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Abstract
This extended abstract first presents a new category theoretic approach to equationally axiomatizable
classes of algebras. This approach is well-suited for the treatment of algebras equipped with additional
computationally relevant structure, such as ordered algebras, continuous algebras, quantitative
algebras, nominal algebras, or profinite algebras. We present a generic HSP theorem and a sound
and complete equational logic, which encompass numerous flavors of equational axiomizations
studied in the literature. In addition, we use the generic HSP theorem as a key ingredient to obtain
Eilenberg-type correspondences yielding algebraic characterizations of properties of regular machine
behaviours. When instantiated for orbit-finite nominal monoids, the generic HSP theorem yields a
crucial step for the proof of the first Eilenberg-type variety theorem for data languages.
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1 Equations and Algebras with Structure

A key tool in the algebraic theory of data structures is their specification by operations
(constructors) and equations that they ought to satisfy. Birkhoff’s celebrated HSP theorem [7]
states that a class of algebras over a signature Σ is a variety (i.e. closed under homomorphic
images, subalgebras, and products) iff it is axiomatizable by equations s = t between Σ-terms.
Birkhoff also introduced a complete deduction system for reasoning about equations.

In algebraic approaches to the semantics of programming languages and computational
effects, it is often natural to study algebras whose underlying sets are equipped with
additional computationally relevant structure and whose operations preserve that structure.
An important line of research thus concerns extensions of Birkhoff’s theory of equational
axiomatization beyond ordinary Σ-algebras. On the syntactic level, this requires to enrich
Birkhoff’s notion of an equation in ways that reflect the extra structure. For example,
Bloom [8] and Adámek et al. [1, 2] established versions of the HSP theorem for ordered
algebras and continuous ones, respectively, along with complete deduction systems. Here, the
role of equations s = t is taken over by inequations s ≤ t. Recently, Mardare, Panangaden and
Plotkin [19,20] presented an HSP theorem for quantitative algebras and a complete deduction
system. In the quantitative setting, equations s =ε t are equipped with a non-negative real
number ε, interpreted as “s and t have distance at most ε”. Varieties of nominal algebras
were studied by Gabbay [15] and Kurz and Petrişan [18]. Here, the appropriate syntactic
concept involves equations s = t with constraints on the support of their variables. Finally,
Reiterman [29] as well as Eilenberg and Schützenberger [13] showed that pseudovarieties
(i.e. classes of finite algebras closed under homomorphic images, subalgebras and finite
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2:2 Equations, Algebras, and Data Languages

products) can be axiomatized by so-called profinite equations or, equivalently, by sequences
of ordinary equations (si = ti)i<ω, interpreted as “all but finitely many of the equations
si = ti hold”.

We propose a general category theoretic framework that allows to study equationally
specified classes of algebras with extra structure in a systematic way. Our overall goal is to
isolate the domain-specific part of any theory of equational axiomatization from its generic
core. Our framework is parametric in the following data:

a category A with a factorization system (E ,M );
a full subcategory A0 ⊆ A ;
a class Λ of cardinal numbers;
a class X ⊆ A of objects.

Here, A is the category of algebras under consideration (e.g. ordered algebras, quantitative
algebras, nominal algebras). Varieties are formed within A0, and the cardinal numbers in
Λ determine the arities of products under which the varieties are closed. Thus, the choice
A0 = finite algebras and Λ = finite cardinals corresponds to pseudovarieties, and A0 = A

and Λ = all cardinals to varieties. The crucial ingredient of our setting is the parameter
X , which is the class of objects over which equations are formed. Typically, X is chosen
to be some class of freely generated algebras in A . Equations are modeled as E -quotients
e : X � E (more generally, filters of such quotients) with domain X ∈X .

The choice of X reflects the desired expressivity of equations in a given setting, and it
determines the type of quotients under which equationally axiomatizable classes are closed.
More precisely, in our category theoretic framework a variety is defined to be a subclass of
A0 closed under EX -quotients, M -subobjects, and Λ-products, where EX is a subclass of E

derived from X . Due to its parametric nature, this concept of a variety is widely applicable
and turns out to specialize to many interesting cases. The main result is the

I General HSP Theorem [22]. A subclass of A0 forms a variety if and only if it is axio-
matizable by equations.

In addition, we introduce a generic deduction system for equations, based on two simple
proof rules for equations e : X � E, and establish a

I General Completeness Theorem [22]. The generic deduction system for equations is
sound and complete.

The above two theorems can be seen as the generic building blocks of the model theory of
algebras with structure. They form the common core of numerous Birkhoff-type results and
give rise to a systematic recipe for deriving concrete HSP and completeness theorems.

2 Varieties of Data Languages

Since the above results also cover Reiterman-type results (via the choice of X as free algebras
over finite sets) the General HSP Theorem yields a key tool for a generic algebraic language
theory. In this theory one studies formal languages and other types of behaviours of finite
machines (e.g. weighted languages, infinite words, trees, cost functions) in terms of algebraic
structures that recognize them. As a prime example, regular languages can be described
purely algebraically as the languages recognized by finite monoids, and a celebrated result
by McNaughton, Papert, and Schützenberger [21, 33] asserts that a regular language is
definable in first-order logic if and only if its syntactic monoid is aperiodic (i.e. it satisfies
the equation xn+1 = xn for sufficiently large n). As an immediate application, this algebraic
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characterization yields an effective procedure for deciding first-order definability. The first
systematic approach to correspondence results of this kind was initiated by Eilenberg [14]
who proved that varieties of languages (i.e. classes of regular languages closed under the set-
theoretic boolean operations, derivatives, and homomorphic preimages) correspond bijectively
to pseudovarieties of monoids. Inspired by Eilenberg’s work, over the past four decades
numerous further variety theorems were discovered for regular languages [16, 24, 27, 36],
treating notions of varieties with modified closure properties, but also for machine behaviors
beyond finite words, including weighted languages over a field [30], infinite words [25, 38],
words on linear orderings [5, 6], ranked trees [4], binary trees [32], and cost functions [12].
Recent research [3, 9] has focused on generic approaches and has culminated in Salamanca’s
work [31] and our General Eilenberg Theorem that covers all of the above ones as special
instances [37]. Its proof is based on two key ingredients: (1) duality in order to establish a
correspondence between (profinite) equational theories and varieties of recognizable languages
and (2) a generic Reiterman-type correspondence to pseudovarieties.

Varieties of
languages

Eilenberg Theorem
∼=

Duality
∼=

Equational
theories

Reiterman Theorem
∼=

Pseudovarieties
of algebras

That duality plays an important role for Eilenberg-type correspondences has been es-
tablished by Gehrke, Grigorieff and Pin [16]. The duality based proofs in [31, 37] yield a
blueprint for new correspondences of this kind. For example, it allows to obtain the first
Eilenberg-type correspondence for data languages [22]. Such languages are of significant
interest in recent years, driven by practical applications in various areas of computer science,
including efficient parsing of XML documents or software verification. Mathematically,
data languages are modeled using nominal sets (see e.g. [26]). Over the years, several
machine models for handling data languages of different expressive power have been proposed;
see [34,35] for a comprehensive survey. Here we focus on languages recognized by orbit-finite
nominal monoids. They form an important subclass of the languages accepted by Francez
and Kaminski’s finite memory automata [17] (which are expressively equivalent to orbit-finite
automata in the category of nominal sets [11]) and have been characterized by a fragment of
monadic second-order logic over data words called rigidly guarded MSO [28]. In addition,
Bojańczyk [10] and Colcombet, Ley and Puppis [28] established nominal versions of the
McNaughton-Papert-Schützenberger theorem and showed that the first-order definable data
languages are precisely the ones recognizable by aperiodic orbit-finite monoids. It is therefore
natural to ask whether an Eilenberg-type theorem can be developed for data languages, and
we answer this question affirmatively:

I Nominal Eilenberg Theorem [23]. Varieties of data languages correspond bijectively to
pseudovarieties of nominal monoids.

Here, the notion of a pseudovariety of nominal monoids is as expected: a class of orbit-finite
nominal monoids closed under quotient monoids, submonoids, and finite products. In contrast,
the notion of a variety of data languages requires two extra conditions unfamiliar from other
Eilenberg-type correspondences, most notably a technical condition called completeness. Like
the original Eilenberg theorem, its nominal version gives rise to a generic relation between
properties of data languages and properties of nominal monoids. For instance, the aperiodic
orbit-finite monoids form a pseudovariety, and the first-order definable data languages form
a variety, and thus the equivalence of these concepts can be understood as an instance of the
nominal Eilenberg correspondence.
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2:4 Equations, Algebras, and Data Languages

It should be pointed out that the Nominal Eilenberg Theorem requires new techniques
and cannot be obtained as a mere instance of the previous General Eilenberg Theorem, since
the latter is based on working with algebraic-like base categories (which excludes nominal
sets) and the recognition by finite structures. However, our approach can be seen as an
indication of the robustness of the key ideas behind the duality-based methodology for
algebraic recognition and the guidance they provide towards future applications and results.

References
1 J. Adámek, A. H. Mekler, E. Nelson, and J. Reiterman. On the logic of continuous algebras.

Notre Dame J. Formal Logic, 29(3):365–380, 1988.
2 Jiři Adámek, Evelyn Nelson, and Jan Reiterman. The Birkhoff Variety Theorem for continuous

algebras. Algebra Universalis, 20(3):328–350, 1985.
3 Jiří Adámek, Stefan Milius, Robert S.R. Myers, and Henning Urbat. Generalized Eilenberg

Theorem: Varieties of Languages in a Category. ACM Trans. Comput. Log., 20(1):3:1–3:47,
2019.

4 J. Almeida. On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities
and related topics. Algebra Universalis, 27(3):333–350, 1990.

5 N. Bedon and O. Carton. An Eilenberg theorem for words on countable ordinals. In Proc.
LATIN’98, volume 1380 of LNCS, pages 53–64. Springer, 1998.

6 N. Bedon and C. Rispal. Schützenberger and Eilenberg theorems for words on linear orderings.
In Proc. DLT’05, volume 3572 of LNCS, pages 134–145. Springer, 2005.

7 Garret Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society, 10:433—-454, 1935.

8 Stephen L. Bloom. Varieties of ordered algebras. J. Comput. Syst. Sci., 2(13):200–212, 1976.
9 M. Bojańczyk. Recognisable languages over monads. In I. Potapov, editor, Proc. DLT’15,

volume 9168 of LNCS, pages 1–13. Springer, 2015. arXiv:1502.04898.
10 Mikołaj Bojańczyk. Nominal Monoids. Theory of Computing Systems, 53(2):194–222, 2013.
11 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.

Log. Methods Comput. Sci., 10(3:4):44 pp., 2014.
12 L. Daviaud, D. Kuperberg, and J.-É. Pin. Varieties of Cost Functions. In N. Ollinger and

H. Vollmer, editors, Proc. STACS 2016, volume 47 of LIPIcs, pages 30:1–30:14. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

13 S. Eilenberg and M. P. Schützenberger. On pseudovarieties. Advances Math., 10:413–418,
1976.

14 Samuel Eilenberg. Automata, Languages, and Machines Vol. B. Academic Press, 1976.
15 Murdoch J. Gabbay. Nominal algebra and the HSP theorem. Journal of Logic and Computation,

19:341–367, 2009.
16 Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational theory of regular

languages. In Proc. ICALP’08, Part II, volume 5126 of LNCS, pages 246–257. Springer, 2008.
17 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoret. Comput. Sci.,

134(2):329–363, 1994.
18 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical

Structures in Computer Science, 20(2):285–318, 2010.
19 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative Algebraic Reasoning.

In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, pages 700–709. ACM, 2016.

20 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. On the axiomatizability of
quantitative algebras. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005102.

http://arxiv.org/abs/1502.04898
https://doi.org/10.1109/LICS.2017.8005102


S. Milius 2:5

21 Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. Research
Monograph No. 65). The MIT Press, 1971.

22 Stefan Milius and Henning Urbat. Equational Axiomatization of Algebras with Structure. In
Mikołaj Bojańczyk and Alex Simpson, editors, Proc. Foundations of Software Science and
Computation Structures (FoSSaCS), volume 11425 of Lecture Notes Comput. Sci. (ARCoSS),
pages 400–417, 2019.

23 Stefan Milius and Henning Urbat. Varietes of Data Languages. In Proc. 46th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 132 of LIPIcs,
pages 130:1–130:14, 2019. (Full version available online at arXiv:1903.08053). doi:10.4230/
LIPIcs.ICALP.2019.130.

24 J.-É. Pin. A variety theorem without complementation. Russ. Math., 39:80–90, 1995.
25 J.-É. Pin. Positive varieties and infinite words. In LATIN 98, volume 1380 of LNCS, pages

76–87. Springer, 1998.
26 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge

University Press, 2013.
27 L. Polák. Syntactic semiring of a language. In J. Sgall, A. Pultr, and P. Kolman, editors, Proc.

MFCS’01, volume 2136 of LNCS, pages 611–620. Springer, 2001.
28 Gabriele Puppis, Thomas Colcombet, and Clemens Ley. Logics with rigidly guarded data

tests. Log. Methods Comput. Sci., 11(3:10):56 pp., 2015.
29 J. Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14(1):1–10, 1982.
30 C. Reutenauer. Séries formelles et algèbres syntactiques. J. Algebra, 66:448–483, 1980.
31 Julian Salamanca. Unveiling Eilenberg-type Correspondences: Birkhoff’s Theorem for (finite)

Algebras + Duality, February 2017. arXiv:1702.02822.
32 S. Salehi and M. Steinby. Tree algebras and varieties of tree languages. Theor. Comput. Sci.,

377(1-3):1–24, 2007.
33 Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Inform. and

Control, 8:190–194, 1965.
34 Thomas Schwentick. Automata for XML – A survey. J. Comput. System Sci., 73(3):289–315,

2007.
35 Luc Segoufin. Automata and Logics for Words and Trees over an Infinite Alphabet. In

Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of
the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, pages 41–57, 2006.

36 H. Straubing. On logical descriptions of regular languages. In S. Rajsbaum, editor, LATIN
2002 Theor. Informatics, volume 2286 of LNCS, pages 528–538. Springer, 2002.

37 Henning Urbat, Jiří Adámek, Liang-Ting Chen, and Stefan Milius. Eilenberg Theorems for
Free. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, Proc. 42nd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2017),
volume 83 of LIPIcs. Schloss Dagstuhl, 2017. EATCS Best Paper Award.

38 T. Wilke. An Eilenberg Theorem for ∞-Languages. In Proc. ICALP’91, volume 510 of LNCS,
pages 588–599. Springer, 1991.

CALCO 2019

https://arxiv.org/abs/1903.08053
https://doi.org/10.4230/LIPIcs.ICALP.2019.130
https://doi.org/10.4230/LIPIcs.ICALP.2019.130
http://arxiv.org/abs/1702.02822

	Equations and Algebras with Structure
	Varieties of Data Languages

