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Abstract
We argue that cartesian bicategories, often used as a general categorical algebra of relations, are
also a natural setting for the study of the axiom of choice (AC). In this setting, AC manifests itself
as an inequation asserting that every total relation contains a map. The generality of cartesian
bicategories allows us to separate this formulation from other set-theoretically equivalent properties,
for instance that epimorphisms split. Moreover, via a classification result, we show that cartesian
bicategories satisfying choice tend to be those that arise from bicategories of spans.
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Introduction

Cartesian bicategories were introduced by Carboni and Walters [8] as a categorical algebra of
relations and an alternative to Freyd and Scedrov’s allegories [14]1. In recent years they have
been receiving renewed attention by researchers interested in string-diagrammatic languages.
Indeed, thanks to the compact closed structure induced by Frobenius bimonoids, cartesian
bicategories have proved to be an appropriate mathematical playground for compositional
studies of different kinds of feedback systems. For instance, signal flow graphs [21], which
are circuit-like specifications of linear dynamical systems, form a cartesian bicategory [3].
Moreover, the fact that cartesianity only holds laxly makes them able to serve as “resource-
sensitive” syntax, as outlined in [4], where free cartesian bicategories were proposed as a
resource-sensitive generalisation of Lawvere theories.

Free cartesian bicategories were also used in [5], where we showed that their algebraic
presentation can be seen as an equational characterisation of well-known logical preorders,
namely those arising from query inclusion of conjunctive queries (aka regular logic). The
deep relationship between cartesian bicategories and regular logic – already alluded to in [8] –
was also recently touched upon by Fong and Spivak [11].

In cartesian bicategories, it is important to distinguish between arbitrary morphisms –
which can be thought of as relations – and a certain class of morphisms called maps, which can
be thought of as functions. A fundamental result [8, Theorem 3.5] states that, for a cartesian
bicategory B satisfying the property of functional completeness, (i) the subcategory of maps
(denoted by MapB) is regular and (ii) the category of relations over the category of maps
(Rel(MapB)) is biequivalent to B. Unfortunately, this beautiful result is not relevant for

1 RFC Walters referred to the modular law of allegories as a formica mentale, a “complication which pre-
vents thought” (http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.
html).
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15:2 The Axiom of Choice in Cartesian Bicategories

free cartesian bicategories: for instance the categories obtained by the algebraic presentations
in [4] and [5] do not arise from the Rel(·) construction.

For this reason in [5], we needed to rely on an alternative construction Span∼ that we
believe is of independent interest. First, it requires less structure of the underlying category:
while Rel(·) requires a regular category, Span∼ requires merely the presence of weak pullbacks.
Second, while in the category of sets and functions both constructions yield the usual category
of relations, as we shall see, there are important cases in which they differ.

Our main contribution is an analogue of the aforementioned result for Span∼, namely
that Span∼MapB is biequivalent to B. In this setting, Carboni and Walters’ functional
completeness can be relaxed to a weaker condition that we call having enough maps, but an
additional assumption is necessary: B has to satisfy the axiom of choice. Indeed, our main
result (Theorem 30) asserts that a cartesian bicategory B with enough maps satisfies the
axiom of choice if and only if B is biequivalent to Span∼MapB.

This characterisation motivates a closer look at the axiom of choice, one of the best
known – and most controversial – axioms of set theory [16]. It has many ZF-equivalent
formulations, some requiring only very basic concepts. One is:

Every total relation contains a map.

Our starting observation is that this condition is natural to state in the language of cartesian
bicategories. Another way of viewing our main result is, therefore, a characterisation of
cartesian bicategories with enough maps that satisfy the axiom of choice as precisely those
that arise via the Span∼ construction.

Given the innovations of topos theory [19] in foundations of mathematics, the question
of whether or not to accept the axiom of choice is nowadays less absolute (and therefore
less heated). Indeed, if a topos is a mathematical “universe”, then it holds in some and
not in others, thus accepting/rejecting choice turns from a philosophical question into a
practical matter. Interpreting choice inside a category does not need the full power of the
internal language of a topos – it suffices if the category in question captures basic properties
of relations. Cartesian bicategories can therefore be seen as an amusing setting for the study
of the axiom of choice. Indeed, the advantage of a weaker language is a finer grained analysis:
e.g. we shall see that properties well-known to be equivalent to choice in ZF (e.g. surjective
functions split) are different as properties of cartesian bicategories.

Structure of the paper. We start by giving an overview of a few important concepts of
cartesian bicategories in Section 1. In Section 2 we define the axiom of choice in cartesian
bicategories, the property of “having enough maps” and discuss ramifications of this, including
a useful characterisation. In Section 3 we introduce the Span∼ construction and prove several
useful results that are necessary for showing the classification theorem in Section 4. In
Section 5, we compare the constructions Rel(C) and Span∼C and show that they coincide if
regular epis split in C.

We would like to thank Aleks Kissinger and the team behind TikZiT, which was used to
create the diagrams in this paper.

1 Cartesian bicategories

We start by recalling the notion of cartesian bicategory [8]. We will often use string
diagrams [23] as a graphical notation for morphisms: given a symmetric monoidal category B
with monoidal product ⊗ and monoidal unit I, a wire X denotes idX , the identity for an
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arbitrary object X of B, while a box X R Y denotes an arbitrary morphism R : X → Y of
B; for R : X → Y and S : Y → Z, the composition R;S : X → Z is depicted as X R Y ZS ;

for R : X → Y and S : Z →W , R⊗S : X⊗Z → Y ⊗W is depicted as
X R Y

Z S W
; symmetries

σ : X ⊗Y → Y ⊗X are drawn as
X

Y

Y

X
; the identity for I as an empty diagram . When

clear from the context, we will avoid labelling wires.

I Definition 1. A cartesian bicategory is a symmetric monoidal category B enriched over
the category of posets. Every object X ∈ B is equipped with morphisms

X : X → X ⊗X and X : X → I

such that
X and X form a cocommutative comonoid, that is they satisfy

X = X
X = X X X= X=

X and X have right-adjoints X and X respectively, that is

X

≤X X ≤

X

X

X≤X X X ≤

The Frobenius law holds, that is

X

X

X

X

X ==

Each morphism R : X → Y is a lax comonoid homomorphism, that is

R

Y

X

R

R

≤

Y

Y

X ≤R XYX

The choice of comonoid on every object is coherent with the monoidal structure2 in the
sense that

X

=
Y

X⊗Y

X

Y

=

X

X

Y

Y

X⊗Y

A morphism of cartesian bicategories is a monoidal functor preserving the ordering and the
chosen monoids and comonoids.

2 In the original definition of [8] this property is replaced by requiring the uniqueness of the comonoid/-
monoid. However, as suggested in [22], coherence seems to be the property of primary interest.
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15:4 The Axiom of Choice in Cartesian Bicategories

The archetypal example of a cartesian bicategory is the category of sets and relations Rel,
with cartesian product of sets, hereafter denoted by ×, as monoidal product and 1 = {•} as
unit I. To be precise, Rel has sets as objects and relations R ⊆ X × Y as arrows X → Y .
Composition and monoidal product are defined as expected:

R;S = {(x, z) | ∃y s.t. (x, y) ∈ R and (y, z) ∈ S},

R⊗ S = {
(
(x1, x2) , (y1, y2)

)
| (x1, y1) ∈ R and (x2, y2) ∈ S}.

For each set X, the comonoid structure is given by the diagonal function X → X ×X and
the unique function X → 1, considered as relations. That is X = {

(
x, (x, x)

)
|x ∈ X}

and X = {(x, •) |x ∈ X}. Their right adjoints are given by their opposite relations:
X = {

(
(x, x), x

)
|x ∈ X} and X = {(•, x) |x ∈ X}. The reader can easily check

that the four inequalities are satisfied and that, moreover, the Frobenius law holds. The
right adjoints also enjoy an additional property that holds in any cartesian bicategory.

I Lemma 2. X and X form a commutative monoid, that is

X = X
X = X X X= X=

To appreciate the property that every morphism is a lax-comonoid homomorphism, it is
useful to spell out its meaning in Rel: in the first inequality, the left and the right-hand side
are, respectively, the relations

{
(
x, (y, y)

)
| (x, y) ∈ R} and {

(
x, (y, z)

)
| (x, y) ∈ R and (x, z) ∈ R}, (1)

while in the second inequality, they are the relations

{(x, •) | ∃y ∈ Y s.t. (x, y) ∈ R} and {(x, •) |x ∈ X}. (2)

It is immediate to see that the two left-to-right inclusions hold for any relation R ⊆ X × Y ,
while the right-to-left inclusions hold exactly when R is a function: a relation which is single
valued and total3. This observation justifies the following definition.

I Definition 3. Let R be a morphism in a cartesian bicategory. We call R

single valued if R≤
R

R

; total if R≤ ;

injective if R≤
R

R

; surjective if R≤ .

By translating the last two inequalities in Rel, similarly to what we have shown in (1)
and (2), the reader can immediately check that these correspond to the usual properties of
injectivity and surjectivity for relations. Moreover, since the converses of these inequalities
hold in cartesian bicategories, the four inequalities are actually equalities.

3 Requiring every morphism to be a comonoid homomorphism would make ⊗ the categorical product [13]
and thus the whole category would be cartesian. Ensuring just lax-comonoid homomorphism makes ⊗
a certain kind of bi-limit, called in [8], bi-product. This fact explains the name cartesian bicategory.
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We can characterise all the notions of Definition 3 equivalently in terms of opposite
morphisms Rop which are defined for any morphism R as follows:

R R:=

I Proposition 4. Let R be a morphism in a cartesian bicategory.

RR ≤ iff R is single valued. ≤ R R iff R is total.
RR ≤ iff R is injective. ≤ R R iff R is surjective.

In particular, R is surjective iff Rop is total and R is injective iff Rop is single valued.

Proof. We show the proofs for single valued and total. The proofs for injectivity and
surjectivity are analogous. The last statement follows from the others and the fact that
(Rop)op = R

Let R be single valued. Then

R R R

R

= ≤
R

≤ =

Conversely, if RR ≤ , then by the Frobenius law one gets

R

R

=
R

R

and from there

R

R ≤

R

R R ≤

R

R=

Let R be total. Then

R R R

R

= ≥
R

≥ =

Conversely, if ≤ R R , then

R≤ ≤R R

J

I Definition 5. A map in a cartesian bicategory is a morphism f that is a comonoid
homomorphism, i.e. is single valued and total.

We will write f to denote a map f and f for its opposite. Note that we use
lower-case letters for maps and upper-case for arbitrary morphisms. Following the analogy
with Rel, we will often call arbitrary morphisms of a cartesian bicategory relations.

The original treatment of cartesian bicategories in [8] introduces maps as those morphisms
that admit a right-adjoint. We show below that this amounts to the same notion.
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15:6 The Axiom of Choice in Cartesian Bicategories

I Proposition 6. A morphism f is a map if and only if it has a right adjoint – a
morphism R such that fR ≤ and ≤ f R . In that case, necessarily

R = f .

Proof. If f is a map, then f is a right-adjoint by Proposition 4.
On the other hand, if f has a right-adjoint R, then it is a map since

f

f

f≤≤
f

f

≤f R

R

R

f

f

f

and

f≤ ≤f R

Therefore, f is indeed a map and R = f by uniqueness of adjoints. J

The identity is a map, and maps are easily shown to be closed under composition, so they
constitute a category.

I Definition 7. Given a cartesian bicategory B, we define its category of maps, Map(B) to
have the same objects of B and as morphism the maps of B.

By the following proposition, the ordering of B becomes trivial when restricted to maps.

I Proposition 8. Let f, g be maps such that f ≤ g. Then f = g.

Proof. Since f ≤ g , also f ≤ g . Therefore

g ≤ gf f ≤ gf g f≤ J

We have seen that Rel is source of intuition for cartesian bicategories. There are many
other similar examples; for instance LinRel, the category of linear relations of vector spaces
where the monoidal product is the direct sum of vector spaces. Nevertheless, there are
examples of cartesian bicategories that are significantly different, e.g. in which – concretely
speaking – the monoidal product does not act as cartesian product on the underlying sets.

I Example 9. Recall that a prop is a strict symmetric monoidal category where the objects
are the natural numbers and monoidal product on objects is addition. The prop ERel of
equivalence relations [25, 12, 9, 10, 6] (also called the prop of corelations) has objects natural
numbers, where n ∈ N is thought of as the finite set {0, . . . , n− 1}. A morphism n→ m is
an equivalence relation on n+m. Composition of an equivalence relation on n+m with one
on m+ o is given by taking the smallest equivalence relation they generate on n+m+ o and
restricting it to n+ o. Monoidal product is given by disjoint union.

Another important example is the prop PERel of partial equivalence relations. These
are symmetric and transitive, but not necessarily reflexive, and have been used in the study
of the semantics of higher order λ-calculi [17, 24] and quantum computations [18, 15]. In
PERel a morphism n→ m is a partial equivalence relation on n+m; composition similar
to that in ERel, taking the smallest induced partial equivalence relation. Again ⊗ is given
by disjoint union. See [25, Definitions 2.52 and 2.63] for additional details.

Both ERel and PERel carry the structure of cartesian bicategories after taking into
consideration their posetal enrichment. Here the ordering ≤ is the opposite of set inclusion:
R ≤ S iff R ⊇ S. Note that for PERel, we need some extra care. We consider partial
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equivalence relations R,S : n→ m as equivalence relations R̄, S̄ over (n+m)∪{⊥} and then
take R ≤ S iff R̄ ⊇ S̄. In particular, notice that the completely undefined partial equivalence
relation is represented by the chaotic relation on (n+m) ∪ {⊥}, and is thus – according to
this ordering – the least element in its homset.

To define the comonoid structure it is enough to consider 1, since for arbitrary n it
is forced by coherence (Definition 1). For both ERel and PERel : 1 → 2 is the
equivalence relation equating all the elements of the set 1 + 2 and : 1 → 0 equates
the single element of the set 1. The monoid structure : 2→ 1 and : 0→ 1 is
defined in a similar way.

In order to illustrate what maps are in these categories, it is convenient to write [i]R for
the set {j | (i, j) ∈ R}. Both in ERel and PERel a morphism R : n→ m is

total iff for all i, j ∈ n, (i, j) ∈ R implies i = j, and (3)

single valued iff for all i ∈ m, either [i]R = ∅ or there is j ∈ n such that (i, j) ∈ R. (4)

Thus is single valued but not total; is total but not single valued. In PERel,
the undefined relation 0→ 1, hereafter denoted ⊥ , is both total and single valued.

2 Choice in Cartesian bicategories

One of the many equivalent formulations of the axiom of choice in set theory is

Every total relation contains a map.

In a total relation every element in the domain is related to at least one element in the
codomain. A map is obtained by choosing, for each element in the domain, exactly one
related element in the codomain. This can be stated in the language of cartesian bicategories.

I Definition 10 (Choice). Let B be a cartesian bicategory. We say that B satisfies the axiom
of choice (AC), or that B has choice, iff the following holds for any morphism R : X → Y :

R≤ (R is total) implies ∃ map f : X → Y such that f ≤ R (AC)

Observe that the converse implication holds in any cartesian bicategory.

I Lemma 11. If f ≤ R then R≤ .

Proof. Obvious, since if S is total and S ≤ R, then R is total: R S ≥≥ .
J

I Example 12.
The usual axiom of choice implies that Rel satisfies (AC).
ERel is an example of a cartesian bicategory that does not satisfy (AC). Recall from
Example 9 that the ordering is the reverse of inclusion. Therefore, for (AC) to hold
would mean that every equivalence relation that satisfies (3) could be included in one
that satisfies both (3) and (4). Now consider : 0→ 1. As seen in Example 9, it is
total, but not single valued. Since equivalence relations have to be reflexive, this is also
the only morphism of type 0→ 1: clearly AC fails here.
Interestingly, PERel does satisfy (AC). For example, : 0 → 1 is included, as an
equivalence relation over (0 + 1) ∪ {⊥}, in ⊥ .

CALCO 2019



15:8 The Axiom of Choice in Cartesian Bicategories

Another common formulation of the axiom of choice in set theory is the assertion that
every surjective function π : X → Y splits, namely, there exists a function ρ : Y → X such
that ρ ; π = idY . A standard categorification of the notion of surjectivity is the notion of
epi(morphism): π is epi iff π ; f = π ; g entails f = g. In order to clarify the picture and
justify our Definition 10 we will now investigate epimorphisms in cartesian bicategories.

I Lemma 13. Let π be a map in a cartesian bicategory B. Then π is an epi
in B if and only if it is surjective.

Proof. Let π be an epi in B. Since π is a map, by Proposition 4, ≤ π π

and therefore

= π ππ =

Since π is epi, π = so π is total, hence π is surjective
by Proposition 4.

Assume π is surjective. Then ππ = by Proposition 4. If now R,S

are morphisms such that Rπ = Sπ , then

π Rπ = π Sπ=R = S J

I Lemma 14. Surjective maps split in any cartesian bicategory with choice.

Proof. Let π : X → Y be a surjective map. Therefore, πop : Y → X is a total relation, so by
(AC) there is a map g : Y → X such that

g ≤ π

Now we have

πg ≤ ππ ≤

and since both the left hand side and the right hand side of that inequality are maps, we
have by Proposition 8 that g ; π = idY . J

2.1 Cartesian bicategories with enough maps
The converse of Lemma 14 does not hold in general. The reason is that a general cartesian
bicategory might not have enough maps to “cover” all its morphisms in a suitable sense. In
order to prove the converse, we need to assume a saturation property.

I Definition 15. We say a cartesian bicategory has enough maps if for every morphism
R : X → I there is a map f : Z → X such that

=R f

The intuition for this notion is the following: a morphism R : X → I can be considered
as a predicate on X. Then having enough maps ensures the existence of a function f that
picks out the subset of X where R holds.
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I Example 16. The description above shows that Rel has enough maps. Also ERel and
PERel have both enough maps. We briefly describe the construction for ERel, the one for
PERel is similar. For any morphism R : n → 0 in ERel, take e to be the number of the
equivalence classes of R. Choose a total ordering for these equivalence classes, so that for
each i ∈ e = {0, . . . e − 1}, we denote by Ri the i-th equivalence class of R. Then, define
f : e→ n as the equivalence on e+ n

R ∪ {(i, j) | i ∈ e and j ∈ Ri} ∪ {(i, j) | j ∈ e and i ∈ Rj}.

It is immediate to see that f satisfies (3) and (4) and that =R f .

I Remark 17. A similar property, functional completeness, was already considered in [8].
The important difference is that we don’t require f to be mono. Ours is a more general
notion: every functionally complete cartesian bicategory also has enough maps.

I Lemma 18. If a cartesian bicategory has enough maps, then for every morphism R : X → Y ,
there are maps f : Z → X and g : Z → Y such that

R = f g

We call this a comap-map factorisation of R.

Proof. Since there are enough maps, there is a map h : Z → X ⊗ Y such that

=
R

h

Let = hf and = hg , then

=h
g

f

h
∗=

h

h

=

where the step marked ∗ uses coherence of the comonoid and the fact that h is a map.
Therefore we have

=R =

R

g

f

f g=

J

I Proposition 19. A cartesian bicategory with enough maps satisfies (AC) iff surjective
maps split.

Proof. By Proposition 14, it suffices to prove that (AC) holds if surjective maps split. So let
R : X → Y be a total relation and take a comap-map factorisation R = f g with
maps f, g. Since R is total,

= f g = f

so f is surjective. Since surjective maps split, there exists a map h that is a pre-inverse of f ,
so h ; f = id. Then

h ≤ h f f = f

and therefore R=f gh g ≤ , so R contains a map. J
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15:10 The Axiom of Choice in Cartesian Bicategories

3 The Span∼ construction

In [5], we used a construction that, for any category with finite limits, gives rise to a
cartesian bicategory. Since it plays a key role in our main result (Theorem 30), we recall the
construction and extend it to arbitrary categories with finite products and weak pullbacks.

We start by recalling the standard notion of bicategory of spans.

I Definition 20 (Span). Let C be a finitely complete category. A span from X to Y is a pair
of arrows X ← A→ Y in C. A morphism α : (X ← A→ Y )⇒ (X ← B → Y ) is an arrow
α : A→ B in C s.t. the diagram below commutes. Spans X ← A→ Y and X ← B → Y are
isomorphic if α is an isomorphism. For X ∈ C, the identity span is X idX←−− X idX−−→ X. The
composition of X ← A

f−→ Y and Y g←− B → Z is X ← A×f,g B → Z, obtained by taking
the pullback of f and g. This data defines the bicategory [1] Span(C): the objects are those
of C, the arrows are spans and 2-cells are homomorphisms. Finally, Span(C) has monoidal
product given by the product in C, with unit the final object 1 ∈ C.

A

X Y

B

α

To avoid the complications of non-associative composition, it is common to consider a
category of spans, where isomorphic spans are equated: let Span≤C be the monoidal category
that has isomorphism classes of cospans as arrows. Note that, when going from bicategory
to category, after identifying isomorphic arrows it is usual to simply discard the 2-cells.
Differently, we consider Span≤C to be locally preordered with (X ← A → Y ) ≤ (X ←
B → Y ) if there exists a morphism α : (X ← A → Y ) ⇒ (X ← B → Y ). It is an easy
exercise to verify that this (pre)ordering is well-defined and compatible with composition
and monoidal product. Note that, in general, ≤ is a genuine preorder: i.e. it is possible that
(X → A← Y ) ≤ (X → B ← Y ) ≤ (X → A← Y ) without the cospans being isomorphic.

Since Span≤C is preorder enriched, rather than poset enriched, it is not a cartesian
bicategory. However, one can transform a preorder enriched category into a poset enriched
one with a simple construction: for Span≤C, one first defines ∼=≤ ∩ ≥, namely (X ←
A → Y ) ∼ (X ← B → Y ) iff there exists α : (X ← A → Y ) ⇒ (X ← B → Y ) and
β : (X ← B → Y )⇒ (X ← A→ Y ), and then one takes equivalence classes of morphisms of
Span≤C modulo ∼. It is worth observing that pullbacks are no longer necessary to compose
∼-equivalence classes of spans: weak pullbacks are sufficient, since non-isomorphic weak
pullbacks of the same cospan all belong to the same ∼-equivalence class.

I Definition 21 (Span∼). Let C be a category with finite products and weak pullbacks. The
posetal category Span∼C has the same objects as C and as morphisms ∼-equivalence classes
of spans. The order is defined as in Span≤C. Composition is given by weak pullbacks in C.
Identities, monoidal product and unit are as in Span(C).

Like in Rel, the comonoid structure is given for any object X by the diagonal and final
morphism in C: X is the span X ← X → X ×X and X is X ← X → 1.

I Proposition 22. Let C be a category with finite products and weak pullbacks. Then Span∼C
is a cartesian bicategory.

Proof. For X we take the span X ×X ← X → X and for X we take 1← X → X.
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With this information, one has only to check that the inequalities in Definition 1 hold:
each of them is witnessed by a commutative diagrams in C. As an example, we illustrate

X≤X X . The left hand side is the span X
idX←−− X

idX−−→ X. The right
hand side is the composition of X idX←−− X

!−→ 1 and 1 !←− X
idX−−→ X. Since the product

X
π1←− X ×X π2−→ X is a pullback of X !−→ 1 !←− X, the composition turns out to be exactly

the span X
π1←− X × X π2−→ X. Now the diagonal ∆: X → X × X makes the following

diagram in C commute. Therefore ∆ witnesses the inequality X≤X X .

X

X X

X ×X

idX

∆

idX

π1 π2

J

The following is a characterisation of Span∼C maps: a span X ← A→ Y is a map iff it is
∼-equivalent to X idX←−− X f−→ Y for some f in C. Moreover it is surjective iff f is a split epi.

I Proposition 23. Let C be a category with finite products and weak pullbacks. Then
Map(Span∼C) ∼= C and surjective maps in Span∼C are exactly split epis in C.

Proof. Since C has finite products, it is endowed with a cartesian monoidal structure. This
means in particular that = g for all g in C.

Let F : C → Span∼C be the identity on objects and mapping a morphism f : X → Y to
the span X idX←−− X f−→ Y . It is easy to check that F is a monoidal functor.
Since every morphism in C is a comonoid homomorphism, F factors as C F ′

−→ Map(Span∼C)→
Span∼C. To conclude that F ′ is an isomorphism, it is enough to show that every Span∼C
map is the ∼-equivalence class of some span X idX←−− X f−→ Y .

Now, if X f←− Z g−→ Y is a map in Span∼C, in particular

f g≤ = f

Therefore, by Definition of the ordering in Span∼C, there is a morphism h : X → Z such that

X

X

Z

idX

h

f

commutes, and therefore
X

X Y

Z

idX

h

h;g

f g

.

The two spans are thus equal in Span∼C, since they are both maps.

We can now prove the second part of the proposition. If π : X → Y is a map in C such
that F (π) is surjective in Span∼C, then we have

≤ π and therefore there is ι : Y → X such that
Y

Y

X

idY

ι

π

so π is a split epi. The converse direction is obvious. J

I Proposition 24. Span∼C has enough maps.

CALCO 2019



15:12 The Axiom of Choice in Cartesian Bicategories

Proof. In a cartesian bicategory, for all R : X → I we have R ≤ X . In the special
case when R is a map g : X → I, by Proposition 8, it holds that g = X . Now take a
morphism R : X → I in Span∼C. By definition, R is a span X f←− A g−→ I. Observe that by
Proposition 23, both f and g are maps in Span∼C. Therefore g = X and Span∼C has
enough maps. J

By Proposition 19, the two propositions above entail the following.

I Corollary 25. Span∼C satisfies (AC).

I Example 26. Let FinSet be the category with natural numbers as objects and as morph-
isms functions (as in Example 9, natural numbers are regarded as finite sets). The category
Span∼FinSetop = Cospan∼FinSet satisfies (AC) by Corollary 25. This category is particu-
larly relevant for different reasons. First, it is the cartesian bicategory on one object (see [5,
Theorem 31]) or, using the terminology in [4], it is the Carboni-Walters category freely
generated by the empty Frobenius theory. Moreover, after forgetting its posetal enrichment,
it is the PROP Frob of special Frobenius bimonoids which appears to be of fundamental
importance in several works (e.g. in [20, 2]). Finally, the cartesian bicategory of equivalence
relations, ERel from Example 9, can be obtained as quotient of Cospan∼FinSet: to pass
from cospans to equivalence relations, it suffices to equate

= .

Since ERel does not satisfy (AC), by Corollary 25, there is no category C, such that
ERel is Span∼C. Instead, PERel can be put in Span∼ form: it is Span∼FinSetop

p =
Cospan∼FinSetp for FinSetp being defined as FinSet but with partial functions as morph-
isms. Indeed, as we will see in the next section, any cartesian bicategory with enough maps
that satisfies (AC) arises from the Span∼ construction.

4 Characterising cartesian bicategories with choice

In this section, we prove our characterisation result (Theorem 30). First, we observe that (AC)
allows us to construct maps witnessing certain inequalities.

I Lemma 27. Let B be a cartesian bicategory with choice and

A

B C

D

f g

h k

a diagram of maps such that f g h k≤ . Then there is a map ω : A→ D (called
witness) such that the following diagram commutes.

A

B C

D

f

ω

g

h k
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Proof. Consider R : A→ D given by

f h

g k

=R

One readily checks that f h≤R and g k≤R .
R is total, since

f h

g k

f k

g

h

= ≥
f g

g

f

≥
g

g

≥

so by the axiom of choice, there is a map ω ≤ R. This satisfies

ω h ≤ f hh ≤ fR h≤

and

ω k ≤ g kk ≤ gR k≤

and since both side are maps we have equality by Proposition 8. J

I Lemma 28. Let B be a cartesian bicategory and consider the following diagram in MapB.

A

B C

D

f g

h k

(5)

1. f g ≤ h k if and only if (5) commutes.
2. If B has choice and f g = h k , then (5) is a weak pullback.
3. If B has choice and enough maps then f g = h k iff (5) is a weak pullback.

Proof. 1. If the diagram commutes, then

f g ≤ f g k k = f f h k ≤ h k

Conversely, if f g ≤ h k , then

g k ≤ f g kf ≤ f k kh ≤ f h

and since both sides are maps, they are equal by Proposition 8.
2. Let now B satisfy (AC) and f g = h k . We want to show that (5) is a weak

pullback. Given a commutative diagram of solid arrows below,

T

A

B C

D

ω
b c

f g

h k

we need to construct the dotted arrow. By Lemma 28.1, we get

f g=h kb c ≤

and therefore by Lemma 27 we get ω : T → A as desired.
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3. Let now B have also enough maps and let (5) be a weak pullback. By Lemma 28.1, it
suffices to prove that ≤ f gh k . By Lemma 18, take = β γh k

to be a factorisation with β : T → B and γ : T → C. By Lemma 28.1, the external square
of the following diagram commutes.

T

A

B C

D

αβ γ

f g

h k

Since (5) is a weak pullback, there is α : T → A making the above commute. With this
we get

≤ f gh k = β γ = f α α g J

By the third point of the above lemma and Lemma 18 we immediately get the following.

I Corollary 29. Let B be a cartesian bicategory with enough maps and choice. Then Map(B)
has weak pullbacks given by the comap-map factorisation.

We can now state our main result.

I Theorem 30. Let B be a cartesian bicategory with enough maps. B satisfies (AC) if and
only if there is a category C with products and weak pullbacks such that B ∼= Span∼C. More
precisely, (AC) holds if and only if there exists a functor F : Span∼Map(B)→ B that is an
isomorphism.

Proof. By Corollary 25, Span∼Map(B) satisfies (AC), so if there is an isomorphism F also
B satisfies (AC).

Now assume that B has enough maps and satisfies (AC). Since every morphism in Map(B)
is a comonoid homomorphism, Map(B) is a cartesian monoidal category and hence has finite
products, see [8, Theorem 1.6]. It furthermore has weak pullbacks by Corollary 29. We define
F : Span∼Map(B)→ B to be the identity on objects and mapping a span X f←− Z g−→ Y into
the composite fop ; g in B. To prove that F preserves the ordering, observe that if

C

A B

D

f g

α

h k

is a commutative diagram in Map(B), then

≤ h kf g = h α α k

That F indeed preserves composition follows from the weak pullback being given by comap-
map factorisation (Corollary 29). The functor F is identity-on-objects and full by Lemma 18.
By Lemma 27, the functor reflects the ordering. Therefore it is faithful, hence an equivalence.

J
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5 Related work

Another common example of cartesian bicategories, considered in [8], is the category of
relations of a regular category. The following definitions can be found in [7].

I Definition 31. Let C be a category. A kernel pair of a morphism f : X → Y is a pair of
p1, p2 : P → X such that the diagram below is a pullback. An epimorphism is regular if it is
the coequaliser of some pair of morphisms. C is regular if it has finite limits, coequalisers of
kernel pairs and regular epis are stable under pullback.

P X

X Y

p1

p2 f
f

Regular categories admit a well-behaved factorisation system, where every morphism
factors as a regular epi followed by a mono. The factorisation is used to define the cartesian
bicategory of relations of a regular category.

I Definition 32. Given a regular category C, let Rel(C) be the category with the same
objects as C and morphisms X → Y jointly mono spans, i.e. spans X f←− A

g−→ Y such
that the induced map A

〈f,g〉−−−→ X × Y is mono. For an arbitrary span, X f←− A
g−→ Y ,

its image is the jointly mono span given by taking the regular epi-mono factorisation of
A
〈f,g〉−−−→ X × Y . The composition of two jointly mono spans is given by first composing

them as spans via pullback and then taking the image of the resulting span. The identity
X → X is given by the jointly mono span X

idX←−− X
idX−−→ X. Similar to Span∼C, the

categorical product of C induces a monoidal product on Rel(C). Furthermore, the ordering is
defined as for Span∼C: (X ← A→ Y ) ≤ (X ← B → Y ) if there exists a morphism of spans
α : (X ← A→ Y )⇒ (X ← B → Y ).

Since Rel(C) is a cartesian bicategory [8, Example 1.4], it is important to compare the
Rel(C) and Span∼C constructions. In general the two do not coincide. To see this, it is
enough to take FinSetop: Rel(FinSetop) is ERel which, as discussed in Example 26, is a
proper quotient of Span∼FinSetop. This is an instance of a more general fact:

I Proposition 33. There is a full monoidal functor F : Span∼C → Rel(C) given by mapping
a span to its image.

The proof of the above and the following statements can be found in the Appendix.

I Lemma 34. Rel(C) has enough maps.

I Proposition 35. Span∼C ∼= Rel(C) if and only if (AC) holds in Rel(C).

It is known that surjective maps in Rel(C) are precisely regular epis in C, see [8, Theorem
3.5]. Using Proposition 19, we have the following.

I Corollary 36. Span∼C ∼= Rel(C) iff regular epis split in C.
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A Proof of Section 5

Proof of Proposition 33. F preserves the ordering, because of the universal property of
the image. Therefore F is well-defined, since equivalent spans in Span∼C are mapped to
isomorphic spans in Rel(C). It is easily verified that F preserves identities and composition.
Since monos and regular epis are closed under product, F preserves the monoidal structure.
Finally, F is full because any jointly monic span is its own image. J

Proof of Lemma 34. By [8, Theorem 3.5], Rel(C) is functionally complete (see Remark
17). J

Proof of Proposition 35. If Span∼C ∼= Rel(C), then Rel(C) satisfies (AC) by Corollary 25.
If on the other hand, Rel(C) satisfies (AC), then, since it has enough maps, Proposition 19
guarantees that surjective maps split. Now surjective maps in Rel(C) are regular epis in C
([8, Theorem 3.5]), hence the latter split in C. We prove that in that case F – defined and
shown to be full in Proposition 33 – is furthermore faithful, for which it suffices to show
that it reflects the ordering. So let A f←− B g−→ C and A f ′

←− B′ g
′

−→ C be spans such that the
image of the first is included in the image of the second under F . Assume without loss of
generality that A is terminal, which we can achieve by bending the input around to the right.
Let B π−→ J

ι−→ C be a regular epi-mono factorisation of g and likewise for g′. Then there is a
morphism α : J → J ′

B J C

B′ J ′

π

α

ι

π′ ι′

Since π′ is regular epi, it splits by the preceding observation, and thus there is β : B → B′

such that

B C

B′
β

g

g′
.

It follows that the inclusion between the spans holds in Span∼C. J
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