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Abstract
Coinduction is a mathematical tool that is used pervasively in computer science: to program and
reason about infinite data-structures, to give semantics to concurrent systems, to obtain automata
algorithms. We present some of these applications in automata theory and in formalised mathematics.
Then we discuss recent developments on the abstract theory of coinduction and its enhancements.
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Induction and coinduction

Induction and coinduction are used in two main ways in computer science: to define datatypes
and compute with those, and to define predicates and reason about them. The former can be
presented using category theory: inductive datatypes such as natural numbers, lists, or trees
can be modelled as initial algebras, while coinductive datatypes such as streams, infinite
trees, automata, or labelled transitions systems can be modelled as final coalgebras. In
contrast, we use lattice theory for predicates: inductive predicates such as reachability or
derivability in a proof system are presented as least fixpoints while coinductive predicates
such as divergence, bisimilarity, or language equivalence, are presented as greatest fixpoints.

When doing a proof by induction, one has to be careful about two things: 1/ choosing
an appropriate induction principle (e.g., simple induction, rank-2 induction, or course of
value induction), and 2/ choosing a strong enough invariant. We shall see that the very same
observation applies with coinduction.

Automata algorithms

Take for instance algorithms for checking language equivalence of finite deterministic automata.
Language equivalence can be characterised as a greatest fixpoint, so that it can be checked
using a coinductive algorithm: start from a relation consisting of the pair of initial states,
and widen this relation until it becomes a bisimulation [5]. This iterative process corresponds
to point 2/ above: we iteratively refine an initial guess until we get a proper invariant. Such
an algorithm can be made more efficient by choosing a more powerful coinduction principle,
e.g., bisimulations up to equivalence, or bisimulations up to congruence for non-deterministic
automata; this is point 1/ above.
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Formal proofs and equational theories

Coinduction can be used for many automata algorithms, which in turn can be used in the
context of formal proofs, to improve automation and delegate administrative steps to the
computer. Indeed, several equational theories can be decided by characterising them in terms
of language equivalence. The key example is that of Kleene algebra: this (quasi)equational
theory admits binary relations and formal languages as free models [13, 15, 4], and is decidable
in PSpace using automata algorithms. Therefore, proof obligations corresponding to this
fragment can be discharged automatically in proof assistants [6], using so-called reflexive
tactics. Another important theory is that of Kleene algebra with tests (KAT) [14], which can
be decided using automata on guarded strings. This was used successfully to reason about
while programs and flowchart schemes in the Coq proof assistant [18].

Other theories include Kleene algebra with converse [3, 10], Kleene allegories [7, 17], and
concurrent Kleene algebra [8]. Those respectively require working with downward-closed
languages, languages of graphs, and languages of partially ordered multisets (pomsets) [20].
Decidability can be obtained by designing appropriate automata models, and by character-
ising language equivalence as a greatest fixpoint (a coinductive predicate). In some cases,
completeness can be obtained by reasoning about this greatest fixpoint [9]. Those various
results are technically involved, so that formalising them in a proof assistant in order to
extend the aforementioned reflexive tactics would require an important work.

Theory of enhanced coinduction in complete lattices

For predicates, the theory of coinduction can be expressed in complete lattices, starting
from Knaster-Tarski’s theorem [12, 25]: every monotone function b in a complete lattice
admits a greatest fixpoint νb. Enhancements, or up-to techniques, have been studied by
Sangiorgi [23, 24]. Given a function b, the idea is to find other functions b′ that are easier to
use, and such that νb′ = νb. A recent proposal [19] consists in using the function b′ = bt,
where t, the companion of b is the largest function f such that fb ≤ bf . This simple idea
greatly simplifies the whole theory: the companion is a closure operator and it intuitively
contains all potential enhancements. It moreover makes it possible present coinductive proofs
on the fly, without needing to announce the invariant upfront – a important feature when it
comes of formalisation in proof assistants [11].

Theory of enhanced coinduction in category theory

Streams of real numbers form the final coalgebra for the functor BX = R × X. This
observation makes it possible to define streams corecursively: it suffices to provide a coalgebra
for B. The constant streams, the stream nat of natural numbers, and the pointwise addition
of streams can be defined in this way. Note that for nat, one has to define a coalgebra
that provides not only nat, but also all its suffixes; this is point 2/ above: one has to
provide a strong enough invariant. In slightly more involved situations, one has to use a
stronger corecursion principle (point 1/ above). This the case for the convolution product,
whose natural definition builds on addition [22]. A standard solution[16, 1] consists in
using distributive laws λ : FB ⇒ BF , and such techniques were recently implemented in
Isabelle/HOL [2]. Given the aforementioned situation in complete lattices, one can naturally
ask whether there exists a “largest” such distributive law, a companion T for B [21]. If it
exists, the companion is a monad; if B preserves the codensity monad of its final sequence,
then the companion is that codensity; this is the case for polynomial functors, and in this
case the companion can be characterised in terms of causal algebras on the final coalgebra.
An intriguing open question is whether the finite powerset functor admits a companion.
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