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Abstract
In this paper, I present a formalisation of a large portion of Apostol’s Introduction to Analytic
Number Theory in Isabelle/HOL. Of the 14 chapters in the book, the content of 9 has been mostly
formalised, while the content of 3 others was already mostly available in Isabelle before.

The most interesting results that were formalised are:
The Riemann and Hurwitz ζ functions and the Dirichlet L functions
Dirichlet’s theorem on primes in arithmetic progressions
An analytic proof of the Prime Number Theorem
The asymptotics of arithmetical functions such as the prime ω function, the divisor count σ0(n),
and Euler’s totient function ϕ(n)
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1 Introduction

The formalisation of Apostol’s book in Isabelle/HOL started from the simple desire to have
more properties about Euler’s ϕ function available in the system. However, Apostol’s style
turned out to be very amenable to formalisation, and the subject matter was both of great
interest as a basis for further development of number theory in Isabelle and as a case study
for Isabelle’s libraries on asymptotics and complex analysis. After 1.5 years of a highly
part-time one-person effort, most of the book (and quite a bit of material that goes beyond
the book) has been formalised:
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16:2 Nine Chapters of Analytic Number Theory in Isabelle/HOL

Chapters 1, 5, and 9 consist of fairly basic material (e. g. GCDs, congruences, Quadratic
reciprocity), most of which was already available in the Isabelle/HOL library.
The results from Chapters 2, 3, 4, and 6 have been formalised in their entirety.
Chapters 10, 11, and 12 have been formalised with some omissions.
For Chapters 7 and 13 (Dirichlet’s Theorem and PNT), equivalent results have been
formalised using a different approach.
Chapters 8 and 14 have been skipped. The former is being actively worked on; the latter
concerns number partitions and has little connection to the other material in the book.
Various interesting results from other sources (e. g. Hildebrand’s lecture notes [21]) that
are not proven in Apostol’s book have also been formalised.

For more precise information on this, see the supplementary material listed before.
I put particular focus on developing a usable library of Dirichlet series on one hand and

concrete results about the distribution of primes on the other. As the development is much
too large to be presented here in full, I will go through a high-level description of some of
the most interesting material. Special attention will be given to parts where I encountered
difficulties or chose a different route than Apostol did in his book. Proofs will only be given
in the form of very brief sketches, e. g. when it is necessary in order to understand difficulties
in formalising them. I would like to refer readers who are interested in the actual proofs either
to my commented formalisation in the Archive of Formal Proofs (AFP) [13, 12, 15, 18, 16] or
to the numerous excellent textbooks and lecture notes on the subject [2, 21, 7]. I chose not to
show Isabelle code in this presentation since the main results are very close to mathematical
notation (e. g. Re s ≥ 1 =⇒ s 6= 1 =⇒ zeta s 6= 0) and showing the Isabelle code would
therefore not provide much additional insight.

Let me now give an outline of the sections to follow: Section 2 lists related work. Section 3
defines formal Dirichlet series and their connection to complex-analytic functions. Section 4
introduces multiplicative characters and Dirichlet characters. Section 5 builds on the Dirichlet
series library to treat various L functions, such as the famous Riemann ζ function. Section 6
describes my formalisation of the Prime Number Theorem (PNT). Section 7 gives some more
examples of interesting results that were formalised. Section 8 gives an overview of the size of
various parts of my formalisation and the effort involved in creating it. Lastly, in Section 9,
some conclusions are drawn from this project.
I Remark 1. Any sum

∑
p or product

∏
p is to be understood to run over prime p only.

2 Related Work

The first formalisation of a result related to this work was that of the PNT in Isabelle/HOL
by Avigad et al. [5] in 2007. They formalised the elementary Selberg–Erdős proof.1 Carneiro
formalised the same proof in Metamath [11].

Harrison developed the first (and until now only) formalisation of an analytic proof of the
PNT in 3,600 lines [20] of HOL Light. He followed Newman’s presentation, which I also did.2

1 Unfortunately, this work was never submitted to the AFP and has not been maintained since then. At
the time of writing this paper, the proofs are 12 years old; the formalisation comprises almost 27,000
lines, and many of them are unstructured proof scripts. Bringing them up to date to work with a
modern version of Isabelle would be a massive undertaking. However, much of the more general material
developed by Avigad et al. was moved to Isabelle’s library, and for a considerable part of the remaining
material, equivalent results are now already a part of the Isabelle library or my work anyway.

2 Paulson later ported Harrison’s development to Isabelle/HOL, but the ported proofs were lengthy and
not very readable, so he and I decided that it would be better to redo them in a more high-level style,
which I did. Only a few small lemmas were kept.
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Harrison also proved Dirichlet’s Theorem [19] and I used some of the high-level structure of
his development as an inspiration for mine. Moreover, formalisations of Bertrand’s postulate
exist by Harrison in HOL Light, by Théry in Coq [27], by Riccardi in Mizar [26], by Carneiro
in Metamath [10], by Asperti and Ricciotti in Matita [4], and by Biendarra and Eberl in
Isabelle/HOL [9].

The big difference between these formalisations and the present one is that this one
contains not just one result and the material required for it, but the majority of a textbook
on the subject. Many proofs are much simpler and more “high-level” through the use of
Dirichlet series and Isabelle’s advanced machinery for asymptotic reasoning.

3 Dirichlet Series

The central objects in analytic number theory are Dirichlet series. These are the main tools
that set apart my approach to formalised number theory from that of previous formalisation
work in multiplicative number theory like that by Avigad et al., Harrison, and Carneiro.

I Definition 2 (Formal Dirichlet series). A formal series of the form f(s) =
∑∞
n=1 ann

−s is
called a Dirichlet series. Typically, the an are real or complex (we will mostly look at the
complex case). The Dirichlet series over R or C form a commutative ring with the obvious
choices for 0, 1, and addition. Multiplication is defined as (

∑∞
n=1 ann

−s) · (
∑∞
n=1 bnn

−s) =∑∞
n=1(

∑
k·l=n akbl)n−s . Also,

∑∞
n=1 ann

−s has a multiplicative inverse iff a1 6= 0.

I Theorem 3 (Convergence of Dirichlet series). Each Dirichlet series has abscissæ of con-
vergence σc and absolute convergence σa such that the infinite sum corresponding to it is
absolutely summable for Re(s) > σa, conditionally summable for Re(s) ∈ (σc, σa), and
divergent for Re(s) < σc (where Re(s) denotes the real part of s). The σc and σa satisfy
σc ≤ σa ≤ σc + 1 and may be ±∞.

Much like formal power series (i. e. ordinary generating functions) for combinatorics,
Dirichlet series are closely associated with number theory. Like generating functions, they
are of great interest as mere formal objects, but when they converge, their interpretation as
a complex-valued function is also enormously useful, as we will see.

Various formal analogues of analytic operations can be defined for Dirichlet series e. g.
reciprocal, derivative, integral, exp(f(s)), ln f(s), f(s+ s0), f(m · s), and subseries. These
have similar properties to their analytic counterparts (e. g. exp(f(s))′ = f ′(s) exp(f(s))) even
when they do not converge. When they do converge, they typically agree with their analytic
counterparts. This allows one to prove properties of the analytic functions by reasoning on
the formal level and vice versa.

There are 4,800 lines of material on formal Dirichlet series in my formalisation. This is
far too much to show here, so I simply say that it contains all of Chapter 11 in Apostol’s
book and more, except for Sections 11.10 and 11.11. I will only show a few small examples
that illustrate the aforementioned interplay of the formal and the analytical level:

One example of using formal Dirichlet series to derive an analytic result is this:

I Theorem 4. Let ω(n) be the number of distinct prime factors of n and µ(n) the Möbius µ
function, i. e. (−1)ω(n) if n is square-free and 0 otherwise. Then

∑∞
n=1 µ(n)/n2 = 6/π2 .

Proof. Consider the formal series ζ(s) :=
∑∞
n=1 n

−s and M(s) :=
∑∞
n=1 µ(n)n−s. It is clear

that they both converge absolutely for Re(s) > 1 by the comparison test. It is easy to show∑
d|n µ(d) = [n = 1], i. e. ζ(s)M(s) = 1 holds formally [2]. Thus, it also holds analytically

for Re(s) > 1 so that we have ζ(2)M(2) = 1 and therefore M(2) = 1/ζ(2), where ζ(2) – the
famous Basel problem – has the well-known value π2/6 [6]. J
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16:4 Nine Chapters of Analytic Number Theory in Isabelle/HOL

The following theorem allows us to transfer an analytic equality to the formal level:

I Theorem 5 (Uniqueness of Dirichlet series). Let f(s), g(s) be two formal Dirichlet series
whose abscissa of convergence is <∞. If there exists a sequence sk with Re(sk) −→∞ and
∀k. f(sk) = g(sk), then f(s) and g(s) are equal as formal Dirichlet series.

I Remark 6. In Isabelle, the condition on the existence of the sequence sk is replaced by the
following equivalent and more concise formulation using filters [22]:

∃F s in Re going-to at-top. f(s) = g(s)

The filter “f going-to F ” is the contravariant image of F under f , i. e. “Re going-to at-top”
describes the neighbourhood of complex numbers with “sufficiently large” real part.

The “∃F x in F. P (x)” notation stands for “P (x) holds frequently in F ”, i. e. the comple-
ment of P is not in the filter F . Less formally, one could say that P (x) holds “again and
again”. In the case of “Re going-to at-top”, this means that for any C ∈ R, there exists an
s with Re(s) ≥ C for which the property is fulfilled.

I Definition 7 (Truncation operator). For a Dirichlet series f(s) =
∑∞
n=1 ann

−s, let
Tm(f(s)) =

∑m
n=1 ann

−s denote the m-th order truncation of f(s). The result is a Di-
richlet polynomial, i. e. a Dirichlet series with only finitely many non-zero coefficients.

I Theorem 8. f(s) = g(s)←→ ∀m. Tm(f(s)) = Tm(g(s)).

The following is an instance where these theorems are used to avoid a lot of complicated
reasoning on the formal level by leveraging a result on the analytic level:

I Theorem 9. For any (not necessarily convergent) Dirichlet series f(s) and g(s), we have
exp(f(s) + g(s)) = exp(f(s)) exp(g(s)) .

Proof. It is clear that the result holds analytically whenever the series converge, so if the
series have a non-empty half-plane of convergence, they must be equal by Theorem 5. The
question is how to show this if we do not know whether the series converge anywhere.

The key is to use Theorem 8 together with Tm(exp(h(s))) = Tm(exp(Tm(h(s)))). This
allows us to assume w. l. o. g. that the series in question are Dirichlet polynomials and
therefore converge everywhere. J

I Remark 10. This technique of showing an equality on Dirichlet series by showing that
it holds for all Dirichlet polynomials works if the two sides of the equation in question are
continuous functions w. r. t. the topology on formal Dirichlet series, i. e. each coefficient of
the result only depends on finitely many coefficients of the input. The topological structure
of Dirichlet series was not formalised yet, but this is a useful fact to keep in mind.

The following is another important theorem connecting a series with the function it
defines that we will use later:

I Theorem 11 (Pringsheim–Landau). Let f(s) be a Dirichlet series with non-negative real
coefficients and σa 6= ±∞. Then f(s) has a singularity at σa.

Conversely, if f(s) has an an analytic continuation to some half-plane {s | Re(s) > c} ,
then σa ≤ c. In particular, if f(s) is entire, the series must converge everywhere.
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4 Characters of a Finite Abelian Group

The next concept we shall explore is that of a multiplicative character, which will be needed
to prove Dirichlet’s theorem. For this section, let G = (G, ·, 1) be a finite abelian group.

IDefinition 12 (Multiplicative character). A character is a group homomorphism χ : G→ C×,
i. e. χ(1) = 1 and χ(a · b) = χ(a)χ(b) for any a, b ∈ G. The character χ0 that maps every
element to 1 is called the principal character.

For the necessary group theory, I use the HOL-Algebra library by Ballarin, which models a
group as a record containing entries for the operation ·, the neutral element 1, and an explicit
carrier set (which does not have to be the full type universe). The latter is necessary in HOL
because notions such as subgroups cannot easily be expressed without explicit carrier sets.
The fact that such a record indeed describes a group is then formalised as a locale [8] called
group, which fixes such a record and assumes that all the usual group axioms hold.

A character can then be defined as a locale that extends the group locale by fixing a
function χ :: α → C (where α is the type of the group elements) and assuming that the
two homomorphism properties mentioned above hold for χ. For convenience, I only assume
χ(1) 6= 0 (from which χ(1) = 1 easily follows) and I additionally require χ(x) = 0 for any x
not in the carrier of the group. The latter is to ensure extensionality, i. e. two characters are
equal as HOL values iff they return the same result on every group element.

I Definition 13 (Pontryagin dual group). Denote the set of characters of G by Ĝ. Then Ĝ
forms a group Ĝ := (Ĝ, ·, χ0) with point-wise multiplication and χ0 as the identity. This
group is called the Pontryagin dual group of G.

I Theorem 14 (Number of characters). |Ĝ| = |G|

In Isabelle, the proof is by induction on the subgroups of G, using a custom induction rule
inspired by Apostol’s proof. The idea here is to successively “adjoin” elements, i. e. for a
subgroup H and some x ∈ G \H, we form 〈H;x〉, the subgroup generated by H ∪ {x}:

I Lemma 15 (Induction on a group). Let G = (G, ·, 1) be a group and H some subgroup of
G. Let P be some property on groups. If P (H) holds and P (H ′) implies P (〈H ′;x〉) for all
subgroups H ′ ⊇ H and all x ∈ G \H ′, then P (G) holds.

I use this to show a stronger version of Theorem 14 that is just as easy to show:

I Theorem 16 (Number of character extensions). Let H be a subgroup of G and χ ∈ Ĥ. Let

C(G) := {χ′ ∈ Ĝ | ∀x∈H. χ′(x) = χ(x)}

denote the set of characters on G that agree with χ on H. Then |C(G)| · |H| = |G| , i. e.
there are precisely |G|/|H| ways to extend a character on H to a character on G.

Proof. By straightforward induction according to Lemma 15, using the bijection

f : C(〈H ′;x〉) → C(H ′)× {z ∈ C | zn = 1}, f(χ) = (y 7→ χ(y), χ(x))

in the induction step. J

Theorem 14 follows directly by taking H = ({1}, ·, 1). Another useful corollary is this:

I Corollary 17. For any x 6= 1, there exists a χ ∈ Ĝ such that χ(x) 6= 1.

ITP 2019
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With this, we can prove a nice property that Apostol does not cover at all:

I Theorem 18 (Isomorphism to the double dual). G is isomorphic to its double dual via the
natural isomorphism ν : G→ ̂̂G , ν(x) = (χ 7→ χ(x)) .

This isomorphism is useful for the next properties:

I Theorem 19 (Orthogonality relations). For any χ ∈ Ĝ resp. x ∈ G, we have:

∑
x∈G

χ(x) =
{
|G| if χ = χ0

0 otherwise
(1)

∑
χ∈Ĝ

χ(x) =
{
|G| if x = 1
0 otherwise

(2)

Apostol’s proof for (1) is very simple and straightforward to formalise. In order to show
(2) from (1), Apostol represents the set of characters of G as a character table of G, i. e. a
|G|×|G| complex matrix. If we denote this matrix by A, (1) shows that AA∗ = nI (where A∗
is the conjugate transpose of A). By simple linear algebra, A∗A = nI and thus (2) follows.

Formalising this argument would have required importing Isabelle’s linear algebra library
and doing some tedious work to relate the matrix to the characters, so I chose another route:
One could prove (2) relatively easily using the same induction principle as before in about 70
lines, but the easiest way is to simply use Pontryagin duality: (2) is, in fact, nothing but the
dual of (1), with Ĝ for G and ν(x) for χ. This requires only 6 lines of Isabelle code.

I Definition 20 (Dirichlet character). A Dirichlet character χ for the modulus m ∈ N>1 is
a character of the multiplicative group of the residue ring Z/mZ. For convenience, χ is
represented as a periodic function of type N→ C with period m, i. e. χ(k) = χ(k mod m).

I Remark 21. Apostol’s and my treatment of characters are quite elementary. There
is an alternative, more group-theoretic view on this: It is straightforward to show that
Ĝ1×G2 ' Ĝ1 × Ĝ2 and that Ĉn ' Cn for cyclic groups Cn. Together with the Fundamental
Theorem of Finite Abelian Groups, this implies a stronger variant of Theorem 14, namely
Ĝ ' G. However, unlike with ̂̂G ' G, the isomorphism is not natural and establishing it
indeed requires the Fundamental Theorem, which is currently not available in HOL-Algebra.
Since the formal proofs that were presented in this section are still reasonably short, I do not
think this is a big problem.

5 The L Functions

In this section, we will look at four functions from the class of L functions: Riemann’s ζ
function, Dirichlet’s L function, Hurwitz’s ζ function, and the periodic ζ function. These are
all complex-valued functions that are defined by an infinite sum for Re(s) > 1 and can be
analytically or meromorphically continued to the entire complex plane.

I Definition 22 (Riemann’s ζ function). For Re(s) > 1, the Riemann ζ function is given by
the Dirichlet series ζ(s) =

∑∞
n=1 n

−s .

I Definition 23 (Dirichlet L functions). Let χ be a Dirichlet character for the modulus m > 0.
Then L(s, χ) is given by the Dirichlet series L(s, χ) =

∑∞
n=1 χ(n)n−s for Re(s) > 1 if χ = χ0

and for Re(s) > 0 if χ 6= χ0.

We immediately get the following properties for free from the Dirichlet series library:
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I Theorem 24. Let Λ(n) denote the von Mangoldt function. Then, if Re(s) > 1:

ζ(s) =
∏
p

1
1− p−s ζ ′(s) = −

∞∑
n=1

lnn
ns

ln ζ(s) =
∞∑
n=2

Λ(n)
lnn · ns

L(s, χ) =
∏
p

1
1− χ(p)p−s L′(s, χ) = −

∞∑
n=1

χ(n) lnn
ns

lnL(s, χ) =
∞∑
n=2

χ(n)Λ(n)
lnn · ns

However, ζ(s) and L(s, χ) can be defined on a larger domain:

I Theorem 25 (Analytic continuation of ζ(s) and L(s, χ)).
1. ζ(s) can be continued to an analytic function on C \ {1} with a simple pole at s = 1.
2. For non-principal χ, L(s, χ) can be continued to an entire function.
3. For χ = χ0, we have L(s, χ0) = ζ(s) ·

∏
p|m(1− p−s) , i. e. L(s, χ0) is equal to ζ(s) up to

an entire factor and is therefore also analytic on C \ {1} with a simple pole at s = 1.

The difficult part here is to actually construct the analytic continuations. To do this
uniformly and without duplication of work, Newman uses a generalisation of ζ(s):

I Definition 26 (Hurwitz’s ζ function). Let a ∈ R>0 and Re(s) > 1. Then ζ(s, a) is given by
the (non-Dirichlet) series ζ(s, a) =

∑∞
n=0 (n+ a)−s .

Apostol only considers ζ(s, a) for a ∈ (0, 1] since some results only hold for a ≤ 1 and the
case of a > 1 can be reduced to a ∈ (0, 1]. It is, however, useful to allow also a ≥ 1 – e. g. in
Newman’s proof of the PNT, as noted already by Harrison [20].

B Claim 27. ζ(s, a) can be continued analytically to C \ {1} with a simple pole at s = 1.
Both Riemann’s ζ function and the Dirichlet L functions can easily be expressed in terms of
ζ(s, a), so that a continuation for Hurwitz’s ζ also yields continuations for the other two [2].

The main question now is therefore how to construct the continuation of ζ(s, a).

5.1 Analytic Continuation of Hurwitz’s ζ Function
Apostol constructs the continuation using an integral along an infinite contour. I did formalise
this eventually (see Theorem 36), but when I first defined ζ(s, a) in Isabelle, this approach
seemed quite daunting to me, so I chose another route that seems to be folklore [2, 24] and
that I discovered independently: Since ζ(s, a) is defined for Re(s) > 1 by an infinite sum∑∞
n=0(n+ a)−s and the corresponding improper integral

∫∞
0 (x+ a)−s dx is easy to compute,

the Euler–MacLaurin summation formula [14] suggests itself. Applying it, we obtain

∞∑
n=0

(s+ a)−n − a1−s

s− 1 = a−s

2 +
N∑
i=1

B2i

(2i)! a
−s−2i+1s2i−1 +

(−1)2Ns2N+1

(2N + 1)!

∫ ∞
0
P2N+1(t) · (t+ a)−s−2N−1 dt (3)

where sk denotes the rising factorial, Bk is the k-th Bernoulli number, and Pk(t) is the
periodic version of the Bernoulli polynomial Bk(t), i. e. Pk(t) = Bk(t− btc).

The right-hand side is now actually analytic on a larger domain: all terms except the last
one are clearly entire functions in s; the only non-obvious term is the integral in the last
summand. Leibniz’s rule shows that the definite integral

∫ b
0 is analytic in s, and an integral

version of the Weierstraß M -test then shows that the improper integral
∫∞

0 is uniformly
convergent and therefore analytic in s for Re(s) > −2N .

ITP 2019



16:8 Nine Chapters of Analytic Number Theory in Isabelle/HOL

Let us write prezetaN (s, a) for the right-hand side. This is then a function in s that is
analytic for Re(s) > −2N and that also fulfils

prezetaN (s, a) =
∞∑
n=0

(s+ a)−n − a1−s

s− 1 for Re(s) > 1 .

This means that two functions prezetaM and prezetaN will always agree on Re(s) > 1, and
by analytic continuation they will then also agree on their entire domain, i. e. for all s with
Re(s) > −2max(M,N). We can therefore define a full analytic continuation to all of C by
choosing N “big enough” for each input, i. e. we define:

prezeta(s, a) := prezetamax(0,1−dRe(s)/2e)(s, a)

This function is entire and agrees with any of the prezetaN (s, a) for all s with Re(s) > −2N .
Thus, it is an analytic continuation of the left-hand side of (3) so that we can simply define

ζ(s, a) := prezeta(s, a) + a1−s

s− 1

to obtain the Hurwitz ζ function on all of C \ {1}. For convenience, I choose ζ(1, a) = 0 as is
often done in HOL-based systems (cf. Γ(−n) for n ∈ N in Isabelle/HOL and HOL Light).
The advantage of the Euler–MacLaurin approach is that it is simple to implement because
all of the “heavy lifting” has already been done in the AFP entry on the Euler–MacLaurin
formula.

Various basic properties of the Hurwitz and Riemann ζ functions then follow in a
straightforward way, of which I show some notable ones here:

I Theorem 28 (Special values of ζ). For any n ∈ N≥0, we have:

ζ(a,−n) = −Bn+1(a)
n+ 1 ζ(−n) = −Bn+1

n+ 1 ζ(2n) = (−1)n+1 ·B2n · (2π)2n

2(2n)!

where Bn = Bn(1) are the Bernoulli numbers with B1 = 1
2 . In particular, this implies the

famous ζ(−1) = − 1
12 and the Basel problem ζ(2) = π2/6.

I Theorem 29 (Integral representation for ζ(s, a)). For any s with Re(s) > 1, we have:

Γ(s)ζ(s, a) =
∫ ∞

0

ts−1e−at

1− e−t dt

5.2 The Non-Vanishing of ζ(s) and L(s, χ) for Re(s) = 1
The following is a core ingredient in the Prime Number Theorem and Dirichlet’s Theorem:

I Theorem 30. For any s with Re(s) ≥ 1, we have ζ(s) 6= 0 and L(s, χ) 6= 0.

The case of Re(s) > 1 is a simple consequence of the Euler product formula for ζ(s) and
L(s, χ) (cf. Theorem 24); the difficult part is the case Re(s) = 1. For this, I formalised the
very simple proof presented by Newman [25], whose key ingredient is the aforementioned
Pringsheim–Landau theorem (see Theorem 11). This proof is stunningly short and its
high-level reasoning translates well to Isabelle/HOL now that a library of Dirichlet series is
available. The gain is most striking for the Dirichlet L function, where Apostol’s proof only
treats the case of s = 1, and even that proof is still more complicated than Newman’s and
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involves lengthy complicated “Big-O” reasoning. Indeed, in a first version of the formalisation,
I formalised Apostol’s proof, but it was considerably longer and messier than the new version
– with the added bonus that the new one is also more general.

Harrison also only proves L(1, χ) 6= 0 – indeed, he does not define L(s, χ) at all; he
defines only L(1, χ) since that is all that is required for Dirichlet’s theorem. Despite this and
the much higher verbosity of structured Isabelle proofs compared to HOL Light,his proof is
longer than mine. The reason for this is that his proof is very elementary and uses very little
library material while mine builds on a large library of Dirichlet series. However, I think
that the comparison is still not entirely unjustified since all of this material is sufficiently
general to be called “library material” (as opposed to technical lemmas specifically designed
for this one proof), and building sufficiently large and general libraries to make proofs like
this cleaner and easier is, after all, one of our goals in formalisation.

5.3 Hurwitz’s Formula
More as a challenge to myself and the Isabelle libraries, I chose to formalise another non-trivial
property of the ζ functions:

I Theorem 31 (Reflection formula for ζ(s)). For s /∈ {0, 1}, we have:

1
Γ(s) · ζ(1− s) = 2(2π)−s cos(πs/2)ζ(s)

Note that while Γ(s) has poles at s ∈ Z≤0, its reciprocal 1/Γ(s) is entire, so the formula holds
even for s ∈ Z<0.

This formula is a corollary of a more general one for ζ(s, a) known as Hurwitz’s formula:

I Theorem 32 (Hurwitz’s formula). Let a ∈ (0, 1) and s ∈ C \ {0} with a 6= 1 ∨ s 6= 1. Then:

1
Γ(s) · ζ(1− s, a) = (2π)−s

(
i−sF (s, a) + isF (s,−a)

)
Here, F (s, a) is the periodic ζ function, which we still have to define:

I Definition 33 (Periodic ζ function). For Re(s) > 1, the periodic ζ function F (s, a) is given
by the Dirichlet series F (s, a) =

∑∞
n=1 e

2iπnan−s .

B Claim 34. F (s, a) is called periodic because F (s, a+ n) = F (s, a) for any integer n. For
non-integer a, the above series converges for Re(s) > 0 and can be continued to an entire
function. For integer a, it is simply the Riemann ζ function.

Apostol does not discuss the analytic continuation of F (s, a) at all, but it seemed useful
to me to do this nonetheless. The strategy I used to construct the continuation of F (s, a) for
non-integer a is somewhat interesting: Theorem 32 can be rearranged to give a formula that
expresses F (s, a) in terms of ζ(1− s, a) and ζ(1− s, 1− a):

I Theorem 35. Let a ∈ (0, 1) and s ∈ C \ N. Then:

F (s, a) = i(2π)s−1Γ(1− s)
(
i−sζ(1− s, a)− isζ(1− s, 1− a)

)
We therefore proceed like this (assuming w. l. o. g. a ∈ (0, 1)):
1. Show Theorem 32 for Re(s) > 1 (where F is simply given by its Dirichlet series).
2. Use this to show Theorem 35 for Re(s) > 1.
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Re = 0

Im = 0

(2N+1)π
ε

2iπ

4iπ

2Niπ

2(N+1)iπ

−2iπ

−4iπ

−2Niπ

−2(N+1)iπ

Re = 0
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(2N+1)π
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4iπ

2Niπ
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Figure 1 Apostol’s integration contour and my modified version for proving Hurwitz’s formula
(ε < 2π). The black dots are the poles of the integrand; the thick black line is its branch cut. Note
that in both cases, the line segments of the contour lie on the real axis despite the small gap in the
illustration.

3. Use the right-hand side of Theorem 35 as the definition of F (s, a) for s /∈ N. Compatibility
with the Dirichlet series definition follows by analytic continuation.

4. Since the Dirichlet series definition covers Re(s) > 0 and the new definition covers C \ N,
the only point left is s = 0, which is a removable singularity that can be eliminated via

F (0, a) := lim
s→0

F (s, a) = i

2π
(
prezeta(1, a)− prezeta(1, 1− a) + ln(1− q)− ln q

)
− 1

2 .

5. Extend the validity of Theorems 32 and 35 to their full domains by analytic continuation.

The only difficult part here is the first step, which we shall look at now. First of all, we
require the contour integral representation for ζ(s, a) mentioned in Section 5.1:

I Theorem 36. For any s ∈ C \ {1}, we have

ζ(s, a) = Γ(1− s)
2iπ

∫
zs−1eaz

1− ez dz where =
Re = 0

Im = 0
2iπ

−2iπ

if the inner circle has radius ε < 2π. This continues ζ(s, a) analytically to C \ {1}.

Proof. Due to analytic continuation, we can assume Re(s) > 1 w. l. o. g. By homotopy, all
contours with a radius ε < 2π yield the same result. Letting ε→ 0, the contribution of the
circle vanishes and the

∫
becomes the

∫∞
0 from Theorem 29. J

I Remark 37. Note that in order to even state this theorem formally, one needs to make the
limit inherent in this “improper contour integral” explicit. I chose to decompose the integral
as
∫

=
∫

−
∫

. The two line segments can then be written as Lebesgue integrals∫ −∞
0 , leaving only two finite circular arcs as the remainder. There is yet another subtlety
hidden in this integral that will be discussed in Section 5.3.1.



M. Eberl 16:11

The proof of Hurwitz’s formula for Re(s) > 1 then proceeds by computing this contour
integral in a different way using the Residue Theorem. To do this, we first need to approximate
it by an integral over a finite contour CN,ε such that

∫
CN,ε
−→

∫
as N → ∞. Figure 1

shows Apostol’s choice for CN,ε. Applying the Residue Theorem to this, we get

1
2iπ

∫
CN,ε

z−seaz

1− ez dz =
∑
z0

indCN,ε
(z0) Res

z=z0

z−seaz

1− ez (4)

where the sum on the right-hand side extends over all the singularities of the integrand
(represented by black dots in Figure 1). We can now let N →∞ so that the contribution of the
outer circle vanishes. The integral on the left-hand side is then simply a

∫
, which is equal

to ζ(s, a)/Γ(s) by Theorem 36, and winding number on the right-hand side −1 for every non-
zero pole z0. Evaluating this sum, we find that it indeed equals i−s

(2π)sF (s, a) + is

(2π)sF (s,−a),
which concludes the proof of Hurwitz’s formula for Re(s) > 1. y

The formalisation of the proof was fairly routine. It is, however, quite large and tedious,
containing almost 1,000 lines of proof code compared to 6.5 pages in Newman’s book (both
including the proof of Theorem 36). This seems to be a common pattern in Isabelle proofs
using the Residue Theorem and it is likely due to the many side conditions that need to
be shown, many of which are of geometric nature and thus much easier to explain to a
human than to a theorem prover. Side conditions like the analyticity of the integrand, on the
other hand, can be solved mostly automatically using Isabelle’s general-purpose automation
together with specialised theorem collections like analytic_intros.

Some aspects of the formal proofs of these statements deserve more attention, and we
will discuss them now.

5.3.1 Branch Cuts
In both theorems, the term z−s is a multi-valued function. It is defined in Isabelle as e−s ln z

where ln is the standard branch of the logarithm, which has a branch cut on the negative
real axis. The two lines of Apostol’s contour lie directly on this cut, taking different branches
of the logarithm (indeed, if they did not, they would simply cancel each other). This makes
sense formally when considering the integrand as a multi-valued function in the sense of a
Riemann surface, but we do not have any of this analytic machinery in Isabelle.

My first idea to circumvent this problem was to resort to some kind of limiting argument
by placing the two horizontal lines not directly on the real axis, but some ε above (resp.
below) it. However, this would likely have been a very tedious argument to do in Isabelle. I
therefore decided to again cut the contour into two halves, similarly to Remark 37. When
their integrals are added together, we recover Apostol’s contour integral. Due to symmetry,
it is actually again enough to look at the upper half (cf. the right part of Figure 1), as the
lower one follows by conjugation.

For this upper contour , we can now integrate over the same branch of the logarithm
everywhere. In order to avoid the branch cut of the standard logarithm, I use a different
branch l̃n z := ln(−iz) + 1

2 iπ , whose branch cut lies on the negative imaginary axis, safely
away from our contour. I also reversed the contour so that the winding numbers are all 1.

5.3.2 Homotopy
The proof of Theorem 36 uses the fact that the integral along is invariant for all radii
ε < π. This is because all of these contours are homotopic, i. e. they can be continuously
deformed into one another without crossing any of the singularities of the integrand. However,
proving that this is the case turned out to be very tedious in Isabelle because there are
almost no library theorems that help showing that two composite paths are homotopic.
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I circumvented this problem in the following way: First of all, I restricted myself to
ε < π.3 Next, since the line segments extending from −π to −∞ are the same for all ε, we
can ignore them and focus on the finite subcontour . It can be seen that

∫
=
∫
−
∫

.
By symmetry, it is enough to show that

∫
is invariant under changes of ε. This, on the

other hand, is actually a corollary of (4): If we let N := 0, the sum on the right-hand side
vanishes so that we get

∫
C0,ε

=
∫

= 0 for all ε. Since
∫

=
∫
−
∫

= −
∫

and
(a half circle of radius π) is independent of ε, it follows that

∫
is indeed the same for all ε.

Effectively, this replaces the homotopy argument (which is intuitively obvious for humans
and not mentioned at all by Apostol) with a much “heavier” invocation of the Residue
Theorem – but since we already applied the Residue Theorem anyway, all that work is
already done.

5.3.3 Winding Numbers

The evaluation of the winding numbers indCN,ε
(z0) is also easy for a human: the contour

CN,ε = clearly winds counter-clockwise once around each pole 2niπ with 0 < n ≤ N ,
and all the other poles are clearly completely outside the contour. Proving these things
in a theorem prover, on the other hand, is notoriously difficult [20], especially for a more
complicated contour like this.

To show that the poles outside the contour really do lie outside (i. e. have winding number
0), I use simple geometric arguments: for the branch cut on the negative imaginary axis,
one can draw a vertical line from each point to −i∞ without crossing CN,ε, so the winding
number for these points must be 0. Moreover, CN,ε is contained in a ball of radius (2N + 1)π,
which is a convex set that does not contain any of the poles with n > N . Thus, these poles
must also have winding number 0.

The more difficult part is to show that the winding number for the points inside the
contour is 1. Geometric arguments for this are difficult. One approach would be to show
that the contour is a closed simple curve (which implies that the winding number must be
either -1, 0, or 1) and then weigh the contributions of the four different parts of the curve to
show that the overall value must be positive, thus 1. However, to avoid having to do this
work, I instead use Li’s framework for computing winding numbers in Isabelle [23]. It is
based on computing Cauchy indices and comes with some setup to handle combinations of
line segments and circular arcs almost automatically, allowing me to prove that the winding
numbers are 1 with a mere 18 lines of proof code.

6 The Prime Number Theorem

The formal statement of the PNT is simply the asymptotic estimate π(x) ∼ x ln x, where
π(x) is the number of prime numbers ≤x. I will now explain, in a high-level way, how the
formalised proof works. First of all, let us define the following functions related to primes:

3 This restriction could easily be lifted by allowing arbitrary radii in (4) instead of just (2N + 1)π.
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Re = 0

Im = 0

R

ε

Re = 0

Im = 0

R

ε

Figure 2 Newman’s integration contour in his proof of Ingham’s Tauberian theorem and Harrison’s
modified version. The dot in the middle is the pole of the integrand at the origin.

I Definition 38.

π(x) =
∑

p≤x
1 = |{p | p prime ∧ p ≤ x}| pn = the n-th prime number (p0 = 2)

ϑ(x) =
∑

p≤x
ln p M(x) =

∑
p≤x

ln p/p

ψ(x) =
∑

n≤x
Λ(n) =

∑
pk≤x

ln p M(x) =
∑

n≤x
µ(n)

π(x) is usually called the “prime-counting function”. ϑ(x) and ψ(x) are the first and the
second Chebyshev function. µ(n) is the Möbius µ function. M(x) is a non-standard notation
I adopted; the function that it denotes is related to Mertens’ first theorem and a key part in
Newman’s proof of the PNT.

I Theorem 39. The following are all equivalent formulations of the PNT, i. e. given one of
them, it is fairly easy to show the other ones by elementary means:

π(x) ∼ x/ ln x π(x) ln π(x) ∼ x pn ∼ n lnn ϑ(x) ∼ x ψ(x) ∼ x M(x) ∈ o(x)

Most of these equivalence proofs are quite short, both on paper and in Isabelle.
Newman’s approach to prove the PNT is then to prove M(x) = ln x+ c+ o(1) , which

implies ϑ(x) ∼ x fairly directly as we shall see. The key ingredient is a Tauberian theorem
first proven by Ingham, which we will discuss now.

6.1 Ingham’s Tauberian Theorem
A Tauberian theorem is a theorem that allows one to show – under certain conditions – that
a series converges in some region if the function that it defines exists there. In our case,
Ingham’s theorem allows us to show that certain Dirichlet series converge not just to the
right of the abscissa of convergence, but on it as well. The precise statement is as follows:

I Theorem 40 (Ingham’s Tauberian theorem). Let F (s) =
∑
ann

−s be a Dirichlet series
with an ∈ O(nσ−1) for some σ ∈ R. Then F converges to an analytic function f(s) for
Re(s) > σ. If f(s) is analytic on the larger set Re(s) ≥ σ, then F also converges to f(s) for
all Re(s) ≥ σ.

One can w. l. o. g. assume σ = 1. Newman then proves the theorem by applying the Residue
Theorem twice, once to a circle around 0 with a vertical cut-off line to the left of the origin,
close to the abscissa of convergence (see Figure 2) and once to a full circle around the origin.
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My formal proof follows Newman’s argument very closely, but like Harrison, I use a
modified version of Newman’s contour: a semicircle plus a rectangle (see Figure 2). The
value of the integral is the same in both cases since the two contours are homotopic, but the
bounding of the contributions of the various parts of the contour is different.

The reason why I picked Harrison’s contour over Newman’s is that I could not understand
how Newman’s bounding of the different contributions fits to his contour, and it seems likely
that this is also the reason why Harrison altered the contour in the first place. Additionally,
the shape of the inside of Harrison’s contour is somewhat easier to describe.

The formal proof is quite short (roughly 500 lines) and was – apart from the issue I just
mentioned – very straightforward to write. However, it again suffers from the aforementioned
typical problems of complex analysis in Isabelle, namely having to prove many side conditions
such as the geometry of the integration contours. The winding numbers, on the other hand,
are unproblematic this time since the contours are very simple.

6.2 An Overview of the Remainder of Newman’s Proof
Recall that our main objective was to prove

M(x) ∼ ln x+ c+ o(1) . (5)

The starting point is Mertens’ First Theorem, which I prove following e. g. Hildebrand [21]:

I Theorem 41 (Mertens’ First Theorem). M(x) = ln x+O(1)

To then show (5) from this, Newman defines the Dirichlet series f(s) :=
∑∞
n=1 M(n)n−s .

Since M(n)− lnn is bounded, f(s) converges absolutely for Re(s) > 1. Rearrangement yields

f(s) =
∑
p

ln p
p
ζ(s, p) for Re(s) > 1

and further rearrangements show

f(s) = A(s)− ζ ′(s)/ζ(s)
s− 1 for Re(s) > 1

for some function A(s) that is analytic for Re(s) > 1
2 . Moreover, ζ ′(s)/ζ(s) is analytic for

Re(s) ≥ 1, s 6= 1 due to the non-vanishing of ζ(s) in that domain (cf. Theorem 30).
Putting everything together, we obtain that f(s) can be continued analytically to Re(s) ≥ 1

except for a double pole at s = 1. As Newman states, this double pole can be turned into a
simple pole by adding ζ ′(s), and that simple pole can then be eliminated by subtracting a
suitable multiple of ζ(s), yielding a function g(s) := f(s) + ζ ′(s)− c ζ(s) that is analytic for
Re(s) ≥ 1 and has the Dirichlet series

g(s) =
∞∑
n=1

(M(n)− lnn− c)︸ ︷︷ ︸
=: an

n−s .

Applying Theorem 40, we deduce that this series converges for Re(s) ≥ 1. For s = 1, this
means that

∑∞
n=1

an

n is summable. Next, Newman proves the following lemma:

I Lemma 42. Let an : N→ R be non-decreasing and
∑∞
n=0

an

n be summable. Then an −→ 0.



M. Eberl 16:15

Applied to our an from before, we get M(n)− lnn −→ c. From this, the slightly stronger
version on real numbers (5) follows easily by noting that ln x− lnbxc −→ 0.

There were no major difficulties in formalising any of this. However, some parts deserve
a few comments:

The rearrangements leading to the analytic continuation of f(s) involve changing the
order of summation in nested infinite sums. To do this, I used Isabelle’s library for
absolutely summable families. This makes the arguments nice to formalise, but the library
has the problem of having a function for the value of an infinite sum and for its existence.
Any rearrangement of sums therefore has to be done twice, once for the value of the sum
and once for its summability. Similar problems occur in Isabelle with nested integrals
and it is not clear if and how this can be avoided in a HOL-based theorem prover.
Showing that A(s) is indeed analytic for Re(s) > 1

2 was a surprisingly easy application of
the Weierstraß M test with the bounding series Mn := lnn(Cn−x−1 + n−x(nx − 1)−1) .
The proof obligation that Mn be summable can be solved by showing Mn ∈ O(n−1−ε)
with a suitable ε > 0, and this can be shown by Isabelle’s automation for real limits [17].
The pole cancellation argument showing that g(s) is analytic is about 86 lines long,
which is not too long, but still longer than one might expect given that it is obvious
considering the Laurent series expansions of the functions involved. This is due to the
fact that there is currently no theory of Laurent series expansions in Isabelle yet. In the
future, this entire argument could potentially be automated by computing Laurent series
expansions for meromorphic functions similarly to how Isabelle’s automation already
computes Multiseries expansions [17] for real-valued functions.
The proof of Lemma 42 is very technical and tedious, but it seems to me that this is the
case in Newman’s paper presentation as well.

The last remaining step, showing that M(x)− ln x −→ c implies ϑ(x) ∼ x, is left as an
exercise to the reader by Newman. Harrison was not quite sure what Newman meant [20] and
proceeded to prove a number of very technical and ad-hoc lemmas that I find very difficult
to follow. Therefore, instead of attempting to port Harrison’s proof, I followed Newman’s
hint in the book and used Abel’s summation formula to write ϑ(x) in terms of M(x):

ϑ(x) = xM(x)−
∫ x

2 M(t) dt (6)

Substituting (5) into (6) yields, in a straightforward way,

ϑ(x) = x ln x+ cx+ o(x)−
∫ x

2 ln t+ c+ o(1) dt
= x ln x+ cx+ o(x)− (x ln x− x+ cx+ o(x)) = x+ o(x)

and thus the desired ϑ(x) ∼ x. I find it likely that this is what Newman had in mind. J

7 Various Other Interesting Results

In this last section, I will give a few examples of other interesting number-theoretic results
that I have formalised. The proofs were all fairly straightforward and there is not much to
be said about them, but they are worth mentioning nonetheless.

I Theorem 43 (Dirichlet’s Theorem). Let m > 0 and gcd(k,m) = 1. Then there are infinitely
many primes congruent k modulo m.
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I Theorem 44 (Elementary bounds for π(x) and pn). For any x ≥ 2 and n > 0, we have:

1
6
x

ln x < π(x) < 3(e−1 + ln 2) x

ln x and 139
443n lnn ≤ pn−1 < 12(n lnn+ n ln(12/e))

In particular, this implies π(x) ∈ Θ(x/ ln x) and pn ∈ Θ(n lnn). All of this can be derived
without the PNT (hence “elementary” results).

I Theorem 45 (Mertens’ three theorems).
−1− 9π−2 <M(n)− lnn ≤ ln 4 for all n > 0 and thus |M(n)− lnn| < 2.
|(
∑
p≤x 1/p)− ln ln x−M | ≤ 4/ ln x for all x ≥ 2 and thus∑

p≤x 1/p = ln ln x+M +O(1/ ln x) where M is the Meissel–Mertens constant.∏
p≤x(1− 1/p) = C/ ln x+O(ln−2 x) for some constant C > 0.

Typically, number-theoretic functions that talk about a single integer such as ϕ(n) and
σ0(n) oscillate heavily and therefore have no nice asymptotics like π(x) ∼ x ln x. However,
their averages (i. e.

∑
n≤x ϕ(n)) are often more well-behaved:

I Theorem 46 (Averages of arithmetical functions).
Let S(x) denote the number of square-free integers ≤x. Then S(x) = 6

π2x+O(
√
x) , i. e.

6/π2 ≈ 60.8 % of integers are square-free.
Euler’s totient function ϕ fulfils

∑
n≤x ϕ(n) = 3

π2x
2 + O(x ln x) , i. e. on average, an

integer n has 3
π2n numbers ≤ n that are coprime to it (≈ 30.4 %).

The divisor function σ0 fulfils
∑
n≤x σ0(n) = x ln x+(2γ−1)x+O(

√
x) where γ ≈ 0.5772

is the Euler–Mascheroni constant, i. e. on average, an integer n has lnn+ 2γ− 1 divisors.∑
n≤x σα(n) = ζ(α+1)

α+1 xα+1 +O(R(x)) for α > 0
where R(x) = x ln x if α = 1 and R(x) = xmax(1,α) otherwise.∑

n≤x σ−α(n) = ζ(α+ 1)x+O(R(x)) for α > 0
where R(x) = ln x if α = 1 and R(x) = xmax(0,1−α) otherwise.

Lastly, the following are interesting consequences that follow relatively easily from the PNT:

I Corollary 47.
For each c > 1, there exists an x0 s. t. all intervals (x, cx] with x ≥ x0 contain a prime.
The fractions of the form p/q for prime p, q are dense in R>0.
lcm(1, . . . , n) = exp(x+ o(x))
lim supn→∞ ω(n) ln lnn/ lnn = 1
lim supn→∞ ln σ0(n) ln lnn/ lnn = ln 2
lim infn→∞ ϕ(n) ln lnn/n = C for some C ∈ R>0

The last three statements perhaps deserve some more explanation: They give asymptotic
bounds for ω(n), σ0(n), and ϕ(n). For instance, ω(n) < c lnn/ ln lnn for all sufficiently large
n if c > 1, but ω(n) > c lnn/ ln lnn for infinitely many n if c < 1. Thus, lnn/ ln lnn is the
best possible upper bound of that shape for ω(n) (and analogously for the other two).

As for the other direction, recall that ω(p) = 1, σ0(p) = 2, and ϕ(p) = p−1. Therefore, the
above results show that ω(n) oscillates between 1 and lnn/ ln lnn, σ0(n) oscillates between
2 and 2lnn/ ln lnn, and ϕ(n) oscillates between Cn/ ln lnn and n− 1.

8 Size of the Formalisation

The formalised material is spread over five AFP entries [13, 12, 15, 18, 16]. They have a
combined size of roughly 25,000 lines of Isabelle code, with the two largest single files by far
being those on the analytic properties of Dirichlet series and the properties of the ζ functions.
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With the exception of a few minor results, the work presented here was done in 1.5 years
by one person – however, the work was not done continuously, but sporadically whenever I
found time for it. The total amount of time that went into it is therefore difficult to measure.
As a point of reference, the formalisation of Newman’s proof of the Prime Number Theorem
(with all the components such as Dirichlet series and the ζ function already in place) comprises
3300 lines and took 6 days of full-time work. However, I used two small lemmas that had
previously been ported from Harrison’s HOL Light formalisation by Paulson. Considering
this, a time frame of 7 days for proving the Prime Number Theorem seems reasonable. Based
on this, a total effort of 4–6 person-months for the entire work seems realistic.

The formalisation proceeded smoothly and without major difficulties, although some
aspects of it stand out as considerably more painful than one might hope:
1. applying the Residue Theorem
2. geometric properties of integration contours
3. manipulating nested infinite sums
4. establishing homotopy of concrete composite paths
5. reasoning about cancellation of poles
For the first three items, it is not clear to me if and how this can be improved – or if, perhaps,
there is simply an inherent difficulty in doing such things formally.

Item 4 could probably be addressed by providing more library results about homotopy.
Item 5 could be easily managed by building a tactic to automatically compute Laurent

series expansions for meromorphic functions, similar to the existing one for Multiseries
expansions of real functions [17]. This would be an interesting project for the future.
Extending the limit automation to use not just full asympotic expansions but also partial
asymptotic information (such as ϑ(x) ∼ x) would also occasionally eliminate some tedious
manual work.

A related issue is that reasoning with asymptotic expansions like f(x) = x2 +ln x+O(1/x)
can be tedious in Isabelle/HOL. They can be written as f =o (λx. xˆ2+ln x) +o O(λx. 1/x) ,
but there is currently little support for working with them. Affeldt et al. [1] demonstrated
an approach for this in Coq that could possibly be adapted to Isabelle/HOL.

9 Conclusion

I formalised a large portion of a mathematical textbook on an advanced topic, namely
Analytic Number Theory. While some results from this field have been formalised before
(such as Dirichlet’s Theorem and the Prime Number Theorem), they typically tried to obtain
a short route to the result without building an actual library of Analytic Number Theory.

In my opinion, this work demonstrates the following:
Formalising an entire mathematical textbook in a modern theorem prover can be feasible
with a moderate amount of effort.
Good and extensive libraries (e. g. on complex analysis and Dirichlet series) can yield short,
clear, and high-level proofs of “high-profile” results like the Prime Number Theorem.
Specialised tools (e. g. for proving limits or computing winding numbers) are invaluable,
as they can take care of tedious and uninteresting parts of the proofs and “close the gap”
between what is obvious to a human mathematician and what is easy to do in the system.

There is already work in progress on formalising the remaining parts of Apostol’s book.
After that, a natural continuation would be to focus on the second volume of Apostol’s
book, which is called Modular Functions and Dirichlet Series in Number Theory [3]. This
would be another big step in formalising the essential tools of modern number theory in a
theorem prover.

ITP 2019



16:18 Nine Chapters of Analytic Number Theory in Isabelle/HOL

References
1 Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization Techniques for Asymptotic

Reasoning in Classical Analysis. J. Formalized Reasoning, 11(1):43–76, 2018. doi:10.6092/
issn.1972-5787/8124.

2 Tom M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics.
Springer-Verlag, 1976. doi:10.1007/978-1-4757-5579-4.

3 Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory, volume 41
of Graduate Texts in Mathematics. Springer-Verlag, New York, 1990. doi:10.1007/
978-1-4612-0999-7.

4 Andrea Asperti and Wilmer Ricciotti. A proof of Bertrand’s postulate. Journal of Formalized
Reasoning, 5(1):37–57, 2012. doi:10.6092/issn.1972-5787/3406.

5 Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A Formally Verified Proof
of the Prime Number Theorem. ACM Trans. Comput. Logic, 9(1), December 2007. doi:
10.1145/1297658.1297660.

6 Raymond Ayoub. Euler and the zeta function. The American Mathematical Monthly,
81(10):1067–1086, 1974. doi:10.2307/2319041.

7 Joseph Bak and Donald J. Newman. Complex Analysis. Undergraduate Texts in Mathematics.
Springer New York, 1999.

8 Clemens Ballarin. Locales: A Module System for Mathematical Theories. Journal of Automated
Reasoning, 52(2):123–153, 2014. doi:10.1007/s10817-013-9284-7.

9 Julian Biendarra and Manuel Eberl. Bertrand’s postulate. Archive of Formal Proofs, Janu-
ary 2017. , Formal proof development. URL: http://isa-afp.org/entries/Bertrands_
Postulate.html.

10 Mario Carneiro. Arithmetic in Metamath, Case Study: Bertrand’s Postulate. CoRR,
abs/1503.02349, 2015. arXiv:1503.02349.

11 Mario Carneiro. Formalization of the prime number theorem and Dirichlet’s theorem. In
Proceedings of the 9th Conference on Intelligent Computer Mathematics (CICM 2016), pages
10–13, 2016. URL: http://ceur-ws.org/Vol-1785/F3.pdf.

12 Manuel Eberl. Dirichlet L-functions and Dirichlet’s theorem. Archive of Formal Proofs, Decem-
ber 2017. , Formal proof development. URL: http://isa-afp.org/entries/Dirichlet_L.
html.

13 Manuel Eberl. Dirichlet series. Archive of Formal Proofs, October 2017. , Formal proof
development. URL: http://isa-afp.org/entries/Dirichlet_Series.html.

14 Manuel Eberl. The Euler–MacLaurin Formula. Archive of Formal Proofs, March 2017. ,
Formal proof development. URL: http://isa-afp.org/entries/Euler_MacLaurin.html.

15 Manuel Eberl. The Hurwitz and Riemann ζ Functions. Archive of Formal Proofs, October 2017.
, Formal proof development. URL: http://isa-afp.org/entries/Zeta_Function.html.

16 Manuel Eberl. Elementary Facts About the Distribution of Primes. Archive of Formal Proofs,
February 2019. , Formal proof development. URL: http://isa-afp.org/entries/Prime_
Distribution_Elementary.html.

17 Manuel Eberl. Verified Real Asymptotics in Isabelle/HOL. Draft available at https://www21.
in.tum.de/~eberlm/real_asymp.pdf, 2019.

18 Manuel Eberl and Lawrence C. Paulson. The Prime Number Theorem. Archive of Formal
Proofs, September 2018. , Formal proof development. URL: http://isa-afp.org/entries/
Prime_Number_Theorem.html.

19 John Harrison. A formalized proof of Dirichlet’s theorem on primes in arithmetic progression.
Journal of Formalized Reasoning, 2(1):63–83, 2009. doi:10.6092/issn.1972-5787/1558.

20 John Harrison. Formalizing an analytic proof of the Prime Number Theorem (Dedicated
to Mike Gordon on the occasion of his 60th birthday). Journal of Automated Reasoning,
43(3):243–261, October 2009. doi:10.1007/s10817-009-9145-6.

21 A. J. Hildebrand. Introduction to analytic number theory (lecture notes). https://faculty.
math.illinois.edu/~hildebr/ant/.

https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1007/978-1-4757-5579-4
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.6092/issn.1972-5787/3406
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.2307/2319041
https://doi.org/10.1007/s10817-013-9284-7
http://isa-afp.org/entries/Bertrands_Postulate.html
http://isa-afp.org/entries/Bertrands_Postulate.html
http://arxiv.org/abs/1503.02349
http://ceur-ws.org/Vol-1785/F3.pdf
http://isa-afp.org/entries/Dirichlet_L.html
http://isa-afp.org/entries/Dirichlet_L.html
http://isa-afp.org/entries/Dirichlet_Series.html
http://isa-afp.org/entries/Euler_MacLaurin.html
http://isa-afp.org/entries/Zeta_Function.html
http://isa-afp.org/entries/Prime_Distribution_Elementary.html
http://isa-afp.org/entries/Prime_Distribution_Elementary.html
https://www21.in.tum.de/~eberlm/real_asymp.pdf
https://www21.in.tum.de/~eberlm/real_asymp.pdf
http://isa-afp.org/entries/Prime_Number_Theorem.html
http://isa-afp.org/entries/Prime_Number_Theorem.html
https://doi.org/10.6092/issn.1972-5787/1558
https://doi.org/10.1007/s10817-009-9145-6
https://faculty.math.illinois.edu/~hildebr/ant/
https://faculty.math.illinois.edu/~hildebr/ant/


M. Eberl 16:19

22 Johannes Hölzl, Fabian Immler, and Brian Huffman. Type Classes and Filters for Mathematical
Analysis in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,
editors, Interactive Theorem Proving, volume 7998 of Lecture Notes in Computer Science,
pages 279–294. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-39634-2_21.

23 Wenda Li and Lawrence C. Paulson. Evaluating Winding Numbers and Counting Complex
Roots through Cauchy Indices in Isabelle/HOL. CoRR, abs/1804.03922, 2018. arXiv:1804.
03922.

24 M. Ram Murty and Marilyn Reece. A simple derivation of ζ(1 − K) = −BK/K. Funct.
Approx. Comment. Math., 28:141–154, 2000. doi:10.7169/facm/1538186691.

25 Donald J. Newman. Analytic number theory. Number 177 in Graduate Texts in Mathematics.
Springer, 1998. doi:10.1007/b98872.

26 Marco Riccardi. Pocklington’s theorem and Bertrand’s postulate. Formalized Mathematics,
14:47–52, January 2006. doi:10.2478/v10037-006-0007-y.

27 Laurent Théry. Proving Pearl: Knuth’s Algorithm for Prime Numbers. In David Basin and
Burkhart Wolff, editors, Theorem Proving in Higher Order Logics, pages 304–318, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/10930755_20.

ITP 2019

https://doi.org/10.1007/978-3-642-39634-2_21
http://arxiv.org/abs/1804.03922
http://arxiv.org/abs/1804.03922
https://doi.org/10.7169/facm/1538186691
https://doi.org/10.1007/b98872
https://doi.org/10.2478/v10037-006-0007-y
https://doi.org/10.1007/10930755_20

	Introduction
	Related Work
	Dirichlet Series
	Characters of a Finite Abelian Group
	The L Functions
	Analytic Continuation of Hurwitz's zeta Function
	The Non-Vanishing of zeta(s) and L(s, chi) for Re{s} = 1
	Hurwitz's Formula
	Branch Cuts
	Homotopy
	Winding Numbers


	The Prime Number Theorem
	Ingham's Tauberian Theorem
	An Overview of the Remainder of Newman's Proof

	Various Other Interesting Results
	Size of the Formalisation
	Conclusion

