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Abstract
Turi and Plotkin’s bialgebraic semantics is an abstract approach to specifying the operational
semantics of a system, by means of a distributive law between its syntax (encoded as a monad) and
its dynamics (an endofunctor). This setup is instrumental in showing that a semantic specification
(a coalgebra) satisfies desirable properties: in particular, that it is compositional.

In this work, we use the bialgebraic approach to derive well-behaved structural operational
semantics of string diagrams, a graphical syntax that is increasingly used in the study of interacting
systems across different disciplines. Our analysis relies on representing the two-dimensional operations
underlying string diagrams in various categories as a monad, and their bialgebraic semantics in
terms of a distributive law for that monad.

As a proof of concept, we provide bialgebraic compositional semantics for a versatile string
diagrammatic language which has been used to model both signal flow graphs (control theory) and
Petri nets (concurrency theory). Moreover, our approach reveals a correspondence between two
different interpretations of the Frobenius equations on string diagrams and two synchronisation
mechanisms for processes, à la Hoare and à la Milner.
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1 Introduction

Starting from the seminal works of Hoare and Milner, there was an explosion [16,17,27,36,42]
of interest in process calculi: formal languages for specifying and reasoning about concurrent
systems. The beauty of the approach, and often the focus of research, lies in compositionality:
essentially, the behaviour of composite systems – usually understood as some kind of process
equivalence, the most famous of which is bisimilarity – ought to be a function of the behaviour
of its components. The central place of compositionality led to the study of syntactic formats
for semantic specifications [4, 19,25]; succinctly stated, syntactic operations with semantics
defined using such formats are homomorphic wrt the semantic space of behaviours.

Another thread of concurrency theory research [26,30,40] uses graphical formalisms, such
as Petri nets. These often have the advantage of highlighting connectivity, distribution and
the communication topology of systems. They tend to be popular with practitioners in
part because of their intuitive and human-readable depictions, an aspect that should not be
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37:2 Bialgebraic Semantics for String Diagrams

underestimated: indeed, pedagogical texts introducing CCS [27] and CSP [36] often resort to
pictures that give intuition about topological aspects of syntactic specifications. However,
compositionality has not – historically – been a principal focus of research.

In this paper we propose a framework that allows us to eat our cake and have it too. We
use string diagrams [43] which have an intuitive graphical rendering, but also come with
algebraic operations for composition. String diagrams combine the best of both worlds: they
are a (2-dimensional) syntax, but also convey important topological information about the
systems they specify. They have been used in recent years to give compositional accounts of
quantum circuits [1,18], signal flow graphs [2,10,21], Petri nets [6], and electrical circuits [3,24],
amongst several other applications.

Our main contribution is the adaptation of Turi and Plotkin’s bialgebraic semantics
(abstract GSOS) [32,45] for string diagrams. By doing so, we provide a principled justification
and theoretical framework for giving definitions of operational semantics to the generators
and operations of string diagrams, which are those of monoidal categories. More precisely we
deal with string diagrams for symmetric monoidal categories which organise themselves as
arrows of a particularly simple and well-behaved class known as props. Similar operational
definitions have been used in the work on the algebra of Span(Graph) [31], tile logic [23], the
wire calculus [44] and recent work on modelling signal flow graphs and Petri nets [6, 10]. In
each case, semantics was given either monolithically or via a set of SOS rules. The link with
bialgebraic framework – developed in this paper – provides us a powerful theoretical tool
that (i) justifies these operational definitions and (ii) guarantees compositionality.

In a nutshell, in the bialgebraic approach, the syntax of a language is the initial algebra
(the algebra of terms) TΣ for a signature functor Σ. A certain kind of distributive law,
an abstract GSOS specification [45], induces a coalgebra (a state machine) β : TΣ → FTΣ
capturing the operational semantics of the language. The final F-coalgebra Ω provides the
denotational universe: intuitively, the space of all possible behaviours. The unique coalgebra
map [[·]]β : TΣ → Ω represents the denotational semantics assigning to each term its behaviour.

TΣ
[[·]]β

//

β

��

Ω

��

F(TΣ)
F([[·]]β)

// F(Ω)

(1)

The crucial observation is that (1) lives in the category of Σ-algebras: Ω also carries a
Σ-algebra structure and the denotational semantics is an algebra homomorphism. This means
that the behaviour of a composite system is determined by the behaviour of the components,
e.g. [[s+ t]] = [[s]] + [[t]], for an operation + in Σ.

We show that the above framework can be adapted to the algebra of string diagrams.
The end result is a picture analogous to (1), but living in the category of props and prop
morphism. As a result, the denotational map is a prop morphism, and thus guarantees
compositionality with respect to sequential and parallel composition of string diagrams.

Adapting the bialgebraic approach to the 2-dimensional syntax of props requires some
technical work since, e.g. the composition operation of monoidal categories is a dependent
operation. For this reason we need to adapt the usual notion of a syntax endofunctor on
the category of sets; instead we work in a category Sig whose objects are spans N←− Σ −→ N,
with the two legs giving the number of dangling wires on the left and right of each diagram.
The operations of props are captured as a Sig-endofunctor, which yields string-diagrams-as-
initial-algebra, and a quotient of the resulting free monad, whose algebras are precisely props.
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: (1, 0) : (1, 2) x

k

: (1, 1) k : (1, 1) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) x

k

: (1, 1) k : (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)
c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c⊕d : (k1+k2, l1+l2)

Figure 1 Sorting discipline for CircR.
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k
k−→
l
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Figure 2 Structural Operational Semantics for the generators of CircR. Intuitively, from left to
right, these are elementary connectors modelling discard, copy, one-place register, multiplication by
a scalar, addition, and the constant zero.

In addition to the basic laws of props, we also consider the further imposition of the
equations of special Frobenius algebras. We illustrate the role of this algebraic structure
with our running example, a string diagrammatic process calculus CircR that has two
Frobenius structures and can be equipped with two different semantics, one which provides a
compositional account of signal flow graphs for linear time invariant dynamical systems [10],
and one which is a compositional account of Petri nets [6].

We conclude with an observation that ties our work back to classical concepts of process
calculi and show that the two Frobenius structures of CircR are closely related to two different,
well-known synchronisation patterns, namely those of Hoare’s CSP [27] and Milner’s CCS [36].

Structure of the paper. In §2 we introduce our main example and recall some preliminaries,
followed by a recapitulation of bialgebraic approach in §3. We develop the technical aspects
of string-diagrams-as-syntax in §4 and adapt the bialgebraic approach in §5. Finally, we
exhibit the connection with classical synchronisation mechanisms in §6 and conclude in §7.

2 Motivating Example

As our motivating example, we recall from [6, 9, 11] a basic language CircR given by the

grammar below. Values k in x

k

and k range over elements of a given semiring R.

c, d ::= | | x

k

| k | | | | | x

k

| k | | | (2)
| | | | c ; d | c⊕ d (3)

The language does not feature variables; on the other hand, a simple sorting discipline is
necessary. A sort is a pair (n, m), with n,m ∈ N. Henceforth we will consider only terms
sortable according to the rules in Figure 1. An easy induction confirms uniqueness of sorting.

The operational meaning of terms is defined recursively by the structural rules in Figs. 2
and 3 where k, l range over R and a, b, c over R?, the set of words over R. We denote the
empty word by ε and concatenation of a, b by ab. As expected +, · and 0 denote respectively
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c
a−→
b
c′ d

b−→
c
d′

λsq

c ; d a−→
c
c′ ; d′

s
a1−−→
b1

c′ d
a2−−→
b2

d′

λmp

c⊕ d a1a2−−−−→
b1b2

d′ ⊕ d′

λε
ε−→
ε

λid
k−→
k

λsy
k l−−→
l k

Figure 3 Structural operational semantics for the operations of CircR.

the sum, the product and zero of the semiring R. For any term c : (n, m), the rules yield
a labelled transition system where each transition has form c

a−→
b
d. By induction, it is

immediate that d has the same sort as c, the word a has length n, and b has length m.

Our chief focus in this paper is the study of semantics specifications of the kind given in
Figs. 2 and 3. So far, the technical difference with typical GSOS examples [4] is the presence
of a sorting discipline. A more significant difference, which we will now highlight, is that
sorted terms are considered up-to the laws of symmetric monoidal categories. As such, they
are “2-dimensional syntax” and enjoy a pictorial representation in terms of string diagrams.

2.1 From Terms to String Diagrams
In (2)-(3) we purposefully used a graphical rendering of the components. Indeed, terms of
CircR are usually represented graphically, according to the convention that c ; c′ is drawn

c c0...
...

... and c⊕ c′ is drawn c

c0 ...

...
...

...

. For instance, the term ( ( ; )⊕ ) ; ( ( ⊕

( ; x

k

; )) ) ; ( ( ; )⊕ ) is depicted as the following diagram.

pk ::=
x
k (4)

Given this graphical convention, a sort gives the number of dangling wires on each side of
the diagram induced by a term. A transition c a−→

b
d means that c may evolve to d when the

values on the dangling wires on the left are a and those on the right are b. When R is the
natural numbers, the diagram in (4) behaves as a place of a Petri nets containing k tokens:
any number of tokens can be inserted from its left and at most k tokens can be removed
from its right. Indeed, by the rules in Figs. 2 and 3, pk

i−→
o
pk′ iff o ≤ k and k′ = i+ k − o.

The graphical notation is appealing as it highlights connectivity and the capability for
resource exchange. However, syntactically different terms can yield the same diagram, e.g.
( ⊕ ) ; ( ⊕ ) ; ( ⊕ ) ; ( ⊕ x

k

) ; ( ⊕ ) ; ( ⊕ ) ; ( ⊕ )
also yields (4). Indeed, one defines diagrams to be terms modulo structural congruence,
denoted by ≡. This is the smallest congruence over terms generated by the equations of
strict symmetric monoidal categories (SMCs):

(f ⊕ g)⊕ h ≡ f ⊕ (g ⊕ h) (ε⊕ f) ≡ f (f ⊕ ε) ≡ f σ1,1 ; σ1,1 ≡ id2 (5)
(f ; g)⊕ (h ; i) ≡ (f ⊕ h) ; (g ⊕ i) (f ; g) ; h ≡ f ; (g ; h) (f ; idm) ≡ f (6)

(idn; f) ≡ f (σ1,n; (f ⊕ id1)) ≡ (id1 ⊕ f);σ1,m (σn,1; (id1 ⊕ g)) ≡ (g ⊕ id1);σm,1 (7)
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≡ ≡

≡ ≡ ≡ ≡

≡ ≡ ≡

Figure 4 Axioms of special Frobenius bimonoids.

where identities idn : (n, n) and symmetries σn,m : (n+m, m+ n) can be recursively
defined starting from id0 := and σ1,1 := . Therefore, sorted diagrams c : (n, m)
are the arrows n→ m of an SMC with objects the natural numbers, also called a prop [35].

2.2 Frobenius Bimonoids

We will also consider additional algebraic structure for the black ( , , , ) and
the white ( , , , ) components. When R is the field of reals, CircR models
linear dynamical systems [2, 11, 21] and both the black and the white structures form special
Frobenius bimonoids, meaning the axioms of Fig. 4 hold, replacing the gray circles by either
black or white. When R is the semiring of natural numbers, CircR models Petri nets [6]
and only the black structure satisfies these equations. In § 6, we shall see that the black
Frobenius structure gives rise to the synchronisation mechanism used by Hoare in CSP [28],
while the white Frobenius structure to that used by Milner in CCS [36].

3 Background: Bialgebras and GSOS Specifications

For more detailed background and simple examples showcasing the notions recalled below,
we refer the reader to the extended version of the present work [7].

Distributive laws and bialgebras. A distributive law of a monad (T , η, µ) over an endofunc-
tor F is a natural transformation λ : T F ⇒ FT s.t. λ ◦ ηF = Fη and λ ◦µF = Fµ ◦λT ◦ T λ.
A λ-bialgebra is a triple (X,α, β) s.t. (X,α) is an Eilenberg-Moore algebra for T , (X,β) is
a F-coalgebra and Fα ◦ λX ◦ T β = β ◦ α. Bialgebra morphisms are both T -algebra and
F-coalgebra morphisms.

Given a coalgebra β : X → FT X for a monad (T , η, µ) and a functor F , if there exists
a distributive law λ : T F ⇒ FT , one can form a coalgebra β] : T X → FT X defined as
T X T β−−→ T FT X λTX−−−→ FT T X Fµ−−→ FT X. Most importantly, (T X,µ, β]) is a λ-bialgebra.

Free monads. We recall the construction of the monad F† : C → C freely generated by a
functor F : C → C. Assume that C has coproducts and that, for all objects X of C, there exists
an initial X + F-algebra that we denote as X + F(F†X) [ηX ,κX ]−−−−−→ F†X. It is easy to check
that the assignment X 7→ F†X induces a functor F† : C → C. The map ηX : X → F†X gives
rise to the unit of the monad; the multiplication µX : F†F†X → F†X is the unique algebra
morphism from the initial F†X + F-algebra to the algebra F†X + F(F†X) [id,κX ]−−−−→ F†X.

CONCUR 2019



37:6 Bialgebraic Semantics for String Diagrams

GSOS specifications. An abstract GSOS specification is a natural transformation λ : SF ⇒
FS†, where F is a functor representing the coalgebraic behaviour, S is a functor representing
the syntax. It is important to recall the following fact.

I Proposition 1 ([34]). Any GSOS spec. λ : SF ⇒ FS† yields a distrib. law λ† : S†F ⇒ FS†.

Coproduct of GSOS specifications. Suppose we have two functors S1,S2 : C → C capturing
two syntaxes, a functor F : C → C for the coalgebraic behaviour, and two GSOS specifications
λ1 : S1F ⇒ FS†1 and λ2 : S2F ⇒ FS†2 . Then we can construct a GSOS specification
λ1 · λ2 : (S1 + S2)F ⇒ F(S1 + S2)†. The details are in [7].

Quotients of monads and distributive laws. Given the correspondence between finitary
monads and algebraic theories [29], it natural to consider quotients of monads by additional
equations. Following [13, 15, 41], for a monad T on a category C, T -equations can be defined
as a tuple E = (A, l, r) consisting of a functor A : C → C and natural transformations
l, r : A ⇒ T . The intuition is that A acts as the variables of each equation, whose left- and
right-hand sides are l and r, respectively. Assuming mild conditions that generalise the
properties of Set (see [41, Ass. 7.1.2]), one constructs the quotient of T by T -equations. The
conditions hold in our setting: categories of presheaves over a discrete index category.

I Proposition 2 (cf. [41]). If C = SetD for discrete D, T -equations E yield a monad
T/E : C → C with algebras precisely T -algebras T A α−→ A that satisfy E, in the sense that
α ◦ lA = α ◦ rA. Moreover, there exists a monad morphism qE : T → T/E with epi components.

One may also quotient distributive laws, provided these are compatible with the new
equations. Fix an endofunctor F and a monad T on SetD, together with T -equations
E = (A, l, r). We say that a distributive law λ : T F ⇒ FT preserves equations E if, for all

A ∈ C, the following diagram commutes: AFA lFA
//

rFA

// T FA
λA
// FT A

FqEA
// FT/EA .

I Proposition 3 (cf. [41]). If λ : T F → FT preserves equations E then there exists a (unique)
distributive law λ/E : T/EF ⇒ FT/E such that λ/E ◦ qEF = FqE ◦ λ.

4 Diagrammatic Syntax as Monads

4.1 The Category of Signatures
Syntax and semantics of string diagrams will be specified in the category Sig := Span(Set)(N,N),
where objects are spans N←− Σ −→ N in Set and arrows are span morphisms: given objects
N s←− X t−→ N and N s′←− Σ′ t

′

−→ N, an arrow is a function f : Σ→ Σ′ such that t′ ◦ f = t and
s′◦f = s. We think of an object of Sig as a signature, i.e. a set of symbols Σ equipped with arity
and coarity functions a, c : Σ→ N. We write Σ(n,m) for the set {d ∈ Σ | 〈a, c〉(d) = (n,m)}
of operations with arity n and coarity m. Note that we allow coarities different from 1: this
is because string diagrams express monoidal algebraic theories, not merely cartesian ones.

Since the objects in Sig are spans with identical domain and codomain, we will often write
Σ for the entire span N a←− Σ c−→ N. In particular, N means the identity span N id←− N id−→ N.

I Example 4. Recall the language CircR from § 2. Line (2) of its syntax together with the
first two lines of the sorting discipline in Fig. 1 define a signature Σ: every axiom d : (n, m)
gives the symbol d arity n and coarity m. For instance, Σ(1, 2) = { , }.
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For computing (co)limits, it is useful to observe that Sig is isomorphic to the presheaf
category SetN×N, where N× N is the discrete category with objects pairs (n,m) ∈ N× N.

4.2 Functors on Signatures
We turn to (co)algebras of endofunctors F : Sig→ Sig generated by the following grammar:

F ::= Id | Σ | N | F ; F | F ⊕ F | F + F | F × F | G

where G ranges over functors G : Set→ Set and Σ is a span N←− Σ −→ N. In more detail:
Id : Sig→ Sig is the identity functor.
Σ: Sig→ Sig is the constant functor mapping every object to N←− Σ −→ N and every arrow
to idΣ; an important special case is N : Sig→ Sig the constant functor to N id←− N id−→ N.
(·) ; (·) : Sig2 → Sig is sequential composition for signatures. On objects, Σ1 ; Σ2 is

N s1◦π1←−−−− {(d1, d2) ∈ Σ1 × Σ2 | t1(d1) = s2(d2)} t2◦π2−−−→ N.

Since the above is a Set-pullback, the action on arrows is inducted by the universal
property. Note that, up to iso, (·) ; (·) : Sig2 → Sig is associative with unit N : Sig→ Sig.
(·)⊕ (·) : Sig2 → Sig is parallel composition for signatures, with Σ1 ⊕ Σ2 given by:

N +◦(s1×s2)←−−−−−−− Σ1 × Σ2
+◦(t1×t2)−−−−−−→ N

where +: N×N→ N is usual N-addition. Again (·)⊕ (·) : Sig2 → Sig associates up to iso.
For the remaining functors, we use the fact that Sig ∼= SetN×N, which guarantees
(co)completeness, with limits and colimits constructed pointwise in Set. Thus, for spans
Σ1 and Σ2, their coproduct is N

[s1,s2]←−−−− Σ1 + Σ2
[t1,t2]−−−−→ N and the carrier of the product

is {(d1, d2) | s1(d1) = s2(d2) and t1(d1) = t2(d2)}, with the two obvious morphisms to N.
The isomorphism Sig ∼= SetN×N also yields the extension of an arbitrary endofunctor
G : Set → Set to a functor Ḡ : Sig → Sig defined by post-composition with G, that is
Ḡ(Σ) = G ◦ Σ for all Σ: N × N → Set. In particular, we shall often use the functor Pκ
obtained by post-composition with the κ-bounded powerset functor Pκ : Set→ Set.1

Next we use these endofunctors to construct monads that capture the two-dimensional
algebraic structure of string diagrams. In § 4.3 we construct the monad encoding the
symmetric monoidal structure of props and in § 4.4 we construct the monad for the Frobenius
structure of Carboni-Walters props. Later, in § 5, we shall use these monads to define
compositional bialgebraic semantics for string diagrams of each of these categorical structures.

4.3 The Prop Monad
Here we define a monad on Sig with algebras precisely props: symmetric strict monoidal
categories with objects the natural numbers, where the monoidal product on objects is
addition. Together with identity-on-objects symmetric monoidal functors they form a category
PROP. The first step is to encapsulate the operations of props as a Sig-endofunctor.

SSM := (Id ; Id) + ι+ (Id⊕ Id) + ε+ σ : Sig→ Sig. (8)

1 Boundedness is needed to ensure the existence of a final coalgebra, see § 5.1. In our leading example
CircR, κ can be taken to be the cardinality of the semiring R.
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37:8 Bialgebraic Semantics for String Diagrams

In the type of SSM, Id ; Id : Sig→ Sig is sequential composition and ι the identity arrow on
object 1, i.e. the constant functor to N h←− {id1}

h−→ N, with h : id1 7→ 1. Similarly, Id⊕ Id is
the monoidal product with unit ε, i.e. the constant functor to N q←− {0} q−→ N, with q : 0 7→ 0.
Finally, σ is the basic symmetry: the constant functor to N f←− {σ1,1}

f−→ N, with f : σ1,1 7→ 2.
The free monad S†SM on SSM is the functor mapping a span Σ to the span of Σ-terms

obtained by sequential and parallel composition, together with symmetries and identities –
with the identity idn defined by parallel composition of n copies of id1.

Algebras for this monad are spans Σ together with span morphisms identity : ι → Σ,
composition : Σ ; Σ → Σ, parallel : Σ ⊕ Σ → Σ, unit : ε → Σ, and swap : σ → Σ. This
information almost defines a prop CΣ: the carrier Σ of the span is the set of arrows of CΣ,
containing special arrows idn and σn,m for identities and symmetries, compose assigns to
every pairs of composable arrows their composition, and ⊕ assigns to every pair of arrows their
monoidal product. The missing data is the usual equations (5)-(7) of symmetric monoidal
categories. Thus, in order to obtain props as algebras, we quotient the monad S†SM by those
equation, expressed abstractly as a triple ESM = (A, l, r), as described in § 3. The functor
A : Sig→ Sig, defined below, has summands following the order (5)-(7):

(Id⊕Id⊕Id)+Id+Id+σ+((Id ;Id)⊕ (Id ;Id))+(Id ;Id ;Id)+Id+Id+Id+1 +Id+1 (9)

Here, Id+1 is the functor adding 1 to the arity/coarity of each element of a given span
N a←− Σ c−→ N. We also need natural transformations l, r : A → S†SM that define the left- and
right-hand side of each equation. For instance, for fixed Σ ∈ Sig and (n,m) ∈ N× N:

an element of Σ ; Σ ; Σ (sixth summand of (9)) is a tuple (f, g, h) of Σ-elements, where
f is of type (n,w), g of type (w, v), and h of type (v,m), for arbitrary w, v ∈ N. We
let lΣ map (f, g, h) to the term (f ; g) ; h of type (n,m) in S†SM(Σ), and rΣ to the term
f ; (g ; h). Thus this component gives the second equation in (6) (associativity).
the seventh summand Id in (9) yields a Σ-term f , which lΣ : Σ→ S†SM(Σ) maps to f ; idm
and rσ : Σ→ S†SM(Σ) maps to f , thus yielding the final equation in (6).
an element in Σ+1 (last summand of (9)) of type (n + 1,m+ 1) is a Σ-term g of type
(n,m), which is mapped by lΣ to (σn,1 ; (id1 ⊕ g)) and by rσ to (g ⊕ id1) ; σm,1, both
elements of S†SM(Σ) of type (n+ 1,m+ 1), thus giving the final equation in (7).

The remainder of the definition of l, r : A → S†SM, handles the remaining equations in (5)-(7),
and should be clear from the above. Now, using Proposition 2, we quotient the monad S†SM by
(A, l, r), obtaining a monad that we call SPROP. We can then conclude by construction that the
Eilenberg-Moore category EM(SPROP) for the monad SPROP (with objects the SPROP-algebras,
and arrows the SPROP-algebra homomorphisms) is precisely PROP.

I Proposition 5. EM(SPROP) ∼= PROP.

I Example 6. The monad SPROP takes Σ to the prop freely generated by Σ. Taking Σ as in
Example 4, one obtains SPROP(Σ) with arrows n→ m string diagrams of CircR of sort (n, m).

4.4 The Carboni-Walters Monad
The treatment we gave to props may be applied to other categorical structures. For space
reasons, we only consider one additional such structure: Carboni-Walters (CW) props, also
called “hypergraph categories” [22]. Here each object n carries a distinguished special
Frobenius bimonoid compatible with the monoidal product: it can be defined recursively
using parallel compositions of the Frobenius structure on the generating object 1.
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I Definition 7. A CW prop is a prop with morphisms : 1→ 2, : 1→ 0, : 2→ 1,
: 0→ 1 satisfying the equations of special Frobenius bimonoids (Fig. 4).

CW props with prop morphisms preserving the Frobenius bimonoid form a subcategory
CW of PROP. We can now extend the prop monad of § 4.3 to obtain a monad with
algebras CW props. The signature is that of a prop with the additional Frobenius structure.
Let : Sig → Sig be the functor constant at N s←− { } t−→ N with s( ) = 1 and
t( ) = 2. Similarly, we introduce the constant functors : Sig→ Sig, : Sig→ Sig
and : Sig→ Sig for the other generators. Let SFR := SPROP + + + + .

We now need to quotient SFR by the defining equations of special Frobenius bimonoids
(Fig. 4). We omit the detailed encoding of these equations as a triple ECW = (ACW, lCW, rCW)
since it presents no conceptual difficulty. Let SCW be the quotient of SFR by these equations.
As for props, we obtain EM(SCW) ∼= CW by construction.

5 Bialgebraic Semantics for String Diagrams

Now that we have established monads for our categorical structures of interest, we study
coalgebras that capture behaviour for string diagrams in these categories, and distributive
laws that yield the desired bialgebraic semantics. We fix our “behaviour” functor to

F := Pκ(L ; Id ; L) : Sig→ Sig

where L : Sig→ Sig is the label functor constant at the span N |·|←− A∗ |·|−→ N, with A∗ the set
of words on some set of labels A. The map | · | : A∗ → N takes w ∈ A∗ to its length |w| ∈ N.
An F -coalgebra is a span morphism Σ→ Pκ(L ; Σ ; L); a function that takes f ∈ Σ(n,m) to
a set of transitions (v, g, w) with the appropriate sorts, i.e. g ∈ Σ(n,m), |v| = n and |w| = m.

The data of an F-coalgebra β : Σ → Pκ(L ; Σ ; L) is that of a transition relation. For
instance, fix labels A = {a, b} and let x, y ∈ Σ(1, 2) and z ∈ Σ(1, 1); suppose also that β
maps x to {(b ; y ; ab), (a ; x ; aa)}, y to ∅ and z to {(b ; z ; a)}. Then β can be written:

x
b−→
a b

y x
a−−→
a a

x z
b−→
a
z (10)

I Example 8. In our main example, Fig. 2 defines a coalgebra β : Σ→ Pκ(L ; Σ ; L) where Σ
is the signature from Example 4 and the set of labels is R. For instance β( ) = {(k, , ε) |
k ∈ R}. Note the κ bounding Pκ is the cardinality of R.

In the sequel we shall construct distributive laws between the above behaviour functor
and monads encoding the various categorical structures defined in the previous section.

5.1 Bialgebraic Semantics for Props
The modularity of SPROP can be exploited to define a distributive law of the SPROP over F .
Recall from § 4.3 that SPROP is a quotient of S†SM. We start by letting F = Pκ(L ; Id ; L)
interact with the individual summands of SSM (see (8)), corresponding to the operations of
props. This amounts to defining GSOS specifications:

λsq : Pκ(L ; Id ; L) ; Pκ(L ; Id ; L)⇒ Pκ(L ; (Id ; Id)† ; L) (sequential composition)
λid : ι⇒ Pκ(L ; ι† ; L) (identity)
λmp : Pκ(L ; Id ; L)⊕ Pκ(L ; Id ; L)⇒ Pκ(L ; (Id⊕ Id)† ; L) (monoidal product)
λε : ε⇒ Pκ(L ; ε† ; L) (product unit)
λsy : σ ⇒ Pκ(L ; σ† ; L) (symmetry)
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Definitions of these maps are succinctly given via derivation rules, see Fig. 3.
We explain this in detail for λsq, the others are similar. Given Σ ∈ Sig, an element of type

(n,m) in the domain Pκ(L ; Σ ; L) ; Pκ(L ; Σ ; L) is a pair (A,B), where, for some z ∈ N,

A is a set of triples (a, c′, b) ∈ L(n, n)× Σ(n, z)× L(z, z), and

B is a set of triples (b, d′, c) ∈ L(z, z)× Σ(z,m)× L(m,m).

Then λsq
Σ (A,B) := {(a, c′ ; d′, c) | (a, c′, b) ∈ A, (b, d′, c) ∈ B}. Following the conven-

tion (10), we can write this data as: a−→
c
c′ ; d′ ∈ λsq

Σ (A,B) if a−→
b
c′ ∈ A and b−→

c
d′ ∈ B.

This leads us to the more compact version of λsq as the transition rule in Fig.3.
Next, take the coproduct of GSOS specifications λsq, λid, λmp, λε and λsy (see [7] for

the details) to obtain λ : SSMF ⇒ FS†SM. By Proposition 1, this yields distributive law
λ† : S†SMF ⇒ FS

†
SM.

The last step is to upgrade λ† to a distributive law λ†/SMC over the quotient SPROP of S†SM by
the equations (5)-(7) of SMCs. By Proposition 3, this is well-defined if λ† preserves ESM. We
show compatibility with associativity of sequential composition – the other equations can be
verified similarly. This amounts to checking that if λ† allows the derivation for s1 ; (s2 ; s3)
as below left, then there exists a derivation for (s1 ; s2) ; s3 as on the right, and vice-versa.

s1
u−→
v
s1

s2
v−→
w
s2 s3

w−→
x
s3

s2 ; s3
v−→
x
s2 ; s3

s1 ; (s2 ; s3) u−→
x
s1 ; (s2 ; s3)

s1
u−→
v
s1 s2

v−→
w
s2

s1 ; s2
u−→
w
s1 ; s2 s3

w−→
x
s3

(s1 ; s2) ; s3
u−→
x

(s1 ; s2) ; s3

By Proposition 3, we can therefore upgrade λ† to a distributive law λ†/SM : SPROPF ⇒ FSPROP.
We are now ready to construct the compositional semantics as a morphism into the final

coalgebra. One starts with a coalgebra β : Σ→ F(SPROP(Σ)) that describes the behaviour of
Σ-operations, assigning to each a set of transitions, as in (10). The difference with (10) is
that, because F is applied to SPROP(Σ) instead of just Σ, the right-hand side of each transition
contains not just a Σ-operation, but a string diagram: a Σ-term modulo the laws of SMCs.

As recalled in § 3, using the distributive law λ†/SM we can lift β : Σ → F(SPROP(Σ))
to a λ†/SM-bialgebra, β] : SPROP(Σ) → F(SPROP(Σ)). Since this is a F-coalgebra, the final
F-coalgebra Ω (the existence of which is shown in [7]) yields a semantics [[·]]β as below.
The operational semantics of a string diagram c is β](c), obtained from (i) transitions for
Σ-operations given by β and (ii) the derivation rules (Fig. 3) of λ†/SM. Instead, [[c]]β is the
observable behaviour: intuitively, its transition systems modulo bisimilarity.

SPROP(Σ)
[[·]]β

//

β]

��

Ω

��

F(SPROP(Σ))
F([[·]]β)

// F(Ω)

The bialgebraic semantics framework ensures that SPROP(Σ) and Ω are SPROP-algebras, which
by Proposition 5 are props. This means that the final coalgebra Ω is a prop and that [[·]]β
is a prop morphism, preserving identities, symmetries and guaranteeing compositionality:
[[s ; t]]β = [[s]]β ; [[t]]β and [[s⊕ t]]β = [[s]]β ⊕ [[t]]β .

I Example 9. Coming back to our running example, in Example 8 we showed that rules
in Fig. 2 induce a coalgebra of type Σ → F(Σ). Since each operation in Σ is itself a
string diagram (formally, via the unit ηΣ : Σ→ SPROP(Σ)), the same rules induce a coalgebra
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β : Σ→ FSPROP(Σ), which has the type required for the above construction. The resulting
coalgebra β] : SPROP(Σ)→ FSPROP(Σ) assigns to each diagram of SPROP(Σ) the set of transitions
specified by the combined operational semantics of Figs. 2 and 3. The preceding discussion
implies that, when e.g. R = N, bisimilarity for the Petri nets of [6] is a congruence.

5.2 Bialgebraic Semantics for Carboni-Walters Props

In this section we shall see two different ways of extending the GSOS specification of § 5.1
for CW props (see § 4.4). They correspond to the operational semantics of the black and
white (co)monoids as given in Fig. 2. In the next section, we will see that these two different
extensions give rise to two classic forms of synchronisation: à la Hoare and à la Milner.

Black distributive law. The first interprets the operations of the Frobenius structure
as label synchronisation: from the black node derivations on the left of Fig. 2 we get
GSOS specifications given by natural transformations ⇒ F( †), ⇒ F( †),

⇒ F( †), and ⇒ F( †). Recall that, here, we use the diagrams to denote
their associated functors Sig → Sig. By taking the coproduct of these and λ, the GSOS
specification for props from § 5.1, we obtain a specification λ• for SFR. It is straightforward
to verify that λ†• : S†FRF ⇒ FS

†
FR preserves the equations of special Frobenius bimonoids

(Fig. 4), yielding a distributive law λ†•/CW : S†CWF ⇒ FS
†
CW. As before, with λ†•/CW we obtain a

bialgebra β]• : SCW(Σ)→ FSCW(Σ) from any coalgebra β : Σ→ FSCW(Σ).

White distributive law. When the set of labels A is an Abelian group, it is possible to give
a different GSOS specifications for the Frobenius structure, capturing the group operation
of A: from the white node derivations on the right of Fig. 2 we get GSOS specifications

⇒ F( †), ⇒ F( †), ⇒ F( †), and ⇒ F( †). Using a now
familiar procedure we obtain a GSOS specifications λ◦ for SFR. The group structure on A
guarantees [39] that λ†◦ : S†FRF ⇒ FS

†
FR preserves the equations of special Frobenius bimonoids

(Fig. 4). Therefore we get a distributive law λ†◦/CW : S†CWF ⇒ FS
†
CW.

I Remark 10. Given the results in this section, one could ask if bialgebraic semantics works
for any categorical structure. A notable case in which it fails is that of Lawvere theories [29].
These can be seen as props with a natural comonoid structure on each object [12]. One may
define a monad for Lawvere theories following the same recipe as above. However, it turns out
that this monad is incompatible with the GSOS specification for the comonoid given in Fig. 2.
To see the problem consider a term d that can perform two transitions nondeterministically:
d

ε−→
a
d and d

ε−→
b
d. The naturality of the comonoid forces d ; ≈ d ⊕ d but d ;

can only perform the a a and b b transitions while d ⊕ d can also perform a b or b a. Thus
the specification would not be compositional. For more details, we refer the reader to the
appendix of [7].

6 Black and White Frobenius as Hoare and Milner Synchronisation

The role of this section is twofold: on the one hand we demonstrate how classical process
calculus syntax benefits from a string diagrammatic treatment; on the other we draw attention
towards a surprising observation, namely that the black and white Frobenius structures
discussed previously provide the synchronisation mechanism of, respectively, CSP and CCS.
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6.1 Syntax
We consider a minimal process calculus for simplicity. Assume a countable set N of names,
a1, a2, . . . and a set V of process variables, f, g, . . . , equipped with a function ar : V → N
that assigns the set of names that the process may use: ar(f) = n means that the process f
uses only names {a1, . . . , an}. This is Hoare’s [28] notion of alphabet for process variables.

Roughly speaking, in a string diagram, dangling wires perform the job of variables.
To ease the translation of terms to diagrams, we include permutations of names in the
syntax, hereafter denoted by σ. For a permutation σ : N → N , its support is the set
supp(σ) = {ai | ai 6= σ(ai)}; σ is finitely supported if supp(σ) is finite. For each finitely
supported permutation σ its degree is defined as the greatest i ∈ N such that ai ∈ supp(σ).

The set of processes is defined recursively as follows

P := P |P, νai(P ), f, Pσ

where ai ∈ N , f ∈ V and σ is a finitely supported permutation of names. The symbol |
stands for the parallel composition of processes. The symbol νai stands for the restriction, or
hiding, of the name ai. Observe that there are no primitives for prefixes, non-deterministic
choice or recursion: these will appear in the declaration of process variables which we will
describe in § 6.2. The idea here is to separate the behaviour, specified in the declaration
of process variables, and the communication topology of the network, given by the syntax
above. The notion of alphabet can be defined for all processes as follows:

al(P |Q)=al(P )∪al(Q) al(νai(P ))=al(P )\{ai} al(f)={a1, . . . , aar(f)} al(Pσ)=σ[al(P )]

From one-dimensional to two-dimensional syntax. We use a typing discipline to guide
the translation of terms to string diagrams:

n ` P n ` Q

n ` P |Q

n+ 1 ` P
n ` νan+1(P )

ar(f) = n

n ` f

n ` P degree(σ) ≤ n
n ` Pσ

n ` P

n+ 1 ` P
(11)

The meaning of the types is explained by the following lemma, easily proven by induction.

I Lemma 11. If n ` P then al(P ) ⊆ {a1, . . . an}.

We will translate processes to the CW prop freely generated from Σ = {f : (n, 0) |
f ∈ V and ar(f) = n}; in particular a typed process n ` P results in a string diagram of
SCW(Σ)(n, 0). The translation 〈〈·〉〉 is defined recursively on typed terms as follows:

〈〈n ` P |Q〉〉 =
〈〈P 〉〉

〈〈Q〉〉
n 〈〈n ` νan+1(P )〉〉 =

n
〈〈P 〉〉

〈〈n ` f〉〉 = f
n 〈〈n ` Pσ〉〉 = 〈〈P 〉〉n

σ
n 〈〈n+ 1 ` P 〉〉 = 〈〈P 〉〉

n

where for σ with degree(σ) < n, σ : n→ n is the obvious corresponding arrow in SCW(Σ).

I Example 12. Let V = {f, g} with ar(f) = 1 and ar(g) = 2. Let [a2/a1] : N → N be the
permutation swapping a1 and a2. One can easily check that 1 ` νa2(f[a2/a1] | g). Then
〈〈1 ` νa2(f[a2/a1] | g)〉〉 is as on the right.

f

g ≡
f
g
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6.2 Semantics
In order to give semantics to the calculus, we assume a set A of actions, α, β, . . . . Since,
we will consider different sets of actions (for Hoare and Milner synchronisation), we assume
them to be functions of type N →M for some monoid (M,+, 0). The support of an action
α is the set {ai | α(ai) 6= 0}. The alphabet of α, written al(α) is identified with its support.

For Hoare synchronisation, the monoid M is (2,∪, 0), while for Milner it is (Z,+, 0). In
both cases, we will write ai for the function mapping the name ai to 1 and all the others to
0. For Milner synchronisation, write ai for the function mapping ai to −1.

To give semantics to processes, we need a process declaration for each f ∈ V . That is, an
expression f:=

∑
i∈I αi.Pi, for some finite set I, αi ∈ A and processes Pi such that

{a1, . . . aar(f)} ⊆
⋃
i∈I

al(αi) ∪
⋃
i∈I

al(Pi) (12)

The basic behaviour of process declarations is captured by the three rules below.

f 0−→ f

f:=
∑
i∈I

αi.Pi

f αi−→ Pi

P
α−→ P ′

Pσ
α◦σ−−→ P ′σ

(13)

I Example 13. Recall f and g from Example 12. Assume declarations f:=a1.νa2(f[a2/a1] | g)
and g:=a1.g + a2.g. Observe that they respect (12). We have that g a1−→ g and g a2−→ g while
f a1−→ νa2(f[a2/a1] | g). Similarly f[a2/a1] a2−→ (νa2(f[a2/a1] | g))[a2/a1].

To define the semantics of parallel and restriction, we need to distinguish between the Hoare
and Milner synchronisation patterns.

Hoare synchronisation. Here actions are functions α : N → 2, which can equivalently be
thought of as subsets of N . The synchronisation mechanism presented below is analogous
to the one used in CSP [28]. The main difference is the level of concurrency: the classical
semantics [28] is purely interleaving, while for us it is a step semantics. Essentially, in P |Q,
the processes P and Q may evolve independently on the non-shared names, i.e. the evolution
of two or more processes may happen at the same time. It is for this reason that our actions
are sets of names. The operational semantics of parallel and restriction is given by rules

P
α−→ P ′ Q

β−→ Q′ α ∩ al(Q) = β ∩ al(P )

P |Q α∪β−−−→ P ′|Q′

P
α−→ P ′

νai(P ) α\{ai}−−−−→ νai(P ′)
(14)

We write α−→H for the transition systems generated by the rules (13), (14). By a simple
inductive argument, using (12) as base case, we see that for all processes P , if P α−→ P ′ then
α ⊆ al(P ). The rule for parallel, therefore, ensures that P and Q synchronise over all of
their shared names. The rule for restriction hides ai from the environment. For instance, if
α = {ai}, then νai(P ) ∅−→ νai(P ′). If α = {aj} with aj 6= ai, then νai(P ) {aj}−−−→ νai(P ′).

I Example 14. Recall f and g from Example 13. We have that f a1−→H νa2(f[a2/a1] | g).
From νa2(f[a2/a1] | g), there are two possibilities: either f[a2/a1] and g synchronise on a2,
and in this case we have νa2(f[a2/a1] | g) ∅−→, or g proceeds without synchronising on a1,
therefore νa2(f[a2/a1] | g) {a1}−−−→H since a1 belongs to al(g) and not to al(f[a2/a1]).
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Milner synchronisation. We take A = ZN . Sum of functions, denoted by +, is defined
pointwise and we write 0 for its unit, the constant 0 function.

P
α−→ P ′ Q

β−→ Q′

P |Q α+β−−−→ P ′|Q′
P

α−→ P ′

α(ai) = 0
νai(P ) α−→ νai(P ′)

(15)

We write α−→M for the transition system generated by the rules (13), (15).
Functions in ZN to represent concurrent occurrences of CCS send and receive actions.

A single CCS action a is the function mapping a to 1 and all other names to 0. Similarly,
the action ā maps a to −1 and the other names to 0. The silent action τ is the function
0. With this in mind, it is easy to see that, similarly to CCS, the rightmost rule forbids
νai(P ) α−→ νai(P ′) whenever α = ai or α = āi. CCS-like synchronisation is obtained by the
leftmost rule: when α = ai and β = āi, one has that P |Q 0−→ P ′|Q′.

A simple inductive argument confirms that P 0−→ P for any process P . Then, by the
leftmost rule again, one has that whenever Q β−→ Q′, then P |Q β−→ P |Q′. Note, however, that
as in § 6.2, while our synchronisation mechanism is essentially Milner’s CSS handshake, our
semantics is not interleaving and allows for step concurrency. It is worth remarking that the
operational rules in (15) have already been studied by Milner in its work on SCCS [37].

Semantic correspondence. For an action α : N → M with al(α) ⊆ {a1, . . . an}, we write
n ` α for the restriction {a1, . . . , an} →M . Define coalgebras βb, βw : Σ→ Pκ(L ; SCW(Σ) ; L)
for each f ∈ Σn,0 where f:=

∑
i∈I αi.Pi as

βb(f) = βw(f) =
{(
n ` αi, 〈〈Pi〉〉, •

)
| i ∈ I} ∪ {

(
n ` 0, f, •

)}
.

For both βb and βw, L is the span N |·|←− A∗ |·|−→ N, but A = 2 for βb and A = Z for βw.
Via the distributive law (§ 5.2) for the black Frobenius, we obtain the coalgebra

β]b : SCW(Σ) → Pκ(L ; SCW(Σ) ; L). Via the white Frobenius, we obtain β]w : SCW(Σ) →
Pκ(L ; SCW(Σ) ; L). We write c β−→

α b
d for (α, β, d) ∈ β]b(c) and c β−→

α w
d for (α, β, d) ∈ β]w(c).

The correspondence can now be stated formally.

I Theorem 15. Let n ` P and n ` α such that al(α) ⊆ al(P ).

Hoare is black. If P α−→H P ′ then 〈〈P〉〉
n n`α−−−→• b

〈〈P ′〉〉
n . Vice versa, if

〈〈P〉〉
n n`α−−−→• b d

n then there is n ` P ′ s.t. P α−→H P
′ and 〈〈P ′〉〉

n = d
n .

Milner is white. If P α−→M P ′ then 〈〈P〉〉
n n`α−−−→• w

〈〈P ′〉〉
n . Vice versa, if

〈〈P〉〉
n n`α−−−→• w d

n then there is n ` P ′ s.t. P α−→M P ′ and 〈〈P ′〉〉
n = d

n .

I Example 16. We illustrate the semantic correspondence by returning to Example 13.
Diagrammatically, it yields the following transitions:

f
g

1−→• b

f
g and

f
g

0−→• b

f
gg

0−→• b
. . .
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7 Related and Future Work

The terminology Hoare and Milner synchronisation is used in Synchronised Hyperedge
Replacement (SHR) [20, 33]. Our work is closely related to SHR: indeed, the prop SCW(Σ)
has arrows open hypergraphs, where hyperedges are labeled with elements of Σ [5]. To
define a coalgebra β : Σ → FSCW(Σ) is to specify a transition system for each label in Σ.
Then, constructing the coalgebra β] : SCW(Σ)→ FSCW(Σ) from a distributive law amounts to
giving a transition system to all hypergraphs according to some synchronisation policy (e.g.
à la Hoare or à la Milner). SHR systems equipped with Hoare and Milner synchronisation
are therefore instances of our approach. A major difference is our focus on the algebraic
aspects: e.g. since string diagrams can be regarded as syntax as well as combinatorial entities,
their syntactic nature allows for the bialgebraic approach, and simple inductive proofs. The
operational rules in Figure 3 are also those of tile systems [23]. However, in the context of
tiles, transitions are arrows of the vertical category: this forces every state to perform at least
one identity transition. For example, it is not possible to consider empty sets of transitions,
which can be a useful feature in the string diagrammatic approach, see [8].

Amongst the many other related models, it is worth mentioning bigraphs [38]. While also
graphical, bigraphs can be nested hierarchically, a capability that we have not considered.
Moreover, the behaviour functor F in § 5 forces the labels and the arriving states to have
the same sort as the starting states. Therefore, fundamental mobility mechanisms such as
scope-extrusion cannot immediately be addressed within our framework. We are confident,
however, that the solid algebraic foundation we have laid here for the operational semantics
of two-dimensional syntax will be needed to shed light on such concepts as hierarchical
composition and mobility. Some ideas may come from [14].
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