
Coinduction: Automata, Formal Proof,
Companions
Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
http://perso.ens-lyon.fr/damien.pous/
Damien.Pous@ens-lyon.fr

Abstract
Coinduction is a mathematical tool that is used pervasively in computer science: to program and
reason about infinite data-structures, to give semantics to concurrent systems, to obtain automata
algorithms. We present some of these applications in automata theory and in formalised mathematics.
Then we discuss recent developments on the abstract theory of coinduction and its enhancements.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Coinduction, Automata, Coalgebra, Formal proofs

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.4

Category Invited Paper

Funding This work has been funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157).

Induction and coinduction

Induction and coinduction are used in two main ways in computer science: to define datatypes
and compute with those, and to define predicates and reason about them. The former can be
presented using category theory: inductive datatypes such as natural numbers, lists, or trees
can be modelled as initial algebras, while coinductive datatypes such as streams, infinite
trees, automata, or labelled transitions systems can be modelled as final coalgebras. In
contrast, we use lattice theory for predicates: inductive predicates such as reachability or
derivability in a proof system are presented as least fixpoints while coinductive predicates
such as divergence, bisimilarity, or language equivalence, are presented as greatest fixpoints.

When doing a proof by induction, one has to be careful about two things: 1/ choosing
an appropriate induction principle (e.g., simple induction, rank-2 induction, or course of
value induction), and 2/ choosing a strong enough invariant. We shall see that the very same
observation applies with coinduction.

Automata algorithms

Take for instance algorithms for checking language equivalence of finite deterministic automata.
Language equivalence can be characterised as a greatest fixpoint, so that it can be checked
using a coinductive algorithm: start from a relation consisting of the pair of initial states,
and widen this relation until it becomes a bisimulation [5]. This iterative process corresponds
to point 2/ above: we iteratively refine an initial guess until we get a proper invariant. Such
an algorithm can be made more efficient by choosing a more powerful coinduction principle,
e.g., bisimulations up to equivalence, or bisimulations up to congruence for non-deterministic
automata; this is point 1/ above.

© Damien Pous;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 4; pp. 4:1–4:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1220-4399
http://perso.ens-lyon.fr/damien.pous/
mailto:Damien.Pous@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.CALCO.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Coinduction: Automata, Formal Proof, Companions

Formal proofs and equational theories

Coinduction can be used for many automata algorithms, which in turn can be used in the
context of formal proofs, to improve automation and delegate administrative steps to the
computer. Indeed, several equational theories can be decided by characterising them in terms
of language equivalence. The key example is that of Kleene algebra: this (quasi)equational
theory admits binary relations and formal languages as free models [13, 15, 4], and is decidable
in PSpace using automata algorithms. Therefore, proof obligations corresponding to this
fragment can be discharged automatically in proof assistants [6], using so-called reflexive
tactics. Another important theory is that of Kleene algebra with tests (KAT) [14], which can
be decided using automata on guarded strings. This was used successfully to reason about
while programs and flowchart schemes in the Coq proof assistant [18].

Other theories include Kleene algebra with converse [3, 10], Kleene allegories [7, 17], and
concurrent Kleene algebra [8]. Those respectively require working with downward-closed
languages, languages of graphs, and languages of partially ordered multisets (pomsets) [20].
Decidability can be obtained by designing appropriate automata models, and by character-
ising language equivalence as a greatest fixpoint (a coinductive predicate). In some cases,
completeness can be obtained by reasoning about this greatest fixpoint [9]. Those various
results are technically involved, so that formalising them in a proof assistant in order to
extend the aforementioned reflexive tactics would require an important work.

Theory of enhanced coinduction in complete lattices

For predicates, the theory of coinduction can be expressed in complete lattices, starting
from Knaster-Tarski’s theorem [12, 25]: every monotone function b in a complete lattice
admits a greatest fixpoint νb. Enhancements, or up-to techniques, have been studied by
Sangiorgi [23, 24]. Given a function b, the idea is to find other functions b′ that are easier to
use, and such that νb′ = νb. A recent proposal [19] consists in using the function b′ = bt,
where t, the companion of b is the largest function f such that fb ≤ bf . This simple idea
greatly simplifies the whole theory: the companion is a closure operator and it intuitively
contains all potential enhancements. It moreover makes it possible present coinductive proofs
on the fly, without needing to announce the invariant upfront – a important feature when it
comes of formalisation in proof assistants [11].

Theory of enhanced coinduction in category theory

Streams of real numbers form the final coalgebra for the functor BX = R × X. This
observation makes it possible to define streams corecursively: it suffices to provide a coalgebra
for B. The constant streams, the stream nat of natural numbers, and the pointwise addition
of streams can be defined in this way. Note that for nat, one has to define a coalgebra
that provides not only nat, but also all its suffixes; this is point 2/ above: one has to
provide a strong enough invariant. In slightly more involved situations, one has to use a
stronger corecursion principle (point 1/ above). This the case for the convolution product,
whose natural definition builds on addition [22]. A standard solution[16, 1] consists in
using distributive laws λ : FB ⇒ BF , and such techniques were recently implemented in
Isabelle/HOL [2]. Given the aforementioned situation in complete lattices, one can naturally
ask whether there exists a “largest” such distributive law, a companion T for B [21]. If it
exists, the companion is a monad; if B preserves the codensity monad of its final sequence,
then the companion is that codensity; this is the case for polynomial functors, and in this
case the companion can be characterised in terms of causal algebras on the final coalgebra.
An intriguing open question is whether the finite powerset functor admits a companion.



D. Pous 4:3

References
1 F. Bartels. On generalised coinduction and probabilistic specification formats. PhD thesis,

CWI, Amsterdam, April 2004.
2 Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, and

Dmitriy Traytel. Friends with Benefits - Implementing Corecursion in Foundational Proof
Assistants. In ESOP, volume 10201 of LNCS, pages 111–140. Springer, 2017. doi:10.1007/
978-3-662-54434-1_5.

3 S. L. Bloom, Z. Ésik, and G. Stefanescu. Notes on equational theories of relations. Algebra
Universalis, 33(1):98–126, 1995. doi:10.1007/BF01190768.

4 Maurice Boffa. Une remarque sur les systèmes complets d’identités rationnelles. Informatique
Théorique et Applications, 24:419–428, 1990. URL: http://archive.numdam.org/article/
ITA_1990__24_4_419_0.pdf.

5 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In POPL, pages 457–468. ACM, 2013. doi:10.1145/2429069.2429124.

6 Thomas Braibant and Damien Pous. Deciding Kleene Algebras in Coq. LMCS, 8(1):1–16,
2012. doi:10.2168/LMCS-8(1:16)2012.

7 Paul Brunet and Damien Pous. Petri automata for Kleene allegories. In LICS, pages 68–79.
ACM, 2015. doi:10.1109/LICS.2015.17.

8 Paul Brunet, Damien Pous, and Georg Struth. On decidability of Concurrent Kleene Algebra.
In CONCUR, volume 85 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl, 2017. doi:10.4230/
LIPIcs.CONCUR.2017.28.

9 Amina Doumane and Damien Pous. Completeness for identity-free Kleene Lattices. In
CONCUR, volume 118 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl, 2018. doi:10.4230/
LIPIcs.CONCUR.2018.18.

10 Z. Ésik and L. Bernátsky. Equational properties of Kleene algebras of relations with conversion.
Theoretical Computer Science, 137(2):237–251, 1995. doi:10.1016/0304-3975(94)00041-G.

11 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization
in coinductive proof. In POPL, pages 193–206. ACM, 2013. doi:10.1145/2429069.2429093.

12 B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de
Mathématiques, 6:133–134, 1928.

13 D. Kozen. A Completeness Theorem for KLeene Algebras and the Algebra of Regular Events.
Information and Computation, 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

14 D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,
19(3):427–443, May 1997. doi:10.1145/256167.256195.

15 Daniel Krob. A Complete System of B-Rational Identities. In ICALP, volume 443 of LNCS,
pages 60–73. Springer, 1990. doi:10.1007/BFb0032022.

16 Marina Lenisa, John Power, and Hiroshi Watanabe. Distributivity for endofunctors, pointed
and co-pointed endofunctors, monads and comonads. Electronical Notes in Computer Science,
33:230–260, 2000. doi:10.1016/S1571-0661(05)80350-0.

17 Yoshiki Nakamura. Partial derivatives on graphs for Kleene allegories. In LiCS, pages 1–12.
IEEE, 2017. doi:10.1109/LICS.2017.8005132.

18 Damien Pous. Kleene Algebra with Tests and Coq tools for while programs. In ITP, volume
7998 of LNCS, pages 180–196. Springer, 2013. doi:10.1007/978-3-642-39634-2_15.

19 Damien Pous. Coinduction all the way up. In LICS, pages 307–316. ACM, 2016. doi:
10.1145/2933575.2934564.

20 Damien Pous. On the positive calculus of relations with transitive closure. In STACS, volume 96
of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl, 2018. doi:10.4230/LIPIcs.STACS.2018.3.

21 Damien Pous and Jurriaan Rot. Companions, Codensity, and Causality. In FoSSaCS, volume
10203 of LNCS. Springer, 2017. Extended version at https://arxiv.org/abs/1712.08526.
doi:10.1007/978-3-662-54458-7_7.

22 Jan J. M. M. Rutten. A coinductive calculus of streams. Math. Struct. in Comp. Sci.,
15(1):93–147, 2005. doi:10.1017/S0960129504004517.

CALCO 2019

https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/BF01190768
http://archive.numdam.org/article/ITA_1990__24_4_419_0.pdf
http://archive.numdam.org/article/ITA_1990__24_4_419_0.pdf
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.2168/LMCS-8(1:16)2012
https://doi.org/10.1109/LICS.2015.17
https://doi.org/10.4230/LIPIcs.CONCUR.2017.28
https://doi.org/10.4230/LIPIcs.CONCUR.2017.28
https://doi.org/10.4230/LIPIcs.CONCUR.2018.18
https://doi.org/10.4230/LIPIcs.CONCUR.2018.18
https://doi.org/10.1016/0304-3975(94)00041-G
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/BFb0032022
https://doi.org/10.1016/S1571-0661(05)80350-0
https://doi.org/10.1109/LICS.2017.8005132
https://doi.org/10.1007/978-3-642-39634-2_15
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.4230/LIPIcs.STACS.2018.3
https://arxiv.org/abs/1712.08526
https://doi.org/10.1007/978-3-662-54458-7_7
https://doi.org/10.1017/S0960129504004517


4:4 Coinduction: Automata, Formal Proof, Companions

23 D. Sangiorgi. On the Bisimulation Proof Method. Math. Struct. in Comp. Sci., 8:447–479,
1998. doi:10.1017/S0960129598002527.

24 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

25 A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal of
Mathematics, 5(2):285–309, June 1955.

https://doi.org/10.1017/S0960129598002527

