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Abstract
We report on our HOL4 verification of an AI planning algorithm. The algorithm is compositional in
the following sense: a planning problem is divided into multiple smaller abstractions, then each of
the abstractions is solved, and finally the abstractions’ solutions are composed into a solution for
the given problem. Formalising the algorithm, which was already quite well understood, revealed
nuances in its operation which could lead to computing buggy plans. The formalisation also revealed
that the algorithm can be presented more generally, and can be applied to systems with infinite
states and actions, instead of only finite ones.

Our formalisation extends an earlier model for slightly simpler transition systems, and demon-
strates another step towards formal treatments of more and more of the algorithms and reasoning
used in AI planning, as well as model checking.
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1 Introduction

State spaces of problems in fields such as artificial intelligence (AI) planning and model
checking can be modelled as digraphs, where vertices and edges represent states and transi-
tions, respectively. Explicitly representing such state spaces is infeasible in realistic systems.
Instead, the digraph modelling the state space is described with a propositionally factored
representation, using languages such as STRIPS by Fikes [17] or SMV by McMillan et al. [27].
We work in the space of tools and algorithms for solving problems represented in this way.

When working with such factored representations, controlling the state space explosion
is critically important. A powerful, general approach to this problem is the compositional
approach. Here, a solution to a problem instance is found, or approximated, by composing
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4:2 A Verified Compositional Algorithm for AI Planning

solutions to one or many (possibly exponentially) smaller derived sub-problems, or “ab-
stractions”. Practically, this approach is one of the few known feasible approaches to solve
problems concerning the state space of the given factored system. This is because it avoids
constructing and performing computations on the large digraph modelling the state space,
and only constructs and processes abstracted state spaces.

A planning problem is a reachability problem in a digraph representing the state space:
given an initial state, is it possible to construct a sequence of actions that reaches a goal
state? AI planning has many applications, including safety-critical ones, such as aerospace
applications [34, 35]. Thus, it would be of great utility to use formal methods to increase the
reliability of AI planning software, techniques, and frameworks. Indeed, this was realised
by many early authors who used formal methods in AI planning applications [9]. However,
all prior work was limited to using model checking techniques to formally verify planning
domain model properties and plan properties, and none of the previous authors embarked
on verifying a planning algorithm. In this paper we present the first formal verification of a
planning algorithm. We use HOL4 [33] to formally verify the correctness of a compositional
planning algorithm, which we published earlier [5], showing that the algorithm is indeed
correct. One might wonder: why use a theorem prover to verify the algorithm, instead of a
model checker like earlier applications of formal methods to planning? This is due to (i) the
complexity of verifying a planning algorithm compared to verifying properties of planning
models and plans as in earlier work, and (ii) the limitations of model checking formalisms,
which are inadequate for representing the algorithm, let alone verifying it. Also, HOL4 has a
transition systems theory library suitable to reasoning about planning algorithms [6].

The algorithm we verify works by dividing a planning problem into multiple isomorphic
abstractions, solving each of those abstractions separately, and finally composing those
solutions in a solution to the concrete problem. Each abstraction is an under-approximation
of the problem that is isomorphic to a descriptive quotient (hereafter, quotient) of the problem.
In our earlier work, this quotient was computed based on symmetries in the planning problem.
This earlier work empirically established that this algorithm performs extremely well on
benchmark planning problems which have symmetries.

As experienced practitioners might expect, formalisation in a theorem prover yields con-
crete benefits. In our case, we (i) gain a precise (and hitherto unappreciated) characterisation
of what we required of the planning algorithm that solves the generated sub-problems; (ii)
fix our algorithm to remove our dependency on that assumption; (iii) extend the algorithm’s
applicability to problems whose state variables are of arbitrary types, and not necessarily
Boolean, thus showing its applicability to numerical and hybrid planning; and (iv) we prove
its validity for a more general class of quotients, quotients which are not necessarily computed
using problem symmetries.

Finally, we note that elements of our formalisation can be easily modified to accommo-
date the compositional model-checking algorithm by Ip and Dill [22, 23], which is used to
perform model checking on systems with multiple isomorphic components in the Murphi
verification system.

Contributions

Our paper makes the following contributions:
We provide formal definitions of the notion of planning problems and develop a theory
library concerning them (Section 2.2). This is a substantial extension of an existing
HOL4 library on factored transition systems which was developed to verify algorithms to
compute upper bounds on transition system state space diameters [1, 2, 3, 6].
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We formally define a state-of-the-art planning algorithm for planning, namely plan-
ning via descriptive quotients, that is used for efficiently solving planning problems
with symmetries.
We develop a significant theory to establish the correctness of the connection between the
abstracted sub-problems and the original. In particular, we must answer two questions:

when and how can sub-plans that solve (abstracted) sub-problems be concatenated to
solve the original concrete problem’s goal?
how should a descriptive quotient solution be instantiated – i.e.,“lifted back” to the
level of the original concrete problem – so as to create multiple plans for solving the
symmetric sub-problems of the original?

We believe our work is the first verification of a symmetry-breaking technique or a
quotient-based technique for problems on transition systems. Our verification forced us
to identify an important assumption about the behaviour of the planner used to solve
the abstracted sub-problems.

2 Preliminaries

2.1 Standard HOL4 Types and Operations
HOL4 provides a rich library of operations over standard types such as lists and sets, giving
a powerful combination of facilities from mathematics and functional programming. Here,
we briefly describe those that we use below.

In the theory of lists: lists are either empty (“nil”) written [], or a head element h followed
by the rest of the list t, written h:: t. We write l1 ++ l2 to represent the concatenation of
the lists l1 and l2. Lifting this to lists of lists, we write FLAT l l to mean the concatenation
of all the lists contained within l l. We write MEM e l to mean that e is an element of list
l. More generally, we can denote the set of all the elements contained in a list by writing
set l. Finally, we can write MAP f l to represent the pointwise application of function f
to all elements of the list l, returning a list of equal length, but with elements possibly of a
different type.

Most of the set notation we use should be familiar. Apart from set comprehensions and
standard operators such as union and intersections, we also write f LxM to mean the image
of set x under function f , and f −1 for f ’s inverse (taking care to only use this when f is a
bijection on the relevant sets).

We make extensive use of the HOL4 theory of finite maps, which are functions whose
domains are finite. The domain of a map f is written D(f ). Applying a map f to a domain
element d is written f ‘ d. We write f v g to mean that map f is a submap of g – i.e., f
and g agree on all elements in D(f ). Finally, we can combine two maps, writing f ] g. If
the maps f and g have overlapping domains, the result takes elements in the overlap to f ’s
values (the union “biases left”).

Below, all statements appearing with a turnstile (`) are HOL4 theorems, automatically
pretty-printed to LATEX, and using this notation.

2.2 Factored Transition Systems in HOL4
We now review basic concepts about propositionally factored representations of transition
systems and how they are formalised in HOL4. The distinctive feature of these represenations
is that sets of edges are compactly described in terms of “actions”. This representation
is equivalent to representations commonly used in the AI planning and model checking
communities (e.g. STRIPS [17] and SMV [27, 13]).

ITP 2019



4:4 A Verified Compositional Algorithm for AI Planning

I Definition 1 (States and Actions). A state, x, is a finite map from variables to values,
i.e. a finite set of mappings v 7→ b, where v is a variable and b is a value. An action is a
pair of finite maps, (p, e), where p represents the preconditions and e represents the effects.
The domain of an action is the union of the domains of its preconditions and effects, i.e.
D(π) ≡ D(p) ∪ D(e), for π = (p, e). (Note how we are overloading/extending the syntax
for the domain of a finite map (D(fm)) to also mean the domain of an action (D(π)), and
(below) the domain of a system.)

I Definition 2 (Factored System). A propositionally factored system, δ, is a set of actions.
We write D(δ) for the domain of δ, which is the union of the domains of all the actions in δ.

To make the types explicit, a propositionally factored system in HOL4 has states as finite
maps α 7→ β (polymorphic in both domain (α) and codomain (β)).1 An action is then a
pair of such states (α 7→ β) × (α 7→ β), and a factored transition system δ is a set of
such actions.

The valid states of a system δ, written U(δ), are those that have the same domain as
the system:

U(δ) def= {x | D(x) = D(δ)}

The valid plans of a system (δ∗) are those composed of actions drawn from δ:

δ∗
def= {→π | set →π ⊆ δ }

I Definition 3 (Execution). When an action (p, e), denoted by π, is executed at state x, it
produces a successor state ex(x, π), formally defined as ex(x, π) = if p ⊆ x then e ] x else x.
We lift ex to lists of actions →π as the second argument. So ex(x,→π ) denotes the state resulting
from successively applying each action from →

π in turn, starting at x, which corresponds to a
path in the state space. In HOL4 action execution and action sequence execution are defined
as follows:

state-succ x (p,e) def= if p v x then e ] x else x

ex(x,π::→π ) def= ex(state-succ x π,→π )
ex(x,[]) def= x

The result of executing an action (p,e) on a state x depends on whether the preconditions of
the action are satisfied by the state or not, which is modelled by the p v x relation. If the
state satisfies the preconditions, then the state resulting from the execution is the same as
the original state, but amended by the effects of the executed action. Otherwise, the result of
the execution does not affect a change to the state. The finite map union operation, e ] x,
models amending the state by the action effects e.

Our formal definition of action execution follows that from our earlier paper [5]. Having a
total execution function (as above) is somewhat unusual for classical deterministic planning.
The choice is more typical in robotics, and in settings where automated planning is undertaken
under uncertainty. For example, the de facto standard in robotic planning is to plan in a
partially observable Markov decision process [20, 10], in which the robot cannot generally
know for sure if an action will have an effect or not. However, as machine learning becomes
increasingly pervasive, both in the task of learning system models [8, 31], and in the task of
computing plans [38], we can expect it to become increasingly common place for planned

1 To model STRIPS or SMV transition systems, β would be instantiated with bool.
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actions in classical deterministic settings to have no effect, since learning agents tradeoff
model accuracy for model complexity. In addition to the totality of our definition of execution,
we note that our definition is more general than other formalisms as it allows an action to
execute in a state when the action is defined using symbols that are not part of that state.
These properties of our definition made our proofs smoother, and helped us derive more
general theorems.

A sanity check of our execution semantics is the following theorem, which states that the
result of executing a valid action sequence on a valid state is also a valid state.

` →π ∈ δ∗ ∧ x ∈ U(δ) ⇒ ex(x,→π ) ∈ U(δ)

When the codomain of a state is Boolean, we give examples of states and actions using
sets of literals. For example, {v1, v2} is a state where state variables v1 is (maps to) true,
and v2 is false and its domain is {v1, v2}. ({v1, v2}, {v3}) is an action that if executed in a
state where v1 and v2 hold, it sets v3 to true. D(({v1, v2}, {v3})) = {v1, v2, v3}.

v1v2v3v4v5 v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5 v1v2v3v4v5

Figure 1 The largest connected component of the state space of the problem from Example 2. It
shows the presence of symmetries between different states.

I Example 1. An example factored system δ is {π1, π2, π3}, where the actions π1, π2 and π3
are defined as (∅, {v3}), ({v1, v3}, {v3, v4}), and ({v2, v3}, {v3, v5}), respectively. The largest
connected component of its state space is shown in Figure 1.

Note that, unlike in our original algorithm [5], the codomain of states is not restricted to
be bool since a lot of the theory we develop here applies to factored systems regardless of the
codomain of the state. Indeed, because we do not restrict the codomains to bool we are able
to prove that the algorithm verified here can be used for planning problems with infinite
states.

I Definition 4 (Planning Problem). A planning problem Π is a 3-tuple 〈I, δ,G〉, with I the
initial state of the problem, G a partial state representing a set of goal states, and δ a set of
actions. We define the domain of the problem, D(Π), to be domain of its actions, D(δ). The
set of valid states, written U(Π), with respect to a planning problem Π, corresponds to the set
U(δ). In HOL4, we formalise this as a record type:

(α, β) planningProblem = <|
I : α 7→ β;
δ : (α 7→ β) × (α 7→ β) → bool;
G : α 7→ β

|>

Problem Π is valid if the initial state is a valid state and the goal describes an assignment
constraint on a subset of the problem’s domain. In HOL4:

valid-prob Π
def= Π.I ∈ U(Π.δ) ∧ D(Π.G) ⊆ D(Π)

ITP 2019



4:6 A Verified Compositional Algorithm for AI Planning

Henceforth, we will work only with valid problems. We refer to the initial state, actions or
goal of problem Π as Π.I, Π.δ or Π.G respectively. We may also omit the Π if it is clear from
the context, e.g. I for Π.I and δi for Πi.δ.

Finally, an action sequence →π is a plan/solution for a planning problem Π iff that sequence
is valid, and if all goal assignments are present in the state reached by executing that action
sequence from the initial state:

Π solved-by →π def= →
π ∈ Π.δ∗ ∧ Π.G v ex(Π.I,→π )

I Example 2. An example planning problem is Π1 with Π1.I ≡ {v1, v2, v3, v4, v5}, Π1.G ≡
{v4, v5}, and actions Π1.δ assigned to be δ from Example 1. The state space of that problem
is that of the factored system δ, which represents its actions. A solution to that problem is
the action sequence [π1;π2;π1;π3;π1].

2.3 Motivating Planning via Descriptive Quotient
Better scalability is the core motivation for planning using a descriptive quotient. The
algorithm treats the situation where a concrete problem can be decomposed into a set of
isomorphic sub-problems. We need only find a solution for one sub-problem, and then it
is a simple matter of instantiating that solution for each problem in the series to arrive
at a solution for the concrete problem. These ideas can be made clear if we consider the
Gripper problem, which happens to be a benchmark problem of the International Planning
Competition [26]. A robot with left and right grippers must move a set of N indistinguishable
packages from a common source location to a common destination. The left and right
grippers are symmetric, because if we changed their names, by interchanging the terms “left”
and “right” in the problem description, we are left with an identical problem. Packages are
also interchangeable, and symmetric in this sense. The descriptive quotient here describes
the problem of moving one package with one gripper to the destination, and then returning
the robot to the source location with its gripper unencumbered. A plan for the quotient
represents a solution for a part of the gripper problem, for one package. If we instantiate
that quotient plan to move each package, and concatenate the instantiated plans, we arrive
at a plan for the concrete problem. Some first package is moved to the goal, then a second,
a third, and so on until all packages are in their goal location, and the problem is solved.

When in use, and compared to other planning algorithms, the algorithm we study here
comes with some overhead. Specifically, it has four inputs, and only the first of which
is common to all planning algorithms. These are: (i) a planning problem, (ii) an under-
approximation of that problem, also known as the descriptive quotient, (iii) a plan for the
descriptive quotient and (iv) a set of instantiations of the descriptive quotient. The last
three objects are peculiar to the algorithm we investigate and are computed from the first
input in a preprocessing step, based on symmetries in the given planning problem [5]. After
this preprocessing step, a plan is calculated for the descriptive quotient problem which is
usually much smaller than the concrete problem at hand. Then, the quotient’s solution is
instantiated to solve sub-problems of the given problem. Lastly, those sub-problem solutions
are concatenated to form a solution for the entire problem.

The primary strength of planning via descriptive quotient is that the state space of a
quotient is small relative to that of the concrete problem. This algorithm is thus relatively
efficient at planning compared to an algorithm that searches for a plan in the state space
of the concrete problem. However, is it effective compared to other methods that exploit
symmetries for planning? The state-of-the-art method to break symmetries for planning is
orbit search [30]. That method exploits the fact that a symmetry between state variables
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induces a symmetry between states. Orbit search exploits that during the search for a
plan since one only needs to visit one state out of every set of symmetric states. However,
pruning the state space that way still gives rise to a search space that could be exponentially
larger than the descriptive quotient’s state space. For instance, the descriptive quotient of
a Gripper problem with 20 packages is solved by breadth-first search expanding only 6
states [5]. On the other hand, a state-of-the-art system implementing orbit search reports
expanding 60K states solving the same Gripper problem [30]. This difference is highlighted
in the next example.

I Example 3. In the problem Π1 from our example earlier, state variables v4 and v5 are
symmetric, i.e. Π1 would stay the same if we permute them. Also v1 and v2 are symmetric.
This variable symmetry induces symmetries between states as shown in Figure 1, where the
two green states are symmetric with the red ones, i.e. permuting them does not change the
state space. Ideally, the orbit search method would construct a state space where symmetric
states are contracted as the one shown in Figure 3, which is clearly smaller in size than the
original state space in Figure 1.2

On the other hand, following our previously published algorithm, a descriptive quotient,
Π′1, of the problem Π1 is computed by replacing every variable in Π with a symbol, where
symmetric variables are replaced with the same symbol. Thus, Π′1 has initial state, actions
and goals that are {p1, p2, p3}, {({p1, p2}, {p2, p3}), (∅, {p2})}, and {p3}, respectively. The
largest component of the state space of Π′1 is shown in Figure 2. It is clearly smaller than the
original state space shown in Figure 1, as well as the state space constructed by orbit search
shown in Figure 3.

p1p2p3 p1p2p3 p1p2p3 p1p2p3

Figure 2 The largest connected component in the state space of the descriptive quotient of the
problem in Example 2.

v1v2v3v4v5 v1v2v3v4v5 v1v2v3v4v5 v1v2v3v4v5 v1v2v3v4v5 v1v2v3v4v5

Figure 3 The state space which the orbit search algorithm could construct and in which it would
search for a solution to the problem from Example 2. In the case that there were multiple symmetric
states in the original problem, here only one canonical state from that set appears.

3 Sub-Plan Concatenation

The algorithm we describe and verify synthesises a concrete plan by concatenating a series of
sub-plans. Each sub-plan solves one sub-problem of the concrete problem at hand. The first
step of formally develop these ideas is describing sufficient conditions which enable one to
synthesise a concrete plan according to a concatenation operation.

3.1 Needed Assignments
To concatenate plans safely, the algorithm needs to constrain states encountered between
the execution of two concatenated plans to be compatible with the resources that might
be used by a plan for the second problem. Compatibility is guaranteed if the intermediate

2 For a comprehensive description of orbit search planning consult Pochter et al. [30].

ITP 2019



4:8 A Verified Compositional Algorithm for AI Planning

state is consistent with the needed assignments of the second sub-problem. To understand
this concept, suppose we have a plan →π for a planning problem Π. What can we change in
Π.I and still guarantee that →π solves the amended problem? Needed assignments are those
assignments in Π.I which cannot be changed.

I Definition 5 (Needed Assignments). Needed assignments, N (Π), are assignments in the
preconditions of actions and goal conditions that also occur in I, i.e., N (Π) = (pre(δ) ∩
I) ∪ (G ∩ I), where pre(δ) ≡

⋃
{p | (p, e) ∈ δ}. Formally, we begin by characterising a

planning problem’s needed variables, those state variables that shall be the subject of needed
assignments:

D(N (Π)) def=
{v |

v ∈ D(Π.I) ∧
((∃ p e. (p,e) ∈ Π.δ ∧ v ∈ D(p) ∧ p ‘ v = Π.I ‘ v) ∨

v ∈ D(Π.G) ∧ Π.I ‘ v = Π.G ‘ v)}

Then, the set of needed assignments associated with a problem Π is:

N (Π) def= Π.I�D(N (Π))

where x�vs denotes the state x restricted/projected to assignments to variables vs.

I Example 4. For Π1 from our earlier example, we have that N (Π1) = {v3, v1, v2}.

We are then able to prove the following sanity-check theorem:

I Proposition 1. For problem Π, a plan →π will work from any state x that provides the
needed assignments of that problem, even if x disagrees with the initial state of the problem
on the assignments to some other – i.e. not-needed – state variables.

` valid-prob Π ∧ N (Π) v x ∧ sat-pre (N (Π),→π ) ⇒
Π solved-by →π ⇒ Π.G v ex(x,→π )

The assumption sat-pre (N (Π),→π ) says that if →π is executed from N (Π), the preconditions
of all actions in →π shall be satisfied.

3.2 Concatenating Two Plans
Suppose we have a plan for each of two given problems. We now establish a core condition
that, if satisfied, allows us to concatenate those plans to obtain an execution that satisfies the
goal conditions of both problems. It may be that some state variables are common to both
problems. We shall then require that for some total ordering of the problems, the preceding
problem goal includes the needed assignments of the succeeding problem. Formally, we have
the preceding problem relation:

I Definition 6 (Preceding Problems).

Π1

�

Π2
def= Π1 .G�D(N (Π2 )) = N (Π2 )�D(Π1 ) ∧ Π1 .G�D(Π2 ) = Π2 .G�D(Π1 )

In words, (i) The needed assignments of Π2 which a plan for Π1 could possibly affect
occur in G1, and (ii) G2 contains all the assignments in G1 which a plan for Π2 could affect.

I Example 5. Consider a problem Π2 s.t. Π2.I ≡ {v4, v5, v6}, Π2.δ ≡ {({v5}, {v4, v6}),
({v4}, {v5, v6})} and Π2.G ≡ {v4, v5, v6}, respectively. N (Π2) = G1 = {v4, v5}. Since
G1�D(N (Π2)) = G1, (I2�D(Π1))�D(N (Π2)) = G1, G1�D(Π2) = G1 and G2�D(Π1) = G1, we have
Π1

�

Π2.
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Our precedence relation guarantees the following two properties.

I Proposition 2. If a planning problem Π1 precedes another planning problem Π2 , i.e.
Π1

�

Π2, then a plan for Π1 always preserves the needed assignments of Π2 .

` Π1

�

Π2 ∧ Π1 .G v ex(x,→π ) ∧ →π ∈ Π1 .δ
∗ ∧ N (Π2 ) v x ∧ valid-prob Π1 ⇒

N (Π2 ) v ex(x,→π )

I Proposition 3. If Π1

�

Π2, then the a plan for Π2 does not invalidate a goal of Π1 .

` Π1

�

Π2 ∧ Π2 .G v ex(x,→π ) ∧ →π ∈ Π2 .δ
∗ ∧ valid-prob Π2 ∧ Π1 .G v x ⇒

Π1 .G v ex(x,→π )

3.3 Concatenating Many Plans
The above analysis can be leveraged now to understand the situation where we have plans
for many problems, and where a concatenation of those plans achieves and maintains goal
conditions for all problems. We shall suppose that the set of problems are totally ordered
according to our precedence relation.

I Lemma 1. Consider a sequence Π1 . . .ΠN satisfying Πj

�

Πk for all 1 ≤ j < k ≤ N , and
a state x that satisfies the initial state of every problem Πi, for 1 ≤ i ≤ N . For 1 ≤ i ≤ N
let →π i be a plan for Πi for which sat-pre(N (Πi),

→
π i) holds. Then, not only is each →π i a plan

for Πi, but executing the entire concatenation →π 1 ++→π 2 ++ . . .
→
πN from x also satisfies the

goals of each Πi.

` �
l Πl ⇒
(∀Π.

MEM Π Πl ⇒
valid-prob Π ∧ Π.I v x ∧ Π solved-by solve Π ∧
sat-pre (N (Π),solve Π)) ⇒

(let
sub_prob_plans = MAP solve Πl ;
concatenated_plans = FLAT sub_prob_plans

in
∀Π. MEM Π Πl ⇒ Π.G v ex(x,concatenated_plans))

In the HOL4 statement above (i) �

l is a predicate that lifts precedence to lists of problems,
where for a list of problems Π1 . . .ΠN , it denotes that Πj

�

Πk holds, for all j < k ≤ N , and
(ii) solve is a function that maps every planning problem to a plan that solves it.

Before we discuss the proof of this lemma, we define the following union operation on
planning problems and a lifted union operation for lists of planning problems.

I Definition 7 (Planning Problem Union).

Π1 ∪ Π2
def=

<|I := Π1 .I ] Π2 .I; δ := Π1 .δ ∪ Π2 .δ; G := Π1 .G ] Π2 .G|>⋃
Πl

def= FOLDR ∪ Π∅ Πl

Π∅ is the “empty problem”, whose initial and goal states have an empty domain, i.e. states
mapping nothing to nothing, and that does not have actions.

ITP 2019



4:10 A Verified Compositional Algorithm for AI Planning

The following theorem shows that the semantics of the planning problem union operations
are as intended.

` (∀Π. MEM Π Πl ⇒ valid-prob Π) ⇒ valid-prob (
⋃

Πl)

Informally, a sketch of the proof of Lemma 1 follows.

Proof. The proof is by induction on the list Πl . The base case is trivial. In the step case
we have the theorem for list of problems Πl , and we need to show that it applies to Πl with
the problem Π pre-pended to it. The key idea of the proof is to deal with

⋃
Πl as one

planning problem. Since Π precedes every problem in Πl , we have that Π precedes
⋃

Πl .
From this, the inductive hypothesis, Proposition 1, Proposition 2, and Proposition 3, the
result follows. J

Before this verification, we missed the condition sat-pre (N (Π),f Π) from the assumptions
of Lemma 1. This condition forbids plans with actions whose preconditions are unsatisfied
during isolated execution in the corresponding problem – i.e. such actions are ignored by
the execution function when considering the problem in isolation. The importance of this
condition shall be discussed in detail in Section 6.

4 Covering via Concatenation

Having just developed conditions for plan synthesis via concatenation, it remains to under-
stand how a concrete problem may be broken up into an ordered list of sub-problems, so
that a concatenation of sub-problems plans corresponds to a plan for the concrete problem.
First, this will require that we formally treat the question of what it is to be a sub-problem.
We then establish a concept of coverage, so that when a concrete problem is covered by a
list of sub-problems, we have the core sufficient condition to concatenate sub-problem plans
according to a schema analogous to Lemma 1.

A problem is a sub-problem of another, if the constituents – states and actions – of the
former are subsets/submaps of corresponding constituents of the latter.

I Definition 8 (Sub-problem). Problem Π1 is a sub-problem of Π2, written Π1 ⊆ Π2, if
I1 ⊆ I2, and if δ1 ⊆ δ2.

Π1 ⊆ Π2
def= Π1 .I v Π2 .I ∧ Π1 .δ ⊆ Π2 .δ

I Definition 9 (Covering Problems). A list of planing problems Πl covers a problem Π iff (i)
every member of Πl is a sub-problem of Π and (ii) every goal of Π is a goal for some member
of Πl.

covers Πl Π
def=

(∀ x.
x ∈ D(Π.G) ⇒
∃Π′. MEM Π′ Πl ∧ x ∈ D(Π′.G) ∧ Π.G ‘ x = Π′.G ‘ x) ∧

∀Π′. MEM Π′ Πl ⇒ Π′ ⊆ Π

I Example 6. Let the problem Π′′1 be s.t. Π′′1 .I = {v3, v1, v4}, Π′′1 .δ = {({v1, v3}, {v3, v4}),
(∅, {v3})}, and Π′′1 .G = {v4}. Let the problem Π′′′1 be s.t. Π′′′1 .I = {v3, v2, v5}, Π′′′1 .δ =
{({v2, v3}, {v3, v5}), (∅, {v3})}, and Π′′′1 .G = {v5}. The list [Π′′1 ;Π′′′1 ] covers the problem Π1
since Π′′1 ⊆ Π1 and Π′′′1 ⊆ Π1, and since Π′′1 covers the goal v4 in Π1, Π′′′1 covers the goal
v5 in Π1.
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We now establish sufficient conditions for the concatenation of sub-problem plans to solve
the corresponding concrete problem. This result is a consequence of Lemma 1.

I Theorem 1. Consider a set Π1 . . .ΠN of problems that covers Π, satisfying Πj

�

Πk

for all j < k ≤ N . For 1 ≤ i ≤ N let →π i be a plan for Πi. Then rem-cless(N (Π1),→π 1)
++rem-cless(N (Π2),→π 2) ++ . . . rem-cless(N (ΠN ),→πN ) is a plan for Π.

` covers Πl Π ∧ �

l Πl ⇒
(∀Π. MEM Π Πl ⇒ valid-prob Π ∧ Π solved-by f Π) ⇒

(let
inst_plans = MAP (λΠ′. rem-cless (N (Π′),[],f Π′)) Πl ;
concatenated_plans = FLAT inst_plans

in
Π solved-by concatenated_plans)

Note that in the theorem above, the sub-problem plans can be concatenated to solve the
concrete problem after removing actions with unsatisfied preconditions. Such actions are
removed by the function rem-cless. This is required to ensure that the assumption sat-pre
satisfied, as is required for every sub-problem in Lemma 1. This function was not in our
originally published algorithm, and is defined as follows:

rem-cless (x,pfx,(p,e)::→π ) def=
if p v ex(x,pfx) then rem-cless (x,pfx ++ [(p,e)],→π )
else rem-cless (x,pfx,→π )

rem-cless (x,pfx,[]) def= pfx

The following two theorems show that rem-cless: (i) provides a list of actions whose
preconditions are always satisfied during execution, and (ii) does not effect the results of
execution in isolation in a sub-problem.

` sat-pre (x,rem-cless (x,[],→π ))

` ex(x,→π ) = ex(x,rem-cless (x,[],→π ))

During formalisation work related to Theorem 1, we discovered an error in our original
conception of the definition of what a sub-problem is. Before this verification, we omitted the
requirement that Π1 .I v Π2 .I, opting for the erroneous condition D(Π1 ) ⊆ D(Π2 ). This
faulty definition allows for sub-problems of the same problem to have conflicting initial states,
in which case the assumption of having more than one sub-problem becomes an insufficient
assumption to prove the algorithm’s soundness.

5 Concatenating Instantiations of a Quotient Plan

Theorem 1 establishes sufficient conditions enabling the synthesis of a concrete plan by con-
catenating plans for sub-problems. In fact, our compositional approach allows an additional
efficiency: since it treats the scenario where each sub-problem is isomorphic, only one plan
need ever be computed. That one plan is then instantiated for a covering set of isomorphic
sub-problems. Finally, a concrete plan is synthesised by concatenating the instantiated
sub-problem plans. This algorithm requires a canonical sub-problem, the quotient problem,
which is isomorphic to each sub-problem of the concrete problem at hand. To permit sub-plan
concatenation, successive sub-problems must satisfy the sub-problem precedence relation. To
ensure this, our algorithm augments the quotient, ensuring that shared resources are left as
they are found between sub-plan executions.
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5.1 Formalising Instantiations
An instantiation maps constituents from a planning problem Π1 to those from another
problem Π2 , by mapping the state variables that underlie the mapped constituent. In
particular, it is a function that explicitly maps the quotient into a sub-problem of the
concrete problem by mapping: (i) quotient state variables to state variables of the concrete
problem, (ii) quotient states to concrete problem states, and (iii) the quotient’s actions to
concrete problem actions.

To formulate that in HOL4, for state variables, instantiation is a function from D(Π1 ) to
D(Π2 ). For states, it was a surprising challenge to define in HOL4 what an instantiation
is. Because states are finite maps, the instantiation tLxM of a state x is an application of
an image of the instantiation t to the domain of the state. Instantiation here is therefore
described as a function image application. For example, for a state {o1 7→ T, o2 7→ F} and
an instantiation function t, the instantiation of that state using that function is the state
{t(o1) 7→ T,t(o2) 7→ F}. This is equivalent to composing the inverse of the instantiation
function with the state.

I Definition 10 (State Instantiation). Instantiation of state x with instantiation t is defined
as the composition of x with the inverse of t:

tLxM def= x ◦ t−1

Overloading the LM notation, below we define the instantiation operation, for (i) an action,
(ii) a factored system, (iii) a planning problem, and (iv) an action sequence, respectively.

tL(p,e)M def= (tLpM,tLeM)

tLδM def= (λπ. tLπM)LδM

tLΠM def= Π with <|I := tLΠ.IM; δ := tLΠ.δM; G := tLΠ.GM|>

tL
→
π M def= MAP (λπ. tLπM) →π

I Example 7. Recall from Example 3 the quotient Π′1 of the concrete problem Π1. Let
instantiation t be {p1 7→ v1, p2 7→ v3, p3 7→ v4}. The problem Π′′1 from Example 6 is the same
as tLΠ′1M, i.e. it is the instantiation of Π′1 using t.

Let valid-inst t mean that t is a bijection. We have the following theorems.

` valid-inst t ⇒ ex(tLxM,tL
→
π M) = tLex(x,→π )M

` valid-inst t ∧ Π solved-by →π ⇒ tLΠM solved-by tL
→
π M

` valid-inst t ⇒ D(N (tLΠM)) = tLD(N (Π))M

Note that, in our original treatment [5], we did not explicitly state bijectivity of instanti-
ations as a condition. This is because it is a consequence of the fact that the instantiations
we considered then were transversals of equivalence classes of state variables under symmetry
– a.k.a. orbits. Orbits form a partition of the domain of a planning problem, and since a
transversal maps every orbit to one of its members, transversals are bijective.

Our algorithm also requires the following additional condition on sets of instantiations:

I Definition 11 (Valid Set of Instantiations). Any two different instantiations from a set of
instantiations ∆ should not map different variables from the domain of the quotient to the
same variable in their range.
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pwise-valid ∆ vs def=
∀t1 t2 v1 v2.

t1 ∈ ∆ ∧ t2 ∈ ∆ ∧ v1 ∈ vs ∧ v2 ∈ vs ∧ v1 6= v2 ⇒
t1 v1 6= t2 v2

This condition guarantees that different instantiations of the same state are consistent with
each other – i.e., a distinct variable is mapped to the same value in all the instantiated states.
Again, we did not state this assumption explicitly in our original treatment since it holds for
instantiations that are transversals of the state variable orbits, because a set of orbits forms
a partition of the domain of the planning problem.

5.2 Planning via an Augmented Quotient
We now establish the correctness of the the target algorithm, which synthesises a concrete
plan by concatenating a set of covering instantiations of the solution to an augmented
quotient. The algorithm inputs are (i) a quotient of the concrete problem, (ii) a solution
to that quotient, and (iii) a set of instantiations of the quotient which cover the concrete
problem. In order to leverage the previous results in formally verifying that the target
algorithm is correct, the key remaining task is to deal with that, as yet, we have no ordering
of instantiations of isomorphic sub-problems. Theorem 1 is not directly applicable without a
notion of precedence. We shall establish below the conditions so that any two instantiations
of the augmented quotient can participate in the precedence relation together. Therefore,
any ordering of such instantiations is admissible for the purposes of leveraging the algorithm
verified in Theorem 1.

Two necessary concepts to state conditions guaranteeing that instantiations can participate
in the precedence relation are common variables and sustainable variables. Given a set of
instantiations, the common variables are variables mapped to the same value by at least two
instantiations. A sustainable variable holds the same assignment in the initial state as it
does in a goal state. Formally, they are defined as follows:

I Definition 12 (Common Variables). For a set of instantiations ∆, the set of common
variables, written

⋂
v ∆ vs, comprises all elements from the given set of variables vs that

occur in the ranges of more-than-one member of ∆.⋂
v ∆ vs def=
{v | ∃t1 t2 . t1 ∈ ∆ ∧ t2 ∈ ∆ ∧ t1 6= t2 ∧ v ∈ vs ∧ t1 v = t2 v }

I Example 8. Let instantiation t′ be {p1 7→ v2, p2 7→ v3, p3 7→ v5}. Take ∆ to be {t,t′}.
For ∆, we have

⋂
v ∆ {p1, p2, p3} = {p1}.

I Definition 13 (Sustainable Variables). A set of variables vs is sustainable in a problem Π

iff I�vs = G�vs.

sustainable Π vs def= Π.I�vs = Π.G�vs

Our headline result relies on the following argument. If the intersection of – the needed
variables of the quotient problem, with the common variables from instantiations ∆ – are
sustained in Π, then any pair of distinct instantiations of Π are elements in the precedence
relation.

` valid-inst t1 ∧ valid-inst t2 ∧
pwise-valid ∆ D(Π) ∧ valid-prob Π ∧ t1 ∈ ∆ ∧
t2 ∈ ∆ ∧ t1 6= t2 ∧ sustainable Π (

⋂
v ∆ D(Π) ∩ D(N (Π))) ⇒

t1 LΠM �t2 LΠM
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From this and from Theorem 1 we derive our headline theorem, stating soundness conditions
for planning via a quotient. In this theorem we refer to a planning problem, Π′, as being a
descriptive quotient of some other problem Π. The stated conditions of the theorem define
how some problem Π′ qualifies as a descriptive quotient of Π.

I Theorem 2. Consider a problem Π, a descriptive quotient Π′, a solution →π
′
to Π′, and a set

of instantiations ∆. Suppose {tLΠ′M | t ∈ ∆}(= Π) covers Π, and
⋂

v ∆ D(Π′1) ∩ D(N (Π′1))
are sustainable in Π′. Then any concatenation of the plans {rem-cless(N (tLΠ′M), [],tL

→
π
′
M) |

t ∈ ∆} solves Π.

Note that the theorem above requires, for a quotient, that the intersection of its needed
variables with the common variables between instantiations are sustainable. If this require-
ment is not satisfied by a quotient, the concatenated quotient plan instantiations might not
solve the concrete problem, as shown below.

I Example 9. Note that D(N (Π′1)) = {p1, p2}, and recall that
⋂

v ∆ {p1, p2, p3} = {p1}.
Thus the intersection of the quotient’s needed variables with the common variables between
instantiations,

⋂
v ∆ D(Π′) ∩ D(N (Π′1)), is {p1}. The quotient Π′1 does not sustain that

intersection since the assignment of p1 in Π′1.I does not occur in the goal Π′1.G. Now, to
see the problem this might cause, we instantiate the descriptive quotient Π′1 with t′, which
yields problem Π′′′1 from Example 6. Thus [tLΠ′1M;t

′LΠ′1M] covers the problem Π1. A plan
for the descriptive quotient Π′1 is →π

′
≡ [({p1, p2}, {p3, p1})] and its two instantiations are

tL
→
π
′
M = [π2] and t′L→π

′
M = [π3]. However, the two possible concatenations of tL

→
π
′
M and

t′L
→
π
′
M do not solve Π1 because both plans, tL

→
π
′
M and t′L→π

′
M, require v3 initially, but do not

establish it.

To guarantee that the intersection of the quotient’s needed variables with the instantiations’
common variables are sustainable, the goal of a quotient Π′ is augmented with assignments
that guarantee that the quotient sustains those variables. In particular, the quotient’s goal
should be augmented by the assignment of the variables

⋂
v ∆ D(Π′) ∩ D(N (Π′1)) in the

quotient’s initial state. This step should be performed before the quotient is solved. The
next example gives a concrete example of this augmentation.

I Example 10. To solve Π1 via solving Π′1, we augment the goal Π′1.G with the initial state as-
signment of the variables in

⋂
v ∆ {p1, p2, p3}∩D(N (Π′1)), i.e. Π′1.I�⋂

v
∆ {p1,p2,p3}∩D(N (Π′

1)).
The resulting problem, Πq

1, is equal to Π′1 except that it has the literal {p1} added to its
goals, so Πq

1.G = {p1, p3}. A plan for Πq
1 is →π

q
≡ [({p1, p2}, {p3, p1}); (∅, {p1})], and two

instantiations of it are tL
→
π

q
M = [π2;π1] and t′L→π

q
M = [π3;π1]. Concatenating tL

→
π

q
M and

t′L
→
π

q
M in any order solves Π1.

The fact that goal augmentation works is shown in the following theorem.

` let
Πq = Π′ with G := Π′.I�⋂

v
(set ∆) D(Π′) ∩ D(N (Π′)) ] Π′.G

in
sustainable Πq (

⋂
v (set ∆) D(Πq) ∩ D(N (Πq)))

Our headline result now follows straightforwardly from the manner in which the quotient
augmentation operates. Because a quotient with an augmented goal sustains the common
needed variables, the algorithm from Theorem 2 can be used to synthesise a concrete problem
solution by instantiating and concatenating the augmented quotient solutions.
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` let
Πq = Π′ with G := Π′.I�⋂

v
(set ∆) D(Π′) ∩ D(N (Π′)) ] Π′.G ;

inst_plans = MAP (λt. rem-cless (N (tLΠqM),[],tL
→
π

q
M)) ∆ ;

concatenated_plans = FLAT inst_plans
in

ALL-DISTINCT ∆ ∧ (∀t. MEM t ∆ ⇒ valid-inst t) ∧
valid-prob Π′ ∧
INJ (λt. tLΠqM) (set ∆) U(:(α, β) planningProblem) ∧
pwise-valid (set ∆) D(Πq) ∧ covers (MAP (λt. tLΠqM) ∆) Π ∧
Πq solved-by →π

q
⇒

Π solved-by concatenated_plans

In closing, it is worth noting that Theorem 2 assumes nothing in the way the augmented
quotient is computed. We believe this in itself is an important extension to our earlier
work [5], which was limited to situations where the quotient under consideration is computed
according to identified symmetric variables – i.e. as per Π′ in Example 3. Our new results
describe an algorithm that is applicable to descriptive quotients computed in problems that
may not have symmetries. It is applicable provided the descriptive quotient is isomorphic to
a set of sub-problems covering the concrete problem.

Also, the planning problem is of type (α, β) planningProblem. This denotes that indeed
the algorithm for composing solutions is applicable to planning problems whose state variables
can be assigned to values of any type β, without any constraints on that type. Additionally
the cardinality of the set of actions in the problem or the quotient is unconstrained. Thus
the planning problem and its quotient are not necessarily propositionally factored systems,
making planning via descriptive quotients applicable to planning problems with infinite
states, like numeric planning.

Lastly we note that the new algorithm, which includes a call to the function rem-cless,
suffers almost no run-time penalty compared to the original algorithm which did not include
a call to rem-cless. This is because the run-time of rem-cless is linear in the length of the
quotient plan, whose length in most benchmarks is linear in the problem size. Indeed, the
overall run-time is dominated by finding a plan for the quotient.

6 Fixing the Algorithm via Formalisation

One benefit of our work is the discovery and correction of an easy-to-miss bug in our original
algorithm [5]. We now describe that bug, first intuitively and then using a detailed example.
Suppose a plan is found for a quotient system, and that plan contains a spurious action: an
action whose precondition is not satisfied when that action is scheduled to execute – i.e., we
have not applied the rem-cless function. Now consider the case that the plan is instantiated
multiple times, and the results of this are concatenated together to form a concrete plan.
When we execute the first instantiation of the quotient’s plan, no error occurs. However,
that execution may have a “side effect”, so that later instantiations of the spurious action
now have an effect. It can be the case that such a spurious effect interferes with the plan
execution, rendering the concrete plan invalid as follows.

For notational economy, let action schemata π1, π2, π3, and π4 be defined as π1(x, y, z) ≡
({x, y}, {y, z}), π2(x) ≡ (∅, {x}), π3(x) ≡ (∅, {x}), and π4(x, y) ≡ ({x}, {y}), respectively.
Consider a planning problem Π where Π.I ≡ {v1, v2, v3, v4, v5, v6, v7}, Π.δ ≡ {π1(v1, v3, v4),
π1(v2, v3, v5), π2(v3), π4(v6, v7), π3(v6)}, and Π.G ≡ {v4, v5, v6, v7}. Also consider Π′, a quo-
tient of Π, where Π′.I ≡ {p1, p2, p3, p4, p5}, Π′.δ ≡ {π1(p1, p2, p3), π2(p2), π4(p4, p5), π3(p4)},
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and Π′.G ≡ {p3, p4, p5}. Consider the two instantiations t and t′ defined as t ≡ {p1 7→ v1,

p2 7→ v3, p3 7→ v4, p4 7→ v6, p5 7→ v7}, and t′ ≡ {p1 7→ v2, p2 7→ v3, p3 7→ v5, p4 7→ v6, p5 7→
v7}. Let the set of instantiations ∆ be {t,t′}. The problem Π is covered by tLΠ′M and
t′LΠ′M, since they are sub-problems of Π and they cover its goal Π.G. The first step of the
algorithm would be to augment the quotient’s goal with Π′.I�⋂

v
∆ D(Π′)∩D(N (Π′)). We have⋂

v ∆ D(Π′) = {p1, p4, p5}, i.e. there are three common variables between t and t′. Also,
the needed variables of the quotient are D(N (Π′)) = {p1, p2}, since both p1 and p2 occur
with the same assignments in the quotient’s action preconditions and its initial state. Thus
the goal of Π′ is augmented with the literal {p1} resulting in the problem Πq which is the
same as Π′ except that its goal Πq.G is {p1, p3, p4, p5}. Next, the algorithm searches for a
plan for Πq. One such plan is →π

q
≡ [π1(p1, p2, p3);π2(p1);π4(p4, p5);π3(p4)]. Note: when

→
π

q
is executed at the initial state Πq.I, the action π4(p4, p5) will have no effect since its

precondition, p4, will not hold before when it executes.
The next step is computing instantiations of →π

q
, which are tL

→
π

q
M = [π1(v1, v3, v4);π2(v3);

π4(v6, v7);π3(v6)] and t′L→π
q
M = [π1(v2, v3, v5);π2(v3);π4(v6, v7);π3(v6)]. Then the algorithm

returns the concatenation of tL
→
π

q
M and t′L→π

q
M in any order as a solution to Π. However, any

concatenation of tL
→
π

q
M and t′L→π

q
M does not solve Π since the last occurrence of π4(v6, v7)

in the concatenation will execute successfully. This is because the first occurrence of π3(v6)
sets the precondition of π4(v6, v7), and the execution of π4(v6, v7) will set v7 to true, which
contradicts the goal of Π.

The verified algorithm, however, returns a concatenation of the action sequences rem-cless
(N (tLΠqM),[],tL

→
π

q
M) and rem-cless (N (t′LΠqM),[],t′L→π

q
M). This is a solution for Π since

rem-cless removes π4(v6, v7) from both tL
→
π

q
M and t′L→π

q
M since its preconditions are not met.

Interestingly, the possible bad scenario never showed up in any of the thousands of
standard planning benchmarks on which we conducted our earlier experiments. We were
lucky that the planner we used never produced plans with spurious actions. Nonetheless, we
cannot afford to leave possible bugs latent in such corner cases if AI algorithms are to be
deployed in a safety sensitive applications. Needless to say, our discovery of this bug further
strengthens the argument for using formal verification for AI algorithms.

7 Related Work

The compositional approach to AI planning is very effective. A prominent example is planning
using abstractions based on projection, exploiting acyclicity in variable dependencies [25, 39].
Also factored planning abstracts a problem into multiple “factors”, which are obtained using
a tree decomposition of a graph representation of variable dependencies [7, 11, 24].

Despite that extensive literature, to our knowledge, this is the first verification of a
compositional planning algorithm. Indeed, most applications of formal methods to the
area of AI planning were in the context of reasoning about planning domain models and
plans and verifying properties of them, and not verifying planning algorithms. For instance,
model checkers were used to validate that classical planning domain models satisfy given
specifications [29, 21, 36]. Also, model checkers were used to verify safety and temporal
properties of plans [19, 18]. Similar applications of model checking also exist for other
planning formalisms, such as temporal planning [9]. Since the only formal technique used by
earlier work was model checking, the limitation to only verifying model and plan properties,
versus verifying planning algorithms, should come as no surprise. This is due to the limitations
on what can be represented in model checkers and their formalisms.
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The only application of theorem provers based formal methods to planning was by
Abdulaziz and Lammich [4], who developed and formally verified a tool to validate planning
domain models and plans. Other verification work using theorem provers relevant to our
work is the verification of model checking algorithms, where the motivation is to obtain
formally verified model checking algorithms and implementations [37, 32, 16, 12]. However,
we note that although those model checking algorithms use abstractions based techniques,
like partial order reduction, they are not compositional algorithms. Other related work is on
formalising automata theory. For instance, textbook results in automata theory have been
formalised on a number of occasions and in different logics [14, 15, 28, 40].

8 Conclusion

We verified a compositional AI planning algorithm that we published earlier, and found
mistakes in its pen-and-paper formulation. This is similar to our earlier experience [1, 2, 3, 6],
when we found mistakes in our and other people’s work. We believe that planning may be
particularly prone to such errors due to its heavy combinatorial nature, making it easy to
miss corner cases, as well as the dense usage of notation in the planning literature. Although
such errors can be corner cases, they cannot be tolerated in safety-critical applications such
as outer space exploration, making a strong case for the utility of mechanical verification.

Furthermore, formalising the algorithm in a theorem prover made it easier to generalise
our algorithm from planning problems with propositional state variables to problems in
which state variables are not necessarily Boolean, finite or even countable. This raises the
possibility of applying this algorithm to temporal planning, numeric planning, or hybrid
planning. However, this might need extending the existing theory to reason about actions
whose preconditions and effects are functions in state variables, versus assignments to state
variables. Since we do not assume that the planning problem has a finite number of actions,
we hypothesise that a lot of the theory developed here could be reused for richer planning
formalisms by showing that planning problems from those formalisms could be reduced to
problems represented in our theory.

We made a number of observations in our efforts which we believe provide insight into
how HOL4 can be improved. A feature of HOL4 which we would cite as the most positive is
the ease of modifying or adding tactics, since the entire system is completely implemented
in SML. Also, automation tactics in general are reasonable, and surprisingly proved some
lemmas completely automatically, modulo providing the methods with the appropriate lists
of theorems. Two high-level issues we encountered were difficulties in searching for theorems
(something we believe all systems struggle with) and the need to repeat theorem-hypotheses
from goal to goal. This latter issue would be much-ameliorated by a mechanism akin to
Isabelle’s locales or Coq’s sections.
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