The DPRM Theorem in Isabelle

Jonas Bayer
Freie Universitat Berlin, Arnimallee 2, 14195 Berlin, Germany
jonas.bayer@fu-berlin.de

Marco David
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
m.david@jacobs-university.de

Abhik Pal

Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
ab.pal@jacobs-university.de

Benedikt Stock

Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
b.stock@jacobs-university.de

Dierk Schleicher

Technische Universitat Berlin, Germany
dierk.schleicher@gmx.de

—— Abstract

Hilbert’s 10th problem asks for an algorithm to tell whether or not a given diophantine equation
has a solution over the integers. The non-existence of such an algorithm was shown in 1970 by
Yuri Matiyasevich. The key step is known as the DPRM theorem: every recursively enumerable
set of natural numbers is Diophantine. We present the formalization of Matiyasevich’s proof
of the DPRM theorem in Isabelle. To represent recursively enumerable sets in equations, we
implement and arithmetize register machines. Using several number-theoretic lemmas, we prove
that exponentiation has a diophantine representation. Further, we contribute a small library of
number-theoretic implementations of binary digit-wise relations. Finally, we discuss and contribute
an is_diophantine predicate. We expect the complete formalization of the DPRM theorem in the
near future; at present it is complete except for a minor gap in the arithmetization proofs of register
machines and extending the is_diophantine predicate by two binary digit-wise relations.

2012 ACM Subject Classification Theory of computation — Automated reasoning; Theory of
computation — Higher order logic

Keywords and phrases DPRM theorem, Hilbert’s tenth problem, Diophantine predicates, Register
machines, Recursively enumerable sets, Isabelle, Formal verification

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.33
Category Short Paper
Supplement Material Isabelle formalisation: https://gitlab.com/hilbert-10/dprm

Acknowledgements We want to thank everyone who has contributed to this project: Deepak Aryal,
Bogdan Ciurezu, Yiping Deng, Prabhat Devkota, Simon Dubischar, Malte Ha8ler, Yufei Liu and
Maria Antonia Oprea. Without their involvement, most notably Yufei Liu’s implementation of
is_diophantine, the project would not stand where it is today. Moreover, we would like to express
our sincere gratitude to the entire welcoming and supportive Isabelle community. In particular,
we are indebted to Mathias Fleury for all his help with Isabelle. Finally, a big thank you Yuri
Matiyasevich for inspiring and initiating the project as well as to our supervisor Dierk Schleicher,
for motivating us throughout the project, connecting us to many experts in the field, and all his
critical feedback.

© Jonas Bayer, Marco David, Abhik Pal, Benedikt Stock, and Dierk Schleicher;
37 licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).

Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 33; pp. 33:1-33:7

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jonas.bayer@fu-berlin.de
mailto:m.david@jacobs-university.de
mailto:ab.pal@jacobs-university.de
mailto:b.stock@jacobs-university.de
mailto:dierk.schleicher@gmx.de
https://doi.org/10.4230/LIPIcs.ITP.2019.33
https://gitlab.com/hilbert-10/dprm
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2

The DPRM Theorem in Isabelle

1 Introduction

The mathematician David Hilbert is well known for the axiomatic method and his Hilbert
program on a quest to formalize mathematics. While the dawn of the twentieth century did
not witness any computers, let alone interactive theorem provers, Hilbert did write a list of
23 problems to direct the international mathematical community. In the tenth problem, he
asked for an algorithm to decide any diophantine equation. After the presentation of the
problem in 1900, a negative solution was conjectured by Martin Davis in 1950. Yet, the proof
that there is no such algorithm was only completed in 1970 by Yuri Matiyasevich, resulting
in the Davis-Putnam-Robinson-Matiyasevich theorem.

In an ongoing effort, we formalize the negative solution to Hilbert’s tenth problem and in
first instance the proof of the DPRM theorem in Isabelle. This paper presents the formaliza-
tion of Matiyasevich’s proof [4] of the DPRM theorem. A core result is a representation of
exponentiation in terms of Diophantine equations, obtained from a generalized Fibonacci
sequence. Additionally, we implement and arithmetize register machines, Minsky machines
in our case. The simulation of their execution in equations allows us to express a recursively
enumerably set in equations. Finally, an obvious prerequisite for the formalization is an
is_diophantine predicate, which we implement and apply to e.g. the exponential relation.

For our formalization of the DPRM theorem, we discuss three conceptual ingredients in
Sections 2, 3 and 4: diophantine predicates, the fact that exponentiation is Diophantine and
the arithmetization of Minsky machines. They culminate in the DPRM theorem in Section 5
before we provide the overall conclusion in Section 6.

2 Diophantine Predicates

A diophantine polynomial is constructed from addition and multiplication of integer constants
as well as natural variables and parameters. Diophantine relations and sets are then defined
as follows.

» Definition 1. An n-ary predicate P is called diophantine if there exists a diophantine
polynomial D, such that a tuple of parameters a = (a1, ...,a,) € N satisfies P if and only
if there exist variables x = (x1,...,%m) € N™ such that D(a,x) = 0.

» Definition 2. A set A C N" of n-tuples is called diophantine if there exists a diophantine
predicate P such that a € A < P(a).

Examples of diophantine predicates are P(a,b) = a < b or P(a,b) = a | b, represented
respectively as 3. D(a,b,2) =a — b+ =0 or Jz. D(a,b,z) = ax — b = 0. The sets of all
tuples (a,b) satisfying these relations are examples, respectively, of diophantine sets. A third,
more surprising, example is that the set of all primes is diophantine, for which a simple
diophantine polynomial in 26 variables can be found [4, Section 1.4.1].

It is an elementary fact that conjunctions and disjunctions of diophantine predicates
are diophantine. Rather non-trivial is the fact that exponentiation of natural numbers is
diophantine as well: for a long time, the opposite was conjectured, and the negative solution
to Hilbert’s 10th Problem was established once it was established that exponentiation is
diophantine. The proof of this assertion constitutes one of the core steps of the proof
of DPRM and is presented in the following section. Using exponentiation, we may also
access a much more general class of relations and prove that they are diophantine. For
a diophantine representation of binomial coefficients in terms of exponential, diophantine
equations, we formalize Lucas’s theorem. Similarly, one finds that the binary digit-wise

J. Bayer, M. David, A. Pal, B. Stock, and D. Schleicher

relations orthogonality (a L b := Vk.apby = 0) and masking (a =< b := Vk.ap < by) are
diophantine. From there, digit-wise multiplication (&&, i.e. binary AND) can be expressed
as a diophantine relation, too:

a&&b=c <<= c2aANc=2bA(a—c)L(b—c)

One might expect that the above relations should be handled easily on a low level, but
this was not the case. In fact, they constituted a significant amount of the formalization
efforts and required development of new number-theoretic library of utilities to handle
natural numbers digit-wise. To demonstrate this, note that most lemmas in this part of the
formalization rely on new functions to access the n-th digit in binary or base b representation
of a natural number, which did not exist before (in Isabelle).

The implementation of is_diophantine. In principle, diophantine predicates and polyno-
mials are straightforwardly implemented and equipped with an eval function. However, there
are many possibilities to model the details of representing variables and parameters, which
show different usability in formal proofs. Due to the non-existence of dependent types in
Isabelle, n-tuples of parameters and variables can be implemented either as maps nat = nat
from indices to values (which are eventually zero) or as finite lists. Additionally, one may
choose to treat variables and parameters separately, or consider them part of the same map
or list. Each of these implementations has its (dis)advantages, and different progress has
been made towards formalizing necessary relations using these predicates.

A difficulty common to all approaches is the exchange and relabelling of variables
and parameters. This is necessary when proving that a relation which is expressed as a
compound diophantine expression (i.e. as conjunctions and disjunctions of smaller diophantine
expressions) is diophantine, too — a fact which is usually mentioned only on the side in paper
proofs. The most successful approach so far uses an implementation of is_diophantine
using one nat = nat map for parameters and variables alike.

However, as the currently developed theory requires much manual work in its proofs, we
are developing and experimenting with alternative implementations in parallel in order to
bridge the open gaps. In particular, we still need to prove that the aforementioned binary
relations, which are used later in the diophantine representation of register machines, are
indeed diophantine.

3 Exponentiation is Diophantine

Exponential relations of the type p = ¢” and in particular their diophantine representa-
tions are the key bridge to connect the notions of recursively enumerable and diophantine
since exponentiation arises in the arithmetization of register machines, as described in the
next section.

Following Matiyasevich [4, Section 3|, we define a second-order recurrence oy (n) similar
to the Fibonacci numbers to later obtain an expression of ¢ in terms of this sequence. In
intermediate steps, the proof uses 2 x 2 matrices to obtain a first-order sequence as well as a
diophantine, closed form for the a;(n). Unless explicitly stated otherwise, all variables are
natural numbers and may take values from N ={0,1,2,...}.

» Definition 3. Let ay(n) denote the unique second-order recurrence of natural numbers
parameterized by b > 2, that satisfies ap(0) = 0 and ap(1) =1, and for allm € N

ap(n +2) = bap(n+ 1) — ap(n)

33:3

ITP 2019

334

The DPRM Theorem in Isabelle

To follow the rough argument, first note that as(n) = n is linear but b > 2 implies that
b-—1"<ap(n+1) <b", i.e. ap(n) grows exponentially. Then, using various divisibility
and congruence relations! of the a;(n), we obtain a diophantine system of 15 equations in 8
variables (in addition to the three parameters a, b, ¢) for the relation a = as(c) given b > 3.
Combining these two results, with m = bg — ¢ — 1, we can then express

q" = qap(r) — ap(r — 1) (mod m)

which is a diophantine representation of exponentiation for ¢ > 0 as intended, using the fact
that congruence relations have a diophantine representation. Adding the case ¢ = 0 and
expanding, we obtain the following.

» Theorem 4. The predicate Pexp(p,q,7) =p = q" has a diophantine representation which is
tmplicitly given by the equivalence to a boolean combination of simpler diophantine relations.

Pewp(0,4,7) <= (q=0Ar=0Ap=1)V
(q=0ATr<O0Ap=0)V
Jo,m. (b=caga(r+1)+¢>+2 A m=bg—q¢*—1
p<m A p=qop(r) —bay(r) + ap(r + 1) mod m).

In our contribution, this theorem is fully formalized in rather verbose 2800 loc using
86 intermediate lemmas. Using the currently most successful is_diophantine predicate
explained above, we then show is_diophantine Py, in additional 270 loc.

4 Arithmetization of Minsky machines

A core concept in our work are Minsky machines, a type of register machine. We implement
them in Isabelle and formally prove their arithmetization, i.e. simulation through equations.
Although known to be equivalent to Turing machines, their simpler mode of operations and
simpler instructions makes this process easier than for a Turing machine. Every register
machine has a finite number of registers R; and states Sy and is able to execute three types
of instructions:

I) Ski INC Rl; Sl
Il) Ski DEC Rl; Si; Sj
i) Sp: HALT

Each register stores a natural number. In state k, the k-th instruction from the program
p, i.e. list of instructions, is executed. Instructions of type i) increment some register R;
and move to another state S;; instructions of type ii) decrement a register R; and move to
some state S; if the register value was larger than zero, else move to another state S;; and
instructions of type iii) halt execution. In analogy to Turing machines, call the list of register
values the tape T. A tuple (k,T) is then called a configuration of the register machines at
some time step t.

At every time step, the current instruction is fetched from the program and the tape is
updated accordingly. This way, the next configuration is obtained, until the halt state is
reached. With the existing implementation of Turing and Abacus machines by Xu et al. [6]

1 Matiyasevich notes that these “required properties of numbers ap(n) can be proved by induction,
however, many of them can be made more visual by using matrices.” We follow his proof using matrices
as given, however an alternative, possibly more direct approach using induction seems feasible, too.

J. Bayer, M. David, A. Pal, B. Stock, and D. Schleicher

at hand, we modeled our register machines in a fetch-update-step cycle similar to their
approach. In addition to being as modular as possible, this hopefully allows more easily for
future consolidation of both implementations.

Now, the goal is to find equations which simulate the execution of a register machine.

The arithmetization as done by Matiyasevich [4] obtains a set of equations with parameter a
which are satisfied if and only if the register machine terminates upon being given a as input
in the first register in the initial configuration. In this regard, define the number r;; to be
the value of register [at time ¢. Similarly, define sy + to be 1 if the machine is in state k£ at
time ¢ and 0 otherwise. In order to model whether a register has value 0 or not, needed for
all decrement states, define zero indicators z;+ which are 0 if 7, = 0 and 1 otherwise.

It is straightforward to construct equations for all [, k, ¢ relating all the above numbers
to sufficiently and necessarily guard that the program is properly executed and that the
machine will halt after a finite number of steps q. However, depending on the input a, ¢ may
vary. Should the set of all valid inputs be unbounded, any finite set of equations may not be
enough to guarantee termination for all valid inputs. Hence, explicit time-dependence needs
to be removed from the equations. This is done by representing the time-evolution of any
value in a single natural number, encoded with a sufficiently large basis b, chosen as a power

of 2. For example, we accumulate all values of the register [in the number r; = ZZ:O r1¢bt.

With z; defined accordingly, the simple inequality V¢. z;; <1 is then encoded as the masking
relation z; < >°7 1-b".

After removal of all explicit time-dependence, only 15 equations remain. We have
successfully formalized that these are necessary for an initially valid? register machine to
terminate in finite time (2400 loc). The much simpler converse statement, the sufficiency of
these equations, is almost completely formalized (currently 1100 loc). For its completion, a
few more properties of the 15 equations need to be shown; additionally, a few more utilities
to work digit-wise with the base b representation of natural numbers need to be developed.

5 All recursively enumerable sets are Diophantine

In a final step, the equations obtained during the arithmetization of register machines need
to be proven diophantine. Here, the result of section 3 is again crucial as many exponential

relations occur due to the nature of aggregation over time by finite geometric sums as above.

The connection to recursively enumerable sets is then readily made as exactly the sets
accepted by a register machine are recursively enumerable. Register machines present one
instance of an algorithm that can accept the elements of a recursively enumerable set, which
is equivalent to having an algorithm that enumerates all elements of the set.

» Definition 5. A set A is recursively enumerable if there exists a register machine, i.e. a
program p, such that for the initial configuration (k =0,T = [a,0,...,0]), we have a € A
if and only if the register machine halts after executing p on this configuration for a finite
number of steps q.

Combining all the results of the previous sections, the arithmetization of register machines
and the diophantine representation of the resulting equations, including the diophantine
representation of exponentiation, we can finally prove and formalize the DPRM theorem.

» Theorem 6 (DPRM). is_recursively_enumerable A —> is_diophantine A
2 The phrase “initially valid” refers to a set of common-sense validity assumptions about the program

and initial configuration, e.g. that all references to registers and states are within bounds, that there is
exactly one halt state, etc.

33:5

ITP 2019

33:6

The DPRM Theorem in Isabelle

6 Conclusion

Summary of current progress. Our contribution comprises the partial formalization of the
proof of the DPRM theorem in Isabelle. This includes an is_diophantine predicate for
relations and sets, a library of digit-wise operations for natural numbers and corresponding
utility functions and lemmas, and an implementation and arithmetization of register (Minsky)
machines. The formalization is almost complete, in the sense that the bulk of the proof
has been formalized, however two gaps remain. As a minor point, we are yet to complete
the proof that the equations obtained from the arithmetization of a register machine are
sufficient for the machine to terminate. More importantly, however, we still need to extend
the is_diophantine predicate and show that binary digit-wise multiplication and binary
masking are diophantine relations. Then, we intend to contribute this project to the Isabelle
Archive of Formal Proofs (https://www.isa-afp.org).

Note that the project is carried out solely by undergraduate students (except the last
named author, who is their supervisor and not directly involved in the implementation).
They all, including the supervisor, had no prior experience in formalizing proofs. With an
overall time span of so far 20 months, this is — to the best of our knowledge — the first
major theorem formalized entirely by non-experts in theorem proving. For a more detailed
discussion of these aspects of the project, and a reflection of the learning process, please
refer to [1].

Related work. Related work on both the DPRM theorem and Hilbert’s tenth problem has
been carried out in Coq, Mizar and Lean. Larchey-Wendling and Forster [3], working in Coq,
recently formalize a clever alternative using Conway’s FRACTRAN language to simulate
register machines and show undecidability of Hilbert’s tenth problem in general. Working
in Mizar, Pak [5] published several articles on formalizing arithmetic properties related to
Diophantine equations, notably that exponentiation is diophantine. Carneiro [2], using Pell
equations, formalized that exponentiation is diophantine in Lean.

Future outlook. In order to arrive at undecidability of Hilbert’s tenth problem from the
DPRM theorem, a connection to the undecidability of the Halting problem will need to be
made. This requires reference to a specific model of computation, for example our register
machines. One possibility is to prove their equivalence to the Abacus or Turing machines
formalized by Xu et al. [6] who have previously obtained a suitable undecidability result.
Alternatively, the undecidability of our implementation of register machines could be shown
directly. Future work may extend this contribution to formalize the whole solution of Hilbert’s
tenth problem in Isabelle — in the spirit of Hilbert himself.

—— References

1 Jonas Bayer, Marco David, Abhik Pal, and Benedikt Stock. Beginners’ Quest to Formalize
Mathematics: A Feasibility Study in Isabelle. In C. Kaliszyk, E. Brady, A. Kohlhase, and
C. Sacerdoti Coen, editors, Conference on Intelligent Computer Mathematics., volume 11617
of Lecture Notes in Computer Science, 2019. (to appear).

2 Mario Carneiro. A Lean formalization of Matiyasevi¢’s Theorem. arXiv:1802.01795v1.

3 Yannick Forster Dominique Larchey-Wendling. Hilbert’s Tenth Problem in Coq. URL:
http://www.ps.uni-saarland.de/Publications/documents/Larchey-WendlingForster_
2019_H10_in_Coq.pdf.

4 Yuri Matiyasevich. On Hilbert’s Tenth Problem. In Michael Lamoureux, editor, PIMS
Distinguished Chair Lectures, volume 1. Pacific Institute for the Mathematical Sciences, 2000.

https://www.isa-afp.org
http://arxiv.org/abs/1802.01795v1
http://www.ps.uni-saarland.de/Publications/documents/Larchey-WendlingForster_2019_H10_in_Coq.pdf
http://www.ps.uni-saarland.de/Publications/documents/Larchey-WendlingForster_2019_H10_in_Coq.pdf

J. Bayer, M. David, A. Pal, B. Stock, and D. Schleicher 33:7

5 Karol Pak. Progress in the Formalization of Matiyasevich’s theorem in the Mizar system.
URL: http://alioth.uwb.edu.pl/~pakkarol/articles/FMM_2018_KP.pdf.

6 Jian Xu, Xingyuan Zhang, and Christian Urban. Mechanising Turing Machines and Com-
putability Theory in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, Interactive Theorem Proving. ITP 2013., volume 7998 of Lecture Notes in
Computer Science, pages 147-162. Springer Berlin, Heidelberg, 2013.

ITP 2019

http://alioth.uwb.edu.pl/~pakkarol/articles/FMM_2018_KP.pdf

	Introduction
	Diophantine Predicates
	Exponentiation is Diophantine
	Arithmetization of Minsky machines
	All recursively enumerable sets are Diophantine
	Conclusion

