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Abstract
Uppaal-Stratego is a recent branch of the verification tool Uppaal allowing for synthesis of safe
and optimal strategies for stochastic timed (hybrid) games. We describe newly developed learning
methods, allowing for synthesis of significantly better strategies and with much improved convergence
behaviour. Also, we describe novel use of decision trees for learning orders-of-magnitude more
compact strategy representation. In both cases, the seek for optimality does not compromise safety.
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1 UPPAAL Stratego

Cyber-physical systems are often safety-critical and hence strong guarantees on their safety
are paramount. Besides, resource efficiency and the quality of the delivered service are strong
requirements and the behavior needs also to be optimized with respect to these objectives,
of course, within the bounds of what is still safe. In order to achieve this, controllers of
such systems can be either implemented manually or automatically synthesized. In the
former case, due to the complexity of the system, coming up with a controller that is safe
is difficult, even more so with the additional optimization requirement. In the latter case,
the synthesis may succeed with significantly less effort, though the requirement on both
safety and optimality is still a challenge for current synthesis methods. However, due to
the size of the systems, the produced controllers may be very complex, hard to understand,
implement, modify, or even just output. Indeed, even for moderately sized systems, we can
easily end up with gigabytes-long descriptions of their controllers (in the algorithmic context
called strategies).

In [5, 6], we introduced Uppaal-Stratego, a branch of Uppaal allowing for synthesis of
safe and optimal strategies for stochastic (priced) timed games (STG). The process of using
Uppaal-Stratego is depicted in Fig. 1. First, the STG G is abstracted into a 2-player
(non-stochastic) timed game T G, ignoring any stochasticity of the behaviour. Next, the
Uppaal-Tiga [3] is used to synthesize a safe strategy σsafe for T G and the safety specification
ϕ. After that, the safe strategy is applied on G to obtain G � σsafe. It is now possible to
perform reinforcement learning on G � σsafe in order to iteratively learn a sub-strategy σfast
that will optimize the expectated value of given quantitative cost, given as a run-based
expressions (formally defining a random variable over runs).
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Figure 1 Uppaal-Stratego original workflow.

2 Better and Faster Learning

Though Uppaal-Stratego on a number of practical examples [10, 11, 13, 12, 7] has already
demonstrated its ability to learn near-optimal strategies, we have recently improved Uppaal-
Stratego in a number of ways. Firstly, the run-based reinforcement learning method used
in Uppaal-Stratego is a continuous-time extension of the method in [8]. This method
is known to be possibly caught in local optima and not necessarily converge towards the
overall optimal strategy. In recent work [9], we show that we can significantly improve with
respect to this existing method of Uppaal-Stratego both in terms of the quality of the
the learned strategy, as well as in obtaining overall improved convergence characteristics as a
function of the data size. The new learning methods in [9] are refinement based learning
methods for continuous models: one based on Q-learning [15] and one related to Real Time
Dynamic Programming [14, 2].

3 Compact Strategies

Aiming at using the synthesized strategies as control programs to be executed on small
embedded platforms an important issue is how to encode compactly the synthesized strategies.
For this purpose algorithmic methods have been devised to take into account both compos-
itionality [4] as well as partial observability. Although neural network representations of
strategies are attractive from a memory foot-print point of view, they may easily destroy
the guarantee of safety. In [1], we introduce a new alternative method for learning compact
representations of strategies in the form of decision trees. These decision trees are much
smaller, more understandable, and can easily be exported as code that can be loaded into
embedded systems. Despite the size compression and actual differences to the original
strategy, we provide guarantees on both safety and optimality of the decision-tree strategy.
On the top, we showed how to obtain yet smaller representations, which are still guaranteed
safe, but achieve a desired trade off between size and optimality. Finally, we consider two
case studies, one of them the cruise control from [13, 12], showing size reductions of two
orders of magnitude, and quantify the additional size-performance trade-off.

We summarize the end-to-end work flow of Uppaal-Stratego+ for obtaining a safe,
optimal and compact strategy from the model, a safety specification and an optimization
query, see Fig. 2. Uppaal-Tiga is used to generate the most-permissive safety strategy σsafe
for the given safety specification ϕ. Now we can either use the standard Uppaal-Stratego
workflow to generate the optimal strategy σopt and then learn a decision tree for this, as
depicted on the right path of Fig. 2; or take the new approach following the left branch in
Fig. 2. Here, we first learn a DT T k,p

σsafe
from σsafe using so-called minimum splitting size k

and p rounds of safe pruning. This DT is smaller than the one representing σsafe exactly,
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Figure 2 Uppaal-Stratego+workflow. The dark orange nodes are the additions to the original
workflow, which now involve DT learning, the yellow-shaded area delimits the desired safe, optimal,
and compact strategy representations.

and the described strategy is less permissive. By restricting the game to this strategy and
using Uppaal-Stratego to get the optimal strategy, we get a smaller, but less performant
strategy σk,popt that is then output as DT T k,p

opt . In both cases, the resulting DT is safe by
construction since we allow the DT to predict only pure actions (actions allowed by all
configurations in a leaf). We convert these trees into a nested-if-statements-code, which can
easily be loaded onto embedded systems.

4 On-line Learning

Finally, on-line methods for strategy synthesis/learning has been successfully applied in
diverse domains such as heating systems [11] and intelligent traffic control [7]. The on-line
method has the distinct advantages of not needing to store any strategy (as it is constantly
computed during operation) but may be too slow to meet response-frequency of a given
domain (e.g. in the order of milli-seconds for switched controllers for power electronics or
adaptive cruice controls). Thus, we are investigating ways of making the on-line computations
more efficient.
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