
A Sound Foundation for the Topological Approach
to Task Solvability
Jérémy Ledent
École Polytechnique, Palaiseau, France
jeremy.ledent@lix.polytechnique.fr

Samuel Mimram
École Polytechnique, Palaiseau, France
samuel.mimram@lix.polytechnique.fr

Abstract
The area of fault-tolerant distributed computability is concerned with the solvability of decision
tasks in various computational models where the processes might crash. A very successful approach
to prove impossibility results in this context is that of combinatorial topology, started by Herlihy and
Shavit’s paper in 1999. They proved that, for wait-free protocols where the processes communicate
through read/write registers, a task is solvable if and only if there exists some map between simplicial
complexes satisfying some properties. This approach was then extended to many different contexts,
where the processes have access to various synchronization and communication primitives. Usually,
in those cases, the existence of a simplicial map from the protocol complex to the output complex
is taken as the definition of what it means to solve a task. In particular, no proof is provided of
the fact that this abstract topological definition agrees with a more concrete operational definition
of task solvability. In this paper, we bridge this gap by proving a version of Herlihy and Shavit’s
theorem that applies to any kind of object. First, we start with a very general way of specifying
concurrent objects, and we define what it means to implement an object B in a computational
model where the processes are allowed to communicate through shared objects A1, . . . , Ak. Then,
we derive the notion of a decision task as a special case of concurrent object. Finally, we prove an
analogue of Herlihy and Shavit’s theorem in this context. In particular, our version of the theorem
subsumes all the uses of the combinatorial topology approach that we are aware of.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Fault-tolerant protocols, Asynchronous computability, Combinatorial topo-
logy, Protocol complex, Distributed task

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.34

1 Introduction

The typical framework in which one studies distributed computing is that of asynchronous
processes communicating through shared objects. A wide variety of computational models
have been introduced, depending on the communication primitives the processes are allowed
to use, and the assumptions made on the kind of failures that might happen during the
computation. The area of fault-tolerant computability [6] studies what kind of decision tasks
can be solved in such models. To solve a task, each process starts with a private input
value, and after communicating with the other processes, it has to decide on an output.
For instance, a well-known task is consensus, where the processes must agree on one of
their inputs.

A very well-studied setting is the one of wait-free protocols communicating through shared
read/write registers. In order to prove impossibility results in this context, people started
developing powerful mathematical tools based on algebraic topology [1, 13]. The fundamental
paper by Herlihy and Shavit [10] provides a topological characterization of the tasks that can
be solved by a wait-free protocol using read/write registers: they proved the asynchronous

© Jérémy Ledent and Samuel Mimram;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeremy.ledent@lix.polytechnique.fr
mailto:samuel.mimram@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 A Sound Foundation for the Topological Approach to Task Solvability

computability theorem, which says that a read/write protocol solves a decision task if and
only if there exists a map from a subdivision of the input complex to the output complex,
which is carried by the task specification. The subdivided simplicial complex that appears in
this theorem was the first occurrence of a protocol complex, a very compact way of expressing
combinatorially the partial knowledge that each process acquires during the computation.

Soon thereafter, it became clear that this method actually extends beyond the setting of
read/write registers: many other computational models can also be described as protocol
complexes. This idea gave birth to the combinatorial topology approach to distributed
computing [6]. Generalizing the ideas behind the asynchronous computability theorem, one
can define an abstract notion of protocol using so-called carrier maps between an input
complex and a protocol complex. Then, we can take Herlihy and Shavit’s characterization as
the definition of what it means for a protocol to solve a task. This abstract approach is very
appealing because it offers a great deal of generality: for example, the set-agreement task
cannot be solved in any computational model whose protocol complex is a pseudomanifold [6,
Chapter 9]. We are thus able to prove impossibility results for a wide class of computational
models, instead of studying them one at a time. In principle, most computational models
and synchronization primitives can be formulated using the protocol complex formalism:
it has been used in the literature to model processes communicating using test-and-set
objects [8], (N, k)-consensus objects [7], weak symmetry breaking and renaming [4], or
various synchronous or asynchronous message passing primitives [9].

The drawback of this high level of abstraction is that we have to trust that our protocol
complex faithfully represents the behavior of the objects that we want to model. When we
want to define, for example, the protocol complex which is supposed to model test-and-set
computation, we must define it carefully so that the simplicial notion of “solving” a task
will agree with the concrete operational semantics of test-and-set objects. Ideally, one would
have to prove another version of the asynchronous computability theorem for test-and-set
protocols, relating a concrete notion of solvability with the abstract simplicial definition.
This is usually not done in practice, since it is often clear intuitively that the proposed notion
of protocol complex makes sense operationally.

In this paper, we generalize the asynchronous computability theorem to a large class
of concurrent objects. In Section 2, we define the “concrete” notion of solvability that
we will later prove equivalent to the simplicial one. Our goal is to model processes which
communicate though arbitrary shared objects. In particular, our notion of object is general
enough to include all the objects mentioned above. Our notion of object specification is
discussed more thoroughly in [5] where, in particular, we prove that it is equivalent to
specifications based on interval-linearizability [2]. In Section 3, we discuss the notion of task
and compare it to the notion of one-shot object. It had been remarked recently that tasks are
less expressive than one-shot objects [2]. We explore more in depth the relationship between
the two, and as a result we obtain a characterization of the one-shot objects that correspond
to tasks. Finally, in Section 4, we state and prove our generalized asynchronous computability
theorem. It encompasses the original theorem of Herlihy and Shavit for read/write registers,
as well as all the other variants that have been implicitly used in the literature.

2 A computational model based on trace semantics

In this section, we define a concrete semantics for protocols where the processes communicate
through shared objects. What we mean here by “concrete” is that it is based on interleavings
of execution traces, as opposed to the abstract topological semantics of Section 4. The



J. Ledent and S. Mimram 34:3

formalism that we use here (i.e., all of Section 2) was developed and discussed more thoroughly
in a previous article [5]. It is quite similar to other trace-based operational semantics found
in the literature [12, 3]. There are mainly two things that we need to define: in Section 2.1,
we give a very general way of specifying concurrent objects, and in Section 2.2, we define
what it means to implement a new object B, assuming we have access to objects A1, . . . , Ak.

2.1 Specifying concurrent objects
Our goal here is to define a notion of concurrent object which includes all the objects that
are relevant to fault-tolerant computability. As it was remarked in [2], the tasks studied
in this field cannot be specified using common techniques such as linerizability [11]. Thus,
they introduced the notion of interval-linearizability in order to unify tasks and objects. The
definition that we use here was introduced in [5] and shown to be equivalent to interval-
linearizability. In the rest of the paper, we suppose fixed a number n ∈ N of processes
and write [n] = {0, 1, . . . , n− 1} for the set of process names (a process is identified by its
number). We also suppose fixed a set V of values which can be exchanged between processes
and objects (typically V = N). The set A of possible actions for an object is defined as

A = {ixi | i ∈ [n], x ∈ V} ∪ {ryi | i ∈ [n], y ∈ V}

An action is thus either
ixi : an invocation of the object by the process i with input value x,
ryi : a response of the object to the process i with output value y.

An execution trace is a finite sequence of actions, i.e., an element of A∗; we write ε for the
empty trace and T · T ′ for the concatenation of two traces T and T ′. Given a process i ∈ [n],
the i-th projection πi(T ) of a trace T ∈ T is the trace obtained from T by removing all
the actions of the form ixj or rxj with j 6= i. A trace T ∈ T is alternating if for all i ∈ [n],
πi(T ) is either empty or it begins with an invocation and alternates between invocations and
responses, i.e., using the traditional notation of regular expressions:

πi(T ) ∈
( ⋃
x,y∈V

ixi · r
y
i

)∗
·
( ⋃
x∈V

ixi + ε
)

We write T ⊆ A∗ for the set of alternating traces. In the remaining of the paper, we will
only consider alternating traces, and often drop the adjective “alternating”. If πi(T ) ends
with an invocation, we call it a pending invocation. An alternating trace T is complete if it
does not have any pending invocation.

I Definition 1. A concurrent specification σ is a subset of T which is
(1) prefix-closed: if T · T ′ ∈ σ then T ∈ σ,
(2) non-empty: ε ∈ σ,
(3) receptive: if T ∈ σ and πi(T ) has no pending invocation, then T · ixi ∈ σ for every x ∈ V,
(4) total: if T ∈ σ and πi(T ) has a pending invocation, there exists x ∈ V such that T ·rxi ∈ σ,
(5) is closed under expansion:

if T · aj · ixi · T ′ ∈ σ where aj is an action of process j 6= i, then T · ixi · aj · T ′ ∈ σ.
if T · ryi · aj · T ′ ∈ σ where aj is an action of process j 6= i, then T · aj · ryi · T ′ ∈ σ.

We write CSpec for the set of concurrent specifications.

A concurrent specification σ is the set of all executions that we consider acceptable: a
protocol implements the specification σ if all the execution traces that it generates belong
to σ (this will be detailed in Section 2.2). The axioms (1-3) are quite natural and commonly

CONCUR 2019



34:4 A Sound Foundation for the Topological Approach to Task Solvability

considered in the literature (e.g. in [11]). They can be read as follows: (1) an object can do
one action at a time, (2) an object can do nothing, (3) it is always possible to invoke an
object. The axiom (4) states that objects always answer and in a non-blocking way; this
is a less fundamental axiom and more of a design choice, since we want to model wait-free
computation. Note that receptivity (3) does not force objects to accept all inputs: we could
have a distinguished “error” value which is returned in case of an invalid input. Similarly,
an object with several inputs, or several interacting methods (for example, a stack) can be
modeled by choosing a suitable set of values V.

The condition (5) might seem more surprising, and will be crucial to establish the
correspondence between tasks and objects in Section 3. Some consequences of this condition,
and the reasons why it is a desirable property of concurrent specifications, are discussed
more thoroughly in [5]. Intuitively, this condition says that if a given execution is correct,
then a similar execution where some process is idle for a while just after invoking, or just
before responding, must also be correct, since both executions are indistinguishable. In
particular, condition (5) implies that invocations “commute”: we have T · ixi · i

y
j · T ′ ∈ σ iff

T · iyj · ixi ·T ′ ∈ σ, and similarly for responses. We say that two traces T, T ′ ∈ T are equivalent,
written T ≡ T ′, if one is obtained from the other by reordering the actions within each block
of consecutive invocations or consecutive responses. Generally, in the rest of the paper, we
are only interested in studying traces up to equivalence.

2.2 Program semantics
In this section, we provide an operational model for concurrent programs communicating
through shared objects. We assume given a set Obj of objects: they might be, for instance,
concurrent data structures that have already been implemented, and that our programs are
able to use in order to compute and communicate. We do not want to depend on a particular
implementation of these objects, but on their specification. Thus, each object comes with
its concurrent specification (as in Definition 1), which is the set of behaviors that it might
exhibit. Note that our model does not have any special construct for reading and writing in
the shared memory: we assume that the memory itself is given as an object in Obj, with an
appropriate specification. Thus, the only meaningful action a program can take is to call
one of the objects; and possibly do some local computation to determine what the next call
should be.

To abstract away the syntax of the programming language, we use an automata-like
representation, which roughly corresponds to the control-flow graph of the program.

consensus (v) {
a.write(v);
x = t&s();
if (x == 0)

return v;
else

v’ = b.read ();
return v’;

} δ = 0 δ = (b, read) δ = 1 δ = (b, read)

δ = (t&s, ()) δ = (t&s, ())

δ = (a, (write, 0)) δ = (a, (write, 1))

⊥
τ(0) τ(1)

τ(done) τ(done)

τ(0) τ(1) τ(0) τ(1)

The example above shows an implementation of binary consensus among two processes,
using three objects: two read-write registers a and b, and a test-and-set object t&s. In a
given state of the automaton, the decision function δ indicates which is the next object that



J. Ledent and S. Mimram 34:5

the program will call, and the transition function τ says what the next state will be depending
on the return value of the call. The pseudo-code and automaton above represent the program
run by one of the two processes, the other process should switch the role of a and b.

We suppose fixed a set Obj of objects, along with their concurrent specification spec(o) ∈
CSpec for each o ∈ Obj. Here, a program is basically a piece of code (executed by one of
the processes) which takes a value as input, makes several calls to the objects in Obj (using
algebraic operations to combine their results) and finally returns a value. Formally,

I Definition 2. A program is a quadruple (Q,⊥, δ, τ) consisting of:
a (possibly infinite) set Q of local states containing an idle state ⊥ ∈ Q,
a decision function δ : Q \ {⊥} → (Obj× V) t V,
a transition function τ : Q× V → Q \ {⊥}.

The idle state is the one where the program is waiting to be called with some input value x,
in which case it will go to state τ(⊥, x). After that, the decision function gives the next step
of the process depending on the current state: either call some object with some input value,
or terminate and output some value. In the case where an object is called, the transition
function gives the new local state of the process, depending on the previous state and the
value returned by the object.

A protocol P is given by a program Pi = (Qi,⊥i, δi, τi) for each process i ∈ [n]. The
global state of a protocol P is an element q = (q0, . . . , qn−1) of Q =

∏
iQi, consisting of

a state for each process Pi. The initial state is qinit = (⊥0, . . . ,⊥n−1) and, given a global
state q, we write q[i← q′i] for the state where the i-th component qi has been replaced by q′i.
We now describe the set A of possible actions for P , as well as their effect ∆ : Q×A → Q

on global states.
ixi : the i-th process is called with input value x ∈ V. The local state qi of process i is
changed from ⊥i to τi(⊥i, x):

∆(q, ixi ) = q[i← τi(⊥i, x)]

where the state on the right is q where qi has been replaced by τi(⊥i, x).
i(o)xi : the i-th process invokes the object o ∈ Obj with input value x ∈ V. This does not
have any effect on the global state:

∆(q, i(o)xi ) = q

r(o)xi : the object o ∈ Obj returns some output value x ∈ V to the i-th process. The local
state of process i is updated according to its transition function τi:

∆(q, r(o)xi ) = q[i← τi(qi, x)]

rxi : the i-th process has finished computing, returning the output value x ∈ V. It goes
back to idle state:

∆(q, rxi ) = q[i← ⊥i]

The actions of the form ixi and rxi (resp. i(o)xi and r(o)xi ) are called outer (resp. inner)
actions. Given a trace T ∈ A∗ and an object o, we denote by To, called the inner projection
on o, the trace obtained from T by keeping only the inner actions of the form i(o)xi or
r(o)yi . The function ∆ is extended as expected as a function ∆ : Q × A∗ → Q, i.e.,
∆(q, T ·T ′) = ∆(∆(q, T ), T ′) and ∆(q, ε) = q. A trace is valid if at each step in the execution,
the next action is taken according to the decision function δ. Formally:

CONCUR 2019



34:6 A Sound Foundation for the Topological Approach to Task Solvability

I Definition 3. A trace T ∈ A∗ is valid when for every strict prefix U of T , writing
T = U · a · V and q = ∆(qinit, U), with a ∈ A, we have:

if a = ixi then qi = ⊥i,
if a = ryi then qi 6= ⊥i and δi(qi) = y,
if a = i(o)xi then qi 6= ⊥i and δi(qi) = (o, x),
if a = r(o)yi then qi 6= ⊥i.

Moreover, we require that for every object o ∈ Obj, the inner projection To belongs to spec(o).
The set of valid traces for P is written TP ⊆ A∗.

A protocol P is wait-free if there is no valid infinite trace (i.e., all its prefixes are valid)
involving only inner-i-actions after some position: in other words, a process running alone
will eventually decide an output value. Given a trace T ∈ A∗, we write π(T ) for the trace
obtained by keeping only outer actions.

I Definition 4. The semantics of a protocol P is the set of traces JP K = {π(T ) | T ∈ TP }
and P implements a concurrent specification σ whenever JP K ⊆ σ, i.e., all the outer traces
that P can produce are correct with respect to σ.

An important property that was proved in [5] is that JP K itself is a concurrent specification
in the sense of Definition 1. Indeed, given any protocol P , we should be able to specify
abstractly what P is doing: that specification is precisely JP K. In particular, since JP K satisfies
all the axioms of concurrent specifications, we are sure that these axioms are reasonable, in
the sense that they are validated in our model.

3 Tasks as a particular kind of one-shot objects

The topological approach to distributed computing [6] is not interested in implementing
long-lived objects as in the previous section, but in solving decision tasks. In a decision task,
each process starts with a private input value, it communicates with the other processes by
using some shared objects, and then it must eventually decide an output value. The most
well-known example is the consensus task, where the processes have to agree on a common
output value. Thus, in a decision task, all the processes start the computation together,
and once a process has decided an output value, it does not take part in the computation
anymore. This is contrasted with concurrent objects, where new processes can start and
terminate at any point during the computation, and a single process is allowed to make
several consecutive calls to the object.

In this section, we compare tasks and one-shot objects, that is, objects which can be
called only once by each process. It was already observed in [2] that tasks are weaker than
one-shot objects: some objects cannot be expressed as a task. They defined a notion of
“extended task” which is as expressive as one-shot objects. Our goal here is dual: we want to
characterize the subclass of one-shot objects which correspond to tasks.

We start by giving a formal definition of tasks. The formalism that we use here is inspired
of the one used in Herlihy and Shavit’s paper [10]. Readers familiar with the topological
definition of a task should recognize that this a direct reformulation of it. Recall that the
set of values is written V and n is the number of processes. Let ⊥ be a fresh symbol which
is not in V. A vector is a tuple U ∈ (V ∪ {⊥})n, such that at least one component of U is
not ⊥. We write Ui for the i-th component of U , and U [i← x] for the vector U where the
i-th component Ui has been replaced by x ∈ V. Given two vectors U and V , we say that U
matches V when Ui = ⊥ iff Vi = ⊥. We say that U is a face of V , written U � V , when for
all i, either Ui = Vi or Ui = ⊥. A vector U is maximal if none of its components is ⊥. If X
is a set of vectors, its downward closure is ↓X = {U | U � V for some V ∈ X}.



J. Ledent and S. Mimram 34:7

I Definition 5. A task is a triple Θ = (I,O,∆) such that:
I = Vn and O ⊆ Vn are sets of maximal vectors. The elements of I (resp. of O) and
their faces are called input vectors (resp. output vectors).
∆ ⊆ ↓I × ↓O is a relation between input and output vectors, such that:

∆ only relates matching vectors,
for every input vector U ∈ ↓I, ∆(U) 6= ∅,
for all input vectors U � U ′, ∆(U) ⊆ ↓∆(U ′).

Above, we write ∆(U) = {V | (U, V ) ∈ ∆}. Intuitively, the task specification says that if
each process i starts with the input Ui, the set ∆(U) consists of all the output vectors that
are considered acceptable outputs. A ‘⊥’ component in a vector represents a process which
is not participating in the computation, either because it crashed, or because it was so slow
that all the other processes terminated before it could take any steps. With that in mind,
the third condition on ∆ asserts that, if such a “slow” process wakes up, there is at least
one valid output which is compatible with what the other processes already decided. Note
that, to match the receptivity property of concurrent specifications, we are requiring I = Vn,
i.e., a task must specify what the outputs should be given any input vector. This is not a
restriction compared to the usual definition of a task: if we do not care about what happens
on some of the input vectors, we can simply consider that every output is correct.

We now describe how we can turn a task into a one-shot object. Given a vector U , the
set {i ∈ [n] | Ui 6= ⊥} is called the participating set of U . A pair (U, V ) ∈ ∆, where U and V
have participating set I = {i1, . . . , ik}, corresponds to a correct execution trace of the form
iUi1
i1
· · · iUik

ik
· rVi1
i1
· · · rVik

ik
, that is, a trace where all the participating processes invoke with the

input values from U , and then they all respond with the output values from V . Remember
that the order of consecutive invocations or consecutive responses does not matter. For
convenience, we will write such a trace iU · rV .

Thus, the task specification ∆ gives us a set of execution traces {iU · rV | (U, V ) ∈ ∆} ⊆ T .
But this set does not satisfy the conditions of Definition 1: we need to specify which traces
are correct or not, among the traces of other “shapes” (i.e., traces where invocations and
responses are interleaved). For example, consider a trace of the form iU · rV · ixj · r

y
j , where

(U, V ) ∈ ∆ have a participating set I, and j /∈ I. Intuitively, this represents the situation
where all the processes in I ran together without hearing from j, and after all of these
processes terminated, the process j ran alone with input x and decided output y. What
should be the condition on x and y for this trace to be considered correct? The most sensible
answer is that we should require (U [j ← x], V [j ← y]) ∈ ∆. The next definition generalizes
this idea to traces of any shape.

I Definition 6. Let Θ = (I,O,∆) be a task. We define the one-shot concurrent specification
G(Θ) ⊆ T as the set of execution traces T ∈ T such that:

T is one-shot, i.e., every process has at most one invocation and one response in T ,
there exists a completion T ′ of T (obtained by appending responses to the pending in-
vocations), such that for every non-empty prefix S of T ′ which is complete, we have
(US , VS) ∈ ∆, where the i-th component of US (resp. VS) is x if ixi (resp., rxi ) appears
in S, and ⊥ otherwise.

I Proposition 7. G(Θ) is a one-shot concurrent specification, i.e., it satisfies the properties
of Definition 1, except that we only require receptivity among one-shot traces.

CONCUR 2019



34:8 A Sound Foundation for the Topological Approach to Task Solvability

Proof. Prefix-closure (1) and non-emptiness (2) are obvious.
(3’): Let T ∈ G(Θ) and assume that no action from process i occurs in T . Let x ∈ V , we
want to show that T · ixi ∈ G(Θ). Let T ′ = T · T̂ be the completion of T that appears
in the definition of G(Θ) (T̂ consists of responses to the pending invocations of T ). In
particular, since T ′ is complete and a prefix of itself, we have (UT ′ , VT ′) ∈ ∆.
What we have to do is find a response to the invocation ixi that obeys the specification of
the task Θ. Since i does not participate in T , the vector UT ′ has a ⊥ at position i, and
so UT ′ � UT ′ [i← x]. Thus, we have ∆(UT ′) ⊆ ↓∆(UT ′ [i← x]), since Θ is a task. So in
particular VT ′ ∈ ↓∆(UT ′ [i ← x]), which means that there is some W ∈ ∆(UT ′ [i ← x])
which extends VT ′ . Let y ∈ V be the i-th component of W . Pick the complete trace
T ′′ = T · ixi · T̂ · r

y
i . Then we can check that (UT ′′ , VT ′′) = (UT ′ [i ← x],W ) ∈ ∆, and

since all the other complete prefixes of T ′′ are also complete prefixes of T , we finally get
T · ixi ∈ G(Θ).
(4): Let T ∈ G(Θ) and assume that πi(T ) has a pending invocation. Using the same
notations as before, the suffix T̂ must contain a response ryi to this invocation. Then just
by switching the order of the responses in T̂ , we obtain T · ryi ∈ G(Θ).
(5): Let T = T1 · aj · ixi · T2 ∈ G(Θ), with j 6= i, and take the same notations as in the
previous cases. We claim that T1 · ixi · aj · T2 · T̂ satisfies the conditions of Definition 6.
The only way that this could fail is if the complete prefix S is T1 · ixi : all other cases are
covered by the fact that T ∈ G(Θ). But T1 · ixi cannot be complete since it has a pending
invocation. So T1 · ixi · aj · T2 ∈ G(Θ).
The second half of condition (5) is proved similarly. J

There is also a map in the other direction: from a one-shot concurrent specification σ,
we can produce a task F (σ). This direction is much easier to define, all we have to do is
keep all the traces of σ which consist of a sequence of invocations followed by a sequence of
responses, and put in ∆ the corresponding pair (U, V ).

I Definition 8. Given a one-shot concurrent specification σ ⊆ T , the task F (σ) = (I,O,∆) is
defined as follows. For each trace T ∈ σ of the form T = ix1

i1
· · · ixk

ik
·ry1
i1
· · · ryk

ik
(we say that T is

fully-concurrent), we define the vectors UT (resp., VT ) whose ij-th component is xj (resp., yj)
and all the other components are ⊥. Then ∆ = {(UT , VT ) | T ∈ σ is fully-concurrent}, and I
(resp., O) is the set of all the maximal input (resp., output) vectors that appear in ∆.

I Proposition 9. F (σ) is a task.

Proof. First, we justify that ∆ ⊆ ↓I × ↓O. Let (UT , VT ) ∈ ∆ for some trace T . We want
to show that UT and VT are faces of maximal vectors that appear in ∆. We will find a
fully-concurrent trace T ′ ∈ σ such that UT � UT ′ and VT � VT ′ . For each process i that
does not participate in T , by the receptivity property of σ, we can add an invocation ixi at
the end of T . By totality, this invocation has an appropriate response ryi , that we add at the
end of the trace. Then by applying the expansion property several times, we can push all
the new invocations to the left to obtain the trace T ′ ∈ σ which is fully-concurrent.

We then check that the three conditions on ∆ are satisfied. ∆ always relates matching
vectors because the trace T has matching invocation and responses. For any input vector U ,
we can use totality of σ to find matching responses, which shows that ∆(U) 6= ∅. Finally,
given two input vectors U � U ′, and an element V of ∆(U), let T be the trace witnessing
that (U, V ) ∈ ∆. Then, as in the first paragraph, we can add the missing invocations by
receptivity, and matching responses by totality, and get a fully-concurrent trace by expansion.
This yields a pair (U ′, V ′) ∈ ∆, with V � V ′, which is what we want. J



J. Ledent and S. Mimram 34:9

The maps F and G are not inverse of each-other: as we stated in the introduction of the
section, one-shot objects are more expressive than tasks (an example of a simple object which
cannot be expressed as a task is exhibited in [2]). But the next Theorem shows that we still
have a close correspondence between tasks and objects. Given two tasks Θ = (I,O,∆) and
Θ′ = (I ′, O′,∆′), we write Θ ⊆ Θ′ when ∆ ⊆ ∆′.

I Theorem 10. The maps F and G are monotonic, and they form a Galois connection
between tasks and one-shot objects: for every task Θ and one-shot specification σ, we have

σ ⊆ G(Θ) ⇐⇒ F (σ) ⊆ Θ

Moreover, the following equality holds: F ◦G(Θ) = Θ.

Proof. The monotonicity of F and G follows directly from the definitions. In the rest of the
proof, we write F (σ) = (I ′, O′,∆′).

(⇒): Assume σ ⊆ G(Θ). Let (UT , VT ) ∈ ∆′, for some fully-concurrent trace T ∈ σ. So,
we also have T ∈ G(Θ). Since T is already complete (and a prefix of itself), we obtain
(UT , VT ) ∈ ∆.
(⇐): Conversely, assume F (σ) ⊆ Θ, and let T ∈ σ. First, we complete T by adding
response events to the pending invocations using totality. We get a trace T ′ = T · T̂ ∈ σ.
Let S be a prefix of T ′ which is complete. By prefix-closure, we get S ∈ σ. Then, using
the expansion property, we can push all the invocations to the left in order to get a trace
S′ ∈ σ which is fully-concurrent. Moreover, since S′ is obtained by reordering the actions
of S, we have US = US′ and VS = VS′ . By definition of F (σ), we have (US′ , VS′) ∈ F (σ),
so by assumption (US , VS) = (US′ , VS′) ∈ G(Θ).
From the first implication, since G(Θ) ⊆ G(Θ), we get F ◦ G(Θ) ⊆ Θ. To prove the
other inclusion, take (U, V ) ∈ ∆, and consider the associated trace T = iU · rV . We have
(by construction) U = UT and V = VT , so we just need to check that T ∈ G(Θ). But
since T is already complete, and the only complete non-empty prefix of T is T itself, with
(UT , VT ) ∈ ∆, this is the case. J

Theorem 10 tells us a lot about the relationship between tasks and one-shot objects. The
implication from left to right explains in what sense G is a canonical way to turn a task into
a one-shot object: G(Θ) is the largest one-shot specification whose set of fully-concurrent
traces obeys the task Θ. Moreover, the equality F ◦G = id, tells us that G is an injection of
tasks into one-shot objects. Thus, the objects that we are interested in are precisely the ones
in the image of G.

I Definition 11. A task object σ is a one-shot concurrent specification which can be written
as σ = G(Θ) for some task Θ.

The maps F and G form a bijection between tasks and task objects: indeed, given a task
object σ = G(Θ), we have G ◦ F (σ) = G ◦ F ◦G(Θ) = G(Θ) = σ. Conversely, if a one-shot
object σ satisfies σ = G ◦ F (σ), then it is a task object (corresponding to the task F (σ)).
Thus, we have a characterization of task objects, which does not refer to the notion of task:
σ is a task object iff G ◦ F (σ) = σ. In fact, since the inclusion σ ⊆ G ◦ F (σ) holds for any
one-shot object (as a consequence of Theorem 10), we even have the equivalence: σ is a task
object iff G ◦ F (σ) ⊆ σ. If we reformulate this inclusion by unfolding the definitions of F
and G, we obtain a kind of closure property, in the style of Definition 1:
(6) Task property: for every complete one-shot trace T ∈ T , if for every complete prefix S

of T , expanding S gives a fully-concurrent trace S′ ∈ σ, then T ∈ σ.
Then, a task object is a set of one-shot traces that satisfies the axioms (1)− (6).

CONCUR 2019



34:10 A Sound Foundation for the Topological Approach to Task Solvability

4 An asynchronous computability theorem for arbitrary objects

The asynchronous computability theorem of Herlihy and Shavit [10] states that a task Θ
has a wait-free protocol using read/write registers if and only if there exists a chromatic
subdivision of the input complex, and a chromatic simplicial map from this subdivision to
the output complex, that satisfies some conditions. That statement actually combines two
claims: (a) a given protocol P using read/write registers solves the task Θ if and only if there
exists a chromatic simplicial map from the protocol complex of P to the output complex,
satisfying some conditions; and (b) to study task solvability using read/write registers, we
can restrict to a particular class of protocols (iterated immediate snapshots) whose protocol
complexes are subdivisions of the input complex.

In this section, we will prove a generalization of claim (a), which works not only for
read/write registers, but for protocols which are allowed to use any combination of arbitrary
objects, as defined in Section 2.2. We will not have a counterpart of claim (b), since this
characterization is specific to the particular case of protocols using read/write registers.

4.1 Preliminaries
We first recall the definitions from combinatorial topology that we will be using. A more
thorough account of these notions can be found in [6]. A simplicial complex C = (V, S)
consists of a set V of vertices and a non-empty set S of finite subsets of V called simplices,
such that:

for each vertex v ∈ V , {v} ∈ S, and
S is closed under containment, i.e., if X ∈ S and Y ⊆ X, then Y ∈ S.

We sometimes abuse notations and write X ∈ C instead of X ∈ S to mean that X is a
simplex of C. If Y ⊆ X, we say that Y is a face of X. The simplices which are maximal
w.r.t. inclusion are called facets. The dimension of a simplex X ∈ S is dim(X) = |X| − 1.
The dimension of the simplicial complex C is dim(C) = sup{dim(X) | X ∈ S}. A simplicial
complex is pure if all its facets have the same dimension (which is also the dimension of the
complex). We say that a simplicial complex C = (V, S) is a subcomplex of C′ = (V ′, S′) when
S ⊆ S′, and we write it C ⊆ C′.

Fix a finite set A whose elements are called colors. A chromatic simplicial complex
C = (V, S, χ) consists of a simplicial complex (V, S) equipped with a coloring map χ : V → A

such that every simplex X ∈ S has vertices of different colors. A chromatic simplicial map
f : C → C′ from C = (V, S, χ) to C′ = (V ′, S′, χ′) is a mapping f : V → V ′ between the
vertices of the two complexes, such that:

the image of a simplex is a simplex, i.e., for every X ∈ S, f(X) := {f(v) | v ∈ X} ∈ S′,
f is color-preserving, i.e., for every v ∈ V , χ′(f(v)) = χ(v).

A chromatic carrier map Φ from C to C′, written Φ : C → 2C′ , assigns to each simplex X ∈ S
a subcomplex Φ(X) of C′, such that:

Φ is monotonic, i.e., if Y ⊆ X then Φ(Y ) ⊆ Φ(X),
Φ is rigid, i.e., for every simplex X ∈ S of dimension d, Φ(X) is pure of dimension d,
Φ is chromatic, i.e., for every X ∈ S, χ(X) = χ′(Φ(X)), where χ(X) = {χ(v) | v ∈ X}
and χ′(Φ(X)) =

⋃
Z∈Φ(X) χ

′(Z).
Given a chromatic carrier map Φ : C → 2C′ and a chromatic simplicial map f : C′ → C′′, their
composition f ◦ Φ : C → 2C′′ is defined as (f ◦ Φ)(X) =

⋃
Z∈Φ(X) f(Z). Finally, given two

chromatic carrier maps Φ and Ψ from C to C′, we say that Φ is carried by Ψ, written Φ ⊆ Ψ,
when for every simplex X ∈ C, Φ(X) ⊆ Ψ(X).



J. Ledent and S. Mimram 34:11

4.2 Simplicial tasks
The notion of task that we had in Definition 5 was a direct reformulation of the usual
definition that is used in the context of combinatorial topology. We now recall the usual
definition, and explain briefly why it is the same as Definition 5. Recall that the set of
values is V, and n is the number of processes. From now on, when we talk about chromatic
complexes, the underlying set of colors will be [n].

I Definition 12. A simplicial task is a triple (I,O,Ξ), where:
I = (VI , SI , χI) is the pure chromatic simplicial complex of dimension (n− 1), whose
vertices are of the form (i, v) for all i ∈ [n] and v ∈ V, and which contains all the simplices
that are well-colored. I is called the input complex.
O = (VO, SO, χO, `O) is a pure chromatic simplicial complex of dimension (n−1), together
with a labeling `O : VO → V, such that every vertex is uniquely identified by its color and
its label. O is called the output complex.
Ξ : I → 2O is a chromatic carrier map from I to O.

As in Definition 5, we force the input complex to contain every possible combination
of input values, which is unusual but can safely be assumed without loss of generality.
There is a straightforward bijection between tasks and simplicial tasks. Consider a task
Θ = (I,O,∆) in the sense of Definition 5. A vector U ∈ (V ∪ {⊥})n corresponds to the
simplex X = {(i, Ui) | i ∈ [n] and Ui 6= ⊥}, where the vertex (i, Ui) is colored by i and labeled
by Ui. Two matching vectors correspond to simplices with the same dimension and set of
colors. A maximal vector (i.e., with no ⊥ component) corresponds to a simplex of dimension
(n − 1). Thus, the sets of maximal vectors I and O of a task correspond to the facets of
the corresponding simplicial complexes I and O; and their downward closures ↓I and ↓O
correspond to I and O. The fact that the relation ∆ ⊆ ↓ I × ↓O relates only matching
vectors, along with the non-emptiness of ∆(U), is equivalent to saying that the corresponding
carrier map is rigid and chromatic. The last remaining condition is monotonicity of ∆, which
must also hold for carrier maps. With that correspondence in mind, in the rest of the section,
we will not distinguish tasks and simplicial tasks.

4.3 Simplicial protocols
The topological version of a protocol is defined similarly as for simplicial tasks:

I Definition 13. A simplicial protocol is a triple (I,P,Ψ), where:
I = (VI , SI , χI) is the pure chromatic simplicial complex of dimension (n− 1), whose
vertices are of the form (i, v) for all i ∈ [n] and v ∈ V, and which contains all the simplices
that are well-colored. I is called the input complex.
P = (VP , SP , χP , `P) is a pure chromatic simplicial complex of dimension (n−1), together
with a labeling `P : VP → Views, where Views is an arbitrary set of views, such that every
vertex is uniquely identified by its color and its label. P is called the protocol complex.
Ψ : I → 2P is a chromatic carrier map from I to P.

The intended meaning of Definitions 12 and 13 is the following: the simplicial protocol
(I,P,Ψ) solves the simplicial task (I,O,Ξ) if there exists a chromatic simplicial map
δ : P → O such that δ ◦Ψ is carried by Ξ. In [6], this is taken as the definition of what it
means for a protocol to solve a task. In Section 2, we have given more concrete definitions of
protocols and solvability; our goal here is to properly define the protocol complex associated
to a given protocol, so that these two definitions of solvability will agree.

CONCUR 2019



34:12 A Sound Foundation for the Topological Approach to Task Solvability

Let Obj be the set of objects that our programs are allowed to use. Let P = (Pi)i∈[n] be
a wait-free protocol in the sense of Section 2.2. Recall that each Pi = (Qi,⊥i, δi, τi) is the
program of process i. As before, we write A = {ixi , rxi , i(o)xi , r(o)xi | o ∈ Obj, i ∈ [n], x ∈ V}
for the set of actions of the protocol. The effect of a trace T ∈ A∗ on global states is the
function denoted by ∆ : Q×A∗ → Q.

The states q ∈ Qi \ {⊥i} such that δi(q) ∈ V are called the final states of process i. Let
Fi ⊆ Qi denote the set of final states of process i. A trace T ∈ A∗ is one-shot if it contains at
most one outer invocation ixi and one outer response rxi for each process i. In particular, there
is no restriction on the number of inner actions, since the objects in Obj are not assumed to
be one-shot. A one-shot trace T ∈ A∗ is terminating if after executing it, each process which
participates in T ends in a final state. More formally, if we write q = ∆(qinit, T ), for each i
such that ixi occurs in T , we must have qi ∈ Fi. Note that in a valid terminating trace, no
action rxi occurs: when a process is in a final state, the process is ready to return its output
value, but it did not return it yet.

We can now define the protocol complex P = (VP , SP , χP , `P) associated to P . The set
of views is Views =

⋃
i Fi. The vertices are of the form (i, qi) where i ∈ [n] is a process

number and qi ∈ Fi is a final state of process i. Such a vertex is colored by i and labeled
by qi. Finally, for each one-shot trace T which is valid and terminating, we get a simplex
YT = {(i, qi) | i participates in T} ∈ SP , where qi is the i-th component of ∆(qinit, T ). The
carrier map Ψ : I → 2P is defined as follows. For X ∈ I an input simplex, we let S = χI(X)
be the set of participating processes, and (vi)i∈S their input values. Then, Ψ(X) consists of
all simplexes YT where T is a valid terminating one-shot trace such that every invocation
that occurs in T is of the form ivi

i for some i ∈ S.
It is straightforward to see that P is chromatic, and that Ψ is monotonic and chromatic.

To check that P is pure of dimension (n− 1), let YT be a simplex of P. We want to extend
it to an (n− 1)-dimensional simplex. To do so, first we append at the end of the trace T
invocations ixi for each process i that does not participate in T . Since we assumed that the
protocol P is wait-free, we can run each of these processes until it reaches a final state. Thus,
we get a trace T ′ which is valid and terminating, and the corresponding simplex YT ′ is of
dimension (n− 1) and contains YT . Checking that Ψ is rigid is similar.

4.4 Asynchronous computability theorem
Let Θ = (I,O,Ξ) be a task, P = (Pi)i∈[n] a protocol, and (I,P,Ψ) its associated simplicial
protocol as described in the previous section. Notice that, since we defined the vertices of P
to be pairs (i, qi) where qi ∈ Fi is a final state of process i, there is a map δ : VP → V defined
as δ(i, qi) = δi(qi), where δi is the decision function of the program Pi.

The following Theorem gives a topological characterization of what it means for the
protocol P to implement (in the sense of Definition 4) the task Θ:

I Theorem 14. The protocol P implements the task-object G(Θ) if and only if the map
δ : VP → V induces a chromatic simplicial map δ : P → O such that δ ◦Ψ is carried by Ξ.

Proof. In this proof, to distinguish between the execution traces of P (on the alphabet
{ixi , rxi , i(o)xi , r(o)xi }) and the outer traces (on the alphabet {ixi , rxi }), we use lowercase letters
t, t′, s, s′ for the former and capital letters T, T ′, S, S′ for the latter.

(⇒): Assume that P implements the object G(Θ), i.e., every trace T ∈ JP K satisfies the
conditions of Definition 6. First, we want to define the map δ : VP → VO. Let (i, qi) ∈ VP
be a vertex of P; we would like to take δ(i, qi) = (i, δi(qi)), but we do not know yet that it
is a vertex of O. The vertex (i, qi) belongs to a (n − 1)-dimensional simplex Yt for some



J. Ledent and S. Mimram 34:13

execution trace t which is valid, one-shot and terminating. Let q = ∆(qinit, t) be the global
state after executing t. In particular, the i-th component of q is qi. For each j ∈ [n], write
dj = δj(qj) the value that process j is about to decide in the trace t. We also write vj ∈ V
the input value of process j in t. Let t′ denote the trace obtained by appending responses rdj

j

at the end of t. Then t′ is still a valid trace, so if we write T = π(t) its projection, we get
T ∈ JP K ⊆ G(Θ). Since T is a complete trace, that means it respects the task specification,
i.e., {(j, dj) | j ∈ [n]} ∈ Ξ({(j, vj) | j ∈ [n]}). In particular, (i, di) is in the image of Ξ, so it
is a vertex of O.

The map δ : VP → VO is obviously chromatic. Let us show that it is a simplicial map.
Let Yt ∈ SP be a simplex of P . Let S ⊆ [n] be the set of processes participating in t, then Yt
is of the form Yt = {(i, qi) | i ∈ S}, and δ(Yt) = {(i, di) | i ∈ S}. As we did in the previous
paragraph, we can add responses rdi

i for i ∈ S at the end of the trace t, to obtain a complete
valid trace whose projection is in JP K, and thus also in G(Θ). This implies that δ(Yt) is in
the image of Ξ, so it is a simplex of O.

Finally, we need to show that δ◦Ψ is carried by Ξ. Let X ∈ I be an input simplex, and let
Z ∈ (δ ◦Ψ)(X) be an output simplex. Then Z must be of the form δ(Yt) for some Yt ∈ Ψ(X).
We write S ⊆ [n] the set of participating processes of X, and (vi)i∈S their input values. So, t
is a valid terminating one-shot trace such that every invocation in t is of the form ivi

i for some
i ∈ S. Let S′ ⊆ S be the participating set of t. Let q = ∆(qinit, t) be the global state after
executing t; we have Yt = {(i, qi) | i ∈ S′}, and δ(Yt) = {(i, di) | i ∈ S′}. Once again, we can
append appropriate responses rdi

i to the trace t, and then we obtain π(t′) = T ∈ JP K ⊆ G(Θ).
So, we obtain δ(Yt) ∈ Ξ({(i, vi) | i ∈ S′}). Since {(i, vi) | i ∈ S′} ⊆ X, by monotonicity of Ξ,
we finally get δ(Yt) ∈ Ξ(X).

(⇐): Assume that the induced map δ : VP → VO defined as δ(i, qi) = δi(qi) is a chromatic
simplicial map from P to O, and that δ ◦ Ψ is carried by Ξ. We want to prove that P
implements the object G(Θ), i.e., that JP K ⊆ G(Θ). Let T ∈ JP K be a one-shot outer trace,
and t such that π(t) = T a valid execution trace for P . To show that T ∈ G(Θ), we must
first complete it, that is, find valid responses to the pending invocations of T . Since the
protocol P is wait-free, we can just run the pending processes one by one until they all reach
a final state: formally, this amounts to appending inner actions to the trace t according to
its program, until a final state qi is reached. Then, we add the appropriate response rδi(qi)

i to
obtain a trace t′, which extends t, is still valid, and which does not have pending invocations.
The projection T ′ = π(t′) ∈ JP K is an extension of T where we added responses to the
pending invocations of T .

Now that we have T ′, we have to prove the following property on every non-empty
prefix S of T ′ which is complete (including S = T ′): the simplex ZS must belong to Ξ(XS),
where XS is the input simplex XS = {(i, vi) | ivi

i occurs in S} and ZS is the output simplex
ZS = {(i, di) | rdi

i occurs in S}. Our goal is now to decompose ZS as ZS = δ(Y ) for some
Y ∈ Ψ(XS). Let s be the prefix of t′ whose projection is π(s) = S. We write s′ for the
trace obtained by removing from s all the outer responses, i.e., actions of the form rdi

i . We
claim that s′ is still a valid trace: indeed, no action from process i can occur after the outer
response (otherwise s would not be one-shot), and the only effect of rdi

i is to change the local
state of i, which does not affect the validity of the actions of other processes. Moreover, in
the global states q = ∆(qinit, s

′), every process that participates in s′ is in a final state, in
other words, s′ is terminating. Thus, we have a simplex Ys′ ∈ SP in the protocol complex
consisting of all the vertices (i, qi) where i participates in s′. Since s′, s and S all have the
same participating set, Ys′ ∈ Ψ(XS). And since di = δi(qi) (because in s′, process i is ready
to decide rdi

i ), δ(Ys′) = ZS .
This decomposition of ZS shows that ZS ∈ δ ◦Ψ(XS). Since we assumed that δ ◦Ψ is

carried by Ξ, this implies ZS ∈ Ξ(XS), which concludes the proof. J

CONCUR 2019



34:14 A Sound Foundation for the Topological Approach to Task Solvability

Despite the verbosity of the proof, nothing complicated is going on: we are just putting
together all the definitions of the paper. In particular, the crucial definitions that allow the
proof to go through are the expansion property (5) in Definition 1; the map G (Definition 6)
that characterizes the objects which correspond to tasks; and the definition of the protocol
complex P associated to a protocol P in Section 4.3.

If we instantiate Theorem 14 with Obj containing only an iterated immediate snapshot
object, combined with the fact that immediate snapshot protocol complexes are subdivisions
of the input complex, we obtain Herlihy and Shavit’s asynchronous computability theorem
for read/write registers. In general, if we fix a particular set of objects Obj, to prove that
a task cannot be solved using the objects of Obj, one needs to find a topological invariant
which holds in any protocol complex P associated to any protocol P . This is usually where
all the difficulty of the proof lies, and of course Theorem 14 does not help with that part.
What the Theorem says is merely that solvability in the sense of protocol complexes agrees
with the more basic notion of solvability defined in Section 4.

5 Conclusion

We have extended Herlihy and Shavit’s asynchronous computability theorem, which gives a
topological characterization of the solvability of tasks, not only in the context of read/write
registers, but for a large class of arbitrary objects. This shows the soundness of the topological
approach to fault-tolerant computability, as described for example in [6], where the existence
of a simplicial map from the protocol complex to the output complex is taken as the definition
of task solvability. A practical benefit of our proof is that we gave a general definition of
what the protocol complex should be to model arbitrary objects. One can now instantiate
this definition with a given protocol, without risk of making a mistake. This work paves
the way towards a better understanding of the protocol complex: rather than seeing it as a
huge, monolithic combinatorial object, we would like to construct it in a modular way, by
decomposing it into more basic components.

To establish this theorem, we had to study the distinction between tasks and one-shot
objects. We characterized the class of one-shot objects which correspond to tasks, and this
result might be of independent interest. A natural continuation of this work would be to try
to characterize the solvability of all one-shot objects, possibly using the notion of refined
task introduced in [2]. Another generalization would be to extend it to t-resilient solvability,
instead of focusing on wait-free protocols.

References
1 Elizabeth Borowsky and Eli Gafni. Generalized FLP Impossibility Result for T-resilient

Asynchronous Computations. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM. doi:
10.1145/167088.167119.

2 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying Concurrent Objects and
Distributed Tasks: Interval-Linearizability. J. ACM, 65(6):45:1–45:42, 2018. doi:10.1145/
3266457.

3 Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concur-
rent objects. Theoretical Computer Science, 411(51):4379–4398, 2010. European Symposium
on Programming 2009.

4 Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus Tasks: Renaming Is Weaker
Than Set Agreement. In Shlomi Dolev, editor, Distributed Computing, pages 329–338. Springer
Berlin Heidelberg, 2006.

https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/3266457
https://doi.org/10.1145/3266457


J. Ledent and S. Mimram 34:15

5 Éric Goubault, Jérémy Ledent, and Samuel Mimram. Concurrent Specifications Beyond
Linearizability. In 22nd International Conference on Principles of Distributed Systems,
OPODIS 2018, pages 28:1–28:16, 2018. doi:10.4230/LIPIcs.OPODIS.2018.28.

6 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann Publishers Inc., 2013.

7 Maurice Herlihy and Sergio Rajsbaum. Set Consensus Using Arbitrary Objects (Preliminary
Version). In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’94, pages 324–333, New York, NY, USA, 1994. ACM. doi:10.1145/197917.
198119.

8 Maurice Herlihy and Sergio Rajsbaum. Algebraic topology and distributed computing: a primer,
pages 203–217. Springer Berlin Heidelberg, 1995. doi:10.1007/BFb0015245.

9 Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying Synchronous and Asyn-
chronous Message-passing Models. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, pages 133–142, New York, NY, USA, 1998.
ACM. doi:10.1145/277697.277722.

10 Maurice Herlihy and Nir Shavit. The Topological Structure of Asynchronous Computability.
J. ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

11 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

12 Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.83.7751.

13 Michael Saks and Fotios Zaharoglou. Wait-free K-set Agreement is Impossible: The Topology
of Public Knowledge. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, pages 101–110, New York, NY, USA, 1993. ACM. doi:10.1145/
167088.167122.

CONCUR 2019

https://doi.org/10.4230/LIPIcs.OPODIS.2018.28
https://doi.org/10.1145/197917.198119
https://doi.org/10.1145/197917.198119
https://doi.org/10.1007/BFb0015245
https://doi.org/10.1145/277697.277722
https://doi.org/10.1145/331524.331529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751
https://doi.org/10.1145/167088.167122
https://doi.org/10.1145/167088.167122

	Introduction
	A computational model based on trace semantics
	Specifying concurrent objects
	Program semantics

	Tasks as a particular kind of one-shot objects
	An asynchronous computability theorem for arbitrary objects
	Preliminaries
	Simplicial tasks
	Simplicial protocols
	Asynchronous computability theorem

	Conclusion

