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Abstract
Some mathematical proofs involve intensive computations, for instance: the four-color theorem, Hales’
theorem on sphere packing (formerly known as the Kepler conjecture) or interval arithmetic. For
numerical computations, floating-point arithmetic enjoys widespread usage thanks to its efficiency,
despite the introduction of rounding errors.

Formal guarantees can be obtained on floating-point algorithms based on the IEEE 754 standard,
which precisely specifies floating-point arithmetic and its rounding modes, and a proof assistant
such as Coq, that enjoys efficient computation capabilities. Coq offers machine integers, however
floating-point arithmetic still needed to be emulated using these integers.

A modified version of Coq is presented that enables using the machine floating-point operators.
The main obstacles to such an implementation and its soundness are discussed. Benchmarks show
potential performance gains of two orders of magnitude.
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1 Motivation

The proof of some mathematical facts can involve a numerical computation in such a way
that trusting the proof requires trusting the numerical computation itself. Thus, being able
to efficiently perform this kind of proofs inside a proof assistant eventually means that the
tool must offer efficient numerical computation capabilities.

Floating-point arithmetic is widely used in particular for its efficiency thanks to its
hardware implementation. Although it does not generally give exact results, introducing
rounding errors, rigorous proofs can still be obtained by bounding the accumulated errors.
There is thus a clear interest in providing an efficient and sound access to the processor
floating-point operators inside a proof assistant such as Coq.
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R := 0;
for j from 1 to n do

for i from 1 to j − 1 do
Ri,j :=

(
Ai,j − Σi−1

k=1Rk,iRk,j

)
/Ri,i;

end for
Rj,j :=

√
Mj,j − Σj−1

k=1Rk,j
2;

end for

Figure 1 Cholesky decomposition: given A ∈ Rn×n, attempts to compute R such that A = RTR.

1.1 Proofs Involving Numerical Computations
We give below a few examples of proofs involving floating-point computations.

As a first example, consider the proof that a given real number a ∈ R is nonnegative.
One can exhibit another real number r such that a = r2 and apply a lemma stating that all
squares of real numbers are nonnegative. Typically, one could use the square root

√
a.

A similar method can be applied to prove that a matrix A ∈ Rn×n is positive semidefinite1
as one can exhibit R such that2 A = RTR. Such a matrix can be computed using an algorithm
called Cholesky decomposition, given in Figure 1. The algorithm succeeds, taking neither
square roots of negative numbers nor divisions by zero, whenever A is positive definite3.

When executed with floating-point arithmetic, the exact equality A = RTR is lost but it
remains possible to bound the accumulated rounding errors in the Cholesky decomposition
such that the following theorem holds under mild conditions.

I Theorem 1 (Corollary 2.4 in [34]). For A ∈ Rn×n, defining c := (n+1)ε
1−2(n+1)ε tr(A) +

4n (2(n+ 1) + maxiAi,i) η, if the floating-point Cholesky decomposition succeeds on A− c I,
then A is positive definite. ε and η are tiny constants given by the floating-point format used.

A formal proof in Coq of this theorem can be found in a previous work [33]. Thus,
an efficient implementation of floating-point arithmetic inside the proof assistant leads to
efficient proofs of matrix positive definiteness. This can have multiple applications, such as
proving that polynomials are nonnegative by expressing them as sums of squares [26] which
can be used in a proof of the Kepler conjecture [24].

Interval arithmetic constitutes another example of proofs involving numerical computa-
tions. Sound enclosing intervals can be easily computed in floating-point arithmetic using
directed roundings, towards ±∞ for lower or upper bounds. The Coq.Interval library [25]
implements interval arithmetic and could benefit from efficient floating-point arithmetic.

More generally, there are many results on rigorous numerical methods [35] that could
see efficient formal implementations provided efficient floating-point arithmetic is available
inside proof assistants.

1.2 Objectives
The Coq proof assistant has built-in support for computation, which can be used within
proofs, and recent progress have been done to provide efficient integer computation (relying
on 63-bit machine integers).

1 A matrix A ∈ Rn×n is said positive semidefinite when for all x ∈ Rn, xTAx ≥ 0.
2 Since, when A = RTR, one gets xTAx = xT

(
RTR

)
x = (Rx)T (Rx) = ‖Rx‖2 ≥ 0.

3 A matrix A ∈ Rn×n is said positive definite when for all x ∈ Rn \ {0}, xTAx > 0.
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The overall goal of this work is to implement efficient floating-point computation in Coq,
relying directly on machine binary64 floats, instead of emulating floats with pairs of integers.
Experimentally, that latter emulation in Coq incurs a slowdown of about three orders of
magnitude with respect to an equivalent implementation written in OCaml.

1.3 Outline
The article is organized as follows: Section 2 provides the background required to position our
approach, from proof-by-reflection to the IEEE 754 standard for floating-point arithmetic to
interval arithmetic formalized in Coq. Section 3 is devoted to the implementation itself, with
a special focus on the interface that its exposes. Section 4 gathers a discussion on several
design choices or technicalities that have been important to carry out the implementation
and avoid some pitfalls. Section 5 provides benchmarks to evaluate the performance of the
implementation. Section 6 finally gives concluding remarks and perspectives for future work.

2 Prerequisites and Related Works

In this section, we start by reviewing the two main features that underlie and motivate
our work in the Coq proof assistant: Poincaré’s principle and the availability of efficient
reduction tactics (in Section 2.1). We then give an overview of all notions of floating-point
arithmetic that appear necessary to make this paper self-contained (in Section 2.2). We
finally summarize the features of two related Coq libraries that are either a prerequisite for
our developments (in Section 2.3), or an important building block for a possible extension of
this work (in Section 2.4).

2.1 Proof by Reflection and Efficient Numerical Computation
In the family of formal proof assistants, the underlying logic of several systems – including
Agda, Coq, Lego, and Nuprl [2] – provides a notion of definitional equality that allows
one to automatically prove some equalities by a mere computation. This feature is called
Poincaré’s principle in reference to Poincaré’s statement that “a reasoning proving that
2 + 2 = 4 is not a proof in the strict sense, it is a verification” [32, chap. I]. Based upon
this principle, the so-called proof by reflection methodology has been developed to take
advantage of the computational capabilities of the provers and build efficient (semi)-decision
procedures [7]: this approach has been successfully applied to various application domains,
such as: graph theory, with the formal verification of the four-color theorem in Coq by
Gonthier and Werner [14], discrete geometry, with the formal proof of the Kepler conjecture
developed in the Flyspeck project [17], Boolean satisfiability, with the verification of SAT
traces in Coq [1], satisfiability modulo theories, with the development of the SMTCoq
library [13], or global optimization, with the development of the ValidSDP library [26].

To be able to address the verification of increasingly complex proofs relying on this
approach, works have been carried out to increase the computational performance of proof
assistants, relying on two complementary approaches: (i) implement alternative evaluation
engines, such as evaluators based on compilation to bytecode or native code, and (ii) optimized
data structures that might be based on machine values and hardware operators.

For example, the Isabelle proof assistant provides (i) several evaluators that can be used
within proofs, and allows one to generate Standard ML, OCaml, Haskell, or Scala code, then
(ii) libraries of fast machine words (for fixed size or unspecified size) have been developed
while ensuring compatibility with all Isabelle’s target languages and evaluators [23].

ITP 2019
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In this work, we specifically focus on the Coq proof assistant which offers in particular
(i) the reduction tactics vm_compute, involving bytecode compilation and evaluation by a
virtual machine [15] and native_compute, involving code generation and native OCaml
compilation [3], as well as (ii) machine integers, upon which the Bignums library for multiple-
precision arithmetic has been developed [16].

Regarding machine integers in Coq, the original implementation by Spiwack [1, 39] was
based on the so-called retro-knowledge approach, which consisted in developing a reference
implementation of 31-bit integer operators in Coq (using lists of bits), then optimizing their
evaluation in vm_compute (and later native_compute) by replacing the considered Coq
operator on-the-fly with the corresponding hardware operator. The implicit assumption here
is that both implementations match. This implementation has been recently replaced with
so-called primitive integers4 [12]: this approach required adding a representation of 63-bit
machine integers in the kernel, and has the two-fold benefit of offering efficient operators for
all reduction strategies with a compact representation of integers, and making explicit the
axioms that specify the primitive operators.

The overall aim of this work is to provide a similar facility for floating-point arithmetic,
to be able to compute with primitive floating-point numbers in Coq, instead of emulating
floating-point numbers with pairs of integers.

A facility to compute with floating-point numbers for prototyping purposes is available in
the PVS proof assistant thanks to the PVSio package [31] but to the best of our knowledge,
no proof assistant currently provides support for machine floating-point computations in the
scope of proof by reflection.

2.2 Floating-point Arithmetic
This section reviews the main concepts of floating-point arithmetic used in the remainder of
this paper. The reader interested in more details could find them in reference books [30].

Computing in floating-point arithmetic amounts to performing calculations in what is
often called scientific notation with one digit before the dot, a fixed number of digits following
it and a power of ten specifying the position of the dot, hence the name floating-point
arithmetic. When results do not fit in the required precision, they have to be rounded, e.g.,
with a precision of five digits, 1.234 · 102 + 5.678 · 10−1 = 1.240 · 102.

2.2.1 IEEE 754 Standard
Implementations of floating-point arithmetic in hardware nowadays adhere to the IEEE 754
standard [19]. This standard prescribes sets of floating-point numbers, mostly as subsets
of the real numbers field R, binary representations for them, rounding modes and basic
arithmetic operators +, −, ×, ÷ and

√
· defined as functions giving the same result as the

operator in the real field composed with a rounding.
A floating-point format F is a subset of R such that x ∈ F when

x = mβe (1)

for some m, e ∈ Z, |m| < βp and emin ≤ e ≤ emax−p. The integer m is called the mantissa of
x and e its exponent5. The constants β and p are called respectively the radix and precision

4 See the pull request https://github.com/coq/coq/pull/6914.
5 More precisely called quantum exponent [30, p. 14].

https://github.com/coq/coq/pull/6914
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of the format F while the constants emin and emax define the exponent range of F. Some
floating-point values can have multiple representations, e.g., 1230 · 102 = 123 · 103. To get
a canonical representation, |m| ≥ βp−1 is enforced as soon as |x| ≥ βp−1+emin . In other
words, all the space allowed by the precision is used for the mantissa. Mantissas smaller than
βp−1 are only used for tiny values x such that βemin ≤ |x| < βp−1+emin , called denormalized
numbers. Finally, 0 can get a canonical representation by arbitrary choosing an exponent.

2.2.1.1 Binary64 Format

The IEEE 754 standard defines multiple formats in radix β = 2 and β = 10 and various
precisions. In the remaining of this paper, binary64 will be the only format considered6.
This is a binary format, i.e. β = 2, offering a precision of p = 53 bits and its minimal and
maximal exponents are respectively emin = −1074 and emax = 1024. As its name suggests,
this format enjoys a binary representation on 64 bits as follows:

sign exponent (11 bits) mantissa (52 bits)
The exponent is encoded on 11 bits while the mantissa is encoded as its sign and its absolute
value on 52 bits7. One can notice that, out the of the 2048 values enabled by the 11 bits of
exponent, two are unused when encoding exponents in the range [emin, emax−p] = [−1074, 971].
One is used for denormalized numbers, and 0 when the mantissa is 0, the other for special
values NaN, and infinities when the mantissa is 0.

The two infinities −∞ and +∞ are used to represent values that are too large to fit in
the range of representable numbers. Similarly, it is worth noting that due to the sign bit,
there are actually two representations of 0, namely −0 and +0. The standard states that
these two values should behave as if they were equal for comparison operators =, < and ≤.
However, they can be distinguished since 1 ÷ (+0) returns +∞ whereas 1 ÷ (−0) returns
−∞. Finally, NaN stands for “Not a Number” and is used when a computation does not
have any mathematical meaning, e.g., 0÷ 0 or

√
−2. NaNs propagate, i.e., any operator on

a NaN returns a NaN. Moreover, comparison with a NaN always returns false, in particular
both x < y and x ≥ y are false when x is a NaN, as well as8 x = x. Thanks to the mantissa
and sign bits, there are actually 253 − 2 different NaN values. These payloads can be used to
keep track of which error created the special value but they are only partially specified by
the standard and are in practice hardware dependent.

2.2.1.2 Precise Specification of Rounding Modes

From a formal point of view, a key definition introduced by the IEEE 754 standard is the
notion of rounding. For a given floating-point format F, a rounding is an increasing function
# : R→ F ∪ {±∞} whose restriction to F is identity, that is:{

∀x, y ∈ R, x ≤ y =⇒ #(x) ≤ #(y)
∀x ∈ R, x ∈ F =⇒ #(x) = x.

The IEEE 754-2008 standard [19] defines five standard rounding modes:

6 It is the usual implementation of the type double in the C language.
7 It actually fits in 53 bits but, except for denormalized numbers, the most significant one is always 1 and

doesn’t need to be explicitly encoded.
8 This is a simple way to test for NaN as otherwise x = x is always true.

ITP 2019
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toward −∞: RD(x) is the largest floating-point number ≤ x;
toward +∞: RU(x) is the smallest floating-point number ≥ x;
toward zero: RZ(x) is equal to RD(x) if x ≥ 0, and to RU(x) if x ≤ 0;
to nearest even: RNE(x) is the floating-point number closest to x.

In case of a tie: the one with an even mantissa;
to nearest away from zero: RNA(x) is the floating-point number closest to x.

In case of a tie: the one with the largest mantissa in absolute value.
In this work, we will only rely on the RNE rounding, which is the default rounding mode
in most floating-point programming environments. See Section 4.1 for a more in depth
discussion of this point.

Then, all floating-point operators are required to be correctly rounded, that is to say, they
should behave as if they were computed with an infinitely precise mantissa, then rounded
according to the specified rounding mode. To be more precise, for a given floating-point
format F, operator ∗ : R × R → R, and rounding mode # : R → F, a correctly-rounded
implementation #∗ of ∗ should verify:

∀x, y ∈ F, x #∗ y = #(x ∗ y).

The benefits of this definition are two-fold:
all floating-point operators that are correctly-rounded (the 2008 revision of the standard
requiring this for +, −, ×, ÷,

√
·) are fully-specified, which straightforwardly ensures the

reproducibility of the results;
it allows one to devise floating-point algorithms that directly rely upon this specification,
as exemplified in the upcoming Section 2.2.2.

2.2.2 Error Free Transformations
Noticing that the rounding error of a floating-point addition is itself a floating-point number,
algorithms such as Fast2Sum [11] and 2Sum [21, 28] can compute that exact error, taking
advantage of correct rounding.

These two “compensated summation algorithms” fall into the larger class of error-free
transformations [22, 37] which constitute an essential building block in the development of
extended precision floating-point algorithms.

2.2.3 Standard Model
Although precise specifications are known for roundings, hence for basic arithmetic operators,
a simpler model is commonly used to prove compound bounds of rounding errors on larger
expressions [18]. Despite being weaker, this model is more amenable to algebraic proofs,
whether pen and paper or mechanized. Called standard model of floating-point arithmetic,
it states the following main properties in the absence of overflow9

∀x, y ∈ F, ∃δ, |δ| ≤ ε ∧ #(x+ y) = (1 + δ)(x+ y) (2)
∀x, y ∈ F, ∃δ, ϕ, |δ| ≤ ε ∧ |ϕ| ≤ η ∧ #(x× y) = (1 + δ)(x× y) + ϕ (3)

where ε and η are tiny constants depending on the floating-point format10. As a recent
example, the following result is proved in a slightly refined standard model [20].

9 Overflow can often be handled separately.
10For binary64 and # a rounding to nearest, ε = 2−53 and η = 2−1075.
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I Theorem 2 (Theorem 4.1 in [20]). For x ∈ Fn, denoting ŝ the sum
∑n
i=1 xi computed with

floating-point arithmetic in any order11, assuming no overflow occurs, it satisfies∣∣∣∣∣ŝ−
n∑
i=1

xi

∣∣∣∣∣ ≤ (n− 1)ε
1 + ε

(
n∑
i=1
|xi|

)
.

Coq proofs of such results can be performed, and are at the core of the proof of Theorem 1 [33].

2.3 The Flocq Library
Flocq [5, 6] is a Coq library offering a very generic formalization of floating-point arithmetic.
Radix and precision can be fully parameterized and floating-point values are defined, similarly
to (1), as a subset of the real numbers R provided in the Coq standard library [27, Chapter 1].

More specifically, multiple models are available:
With an unbounded exponent range, i.e., without underflow nor overflow. Although
unrealistic, this model is attractive for its simplicity and commonly used for error
bounds [18].
With an exponent range only lower bounded, i.e., with underflow but without overflow.
This may still seem unrealistic but overflows can often be studied separately which usually
proves much harder for underflows [33].
A binary model of the binary32 and binary64 formats defined in the IEEE 754 standard,
with underflows, overflows to infinities, signed zeros and NaNs with payloads. This model
is used in the verified C compiler CompCert [4].

Along with these models and links between them, the library contains many classical results
about roundings, about some error-free transformations as presented in Section 2.2.2, and
basic properties of the standard model described in Section 2.2.3.

The library is mainly developed by Sylvie Boldo and Guillaume Melquiond and is available
at URL http://flocq.gforge.inria.fr/.

2.4 The Coq.Interval Library
Another Coq library could benefit from efficient floating-point arithmetic: Coq.Interval [25],
which offers a modular formalization of interval arithmetic. First, module types (a.k.a. sig-
natures) are defined for floating-point and interval operators. Then, several implementations
of the floating-point signature are provided, relying on the Flocq library and specifically its
model with unbounded exponent range. A generic implementation is provided, as well as
a specialized implementation assuming radix 2 and representing mantissa and exponent as
pairs of integers from Bignums. Next, a parameterized module implements interval operators
where intervals are pairs of floating-point numbers, and related computations are performed
using directed roundings, towards −∞ or +∞. Elementary functions such as exp, ln or
atan are provided among these interval operators, but correct rounding is not guaranteed
(namely, the computed intervals can be overestimated, albeit the containment property
always holds and has been formally proved). Finally, tactics interval (decision procedure)
and interval_intro (for forward reasoning) are provided to automatically and formally
prove inequalities on real-valued expressions.

The library is mainly developed by Guillaume Melquiond and is available at URL
http://coq-interval.gforge.inria.fr.

11Floating-point addition is not associative.
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3 Contributions

In order to provide access to efficient floating-point arithmetic inside proofs, the following
steps have been performed:
1. Define a minimal working interface for the IEEE 754 binary64 format. See Section 3.1.
2. Devise a specification of this interface that enables using binary64 computations in

proofs. This specification should be compatible with Flocq, so that all previously proved
results, both in Flocq and based upon it, can be straightforwardly reused, using a simple
compatibility layer. Details are in Section 3.2.

3. Implement the chosen interface in Coq’s various computation mechanisms, i.e., compute,
vm_compute and native_compute at the OCaml and C levels. A brief summary of the
implementation is given in Section 3.3 and salient points are discussed in Section 4.

4. Assess the performance by running some benchmarks. Results are given in Section 5.

3.1 Interface
In our modified version of Coq, after typing

Require Import Floats.

the user gets access to the following interface12:

Parameter float : Set.

A type for primitive floating-point values. Inside the kernel, this is mapped to the float
type of OCaml13 that matches binary64.

Parameters add sub mul div : float -> float -> float.
Parameters sqrt opp abs : float -> float.

The basic arithmetic operators +, −, ×, ÷,
√
·, opposite and absolute value.

Variant float_comparison : Set := FEq | FLt | FGt | FNotComparable.
Parameter compare : float -> float -> float_comparison.

A comparison function that behaves as specified by the IEEE 754 standard. In particular
+0 and −0 are considered equal and NaNs are not comparable to any value, hence the
FNotComparable answer.

A few functions are then given to examine or craft precise floating-point values by
translating them from or to primitive integers.

Variant float_class : Set :=
| PNormal | NNormal | PSubn | NSubn | PZero | NZero | PInf | NInf | NaN.

Parameter classify : float -> float_class.

A function testing whether a given value is a NaN, an infinity (NInf and PInf for −∞ and
+∞ respectively), −0 (NZero), +0 (PZero), a denormalized value (NSubn and PSubn) or a
regular one (NNormal and PNormal).

12Defined in file theories/Floats/PrimFloat.v in the implementation.
13The implementation language of Coq.
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Definition shift := 2101%int63. (* = 2 × emax + prec *)
Parameter frshiftexp : float -> float * Int63.int.

frshiftexp f returns a pair (m, e) such that14 |m| ∈ [0.5, 1) and f = m×2e−shift. Primitive
integers are unsigned so shift is used to ensure that e is nonnegative.

Parameter ldshiftexp : float -> Int63.int -> float.

ldshiftexp f e returns f × 2e−shift. This is the reverse of frshiftexp and it is exact
except when underflow or overflow occurs, in which case the result is rounded using RNE.

Parameter normfr_mantissa : float -> Int63.int.

When f , typically obtained from frshiftexp, satisfies |f | ∈ [0.5, 1), normfr_mantissa f

returns the primitive integer |f | × 2p, that is the integer encoding the mantissa of f .

Parameter of_int63 : Int63.int -> float.

Converts a primitive integer to a floating-point value. Since primitive integers are unsigned
63-bit integers, they do not all fit into the 53-bit mantissas of the binary64 format. Values
that do not fit are rounded using RNE .

Finally, two functions compute the successor and predecessor of a floating-point value.
They can be used to implement interval arithmetic for instance.

Parameters next_up, next_down : float -> float.

Equipped with this interface, the Coq user can now perform floating-point computations
using the processor operators and any of the evaluation mechanisms provided by Coq.

Coq < Require Import Floats. Open Scope float_scope.
Coq < Eval compute in 1 + 0.5.

= 1.5 : float
Coq < Eval vm_compute in 1 / -0.

= neg_infinity : float
Coq < Eval native_compute in 0 / 0.

= nan : float

3.2 Specification
Although floating-point computations are possible, they remain entirely useless in proofs at
this point, since there is no specification of their behavior. We thus need a Coq specification
of floating-point arithmetic.

First of all, the set of floating-point values itself has to be specified15.

Variant spec_float :=
| S754_zero (sign : bool) (* true for -0, false for +0 *)
| S754_infinity (sign : bool)
| S754_nan
| S754_finite (sign : bool) (mantissa : positive) (exponent : Z).

14When f is finite and non zero, otherwise (m, e) = (f, 0).
15 See file theories/Floats/SpecFloat.v in the implementation.
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7:10 Primitive Floats in Coq

This is similar to the full_float type in the IEEE754.Binary module of the Flocq library
except for one point: the sign and payload of NaNs are not modeled here. It is also worth
noting that this models much more values than the binary64 format16 since no bounds on
mantissas nor exponents are enforced. This makes for a simple specification.

Then, each of the above operators must be specified on this spec_float type. This
specification is mostly borrowed17 from the IEEE754.Binary module of the Flocq library
and totals 398 lines in our implementation18. We thus only detail the multiplication operator.
We first need to define a few characteristics of the binary64 format as seen in Section 2.2.1.1

Definition prec := 53%Z.
Definition emax := 1024%Z.
Definition emin := (3 - emax - prec)%Z. (* = -1074 *)
Definition fexp e := Z.max (e - prec) emin.

When |x| ∈
[
2e−1, 2e

)
, then fexp e is the exponent used to encode x in the binary64 format.

As seen in Section 2.2.1.2, the floating point multiplication is defined by x⊗ y = #(x× y).
When x = mx2ex and y = my2ey , then x× y = (mx ×my) 2ex+ey and the rounding operator
# has to remove the extra bits in the mantissa to make this value fit in the format. To this
end, we first abstract the bits to remove as two booleans, the rounding bit remembers the
first forgotten bit whereas the sticky bit is true when any of the remaining forgotten bits is
1 and false when they are all 0. The function shr_1 then shifts a mantissa one bit to the
right, updating the rounding and sticky bits accordingly

Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.
Definition shr_1 mrs :=

let s := orb (shr_r mrs) (shr_s mrs) in match shr_m mrs with
| Z0 (* 0 *) => Build_shr_record Z0 false s
| Zpos xH (* 1 *) => Build_shr_record Z0 true s
| Zpos (xO p) (* 2p *) => Build_shr_record (Zpos p) false s
| Zpos (xI p) (* 2p+1 *) => Build_shr_record (Zpos p) true s
| ... (* same for Zneg _ *) end.

Eventually, shr can iterate n shifts and shr_fexp removes the required number of bits using
the above function fexp (Zdigits2 m is the number of bits of m)

Definition shr mrs e n := match n with
| Zpos p => (iter_pos shr_1 p mrs, (e + n)%Z) | _ => (mrs, e) end.

Definition shr_fexp m e :=
shr (Build_shr_record m false false) e (fexp (Zdigits2 m + e) - e).

It now remains to round the mantissa according to the values of the rounding and sticky bits

Definition round_nearest_even mrs := match mrs with
| Build_shr_record mx false _ => mx
| Build_shr_record mx true false => if Z.even mx then mx else (mx + 1)%Z
| Build_shr_record mx true true => (mx + 1)%Z end.

16 spec_float gathers an infinite number of values, whereas binary64 only contains finitely many values.
17Except for the specifications of frexp, ldexp, normfr_mantissa, succ and pred which were not yet

present in Flocq and which we took the opportunity to add https://gitlab.inria.fr/flocq/flocq/
merge_requests/3.

18 See file theories/Floats/SpecFloat.v in the implementation.

https://gitlab.inria.fr/flocq/flocq/merge_requests/3
https://gitlab.inria.fr/flocq/flocq/merge_requests/3
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Finally, the rounding function first shifts the mantissa, rounds it, shifts the result one bit to
the right in case the rounding added an extra bit and handles potential overflows

Definition binary_round_aux sx mx ex :=
let ’(mrs’, e’) := shr_fexp mx ex in
let ’(mrs’’, e’’) := shr_fexp (round_nearest_even mrs’) e’
in match shr_m mrs’’ with Z0 => S754_zero sx | Zneg _ => S754_nan
| Zpos m => if Zle_bool e’’ (emax - prec) then S754_finite sx m e’’

else S754_infinity sx end.

Thus, it remains to the multiplication to handle all particular cases

Definition SFmul x y := match x, y with
| S754_nan, _ | _, S754_nan => S754_nan
| S754_infinity sx, S754_infinity sy => S754_infinity (xorb sx sy)
| S754_infinity sx, S754_finite sy _ _ => S754_infinity (xorb sx sy)
| S754_finite sx _ _, S754_infinity sy => S754_infinity (xorb sx sy)
| S754_infinity _, S754_zero _ => S754_nan
| S754_zero _, S754_infinity _ => S754_nan
| S754_finite sx _ _, S754_zero sy => S754_zero (xorb sx sy)
| S754_zero sx, S754_finite sy _ _ => S754_zero (xorb sx sy)
| S754_zero sx, S754_zero sy => S754_zero (xorb sx sy)
| S754_finite sx mx ex, S754_finite sy my ey =>

binary_round_aux (xorb sx sy) (Zpos (mx * my)) (ex + ey) end.

In addition to the usual operators, two functions are defined going back and forth from
primitive floats to specification floats.

Definition Prim2SF : float -> spec_float.
Definition SF2Prim : spec_float -> float.

Finally, one needs to establish a link between the primitive operators and the specification.
This is done by adding axioms to the system.19 First, to specify the two functions Prim2SF
and SF2Prim above, one needs to characterize those values of type spec_float that actually
represent a binary64 floating-point number, i.e., values with appropriately bounded mantissa
and exponent.

Definition canonical_mantissa m e := Zeq_bool (fexp (Zdigits2 m + e)) e.
Definition bounded m e :=

andb (canonical_mantissa m e) (Zle_bool e (emax - prec)).
Definition valid_binary x := match x with

| SF754_finite _ m e => bounded m e | _ => true end.

Again, this code comes from the Flocq library [5]. So equipped, the following three axioms
can be stated:

Axiom Prim2SF_valid : forall x, valid_binary (Prim2SF x) = true.
Axiom SF2Prim_Prim2SF : forall x, SF2Prim (Prim2SF x) = x.
Axiom Prim2SF_SF2Prim :

forall x, valid_binary x = true -> Prim2SF (SF2Prim x) = x.

19 See file theories/Floats/FloatAxioms.v in the implementation.
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These properties allow one to prove that both Prim2SF and SF2Prim are injective and thereby
form a bijection between primitive floats and the subset of valid specification floats.

Theorem Prim2SF_inj : forall x y, Prim2SF x = Prim2SF y -> x = y.
Theorem SF2Prim_inj : forall x y, SF2Prim x = SF2Prim y ->

valid_binary x = true -> valid_binary y = true -> x = y.

Thus, all of the fifteen operators given in Section 3.1 are linked to their specification by an
axiom such as, for the multiplication:

Axiom mul_spec :
forall x y, Prim2SF (x * y)%float = SFmul (Prim2SF x) (Prim2SF y).

Since the specification is almost identical to the IEEE754.Binary module of Flocq, a link
with Flocq is straightforwardly built20, establishing a bridge towards real numbers and giving
access to all the results already proved in the library. This plays a key role in enabling actual
proofs using primitive floating-point computations. Moreover, this enables to gain additional
confidence in the above non trivial specification, since Flocq contains correctness theorems
basically stating for instance21 that, except when overflow occurs, SFmul x y is indeed the
rounding of the real number x× y.

3.3 Implementation

The implementation was submitted to be integrated in Coq through the GitHub pull request
https://github.com/coq/coq/pull/9867.

Below is an overview of the size of the development at the time of writing, summarized
by sub-components (over the ≈ 3.7 kLoC added).

OCaml and C: 1815 LoC
(floats ↪−→ kernel : 1070) (vm_compute support: 255) (native_compute support: 355)
(parsing and pretty-printing: 85) (Coq checker: 50)
Coq specifications: 620 LoC [mostly borrowed from Flocq]
Coq proofs: 340 LoC
Tests: 800 LoC
Sphinx documentation: 115 LoC

This implementation required the addition of some code in the kernel of Coq. Most of it
only consists in wrapping the floating-point operators into the different evaluation mecha-
nisms of Coq and its core, actually dealing with floating-point arithmetic, can be found in
the files kernel/float64.ml, kernel/byterun/coq_interp.c and kernel/byterun/coq_-
float64.h. Most operators are implemented in C, as required by the vm_compute mechanism,
and boil down to calls to the appropriate functions of the C standard library. Thus, no
involved algorithmic happens in this added code itself.

20 See https://gitlab.inria.fr/flocq/flocq/merge_requests/6.
21 See theorem Bmult_correct in module Flocq.IEEE754.Binary.

https://github.com/coq/coq/pull/9867
https://gitlab.inria.fr/flocq/flocq/merge_requests/6


G. Bertholon, É. Martin-Dorel, and P. Roux 7:13

4 Discussion

4.1 Rounding Modes
We implement only one of the five rounding modes defined in the IEEE 754-2008 standard,
namely rounding to nearest even (RNE). We argue here that implementing other rounding
modes would not only easily be seriously harmful in terms of performance, notwithstanding
the potential threat to soundness of the implementation, but also not very useful.

Unfortunately on most common processors, operators with different rounding modes
are not implemented using different opcodes but a status flag. Once the flag is set to a
particular rounding mode, all subsequent computations are performed with this rounding
mode. Changing the rounding mode is then costly as it requires flushing pipelines.

Interval arithmetic constitutes the main use of rounding modes other than RNE we can
foresee in a proof assistant. A common solution to the aforementioned performance issue is
to set the rounding mode once to +∞ (RU), used to compute upper bounds, and emulate
rounding toward −∞ (RD), used to compute lower bounds, by relying on properties like22
RD(x + y) = −RU((−x) + (−y)). Although a monadic interface could be a reasonable
implementation, this remains an imperative programming feature and doesn’t integrate well
within the functional paradigm offered by Coq. Moreover, if no particular care is taken to
avoid or disable them, wild compiler optimizations – assuming that only RNE is used – could
easily break the previous property, thus ruining the soundness of the whole approach.

However, interval arithmetic doesn’t require precise directed roundings but only over-
and under-approximations thereof. We thus offer the next_up and next_down functions,
computing the successor and predecessor of a floating-point value. Together with rounding
to nearest operators, they satisfy the following property, ensuring soundness of interval
arithmetic while providing a reasonably precise approximation of directed roundings:

∀x ∈ R, RU(x) ≤ next_up(RNE(x))
∀x ∈ R, next_down(RNE(x)) ≤ RD(x).

4.2 Parsing and Pretty-Printing
Parsing and pretty-printing floating-point values is a non trivial question. We expect the
following main property: printing a floating-point value and then reparsing the output of
the printing function should give the initial value, i.e., parse ◦ print should be the identity
over binary64. It is worth noting that this necessarily implies the injectivity of the printing
function. However, we don’t require the parsing function to be injective, i.e., we do accept
that multiple strings are parsed as the same floating-point value.

A simple solution would be to print an exact hexadecimal representation of the floating-
point values, with a binary exponent, e.g., “0xcp-3”. This fulfills the above requirement.
Unfortunately, this is not very user-friendly. A decimal output would be much more human
readable, e.g., “1.5” instead of “0xcp-3”.

It is known that printing binary64 values using at least 17 significant digits and imple-
menting parsing as a rounding to nearest guarantees the above requirements [30, Table 2.3,
p. 44]. This is thus the adopted solution. The current version of Coq only offers support for
parsing and printing integer constants, so we extended this support23 to decimal constants
using the ubiquitous format 〈integer_part〉.〈fractional_part〉e〈decimal_exponent〉, e.g., “1.23e-4”.

22The opposite x 7→ −x being exact in floating-point arithmetic (the sign bit is simply flipped).
23 See the pull request https://github.com/coq/coq/pull/8764.
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4.3 Soundness

During our development, we identified three main potential threats to soundness:

Specification Issues due to a mismatch w.r.t. the implementation would break the soundness.
We hope that taking in extenso our specification from the Flocq library, resulting from
a few decades of experience in the field and proving links with other models, mitigates
this risk. Moreover, such an error in the specification can only be harmful when the
corresponding axiom is used. It is worth noting that all the axioms used in a proved
theorem explicitly appear in the result of the Coq command Print Assumptions.

Incompatible Implementations in different evaluation mechanisms (compute, vm_compute
or native_compute) or even on different machines could lead to a proof of False by
evaluating a same term to different results. For instance, the payload of NaNs is not fully
specified by the IEEE 754 standard and different hardwares can produce different NaNs
for a same computation. That’s why we chose to consider all NaNs as equal and not
distinguish them. Thus incompatible implementations at the bit level remain compatible
at the logical level. Double roundings due to the x87 on old 32 bits architectures [29]
could also be harmful. The OCaml24 compiler systematically relies on it, forcing us to
implement all floating-point operators in C and to use the appropriate compiler flags. A
runtime test25 is eventually added to prevent Coq from running in case of miscompilation.
Another extreme example of implementation discrepancy would be a hardware bug such
as the one encountered in the division of the early Pentium processors.

Incorrect Convertibility Test that distinguish two values that shouldn’t or vice versa is also
a threat. For instance, implementing this test using the equality test on floating-point
values (as defined in the IEEE 754 standard) would be wrong as it equates −0 and +0
which should be distinguished since 1 ÷ (−0) = −∞ 6= 1 ÷ (+0) = +∞. Fortunately
enough, this keeps a very simple implementation, with the following OCaml code:

let equal f1 f2 =
let is_nan f = f <> f in
match classify_float f1 with
| FP_normal | FP_subnormal | FP_infinite -> f1 = f2
| FP_nan -> is_nan f2 | FP_zero -> f1 = f2 && 1. /. f1 = 1. /. f2

A few other, more minor, points appeared during the development. Among them, the fact
that primitive integers in Coq are unsigned did require some care26. Finally, the way OCaml
optimizes arrays27 of floating-point values28 did cause a few nasty bugs, although it is unlikely
that such bugs could lead to a proof of False as they often yield a mere segmentation fault.

24The implementation language of Coq.
25 See file kernel/float64.ml in the implementation.
26We indeed fixed a few soundness bugs in primitive integers, pertaining with unsigned integers, before

they were merged in Coq master development branch (https://github.com/coq/coq/pull/6914).
27Arrays are used to communicate environments between the OCaml implementation of the kernel and

the C implementation of the vm_compute virtual machine.
28This causes other issues in OCaml itself and seems to be a hot topic currently in the OCaml community [9].

https://github.com/coq/coq/pull/6914
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5 Benchmarks

The overall objective of this work is to increase the performance of reflexive tactics involving
floating-point arithmetic in Coq. Thus we first measure the performance gain on such a tactic,
then evaluate it on its individual floating-point operators. We first present the reference
problems under study (Section 5.1), then recap the hardware and software setup for these
benchmarks (Section 5.2), and finally give the experimental results (Section 5.3).

5.1 Reference Test-suite
We developed a reflexive tactic posdef_check, performing some matrix positive definiteness
check along the lines of Theorem 1 introduced in Section 1.1. Its implementation was adapted
by reusing building blocks from our previous work on the validsdp tactic for multivariate
polynomial positivity [26].

This tactic is available in four flavors using vm_compute or native_compute and emulated
floats or primitive floats. Emulated floats are a state of the art implementation of floating
point arithmetic, based on primitive integers, from the Coq.Interval library whereas primitive
floats are our new implementation.

Regarding the test-suite, we generated a set of random positive definite matrices (after
fixing a given seed to make the random data reproducible) of size 50×50 up to 400×400.

We perform two kinds of benchmarks on this test-suite: the overall speedup between the
versions of posdef_check using emulated vs. primitive floats; and the individual speedup in
floating-point operators involved in this tactic.

5.2 Hardware/Software Setup
The formalization of the posdef_check tactic relies on a large set of dependencies that
takes around one hour to compile. For greater convenience, we devised some Docker images
containing the benchmark environment, based on Debian Stretch, opam 2 (the OCaml
package manager) and OCaml 4.07.0+flambda. The source code of all benchmarks as well
as guidelines to install Docker and run the benchmarks are gathered on GitHub at this URL:
https://github.com/validsdp/benchs-primitive-floats/tree/1.0

The use of Docker (a so-called OS-level virtualization system) for these benchmarks
yields a number of interesting features, beyond the facility to download and run a pre-built
image on different machines: it runs containers in an isolated environment from the host
machine, it ensures portability (across OSes such as GNU/Linux, macOS and Windows) and
reproducibility, while being more lightweight than traditional virtual machines (VMs).

The experimental results of the upcoming Section 5.3 have been obtained using a De-
bian GNU/Linux workstation based on a Intel Core i7-7700 CPU clocked at 3.60GHz,
with 16GB of RAM. All benchmarks have been executed sequentially (namely, without
the -j option of make), with a total elapsed time of about 3h35’, using the following im-
age: "docker pull registry.gitlab.com/erikmd/docker-coq-primitive-floats/master_compiler-

edge:9_coq-2ac1f46532264bacf2b1d8f5b6ee3659fe0cde67".

5.3 Experimental Results
We first measure the execution time of the whole tactic on the test-suite and compare
it between emulated floats and primitive floats. The results are displayed in Table 1 for
vm_compute and native_compute. Each timing is measured 5 times. The tables indicate
the corresponding average and relative error among the 5 samples.
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Table 1 Proof time for the reflexive tactic posdef_check.

Source vm_compute native_compute
Emulated Primitive Diff. Emulated Primitive Diff.

mat050 0.16s ±2.0% 0.01s ±0.0% 20x 0.05s ±4.0% 0.02s ±5.1% 3x
mat100 1.16s ±1.3% 0.06s ±5.8% 21x 0.28s ±2.5% 0.03s ±2.5% 9x
mat150 3.61s ±1.2% 0.18s ±2.2% 21x 0.75s ±3.0% 0.08s ±3.5% 9x
mat200 8.68s ±0.2% 0.41s ±1.0% 21x 1.71s ±1.0% 0.18s ±3.4% 10x
mat250 17.14s ±1.3% 0.80s ±0.3% 21x 3.34s ±1.4% 0.33s ±2.1% 10x
mat300 30.01s ±1.2% 1.37s ±0.7% 22x 5.77s ±2.4% 0.56s ±1.0% 11x
mat350 48.31s ±1.3% 2.15s ±0.1% 23x 9.09s ±3.0% 0.81s ±1.2% 11x
mat400 70.19s ±1.4% 3.18s ±0.5% 22x 13.56s ±4.0% 1.12s ±0.7% 12x

One can notice that the obtained speedups are far from the three order of magnitudes
separating emulated floats from equivalent OCaml implementations. From the above results,
it appears that arithmetic operators constitute most of the computation time with emulated
floats (at least 95% with vm_compute) but nothing tells us this is still the case with primitive
floats. In fact, with primitive floats, most of the computation time is dedicated to list
manipulating functions as our matrices are implemented using lists29 [8]. Thus, we would like
to get an idea of the time actually devoted to floating-point arithmetic in the total proof time
of our reflexive tactic. We use the following simple methodology: replace each arithmetic
operator with a version, uselessly, performing the computation twice30, then subtract the
execution time of the original program (“Op” in the tables) to the one of this modified program
(“Op×2” in the tables). The obtained time (“Op time” in the tables) corresponds to the
time devoted to the considered arithmetic operator. Note that the redundant computations
involved in the modified program (“Op×2”) could not be implemented with a mere additional
let-in such as ...let m1 := mul a b in let m2 := mul a b in m2 because the virtual
machine and the OCaml native compiler would optimize away the unused local definition; but
doing so and adding an extra function call ...in select m1 m2 with Definition select
(a b : F.type) := a. made it possible to use this doubling trick. The results are given

in Table 2 for vm_compute and Table 3 for native_compute, in each case both on addition
and multiplication31. Again, each timing is measured 5 times. It is worth noting that those
last results should be taken more as coarse orders of magnitude than precise results. In
particular, due to the overhead stemming from the duplication itself of the operators32, the
speedups are – maybe seriously – underapproximated. Actual speedups could thus be higher
than the ones suggested here.

6 Conclusion and Future Work

We developed a theory of floating-point arithmetic for the Coq proof assistant, composed
of primitive implementation of basic arithmetic operators (+, −, ×, ÷,

√
·), using the

processor floating-point operators in rounding-to-nearest even, as well as successor and
predecessor operators that can be used to approximate directed roundings to −∞ or +∞.

29This could be improved using primitive “persistent arrays” once they will be integrated in Coq [1].
30Or thousand times for primitive floats to avoid getting a result of the same order of magnitude than the
variability of computation times.

31Additions and multiplications constitute the vast majority of the arithmetic computations performed in
a Cholesky decomposition, as seen in Figure 1.

32Like expensive function calls.
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Table 2 Computation time for individual operators with vm_compute.

Op Emulated floats Primitive floats Diff.Source CPU times (Op×2−Op) Op CPU times (Op×1001−Op) Op
add
mat200 10.78±0.9% − 8.38±2.8% 2.40s 15.72±0.5% − 0.45±1.1% 0.02s 157x
mat250 21.46±1.7% − 16.41±1.5% 5.06s 30.62±0.6% − 0.82±0.6% 0.03s 170x
mat300 37.43±1.4% − 28.63±1.4% 8.80s 53.12±2.4% − 1.40±0.5% 0.05s 170x
mat350 59.42±0.8% − 45.95±2.9% 13.48s 84.19±0.8% − 2.19±0.5% 0.08s 164x
mat400 87.78±0.9% − 66.17±1.7% 21.61s 127.56±8.5% − 3.21±0.3% 0.12s 174x
mul
mat200 12.21±1.4% − 8.38±2.8% 3.83s 16.10±3.0% − 0.45±1.1% 0.02s 245x
mat250 24.52±1.4% − 16.41±1.5% 8.11s 31.12±3.7% − 0.82±0.6% 0.03s 268x
mat300 42.84±1.7% − 28.63±1.4% 14.21s 53.25±0.8% − 1.40±0.5% 0.05s 274x
mat350 68.23±1.5% − 45.95±2.9% 22.28s 84.33±0.7% − 2.19±0.5% 0.08s 271x
mat400 99.72±1.5% − 66.17±1.7% 33.55s 125.74±0.8% − 3.21±0.3% 0.12s 274x

Table 3 Computation time for individual operators with native_compute.

Op Emulated floats Primitive floats Diff.Source CPU times (Op×2−Op) Op CPU times (Op×1001−Op) Op
add
mat200 2.24±1.4% − 1.78±1.7% 0.46s 17.68±1.4% − 0.22±0.9% 0.02s 27x
mat250 4.49±4.2% − 3.41±3.1% 1.08s 34.29±0.7% − 0.37±1.5% 0.03s 32x
mat300 7.25±1.2% − 5.83±4.6% 1.42s 59.57±2.5% − 0.55±0.9% 0.06s 24x
mat350 11.66±3.8% − 9.28±3.5% 2.39s 93.82±1.1% − 0.82±0.8% 0.09s 26x
mat400 17.07±2.9% − 13.14±0.9% 3.93s 141.97±2.6% − 1.18±0.9% 0.14s 28x
mul
mat200 2.48±1.5% − 1.78±1.7% 0.70s 17.81±1.1% − 0.22±0.9% 0.02s 40x
mat250 4.82±2.4% − 3.41±3.1% 1.41s 35.14±2.1% − 0.37±1.5% 0.04s 41x
mat300 8.41±2.4% − 5.83±4.6% 2.59s 60.66±2.2% − 0.55±0.9% 0.06s 43x
mat350 13.21±2.4% − 9.28±3.5% 3.94s 97.25±1.0% − 0.82±0.8% 0.10s 41x
mat400 19.27±1.5% − 13.14±0.9% 6.13s 138.61±2.3% − 1.18±0.9% 0.14s 45x

This implementation is axiomatized under the assumption that the processor complies with
the IEEE 754 standard for floating-point arithmetic. Particular care has been taken to make
the implementation compatible across the different reduction engines of Coq, and across
different hardware, thereby avoiding soundness issues that could be caused, for example, by
the semantics of NaN payloads that is under-specified in the IEEE 754 standard.

We evaluated the performance on an implementation – carried out in Gallina, the
input language of Coq – of a Cholesky decomposition that underlies a reflexive tactic
for matrix positive definiteness, and the experimental results indicate a speedup of two
orders of magnitude for arithmetic operators using vm_compute. This is consistent with
the performance factor of about three orders of magnitude observed between floating-point
arithmetic emulated using primitive integers in Coq and equivalent implementations written
in OCaml.

Now that primitive floats are available in a proof assistant, multiple future works can
be envisioned. The most obvious one would be to adapt the Coq.Interval library to take
advantage of primitive floats. Still in this direction, it is known that the successor and
predecessor functions, used to approximate directed roundings, can be efficiently implemented
using only arithmetic operators [36, 38]. Such an implementation could enable to remove
these functions from the trusted code base. It would also be interesting to look at more
elaborate elementary functions such as exp or arctan, relying for example on the CR-libm
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implementation [10]. Finally, in an attempt to improve confidence in the consistency between
specification and implementation, and while waiting for a fully formally specified hardware
interface, it is worth noting that this consistency is amenable to some intensive automatic
testing, although exhaustive testing is out of reach for even unary operators on binary64.
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