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Abstract
The analysis of set comonads whose underlying functor is a container functor in terms of directed
containers makes it a simple observation that any morphism between two such comonads factors
through a third one by two comonad morphisms, whereof the first is identity on shapes and the
second is identity on positions in every shape. This observation turns out to generalize into a much
more involved result about comonad morphisms to comonads whose underlying functor preserves
Cartesian natural transformations to itself on any category with finite limits. The bijection between
comonad coalgebras and comonad morphisms from costate comonads thus also yields a decomposition
of comonad coalgebras.
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1 Introduction

Containers of Abbott et al. [1] are a representation of a wide class of set functors (that
one can use as parameterized datatypes) in terms of shapes and positions. Those set
functors that enjoy this representation are called container functors. In joint work with
Chapman [3], we found that container functors with a comonad structure can be characterized
as interpretations of containers with corresponding additional structure, which we called
directedness. In a directed container, every position in a shape determines another shape
(its subshape), every shape has a designated root position, and positions in a subshape can
be translated to the original shape. Remarkably, as we only noticed later [5], the category
of directed containers is equivalent to the opposite of the category of small categories and
cofunctors. Cofunctors were introduced by Aguiar [2]; they send objects from the target
category to the source category, but maps from the source category to the target category.

Motivated by this equivalence, in this paper, we first show that an analogue of the full
image factorization of functors holds for directed container morphisms: any directed container
morphism decomposes into two whereby the first is identity on shapes and the second is
identity on positions in every shape. Since the interpretation functor from the category of
directed containers to the category of set comonads is fully-faithful, this immediately gives
also a factorization of container comonad morphisms.
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14:2 Decomposing Comonad Morphisms

Then we ask if a similar decomposition is possible for general comonads on general
categories. We show that only pullbacks and a terminal object (i.e., finite limits) are needed
in order to formulate suitable substitutes for the notions of identity-on-shapes container
morphism and identity-on-positions-in-every-shape container morphism for general natural
transformations, and to obtain the factorization of general comonad morphisms.

That this decomposition is possible at this level of generality is nice, we find, since an
alternative would have been to switch from containers to polynomials [7, 8]. At the basic
level, containers and polynomials can be considered each other’s notational variants, but the
concepts of polynomials and polynomial functors scale to general categories with pullbacks
[18]. However, already the definition of the polynomial analogue of the concept of directed
container is complicated (we spelled it out in [3]), not to speak of the definition of the
interpretation functor for it, or any proofs, so they are not the easiest to work with. The
shapely types of Jay and Cockett [12, 11] are a lighter concept, but we did not need even
those for our purpose.

The paper is organized as follows. In Section 2, we review containers and directed
containers, including the equivalence of the category of directed containers to the opposite of
the category of small categories and cofunctors. In Section 3, we describe our factorization
of directed container morphisms or, which is the same, container comonad morphisms. In
Section 4, we generalize this factorization to categories with finite limits. In Section 4 we
also apply our results to the factorization of comonad coalgebras. We sum up in Section 5.

2 Preliminaries: containers and directed containers

We begin with a review of containers [1] and directed containers [3]. As noted above, containers
are a representation for a certain class of set functors. Directed containers characterize, by
additional structure on containers, those container functors that carry comonad structure.1

A container comprises a set S (of shapes) and, for any shape s : S, a set P s (of positions
in shape s). A directed container is a container (S, P ) equipped with three maps
↓ : (Σs : S. P s)→ S (the subshape corresponding to a position in a shape),
o : Πs:S . P s (the root position in a given shape), and
⊕ : Πs:S . (Σp : P s. P (s ↓ p))→ P s (translation of a position in a position’s subshape)

satisfying the following five equations:

s ↓ os = s s ↓ (p ⊕s p′) = (s ↓ p) ↓ p′

p ⊕s os↓p = p os ⊕s p = p (p ⊕s p′) ⊕s p′′ = p ⊕s (p′ ⊕s↓p p′′)

The 4th and 5th equations type because the 1st and 2nd hold. We note that the data and
equations of a directed container are like those of a set, a monoid, and a right action of the
monoid on the set, modulo the presence of the “minor” (subscripted) arguments and the
dependent typing. In particular, if P s, os, and p ⊕s p′ do not actually depend on s, then we
indeed have a set, a monoid, and a right action of the monoid.

A container (S, P ) defines a set functor JS, P Kc = D, called its interpretation, by

DX = Σs : S. P s⇒ X

1 In what follows, subscript arguments of operations are “minor” arguments that can typically be inferred
from the subsequent arguments. We generally write → for homsets, and ⇒ for internal homs (exponential
objects). In this and the next section, where we work in Set, this plays no role, but we still use the
notation for conceptual clarity.
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Given a directed container structure (↓, o,⊕) on (S, P ), D obtains a comonad structure:

εX (s, v) = v os δX (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕s p′)))

We call the comonad JS, P, ↓, o,⊕Kdc = (D, ε, δ) the interpretation of (S, P, ↓, o,⊕).
Any comonad structure (ε, δ) on a set functor D that is the interpretation of some

container (S, P ) (i.e., DX = Σs : S. P s⇒ X) arises from a directed container structure
(↓, o,⊕) on (S, P ). In fact, directed container structures on (S, P ) and comonad structures on
D are in a bijection. Given a comonad structure (ε, δ), the corresponding directed container
structure is defined by

os = εP s (s, id) s ↓ p = fst (snd (δP s (s, id)) p) p ⊕s p′ = snd (snd (δP s (s, id)) p) p′

The following are some most prominent examples of directed containers with the corres-
ponding comonads:

Taking S to be any set, P s = 1, s ↓ ∗ = s, os = ∗, ∗ ⊕s ∗ = ∗, we get the coreader
comonad defined by DX = S ×X ∼= Σs : S. 1⇒ X, ε (s, x) = x, δ (s, x) = (s, (s, x)).
Taking S to be any set, P s = S, s ↓ s′ = s′, os = s, s′ ⊕s s′′ = s′′, we get the
costate comonad (also called the array comonad [16]) defined by DX = S × (S ⇒ X) ∼=
Σs : S. S ⇒ X, ε (s, v) = v s, δ (s, v) = (s, λs′.(s′, v)).
Choosing S = 1, P ∗ = N, ∗ ↓ i = ∗, o∗ = 0, i ⊕∗ j = i + j, we obtain the streams-
with-suffixes comonad defined by DX = Xω ∼= Σs : 1.N ⇒ X, ε (x0, x1, . . .) = x0,
δ (x0, x1, . . .) = ((x0, x1, . . .), (x1, x2, . . .), . . .).
Choosing S = N, P n = [0..n], n ↓ i = s − i, on = 0, i ⊕n j = i + j gives us the
nonempty-lists-with-suffixes comonad defined by DX = X+ ∼= Σn : N. [0..n] ⇒ X,
ε (x0, x1, . . . , xn) = x0, δ (x0, x1, . . . , xn) = ((x0, x1, . . . , xn), (x1, x2, . . . , xn), . . . , (xn)).
Take S to be the set of all bars where a bar (through the binary fan) is a finite set b of
lists over 2 = {0, 1} such that any stream over 2 has exactly one prefix in b. Take P b to
be the set of all lists u over 2 that are a prefix of some list w in b. (A bar cuts a finite
binary tree out of the infinite binary tree by establishing the positions of its leaves). Let
b ↓ u = {v | u · v ∈ b}, ob = (), u ⊕b v = u · v (the empty list resp. concatenation of lists).
This gives us the labelled-finite-binary-trees comonad. The counit extracts the label of
the root node of the given tree. The comultiplication replaces the label of each node with
the subtree rooted by that node.

Other useful examples of directed containers are obtained by constructions corresponding
to the coproduct and product of two comonads, the cofree comonad on a functor, and
compatible compositions of comonads (for all these, there are corresponding constructions of
directed containers) and zipper datatypes (for those, there is a construction, called focussing,
of turning any container (S, P ) into a directed container whose shape set is Σs : S. P s, i.e.,
its shapes are shapes of the given container together with a focus position) [3, 4].

A morphism between two containers (S, P ) and (S′, P ′) is given by maps t : S → S′

(the shape map) and q : Πs:S . P
′ (t s) → P s (the position map). A morphism between

two directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) is a morphism (t, q) between the
underlying containers satisfying the following equations

t (s ↓ qs p) = t s ↓′ p os = qs o′t s qs p ⊕s qs↓qs p p
′ = qs (p ⊕′t s p′)

CALCO 2019
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Analogously to the interpretation of containers, a morphism (t, q) between containers (S, P )
and (S′, P ′) defines a natural transformation Jt, qKc = τ between their interpretations
JS, P Kc = D and JS′, P ′Kc = D′ (the interpretation of (t, q)) by

τX(s, v) = (t s, v ◦ qs)

Also, analogously to the interpretation of directed containers, if (t, q) is a morphism between
directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′), then τ is a comonad morphism
between JS, P, ↓, o,⊕Kdc =(D, ε, δ) and JS′, P ′, ↓′, o′,⊕′Kdc =(D′, ε′, δ′); we define Jt, qKdc =τ .

Any natural transformation τ between the interpretations D and D′ of two containers
(S, P ) and (S′, P ′) is an interpretation of a unique container morphism, namely (t, q) where

t s = fst (τP s(s, id)) qs p = snd (τP s(s, id)) p

Furthermore, if τ is a comonad morphism between the interpretations (D, ε, δ) and (D′, ε′, δ′)
of two directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′), then (t, q) is a directed con-
tainer morphism interpreting to τ .

Some examples of directed container morphisms are the following:

Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the costate comonad
for S and coreader comonad for S, respectively. Take t s = s, qs∗ = s. This corresponds
to the comonad morphism τX : S × (S ⇒ X)→ S ×X defined by τ (s, v) = (s, v s).
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the streams comonad, respectively. Take t n = ∗ and qn i = min (i, n). This
corresponds to the comonad morphism τX : X+ → Xω defined by τ (x0, x1, . . . , xn) =
(x0, x1, . . . , xn, xn, . . .) (i.e., nonempty lists are padded out to streams).
Let both (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed container for the nonempty
lists comonad. Let t n = n ÷ 2 and qn i = 2 ∗ i. This corresponds to the comonad
morphism τ (x0, x1, . . . , xn) = (x0, x2, . . . , x2∗(n÷2)) (i.e., every other element of a given
nonempty list is dropped).
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the labelled finite binary trees comonad. Let t n = {w ∈ 2∗ | |w| = n} and
qn u = |u|. This corresponds to the comonad morphism sending a nonempty list xs to
a labelled finite binary tree whose list of labels along any path is xs (so all paths have
same length).
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the labelled finite
binary trees comonad and nonempty lists comonad. Let t b be the length of the unique
prefix in b of the stream 0ω, i.e., the unique n such that 0n ∈ b. Let qb i = 0i. This
directed container morphism (t, q) then represents the comonad morphism that maps a
labelled finite binary tree to the non-empty list of labels along its leftmost path.

Containers and container morphisms form a monoidal category Cont (with a suitable
container composition monoidal structure), and the interpretation of containers is a fully-
faithful monoidal functor from Cont to [Set,Set] (with the functor composition monoidal
structure). Analogously, directed containers and directed container morphisms form a category
DCont, and the interpretation of directed containers is fully-faithful functor from DCont to
Comonad(Set). In fact, DCont is isomorphic to the category Comonoid(Cont) and is
the pullback in CAT of U : Comonad(Set)→ [Set,Set] along J−Kc : Cont→ [Set,Set].

In a sequel [5] to the first directed container work [3], we related directed containers to
small categories. It turns out that directed containers are in a bijection up to isomorphism
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with small categories. Specifically, given a directed container (S, P, ↓, o,⊕), the corresponding
small category is obtained as follows. The set of objects is S. The set of maps with domain
s : S is P s, which means that the total set of maps is P̄ = Σs : S. P s and the domain of a
map (s, p) : P̄ is src p = s. The codomain of a map (s, p) : P̄ is tgt p = s ↓ p. The identity
map on an object s is ids = (s, os) and the 1st directed container equation ensures that its
codomain is s ↓ os = s, as required. A map (s, p) can only be composed with a map (s′, p′), if
s ↓ p = s′, in which case the composition is (s, p); (s′, p′) = (s, p ⊕s p′). By the 2nd directed
container equation the codomain of this map is s ↓ (p ⊕s p′) = (s ↓ p) ↓ p′, as required. The
3rd to the 5th equations then ensure that composition is unital and associative.

Of the above examples, the coreader comonad for S corresponds to the free category on
a set of objects S, i.e., the discrete category (the only maps are the identity maps for every
object). The costate comonad for S corresponds to the cofree category on a set of objects S,
i.e., the codiscrete category (there is exactly one map between any two objects).

Although directed containers are in a bijection up to isomorphism with small categories,
the category of directed containers is not equivalent to the category of small categories.
The reason is that directed container morphisms are nothing like functors between small
categories. Instead, they correspond to what Aguiar [2] has termed cofunctors, but with the
source and target categories swapped.

A cofunctor between small categories (S′, P̄ ′, src′, tgt′, id′, ;′) and (S, P̄ , src, tgt, id, ;) is
given by two maps t : S → S′ (the object map) and q̄ : (Σs : S.Σp : P̄ ′. t s = src p)→ P̄ (the
morphism map) satisfying src (q̄ (s, p)) = s and the following equations:

t (tgt (q̄ (s, p))) = tgt′ p ids = q̄ (s, id′t s) q̄ (s, p) ; q̄ (tgt (q̄ (s, p)), p′) = q̄ (s, p ;′ p′)

While a functor maps objects and maps of the source category to those in the target category,
a cofunctor’s object map is from the target category to the source category, but the morphism
map is still from the source to the target category.2

The category DCont of directed containers is equivalent to the opposite category of the
category ←−−Cat of small categories and cofunctors. Given a directed container morphism (t, q),
the corresponding cofunctor is (t, q̄) where q̄ is defined by q̄ (s, (t s, p)) = (s, qs p).

Container functors with a monad structure can be also characterized in terms of additional
structure on containers. This structure, studied by us [17] under the name of mnd-containers,
is very different from directed containers. Mnd-containers can be seen as a version of
nonsymmetric operads where operations may have infinite arities, arguments places of
operations are identified nominally rather than positionally and arguments may be discarded
and duplicated in composition.

3 Decomposing directed container morphisms

We now show that every morphism between two (directed) containers admits a natural
factorization through a third (directed) container, an idea we promote to general functors
and comonads in the next section.

It is almost immediate that every container morphism between two containers factorizes
through a container with the shapes of the first and positions of the second container.

2 A cofunctor looks a bit like a split opcleavage, but is not one. Before we learned about Aguiar’s
terminology, we spoke of a “relative split pre-opcleavage”. See [6] for more discussion on this matter.
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14:6 Decomposing Comonad Morphisms

I Proposition 1. Given two containers C = (S, P ), C ′ = (S′, P ′), a morphism h = (t, q)
between them factorizes through a third container C∗ as below

C
h1
//

h

��
C∗

h2
// C ′

with the properties that
h1 : C → C∗ is identity on shapes and
h2 : C∗ → C ′ is identity on positions in every shape.

Proof. We define C∗ = (S∗, P ∗) where S∗ = S, P ∗ s = P ′ (t s). I.e., C∗ has the shapes of
the first, but positions of the second container. The corresponding container morphisms are
defined as h1 = (t1, q1) and h2 = (t2, q2) where t1 s = s, q1

s p = qs p, t2 s = t s, q2
s p = p. J

At the level of functors and natural transformations, this is to say that a natural
transformation (Σs : S. P s⇒ −)→ (Σs : S′. P ′ s⇒ −), which we know must always be of
the form λ(s, v). (t s, v ◦ qs), always factors through the functor Σs : S. P ′ (t s)⇒ −.

Considerably more interestingly, this proposition can be strengthened to a factorization
of any directed container morphism, in other words, of any morphism between two container
comonads.

I Proposition 2. If, in the situation of Proposition 1, C and C ′ come with directed container
structures (↓, o,⊕) resp. (↓′, o′,⊕′), and h is a directed container morphism, then C∗ also
carries a directed container structure, and h1, h2 are directed container morphisms.

Proof. We define the directed container structure on C∗ as s ↓∗ p = s ↓ qsp, o∗s = o′ts,
p ⊕∗s p′ = p ⊕′ts p′. It is straightforward to verify that these data obey the laws a directed
container:

s ↓∗ o∗s = s ↓ qso′ts = s ↓ os = s

s ↓∗ (p ⊕∗s p′) = s ↓ qs(p ⊕′ts p′) = s ↓ (qsp ⊕s qs↓qspp
′)

= (s ↓ qsp) ↓ qs↓qspp
′ = (s ↓∗ p) ↓ qs↓∗pp′ = (s ↓∗ p) ↓∗ p′

o∗s ⊕∗s p = o′ts ⊕′ts p = p

p ⊕∗s o∗s↓∗p = p ⊕′ts o′t(s↓∗p) = p ⊕′ts o′t(s↓qsp) = p ⊕′ts o′ts↓′p = p

(p ⊕∗s p′) ⊕∗s p′′ = (p ⊕′ts p′) ⊕′ts p′′ = p ⊕′ts (p′ ⊕′ts↓′p p′′)
= p ⊕′ts (p′ ⊕′t(s↓qsp) p

′′) = p ⊕∗s (p′ ⊕∗s↓qsp p
′′) = p ⊕∗s (p′ ⊕∗s↓∗p p′′)

That h1 and h2 satisfy the directed container morphism laws is also straightforward. J

Let us now see what this means on our examples of directed container morphisms.

Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the streams comonad respectively. Recall that we considered the directed
container morphism given by t n = ∗ and qn i = min (i, n). This directed container
morphism factors through the directed container (S∗, P ∗, ↓∗, o∗,⊕∗) defined by S∗ = N,
P ∗ n = N, n ↓∗ i = n − min (i, n), o∗n = 0, i ⊕∗n j = i + j. This corresponds to
the comonad defined by D∗X = N × Xω ∼= Σn : N.N ⇒ X, ε∗ (n, (x0, x1, . . .)) =
x0, δ∗ (n, (x0, x1, . . .)) = (n, ((n, (x0, x1, . . .)), (n− 1, (x1, x2, . . .)), . . . , (0, (xn, xn+1, . . .)),



D. Ahman and T. Uustalu 14:7

(0, (xn+1, xn+2, . . .)), . . .)). It may be helpful to think of elements of this type as streams
with a trusted initial segment: in the datastructure (n, (x0, x1, . . .)), the elements
(x0, x1, . . . , xn) are trusted.
Let both (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed container for the nonempty
lists comonad. Let us consider t n = n ÷ 2 and qn i = 2 ∗ i. This directed container
morphism factors through the directed container (S∗, P ∗, ↓∗, o∗,⊕∗) defined by S∗ = N,
P ∗ n = [0..n ÷ 2], n ↓∗ i = n − 2 ∗ i, o∗n = 0, i ⊕∗n j = i + j. This corresponds to the
comonad defined by D∗X = 2×X+ ∼= Σn : N. [0..n÷2]⇒ X, ε∗ (b, (x0, x1, . . . , xm)) = x0,
δ∗ (b, (x0, x1, . . . , xm)) = (b, (b, (x0, x1, . . . , xm)), (b, (x1, . . . , xm)), . . . , (b, (xm))). Here
the thinking is that to recover n from m = n÷ 2, one has to also know the parity b of n.
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the labelled finite binary trees comonad. Let t n = {w ∈ 2∗ | |w| = n}
and qn u = |u|. This directed container morphism factors through the directed container
(S∗, P ∗, ↓∗, o∗,⊕∗) defined by S∗ = N, P ∗ n = {u ∈ 2∗ | |u| ≤ n}, n ↓∗ u = n − |u|,
o∗n = () and u ⊕∗n v = u · v. This is the comonad of labelled perfectly balanced binary
trees.
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the labelled finite
binary trees comonad and nonempty lists comonad. Let t b be the length of the unique
prefix in b of the stream 0ω, i.e., the unique n such that 0n ∈ b. Let qb i = 0i. The direc-
ted container morphism (t, q) factors through the directed container (S∗, P ∗, ↓∗, o∗,⊕∗)
defined by S∗ = “bars”, P ∗ b = [0..t b], b ↓∗ i = {v | 0i · v ∈ b}, o∗b = 0, i ⊕∗b j = i + j.
This is a comonad of finite binary trees labelled along the leftmost path only. The counit
extracts the label of the root node of the given tree. The comultiplication replaces the
label of each node on the leftmost path with the subtree rooted by that node.

That the above-described factorization of container comonad morphisms should be possible
is curious and by no means “granted”. Strengthening the factorization of Proposition 1 to
morphisms between container monads, for instance, does not work: the middle container
functor is generally not a monad and the two natural transformations are not monad
morphisms. Indeed, should C, C ′ be mnd-containers in the sense of [17], C∗ will in general
not be a mnd-container. For it to be one, from the given operations • : (Σs : S. P s⇒ S)→ S

and •′ : (Σs : S′. P ′ s⇒ S′)→ S′ (the shape maps for the multiplications of the corresponding
monads), we would need to produce an operation •∗ : (Σs : S. P ′ (t s)⇒ S)→ S (the shape
map for the multiplication of a hypothetical middle monad). To define such an operation •∗
in terms of •, we would need a way to turn a given function v : P ′ (t s)→ S into a function
v′ : P s→ S, but we cannot, since we cannot invert qs : P ′ (t s)→ P s. To define •∗ in terms
of •′ we would need to be able to convert a given shape s : S′ into a shape s′ : S, but we
cannot invert t : S → S′ in general.

Let us also note that, in the light of the equivalence of DCont and (←−−Cat)op, our
factorization of directed container morphisms is reminiscent of the full image factorization
of functors [15]. In fact, it was the full image factorization that first lead us to the above
factorization of directed container morphisms. Specifically, given a functor F : C → D, its full
image is the category imF with as objects the objects of C, and as morphisms X → Y the
morphisms FX → FY of D. The full image of F also comes with two functors: F : C → imF

that acts as identity on objects and as F on morphisms, and F : imF → D that acts as F on
objects and as identity on morphisms. As such, F is the analogue of h1 and F the analogue
of h2 in the factorization of a directed container morphism h, as defined above. In the next
section, we will see that we are indeed dealing with an analogue of full image factorization
for cofunctors.
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14:8 Decomposing Comonad Morphisms

Given a container C ′ = (S′, P ′), a coalgebra structure with carrier S of JC ′Kc is a map
γ : S → Σs : S′. P ′ s ⇒ S, which splits into t : S → S′ and q : Πs:S . P

′ (t s) → S. These
are exactly the data of a container morphism from the costate container for S to C ′. If
E′ = (S′, P ′, ↓′, o′,⊕′) is a directed container, then γ is a coalgebra of the container comonad
JE′Kdc iff t, q satisfy t (qs p) = t s ↓′ p, s = qs o′ts, qqsp p

′ = qs (p ⊕′ts p′). These laws coincide
with those of a directed container morphism from the costate directed container for S to E′.

Hence the factorization of morphisms between container functors (comonads) immediately
gives us a factorization of container functor (comonad) coalgebra structures: a functor
(comonad) coalgebra structure γ : S → Σs : S′. P ′ s ⇒ S given by (t, q) factors as a
composition of a functor (comonad) coalgebra structure γ∗ : S → Σs : S. P ′ (t s)⇒ S given
by (idS , q) and a natural transformation (comonad morphism) given by (t, λs. idP ′(ts)).

4 Decomposing general comonad morphisms

We now proceed to showing that the observations we made about morphisms between
container comonads on Set hold about general comonads on general categories, under some
assumptions. Specifically, they hold for comonad morphisms to comonads whose underlying
functor preserves Cartesian natural transformations to itself on any category C with finite
limits. For this, we first need to generalize identity-on-shapes and identity-on-positions-in-
every-shape directed container morphisms to general comonad morphisms.

For an endofunctor D, which we think of as a datatype, we proceed from the idea that
the shape of a datastructure in DX is its image under D!X in D1, which we treat as the
object of shapes of D. A natural transformation φ : D → D′ between two datatypes can
thus be considered bijective as a shape map if φ1 : D1→ D′1 is an isomorphism.

We avoid introducing any objects of positions. We just think of a natural transformation
ψ : D∗ → D′ as bijective as a position map for any shape in D∗1 and its image under ψ1 in
D′1 if ψ is Cartesian, i.e., if all its naturality squares

D∗X
D∗f ��

ψX // D′X
D′f��

D∗Y
ψY

// D′Y

are pullbacks. This is motivated by the following considerations. In the presence of a
terminal object 1, it is sufficient (while trivially necessary) for Cartesianness of ψ that just
the naturality squares for maps !X : X → 1, i.e.,

D∗X
D∗!X ��

ψX // D′X
D′!X��

D∗1
ψ1

// D′1

are pullbacks (cf. [14, Sec. 3.2]), because then, for any f : X → Y , both the bottom square
and outer square in the following diagram are pullbacks, and hence so is the top square,
which is the naturality square for f :

D∗X
D∗f

''

D∗!X ))

ψX // D′X
D′f

''

D′!X ))

D∗Y
D∗!Y��

ψY // D′Y
D′!Y��

D∗1
ψ1

// D′1
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In the case of C = Set, the naturality square for !X being a pullback means that D∗X is
isomorphic to the set of pairs (s, xs) : D∗1×D′X such that ψ1 s = D′ !X xs, i.e., a shape s
for D∗ together with a datastructure xs in D′X whose shape is the image of s under the
shape map ψ1. Since the map ψX is, up to this isomorphism, just the 2nd projection, and it
is also natural in X, it must send datastructures in D∗X to datastructures in D′X linearly,
i.e., without discarding or duplicating any data (elements of X) contained in them.

We need to work with endofunctors preserving Cartesian natural transformations to
themselves. We say that an endofunctor D′ preserves Cartesian natural transformations to
D′ 3 if, for any endofunctor D and Cartesian natural transformation τ : D → D′, the natural
transformation with components D′τX : D′DX → D′D′X is also Cartesian. This may sound
like a peculiar concept but was also needed by Kelly in his work on clubs and datatypes [14,
Prop. 3.1]. Container functors have this property since they preserve arbitrary pullbacks.

We first show that natural transformations factorize as expected in the above sense.

I Theorem 3 (cf. [14, Sec. 3.2]). Given a category C with finite limits and two endofunctors
D and D′, a natural transformation τ from D to D′ admits a factoring through a third
endofunctor D∗, as depicted here,

DX
φX

//

τX

""
D∗X

ψX

// D′X

with the properties that
φ1 : D1→ D∗1 is an isomorphism and
ψ : D∗ → D′ is Cartesian.

Proof. For any X, we construct D∗X together with ψX : D∗X → D′X and πX : D∗X → D1
as a pullback. Further, we construct φX : DX → D∗X as a unique map to this pullback.

DX
φX

##

D!X

$$

τX

""
C

B

D∗X
ψX //

πX

��
A

D′X

D′!X

��
D1

τ1
// D′1

The latter construction presupposes commutation of the outer square above, which is
immediate by the naturality of τ . Note that B gives us the desired factorization of τ .

For any f : X → Y , we construct the map D∗f : D∗X → D∗Y as a unique map to the
pullback D∗Y :

D∗X
D∗f

##

πX

$$

ψX //

D

E

D′X
D′f

��
D∗Y

ψY //

πY

��
A

D′Y

D′!Y

��
D1

τ1
// D′1

3 More precisely, composition with D′ from the left preserves them. The terminology is from Garner [9].
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14:10 Decomposing Comonad Morphisms

This presupposes the commutativity of the outer square, which follows straightforwardly
from A and uniqueness of maps to 1. We omit the identity and composition preservation
proofs – these follow straightforwardly from idD∗X and D∗g ◦D∗f satisfying the same unique
map properties as D∗ idX and D∗(g ◦ f).

The naturality square of φ for a map f : X → Y follows from both paths in it satisfying
the properties of the unique map to the pullback D∗Y in the diagram

DX

$$

Df //

φX

��

DY

φY

��

τY

��
B

D∗X
D∗f //

πX --

E

D∗Y
ψY //

πY

��
A

D′Y

D′!Y

��
D1

τ1
// D′1

The commutativity of the outer square above follows from C , the naturality of τ , and
uniqueness of maps to 1.

The naturality of ψ and π are just D and E .
To show that φ1 : D1 → D∗1 is an isomorphism, we prove π1 : D∗1 → D1 to be its

inverse. That the equation π1 ◦ φ1 = idD1 holds is proved as follows:

D1

D!1

""

φ1

""
C D∗1

π1

��
D1

The equation φ1 ◦ π1 = idD∗1 holds because both sides satisfy the properties of the unique
map to the pullback D∗1 in the diagram

D∗1
π1

��

π1 //

##

D1
τ1

��
D1

D!1 ((

D∗1

π1

��

ψ1 //

A

D′1

D′!1
��

D1
τ1
// D′1

where the outer square commutes because D!1 = idD1 and D′!1 = idD′1. Indeed, φ1 ◦ π1
makes the two triangles above commute as follows:

D∗1
π1

""
D1

φ1

""

τ1

  

D!1

$$

B

C D∗1
π1

��

ψ1

// D′1

D1
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And so does idD∗1:

D∗1
π1

��

π1 //

A

D1 τ1

  
D1

D!1 ((

D∗1
π1

��

ψ1

// D′1
D′!1 ++

D′1

D1
Finally, we must show that ψ is Cartesian, i.e., that the naturality squares

D∗X
D∗!X ��

ψX // D′X
D′!X��

D∗1
ψ1

// D′1

for !X : X → 1 are pullbacks. This follows from D∗X being a pullback if we replace the node
D1 by D∗1, which we know to be isomorphic:

D∗X

πX

��

ψX //

D∗!X

��

A

E

D′X

D′!X

��
D1 τ1 //

φ1vv

∼=

D′1

D∗1

π1

55

ψ1

==

B

J

Next we establish that not only do natural transformations factorize, but comonad
morphisms do as well.
I Theorem 4. If, in the situation of Theorem 3, D′ preserves Cartesian natural transform-
ations to D′, both D and D′ carry a comonad structure, and τ is a comonad morphism,
then the constructed functor D∗ also carries a comonad structure, and φ and ψ are comonad
morphisms.
Proof. We define the counit ε∗ straightforwardly by

ε∗X = D∗X
ψX // D′X

ε′X // X

We construct the comultiplication δ∗ as a unique map to D∗D∗X as a pullback obtained
by pasting three pullbacks (of those, the right upper one is a pullback because D′ preserves
Cartesian natural transformations to D′):

D∗X

πX

��

ψX //

δ∗X

**

F

G

D′X

δ′X

**
D1

δ1 ))

D∗D∗X

D∗πX

��

ψD∗X //

ψ Cart.

D′D∗X

D′πX E

$$

D′D∗!X��

D′ψX //
ψ Cart.

D′D′X

D′D′!X��
DD1

φD1 ))

D′D∗1
D′π1��

D′ψ1 //

π1iso

D′D′1

D∗D1
ψD1

// D′D1
D′τ1

// D′D′1
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This presupposes that the outer square above commutes, which is proved as follows:

D∗X

πX

��

ψX //

A

D′X

D′!X

��

δ′X

))
δ′ nat.D1

δ1 ''

τ1 //

τ pres. comul.
D′1

δ′1

((

D′D′X

D′D′!X

��

DD1

φD1
((

τD1

&&B

D∗D1
ψD1

// D′D1
D′τ1

// D′D′1

Next, we prove comonad laws for D∗. The counital laws ε∗D∗X ◦ δ∗X = idD∗X = D∗ε∗X ◦ δ∗X
hold because all three sides satisfy the properties of a unique map to the pullback D∗X:

D∗X
ψX

&&

πX

  

$$
D∗X

πX

��

ψX //

A

D′X

D′!X

��
D1

τ1
// D′1

For idD∗X , the two triangles above commute trivially. That they also commute for
ε∗D∗X ◦ δ∗X is proved as follows:

D∗X

πX

��

ψX //

δ∗X

$$
FG

D′X

δ′X

%%

D′ l. coun.D1
δ1

##
DD1

φD1

$$

τD1

--

εD1

00

D l. coun.

D∗D∗X

D∗πX

��

ψD∗X

%%
ψ nat.D∗D1
ψD1

%%
B

D′D∗X

D′πX

��

D′ψX //

ε′D∗X

%%
ε′ nat.

ε′ nat.

D′D′X

ε′
D′X

$$
D′D1

ε′D1 %%

τ pres. coun.

D∗X

πX

��

ψX

// D′X

D1
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And that they also commute for D∗ε∗X ◦ δ∗X is proved as follows:

D∗X

πX

��

ψX //

δ∗X

$$

F

G

D′X

δ′X

��

D1
δ1

##

D r. coun.

D′ r. coun.DD1
φD1

$$
Dε1

��
φ nat.

D∗D∗X

D∗πX

��

ψD∗X //

D∗ψX

%%
A ψ nat.

D′D∗X

D′ψX

%%
D1

φ1

%%

D∗D1
D∗τ1

%%
D∗ε1

##

τ p. cu.

D∗D′X

D∗D′!X

��

D∗ε′X

%%
ε′ nat.

D′D′X

D′ε′X $$

φ1 iso

D∗D′1

D∗ε′1
��

D∗X
D∗!X

yy
πX

��

ψX

//

π nat.
��

D′X

D∗1 π1 // D1

The coassociativity law δ∗D∗X ◦ δ∗X = D∗δ∗X ◦ δ∗X holds because both sides satisfy the
properties of a unique map to D∗D∗D∗X as a pullback obtained by pasting together four
pullbacks (of those, the middle and the right upper one are pullbacks since D′ preserves
Cartesian natural transformations to D′):

D∗X

πX

��

ψX //

&&

D′X
δ′X // D′D′X

D′δ′X

''

D1

δ1

��
DD1

δD1

��

D∗D∗D∗X

D∗D∗πX

��

ψD∗D∗X//

ψ Cart.

D′D∗D∗X

D′D∗πX

��

D′ψD∗X//

ψ Cart.

D′D′D∗X

D′D′πX E

%%

D′D′D∗!X
��

D′D′ψX//

ψ Cart.
D′D′D′X

D′D′D′!X
��

DDD1

φDD1 %%

D′D′D∗1

D′D′π1
��

D′D′ψ1 //

π1 iso

D′D′D′1

D∗DD1
D∗φD1

// D∗D∗D1
ψD∗D1

// D′D∗D1
D′ψD1

// D′D′D1
D′D′τ1

// D′D′D′1
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That δ∗D∗X ◦ δ∗X satisfies the two triangles in the above diagram is verified as follows:

D∗X

πX

��

ψX //
δ∗X

%%
F

G

D′X
δ′X

##

δ′X

''
D′ coass.

D1

δ1

��

D∗D∗X

D∗πX

��

ψD∗X //
δ∗

D∗X

&&
F

δ∗ nat.

D′D∗X
D′ψX //
δ′

D∗X

''
δ′ nat.

D′D′X
δ′

D′X

''

D′D′X

D′δ′X
��

DD1

δD1

��

φD1

%%

D∗D∗D∗X

D∗D∗πX

��

ψD∗D∗X

// D′D∗D∗X
D′ψD∗X

// D′D′D∗X
D′D′ψX

// D′D′D′X

DDD1

φDD1 ,,

φ pres. comul.

D∗D1
δ∗D1

''
D∗DD1

D∗φD1

// D∗D∗D1

(This uses that φ preserves comultiplication, which is proved below.)
That also D∗δ∗X ◦ δ∗X satisfies the same diagrams is checked as follows:

D∗X

πX

��

ψX //
δ∗X

$$
F

G

D′X
δ′X

&&

D coass.

D1

δ1

��

δ1

��

D∗D∗X

D∗πX

��

ψD∗X //
D∗δ∗X

%%
ψ nat.

G

D′D∗X
D′ψX //

D′δ∗X

&&
F

D′D′X

D′δ′X
��

DD1

δD1 ((

DD1

Dδ1

��

φD1

$$
φ nat.

D∗D∗D∗X

D∗D∗πX

��

ψD∗D∗X

// D′D∗D∗X
D′ψD∗X

// D′D′D∗X
D′D′ψX

// D′D′D′X

DDD1

φDD1 $$

D∗D1

D∗δ1
��

D∗DD1
D∗φD1

// D∗D∗D1

That ψ is a comonad morphism is straightforward. Indeed, the counit preservation law
holds by the definition of ε∗ while equation F is the comultiplication preservation law.

It remains to prove that φ is also a comonad morphism.
The counit preservation law ε∗ ◦ φ = ε is proved as follows:

DX

εX

''

φX //

τX

@@D∗X
ψX // D′X

ε′X

ww

B

τ pr. cu.

X

The comultiplication preservation law δ∗X ◦ φX = D∗φX ◦ φDX ◦ δX holds because both
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the left-hand and right-hand sides satisfy the properties of a unique map to D∗D∗X:

DX

D!X

��

τX //

++

D′X

δ′X

++
D1

δ1 ))

D∗D∗X

D∗πX

��

ψD∗X //

ψ Cart.
D′D∗X

D′πX E

%%

D′D∗!X��

D′ψX //
ψ Cart.

D′D′X

D′D′!X��
DD1

φD1 **

D′D∗1
D′π1��

D′ψ1 //

π1iso
D′D′1

D∗D1
ψD1

// D′D1
D′τ1

// D′D′1

That δ∗X ◦ φX satisfies the two triangles in the above diagram is verified as follows:

DX

D!X
**

τX

))
φX

'' B
C D∗X

δ∗X
((πX��

ψX //

F

G

D′X
δ′X
((

D1
δ1 ��

D∗D∗X

D∗πX

��

ψD∗X

// D′D∗X
D′ψX

// D′D′X

DD1

φD1 ((
D∗D1

That D∗φX ◦ φDX ◦ δX also satisfies the same two triangles is checked as follows:

DX

D!X

��

τX //
δX

''

δ nat.

D′X
δ′X

��

τ pres. comul.
DDX

DD!X

��

φDX

((

τDX

&&B

φ nat.

D1

δ1 ''

D∗DX

D∗D!X

##

D∗φX

))

ψDX //

ψ nat.
D′DX

D′φX

))

D′τX

''B

DD1

φD1
))

D∗D∗X

D∗πX

��

ψD∗X

// D′D∗X
D′ψX

// D′D′XC

D∗D1

J

Let us briefly compare the situation of Theorem 4 with the full image factorization of
functors discussed in Section 3. Given a functor F : C → D, the category imF , together with
the associated functors F and F , arises as in the following pullback diagram in Cat:

C
F

))

!C ((

F

((imF
F //

��

D
!D��

codisc(C0)
codisc(F0)

// codisc(D0)

where codisc(C0) is the codiscrete category on the set of objects of C (the cofree category).
The arrows !C and !D are the unique identity-on-objects functors.
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We are dealing with the following pullback diagram in Comonad(C):

D
φ

**

〈D!,ε〉 **

τ

((
D∗

ψ //

��
D′

〈D′!,ε′〉��
D1×−

τ1×−
// D′1×−

This is obtained from the first diagram in the proof of Theorem 3, read as a diagram in
[C, C] rather than C, by replacing the constant functors D1 and D′1 by the corresponding
cofree comonads (the coreader comonads for D1 and D′1). The special case for container
comonads is, in the view of the equivalence of DCont and (←−−Cat)op, an analogue of full image
factorization for cofunctors: a pushout diagram in ←−−Cat involving discrete categories.

We do not prove it here, but the factorization asserted in Theorem 3 is unique up to a
unique natural isomorphism (cf. [14, Sec. 3.2]). The factorization of Theorem 4 is unique
up to a unique isomorphism of comonads. Thus in fact we have factorization systems on
[C, C] and on the full subcategory of Comonad(C) given by underlying functors preserving
Cartesian natural transformations to themselves. The “epis” of these factorization systems
are natural transformations resp. comonad morphisms φ such that φ1 is an isomorphism; the
“monos” are Cartesian natural transformations resp. comonad morphisms.

We conclude by specializing the above results to the factorization of functor coalgebras
and comonad coalgebras. This uses the costate functor and costate comonad.

I Proposition 5. In a Cartesian closed category C, given an object S, the functor DS =
S × (S ⇒ −) (the costate functor for S) carries a comonad structure (the costate comonad).

Proof. Immediate from the fact that DS is defined as the composition of the adjoint
functors S × − and S ⇒ −. Accordingly, the counit and comultiplication εS and δS are
constructed from the counit and unit of the adjunction: εSX = evS,X : S × (S ⇒ X) → X,
δSX = S × coevS,S⇒X : S × (S ⇒ X)→ S × (S ⇒ (S × (S ⇒ X))). J

Coalgebras of functors (resp. comonads) are the same as natural transformations (resp.
comonad morphisms) from the costate functor (resp. comonad). This result is analogous to
the well-known result about algebras of functors (resp. monads) and natural transformations
(resp. monad morphisms) to the continuation functor (resp. monad) [13, 10].

I Proposition 6.
1. In a Cartesian closed category C, given a strong functor D′, there is a bijection between

maps from S to D′S and natural transformations from DS to D′.
2. If D′ is a comonad, the same bijection restricts to a bijection between comonad coalgebras

of D′ with carrier S and comonad morphisms from DS to D′.

Proof (sketch). We use that tensorially strong functors are internally functorial. We con-
struct the bijection as follows.

Given a map γ : S → D′S, we define a natural transformation τ : DS → D′ by

τX = S × (S ⇒ X)
γ×ifuncD′

S,X // D′S × (D′S ⇒ D′X)
evD′S,D′X // D′X

If D′ is a comonad and γ satisfies the laws of a comonad coalgebra structure, then τ

satisfies the laws of a comonad morphism.
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Given a natural transformation τ : DS → D′, we define a map γ : S → D′S by

γ = S
〈idS ,!S〉 // S × 1 S×iidS // S × (S ⇒ S) τS // D′S

If D′ is a comonad and τ satisfies the laws of a comonad morphism, then γ satisfies the
laws of a comonad coalgebra structure.

The two transformations are mutual inverses. J

Using what we have learned about the costate functor and costate comonad, we obtain a
decomposition of functor coalgebras and comonad coalgebras.

I Theorem 7.
1. Given a Cartesian closed finitely complete category C, a strong functor D′ preserving

Cartesian natural transformations to D′, and a map γ : S → D′S, then γ admits a
factoring through the object D∗S for another functor D∗, as depicted below

S
γ∗
//

γ

&&
D∗S

ψS

// D′S

with the properties that
D∗! ◦ γ∗ : S → D∗1 is an isomorphism and
ψ : D∗ → D′ is Cartesian.

2. If D′ is a comonad and γ is a comonad coalgebra structure, then D∗ is a comonad, γ∗ is
a comonad coalgebra structure and ψ is a comonad morphism.

Proof (sketch). This is a corollary of Theorems 3, 4 and the last two propositions.
The given map γ : S → D′S induces a natural transformation τ : DS → D′. From

this, we get a functor D∗ and two natural transformations φ : DS → D∗ and ψ : D∗ → D′,
whereby φ1 : DS1→ D∗1 is an isomorphism and ψ is Cartesian. We construct γ∗ : S → D∗S

as the composition φS ◦ (S × iidS) ◦ 〈idS , !S〉. The map D∗! ◦ γ∗ is an isomorphism thanks to
commutation of the diagram

S ∼=

〈idS ,!S〉//

γ∗

**
S × 1 S×iidS //

∼= **

S × (S ⇒ S)
DS !��

φS // D∗S

D∗!��
S × (S ⇒ 1) φ1

∼=
// D∗1

J

5 Conclusion

We have demonstrated that two observations about comonads that are immediate for
container comonads on Set also hold more generally for comonads whose underlying functor
preserves Cartesian natural transformations to itself on any finitely complete category. These
observations concern shapes and positions (in terms of comonad morphisms being bijective
on shapes or bijective on positions between corresponding pairs of shapes), and demonstrate
that comonads generally, not just container comonads, are usefully analyzed in terms of
shapes and positions and exhibit noteworthy properties expressible in these terms.
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In other work [6], we have shown that container comonad coalgebras and container
comonad morphisms can be seen as generalized asymmetric (i.e., server-client) lenses, which
are a device for keeping a client’s view of a database in synch with the master copy at a
server. Shapes in the two directed containers are states of the two databases, positions are
updates. The factorization results presented in this paper say that such lenses factorize into
two lenses, whereof the first is identity on states and the second is identity on updates for
every state.
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