
Binary-Compatible Verification of Filesystems
with ACL2
Mihir Parang Mehta
University of Texas at Austin, USA
http://www.cs.utexas.edu/users/mihir
mihir@cs.utexas.edu

William R. Cook
University of Texas at Austin, USA
http://www.cs.utexas.edu/users/wcook
wcook@cs.utexas.edu

Abstract
Filesystems are an essential component of most computer systems. Work on the verification
of filesystem functionality has been focused on constructing new filesystems in a manner which
simplifies the process of verifying them against specifications. This leaves open the question of
whether filesystems already in use are correct at the binary level.

This paper introduces LoFAT, a model of the FAT32 filesystem which efficiently implements a
subset of the POSIX filesystem operations, and HiFAT, a more abstract model of FAT32 which is
simpler to reason about. LoFAT is proved to be correct in terms of refinement of HiFAT, and made
executable by enabling the state of the model to be written to and read from FAT32 disk images.
EqFAT, an equivalence relation for disk images, considers whether two disk images contain the
same directory tree modulo reordering of files and implementation-level details regarding cluster
allocation. A suite of co-simulation tests uses EqFAT to compare the operation of existing FAT32
implementations to LoFAT and check the correctness of existing implementations of FAT32 such
as the mtools suite of programs and the Linux FAT32 implementation. All models and proofs are
formalized and mechanically verified in ACL2.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases interactive theorem proving, filesystems

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.25

Related Version A preprint version was published at https://easychair.org/publications/
preprint/dMh7.

Supplement Material The proof development described in this paper has been incorporated into the
ACL2 Community books; these are part of the ACL2 distribution on GitHub (http://www.github.
com/acl2/acl2). The source code for the models and proofs, with instructions for certifying the mod-
els, is available (https://github.com/acl2/acl2/tree/master/books/projects/filesystems).

Funding Mihir Parang Mehta: This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1525472.

Acknowledgements Thanks to Warren A. Hunt Jr. and Matt Kaufmann for their guidance.

1 Introduction

Filesystems offer a critical part of the functionality of modern operating systems, going
beyond the basic functionality of persistent storage to offer crash consistency, concurrent
data access, and distributed operation. Within the formal methods community, filesystem
verification is becoming a mature discipline with the development of high-performance
filesystems accompanied by proofs of increasingly expansive notions of correctness. However,

© Mihir Parang Mehta and William R. Cook;
licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.utexas.edu/users/mihir
mailto:mihir@cs.utexas.edu
http://www.cs.utexas.edu/users/wcook
mailto:wcook@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.ITP.2019.25
https://easychair.org/publications/preprint/dMh7
https://easychair.org/publications/preprint/dMh7
http://www.github.com/acl2/acl2
http://www.github.com/acl2/acl2
https://github.com/acl2/acl2/tree/master/books/projects/filesystems
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 ACL2 Binary-Compatible Filesystem Verification

it is often necessary to verify the operation of an existing filesystem which is known to be
suitable in a particular context, in terms of properties such as CPU usage, memory usage, or
fragmentation behavior. This remains a challenge.

This paper shows the construction of an executable model of the FAT32 filesystem, using
the interactive theorem prover ACL2 [23], which is useful for reasoning about programs that
interact with the filesystem. The aim for this effort is binary compatibility, i.e. byte-level
correspondence between the model and existing, mature implementations of FAT32. This is
achieved through a careful examination of the specification of FAT32 and the behavior of
its implementations. Binary compatibility enables reasoning at a low level of abstraction
about the precise sequences of bytes accepted and returned by POSIX system calls, as well as
their return values and the errno [24] values set by them. By building this model, LoFAT,
incrementally in the refinement style, we are able to address these low-level details while
adhering to a more abstract model, HiFAT, which is easier to reason about. The refinement
relation between LoFAT and HiFAT is proved.

LoFAT is executable; it includes functionality to read the filesystem state from and write
the filesystem state to FAT32 disk images. The disk image is a convenient abstraction to
represent the state of the filesystem, and by interacting directly with disk images the verified
implementation needs to trust only a small number of ACL2 functions for writing and
reading. Optimization of these procedures for faster I/O enables the efficient execution of
the model and co-simulation with existing implementations of FAT32 over various types of
file operations, which helps find bugs.

We begin by providing some necessary details about the reasoning and execution properties
of the ACL2 theorem proving system (Section 2). Touching on the FAT32 filesystem’s
on-disk format, we proceed to introduce LoFAT and HiFAT1 (Section 3), detailing the
refinement relation between these models and the proof thereof (Section 4). We examine
some performance considerations involved in making executions of LoFAT efficient enough
for co-simulation tests, and describe the co-simulation tests developed (Section 5). We
briefly review the related work (Section 6) and outline some plans for concurrency and crash
consistency-related future extensions of this work (Section 7).

2 Background on ACL2

The ACL2 theorem proving system consists of a language, which is a pure functional subset
of Common Lisp, and a prover which discharges proof obligations expressed in this language.2
ACL2, employing an untyped first-order logic, incorporates many automated strategies for
discharging first-order goals while also allowing user control of the proof process at different
levels of abstraction. As in mathematics, the proof of a conjecture in ACL2 usually relies on
the proof of simpler lemmas (rules). Most often, these lemmas are rewrite rules for rewriting
a certain type of term under certain hypotheses; however, other types of rules exist, such as
linear rules for arithmetic reasoning.

2.1 Guard verification
A function can optionally have a guard, an arbitrary propositional formula in terms of its
arguments which is checked to be true at runtime. ACL2 generates a proof obligation stating
that the guards of all functions called within the function body are satisfied when the guard

1 These names respectively refer to Low Level of Abstraction and High Level of Abstraction.
2 In the literature, the term ACL2 is sometimes used to refer to the language, and sometimes used to

refer to the prover.

M.P. Mehta and W.R. Cook 25:3

itself is satisfied. The proof of this obligation is optional; when a function is not guard-verified,
guards for function calls within the body are instead checked at runtime. Guard-verified
functions, however, avoid these runtime checks, and in general execute faster because guards
often include constraints on the type of the function’s arguments which allow space to be
efficiently allocated for fixed-width integers, strings, and the like. Guard verification helps
correct programming errors early and often leads to the formulation of lemmas which can be
reused in later proofs.

The guard mechanism also supports mbe (must be equal) [4], an ACL2 construct which
allows the user to locally decouple logical meaning and operational behavior. In a function
body, a sub-expression of the form (mbe :logic term1 :exec term2) will be treated as
meaning term1 during reasoning but will behave as term2 at runtime; this enables optimiz-
ation by a choice of term2 which is efficient during execution. This is sound because mbe
extends the function’s guard obligation to include the statement that term1 and term2 are
equal in their local context when the function’s guard is satisfied.

2.2 Single-threaded objects
In applicative settings, updates to data structures result in the creation of a new copy of
the data structure, which can prove expensive in terms of time and memory. In ACL2,
this kind of performance penalty is avoided by the use of immutable data structures called
single-threaded objects, or stobjs [9]. Stobjs are aggregate structures with scalar and array
fields, equipped with the usual applicative semantics, but restricted syntactically to ensure
that only one copy of the stobj can be referenced at a given time. With just one immutable
copy of the stobj, accesses and updates to scalar and array fields can be implemented in
constant time.

As with all aggregate data structures, proving invariants of algorithms involving stobjs
necessitates lemmas about the invariance of stobj fields while updating other fields (akin to
frame axioms [40], although these lemmas are not axioms of the theory). ACL2 macros are
used to reduce the effort required to generate these lemmas.

2.3 Equivalence and rewriting
In ACL2, binary predicates can be proved to be equivalence relations. Such an equivalence
is treated like first-order equality, in that rules can be formulated to rewrite terms in the
context of the given equivalence.

We use a few standard techniques for defining and establishing equivalences in ACL2’s
untyped logic.

When a subset relation can be defined on objects which are to be assigned to equivalence
classes, equivalent objects can be defined to be subsets of each other. Then, the proofs of
reflexivity, symmetry and transitivity arise from the proofs of reflexivity, anti-symmetry
and transitivity for the subset relation.
When a transformation exists between two types, objects of the first type can be defined
to be equivalent when they transform to the same object (modulo a previously defined
equivalence) of the second type.
Sometimes an equivalence relation needs to be defined on some notion of well-formed
objects (such as objects which can be transformed to objects of a different type). However,
guards notwithstanding, all functions in ACL2 must be total including equivalence
predicates. In such a case, the predicate can be made a total function by assigning all

ITP 2019

25:4 ACL2 Binary-Compatible Filesystem Verification

ill-formed objects to the same equivalence class and assigning no well-formed objects to
this class. This renders the claim of reflexivity, symmetry and transitivity trivial in the
ill-formed case.

2.4 Logical story of I/O
Theorem proving systems generally have interfaces with the operating system which are
unverified, because operating-system activity is unpredictable and may not return a con-
sistent result on two calls to the same function with the same arguments. This is also
the case with ACL2, which provides I/O functionality at various levels of abstraction for
programmer convenience. However, a logical story of I/O [13] is adhered to, consisting of
formal specifications for these I/O functions in terms of their input/output behavior and
errors passed on from the operating system. These formal specifications exist in the ACL2
logic and support proofs about sequences of I/O operations and optimizations thereof.

3 FAT32 – specification and modeling

FAT32 was previously the default filesystem for the Windows operating system, and continues
to see widespread use in embedded systems and in removable media.

Having detailed the data organization of a FAT32 disk image in our earlier work [34], we
limit ourselves here to a brief summary of the on-disk data structures, i.e. the reserved area,
the file allocation table, and the data region. Unless otherwise specified, we refer to both
regular files (which contain sequences of bytes) and directory files (which contain sequences
of directory entries pointing to other files with names, access times and other metadata for
each) as files.

The contents of all files are split into fixed-size clusters (or extents); these clusters are
stored in the data region.
Linked lists, called clusterchains, yield the sequences of clusters belonging to a given
file; these clusterchains are stored in the file allocation table. Multiple copies of the file
allocation table are allowed in order to protect against data loss in the event of corruption;
however only the first one is considered authoritative, and a FAT32 implementation may
update the redundant copies infrequently (or not at all).
The reserved area is a collection of scalar and array fields which specify such volume-wide
metadata for the filesystem as the location of the root directory, the size of a cluster, and
the number of clusters.

Microsoft provides an authoritative FAT32 specification [35], which includes a number of
constraints on the various scalar and array fields, specifying such things as the maximum
and minimum number of clusters, the maximum sizes of regular and directory files, and the
allowable sizes of clusters. It is necessary to incorporate these constraints into our formal
development in order to reason about upper bounds on the sizes of the data structures we
allocate and avoid impossible corner cases while proving other useful properties.

Thus, to define our model LoFAT, we first define a single-threaded object type recognized
by the predicate fat32-in-memoryp. Augmenting this predicate with clauses for the various
FAT32 constraints, we obtain the predicate lofat-fs-p (Listing 1), which recognizes valid
instances of LoFAT. These constraints are a subset of the constraints actually stipulated for
FAT32, chosen to be as small as possible while meeting our proof needs. This helps us avoid
unduly restricting the possible co-simulations we can undertake with FAT32 implementations
which may not strictly adhere to the specification.

M.P. Mehta and W.R. Cook 25:5

Listing 1 lofat-fs-p.

(defun lofat -fs -p (fat32 -in - memory)

(and

(fat32 -in - memoryp fat32 -in - memory)

;; There must be at least 512 bytes per sector .

(>= (bpb_bytspersec fat32 -in - memory) *ms -min -bytes -per - sector *)

;; Each cluster must contain a positive integer number of sectors .

(>= (bpb_secperclus fat32 -in - memory) 1)

;; There is a lower bound and an upper bound to the number of

;; clusters .

(>= (count -of - clusters fat32 -in - memory) *ms -min -count -of - clusters *)

(<= (+ *ms -first -data - cluster * (count -of - clusters fat32 -in - memory))

*ms -bad - cluster *)

;; The reserved area must span a positive integer number of

;; sectors .

(>= (bpb_rsvdseccnt fat32 -in - memory) 1)

;; Zero or more redundant copies of the FAT are allowed .

(>= (bpb_numfats fat32 -in - memory) 1)

;; The FAT must span a positive integer number of sectors .

(>= (bpb_fatsz32 fat32 -in - memory) 1)

;; The root cluster must exist in the addressable part of the file

;; allocation table .

(>= (fat32 -entry -mask (bpb_rootclus fat32 -in - memory))

*ms -first -data - cluster *)

(< (fat32 -entry -mask (bpb_rootclus fat32 -in - memory))

(+ *ms -first -data - cluster * (count -of - clusters fat32 -in - memory)))

(<= (+ (count -of - clusters fat32 -in - memory) *ms -first -data - cluster *)

(fat -entry - count fat32 -in - memory))

;; The cluster size must be a multiple of the size of a directory

;; entry .

(equal (mod (cluster -size fat32 -in - memory) *ms -dir -ent - length *) 0)

(equal (mod *ms -max -dir -size* (cluster -size fat32 -in - memory)) 0)

;; The data region must be an array of clusters of the appropriate

;; length .

(stobj -cluster -listp - helper fat32 -in - memory

(data -region - length fat32 -in - memory))

(equal (data -region - length fat32 -in - memory)

(count -of - clusters fat32 -in - memory))

;; The file allocation table must contain the appropriate number

;; of 4-byte -wide entries .

(equal (* 4 (fat - length fat32 -in - memory))

(* (bpb_fatsz32 fat32 -in - memory)

(bpb_bytspersec fat32 -in - memory)))))

ITP 2019

25:6 ACL2 Binary-Compatible Filesystem Verification

It has been argued [32] that the axiomatic verification methodology, wherein specific
properties of a system are enumerated and proved, is inadequate for systems of any significant
complexity, which can only be verified through refinement. Much of the related work [6,
41, 11] opts to prove the correctness of an implemented filesystem through refinement of a
specification, demonstrating a de facto consensus on this point. Thus, we choose to develop
the abstract model HiFAT, and prove that it is refined without stuttering [1] by LoFAT. HiFAT
instances are directory trees in which the leaf nodes are regular files and the non-leaf nodes
are directories. Each node in a directory tree contains the FAT32 directory entry for the
corresponding file, and the full contents of each regular file are stored as strings within the
tree. Further, these trees are subject to FAT32’s constraints – a regular file may be up to
232 − 1 bytes long; a directory may contain up to 216 − 1 directory entries; and a directory
may not contain duplicate directory entries.

As a result of this refinement relationship, we are able to reason about file operations in
terms of operations on directory trees, while implementing them efficiently in a data format
that is very close to the actual structure of a FAT32 disk image.

4 Properties proved

Much of the proof effort for this work concerns the correctness of the transformations between
the different FAT32 representations used; these transformations are obliged to terminate in a
bounded amount of time, be invertible in terms of appropriate equivalence relations, and
return the proper error codes. These proofs lead up to the refinement proof showing the
correctness of the POSIX system calls implemented for FAT32 (Section 5.2).

4.1 Termination
ACL2 requires each recursive function definition to be accompanied by a proof that it
will terminate in a bounded amount of time. Such a proof is accomplished by defining a
function-specific measure (in many cases, determined automatically by ACL2) and proving
that the measure strictly decreases for each recursive call within the function body. However,
termination proofs pose a challenge in many applications where pointer chasing is involved [19,
18]. In the context of FAT32, when transforming a LoFAT instance into an HiFAT instance,
pointer chasing is necessary both for regular files and directory files, neccesitating some care
towards the avoidance of non-terminating computation in both cases without incurring the
overhead of general-purpose cycle detection algorithms.

Each file’s directory entry contains the index of its first cluster, and its contents are
determined by following its clusterchain in the file allocation table and concatenating together
the corresponding clusters. This is subject to potential cycles in the clusterchain. These
can be mitigated because of the FAT32 stipulation of maximum lengths for regular files and
directory files; the measure for the recursion becomes the remaining length of the file, which
decreases with each cluster visited in the file allocation table.

For directory files the problem is more involved; since the transformation of a directory
on disk to a directory tree involves the recursive transformation of all sub-directories, it
is possible for a sub-directory cycle to arise. Consider an ill-formed disk image where the
top-level directory etc contains an entry for the sub-directory apt and apt in turn contains
a directory entry for etc; in this scenario, it is possible for the algorithm to spin over the
fictitious sub-directories /etc/apt/etc, /etc/apt/etc/apt, . . . A loop-stopping criterion is
required which accepts all disk images which are free of cycles and returns an error for all disk
images with sub-directory cycles. POSIX defines the constant PATH_MAX to bound the length

M.P. Mehta and W.R. Cook 25:7

(a) A directory tree with a deleted file.

/

vmlinuz tmp/

ticket1.txt ticket2.txt

initrd.img

(b) An equivalent rearranged directory tree with
the deleted file removed.

/

initrd.img tmp/

ticket2.txt

vmlinuz

Figure 1 Two equivalent directory trees.

of a pathname, but it is inconsistently used by implementations [30]; thus a naive solution
based on a maximum directory nesting depth is likely to reject valid disk images. A better
way is to examine the filesystem at the granularity of directory entries, noting that these
cannot exceed the total space available in the data region. Thus, an argument entry-count
is added to lofat-to-hifat-helper (a recursive helper function for the transformation)
and designated as the measure, with decrementation for each entry counted when making
recursive calls. entry-count is instantiated to the maximum number of entries possible in
the data region in lofat-to-hifat (the top-level wrapper function); this ensures that all
valid filesystem instances are accepted without an error and demonstrates the existence of a
cycle in each case where the total possible number of directory entries is exceeded.

4.2 Equivalence
Several useful filesystem correctness properties depend, for their proofs, on a notion of
equivalence between two filesystem instances. While defining such a notion of equivalence, it
is desirable to leave room for different implementation choices for cluster allocation, garbage
collection, and other such details. Some constraints which characterize such an equivalence
relation follow, and are illustrated in Figure 1.

Modulo rearrangement, each directory in two equivalent filesystem instances should
contain the same regular files and, recursively, the same sub-directories. This ensures
that looking up the same pathname in both yields the same results.
Directory entries for the current directory (.) and the parent directory (..) should be
disregarded, since they do not refer to new unique files. The same is true for deleted files’
directory entries.
Re-allocation of clusters for the contents of a given file without changing the contents
should be disregarded.
Changes to the redundant copies of the file allocation table should be disregarded.
Changes to volume-level metadata, such the size of a cluster or the total number of
clusters in the filesystem, should be taken into account only if they result in the deletion
of file data.

Also, to simplify the verification task, creation times, access times, write times, and long
names for files are set aside, even though this limits the reasoning which can be carried out
about programs which rely on these for their correct operation, such as the incremental
compilation system Make [43].

ITP 2019

25:8 ACL2 Binary-Compatible Filesystem Verification

Listing 2 hifat-equiv.
(defun hifat -equiv (m1 -file - alist1 m1 -file - alist2)

(b* ((m1 -file - alist1 (hifat -file -alist -fix m1 -file - alist1))
(m1 -file - alist2 (hifat -file -alist -fix m1 -file - alist2)))

(and (hifat - subsetp m1 -file - alist1 m1 -file - alist2)
(hifat - subsetp m1 -file - alist2 m1 -file - alist1))))

Listing 3 lofat-equiv.
(defund -nx lofat -equiv (fat32 -in - memory1 fat32 -in - memory2)

(b* (((mv fs1 error -code1) (lofat -to -hifat fat32 -in - memory1))
(good1 (and (lofat -fs -p fat32 -in - memory1)

(equal error -code1 0)))
((mv fs2 error -code2) (lofat -to -hifat fat32 -in - memory2))
(good2 (and (lofat -fs -p fat32 -in - memory2)

(equal error -code2 0)))
((unless (and good1 good2)) (and (not good1) (not good2))))

(hifat -equiv fs1 fs2)))

At HiFAT, the most abstract level, we meet the above requirements by first defining
a subset relation hifat-subsetp; and then defining the equivalence relation hifat-equiv
(Listing 2) in terms of subsets as discussed in Section 2.3.

At LoFAT, the next lower level of abstraction, we define the equivalence relation lofat-
equiv in terms of the transformation between LoFAT and HiFAT, once again grouping
ill-formed LoFAT instances (that is, instances which return a non-zero error code when
transformed to HiFAT) into the same equivalence class (Listing 3). Finally, we define an
equivalence relation for disk images. These are strings, each representing the entire contents
of the image. This equivalence relation, EqFAT, groups all ill-formed disk images which
cannot be transformed to a valid LoFAT instance into the same equivalence class (Listing 4).3

3 Both these functions are considered non-executable in ACL2, because they reference two instances of
the stobj fat32-in-memory at the same time. They are thus introduced with defund-nx [3] instead of
the usual defun and can only be used for reasoning. These functions also use b* [2], an ACL2 extension
of the Common Lisp let* with a more flexible syntax for let-bindings.

Listing 4 EqFAT.
(defund -nx eqfat (str1 str2)

(b* (((mv fat32 -in - memory1 error -code1)
(string -to -lofat (create -fat32 -in - memory) str1))

(good1 (and (stringp str1) (equal error -code1 0)))
((mv fat32 -in - memory2 error -code2)

(string -to -lofat (create -fat32 -in - memory) str2))
(good2 (and (stringp str2) (equal error -code2 0)))
((unless (and good1 good2)) (and (not good1) (not good2))))

(lofat -equiv fat32 -in - memory1 fat32 -in - memory2)))

M.P. Mehta and W.R. Cook 25:9

4.3 Invertibility and error codes
HiFAT instances are directory trees, defined recursively; thus, proofs about HiFAT generally
require induction. Many theorems about recursive functions can be automatically proved
in ACL2 through inference of induction schemes; however, an induction scheme can also be
explicitly designated in order to control the inductive formulation of a theorem. In such an
induction scheme, the induction hypothesis can be strengthened or weakened as needed.

Between HiFAT and LoFAT, transformations hifat-to-lofat and lofat-to-hifat are
defined, and must be proved to be inverses of each other under the appropriate equivalence
relations. This is a claim in two parts: transforming m1 to m2 and back should result in an
m′

1 related to m1 by hifat-equiv; and transforming m2 to m1 and back should result in an
m′

2 related to m1 by lofat-equiv.
The proof of the first part of this claim (as illustrated in Figure 2a) turns out to also

involve error codes; no claims can be made about the invertibility of a transformation if it
returns an error. Thus, the proof requires a strengthened induction hypothesis to show in
tandem that the error code returned by lofat-to-hifat while transforming m2 back to
m′

1 is 0 (signifying no error.) This induction is the most complex proof undertaken in this
work, since it requires an induction scheme to be defined on functions which interpret binary
file formats.

The second part of this claim is true by the definition of lofat-equiv and an instantiation
of the first claim (Figure 2b).

It is also necessary to prove the correctness of the transformations between instances
of LoFAT and FAT32 disk images (strings). These transformations, lofat-to-string and
string-to-lofat, are proved to be mutual inverses under the equivalence relations equal
(first-order equality) and EqFAT, respectively. As before, one direction of the claim is proved
and then instantiated to prove the other by the definition of EqFAT (Figure 2c).

Equality is known to refine all equivalence relations; thus, equal refines lofat-equiv,
and the correctness of the transformations between disk images and HiFAT instances through
the intermediate level LoFAT can finally be certified by composing these proofs (Figure 2d).

4.4 Correctness of the specification
Prior filesystem verification work [6] has shown the proof process to uncover subtle bugs
in the specification of a filesystem which would otherwise have remained hidden; this has
matched our experience modeling and verifying HiFAT and LoFAT. We note some examples
of bugs we found in our models in this manner.

In FAT32, the first two entries in the file allocation table are reserved for volume-level
metadata; thus, the size of the file allocation table must exceed the number of available
clusters by at least two. Additionally, there may be a number of unused entries at the
end of the file allocation table, since it must span an integer number of sectors. These
differences led us to place incorrect upper bounds on the root cluster of the filesystem, the
first cluster of an arbitrary file, and the length of the file allocation table. These errors
were discovered and rectified during the proofs of correctness of our transformations.
An off-by-one bug caused the directory bit of a directory entry to be wrongly set; this
was also identified and rectified in the process of proving the transformations correct.

In addition, some bugs in parts of the code which were not immediately verified were
found outside of the theorem proving process, by means of co-simulation. One example was
the case of a FAT32 volume in which the root had no directory entries, which is possible in

ITP 2019

25:10 ACL2 Binary-Compatible Filesystem Verification

m1 m′
1

m2

hifat-equiv

(a) hifat-to-lofat-inversion is derived as a corollary of an induction proof (Section 4.3).

m1 m′
1

m2 m′
2lofat-equiv

hifat-equiv

(b) hifat-to-lofat-inversion is instantiated in order to derive lofat-to-hifat-inversion.

m2 m′
2

s s′
eqfat

equal

(c) Similarly, lofat-to-string-inversion (not shown) is instantiated in order to derive
string-to-lofat-inversion. Here, m2 and m′

2 are LoFAT instances and s and s′ are disk image strings.

m1

m2 m′
2

s s′

lofat-equiv

eqfat

(d) string-to-hifat-inversion is a corollary of lofat-to-hifat-inversion.

Figure 2 Equivalences.

FAT32 because only directories other than the root are required to have . and .. entries.
FAT32 constrains each directory file to have at least one cluster, and this constraint had been
omitted from the specification. Over a number of co-simulation tests with the Linux FAT32
implementation, this bug was discovered and fixed.

5 Evaluation

5.1 Co-simulation
Co-simulation is a necessary component of formal verification efforts when binary compat-
ibility is the aim, in order to validate the correspondence of the verified model with the
software/hardware system in question [17]. A challenge, from the perspective of co-simulation
as well as from the perspective of reducing the risk of bugs in unverified code, is the choice of
an interface to the operating system. We develop our co-simulation tests as reads and writes

M.P. Mehta and W.R. Cook 25:11

on disk images; thus, the potential for bugs outside the verified part of the implementation is
confined to specification and implementation errors in ACL2’s built-in I/O operations (and
indeed, one such bug was found during this development [22]).

Among existing FAT32 implementations, we have chosen to co-simulate with the Linux
kernel implementation of FAT32 (as mediated by the GNU Coreutils) and the mtools [31]. The
mtools perform various operations such as copying and deletion of files on a given FAT32 disk
image or block device, which makes co-simulation relatively straightforward. Co-simulation
with the Coreutils involves more steps since they are agnostic towards the underlying
filesystem; each test proceeds by mounting a disk image, running the program in question,
and unmounting. This co-simulation setup checks the correctness of file operations, without
changing filesystem state, in the two following scenarios (which are not mutually exclusive).

1. File operations which retrieve data from the filesystem, such as pread [26], result in
output which must be compared to that of the canonical FAT32 implementation. The
program diff [15] effects this comparison.

2. File operations which modify the state of the filesystem, such as pwrite [27], result in a
modification to the disk image. The modified disk image must then be compared to a
disk image modified by the canonical FAT32 implementation; this is done by an ACL2
program which checks whether EqFAT holds for the two images.

5.2 POSIX interface and tests
Table 1 summarizes the subset of the POSIX system calls which have been implemented. The
Linux convention is for system calls to return an error code, which is zero if and only if
no error occurred, and set the global variable errno; together, these allow an application
program making a system call to include error-handling code based on whether an error
arose and why. In the ACL2 setting, where there are no global variables, FAT32 system calls
maintain the convention by including the “return value” and errno value in the values they
return. This matches the Linux implementation of FAT32; thus, for example, when rmdir is
called on a non-empty directory, the filesystem instance is returned unmodified along with
a non-zero “return value” and an errno value of EEXIST, as specified in the POSIX manual
page for rmdir [28]. File descriptors, for operations such as pread and pwrite, are provided
through a straightforward implementation of a file table and a file descriptor table, similar
to Synergy’s [8] implementation; however, the interaction of multiple processes with the
filesystem is not yet supported.

This subset suffices for writing and testing ACL2 programs which co-simulate a number
of programs from the Coreutils suite (Figure 3a) and from the mtools (Figure 3b). The
co-simulation test suite also includes a basic sanity check which compares the output of
the program mkfs.fat -v, which creates a FAT32 disk image and prints a textual summary
of volume-level metadata [20], with the output of an ACL2 program which reports the
same metadata.

For each system call except statfs [29], a version applicable to HiFAT is first developed,
and then the LoFAT version is implemented by first transforming the filesystem instance to
an HiFAT instance, and then performing the HiFAT version of the system call. If the system
call results in a change to the filesystem state, the HiFAT instance is then transformed back
to an LoFAT instance at the end. This approach is correct by construction, by the definition
of lofat-equiv.

ITP 2019

25:12 ACL2 Binary-Compatible Filesystem Verification

Table 1 POSIX syscalls implemented.

Syscall LoFAT implementation LoFAT implementation
through HiFAT transformation

close X X

lstat X X

mkdir X

mknod X

open X X

pread X X

pwrite X

rename X

rmdir X

statfs X

truncate X

unlink X

Program
cp
ls
mkdir
mv
rm
rmdir
stat
truncate
unlink
wc

(a) Coreutils programs co-simulated.

Program
mcopy
mdel
mdeltree
mmd
mmove
mrd
mren

(b) mtools programs co-simulated.

Figure 3 Syscalls and co-simulation tests.

Co-simulation tests almost always require more than one system call on a given disk
image. When this happens, contiguous sequences of operations on the HiFAT instance
are carried out while eliding back and forth transformations between HiFAT and LoFAT
until the moment of writing back to disk. This elision is sound, as shown by the theorem
lofat-to-hifat-inversion (Figure 2b), and places HiFAT in a role similar to that of a cache.

statfs [29] is an exception and must be implemented at the LoFAT level, since it reports
volume-level metadata, such as the total space and free space in the filesystem, which is
abstracted away in HiFAT. This also limits the extent to which statfs, and programs which
use it such as stat (more precisely, stat -f/stat –-file-system), can be incorporated
into co-simulation tests, because volume-level metadata can differ between filesystems which
are identical in terms of the files contained. For instance, the directory tree in Figure 1a
contains the same files and directories as the tree in Figure 1b but may still occupy more
space on disk, because the directory entry for the deleted file /tmp/ticket1.txt still exists
and may cause the contents of the directory /tmp to occupy an additional cluster.

Since HiFAT is a sparse format for representing the filesystem state, the overheads for
these transformations are small enough for co-simulation testing to be feasible; a further
improvement in efficiency comes from verifying the guards of all the system calls. However,

M.P. Mehta and W.R. Cook 25:13

considering there to be room for improvement in terms of removing these overheads, we
also construct provably equivalent implementations of open, pread and lstat for LoFAT
which skip the transformation from LoFAT to HiFAT. We are working on doing this for the
remaining system calls.

5.3 Performance
This implementation of FAT32 loads up ACL2 in order to execute the model, which necessarily
imposes a lower bound on the time taken for a co-simulation test with a program. However,
reasonably quick co-simulation is essential to achieving breadth as well as depth in the
co-simulation coverage; thus, optimizations become an important part of the modeling effort.
The following two design choices are significant.

1. LoFAT is implemented as a stobj, even though this complicates syntax and reasoning, in
order to avoid the performance penalties associated with creating and destroying large
immutable data structures each time a single element in the in-memory FAT32 represent-
ation is modified. Transformations to and from HiFAT would have been prohibitive in
co-simulation tests without a guard-verified stobj implementation of LoFAT.

2. String representations of data are chosen over byte-list or character-list representations
wherever possible. While lists are simpler to reason about, it makes a difference to be able
to use the efficient implementations of the built-in string operations concatenate (string
concatenation), subseq (substring extraction) and so on while extracting and reconstruct-
ing file contents and working with disk images. In addition, read-file-into-string [5],
a recent addition to ACL2, provides a fast mmap-based [25] alternative to ACL2’s character-
oriented I/O operations for the use case of reading information from a FAT32 disk image
and populating the fields of the LoFAT instance. Thus, by choosing to work with a
string representation for disk images, and by choosing to represent the contents of the
data region as an array of cluster-sized strings (Section 3) to take full advantage of the
atomicity of clusters in FAT32, performance penalties associated with conversions between
strings and lists are avoided.

Within the parameters of this design, two optimizations are made possible by ACL2’s
logical story for I/O operations. Both of these avoid the construction of intermediate string
representations while transforming between disk images and LoFAT instances, in order to
reduce the associated overheads, while retaining the abstraction of the disk image as a string.
Specifically, while writing back to disk, the explicit construction of a data region string would
involve an expensive concatenation of all the clusters; this is omitted by instead writing back
all the clusters in sequential order. Similarly, while reading a disk image, the population of
the data region after having read the disk image would involve multiple subseq operations
for extracting the clusters, with significant memory allocation overhead; this is avoided
by instead calling read-file-into-string multiple times with the appropriate offsets to
read the pertinent clusters from the disk image directly into the data region of the LoFAT
instance. For both these optimizations, mbe is used (Section 2.1) to show that the optimized
ACL2 code has the same effect. This is in keeping with the refinement style of proof used
throughout this work: when a conceptually simple sequence of I/O operations is replaced
with a more complex sequence, the simpler sequence is, in a sense, a specification which
is refined. This is also how the model development remains tractable as it evolves: while
replacing an earlier implementation, in which disk image strings were explicitly handled,
with the optimized one, the co-simulation test suite showed the absence of regressions but
the proof that both implementations work the same way enabled much greater confidence.

ITP 2019

25:14 ACL2 Binary-Compatible Filesystem Verification

Table 2 Timing disk image I/O.

Disk image size Read time Write time
128 MB 2.48 s 4.14 s
256 MB 3.58 s 7.91 s
512 MB 7.52 s 15.46 s
1024 MB 15.92 s 24.87 s

Table 3 Code summary.

Lines of code (models and proofs) 24,905
Lines of code (co-simulation) 619
Co-simulation tests 31

As a result of these design choices and optimizations, co-simulations involving relat-
ively large disk images become possible. For comparison, the in-memory sparse filesystem
tmpfs [42] usually mounts volumes of size 1 GB to 10 GB on a standard consumer laptop;
we have been able to run tests involving disk images of size 1 GB in the same environment.
Further, since HiFAT is by nature a sparse format, allocating memory only for file contents,
there is little overhead associated with most file operations which affect only the intermediate
HiFAT instance. Table 2 lists some timing results for such tests in terms of reading and
writing FAT32 disk images, and Table 3 summarizes statistics pertaining to the magnitude of
the modeling effort.4

6 Related work

Much of the existing filesystem verification work has taken on the task of synthesizing a new
filesystem, developed in a way that simplifies the proofs of filesystem properties of interest.

An early effort was Synergy [8], in which a filesystem was developed and verified according
to a specification in ACL2. However, binary compatibility was not a goal for this work, and
the design choice of maintaining a mapping from filenames to file contents did not take into
account the complexity of path resolution. The POSIX-like formulation chosen by Synergy
and by other efforts on the more abstract end of the filesystem verification spectrum [16]
was an inspiration for an earlier phase of the present work [34], in which FAT32 models were
developed in an incremental fashion from a series of abstract filesystem models, adding more
realistic filesystem features in each of the models.

FSCQ [11], developed with Coq [7], is a high-performance FUSE-based [39] filesystem with
formally verified crash consistency properties. However, FSCQ exports its executable code
to Haskell, and Haskell’s FUSE interface to the operating system is, by necessity, unverified.
A bug in this interface was discovered through the use of Bounded Black-Box testing, a
methodology for automatically testing the data persistence behavior of filesystems [36] and
later fixed. FSCQ has been followed by DFSCQ [10], which formally specifies the fsync and
fdatasync file operations, and SFSCQ [21] which proves two-safety confidentiality properties
in terms of data noninterference.

COGENT [6], developed with the help of Isabelle/HOL [38], takes a different tack by
providing a verified compiler for turning a domain-specific filesystem specification language
into verified C code implementing a filesystem.

4 These statistics were generated using David A. Wheeler’s “SLOCCount”.

M.P. Mehta and W.R. Cook 25:15

Z3 [14], a non-interactive theorem prover, has also been used for filesystem verification
through SMT solving. Hyperkernel [37] attempts a verification of the xv6 [12] microkernel
by simplifying it to make the problem tractable through SMT solving. This simplification
replaced all kernel data structures with fixed-length implementations, leading all kernel oper-
ations (including file operations) to become constant-time. A more filesystem-focused effort
is Yggdrasil [41], which verifies a number of filesystem calls by providing a refinement proof
showing that its concrete filesystem implementation adheres to a formal specification. This
is similar to what FSCQ does, but Yggdrasil’s Z3-based verifier achieves this automatically
by means of symbolic execution.

7 Future work

While a number of properties have been proved about the FAT32 models and extensive
co-simulation tests have been carried out, there remain research questions to be answered in
terms of concurrency and generalization to other filesystems.

Within the FAT32 context, a straightforward extension of this work would be to provide
an interface closer to that of POSIX, for instance through FUSE [39]. This would allow
programs written in C and other languages, which use file descriptors, to interface with
our implementation. This, in turn, would help mature the model by facilitating the use of
automated testing methodologies such as Bounded Black-Box testing [36] in order to discover
more bugs. This would also offer greater opportunities to seek performance gains, including
by skipping the transformations to the intermediate HiFAT representation and back in favor
of direct manipulation of LoFAT instances or disk images for file operations (as already
demonstrated with open) and by using a demand paging-like algorithm to turn LoFAT into a
sparse format only storing clusters allocated to files.

We have taken some steps to generalize this work, including the development of macros
(Section 2.2), and we are interested in applying this filesystem verification methodology to a
binary-compatible verification effort for more complex filesystems with features such as hard
linking and crash consistency. The ext4 filesystem [33], which provides crash consistency by
means of journaling, is an example.

We are also interested in extending this work to incorporate a model of concurrency, along
the same lines as prior work on formalization of microprocessor architectures in theorem
proving environments. This would allow the filesystem to serve as a precise specification
for correct filesystem behavior in a multiprogramming environment. Making use of such a
specification, it would become possible to prove the correctness of programs which concurrently
interact with the filesystem and make use of the functionality provided by the operating
system to avoid race conditions.

8 Conclusion

A byte-level examination of the specification and existing implementations of a filesystem
is a necessary part of a verification effort for it to enable reasoning about the behavior of
programs which interact with the filesystem. The recursive definition of the directory tree is
central to the study of filesystems; thus, induction is also central to the analysis. Defining and
using notions of equivalence between directory trees which disregard implementation details
is essential for demonstrating that our FAT32 model and existing FAT32 implementations
operate the same way. The logical decoupling enabled by mbe helps keep formal developments
involving binary file formats tractable as they evolve through various optimizations, including
optimizations based on the logical story of I/O.

ITP 2019

25:16 ACL2 Binary-Compatible Filesystem Verification

This paper’s contribution is the general-purpose methodology for binary compatible
filesystem verification which makes use of the above techniques and is illustrated through
LoFAT and HiFAT. This makes reasonably good performance possible for a disk-image
manipulation methodology of verified filesystem implementation, which is sufficient for
validating existing filesystem implementations by means of extensive co-simulation testing.

References
1 Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer

Science, 82(2):253–284, 1991. doi:10.1016/0304-3975(91)90224-P.
2 ACL2 Community. ACL2 documentation for B*. See URL http://www.cs.utexas.edu/

users/moore/acl2/manuals/current/manual/?topic=ACL2____B_A2.
3 ACL2 Community. ACL2 documentation for DEFUND-NX. See URL http://www.cs.utexas.

edu/users/moore/acl2/current/manual/index.html?topic=ACL2____DEFUND-NX.
4 ACL2 Community. ACL2 documentation for MBE. See URL http://www.cs.utexas.edu/

users/moore/acl2/current/manual/index.html?topic=ACL2____MBE.
5 ACL2 Community. ACL2 documentation for READ-FILE-INTO-STRING. See

URL http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=
ACL2____READ-FILE-INTO-STRING.

6 Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor,
Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, et al. Cogent: Verifying
high-assurance file system implementations. ACM SIGPLAN Notices, 51(4):175–188, 2016.
doi:10.1145/2872362.2872404.

7 Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media, 2013.
doi:10.1007/978-3-662-07964-5.

8 William R. Bevier and Richard M. Cohen. An executable model of the Synergy file system.
Technical report, Technical Report 121, Computational Logic, Inc, 1996.

9 Robert S. Boyer and J Strother Moore. Single-threaded objects in ACL2. In International
Symposium on Practical Aspects of Declarative Languages, pages 9–27. Springer, 2002. doi:
10.1007/3-540-45587-6_3.

10 Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri, Adam Chlipala,
M Frans Kaashoek, and Nickolai Zeldovich. Verifying a high-performance crash-safe file
system using a tree specification. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 270–286. ACM, 2017.

11 Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai
Zeldovich. Using Crash Hoare Logic for Certifying the FSCQ File System. In USENIX Annual
Technical Conference, 2016.

12 Russ Cox, M. Frans Kaashoek, and Robert T. Morris. Xv6, a simple Unix-like teaching
operating system, 2016. URL: http://pdos.csail.mit.edu/6.828/2014/xv6.html.

13 Jared Davis. Reasoning about ACL2 file input. In Proceedings of the sixth international
workshop on the ACL2 theorem prover and its applications, pages 117–126. ACM, 2006.

14 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

15 Paul Eggert, Mike Haertel, David Hayes, Richard Stallman, and Len Tower. diff (1)-Linux
manual page, accessed: 07 Sep 2018.

16 Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the POSIX file system.
In European Symposium on Programming Languages and Systems, pages 169–188. Springer,
2014. doi:10.1007/978-3-642-54833-8_10.

17 Shilpi Goel, Warren A. Hunt Jr., Matt Kaufmann, and Soumava Ghosh. Simulation and
formal verification of x86 machine-code programs that make system calls. In Formal Methods

https://doi.org/10.1016/0304-3975(91)90224-P
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____B_A2
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____B_A2
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____DEFUND-NX
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____DEFUND-NX
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____MBE
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____MBE
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____READ-FILE-INTO-STRING
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____READ-FILE-INTO-STRING
https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-45587-6_3
https://doi.org/10.1007/3-540-45587-6_3
http://pdos.csail.mit.edu/6.828/2014/xv6.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-54833-8_10

M.P. Mehta and W.R. Cook 25:17

in Computer-Aided Design (FMCAD), 2014, pages 91–98. IEEE, 2014. doi:10.1109/FMCAD.
2014.6987600.

18 David Greve. Address enumeration and reasoning over linear address spaces. In 5th Interna-
tional Workshop on the ACL2 Theorem Prover and Its Applications (ACL2 2004), Austin, TX,
2004.

19 David Greve and Matt Wilding. Dynamic datastructures in ACL2: A challenge, 2002. URL:
http://hokiepokie.org/docs/festival02.txt.

20 Dave Hudson, Peter Anvin, and Roman Hodek. mkfs.fat (8)-Linux manual page, accessed: 09
Jul 2018.

21 Atalay Ileri, Tej Chajed, Adam Chlipala, Frans Kaashoek, and Nickolai Zeldovich. Proving
confidentiality in a file system using DISKSEC. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18), pages 323–338, 2018.

22 Matt Kaufmann. Fixed read-file-into-string bug. (commit message), July 2018. URL: https:
//github.com/acl2/acl2/commit/8388ac10289d5cab791953238057294604af6d60.

23 Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of Nqthm. In
Proceedings of 11th Annual Conference on Computer Assurance (COMPASS’96), pages 23–34.
IEEE, 1996.

24 Michael Kerrisk. errno (3)-Linux manual page, accessed: 07 Sep 2018.
25 Michael Kerrisk. mmap (2)-Linux manual page, accessed: 09 Dec 2018.
26 Michael Kerrisk. pread (2)-Linux manual page, accessed: 09 Jul 2018.
27 Michael Kerrisk. pwrite (2)-Linux manual page, accessed: 09 Jul 2018.
28 Michael Kerrisk. rmdir (2)-Linux manual page, accessed: 17 Mar 2019.
29 Michael Kerrisk. statfs (2)-Linux manual page, accessed: 09 Dec 2018.
30 Evan Klitzke. PATH_MAX is tricky, April 2017. URL: https://eklitzke.org/

path-max-is-tricky.
31 Alain Knaff. mtools (1)-Linux manual page, accessed: 09 Dec 2018.
32 Leslie Lamport. Verification and specification of concurrent programs. In Work-

shop/School/Symposium of the REX Project (Research and Education in Concurrent Systems),
pages 347–374. Springer, 1993. doi:10.1007/3-540-58043-3_23.

33 Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, and
Laurent Vivier. The new ext4 filesystem: current status and future plans. In Proceedings of
the Linux symposium, volume 2, pages 21–33, 2007.

34 Mihir Parang Mehta. Formalising Filesystems in the ACL2 Theorem Prover: an Application
to FAT32. Proceedings of the 15th International Workshop on the ACL2 Theorem Prover and
Its Applications, page 18, 2018.

35 Microsoft. Microsoft Extensible Firmware Initiative FAT32 File System Specific-
ation, December 2000. URL: https://download.microsoft.com/download/1/6/1/
161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc.

36 Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidam-
baram. Finding Crash-Consistency Bugs with Bounded Black-Box Crash Testing. arXiv
preprint, 2018. arXiv:1810.02904.

37 Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina
Torlak, and Xi Wang. Hyperkernel: Push-Button Verification of an OS Kernel. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP’17, pages 252–269, New York,
NY, USA, 2017. ACM. doi:10.1145/3132747.3132748.

38 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002. doi:10.1007/
3-540-45949-9.

39 N. Rath and M. Szeredi. The reference implementation of the Linux FUSE (Filesystem in
Userspace) interface, 2018.

40 Murray Shanahan. The Frame Problem. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, 2016.

ITP 2019

https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1109/FMCAD.2014.6987600
http://hokiepokie.org/docs/festival02.txt
https://github.com/acl2/acl2/commit/8388ac10289d5cab791953238057294604af6d60
https://github.com/acl2/acl2/commit/8388ac10289d5cab791953238057294604af6d60
https://eklitzke.org/path-max-is-tricky
https://eklitzke.org/path-max-is-tricky
https://doi.org/10.1007/3-540-58043-3_23
https://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc
https://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc
http://arxiv.org/abs/1810.02904
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

25:18 ACL2 Binary-Compatible Filesystem Verification

41 Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-Button Verification
of File Systems via Crash Refinement. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 1–16, 2016.

42 Peter Snyder. tmpfs: A virtual memory file system. In In Proceedings of the Autumn 1990
European UNIX Users’ Group Conference, pages 241–248, 1990.

43 Richard M Stallman. GNU Make, 1988.

	Introduction
	Background on ACL2
	Guard verification
	Single-threaded objects
	Equivalence and rewriting
	Logical story of I/O

	FAT32 – specification and modeling
	Properties proved
	Termination
	Equivalence
	Invertibility and error codes
	Correctness of the specification

	Evaluation
	Co-simulation
	POSIX interface and tests
	Performance

	Related work
	Future work
	Conclusion

