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Abstract
In this paper, we study one-player and two-player energy mean-payoff games. Energy mean-payoff
games are games of infinite duration played on a finite graph with edges labeled by 2-dimensional
weight vectors. The objective of the first player (the protagonist) is to satisfy an energy objective on
the first dimension and a mean-payoff objective on the second dimension. We show that optimal
strategies for the first player may require infinite memory while optimal strategies for the second
player (the antagonist) do not require memory. In the one-player case (where only the first player
has choices), the problem of deciding who is the winner can be solved in polynomial time while
for the two-player case we show co-NP membership and we give effective constructions for the
infinite-memory optimal strategies of the protagonist.
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1 Introduction

Graph games with ω-regular objectives are a canonical mathematical model to formalize
and solve the reactive synthesis problem [33]. Extensions of graph games with quantitative
objectives have been considered more recently as a model where, not only the correctness,
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21:2 Energy Mean-Payoff Games

but also the quality of solutions for the reactive synthesis problem can be formalized and
optimized. A large effort has been invested in studying games with various kinds of objectives,
see e.g. [5, 12, 15, 19, 21, 22, 25, 35, 36], see also Chapter 27 of [3] and the survey [13].

Two particularly important classes of objectives are mean-payoff and energy objectives.
In a mean-payoff game, the edges of the game graph are labeled with integer weights that
model payoffs received by the first player (the protagonist) and paid by the second player (the
antagonist) when the edge is taken. The game is played for infinitely many rounds, and the
protagonist aims at maximizing the mean value of edges traversed during the game while the
antagonist tries to minimize this mean value. Mean-payoff games have been studied in [25]
where it is shown that memoryless optimal strategies exist for both players. As a corollary
of this result, mean-payoff games can be decided in NP ∩ co-NP. While pseudo-polynomial
time algorithms for solving mean-payoff games have been developed in [12, 36] as well as the
recent pseudo-quasi-polynomial time algorithm in [24], it is a long standing open question
whether or not those games can be solved in polynomial time. Energy games were defined
more recently in [16]. In an energy game, edges are also labeled with integer weights that
represent gains or losses of energy. In such a game, the protagonist tries to build an infinite
path for which the total sum of energy in all the prefixes is bounded from below, while the
antagonist has the opposite goal. Energy games can also be decided in NP ∩ co-NP and it is
known that they are inter-reducible with mean-payoff games [5].

Energy mean-payoff games that combine an energy and a mean-payoff objectives have
not been yet studied. This is the main goal of this paper. It is a challenging problem
for several reasons. First, multi-dimensional homogeneous extensions of mean-payoff and
energy games have been studied in a series of recent contributions [21, 29, 34, 35], and
those works show that when going from one dimension to several, the close relationship
between mean-payoff games and energy games is lost and specific new techniques need to
be designed for solving those extensions. Second, pushdown mean-payoff games have been
studied in [22] and shown to be undecidable. Decision problems for energy mean-payoff
games can be reduced to decision problems of pushdown mean-payoff games, even to the
subclass of pushdown mean-payoff games with a one-letter stack alphabet. Unfortunately,
pushdown mean-payoff games are undecidable in general and to the best of our knowledge
the one-letter stack alphabet case has not been studied.

Main contributions. In this paper, we prove that energy mean-payoff games are decidable.
More precisely, their decision problems lie in co-NP (Theorem 7) for both cases of strict and
non-strict inequality in the threshold constraint for the mean-payoff objective. To obtain
this result, we first study one-player energy mean-payoff games and characterize precisely
the game graphs in which P1 (the protagonist) can build an infinite path that satisfies the
energy mean-payoff objective (Theorem 5 and Theorem 6). This characterization leads to
polynomial time algorithms to solve the decision problems in the one-player case (Theorem 3).
Then we show that in two-player energy mean-payoff games memoryless optimal strategies
always exist for P2 (the antagonist) who aims at spoiling the energy mean-payoff objective of
P1 (Proposition 8). Combined with the polynomial time algorithms for the one-player case,
this result leads to co-NP membership of the decision problems. While the memoryless result
for P2 allows us to understand how this player should play in energy mean-payoff games, it
does not prescribe how P1 should play from winning vertices. To show how to effectively
construct optimal strategies for P1, we consider a reduction to 4-dimensional energy games
in case of strict inequality for mean-payoff objective (Proposition 12). With the result of [29],
this implies the existence of finite-memory strategies for P1 to play optimally and of a
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pseudo-polynomial time algorithm to solve those instances. For non-strict inequalities, this
reduction cannot be applied as, even for the one-player case, infinite-memory strategies are
sometimes necessary to play optimally. In this case, we show how we can combine an infinite
number of finite-memory strategies, that are played in sequence, in order to play optimally
(Proposition 13).

Related work. As already mentioned, multi-dimensional conjunctive extensions of mean-
payoff games and multi-dimensional conjunctive extensions of energy games have been
considered [18, 21, 35]. Deciding the existence of a winning strategy for P1 in those games is
co-NP-complete. Games with any Boolean combination of mean-payoff objectives have been
shown undecidable in [34]. Games with mean-payoff objectives and ω-regular constraints
have been studied in [20], while games with energy objectives and ω-regular constraints have
been studied in [17], and their multi-dimensional extensions in [2, 21, 23].

In [29], the authors have studied multi-dimensional energy games for the fixed initial
credit and provided a pseudo-polynomial time algorithm to solve them when the number
of dimensions is fixed. Energy games with bounds on the energy level have been studied
in [26, 28]. Games with the combination of an energy objective and an average-energy
objective are investigated in [6, 7]. This seemingly related class of games is actually quite
different from the energy mean-payoff games studied in this paper: e.g., they are EXPSPACE-
hard whereas our games are in co-NP. Infinite-state energy games are investigated in [1]
where energy objectives are studied on infinite game structures, induced by one-counter
automata or pushdown automata. Some work on other models dealing with energy have
been studied, as battery edge systems [4] and consumption games [8]. In the latter games,
minimization of running costs have also been investigated [10]. Optimizing the expected
mean-payoff in energy MDP’s have been studied in [11]. In [32], Kucera presents an overview
of results related to games and counter automata, which are close to energy constraints.

We now discuss mean-payoff pushdown games [22] in more details. In those games, a
stack is associated with a finite game structure, and players move from vertex to vertex while
applying operations on the stack. Those operations are push a letter, pop a letter or skip and
can be respectively represented with weights 1, −1 and 0. The authors show that one-player
pushdown games can be solved in polynomial time, thanks to the existence of pumpable paths.
Moreover, already in this case, P1 needs infinite memory to win in mean-payoff pushdown
games. In the two-player setting, determining the winner is undecidable. Doing a straight
reduction of one-player energy mean-payoff games to one-player mean-payoff pushdown games
would lead to a pseudo-polynomial solution, whereas we show here that we can solve the
former games in polynomial time. In addition, we cannot use the concept of pumpable paths
to obtain those results as the construction of [22] is inherent to the behavior of the stack
of mean-payoff pushdown games. Indeed, after one step, the height of the stack can only
change of one unity (+1,−1, 0), whereas in energy mean-payoff games, the energy level can
vary from −W to +W , for an arbitrarily large integer W ∈ N.

Structure of the paper. In Sect. 2, we introduce the necessary notations and preliminaries
to this work. In Sect. 3, we study the one-player energy mean-payoff games. In Sect. 4, we
study the two-player energy mean-payoff games.
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21:4 Energy Mean-Payoff Games

2 Preliminaries

In this section, we introduce energy mean-payoff games and the related decision problems
studied in this paper.

Games structures. A game structure is a weighted directed graph G = (V, V1, V2, E, w)
such that V1, V2 form a partition of the finite set V , Vi is the set of vertices controlled by
player Pi , i ∈ {1, 2}, E ⊆ V × V is the set of edges such that for all v ∈ V , there exists
v′ ∈ V such that (v, v′) ∈ E, and w = (w1, w2) : E → Z2 is a weight function that assigns
a pair of weights w(e) = (w1(e), w2(e)) to each edge e ∈ E. In the whole paper, we denote
by |V | the number of vertices of V , by |E| the number of edges of E, and by ||E|| ∈ N0 the
largest absolute value used by the weight function w. We say that a game structure is a
player-i game structure when player Pi controls all the vertices, that is, Vi = V .

A play in G from an initial vertex v0 is an infinite sequence ρ = ρ0ρ1 . . . ρk . . . of vertices
such that ρ0 = v0 and (ρk, ρk+1) ∈ E for all k ≥ 0. A factor of ρ, denoted by ρ[k, `], is the
finite sequence ρkρk+1 . . . ρ`. When k = 0, we say that ρ[0, `] is the prefix of length ` of ρ.
The suffix ρkρk+1 . . . of ρ is denoted by ρ[k,∞]. The set of plays in G is denoted by Plays(G)
or simply Plays. A path or a cycle is simple if there are no two occurrences of the same vertex
(except for the first and last vertices in the cycle). A multicycle C is a multiset of simple
cycles (that may or may not be connected to each other). We extend the weight function w
to paths (resp. cycles, multicycles) as the sum w(π) = (w1(π), w2(π)) of the weights of their
edges. In particular, for a multicycle C, we have w(C) =

∑
π∈C w(π).

Given a path π = π0π1 · · ·πn, we consider its cycle decomposition into a multiset of simple
cycles as follows. We push successively vertices π0, π1, . . . onto a stack. Whenever we push a
vertex π` equal to a vertex πk already in the stack, i.e. a simple cycle C = πk · · ·π` is formed,
we remove this cycle from the stack except πk (we remove all the vertices until reaching πk
that we let in the stack) and add C to the cycle decomposition multiset of π. The cycle
decomposition of a play ρ = ρ0ρ1 . . . is defined similarly.

For each dimension j ∈ {1, 2}, the weight or energy level of the prefix ρ[0, k] of a play ρ is
wj(ρ[0, k]), and the mean-payoff-inf (resp. mean-payoff-sup) of ρ is MPj(ρ) = lim infk→∞ 1

k ·
wj(ρ[0, k]) (resp. MPj(ρ) = lim supk→∞ 1

k · wj(ρ[0, k])). The following properties hold for
both mean-payoff values. First, they are prefix-independent, that is, MPj(πρ) = MPj(ρ) and
MPj(πρ) = MPj(ρ) for all finite paths π. Second for a play ρ = ρ0 . . . ρk−1(ρk . . . ρl)ω that is
eventually periodic, its mean-payoff-inf and mean-payoff-sup values coincide and are both
equal to the average weight of the cycle ρk . . . ρlρk, that is, 1

l−k+1 · wj(ρk . . . ρlρk).

Strategies. Given a game structure G, a strategy σi for player Pi is a function V ∗ · Vi → V

that assigns to each path πv ending in a vertex v ∈ Vi a vertex v′ such that (v, v′) ∈ E.
Such a strategy σi is memoryless if it only depends on the last vertex of the path, i.e.
σi(πv) = σi(π′v) for all πv, π′v ∈ V ∗ · Vi. It is a finite-memory strategy if it can be encoded
by a deterministic Moore machine M = (M,m0, αU , αN ) where M is a finite set of states
(the memory of the strategy), m0 ∈M is an initial memory state, αU : M × V →M is an
update function, and αN : M × Vi → V is a next-move function. Such a machine defines a
strategy σi such that σi(πv) = αN (α̂U (m0, π), v) for all paths πv ∈ V ∗ ·Vi, where α̂U extends
αU to paths as expected. The memory size of σi is then the size |M | ofM. In particular σi
is memoryless when it has memory size one.

Given a strategy σi for Pi, a play ρ is consistent with σi if for all its prefixes ρ[0, k] ∈ V ∗ ·Vi,
we have ρk+1 = σi(ρ[0, k]). A finite path π consistent with σi is defined similarly. Given a
finite-memory strategy σi and its Moore machineM, we denote by G(σi) the game structure
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obtained as the product of G withM. Notice that the set of plays from an initial vertex v0
that are consistent with σi is then exactly the set of plays in G(σi) starting from (v0,m0)
where m0 is the initial memory state ofM.

Objectives. Given a game structure G and an initial vertex v0, an objective for player P1
is a set of plays Ω ⊆ Plays(G). Given a strategy σ1 for P1, we say that σ1 is winning for P1
from v0 if all plays ρ ∈ Plays(G) from v0 that are consistent with σ1 satisfy ρ ∈ Ω. Given a
strategy σ2 for P2, we say that σ2 is winning for P2 from v0 if all plays ρ ∈ Plays(G) from
v0 that are consistent with σ2 satisfy ρ 6∈ Ω.

We here consider the following objectives for dimension j ∈ {1, 2}:
Energy objective. Given an initial credit c0 ∈ N, the objective Energyj(c0) = {ρ ∈
Plays(G) | ∀k ≥ 0, c0 + wj(ρ[0, k]) ≥ 0} requires that the energy level remains always
nonnegative in dimension j.
Mean-payoff-inf objective. The objective MPj(∼ 0) = {ρ ∈ Plays(G) | MPj(ρ) ∼ 0} with
∼ ∈ {>,≥} requires that the mean-payoff-inf value is ∼ 0 in dimension j.
Mean-payoff-sup objective. The objective MPj(∼ 0) = {ρ ∈ Plays(G) | MPj(ρ) ∼ 0} with
∼ ∈ {>,≥} requires that the mean-payoff-sup value is ∼ 0 in dimension j.

Notice that it is not a restriction to work with threshold 0 in mean-payoff-inf/sup
objectives. Indeed arbitrary thresholds a

b ∈ Q can be reduced to threshold 0 by replacing
the weight function w of G by the function b · w − a.

Decision problems. In this paper we consider the following four variants of a decision
problem implying an energy objective on the first dimension and a mean-payoff objective on
the second dimension. Let ∼ ∈ {>,≥}:

The energy mean-payoff decision problem E ∩MP∼0 asks, given a game structure G and
an initial vertex v0, to decide whether there exist an initial credit c0 ∈ N and a winning
strategy σ1 for player P1 from v0 for the objective Ω = Energy1(c0) ∩MP2(∼ 0).
The energy mean-payoff decision problem E ∩MP∼0 asks, given a game structure G and
an initial vertex v0, to decide whether there exist an initial credit c0 ∈ N and a winning
strategy σ1 for player P1 from v0 for the objective Ω = Energy1(c0) ∩MP2(∼ 0).

In this context, we also use the terminology of energy mean-payoff objectives or energy
mean-payoff games. Let us give two illustrating examples.

I Example 1. Consider the player-1 game structure G depicted in Figure 1. Consider the
cycle C = v0v0v0v1v1v1v0 that loops twice on v0, goes to v1, loops twice on v1, and comes
back to v0. Observe that w(C) = (w1(C), w2(C)) = (0, 2). Hence P1 has a winning strategy,
that consists in looping forever in this cycle C, for all four variants of the energy mean-payoff
decision problem.

I Example 2. Consider now the player-1 game structure G depicted in Figure 2. It differs
from the previous game structure only by the weight (−1, 1) (instead of (−1, 3)) of the edge
(v1, v1). We claim that P1 has no winning strategy for any of the two decision problems
E ∩MP>0 and E ∩MP>0. We will explain why in Section 3. However P1 has a winning
strategy for both problems E ∩MP≥0 and E ∩MP≥0 with initial credit c0 = 0. Such a
strategy consists in repeatedly executing the following round, with Z = 1 initially, and Z
incremented by 1 after each round: loop Z times on v0, go to v1, loop Z times on v1, and
come back to v0. Such a strategy with infinite memory is clearly winning for the energy
objective. It is also winning for the mean-payoff-inf objective because with Z increased by 1
at each round, the cost of moving from v0 to v1 and from v1 to v0 becomes negligible.

CONCUR 2019



21:6 Energy Mean-Payoff Games

No finite-memory strategy is winning in this case. Indeed assume the contrary: there
exists a winning strategy that induces a cycle C in which it loops forever. This cycle
necessarily uses both simple cycles C0 = (v0, v0) and C1 = (v1, v1) as the strategy is winning.
As these cycles are not connected, C has to also use the simple cycle C3 = (v0, v1, v0). As
w(C1) = −w(C2) and w(C3) = (0,−2), it is easy to see that it is impossible that this strategy
satisfies both energy and mean-payoff-inf/sup objectives simultaneously.

v0 v1

(0,−1)

(0,−1)

(−1,3)(1,−1)

Figure 1 Energy mean-payoff game where
P1 wins with finite memory for problems
E ∩MP>0 and E ∩MP>0.

v0 v1

(0,−1)

(0,−1)

(−1,1)(1,−1)

Figure 2 Energy mean-payoff game where
P1 needs infinite memory to win for problems
E ∩MP≥0 and E ∩MP≥0.

3 One-player setting

Within this section, we investigate player-1 game structures, that is, game structures where
player P1 is the only one to play. In this context, P1 has a winning strategy for the energy
mean-payoff objective for some initial credit c0 if and only if there exists a play belonging to
this objective. For player-1 game structures, we show that the energy mean-payoff decision
problem can be solved in polynomial time for all of its four variants. However depending
on the used relation ∼ ∈ {>,≥} for the mean-payoff objective, memory requirements for
winning strategies of P1 differ. We already know that P1 needs infinite memory in case of
non-strict inequalities by Example 2. In case of strict inequalities, we show that finite-memory
strategies are always sufficient for P1, as in Example 1. All these results will be useful in
Section 4 when we will investigate the general case of two-player energy mean-payoff games.

I Theorem 3. The energy mean-payoff decision problem for player-1 game structures can
be solved in polynomial time. Moreover,

for both problems E ∩MP>0 and E ∩MP>0, pseudo-polynomial-memory strategies are
sufficient and necessary for P1 to win;
for both problems E ∩MP≥0 and E ∩MP≥0, in general, P1 needs infinite memory to win.

To prove Theorem 3, we characterize the existence of a winning strategy for P1 for some
initial credit c0 by the existence of a particular cycle or multicycle, that we call good.

I Definition 4. Let G be a game structure and v0 be an initial vertex.
We say that a cycle C is a good cycle if w1(C) ≥ 0 and w2(C) > 0. A good cycle C is
reachable if it is reachable from v0.
We say that a multicycle C is a good multicycle if w1(C) ≥ 0 and w2(C) ≥ 0. A good
multicyle C is reachable if all its simple cycles are in the same connected component
reachable from v0.

There exists a simple characterization of the existence of a winning strategy for P1 for
either the objective Energy1(c0) ∩ MP2(> 0) or the objective Energy1(c0) ∩ MP2(> 0) for
some initial credit c0: both are equivalent to the existence of a reachable good cycle.
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I Theorem 5. Let G be a player-1 game structure and v0 be an initial vertex. The following
assertions are equivalent.
1. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(> 0).
2. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(> 0).
3. There exists a reachable good cycle.

In case of non-strict inequalities, there exists also a simple characterization: P1 can win
for either the objective Energy1(c0) ∩MP2(≥ 0) or the objective Energy1(c0) ∩MP2(≥ 0) for
some initial credit c0 if and only if there exists a reachable good multicycle.

I Theorem 6. Let G be a player-1 game structure and v0 be an initial vertex. The following
assertions are equivalent.
1. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(≥ 0).
2. There exist an initial credit c0 and a winning strategy for P1 from v0 for the objective

Energy1(c0) ∩MP2(≥ 0).
3. There exists a reachable good multicycle.

A similar characterization appears for multi-mean-payoff games and multi-energy games
studied in [35]: when the objective is an intersection of several mean-payoff-inf objectives
(resp. several energy objectives), and when he plays alone, P1 has a winning strategy if and
only if there exists a reachable non negative multicycle (resp. a reachable non negative cycle)
in the game structure. Nevertheless, the proofs of those results differ substantially from the
proofs of our results.

Due to the lack of space, we only give the main ideas of the proofs (see [14] for more details):
1. We begin by illustrating the statements of Theorems 5 and 6 with the two previous

examples. Let us first come back to the game structure of Figure 1. The cycle C
mentioned in Example 1 is a reachable good cycle since w(C) = (0, 2). By Theorem 5,
it follows that P1 is winning for the energy mean-payoff decision problem with strict
inequalities (and thus also with non-strict inequalities), as already observed in Example 1.
Let us now come back to the game structure of Figure 2. Recall from Example 2 that
there exists a winning strategy for P1 in case of non-strict inequalities, but no winning
strategy in case of strict inequalities. By Theorem 6, there should exist a reachable
good multicycle. Indeed, consider the multicycle C = {C,C ′} with C = (v0, v0) and
C ′ = (v1, v1): we have w(C) = w(C) + w(C ′) = (1,−1) + (−1, 1) = (0, 0). Moreover by
Theorem 5, there is no reachable good cycle in this game.

2. By Theorems 5 and 6, solving the energy mean-payoff decision problem reduces to decide
whether there exists a reachable good cycle (resp. multicycle). This can be tested in
polynomial time thanks to a variant of a result in [31] that states that deciding the
existence of a cycle (resp. multicycle) of weight (0, 0) can be done in polynomial time.
This established the polynomial complexity stated in Theorem 3.

3. Theorem 5 is proved as follows. For Implication (3) ⇒ (1), a winning strategy for P1
consists in reaching the good cycle and looping in it forever. Implication (1) ⇒ (2) is
trivial since MP2(ρ) ≥ MP2(ρ) for all plays ρ. However, the proof of Implication (2)⇒ (3)
is rather technical, it is thus detailed in [14].

4. The proof of Theorem 6 requires a more precise characterization by good cycles and
multicycles. We show that the existence of a good cycle is equivalent to the existence of

CONCUR 2019



21:8 Energy Mean-Payoff Games

either one good cycle that is simple,
or two simple cycles C, C ′ with respective weight vectors w(C) = (−x, y) and w(C ′) =
(x′,−y′) that satisfy x, x′, y ∈ N0 and y′ ∈ N and make an angle < 180o (see Figure 3).

We show a similar equivalence for the existence of a good multicycle with the existence of
either a good multicycle C = {C} composed of a unique simple cycle C,
or two simple cycles C, C ′ as before with the difference that w(C), w(C ′) make an
angle ≤ 180o (instead of < 180o).

The proof of these results is based on the cycle decomposition of paths and on geometrical
arguments on the weights of those simple cycles.
Let us illustrate this characterization with our two running examples. In case of Figure 1,
the good cycle is characterized by the two cycles C = (v1, v1), C ′ = (v0, v0) with respective
weights (−1, 3), (1,−1). In case of Figure 2, the good multicycle is characterized by the
two cycles C = (v1, v1), C ′ = (v0, v0) with respective weights (−1, 1), (1,−1). Moreover
one can check that there is no good cycle (the conditions given in the characterization do
not hold in Figure 2).

w1

w2

w(C)

w(C ′)

Figure 3 Geometrical view of the characterization for good cycles.

5. With the characterization given previously in Item 4., in case of strict inequalities, pseudo-
polynomial-memory strategies are sufficient for P1 to win, as stated in Theorem 3. Indeed
when there exist two simple cycles C, C ′ with weight vectors w(C), w(C ′) as in Figure 3,
one can construct a good cycle as follows. There always exists a linear combination
of vectors w(C), w(C ′), with pseudo-polynomial positive coefficients, that is > (0, 0)
and that balances the cost of moving from C to C ′ and from C ′ to C (this is however
not possible when those vectors make an angle of 180o). The fact that in case of strict
inequalities, pseudo-polynomial-memory strategies are necessary for P1 to win is proved
in [14]. Notice that in case of non-strict inequalities, Theorem 3 states that P1 needs
infinite memory to win, that we already know from Example 2.

6. Theorem 6 is proved as follows. Implication (1) ⇒ (2) is immediate. For Implication
(3) ⇒ (1), with the two simple cycles C,C ′ of the characterization given in Item 4.,
one can construct a winning strategy with infinite memory for P1 that is similar to the
strategy of Example 2. To prove (2)⇒ (3), suppose that P1 is winning for the objective
Energy1(c0)∩MP2(≥ 0) for some c0. Then he is also winning for Energy1(c0)∩MP2(> −ε)
for all ε > 0. We consider the game structure Gε obtained from G by replacing function
w2 by function w2 + ε. Hence P1 is now winning in this game Gε for the objective
Energy1(c0) ∩MP2(> 0), and by Theorem 5 there exists a reachable good cycle in Gε.
Therefore, with the characterization of Item 4., for each ε, there exist either one good



V. Bruyère, Q. Hautem, M. Randour, and J.-F. Raskin 21:9

simple cycle Cε, or two simple cycles Cε, C ′ε with weight vectors as in Figure 3. The main
part of the proof is to extract from these sequences of cycles a reachable good multicycle
thanks to the characterization of Item 4. (Notice that when ε converges to 0, the angle
> 180o made by the vectors of Figure 3 converges to an angle ≥ 180o.)

4 Two-player setting

In this section we consider two-player energy mean-payoff games. We show that the four
variants of the energy mean-payoff decision problem are in co-NP. To establish this, we show
that if the answer to this problem is No, then P2 has a spoiling memoryless strategy σ2 that
he can use for all initial credits c0 ∈ N. In the game structure G(σ2), P1 is then the only
player and we can apply the results of the previous section, in particular Theorem 3. We also
show that in case of mean-payoff objectives with strict inequality, the energy mean-payoff
decision problem can be reduced to the unknown initial credit problem for 4-dimensional
energy games. If follows by [29] that our decision problem can be solved in pseudo-polynomial
time and that finite-memory winning strategies with pseudo-polynomial size for P1 exist and
can effectively be constructed. In case of mean-payoff objectives with non-strict inequality, we
already know that infinite memory is necessary for P1 in player-1 energy mean-payoff games
by Theorem 3. We show how to construct such strategies. The results that we establish in
this section are summarized in the following theorem.

I Theorem 7. The energy mean-payoff decision problem for two-player game structures is
in co-NP. Moreover,

both problems E ∩MP>0 and E ∩MP>0 can be solved in pseudo-polynomial time and
exponential-memory strategies are sufficient for P1 to win;
for both problems E ∩MP≥0 and E ∩MP≥0, in general, P1 needs infinite memory to win.

In all cases, winning strategies can be effectively constructed for both players.

The proof of this result is detailed in the following sections.

4.1 Memoryless winning strategies for P2

For all four variants of mean-payoff energy objective, we here establish that P2 does not
need any memory for his winning strategies. Therefore, thanks to Theorem 3, the energy
mean-payoff decision problem can be solved in co-NP.

I Proposition 8. Let ∼ ∈ {>,≥}. For all energy mean-payoff games G and all initial
vertices v0, if the answer to the energy mean-payoff problem E ∩MP∼0 (resp. E ∩MP∼0)
is No, then there exists a memoryless strategy σ2 for P2 such that for all initial credits
c0 ∈ N, no play ρ consistent with σ2 from v0 belongs to Ω = Energy1(c0) ∩MP2(∼ 0) (resp.
to Ω = Energy1(c0) ∩MP2(∼ 0)).

The proof of this proposition is given in [14]. Note that energy objectives are not prefix-
independent objectives and as a consequence this proposition does not directly follow from
the results of [30] where are given general conditions that guarantee the existence of a
memoryless winning strategy for one of the players. However our proof is an adaptation of
the proof technique of [9, 21, 27, 30].

Notice that from Theorems 5-6 and Proposition 8, we directly get the following corollary.

I Corollary 9. For all energy mean-payoff games G and initial vertices v0, let ∼ ∈ {>,≥}.
Then P1 is winning from v0 for Energy1(c0)∩MP2(∼ 0) for some initial credit c0 if and only
if he is winning from v0 for Energy1(c0) ∩MP2(∼ 0) for some initial credit c0.
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While Proposition 8 allows us to obtain the membership in co-NP of the decision problems
and to effectively construct winning memoryless strategies for P2, unfortunately it does not
tell us how P1 must play from a winning vertex (when spoiling strategies do not exist for
P2). In the following two sections we provide results that show how P1 needs to play in
order to win energy mean-payoff games. We first show that P1 can win with finite memory
for the case of strict inequalities, and then we provide infinite-memory winning strategies for
the case of non-strict inequalities. For the later case, we already know that infinite memory
is necessary even player-1 game structures (see Theorem 3).

4.2 Strategies for P1: case of strict inequalities
In case of strict inequalities, our solution is based on a reduction to multi-dimensional energy
games [18] for which we know how to construct strategies for P1.

4.2.1 Multi-dimensional energy games
We need to recall the concept of d-dimensional energy games, with d ∈ N0. Those games
are played on d-dimensional game structure G = (V, V1, V2, E, w) where the weight function
w : E → Zd assigns a d-tuple (instead of a pair) of weights w(e) to each edge e ∈ E. The
unknown initial credit problem asks, given a d-dimensional game structure and an initial
vertex v0, to decide whether there exists an initial credit c0 = (c0,1, . . . , c0,d) ∈ Nd and
a winning strategy for P1 for the objective Ω = ∩dj=1Energyj(c0,j). When d = 1 and the
answer to this problem is Yes, we denote by c(v0) ∈ N the minimum initial credit for which
P1 has a winning strategy from v0. The complexity of this problem has been first studied
in [18, 21, 35] and then in [29] for a fixed number of dimensions.

I Theorem 10 ([18, 21, 29, 35]). The unknown initial credit problem for d-dimensional
energy games can be solved in pseudo-polynomial time, that is in time (|V | · ||E||)O(d4). If
the answer to this problem is

Yes, then exponential-memory strategies are sufficient and necessary for player P1 to win,
No, then P2 has a spoiling memoryless strategy σ2 that he can use for all initial credits
c0 ∈ Nd.

We recall the next useful lemma.

I Lemma 11 ([17]). Let G be a 1-dimensional energy game and v0 be an initial vertex. For
all plays ρ consistent with a winning strategy σ1 for P1, if the initial credit is c(v0) + ∆ for
∆ ≥ 0, then the energy level at all positions of ρ where a state v occurs is at least c(v) + ∆.

The next proposition shows that we can reduce energy mean-payoff games with strict
inequality constraints to energy games with 4 dimensions.

I Proposition 12. The problems E ∩MP>0 and E ∩MP>0 for energy mean-payoff games
are both polynomially reducible to the unknown initial credit problem for 4-dimensional energy
games. Moreover, for the energy game G′ constructed from the given G, we have ||E′|| = ||E||
and |V ′|, |E′| are linear in |V |, |E|, and from a finite-memory winning strategy σ′1 of P1 in
G′, we can derive a finite-memory winning strategy σ1 of P1 in G such that the memory size
of σ1 is upper bounded by the memory size of σ′1.
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s

v r v′

(x,y,−1,1) (0,0,0,0)

(0,0,1,−1)

(0,0,0,0)(0,−1,0,0)

Figure 4 Construction of a
4-dimensional energy game.

−εi

−εi−1

MP2(ρ)

ω2(ρi−1)
|ρi−1|

ω2(ρi)
|ρi|

Figure 5 ρ satisfies MP2(ρ) ≥ 0.

Proof. We first explain the reduction and then we give the main intuitions that justify
the correctness (see [14] for the formal detailed proof). Given an energy mean-payoff game
structure G = (V, V1, V2, E, w) with w : E → Z2, we construct a 4-dimensional energy game
G′ = (V ′, V ′1 , V ′2 , E′, w′) with w′ : E′ → Z4 as follows. Each edge e = (v, v′) ∈ E labeled by
w(e) = (x, y) is replaced by the following gadget composed of:

five edges (v, r), (r, s), (s, s), (s, r), and (r, v′) where r, s are two new vertices,
such that w′(v, r) = (x, y,−1, 1), w′(r, s) = (0,−1, 0, 0), w′(s, s) = (0, 0, 1,−1), w′(s, r) =
(0, 0, 0, 0), and w′(r, v′) = (0, 0, 0, 0).

This is illustrated in Figure 4. The set V ′2 is equal to V2, and V ′1 is composed of all vertices
of V1 and the 2 · |E| new vertices (two for each edge of G). By construction, we have
||E′|| = ||E|| and |V ′|, |E′| are linear in |V |, |E|. Now, we show that if Pi wins in G′ then Pi
wins in G, for i ∈ {1, 2}.

First, assume that P1 wins in G′ with a strategy σ′1. By Theorem 10, we can assume
that σ′1 is a finite-memory strategy. Let us construct a corresponding strategy σ1 in G. The
graph G′ is a structural copy of G where each edge is replaced by the gadget of Figure 4.
So to each path π′ of G′ that ends in a vertex of G (so not in a s or r vertex), there is a
corresponding path π in G obtained by removing all the new vertices introduced by the
gadget. We construct the strategy σ1 as follows: the edge taken by σi after history π is
simply the edge that σ′i enters in G′ after history π′. Let us show that σ1 is winning in
G. Remember that all dimensions in G′ are interpreted as energy dimensions. The first
dimension which models energy in G is unchanged by the gadget as all weights are 0 for the
first dimension in the newly introduced edges. The second dimension, which corresponds
to the mean-payoff dimension in G, is transformed into an energy dimension. We make
a few remarks. If P1 decides to go from v to r and then directly to v′, the effect on the
energy accumulated on the second dimension is the same as in G. Nevertheless because the
third dimension is affected negatively by all edges with the exception of the self loops on
vertices of type s, it is clear that P1 needs to take periodically the edges from r-vertices
to s-vertices and loop in s in order to recharge the energy on the third dimension. So, the
intuition behind our construction is simple: in G′, P1 can play as in G but he needs to
recharge periodically dimension three by looping on s. Also, let us note that P1 always needs
to leave the gadget composed of the s and r vertices as otherwise the fourth dimension would
go arbitrary low and so this would violate the corresponding energy objectives. Finally, we
note that second dimension is decreased when P1 takes the edge from r to s. So, in order
to satisfy the energy objective in G′ for dimension two, P1 needs to accumulate unbounded
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reward on that dimension in the other edges (and so in the corresponding edges in G). As
by hypothesis the strategy σ′1 is finite-memory, this implies that mean-payoff accumulated
on dimension two will be strictly positive when playing the corresponding strategy σ1 in G.
This in turn implies that σ1 is winning in G.

Assume now that σ′2 is a winning strategy for P2 in G′. It can be supposed to be
memoryless by Theorem 10. As V2 = V ′2 , we can interprete σ′2 in G thus leading to a player-1
game structure G(σ′2). Similar arguments as done before together with Theorem 5 show that
σ′2 is winning for P2 in G. J

4.3 Strategies for P1: case of non-strict inequalities

By Theorem 6, we know that infinite memory may be necessary for P1 to win in case of
non-strict inequalities. The reduction to multi-dimensional energy games of previous section
is thus not applicable for this case. Instead, we show how we can effectively construct a
winning strategy for P1 by combining an infinite number of finite-memory strategies.

I Proposition 13. For both problems E ∩MP≥0 and E ∩MP≥0, if P1 is winning from an
initial vertex v0, then one can effectively construct a strategy for him to win from v0. This
strategy requires infinite memory.

Proof. Remember by Corollary 9 that P1 is winning from v0 for the objective Energy(c0) ∩
MP(≥ 0) for some c0 if and only if he is winning from v0 for the objective Energy(c0)∩MP(≥ 0)
for some c0. Here, we show how to construct a winning strategy for P1 for the mean-payoff-inf
case only. Indeed such a winning strategy is also winning for the mean-payoff-sup case.

We first note that if P1 is winning from a vertex v for the objective Ω(c0) = Energy1(c0)∩
MP2(≥ 0), then he is also winning from v for the objective Ωi(c0) = Energy1(c0)∩MP2(> −εi)
for all εi = 1

2i , i ∈ N0. Let Win be the set of vertices v from which P1 is winning for Ω(c0)
for some c0. In particular v0 ∈Win by hypothesis. From now on, we assume that the vertices
not in Win are removed from V leading to a game structure that we still denote by G. This
can be done as a winning strategy for P1 will never enter those vertices.

For all vertices v ∈Win, we denote by c(v) ∈ N the minimum initial credit from which P1
is winning for Ω(c(v)) from v. Similarly for all i ∈ N0, we denote by ci(v) ∈ N the minimum
initial credit from which he is winning for Ωi(ci(v)) from v and by σvi such a winning strategy
for P1. Recall by Proposition 12 that all strategies σvi can be supposed to be finite-memory
and to have memory size bounded by Mv

i . The game structure G(σvi ) induced by σvi has a
number of vertices equal to

Nv
i = |Win| ·Mv

i (1)

Also, we have that c1(v) ≤ c2(v) ≤ c3(v) ≤ . . . ≤ c(v). Moreover as these initial credits are
integers,

∃kv,∀i ≥ kv : ci(v) = ckv (v). (2)

Let us define

κ = max
v∈Win

kv and γ = max{ci+1(v)− ci(v) | v ∈Win, i ∈ N0}. (3)

These constants will be useful later for the energy objective.
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An effective winning strategy for P1. Let us define a strategy τ1 for P1 from v0 that will
be proved to be winning for P1. A play ρ consistent with τi is the limit of a sequence of
prefixes ρi of increasing length constructed in the following way:
1. Initialize i = 1 and ρ0 = v0;
2. Assume that a prefix ρi−1 has been constructed so far and that its last vertex is vi−1.

Apply, starting from vi−1, the strategy σvi−1
i (against P2) until the produced path πi

consistent with σvi−1
i and the path ρi equal to the concatenation ρi−1 with πi satisfy

w2(ρi) > Nvi
i+1 · ||E|| − |ρi| · εi. (4)

3. Increment i by 1 and goto 2.

Notice that in (4), we require for w2(ρi) more than w2(ρi) > −|ρi| · εi. Indeed the
latter inequality would be enough to guarantee that the mean-payoff-sup value of ρ satisfies
MP(ρ) ≥ 0 but we will explain later that we need (4) to guarantee MP(ρ) ≥ 0.

For the correctness of the given construction, we need to prove that for each i ∈ N0, there
exists a path ρi satisfying (4). This is a consequence of point (ii) of the next lemma.

I Lemma 14. As each σvi is a finite-memory strategy from v winning for Energy1(c0)∩
MP2(> −εi),
(i) for all plays π consistent with σvi from v, for all k ∈ N, we have w2(π[0, k]) >

−Nv
i · ||E|| − k · εi, and

(ii) for all K ∈ N, there exists k ∈ N such that for all plays π consistent with σvi from v,
we have w2(π[0, k]) > K − k · εi.

Proof. Let us come back to the game structure G(σvi ) with Nv
i vertices (by (1)). As σvi is

winning for the objective MP2(> −εi), all reachable cycles C in G(σvi ) have a average weight

w2(C)
|C|

> −εi. (5)

Moreover as the weight w2(C) is an integer, w2(C) ≥ −|C| · εi + tC , for some tC > 0. Let
t = min{tC | C reachable cycle in G(σvi )}. This tells us that one unit t > 0 of weight is
accumulated each time a cycle is closed in G(σvi ):

w2(C) ≥ −|C| · εi + t. (6)

Let us prove (i). Consider a play π consistent with σvi from v, i.e., an infinite path in
G(σvi ). Let k ∈ N and let us reason on the cycle decomposition of π[0, k]. First, as the
acyclic part of this decomposition has a length bounded by Nv

i , its weight is bounded below
by −Nv

i · ||E||. Second, let ` be the total length of the cycles C of the cyclic decomposition of
π[0, k]. As all cycles C in G(σvi ) satisfy (5), we conclude that the total weight of this cyclic
part of π[0, k] is bounded below by −` · εi. Finally, as ` ≤ k, we obtain the claimed lower
bound of (i), that is, w2(π[0, k]) > −Nv

i · ||E|| − k · εi.
Let us now prove (ii). We simply repeat the arguments given for (i) by using (6)

instead of (5). If α cycles are closed during the cycle decomposition of π[0, k], we then get
w2(π[0, k]) ≥ α · t−Nv

i · ||E|| − k · εi instead of the inequality of (i). So, given K ∈ N, take
k ∈ N such that α is large enough to get an accumulated positive weight α · t such that
α · t−Nv

i · ||E|| > K. This establishes (ii). J

Let us prove that τ1 is a winning strategy (with infinite memory) from v0 for the objective
Ω(d0) with the initial credit

d0 = κ · γ + c1(v0) (7)
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with the constants of (3). Let ρ be a play consistent with τ1 from v0, i.e., ρ is the limit of a
sequence of prefixes ρi as described previously in the definition of τi. Remember that each ρi,
i ∈ N0, is the concatenation of ρi−1 and πi such that πi is consistent with σvi−1

i from vi−1.

Mean-payoff-inf objective. We begin by showing that ρ satisfies MP2(ρ) ≥ 0. To achieve
this goal, it is enough to show that for all i ∈ N0, the average weight never falls below −εi−1
during the construction of ρi (i.e. the construction of πi), and this average weight is above
−εi at the end of the construction of ρi (see Figure 5).

Let us show that such a property is a consequence of Lemma 14 and inequality (4)
satisfied by ρi. First by (4), the average weight of ρi satisfies w2(ρi)

|ρi| > −εi. Second, consider
any prefix π[0, k] of πi and the corresponding prefix ρ[0, k′] of ρi such that k′ = k + |ρi−1|.
Then by point (i) of Lemma 14, we have w2(π[0, k]) > −Nv

i · ||E|| − k · εi, and by (4) applied
to ρi−1, we have w2(ρi−1) > Nvi

i · ||E|| − |ρi−1| · εi−1. Therefore we get

w2(ρ[0, k′]) = w2(ρi−1) + w2(π[0, k])
> (Nvi

i · ||E|| − |ρi−1| · εi−1) + (−Nv
i · ||E|| − k · εi)

> −|ρ[0, k′]| · εi−1

Hence, as announced, the average weight of the prefix ρ[0, k′] of ρi is above −εi−1.

Energy objective. It remains to explain why the energy objective is also satisfied by ρ with
the initial credit d0 defined in (7). Recall from the definition of τ1 that ρ is the limit of a
sequence of prefixes ρi such that each ρi is the concatenation of ρi−1 and πi. Recall also that
ci(v) ∈ N is the minimum initial credit for which σvi is winning from v.

By construction, π1 is consistent with σv0
1 with the initial credit d0 = c1(v0) + ∆1, where

∆1 = κ · γ. Hence the energy level of ρ1 = π1 never drops below zero and it is at least equal
to c1(v1) + ∆1 in the last vertex v1 of ρ1 by Lemma 11. Similarly π2 is consistent with
σv1

2 with the initial credit c1(v1) + ∆1 = c2(v1) + ∆2, where ∆2 = κ · γ − (c2(v1)− c1(v1)).
Hence the energy level of ρ2 never drops below zero and it is at least equal to c2(v2) + ∆2
in the last vertex v2 of ρ2 by Lemma 11. This argument can be repeated for all i ∈ N0:
the energy level of ρi never drops below zero and it is at least equal to ci(vi) + ∆i, with
∆i = κ · γ −

∑i−1
j=1(cj+1(vj) − cj(vj)). Notice that we always have ∆i ≥ 0 by (2) and by

definition of κ and γ (see (3)). Therefore the energy level of ρ never drops belows zero.
This proves that τ1 is a winning strategy for the objective Energy1(d0) ∩MP2(≥ 0) and

thus conclude the proof. J

4.4 Proof of Theorem 7
We conclude this section with the proof of Theorem 7.

Proof of Theorem 7. We establish the three assertions of the theorem as follows.
We first prove that the energy mean-payoff decision problems for two-player games G

are in co-NP for the four variants. This result is obtained as follows. By Proposition 8,
memoryless strategies are sufficient for P2 to win, for all four variants. Hence, the following is
an algorithm in co-NP: guess a memoryless strategy σ2 for P2, and in the resulting one-player
game G(σ2), verify in polynomial time whether P1 is winning thanks to Theorem 3.

Second, we consider the two variants with strict inequalities. By Proposition 12, there
exists a polynomial reduction of the energy mean-payoff decision problem to the unknown
initial credit problem for 4-dimensional energy games. By Theorem 10, it follows that the
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energy mean-payoff decision problem can be solved in pseudo-polynomial time and that
exponential-memory strategies are sufficient for P1 to win.

Finally, we consider the last two variants with non-strict inequalities. In Proposition 13,
we have shown how we can effectively construct a winning strategy for P1 in this case. J
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