
Principles of Natural Language, Logic, and Tensor
Semantics
Mehrnoosh Sadrzadeh
School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
mehrnoosh.sadrzadeh@qmul.ac.uk

Abstract
Residuated monoids model the structure of sentences. Vectors provide meaning representations for
words. A functorial mapping between the two is obtained by lifting the vectors to tensors. The
resulting sentence representations solve similarity, disambiguation and entailment tasks.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Computing
methodologies → Natural language processing; General and reference → Experimentation

Keywords and phrases Residuated Monoids, Vector Space Semantics, Corpora of Textual Data,
Sentence Similarity and Disambiguation

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.3

Category Invited Paper

Funding Royal Academy of Engineering Industrial Fellowship Scheme IF S1718\63, Royal Society
International Exchange Award IE161631

1 The Algebra of Grammatical Types

A partially ordered monoid is called residuated and is denoted by (M, ·, 1,≤,→,←), whenever
for b, c ∈ M we have c · c → b ≤ b and b ← c · c ≤ b. Given a set of basic types B and a
vocabulary Σ, a monoid grammar is the tuple (T (B), Σ,D, {s}), wherein T (B) is a residuated
monoid generated over B and D ⊆ Σ × T (B) is a type assignment to the vocabulary. A
string of words w1w2 · · ·wn is grammatical in a monoid grammar, whenever for (wi, ti) ∈ D,
we have t1 · t2 · · · · · tn ≤ s, where s is an element of B and stands for the type of a sentence.

As an example, consider the vocabulary Σ = {men,dogs, cute, kill} and the type dictionary
D = {(men, n), (dogs, n), (cute, n ← n), (kill, (n → s) ← n)}. The sentence “men kill cute
dogs” is grammatical, since we have

n · ((n→ s)← n) · (n← n) · n ≤ n · ((n→ s)← n) · n ≤ n · (n→ s) ≤ s

2 Tensor Semantics

Suppose W is a vector space with a set of fixed orthonormal basis {bi}i. Elements of W are
vectors

∑
i cibi and elements of W ⊗ · · · ⊗W︸ ︷︷ ︸

n

are tensors Ti1i2···in
=

∑
i1i2···in

Ci1i2···in
bi1 ⊗

bi2 ⊗ · · · ⊗ bin
. The action of a tensor on another tensor is called tensor contraction and is

defined as Ti1i2···in
Tinin+1···in+k

= Ti1i2···in+1···in+k
∈W ⊗ · · · ⊗W︸ ︷︷ ︸

n+k−1

.

We develop a mapping F between a monoid grammar and the tensor powers of W . To
basic types t ∈ B, we assign W , i.e., F(t) := W ; to words w with basic types t we assign
elements of W , i.e., F(w) := Ti ∈W . To complex types, we assign tensors of W as follows

F(t1 · t2) = F(t1 → t2) = F(t1 ← t2) := F(t1)⊗F(t2)
© Mehrnoosh Sadrzadeh;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 3; pp. 3:1–3:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mehrnoosh.sadrzadeh@qmul.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Natural Language Logic and Tensor Semantics

Words with complex types are assigned elements of the tensor spaces of their types, that
is, F(w) = Ti1i2···in

∈ W ⊗ · · · ⊗W︸ ︷︷ ︸
n

. Given a grammatical sentence w1w2 · · ·wn, its tensor

meaning is defined as the tensor contraction of the tensor semantics of its words, that is,
F(w!w2 · · ·wn) := F(w1)F(w2) · · · F(wn).

As an example, suppose we assign vectors T dogs
k and T men

j in W to men and dogs, the
matrix T cute

lk in W ⊗W to cute and the cube T kill
ijk in W ⊗W ⊗W to kill. The meaning of

“men kill cute dogs” is computed via the following contraction of tensors T men
j T kill

ijl T cute
lk T dog

k .
Recall that when we have a fixed set of orthonormal basis, Tij

∼= Tji.

3 Implementation on Corpora of Textual Data

Given a corpus of text, e.g. the English Wikipedia, a set of target words T and a set of
context words C, a vector space W is created over C. In this vector space, each target word
has a vector, where each ci is (a function of) the number of times w occurred with each basis
vector in a neighbourhood window, e.g. 5 words to the left or right. As an example, suppose
C = {blood, grave, dead} and T = {vampire, zombie, butterfly} and the following vectors

T zombie
i = (17, 13, 10) T vampire

i = (15, 9, 8) T butterfly
i = (0, 1, 3)

Words that have complex types are modelled as tensors. The tensors are learnt by first
building vector representations for phrases containing the words, then learning a tensor whose
contraction with the tensors of other words in the phrase provides a reasonable approximation
for the vector of the phrase. For example, in order to learn a matrix for the adjective green,
we first build vectors for all the adjective-noun phrases with green as adjective, e.g. for green
grass, green dress, green space. Machine learning algorithms such as least squared distance
are employed to learn an approximation for T green

ij such that

T green grass
i ∼ T green

ij T grass
j T green dress

i ∼ T green
ij T dress

j T green space
i ∼ T green

ij T space
j

Once the grammatical structure of a language is modelled in a monoid grammar and word
vectors and tensors have been built for its vocabulary, tensor contraction is applied to obtain
vector representations for its sentences. The cosine distances between these representations
provide a measure of sentence similarity and are applied to paraphrasing and disambiguation
tasks. For paraphrasing, one builds vectors for sentences such as “man shut doors”, “gentleman
closed eyes”, “programme faces difficulty”, “project hits problem” and uses their distances to
decide that the latter two are more similar than the former two. For disambiguation, one
builds vectors for sentences such as “man drew sword”, “man sketched sword”, “man pulled
sword” to decide whether drew means sketched or pulled.

4 History and References

Similar to programming languages, natural languages have different characteristic features
such as morphology, phenology, syntax, semantics, and pragmatics. Formal structures
have been used to study these features and indeed ideas are shared between natural and
programming semantics communities. An example is the setting of Context Free Grammars,
introduced by Chomsky to analyse the grammatical structure of English [4] and subsequently
applied to other languages and programming languages. The first algebraic approaches
to natural language go back to the work of Ajdukiewicz [1], where structures similar to
groups were used to provide a functional interpretation for grammatical types. These systems



M. Sadrzadeh 3:3

were later refined with a noncommutative multiplication by Bar-Hillel [2] and then Lambek
developed a residuated monoid semantics and a cut-free sequent calculus for them [15]. The
expressive powers of these two systems were proven equivalent by Pentus [20].

The vector space semantics of natural language is motivated by the distributional semantic
ideas of Firth [8] and Harris [12], who argued that words that occur in the same contexts
have similar meanings. These models were both implemented in Information Retrieval [27]
and applied to Natural Language Processing [24].

Encoding a model of grammar in vector space semantics to obtain vector representations
for sentences was an open problem until recently. In 2007 Clark and Pulman showed how
a context free parse tree of a sentence can be assigned a tensor semantics by taking the
Kronecker products of the vectors of the words therein and the symbolic vectors of their
grammatical roles [5]. It was not clear, however, how to build vectors for grammatical
roles. Between 2008 and 2011, with Clark, Coecke, and Preller we showed that if one uses
Lambek’s pregroup grammars [16, 23] one obtains a functorial semantics in the compact
closed category of finite dimensional vector spaces and linear maps [6, 22]. Later with Coecke
and Grefenstette, we showed how residuated monoid grammars also get a functorial semantics
via the translation between a residuated monoid and a pregroup [7]. More recently, I showed
how one can get by without using category theory and still be able to express this semantics
using the language of tensor contraction [25]; this is via the F mapping that I have tried to
spell out in this abstract.

Starting from 2011, we have implemented and experimented with the tensor models on
large corpora of textual data in similarity, disambiguation, and entailment tasks and showed
that in each case there is a tensor model that outperforms the vector models[10, 11, 13, 19,
14, 26]. The method that we have described here and which is used to learn the tensors was
introduced by Baroni and Zamparelli for adjectives [3] and later extended to verbs [9, 21].
Maillard and Clark [17] showed how one can use neural networks and the Skipgram algorithm
of Mikolov [18] to obtain much better results. In work in progress with Clark and Wijnholds,
we are extending these models to arbitrary tensors.

References
1 K. Ajdukiewicz. Die syntaktische Konnexitat. Studia Philosophica, 1:1–27, 1935.
2 Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Language, 29:47–58,

1953.
3 M. Baroni and R. Zamparelli. Nouns are vectors, adjectives are matrices: Representing

adjective-noun constructions in semantic space. In Conference on Empirical Methods in
Natural Language Processing, Cambridge, MA, 2010.

4 Noam Chomsky. Three models for the description of language. IRE Transactions on Informa-
tion Theory, 2:113–124, 1956.

5 Stephen Clark and Stephen Pulman. Combining Symbolic and Distributional Models of
Meaning. In Proceedings of the AAAI Spring Symposium on Quantum Interaction, pages
52–55, 2007.

6 B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical Foundations for Distributed Composi-
tional Model of Meaning. Lambek Festschrift. Linguistic Analysis, 36:345–384, 2010.

7 Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh. Lambek vs. Lambek: Functorial
vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied
Logic, 164(11):1079–1100, 2013. Special issue on Seventh Workshop on Games for Logic and
Programming Languages.

8 J.R. Firth. A Synopsis of Linguistic Theory 1930–1955. In Studies in Linguistic Analysis.
Longmans, 1957.

CALCO 2019



3:4 Natural Language Logic and Tensor Semantics

9 E. Grefenstette, G. Dinu, Y. Zhang, M. Sadrzadeh, and M. Baroni. Multi-Step Regression
Learning for Compositional Distributional Semantics. In 10th International Conference on
Computational Semantics, Postdam, 2013.

10 E. Grefenstette and M. Sadrzadeh. Experimental Support for a Categorical Compositional
Distributional Model of Meaning. In Proceedings of Conference on Empirical Methods in
Natural Language Processing, pages 1394–1404, 2011.

11 Edward Grefenstette and Mehrnoosh Sadrzadeh. Concrete Models and Empirical Evaluations
for the Categorical Compositional Distributional Model of Meaning. Computational Linguistics,
41:71–118, 2015.

12 Z.S. Harris. Distributional structure. Word, 1954.
13 D. Kartsaklis and M. Sadrzadeh. Prior Disambiguation of Word Tensors for Constructing

Sentence Vectors. In Proceedings of Conference on Empirical Methods in Natural Language
Processing, 2013.

14 Dimitri Kartsaklis, Nal Kalchbrenner, and Mehrnoosh Sadrzadeh. Resolving Lexical Ambiguity
in Tensor Regression Models of Meaning. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, Baltimore, MD, USA, Volume 2: Short Papers,
pages 212–217, 2014.

15 J. Lambek. The mathematics of sentence structure. American Mathematics Monthly, 65, 1958.
16 J. Lambek. Type grammars revisited. In proceedings of LACL 97, volume 1582 of Lecture

Notes in Artificial Intelligence. Springer Verlag, 1997.
17 Jean Maillard and Stephen Clark. Learning adjective meanings with a tensor-based skip-gram

model. In Proceedings of the Nineteenth Conference on Computational Natural Language
Learning, pages 327–331, 2015.

18 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

19 Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Matthew Purver. Evaluating
Neural Word Representations in Tensor-Based Compositional Settings. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, pages 708–719.
Association for Computational Linguistics, 2014.

20 Mati Pentus. Lambek Grammars Are Context Free. In In Proceedings of the Eighth Annual
IEEE Symposium on Logic in Computer Science, pages 429–433. IEEE Computer Society
Press, 1993.

21 Tamara Polajnar, Luana Fagarasan, and Stephen Clark. Reducing dimensions of tensors in
type-driven distributional semantics. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1036–1046, 2014.

22 A. Preller and M. Sadrzadeh. Bell States and Negative Sentences in the Distributed Model of
Meaning. In P. Selinger B. Coecke, P. Panangaden, editor, Electronic Notes in Theoretical
Computer Science, Proceedings of the 6th Workshop on Quantum Physics and Logic, volume
270, pages 141–153, 2010.

23 Anne Preller and Joachim Lambek. Free compact 2-categories. Mathematical Structures in
Computer Science, 17:309–340, 2007.

24 H. Rubenstein and J.B. Goodenough. Contextual Correlates of Synonymy. Communications
of the ACM, 8(10):627–633, 1965.

25 M. Sadrzadeh. Unifying the Mathematics of Natural Language Grammar and Data. London
Mathematical Society News Letter, pages 25–31, 2018.

26 Mehrnoosh Sadrzadeh, Dimitri Kartsaklis, and Esma Balkır. Sentence entailment in composi-
tional distributional semantics. Annals of Mathematics and Artificial Intelligence, 82(4):189–
218, 2018.

27 G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing. Commun.
ACM, 18:613–620, 1975.


	The Algebra of Grammatical Types
	Tensor Semantics
	Implementation on Corpora of Textual Data
	History and References

