointly depends on all inputs; finally,
(cmp) states that if the program flow branches then every branch leading to the guarded
output must hit a guard at least once, specifically, h : Z → V +W need not be guarded in
W , because h receives the input from f , which ensures guarded already.

The distinction between Definition 6 and the corresponding definition in [10] is precisely
determined by the choice of the notion of coproduct: in op. cit. coproducts are treated up to
isomorphisms, while here we work with selected coproducts. The original axiomatization of
guardedness additionally involved a weakening rule, which turned out to be derivable from
the above three [8]. Let us summarize this and other consequences of the axioms. We will
need the following convention.

I Notation 7. Let us use the notation f : X → Y 〉〉Y1 〉〉 . . . 〉〉Yn, for f : X → (. . . (Y + Y1) +
. . .) + Yn meaning that σ f : X → Y 〉〉Y1 + . . . + Yn where σ is the obvious associativity
isomorphism (. . . (Y + Y1) + . . .) + Yn → Y + (Y1 + (. . .+ Yn) . . .).

I Proposition 8. Let K be a guarded category.
1. For all objects V,W ∈ |K|, we have [] : 0→ V 〉〉W .
2. Let f : X → Y 〉〉Z. For u : X ′ → X and g : Y → Y ′ and h : Z → Z ′ we have

(g + h)fu : X ′ → Y ′ 〉〉Z ′.
3. (Weakening) If f : X → Y 〉〉Z 〉〉W then f : X → Y + Z 〉〉W .
It is often useful to speak of guardedness in particular summands:

we say that f : X → Y + Z is inr-guarded if f : X → Y 〉〉Z;
we say that f : X → Y + Z is inl-guarded if X f−→ Y + Z ∼= Z + Y is inr-guarded;
we say that f : X → Y is id-guarded if X f−→ Y ∼= 0 + Y is inr-guarded.

Two guardedness predicates are especially important.

CALCO 2019

13:8 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

I Proposition 9 (Greatest and Least Guardedness Predicates).
1. The greatest guardedness predicate on K says that, for every map f : X → Y + Z, we

have f : X → Y 〉〉Z.
2. The least guardedness predicate on K says that, for f : X → Y + Z, f : X → Y 〉〉Z iff

there is a map g : X → Y such that f factors as X g−→ Y
inl−→ Y + Z (such g need not be

unique, since it does not follow from our running premises that coproduct injections are
monic).

We say that K is totally guarded when equipped with the largest guardedness predicate, and
vacuously guarded when equipped with the smallest.

I Example 10. Here are some examples of guardedness predicates for K = Kl(T) with T
being a monad on Set.
1. Let T be the following monad: T∅ = ∅ and TX = 1 if X 6= ∅, under vacuous guardedness.

Now, the unique morphism 1→ T (1 + 1) = 1 is inl-guarded and inr-guarded, because it
factors through 1 = T1 T inr−−−→ T (1 + 1) = 1 and through 1 = T1 T inl−−→ T (1 + 1) = 1. But
1→ T (1 + 1) = 1 does not factor through ∅ = T∅ T []−−→ T (1 + 1) = 1, and hence it is not
id-guarded. This example show that guardedness in two summands does not necessarily
imply guardedness in their union.

2. Let P+ be the non-empty powerset monad. For f : X → P+(Y + Z), say f : X → Y 〉〉Z
when for every x ∈ X, the set f(x) contains at least one element of the form inl y.

3. Let D+ be the countable probability distribution monad:

D+X =
{
d : X → [0, 1] |

∑
d = 1

}
.

We put f : X → Y 〉〉Z if for every x ∈ X, f(x)(inl y) > 0 for at least one y ∈ Y .
4. For a set A, let TX = A? ×X be a writer monad whose monad structure is induced by

the monoid structure of A?. For f : X → A? × (Y + Z), say f : X → Y 〉〉Z when, for
every x ∈ X, if f(x) = (m, inr z) then m 6= ε.

5. Following Section 1.1, let A be again an arbitrary set and let TX = P+(A? ×X +Aω).
This yields a monad for nondeterministic programs that print characters in A, giving
semantics that records the (successful) finite and infinite traces. The monad structure
is obtained from the fact that A? is a monoid and Aω is a left A?-module. For f : X →
P+(A? × (Y + Z) + Aω), say f : X → Y 〉〉Z when, for every x ∈ X, if (m, inr z) ∈ f(x)
then m 6= ε. Intuitively, as in the previous example, a program denoting f is prohibited
from returning a value through Z without first printing a character.

I Definition 11 (Guarded Natural Transformations and Monad Morphisms).
1. Let T and S be guarded monads on C. A monad morphism ρ : T→ S is guarded when the

functor Kl(ρ) : Kl(T)→ Kl(S) preserves guardedness. Explicitly: for f : X → T (Y + Z),
if f : X → Y 〉〉Z in Kl(T) then X f−→ T (Y + Z) ρY+Z−−−−→ S(Y + Z) is guarded X → Y 〉〉Z
in Kl(S).

2. Let H be an endofunctor and T a guarded monad on C. A natural transformation
σ : H → T is guarded when for all X ∈ |C|, σX : HX → TX is id-guarded.

4.2 Guarded Iteration
We now consider when guarded morphisms can be iterated in the sense of Section 1.1. The
most straightforward case is the following:

P.B. Levy and S. Goncharov 13:9

I Definition 12 (Guarded Iterative Categories). K is guarded iterative if every f : X → Y 〉〉X
has a unique fixpoint f† : X → Y of the map [id, --] f : K(X,Y)→ K(X,Y).

I Lemma 13. In any guarded category, if f : X → Y 〉〉Z 〉〉X and g : X → Y is a fixpoint of
[id, --] f then g : X → Y 〉〉Z.

I Definition 14 (Conway Iteration). A guarded Conway (iteration) operator on K associates
to each f : X → Y 〉〉X a fixpoint f† : X → Y of the map [id, --] f , satisfying the following
principles:

naturality: for f : X → Y 〉〉X and g : Y → Z we have ((g + id)f)† = gf†;
dinaturality: ([inl, h] g)† = [id, ([inl, g]h)†] g for g : X → Y 〉〉Z and h : Z → Y 〉〉X or
g : X → Y + Z and h : Z → Y 〉〉X;
codiagonal: ([id, inr] f)† = f†† for f : X → Y 〉〉X 〉〉X.

Note that in the codiagonal equation, f†† must exist by Lemma 13.
I Remark 15. Guarded Conway operators are direct generalizations of standard (total)
Conway operators [2, 22], which arise under the total notion of guardedness. It was observed
by Hyland and Hasegawa [12, 11] that Conway operators are equivalent to monoidal trace
operators under ⊗ = + (modulo the duality of + and ×). The connection between Conway
operators and traces extends to a connection between guarded Conway operators and guarded
traces [8]. In the total case, it is known that the axioms of Conway operators are incomplete
wrt nontrivial models of iteration, e.g. the category of pointed complete partial orders [22].
This led Bloom and Ésik to completing the axiomatization of iteration by an infinite set of
axioms called commutative identities [2]. These identities are instance of a single versatile
quasi-equational uniformity principle, which holds true in all non-pathological models.
Let J : C → K be a functor, where C and K are guarded and have the same objects, and J is
identity-on-objects and strictly preserves co-Cartesian structure.

I Definition 16 (Uniformity). A guarded Conway operator −† on K is uniform (wrt J) when
for K-maps f : X → Y 〉〉X and g : Z → Y 〉〉Z and C-map h : Z → X,

Z Y + Z

X Y +X

g

Jh Y+Jh
f

⇒
Z Y

X

g†

Jh
f†

I Proposition 17. [10] An operation sending every f ∈ K•(X,Y, Z) to a fixpoint f† ∈
K(X,Y) is guarded Conway uniform iff it satisfies naturality, codiagonal and uniformity. In
other words, dinaturality is derivable.

I Proposition 18. Let K be guarded iterative. Then f 7→ f† is a guarded Conway operator
and uniform wrt IdK.

Proof. Except for uniformity wrt IdK, the proof is in [10, Theorem 17]. Let us verify the
missing case of uniformity. Suppose that f (Jh) = J(id + h) g for suitable f , g and h. Now,
[id, f†(Jh)] g = [id, f†] J(id + h)g = [id, f†] fJh, meaning that f†(Jh) satisfies the fixpoint
equation for g†. Therefore, f†(Jh) = g†. J

I Definition 19. Let T be a guarded monad, i.e. a monad with a guardedness predicate on
Kl(T). We say that T is
1. a guarded iterative monad if Kl(T) is a guarded iterative category;
2. a guarded Elgot monad if Kl(T) has a guarded Conway operator f 7→ f†, which is uniform

wrt the obvious functor C → Kl(T);

CALCO 2019

13:10 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

3. an Elgot monad when it is totally guarded and a guarded Elgot monad.
Note that for an Elgot monad T, T0 must always be inhabited because T supports (unpro-
ductive) divergence ⊥ = (η inr : 1→ T (0 + 1))†.

I Example 20. Let us revisit Example 10.
1. Every monad under vacuous guardedness can be equipped with an iteration operator and

is thus guarded iterative. Concretely, since f : X → Y 〉〉X implies that

f =
(
X

g−→ TY
T inl−−→ T (Y +X)

)
for a suitable g, f† = [η, f†]? (T inl)g = g. For Example 10 (1), therefore f† = !: X →
TY = 1 if Y 6= ∅ and f† = [] : ∅→ ∅ if Y = ∅, and thus X = ∅.

2. The powerset monad P is Elgot, because its Kleisli category (the category of relations) is
enriched over complete partial orders, and hence supports f† as a least fixpoint of [η, --]?f .
This is inherited by P+ by restriction along the inclusion P+ ↪→ P. Explicitly, in the
Kleisli category of P+, for a guarded map f : X → Y 〉〉X, the map f† : X → Y sends x
to the set{

y ∈ Y | ∃n ∈ N, (x0, . . . , xn) ∈ Xn+1. x = x0 ∧ f(x0) 3 inr x1 ∧ . . . ∧ f(xn) 3 inl y
}
.

In this style of semantics we thus do not register the possibility of divergence i.e. whether
there is a sequence (x0, x1, . . .) ∈ Xω such that ∀i ∈ N. f(xi) 3 inr xi+1. As a result, P+

is guarded Elgot.
3. Unlike its cousin, the countable subdistribution monad DX =

{
d : X → [0, 1] |

∑
d ≤

1
}
, D+ is not Elgot (because D+0 = 0). However, as in the previous clause, it is guarded

Elgot. Specifically, we obtain a guarded Conway operator for D+ by first restricting
from the corresponding total guarded iteration operator for D, calculated as a least fixed
point, and then normalizing (guardedness ensures it is not zero) to obtain a distribution.
Thus we do not record the probability of divergence. To see the need for normalization,
consider the guarded Kleisli map f : N→ 1 〉〉N where f(n) gives inl ? with probability

1
2n + 2 =

(
1

2n+1

)
/

(
1
2 + 1

2n

)
and inr(n+ 1) with probability

1− 1
2n + 2 = 2n + 1

2n + 2 =
(

1
2 + 1

2n+1

)
/

(
1
2 + 1

2n

)
.

Iterating f from 0 gives the probability 1/2n+2 of the transition sequence

0→ 1→ · · · → n→ ?

So the probability of eventually reaching ? is 1/2.
4. The writer monad TX = A? ×X does not support guarded iteration for the guardedness

predicate defined in Example 10 (4) and for non-trivial A. For example, no x : 1 →
T1∼=A? satisfies the fixpoint equation x = ax for any a ∈ A. This can be remedied by
extending TX to A? ×X +M were M is an inhabited left A?-module, e.g. M = 1 (the
initial one), or M = Aω (the final one).

5. The monad TX = P+(A? ×X +Aω) for finite and infinite traces from Example 10 (5)
supports the following iteration operator. For a guarded Kleisli map f : X → Y 〉〉X, the

P.B. Levy and S. Goncharov 13:11

map f† : X → TY sends x to the following set:{
inl(m0 + · · ·+mn−1 +m, y) | ∃n ∈ N, (x0, . . . , xn) ∈ Xn+1.

x0 = x

∧f(x0) 3 inl(m0, inr x1) ∧ . . . ∧ f(xn−1) 3 inl(mn−1, inr xn)
∧f(xn) 3 inl(m, inl y)

}
∪
{

inr(m0 + · · ·+mn−1 +m) | ∃n ∈ N, (x0, . . . , xn) ∈ Xn+1.

x0 = x

∧f(x0) 3 inl(m0, inr x1) ∧ . . . ∧ f(xn−1) 3 inl(mn−1, inr xn)
∧f(xn) 3 inrm

}
∪
{

inr(m0 +m1 + · · ·) | ∃(x0, . . .) ∈ Xω.

x0 = x ∧ ∀i ∈ N. f(xi) 3 inl(mi, inr xi+1)
}
.

This captures three possible scenarios (separated by the ∪ operator):
the fixpoint f†(x) is unfolded n times resulting in an output of y ∈ Y ; the actions
m0, . . . ,mn−1,m ∈ A? are collected along the run and concatenated;
the fixpoint f†(x) is unfolded n times and then hits an infinite tracem ∈ Aω; as a result,
f†(x) does not yield a value from Y , but it yields an infinite tracem0+. . .+mn−1+m ∈
Aω where m0, . . . ,mn−1 ∈ A? are collected along the run;
the fixpoint f†(x) is unfolded infinitely many times without ever reaching Y ; this yields
an infinite trace m0 +m1 + . . . ∈ Aω computed by concatenating the traces mi ∈ A?,
which are collected along the run. The guardedness assumption on f is crucial here,
because it ensure that each mi is non-empty and hence the above infinite sum does
indeed produce an infinite trace.

The resulting iteration operator is properly partial, and is computed neither as a least
fixpoint nor as a unique fixpoint, even though the guardedness relation we postulate is
the one standardly used in process algebra and guaranteeing uniqueness of fixpoint under
strong bisimilarity [17]. The separating example is x = ax + 1, which has besides the
canonical solution x = a? + aω the solution x = a?, ignoring the infinite trace.

5 The Coinductive Resumption Monad

In this section, we present our main technical contribution, stating that guarded Elgotness
extends along the coalgebraic resumption monad transformer. It proves to be technically
more advantageous to work more generally with parametrized guarded Elgot monads, which
extend Uustalu’s parametrized monads [23].

I Definition 21 (Parametrized Guarded Elgot Monads). A parametrized guarded Elgot
monad is a functor from a co-Cartesian category C to the category of guarded Elgot monads
over C. Equivalently (by uncurrying), a parametrized guarded Elgot monad is a bifunctor
: C × C → C, such that each -- #W is a guarded Elgot monad, and for every f : W →W ′,
-- #f is a guarded Elgot monad morphism.

Since every monad is a guarded Elgot monad under vacuous guardedness, parametrized
guarded Elgot monads include all parametrized monads.

The main example of a parametrized guarded Elgot monad is as follows.

I Example 22. Given a guarded Elgot monad T and an endofunctor H on the same co-
Cartesian category C, X#Y = T (X+HY) defines a parametrized guarded Elgot monad, with

CALCO 2019

13:12 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

the guardedness predicate defined as follows: for f : X → T ((Y + Z) +HW), f : X → Y 〉〉Z
in Kl(−#W) iff

X
f−→ T ((Y + Z) +HW)∼= T ((Y +HW) + Z) is inr-guarded in Kl(T).

We use the same Kleisli style notation for parametrized guarded Elgot monads as for the
non-parametrized ones. Let us record the identities, directly implied by Definition 21, and
which we use in the subsequent calculations.

(ηX,Y : X → Z #W)? = idX#W : X #W → X #W,

(f : Y → Z #W)?(ηX,Y : X → X #W) = f : X → Z #W,

(f : Y → Z #W)?(g : X → Y #W)? = (f?g)? : X #W → Z #W,

(X # (h : W →W ′)) (ηX,W : X → X #W) = ηX,W ′ : X → X #W ′,

(Y # (h : W →W ′)) (f : X → Y #W)? =
((Y # h)f)?(Y # h) : X #W → Y #W ′,

(Y # (h : W →W ′)) (f : X → (Y +X) #W)† = ((Y # h) f)† : X → Y #W ′.

The first three equations here are the monad laws for -- #W and the last three equations
express the fact that -- #h is a guarded Elgot monad morphism.

For the rest of the section we fix a parametrized guarded Elgot monad # and assume
that the final coalgebras z#X = νγ.X # γ exist for all X ∈ |C|. The following properties
of z# are previously shown by Uustalu [23].

I Proposition 23.
1. For every f : X → z#Y there is a unique f6 : z#X → z#Y such that

z#X X # z#X

z#Y Y # z#Y

out

f6 ((out f)#f6)?

out

2. given f : X → Y # z#(X + Y), there is unique g : X → z#Y , such that

X Y # z#(Y +X)

z#Y Y # z#Y

f

g Y#[ην , g]6

out

3. z# forms a monad, whose unit η# at X is

X X # z#X z#X.
η inl out-1

The Kleisli extension of f : X → z#Y is f6.

5.1 Transferring Guarded Elgotness
We proceed to transfer iteration from # to z#.

I Definition 24. z# is guarded as follows: f : X → Y 〉〉Z when the composite

X
f−→ z#(Y + Z) out−−→ (Y + Z) # z#(Y + Z)

is inr-guarded.

See [10] for a proof that this constitutes a guardedness predicate.

P.B. Levy and S. Goncharov 13:13

Note that when # is totally guarded then so is z#. Using Definition 24, for every
f : X → z#(Y + X), we define ♦ f = (out f)† : X → Y # z#(Y + X). The idea of this
operator is as follows. Computing the iteration of f : X → z#(Y +X) w.r.t. z# amounts to
forming out f : X → (Y +X) # z#(Y +X) first, which reveals two occurrences of X that
must be iterated away. The first one occurs at the guarded position of the parametrized
monad, and hence we can eliminate it by applying the iteration operator of -- #z#(Y +X) –
this is precisely the task of ♦. The remaining second position of X occurs under z#, and
can be eliminated by using the finality property of the latter.

I Theorem 25. z# is a guarded Elgot monad with the iteration operator (--)‡ characterized
as follows: for f : X → Y 〉〉X, f‡ : X → z#Y is the unique morphism satifsying

X Y # z#(Y +X)

z#Y Y # z#Y

♦ f

f‡ Y#[ην ,f‡]6

out

Proof. Let us verify the relevant laws. Recall that by Proposition 17, we need not verify
dinaturality.

fixpoint is already shown in [10];
naturality: given f : X → Y 〉〉X, g : Y → z#Z, let us denote by h the morphism
[(z# inl) g, ην inr] : Y +X → Z 〉〉X, First we show that

♦(h6f) = ((Z # z# inl) out g)?(Y # h6)♦ f. (1)

Indeed,

♦(h6f) = (out h6f)† // definition of ♦
= ((outh)?(Y # h6) out f)†

= ((Z # z# inl) out g)?((Y # h6) out f)† // naturality of (--)†

= ((Z # z# inl) out g)?(Y # h6)♦ f.

Then

out g6f‡ = (out g)?(Y # g6) (Y # [ην , f‡]6)♦ f // definition of (--)‡

= (out g)?(Y # (g6[ην , f‡]6))♦ f
= (out g)?

(
Y # [ην , g6f‡]6[(z# inl) g, ην inr]6

)
♦ f

= (out g)?
(
Y # [ην , g6f‡]6h6)♦ f

= (Z # [ην , g6f‡]6) ((Z # z# inl) out g)?(Y # h6)♦ f // (1)
= (Z # [ην , g6f‡]6) ♦(h6f).

This entails the requisite equality (h6f)‡ = g6f‡, by the uniqueness property of (h6f)‡.
codiagonal: let f : X → Y 〉〉X 〉〉X. It suffices to check that

out f‡‡ = (Y # [ην , f‡‡]6) ♦(z#[id, inr] f)

CALCO 2019

13:14 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

The proof runs as follows:

out f‡‡ = (Y # [ην , f‡‡]6) ♦ f‡ // definition of (--)‡

= (Y # [ην , f‡‡]6) (out f‡)† // definition of ♦
= (Y # [ην , f‡‡]6) (((Y +X) # [ην , f‡]6) ♦ f)† // definition of (--)‡

= (Y # [ην , f‡‡]6[ην , f‡]6) (out f)††

= (Y # [[ην , f‡‡], [ην , f‡‡]6f‡]6) (out f)††

= (Y # [[ην , f‡‡], f‡]6) (out f)†† // fixpoint for (--)‡

= (Y # [ην , f‡‡]6z#[id, inr]) (out f)††

= (Y # [ην , f‡‡]6) (Y # z#[id, inr])
(([id, inr] # z#((Y +X) +X)) out f)† // codiagonal for (--)†

= (Y # [ην , f‡‡]6) (([id, inr] # z#[id, inr]) out f)†

= (Y # [ην , f‡‡]6) (out z#[id, inr]f)†

= (Y # [ην , f‡‡]6) ♦(z#[id, inr]f) // definition of ♦

uniformity: assume f : X → Y 〉〉X, g : Z → Y 〉〉Z, h : Z → X and f h = z#(id + h) g.
The latter entails (out f)h = ((id + h) # z#(id + h)) out g, hence, by uniformity of (--)†,

(out f)† h = ((Y # z#(id + h)) out g)†. (2)

We then have

out f‡ h = (Y # [ην , f‡]6) (♦ f)h // definition of (--)‡

= (Y # [ην , f‡]6) (out f)† h // definition of ♦
= (Y # [ην , f‡]6) ((Y # z#(id + h)) out g)† // (2)
= (Y # [ην , f‡h]6) (out g)†

= (Y # [ην , f‡h]6) ♦ g. // definition of ♦

We thus obtained that f‡h satisfies the fixpoint equation for g‡, hence f‡h = g‡. J
Recall that T νH = z# for X # Y = T (X +HY).

I Corollary 26. Given a guarded Elgot monad T, then Tν
H is also guarded Elgot with the

requisite structure obtained from the parametrized guarded Elgot monad X#Y = T (X+HY).

5.2 Free Extensions of Guarded Elgot Monads
We proceed to apply the results of the previous section under X # Y = T (X +HY).

I Lemma 27. Let T be a guarded monad.
1. The natural transformation

HX
η inr(Hην)−−−−−−→ T (X +HT νHX) out-1

−−→ T νHX

is guarded.
2. The natural transformation

TX
T inl−−→ T (X +HT νHX) out-1

−−→ T νHX

is a guarded Elgot monad morphism.

P.B. Levy and S. Goncharov 13:15

Proof. The first clause is obvious by definition. For the second clause, we need to check that
the relevant morphism preserves guarded iteration, that is, given f : X → Y 〉〉X, we need to
show that

out-1(T inl) f† = (out-1(T inl) f)‡.

By definition of (--)‡, equivalently, we prove the equation

(T inl) f† = T (id + [ην , (T inl) f†]6)♦(out-1(T inl) f).

Indeed,

T (id + [ην , (T inl) f†]6)♦(out-1(T inl) f)
= T (id + [ην , (T inl) f†]6) (T (inl +id) f)† // definition of ♦
= T (id + [ην , (T inl) f†]6) (T inl) f† // naturality
= (T inl) f,

as desired. J

I Theorem 28. In the category of guarded Elgot monads, Tν
H , provided it exists, is a free

extension of T by H in the sense of Definition 2, that is, for every guarded Elgot monad S, a
guarded Elgot monad morphism ξ : T→ S and a guarded natural transformation σ : H → S,
there exists a guarded Elgot monad morphism ζ : Tν

H → S uniquely characterized by the
following commutative diagram

T T (Id +HT νH) T νH T (Id +HT νH) H

S

T inl

ξ

out-1

ζ

out-1 η inrHην

σ

in the obvious category of natural transformations. Concretely, every ζX : T νHX → SX has
the form

(
T νHX

ξ out−−−→ S(X +HT νHX) [η inl, (S inr)σ]?−−−−−−−−−→ S(X + T νHX)
)†.

Proof. By Lemma 27 the candidate monad morphism T→ Tν
H and the candidate natural

transformation H → Tν
H are guarded. The trickiest part of the claim is the fact that Tν

H

is indeed a guarded Elgot monad, which is shown in Theorem 25. Let us verify that ζ is a
guarded monad morphism. Suppose that f : X → T νH(Y +X) is inr-guarded and show that
ζ f : X → S(Y +X) is inr-guarded. We have

ζ f = [η, ζ]?[η inl, (S inr)σ]? ξ out f // fixpoint
= [η, ζ?σ]? ξ out f,

which can be presented as

X
out f−−−→T ((Y +X) +HT νH(Y +X))∼= T ((Y +HT νH(Y +X)) +X)

[[η inl,ζ?σ],η inr]?−−−−−−−−−−→S(Y +X).

The composite morphism in the upper row is inr-guarded by definition. We will be done
by (cmp) if we show that the morphism [η inl, ζ?σ] occurring in the lower row is inr-guarded.
By (trv) and (par) this amounts to showing that ζ?σ : HT νH(Y + X) → S(Y + X) is

CALCO 2019

13:16 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

inr-guarded. Indeed, σ is id-guarded by definition, hence ζ?σ is id-guarded by (cmp), which
weakens to inr-guardedness by Proposition 8.

The remaining calculations are the same as in previous work [9, Theorem 8.3] where the
analogous statement was shown in the unguarded case. J

Note that the initial guarded Elgot monad is the identity monad under vacuous guardedness.
Using Proposition 5 we obtain

I Corollary 29. Given a guarded Elgot monad T and an endofunctor H, Tν
H is the coproduct,

in the category of guarded Elgot monads, of T and νγ. (-- +Hγ), provided the latter exists.

6 Conclusions and Further Work

We introduced guarded Elgot monads as a common generalization of Elgot monads and
guarded iterative monads previously studied in the literature. We propose to use them as
a yardstick for analyzing sophisticated notions of iteration when the iteration operator is
neither total nor a unique solution of the corresponding fixpoint equation. Situations of
this kind indeed occur in practice, e.g. in process semantics wrt infinite trace equivalence
(Example 20 (5)). Moreover, guarded Elgotness tends to propagate along monad transformers,
which leads to further examples. We explored one such monad transformer, receiving as an
input a monad T and a functor H and returning a monad Tν

H of possibly non-terminating
processes under strong bisimilarity, with side-effects by T and with actions by H. Our main
theorem shows that for a guarded Elgot monad T, Tν

H is canonically guarded Elgot, and
more specifically it can be characterized as a free extension of T by H in the category of all
guarded Elgot monads.

The monad transformer T 7→ Tν
H is particularly important because the semantic domain

it generates is subject to (coalgebraic) strong bisimilarity, which is arguably the finest
semantic equivalence on processes. We thus hope to obtain further interesting generic process
equivalences, most importantly infinite trace equivalence, in a principled fashion, as quotients
of Tν

H under suitably defined iteration-congruences. We plan to explore connections between
the outlined approach to characterizing process equivalences and universal characterizations
of such equivalences, such as the final coalgebra characterization of finite trace equivalence
given in [4].

References
1 J. Adámek, R. Börger, S. Milius, and J. Velebil. Iterative algebras: How iterative are they?

Theory Appl. Cat., 19:61–92, 2008.
2 Stephen Bloom and Zoltán Ésik. Iteration theories: the equational logic of iterative processes.

Springer, 1993.
3 F. Borceux. Handbook of Categorical Algebra 1. Cambridge University Press, 1994.
4 N. Bowler, P.B. Levy, and G.D. Plotkin. Initial algebras and final coalgebras consisting of

nondeterministic finite trace strategies. In Proceedings, 34th Conference on the Mathematical
Foundations of Programming Semantics, volume 341 of ENTCS, pages 23–44, 2018.

5 Venanzio Capretta. General recursion via coinductive types. Log. Meth. Comput. Sci., 1(2),
2005.

6 Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denotational
semantics. In Category Theory and Computer Science, CTCS 1993, 1993.

7 Sergey Goncharov, Stefan Milius, and Christoph Rauch. Complete Elgot Monads and Coal-
gebraic Resumptions. In Mathematical Foundations of Programming Semantics, MFPS 2016,
volume 325 of ENTCS, pages 147–168. Elsevier, 2016.

P.B. Levy and S. Goncharov 13:17

8 Sergey Goncharov and Lutz Schröder. Guarded Traced Categories. In Christel Baier and
Ugo Dal Lago, editors, Proc. 21th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2018), volume 10803 of LNCS, pages 313–330. Springer,
2018.

9 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Julian Jakob. Unguarded Recursion
on Coinductive Resumptions. Logical Methods in Computer Science, 14(3), 2018.

10 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying Guarded
and Unguarded Iteration. In Javier Esparza and Andrzej Murawski, editors, Foundations of
Software Science and Computation Structures, FoSSaCS 2017, volume 10203 of LNCS, pages
517–533. Springer, 2017.

11 Masahito Hasegawa. Models of Sharing Graphs: A Categorical Semantics of Let and Letrec.
Springer, 1999.

12 Masihito Hasegawa. Recursion from Cyclic Sharing: Traced Monoidal Categories and Models
of Cyclic Lambda Calculi. In Typed Lambda Calculi and Applications, TLCA 1997, volume
1210 of LNCS, pages 196–213. Springer, 1997.

13 Martin Hyland, Paul Levy, Gordon Plotkin, and John Power. Combining algebraic effects
with continuations. Theoret. Comput. Sci., 375(1-3):20–40, 2007.

14 Martin Hyland, Gordon Plotkin, and John Power. Combining Computational Effects: Com-
mutativity & Sum. In TCS’02, volume 223, pages 474–484. Kluwer, 2002.

15 Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor. Theoret.
Comput. Sci., 357(1-3):70–99, 2006.

16 Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,
196(1):1–41, 2005.

17 R. Milner. Communication and concurrency. Prentice-Hall, 1989.
18 Eugenio Moggi. Notions of Computation and Monads. Inf. Comput., 93:55–92, 1991.
19 Maciej Piróg and Jeremy Gibbons. The Coinductive Resumption Monad. In Mathematical

Foundations of Programming Semantics, MFPS 2014, volume 308 of ENTCS, pages 273–288,
2014.

20 Maciej Piróg and Jeremy Gibbons. Monads for Behaviour. In Mathematical Foundations of
Programming Semantics, MFPS 2013, volume 298 of ENTCS, pages 309–324, 2015.

21 A. W. Roscoe. Unbounded nondeterminism in CSP. Technical Report PRG-67, Oxford
University Computing Laboratory, July 1988. in Two papers on CSP, Also appeared in
Journal of Logic and Computation, Vol 3, No 2 pp131-172 (1993). URL: http://www.cs.ox.
ac.uk/people/bill.roscoe/publications/28.ps.

22 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In
Logic in Computer Science, LICS 2000, pages 30–41, 2000.

23 Tarmo Uustalu. Generalizing Substitution. ITA, 37(4):315–336, 2003.

CALCO 2019

http://www.cs.ox.ac.uk/people/bill.roscoe/publications/28.ps
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/28.ps

	Introduction
	Monads and Iteration
	Resumption Monads
	Free Extensions

	Preliminaries
	Free Extensions
	Guardedness on Monads
	Guardedness Predicates
	Guarded Iteration

	The Coinductive Resumption Monad
	Transferring Guarded Elgotness
	Free Extensions of Guarded Elgot Monads

	Conclusions and Further Work

