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Abstract
Randomized fault-tolerant distributed algorithms pose a number of challenges for automated
verification: (i) parameterization in the number of processes and faults, (ii) randomized choices and
probabilistic properties, and (iii) an unbounded number of asynchronous rounds. This combination
makes verification hard. Challenge (i) was recently addressed in the framework of threshold automata.

We extend threshold automata to model randomized consensus algorithms that perform an
unbounded number of asynchronous rounds. For non-probabilistic properties, we show that it is
necessary and sufficient to verify these properties under round-rigid schedules, that is, schedules where
processes enter round r only after all processes finished round r− 1. For almost-sure termination, we
analyze these algorithms under round-rigid adversaries, that is, fair adversaries that only generate
round-rigid schedules. This allows us to do compositional and inductive reasoning that reduces
verification of the asynchronous multi-round algorithms to model checking of a one-round threshold
automaton. We apply this framework and automatically verify the following classic algorithms: Ben-
Or’s and Bracha’s seminal consensus algorithms for crashes and Byzantine faults, 2-set agreement
for crash faults, and RS-Bosco for the Byzantine case.
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33:2 Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries

1 bool v := input_value({0, 1});
2 int r := 1;
3 while (true) do
4 send (R,r,v) to all;
5 wait for n − t messages (R,r,∗);
6 if received (n + t) / 2 messages (R,r,w)
7 then send (P,r,w,D) to all;
8 else send (P,r,?) to all;
9 wait for n − t messages (P,r,∗);

10 if received at least t + 1
11 messages (P,r,w,D) then {
12 v := w;
13 if received at least (n + t) / 2
14 messages (P,r,w,D)
15 then decide w;
16 } else v := random({0, 1});
17 r := r + 1;
18 od

Figure 1 Pseudo code of Ben-Or’s algorithm for Byzantine faults.

1 Introduction

Fault-tolerant distributed algorithms like Paxos and Blockchain recently receive much atten-
tion. Still, these systems are out of reach with current automated verification techniques.
One problem comes from the scale: these systems should be verified for a very large (ide-
ally even an unbounded) number of participants. In addition, many systems (including
Blockchain), provide probabilistic guarantees. To check their correctness, one has to reason
about randomized distributed algorithms in the parameterized setting.

In this paper, we make first steps towards parameterized verification of fault-tolerant
randomized distributed algorithms. We consider consensus algorithms that follow the ideas
of Ben-Or [3]. Interestingly, these algorithms were analyzed in [17, 15] where probabilistic
reasoning was done using the probabilistic model checker PRISM [16] for systems of 10-
20 processes, while only safety was verified in the parameterized setting using Cadence
SMV. From a different perspective, these algorithms extend asynchronous threshold-guarded
distributed algorithms from [12, 10] with two features (i) a random choice (coin toss), and
(ii) repeated executions of the same algorithm until it converges (with probability 1).

A prominent example is Ben-Or’s fault-tolerant consensus algorithm [3] given in Figure 1.
It circumvents the impossibility of asynchronous consensus [9] by relaxing the termination
requirement to almost-sure termination, i.e., termination with probability 1. Here processes
execute an infinite sequence of asynchronous loop iterations, which are called rounds r. Each
round consists of two stages where they first exchange messages tagged R, wait until the
number of received messages reaches a certain threshold (given as expression over parameters
in line 5) and then exchange messages tagged P . In the code, n is the number of processes,
among which at most t are Byzantine faulty (which may send conflicting information). The
correctness of the algorithm should be verified for all values of the parameters n and t that
meet a so-called resilience condition, e.g., n > 3t. Carefully chosen thresholds (n− t, (n+ t)/2
and t+ 1) on the number of received messages of a given type, ensure agreement, i.e., that
two correct processes never decide on different values. At the end of a round, if there is no
“strong majority” for a value, i.e., less than (n+ t)/2 messages were received (cf. line 13), a
process picks a new value randomly in line 16.

While these non-trivial threshold expressions can be dealt with using the methods in [10],
several challenges remain. The technique in [10] can be used to verify one iteration of the
round from Figure 1 only. However, consensus algorithms should prevent that there are no two
rounds r and r′ such that a process decides 0 in r and another decides 1 in r′. This calls for a
compositional approach that allows one to compose verification results for individual rounds.
A challenge in the composition is that distributed algorithms implement “asynchronous
rounds”, i.e., during a run processes may be in different rounds at the same time.
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Figure 2 Ben-Or’s algorithm as PTA with resilience condition n > 3t ∧ t > 0 ∧ t ≥ f ≥ 0.

In addition, the combination of distributed aspects and probabilities makes reasoning
difficult. Quoting Lehmann and Rabin [18], “proofs of correctness for probabilistic dis-
tributed systems are extremely slippery”. This advocates the development of automated
verification techniques for probabilistic properties of randomized distributed algorithms in
the parameterized setting.

Contributions. We extend the threshold automata framework from [10] to round-based
algorithms with coin toss transitions. For the new framework we achieve the following:
1. For safety verification we introduce a method for compositional round-based reasoning.

This allows us to invoke a reduction similar to the one in [8, 6, 7]. We highlight necessary
fairness conditions on individual rounds. This provides us with specifications to be
checked on a one-round automaton.

2. We reduce probabilistic liveness verification to proving termination with positive prob-
ability within a fixed number of rounds. To do so, we restrict ourselves to round-rigid
adversaries, that is, adversaries that respect the round ordering. In contrast to existing
work that proves almost-sure termination for fixed number of participants, these are the
first parameterized model checking results for probabilistic properties.

3. We check the specifications that emerge from points 1. and 2. and thus verify challenging
benchmarks in the parameterized setting. We verify Ben-Or’s [3] and Bracha’s [5] classic
algorithms, and more recent algorithms such as 2-set agreement [21], and RS-Bosco [23].

2 Overview

We introduce probabilistic threshold automata to model randomized threshold-based algo-
rithms. An example of such an automaton is given in Figure 2. Nodes represent local states
(or locations) of processes, which move along the labeled edges or forks. Edges and forks
are called rules. Labels have the form ϕ 7→ u, meaning that a process can move along the
edge only if ϕ evaluates to true, and this is followed by the update u of shared variables.
Additionally, each tine of a fork is labeled with a number in the [0, 1] interval, representing
the probability of a process moving along the fork to end up at the target location of the tine.
If we ignore the dashed arrows in Figure 2, a threshold automaton captures the behavior of
a process in one round, that is, a loop iteration in Figure 1.

The code in Figure 1 refers to numbers of received messages and, as is typical for
distributed algorithms, their relation to sent messages (that is the semantics of send and
receive) is not explicit in the pseudo code. To formalize the behavior, the encoding in the
threshold automaton directly refers to the numbers of sent messages, and they are encoded
in the shared variables xi and yi. The algorithm is parameterized: n is the number of
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processes, t is the assumed number of faults and f is the actual number of faults. It should be
demonstrated to work under the resilience condition n > 3t∧ t ≥ f ∧ t > 0. For instance, the
locations J0 and J1 capture that a loop is entered with v being 0 and 1, respectively. Sending
an (R, r, 0) and (R, r, 1) message is captured by the increments on the shared variables x0
and x1 in the rules r3 and r4, respectively; e.g., a process that is in location J0 uses rule
r3 to go to location SR (“sent R message”), and increments x0 in doing so. Waiting for R
and P messages in the lines 5 and 9, is captured by looping in the locations SR and SP .
In line 7 a process sends, e.g., a (P, r, 0, D) message if it has received n − t messages out
of which (n + t)/2 are (R, r, 0) messages. This is captured in the guard of rule r5 where
x0 + x1 ≥ n− t− f checks the number of received messages in total, and x0 ≥ (n+ t)/2− f
checks for the specific messages containing 0. The “−f” term models that in the message
passing semantics underlying Figure 1, f messages from Byzantine faults may be received in
addition to the messages sent by correct processes (modeled by shared variables in Figure 2).
The branching at the end of the loop from lines 10 to 18 is captured by the rules outgoing of
SP . In particular rule r10 captures the coin toss in line 16. The non-determinism due to
faults and asynchrony is captured by multiple rules being enabled in the same configuration.

Liveness properties of distributed algorithms typically require fairness constraints, e.g.,
every message sent by a correct process to a correct process is eventually received. For
instance, this implies in Figure 1 that if n− t correct processes have sent messages of the
form (R, 1, ∗) and (n+ t)/2 correct processes have sent messages of the form (R, 1, 0) then
every correct process should eventually execute line 7, and proceed to line 9. We capture
this by the following fairness constraint: if x0 + x1 ≥ n− t ∧ x0 ≥ (n+ t)/2 – that is, rule
r5 is enabled without the help of the f faulty processes but by “correct processes alone” –
then the source location of rule r5, namely SR should eventually be evacuated, that is, its
corresponding counter should eventually be 0.

The dashed edges, called round switch rules, encode how a process, after finishing a round,
starts the next one. The round number r serves as the loop iterator in Figure 1, and in each
iteration, processes send messages that carry r. To capture this, our semantics will introduce
fresh shared variables initialized with 0 for each round r. Because there are infinitely many
rounds, this means a priori we have infinitely many variables.

As parameterized verification of threshold automata is in general undecidable [14], we
consider the so-called “canonic” restrictions here, i.e., only increments on shared variables,
and no increments of the same variable within loops. These restrictions still allow us to
model many threshold-based fault-tolerant distributed algorithms [10]. As a result, threshold
automata without probabilistic forks and round switching rules can be automatically checked
for safety and liveness [10]. Adding forks and round switches is required to adequately
model randomized distributed algorithms. Here we will use a convenient restriction that
requires that coin-toss transitions only appear at the end of a round, e.g., line 16 of Figure 1.
Intuitively, as discussed in Section 1, a coin-toss is only necessary if there is no strong
majority. Thus, all our benchmarks have this feature, and we exploit it in Section 7.

In order to overcome the issue of infinitely many rounds, we prove in Section 6 that we
can verify probabilistic threshold automata by analyzing a one-round automaton that fits
in the framework of [10]. We prove that we can reorder transitions of any fair execution
such that their round numbers are in an increasing order. The obtained ordered execution is
stutter equivalent with the original one, and thus, they satisfy the same LTL-X properties over
the atomic propositions describing only one round. In other words, our targeted concurrent
systems can be transformed to a sequential composition of one-round systems.
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The main problem with isolating a one-round system is that consensus specifications
often talk about at least two different rounds. In this case we need to use round invariants
that imply the specifications. For example, if we want to verify agreement, we have to check
whether two processes decide different values, possibly in different rounds. We do this in two
steps: (i) we check the round invariant that no process changes its decision from round to
round, and (ii) we check that within a round no two processes disagree.

Finally, verifying almost-sure termination under round-rigid adversaries calls for distinct
arguments. Our methodology follows the lines of the manual proof of Ben Or’s consensus
algorithm by Aguilera and Toueg [1]. However, our arguments are not specific to Ben
Or’s algorithm, and we apply it to other randomized distributed algorithms (see Section 8).
Compared to their paper-and-pencil proof, the threshold automata framework required us to
provide a more formal setting and a more informative proof, also pinpointing the needed
hypothesis. The crucial parts of our proof are automatically checked by the model checker
ByMC [13]. Hence the established correctness stands on less slippery ground, which addresses
the mentioned concerns of Lehmann and Rabin.

3 The Probabilistic Threshold Automata Framework

A probabilistic threshold automaton PTA is a tuple (L,V,R,RC ), where
L is a finite set of locations, that contains the following disjoint subsets: initial locations
I, final locations F , and border locations B, with |B| = |I|;
V is a set of variables. It is partitioned in two sets: Π contains parameter variables, and
Γ contains shared variables;
R is a finite set of rules; and
RC , the resilience condition, is a formula in linear integer arithmetic over parameter
variables.

In the following we introduce rules in detail, and give syntactic restrictions on locations.
The resilience condition RC only appears in the definition of the semantics in Section 3.1.

A rule r is a tuple (from, δto, ϕ, ~u) where from ∈ L is the source location, δto ∈ Dist(L) is
a probability distribution over the destination locations, ~u ∈ N|Γ|0 is the update vector, and ϕ
is a guard, i.e., a conjunction of expressions of the form b ·x ≥ ā ·pᵀ +a0 or b ·x < ā ·pᵀ +a0,
where x ∈ Γ is a shared variable, ā ∈ Z|Π| is a vector of integers, a0, b ∈ Z, and p is the
vector of all parameters. If r.δto is a Dirac distribution, i.e., there exists ` ∈ L such that
r.δto(`) = 1, we call r a Dirac rule, and write it as (from, `, ϕ, ~u). Destination locations of
non-Dirac rules are in F (coin-toss transitions only happen at the end of a round).

Probabilistic threshold automata model algorithms with successive identical rounds.
Informally, a round happens between border locations and final locations. Then round switch
rules let processes move from final locations of a given round to border locations of the next
round. From each border location there is exactly one Dirac rule to an initial location, and
it has a form (`, `′, true,~0) where ` ∈ B and `′ ∈ I. As |B| = |I|, one can think of border
locations as copies of initial locations. It remains to model from which final locations to
which border location (that is, initial for the next round) processes move. This is done by
round switch rules. They can be described as Dirac rules (`, `′, true,~0) with ` ∈ F and
`′ ∈ B. The set of round switch rules is denoted by S ⊆ R.

A location is in B if and only if all the incoming edges are in S. Similarly, a location is
in F if and only if there is only one outgoing edge and it is in S.

Figure 2 depicts a PTA with border locations B = {I0, I1}, initial locations I = {J0, J1},
and final locations F = {E0, E1, D0, D1, CT0, CT1}. The only rule that is not Dirac rule
is r10, and round switch rules are represented by dashed arrows.
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3.1 Probabilistic Counter Systems
A resilience condition RC defines the set of admissible parameters PRC = {p ∈ N|Π|0 : p |=
RC}. We introduce a function N : PRC → N0 that maps a vector of admissible parameters
to a number of modeled processes in the system. For instance, for the automaton in Figure 2,
N is the function (n, t, f) 7→ n− f , as we model only the n− f correct processes explicitly,
while the effect of faulty processes is captured in non-deterministic choices between different
guards as discussed in Section 2. Given a PTA and a function N , we define the semantics,
called probabilistic counter system Sys(PTA), to be the infinite-state MDP (Σ, I,Act,∆),
where Σ is the set of configurations for PTA among which I ⊆ Σ are initial, the set of actions
is Act = R× N0 and ∆: Σ× Act→ Dist(Σ) is the probabilistic transition function.

Configurations. In a configuration σ = (~κ, ~g,p), a function σ.~κ : L×N0 → N0 defines values
of location counters per round, a function σ.~g : Γ×N0 → N0 defines shared variable values per
round, and a vector σ.p ∈ N|Π|0 defines parameter values. We denote the vector (~g[x, k])x∈Γ
of shared variables in a round k by ~g[k], and by ~κ[k] we denote the vector (~κ[`, k])`∈L of
local state counters in a round k.

A configuration σ = (~κ, ~g,p) is initial if all processes are in initial states of round 0, and
all global variables evaluate to 0, that is, if for every x ∈ Γ and k ∈ N0 we have σ.~g[x, k] = 0,
if

∑
`∈B σ.~κ[`, 0] = N(p), and finally if σ.~κ[`, k] = 0, for every (`, k) ∈ (L \ B)× {0} ∪ L×N.
A threshold guard evaluates to true in a configuration σ for a round k, written σ, k |= ϕ,

if for all its conjuncts b · x ≥ ā · pᵀ + a0, it holds that b · σ.~g[x, k] ≥ ā · (σ.pᵀ) + a0 (and
similarly for conjuncts of the other form, i.e., b · x < ā · pᵀ + a0).

Actions. An action α = (r, k) ∈ Act stands for the execution of a rule r in round k (by
a single process). We write α.from for r.from, α.δto for r.δto, etc. An action α = (r, k) is
unlocked in a configuration σ, if its guard evaluates to true in its round, that is σ, k |= r.ϕ.
An action α = (r, k) is applicable to a configuration σ if α is unlocked in σ, and there is
at least one process in the source location r.from, formally, σ.~κ[r.from, k] ≥ 1. When an
action α is applicable to σ, and when ` is a potential destination location for the probabilistic
action α, we write apply(σ, α, `) for the resulting configuration: parameters are unchanged,
shared variables are updated according to the update vector r.~u, and the values of counters
are modified in a natural way: as a process moves from r.from to ` in round k, counter
~κ[r.from, k] is decreased by 1 and ~κ[`, k] is increased by 1. The probabilistic transition
function ∆ is defined by: ∆(σ, α)(σ′) = α.δto(`) if apply(σ, α, `) = σ′, and 0 otherwise.

3.2 Non-probabilistic Counter Systems
Non-probabilistic threshold automata are defined in [12], and they can be seen as a special
case of probabilistic threshold automata where all rules are Dirac rules.

With a PTA, one can naturally associate a non-probabilistic threshold automaton, by
replacing probabilities with non-determinism.

I Definition 1. Given a PTA = (L,V,R,RC ), its (non-probabilistic) threshold automaton
is TAPTA = (L,V,Rnp,RC ) where the set of rules Rnp is defined as {r` = (from, `, ϕ, ~u) : r =
(from, δto, ϕ, ~u) ∈ R ∧ ` ∈ L ∧ δto(`) > 0}.

We write TA instead of TAPTA when the automaton PTA is clear from the context. Every
rule from Rnp corresponds to exactly one rule in R, and for every rule in R there is at least
one corresponding rule in Rnp (and exactly one for Dirac rules).
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If we understand a TA as a PTA where all rules are Dirac rules, we can define transitions
using the partial function apply in order to obtain an infinite (non-probabilistic) counter
system, which we denote by Sys∞(TA). Moreover, since in this case R = Rnp, actions of
the PTA exactly match transitions of its TA. We obtain σ′ by applying t = (r, k) to σ,
and write this as σ′ = t(σ), if and only if for the destination location ` of r holds that
apply(σ, t, `) = σ′.

Also, starting from a PTA, one can define the counter system Sys(PTA), and consequently
its non-probabilistic counterpart Sysnp(PTA). As the definitions of Sysnp(PTA) and Sys∞(TA)
are equivalent for a given PTA, we are free to choose one, and always use Sys∞(TA).

A (finite or infinite) sequence of transitions is called schedule, and it is often denoted
by τ . A schedule τ = t1, t2, . . . , t|τ | is applicable to a configuration σ if there is a sequence
of configurations σ = σ0, σ1, . . . , σ|τ | such that for every 1 ≤ i ≤ |τ | we have that ti is
applicable to σi−1 and σi = ti(σi−1). A path is an alternating sequence of configurations
and transitions, for example σ0, t1, σ1, . . . , t|τ |, σ|τ |, such that for every ti, 1 ≤ i ≤ |τ |, in the
sequence, we have that ti is applicable to σi−1 and σi = ti(σi−1). Given a configuration σ0
and a schedule τ = t1, t2, . . . , t|τ |, we denote by path(σ0, τ) a path σ0, t1, σ1, . . . , t|τ |, σ|τ |
where ti(σi−1) = σi, 1 ≤ i ≤ |τ |. Similarly we define an infinite schedule τ = t1, t2, . . .,
and an infinite path σ0, t1, σ1, . . ., also denoted by path(σ0, τ). An infinite path is fair if
no transition is applicable forever from some point on. Equivalently, when a transition is
applicable, eventually either its guard becomes false, or all processes leave its source location.

Since every transition in Sys∞(TA) comes from an action in Sys(PTA), note that every
path in Sys∞(TA) is a valid path in Sys(PTA).

3.3 Adversaries

As usual, the non-determinism is resolved by a so-called adversary. Let Paths be the set of
all finite paths in Sys(PTA). An adversary is a function a : Paths→ Act, that given a finite
path π selects an action applicable to the last configuration of π. Given a configuration σ
and an adversary a, we generate a family of paths, depending on the outcomes of non-Dirac
transitions. We denote this set by paths(σ, a). An adversary a is fair if all paths in paths(σ, a)
are fair. As usual, the Markov Decision Process (MDP) Sys(PTA) together with an initial
configuration σ and an adversary a induce a Markov chain, writtenMσ

a . We write Pσa for
the probability measure over infinite paths starting at σ in the latter Markov chain.

We call an adversary a round-rigid if it is fair, and if every sequence of actions it produces
can be decomposed to a concatenation of sequences of action of the form s1 · sp1 · s2 · sp2...,
where for all k ∈ N, we have that sk contains only Dirac actions of round k, and spk contains
only non-Dirac actions of round k. We denote the set of all round-rigid adversaries by AR.

3.4 Atomic Propositions and Stutter Equivalence

The atomic propositions we consider describe non-emptiness of a location ` ∈ L \ B in a
round k, i.e., whether there is at least one process in location ` in round k. Formally, the set of
all such propositions for a round k ∈ N0 is denoted by APk = {p(`, k) : ` ∈ L\B}. For every k
we define a labeling function λk : Σ → 2APk such that p(`, k) ∈ λk(σ) iff σ.~κ[`, k] > 0. By
abusing notation, we write “~κ[`, k] > 0” and “~κ[`, k] = 0” instead of p(`, k) and ¬p(`, k), resp.

We denote by π1 ,k π2 that the paths π1 and π2 are stutter equivalent [2] w.r.t. APk.
Two counter systems C0 and C1 are stutter equivalent w.r.t. APk, written C0 ,k C1, if for
every path π from Ci there is a path π′ from C1−i such that π ,k π′, for i ∈ {0, 1}.
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4 Consensus Properties and their Verification

In probabilistic (binary) consensus every correct process has an initial value from {0, 1}.
It consists of safety specifications and an almost-sure termination requirement, which we
consider in its round-rigid variant:
Agreement: No two correct processes decide differently.
Validity: If all correct processes have v as the initial value, then no process decides 1− v.
Probabilistic wait-free termination: Under every round-rigid adversary, with probability 1

every correct process eventually decides.

We now discuss the formalization of these specifications in the context of Ben-Or’s
algorithm whose threshold automaton is given in Figure 2.

Formalization. In order to formulate and analyze the specifications, we partition every
set I, B, and F , into two subsets I0 ] I1, B0 ] B1, and F0 ] F1, respectively. For every
v ∈ {0, 1}, the partitions satisfy the following:
(R1) The processes that are initially in a location ` ∈ Iv have the initial value v.
(R2) Rules connecting locations from B and I respect the partitioning, i.e., they connect Bv

and Iv. Similarly, rules connecting locations from F and B respect the partitioning.
We introduce two subsets Dv ⊆ Fv, for v ∈ {0, 1}. Intuitively, a process is in Dv in a round k
if and only if it decides v in that round. Now we can express the specifications as follows:
Agreement: For both values v ∈ {0, 1} the following holds:

∀k ∈ N0,∀k′ ∈ N0. A
(
F

∨
`∈Dv

~κ[`, k] > 0 → G
∧

`′∈D1−v

~κ[`′, k′] = 0
)

(1)

Validity: For both v ∈ {0, 1} it holds

∀k ∈ N0. A
(∧

`∈Iv

~κ[`, 0] = 0 → G
∧

`′∈Dv

~κ[`′, k] = 0
)

(2)

Probabilistic wait-free termination: For every round-rigid adversary a

Pa

(∨
k∈N0

∨
v∈{0,1}

G
∧

`∈F\Dv

~κ[`, k] = 0
)

= 1 (3)

Agreement and validity are non-probabilistic properties, and thus can be analyzed on the
non-probabilistic counter system Sys∞(TA). For verifying probabilistic wait-free termination,
we make explicit the following assumption that is present in all our benchmarks: all non-Dirac
transitions have non-zero probability to lead to an Fv location, for both values v ∈ {0, 1}.

In Section 5 we formalize safety specifications and reduce them to single-round specifica-
tions. In Section 6 we reduce verification of multi-round counter systems to verification of
single-round systems. In Section 7 we discuss our approach to probabilistic termination.

5 Reduction to Specifications with one Round Quantifier

Agreement contains two round variables k and k′, and Validity considers rounds 0 and k.
Thus, both involve two round numbers. As ByMC can only analyze one round systems [10],
the properties are only allowed to use one round number. In this section we show how to
check formulas (1) and (2) by checking properties that refer to one round. Namely, we
introduce round invariants (4) and (5), and prove that they imply Agreement and Validity.
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The first round invariant claims that in every round and in every path, once a process
decides v in a round, no process ever enters a location from F1−v in that round. Formally:

∀k ∈ N0. A
(
F

∨
`∈Dv

~κ[`, k] > 0 → G
∧

`′∈F1−v

~κ[`′, k] = 0
)

(4)

The second round invariant claims that in every round in every path, if no process starts
a round with a value v, then no process terminates that round with value v. Formally:

∀k ∈ N0. A
(
G

∧
`∈Iv

~κ[`, k] = 0 → G
∧

`′∈Fv

~κ[`′, k] = 0
)

(5)

The following proposition is proved using restriction (R2) and by an inductive argument
over the round number.

I Proposition 2. If Sys∞(TA) |= (4) ∧ (5), then Sys∞(TA) |= (1) ∧ (2).

6 Reduction to Single-Round Counter System

Given a property of one round, our goal is to prove that there is a counterexample to the
property in the multi-round system iff there is a counterexample in a single-round system.
This is formulated in Theorem 6, and it allows us to use ByMC on a single-round system.

The proof idea contains two parts. First, in Section 6.1 we prove that one can replace an
arbitrary finite schedule with a round-rigid one, while preserving atomic propositions of a
fixed round. We show that swapping two adjacent transitions that do not respect the order
over round numbers in an execution, gives us a legal stutter equivalent execution, i.e., an
execution satisfying the same LTL-X properties.

Second, in Section 6.2 we extend this reasoning to infinite schedules, and lift it from
schedules to transition systems. The main idea is to do inductive and compositional reasoning
over the rounds. To do so, we need well-defined round boundaries, which is the case if
every round that is started is also finished; a property we can automatically check for fair
schedules. In more detail, regarding propositions for one round, we show that the multi-round
transition system is stutter equivalent to a single-round transition system. This holds under
the assumption that all fair executions of a single-round transition system terminate, and
this can be checked using the technique from [10]. As stutter equivalence of systems implies
preservation of LTL-X properties, this is sufficient to prove the main goal of the section.

6.1 Reduction from arbitrary schedules to round-rigid schedules
I Definition 3. A schedule τ = (r1, k1) · (r2, k2) · . . . · (rm, km), m ∈ N0, is called round-rigid
if for every 1 ≤ i < j ≤ m, we have ki ≤ kj.

The following proposition shows that any finite schedule can be re-ordered into a round-
rigid one that is stutter equivalent regarding LTL-X formulas over proposition from APk, for
all rounds k. It is proved using arguments on the commutativity of transitions, similar to [8].

I Proposition 4. For every configuration σ and every finite schedule τ applicable to σ, there
is a round-rigid schedule τ ′ such that the following holds:
(a) Schedule τ ′ is applicable to configuration σ.
(b) τ ′ and τ reach the same configuration when applied to σ, i.e., τ ′(σ) = τ(σ).
(c) For every k ∈ N0 we have path(σ, τ) ,k path(σ, τ ′).

Thus, instead of reasoning about all finite schedules of Sys∞(TA), it is sufficient to reason
about its round-rigid schedules. In the following section we use this to simplify the verification
further, namely to a single-round counter system.

CONCUR 2019
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Figure 3 The single-round threshold automaton TArd obtained from PTA in Figure 2.

6.2 From round-rigid schedules to single-round counter system
For each PTA, we define a single-round threshold automaton that can be analyzed with the
tools of [12] and [10]. Roughly speaking, we focus on one round, but also keep the border
locations of the next round, where we add self-loops. Figure 3 represents the single-round
threshold automaton associated with the PTA from Figure 2. We can prove that for specific
fairness constraints, this automaton shows the same behavior as a round in Sys∞(TA).

We restrict ourselves to fair schedules, that is, those where no transition is applicable
forever. We also assume that every fair schedule of a single-round system terminates, i.e.,
eventually every process reaches a state from B′. Under the fairness assumption we check
the latter assumption with ByMC [13]. Moreover, we restrict ourselves to non-blocking
threshold automata, that is, we require that in each configuration each location has at least
one outgoing rule unlocked. As we use TAs to model distributed algorithms, this is no
restriction: locations in which no progress should be made unless certain thresholds are
reached, typically have self-loops that are guarded with true (e.g. SR and SP ). Thus for
our benchmarks one can easily check whether they are non-blocking using SMT (we have to
check that there is no evaluation of the variables such that all outgoing rules are disabled).

IDefinition 5. Given a PTA = (L,V,R,RC ) or its TA = (L,V,Rnp,RC ), we define a single-
round threshold automaton TArd = (L ∪ B′,V,Rrd,RC ), where B′ = {`′ : ` ∈ B} are copies
of border locations, and Rrd = (Rnp \S)∪S ′∪Rloop, where Rloop = {(`′, `′, true,~0) : `′ ∈ B′}
are self-loop rules at locations from B′ and S ′ = {(from, `′, true,~0) : (from, `, true,~0) ∈
S with `′ ∈ B′} consists of modifications of round switch rules. Initial locations of TArd are
the locations from B ⊆ L.

For a TArd and a k ∈ N0 we define a counter system Sysk(TArd) as the tuple (Σk, Ik, Rk).
A configuration is a tuple σ = (~κ, ~g,p) ∈ Σk, where σ.~κ : D → N0 defines values of the
counters, for D = (L× {k}) ∪ (B′ × {k + 1}); and σ.~g : Γ× {k} → N0 defines shared variable
values; and σ.p ∈ N|Π|0 is a vector of parameter values.

Note that by using D in the definition of σ.~κ above, every configuration σ ∈ Sysk(TArd)
can be extended to a valid configuration of Sys∞(TA), by assigning zero to all other counters
and global variables. In the following, we identify a configuration in Sysk(TArd) with its
extension in Sys∞(TA), since they have the same labeling function λk, for every k ∈ N0.

We define ΣkB ⊆ Σk, for a k ∈ N0, to be the set of all configurations σ where every process
is in a location from B, and all shared variables are set to zero in k, formally, σ.~g[x, k] = 0 for
all x ∈ Γ, and

∑
`∈B σ.~κ[`, k] = N(p), and σ.~κ[`, i] = 0 for all (`, i) ∈ D \ (B × {k}). We call

these configurations border configurations for k. The set of initial states Ik is a subset of ΣkB.
We define the transition relation R as in Sys∞(TA), i.e., two configurations are in the

relation Rk if and only if they (or more precisely, their above described extensions) are in R.
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For every k ∈ N0 and every σ ∈ Σk
B, there is a corresponding configuration σ′ ∈ Σ0

B
obtained from σ by renaming the round k to round 0. Let fk be the renaming function, i.e.,
σ′ = fk(σ). Let us define Σu ⊆ Σ0

B to be the union of all renamed initial configurations from
all rounds, that is, {fk(σ) : k ∈ N0, σ ∈ Ik}.

I Theorem 6. Let TA be non-blocking, and let all fair executions of Sys0(TArd) w.r.t. Σ0
B

terminate. Given a formula ϕ[i] from LTL-X over APi, for a round variable i, we have
(A) Sys0(TArd) |= Eϕ[0] w.r.t. initial configurations Σu if and only if
(B) there exists k ∈ N0 such that Sys∞(TA) |= Eϕ[k].

Proof sketch. The theorem is proved using the following arguments. In statement (B), the
existential quantification over k corresponds to the defintion of Σu as union, over all rounds,
of projections of all reachable initial configurations of that round.

Implication (B)→ (A) exploits the fact that all rounds are equivalent up to renaming of
round numbers (with the exception of possible initial configurations).

Implication (A)→ (B), note that an initial configuration in Σu is not necessarily initial in
round 0, so that one cannot a priori take k = 0. Let us explain how to extend an execution
of round k into an infinite execution in Sys∞(TA). By termination, all rounds up to k−1
terminate, so that there is execution that reaches a configuration where all processes are in
initial locations of round k. The executions or round k mimick the ones of round 0 (modulo
the round number). Finally, the non-blocking assumption is required to be always able to
extend to infinite executions after round k is terminated. J

In Section 4 we showed how to reduce our specifications to formulas of the form ∀k ∈
N0. Aψ[k]. Theorem 6 deals with negations of such formulas, i.e., with existence of a round k
such that formula Eϕ[k] holds. Thus, we can check specifications on the single-round system.

7 Probabilistic Wait-Free Termination

We start by defining two conditions that are sufficient to establish Probabilistic Wait-Free
Termination under round-rigid adversaries. Condition (C1) states the existence of a positive
probability lower-bound for all processes ending round k with equal final values. Condition
(C2) states that if all correct processes start round k with the same value, then they all will
decide on that value in that round.

(C1) There is a bound p ∈ (0, 1], such that for every round-rigid adversary a, and every k ∈ N0,
and every configuration σk with parameters p that is initial for round k, it holds that

Pσk
a

(∨
v∈{0,1}

G
(∧

`∈Fv

~κ[`, k] = 0
))

> p.

(C2) For every v ∈ {0, 1}, ∀k ∈ N0. A
(
G

∧
`∈I1−v

~κ[`, k] = 0 → G
∧
`′∈F\Dv

~κ[`′, k] = 0
)
.

Combining (C1) and (C2), under every round-rigid adversary, from any initial configuration
of round k, the probability that all correct processes decide before end of round k+1 is at
least p. Thus the probability not to decide within 2n rounds is at most (1− p)n, which tends
to 0 when n tends to infinity. This reasoning follows the arguments of [1].

I Proposition 7. If Sys∞(PTA) |= (C1) ∧ (C2), then Sys∞(PTA) |= (3).

Observe (C2) is a non-probabilistic property of the same form as (5), so that we can
check (C2) using the method of Section 6.

CONCUR 2019
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In the rest of this section, we detail how to reduce the verification of (C1), to a verification
task that can be handled by ByMC. First observe that (C1) contains a single round variable,
and recall that we restrict to round-rigid adversaries, so that it is sufficient to check them
(omitting the round variables) on the single-round system. We introduce analogous objects
as in the non-probabilistic case: PTArd (analogously to Definition 5), and its counter
system Sys(PTArd).

7.1 Reducing probabilistic to non-probabilistic specifications
Since probabilistic transitions end in final locations, they cannot appear on a cycle in PTArd.
Therefore, for fixed parameter valuation p, any path contains at most N(p) probabilistic
transitions, and its probability is therefore uniformly lower-bounded. As a consequence:

I Lemma 8. Let p ∈ PRC be a parameter valuation. In Sys(PTArd), for every LTL formula ϕ
over atomic proposition AP, the following two statements are equivalent:
(a) ∃p > 0, ∀σ ∈ Ip, ∀a ∈ AR. Pσa

(
ϕ
)
> p,

(b) ∀σ ∈ Ip, ∀a ∈ AR, ∃π ∈ paths(σ, a). π |= ϕ.

7.2 Verifying (C1) on a non-probabilistic TA
Applying Lemma 8, proving (C1) is equivalent to proving the following property on Sys(PTArd)

∀σ ∈ Ip, ∀a ∈ AR, ∃π ∈ paths(σ, a). π |=
∨

v∈{0,1}
G (

∧
`∈Fv

~κ[`] = 0). (6)

In the sequel, we explain how to reduce the verification of (6) to checking the simpler formula
A

∨
v∈{0,1}G (

∧
`∈Fv

~κ[`] = 0) on a single-round non-probabilistic TA obtained from PTArd.
As in Section 6, it is possible to modify PTArd into a non-probabilistic TA, by replacing

probabilistic choices by non-determinism. Still, the quantifier alternation of (6) (universal
over initial configurations and adversaries vs. existential on paths) is not in the fragment
handled by ByMC [13]. Once an initial configuration σ and an adversary a are fixed, the
remaining branching is induced by non-Dirac transitions. By assumption, these transitions
lead to final locations only, to both F0 and F1, and under round-rigid adversaries, they are
the last transitions to be fired. To prove (6), it is sufficient to prove that all processes that
fire only Dirac transitions will reach final locations of the same type (F0 or F1). If this is the
case, then the existence of a path corresponds to all non-Dirac transitions being resolved in
the same way. This allows us to remove the non-Dirac transitions from the model as follows.
Given a PTArd, we define a threshold automaton TAm with locations L (without B′) such
that for every non-Dirac rule r = (from, δto, ϕ, ~u) in PTA, all locations ` with δto(`) > 0 are
merged into a new location `mrg in TAm. Note that this location must belong to F . Naturally,
instead of a non-Dirac rule r we obtain a Dirac rule (from, `mrg, ϕ, ~u). Also we add self-loops
at all final locations. Paths in Sys(TAm) correspond to prefixes of paths in Sys(PTArd). In
Sys(TAm), from a configuration σ, an adversary a yields a unique path, that is, paths(σ, a) is
a singleton set. Thus, the existential quantifier from (6) can be replaced by the universal one.

By construction, property (6) on PTArd is equivalent to A
∨
v∈{0,1}G (

∧
`∈Fv

~κ[`] = 0)
on Sys(TAm). The latter can be checked automatically by ByMC, allowing us to prove (C1).

8 Experiments

We have applied the approach presented in Sections 4–7 to five randomized fault-tolerant
distributed algorithms. (The benchmarks and the instructions on running the experiments
are available from: https://forsyte.at/software/bymc/artifact42/.)

https://forsyte.at/software/bymc/artifact42/
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Table 1 Temporal properties verified in our experiments for value 0.

Label Name Automaton Formula

S1 agreement_0 N AG (¬Ex{D0}) ∨ G (¬Ex{D1, E1})
S2 validity_0 N AAll{V0} → G (¬Ex{D1, E1})
S3 completeness_0 N AAll{V0} → G (¬Ex{D1, E1})
S4 round-term N A fair → FAll{D0, D1, E0, E1, CT}
S5 decide-or-flip P A fair → F (All{D0, E0, CT} ∨All{D1, E1, CT})
S1’ sim-agreement N AG (¬Ex{D0, E0} ∨ ¬Ex{D1, E1})
S1” 2-agreement N AG (¬Ex{D0, E0} ∨ ¬Ex{D1, E1} ∨ ¬Ex{D2, E2})

1. Protocol 1 for randomized consensus by Ben-Or [3], with two kinds of crashes: clean
crashes (ben-or-cc), for which a process either sends to all processes or none, and dirty
crashes (ben-or-dc), for which a process may send to a subset of processes. This algorithm
works correctly when n > 2t.

2. Protocol 2 for randomized Byzantine consensus (ben-or-byz) by Ben-Or [3]. This algorithm
tolerates Byzantine faults when n > 5t.

3. Protocol 2 for randomized consensus (rabc-c) by Bracha [5]. It runs as a high-level
algorithm together with a low-level broadcast that turns Byzantine faults into “little
more than fail-stop (faults)”. We check only the high-level algorithm for clean crashes.

4. k-set agreement for crash faults (kset) by Raynal [21], for k = 2. This algorithm works in
presense of clean crashes when n > 3t.

5. Randomized Byzantine one-step consensus (rs-bosco) by Song and van Renesse [23]. This
algorithm tolerates Byzantine faults when n > 3t, and it terminates fast when n > 7t or
n > 5t and f = 0.

Following the reduction approach of Sections 4–7, for each benchmark, we have encoded
two versions of one-round threshold automata: an N-automaton that models a coin toss
by a non-deterministic choice in a coin-toss location, and is used for the non-probabilistic
reasoning, and a P-automaton that never leaves the coin-toss location and which is used to
prove probabilistic wait-free termination. Both automata are given as the input to Byzantine
Model Checker (ByMC) [13], which implements the parameterized model checking techniques
for safety [11] and liveness [10] of counter systems of threshold automata.

Both automata follow the pattern shown in Figure 2: They start in one of the initial
locations (e.g., V0 or V1), progress by switching locations and incrementing shared variables
and end up in a location that corresponds to a decision (e.g., D0 or D1), an estimate of a
decision (e.g., E0 or E1), or a coin toss (CT).

Table 1 summarizes the temporal properties that were verified in our experiments. Given
the set of all possible locations L, a set Y = {`1, . . . , `m} ⊆ L of locations, and the designated
crashed location CR ∈ L, we use the shorthand notation: Ex{`1, . . . , `m} for

∨
`∈Y ~κ[`] 6= 0

and All{`1, . . . , `m} for
∧
`∈L\Y (~κ[`] = 0 ∨ ` = CR). For rs-bosco and kset, instead of

checking S1, we check S1’ and S1”.
Table 2 presents the computational results of our experiments: column |L| shows the

number of automata locations, column |R| shows the number of automata rules, column |S|
shows the number of SMT queries (which depends on the structure of the automaton and
the specification), column time shows the computation times – either in seconds or in the
format HH:MM. As the N-automata have more rules than the P-automata, column |R| shows
the figures for N-automata. To save space, we omit the figures for memory use from the
table: Benchmarks 1–5 need 30–170 MB, whereas rs-bosco needs up to 1.5 GB per CPU.
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Table 2 The experiments for first 5 rows were run on a single computer (Apple MacBook Pro
2018, 16GB). The experiments for last row (rs-bosco) were run in Grid5000 on 32 nodes (2 CPUs
Intel Xeon Gold 6130, 16 cores/CPU, 192GB). Wall times are given.

Automaton S1/S1’/S1” S2 S3 S4 S5

Name |L| |R| |S| Time |S| Time |S| Time |S| Time |S| Time

ben-or-cc 10 27 9 1 5 0 5 0 5 0 5 0

ben-or-dc 10 32 9 1 5 1 5 0 5 0 5 1

ben-or-byz 9 18 3 1 2 0 2 0 2 0 2 1

rabc-cr 11 31 9 0 5 1 5 1 5 0 5 0

kset 13 58 65 3 65 17 65 12 65 39 65 40

rs-bosco 19 48 156M 3:21 156M 3:02 156M 3:21 TO TO 156M 3:43

The benchmark rs-bosco is a challenge for the technique of [10]: Its threshold automaton
has 12 threshold guards that can change their values almost in any order. Additional
combinations are produced by the temporal formulas. Although ByMC reduces the number
of combinations by analyzing dependencies between the guards, it still produces between
11! and 14! SMT queries. Hence, we ran the experiments for rs-bosco on 1024 CPU cores
of Grid5000 and gave the wall time results in Table 2. (To find the total computing time,
multiply wall time by 1024.) ByMC timed out on the property S4 after 1 day (shown as TO).

For all the benchmarks in Table 2, ByMC has reported that the specifications hold. By
changing n > 3t to n > 2t, we found that rabc-cr can handle more faults (the original n > 3t
was needed to implement the underlying communication structure which we assume given in
the experiments). In other cases, whenever we changed the parameters, that is, increased
the number of faults beyond the known bound, the tool reported a counterexample.

9 Conclusions

Our proof methodology for almost sure termination applies to round-rigid adversaries only.
As future work we shall prove that verifying almost-sure termination under round-rigid
adversaries is sufficient to prove it for more general adversaries. Transforming an adversary
into a round-rigid one while preserving the probabilistic properties over the induced paths,
comes up against the fact that, depending on the outcome of a coin toss in some step at
round k, different rules may be triggered later for processes in rounds less than k.

A few contributions address automated verification of probabilistic parameterized sys-
tems [22, 4, 20, 19]. In contrast to these, our processes are not finite-state, due to the round
numbers and parameterized guards. The seminal work by Pnueli and Zuck [22] requires
shared variables to be bounded and cannot use arithmetic thresholds different from 1 and n.
Algorithms for well-structured transition systems [4] do not directly apply to multi-parameter
systems produced by probabilistic threshold automata. Regular model checking [20, 19]
cannot handle arithmetic resilience conditions such as n > 3t, nor unbounded shared variables.
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